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ABSTRACT

This work expands the state-of-the-art computational fluid dynamics (CFD) meth-
ods for simulating three-dimensional, turbulent, external flows by further developing
the immersed boundary (IB) Lattice Green’s function (LGF) method. The original
IB-LGF method applies an exact far-field boundary condition using fundamental
solutions on regular Cartesian grids and allows active computational cells to be
restricted to vortical flow regions in an adaptive fashion as the flow evolves. The
combination of spatial adaptivity and regular Cartesian structure leads to supe-
rior efficiency, scalability, and robustness, but necessitates uniform grid spacing.
However, the scale separation associated with thin boundary layers and turbulence
at higher Reynolds numbers favors a more flexible distribution of elements/cells,
which is achieved in this thesis by developing a multi-resolution LGF approach that
permits block-wise grid refinement while maintaining the important properties of
the original scheme. We further show that the multi-resolution LGF method can
be fruitfully combined with the IB method to simulate external flows around com-
plex geometries at high Reynolds numbers. This novel multi-resolution IB-LGF
scheme retains good efficiency, parallel scaling as well as robustness (conservation
and stability properties). DNS of bluff and streamlined bodies at Reynolds numbers
$ (104) are conducted and the new multi-resolution scheme is shown to reduce the
total number of computational cells up to 99.87%.

We also extended this method to large-eddy simulation (LES) with the stretched-
vortex sub-grid-scale model. In validating the LES implementation, we considered
an isolated spherical region of turbulence in free space. The initial condition
is spherically windowed, isotropic homogeneous incompressible turbulence. We
study the spectrum and statistics of the decaying turbulence and compare the re-
sults with decaying isotropic turbulence, including cases representing different low
wavenumber behavior of the energy spectrum (i.e. :2 versus :4). At late times the
turbulent sphere expands with both mean radius and integral scale showing similar
time-wise growth exponents. The low wavenumber behavior has little effect on the
inertial scales, and we find that decay rates follow Saffman (1967) predictions in
both cases, at least until about 400 initial eddy turnover times. The boundary of
the spherical region develops intermittency and features ejections of vortex rings.
These are shown to occur at the integral scale of the initial turbulence field and are
hypothesized to occur due to a local imbalance of impulse on this scale.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
In an external flow system, the fluid medium moves around an immersed body and
the dynamics of the fluid are subject to the far-field boundary condition. Such
systems are ubiquitous, including systems from low Reynolds number flying in-
sects to high Reynolds number airfoils and wind-turbines. Advances in the area
of computational methods during the past decade highlight the importance of us-
ing high-fidelity algorithms and data from simulations to provide a test bed for
characterizing and understanding complex phenomena presented in external flows.
However, simulations of high Reynolds number external flows are challenging due
to the far-field boundary conditions, the complex geometries associated with the
immersed body, and the wide range of physical scales associated with thin boundary
layers and turbulence. To date, the use of computational techniques are still largely
restricted to low to moderate Reynolds number flows. This research seeks to fill this
gap by providing high-fidelity, efficient, scalable computational tools to predict the
detailed flow fields and forces associated with the complex geometries and unsteady
aerodynamics.

The unbounded physical domain present in external flows may numerically be
truncated with artificial inflow/outflow boundary conditions (Lackner, 1976; James,
1977; Tsynkov, 1998; Colonius, 2004; McCorquodale et al., 2007), or truncated
based on the compact vorticity field, together with a free-space Green’s function
that satisfies the exact far-field boundary condition. The Green’s function can be
based on the discretized equations, i.e., the lattice Green’s function (LGF) (Glasser
and Zucker, 1977; Delves and Joyce, 2001; Gillman and Martinsson, 2010; Gillman
and Martinsson, 2014; Liska and Colonius, 2014; Liska and Colonius, 2016), or
the continuous ones, as is typically done in vortex methods (e.g., Leonard, 1980;
Chatelain and Koumoutsakos, 2010). In this work we focus on the LGF method
which is reviewed in detail in section 2.2.2. In the LGF approach, the grid need
only be defined where the vorticity induced by the surface is nonzero. This results
in a much more compact computational domain compared to typical CFD meshes
used for external flows. The computational domain can also be adaptive based
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on a threshold value of the vorticity. In other words, the grid can be dynamically
switched on and off in different regions of space as needed to most efficiently resolve
the vorticity generated by the surface. Additionally, when combined with mimetic
finite-difference/finite-volume methods, the LGF method is advantageous as the
resulting schemes are discretely conservative with provable stability bounds (Liska
and Colonius, 2016). Efficient, parallel solutions of the discrete convolution in three
spatial dimensions can be achieved by adapting variants of the fast multipole method
to yield linear complexity (Liska and Colonius, 2014).

The complex geometries associated with the immersed bodies are often dealt with
body-fittedmeshes in the CFD (e.g. Hirt, Amsden, and Cook, 1974; Tezduyar, Behr,
et al., 1992). The flexibility in the nodal distribution often allows thin boundary
layers to be resolved more efficiently and thus favors high Reynolds number flows.
However, moving and deforming complex geometries often require re-meshing at
each time step and other sophisticated procedures to maintain the accuracy (Mittal
and Iaccarino, 2005; Tezduyar, Sathe, et al., 2006). Additionally, techniques that use
irregular grids often require more general numerical solvers, which are less efficient
compared to those designed for grids with higher regularity. Furthermore, the
associated discretization often does not share the same conservation, commutativity,
orthogonality, and symmetry properties.

In this work we focus on an alternative approach for solving complex geometries, the
immersed boundary (IB) method. The IB method, which was originally developed
by Peskin (1972), solves PDEs on Eulerian grids with immersed geometries. The
surfaces of the geometries are emulated with a set of discrete IB points, and the
no-slip boundary conditions are imposed through interpolating the underlying fields
at those points, which circumvents the need to generate body-fitted mesh and still
allows the usage of efficient numerical solvers for regular grids. The current work
uses the distributed Lagrange multiplier (DLM) method developed by Colonius and
Taira (2008) where the no-slip boundary boundary conditions are imposed exactly.
More about the DLM method is discussed in Chapter 3.

While the combination of the LGF and IB methods is highly efficient (Liska and
Colonius, 2017), it is still limited tomoderate Reynolds numbers since they fall short
in solving the scale separation associated with thin boundary layers and turbulence
present in high Reynolds number flows. The former, the LGF method, does not
readily permit the static or adaptive mesh refinement (SMR and AMR) since the
definition of the LGF is only based on regular grids. While several multi-resolution
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schemes based on FMM and multigrid have been proposed for the Poisson equation
that arises in incompressible flow (e.g. Lashuk et al., 2012; Ying, Biros, and Zorin,
2004), these methods are likewise not straightforward to be combined with the
LGF. On the other hand, the majority of IB methods have only been employed for
low to moderate Reynolds number flows. One disadvantage of many IB methods,
including ours, is that only first-order accuracy is achieved near the surface. More
importantly, since the IB methods are based on Eulerian grids compared to methods
where body-fitted meshes are used, it is more difficult to cluster cells near the surface
and thus less efficient to resolve the thin boundary layers that exist for high Reynolds
number flows.

The present research aims to overcome these issues and bring the advantages of both
the LGF technique and the IB method to external flows at high Reynolds numbers.
We extend the current methodology in three ways. First, we developed an efficient
AMR framework that is fully compatible with, and exploits the existing strengths of
the fast LGF method. Second, we extend the AMR-LGF framework to the DLM-IB
method. We show that by employing the fast AMR-LGF solver, the IB method
can efficiently simulate external flows with complex geometries at relatively high
Reynolds numbers. Third, we explored the possibilities of combining the LGF
method with a state-of-the-art LES model which is discussed below.

Despite progress over several decades, numerical simulations of unsteady external
aerodynamics remains a roadblock for engineering prediction. Direct numerical
simulations (DNS), where all scales in the flow are resolved explicitly on the mesh,
require a number of computational cells to scale as at least Re2.25. Typical engineer-
ing problems such as airplanes are often at Reynolds numbers of O(106) or higher
where DNS approaches become prohibitive. Among all turbulence modeling ap-
proaches, the Reynolds-averaged Navier-Stokes (RANS) equations and large-eddy
simulation (LES) are the most widely used. In RANS, the Navier–Stokes equations
are time-averaged and the turbulence characteristics are fully modelled. For this
reason RANS is the least computationally demanding but often is less accurate
in predicting flows with separations and when fluctuating forces are important in
applications such as flows around airfoils at angles of attack. On the other hand,
in LES, the Navier–Stokes equations are filtered in space and only the unresolved
small turbulence scales up to a cutoff are modeled. Because of that, LES is able to
capture the large flow fluctuations and has been shown a very successful modeling
approach for flows in regions away from the immersed surface (Lesieur and Metais,
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1996; Meneveau and Katz, 2000; Sagaut, 2006).

However, the cascade of turbulence length scales as assumed in LES does not hold
in the same sense near the surface. One approach would be to resolve fully the inner
and outer boundary layers (wall-resolved LES), where the number of computational
grids required would still scale as Re13/7 (Choi and Moin, 2012). Note that those
estimations are based on body-fitted meshes and meshes with cubic cells such as
the Cartesian grids would require even higher numbers of grid points. To reach
Reynolds numbers greater than 105, different approaches are needed. One popular
attempt is the detached eddy simulation (DES), where RANS is used for attached
and near-wall flows and LES is used elsewhere. However a major weakness of DES
is its response to grid resolution. In some situations, DES on a given grid is less
accurate than RANS on the same grid, or DES on a coarser grid (Spalart, 2009). The
other approach is the wall-modeled LES (WMLES), where the near-wall eddies are
considered sub-grid scale and their effects are modeled (usually through imposing
a slip velocity) instead of being fully resolved. Good results using WMLES have
been reported for a number of smooth and rough-wall attached flows (Inoue, Pullin,
and Marusic, 2013; Saito and Pullin, 2012; Saito and Pullin, 2014) and separated
flows (Cheng and Pullin, 2015). The WMLES can be made fully compatible with
the IB method where slip velocities can be specified.

1.2 Contributions and outline
In this thesis, we propose three steps to further develop the original IB-LGF method
towards external flows at higher Reynolds numbers: a multi-resolution LGF frame-
work for solving viscous, incompressible flows on unbounded domains, an IB ex-
tension to this method for solving external flows around immersed bodies, and a
combination of the LGF technique with a state-of-the-art LES model.

In Chapter 2, we develop a novel AMR framework to enhance the LGF approach.
In this framework, the AMR grid is considered as a subset of a composite grid
that is constructed from a series of unbounded uniform staggered Cartesian grid of
differing resolution. The LGF technique is formally applied on all levels. We show
that by considering the commutativities between interpolation, coarsening, and the
LGF, this process can be evaluated efficiently without numerically constructing the
composite grid, while the solutions still enjoy the desired properties. We then
extend the AMR-LGF framework to the incompressible Navier-Stokes equations
by combining it with a half-explicit Runge-Kutta scheme (NS-AMR-LGF-HERK).
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We show both spatial adaptivity and refinement adaptivity can be applied to this
approach, and demonstrate its capabilities by simulating the collision of thin-cored
vortex rings at Re = 7500.

In Chapter 3, we show that the IB method can readily be included in the NS-
AMR-LGF-HERK scheme to solve external flows around complex geometries at
high Reynolds numbers. The resulting AMR-IB-LGF scheme is demonstrated with
DNS of the flow around a sphere at Re = 3700 and 10, 000, and a delta wing at
Re = 10, 000. With these two examples we show that the multi-resolution scheme
is able to achieve significant computational saving through the spatial adaptivity as
well as the mesh refinement for the boundary layers and regions with high vorticity.

In Chapter 4, the LGFmethod is coupled with an specific LES sub-grid-scale model,
the stretched-vortex of Chung and Pullin (2009a). This state-of-the-art LES model
was validated in the LGF framework by developing a novel turbulent flow in free-
space — the spherical cloud of turbulence. We perform DNS and LES of this flow
and the results from LES are compared with DNS in detail. In future work, the
LES modeling can be extended to include the virtual wall model to further alleviate
computational expense in performing LES at higher Reynolds numbers (i.e to enable
WMLES).

Several features of the evolution of such a spherical region of turbulence are also
of theoretical interest. In Chapter 5, address some fundamental questions in the
theory of (nearly) isotropic homogeneous turbulence, namely the evolution of the
low-wavenumber (Batchelor- or Saffman-type) turbulence.

Lastly, in Chapter 6, we conclude the current work and present areas for future
research.
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C h a p t e r 2

MULTI-RESOLUTION LATTICE GREEN’S FUNCTION
METHOD

2.1 Introduction
Numerical simulations of high Reynolds numbers, incompressible flows on un-
bounded domains are challenging due to the wide range of physical scales and un-
bounded computational domain. The scale separation associated with the boundary
layers and turbulence favors a flexible distribution of elements/cells with refinement
in regions of high gradients. For unstructured or structured body-fitted meshes,
many techniques are available to achieve this clustering of elements, whereas for
immersed boundary methods, the most natural way to do this is through static or
adaptive mesh refinement (AMR) in Berger and Oliger (1984), Berger and Colella
(1989a), MacNeice et al. (2000), and Nissen et al. (2015).

In this chapter we focus on the LGF method for the unbounded domain. Efficient,
parallel solutions of the discrete convolution in three spatial dimensions can be
achieved by adapting variants of the fast multipole method (Liska and Colonius,
2014), which we refer to as the fast LGF (FLGF) method. As discussed in chapter
1, an important disadvantage is that the LGF does not readily permit the static or
adaptive local refinement required to efficiently simulate high Reynolds number
flows. In our recent work (Dorschner et al., 2020), we proposed a multi-resolution
extension of the FLGF method (AMR-LGF) that enables block-structured mesh
refinement while retaining the efficiency of the FLGF technique. In this chapter, we
propose an ansatz for AMR that reinterprets and improves this algorithm, and we
further extend the technique to solve the incompressible Navier-Stokes equations.
We consider the AMR grid as a restriction from an ambient composite grid that is
constructed from a series of infinite lattices of differing resolution. Solutions to the
Poisson equation are formally solved on every level of the composite mesh using the
LGF, before being restricted back to the AMR gird. We then construct commutative
interpolation operators that obviate the need for explicitly computing most of the
composite grid. In applying the scheme to the full Navier-Stokes equations, we limit
our attention to unbounded flows without immersed surfaces, but the algorithms we
propose are compatible with the previous IBLGF method and will be combined in
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the next chapter.

The chapter is organized as follows. In section 2.2, the FLGF based scheme for
solving incompressible flows on unbounded uniform grids is briefly reviewed. In
section 2.3, the concept of a composite grid is introduced. The previous AMR-
LGF method (Dorschner et al., 2020) is recast in this framework and an extended
source correction is proposed. In section 2.3.5 we extend this framework to the
LGF for an integrating factor to exactly advance the viscous terms when combined
with a half-explicit Runge-Kutta scheme, and in 2.3.6 we construct the remaining
operators for the multi-resolution Navier-Stokes solver for incompressible external
flows. Section 2.4 discusses how both spatial and refinement adaptivity can be
achieved and section 2.5 summarizes the implementation. Lastly the numerical
results are given in section 2.6 and 2.7.

2.2 Navier-Stokes LGF solution on a uniform grid
2.2.1 Discretization on unbounded uniform grid
TheNavier-Stokes LGF algorithm developed by Liska and Colonius (2016) is briefly
reviewed in this section. This algorithm solves the incompressible viscous Navier-
Stokes equations subject to the exact far-field boundary conditions. In a non-
dimensional form, the equations are are given by

mu
mC
+ u · ∇u = −∇? + 1

Re
∇2u, (2.1a)

∇ · u = 0, (2.1b)

u(x, C) → 0, ?(x, C) → ?∞ as |x| → ∞, (2.1c)

where u is the velocity field, ? is the pressure, and Re is the Reynolds number.

Eq. (2.1) are formally discretized on an unbounded staggered, uniform Cartesian
grid (lattice) of single resolution. A base unit of this grid is shown in Fig. 2.1a:
its cell (C) and vertices (V) discretize scalar quantities, and its positive faces (F )
and edges (E) store vector quantities. We use RQ to denote the grid function spaces
with values defined on Q ∈ {C, F , E,V}. The two principal discrete quantities to
be solved for are the velocity and the pressure; we denote their corresponding grid
functions (on the infinite lattice) as u ∈ RF and p ∈ RC , respectively.

The grid function space is equipped with the following differential operators: the
discrete gradient G : RC → RF , the discrete divergence D : RF → RC , the discrete
curl C : RF → RE and C : RE → RF , and the discrete Laplacian LQ : RQ → RQ .
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This discretization is of second-order accuracy and yields conservative, mimetic and
commutative properties. These properties are extensively exploited in this algorithm
(Liska and Colonius, 2016). For instance, one has the following mimetic properties,

D = −G†, C = C†, LC = −G†G, (2.2)

and the following commutativity properties,

HFG = GHC , DHF = HCD, (2.3)

where HQ is the integrating factor operator to be introduced in section 2.2.3.

Using these differential operators, Eq. (2.1) are discretized in space as
du
dC
+ N (u + u∞) = −Gp + 1

Re
LF u, Du = 0, (2.4)

where # (u + u∞) ≈ 8 × (u + u∞) is the corresponding discretized non-linear term
with 8 = Cu being the vorticity. We use a second-order kinetic-energy preserving
discretization of this term as reported in Liska and Colonius (2017).

2.2.2 Fast LGF algorithm
Retaining the formally infinite grid, we employ the LGF for the corresponding
discrete Poisson problem,

LQq = f, lim
=→∞

q(n) = 0, (2.5)

=⇒ q = L−1
Q f = �Q ∗ f, (2.6)

where f(n), s(n) ∈ RQ , and n denotes the trio of integers associated with the infinite
lattice. �Q is the LGF which incorporates exact far-field boundary condition and ∗
denotes the discrete convolution.

Given a source term f(n) the solution can in principle be evaluated anywhere on the
infinite lattice, but for a source with finite support, we only need do so at those lattice
positions that are required to advance the solution. This is accomplished in practice
by thresholding the source of the Poisson equation, which is in turn proportional to
the vorticity field. Furthermore, this allows the solution to be spatially adaptive, as
the active lattice points can be adjusted at each time-step. This process is described
in detail in Liska and Colonius (2017), and summarized later in section 2.4.1.

To accelerate the evaluation of Eq. (2.6), a variant of the fast multipole method
(FMM) is applied. Specifically we employ an FMM-based fast summation technique
for a 3-D uniformCartesian grid (Liska andColonius, 2014) yields linear complexity
and good parallel efficiency.
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2.2.3 Integrating factor for the viscous term
Similar to the LGF, an integrating factor (IF) is defined as the solution operator to
the discrete heat equation on an unbounded uniform Cartesian grid

df
dC
= ^LQ f, f(n, g) = fg (n), (2.7)

=⇒ f(n, C) =
[
HQ

(
^(C − g)
(ΔG)2

)
fg
]
(n, C), C ≥ g, (2.8)

where f ∈ RQ , ^ > 0 is a constant, fg (n) is a known source field, and HQ is the
integrating factor operator. The IF is a convolution with an exponentially decaying
kernel, whereas the LGF kernel, �Q (n) in Eq. (2.6) decays as 1/|n|. The FLGF
algorithm can be applied directly to this kernel (Liska and Colonius, 2016).

2.2.4 Half-explicit Runge-Kutta scheme
With the IF technique permitting an exact time integration of the viscous term, the
remaining terms are discretized in time using a half-explicit Runge-Kutta (HERK)
method (Hairer, Lubich, and Roche, 2006). HERK schemes exactly enforce alge-
braic constraints (in this case the divergence-free constraint), while using an explicit
RK method to advance the differential equations. More traditionally, split methods
are needed so that the viscous terms are integrated implicitly. With the IF technique
the usage of split methods are obviated, which is discussed here.

By applying the IF operator HF to Eq. (2.4) we obtain
dv
dC
= −HFN

(
(HF )−1v + u∞

)
− HFGp, D(H�)−1v = 0, (2.9)

where v = HF u ∈ RF . Because the integrating factor HF commutes with the
gradient and the divergence operators G and D by Eq. (2.3), Eq. (2.9) is simplified
to

dv
dC
= −HFN

(
H−1
F v + u∞

)
− GHCp, Dv = 0. (2.10)

Eq. (2.10) is integrated in time using the HERK scheme, which breaks down the
total time integration into #: subproblems ∪#:

:=0 [C: , C:+1] . For each subproblem
[C: , C:+1], the HERK scheme takes an input of the velocity field u(C: ), and output the
velocity field u(C:+1), which is defined as one timestep. The HERK scheme further
breaks a timestep into many stages. At each stage it requires solving a system of
equations of the following form,

(
H8F

)−1
G

D 0


[

u8

p8

]
=

[
r8

0

]
, (2.11)
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where u = H−1
F v ∈ RF , r is a known right-hand side, and the superscript refers to

quantities evaluated at the 8-th stage of the HERK scheme. Eq. (2.11) can be solved
using a block-LU decomposition:

u∗ = H8F r8, DH8FGp8 = Du∗, u8 = u∗ − H8FGp8 . (2.12)

Again using the commutativity by Eq. (2.3) and the mimetic properties by Eq. (2.2),
Eq. (2.12) is simplified to

LCp8 = Dr8, (2.13)

u8 = H8F
(
r8 − Gp8

)
. (2.14)

This simplified form involves the discrete Poisson equation, which is then solved
with the FLGF technique discussed in section 2.2.2.

On the right-hand side of Eq. (2.11), r8 is constructed using the information from
the previous stages and the non-linear term at the current stage

r8 = q8 + ΔC
8−1∑
9=1
0̃8, 9w8, 9 + g8, (2.15)

where ΔC is the time-step length, g8 is related to the nonlinear term given by

g8 = −0̃8,8ΔC N
(
u8−1 + u∞

(
C8−1

))
, C8 = C + 2̃8ΔC, (2.16)

and q8 and w8, 9 are recursively computed for 8 > 1 and 9 < 8 using

q8 = H8−1
F q8−1, q1 = u0 (2.17)

w8, 9 = H8−1
F w8−1, 9 , w8,8 =

(
0̃8,8ΔC

)−1 (
g8 − Gp8

)
, (2.18)

with 28 and 0̃8, 9 being the coefficients of a HERK scheme, and u0 being the velocity
field at the beginning of the time-marching.

The current implementation uses a HERK scheme introduced by Brasey and Hairer
(1993) with the coefficients given in Table (2.1), which corresponds to the Scheme
B discussed in Liska and Colonius (2016). This scheme was chosen because it offers
the highest order of accuracy for both the solution variable, velocity u (third-order)
and the constraint variable, pressure p (second-order) among all three schemes
considered in Liska and Colonius (2016).
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0 0 0 0
1
3

1
3 0 0

1 −1 2 0
0 3

4
1
4

Table 2.1: Coefficients of the HERK scheme (Brasey and Hairer, 1993).

2.3 Navier-Stokes LGF on an AMR grid
As discussed in section 2.2, the mimetic properties of the differential operators
and the commutativity between the differential operators and the LGF/IF operators
are crucial for the algorithm (see the simplification of Eq. (2.9) and Eq. (2.12)).
Furthermore, the LGF is only defined on a regular grid and the regularity of the
uniform grid also in turn enables an efficient evaluation of the fast LGF algorithm
(Liska and Colonius, 2014). However, an irregular grid does not possess those
features. In this section we propose a novel AMR technique that preserves the
desired properties.

2.3.1 Spatial discretization on an AMR grid
In this section an AMR grid used for the discretization of Eq. (2.1) is constructed
in two steps. First, we define a series of uniform unbounded staggered Cartesian
grids. Each grid is of the form introduced in section 2.2 but with different resolution
{RQ

:
}: , where : ∈ Z+ refers to the resolution or grid level. We use the convention

that RQ0 is the coarsest level and grid RQ
:+1 is generated by evenly dividing every grid

unit RQ
:
into 23 new units with 3 being the dimension of Eq. (2.1), and denote #; as

the maximum number of levels (0 ≤ : < #;).

We refer to the collection of uniform, unbounded grids as the composite grid, which
is defined as a tensor product of the series of grids

RQ B ⊗#;
:=0 R

Q
:
. (2.19)

We equip this new tensor space with an inner product that is induced from each RQ
:
.

In the second step, an AMR grid is constructed as a subspace of the composite grid.
More specifically, we define an AMR grid through a restriction operator. For each
level : , a restriction operator ΓQ

:
: RQ

:
→ RQ

:
is a linear functional defined as(

ΓQ
:

f
)
(n) =

{
f(n) for n ∈ Ω:

0 otherwise
(2.20)
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for all f ∈ RQ
:
, where {Ω: }: are regions that partition the whole space R3, i.e.,

Ω; ∩Ω@ = X;@Ω; , ∪#;@=0Ω@ = R
3. (2.21)

For simplicity we write ΓQ
:
as Γ: since Q can be determined by the context. A

full restriction operator for the composite grid, Γ : RQ → RQ is then defined by the
tensor product

ΓQ B ⊗#;
:=0 Γ

Q
:
. (2.22)

We again simplify the notation ΓQ to be Γ. Finally an AMR grid R̂Q ⊂ RQ is defined
as the image of the full restriction operator Γ, i.e.,

f̂ B Γ f ∈ R̂Q , ∀f ∈ RQ . (2.23)

A diagram for the composite grid and the AMR grid is shown in Fig. 2.1b.

2.3.2 Interpolation/coarsening operators
So far we have defined a composite grid function space RQ which consists of #;
unbounded uniform Cartesian grids, and an AMR grid R̂Q as a subspace of RQ . By
definition, the full restriction operator projects functions in RQ to the AMR grid R̂Q .
Numerically we only store information on the AMR grid. Assuming every part of
the AMR grid is approximating the same continuous function, then the information
on the composite grid can be approximated using interpolations and coarsening. In
this section we introduce the interpolation/coarsening operators that fulfill this idea.

First, we denote an interpolation/coarsening operator between any two levels ; and
@ as PQ

;→@ (P
Q
;→@ is an interpolation when ; < @, it is coarsening when ; > @, and it

is the identity when ; = @). We construct PQ
;→@ as compositions of the P-operators

between consecutive levels. For example, an interpolation operator between level ;
and @ (; < @) is given by

PQ
;→@ = PQ

@−1→@ · · ·P
Q
;+1→;+2PQ

;→;+1, for 0 ≤ ; < @ < #; . (2.24)

This construction will be shown favorable for the numerical efficiency in sec-
tion 2.3.4. Since the AMR grid is defined by the regions {Ω: }: that partition
the space, then for a given level, the information can be estimated anywhere using
the P-operators. More specifically, given f̂ = ⊗: f̂: ∈ R̂Q ⊂ RQ on the AMR grid,
the information on level : of the composite grid can be estimated by

f: =
#;∑
8=0

PQ
8→: f̂8 +$ (ℎ

#? ) B PQ
:

f̂ +$ (ℎ#? ), (2.25)
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cells faces edges

x

y
z

composite grid AMR grid

(a) (b)

Figure 2.1: (a) Base unit of a finite-volume staggered grid. (b) 1-D diagram for the
composite grid (dotted line) and the corresponding AMR grid (solid line with corresponding
vertices in circle)

where the error convergence rate, #?, is determined by the specific choice of
interpolant. This is discussed in more detail below. In the second equality in
Eq. (2.25), we defined another interpolation/coarsening operator between the AMR
grid and the uniform grid on level : , PQ

:
: R̂Q → RQ

:
. Similarly, a full P-operator

between the AMR grid and the composite grid PQ : R̂Q → RQ is defined by

PQ = ⊗#;
:=0 PQ

:
. (2.26)

Together with the restriction operator Γ, one has the approximation relation between
the AMR grid and the composite grid

f̂ = Γ f, f ≈ PQ f̂, (2.27)

where f ∈ RQ and f̂ ∈ R̂Q .

The general idea of our AMR technique is that, we consider the information on the
AMR grid as being restricted from the ambient composite grid. At every time-step
we can formally ‘recover’ the information on the composite grid from the AMR grid
using the P-operator. Then, the information on every level of the composite grid is
formallymarched in time even if the specific operations need not be performed on the
entire composite grid. At the end of the time-step, the solution on the composite grid
is again restricted to the AMR grid through the restriction Γ. The most important
feature of this process is that it need only be carried out on those portions of the
composite grid that are needed to advance the AMR grid. Thus, while in principle
the solution is defined on every grid level, only the subspace defined by the AMR
grid is required in practice. We discuss how this is done in the next sections.
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2.3.3 Differential operators
Differential operators are simply constructed for the composite grid by

A = ⊗#;
:=0 A: , (2.28)

whereAk ∈ {G: ,D: ,C: , L: } are the corresponding discrete differential operators on
grid R: defined in section 2.2.1. This construction also preserves the second-order
accuracy, conservation properties, mimetic properties, and commutativity (for the
composite grid) since for every level they are the same as the native ones defined in
section 2.2.1. We note that differential operators need not be constructed directly
for the AMR grid.

2.3.4 Fast LGF algorithm on the AMR grid
Before discussing the full algorithm for the Navier-Stokes equations, we provide
details for applying the fast LGF/IF algorithms on the AMR grid by using the
techniques derived in the proceeding section. The resulting algorithm is essentially
the same as the aforementioned AMR-LGF algorithm (Dorschner et al., 2020). Here
we use the composite-grid ansatz introduced above to reinterpret the algorithm and
provide a more complete correction term than the one derived previously.

To solve the Poisson equation on the AMR grid, we use the information on the AMR
grid to reconstruct the field on the composite grid, where the Poisson equation is
hypothetically solved on every level through the FLGF technique, and the solution
is then restricted back to the AMR grid. However, computationally one only has
access to the AMR grid. To efficiently evaluate the aforementioned process, we
consider the commutativity between the interpolation and the LGF convolution:
instead of interpolating the information from a coarse grid to a fine grid and then
applying the LGF convolution, we seek to apply the LGF convolution on the coarse
grid first and then interpolate the solution to the fine grid. In other words, we seek
a commutative P-operator P

Q
:→; that satisfies

L−1
; PQ

:→; = P
Q
:→;L

−1
: , (2.29)

where 0 ≤ :, ; < #; denote to two distinct levels in the composite grid, and L: , L;
are the corresponding Laplacian operators. Solving for P

Q
:→; yields

P
Q
:→; = L−1

; PQ
:→;L: , (2.30)
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which suggests that P
Q
:→; takes the form of a convolution. Note that P

Q
:→; holds a

similar composition relation as Eq. (2.24)

P
Q
:→; = P

Q
@→;P

Q
:→@ . (2.31)

A useful form of P
Q
:→; fromEq. (2.30) is derived by considering P

Q
:→; as the original

interpolation PQ
:→; with a correction

P
Q
:→; = L−1

; PQ
:→;L:

= PQ
:→; + L−1

; (P
Q
:→;L: − L;PQ:→;)

B PQ
:→; + L−1

; SQ
:→; , (2.32)

where the correction is in the form of a source term, given by applying the operator
SQ
:→; to the solution field on level : (Eq. (2.29)). One important property is that the

correction source SQ
:→;L

−1
:

yields a faster decay than the original LGF kernel. For
example, the correction term constructed from Lagrange polynomial interpolations
is shown to oscillate and decay as |n|−4 (independent of the order of the chosen
polynomial), whereas the LGF only decays as |n|−1. 1

The Poisson equation for the composite grid RQ subject to the far-field boundary
condition is given by

Lq = f, lim
|n|→∞

q(n) = 0, (2.33)

where f, q ∈ RQ and L is the Laplacian for the composite grid defined in section 2.3.3.
Approximating the source term on the whole composite grid f using the AMR grid
by Eq. (2.27) and solving for q shows

q(n) = L−1f ≈ L−1
(
PQ f̂

)
= ⊗#;

:=0 L−1
:

(
#;∑
8=0

PQ
8→: f̂8

)
= ⊗#;

:=0

[(
:−1∑
8=0

P
Q
8→:L

−1
8 f̂8

)
+ L−1

:

(
#;∑
8=:

PQ
8→: f̂8

)]
B ⊗#;

:=0
[
q:1 (n) + q

:
2 (n)

]
(2.34)

q̂(n) = Γq(n) (2.35)

1As an example, the source correction constructed from an interpolation of simple averaging
decays to about 3 × 10−5 at 20 cells away from the center of the interpolation.
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where L−1 = ⊗:L−1
:

is the LGF for the composite grid, f̂ ∈ R̂ lives only on the AMR
grid, q:1 (n) is the partial solution corresponding to the source field from coarser
levels, and q:2 (n) is the partial solution corresponding to the source contribution
from all finer levels as well as level : itself. Eq. (2.34) uses the commutative
P
Q operator for the interpolations in q:1 (n). As shown by the diagram Fig. 2.2,

the commutative construction avoids interpolating to a fine grid while yielding the
same results. Eq. (2.34, 2.35) are effectively the AMR-LGF algorithm introduced

(a) (b)

P:→:+1 P:→:+1 P:→:+1

L−1
:+1 L−1

:+1

L−1
:

L−1
: level :

level : + 1

Figure 2.2: 1-D diagram for the commutative interpolation with the Laplacian to avoid
constructing a fine grid on level : + 1: (a) applying an interpolation P:→:+1 first and L−1

:+1
second; (b) applying L−1

:
first and P:→:+1 second.

in Dorschner et al. (2020).

To summarize, the revised AMR-LGF algorithm is:

1. From fine to coarse levels, evaluate the source term
∑#;
8=:

PQ
8→: f̂8 in q

:
2 (n)

through coarsening. Because P-operators are defined as compositions of
consecutive levels (Eq. (2.24)), this term is calculated cumulatively by

#;∑
8=:+1

PQ
8→: f̂8 = PQ

:+1→:

(
#;∑

8=:+2
PQ
8→:+1 f̂8 + f̂:+1

)
. (2.36)

2. q:1 (n) are also evaluated cumulatively but from coarse to fine levels

q:1 (n) =
:−1∑
8=0

P
Q
8→:L

−1
8 f̂8

= P
Q
:−1→:

[
L−1
:−1 f̂:−1 +

:−2∑
8=0

P
Q
8→:−1L−1

8 f̂8

]
B P

Q
:−1→:k:−1 (2.37)

Using the source correction introduced in Eq. (2.32), Eq. (2.37) becomes

q:1 (n) = PQ
:−1→:k:−1 + L−1

: SQ
:−1→:k:−1. (2.38)
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This form avoids specific evaluation of the non-local P-operators, i.e., source
terms can be combined with q:2 (n) and Eq. (2.34) can be directly evaluated as

q(n) = ⊗#;
:=0

[
PQ
:−1→:k:−1 + L−1

:

(
SQ
:−1→:k:−1 +

#;∑
8=:

PQ
8→: f̂8

)]
, (2.39)

where k:−1 is evaluated accumulatively from coarse to fine levels and L−1
:

is evaluated using the FLGF algorithm for the uniform grid. We define the
combined source in Eq. (2.39) as S: given by

S: = SQ
:−1→:k:−1 +

#;∑
8=:

PQ
8→: f̂8, (2.40)

which is utilized in the refinement indicator function to be introduced in
section 2.4.2.

3. Lastly, the restriction operator Γ is applied by limiting the region needed
for the interpolation and the region used in the FLGF algorithm. With the
construction of the composite grid, AMR grid, P-operators, the restriction
operator Γ, as well as the differential operators, the AMR-LGF algorithm in a
nutshell is [

Γ L−1PQ
]

f̂. (2.41)

The approach developed here clarifies that the correction procedure developed
in Dorschner et al. (2020) is associated with the non-commutativity between P-
operators and the LGF operators, and it yields a more precise form of the correction
as an additive source term. Though the source correction SQ

:−1→:k:−1 decays
rapidly, it is non-local and requires an extended region up to a cut-off distance de-
picted in Fig. 2.3. More specifically the AMR grid is defined with a set of physical
domains {Ω: }: (Eq. (2.21)), and the corresponding extended correction regions on
level : are given by

Ω�: = {x : |x − y| ≤ #�ΔG: , y ∈ Ω: , x ∉ Ω: } , (2.42)

where ΔG: is the cell width on grid level : and #� controls the cut-off distance of
the extended region.

To test the new LGF-AMR algorithm, including the extended source correction,
we use the same test case as Dorschner et al. (2020) and solve a manufactured
vorticity-streamfunction equation

∇2Ψ = −l, (2.43)
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AMR grid Extended region for source correction

level :

level : + 1

Figure 2.3: 2D diagram for the AMR grid (blue) and the extended correction region (gray)
at each refinement level.

with the solution Ψ given by

Ψ(A, I) = 5

(√
(A − ')2 + I2

'

)
e\ , 5 (C) =

{
21 exp

(
− 22

1−C2

)
if |C | < 1

0 otherwise
.

(2.44)

For this test we let 21 = 103, 22 = 10 and ' = 0.125. For every level, an extended
correction region of a cut-off parameter #� = 14 is added, which corresponds to a
relative source correction cut-off about 10−4. We use the following criterion that a
region on level : is refined if

l: (x) > U!'−:lmax, ∀x ∈ Ω: , (2.45)

where !' is the maximum number of refinement and U = 1/6 is used.

Fig. 2.4a compares the !∞ error of the solutions on the finest grid level for an
increasing number of refinement levels, and Fig. 2.4b shows the error after left
applying the discrete forward Laplacian L& to the numerical solutions. Three cases
are considered: (1) without source correction (2) with correction but without an
extended correction region and (3) with correction and with an extended correction
region. For all tests the mesh topology is kept constant during the run. It can be seen
that the proposed extended source correction not only improves the accuracy of the
solution but also helps ensure the consistency with the discrete forward Laplacian.
The computation rate and parallel efficiency are reported in Appendix A for the
same test case up to 103 number of cores. Note that this result is tested with the
correction region off. On the every level, the extended source correction region is
only added to the ‘source’ in the FMM technique (section 2.5) but not the ‘target’,
so the asymptotic computation rate is not affected.
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Figure 2.4: Convergence of solutions on the finest grid w.r.t. to the refinement levels from
0 to 3 with a criterion U = 1/6 of (a) the numerical solution Ψ and (b) left applying the
discrete Laplacian to the numerical solution, LΨ. For each plot three cases are considered:
without the correction (red); with correction but without an extended region (blue); and with
correction and with an extended region (black). Across all three cases the mesh topology is
kept the same.

2.3.5 Fast IF algorithm on the AMR grid
Similar to the LGF for the Laplacian, the IF for the composite grid is constructed as
HQ = ⊗:HQ: with HQ

:
being the integrating factor for each level defined by Eq. (2.8).

Similar to Eq. (2.41), the fast AMR-IF algorithm is

f̂(n, C) ≈
[
ΓHQ PQ

]
f̂g (n), (2.46)

where f̂, f̂g ∈ R̂Q live on the AMR grid. Note that the kernel of HQ decays ex-
ponentially, which simplifies the implementation as one only needs to apply the
interpolation/coarsening P-operator to an extended region and then apply the IF
convolution before finally restricting the solution back to the AMR grid. Numeri-
cally the extended region used for the AMR-IF is the same as the one used for the
AMR-LGF shown in Fig. (2.3), and the same cut-off parameter #� for the extended
region is used, which corresponds to a relative error less than 10−10 due to the
exponential decay.

2.3.6 Navier-Stokes AMR-LGF-HERK algorithm
We now gather the elements developed in the preceding sections to construct the
AMR technique for the full Navier-Stokes equations. As discussed previously,
the main steps are to (a) provide an algorithm to formally recover the flow field
everywhere on the composite grid and time-marching every level, and (b) restrict
the solution back to the AMR grid such that only a small subset of the composite
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grid need actually be computed. To achieve this we combine the half-explicit
Runge-Kutta scheme discussed in section 2.2.4 with the AMR-LGF and AMR-IF
algorithms derived in section 2.3.4 and section 2.3.5.

As we have constructed the differential operators and the LGF/IF operators on every
level of the composite grid using the operators native to each unbounded uniform
staggered grid, the mimetic properties and the commutativity are preserved. Thus
Eq. (2.4-2.14) are formally the same, but with the corresponding operators and
variables referring to the those for the composite grid. For example, the LGF and
IF operators for the composite grid is given by

L−1 = ⊗#;
:=0 L−1

: , H8F = ⊗
#;
:=0 HF

(
(2̃8 − 2̃8−1) ΔC
(ΔG: )2 Re

)
, (2.47)

where the IF operator for the composite grid depends on the stage of the HERK
scheme 8, and the level of the composite grid : . Like the AMR-LGF algorithm
described in section 2.3.4, the NS-LGF-AMR-HERK algorithm tries to approximate
the right-hand-sides of each update equation on the composite grid, and restrict the
solution back to the AMR grid in a way such that the full composite grid is never
built, but rather only the regions that are required by the AMR grid.

The process of evaluating the equivalent form of the system of equations Eq. (2.11)
for the composite grid can be broken down as follows.

1. Eq. (2.11) for the composite grid is also solved using the block-LU decom-
position. Similarly because of the commutativity between the composite grid
differential operators and the IF operator, Eq. (2.13, 2.14) can formally be
solved with the composite grid LGF and IF given by Eq. (2.47). Again, in this
framework we approximate only the right-hand sides using the information
on the AMR grid

Dr8 = PC D̂A8 + nD, (2.48)

r8 − Gp8 = PF
(

r̂8 − Ĝp8
)
+ nu, (2.49)

where D̂A8 = ΓDA8 and r̂8 − Ĝp8 = Γ
(
r8 − Gp8

)
are the restricted fields on the

AMR grid, PC and PF are the interpolation and coarsening operators, and the
associated approximation error terms nD and nu are

nD = Dr8 − PC D̂A8, nu =
(
r8 − Gp8

)
−

[
PF

(
r̂8 − Ĝp8

)]
. (2.50)

These errors are controlled by the order of the interpolation/coarsening and
the local grid resolution, which are discussed inmore detail in the next section.
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2. Notice that the solution to the pressure Poisson equation is only used in the
form Ĝp8 and with Eq. (2.13) the solution after the restriction is

Ĝp8 = ΓGp8 =
[
ΓGL−1

C PC
]

D̂A8 + ñD, ñD = ΓGL−1
C nD. (2.51)

Here the AMR-LGF algorithm given by Eq. (2.41) is used. Note that because
of the gradient operatorG before the restriction, solutions from the AMR-LGF
are restricted to a grid which is one extra cell larger along the boundary on
every level of the AMR grid.

3. After solving the pressure gradient Ĝp8, by Eq. (2.14), the updated velocity
field at stage 8 after being restricted back to the AMR grid can be expressed as

û8 =
[
ΓH8FPF

] (
r̂8 − Ĝp8

)
+ ñu, ñu = ΓH8F nu. (2.52)

Here the AMR-IF algorithm given by Eq. (2.46) is applied.

The aforementioned process requires right-hand sides r̂8 and D̂r8. The evaluation of
D̂r8 on the AMR grid is essentially the same as r̂8, except that a restriction that is one
extra cell larger along the boundary on every level of the AMR grid is used due to
the divergence operator. r8 is recursively defined using the solutions from previous
stages by Eq. (2.15) and the process of updating r̂8 using the idea of the composite
grid is described as follows.

1. q8 and w8, 9 on the required portion of the composite grid are approximated
using the AMR solutions from previous stages,

q8 = H8−1
F q8−1 = H8−1

F

(
PF q̂8−1 + nq

)
, (2.53)

w8, 9 = H8−1
F w8−1, 9 = H8−1

F

(
PF ŵ8−1, 9 + nw

)
, (2.54)

where nq and nw are the interpolation/coarsening errors. The solutions on the
AMR grid are given by

q̂8 =
[
ΓH8−1
F PF

]
q̂8−1 + ñq, ñq = ΓH8F nq, (2.55)

ŵ8, 9 =
[
ΓH8−1
F PF

]
ŵ8−1, 9 + ñw, ñw = ΓH8F nw. (2.56)

Here the AMR-IF algorithm given by Eq. (2.46) is again used.
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2. Similarly the nonlinear term ĝ8 on the AMR grid is given by

ĝ8 = −0̃8,8ΔCΓ
[
PF N

(
u8−1 + u∞

(
C8−1

))
+ nN

]
, (2.57)

with

nN = N
(
u8−1 + u∞

(
C8−1

))
− PF N

(
û8−1 + û∞

(
C8−1

))
, (2.58)

which contains two sources: an interpolation/coarsening error and an aliasing
error.

In summary, the NS equations are formally discretized on the composite grid and
time integrated using the HERK scheme. At each stage of the RK time integration,
the system of equations Eq. (2.11) for the composite gird is solved using the block-
LU decomposition. By approximating the right-hand sides using the information
from the AMR grid, the resulting algorithm applies the AMR-LGF algorithm for
the pressure gradient Ĝp8, and uses the AMR-IF algorithm for the updated velocity
û8, and the intermediate fields q̂8 and ŵ8, 9 .

2.3.7 Approximation errors
The four interpolation/coarsening errors nu, nD, nq and nw control the difference
between the composite-grid and AMR-grid solutions. For the composite grid, the
method inherits the second-order convergence properties associatedwith the existing
FLGF-HERK algorithm; these were characterized and measured in previous work
(Liska and Colonius, 2016). The additional errors associated with AMR have a
local truncation error of order $ (ΔG2

:
). This error will vanish subjected to global

refinement of all levels together. We empirically demonstrate the convergence in
section 2.6 by considering the evolution of a vortex ring.

Some additional observations can bemade about the truncation errors. ByEqs. (2.48)
to (2.58), the approximation errors can propagate from coarse to fine levels through
the LGF and IF convolutions L−1

C and HF to produce ñu, ñD, ñq and ñw. Meanwhile
nN poses another source or the error due to non-linearity (aliasing). As GL−1

C and
HF are bounded operators, the corresponding errors ñu and ñD are well-behaved (the
constant in the error term is finite).

Note that Eqs. (2.48) and (2.49) simultaneously approximate the terms r8 and Dr8

using PF and PC . A more consistent approach would be to only approximate r8

using interpolation/coarsening and evaluate Dr8 accordingly. This would require a
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commutative P-operator with the divergence operator

DPF = PCD, (2.59)

which could then be implemented using a similar correction step as in Eq. (2.38).
Unfortunately, this approach requires a construction of a divergence operator for
the AMR grid—in our simplified approach operators need only be defined on the
composite grid, and we have thus presently opted for the former, simpler approach
(by tolerating the additional error term).

A final point regarding these errors is that they are, in principle, not different from
those associated with any AMR scheme. The spirit of AMR is to adapt the mesh
according to the (measured) smoothness of the solution. In other words, the AMR
scheme will attempt to minimize all the errors discussed in this section, subject to
being balanced by the overall truncation error. This is achieved by the adaptation
strategies described in the next section.

2.4 Adaptivity
We have thus far described the algorithm for solving the incompressible Navier-
Stokes equations on an AMR grid by introducing approximations to the (theoretical)
solution on a composite grid associated with interpolation/coarsening operators
between grid levels, and appropriate restriction operators. The AMR grid involves a
collection of regions {Ω: }: , where : denotes the level of refinement. The collection
{Ω: }: still contains at least one unbounded region (i.e. the coarsest grid). In
this section we will discuss how to adaptively truncate the coarsest grid level and
strategies for determining the adaptive truncation and adaptive refinement.

2.4.1 Adaptive truncation
The vortical regions in external flows are associated with the source term in either
the pressure Poisson equation or the vorticity-streamfunction equation. A truncation
of the computation domain is plausible since the vorticity field is compact, and it
suffices to assume only the base level (coarsest grid) Ω0 is infinite. The spatial
truncation for the computational domain Ω0 is adapted from Liska and Colonius
(2016), where a formally unbounded staggered uniform grid of a single resolution
was also truncated. We refer to Liska and Colonius (2016) for a more detailed
explanation. Here we only provide a brief summary of the truncation algorithm and
discuss how to combine it with the AMR technique.

Two types of convolutions are performed in the current algorithm, namely the LGF,
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L−1
C for the pressure Poisson equation and the IF, HF for the velocity field. To ensure

the solution in the region of interest is both accurate and minimal in extent, the
corresponding source terms in these convolutions need to be restricted to regions
where they have magnitude greater than a tunable threshold value.

The source term in the LGF convolution introduced in section § 2.3.6 is given by
Dr8. This term is approximately the divergence of the nonlinear term (Lamb vector),
which is in turn proportional to the compact vorticity field. Given a threshold n∗, a
truncation of the base level domain Ωsupp

0 for the source term Dr is defined as

Ω
supp
0 B

{
x ∈ R3 :

|Dr(x) |
‖Dr‖∞

≤ n∗
}
. (2.60)

Ω
supp
0 determines the domain needed to yield an accurate solution to the Poisson

equation.

The source term in the IF convolution is the velocity field which however yields a
much slower decay. To accurately and efficiently evaluate the IF convolution we
make use of the following two properties: the kernel of the IF decays exponentially
and the velocity field can be recovered from the vorticity. More specifically, to
evaluate the solution of the IF convolution in the region of interest Ωsoln

0 , only the
velocity field in an extended region Ωxsoln

0 is needed, which is defined by

Ωxsoln
0 B

{
x ∈ R3 : |x − y| < 3IF, y ∈ Ωsoln

0
}
, (2.61)

where 3IF is a cut-off distance for the exponentially decaying kernel. The velocity in
the extended region is recovered using the discrete vorticity-streamfunction relation

u = −C†L−1
E 8, (2.62)

where 8 is the discrete vorticity, LE is the Laplacian for the edge quantities, C† is
the discrete curl for the edge quantities defined in section 2.2.1, and u is the discrete
velocity. We refer to this process as the velocity refresh. The velocity refresh is only
needed for the base level and the vorticity is calculated from the coarsened velocity
field from the AMR grid given by

80 = CPC0 D̂, (2.63)

where D̂ is the velocity on the AMR grid and P0 is the coarsening operator defined
by Eq. (2.25). The evaluation of Eq. (2.62) uses the FLGF algorithm for a single
level, introduced in section 2.2.2. We also require Ωsupp

0 ⊂ Ωsoln
0 ⊂ Ωxsoln

0 . The
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computational domain of the base level AMR gridΩ0 is truncated such thatΩxsoln
0 =

∪#;
:=0Ω: .

Lastly we note that the velocity refresh need not be performed at every time-step.
The frequency of the refresh depends on the decay of the IF kernel, and whether the
base level mesh topology is updated. More details about the decay of IF kernel can
be found in Liska and Colonius (2016).

2.4.2 Adaptive refinement
Adaptive refinement is achieved by updating the restriction operator to Γ′ as the
solution progresses. The updated velocity field u′ on the new AMR grid is related
to the original velocity field u by interpolation/coarsening

u′ = Γ′PFΓu. (2.64)

To yield an accurate solution, the resolution of the different parts of the AMR grid
needs to reflect the different scales in the flow, which are a-priori unknown.

The choice of indicator function used to invoke refinement/derefinement has been
discussed in previous work on AMR. For instance, Berger and Colella (1989b)
applies a Richardson extrapolation by comparing the time-marched solutions on
both the coarse and fine mesh. The identification of vortical structures in the flow
often relies on the usage of the gradient, the curvature and magnitude of the vorticity
in the indicator functions (Almgren et al., 1998; Sussman et al., 1999; Popinet, 2003;
Sitaraman et al., 2010), while the gradient of the density is often used to detect the
existence of shocks (Almgren et al., 1998; Quirk, 1996; Papoutsakis et al., 2018).
A combination of different indicators can also be used. For example, Kamkar et al.
(2011) uses the Q-criterion with the Richardson extrapolation and Shenoy, Smith,
and Park (2014) uses the vorticity field, the non-linear term, and the Q-criterion
together.

Our NS-LGF-AMR-HERK scheme is mainly based on two algorithms: the AMR-
LGF algorithm for the pressure Poisson equation and the AMR-IF algorithm for the
velocity field involved in the viscous term. Both algorithms make use of the funda-
mental solutions defined on uniformgrids by hypothetically interpolating/coarsening
the source fields to the composite grid and solving on each level independently.
These interpolations/coarsening provide information about the truncation error and
can therefore be used as an adaptation indicator.
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The current implementation uses a refinement indicator function that focuses solely
on the source term involved in the AMR-LGF (Poisson) algorithm for the following
two reasons. First the kernel of the IF yields an exponential decay, which results in
a more localized error, whereas the LGF kernel decays much slower and the LGF
convolution can instantly propagate the error to the whole flow field. Secondly the
source term in the IF convolution, i.e., the velocity is smoother compared with the
source term in the Poisson equation which is proportional to the vorticity field, and
therefore it suffices to resolve the vorticity on the AMR grid.

More specifically, we propose to use the combined source term S: from Eq. (2.40)
as the criterion. Note that S: is defined on the AMR grid as well as the extended
source correction region introduced in section 2.3.4. At time C, the AMR mesh at
grid point n on level : , or on level : − 1 with an overlapping extended correction
region on level : is refined when

S: (n, C) > U#;−:Smax(C), (2.65)

where 0 < U < 1 is a constant, #; is the prescribed maximum refinement levels,
and Smax(C) is a quantity that renders the criterion dimensionless. To make the
refinement as efficient as possible, this quantity should monitor when the prescribed
maximum resolution is most limited during the time horizon [0, C] for an on-going
simulation. The current implementation uses the following form,

Smax(C) = max
g<C, �=∈�

RMSn∈�= [S: (n, g)] , (2.66)

whereRMS refers to the rootmean square, �= denotes a block of computational cells,
and � denotes the union of cell blocks that partition the AMR grid. More details
are discussed in section 2.5. We choose the maximum rms of the combined source
term over all cell blocks because it estimates the least resolved region represented
by the block where the maximum is reached, and as a statistical quantity it is less
affected by numerical noise. Similarly, a region on level : is coarsened when

S: (n, C) < VU#;−:Smax(C), (2.67)

where 0 < V < 1 is a constant to avoid constant changes in the refinement levels
due to small oscillations around the refinement criterion.

The combined source term S: consists of two parts: the source term in the pressure
Poisson equation Dr8 defined in section 2.3.6, and the source correction term defined
in Eq. (2.32). The former approximates the divergence of the non-linear term which
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is proportional to the vorticity field. The later is related to the difference between the
partial solutions (corresponding to the partial source from all coarser grids) on the
coarse grid and the fine gird which is associated with the Richardson extrapolation.
Using the combined source term has the benefits of an automatic incorporation of
both the vorticity criterion and a Richardson extrapolation process using only one
non-dimensionalization parameter without additional numerical expense.

2.5 Implementation
In this section the implementation of theNavier-Stokes LGF-AMR-HERKalgorithm
and the parallelization are briefly summarized. The development of the solver is
based on Dorschner et al. (2020) and the same data structure is adopted here. The
solver is written in C++ and uses MPI for parallel communications. The code uses a
block-structured computational grid (i.e. the smallest unit for grid addition/removal
and refinement/derefinement is a block of #3

1
computational cells) and the blocks are

also used in the refinement criterion Eq. (2.66). The current implementation uses
#1 = #� = 14. Those blocks are further organized using a tree structure (octree in
3D), where every node (octant) maps to a block. The reason for using the octree is
that the AMR-LGF algorithm used in the NS-LGF-AMR-HERK scheme applies the
FMM algorithm on each level of the computational grid, and each FMM operation
uses the hierarchical subtree structure for the calculating the far-field interaction
(Dorschner et al., 2020). Different from Dorschner et al. (2020), where each leaf
corresponds to a cubic domain in physical space, the current solver does not have
this requirement since the extended correction regions can overlap with the physical
space.

As in Dorschner et al. (2020), a server-client model is used for the parallelization,
where the server has the tree information but does not store any data, whereas
each client only stores a part of the octree with its data. At the beginning of
a simulation, the server guesses a mesh topology according to the given initial
condition, anticipates the load, and distributes the whole tree to the clients. While
the work is mainly done by the clients during the run, the server receives the
adaptivity requests (spatial addition/removal and local refinement/derefinement)
from its clients, finds a new compatible mesh topology (smooth in the transition
of refinement levels), calculates a new load distribution, and sends the adaptivity
instructions back to the clients to transfer the data. The server is also responsible
for identifying the subtree used in each FMM calculation during the AMR-LGF
algorithm.
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The LGF kernel decays geometrically and is identical regardless of the grid level.
Numerically, we store the exact values for near points, and use asymptotic expansions
for points far away (Liska and Colonius, 2014; Dorschner et al., 2020). The IF kernel
used in the AMR, on the other hand, depends on not only the stage of the HERK
scheme, but also the grid level : as suggested by Eq. (2.47). However since it decays
exponentially, one can still numerically calculate and store the exact values needed
for all stages and levels during the initialization.

Since the IF kernel decays faster than the LGF, it requires fewer neighbor contri-
butions. Numerically, one evaluation of the AMR-IF algorithm uses about 10%
of the execution time compared with the AMR-LGF algorithm. The three stage
HERK scheme considered here requires the application of the AMR-LGF algorithm
at each stage, using around 60% of the total execution time. The HERK scheme on
the other hand applies the AMR-IF algorithm to vector fields 5 times, contributing
another 30% of the total execution time. One additional factor that affects the solver
speed is the ‘velocity refresh’ procedure introduced in section 2.4.1 which requires
solving the vector Poisson Eq. (2.62) for the base level only. However the ‘velocity
refresh’ need not be performed at each time-step (Liska and Colonius, 2016). For
the numerical tests considered in the following sections, we observe an additional
contribution to the execution time of less than 15%.

2.6 Verification
The Navier-Stokes AMR-LGF-HERK algorithm introduced in section 2.3.6 is ver-
ified by considering a fat-cored vortex ring with an initial vorticity distribution of
the form

l\ (A, I) =
{
U Γ

'2 exp
(
−4B2/

(
'2 − B2) ) if B ≤ '

0 otherwise
, lI (A, I) = 0 , (2.68)

where ' is the radius of the vortex ring, B2 = I2+(A−')2, andwe letU ' 0.54857674
so the total circulation integrates to the parameter Γ. The Reynolds number is set
to Re = Γ/a = 1000, and the initial velocity field is calculated using the discrete
vorticity-streamfunction relation Eq. (2.62). The convergence study is performed by
considering a series of runs with different levels of refinement and grid resolution:
We vary the grid resolution on the base level from ΔGbase/ΔG0 = 2−3, · · · , 20,
where ΔG0 = '/4.7 is a constant, and the grids are repeatedly refined using a
refinement criterion U = 1/4 (see section 2.5) to reach the same finest resolution
ΔGfine/ΔG0 = 2−3. The grid topology is kept constant during the test and all cases
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are performed with ΔC/ΔGbase = 0.35× 2−#; up to 128 time-steps for the finest case.
Finally the reference solution is performed using a uniform grid at double of the
finest test resolution.

The !∞ convergence in the velocity field for all ten cases are shown in Fig. 2.5
in terms of both the base level and the finest level grid resolution. The errors are
calculated by interpolating the reference solution onto the coarse grids using simple
(2nd-order) averaging of nearest points. The plots show second-order convergence
with the grid resolution for a fixed refinement level. Furthermore, with the afore-
mentioned refinement criterion, adding a refinement level would produce a solution
with comparable accuracy as refining the whole AMR grid at once. This verifies
the efficacy of the AMR, i.e. we achieve better computational efficiency through
local refinement. The computation saving in the spatial adaptivity and the nodal
distribution will be further discussed in section 2.7.
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Figure 2.5: !∞ velocity convergence of the NS-AMR-LGF solver wrt (a) the base level
grid resolution, and (b) the finest level grid resolution, for #; = 0, 1, 2, 3 respectively.

2.7 Collision of vortex rings
Vortex ring collisions are readily created in experiments (Oshima, 1978; Lim and
Nickels, 1992). One notable feature of the vortex ring collision is that smaller sec-
ondary flow structures can develop at low Reynolds numbers, and turbulence cloud
can form almost instantaneously at high Reynolds numbers, creating a wide range
of length scales through a complex process of instabilities and vortex interaction
(McKeown et al., 2018). The simulation of a vortex ring collision not only requires
the numerics to be able to accurately and efficiently capture the fast and irregular
changes in the flow configuration (e.g. the vortex ring radii can grow over 6 times
during the expansion in the test case to be discussed), but at the same time also
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challenges the AMR scheme to add minimum noise to the flow as the transition is
sensitive to perturbations.

In this section we use the collision of two thin vortex rings at high Reynolds
number to demonstrate the Navier-Stokes AMR-LGF-HERK solver with its spatial
and refinement adaptivity. We assume that each vortex ring has an initial vorticity
profile

l\ (A, I) =
Γ

cX2 exp
(
− I

2 + (A − ')2
X2

)
, lI (A, I) = 0, (2.69)

where we set Re = Γ/a = 7500, and X/' = 0.2 controls the width of the vortex
ring. The initial distance between the two vortex rings is set to ' + X to mitigate
the initial interaction. We consider three cases with the maximum refinement levels
#; = 0, 1, 2 respectively, and keep the resolution on the finest level constant with
X/ΔG#; = 16. i.e., the #; = 0 case is using the finest grids everywhere with
the maximum number of computational cells. Case with #; = 1 and 2 are using
decreasingly fewer numbers of cells with AMR. Across all three cases the ratio
ΔC/ΔG#; = 0.35 is held constant. Both the spatial computational domain and the
refinement regions are allowed to fully adapt. We use a spatial adaptive truncation
threshold n∗ = 10−4 defined in Eq. (2.60) and a refinement criterion U = 1/4 and
V = 0.75 defined in Eq. (2.65, 2.67). Perturbations are added to the initial conditions
of each vortex ring to accelerate the transition. The initial perturbation follows the
recipe in Shariff, Verzicco, and Orlandi (1994), where the radii of the two vortex
rings are independently perturbed with Fourier modes of uniform magnitude and
random phases. For this test, perturbations are added to the first 32 modes with a
magnitude of 3 × 10−4 relative to the unperturbed vortex ring diameter 2'.

The evolution of the vortex ring collision taken from the case #; = 1 is shown in
Fig. 2.6. As the rings collide, they expand rapidly about the impact center plane,
leaving a pair of thin vortex sheets trailing the leading vortices. The leading vortex
pair becomes narrower, and as the vortex sheets are stretched, they eventually tear off,
producing two disjoint circles. Both the Crow instability and the elliptic instability
develop with the expansion which can be clearly observed around C Γ/'2 ∼ 15. The
symmetry is broken, and finally the vortex ring pair transitions into turbulence.

To quantitatively compare the AMR cases with the run #; = 0, we apply two
statistical measures, namely the kinetic energy K(C) and the enstrophy E(C) given
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Figure 2.6: Evolution of the vortex ring collision at Re = 7500 from the case #; = 1. From
left to right, vorticity isosurfaces |8'2/Γ| = [0.5 − 7.5] are given for C Γ/'2 = 0, 4.5, 9.0,
15.1, 19.9, and 25.2.

by

K(C) =
∫
R3

u · (x × l)3x, E(C) = 1
2

∫
R3
|8 |23x. (2.70)

As shown in Fig. 2.7, the expansion of the vortex ring pair is accompanied with a
decay in the kinetic energy and a growth in the enstrophy. The turbulence transition
starts around around C Γ/'2 ∼ 15 with an acceleration in enstrophy growth. The
enstrophy reaches a maximum at C Γ/'2 ∼ 20, which corresponds to the fifth flow
visualization in Fig 2.6. We see the results with varying numbers of refinement
levels (#; = 1, 2) agree well with the uniform grid simulation (#; = 0) and predict
the transition time accurately. As transitional flows are very sensitive to the noise, it
suggests the extra numerical perturbation from the AMR scheme is lower than the
initial perturbation.

Fig. 2.8 compares the mesh topology across the three cases for the time period
(C Γ/'2 = [0−20]) where the top row shows the side view of the same vorticity iso-
surfaces as in Fig. 2.6, and the second to the fourth rows show the mesh topology
over a horizontal cross-section about the center. The flow fields and the mesh
topology in 3D for the non-AMR case (#; = 0) and the AMR simulation (#; = 1) at
C Γ/'2 = 19.9 are shown in Fig. 2.9, where we see the evolution compares well even
after the entire transition period, and under the proposed criterion the refinement
regions accurately surround the leading vortices while a lower resolution grid is
used for the remaining regions.

The computational saving for all three cases is reported in Table 3.2, where the
numbers of cells used in the NS-AMR-LGF-HERK scheme over the same time
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Figure 2.7: Evolution of the kinetic energy K(C) and enstrophy E(C) for the thin vortex
ring collision at Re = 7500 for maximum refinement levels #; =0, 1, and 2. Note that the
#; = 0 corresponds to the case that uses uniform finest cells for the whole adaptive domain
(the most number of cells).

Figure 2.8: Mesh topology over the cross-section for #; =0, 1, and 2. The top row shows
the flow evolution at |8'2/Γ| = [0.5 − 7.5] are given for C Γ/'2 = 0, 4.5, 9.0, 15.1, and
19.9. The second to the fourth row show the corresponding mesh topology for #; = 0, 1, 2.
For all cases, coarse mesh to fine mesh are shown from light gray to dark gray.

horizon are compared with a static rectangular domain of a minimum bounding box
with the same finest resolution everywhere. It can be seen that by involving the
spatial adaptivity with the AMR, under the proposed criterion a factor of 10 ∼ 20
of reduction in computational cells is achieved.

2.8 Concluding remarks
We proposed an AMR technique to enhance the LGF approach for solving viscous,
incompressible flows on unbounded domains. We consider the AMR grid as a
subset of a composite grid that is constructed from a series of unbounded uniform
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(a) (b)

Figure 2.9: Flow visualization and mesh topology at C Γ/'2 = 19.9 for (a) the non-AMR
case (#; = 0), and (b) the AMR case (#; = 1). The computational blocks for the finest grid
are shown in transparent boxes and a quarter of coarse grid for #; = 1 is shown in green.

C Γ/'2 0 4.5 9.0 15.1 19.9
#; = 0 13.0% 12.9% 13.9% 17.0% 24.0%
#; = 1 5.2% 4.7% 5.8% 6.9% 9.9%
#; = 2 4.3% 4.5% 4.5% 5.4% 9.7%

Table 2.2: Number of computational cells for #;=0, 1 and 2, compared with a static
rectangular domain of minimum bounding box over the time horizon C Γ/'2 = [0 − 20].

staggered Cartesian grid of differing resolution. Differential and LGF/IF operators
are constructed for the composite grid and preserve the mimetic properties and the
commutativity of the original IBLGF scheme. Interpolation/coarsening P-operators
are defined through composition and their commutation with the aforementioned
operators was studied. Based on this analysis, we refined the original AMR-LGF
algorithm (Dorschner et al., 2020) for solving the 3-D Poisson equation subject to
free-space boundary conditions. The P-operators are applied to formally recover
the information on the whole composite grid from the AMR grid, where the Poisson
equation is hypothetically solved on every level using the FLGF technique, before the
solution is restricted back to the AMR grid. We also showed that this hypothetical
process can be evaluated efficiently by commuting the interpolation and the LGF
convolution, resulting in an extended source correction and improved accuracy of
the AMR-LGF technique.

The Navier-Stokes equations were then discretized on this composite grid using a
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second-order FV scheme, and we extended the AMR technique to incorporate the IF
technique for the viscous term, and a Runge-Kutta (HERK) scheme for the resulting
differential-algebraic equations. An incompressible Navier-Stokes method is then
designed where we formally advance the flow fields on all levels of the composite
grid using information from the AMR grid, but restricting the resulting computation
back to the AMR grid obviates the need for all but a small subset of the composite
grid.

Because the LGF represents the solution to the Poisson equation as a convolution of
its source term, i.e. the divergence of the Lamb vector in the momentum equation,
we construct an efficient and accurate refinement criterion that naturally tracks the
associated truncation errors that are associated with interpolation and coarsening of
the sources on different grid levels.

The Navier-Stokes solver was verified to give second-order accuracy through a
refinement study of a fat-cored vortex ring. We also demonstrated the capabilities
and performance by simulating the collision of thin-cored vortex rings at Re = 7500.
We showed theAMR simulations agreewell with the simulation using a uniform grid
for the entire laminar and transitional period, while providing significant reductions
in computational cells.

Lastly we note that the computational saving from the AMR depends on the scale
separation present in the physics. In this chapter we restrict our attention to flows in
the free space without bluff bodies. The combination of the AMR framework and
the IB method for external flows with immersed surfaces is introduced in the next
chapter.
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C h a p t e r 3

IMMERSED BOUNDARIES

3.1 Introduction
In this chapter we further extend the AMR-LGF framework introduced in Chapter 2
to simulate external flows around complex immersed geometries at high Reynolds
numbers via the IB method. We show that the adaptivity permits the thin boundary
layers to be resolved more efficiently and at the same time retains the desired
properties of theLGFmethod for flow simulations on otherwise unbounded domains.

As discussed in the Chapter 1, we focus on the specific type of IB technique termed
the distributed Lagrange multiplier (DLM) or projection method (Colonius and
Taira, 2008). As in other IB techniques, the DLM method solves the flow on an
Eulerian grid and treats the immersed surfaces in a Lagrangian framework. The
immersed surfaces are discretized on a set of IB points and the no-slip boundary
condition is imposed by interpolating the flow field at those IB points. More specifi-
cally in the DLMmethod, the forces associated with the IB points are considered as
Lagrange multipliers and the no-slip boundary condition is satisfied exactly. Apart
from the benefit of an exact boundary condition, the DLM method also has the
advantage that the modified incompressible Navier–Stokes equations can be solved
using a projection method with an efficient numerical procedure that is analogous
to the traditional fractional-step method (but free of splitting errors).

In the continuous setting, the IB method introduces an extra singular forcing term
to the Navier-Stokes equations which are given by,

mu
mC
+ u · ∇u = −∇? + 1

Re
∇2u +

∫
B(C)

f (b, C)X(X(b, C) − x) db, (3.1a)

∇ · u = 0, (3.1b)∫
R3

u(x, C)X(x − X(b, C)) dx = uB (b, C), (3.1c)

where u is the velocity field, ? is the pressure, X(X(b, C) − x) is the singular delta
function which is later regularized with the discrete delta function, and f is the
force along the surface which is parameterized by B(C). For external flows, the
velocity u and the pressure ? are subject to far-field boundary condition u(x, C) →
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0, ?(x, C) → ?∞ as |x| → ∞, and the unknown forces f are treated as Lagrange
multipliers such that the no-slip constrains are satisfied.

The chapter discusses how to discretize and solve the aforementioned Eq. (3.1) using
a multi-resolution grid and the LGF method. In section 3.2, the original IB-LGF
method for grid of single uniform resolution is briefly reviewed. In section 3.3, we
discuss how to equip the Navier-Stokes FLGF-AMR-HERK algorithm introduced in
section 2.3.6 with the IB method. In section 3.4, we discuss an important advantage
of the AMR-IB-LGF method that spatial truncation and refinement adaptivity can
be applied to a minimum spatial domain that only contain vortical flow areas to
admit accurate solutions. Section 3.5 discusses the numerical procedure to solve
the associated forcing equation. The combined AMR-IB-LGF-HERK algorithm
is validated and tested in section 3.6 and 3.7, where flow around a sphere and a
delta-wing at low and high Reynolds numbers are considered.

3.2 Immersed boundary method for external flows using LGF on a uniform
grid

In this section we briefly review the IB-LGF algorithm developed by Liska and
Colonius (2017), which will be extended to the multi-resolution framework in the
next section.

3.2.1 Discretization on unbounded uniform grid
As mentioned above, the IB-LGF method uses two discretizations. The flow field
is discretized on a formally unbounded uniform, staggered Cartesian grid of single
resolution. We use RQ to represent the corresponding grid function spaces with
values defined on Q ∈ {C, F , E,V}, where centers (C) and vertices (V) store
scalar quantities, and faces (F ) and edges (E) store vector quantities. The immersed
surfaceB, on the other hand, is discretized using a set of IB points that are distributed
on the immersed surface ‘evenly’, the concept of which will be made clear later.

The resulting discrete system of equations is given by

du
dC
+ N(u, C) = −G? + 1

Re
LF u + R(C)f (3.2a)

Du = 0, (3.2b)

E(C)u = uB (C), (3.2c)

where u ∈ RF is the discrete velocity field, G, D are the gradient and divergence
operators, LF is the Laplacian for RF , N(u, C) approximates the non-linear term, and
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uB is the prescribed velocity at the body surfaces.

Note that the delta functions in Eq. (3.1b), which represent the singular surface
forces along the immersed surfaces, are regularized with the discrete delta functions
in R(C) and E(C), where R(C) smears the discrete point IB forces to the staggered
Cartesian grid, whereas E(C) interpolates the field information from the flow grids
back to the IB point. They are defined as

[Eu] (8, C) = (ΔG)3
∑
n∈Z3

u(n, C)XΔG (xF (n) − X (b8, C)) , (3.3)

[Rf] (n, C) =
∑
8

f(8, C)XΔG (xF (n) − X (b8, C)) , (3.4)

where 8 refers to the 8-th IB point with coordinate X (b8, C), XΔG is the discrete delta
function for a uniform grid with spacing ΔG, and xF (n) is the grid coordinate for
cell n.

The system of equations can be made self-adjoint if one defines the smearing R as
the dual operator of the interpolation E up to a scaling, i.e.,

E f = R† f̂, (3.5)

where f = (ΔG)3 f̂ with ΔG being the cell width of the underlying fluid grid. This
definition allows the usage of more efficient numerical solvers designed for self-
adjoint systems such as conjugate-gradient method. More about the fast linear
solver is discussed in section 3.4.

We require the IB points to be ‘evenly’ distributed, meaning that the distance
between nearest IB points BB need to approximately equal to the grid spacing of
the underlying Cartesian mesh ΔG. Numerically we often require a mean ratio of
BB/ΔG = 1 ∼ 2. The idea is that having IB points too close to each other will result
in an ill-conditioned system of Eq. (3.2), and when the distance between the nearest
IB points is much larger than the width of the regularization defined by the discrete
delta functions Eq. (3.3), the immersed surface becomes permeable, which in turn
leads to inaccurate solutions.

For rigid immersed-body motion, the solutions can also be facilitated by writing the
above equations in an accelerating reference frame (moving with the body), but with
a change of dependent variable to the velocity in the inertial reference frame. We
refer the readers to (Liska and Colonius, 2017) for more details for this variation.
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3.2.2 LGF, integrating factor and commutative properties
The LGF technique and the analytical integrating factor (IF) technique for a uniform
unbounded grid of single resolution are essentially the same as introduced in Chapter
2, section 2.2.3. The LGF technique solves the discrete Poisson problem of the form

LQq = f, lim
=→∞

q(n) = 0, (3.6)

=⇒ q = L−1
Q f = �Q ∗ f, (3.7)

where f, s ∈ RQ , �Q is the LGF and ∗ denotes the discrete convolution, and an
integrating factor (IF) is defined as the solution operator to the discrete heat equation
on an unbounded uniform Cartesian grid

df
dC
= ^LQ f, f(n, g) = fg (n), (3.8)

=⇒ f(n, C) =
[
HQ

(
^(C − g)
(ΔG)2

)
fg
]
(n, C), C ≥ g, (3.9)

where f ∈ RQ , ^ > 0 is a constant, fg (n) is a known source field, and HQ is the
integrating factor operator. LGF and IF operators share the following mimetic and
comutative properties with the differential operators:

D = −G†, C = C†, LC = −G†G, (3.10)

HFG = GHC , DHF = HCD, LFG = GLC , DLF = LCD (3.11)

3.2.3 Time integration with integrating factor technique and half-explicit
Runge-Kutta scheme

The DLM method treat the immersed boundary points along the surface as La-
grange multipliers so the no-slip boundary condition is maintained. The immersed
boundary Eq. (3.2c), together with the divergence free condition Eq. (3.2b), add
an algebraic constraint to the differential equation. To integrate the resulting DAE
system of index 2 ( Eq. (3.2)) in time, we apply a half-explicit Runge-Kutta (HERK)
scheme.

Similarly as in Chapter 2 section 2.2.4, we begin by applying the IF operator HF to
Eq. (3.2) to yield

dv
dC
+ HFN

(
H−1
F v, C

)
= −Gp − HFE†(C) f̂, (3.12a)

Dv = 0, (3.12b)

E(C)H−1
F v = uΓ, (3.12c)
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where v = HF u. The commutative properties Eq. (3.11) have already been used to
simplify the above expressions.

Eqs. (3.12) are integrated using the sameHERK scheme as in section 2.2.4. We refer
to section 2.2.4 and Liska and Colonius, 2017 for more details. The main difference
is that, due to the immersed boundary constraint, one will have an extended system
of equations at each stage of every timestep of the following form:

(
H8F

)−1
G E†

G† 0 0
E 0 0




u8

p8

f8

 =


r8

0
u8

 , (3.13)

where 8 refers to the 8-th stage of each timestep, and r8 is a known right-hand side.
Eq. 3.13 then can be solved through block LU decomposition. Again, using the
mimetic properties and the commutativities for simplification, Eq. (3.13) can be
solved in the following steps:

LCp∗ = Dr8 (3.14a)

S8f8 = EH8
F

[
r8 − Gp∗

]
− u82 (3.14b)

p8 = p∗ − L−1
C DE† f8 (3.14c)

u8 = H8F
[
r8 − Gp8 − E†f8

]
, (3.14d)

where S is related to the Schur complement

S8 = EH8
(
IF − GL−1

C D
)

E†. (3.14e)

It is worth mentioning that Eq. (3.14) is in the form of a fractional step method but
it is an exact block LU decomposition and thus there is no splitting error associated.

3.3 IB on the AMR grid
In order to implement the IB in the IB-LGF-HERK algorithm, we use the differential
operators for the composite grid, RQ , defined in section 2.3.3 to formulate Eq. (3.12-
3.14). Likewise, we define the IB interpolation operator E for the composite grid as
the tensor product

E = ⊗#;
:=0 E: , (3.15)

where E: is the corresponding operators for grid level : . This definition allows a
more flexible treatment of the IB surface discretization. However, in the current
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implementation, we assume that all IB points and their associated regions, denoted
as ΩB , are embedded in the same (finest) grid level Ω#; . i.e., ΩB ⊂ Ω#; . The
definition of the associated regionΩB will be made clear later, and as will be shown,
this assumption obviates the need to solve the forcing equation at each grid level
since the forces on the finest level can be used to approximate the contribution to all
other levels through the P-operators.

Again, we seek to approximate the right-hand side of Eq. (3.14) for the compos-
ite grid using the information from the AMR grid. Notice that the IB formula
Eq. (3.12-3.14) are only different from Eq. (2.4-2.14) introduced in section 2.3.6 by
Eq. (3.14b) and (3.14c), where the former solves for the IB forces and the later adds
the extra contribution to the pressure field. In this section we may therefore limit the
discussion to how those two equations are handled under the proposed framework.

The process of evaluating Eq. (3.14b, 3.14c) for the composite grid is broken down
as:

1. The intermediate pressure p∗ and its gradient Gp∗ are evaluated in the same
fashion as in Eq. (2.51), where the AMR-LGF algorithm is applied, i.e.,

Ĝp∗ = ΓGp∗ (3.16)

≈
[
ΓGL−1

C PC
]

D̂A8 . (3.17)

2. The right-hand side of Eq. (3.14b) is approximated similarly to Eq. (2.52).
The gradient of intermediate pressure field Gp∗ is used as the source term
in the AMR-FIF algorithm, which is then interpolated back to the IB points
through operator E,

EH8
F

[
r8 − Gp∗

]
≈ E

[
ΓH8FPF

] (
r̂8 − Ĝp∗

)
, (3.18)

3. Eq. (3.14b) in theory can be solved on every level using the linear operator
S8 = EH8

(
IF − GL−1

C D
)

E† defined for the composite grid. However, in the
current implementation, the solutions are simplified under the assumption that
all IB points and the associated regions ΩB are embedded in the same (finest)
AMR level only, and thus Eq. (3.14b) needs only be solved once,

S8f8 ≈ E
[
ΓH8FPF

] (
r̂8 − Ĝp∗

)
− u82 . (3.19)

The IB associated region ΩB is defined as the minimum support to evaluate
S8 for all 8, based on the distribution of the IB points, and the associated width
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of the IB regularization (discrete delta function), and the minimum region
required for evaluation of the operator S8.

4. Having assumed all IB points are embedded in the finest grid withΩB ⊂ Ω#; ,
the forces on the finest level from Eq. (3.19) are coarsened to approximate the
contribution to the pressure on the whole AMR grid.

p̂8 = p̂∗ −
[
ΓGL−1

C PC
] �DE† f8 . (3.20)

5. After solving the pressure gradient Ĝp8, by Eq. (2.14), the updated velocity
field at stage 8 after being restricted back to the AMR grid can be expressed as

û8 =
[
ΓH8FPF

] (
r̂8 − Ĝp8

)
+ ñu, ñu = ΓH8F nu. (3.21)

Here the FIF-AMR algorithm given by Eq. (2.46) is applied.

3.4 Adaptivity
In this section we discuss factors associated with the IB that impact the adaptivity
criteria previously discussed in section 2.4. As before, the computational domain
only needs to encompass the vortical flow regions to yield an exact solution to the
equations on an unbounded domain (as it is associated with the source term in
the pressure Poisson equation). Thus the vorticity threshold for the outer domain
truncation is left unaltered.

Regarding the mesh refinement, the AMR strategy must be changed owing to the
restriction of the IB points to the finest mesh level. A diagram of the setup is shown
in Fig. 3.1, where static mesh refinement (SMR) is applied to the near-surface area
ΩB defined by Eq. (3.19), and AMR is applied to the flow away from the immersed
body. For AMR, both the spatial adaptivity and the refinement adaptivity can be
applied based on previously defined parameters n∗ and U (see section 2.4).

The adaptivity criteria developed in the last chapter are appropriate for DNS. In
future work, these adaptivity criteria should be revisited when LES is invoked, both
as a sub-grid-scale stress model and as a near-surface wall model.

3.5 Fast linear solver for the IB formulation (Eq. (3.14b))
While Eq. (3.12-3.14) can be mostly solved similar to Eq. (2.4-2.14) using the fast
AMR-LGF method introduced in section 2.3.6, a separate conjugate gradient (CG)
method is applied to solve the IB formulation (Eq. (3.14b)). In this section the
AMR-LGF-based CG solver is discussed in detail.
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Immsersed Surface Static Mesh Refinement Adaptive Mesh refinement 

Figure 3.1: Diagram for the static mesh refinement for region near the immersed surface
and adaptive mesh refinement with different levels for areas away from the bluff body.

A large number of IB points are often required to discretize the immersed surface,
and this in turn necessitates a linear solver with good performance and parallel
efficiency.

The development of the linear solver is simplified by the positive definiteness of the
system of equations Eq. (3.13) and its associated Schur complement, Eq. (3.14b).
This permits efficient direct solvers based on Cholesky decomposition, and efficient
iterative solvers based on the CG algorithm. For rigid immersed body motions,
the Cholesky decomposition has the advantage that the decomposition need only be
computed once, since the same system is solved repeatedly. However, this require
operations and memory usage that scale as O(#3

B), where #B is the number of IB
points. On the other hand, the iterative CG solver only requires a memory usage of
O(#B), which allows the IB method to be applied to much larger systems.

For laminar boundary layers near the IB, the boundary layer thickness scales as
Re−1/2, which implies that the total number of IB points would scale with Re1. As
for turbulent boundary layers, Choi and Moin (2012) estimated that for a flat plate at
Re > 106, the number of grid points required for the near-surface region would scale
as Re13/7 and Re1 for wall-resolving LES and wall-modeled LES respectively. In
their example of a delta wing, Choi and Moin (2012) showed that for wall-modeled
LES, O(107 − 1010) number of grid points are needed at Reynolds numbers from
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106 to 109. For the current IB method, it would require approximately O(105−107)
number of IB points. In the example of the DNS of flow around a sphere at
Re = 10, 000 to be discussed in the next section, a total number of 3.5× 105 number
of IB points are involved in the discretization of the surface, which makes the
application of direct solvers prohibitive even in a parallel fashion.

Based on these considerations, we implemented a CG solver for Eq. (3.14b). The
performance of the iterative CG solver largely depends on the speed of evaluating
the left-hand side operator S8, which involves nested evaluations of L−1

C and HF via
the FLGF method. As all IB points are embedded in the finest AMR grid level that
can be snugly wrapped around the IB surface, the associated source and target points
for the FLGF are limited to a region that scales as the surface area of the IB rather
than the volume, which makes the nested FLGF CG solver for the IB much faster
than the FLGF that is associated with the volumetric sources. Two other factors also
affect the performance of the CG solver. The first is the initial guess of the solution.
For the current time-marching scheme, solutions from previous timesteps provide
a good starting point. The second factor is the number of iterations involved in
the CG solver, which depends on both the condition number of operator S8 and the
numerical tolerance. For the former, we only see a slow increase of the condition
number with the number of IB points as reported by Liska and Colonius (2017).
As for the later, due to the noisy nature of the solutions to Eq. (3.14b) (Goza et al.,
2016), it is often preferable to use a relatively less stringent error tolerance.

The performance of the CG solver can still be improved: For example, the CG
algorithm can often benefit from preconditioning, which is not applied in the current
scope; So far we only require the smearing operator R to be the adjoint of the
interpolation E without specifying any exact form of the regularization defined by
the delta functions, but in theory every IB point can use different regularization, and
the those choices would affect the operator S8 and then affect the performance of the
CG algorithm. We retain those optimization techniques to future work.

3.6 Flow around a sphere
In this section we consider the flow around a sphere at Re = *0�/a = 100, 3700
and 10, 000, where � is the diameter of the sphere, *0 is the free stream velocity
and a denotes the kinematic viscosity. The low Reynolds number case at Re = 100
is used to verify the AMR-IB-LGF-HERK algorithm with a convergence study,
and the higher Reynolds number cases are used to illustrate the capabilities and
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computational savings of the proposed AMR scheme.

The IB method requires a set of discrete points that are approximately evenly
distributed on the surface: having IB points too close to each other will result in
Eq. 3.14b to be ill-conditioned, and when the distance between the nearest IB points
is larger than the width of the regularization defined by the discrete delta function,
the immersed surface becomes permeable. The discrete delta function applied in
this work is adopted from Yang et al. (2009), which has a support of 3 grid points in
each direction. To uniformly locate IB points on the surface of a sphere we use the
Fibonacci lattice approach developed by Swinbank and James Purser (2006), with
the ratio between the averaged spacing among nearest IB points ΔBB and the cell
width of the underlying Eulerian gridΔG kept constant at B/ΔG = 1.5. This approach
has the benefits that the surface points are areally uniform and has approximately
isotropic resolution. An example of using 500 points to discretize the surface of
a sphere is shown in Fig. 3.2, whereas up to 3 × 105 points are applied in the
simulations to be discussed. For all cases considered, flow is initialized starting
from rest and increasing the freestream velocity *∞(C) until the Reynolds number
reaches desired value at C*∞/� = 1/2. i.e.,

*∞(C) =
{ 2*2

0
�
C for 0 ≤ C*

�
≤ 1

2
*0 for 1

2 <
C*
�

. (3.22)

For all cases to be discussed, we keep the refinement criterion U = 0.25, V = 0.75
and the base level adaptivity threshold n∗ = 10−5 defined in section 2.4. The choices
of those values were validated in section 2.7. Note that as compared to the IB-LGF
method for a uniform grid of single resolution, the AMR-IB-LGF method allows a
smaller base level truncation threshold since the application of AMR allows a more
efficient coverage of larger spatial domain.

3.6.1 Verification
We begin by performing a simulation of the flow around a sphere at Re = 100.
At this Reynolds number the flow approaches a steady state and thus serves as a
verification for the convergence of the velocity. Different from the validation study
discussed in section 2.6, where the convergence was conducted by varying the grid
resolution with the topology of the AMR grid fixed, here we choose three base level
resolution, and keep refining the grid with proposed criteria to reach the same finest
resolution. As the smallest unit of the refinement is a computational block of a fixed
number of cells, different base resolution with the same levels of refinement will
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Figure 3.2: Example of using Fibonacci lattice to distribute IB points on the surface of a
sphere. 500 points are shown in this case, whereas up to 3 × 105 points are applied in the
simulations to be discussed.

result in different grid topology, and thus it also serves as a test of the aforementioned
refinement criteria.

More specificallywe choose three base level resolution to beΔGbase/ΔG0 = 2−2, · · · , 20

with G0/� = 0.125 being a constant. For each base resolution we refine the AMR
grid to the same finest resolution ΔGfine/ΔG0 = 2−3 and all cases are simulated for
256 timesteps with the largest CFL number smaller than 0.5. Results are compared
to a reference solution at ΔGref = 0.5ΔGfine with the AMR turned off. The ℓ∞ and
ℓ2 convergence of the velocity field is shown in Fig. 3.3, where black, blue, and red
curves correspond to the chosen base resolution, and each point on a given curve
represents a different level of refinement. We see a first-order convergence in the
ℓ∞ norm and a slightly faster convergence in the ℓ2 norm. This result is expected
since the regularization of the singular forces in the IB method results in a smooth
velocity field across the immersed surface, whereas the exact velocity field yields
a discontinuous first derivative. A posterior examination shows that the errors are
mostly concentrated near the boundary of the geometry and this type of behavior
was reported in other studies of IB methods such as Goza et al., 2016.

3.6.2 Flow around spheres at high Reynolds numbers
We further demonstrate the algorithm with a DNS of the flow around a sphere
at Reynolds numbers Re = 3700 and a preliminary DNS at Re = 10, 000. The
simulations are conducted by first running a coarser simulation up to C∗ = C*0/� ≈
20 and then gradually increasing the levels of refinement in a manner that is to be
described in detail.
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Figure 3.3: ℓ∞ and ℓ2 convergence of the velocity field for flow around a sphere atRe = 100.
The black, blue and red curves correspond to to different but fixed base resolution. Each
curve presents different levels of refinement with the adaptation criteria discussed in the
text.

For the simulation at Re = 3700, the simulation is performed from C∗ = 20 to 30
with 2 levels of refinement. The finest resolution for the near-surface region is at
ΔG2/� = 4.3 × 10−3 at 2 levels of refinement. Liska and Colonius (2017) showed
that with identical grid resolution the boundary layer is resolved, and Yun, Kim, and
Choi (2006) performed an IB/LES study of the same case with a minimum near-wall
resolution of 9 × 10−3�. For flow away from the surface an adaptive mesh up to 1
level of refinement is used which is of resolution ΔG1/� = 8.6 × 10−3. Rodriguez,
Borell, et al. (2011) previously showed that the minimum Kolmogorov length scale
present in the flow is [/� = 1.34×10−2 for the same Reynolds number. Since in the
current DNS one has ΔG1/[ < 0.6, the turbulence is expected to be fully resolved.

For the simulation at Re = 10, 000, the Re = 3700 case is further refined after
C∗ ≈ 30 to 35 with an additional level of refinement to both the near-surface region
(SMR) and the wake (AMR), up to resolution ΔG3/� = 2.15 × 10−3 and ΔG2/� =

4.3 × 10−3 respectively. We expect the flow near the surface to be well-resolved
based on the Re−1/2 scaling of the thickness of the laminar boundary layer. As
for the wake, the ratio between the Kolmogorov scale and the grid resolution is
estimated to peak around ΔG2/[ ≈ 0.7 estimated from the minimum length scale
present at Re = 3700. Rodriguez, Lehmkuhl, et al. (2013) performed a DNS of
Re = 10, 000 using unstructured meshes where the resolution is validated through
a comparison with another simulation at coarser grid resolution as well as studies
by Moin and Mahesh (1998) and Pope (2001). They showed that the same ratio
peaks at [/ΔG = 2.5 with a mean value [̄/ΔG = 0.91. The current DNS is at a much
lower peak and mean ratio, and thus we expect the flow in the wake region to be
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full-resolved. With this proposed grid setup near the body, a total of 350 × 103 IB
points are solved in the discretization of the surface which is a magnitude higher
than the highest number of IB points reported in Liska and Colonius (2017).

The vorticity and grid topology are visualized for Re = 3700 at C∗ ≈ 30 in Fig. 3.4.
Rodriguez, Borell, et al. (2011) showed that the smallest turbulence scale occurs at
G/� < 3 and one can see that under the chosen adaptivity criteria, the algorithm
successfully detects the intensive turbulence region and applies grid refinement to
the corresponding space. At the same time the algorithm automatically uses a
coarser grid for the remaining areas defined by the truncation threshold n∗ = 10−5

so computational saving is achieved.

A closer comparison between the Re = 3700 and Re = 10, 000 vorticity fields is
given in Fig. 3.5. For both cases we observe complex vortex structures behind the
sphere and large-scale vortex shedding downstream. The flow field at Re = 10, 000
clearly yields a richer range of scales, and we observe azimuthal instabilities as
the vortex sheet develops wrinkles on the suction side of the sphere, whereas at
Re = 3700 it remains as a smooth surface. Secondly, we see the Kelvin–Helmholtz
(KH) type of instabilities developing at the outer rim of the wake just downstream
of the sphere. These waves grow rapidly and facilitate a more rapid transition to
turbulence in the wake. This KH type of vortex roll-up for the sphere at similar
Reynolds numbers was previously shown in experimental studies such as Werle
(1981) and Jang and Lee (2007), and our results are similar to the Re = 10, 000
flow observed by Rodriguez, Lehmkuhl, et al. (2013), where they showed that the
transition occurs at about G/� = 1 ∼ 1.2 from the separation point, in contrast
to G/� = 1.8 ∼ 2.6 in the Re = 3700 case. In addition, the flow visualization
indicates that there are more elongated and finer vortex structures in the wake region
at Re = 10, 000 compared to the Re = 3700 case.

We report the mean drag coefficient for Re = 3700 and preliminary results for
Re = 10, 000 in Table 3.1. For Re = 3700, we see a significant agreement with
Rodriguez, Borell, et al. (2011) and Liska and Colonius (2017) where the difference
is approximately 0.3% with the former and 0.8% with the later. For Re = 10, 000,
there is a discrepancy about 5%with the experimental study by Achenbach (1972) or
the DNS by Rodriguez, Lehmkuhl, et al. (2013), and about 3.5% with the detached
eddy simulation (DES) study byConstantinescu and Squires (2003) or the LES study
by Yun, Kim, and Choi (2006). Note that a longer simulation for the Re = 10, 000
case might be needed to have a more accurate mean drag coefficient at this Reynolds
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Figure 3.4: Vorticity of flow around a sphere at Re = 3700 at C*0/� ∼ 30. Vorticity
contour level8�/*0 = [1, 30]. Grid topology over the center plane is plotted for 0-2 levels
of refinement from light to dark gray.

(a)

(b)

Figure 3.5: Comparison of the vorticity field near the sphere atRe = 3700 andRe = 10, 000
for G/� < 4. Grid topology over the center plane is shown from light to dark gray.
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number.

Lastly we report the the computational saving from AMR-IB-LGF scheme in Ta-
ble 3.2, where the number of computational cells used in the current scheme is
compared to both a spatial adaptive domain with uniform fine grid, and a rectan-
gular bounding domain with uniform fine grid. For Re = 3700, the AMR-IB-LGF
scheme is saving 98% of the computational cells compared to the former, and 99.2%
compared to the later. For Re = 10, 000, we see the AMR-IB-LGF scheme saves
99.5% and 99.87% of computational cells for the two cases respectively. We ex-
pect even greater computational savings when flows at higher Reynolds number are
simulated with a wider range of scale separation.

Re ��

Present DNS 3700 0.392
LC17 DNS 3700 0.389
RB11 DNS 3700 0.393
YK06 LES 3700 0.355

Present DNS 10,000 0.38
RB13 DNS 10,000 0.403
A72 Exp. 10,000 0.40
YK06 LES 10,000 0.393
CS03 DES 10,000 0.393

Table 3.1: Mean flow drag coefficient of a sphere at Reynolds numbers 3700 and 10,000.
Results from LC17 - Liska and Colonius (2017), RB11 - Rodriguez, Borell, et al. (2011),
RB13 - Rodriguez, Lehmkuhl, et al. (2013), YK06 - Yun, Kim, and Choi (2006), A72 -
Achenbach (1972), CS03 - Constantinescu and Squires (2003).

Name AMR Spatial adaptive domain Bounding rectangle

Sphere - 3700 0.9 × 108 4.4 × 109 (98.0%) 1.2 × 1010 (99.2%)
Sphere - 10,000 1.9 × 108 3.8 × 1010 (99.5%) 1.5 × 1011 (99.87%)
Delta wing - 10,000 1.1 × 108 2.2 × 109 (95.0%) 3.7 × 109 (97.5%)

Table 3.2: Comparison of the number of computational cells used in the AMR-IB-LGF
scheme, compared with a spatially adaptive computational domain with uniform fine grid,
and a rectangular bounding domain with uniform fine grid, together with the percentage in
the reduction of grid points.

3.7 Flow around a delta wing at an angle of attach of 20◦

In this section we demonstrate the capability of the AMR-IB-LGF-HERK scheme in
solving external flows around complex geometries at high Reynolds numbers. The
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immersed geometry considered is an aspect ratio 1.74 delta wing designed by He,
An, et al. (2019). The experimental setup, the delta wing, and the mesh used are
shown in Fig. 3.6.

(a) (b) (c)

Figure 3.6: Delta wing setup (He, An, et al., 2019): (a) Experimental setup ; (b) CAD
model; (c) immersed boundary mesh.

To generate the surface IB points for the delta wing we apply a meshing technique
developed byPersson (2005). This technique utilizes a user-defined level set function
of the desired geometry that maps a spatial point to a real number that is negative
when the point is inside the geometry, positivewhen the point is outside the geometry
and zero on the surface. This algorithm first generates a random unstructured mesh
for the surface and iteratively improve the mesh towards an equal nodal distribution
by solving for a force equilibrium in the element edges, and projecting the mesh
nodes back to the surface of the geometry using the level set function (Persson
and Strang, 2004). The level set function for the delta wing was generated by
partitioning the total surface into a number of smooth parts and use b-splines for
each part individually.

A DNS at an angle of attack U = 20◦ is performed at Re = 10, 000 based on the the
constant freestream velocity,*0 and the chord length, 2. A maximum of 2 levels of
refinement were utilized, with the finest grid resolution of ΔG2 = 3.1 × 10−3. The
resolution is determined by a low Reynolds number study at Re = 1000 and the
scaling of the laminar boundary layer thickness of Re−1/2, which is also comparable
to the sphere case discussed above. Similarly, we use a refinement adaptivity
parameter U = 0.25 and a base level truncation threshold n = 10−5.

The flow evolution at C*0/2 = 1.5, 4.0, 10.0 is shown in Fig. 3.7. The lift and
drag coefficients at are compared with the experimental study by He, Le Provost,
and Williams (2018) at a higher Re = 105 in Table 3.3, where the discrepancies
in the lift/drag coefficients may be due to the difference in the Reynolds numbers.
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While much remains to be analyzed about this flow field, the present results serve
to illustrate the flexibility of the IB approach along with the ability of the developed
numerics to perform high fidelity simulations for complex geometries. Lastly, we
report the computational saving from the AMR scheme compared both a spatially
adaptive computational domain with uniform fine grid and a rectangular bounding
domain with uniform fine grid in Table 3.2 where we see the current scheme is
reducing the number of computational cells up to 97.5%.

(a) C∗ = 1.5 C∗ = 4.0 C∗ = 10.0

(b)

Figure 3.7: (a) Vorticity visualization at C∗ = C *0/� = 1.5, 4.0, 10.0 for the delta wing at
the angle of attack U = 20◦. (b) Mesh topology at C∗ = 4.0. Grid level from 0 to 2 is shown
from light to dark gray.

Re �! �� �!/��
Experiment 105 0.95 0.34 2.8
DNS 104 0.64 0.22 2.3

Table 3.3: Lift and drag coefficients from simulation at Re = 104 and experiment at
Re = 105 by He, Le Provost, and Williams (2018).
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3.8 Concluding remarks
In this chapter we extended the AMR-LGF-HERK scheme developed in Chapter 2
to include complex immersed surfaces via the DLM IBmethod. We restricted the IB
to be embedded in the finest mesh level and developed a fast, iterative solver based
on the CG method for solving the system of equations for the surfae forces. We
verified the solutions for steady flow around a sphere at Re = 100, and demonstrated
the capabilities of the algorithm through DNS of flow around a sphere at Re = 3700
and 10, 000, and a delta wing at Re = 10, 000. We showed that this algorithm
is capable of performing state-of-the-art DNS in an efficient manner. For both
cases, the adaptive grids reduced the total number of cells by 99.87% and 97.5%
respectively compared to a rectangular bounding domain with uniform resolution.
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C h a p t e r 4

LARGE-EDDY SIMULATION

4.1 Introduction
In this chapter we implement and validate the LES in the LGF framework. In past
work, LES validations have involved canonical flows in wall-bounded or periodic
domains. While flows over immersed surfaces have been investigatedwith LES, they
are not optimal in terms of validation of the SGSmodel, since they bring in additional
complications such as thin boundary layers and the necessity of wall modeling to
reach high Reynolds numbers. In this chapter, we manufacture a turbulent flow
evolving in free space and report on both DNS and LES of this flow. Apart from
thoroughly validating the LES implementation, the flow we constructed—nearly
homogeneous turbulence evolving in a compact, spherical region, turned out to be
theoretically interesting for a number of reasons which are also discussed in the next
chapter.

In free space (without immersed boundaries) and without artificial forcing, there
are no mechanisms to sustain turbulence, and it will decay in time. Of possible
initial flow fields, two of relevance here are a collection of one or more vortex
rings and a random initial condition. Initial conditions comprising a collection
of vortex rings are readily created in both experiments and simulations. Recent
experiments have studied the generation of turbulence through vortex-ring collisions
(Matsuzawa et al., 2019) and have evaluated hypothesizedmechanisms of turbulence
self-sustenance (McKeown et al., 2018). The resulting turbulence occurs through
a complex process of instabilities, vortex interaction, and reconnection (Lim and
Nickels, 1992). Simulations are computationally intensive since distinct turbulent
and laminar regions will occur, and the associated vortex-ring Reynolds numbers
must be sufficiently high for transition to occur. In contrast, a random initial
condition is computationally simple and turbulent Reynolds numbers can easily be
reached (even in DNS), but a disadvantage is that there will be an initial transient
period that, while governed by the Navier-Stokes equations, will not be associated
with physical turbulence.

In this chapter, we manufacture an initial condition by first generating isotropic
homogeneous turbulence (IHT) in a periodic domain, and initializing a free-space
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cloud of turbulence by tiling the periodic IHT field in space and windowing it with
an indicator function that falls to zero outside a spherical region of radius ', which
is later varied compared to the initial scales in the IHT. Figure 4.1 shows the setup
for the problem at hand. Initially only a spherical region in free space is filled with
turbulence. The spherical region then starts to deform, evolve, and decay. This
method utilizes fixed local cell size but is able to spatially adapt with the vortical
areas by adding or removing blocks of computation cells (black contour lines in
figure 4.1). All simulations here are conducted with a spatial adaptive threshold
nsupp equal to 10−5 defined in Liska and Colonius (2016). Because of the spatial
adaptivity, the total number of computation cells varies through one simulation.
The code is fully parallelized and the DNS simulation uses around a maximum of
2 × 109 computation cells running on over 1, 500 cores.

This chapter is organized as follows. In section 4.2, the sub-grid stress model used in
the LES is briefly reviewed. In section 4.3, the initial condition and the parameters
for the simulations involved are introduced. In section 4.4, DNS and LES results
are used to visualize the evolution of the turbulence field. In § 4.5, we use statistical
measures to characterize the decay and show LES calculations agree well with the
DNS in these measures. Lastly we conclude this chapter in section 4.6.

4.2 Stretched vortex sub-grid stress (SGS) model
The LES solutions we report rely on the stretched vortex SGSmodel (SVM) (Chung
and Pullin, 2009b). The LES solves the filter-averaged Navier-Stokes equations

mũ
mC
+�̃u · ∇ũ = −∇%̃ + a∇2ũ − ∇ · )̃ , (4.1)

∇ · ũ = 0, (4.2)

where )̃ = �u ⊗ u − �̃u ⊗ ũ is the SGS tensor. The model assumes that the subgrid
motions for a single computational cell are dominated by small vortices in a direction
ev that is aligned with the principle eigenvector of the resolved strain rate tensor.
Then the SGS tensor is given by

)̃8 9 =  

(
X8 9 − 4E8 4E9

)
, (4.3)

 =

∫ ∞

:2

� (:) d: = K′0Γ
[
−1/3, ^2

2

]
/2, (4.4)

where  is the subgrid kinetic energy, :2 = c/ΔG = c/ΔH = c/ΔI with Δ(·) being
the cell length, and Γ is the incomplete gamma function. The second equality
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C/Cℓ = 0 C/Cℓ = 8.6

Figure 4.1: Vorticity magnitude in a cross-section through the center at C/Cℓ = 0 and
C/Cℓ = 8.6, corresponding to the case DNS_0 from table 4.1. Black contour lines indicate
the spatially adaptive computational domain. The smallest adaptivity unit is a block of 163

computational cells.

in equation (4.4) assumes that SGS vortices are of the stretched-spiral type with
spectrum (Lundgren, 1982)

� (:) = K0n
2/3:−5/3 exp

[
−2:2a/(3|0̃ |)

]
, (4.5)

where a is the fluid viscosity

0̃ = 4E8 4
E
9 (̃8 9 , K′0 = K0n

2/3_2/3
E , _E = (2a/3|0̃ |)1/2, ^2 = :2_E, (4.6)

and (̃8 9 is the resolved strain rate tensor. Finally the constantK′0 in equation (4.4) is
determined by matching the resolved second-order velocity structure function with
the prediction from the energy spectrum given by Eq. (4.5). Details regarding the
efficient evaluation of the aforementioned SGS stress can be found in Voelkl, Pullin,
and Chan (2000) and Chung and Pullin (2009b).

The SVM is structure based and not of the eddy-viscosity type. Allmodel parameters
are calculated dynamically using only local information from the resolved-scale field
surrounding the grid cell or point where sub-grid stresses are calculated. The SVM
keeps track of the actual fluid viscosity and also the subgrid kinetic energy, and will
automatically become subdominant to real viscous stresses when the flow is locally
resolved. It has proven robustness and has been successfully used for studies of
decaying turbulence (Misra and Pullin, 1997), and wall-resolved LES of channel
flow (Voelkl, Pullin, and Chan, 2000; Chung and Pullin, 2010), bluff-body flows
(Cheng, Pullin, Samtaney, et al., 2017; Cheng, Pullin, and Samtaney, 2018) and
Taylor-Couette flow (Cheng, Pullin, and Samtaney, 2020).
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4.3 Problem setup
4.3.1 Initial condition
The initial condition is generated by spherically windowing a turbulence field from
a separate IHT computation with periodic boundary conditions. This field is then
tiled in all directions to fill the free space and the velocity field is multiplied by a
smooth window function of the form

Φ(A) = 1
2

[
1 − tanh

(
2(A − ')

f

)]
, (4.7)

where ' is the radius of the sphere and f is the width of the transition, whose
impact on the results will be assessed. The forced periodic IHT field is generated
using a simple 3D pseudo-spectral code and we define the domain size to be �3. A
low wavenumber forcing method is applied (Huang, 1994). The forcing is restricted
to modes with wavenumbers |k | < 2.5 and the magnitude of the forcing is chosen
to keep the energy input rate constant, which would equal to the dissipation rate
n after the forced turbulence becomes stationary. To make sure all IHT flows are
fully resolved, n is determined such that [:max ∼ 1.5, where :max = #B/2 is the
maximum wavenumber and [ =

(
a3/n

)1/4 is the Kolmogorov length scale with a
being the viscosity. We also confirmed the isotropy of the IHT field by verifying
that �88 (:)

� (:) −
1
3 ≈ 0, 8 = 1, 2, 3.

Figure 4.1 visualizes the initial vorticity field in a cross-section through the cen-
ter. This corresponds to the case DNS_0 defined in Table 4.1. Note that black
contour lines in figure 4.1 are the spatially adaptive computational domain which
encompasses the initial voricity field as discussed in §2.4. For LES, the IHT field
is spectrally filtered before tiling and windowing. More about initial conditions for
LES is discussed in § 4.4.2 when results from LES are presented.

Once an IHT field and resolution are selected (which give an initial turbulence
Reynolds number, Re_), two non-dimensional parameters characterize the initial
condition: �/' and f/'. Table 4.1 summarizes the parameters for all runs studied
in this chapter and the next chapter. The simulation parameters used in the pseudo-
spectral code to generate the IHT fields and their statistical characteristics are given
in Table 4.2.

4.3.2 Resolution
For DNS_0, the IHT field used to generate the initial condition has Re_ = 122.4 and
uses a computational domain of 2563 in the pseudo-spectral code with [:max > 1.5
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Name Re_ f/' �/' Spectrum Type

DNS_0 122.4 0.10 1.0 2
LES_0 122.4 0.10 1.0 2
LES_IC2 122.4 0.10 1.0 4
LES_D1 122.4 0.05 1.0 2
LES_D2 122.4 0.20 1.0 2
LES_B1 122.4 0.10 0.5 2
LES_B2 122.4 0.10 2.0 2
LES_R1 76.9 0.10 1.0 2
LES_R2 45.0 0.10 1.0 2

Table 4.1: Simulation parameters. The spectrum type refers to the leading non-zero order
in the low wavenumber limit which is discussed in detail in Chapter 5.

Run Name Re_ ℓ/� [:max Resolution

LES_R1 76.9 0.17 1.52 1283

LES_R2 45.0 0.19 1.58 643

All others 122.4 0.16 1.53 2563

Table 4.2: Summary of the simulation parameters used in the pseudo-spectral code and the
resulting IHT fields. ℓ is the integral scale, [ is the Kolmogorov length scale, and :max is
the maximum wavenumber.

to ensure that it is fully resolved. The same resolution (same number of points
used for every length scale �) is used in the LGF solver for the turbulence cloud.
To guarantee this resolution is also sufficient for the finite volume solver, another
DNS simulation of 3/2 times the resolution is performed up to 1.3 initial large
eddy turnover time. The difference in the total kinetic energy is about 0.23% and
the maximum relative difference in the spectra for all wavenumber :' is about 1%
which is shown in figure 4.2.

4.4 Qualitative evolution
4.4.1 DNS
First we performDNS of the spherical cloud of turbulence corresponding to the case
‘DNS_0’ in table 4.1. The flow evolution is shown in figure 4.3a. Instantaneous
vorticity magnitude iso-surfaces at C/Cℓ = 0, 1.7, 4.0, 8.6, 17.5 are given, where
Cℓ is the large eddy turnover time of the original IHT field. The iso-surface of
the lowest vorticity magnitude represents the TNTI. This interface is sufficiently
thin (Mathew and Basu, 2002) that using a lower minimum vorticity magnitude
would not affect the boundary envelope noticeably. At C/Cℓ = 0 the turbulence
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Figure 4.2: Energy spectrum of (1) DNS_0 ( ) and (2) a DNS calculation at 3/2 times
the resolution as that in the case DNS_0 ( ), at C/Cℓ = 1.3.

is contained within a spherical region defined by the window function. As the
turbulence evolves, the transition region is mixed with the turbulence inside and
becomes gradually indistinguishable around C/Cℓ ∼ 1.5. At C/Cℓ ∼ 4.0 more fine
features have developed near the boundary while the general spherical shape is
still maintained. Around C/Cℓ ∼ 8.6, small features start to merge and create
protrusions. Meanwhile the general shape has also become more ellipsoidal. The
DNS flow evolution is simulated up to C/Cℓ = 17.5. From C/Cℓ = 8.6 to 17.5 the
cloud of turbulence becomes more irregular, and finer scales are less evident as the
turbulence decays.

4.4.2 Comparison between DNS and LES
DNS is applied to study the more active early stage evolution of a turbulence cloud
but it is computationally expensive to reach late times. To study the long-term
behavior we turn to LES calculations of the same setup. To ensure LES calculations
are able to accurately capture the abiding features of the flow, we qualitatively
compare the evolution for DNS and LES of the same case.

The initial condition for the LES run is created in the following way: first, the
same IHT field from case DNS_0 is spectrally filtered from 2563 to 323, keeping
only (1/8)3 of its original spectrum; second, the same recipe (tiling and spherical
windowing) is used with the filtered turbulence field to create a spherical region of
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(a) (b)

Figure 4.3: Vorticity magnitude iso-surface of (a) DNS_0 and (b) LES_0 at C/Cℓ =
0, 1.72, 4.02, 8.60, 17.47 from top to bottom, where Cℓ is the large eddy turnover time
of the initial IHT field.
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under-resolved turbulence. This field is then given to the LGF finite-volume solver
with the SGS model turned on. This simulation corresponds to the case ‘LES_0’ in
table 4.1.

Figure 4.3 also compares DNS_0 (4.3a) and LES_0 (4.3b) at C/Cℓ =0, 1.72, 4.02,
8.60, 17.47. To ensure that the difference in grid resolution between DNS and LES
would not affect the visualization, all iso-surfaces are re-sampled to the same grid.
The LES captures the general shape and most of the large-scale features such as
the radius, the ellipticity, the sizes and locations of the protrusions. On the other
hand, some small-scale features near the boundary are missed. We also noticed that
the vorticity is less intense in the LES run (the crimson regions) especially towards
the early stage. All of these differences are to be expected, as LES is designed to
capture the statistical properties of the turbulence (and specifically their influence
on the largest scales). Nevertheless, over the time range displayed in figure 4.3
there is little decorrelation of the large scales in DNS and LES originating from the
same initial condition. To further quantify the comparison, in § 4.5, four statistical
measures are introduced and applied to both cases DNS_0 and LES_0.

4.5 Quantitative evolution
4.5.1 Statistical measures for DNS and LES
In this section we quantify the initial evolution of the cloud of turbulence using
statistical measures. DNS results are compared with LES during the initial decay
period up to about C/Cℓ ' 20.

Firstly the kinetic energy E(C) decay is studied. Results from three simulations are
compared in figure 4.4: (1) DNS_0; (2) LES_0 and (3) an under-resolved DNS (the
same setup as LES_0 but with SGS model turned off). DNS_0 should be regarded
as the most accurate case among all three and its value at C = 0 is used to normalize
all results. For LES_0 we show both the kinetic energy resolved by the grid and
a ‘total kinetic energy’ which is the sum of the resolved energy and the estimated
subgrid energy predicted by the SGS model. The total kinetic energy in LES_0
compares well with DNS_0. The initial resolved energy in LES_0 is smaller than
that in DNS_0 owing to the spectral filtering process discussed in § 4.3.1. On the
other hand the under-resolved DNS shows evident energy pile-up due to the lack
of the SGS model. After C/Cℓ ' 8, the resolution of case LES_0 is high enough to
resolve all flow scales due to the decay and it is effectively ‘DNS’ after this point.

Secondly, the total energy spectrum, which will be discussed in detail in Chapter 5,



61

0 1 2 3 4 5 6 7 8

t/tℓ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E(
t)

Figure 4.4: Decay of the kinetic energy E(C) for different simulations: DNS_0 ( );
LES_0 resolved kinetic energy ( ); LES_0 total kinetic energy ( ); an under-resolved
DNS ( ). The initial kinetic energy in DNS_0 is used to normalize all simulations.

§ 5.2 (Eq. (5.2)) is applied. Results for DNS_0 and LES_0 are compared in figure
4.5 at three time instants C/Cℓ = 0, 4.02, 17.47, corresponding to the visualizations
in figure 4.3. The agreement is significant and LES seems to only suppress the high
wavenumbers slightly. For both cases, the initial condition features about a decade
of inertial-range turbulence with a :−5/3 spectrum; as expected, this region shrinks
(from the high wavenumbers) as the turbulence decays.

The third statistical measure we consider is the energy spectrum on a spherical shell.
The flow is designed to be homogeneous in the azimuthal and polar directions but
is only so in the radial direction deep within the cloud. As shown in § 4.4.1 visually
the cloud also undergoes radial growth over time. This non-uniformity in the radial
direction suggests that one should further characterize the energy spectrum as a
function of the radius A and time C. A special spectrum defined on a spherical
shell of a given radius is applied (Lombardini, Pullin, and Meiron, 2014). Similar
to the total energy spectrum � (:), it seeks a relationship between the energy and
the wavenumber, where the wavenumber on a spherical shell is defined using the
spherical harmonics. The spherical shell wavenumber and the classical wavenumber
defined using Fourier transform can be related via the Laplace operator. This relation
also connects the spherical shell spectrum to the classical energy spectrum.

Following the detailed derivation given by Lombardini, Pullin, and Meiron (2014),
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Figure 4.5: Total energy spectrum at (a) C/Cℓ = 0, (b) C/Cℓ = 4.02 and (c) C/Cℓ = 17.47 for
DNS_0 ( ) and LES_0 ( ). The same guide line for :−5/3 as in figure 5.1 is also given
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we acquire the shell spectrum for a field 5A (\, q) defined for a given raidus A by
expanding the field using spherical harmonics:

5A (\, q) =
∞∑
ℓ=0

ℓ∑
<=−ℓ

5ℓ<.ℓ< (\, q), (4.8)

where

.ℓ< (\, q) =
{
#(ℓ,<)%

<
ℓ
(cos \) cos(<q) < > 0

#(ℓ,|< |)%
< |
ℓ
(cos \) sin( |< |q) < < 0

, (4.9)

with %<
ℓ
being the associated Legendre polynomials, #(ℓ,<) being the normalization

constant and ℓ being the equivalent wavenumber. The wavenumber ℓ is then related
to the classic wavenumber : defined through the Fourier transform by,

:2 = ℓ(ℓ + 1)/A2. (4.10)
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Assuming a power law for the energy spectrum � (:) ∼ :−U one has the following
relationship between the energy spectrum and the shell spectrum,

� (:) ∼ :−U ∼ ℓ�ℓ, (4.11)

where

�ℓ =
1

2ℓ + 1

ℓ∑
<=−ℓ

5 2
ℓ< . (4.12)

Eq. (4.11) suggests that one can understand the shell spectrum �ℓ in a similar way
as the classical energy spectrum � (:).

The shell spectra for DNS_0 and LES_0 are shown in figure 4.6. Results for various
radii (A/� = 0.32, 0.48, 0.64, 0.80, 0.96) and time instants (C/Cℓ = 0, 4.02, 17.47)
are given. At C/Cℓ = 0 (figure 4.6: a, d) all 5 curves collapse together as expected
since they represent the original IHT field. The energy decays over time, but the
dependence of the shell spectrum on the radius A is weak. It seems that the boundary
does not have a strong effect on the turbulence decay. This evidence further supports
the assumption of local homogeneity that underpins our definition of the total spectra
used above, as discussed in the appendix, at least up through the times considered
here.

4.6 Concluding remarks
In this chapter we introduced a new flow representing an isolated spherical region
of turbulence evolving in free space and validated the stretched-vortex SGS (Chung
and Pullin, 2009a) LES model in the LGF framework. This flow is created by tiling
a periodic IHT field in space and windowing it with an indicator function which
falls to zero outside a spherical region. We performed both the DNS and the LES of
this flow at Re_ = 122.4 and the results are compared. We showed the LES is is able
to capture most of the large features in the evolution of the turbulence boundary,
and we demonstrated that the stretched-vortex SGS model predicts the total kinetic
energy decay, the total energy spectrum, and the shell spectrum well, although
at much lower resolution. This study indicates that the LES can further enhance
the capability of the previously introduced AMR-IB-LGF algorithm for simulating
external flows at even higher Reynolds numbers and lays the foundation for using
the LES to study the long-term evolution of this flow itself which is discussed in
detail in the next chapter.
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Figure 4.6: Spherical-shell spectrum at different radii and times. The left column (a-c) are
results from DNS_0 at C/Cℓ = 0, 4.02, 17.47 respectively. The right column (d-f) are results
from LES_0 at the same times. For each figure, the gradation in color corresponds to radii
A/� = (0.32, 0.48, 0.64, 0.80, 0.96) from darkest to lightest shade. An equivalent guide line
for :−5/3 as in figure 5.1 is given ( ).
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C h a p t e r 5

DYNAMICS AND DECAY OF A SPHERICAL REGION OF
TURBULENCE

5.1 Introduction
In this chapter we further address some of theoretical interest related to the dynamics
of the spherical region of turbulence proposed in chapter 4. In IHT, the evolution of
the largest scales is governed by the initial conditions, or, in the case of forced IHT,
by the forcing scheme. For example, spectra with low wavenumber that asymptotes
as :2 (Saffman, 1967) and :4 (Batchelor and Proudman, 1956) can be contrived
(Chasnov, 1995; Ishida, Davidson, and Kaneda, 2006; Davidson, 2010). Indeed,
the same is true for the spherical turbulence cloud, where, unlike IHT, the largest
scales can subsequently grow and, as we will show, different behavior is obtained.
The spherical region of turbulence also exemplifies the localized turbulence region
introduced in Phillips (1956), where the final viscous stage of the evolution was
studied theoretically.

A secondmotivation concerns the emergence of coherent structures. IHT is devoid of
large-scale instabilities (typically associated with shear, buoyancy, or other imposed
forces) that give rise to important classes of coherent structures. However, as we
show, the same is not the case for the spherical cloud — we observe the formation
of coherent vortex rings being ejected near the cloud edge.

A related issue is the interaction of the turbulent flow with the outer irrotational
fluid at the turbulent/nonturbulent interface (TNTI). In recent work, TNTIs have
been experimentally and numerically studied in shear layers and in numerically-
constructed shear-free interfaces (Wolf et al., 2013; Silva et al., 2013; Da Silva,
Taveira, and Borrell, 2014). The spherical cloud of turbulence also exhibits a TNTI,
and may prove a useful source of data for further study, though in the present work
we do not investigate its behavior in detail.

First in section 5.2 of this chapter, we discuss the theories regarding the energy
spectrum and it low wavenumber limit for turbulence fields with localized vorticity.
In section 5.3, we study the long-term evolution of a turbulence cloud through LES
and in section 5.4 we discuss one distinctive feature in its evolution, the ejection of
vortex rings, and we conjecture about the relationship between the initial condition
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and the scale of the ejections. A brief summary of the main conclusions is given in
section 5.5.

5.2 Initial spectrum and low wavenumber limit
As we only expect the turbulence cloud to remain homogeneous deep within the
sphere, ambiguities arise in interpreting the energy spectrum: it can be viewed
as the expectation of a random process, or merely as the Fourier transform of a
deterministic function. In order to reach the broadest conclusions possible (i.e.
ones not limited to the specific initial condition), we show in Appendix B that by
invoking local homogeneity deep within the spherical region, we can estimate the
total spectrum through a single realization of this flow. The estimated spectrum
approximates the true one in the limit of large '/ℓ, which may only be barely
reached in our simulations, but in principle could be improved upon in future. Thus
we take

�̃ (k) = 1
16c3

∫
R3

∫
R3

u(x) · u(x′) 4−8k·(x′−x) dx dx′

=
1

16c3 |F {u}|
2 =

1
16c3

1
|k |2
|F {8}|2

=
1

16c3

∫
R3

∫
R3

1
|k |2

8(x) · 8(x′) 4−8k·(x′−x) dx dx′, (5.1)

� (:) = 1
(2c)2

∫
R3

∫
R3

sin (: |x′ − x|)
: |x′ − x| 8 (x′) · 8(x) dx dx′, (5.2)

where we expressed the spectrum in terms of the vorticity field (Phillips, 1956;
Leonard, 1985; Winckelmans and Leonard, 1993; Winckelmans, 1995). The spher-
ical symmetry of the problem is used in the last step where the 3-D energy spectrum
�̃ (k) is integrated over a spherical shell to produce a scalar spectrum � (:). Ex-
panding � (:) for the low wavenumber, the odd powers vanish, giving

� (:) = :2

4c2 ! +
:4

24c2 � +$ (:
6), (5.3)

where

! = −1
6

∫
R3

∫
R3
|x′ − x|2 8(x′) · 8(x) dx′ dx =

∫
R3

∫
R3

u(x′) · u(x) dx′ dx (5.4)

is the Saffman integral and

� =
1

20

∫
R3

∫
R3
|x′ − x|4 8(x′) · 8(x) dx′ dx = −

∫
R3

∫
R3
|x′ − x|2 u(x′) · u(x) dx′ dx

(5.5)
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is the Loitsyansky integral (Loitsyansky, 1939). Note that even though Eq. (5.1-
5.3) are well defined for the flows with finite energy, using the velocity forms from
Eq. (5.4, 5.5) requires certain decay rates of the velocity field. Thus we have used
the vorticity formula for the calculation of the low wavemnumber spectra. Details
of the expansion and the calculation method are given in Appendix C.

The Saffman integral ! is related to the total momentum impulse which is an
invariant of the motion and remains constant for all time. When ! ≠ 0 the cloud
will exhibit a small-wavenumber, :2 Saffman limit (Saffman, 1967), whereas when
! = 0 the spectrum is of the :4 Batchelor type (Batchelor and Proudman, 1956).
The ramifications of a Saffman or Batchelor spectrum have been widely explored
in IHT, but less so in other (inhomogeneous) flows. As we discuss below, the low
wavenumber spectrum can be used to derive asymptotic energy decay and integral-
scale growth rates, which can be compared to those obtained for the spherical cloud.

In order to investigate this issue, we develop a procedure by which we control the
value of ! in the initial condition. Two factors contribute to the linear momen-
tum. Firstly the IHT field generated from the pseudo-spectral code is continuously
divergence-free but not necessarily discrete divergence-free as required by the fi-
nite volume FLGF scheme. Secondly, the windowing process will introduce extra
non-solenoidality, i.e., given a divergence-free velocity field u and a scalar window
functionΦ(A), Δ · (Φ(A)u(x)) ≠ 0 in general. Both of these non-solenoidal compo-
nents are projected out at the very first time step and this projection will introduce
an impulse. The result of this impulse as mentioned in Batchelor (1967) is a 1/|x|3

decaying velocity field of the form

lim
G→∞

u(x) = 1
8c
∇

[
∇

(
1
|x|

)
·
∫
R3

x′ × 8(x′) dx′
]
. (5.6)

This suggests a way to cancel the impulse in order to have a :4 type spectrum: one
can add a vortex ring with an opposite impulse to the initial velocity field. More
specifically, we add a Stokes vortex ring with velocity (Kambe and Oshima, 1975;
Cantwell, 1986)

u(A, \) = 1
(2c)3/2Z3

[
,

(
A

Z
; 1

)
$ −,

(
A

Z
; 3

)
W cos \ êA

]
, (5.7)

where $ is the impulse of the vortex ring, \ is the angle between $ and the unit
vector eA , Z controls the size of the ring and

, (d; 1) = 4−d2/2 − 1

d3

[√
c

2
erf

(
d
√

2

)
− d4−d2/2

]
. (5.8)
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We chose Z/' = 0.19 and performed an LES computation with this cancellation,
referred to as case LES_IC2 in table 4.1. Except for LES_IC2, all other cases are
conducted without the cancellation.

While our method of manipulating the initial condition in order to cancel the finite
impulse is arbitrary, it is effective in the sense that the added vortex ring quickly
interacts with the turbulence. Thiswas verified bymonitoring the difference between
simulations initialized with and without the cancellation. The results showed that in
less than one initial large-eddy turnover time, the difference field was decorrelated
with the added vortex ring. Thus we conclude that the two simulations can be
regarded as representing (different random realizations of) locally homogeneous
turbulence that differ significantly only in their low wavenumber spectrum.

Figure 5.1 shows the resulting initial energy spectrum �0(:) of a spherical region of
turbulence field corresponding to the condition of DNS_0, superposed on another
spectrum where Eq. (5.7) was used to cancel the impulse (i.e. the initial condition,
after filter, for the case ‘LES_IC2’ in table 4.1). Also plotted is the energy spectrum
of the original IHT field scaled by the ratio between the volume of the sphere and
the cubic domain size �3. We see that the :−5/3 portion of the spectrum from IHT is
retained in the spherical cloud, whereas the low wavenumber behavior is controlled
by the resulting impulse (or its absence).

5.3 Long-term statistics and low wavenumber behavior
The long-term evolution of a turbulence cloud is studied through LES. Two cases
LES_0 and LES_IC2 from table 4.1 are simulated up to C/Cℓ = 400where LES_0 has
a :2-type initial spectrum while LES_IC2 has a :4-type. The evolution is visualized
in figure 5.2. The spread of the cloud is similar in both cases, but details of the
large-scale structures are different.

Figure 5.3a shows the long-term evolution of the kinetic energy decay. In the case of
IHT, Saffman (1967) predicts an asymptotic decay rate of C−6/5 for the :2 turbulence
and Kolmogorov (1962) predicts a decay rate of C−10/7 for the :4 spectrum (both
guide lines are indicated in the figure). However in both the case of LES_0 and
LES_IC2, the decay is similar and closer to the Saffman scaling. Figure 5.3b shows
the evolution of the integral scale over time for LES_0 and LES_IC2, compared to
the theoretical asymptotic growth rate for Saffman IHT (C2/5) and Batchelor IHT
(C2/7). As in the energy decay, both cases are closer to the Saffman type.

This apparent discrepancy with the theory can be clarified by examining the long-
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Figure 5.1: Energy spectrum of (1) the initial condition of simulation DNS_0. ( ), where
the low wavenumber limit (left of the dotted region) is calculated through an expansion
method (Appendix C); (2) DNS_0 with the initial impulse cancelled using Eq. (5.7) ( );
(3) the corresponding IHT field multiplied by the ratio between the spherical region volume
4
3c'

3 and the cubic domain volume �3 ( ); (4) a guide line for 1.6Y2/3:−5/3 scaled with
the same ratio, where Y is the dissipation rate in the original IHT field ( ); (4) a slope of
:2 ( ) and :4 ( ) for the low wavenumber limit.

term decay of the total energy spectrum depicted in figure 5.4, which shows results
for both LES_0 (:2) and LES_IC2 (:4) cases. The :4 spectrum is similar to that
reported in Ishida, Davidson, and Kaneda (2006). As expected the coefficient of the
limiting :2 spectrum for LES_0 is invariant, but the coefficient of the :4 term for
LES_IC2 is increasing over time first rapidly up to about C/Cℓ ' 20, and then more
slowly, as shown in figure 5.5. The coefficient of the :4 term is proportional to the
Loitsyansky integral � given by Eq. (5.5) which is assumed constant in the theory
under the assumption that remote points be statistically independent (Loitsyansky,
1939).

Superposition of the energy spectra for cases LES_0 and LES_IC2 shows they are
similar for :' > 1, corresponding to a wavelength _ = 2c'. Apart from the
very largest scales, which cannot be seen in visualizations like figure 5.2, the two
simulations are otherwise statistically similar. The weak vortex ring and vortex ring
dipole associated with the :2 and :4 terms would only become evident as C → ∞,
after which all turbulence will decay. However at the same time, the properties are
entirely predictable from their initial conditions. Indeed, figure 5.6 shows that the
entire cloud of LES_0 meanders in space but eventually attains a trajectory that is
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(a) (b)

Figure 5.2: Long-term evolution of (a) LES_0 and (b) LES_IC2 at C/Cℓ =

0, 4, 17, 66, 143, 263 from top to bottom.



71

associated with the initial impulse.

The predictability of the long-term evolution from the initial condition argues against
any universality of the very largest scales of the spherical cloud of turbulence. While
we expect the wavenumber spectrum for :' > 1 is approximately universal, the low
wavenumber behavior is always an artifact of initial and boundary conditions.

While this lack of universality is perhaps unsurprising, the veracity of the Saffman-
type decay-rate predictions even in the absence of a :2 spectrum is interesting. Con-
sider the process by which the initial :4 spectrum is created for the case LES_IC2,
whereby a weak vortex ring is added to offset the initial impulse associated with
windowing the IHT field. While we superposed this ring at the center of our cloud,
we could have cancelled the impulse by adding a ring at any position, even one very
far from the cloud. Over the timescale simulated here, the results would be identical
to those of the :2 cloud, and one would have to go to even lower values of :' in
order to see the ultimate :4 behavior.

Lastly we consider the radial growth of the turbulence cloud over time. Because the
cloud does not hold its sphericity we define the radius by a statistical moment

A =

(∫
D2 |x − x2 |? dx∫

D2 dx

)1/?

, (5.9)

where D is the velocity magnitude and xc is the center of the turbulence cloud,
defined using

xc =

∫
x D2 dx∫
D2 dx

. (5.10)

A definition of the center is necessary because, as discussed in § 4.3.1, the final
stage of a turbulence cloud is a large vortex ring drifting in the direction of the
impulse. Also ? ≤ 2 is needed for A to exist as the velocity field u(x) ∼ 1/|x|3 as
|x| → ∞. Here we only consider the case when ? = 2 for simplicity. The results
between LES_0 and LES_IC2 are shown in figure 5.7. The mean radius growth in
time is almost the same for both cases, and approaches a power-law behavior that is
similar to the growth of the integral scale.

5.4 Vortex ring ejections
One of the most distinctive features in the late-stage evolution of a turbulence cloud
(figure 5.2) is that it ejects vortex rings of roughly the same size from its boundary.
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Figure 5.3: Long-term evolution of (a) the kinetic energy decay compared with asymptotic
behavior of Saffman IHT E(C) ∼ C−6/5 ( ) and Bathelor IHT E(C) ∼ C−10/7 ( ); (b) the
integral scale growth for case LES_0 ( ) and LES_IC2 ( ) up to C/Cℓ = 400 compared
with asymptotic behavior of Saffman IHT ℓ ∼ C2/5 ( ) and Bathelor ℓ ∼ C2/7 ( ).

In this section, we investigate the relation between the size of the vortex rings and
properties associated with the turbulence.

We create LES simulations which independently vary the three independent nondi-
mensional parameters that control the initial conditions. Long-term evolution for
all three pairs at C = 260 are provided in Figure 5.8. The first parameter is the
width of the transition region associated with the windowing function, f/', which
is varied from [0.05,0.1,0.2] in three cases [LES_D1, LES_0, LES_D2]. We see
that the width of the transition region has little influence on the number or scale
of the ejections. Next, we consider varying the microscale Reynolds number Re_,
which is varied from [45.0, 76.9, 122.4] in three cases [LES_R2, LES_R1, LES_0].
Again, though each cloud has a different range of scales present, the vortex ejections
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Figure 5.4: Long-term evolution of the total spectrum for (a) LES_0 and ( ) (b) LES_IC2
( ), up to C/Cℓ = 500 with ΔC/Cℓ = 15 between each line. In figure (a) guide lines for :−5/3

( ) and :2 ( ) are given. In figure (b) guide lines for :−5/3 ( ) and :4 ( ) are given.

occur again at roughly the same scale. Finally, we vary initial integral scale ℓ/', by
changing the size of the initial periodic box to the sphere radius, �/' over the range
[0.5,1.0,2.0] for cases [LES_B1, LES_0, LES_B2]. Quite evidently, the size of the
ejections is halved for case LES_B1 and doubled for case LES_B2, compared to the
baseline LES_0. Therefore we conjecture that the vortex rings are generated by the
integral-scale structures in the original IHT field.

We hypothesize that the ejections occur due to a local imbalance of impulse associ-
ated with the IHT field. Consider a Gaussian weighted impulse centered at point x,
with a ‘width’ e

O(x; e) =
∫
R3
4
− |x−x′ |2

2e2 u(x′) dx′. (5.11)

Figure 5.9 shows the maximum impulse O(x; e) over x, as a function of the width



74

0 100 200 300 400 500 600

t/tℓ

0

5

10

15

20

25

30

35

I
(t
)/
I
(0
)

Figure 5.5: Long-term evolution of the normalized Loitsyansky integral � (C)/� (0) of
LES_IC2 (:4 type), up to C/Cℓ = 500.
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Ā>. Guide lines for C2/5 ( ) and C2/7 ( ) are also given.

e/ℓ> at C/Cℓ = 0, where ℓ> is the initial integral scale. The maximum Gaussian
weighted impulse reaches its maximum when e/ℓ> is around 1.8.

For points deep within the cloud, imbalance of the locally filtered impulse would
simply result in complicated local vortex dynamics. However, near the edge of
the cloud, this imbalance, when pointed outwards, would eject vorticity out of the
cloud. In some sense, this process is universal as the scale is a property of the
IHT field itself, and the net imbalance would create ejections near the edge of any
region of IHT. This result also agrees with studies of TNTIs. It was discussed in
Townsend (1980) that, while a wide range of turbulence scales affect the evolution
of the turbulence boundary, the largest distortion at the TNTI is from the largest
eddies in the turbulence.

5.5 Concluding remarks
The flow exhibits aspects of both homogeneous turbulence, deep within the sphere,
as well as inhomoengoues turbulence near the TNTI. For strictly homogeneous
turbulence, a spectrum of either the Saffman :2 type or the Batchelor :4 type
determines the kinetic energy decay rate and the the integral scale growth rate. For
spherical region of turbulence we showed that both types of initial conditions can
also be created. For the cloud, we confirm, by comparing spectra on spherical
shells of different radii from the initial center, that the turbulence remains locally
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Figure 5.8: Long-term turbulence cloud evolution with vortex ring ejections for cases
defined in table 4.1. First row: LES_D1, LES_0, LES_D2; second row: LES_R2, LES_R1,
LES_0; third row: LES_B1, LES_0, LES_B2.

homogeneous deep within the cloud. However, the resulting long-term decay of the
kinetic energy and the growth of the integral scale are similar in both cases, and
closer to the predictions of the Saffman theory. This may be related to an observed
growth in the Loitsyansky integral, but which is assumed constant in the Batchelor
characterization of the turbulence. At least through about 400 eddy turnover times,
there is little difference in the shape of the respective spectra between the two cases
for : values near the inertial scale, and it appears that the integral scale is relatively
unaffected by the behavior at very low : , whether :2 or :4. In any event, the
spectrum at these wavenumbers is controlled by the initial conditions and may not
be universal. Finally, we defined a mean radius of the turbulence cloud in terms of
its velocity moments, and showed the turbulence gives rise to a similar growth of
radius as of the integral scale.

The spherical region of turbulence is bounded by a TNTI that evolves into distinct
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Figure 5.9: Maximum Gaussian weighted impulse over x, maxx � (x; e) as a function of
‘width’ e for LES_0 at C = 0 ( ).

large-scale features. By varying each of the three independent nondimensional
parameters controlling the cloud, we find that the structures are related to the
(initial) integral scale of the IHT field. The TNTI features include vortex rings that
are ejected from the cloud. We hypothesize that this evolution is associated with an
imbalance in specific impulse over the integral scale, which, near the TNTI, gives
rise to the vortex rings.
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C h a p t e r 6

SUMMARY AND OUTLOOK

6.1 Summary
In this thesis, we expanded the state-of-the-art in simulating three-dimensional
Navier-Stokes equations for unsteady, viscous, external flows. This new CFD tech-
nique aims to address the three main challenges present in simulating high Reynolds
number external flows: the unbounded domain; the complex immersed geometries;
and the scale separation associated with the thin boundary layers and turbulence.
The original IBLGF method by Liska and Colonius (2017) applies the exact free-
space boundary conditions and allows for adaptive computational domains with
active grid cells comprising only vortical flow regions which is highly efficient,
scalable, and robust. However the necessity of a regular Cartesian grid is prob-
lematic for resolving thin boundary layers at high Reynolds numbers as compared
to body-fitted meshes where a more flexible nodal distribution is allowed. In this
work we solved this issue by further developing a multi-resolution framework that
extends the original method.

We began by proposing a novel multi-resolution framework for the LGF method
for solving Poisson equation on unbounded domains. The new formulation of
the AMR-LGF technique is based on the concept of composite grid, which is
defined as a series of infinite lattices of differing resolution, and we consider the
AMR grid as a subset of the ambient composite grid. The LGFs are formally
applied to every level of the composite grid with right-hand sides approximated
using the information on the AMR grid. By considering the (non-)commutativities
between the interpolation/coarsening and the LGFs, we show that this hypothetical
process can be evaluated efficiently. In this way, we retain the original infinite-space
mimetic differential operators whose commutative and conservation properties lead
to the efficiency and robustness of the original method. The resulting method
was also demonstrated to retain good parallel scaling with little penalty associated
with the AMR overhead. The AMR-LGF method is then applied to solve the
Navier-Stokes equations subject to far-field boundary conditions by incorporating
an analytical integrating factor technique and an appropriate Runge-Kutta scheme
for the time-marching. The resulting AMR-LGF-HERK scheme is demonstrated
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with the collision of vortex rings at Re = 7500.

In Chapter 3, we further extended the scheme to be coupled with the IB method
to solve external flows with complex geometries. We showed that the idea of the
composite grid can readily be applied to the immersed boundary method and the
resulting IB Navier-Stokes formulation can be solved efficiently using the AMR-
LGF method developed, as well as the spatial and refinement adaptivity discussed
in Chapter 2. The new scheme was validated and demonstrated with DNS of flow
around a sphere at Re = 3700 and 10, 000, where the spatial and refinement adaptiv-
ity is shown to save 99.2% and 99.87% of the computational cells respectively, with
up to 350×103 number of IB points in the Re = 10, 000 case. We also demonstrated
that the scheme is capable of simulating flows around complex geometries at high
Reynolds numbers by considering a DNS of a delta wing at Re = 10, 000, where
97.5% of saving in the computational cells was realized.

To push the aforementioned numerical method to even higher Reynolds numbers,
we explored in Chapter 4 the possibility of combining LES sub-grid-scale model
specifically the stretched-vortex of Chung and Pullin, 2009a, with the LGF method
for the turbulence simulations. In order to validate the LES, we designed a novel
turbulent flow in free-space–the spherical cloud of turbulence and performed DNS
and LES of this flow at Re_ = 122.4. The LES was shown to capture most of the
large features in the boundary evolution and agreed well with DNS in three statistical
measures. This study indicates that theLESmodelingwill further enhance theAMR-
IB-LGF method in simulating flows at higher Reynolds numbers. In addition, the
turbulent dynamics proved interesting and allowed us to address some fundamental
questions in the theory of (nearly) isotropic homogeneous turbulence, namely the
evolution of the low-wavenumber (Batchelor- or Saffman-type) turbulence, which
was discussed in detail in Chapter 5.

6.2 Outlook
The AMR-IB-LGF framework is capable of performing state-of-the-art CFD simu-
lations, yet there remain several issues to address to reach external flow problems
of relevance in myriad scientific and engineering applications. Luckily, emerging
advances in the CFD community provide new directions to further extend the current
method.

In Chapter 4 and 5we showed that the LESmodeling can be fruitfully combinedwith
the LGF method for the simulation of turbulence evolution in free space. This LES



80

modeling can readily be applied to the AMR-IB-LGFmethod for wall-resolved LES.
In addition, the IB method adopted in the current method is also compatible with
virtual-wall model techniques, and we expect the AMR-IB-LGF algorithm together
with wall-modeled LES to be able to solve a broader range of fluid problems.

The AMR-IB-LGF method is based on the AMR-LGF method which is developed
from the fast LGF method for uniform grid. The superior efficiency, as well as
the principle disadvantage of the original method stems from the regularity of
the underlying discretization. The AMR-LGF algorithm unlocks greater flexibility
from the FLGF method as now only locally regular grids are required. We expect
the AMR-LGF method to be applicable to a wide range of physics and scientific
problems that involves kernel convolutionwith the need of flexible nodal distribution
such as quantumfluids, or 3D incompressible flowswith one homogeneous direction.
Both of these are being actively studied in the group. Furthermore, since this method
only requires local regularity in its discretization, it does not rely upon any specific
numerical scheme. For instance, the current solver is built on the finite-volume
scheme but it could be easily adapted to the finite-element method.

Advances in hardware architecture also bring new opportunities into the future
developments of the AMR-IB-LGF method. As mentioned, this method develops
from the FLGF method which is based on the FMM algorithm and block-wise
FFT operations. For the AMR-IB-LGF solver, often we see over 95% of the total
computational time spent on the FFT calculations. GPUs have shown to be a more
suitable hardware for large-scale parallel FFTs compared to CPUs, which makes the
current method an ideal fit for GPU or heterogeneous CPU/GPU architectures.

The first-order convergence of the DLM-IBmethod adopted in the current algorithm
often requires a finer mesh to resolve the boundary layer, which can be inefficient
at high Reynolds numbers. However it is not the only option for solving PDEs with
irregular boundaries on an Eulerian grid. For instance, cut-cell and sharp interface
methods can extend the IB treatment to second order. Preliminary results also
indicate that when solving external flows with immersed bodies of finite volume,
it is possible to modify the symmetric smearing and interpolation operators used
in the current IB method to be asymmetric to yield more accurate solutions on the
outside the surface with less accurate velocity solution inside.

We believe that the the AMR-IB-LGF method will provide ample opportunities
for discovery of new flow phenomena and provide a good foundation for better,
emerging CFD techniques.
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A p p e n d i x A

EFFICIENCY AND PARALLEL PERFORMANCE OF AMR-LGF
POISSON SOLVER

To demonstrate the efficiency and parallel performance of the proposed block-
refined algorithm, we consider the same test case as in section 2.3.4 and report its
efficiency and parallel performance. We also refer to Liska and Colonius (2014) for
performance investigations and the parallel implementation strategy of the uniform
solver, which is similar to the one employed here. However, for completeness we
also report the computational rates here.

The solver was written in a C++ framework and uses MPI for parallel communica-
tions as well as FFTW for fast Fourier transforms. The code implements an octree
data structure, where each leaf corresponds to a cubic domain in physical space. A
server-client model is used for load balancing of the octree, where the sever stores
the full octree but does not allocate any data. The clients on the other hand store
one or multiple sub-trees including the corresponding data. For load balancing,
the anticipated load (mainly the load of fast Fourier transforms) is computed for
each octant and the leaf octants are sorted according to their Morton code for each
level. Finally, the sorted array of leaf octants is split into chunks with almost equal
loads, which are then assigned to each processor. Subsequently, the parents are
assigned to the processor with the minimum load in a recursive fashion. Note that
the FMMs are sequential in terms of the level due to the correction term, which
depends on previous levels and thus necessitates level-wise balancing to avoid an
imbalance of load on a particular level. All communication patterns between clients
are established using the server and communication costs are almost fully hidden
using non-blocking MPI calls.
Note that by far most time is spend in the level interactions (∼ 99%) of the algorithm
and in particular the level convolution within each FMM. The time to construct or
traverse the octree data structure is negligible due to the block-wise nature of the
algorithm, which also allows SIMD vectorization of the Fourier transforms and the
Hadamard product for additional speed.
Figure A.1a shows the strong scaling for the computational rates of our implemen-
tation for various domain sizes # . The parallel efficiencies are in line with the
implementation of Liska and Colonius (2014) as well as other kernel-independent
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Figure A.1: Computational rates and parallel performance.

FMM solvers and thus verifies our implementation. In addition, in figure A.1b, the
dependence of the computational rate with the number of refinement levels is plotted
for the case of # = 6443. As stated earlier, the complexity scales linearly with the
number of levels and we thus expect that the computational rates are independent
of the refinement levels. This is confirmed in A.1b. Note however that the parallel
efficiency is limited to the efficiency of the individual FMMs.
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A p p e n d i x B

ENERGY SPECTRUM OF INHOMOGENEOUS TURBULENT
FLOWS

Ambiguities arise in interpreting the (spatial) energy spectrum of inhomogeneous
turbulent flows. The term ‘spectrum’ itself can be used in two different ways. For
a function, the spectrum can refer to the magnitude of its Fourier transform and
gives information about the scales present in the function. For a random process, on
the other hand, the spectrum represents a statistical statement about how energy is
distributed amongst scales on average. Turbulence is generally thought to be random
in the sense (e.g. Pope, 2001) that any realization (e.g. specific initial condition)
cannot be predicted with certainty from any other; only through an average of a
sufficient number of realizations of the random process can we make statements
about the likely properties of any. In what follows, we interpret the term spectrum
in this latter sense. We discuss approximations we make in order to estimate the
spectrum for the spherical region of turbulence under the approximation that the
turbulence is locally homogeneous deep within the sphere.

B.1 General definitions
The spatial energy spectrum for an inhomogeneous flow can be formulated from
the two-point velocity covariance tensor (written at some moment in time, and we
suppress the temporal dependence in what follows)

'8 9 (x, r) = E
[
D8 (x)D 9 (x + r)

]
, (B.1)

where E is the expectation (ensemble average). Note that the result depends on both
the position in the flow x and the separation vector r between the observations. The
Fourier transform (in the generalized sense) of '8 9 over the separation vector gives
the cross-spectral density tensor

(8 9 (x, k) =
1

8c3

∫
R3
'8 9 (x, r) 4−8k·r dr, (B.2)

where the integral is over the separation vector.

The resulting local kinetic energy spectrum (per unit volume) is

�̂ (x, k) = 1
2
(88 (x, k). (B.3)
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We can define a total kinetic energy spectrum of a domain Ω by integration,

�̃ (k) =
∫
Ω

�̂ (x, k) dx, (B.4)

and, by Parseval, the kinetic energy in the entire flow is
∫
�̃ (k) dk. For turbulence

that is homogeneous in one or more directions, discussed in more detail below, the
integral diverges and the total energy is not defined. However, in that case the local
kinetic energy is also uniform in the homogeneous directions, and it is sufficient to
speak of the energy per unit volume.

For future reference, using linearity of the expectation operator, we may also write

�̃ (k) = 1
16c3E

[∫
R3

∫
R3
D8 (x)D8 (x + r)4−8k·r dx dr

]
. (B.5)

This form of the spectrum is often written without the expectation operator, but it
then refers to the spectrum of a deterministic velocity field rather than that of an
underlying random process. Evaluating it with the expectation requires an ensemble
of realizations for the general case of inhomogeneous turbulence.

B.2 Homogeneous and locally homogeneous turbulence
Depending on additional hypotheses on the structure of the turbulence, different
averaging procedures can be employed to determine a spatial or temporal spectrum
in place of the ensemble average over realizations. For example, if the turbulence is
hypothesized as ergodic-stationary, then the ensemble average can be replaced by a
sufficiently long time average over a single realization. Likewise, if the turbulence
is hypothesized as ergodic-homogeneous, then a spatial average over any or all
homogeneous directions can be used. For example, for the fully (all 3 directions)
homogeneous case, we may write

'8 9 = '8 9 (r) = lim
+→R3

1
+

(∫
+

D8 (x)D 9 (x + r) dx
)
. (B.6)

The resulting cross-spectral density and local energy spectrum will likewise only be
functions of the separation or wavenumber vectors, respectively, i.e. (8 9 = (8 9 (r),
�̃ = �̃ (k). Recall that total energy spectrum �̃ (k) is infinite (undefined) in this
case, since the integral over all space diverges.

Provided that the turbulence is locally homogeneous (or homogeneous plus isotropic)
over a lengthscale ! such that ! � ; (; the integral scale) then the volume averaging
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can be performed locally. Define a region Ω centered about x with scale Ω ∼ !3,
and define

'̄8 9 (x, r) =
1
|Ω(G) |

(∫
Ω(G)

D8 (x′)D 9 (x′ + r)3x′
)
. (B.7)

We expect '̄8 9 to be a constant over the region of homogeneity (except close to its
edge).

B.2.1 Estimating �̃ (k) for the spherical cloud of turbulence
Wehypothesize that the turbulence is locally homogeneous over a region deepwithin
the sphere of turbulence. To apply this concept to the spherical cloud, we begin by
breaking up the volume in equation (B.5) into 3 parts: an inner region (Ω<') deep
in the sphere where we will assume local homogeneity, a transition region (Ω∼')
near the turbulent/irrotational interface, and an outer, irrotational region (Ω>')

�̃ (k) = 1
16c3

∫
R3

[∫
Ω<'

+
∫
Ω∼'

+
∫
Ω>'

]
E [D8 (x)D8 (x + r)] 4−8k·r dx dr. (B.8)

With local homogeneity over Ω<', we insert equation (B.7), which is constant with
x over this region, into the first integral, and obtain

�̃ (k) = 1
16c3

∫
R3

∫
Ω<'

D8 (x)D8 (x + r) 4−8k·r dx dr

+ 1
16c3

[∫
Ω∼'

+
∫
Ω>'

]
E [D8 (x)D8 (x + r)] 4−8k·r dx dr

=
1

16c3

∫
R3

∫
R3
D8 (x)D8 (x + r) 4−8k dx·r dr + �′Ω∼' + �

′
Ω>'
(k), (B.9)

where the remainder terms are of the form of a difference between the ensemble
average and one realization, i.e.

�̃′(k)Ω =
1

16c3

∫
R3

∫
Ω

(E [D8 (x)D8 (x + r)] − D8 (x)D8 (x + r)) 4−8k·r dx dr. (B.10)

In breaking up the integral in this way, we highlight that we can integrate the velocity
field from a single simulation over free space and obtain the correct ensemble-
averaged spectrumup to a statistical error associated onlywith the difference between
one realization and the ensemble average only over the transition and outer regions.

Regarding the transition region, the contribution to the overall energy scales with
the volume of this region, 4cf'2, where f is the width of the transition region. By
making the initial sphere large compared to f and the correlation length (integral
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scale), ℓ(G), this error can, at least in principle, be made indefinitely small compared
to the first term.

Regarding the outer region, the irrotational velocity field decays at least as fast as
|x|−3 when the initial impulse is nonzero. Forwavenumber : not too small, we expect
this to only produce a small contribution to the total energy spectrum. However,
as : → 0, this term will eventually dominate the spectrum, and the behavior at
low : will be $ (:2) provided the initial impulse is nonzero. Indeed, we therefore
do not expect the low wavenumber spectrum to be universal as it depends on how
much impulse there is in the initial condition, which, as described in § 4.3.1, is
arbitrary and can be contrived, with little effect on the resulting turbulence, to have
any value (including zero). When the impulse is zero, the resulting :4 spectrum
may be universal over a broader range of low wavenumbers, but is still contrived as
: → 0.

This discussion has strong but unsurprising implications about whether the low
wavenumber spectrum of any turbulent flow can be considered to be universal. An
alternative interpretation is that it is associated with the initial/boundary condi-
tions and can be arbitrarily manipulated independently of the turbulence behavior
at smaller scales. In any event, it is clear that, in the present simulations, the
low wavenumber behavior is wholly controlled by the (arbitrary) initial condition.
At sufficiently long time, after the turbulence has substantially decayed, the error
terms above will eventually dominate the spectrum, resulting in a (in the case of
finite impulse), a fat vortex “puff” whose properties are solely related to the initial
condition.

If the error terms are neglected, equation (B.9) is identical to equation (B.5), but
without the expectation. It has been used before to express the energy spectra of
deterministic velocity fields but its equivalence (to within the error) to the ensemble-
averaged spectrum of a random process, under local homogeneity, has not to our
knowledge been reported elsewhere. It is interesting that the error vanishes like
the ratio of the volume of inhomogeneous turbulence to volume of homogeneous
turbulence.
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A p p e n d i x C

SPECTRUM: ANALYTICAL AND COMPUTATIONAL DETAILS

For :' & 1, equation (5.2) is evaluated using the three-dimensional vorticity form

�̃ (k) = 1
16c3

∫
R3

∫
R3

u(x) · u(x′) 4−8k·(x′−x) dx dx′ (C.1)

=
1

16c3

∫
R3

∫
R3

1
|k |2

8(x) · 8(x′) 4−8k·(x′−x) dx dx′

=
1

16c3 |k|2
F {8(x)} · F {8(x)}, (C.2)

� (:) =
∫
(:

�̃ (k) d(: , (C.3)

where F {·} denotes the Fourier transform and (: denotes a spherical shell of radius
: . Fast Fourier transform is used to efficiently evaluate (C.2) and zero-padding is
applied to attenuate the effect from the spurious periodicity.

For :' . 1, formula (C.2) must be evaluated carefully to avoid numerical singu-
larity. For these values, we expand the integral in a Taylor series about : = 0 to
obtain

� (:) = 1
4c2

∞∑
8=1
(−1)8 1

(28 + 1)! :
28

∫
R3
|r|28F −1

{
F {8} · F {8}

}
(r) dr, (C.4)

which already uses the relation that
∫
8(x) dx = 0. For all results presented here,

up to 10 terms are used to yield accurate spectrum for the low wavenumber limit.

A more common form in terms of the velocity field for the low wavenumber limit
can be derived by expanding equation (C.1)

� (:) = 1
4c2

∞∑
8=0
(−1)8 1

(28 + 1)! :
28+2

∫
R3
|r|28F −1

{
F {u} · F {u}

}
(r) dr. (C.5)

Comparing the corresponding terms in equation (C.1) and (C.2) gives another
relation∫
R3

∫
R3
A2?+28(x) · 8(x + r) dx dr = −(2? + 2) (2? + 3)

∫
R3

∫
R3
A2? u(x) · u(x + r) dx dr.

(C.6)
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Lastly one can show the :2 term in equation (C.4) is related to the total vorticity
impulse Pl through ∫

R3

∫
R3
A28(x) · 8(x + r) dx dr = 4|Pl |2, (C.7)

where

Pl =
1
2

∫
R3

x × 8(x) dx. (C.8)
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