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ABSTRACT 

Lignin and cellulose comprise a large portion of the renewable biomass on Earth. However, 

substantially due to laborious course of processing, the conversion efficiency of these 

biomaterials to accessible biofuel is very low. Therefore, effective depolymerization and 

utilization of these biopolymers are requirements for environmentally friendly and sustainable 

energy development. In the hope of finding solutions to these biomass utilization challenges, 

there have been growing interests in using biodegrading metalloenzymes as active biocatalysts. 

However, there still remain many questions regarding mechanistic details of enzyme catalysis 

and effective application of these enzymes. This thesis focuses on investigating the redox 

chemistry involved in the catalytic mechanisms of two main lignin- and cellulose- degrading 

copper enzymes: multicopper oxidases (MCOs) and lytic polysaccharide monooxygenases 

(LPMOs).  

 

MCOs are capable of aerobic oxidation of lignin as their primary function, but the nature of 

their substrate variability also allows the oxidation of not only diverse high potential organic 

and inorganic complexes, but also earth abundant divalent metal ions such as manganese. 

LPMOs, on the other hand, enable the cleavage of glycosidic bonds in recalcitrant insoluble 

cellulosic substances, which are not degradable by other hydrolytic enzymes such as 

endoglucanases and cellulobiohydrolases.  

 

It is remarkable that nature has created such versatile enzymes with specific active site metals 

and redox-active amino acids involved in electron transfer, which contribute to substrate 

oxidation as well as enzyme survival against oxidative damage during catalysis. By gaining a 

deeper understanding of how these enzymes work, we could greatly enhance current usage 

efficiencies and develop more energy-efficient biocatalysts. 
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Chapter I gives an introduction to biological coppers, two groups of bio-degrading copper 

enzymes: multicopper oxidases (MCOs) and lytic polysaccharide monooxygenases (LPMOs), 

and the role of redox-active amino acids in electron transfer and enzyme catalysis. For the 

MCO work, a thermophilic laccase (Tth-lac) from Thermus thermophilus HB27 and a CotA 

laccase (CotA-lac) from Bacillus Subtilis were studied. For the LPMO work, two cellulose 

active LPMOs (ScLPMO10B and ScLPMO10C) and a chitin active LPMO (BlLPMO10A) 

were studied.  

 

Chapter II describes thermodynamic aspects of Tth-lac catalysis. The temperature dependence 

of the formal potential of type I copper (CuT1) in Tth-lac is reported, and the interplay between 

many competing dynamic and thermodynamic factors which results in thermostability and 

activity of Tth-lac is discussed. 

 

Chapter III reports the electron transfer (ET) kinetics data obtained with Tth-lac using the 

transient absorption spectroscopy. The results of photochemical electron/hole transfer studies 

indicate that the chains of Trp and Tyr can participate in electron transfer through Tth-lac, which 

could potentially have a role in enzyme catalysis as well.  

 

Chapter IV discusses the protective role of a Trp/Tyr pair positioned close to the trinuclear 

copper cluster (TNC) in Tth-lac. It is indeed remarkable that laccases are capable of utilizing 

the power of oxygen to catalyze the oxidation of diverse high-potential substrates. But, as a 

tradeoff, the utilization of dioxygen can make the enzyme highly susceptible to oxidative 

damage. Chapter IV provides supporting evidence that led us to conclude that the TNC-
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proximal Trp/Tyr pair functions as an internal antioxidant for prolonging the enzyme lifetime.  

 

Chapter V describes investigations on the factors that affect MCO catalysis, which include the 

potentials of the active site coppers, possible reactive intermediates, and common structural 

motifs. Based on the structural homology between Tth-lac and CotA-lac, some preliminary 

work done on CotA-lac is also reported. 

 

Chapter VI outlines the work on LPMOs. After the successful expression and purification of 

ScLPMO10B, ScLPMO10B and BlLPMO10A, standard activity assays were done with 

insoluble cellulose and chitin substrates to confirm the enzyme activity. The results are 

compared with that from the photo-degradation experiments to investigate if the 

photochemically generated Cu(III) species are active intermediates in LPMO catalysis.  

 

Chapter VII reports the results on bioinformatics analysis on the distribution of vicinal amino 

acids in different enzyme classes. This study was to examine the biological significance of 

amino acid pairs and clusters existing in many different enzyme classes, with vicinal surface 

tyrosines in CotA-lac as an underlying motivation behind the work. 

 

This thesis demonstrates that MCOs and LPMOs are truly versatile enzymes which can oxidize 

such diverse refractory substrates, and there could be multiple pathways that the enzymes 

achieve this task. As shown so far, not only the active site metals but also the chain of redox-

active amino acids as well as metal coordinating residues can contribute to enzyme catalysis. 
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1.1. Biological Copper Centers 

Copper ions are found in many of the biological systems, and there exist many 

enzymes, mostly oxidoreductases, with different numbers of coppers in them [1]. Although 

they can all be grouped into copper proteins, not all coppers in them are the same. They are 

classified into different types depending on the coordination environment around the active 

copper sites.  

 

Table 1.1. Different types of coppers in metalloenzymes [2], [3]. 

 

 

Type 1 Cu 

 

Type 2 Cu Type 3 Cu 

  
 

Cys-S → Cu T1
II charge 

transfer band at 610nm 

giving the intense blue 

color (ε = ~ 5000 M-1cm-1) 

Weak 

absorption features 

Oxygen-bridged dimer, absorption 

at ~330nm due to the formation of 

hydroxo-bridge 

 

Table 1.1 shows different types of coppers existing in multicopper oxidases. Type 1 Cu (CuT1) 

is responsible for giving the absorption at around 600 nm due to Cys-S to Cu(II) charge transfer, 

whereas type 2 Cu (CuT2) does not have any distinct absorption feature in the UV-Vis spectrum. 

Type 3 Coppers (CuT3), which appear as an oxygen-bridged dimer have the absorption at 330 

nm [2]. 



3 

 

1.2. Bio-degrading Copper Enzymes 

 

Figure 1.1. Lignin and cellulose degradation by laccases [4] and LPMOs [5], respectively. 

 

Laccases and LPMOs have copper centers in their active sites, and they are renowned for their 

functions of degrading lignin and cellulose, respectively [1, 2]. Laccases have four copper 

centers capable of coupling the oxidation of lignin substrates to the four-electron reduction of 

O2 to form H2O. LPMOs are known to degrade insoluble and recalcitrant polysaccharides such 

as chitin, cellulose, or lignin. LPMOs tend to have their active site copper exposed on the 

surface and one single aromatic redox active residue on the putative cellulose binding surface. 

The reason why these enzymes are worthy of studying is that lignin and cellulose comprise a 

large portion of the renewable biomass on earth [6]. Substantially due to difficult course of 

processing, the conversion efficiency of these biomaterials to accessible biofuel is very low [7], 

and these enzymes could contribute to solving this biomass problem. Although these enzymes 

have been investigated for decades, there still remain a lot of details in their catalytic 
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mechanism to be elucidated, and studying these enzymes may also provide us a better insight 

into developing energy-efficient synthetic biocatalysts. 

 

1.3. Multicopper Oxidases (MCOs) 

Laccases are a group of enzymes classified as multi-copper oxidases (MCOs), which have four 

copper sites involved in electron transfer processes and enzyme turnovers. Some of the other 

most commonly recognized MCOs are ascorbase oxidases and ceruloplasmin. Nitrite reductase 

is closely related to MCOs, in terms of both sequence and structural similarity, although it 

physiologically functions as a reductase [8]. 

 

MCOs evolved from single domain cupredoxins which went through a series of domain 

duplication and active-site deletion and creation. Single domain cupredoxins evolved to two-

domain MCOs, three-domain MCOs, and eventually six-domain MCOs. Three-domain MCOs 

exhibit the largest degree of variability in sequences and functions, and they occur in a great 

diversity of organisms [8], [9]. In most MCOs, there is a CuT1 center and a tri-nuclear Cu cluster 

(TNC) which is composed of three Cu atoms: a CuT2 and binuclear CuT3 coppers. With these 

four coppers, they are capable of coupling the oxidation of substrates to the four-electron 

reduction of O2 to form H2O. According to the consensus mechanism, substrate oxidation is 

believed to occur near the CuT1 donating an electron to the CuT1, which is followed by a long-

range electron transfer of around 13Å distance to the TNC where dioxygen reduction occurs to 

produce water (O2 + 4H+ + 4e- → 2H2O) [10]. 

 

Two different three-domain MCOs from Thermus thermophilus HB27 and Bacillus subtilis 

were studied to elucidate the mechanistic details.  
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1.3.1. Thermus thermophilus HB27 Laccase (Tth-lac) 

 

Figure 1.2. Structure of a multicopper oxidase from Thermus thermophilus HB27 (PDB: 

2YAE [10]). 

 

 

 

Figure 1.3. Coordinating residues of the active-site coppers in Tth-lac [10]. 
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CuT1-coordinating residues are His393, His450, and Cys445 with an axial Met455 in close 

proximity. CuT2 is coordinated by His95 and His396, and CuT3 and CuT3’ are connected via a 

hydroxo-bridge, and are coordinated by three histidines each: His137, His398, and His444 for 

CuT3 and His97, His135, and His446 for CuT3’. These residues are critical for maintaining the 

active-site geometry and thus the enzyme function in Tth-lac [10]. 

 

1.3.2. CotA Laccase from Bacillus Subtilis (CotA-lac) 

 

Figure 1.4. Structure of a multicopper oxidase from Bacillus Subtilis (PDB: 1GSK [11]). 

 

The MCO from Bacillus Subtilis, also called CotA laccase (CotA-lac), is a bacterial endospore 

coat component. It belongs to a three-domain laccase just like Tth-lac. In CotA-lac, CuT1-

coordinating residues are His419, His497, and Cys492 with an axial Met502 at a distance of 
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around 3.3Å. CuT2 is coordinated by His105, His422, and a water ligand. CuT3 and CuT3’ are 

connected via a hydroxo-bridge, and are coordinated by three histidines each: His107, His153, 

and His493 for CuT3 and His155, His424, and His491 for CuT3’. These residues are critical for 

maintaining the active-site geometry and thus the enzyme function in CotA-lac [10]. 

 

1.4. Lytic Polysaccharide Monooxygenase (LPMO) 

Lytic polysaccharide monooxygenases (LPMOs) are a family of enzymes that comprise fungal 

and bacterial enzymes known to degrade insoluble and recalcitrant polysaccharides such as 

chitin, cellulose, or lignin. Bacterial LPMOs belong to the auxiliary activity family 10 (AA10) 

which is in general found in cellulolytic bacteria. There are LPMOs which target either C1 or 

C4 exclusively and some which can oxidize both C1 and C4 for the cleavage of glycosidic 

bonds [12], [13]. These independently functioning enzymes can even work synergistically with 

hydrolases (hydrolytic enzymes) and also with each other enhancing the catalytic activity for 

an efficient cellulose degradation [12].  

 

 

Figure 1.5. Proposed mechanisms of LPMO catalysis: O2 and H2O2 mechanisms [14], [15]. 
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According to the consensus mechanism, copper in the active site of LPMOs is believed to 

reduce dioxygen by obtaining two electrons from an external electron donor which tends to be 

a low molecular weight redox-active compound such as ascorbic acid or polyphenolic 

substance. Examples of phenolic reducing agents include gallic acid or the macromolecular 

lignin [13]. Reduced dioxygen takes hydrogen from the substrate, which ultimately leads to the 

cleavage of β-1,4 glycosidic linkages in polysaccharides [16]. However, this view was 

challenged by new data indicating that both O2 and H2O2 can function as co-substrates. This is 

further complicated by the fact the LPMOs can generate H2O2 when the enzyme is not bound 

to substrate [15].  

 

Interestingly, both of these postulated mechanisms include generation of Cu(III) intermediates 

(Cu(II)-oxyl or Cu(III)-oxo species) resulting from the oxidation of Cu(I) by O2 or H2O2, 

followed by O-O bond cleavage [17], but questions also arise concerning the feasibility of 

lignocellulosic substrate oxidation when the potential of Cu(II)(OH)/Cu(I)(OH2) (estimated to 

be less than 0.3 V for LPMOs [18], [19]) is not high enough to promote hydroxyl radical 

rebound.  

 

Substrate accessibility and the source of electrons are critical for enabling the efficient 

enzymatic degradation of insoluble polysaccharides. It has been reported that some small 

molecular weight phenolic compounds and lignin components existing in natural plant biomass 

serve as electron donors for LPMO activity. However, the specificity is presumably low, since 

only a certain number of polyphenolic substances have the sufficiently low redox potential to 

achieve the reduction of the active-site copper (+250 mV vs NHE) [20]. Monophenols, unlike 

some low potential compounds such as the ones with a 1,2-benzenediol or a 1,2,3-benzenetriol 
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moiety, were not adequate sources of electrons due to their relatively high redox potential [13]. 

Therefore, it can be understood that the supply of electrons at the right potential to enable the 

reduction of copper is a critical aspect to consider.  

 

  

Figure 1.6. Enzyme structures of ScLPMO10B (PDB: 4OY6 [5]) and ScLPMO10C (PDB: 

4OY7) with the active-site copper (blue), conserved Trp and Tyr (red) and Trp and Tyr 

throughout the protein (cyan and green, respectively).  

 

Two cellulose-active LPMOs (C1-oxidizing ScLPMO10C (CelS2) and a C1/C4 oxidizing 

ScLPMO10B) from Streptomyces coelicolor and a chitin-active LPMO (BlLPMO10A) were 

studied to investigate the details of cellulose and chitin degradation. Trp 88 in ScLPMO10B 

and Tyr 79 in ScLPMO10C indicated in red (Figure 1.6) are conserved aromatic residues with 

their ring parallel to the putative cellulose binding surface [12]. The active-site copper and 

these conserved aromatic residues are positioned in structurally similar locations on the surface 

of each protein. 
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LPMOs are worthy of studying, since they enable the cleavage of glycosidic bonds which are 

not degradable by other hydrolytic enzymes such as endoglucanases and cellobiohydrolases 

[5]. For this reason, many of the current commercial cellulase mixtures contain LPMOs to 

enhance the efficiency of lignocellulosic biomass processing. 

 

1.5. Roles of Redox-active Trp/Tyr in Electron Transfer  

It is important to study the electron transfer in metalloproteins, since it allows us to gain deeper 

insights into many of the biological processes or catalytic cycles. Trp and Tyr are redox active 

amino acids which facilitate electron transfer. Monitoring the redox chemistry between the 

metal centers and the intermediates such as Trp or Tyr radicals can give information about the 

electron transfer pathway. Critical parameters that affect the rate of electron transfer are (1) 

Driving force, (2) Nuclear reorientation, and (3) Electronic coupling [21], [22].  

 

 

Figure 1.7. Structural homology between Tth-lac [10] and CotA-lac [11]. 

 



11 

Trp and Tyr are commonly found near the active sites of the MCOs as well. One prominent 

feature in Tth-lac is a Trp/Tyr pair adjacent to the TNC within around 3.5 Å distance as well as 

a chain of closely spaced Trp and Tyr residues stretching from the TNC out to the surface 

(Figure 1.7, left). Similar Trp/Tyr chains are observed in CotA-lac as well (Figure 1.7, right). 

These chains of Trp and Tyr are actually notable features commonly occurring in most MCOs. 

When 25 X-ray crystal structures of three domain laccases existing in the protein data bank 

were examined, all of them except two had a Trp or a Trp/Tyr pair adjacent to the TNC [23]. 

We postulate that these residues are responsible for transferring the oxidizing equivalent to 

sites that are less vital for enzyme function. They may also contribute to providing multiple 

catalytic pathways supporting the substrate non-specific nature of these enzymes in nature. 

Tryptophan and tyrosine residues indeed occur with greater-than-average frequency in 

oxidoreductases: 66% and 81% have Tyr and Trp in above-average frequencies, respectively 

[24], and we speculate their crucial roles in enzyme function and survival. 
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1F56); Armoracia laphatifolia umecyanin (UmCy, 1X9R); Cucumis sativus stellacyanin (StCy, 

1JER); Spinach oleracea plastocyanin (PlCy, 1AG6); Alcaligenes faecalis azurin (AfAz, 

2IAA); Pseudomonas aeruginosa azurin (PaAz, 5AZU); Trametes versicolor laccase (Trv-lac, 

1GYC). 
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Stability/Activity Tradeoffs in Thermus thermophilus HB27 Laccase2  

 

2.1. Abstract 

We report the temperature dependence of the formal potential of type 1 copper (CuT1) 

in Thermus thermophilus HB27 laccase. Employing [Ru(NH3)4(bpy)](PF6)2 (0.505 vs. NHE) 

as the redox titrant, we found that the CuT1
2+/+ potential decreased from approximately 480 to 

420 mV (vs. NHE) as the temperature was raised from 20 to 65˚C. Of importance is that the 

ΔS°rc of −120 J mol-1 K-1 is substantially more negative than those for other blue copper 

proteins. We suggest that the highly unfavorable reduction entropy is attributable to CuT1 

inaccessibility to the aqueous medium. Although the active site residues are buried, which is 

critical for maintaining thermostability, the flexibility around CuT1 is maintained, allowing  

enzyme activity at ambient temperature. 

 

2.2. Introduction 

The effects of temperature on enzyme survival and function have greatly influenced 

studies of enzyme evolution [1, 2]. The enzyme of interest in this study is a laccase from a 

thermophilic bacterium, Thermus thermophilus HB27 (Tth-lac), which grows optimally at 65˚C. 

Laccases, members of the multicopper oxidase (MCO) family, have four copper sites involved 

in electron transfer and enzyme catalysis. According to the consensus mechanism [3, 4], 

substrate oxidation occurs near a type 1 copper (CuT1), followed by long-range electron transfer 

 

2 Abbreviations: Thermus thermophilus HB27 laccase, Tth-lac (PDB ID: 2YAE); Cucumis 

sativus cucumber basic protein (CPB, 2CBP); Spinacea oleracea spinach basic protein (SBP, 

1F56); Armoracia laphatifolia umecyanin (UmCy, 1X9R); Cucumis sativus stellacyanin (StCy, 

1JER); Spinach oleracea plastocyanin (PlCy, 1AG6); Alcaligenes faecalis azurin (AfAz, 

2IAA); Pseudomonas aeruginosa azurin (PaAz, 5AZU); Trametes versicolor laccase (Trv-lac, 

1GYC). 
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to a trinuclear copper cluster, where, in a fully reduced enzyme, dioxygen is converted to water 

(O2 + 4H+ + 4e- → 2H2O). Of special interest is that laccases are capable of degrading lignin 

in recalcitrant lignocellulosic substrates as their primary function [5], even though the CuT1 

potentials in the bacterial enzymes [4] are as much as 0.5 V lower than that required for one-

electron oxidation of polyphenols [6].  

        

Tth-lac is stable and active above 90˚C for catalysis of aerobic oxidation of small polyphenolic 

substrates as well as ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid), a 

common substrate for oxidative enzymes [7, 8]. In contrast to many other thermophilic 

enzymes [2, 9], Tth-lac is active at ambient temperature, although the catalytic efficiency 

(defined by the turnover number divided by the Michaelis constant, kcat/Km) for ABTS 

oxidation increases substantially with increasing temperature (Figure 1). We anticipate that 

investigations of thermodynamic parameters will enhance the understanding of the remarkable 

stabilities and activities of extremophiles at elevated temperatures.  

 

Surprisingly, the effects of temperature on the potentials of both the substrates and the active-

site coppers have largely been neglected. As reduction entropies of M(ox/red) redox couples are 

proportional to (Zox
2−Zred

2), where Zox and Zred are the charges of oxidized and reduced states 

[10], ΔS°rc for ABTS−/2− is predicted to be negative as observed for other M−/2− redox couples. 

It follows that the ABTS−/2− potential, which is about 670 mV (vs. NHE) at ambient temperature 

[11], is expected to decrease with increasing temperature. Based only on the decrease in ABTS 

potential, the activity of the enzyme likely would be higher at elevated temperatures. However, 

the charge dependence of ΔS°rc is only a small-molecule phenomenon, and ΔS°rc for proteins 

is unpredictable. Since the enzymatic activity also depends on the CuT1 potential [12], we have 

investigated the temperature dependence of the CuT1 potential in Tth-lac. 
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Figure 2.1. Temperature dependence of the catalytic efficiency of Tth-lac 

oxidation of substrate ABTS [7, 8, 13]. 

 

2.3. Methods 

Sample Preparation 

Thermus thermophilus HB27 laccase was expressed in E. coli and purified following published 

methods [7] with slight modifications. (See the Supplementary Material (SM) for details on 

protein expression and purification protocols.) A two-step procedure with slight modifications 

was employed to ensure full metalation of the enzyme [8, 14]. The enzyme was metalated in 

20 mM Tris buffer, pH 8 with 1 mM CuSO4; and it was metalated again in 25 mM sodium 

acetate buffer, pH 6 with 1 mM CuSO4 for at least 48 h. The enzyme was stored with excess 

copper at 4 ˚C until use, and the excess copper was removed by gradual buffer exchange to 20 

mM MES buffer at pH 5.3 with multiple rounds of centrifugal spin filtration. The presence of 

a type 2 copper which has the smallest binding constant in the protein was confirmed with EPR 
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and ICP-MS. [Ru(NH3)4(bpy)](PF6)2 was synthesized and characterized following published 

protocols (with slight modifications) [15]. 

 

Circular Dichroism Spectra 

Circular dichroism (CD) spectra of the protein samples under N2 were recorded from 260 to 

190 nm to monitor conformational changes and/or thermal denaturation over the temperature 

range 20 to 65˚C. Measurements were made on 3 µM protein in 20 mM sodium phosphate 

buffer, pH 6. CD spectra reflecting the combined profiles of β-sheets, α-helices and random 

coils were obtained, and the spectra at different temperatures looked very similar (Figure S2.1.), 

consistent with prior observations [8]. 

 

Estimation of the CuT1 Potential from Redox Equilibria 

CuT1
2+/+ reduction potentials over the range 20 to 65˚C were estimated by monitoring changes 

in UV-vis spectra of a deoxygenated sample containing the wild type protein and 

[Ru(NH3)4(bpy)](PF6)2. The formal Ru3+/2+ potential of [Ru(NH3)4(bpy)](PF6)2 was reported to 

be 0.505 V [16], and Src is approximately +56 J mol−1 K−1 [10]. A previous report estimated 

the Tth-lac CuT1
2+/+ potential to be approximately 0.5 V vs NHE at pH 5 and 6.5 [17]. 

 

Wild type Tth-lac (60 µM) and four equivalents (240 µM) of [Ru(NH3)4(bpy)](PF6)2 were 

deoxygenated by gentle evacuation/Ar-backfill cycles and then mixed together in a sealed 

quartz cuvette. UV-vis spectra of the sample were monitored at temperatures from 20 to 65˚C. 

The spectra of [Ru(NH3)4(bpy)]2+ and the wild type CuT1
2+ protein were monitored separately 

as functions of temperature. We assume that the CuT1
+ protein and [Ru(NH3)4(bpy)]3+ do not 

make substantial contributions to spectra in the 400-700 nm range. Equilibrium concentrations 
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of CuT1
2+ and Ru2+ in the mixed sample were determined by least squares decomposition of the 

mixed spectrum (480-650 nm) into a linear combination of the two component spectra.  

 

2.4. Results and Discussion 

 

Temperature Dependence of the CuT1 Formal Potential 

Based on redox equilibria determined by titration with [Ru(NH3)4(bpy)](PF6)2, the CuT1 formal 

potential decreased by approximately 60 mV (480 to 420 mV) from 20 to 65˚C. As temperature 

variations also affect buffer pH (the temperature coefficient for the pH of MES buffer is 

approximately −0.011 per °C [18]), the pH is predicted to decrease from 5.3 to 4.8 with a 

temperature increase from 20 to 65°C; and a pH decrease of 0.5 could produce an apparent 

increase in the CuT1
2+/+ potential at elevated temperature, even though solvent accessibility to 

the deeply buried copper site is low. It follows that the decrease in CuT1
2+/+ potential extracted 

from redox titration data at the higher temperature would be slightly greater if corrected for the 

pH change. 

 

CuT1
2+/+ formal potentials in blue copper proteins range from approximately 200 to 800 mV 

and usually tend to decrease with increasing temperature (i.e., ΔS°rc < 0) [19, 20]. The enthalpic 

contribution (−ΔH°rc /F) to the potential is largely determined by ligand interactions with CuT1. 

A copper site with a weak axial bond has a higher formal potential, owing mainly to 

destabilization of the oxidized state [21]. The CuT1 sites in high-potential laccases have a 

trigonal planar CuT1 geometry with noncoordinating Phe or Leu residues in axial positions; and 

low-potential laccases have an axial Met residue in the inner coordination sphere. The entropic 

contribution (TΔS°rc /F) to the potential, on the other hand, is influenced by interactions with 

the protein scaffold and the surrounding aqueous medium.  
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Figure 2.2. UV-vis spectra (20 to 65˚C) of a deoxygenated sample containing both wild type 

Tth-lac and four equivalents of [Ru(NH3)4(bpy)](PF6)2.  

 

Table 2.1. Effect of temperature on the reaction between CuT1
2+ and [Ru(NH3)4(bpy)]2+. 

T (K) 293 303 313 323 333 338 

Keq
 a 0.33(1) b 0.218(7) 0.123(5) 0.061(3) 0.034(4) 0.025(7) 

G (kJ mol−1) 2.72(9) 3.8(1) 5.5(2) 7.5(4) 9.4(9) 10(2) 

E (mV) −28(1) −40(1) −56(2) −78(4) −100(10) −110(10) 

E(Ru3+/2+) (mV) 

c,d 
505 511 517 522 528 531 

E(Cu2+/+) (mV) c 477(1) 471(1) 460(2) 445(4) 430(10) 420(10) 

 

a Equilibrium constant for the following reaction: 

CuT1
2+ + Ru2+  CuT1

+ + Ru3+  𝐾𝑒𝑞 =  
[𝐶𝑢+][𝑅𝑢3+]

[𝐶𝑢2+][𝑅𝑢2+]
 

b Estimated uncertainties in the last digit appear in parentheses. Error estimates provided by 

least-squares analyses of the data. [See the SM for details.] 
c Formal potential vs. NHE. 
d Reference 10. 
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Figure 2.3. Plots of E/T vs 1/T (left) and E vs T (right) provide values of ΔH° = -48 kJ 

mol−1 and ΔS° = -175 J mol−1 K−1 for the reaction of Tth-lac CuT1
2+ with [Ru(NH3)4(bpy)]2+. 

The standard reduction enthalpy (ΔH°rc(Cu2+/+) = −81 kJ mol−1, NHE reference) and entropy 

(ΔS°rc(Cu2+/+) = −120 J mol−1K−1) changes associated with CuT1
2+ reduction are estimated by 

adding ΔH°rc(Ru3+/2+) and ΔS°rc(Ru3+/2+) [10] to ΔH° and ΔS°, respectively. 

 

The Tth-lac ΔH°rc is comparable to that of other blue copper proteins [19, 20], but the standard 

reduction entropy change is much more negative (Figure 2.3). It is notable that the Polyporous 

versicolor laccase ΔH°rc (−73.1 kJ mol−1) is close to that of Tth-lac (−81 kJ mol-1), but ΔS°rc 

for P. versicolor laccase (+7.1 J mol−1 K−1) is much more positive, accounting for its high 

potential (780 mV vs. NHE) [19]. As a consequence of an unfavorable ΔS°rc (-120 J mol-1K-1), 

the potential of Tth-lac is much lower (Table 2.1). 

 

The reduction entropy change for small molecules depends primarily on the ionic charge, 

owing to the smaller entropy associated with solvent polarization for more highly charged ions. 

For redox centers buried inside proteins, the contribution to ΔS°rc from solvent polarization 

will likely be attenuated, and the response of the polypeptide matrix to a change in oxidation 

state will become more important. We anticipate, then, that the large negative ΔS°rc value for 
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Tth-lac may be attributable to a combination of reduced solvent exposure and a more 

hydrophobic environment around the CuT1 active site [19]. Hydrophobicity [22] and polarity 

[23] indices for all residues within 8 Å of CuT1 were summed to characterize redox-center 

environments in nine different proteins, including Tth-lac. Of interest is that ΔS°rc is not 

strongly correlated with either parameter (see Tables S2.2.-S2.3., Figures S2.4.-S2.6.).  

  

Calculations of solvent accessible surface areas (SASA) of CuT1 ligands provided quantitative 

estimates of redox-site exposure to aqueous solvent (Table S2.4.). The relative solvent 

accessibility (RSA) for each residue is defined as the SASA normalized by a maximum allowed 

SASA [24]. Values of SASA and RSA for CuT1 sites in nine proteins with known 

thermodynamic properties are given in Table 2.2. Notably, there is an apparent correlation 

between reduction entropy (ΔS°rc) and SASA: copper proteins with smaller SASA tend to 

exhibit more negative entropy changes upon reduction (Figure 2.4.). From our analysis, we 

have confirmed that reduced solvent accessibility around the metal site is one of the critical 

parameters affecting ΔS°rc. Note that in Tth-lac, only 0.04% of His393 and 1.4% of C445 are 

exposed to the aqueous medium. It is clear that the solvent accessibility of CuT1 ligands in Tth-

lac is lower than in other blue copper proteins: ligand exposures are approximately 20% in 

proteins with more positive reduction entropies, a group including CBP, SBP, UmCy, and StCy. 

RSA values exhibit a similar correlation with ΔS°rc as shown in the SM (Figure S2.7). Similar 

trends are found in a prior investigation of cytochrome redox thermodynamics which showed 

the correlation between ΔS°rc and solvent exposure of the heme [25]. 

 

 

 



25 

Table 2.2. Reduction entropy change (ΔS°rc, J mol−1 K−1) and measures of solvent accessibility 

of copper ligands in blue copper proteins (values of ΔS°rc except for Tth-lac are from [19, 20] 

measured in the 5-45 °C temperature range). 

 Src (J mol−1 K−1) SASA (Å2) RSA (%) 

CPB 31 39.8 18 

SBP 7 41.8 19 

UmCy −17 47.8 22 

StCy −21 52.4 24 

Trv-lac −29 18.6 9 

PlCy −36 28.9 13 

AfAz −58 2.4 1.1 

PaAz −68 1.9 0.9 

Tth-lac −120 2.1 1.4 

 

 

 

Figure 2.4. Plot of the CuT1
2+/+ reduction entropy (ΔS°rc, J mol−1 K−1) versus the solvent 

accessible surface area (Å²) of active-site binding residues in blue copper proteins. 
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The limited exposure of Tth-lac CuT1 active site minimizes the solvent contribution to the 

reduction entropy change. The large negative Src observed for Tth-lac CuT1 then likely arises 

from a substantial reduction in conformational entropy of the protein upon reduction. 

Acrylamide quenching of Trp fluorescence in oxidized Tth-lac (10-35 C), an indicator of 

protein flexibility, is much greater than expected for a thermophilic enzyme [2, 9, 26]. We 

suggest that the structural flexibility of oxidized Tth-lac balances the molecular motions 

required for enzyme turnover while maintaining sufficiently low reorganization to support 

intra-protein electron transfer, thereby accounting for the observed oxidase activity at 25 C 

[26]. 

 

If the CuT1 active site ([Cu(NHis)2(SCys)(SMet)]
2+/+) were free in aqueous solution, Src would 

be positive owing to the more positive charge on the oxidized complex [10]. When the 

polypeptide of Tth-lac folds around this active site, the value of Src drops precipitously. A 

thermodynamic cycle indicates that the folding entropy change for the reduced protein is 

substantially more negative than that of the oxidized enzyme. The two primary contributions 

to the folding entropy change are a polypeptide conformational component (Sconf) and a 

hydration entropy change (Shyd) arising from encapsulation of hydrophobic residues in the 

interior of the protein upon folding to minimize contact with aqueous media [27]. The 

conformational entropy change upon folding is negative, whereas hydration makes a positive 

contribution to the total folding entropy change. We anticipate little difference in Shyd between 

the oxidized and reduced enzymes, suggesting that Sconf must be substantially more 

unfavorable for folding around the reduced enzyme. The more negative value of Sconf is 

consistent with less flexibility in the reduced enzyme. 
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It is notable that Tth-lac exhibits characteristics of both hot and cold adaptations: thermal 

stability (Figure S2.1.) and flexibility [26]. The robust global structure of Tth-lac disfavors 

protein unfolding and copper loss at elevated temperatures [26]. We infer from the small value 

of SASA that CuT1 in Tth-lac is more buried inside the protein scaffold, and the burial of CuT1 

in Tth-lac provides protection and stability at the cost of a highly unfavorable reduction entropy. 

The large negative ΔS°rc value for CuT1 Tth-lac likely will lead to highly negative S values 

in substrate oxidation reactions, owing to entropically disfavored formation of cationic 

substrates [10]. At low reaction driving forces, the activation entropy for electron-transfer (ET) 

reactions is [28]: 

 

† S
S

2
R d

 
 = −   

 

where R is the gas constant,  is the exponential distance-decay factor for electron transfer 

(1.1 Å−1, [29]), and d is the electron donor-acceptor separation. Negative values of S will 

have the same impact on ET rates as increasing the donor-acceptor distance by about 0.05 Å 

per entropy unit (J mol−1 K−1), corresponding to a factor of 10 decrease in rate constant for each 

−40 J mol−1 K−1 of reaction entropy change. Conversely, oxidation of Tth-lac CuT1
+, as occurs 

during enzyme turnover, is likely to be accompanied by a favorable entropy change, which 

could compensate for the weak coupling associated with the long distance between CuT1
+ and 

the trinuclear Cu active site. 
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2.5. Concluding Remarks 

 

Thermophilic metalloenzymes tend to have active sites buried in a matrix of hydrophobic 

residues. We suggest that a tightly packed polypeptide scaffold limits solvent access to the 

active site, allowing the stability of Tth-lac at elevated temperatures. The reduced exposure of 

CuT1 in Tth-lac, which minimizes the solvent contribution to the reduction entropy change, 

accounts for the large negative contribution by the polypeptide. The unfavorable entropy 

change upon reduction may be a consequence of unexpected flexibility in the oxidized protein. 

Regardless of its structural origins, the large CuT1 redox entropy will have a substantial impact 

on electron-transfer kinetics and, hence, on enzyme activity. Our studies indicate that the 

remarkable capacity of thermophilic enzymes to remain active at extremely high temperatures 

is attributable to a subtle balance of many competing dynamic and thermodynamic factors. 

Understanding that interplay will be helpful in broadening the scope and utility of enzymes in 

industrial applications. 
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S2.1. Protein Preparation 

 

Tth-lac was expressed in E. coli and purified following the published method [1] with slight 

modifications. To sum up, the plasmid was prepared by cloning the Tth-lac encoding region 

into the pET22b expression vector at NdeI digestion site. Tth-lac with a N-terminal 6 x His-tag 

was transformed into BL21(DE3) cells on a LB/Amp agar plate. Single colonies grown on the 

plate were inoculated in 5mL TB/Amp at 37˚C for 5-7 hours (starter culture), and the frozen 

stock was made for later uses. The cells were pelleted and re-inoculated in 4-6L of TB/Amp/0.4% 

glycerol at 37˚C overnight. Protein expression was achieved after induction with IPTG at 37˚C 

for 7-8 hours. After the induction, cells were harvested by centrifugation and were kept at     

-20˚C until use.  

 

The frozen cell pellets were thawed and the cells were resuspended in 20mM Tris buffer at pH 

8 with the addition of protease inhibitors (Complete Mini Protease Inhibitor Cocktail Tablets, 

Pefabloc SC (AEBSF), and Benzamidine hydrochloride hydrate). The enzyme was released by 

sonicating the cells for an hour, and the sample was centrifuged to remove all the cell debris. 

The supernatant solution after centrifugation was further purified by heating up to around 65˚C 

for 20 min. At this temperature, majority of other E. coli enzymes crash out due to thermal 

denaturation, and only Tth-lac remains in the solution. By centrifugation, all the precipitates 

were removed. Since the recombinant Tth-laccase has the N-terminal 6 x His-tag right after the 

start codon, the nickel immobilized metal affinity column was used to bind His-tag labeled 

protein to the column. All the other remnant of undesired E. Coli proteins can be eluted first 

with wash and load buffers, and the laccase gets eluted as the elution buffer is run down the 

column with increasing concentration of imidazole. A cation exchange column (HiPrep SP HP 
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16/10 column) was used to further remove impurities by selectively collecting the fraction of 

interest by monitoring the absorption at 280nm and 605nm after the sample was metalated.  

 

S2.2. Circular Dichroism Spectra 

 

Circular dichroism spectra of the protein samples under N2 were recorded on an Aviv model 

430 circular dichroism spectrometer from 260 to 190 nm to monitor conformational changes 

and/or thermal denaturation over the temperature range 20 to 65˚C. Measurements were made 

on 3 µM protein in 20 mM sodium phosphate buffer, pH 6. 

 

 

 

 

Figure S2.1. Circular dichroism spectra of Tth-lac from 20 to 65˚C. 
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S2.3. Synthesis of [Ru(NH3)4(bpy)](PF6)2 

 

[Ru(NH3)4(bpy)](PF6)2 was synthesized and characterized following the protocol (with slight 

modifications) [2]. Zinc amalgam was made with mercury chloride (HgCl2) and mossy zinc, 

and [Ru(NH3)5Cl]Cl2 was purchased from STREM chemicals INC. All the procedures were 

performed under argon using a Schlenk-line techniques.  

 

 

S2.4. Estimation of the CuT1 Potential from Redox Equilibria 

 

60 M wild-type Tth-laccase sample and the four reducing equivalents (240 uM) 

[Ru(NH3)4(bpy)](PF6)2 were deoxygenated by gentle vacuum/argon pump and backfill cycles, 

and were mixed together in a sealed quartz cuvette. The UV-Vis spectra of the mixed sample 

were monitored from 20 to 65˚C in the absorption regions at 366, 525, and 605 nm (the λmax 

values of Ru(NH3)4(bpy)](PF6)2 and the T1 copper, respectively). Equilibrium concentrations 

of CuT1
2+ and Ru2+ in the mixed sample were determined by least squares decomposition of the 

mixed spectrum into a linear combination of the two component spectra. The spectra of 

[Ru(NH3)4(bpy)](PF6)2 and the wild-type protein also were monitored separately at different 

temperatures to make sure that the temperature dependent changes in the spectra of mixed 

samples result from redox processes involving the two components.  
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[Ru(NH3)4(bpy)](PF6)2   CuT1 in wild-type protein 

  

 λmax = 366nm (ε = 6380M-1cm-1) [2] 

 λmax = 525nm (ε = 3950M-1cm-1) [2] 

 λmax = 605nm (ε = 5020-1cm-1) 

 

Figure S2.2. UV-Vis spectra (20 to 65˚C) for deoxygenated samples of [Ru(NH3)4(bpy)](PF6)2 

and of wild type Tth-lac. 

 

Table S2.1. Temperature dependent equilibrium concentrations of Cu1+, Cu2+, Ru2+, and Ru3+ 

 

 

 

A525 = ԐRu525[Ru2+] + ԐCu525[Cu2+] 

A605 = ԐRu605[Ru2+] + ԐCu605[Cu2+] 
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Cu2+ + Ru2+ ⇌ Cu+ + Ru3+ 

𝐾𝑒𝑞 =  
[𝐶𝑢+][𝑅𝑢3+]

[𝐶𝑢2+][𝑅𝑢2+]
    

𝐾𝑒𝑞 = 𝑒𝑥𝑝 {
−∆𝐺°

𝑅𝑇
}      

∆𝐺° =  −𝑅𝑇𝑙𝑛𝐾       

∆𝐸° =  −
∆𝐺°

𝐹
=  𝐸°(𝐶𝑢2+/+) − 𝐸°(𝑅𝑢3+/2+)  

 

 

Figure S2.3.  Equilibrium concentrations of [Ru2+], [Ru3+], [Cu2+], and [Cu+] were obtained 

from global fitting of the redox titration data. 

 

Spectra of the wild-type protein and [Ru(NH3)4(bpy)](PF6)2 obtained every 10 ˚C from 20 to 

60 ˚C (also at 65 ˚C) monitor concentration changes at the different temperatures. As molar 

absorptivities at investigated wavelengths depend on temperature for both CuT1 and 

[Ru(NH3)4(bpy)](PF6)2, global fitting was done for mixed-sample spectra to estimate 

equilibrium concentrations of Ru2+ and Cu2+.  
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Error Propagation 

 

 

- All concentrations are in µM. 

- [Cu2+]0 = initial concentration of Tth-lac 

- [Cu2+] = final concentration of Tth-lac 

- [Ru2+]0 = initial concentration of [Ru(NH3)4(bpy)](PF6)2] 

- [Ru2+] = final concentration of [Ru(NH3)4(bpy)](PF6)2] 

- lb uncertainty: lower bound uncertainty (95% confidence interval) 

- ub uncertainty: upper bound uncertainty (95% confidence interval) 
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S2.5. Thermodynamic Parameters 

 

The reaction entropy can be described by the temperature dependence of the Gibbs function. 

(
𝛿∆𝐺°

𝛿𝑇
)

𝑝
=  −∆𝑆° 

The reduction entropy can be described as a function of the temperature variance of E°. 

𝑛𝐹 (
𝛿𝐸°

𝛿𝑇
)

𝑝

=  ∆𝑆° 

 

ΔS°: determined from the slope of the plot of ΔE° versus temperature  

ΔH°: determined from the slope of the plot of ΔE°/T versus the inverse of temperature (1/T) 

ΔS°rc(Cu2+/+) = ΔS° + ΔS°rc(Ru3+/2+)  
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S2.6. Hydrophobicity, Polarity and Solvent Accessible Surface Area (SASA) 

 

Table S2.2. Hydrophobicity of residues within 8 Å from CuT1. 

(Hydrophobicity index for each amino acid residue was adopted from reference [3].) 

 

 

Table S2.3. Polarity of residues within 8Å from CuT1. 

(Polarity index for each amino acid residue was adopted from reference [4].)  
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Figure S2.4. ΔS°rc vs. Hydrophobicity of residues within 8Å from CuT1. 

 

 

Figure S2.5. E° of CuT1 vs. Hydrophobicity of residues within 8 Å from CuT1. 
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Figure S2.6. ΔS°rc vs Polarity of residues within 8Å from CuT1 

 

 

Figure S2.7. The correlation between reduction entropy (ΔS°rc, J mol-1K-1) and relative solvent 

accessible surface area (RSA) 
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Table S2.4. The solvent accessible surface area (Å²) and the relative solvent accessible surface 

area (RSA) of copper ligands in blue copper proteins (calculated with FreeSASA software [5]). 

(The maximum SASA values for blue copper ligands are: His = 216.0 Å², Cys = 148 Å², Met 

= 203.0 Å² [6].) 
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Chapter 3 
 

 

 

Electron Transfer through Laccase from Thermus thermophilus HB27 
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3.1. Introduction 

Since the enzyme turnover cycles happen within ns to μs time scale, it is quite difficult to study 

what intermediates are being formed in the catalytic cycles. It would be great if we could 

monitor those intermediate species during turnover conditions, but even with stopped flow 

experiments and the freeze quench EPR, the fastest time scale we can monitor is still in the 

milli second range. Especially in the presence of closely spaced redox active Trp and Tyr along 

the chain, it is likely that the intermediates are not going to last that long. So, we needed a 

technique with which we could monitor species in the microsecond time scale, and transient 

absorption spectroscopy was one possibility. 

 

Therefore, one of the main pillars of my thesis work centered on examining the hole/electron 

transfer pathways through laccase using laser flash/quench techniques. The oxidative 

quenching of Ru-photosensitizer-labeled Tth-lac enzymes was of primary interest to inject 

holes into the system and to see if the active site coppers can be oxidized by hole hopping 

through Trp and Tyr residues.  

 

3.2. Laser Sample Preparation 

Laccase of interest in this study is from a thermophilic strain of bacterium Thermus 

thermophilus HB27 (Tth-lac), and thus is stable and active even above 90˚C [1], which opens 

a possibility for its application to fuel cell development. In order to study the electron transfer 

pathways through Tth-lac, two surface-exposed labeling sites (S117 and S102) near the tri-

nuclear Cu cluster (TNC) and a labeling site (D390) near the CuT1 was chosen (Figure 3.1). 

Ser117 is thought to be the best labeling site, since it is positioned next to the surface-exposed 

tryptophan which is at the end of a Trp/Tyr chain stretching all the way to the TNC. 
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Protein Expression 

 Site-directed Mutagenesis 

The mutations to the initial plasmid were made following the conventional protocol known 

as site-directed mutagenesis [2]. The primers (forward and reverse) which contain a codon 

specific to a point mutation of interest were designed to achieve mutations on the desired 

position. The polymerase chain reaction (PCR) was run for around 3.5 hours with the 

conditions optimized based on the Tm of each primer. After digesting the template with 

Dpn I at 37˚C for 1 hour, the desired plasmid was transformed into NovaBlue cells. Cells 

were grown in the SOC medium, and were plated on the LB/Amp plates to allow 

inoculation of single colonies. The mutant plasmids were prepared by following the 

standard mini-prep procedures, and were sequenced to check the success of mutagenesis. 

 

 BL21(DES) cell 

The desired plasmid was transformed to BL21(DE3) cells which are more adequate for 

protein expression. From the plate, a single colony was inoculated at 37˚C for 4-6 hours to 

make a starter culture, and the frozen stock was made for later uses. The cells from the 

starter culture were inoculated in 1L TB/Amp at 37˚C, and were grown for 16 hrs. Protein 

expression can be achieved by IPTG induction typically at 35˚C for 7 hours. After 

induction, cells were harvested by centrifugation.  

 

Protein Purification 

• Sonication 

The frozen cell pellets were thawed in an ice basket, and were resuspended in 20 mM Tris 

buffer at pH 8 with the addition of protease inhibitors (Complete mini protease inhibitor 
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cocktail tablets). Enzymes were released from the cells with sonication for 30 min (3 cycles 

of 10 min with pulsing), and the cell crude extract was centrifuged to remove all the broken 

cell debris. 

 

• Heating Up 

Since Tth-lac is a thermophilic enzyme, the supernatant solution from the above sonication 

step after centrifugation was further heated up to around 65 ˚C for 20 min. At this 

temperature, most other E. coli proteins crash out, and only the Tth-lac presumably remains 

in the solution. By centrifugation, all the precipitates were removed. 

 

• Nickel Column 

Since the expressed Tth-lac has a 6-His tag, the nickel immobilized metal affinity column 

was used for purification. All the other E. coli proteins remaining even after the heating 

step can be eluted first with wash and load buffers, and Tth-lac gets eluted as the elution 

buffer with 250 mM imidazole is run down the column.  

- Wash buffer: 20mM Tris, pH 8 

- Load buffer: 25mM Tris + 20mM Imidazole 

- Elution buffer: 25mM Tris + 250mM Imidazole 

 

Fractions were collected right after the buffer was switched to the elution buffer, and the 

activity of each fraction was checked with ABTS with the addition of excess copper to 

check for the presence of Tth-lac.  

 



50 

Surface labeling with a [Ru(bpy)2(Phen)IA]2+ complex 

Tth-Laccase 

(from Thermus thermophilus HB27, PDB: 2yae [3]) 

 

 

Figure 3.1. Surface labeling sites on Tth-lac (red): Ser 117, Ser 102 and Asp 390. 

 

Synthesis of the Ru-photosensitizer  

([Ru(2,2'-bipyridine)2(5-iodoacetamido-1,10-phenanthroline)](PF6)2) 

 

[Ru(bpy)2(IAphen)](PF6)2 was synthesized following well-established protocols [4]. To briefly 

explain, Ru(bpy)2Cl2 was prepared by refluxing RuCl3∙3H2O, bipyridine and LiCl in 

dimethylformamide (DMF) [5]. To make 5-Iodoacetamido-1,10-phenanthroline (phen-IA), 
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dicyclohexylurea was made by adding N,N’-dicyclohexylcarbodiimide (DCC) to iodoacetic 

acid in ethyl acetate. After the removal of urea from it, 5-amino-1,10-phenanthroline is 

obtained, dissolved in CH3CN and mixed with iodoacetic anhydride which was also pre-

dissolved in CH3CN. Ru(bpy)2Cl2 and phen-IA are refluxed in methanol (MeOH), and the 

product ([Ru(bpy)2(IAphen)](PF6)2, m.w. 1066.52 gmol-1) is precipitated by ammonium 

hexafluorophosphate (NH4PF6) [4]. The resulting precipitates were analyzed with NMR and 

LC-MS to confirm the product formation. 

 

 

Figure 3.2. Potential of Ru-species (E° vs. NHE in water) generated by the photosensitizer 

[6]. 

 

Ru-labeling mechanism 

A covalent thioether bond is formed upon cysteine-specific modification with an 

iodoacetamido linker of the Ru complex [4]. Therefore, to ensure site-specific labeling, there 

should be only one single surface exposed cysteine. Since wild-type Tth-lac does not have any 

Cys residue on the surface, a surface residue at a specific location of interest was mutated to 

Cys for Ru-labeling. Three different Ru-labeled enzymes were produced with S117C, S102C 

and D390C mutants following the procedure described below.  
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Figure 3.3. Ru-photosensitizer labeling to a surface Cys [6]. 

 

1. A protein sample (~20 μM) with a surface exposed cysteine is incubated with 10 mM 

TCEP (tris-(2-carboxyethyl) phosphine) for 5+ hours, and TCEP is washed out with 

multiple rounds of spin filtration with 20mM Tris buffer, pH 8. (TCEP works as a reducing 

agent for cleaving disulfide bonds which get easily formed by surface-exposed cysteines. 

This step is to ensure that free cysteine is available for thioether bond formation. 

2. Approximately 4 to 5-fold excess of [Ru(bpy)2(IAphen)](PF6)2 is dissolved in 45 mL 

20mM Tris buffer, pH 8 (the final concentration to be around 80 - 100 μM). At this low 

concentration, it can easily be dissolved directly in the buffer with vigorous shaking for a 

few minutes without adding DMSO. The pKa of cysteine is close to 8 [7], so the labeling 

efficiency increases at this high pH owing to deprotonation of the cysteine thiol group. 

3. A small volume (~ 1 mL) of concentrated enzyme is added to the 

[Ru(bpy)2(IAphen)](PF6)2 solution made in step 2 to make the final concentration of 

enzyme around 10-20 μM. 

4. The reaction proceeds for 5+ hours in the dark at 4 °C. (The reaction solution was usually 

just left in the cold room overnight with gentle shaking at 100 rpm). 
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5. Excess Ru complex is washed out by multiple rounds of spin filtration with a fresh Tris 

buffer, pH 8 (or with other suitable buffers of interest). 

6. After labeling, the protein absorption band at 280 nm will be obscured due to the 

absorption of the Ru-complex in the UV region. Therefore, the labeling efficiency can be 

confirmed by mass spec analysis in which the peak for the unlabeled enzyme should 

disappear (mass increase by 650 Da for the labeling enzyme). 

 

 

Figure 3.4. MALDI-TOF mass spectrum of the purified protein 

 

Metalation with CuSO4 

After labeling, metalation is achieved with copper sulfate, which makes the protein turn green 

eventually. Around 20 μM protein samples were put into a 12 mL or a 30 mL dialysis cassette 

or a 100 mL dialysis membrane tubing, and were metalated in 20 mM Tris buffer at pH 8 

containing up to around 1 mM CuSO4.  
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Figure 3.5. Tth-lac after labeling (orange) and metalation (green). 

 

Further Purification with FPLC 

After the photosensitizer labeling and metalation, a cation exchange column (HiPrep SP HP 

16/10 column) was used to further remove impurities by selectively collecting the fractions of 

interest by monitoring the absorption at 280nm, 450nm (λmax of the Ru-photosensitizer), and 

605 nm (λmax of CuT1). Moreover, although close to 100% efficiencies of labeling and 

metalation are expected to be achieved, this further purification step with ion exchange 

chromatography ensures that any possible unlabeled or unmetalated proteins are separated to 

achieve better homogeneity of the sample. For the cation exchange chromatography, the pH of 

the buffer should be at least one pH unit lower than the pI of the protein. Since the isoelectric 

point (pI) of Tth-lac is around 9.5 [8], Tris buffer at pH 7.8 was used as a equilibration/wash 

buffer. The same buffer with 500 mM NaCl was used as an elution buffer, and a slow gradient 

of 0-100% was applied for 2 hours. With the increment of NaCl concentration, the loaded 

protein sample gets separated into different components within the column depending on their 

charges. Since the cation exchange resin of the column has sulfonate (SO3
-) functional groups, 

more positively charged species bind to the column resin more strongly and get eluted more 

slowly. Tth-lac is cationic at pH 7.8, and is eluted when the concentration of 500 mM NaCl 

flowing through the column reaches around 40%. 
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Protein quantification 

The concentration of apo-protein is determined by examining the absorption peak at 280 nm. 

The type 1 copper (CuT1) exhibits an absorption feature with an extinction coefficient (Ԑ) of 

around 5000 M-1cm-1 at 605 nm due to the S(Cys)π → Cu(II) charge transfer (CT) [9]. 

[Ru(bpy)2(Phen)IA](PF6)2 complex has a strong absorption feature at around 450 nm with an 

extinction coefficient of 16600 M-1cm-1 [4]. However, the photosensitizer 

([Ru(bpy)2(Phen)IA](PF6)2) absorbs in the 200-300 nm region as well, and its absorption peak 

at λmax (=450 nm) broadly tails off down to the 600-700nm region. Since the photosensitizer 

absorption affects both the CuT1 band at 605 nm and the protein band at 280 nm, the absorption 

band at 450 nm was primarily used to estimate the concentration of the labeled/metalated 

protein. 

 

Copper quantification 

Tth-lac has to be fully metalated with four coppers for its activity. However, the CuT2 site in 

Tth-lac does not bind copper as tightly as other copper sites due to its weaker coordination 

environment which consists of only two histidines. Therefore, after preparing the samples with 

different metalation conditions, the copper content of each enzyme sample was quantified using 

four different analytical techniques: XRF, ICP-MS, EPR, and BCA assay. The concentration of 

CuSO4 used for metalating 20 μM protein sample was varied from 200 μM, 300 μM, 500 μM, 

1 mM to 10 mM, and non-coordinating buffers such as 25 mM MES buffer at pH 6 and 25 mM 

sodium phosphate buffer at pH 6 were also tried as well as 20 mM tris buffer at pH 8 and 25 

mM sodium acetate buffer at pH 6 and pH 4.5.  
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 X-ray fluorescence (XRF) 

The advantage of using the XRF is that it is a non-destructive method of quantifying copper. 

Since the protein samples are labeled with the Ru-photosensitizer on a surface labeling site, the 

ratio of Ru: Cu for one enzyme unit should be 4:1. Therefore, coppers can be quantified by 

examining the ratio between Ru and Cu measured by the XRF as an internal standard. However, 

unfortunately, parameters such as the X-ray penetration depth within a sample container, 

location of the sample holder on the detector, concentrations of protein samples all seem to 

affect the XRF measurements, causing differences in values every time the measurements are 

made even for the same sample. Besides, the detection limit for ruthenium is much higher than 

that for copper, so ruthenium could be detected only when the enzyme concentration was higher 

than 150 μM, which was problematic, since the amount of protein required to fill the sample 

container (10 mL) was too much to prepare. However, for copper quantification, standards of 

known copper concentrations ranging from around 10 μM to 100 μM could be used to make a 

calibration curve from which the copper concentration in the actual protein sample of a known 

concentration can be estimated. 

 

 ICP-MS 

The ICP-MS is a destructive method of quantifying the copper content within the enzyme, since 

the enzyme has to be fully digested to spit out all the metals into the solution that is being 

analyzed. The enzyme samples were digested in 10 % nitric acid with heating up to 70 °C, and 

the resulting solutions were diluted to bring down the nitric acid concentration to around 2 % 

which is the concentration tolerable by the instrument. 
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 EPR 

The CuT1 has a small parallel hyperfine coupling constant (A∥ = 40-90 x 10-4 cm-1) due to the 

S(Cys) to Cu(II) charge transfer. The CuT2, on the other hand, exhibits a parallel hyperfine 

coupling constant (A∥ = 140-200 x 10-4 cm-1). Binuclear CuT3 coppers are EPR silent due to 

antiferromagnetic coupling resulting from a hydroxo bridge linking the two coppers [9]. To 

ensure that the CuT2 (with the lowest binding constant) is present in the metalated sample, EPR 

measurements were made on the samples prepared at 150 μM protein concentration with 20% 

glycerol as a cryo-protectant. 

 

Laser samples 

For the regular single wavelength or multi-wavelength transient absorption spectroscopy, the 

laser sample contained 60 µM Ru-labeled protein and 10 mM Ru(NH3)6Cl3 as a reversible 

oxidative quencher in a sealed quartz cuvette. The sample was deoxygenated by multiple pump-

argon backfill cycles on a Schlenk line. 60 µM protein concentration was the highest possible 

without obscuring the signal due to its photosensitizer absorbance of around 1 at 450 nm (λmax). 

The concentration of Ru(NH3)6Cl3 was carefully adjusted, since RuIII(NH3)6
3+ 

disproportionates to RuIV(NH3)6
4+ shortening the lifetime of RuIII(bpy)2(phen)3+ due to its 

reduction back to RuII(bpy)2(phen)2+ by RuIV(NH3)6
4+ species. This back-reaction significantly 

reduces the size of the signal compared to the *RuII(bpy)2(phen)2+ excited state bleach, since 

the time for the holes from RuIII(bpy)2(phen)3+ to move on and oxidize type 1 copper is 

shortened (Figure 3.6).  
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Figure 3.6. Limitations with [Ru(NH3)6]Cl3 as a reversible quencher. 

 

To enhance the signal as much as possible despite the Ru(NH3)6Cl3 disproportionation issue, 

the quantum yield calculation was done so that the concentrations of the protein and the 

quencher can be optimized. The lower the concentration of quencher and the higher the 

concentration of protein is, the better it is for the signal size. From the quantum yield calculation 

(Figure 3.7), it was estimated that the ΦRu3+ for 10 mM Ru(NH3)6Cl6 is still approximately 70% 

which is sufficient to promote enough quenching for the flash-quench laser experiments. The 

condition with 60 µM protein and 10 mM quencher was determined to be optimal for achieving 

the big enough signal size and high enough degree of quenching. 
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Quantum yield calculation 

 

 

Figure 3.7. Quantum yield calculation for the Ru(NH4)6Cl3 quencher 

 

When the oxidative quencher is used to inject holes into the system, the enzyme sample needs 

to be reduced prior to the laser experiment to monitor the hole transfer pathway. The reduction 

of coppers in Tth-lac was achieved by anaerobically injecting four-reducing equivalents of 

deoxygenated Ru2+(NH3)6Cl2 (E°´(Ru3+/Ru2+) = +0.1 V [10]). As coppers get reduced, the 

absorbance of CuT1 at 605 nm decreases to a steady value close to zero. 
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Figure 3.8. Spectra showing the reduction of coppers in Ru-labeled Tth-lac: oxdized (green), 

reduced (orange) and [oxidized – reduced] (blue) 

 

Other reduction methods 

Commonly used oxidative quenchers such as Ru3+(NH3)6Cl3 (E°´(Ru3+/Ru3+) = +0.1 V [10]), 

methyl viologen (MV2+, E°´(MV2+/MV+•) = – 446 mV [11]) and benzyl viologen (BV2+, 

E°´(BV2+/BV+•) = – 359 mV [11]) can be reduced with zinc power or zinc amalgam to 

Ru2+(NH3)6Cl2, methyl viologen radicals (MV+•) and benzyl viologen radicals (BV+•), 

respectively. A single amino acid cysteine (E0′(cysteine/cystine) = – 220 mV [12]) can also be 

used to reduce coppers in Tth-lac. Ferrocyanide (Fe(CN)6
3−(aq)/Fe(CN)6

4−(aq) = + 361 mV 

[13]) has a suitable potential as a reductant for Tth-lac, but it was incompatible with the protein, 

causing protein precipitation. Titanium (III) citrate also made the enzyme crash out even with 

high ionic strength provided by a high concentration of sodium citrate in the buffer. 
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3.3. Flash-Quench Laser Experiment 

After labeling and metalation, the enzyme is ready for the laser experiment. With a laser pulse, 

the photosensitizer excited state (*Ru2+) can be generated. Then, the photosensitizer excited 

state is quenched by either a reductive or an oxidative quencher, which can produce either the 

more reducing Ru(bpy)2(phen)1+ or the more oxidizing Ru(bpy)2(phen)3+, respectively. With 

these newly generated redox species, the electron/hole transfer processes can be investigated. 

The oxidative quenching pathway was of a primary focus to inject holes into the system and 

monitor hole hopping pathways which facilitate long range copper oxidation. 

 

 

Figure 3.9. Flash-quench cycle of the Ru-photosensitizer [6]. 

 

Reductive quenching pathway 

In the reductive quenching pathway, the photosensitizer excited state (*Ru2+) is driven to Ru1+. 

As these Ru1+ species get oxidized back to Ru2+ species, electrons get injected into the system. 

Although para-methoxydimethylaniline (E°´(MeODMA+/0) = + 0.66 V [14]) can be used as a 

reductive quencher, the kinetics measurements made with MeODMA were not reliable as it can 

also act as a substrate for Tth-lac.  

 



62 

Oxidative quenching pathway 

Upon oxidative quenching, the photosensitizer redox state (Ru2+) is driven to Ru3+. As these 

Ru3+ species get reduced back to Ru2+ species, holes get injected into the system. The oxidative 

quenching pathway was the primary focus of the studies which will be explained in the later 

parts of this chapter.  

 

Quencher studies 

Water soluble and photostable small molecule quenchers with adequate reduction potentials 

are suitable for laser flash-quench studies. Redox reversibility is also desired to achieve a high 

signal-to-noise ratio by averaging kinetics profiles from hundreds and thousands of laser shots. 

Moreover, the absorbance of quenchers must not interfere significantly in the wavelengths 

being monitored. Ru(NH3)6Cl3 satisfies these requirements as a reversible oxidative quencher, 

but the kinetics obtained with it are contaminated by many back reactions in the Tth-lac system. 

Although irreversible quenchers such as [Co(NH3)5Cl]Cl2 could be a solution to prevent back 

reactions, the most prominent downside with using irreversible quenchers is that the number 

of laser shots that can be applied to the sample is limited. To resolve this problem, it was 

necessary to look for some alternatives for a better reversible quencher. 

 

Table 3.1. Biomolecular quenching rate constant [15]. 
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To find a small molecule that can qualify for a suitable quencher, the quenching rate constants 

for different compounds were examined (Table 3.1). These values can be obtained either from 

the literature or from quick luminescence lifetime measurements of Ru(bpy)3
2+ in the presence 

and absence of the compound of interest. When doing so, another aspect that needs to be 

considered is the cage escape yield. Cage escape efficiency implies how efficiently the primary 

quenching products escape back electron transfer within the solvent cage and diffuse freely 

into the bulk solution [15]. This can be estimated by examining the transient absorption kinetics 

at 440 nm which shows the lifetime of Ru2+* and Ru3+ species generated by laser flash quench. 

In the case of 1, 4-benzoquinone shown in Figure 3.10, the luminescence decays away in about 

40 ns whereas the signal for Ru3+ species (from the transient absorption kinetics at 440 nm) 

disappear in about 200 ns (Figure 3.10). Therefore, we have a much wider additional window 

which allows the hole to escape back electron transfer within the solvent cage and to move on 

to oxidize other species. 

 

 

Figure 3.10. Cage escape yield of 1, 4-benzoquinone. 

Cage Escape 

Quenching 
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As mentioned earlier, another pre-requisite is the photostability of the quenchers. Although the 

quenching efficiency of 1,4-benzoquinone is suitable for our study, it is not photochemically 

stable (Figure 3.11). The degree of photo-decay could be alleviated with the addition of NaCl 

and the usage of a longer excitation wavelength (Figure 3.12). However, these aspects certainly 

cause limitations to the experimental conditions.  

 

 

Figure 3.11. Photochemical instability of 1,4-benzoquinone. 

 

 

Figure 3.12. Photo-stability of benzoquinone with 455 nm (left) and 365 nm (right) excitation. 
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Moreover, suitable quenchers should be highly water soluble in regular buffer conditions, and 

should not absorb a lot on its own in the wavelength region of interest, since the quencher 

absorbance may obscure all the signals. Methyl viologen and benzyl viologen were also tried 

as quenchers, but the radicals of both have a broad absorption band at around 500 nm [16], 

which could interfere with the absorption features of Ru3+, Trp radicals and Cu2+ arising at 

different time scales during the laser flash-quench experiments.  

 

 

Figure 3.13. Quencher mechanism of Methyl Viologen (MV) and Benzyl Viologen (BV). 

 

The Laser Setup 

- Excitation light provided by a tunable optical parametric oscillator (OPO)  

- Pumped by the 3rd harmonic from a Q-switched ND:YAG laser (8 ns pulse width) 

- Adjustment of operating frequency (10 Hz or 1 Hz) 

- Probe lamp: 75 W Arc lamp, continuous or pulsed 

- Excite and probe collinearly 

- Rejection of undesired fluorescence using various optical filters 

- Probe light selection by a double monochromator, detection by a photomultiplier tube 

(PMT), and the signal amplification with an amplifier 
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3.4. Transient Absorption Kinetics 

Ru-C117 Enzyme 

 

Figure 3.14. Transient absorption kinetics of Ru-C117 at 440 nm. 

 

The laser-triggered flash-quench electron/hole transfer process can be probed by transient 

absorption spectroscopy. 440 nm is the Ru2+-bpy ground state absorption region, and a bleach 

is observed for the formation of Ru-bpy excited state. The bleach decays in about 100 ns to 

give another species which are presumably Ru3+-bpy. The Ru3+-bpy signal seems to disappear 

by 10 μs (Figure 3.14). 
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Figure 3.15. Transient absorption kinetics of Ru-C117 at 510 nm. 

 

 

Figure 3.16. Transient absorption kinetics of Ru-C117 at 555 nm. 
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Since there is a tryptophan residue (W118) right next to the S117C labeling site, in search for 

Trp radical intermediate species, 510nm and 555nm regions were also examined, since Trp 

neural radicals and Trp radical cations absorb in these visible regions, respectively. In 555 nm 

data (Figure 3.16), a small positive transient absorbance at early time may be due to the Ru-

bpy excited state slightly absorbing at 555 nm. This positive signal decays to a bleach after 

around 100 ns, which may correspond to the bleach of a small amount of Ru2+-bpy at 440nm 

due to the formation of Ru3+-bpy. A positive signal appears at around 10 μs due to another 

species and decays back to zero in about 1 ms. The transient absorption feature obtained at 510 

nm looks very similar to that observed at 555nm. However, a bleach is observed at early time 

possibly implying that the Ru-bpy excited state gives a bleach at this wavelength (Figure 3.15). 

 

 

Figure 3.17. Transient absorption kinetics of Ru-C117 at 605 nm. 
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When the 605 nm region is probed, a bleach is observed at early times, since the signals are 

compromised by Ru-bpy luminescence (Figure 3.17). 

 

Since it is very likely that the new species being generated around 10 μs at 510 nm and 555 nm 

are Trp radicals (Figure 3.15 and Figure 3.16), an additional mutation to the S117C mutant was 

made to change the nearest redox-active tryptophan(W) at site 118 to phenylalanine(F) and to 

compare transient absorption signals. 

 

Ru-C117-W118F Enzyme 

 

 
 

Figure 3.18. The first Trp mutation (W118F) right next to the labeling site (S117C). 
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510nm 

 

555nm 

 

 

Figure 3.19. Transient absorption data collected at 510 nm and 555 nm (Trp radical absorption 

regions) for both S117C mutant and S117C-W118F mutant. 

 

The positive signal at 1 μs does not appear with the W118F mutant, and the signal flattens out 

to 0 (Figure 3.19). Therefore, it is clear that the positive signals at these wavelengths are due 

to the formation of Trp radicals, when the holes are injected into the system from the S117C 

surface labeling site. 
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Figure 3.20. Multi-wavelength transient absorption data  

for Ru-C117 mutant and Ru-C117-W118F mutant (overlaid). 

 

In order to fully monitor the intermediates being generated, the whole spectrum was examined 

using a diode array system. Here again, it is confirmed that the positive signal at around 500-

550 nm region disappears for the W118F mutant, which indicates that we are indeed generating 

Trp radicals. For the Ru-C117-W118F mutant, a larger bleach is observed around the Ru-bpy 

ground state absorption region (450 nm), which might be due to the fact that the Ru3+ lives 

longer for the Trp mutant, since it does not have a tryptophan next to the labeling site to oxidize.  

 

Ru-C117-W96F Enzyme 

However, since positive signals are observed at both 510nm and 555nm absorption regions, 

there is a possibility that the next tryptophan along the chain might also be getting oxidized. In 

order to verify what the actual case is, the second Trp mutant (Ru-C117-W96F) was prepared. 
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Figure 3.21. The second Trp mutation (W96F) near the tri-nuclear copper cluster. 

 

510nm: Tryptophan neutral radical (W•) 

 

555nm: Tryptophan radical cation (W•+) 

 

Figure 3.22. The transient absorption signals at 510 nm and 555 nm for the first Trp (W118F) 

and the second Trp mutant (W96F) overlaid. 

 

Surprisingly, the positive transient absorption features at 500-550 nm disappear for the second 

Trp mutant (Ru-C117-W96F) indicating that the oxidation of only the first tryptophan (W118) 

is responsible for producing those features even though both Trp neutral radicals and Trp 

radical cations seem to be getting generated.  
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Investigating the pH effects  

Although the absorption features for both tryptophan neutral radicals and tryptophan radical 

cations are observed, only W118 seems to be getting oxidized giving these intermediate signals. 

The presence of positive absorption features at both 500 nm and 550 nm could be attributed to 

the pKa of tryptophan cation, since Trp radicals have a pka of around 4.5 in water [17]. Except 

the first few sets of experiments, most of the laser experiments were carried out in sodium 

acetate buffer at pH 4.5 to mimic the kinetics of electron transfer during enzyme catalysis, since 

the activity of the enzyme toward ABTS is the highest at pH 4.5 [1]. The protonation state of 

Trp radical (TrpH•+ to Trp•) is dependent on the pH, and when the sample pH is sufficiently 

close to the pKa of Trp radical, a mixture of both protonated (W•+, λmax = 510 nm and ε = 2300 

M-1cm-1) and deprotonated (W•, λmax = 560 nm and ε = 3000 M-1cm-1) species can be observed 

[17]. 

 

To test whether this concurrent appearance of signals corresponding to both Trp neutral radicals 

and Trp radical cations is due to the pH effect, samples were prepared in buffers of varying pH 

and were tested on the diode array system to see if there are any changes in absorption spectra. 
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Figure 3.23. Multi-wavelength transient absorption spectroscopy using the diode array 

system for Ru-C117 mutant in NaOAc (pH 4), NaOAc (pH 6) and Tris (pH 7). 

 

It was expected that more of neutral radical species would be observed as the pH increases. 

However, deviating from the conventional norm, the peak intensity in the radical cation 

absorption region increased with the increase in pH. However, as can be seen most prominently 

in acetate buffer at pH 4, the bleach at around 600 nm region disappears with increasing time 

delay after each round of 1000 laser shots. It is obvious that the oxidized enzyme is being 

reduced during multiple flash-quench cycles (with the excitation wavelength of 355 nm) and 

the sample speciation is constantly changing for the entire duration of the laser experiment. 

Although the photo-reduction of the enzyme seems to be slower at a higher pH (since the bleach 

at 600 nm lasts longer at pH 6 and 7), this photochemical reduction phenomenon seems to 

occur consistently in all laser samples (initially oxidized), even though the source these 

electrons is still not entirely clear.  
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Photo-reduction of laser samples 

 

 

  

 

Figure 3.24. Oxidized green laccase getting photochemically reduced (turning yellow). 

 

It is indeed interesting that even the oxidized green laccase samples turn yellow after a few 

photo-excitation cycles just like the chemically reduced enzyme samples. The bleach due to 

the CuT1 at around 600nm region goes away after a few thousands of laser shots (Figure 3.24). 

When a small volume of aerated buffer was added to these photo-reduced samples, the enzyme 

color turned back to green confirming that it was the photo-reduction which turned the enzyme 

color to yellow. It is likely that the reduction of CuT1 occurs due to the Ru2+ species being 

generated over the courses of flash quench cycles (Figure 3.6).  
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Ru-C102 Enzyme 

 

 

 

Figure 3.25. S102C labeling site and its distance from a nearby Trp residues (W96) and the 

TNC. 

 

S102 residue is only around 12 Å away from the CuT2 and only around 11 Å away from a 

neighboring Trp (W96), so a single step electron hopping is possible to both Trp 96 and the 

trinuclear Cu cluster. To be able to better observe the kinetics of potential hole transfer to these 

sites without the contamination from back reactions, an irreversible cobalt quencher 

(Co(NH3)5Cl)Cl2 was used to examine the kinetics with a HeNe laser (Figure 3.29).   
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Activity check after the laser experiments 

 

Figure 3.26. Activity check with pMeODMA and ABTS after the laser experiment. 

 

After the laser experiments, the activity of the laser samples was checked especially for the 

photo-reduced samples to see if other factors such as de-metalation or enzyme degradation also 

contributed to the color change to yellow. The conventional activity check method using ABTS 

could not be used, because [Ru(NH3)6]Cl3 forms precipitates with ABTS due to their charge 

interactions. When another substrate (MeODMA) was tested, the laser samples still actively 

oxidized MeODMA even after thousands of laser shots when the samples were prepared in 

NaOAC at pH 4.5. However, the enzyme became inactive when the samples prepared in Tris, 

pH 8 were left overnight, since [Ru(NH3)6]Cl3 decomposes faster at a higher pH leading to 

protein degradation. The activity check with MeODMA confirmed that the photo-reduced laser 

samples remained active after the laser experiment.  
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Sodium azide inhibition effects 

To better understand why the photo-reduction of the enzyme occurs, an azide inhibition 

experiment was tried. Sodium azide (NaN3), as a metal chelator, inhibits the activity of laccases 

by binding to the tri-nuclear copper cluster [18]. If the photo-reduction of enzyme involves the 

electron transfer through the tri-nuclear copper cluster, the color change to yellow should not 

occur when NaN3 is also added to the samples containing Ru-labeled Tth-lac and 

[Ru(NH3)6]Cl3. 

 

 

Figure 3.27. Tth-lac laser samples with NaN3 upon irradiation with 455 nm blue LED lamps. 

 

To test the azide inhibition effects, 1 mM and 5 mM NaN3 were added to separate samples both 

containing 20 μM Ru-labeled Tth-lac and 20 mM Ru(NH3)6Cl3. Although the samples 

containing NaN3 were expected to stay green, they all turned yellow upon irradiation with the 

blue 455 nm LED lamps for an hour. From the UV-Vis spectrum, it was confirmed that the 

CuT1 band around 605 nm was down to near 0. Nitrogen bubbles formed from NaN3 photolysis 

were observed in the cuvette containing 5mM NaN3. Based on these observations, it is possible 

that the reduction of the enzyme is rather directly through the CuT1. 
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3.5.  Intramolecular Long-range Copper Oxidation 

Since the signals from the transient absorption spectroscopy using the arc lamp are 

compromised by the Ru(bpy)2(phen)2+ luminescence, a HeNe laser probe (632.8nm) was used 

to limit the collection of excess fluorescence and monitor the oxidation of CuT1. Hole transfer 

from Ru3+ species oxidizes CuT1, and the rise of Cu2+ signal is monitored by the transient 

absorption spectroscopy using a HeNe laser probe (632.8nm). Moreover, with the use of 

irreversible quenchers, back-reactions can be prevented and the electron/hole transfer processes 

occurring at longer time scales (ms to s) can be monitored. [Co(NH3)5Cl]Cl2 was used as an 

irreversible quencher to monitor the long-range electron transfer through Tth-lac. 

 

 

 

Figure 3.28. Electron/hole transfer kinetics of intramolecular long-range copper oxidation. 
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Figure 3.28 shows the overview of the electron/hole transfer kinetics data obtained so far. It 

can be seen that a long-range electron/hole transfer over a distance of 30 Å is possible in Tth-

lac by hole hopping through Trp residues. When we inject holes into the system from a surface 

exposed Ru-C117 right next to the surface exposed W118, a signal for Trp radical and Trp 

radical cation appears in 50 μs time scale, and the hole goes on to oxidize CuT1. This clearly 

indicates that these chains of closely spaced Trp and Tyr can participate in electron/hole transfer, 

which could potentially have a role in enzyme catalysis itself as well. 

 

 

3.6. Appendices 

 

Kinetics Fitting Data: Testing the Concentration Dependence 

 

 Ru-C117 Enzyme 

25uM – double path 
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55uM – double path 

 

 

30uM – Single Path 

 

 

The amplitude of the signal is proportional to the protein concentration. (The amplitude of the 

initial start point at the y-intercept may be attributed to the generation of Ru3+ and Trp radicals. 

As the concentration doubles, the signal amplitude for both the y-intercept and the asymptote 

doubles.) There seems no significant concentration dependance on rate constants for the rise of 

copper signal. 
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 Ru-C117-W96F Enzyme 

25uM – double path 

 

 

 

 No copper oxidation observed with S117C-W118F and S102C Mutants 

 

S117C-W118F S102C 

  

Figure 3.29. Transient absorption kinetics for S117C-W118F and S102C with HeNe. 
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Temperature effects on the single-step electron transfer through Tth-laccase 

The effects of temperature on the intramolecular electron transfer through Tth-laccase was 

investigated by examining the kinetics of the photo-triggered single step oxidation of CuT1 from 

20˚C to 65˚C with a mutant labeled with a Ru-photosensitizer on the surface near CuT1 over 

the distance of around 17 Å. 

 

Figure 3.30. Ru-photosensitizer labeling site (red) near CuT1 of Tth-lac. 

 

In order to observe the photo-triggered oxidation of CuT1 by injecting holes into the system in 

the laser flash-quench cycles, coppers in the Ru-C390 mutant were reduced using four-reducing 

equivalents of a deoxygenated cysteine solution (E0′(cysteine/cystine) = -220 mV [12]). Since 

the protein is labeled with a photosensitizer, the photosensitizer excited state (*Ru2+) can be 

generated from RuII(bpy)2(phen)2+ with a laser pulse, and the *Ru2+ species are quenched by 
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the oxidative quencher Ru(NH3)6Cl3 to produce RuIII(bpy)2(phen)3+. A single step hole transfer 

from these Ru3+ species oxidizes CuT1, and the rise of Cu2+ signal is monitored by the transient 

absorption spectroscopy using a HeNe laser probe (632.8 nm). 

 

 

 

Figure 3.31. Luminescence kinetics of [Ru(bpy)3Cl]Cl2 

 

The luminescence kinetics indicate the decay of *Ru2+ to produce Ru3+ species by the 

quenching reaction with Ru(NH3)6Cl3. 
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Figure 3.32. Luminescence kinetics of Ru-C390 at 650 nm. 

 

 

Figure 3.33. Luminescence kinetics of Ru-C390 at 650 nm. 
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The kinetics fitting 

 

20C: 

f(x) = a*exp(-b*x) 

a = 0.02253 

b = 3.5e+06 

40C: 

f(x) = a*exp(-b*x) 

a = 0.02146 

b = 5e+06 

60C: 

f(x) = a*exp(-b*x) 

a = 0.01707 

b = 8e+06 

65C: 

f(x) = a*exp(-b*x) 

a = 0.01685 

        b = 9e+06 
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Figure 3.34. Transient absorption kinetics of [Ru(bpy)3Cl]Cl2 at 450 nm. 

 

450 nm is the Ru2+-photosensitizer ground state absorption region, and a bleach is observed for 

the formation of Ru2+ excited state (*Ru2+). The bleach decays in about 100 ns to yield the 

species which are presumably Ru3+-photosensitizer. The Ru3+ signals disappear as the hole gets 

transferred to oxidize CuT1 at different rates at different temperature conditions. From the 

control experiment, it was concluded that temperatures above 80 °C are not suitable for 

studying the enzyme kinetics, since the thermal decay of the Ru3+ species happens faster than 

the single-step oxidation of CuT1 kinetics. 

 



88 

 

Figure 3.35. Transient absorption kinetics of Ru-C390 at 450 nm. 

 

20C: 

f(x) = a*exp(-3.5e6*x)+c*exp(-d*x) 

 

a = -0.09493 

c = -0.03671 

d = 2.544e+05 

40C: 

f(x) = a*exp(-5e6*x)+c*exp(-d*x) 

 

a = -0.1092 

c = -0.03544 

d = 3.199e+05 

60C: 
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f(x) = a*exp(-8e6*x)+c*exp(-d*x) 

 

a = -0.1094 

c = -0.03084 

d = 3.6e+05 

65C: 

f(x) = a*exp(-9e6*x)+c*exp(-d*x) 

 

a = -0.1229 

c = -0.02818 

d = 4.73e+05 

 

 

Figure 3.36. Transient absorption kinetics of Ru-C390 at 633 nm with HeNe. 
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Figure 3.37. Kinetics profile of the Ru-C390 mutant obtained using a HeNe laser. 

 

The absorption at 633nm at early times is due to the generation of *Ru2+ species. The *Ru2+ 

absorption decays as *Ru2+ converts to Ru3+ in the oxidative quenching reaction with 

Ru(NH3)6Cl3. A long-lasting positive signal is generated as Ru3+ oxidizes Cu1+ to Cu2+. This 

rise of positive signal occurs at different rates at different temperatures. The curve fitting was 

done by fixing the first two exponents to the luminescence decay and the 450 nm transient 

absorption kinetics. The rest of the exponents reflects the recombination kinetics. Although the 

temperature effects were attempted to be investigated, the kinetics of copper oxidation obtained 

with Ru(NH3)6Cl3 as a quencher seemed to have been contaminated by the back reaction 

kinetics. Further analysis might be required with irreversible quenchers to prevent the back 

reactions.  
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20 °C: 

f(x) = a*exp(-3.5e6*x)+c*exp(-2.5e5*x)+e*exp(-f*x)+g*exp(-h*x) 

a = 0.01497 

c = -0.009613 

e = -0.0035 

f = 2.638e+05 

g = 0.0002797 

h = 669 

k = 0.004787 

p = 0.6307 

40 °C: 

f(x) = a*exp(-5e6*x)+c*exp(-3.2e5*x)+e*exp(-f*x)+g*exp(-h*x) 

a = 0.01611 

c = -0.008906 

e = -0.004615 

f = 3.776e+05 

g = 0.000367 

h = 2722 

k = 0.005931 

p = 1.64 

60 °C: 

f(x) = a*exp(-8e6*x)+c*exp(-3.6e5*x)+e*exp(-f*x)+g*exp(-h*x) 

a = 0.01334 

c = -0.006047 

e = -0.004079 

f = 6.652e+05 

g = 0.0006545 

h = 1413 

k = 0.006136 

p = 3.899 
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Chapter 4 

 

Trp/Tyr pair protects Thermus thermophilus HB27 laccase 

from oxidative damage 
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4.1. Abstract 

Dioxygen-utilizing enzymes run the risk of damage by reactive oxygen species (ROS) 

produced in uncoupled catalytic turnover. Tryptophan (Trp) and tyrosine (Tyr) residues might 

act as internal antioxidants to protect oxidases and oxygenases from ROS damage. Thermus 

thermophilus HB27 laccase (Tth-lac) is a multicopper oxidase (MCO) containing a blue (type 

1) copper and a trinuclear copper (TNC) cluster that couple substrate oxidation with dioxygen 

reduction to water. There is a Trp/Tyr pair near (3.5 Å) the TNC; and there also is a chain of 

closely spaced Trp and Tyr residues from the TNC to the surface. LCMS followed by peptide 

analysis of deactivated samples identified the TNC-proximal Trp/Tyr pair as an oxidation site, 

and curvature in the activity assay profile as well as a reduction in total turnover number for 

the double mutant (W133F/Y134F) indicate that W133 and Y134 move oxidizing holes away 

from the TNC to sites that are less critical for enzyme function. 

 

4.2. Introduction 

Thermus thermophilus HB27 laccase (Tth-lac), an enzyme from a bacterium that grows 

optimally at 65˚C, is active even at elevated temperatures (1). Tth-lac belongs to a family of 

three-domain multicopper oxidases (MCOs) that have four copper sites involved in electron 

transfer and enzyme catalysis (2,3). According to the consensus mechanism (4-6), substrate 

oxidation occurs at a type 1 copper (CuT1), followed by long-range electron transfer (13 Å) to 

a trinuclear copper (TNC) cluster, where dioxygen is reduced to water (Figure 4.1).  
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Figure 4.1. Proposed steps in the catalytic cycle (red arrows). NI decay to RO is off-path; 

upon 4-electron reduction, RO re-enters the cycle (black dashed arrows) (5).  

 

When an easily oxidized substrate is present in high concentration, the “ping-pong bi bi” 

mechanism (4,7) outlined in Figure 4.1 leads to efficient 4-electron oxidase chemistry. With 

low concentrations of refractory substrates under normal dioxygen tension, however, the 

reaction of partially reduced enzyme with O2 could lead to deleterious side reactions. Our 

interest centers on what happens when the enzyme fails to oxidize substrate during turnover, 

as it is likely that reactive oxygen species (ROS) such as O2
− or H2O2 would be produced. In 

related work on cytochrome P450, we suggested that Trp/Tyr chains move oxidizing holes from 

the heme to distant sites near cellular reductants, thereby preventing ROS formation and 
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subsequent enzyme inactivation (8-11). An analogous protective antioxidant role has been 

implicated for Tyr residues in the two-domain laccase from Streptomyces coelicolor (12) and 

the six-domain blood protein ceruloplasmin (13). 

 

We draw attention to a Trp/Tyr pair near (3.5 Å (3)) the Tth-lac TNC (W133-Y134) as well as 

a chain of closely spaced Trp/Tyr residues (W96, Y120, W118) that could couple the copper 

cluster to potential reductants at the enzyme surface (Figure 4.2). These Trp/Tyr chains are 

found in most MCOs; indeed, among 25 three-domain laccase structures available from the 

Protein Data Bank, all except two have Trp or Trp/Tyr pairs adjacent to the TNC (8). In addition 

to protecting MCOs from oxidative degradation, these chains could play a role in enzyme 

catalysis (14). 

 

Figure 4.2. A Trp/Tyr chain (W96/Y120/W118) and a Trp/Tyr pair (W133-Y134) near the 

trinuclear copper cluster (PDB: 2XU9) (3). 
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4.3. Results and Discussion 

Enzyme activity. We examined the impact on enzyme activity of Trp and Tyr mutations near 

the TNC in Tth-lac. In the aerobic oxidation of ABTS2− catalyzed by WT and four single-site 

enzyme mutants (W133F, Y134F, W118F, W96F), the absorbance of ABTS•− increases linearly 

during the first 5 min of reaction (Figure 4.3A). Of interest is that at early stages, the reaction 

catalyzed by the W133F/Y134F double mutant exhibits slight curvature (Figure 4.3B), 

indicative of a modified reaction pathway or gradual enzyme deactivation. As the activities of 

WT and all mutants exhibit saturation with increasing ABTS2− concentration, we fit the 

observed kinetics to a Michaelis-Menten model (Figure 4.4). At high ABTS2− concentrations, 

the initial rates for WT and the four single-site mutants plateau in the range 5-7  10−8 M s−1 

([Tth-lac] = 10−7 M), whereas for the W133F/Y134F double mutant, the limiting rate (2  10−8 

M s−1) is less than half that of the WT enzyme (Table 4.1). Virtually identical circular dichroism 

spectra of WT and W133F/Y134F confirm that the native enzyme structure is intact in the 

double mutant (Figure S4.10). When either of the residues in the pair is still present, the activity 

is close to that of WT, demonstrating that changes at either W133 or Y134 site alone do not 

impair enzyme function.  
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Figure 4.3. Activity assay profiles at early times (initial 5 min) for WT and mutant enzymes 

(500 nM [E], 3 mM ABTS2− in MES buffer, pH 5.3, [O2] = 240 μM). 

 

 

Figure 4.4. Enzyme activity assays with ABTS2− (mM, ± 0.2 %) at pH 4.5 for WT and 

Trp/Tyr mutants. Solid lines are least squares fits to a Michaelis-Menten model. (Measurements 

made in MES buffer at pH 5.3 are shown in Table S4.7 and Figure S4.9.) 
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Table 4.1. Catalytic efficiencies: WT and the Trp/Tyr mutants in NaOAc, pH 4.5. 

 

Tth-lac catalysis involves two substrates, ABTS2− and O2 (Figure 4.1). Employing the 

W133F/Y134F double mutant, we examined ABTS2− oxidation kinetics at reduced O2 

concentration. Importantly, in the saturation regime of substrate concentration ([ABTS2−] = 75 

mM; [Tth-lac] = 500 nM), the reaction rate is unaffected by a fourfold decrease in O2 

concentration (Table 4.2), demonstrating that the reduction in kcat is not due to less efficient 

reaction with co-substrate O2. It is unlikely that ABTS2− oxidation by the CuT1 center would be 

impacted by the W133F/Y134F mutation, but we cannot rule out potential effects on CuT1-to-

TNC electron transfer kinetics. Notably, neither W133F nor Y134F loses WT activity, 

confirming that only one of the two redox-active residues is required for enzyme catalysis. 

 

Table 4.2. Activity assay: double mutant under O2 limiting conditions. 

[ABTS] = 75 mM [O2] Initial Rate, (M/s) 

W133F/Y134F    

(500 nM) 

240 μM              

(100% aerated buffer) 
1.22  10-7 

          ± 2  10−9  

60 μM                  

(25% aerated buffer) 
1.22  10-7 

          ± 2  10−9 

 

 

 

 

  WT W96F W118F W133F Y134F W133F/Y134F 

kcat (s−1) 
8.0  10−1 

± 8  10−2 
8.3  10−1 

± 7  10−2 
5.5  10−1 

± 1  10−2 
6.1  10−1 

± 5  10−2 
6.5  10−1 

± 6  10−2 
2.4  10−1 

± 2  10−2 

Km (M) 
7.9  10−3 

± 2  10−4 
7.5  10−3 

± 2  10−4 
5.7  10−3 

± 3  10−4 
5.0  10−3 

± 2  10−4 
5.7  10−3 

± 2  10−4 
7.2  10−3 

± 5  10−4 
kcat/Km 

M−1s−1 
9.8  101 

± 3  100 
1.1  102 

± 1  101 
9.6  101 

± 4  100 
1.2  102 

± 1  100 
1.1  101 

± 1  100 
3.3  101 

± 6  100 
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Enzyme Deactivation. If the Tyr/Trp pair near the TNC is providing protection from enzyme 

damage by ROS, we anticipated that replacing these residues with Phe would lead to attenuated 

enzyme survival. We ran the Tth-lac catalyzed ABTS2− oxidation with WT, W133F, and 

W133F/Y134F enzymes until they were no longer active. Total turnovers for WT and W133F 

were virtually identical (WT, 8.5  103; W133F, 8.0  103 turnovers), but the double mutant 

survived for just 4.7  103 turnovers. 

 

LCMS data for inactivated WT and W133F enzymes revealed mass increases of 32 D for WT 

and 16 D for W133F, consistent with enzyme oxidation (Figure S4.2). To identify the oxidation 

sites, we examined the peptides from tryptic digestion of inactivated enzymes. MS/MS spectra 

revealed oxidation on a peptide containing residues 127 through 141 (ELAGTFWYHPHLHGR) 

(Figure S4.3). The mass of the fragment from the WT enzyme is 32 D greater than predicted 

on the basis of the enzyme sequence; and a mass increase of 16 D was found for the same 

fragment from the inactivated W133F mutant (Figure S4.4 and Figure S4.5). The results 

confirm that oxidation occurs at W133 in the WT enzyme; and Y134 is the second site of 

oxidation, which in turn indicates that these residues may aid enzyme survival by directing 

highly oxidizing holes away from the TNC when the enzyme fails to oxidize substrate. The 

oxidation of Y134 during W133F enzyme turnover clearly demonstrates that the oxidizing hole 

can hop from the TNC to Y134 even in the absence of W133; and, as Y134 is less than 10 Å 

from the enzyme surface, rapid electron transfer from solution reductants would prolong 

enzyme activity. 
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4.4. Concluding Remarks  

Multicopper oxidases have the remarkable capacity to catalyze the aerobic oxidation of diverse 

high-potential substrates. However, as a tradeoff, the utilization of dioxygen can make the 

enzyme highly susceptible to oxidative damage. Since we found that total turnover numbers 

for the W133F/Y134F mutant are dramatically lower than those for WT, we conclude that the 

Trp/Tyr pair prolongs enzyme survival by scavenging highly oxidizing holes generated in the 

TNC. When the enzyme fails to oxidize substrates during catalysis, these strongly oxidizing 

holes are rapidly reduced by one of the residues in the pair.  

 

Tryptophan and tyrosine, along with methionine and selenocysteine, are believed to be the last 

four amino acids introduced into the genetic code (15), possibly in response to the atmospheric 

transformation produced by oxygenic photosynthesis (16). Whatever the cause, there is 

mounting evidence that Trp, Tyr, and Met residues perform important protective (antioxidant) 

roles in a wide variety of metalloenzymes (8-13, 17-23).  

 

4.5. Materials and Methods 

Enzyme Preparation. Thermus thermophilus HB27 laccase was expressed in E. coli and 

purified following a previously reported procedure with slight modifications (24). Each mutant 

was obtained using standard site-directed mutagenesis protocols with modifications in the PCR 

parameters depending on the Km of the primers designed for each mutant (25).  

 

Activity Assays. Prior to activity assay measurements, a 30 μM enzyme stock solution with 1 

mM CuSO4 in 20 mM Tris at pH 8 was prepared. The substrate for activity assays was the 

dianion of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2−), a common 
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oxidase substrate (1,26). For a 3 mL assay sample containing 100 nM enzyme with varying 

ABTS2−concentrations, 10 μL of 30 μM enzyme stock solution were added to 1990 μL buffer 

(sodium acetate (NaOAc), pH 4.5 or MES, pH 5.3) immediately before measurements. 

Reaction was initiated by adding 1 mL ABTS2− stock solution of the appropriate concentration. 

Absorption increases accompanying formation of ABTS•− were monitored every 3 s for 2 - 3 

min (and also in separate experiments at 5 min) at 24 °C using a UV-vis spectrometer equipped 

with a thermostatted sample compartment. Initial rates (M/s) were determined from the slopes 

of absorbance vs. time plots (first 10 – 30 s) for ABTS•− (420 nm,  = 3.6   104 M−1cm−1; 550 

nm,  = 5.9   103 M−1cm−1) (27). 

 

Total Turnover Measurements. Enzyme (500 nM in 10 mL 20 mM Tris buffer at pH 8 with 

1 mM CuSO4) was placed in a dialysis cassette with a 10 kD molecular weight cutoff membrane. 

A sponge was attached to the top of the dialysis cassette to let it float in a beaker containing 

750 mL of 1 mM ABTS2− and 1 mM CuSO4 in 25 mM NaOAc buffer, pH 5.3. Each beaker 

with the cassette containing wildtype (WT) or mutant enzyme was stirred at room temperature 

(20 °C). ABTS2−/CuSO4 solutions were exchanged multiple rounds with fresh ABTS2− until 

there was no further absorption increase at 420 nm, indicating that enzyme catalysis had 

terminated. Reactions proceeded for one day on the first round and two days for each of the 

next two rounds of solution exchanges. The amount of ABTS•− produced in each round was 

estimated from the 420 nm absorbance of the dialysate. The stability of ABTS•− radical as well 

as the degree of ABTS2− autooxidation was tested with a partially oxidized ABTS sample 

solution having the 420 nm absorbance of ABTS•− radical at around 1. The degree of ABTS2− 

autooxidation was negligible and the ABTS•− radical was stable over time (Figure S4.7), giving 

the same absorbance measurement after 2 days (Table S4.1). Since one laccase catalytic cycle 
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requires four electrons, total turnovers were defined as one fourth of the ratio of total moles 

ABTS•− produced to the moles of enzyme in the cassette. Deactivated enzymes were isolated 

by syringe from the dialysis cassette, washed with MES buffer (pH 5.3) in multiple spin 

filtration cycles, and then used for LC-MS and peptide analysis.  

 

LC-MS and Peptide Analysis. Trypsin digestion of samples from total turnover experiments 

was performed according to standard protocols (28). HPLC was run for each sample to remove 

salts from the digested peptides, and purified peptide samples were loaded on a QE HF mass 

spectrometer for analysis. To account for oxidation artifacts that frequently arise in LC-MS 

analyses of proteolysis fragments (29, 30), fresh enzyme control samples were analyzed to 

distinguish adventitious oxidation from that occurring during enzyme turnover. LC-MS 

analyses of inactivated enzymes and peptide segments were performed in the Caltech Mass 

Spectrometry Facility and the Beckman Institute Proteome Exploration Laboratory.  
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Figure S4.1. Graphic showing the active site coppers (blue) with coordinating residues (grey) 

and Trp/ Tyr residues near the trinuclear copper cluster. 

 

Mass-spec before and after the Enzyme Deactivation 

 

Figure S4.2. LC-MS results before and after enzyme total turnovers. 
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Figure S4.3. Graphic showing a Trp/Tyr (W133/Y134) pair near the Tth-lac TNC. Peptide 

analysis indicates that the W133/Y134 pair is oxidized during WT catalytic turnover, and Y134 

is oxidized during W133F turnover. 
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Sequence: ELAGTFWYHPHLHGR, W7-Oxidation (15.99492 Da), Y8-Oxidation 

(15.99492 Da) 

Charge: +3 

  

Proteins (1): Tth-lac_WT 

 

 Figure S4.4. MS/MS Data for the Oxidized Peptide Fragments in Tth-lac WT. 
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Sequence: ELAGTFFYHPHLHGR, Y8-Oxidation (15.99492 Da) 

Charge: +3 

 

Proteins (2): Tth-lac_W133F 

 
 Figure S4.5. MS/MS Data for the Oxidized Peptide Fragments in Tth-lac W133F Mutant. 
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Figure S4.6. UV-vis spectra showing the relative amount of ABTS•− formed after enzyme 

total turnovers (solutions from all three rounds were diluted to give the 420 nm absorbances 

shown). 

 

 

Figure S4.7. Absorbance of ABTS•− at 420 nm monitored for 1 h at 20 °C. 
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Table S4.1. Absorbance of ABTS•− at 420 nm in partially oxidized [1 mM]initial ABTS 

solution containing 1 mM CuSO4 in 25 mM NaOAc buffer, pH 5.3 (same as the total turnover 

experiment). 

 Initial After 1 day After 2 days 

Absorbance  

(420 nm) 

1.03 1.04 1.05 

 

 

Activity assays were done with three different batches of proteins expressed at different times 

(and five different sets purified separately). A reasonable degree of reproducibility was attained 

by expressing and purifying all mutants as one set at the same time and by storing the enzyme 

in Tris, pH 8 with 1mM CuSO4. 

 

[Set 1] 

Measurements were made in 25 mM sodium acetate buffer, pH 4.5. 

 

Table S4.2. Michaelis-Menton kinetics in NaOAc buffer, pH 4.5. 

 

  
[E], nM     [ABTS], mM 

100 75 50 30 10 5 3 1 0.5 0.3 0.1 

Initial Rate,   

M s-1 

WT 8.5x10-8 6.5x10-8 5.6x10-8 3.7x10-8 3.0x10-8 2.6x10-8 1.9x10-8 1.6x10-8 4.4x10-9 1.6x10-9 

W96F 7.8x10-8 7.6x10-8 6.3x10-8 3.6x10-8 3.2x10-8 2.9x10-8 2.0x10-8 1.6x10-8 4.9x10-9 1.4x10-9 

W118F 5.3x10-8 5.3x10-8 4.4x10-8 2.8x10-8 2.3x10-8 2.2x10-8 1.6x10-8 1.3x10-8 3.6x10-9 1.2x10-9 

W133F 6.2x10-8 5.6x10-8 5.0x10-8 3.4x10-8 2.8x10-8 2.3x10-8 1.6x10-8 1.3x10-8 4.3x10-9 1.5x10-9 

Y134F 6.8x10-8 5.7x10-8 4.9x10-8 3.5x10-8 2.8x10-8 2.5x10-8 1.7x10-8 1.5x10-8 4.8x10-9 1.5x10-9 

W133F/Y134F 2.6x10-8 2.0x10-8 1.5x10-8 1.2x10-8 9.5x10-9 8.0x10-9 6.1x10-9 4.6x10-9 1.6x10-9 8.9x10-10 
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Figure S4.8. Enzyme activity assays (substrate ABTS at pH 4.5) for Trp/Tyr chain mutants.  

 

Reproducibility with Different Batches of Proteins  

Each batch was expressed at different times as a set with CuT1-depleted (T1D) and T1D-W118F 

mutants as exceptions (T1D and T1D-W118F mutants were expressed separately twice.) 

 

[Set 2, 3, 4] 

The measurements were made in 25 mM sodium acetate buffer, pH 4.5. 

Table S4.3. Activity assay with different batches of proteins to check reproducibility.  

  Batch 1 Batch 2 Batch 3 Batch 1 Batch 2 Batch 3 

  
[E], nM [ABTS], mM 

100 3 3 3 1 1 1 

Initial Rate,   

M s-1 

WT 3.0 x10-8 2.8 x10-8 3.1 x10-8 1.9 x10-8 1.8 x10-8 1.9 x10-8 

W96F 3.1 x10-8 2.9 x10-8 2.8 x10-8 2.0 x10-8 2.0 x10-8 1.9 x10-8 

W118F 2.2 x10-8 2.2 x10-8 2.2 x10-8 1.4 x10-8 1.3 x10-8 1.5 x10-8 

W133F 2.6 x10-8 2.5 x10-8 2.6 x10-8 1.7 x10-8 1.6 x10-8 1.7 x10-8 

Y134F 2.6 x10-8 2.3 x10-8 2.6 x10-8 1.6 x10-8 1.6 x10-8 1.7 x10-8 

W133F/ 

Y134F 
8.4 x10-9 7.6 x10-9 9.2 x10-9 5.8 x10-9 5.0 x10-9 7.5 x10-9 
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Protein Concentration Dependence  

The protein concentration was doubled for all mutants to test the protein concentration 

dependence of enzyme activity towards ABTS. The reaction kinetics appear to be the first order 

with respect to enzyme concentration.  

 

Table S4.4. Activity assay results with a doubled enzyme concentration.  

  Batch 1 

  
[E], nM [ABTS], mM 

200 3 1 

Initial Rate,      

M s-1 

WT 6.1 x10-8 4.1 x10-8 

W96F 6.1 x10-8 4.2 x10-8 

W118F 4.4 x10-8 3.3 x10-8 

W133F 4.7 x10-8 3.3 x10-8 

Y134F 5.3 x10-8 4.1 x10-8 

W133F/Y134F 1.7 x10-8 1.2 x10-8 
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Table S4.5. Uncertainties of catalytic efficiencies: WT and the Trp/Tyr mutants in NaOAc, 

pH 4.5 (the lower bound and the upper bound estimated for each parameter, and the larger of 

the two was assigned as an uncertainty). 

 
The upper bound and lower bound values were determined from upper limit and lower limit of 

each data point (shown as error bars in Figure 4) by least squares fits to the Michaelis-Menten 

model. 

 

[Set 5] 

Buffer Dependence 

 
Activity assays were also performed in MES non-coordinating buffer (only initial rates were 

monitored). Although the optimal pH for an ABTS assay is pH 4.5, pH 5.3 was used with MES 

buffer (the low end of the MES buffering range), and the enzyme concentration in the assay 

sample was increased to 500 nM. 

 

  WT W96F W118F W133F Y134F W133F/Y134F 

kcat (s−1) 
8.0  10−1 

± 0.8  10−1 

8.3  10−1 

± 0.7  10−1 
5.5  10−1 

± 0.1  10−1 
6.1  10−1 

± 0.5  10−1 
6.5  10−1 

± 0.6  10−1 
2.4  10−1 

± 0.2  10−1 

Km (M) 
7.9  10−3 

± 0.2  10−3 
7.5  10−3 

± 0.2  10−3 
5.7  10−3 

± 0.3  10−3 
5.0  10−3 

± 0.2  10−3  
5.7  10−3 

± 0.2  10−3 
7.2  10−3 

± 0.5  10−3 
kcat/Km 

M−1s−1 
9.8  101 

± 0.3  101 
1.1  102 

± 0.1  102 
9.6  101 

± 0.4  101 
1.2  102 

± 0.1  101 
1.1  101 

± 0.1  101  
3.3  101 

± 0.6  101 

Upper Bound  

 WT W96F W118F W133F Y134F W133F/Y134F 

kcat (s−1) 8.8  10−1 9.0  10−1 5.5  10−1 6.3  10−1 6.9  10−1 2.6  10−1 

Km (M) 8.1  10−3 7.7  10−3  5.4  10−3  4.9  10−3  5.8  10−3  6.7  10−3 

kcat/Km 

M−1s−1 
1.1  102 1.2  102 1.0  102 1.3  102 1.2  101  3.9  101 

Lower Bound 

 WT W96F W118F W133F Y134F W133F/Y134F 

kcat (s−1) 7.5  10−1 8.0  10−1 5.6  10−1 5.6  10−1 5.9  10−1 2.2  10−1 

Km (M) 7.8  10−3 7.5  10−3  6.0  10−3  4.8  10−3  5.5  10−3  7.6  10−3 

kcat/Km 

M−1s−1 
9.6  101 1.1  102 9.3  101 1.2  102 1.1  101  2.9  101 
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Table S4.6. Michaelis-Menton Kinetics in MES buffer, pH 5.3. 

  
[E], nM [ABTS], mM 

500 75 50 30 20 10 5 3 

Initial 

Rate,    

M s-1 

WT 5.5x10-7 3.6x10-7 1.8x10-7 1.6x10-7 1.4x10-7 1.2x10-7 1.0x10-7 

W118F 3.9x10-7 3.2x10-7 1.6x10-7 1.4x10-7 1.2x10-7 9.8x10-8 8.5x10-8 

W133F/ 

Y134F 
1.6x10-7 1.3x10-7 6.3x10-8 5.9x10-8 4.5x10-8 3.7x10-8 3.2x10-8 

W96F 5.1x10-7 4.1x10-7 1.6x10-7 1.5x10-7 1.2x10-7 9.6x10-8 8.2x10-8 

 

  
[E], nM [ABTS], mM 

500 2 1 0.75 0.5 0.25 0.1 0.05 

Initial 

Rate,   

M s-1 

WT 8.9x10-8 6.9x10-8 5.8x10-8 4.6x10-8 2.3x10-8 1.0x10-8 5.9x10-9 

W118F 7.5x10-8 5.9x10-8 5.1x10-8 4.1x10-8 2.1x10-8 9.6x10-9 5.5x10-9 

W133F/Y134F 2.9x10-8 2.4x10-8 2.4x10-8 2.0x10-8 9.3x10-9 4.9x10-9 3.2x10-9 

W96F 7.1x10-8 5.5x10-8 4.9x10-8 3.9x10-8 2.0x10-8 8.7x10-9 5.1x10-9 

 

 

Figure S4.9. Enzyme activity assays (substrate ABTS at pH 5.3) for WT and Trp/Tyr chain 

mutants. Curved lines are least squares fits to a Michaelis-Menten model. 
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As can be seen in Figure S9, the same trend in activity profile is observed as in Figure S4, 

which indicates that the observed decrease in the catalytic efficiency of the Try/Tyr double 

mutant is not due to the assay conditions.  

 

Table S4.7. Catalytic efficiencies: WT and the Trp/Tyr mutants in MES, pH 5.3.  

  WT W96F W118F W133F/Y134F 

kcat (s-1) 3.5  10−1 3.3  10−1 3.1  10−1 1.2  10−1 

Km (M) 1.9  10−3 2.6  10−3 2.0  10−3 1.8  10−3 

Catalytic 

Efficiency  

(kcat/Km), M-1s-1 

184 126 155 67 

 

 

 

Figure S4.10. Circular dichroism spectra of 5 μM Tth-lac WT and W133F-Y134F in sodium 

phosphate buffer, pH 6.5. 
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Investigating the Factors Affecting Laccase Catalysis 

- Active-site Potentials & Structural Motifs - 
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5.1. Potential Discrepancy 

According to the consensus mechanism for MCOs, the type 1 copper (CuT1) is believed to be 

the substrate oxidation site [1], [2] (see Chapter 2 and Chapter 4 for more details). The CuT1 

potential values of fungal laccases from Pycnoporus cinnabarinus, Neurospora crassa and 

Trametes versicolor are 750 mV [3], 780 mV [4] and 785 mV [5] respectively. The CuT1 

potentials of bacterial laccases tend to be lower than that of fungal laccases, which mostly range 

between 0.4 – 0.5 V [6]–[9] with 375 mV for a small laccase from Streptomyces sviceus [6], 

480 mV for a thermophilic laccase from Thermus thermophilus HB27 (Tth-lac) [7] and 455 

mV for CotA laccase from Bacillus Subtilis (CotA-lac) [8].  

 

Laccases are capable of aerobic oxidation of lignin as their primary function [10], but are 

capable of oxidizing diverse substrates with a wide potential range due to their natures of 

substrate non-specificity (Table 5.1). It is notable that the potential of CuT1 in bacterial laccases 

is more than 500 mV lower than that expected for one-electron oxidation of polyphenolic 

substrates (E(PhO/PhOH) = 1.1V) [11]. The CuT1 potentials of bacterial laccases even fall 

short of the potential of ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid, 680 

mV vs. NHE [12], [13]) which is the most commonly used substrate for MCOs (Table 5.1). 

 

Table 5.1. Various laccase substrates with a wide range of potentials. 

Substrates [Ru(NH3)5(py)]Cl2 [Ru(NH3)4(bpy)]Cl2 ABTS 
2,6 – 

DMP 
Guaiacol Promazine 

E° (mV),  

pH 5 
300 500 680 690 800 817 

λmax (nm) 407 525 420 470 520 514 

Ref [14] [14] 
[13], 

[15] 
[16] [17] [18] 



124 

 

Therefore, in order to resolve this potential discrepancy, it is of interest to explore the roles of 

redox-active amino acid residues and possible formation of high potential intermediates during 

enzyme catalysis.  

 

 

Figure 5.1. Oxidation of leucoberbelin blue (LBB) and manganese by Tth-lac, pH 4.5. 

 

Activity assays can be done with the substrates listed in Table 5.1 and many other, and Figure 

5.1 illustrates the substrate non-specific nature of Tth-lac. Leucoberbelin blue (LBB) is a 

commonly used dye for detecting high-valent manganese species with the absorption increase 

at 620 nm upon its oxidation by high-valent manganese formed in aqueous solution [19]. In 

Figure 5.1, there is a little bit of absorbance at 620 nm even for the sample with only LBB and 

10mM Mn2+, since the commercial LBB product (from Sigma) comes as slightly oxidized 

already. When wild-type Tth-lac is added to LBB, the absorbance at 620 nm increases, which 
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is indicative of LBB oxidation. When Mn2+ is added to the assay media, the higher degree of 

absorbance increase is observed for the same duration of time, as Tth-lac can oxidizes both Mn 

and LBB, and the oxidized Mn species can further oxidize more LBB. When MnCl2 is used 

instead of MnSO4, the absorbance does not increase as much (Figure 5.1), since chlorides act 

as laccase inhibitors [20]. If the reaction is left to proceed for a few days, brown precipitates 

are formed as manganese oxides get produced with further oxidation. 

 

The observed substrate variability cannot fully be explained by the consensus mechanism 

which suggests the CuT1 as a substrate oxidation site in MCOs. In Tth-lac in particular, the CuT1 

is deeply embedded in the protein scaffold (see Chapter 2 for more details), which hinders the 

binding of bulky substrates. Therefore, low solvent exposure as well as the insufficient CuT1 

potential (E(Cu2+/Cu+) = 480 V vs. NHE), pH 5.5 [7] acts unfavorably for Tth-lac to oxidize 

high potential substrates (Table 5.1).  

 

 

Figure 5.2. Anaerobic titration of three reducing equivalents of ABTS to the wild-type Tth-lac. 
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To test if the TNC itself has high enough potential to oxidize ABTS, redox titrations were done 

with the known stoichiometric ratios of enzyme to substrate. When two or three reducing 

equivalents of ABTS were added to a fully oxidized Tth-lac WT sample which had been 

deoxygenated, no ABTS oxidation was observed (Figure 5.2). When the sample was exposed 

to O2, the enzyme finally started turning over. From this observation, it is clear that the enzyme 

is capable of oxidizing high potential substrates like ABTS only in the presence of oxygen. It 

could also be a likely scenario that the potentials of active-site coppers and/or substrates are 

altered upon binding of substrates and dioxygen to the enzyme, but the consensus mechanism 

suggests that the oxygen does not bind at the TNC until all the four coppers are fully reduced. 

Therefore, these uncertainties associated with the potential gap certainly raise further questions 

to the consensus mechanism that has been proposed so far.  

 

Since all four active-site coppers in Tth-lac do not seem to possess high enough potentials to 

perform lignin oxidation, the roles of redox-active amino acids such as W and Y are considered. 

The underlying motivation behind was the study on the evolutionary convergence of lignin 

degrading enzymes, which suggested that the surface tryptophan in both lignin peroxidase and 

versatile peroxidase acts as a catalytic site facilitating long range electron transfer reactions 

[21], [22]. Although these are heme peroxidases and it may not be the case for multicopper 

oxidases, the involvement of surface Trp (W118) in Tth-lac in substrate oxidation was also 

speculated, as it is located at the end of the Trp/Tyr chain stretching from the TNC (Figure 4.2).  

 

To further investigate the role of surface Trp (W118), it was mutated to Phe which is redox 

inactive, and the mutant (W118F) activity was tested using high potential substrates (ABTS 

and Promazine Hydrochloride). We expected the Phe mutant to have a much lower activity, if 
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the surface Trp was involved in the binding and oxidation of high potential substrates. However, 

there was no significant difference between the activity of W118F and of WT toward ABTS 

which has around 200 mV higher potential than the Tth-lac CuT1. (see Chapter 4 for more 

details). Therefore, we needed a substrate which has even higher potential than ABTS to test 

this hypothesis. Promazine hydrochloride was a suitable candidate, as it is water soluble and 

has a potential of about 820 mV versus NHE [18] which is about 340 mV higher than the 

potential of the CuT1. Oxidation of Promazine can be monitored by the absorbance increase at 

520 nm (ε = 8900 M-1cm-1) [18]. When the activity of W118F toward promazine was compared 

with that of WT, there was again only a minute difference, though slightly lower (Table 5.2, 

Table 5.3 and Figure 5.3).  

 

Table 5.2. Substrate concentration dependence of W118F activity toward Promazine 

hydrochloride. 

 

 

Table 5.3. Protein concentration dependence of W118F activity toward Promazine 

hydrochloride. 
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Figure 5.3. Activity assay of Tth-lac WT and the W118F mutant with promazine hydrochloride 

as a substrate, pH 4.5. 

 

To figure out whether this slightly lower activity (Figure 5.3) is of any significance, another 

possible experiment to try was making a CuT1 depleted enzyme (T1D) and testing its activity 

toward high potential substrates. Examining the behaviors of the T1D mutant was expected to 

enhance our understanding about whether the CuT1 is absolutely necessary even for the 

oxidation of high potential substrates.  

 

5.2. T1D & T1D-W118F 

The CuT1 depleted (T1D) laccase was produced by mutating Cys 445 to serine to prevent copper 

incorporation to the CuT1 site as previously reported [23]. The C445S mutant indeed lacks the 

CuT1 absorption band at 605 nm. When the activity of T1D laccase toward ABTS was tested, 

even the T1D laccase was found to be active toward ABTS (1% activity at kcat of Tth-lac WT). 

However, since it is likely that this minute activity is due to the presence of a small amount of 
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CuT1-bound enzymes at equilibrium, another confirmation was needed to test out the possibility 

of another pathway and the potential involvement of redox active amino acids. To cut off both 

presumable pathways, a surface Trp mutation (W118F) was made to the T1D laccase, and the 

resulting mutant activity was examined to see if the 1% activity of T1D laccase relative to WT 

activity goes away (Figure 5.4). The result was that both T1D laccase and T1D-W118F 

exhibited the identical activity corresponding to 1% of WT activity toward ABTS in the 

saturating regime of ABTS concentration (kcat of WT). From these observations, it seems like 

the surface mutation does not impair the enzyme activity to a significant degree.  

 

 

Figure 5.4. T1D enzyme (C445S) and its surface Trp mutant (C445S-W118F). 

 

Going back to the consensus mechanism of MCOs, another likely candidate that can provide 

enough driving force for the oxidation of high potential substrates could be the peroxide 

intermediate (PI) which has been proposed as a catalytically relevant precursor to the native 

intermediate (NI) [1]. The PI is designated as a peroxide-level species with two coppers of the 

TNC oxidized and peroxide-bridged while one copper still remains to be reduced (see chapter 

4 for more details). The PI can be generated by reacting a fully reduced T1D laccase with 

dioxygen [1], and two charge transfer bands arise at 340 nm and 480 nm as distinct spectral 
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features [24]. If the PI has enough potential to reduce high potential substrates, electrons could 

go directly into the TNC and the W/Y chain could still run the catalytic cycle (as a fewer-than 

-four-electron process) even without the involvement of CuT1. However, no spectral feature of 

the PI was detected from Tth-lac even after multiple trials with both T1D laccase and T1D-

W118F. The reasons could be the instability of the PI in Tth-lac or the existence of alternative 

reaction pathways which deviate from the consensus for MCO catalysis. Other ways of 

generating a peroxide intermediate-like species reported are adding one reducing equivalent of 

H2O2 to the fully oxidized enzyme or reacting a partially reduced (with two reducing 

equivalents) laccase with O2 [25]. The transient species generated from Rhus laccase with these 

methods resembled the PI generated with the T1D laccase, and seemed to persist up to around 

24 h [25]. Therefore, a future direction is to try to generate this PI-like species, characterize it 

with the resonance Raman spectroscopy and test its reactivity with ABTS or promazine 

hydrochloride. Although it is currently still not conclusive whether the PI plays a role in 

oxidizing high potential substrates or not, the reaction with dioxygen is certainly a key for 

laccase function, as the enzyme starts turning over only in the presence of O2 and none of the 

active site coppers alone has enough potential to perform the job on its own. 

 

It should also be noted that the substrate potential itself may also be significantly altered upon 

binding of substrates on the enzyme surface or to the catalytic sites. In order to identify the 

catalytic sites for different substrates, structural analysis of the enzyme with X-ray 

crystallography or molecular docking simulation might be helpful. However, the enzyme 

crystallization for both WT and the mutants (W118F and W133F) has not been successful even 

with hundreds of screening conditions. A small crystal was obtained with 0.2 M ammonium 

sulfate, 0.1 M bis-tris, pH 6.5 and 25 w/v polyethylene glycol 3350, but it was too small to 

resolve the structure even with the micro-ED. Molecular docking simulations can be of a 
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benefit to calculate energy difference upon substrate binding and estimate the potential change 

of substrates during catalysis.  

 

5.3. Met-rich Loop Mutant 

A burst of activity for Tth-lac WT in the presence of excess copper was reported by a former 

study, and the highest degree of activity enhancement was reported with 1 mM CuSO4 

supplementation [26]. As this phenomenon is observed even for the fully metalated enzymes, 

the presence of extra transient metal binding sites has been speculated, and the most likely 

candidate is the Met-rich loop in Tth-lac. The Met-rich loop is observed as a common structural 

motif in several multi-copper oxidases such as CueO and McoA [27]–[29], and there exists a 

Met-rich loop in Tth-lac as well close to the CuT1, which consists of eleven methionines and 

one histidine and one aspartate (Figure 5.5). Since the idea of an extra transient metal binding 

site coordinated by Met, His and Asp contributing to enzyme activity has been suggested in 

other copper enzymes such as CueO, it was tested if a similar scenario applies to Tth-lac as 

well.  
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Figure 5.5. Distribution of Met (magenta), His (yellow), Asp (green), and active-site copper-

coordinating residues (blue) in Tth-lac (PDB: 2YAE [2]). 

 

To investigate the roles of metal binding residues in the Met-rich loop present in Tth-lac, the 

6-His-tag was removed, since histidines in the tag may affect the enzyme activity in the 

presence of excess copper. All Met, Asp and His residues in the loop were replaced by Ala 

which is a metal non-coordinating residue to compare the activity with WT in the presence and 

absence of excess copper in the media. 
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Original Sequence (Tth-lac WT) 

GPSFPEPKVVRSQGGLLSLKLSATPTPLAIAGQRATLLTYGGSFPGPTLR 

VRPRDTVRLTLENRLPEPTNLHWHGLPISPKVDDPFLEIPPGESWTYEFT 

VPKELAGTFWYHPHLHGRVAPQLFAGLLGALVVESSLDAIPELREAEEHL 

LVLKDLALQGGRPAPHTPMDWMNGKEGDLVLVNGALRPTLVAQKATLRLR 

LLNASNARYYRLALQDHPLYLIAADGGFLEEPLEVSELLLAPGERAEVLV 

RLRKEGRFLLQALPYDRGAMGMMDMGGMAHAMPQGPSRPETLLYLIAPKN 

PKPLPLPKALSPFPTLPAPVVTRRLVLTEDMMAARFFINGQVFDHRRVDL 

KGQAQTVEVWEVENQGDMDHPFHLHVHPFQVLSVGGRPFPYRAWKDVVNL 

KAGEVARLLVPLREKGRTVFHCHIVEHEDRGMMGVLEVG 
 

 
Met-rich-loop – Ala mutant (Tth-lac MA Mutant) 

GPSFPEPKVVRSQGGLLSLKLSATPTPLAIAGQRATLLTYGGSFPGPTLR 

VRPRDTVRLTLENRLPEPTNLHWHGLPISPKVDDPFLEIPPGESWTYEFT 

VPKELAGTFWYHPHLHGRVAPQLFAGLLGALVVESSLDAIPELREAEEHL 

LVLKDLALQGGRPAPHTPADWANGKEGDLVLVNGALRPTLVAQKATLRLR 

LLNASNARYYRLALQDHPLYLIAADGGFLEEPLEVSELLLAPGERAEVLV 

RLRKEGRFLLQALPYDRGAAGAAAAGGAAAAAPQGPSRPETLLYLIAPKN 

PKPLPLPKALSPFPTLPAPVVTRRLVLTEDAAAARFFINGQVFDHRRVDL 

KGQAQTVEVWEVENQGDADHPFHLHVHPFQVLSVGGRPFPYRAWKDVVNL 

KAGEVARLLVPLREKGRTVFHCHIVEHEDRGMMGVLEVG 

 

The enzymes were metalated in cells by adding 0.5 mM CuSO4 to the growth media following 

the published metalation procedure for CotA laccase with slight modification [30]. Metalated 

enzymes were purified in MES buffer, pH 6 using a HP SP cationic exchange column with a 

500 mM NaCl gradient over the duration of 2 hrs. Enzymes were stored in Tris, pH 8 with 1 

mM CuSO4 until use. 
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Figure 5.6. Activity comparison of Tth-lac WT and Tth-lac MA (all Met, Asp and His in the 

Met-rich loop mutated to Ala) in the presence and absence of excess copper in the activity 

assay media (NaOAc, pH 4.5). 

 

Both Tth-lac WT and the Tth-lac MA mutant exhibited almost identical activities in the absence 

of excess CuSO4 in the assay media (Figure 5.6). However, with 1 mM CuSO4 supplementation, 

a burst of activity was observed only for the WT sample as previously reported [26]. To 

elucidate the reason for this observation, another mutant (Tth-lac DH) which had only Asp and 

His in the loop substituted to Ala was also made and tested for its activity. Since Met can only 

bind Cu1+, if extra Cu2+ ions transiently bound in the presence of excess CuSO4 are responsible 

for the activity enhancement, Asp and His were the likely candidates that could provide a cavity 

for Cu2+ binding.  
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Figure 5.7. Effects of excess copper concentration on the degree of activity enhancement for 

Tth-lac WT, Tth-lac MA (All Met, His and Asp in the loop mutated to Ala) and Tth-lac DH 

(Only His and Asp mutated to Ala). 

 

Surprisingly, the activity enhancement was observed (at a slightly smaller degree) even for the 

Tth-lac DH mutant (Figure 5.7). Although the burst of activity is not observed for the Tth-lac 

MA mutant up to around 1 mM Cu2+ supplementation in the assay media, the increase in 

activity became more distinct at higher excess copper concentration (5 mM, 10 mM). Whereas 

for Tth-lac WT and Tth-lac DH, the activity reached the max with <500 μM excess copper 

concentration, as previously observed by a former study on Tth-lac [26]. Moreover, at low 

copper concentration (50 μM, 100 μM), the degree of activity enhancement for Tth-lac DH was 

smaller than that for Tth-lac WT. This may imply that Asp and His are somewhat involved in 

transient copper binding, but the activity enhancement with excess copper can still occur only 

with methionines in the loop. There are two more aspartates on the surface close to the loop 

and the CuT1, so it can be speculated that those residues may also be involved, but since they 
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are too close to the CuT1, mutations on those residues might severely disrupt the structure or 

affect the potential of the CuT1. Current efforts are on trying to get crystal structures of the Met-

rich loop mutants to examine how the loop conformation changes for each mutant and to see if 

copper can bind to any cavities on the loop. 

 

5.4. CotA Laccase from Bacillus Subtilis (CotA-lac) 

Structural Homology 

 

Figure 5.8. Structures of Tth-lac and CotA-lac (PDB: 2YAE [2], 1GSK [31]) 

 

CotA laccase (CotA-lac) is a spore coat protein from Bacillus subtilis, known to exhibit 

bilirubin oxidase activity (oxidation of bilirubin to biliverdin) [32], [33]. Since Tth-lac and 

CotA-lac are both three domain laccases structurally similar to each other, gene synthesis of 

CotA-lac was done to draw some parallel conclusions. In CotA laccase as well, there are chains 

of Trp and Tyr residues stretching from the TNC as well as a TNC-proximal Trp/Tyr pair which 

is closely positioned from other Tyr and Trp residues (Figure 5.8). 
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CotA-lac gene was cloned between NdeI and XhoI sites of the pET-22b(+) vector. By choosing 

the 5’NdeI cloning site, the pelB leader sequence was detached from the gene for expression 

in the cytoplasmic region of the cell. A C-terminal stop codon was added to prevent the 6 x his-

tag fusion. After the gene synthesis, the protein expression was done following the published 

procedure with slight modification [30]. The TB media with 0.4% glycerol supplementation 

gave higher yield of the protein than the LB media, and CuSO4 was added to make the final 

concentration of 0.5 – 0.7 mM in the media depending on the cell density (0.6<OD<1). The 

enzyme purification was done with a HP SP cationic exchange column following the published 

procedure with slight modifications [34], [35]. Although the published procedures use the 

buffer pH of 7.6, buffers at lower pH (Tris pH 7, MES pH 6 or MOPS pH 6.5) were used to 

facilitate better binding of the CotA-lac to the cationic exchange column.  

 

The TNC-proximal Trp mutation (W151F) was made to see if it lowers the total turnover 

number. As expected, the W151F point mutation did not cause any change in activity and total 

turnover number due to the presence of a Tyr/Trp chain stretching from W151 out to the enzyme 

surface. A W151F/Y152F double mutant is of interest just like in Tth-lac (see Chapter 4 for 

more details), but in CotA-lac, there also exist Y51 and W72 along the chain following the 

W151/Y152 pair, and these residues could potentially participate in hole hopping. Making a 

quadruple mutant with all of these residues mutated to Phe may cause severe structural 

disruption, which will require structural analysis as well. 

 

Just like in Tth-lac, testing the roles of surface-exposed redox-active amino acid at the end of 

the Trp/Tyr chain was of interest. In CotA-lac, there exist three tyrosines exposed on the surface: 

Y27, Y28 and Y69. These residues are all within 5Å from each other forming a surface Tyr 
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cluster. Each of these residues were mutated to a redox-inactive Phe to see if any of the 

mutations knocks out the enzyme activity. No significant difference was observed between the 

activities of WT and Y69F. In addition, although both Phe and Ala substitutions were tried, the 

enzyme did not express with all of the Y27F, Y28F, Y27F-Y28F, Y27A and Y28A mutant 

plasmids.  
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Chapter 6 

 

Investigating the Mechanistic Details of  

Lytic Polysaccharide Monooxygenases (LPMOs) 
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6.1.  Introduction 

Although details about the LPMO catalysis still remain debatable, Cu3+(O) has been involved 

in both O2 mechanism and H2O2 mechanism as a potential reactive intermediate [1], [2] (refer 

to Chapter 1 for more details). Two cellulose-active LPMOs (ScLPMO10B and ScLPMO10C) 

and one chitin-active LPMO (BILPMO10A) were studied in order to elucidate if Cu3+(O) can 

be generated and tested for its reactivity toward polysaccharides.  

 

 

 

Figure 6.1. Structures of bacterial LPMOs (PDB: 4OY6 [3], 4OY7 [3], 6TWE [4]) active 

towards cellulose and chitin: an aromatic amino acid on the cellulose/chitin binding domain 

(red), Trp (cyan) and Try (green) residues. 
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As can be seen in Figure 6.1., LPMOs are all structurally very similar in a way that there is a 

surface-exposed active site type 2 copper (CuT2) and a surface-exposed aromatic amino acid 

which form a putative cellulose binding domain together. Just like MCOs, these enzymes also 

have chains of closely spaced tryptophans and tyrosines stretching from the active site copper 

on the surface (Figure 6.1).  

 

In efforts to elucidate how LPMO operates, spectroscopic approaches were taken to 

photochemically trigger the redox chemistry and to transiently monitor the generation of Cu3+ 

species. Moreover, after the photochemical generation of Cu3+ species, their reactivity toward 

cellulose and chitin was tested in photodegradation experiments to determine if Cu3+ species 

participate in degrading polysaccharides. Enzymes have been successfully expressed in E. coli 

and were purified with the use of Avicel or the ionic exchange columns after the osmotic shock 

procedure to obtain periplasmic extracts.  

 

6.2. Enzyme Preparation 

An example of a LPMO vector construct 

 

 

 

Figure 6.2. A schematic diagram of ScLPMO10B gene construct. 
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Sequence details 

gcccagccggcgATGgcc/ATGgAT/catggtagtgtggttgatccggccagccgtaattatggttgctgggaacgctggggc

gatgattttcagaatccggcaatggccgatgaagatccgatgtgctggcaggcctggcaggatgatccgaatgcaatgtggaattgga

atggtctgtatcgcaatggcagtgcaggtgactttgaagccgttgttccggatggccagctgtgcagcggtggtcgcaccgaaagtgg

ccgttataatagcctggatgccgtgggcccgtggcagaccaccgatgtgaccgatgattttaccgtgaaactgcatgatcaggccagtc

atggcgccgattattttctggtgtatgtgaccaaacagggctttgatccggcaacccaggccctgacctggggtgaactgcagcaggtt

gcacgtaccggtagctatggtccgagccagaattatgaaattccggttagcaccagtggtctgaccggccgtcatgtggtttataccattt

ggcaggcaagccatatggatcagacctattttctgtgtagtgatgttgattttggcTAActcgag 

 

The texts in orange color in the beginning of the sequence above indicate the pelB leader 

sequence which exists in the pET-26b vector. This signaling sequence should remain intact, 

since it will direct the over-expressed recombinant protein to the periplasmic membrane and 

be cleaved off to produce the enzyme of interest. The pelB leader sequence itself has the start 

codon ATG indicated in orange bold.  

 

In order to clone a gene into a specific vector, we should do it between certain restriction sites. 

In this case, the scLPMO10B gene sequence (black letters) was cloned between the Nco I 

(‘ccATGg’) and Xho I (‘ctcgag’) sites underlined and highlighted in yellow. 

 

Once the pelB leader sequence gets cleaved off, the protein starts with what is left in the Nco I 

sequence ATGg. (The first two orange letters ‘cc’ of the Nco I site also belong to the pelB 

leader sequence.) Since three bases make up an amino acid, the 4th base ‘g’ in ‘ATGg’ will 

cause a frame shift. (e.g. Instead of producing a protein that starts with the sequence 

‘ATG/cat/ggt/agt/gtg/gtt,’ this leftover ‘g’ will produce ‘ATG/gca/tgg/tag/tgt/ggt’ which will 

give completely different sets of amino acids.) Therefore, the two protect-bases ‘AT’ in green 
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are added, so that it can make up an Asp amino acid (gAT). This Asp residue as well as Met 

from the start codon in the Nco I site (indicated in the sequence above as ‘/ATGgAT/’) was 

removed via site-directed mutagenesis to ensure that the N-terminal α-amino group of His (the 

next residue in the sequence shown as ‘cat’) is freely available for copper binding. 

 

The protein expression can be achieved even without the start codon ATG in the Nco I site (in 

red bold letters) due to the presence of another start codon (ATG) in the pelB leader sequence 

(in orange bold letters). As mentioned earlier, the pelB leader sequence eventually gets cleaved 

off, so that the remaining protein can have the sequence in black letters (before the stop codon 

(TAA)). 

 

Trypsin digestion 

 

Figure 6.3. Sequence analysis of ScLPMO10B by trypsin digestion. 

 

Since the expression yield of these bacterial LPMOs tend to be very low (5 mg/L), it was quite 

difficult to isolate the pure enzyme in the beginning. Before optimizing purification conditions, 
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it was made sure that an intact LPMO is getting expressed by confirming the sequence coverage 

with Trypsin digestion (Figure 6.3). 

 

Avicel purification 

The His-tag attachment should generally be avoided for copper proteins due to histidines on 

the tag competing for coppers being incorporated to the active sites. However, attaining high 

purity just with the FPLC purification using ionic exchange and size exclusion columns can be 

a challenging task, when the properties of other E. coli proteins in the periplasmic extract 

exhibit similar chemical properties with LPMOs. Another interesting way to purify LPMOs is 

using Avicel [5]. Avicel is a microcrystalline cellulosic substrate to which LPMOs can bind. 

With the addition of Avicel to the periplasmic extract obtained by applying osmotic shock, 

LPMOs selectively bind to Avicel. By centrifugation, LPMO-bound Avicel can be separated 

from the rest of the periplasmic extract. Upon the addition of glucose at close to 1 M 

concentration, selective elution of LPMOs can be achieved (Figure 6.4).   

  

 

Figure 6.4. MALDI-TOF analysis of LPMO purified by the Avicel purification method. 

 

However, the typical yield of ScLPMO10B was unfortunately less than 5 mg/L even after 

optimizing the conditions: with both TB and LB, with and without glucose or glycerol 

supplementation, different induction temperature from 25°C to 37°C and duration from 3 hr to 
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12 hr, and different IPTG concentration (from 0.1 mM to 1 mM). Therefore, after discussions 

with Dr. Vincent Eijsink and Dr. Zarah Forsberg at Norwegian University of Life Sciences 

(NMBU), the plasmids of ScLPMO10C and BlLPMO10A which are known to express better 

than ScLPMO10B were obtained from the Eijsink group. Both genes are in the pRSETB vector 

which is ampicillin resistant, and the both plasmids contain a signaling sequence from 

SmLPMO10A (also known as CBP21) which functions similar to the pelB leader sequence. 

 

Signal sequence from SmLPMO10A (CBP21) 

ATGAACAAAACTTCCCGTACCCTGCTCTCTCTGGGCCTGCTGAGCGCGGCCATGTTCGGCGTTTCGCAACAGGC 

 

BlLPMO10A Sequence 

HGFIEKPGSRAALCSEAFGFLNLNCGSVMYEPQSLEAKKGFPHSGPADGQIASAGGLFGGILDQQSENRWFKHIM

TGGEHTFTWTYTAPHNTSQWHYYITKKGWDPDKPLKRADFELIGAVPHDGSPASRNLSHHIYIPEDRLGYHVILA

VWDVADTENAFYQVIDVDLVNK 

 

ScLPMO10C Sequence 

HGVAMMPGSRTYLCQLDAKTGTGALDPTNPACQAALDQSGATALYNWFAVLDSNAGGRGAGYVPDGTLCSAGDRS

PYDFSAYNAARSDWPRTHLTSGATIPVEYSNWAAHPGDFRVYLTKPGWSPTSELGWDDLELIQTVTNPPQQGSPG

TDGGHYYWDLALPSGRSGDALIFMQWVRSDSQENFFSCSDVVFDGGNGEVTGIRGSGSTPDPDPTPTPTDPTTPP

THTGSCMAVYSVENSWSGGFQGSVEVMNHGTEPLNGWAVQWQPGGGTTLGGVWNGSLTSGSDGTVTVRNVDHNRV

VPPDGSVTFGFTATSTGNDFPVDSIGCVAP 

AA10-linker-CBM2 

 

The enzymes were expressed and purified following the published procedures with slight 

modifications [3], [6]. After giving osmotic shock to the harvested cells with Tris buffer, pH 8 

containing 0.5 M sucrose and 100 μM EDTA, periplasmic extracts were obtained and purified 

further with ion exchange chromatography and size exclusion chromatography. The enzymes 

have been found to be less stable in acidic solutions with low pH. Therefore, instead of using 

citrate buffer at pH 3.5 as suggested in the published protocol, Tris buffer at pH 7 or 8 were 

used for purification with anionic exchange chromatography.  
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6.3.  Activity Assays 

Cellulose degradation reactions / product analysis 

For standard cellulose degradation reactions, general published procedures were followed [6]. 

To briefly outline, Avicel and phosphoric acid swollen cellulose (PASC) were incubated with 

1 μM LPMO in 20mM sodium phosphate at pH 6 in the presence of 2 mM ascorbic acid. The 

sample in an Ependorf tube was gently shaken at 150 rpm for 24 hours in the incubator set to 

30°C to keep Avicel and PASC suspended in the LPMO solution. The degradation products of 

Avicel and PASC were analyzed by MALDI-TOF mass spectrometry. To investigate the rate of 

degradation, samples can be collected every hour or at certain time intervals. To analyze 

double-oxidized products at C1 and C4 both, T. reesei cellobiohydrolase and thermophilum 

cellobiose dehydrogenase (MtCDH) can be added to split the product into two singly oxidized 

monosaccharides [3], [6]. 

 

MALDI-TOF 

The mass of the degradation products can be detected using the matrix-assisted laser desorption 

/ionization – time of flight (MALDI-TOF) mass spectrometry. The mass values of the products 

can be compared with the expected mass values to monitor the degree of cellulose degradation 

[6]. The same procedure was adopted for the β-chitin substrate as well to monitor the 

BlLPMO10A activity.  
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Figure 6.5. MALDI-TOF data showing degradation products of PASC (phosphoric acid 

swollen cellulose) in a standard activity assay with ScLPMO10C. 

 

After the cellulose or chitin degradation experiments, product analysis was done with MALDI-

TOF, and each degradation product with a known mass was identified (Figure 6.5.) in 

comparison to published values [6]. 
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6.4.  Photodegradation Experiment 

 

Cu(III)(O) Intermediate Species 

 

 

 

 

Although whether these enzymes are oxygenases or peroxygenases is still a hot debate, both of 

these postulated mechanisms include the generation of Cu(III) intermediates resulting from the 

oxidation of Cu(I) by O2 or H2O2, followed by O-O bond cleavage. Therefore, in efforts to 

elucidate how LPMO operates, a spectroscopic approach was taken to photochemically trigger 

the redox chemistry and to transiently monitor the generation of Cu(III) species.  
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Figure 6.6. MALDI-TOF data showing degradation products of β-chitin in a standard activity 

assay with BlLPMO10A (top) and no product formation in a photo-degradation experiment 

(bottom). 

 

After confirming by product analysis with MALDI-TOF that my enzymes can indeed degrade 

recalcitrant cellulose or chitin substrates, photochemical studies were conducted to test if 

photochemically generated Cu3+ species are reactive toward cellulosic substrates. Samples 

were prepared as a mixture containing cellulose/chitin as a substrate, protein, Ru-

photosensitizer (Ru(bpy)3Cl2), and the irreversible cobalt quencher [Co(NH3)5Cl]Cl2, and were 

deoxygenated. Irradiation of Ru-photosensitizer in the sample can generate Ru2+ excited state, 

and the cobalt quencher can produce more oxidizing Ru3+ species which could potentially 
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oxidize Cu2+ to Cu3+. To ensure that sufficient driving force is applied by the photogenerated 

Ru3+ species, experiments were conducted with Ru(bpy)3
3+ (E° = 1.26 V vs. NHE), Ru(bpm)3

3+ 

(E° = 1.69 V vs. SSCE) and Ru(bpz)3
3+ (E° = 1.98 V vs. SSCE) [7], [8]. 

 

If Cu3+ species being generated are reactive toward cellulose/chitin, we should still be able to 

detect the soluble degradation products even from these photo-excited samples which lack both 

O2 and reductants (ascorbic acid). Unfortunately, no product was detected from the photo-

degradation experiment even with concentrated samples (no product peak for the photo-excited 

samples as opposed to the standard activity assay sample (Figure 6.6)), which may indicate that 

Cu3+ intermediates are not the active intermediates responsible for cellulose degradation.  

 

6.5. Cu3+ Transient Absorption Spectrum 

 

Figure 6.7. UV-Vis absorption spectrum of Cu(II)-bound DAHK peptide. 
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Figure 6.8. Transient absorption kinetics spectra of the photochemically generated DAHK-

Cu(III) at 400 nm (right). 

 

Although no activity was observed by the photo-excited samples, it was necessary to confirm 

that Cu3+ species were indeed being generated with the addition of Ru-compounds as 

photosensitizers. If not, it is also possible that the holes may have just ended up oxidizing a 

nearby Trp or Tyr. Therefore, I wanted to check the hole transfer pathway with transient 

absorption spectroscopy. The model study done with a copper bound DAHK peptide segment 

shows that the Cu3+ species have an absorption feature at around 350-400 nm (Figure 6.8). 

Since the coordination environment for copper is different in LPMOs, different absorption 

features at shifted wavelengths may arise, which could be more difficult to detect. But, even 

then, the decay kinetics of Ru3+ species can be compared between the protein sample and the 

control sample to see how the redox activity of Ru3+ changes in the presence of LPMOs upon 

Cu3+ generation. When the transient absorption spectroscopic experiments were tried with both 

ScLPMO10C and BlLPMO10A samples, a longer lasting Ru3+ bleach signal was observed 

compared to the control sample, which could be an indication that it is due to the generation of 

Cu3+. However, no positive absorption feature was observed anywhere between the 350-555 

nm wavelength region where Cu3+ and Trp radical features are expected (Figures 6.9-6.14). 
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Making the XANES measurements could potentially provide us an evidence for Cu3+ 

generation, but it can also be difficult to resolve the spectra when the concentration of Cu3+ 

being formed is not high enough. 

 

 

 

6.6. Appendices 

Bimolecular quenching experiments with LPMOs and Ru-complexes as photosensitizers were 

monitored with the transient absorption spectroscopy at different wavelengths to examine the 

hole transfer kinetics. However, the kinetic profiles obtained with reversible quenchers 

([Ru(NH3)6]Cl3 and methyl viologen) were obscured by back reaction kinetics (Figures 6.9 - 

6.14). No positive absorption features were observed anywhere between the 350 - 550 nm 

wavelength regions. When an irreversible quencher ([Co(NH3)5Cl]Cl2) was tried, a longer 

lasting bleach for Ru3+ species was observed with the LPMO sample (Figure 6.16) compared 

to the control sample (Figure 6.15), which could be indicative of Cu3+ generation. But again, 

no positive absorption features distinctive for either Cu3+ or Trp radical species were detected. 
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Figure 6.9. Single wavelength transient absorption spectroscopy with ScLPMO10C and 

Ru(NH3)6Cl3 (440 nm probed). 

 

 

Figure 6.10. Single wavelength transient absorption spectroscopy with BlLPMO10A and 

Ru(NH3)6Cl3 (440 nm probed). 



160 

 

Figure 6.11. Single wavelength transient absorption spectroscopy with BlLPMO10A and 

methyl viologen (400 nm probed). 

 

Figure 6.12. Single wavelength transient absorption spectroscopy with BlLPMO10A and 

methyl viologen (450 nm probed). 
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Figure 6.13. Single wavelength transient absorption spectroscopy with BlLPMO10A and 

methyl viologen (510 nm probed). 

 

Figure 6.14. Single wavelength transient absorption spectroscopy with BlLPMO10A and 

methyl viologen (550 nm probed). 
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Figure 6.15. Single wavelength transient absorption spectroscopy with Ru(bpy)3Cl3 and 

[Co(NH3)5Cl]Cl2 (450 nm probed). 

 

 

Figure 6.16. Single wavelength transient absorption spectroscopy with BlLPMO10A and 

[Co(NH3)5Cl]Cl2 (450 nm probed). 
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Chapter 7 

 

Occurrence of Amino Acid Pairs and Clusters in Biological Systems 
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7.1 .  Motivation 

It is notable that there exists a tyrosine cluster which consists of three tyrosine residues (Y27, 

Y28 and Y69) within 5Å from each other on the surface of CotA laccase. This cluster is located 

at the end of the chain of redox active amino acids (Trp and Tyr) stretching from the trinuclear 

copper cluster (TNC) where dioxygen reduction occurs to produce water. In addition to the 

potential roles of these chains providing protection to the enzyme (see Chapter 4 for more 

details), it is plausible that this surface tyrosine cluster in CotA laccase may contribute to 

facilitating the enzyme function of bilirubin oxidation. In efforts to elucidate biological roles 

of this tyrosine cluster, bioinformatics approaches were taken to examine the occurrence of 

amino acid pairs and clusters in proteins. 

 

7.2. Surface Vicinal Tyrosines 

Among 92099 proteins whose X-ray crystallographic structures are available in the Research 

Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, www.rcsb.org), 

44163 proteins have one or more vicinal tyrosines which are less than 5 Å distance apart on 

the surface of the protein. Among those 44163 proteins which have at least one surface vicinal 

tyrosines, 27476 proteins belong to enzyme subclasses categorized into 7 different classes: 

1.Oxidoreductases, 2. Transferases, 3. Hydrolases, 4. Lyases, 5. Isomerases, 6. Ligases, 7. 

Translocases. 

http://www.rcsb.org/
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Figure 7.1. Distribution of proteins (left) and proteins with more than or equal to one surface 

vicinal Y-Y (right) in different protein classes. 

 

Table 7.1. Surface vicinal Y-Y. 

 

 

In Table 7.1, column 2 represents the distribution of 54204 proteins out of 92099 proteins 

examined in seven different protein classes defined above. Column 3 shows the percentage 

distribution of those 54204 proteins in each protein class (percentage calculations were 

performed out of total 92099 proteins). 44163 out of 92099 proteins have one or more surface 

vicinal tyrosine pairs within 5 Å distance. Among those 44163 proteins, 27476 proteins belong 

to 7 protein classes defined above (column 4). Column 5 represents the percentage distribution 

of those 27476 proteins in each protein class (percentage calculations were performed out of 
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44163). Column 6 shows the percentage of each protein class having at least one vicinal Y-Y 

pair. For each class, the number of proteins having at least one vicinal Y-Y pair on the surface 

was divided by the total number of proteins in each protein class (e.g., for row 2, (number of 

surface vicinal Y-Y containing proteins that belong to hydrolases (10901) divided by the total 

number of proteins in the entire protein data bank that belong to hydrolases (19727)) x 100). 

 

Table 7.2. Distribution of surface Y-Y containing proteins in different sub-categories. 

 

 

Surface vicinal Y-Y pairs seem to be prevalent in all enzyme classes as shown in the last column 

of Table 7.1. Around 45 – 55 % of proteins in all enzyme classes have one or more vicinal Y-

Y residues on the surface. Therefore, it was worth looking at sub-category distributions more 

in detail (Table 7.2.). Moreover, the actual number of surface vicinal Y-Y residues as well as 

the percentage distribution in different enzyme classes was examined. 
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Table 7.3. Surface vicinal W-W. 

 

 

The data in Table 7.3 are organized in the same way as in Table 7.1. It can be seen that surface 

vicinal W-W residues are most prevalent in hydrolases and oxidoreductases. As shown in the 

last column of Table 7.3, 22.9% of all hydrolases and 25.8% of all oxidoreductases have one 

or more vicinal W-W residues on the surface. 

 

Table 7.4. Surface vicinal Y-W. 

 

 

The data in Table 7.4 are organized in the same way as in Table 7.1. Surface vicinal Y-W 

residues are most prevalent in hydrolases, but prevalent in all the other enzyme classes as well. 
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As shown in the last column of Table 7.4, 58.2% of all hydrolases and around 30 - 45% of 

proteins in other enzyme classes have one or more vicinal Y-W residues on the surface. 

 

Table 7.5. Surface vicinal H-H. 

 

 

The data in Table 7.5 are organized in the same way as in Table 7.1. Surface vicinal H-H 

residues are most prevalent in translocases, but prevalent in all the other enzyme classes as 

well. As shown in the last column of Table 7.5, 40.4% of all translocases and around 20 – 30% 

of proteins in other enzyme classes have one or more vicinal H-H residues on the surface. 

 

Table 7.6. Surface vicinal F-F. 
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The data in Table 7.6 are organized in the same way as in Table 7.1. Surface vicinal F-F residues 

are most prevalent in translocases, but are prevalent in all the other enzyme classes as well. As 

shown in the last column of Table 7.6, 72.1% of all translocases and around 49 - 57% of proteins 

in other enzyme classes have one or more vicinal F-F residues on the surface. 

 

Table 7.7. Summary. 

 

 

7.3.  Expected and Observed Amino Acid Distribution 

Table 7.8. Expected and observed amino acid distribution. 

 

 

The numbers of each single aromatic amino acid distributed both on the surface and in the 

interior protein were examined to account for the relative frequencies of each amino acid 
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occurring on the surface. The total number of each amino acid in column 3 of Table 7.8 

indicates the sum of surface and interior residues. (e.g., 69.9 % of all tyrosines observed in the 

list of 92099 proteins exist on the surface.) It can be seen from Table 7.8 that all four amino 

acids examined (Y, W, H, F) occur prevalently on the surface. The expected frequency in the 

last column of Table 7.8. was calculated for each amino acid by considering the sum of the 

expected frequency of each codon making up each amino acid. The expected frequency of each 

codon was calculated by taking into account the frequencies of DNA bases in nature: 22.0% 

Uracil, 30.3% Adenine, 21.7% Cytosine, and 26.1% Guanine. 

 

Table 7.9. PDB frequency vs. Total frequency. 

 

 

The PDB frequency shown in column 2 of Table 7.9 indicates the number of proteins among 

92099 proteins that have one or more of each vicinal aromatic amino acid pair on the surface. 

The last column in Table 7.9 shows the actual total number of each surface vicinal aromatic 

amino acid pair. The mismatch between the numbers in column 2 and column 4 only for the Y-

Y pair indicates that there are many proteins that have multiple surface vicinal Y-Y residues. 

On the other hand, it is clear that other vicinal aromatic amino acid pairs exhibit the 

characteristics of only a single occurrence per each protein. 
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Table 7.10. Percentage of aromatic residue pairs. 

 

 

The total numbers of vicinal aromatic residues including the ones in the interior structure of 

the proteins were examined. 22.1 % of all surface tyrosines exist as a pair within 5 Å distance, 

which is almost 3-4 times more than it is for other aromatic residue pairs. 15.4 % of all tyrosines 

found in 92099 proteins with known structures exist as a pair within 5 Å distance, which is 

almost 4-5 times more than it is for other aromatic residue pairs (Table 7.10). This indicates 

that the probability of tyrosines existing on the surface as a pair within 5 Å distance is much 

higher than for other aromatic amino acids. 

 

Table 7.11. Distribution of different numbers of Y-Y pairs in proteins. 
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The actual number of surface vicinal Y-Y pairs was examined more in detail. The highest 

number of surface vicinal Y-Y pairs from a single protein was found to be 77. As can be seen 

from Table 7.11 that six proteins among 92099 proteins examined have more than 50 pairs of 

vicinal Y-Y on the surface, and 9 proteins have more than 40 pairs of vicinal Y-Y on the surface. 

 

Table 7.12. Identification of proteins with the highest number of surface Y-Y pairs. 

 

PDB codes of proteins having 40 ≤ surface Y-Y pairs are shown in Table 7.12. 
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Figure 7.2. Distribution of proteins with different numbers of surface vicinal Y-Y in different 

protein classes. 

 

It can be seen from Figure 7.2 above that the occurrence of multiple surface Y-Y pairs with 

higher frequencies is more prevalent in hydrolases. As the number of surface vicinal Y-Y pairs 

in a protein increases, the higher proportion of those proteins are found to be hydrolases.  

 

Table 7.13. Percentage of surface vicinal aromatic amino acid pairs. 

 

 

The number of each vicinal aromatic amino acid pair (Y-Y, W-W, F-F, H-H) was examined not 

only for the ones on the surface but also for the entire protein structure including the ones in 

the interior compartment. It is shown in Table 7.13, more than 50% of the vicinal Y-Y pairs 

exist on the surface whereas only around 6-14% of other vicinal aromatic amino acid pairs exist 

on the surface. Therefore, it is of interest to investigate the possibility of a biological 

significance of surface vicinal tyrosines. 
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7.4. Distribution of Internal Vicinal Y-Y in Different Enzyme Classes 

To elucidate the roles of surface vicinal Y-Y pairs, distribution of internal vicinal Y-Y pairs in 

different enzyme classes was also examined to see if there are any differences with the 

observations made for the surface vicinal Y-Y pairs. 

 

Table 7.14. Number of proteins having different numbers of internal Y-Y without any surface 

Y-Y [Column 1: (Total # of All Y-Y Pairs searched) – (# of Surface Y-Y Pairs)]. 
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Figure 7.3. Distribution of different numbers of internal Y-Y in different enzyme classes. 

 

It can be seen from Figure 7.3 that the occurrence of multiple internal Y-Y pairs is more 

prevalent in lyases, oxidoreductases, and isomerases. (As the number of internal vicinal Y-Y 

pairs in a protein increases, the higher proportion of those proteins are found to be isomerases, 

lyases, and oxidoreductases.) This trend is the opposite from the observations made for multiple 

surface vicinal Y-Y pairs which occur mostly in hydrolases and transferases (Figure 7.2).  

 

7.5. More Refined List of PDB Codes 

To minimize the redundancy problem of having too many similar structures, search results are 

to be filtered in such a way that multiple structures whose sequences have the specified level 
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(e.g., 90% or 95%) of sequence identity will be represented as a single structure. This way, 

overcounting of duplicates such as mutant structures, protein fragments or the structures with 

different redox states of the active sites can be prevented. It is also necessary to consider the 

structures of biological relevance (biological assemblies) which will be discussed in part 7.6.  

 

7.6. Biological Assemblies 

Biological assemblies are the functional forms of the enzymes. The list of PDBs for biological 

assemblies were downloaded from the RCSB PDB website, and among different biological 

assemblies existing for each asymmetric unit of the same protein crystal structure, the first 

biological assembly archived as pdb1 was used for this study. Around 32000 biological 

assemblies have been searched to explore the amino acid propensities of existing as a pair or 

in a cluster. For the X-X pairs, the cutoff distance between the two amino acid residues was set 

to 5Å, and the cluster was defined as more than two identical amino acids located in close 

proximity (5Å) to each other. 
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Figure 7.4. Distribution of X-X amino acid pairs in biological assemblies. 

 

Figure 7.5. Relative numbers in % of location specific vicinal X-X in biological assemblies.  
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Figure 7.4 shows the frequency of each amino acid pair (X-X) in different locations of 32045 

biological assemblies with different PDBs, and Figure 7.5 shows the relative numbers in % of 

those X-X pairs found in different locations. These two figures represent the general 

distribution of each amino acid pairs in different biological assemblies.  

 

 

Figure 7.6. Percentage of amino acid X appearing as a vicinal X-X in biological assemblies. 

 

Since the natural frequency of each amino acid occurring in proteins vary greatly (Figure 7.4) 

and some amino acids are involved in multiple pairs forming a cluster, the number of a unique 

set of amino acid residues forming a pair within a protein (and also specifically on the surface) 

was examined for each amino acid (X). In this search, it was made sure that each amino acid 

residue was counted only once to figure out the actual percentage of amino acid residues 
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appearing as pairs. Compared to the previous search which included non-biological assemblies 

(Part 7.2 – 7.5), it can be seen that the trend of higher occurrence frequency for Y-Y pairs 

disappears (Figure 7.6).  

 

 

Figure 7.7. Percentage of amino acid X appearing as a cluster in biological assemblies. 

 

When the residues existing as a cluster (with more than two identical amino acids separated by 

5≥ Å from each other) were examined, the trend was very similar to the pairs (Figure 7.6 and 

7.7) except that cysteines and methionines exhibit opposite trends. Cysteines have a greater 

tendency to exist as pairs than to form clusters, presumably due to the biological necessity for 

disulfide backbone formation with Cys residues. Methiones, on the other hand, have a greater 

tendency to exist as clusters with more than two residues in close proximity than as pairs, since 

they are frequently found in helical loops on the protein surface. 
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7.7. Conclusion 

Amino acids exist as pairs and clusters in proteins. To elucidate biological roles and the 

potential significance of these pairs and clusters, the occurrence frequencies, location and their 

distribution in different protein classes were examined. It is interesting that the prevalence of 

surface Y-Y pairs observed when all PDB structures available from RCSB PDB website were 

examined is no longer a prominent feature observed in biological assemblies. It implies that 

surface Y-Y pairs are indeed frequently observed in proteins that have been extensively studied 

and characterized by crystallography, but with the refined set of structures with the redundancy 

eliminated, it does not seem like proteins have evolved to have more surface Y-Y pairs for 

particular functional purposes. 

  

Although surface Y-Y pairs are commonly observed in proteins with known crystal structures, 

their biological significance in the functional forms of proteins does not seem prominent. Thus, 

it would be interesting to perform more investigations by narrowing down the search categories 

to specific types of proteins (e.g., iron proteins, copper proteins etc.) to be able to draw more 

precise conclusions about their functional roles.  
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7.8. Appendices 

The MATLAB search code was modified from an original W-W and Y-Y pair search codes 

wrote by Dr. Jay Winkler to search for all residue pairs as well as the residue clusters (>2 

residues together). 

 

MATLAB Function Code 

Data = dir('*.txt'); 

for i = 1:length(Data) 

    Data(i).Data = readcell(Data(i).name); 

end 
  

bioassembly = Data.Data(:,1); 

bioassembly_pdb = char(bioassembly); 
  

%for i = 1:236172 

for i = 1:236172 

    if bioassembly_pdb(i,9)=='1' 

            

biological_assembly_JS_allAA_struct('C:\Users\Jieu

n Shin\Desktop\bioinf', bioassembly_pdb(i, 1:4), 

0, 5) 

    end 

end 

 

MATLAB Search Code 

function [AA_pairs, chains, models, resd_tot] = 

biological_assembly_JS_allAA_struct(pname,pdb_id, 

cutoff, cutoff2) 

% 

%f 

AA_pairs=zeros(20,6);     % OUTPUT RESULT 

%  

try 

    % 
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    savefile=['C:\Users\Jieun 

Shin\Desktop\bioinf\',pdb_id,'.pdb1.gz']; 

    

getfile=['https://files.rcsb.org/download/',pdb_id

,'.pdb1.gz']; 

    outfile=websave(savefile,getfile); 

    outfile_unzip=char(gunzip(outfile)); 

    if ~isempty(outfile_unzip) 

        pdbstruct=pdbread(outfile_unzip); 

        if ~isempty(pdbstruct) 

            delete(outfile) 

            delete(outfile_unzip) 

        end 

    else 

        pdbstruct=getpdb(pdb_id); 

    end 
     

%     %savefile=['C:\Users\Jieun 

Shin\Desktop\bioinf\',pdb_id,'.pdb1.gz']; 

%     savefile='C:\Users\Jieun 

Shin\Desktop\bioinf\'; 

%     %getpdb('6OWE', 'ToFile', '6OWE.pdb'); 

%     ftpobj = ftp('ftp.wwpdb.org'); 

%     

mget(ftpobj,['pub/pdb/data/biounit/coordinates/all

/', pdb_id, '.pdb1.gz'], savefile); 

%     %outfile = fileread(savefile); 

%     outfile_unzip = char(gunzip([savefile, 

'pub/pdb/data/biounit/coordinates/all/', pdb_id, 

'.pdb1.gz'])); 

%  

%     %getfile=['https://files.rcsb.org/download/'

,pdb_id,'.pdb1.gz']; 

%     %outfile=websave(savefile,getfile); 

%     %outfile=websave(savefile,getpdb); 

%     %outfile_unzip=gunzip(outfile); 

%     %outfile_unzip=char(gunzip(outfile)); 

%     if ~isempty(outfile_unzip) 

%         pdbstruct=pdbread(outfile_unzip); 

%         if ~isempty(pdbstruct) 
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%             %delete(outfile) 

%             delete(outfile_unzip) 

%         end 

%     else 

%         pdbstruct=getpdb(pdb_id); 

%     end 

catch 

    fprintf(' pdbstruct failure') 

    AA_pairs(1,1) = -5;    % -5 is failure code for 

getting pdbstruct from pdb 

                                 % will try 3 times 

before giving up 

    fclose('all'); 

    return 

end 

% 

%   Find the number of models 

% 

models=length(pdbstruct.Model); 

% 

%   Find the number and name of the chains 

% 

chain_str=[]; 

chain_str=[chain_str,pdbstruct.Sequence.ChainID]';        

%character array of chain names 

num_chains=length(chain_str); 

% 

resd_tot=0; 

for ij=1:num_chains 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'A')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'R')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'N')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc



186 

e(ij).Sequence,'D')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'C')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'E')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'Q')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'G')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'H')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'I')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'L')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'K')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'M')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'F')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'P')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'S')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'T')); 
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resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'W')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'Y')); 

    

resd_tot=resd_tot+length(strfind(pdbstruct.Sequenc

e(ij).Sequence,'V')); 
  

end 

% 

% 

resd_tot=resd_tot*models; 

% 

if resd_tot>5000 

    fprintf('\r structure is too big: %i residues 

\r',resd_tot); 

    AA_pairs=zeros(20,6); 

    % 

    

filename=[pname,'mat\',pdb_id,'_too_big_',num2str(

resd_tot),'_residues.mat']; 

    save(filename,'pdb_id','cutoff','resd_tot'); 

% 

    fclose('all'); 

    return 

end 

% 

% 

chains=[]; 

for ij=1:models 

    chains=[chains,chain_str]; 

end 

% 

num_chains_tot=models*num_chains;                          

% number of chains 

% 

% 

% A_total=zeros(20,num_chains_tot,models); 
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AA_total=zeros(20,num_chains_tot,models);                   

%total number of residues in each chain 

AA=zeros(20,num_chains_tot,models);                         

%number of participating residues in each chain 

% 

% 

close all; 

close all hidden; 

close all force; 

% 

%   Cell array of redox chains names and indeces 

of atoms 

% 

REDOX_CHAIN=cell(1,2); 

% 

%   Get Chain|Residue List 

% 

% 

rcount=0; 

% 

allX=[]; 

allY=[]; 

allZ=[]; 

% 

for mod_cnt=1:models                % begin the 

model counting loop 

% 

%get all residue coordinates 

% 

    allX=[allX,pdbstruct.Model(mod_cnt).Atom.X]; 

    allY=[allY,pdbstruct.Model(mod_cnt).Atom.Y]; 

    allZ=[allZ,pdbstruct.Model(mod_cnt).Atom.Z]; 

% 

end                                 % end the model 

counting loop 

% 

test_atom_out={}; 

% 

for mod_cnt=1:models                % begin the 

model counting loop 
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    % 

    atom_chain=[]; 

    if ~isfield(pdbstruct.Model(mod_cnt),'Atom') 

        fprintf(' Field error') 

        AA_pairs=zeros(20,5);     % OUTPUT RESULT 

        fclose('all'); 

        return 

end 

atom_chain=[atom_chain; 

pdbstruct.Model(mod_cnt).Atom.chainID]';      %char 

array of chain ID's 

% 

atom_res_name={}; 

atom_res_name=[atom_res_name,pdbstruct.Model(mod_c

nt).Atom.resName]; 

atom_res_name=char(atom_res_name);                            

  %char array of residue names 

% 

atom_chn_res=cellstr([atom_chain,atom_res_name]);           

    %cell array of ChainID|ResidueName strings 

%atom_chn_res_num=strnum_eq(atom_chn_res); 

% 

% 

% ************** Start finding all residues 

************************* 

%  

% 

ala_chn_ind=cell(1,num_chains);                             

%cell array of ALA indeces for each chain 

% 

for ij=((mod_cnt-

1)*num_chains)+1:(mod_cnt)*num_chains 

    % 

    %   find ALA residues 

    % 

    

ala_ind=0;                                              % 

reset ALA index counter 

    % 
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chn_ind=find(strcmp([chains(ij),'ALA'],atom_chn_re

s)>0); 

    %chn_ind=strfind(pdbstruct.Sequence(ij).Sequen

ce,'AA')'; 

% 

    ala_res_nos_un=[]; 

    if ~isempty(chn_ind) 

        res_nos=[]; 

        

res_nos=[res_nos,pdbstruct.Model(mod_cnt).Atom(chn

_ind).resSeq]'; %get residue numbers of 

ChainID|ALA 

        

ala_res_nos_un=unique(res_nos);                             

%find the unique residue numbers 

    end 

%     

A_total(1,ij,mod_cnt)=length(ala_res_nos_un); 
     

%     cmp_var = ala_res_nos_un(2:end); 

%     cmp_var = [cmp_var; -1]; 

%     diff = cmp_var - ala_res_nos_un; 

%     check_var = [find(diff==1), 

find(diff==1)+1]'; 

%     check_var = reshape(check_var, 

[size(check_var, 2)*2, 1]); 

%     check_var_u = unique(check_var); 

%     ala_res_nos_un = 

ala_res_nos_un(check_var_u); 

%      

    

AA_total(1,ij,mod_cnt)=length(ala_res_nos_un);                 

                    % 

    for 

jk=1:length(ala_res_nos_un)                             

% test all of ALA residues 

        

res_ind=find(res_nos==ala_res_nos_un(jk));                    

  %get the indeces of Chain|ALA(jk) 

% 
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        if (length(res_ind)>4) && 

(strcmp(pdbstruct.Model(mod_cnt).Atom(chn_ind(res_

ind(5))).AtomName,'CB'))   

            rcount=rcount+1; 

            ala_ind=ala_ind+1; 

            ala_chn_ind{1,ij}(ala_ind,1)=rcount; 

            resd_name=['ALA-

',chains(ij),num2str(ala_res_nos_un(jk)),']']; 

            %resd_name=['TYR-

',chains(ij),num2str(tyr_res_nos_un(jk)),']']; 

            AA(1,ij,mod_cnt)=AA(1,ij,mod_cnt)+1; 

% 

            tmpX=[]; 

            tmpY=[]; 

            tmpZ=[]; 

            

tmpX=[tmpX,pdbstruct.Model(mod_cnt).Atom(chn_ind(r

es_ind(5))).X]; 

            

tmpY=[tmpY,pdbstruct.Model(mod_cnt).Atom(chn_ind(r

es_ind(5))).Y]; 

            

tmpZ=[tmpZ,pdbstruct.Model(mod_cnt).Atom(chn_ind(r

es_ind(5))).Z]; 

            % check for surface atoms 

            [ surf_tst ] = 

surf_atom( [tmpX',tmpY',tmpZ'],[allX',allY',allZ']

); 

            % 
             

            if surf_tst==1 

                resd_name=['[*',resd_name]; 

            else 

                resd_name=['[',resd_name]; 

            end 

            REDOX_CHAIN{1,1}{rcount,1}=resd_name; 

            

REDOX_CHAIN{1,2}{rcount,1}=chn_ind(res_ind(5))'; 

        end 

% 
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    end 

end 

% 

% 

arg_chn_ind=cell(1,num_chains);                             

%cell array of ARG indeces for each chain 

% 

for ij=((mod_cnt-

1)*num_chains)+1:(mod_cnt)*num_chains 

    % 

    %   find ARG residues 

    % 

    

arg_ind=0;                                              % 

reset ARG index counter 

    % 

    

chn_ind=find(strcmp([chains(ij),'ARG'],atom_chn_re

s)>0); 

    %chn_ind=strfind(pdbstruct.Sequence(ij).Sequen

ce,'AA')'; 

% 

    arg_res_nos_un=[]; 

    if ~isempty(chn_ind) 

        res_nos=[]; 

        

res_nos=[res_nos,pdbstruct.Model(mod_cnt).Atom(chn

_ind).resSeq]'; %get residue numbers of 

ChainID|ARG 

        

arg_res_nos_un=unique(res_nos);                             

%find the unique residue numbers 

    end 

%     

A_total(2,ij,mod_cnt)=length(arg_res_nos_un);  

%      

%     cmp_var = arg_res_nos_un(2:end); 

%     cmp_var = [cmp_var; -1]; 

%     diff = cmp_var - arg_res_nos_un; 

%     check_var = [find(diff==1), 



193 

find(diff==1)+1]'; 

%     check_var = reshape(check_var, 

[size(check_var, 2)*2, 1]); 

%     check_var_u = unique(check_var); 

%     arg_res_nos_un = 

arg_res_nos_un(check_var_u); 
  
     

    

AA_total(2,ij,mod_cnt)=length(arg_res_nos_un);                 

                    % 

    for 

jk=1:length(arg_res_nos_un)                             

% test all of ARG residues 

        

res_ind=find(res_nos==arg_res_nos_un(jk));                    

  %get the indeces of Chain|ARG(jk) 

% 

        if (length(res_ind)>7)     % 8th atom:'NE', 

9th atom:'CZ', 10th atom:'NH1', 11th atom: 'NHZ') 

            rcount=rcount+1; 

            arg_ind=arg_ind+1; 

            arg_chn_ind{1,ij}(arg_ind,1)=rcount; 

            resd_name=['ARG-

',chains(ij),num2str(arg_res_nos_un(jk)),']']; 

            %resd_name=['TYR-

',chains(ij),num2str(tyr_res_nos_un(jk)),']']; 

            AA(2,ij,mod_cnt)=AA(2,ij,mod_cnt)+1; 

% 

            atms=min(11,length(res_ind)); 

            tmpX=[]; 

            tmpY=[]; 

            tmpZ=[]; 

            

tmpX=[tmpX,pdbstruct.Model(mod_cnt).Atom(chn_ind(r

es_ind(8:atms))).X]; 

            

tmpY=[tmpY,pdbstruct.Model(mod_cnt).Atom(chn_ind(r

es_ind(8:atms))).Y]; 
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tmpZ=[tmpZ,pdbstruct.Model(mod_cnt).Atom(chn_ind(r

es_ind(8:atms))).Z]; 

            % check for surface atoms 

            [ surf_tst ] = 

surf_atom( [tmpX',tmpY',tmpZ'],[allX',allY',allZ']

); 

            % 
             

            if surf_tst==1 

                resd_name=['[*',resd_name]; 

            else 

                resd_name=['[',resd_name]; 

            end 

            REDOX_CHAIN{1,1}{rcount,1}=resd_name; 

            

REDOX_CHAIN{1,2}{rcount,1}=chn_ind(res_ind(8:atms)

)'; 

        end 

% 

    end 

end 

% 
  

% 

 

• 

• 

• 

• 

• 

trp_chn_ind=cell(1,num_chains);                             

%cell array of TRP indeces for each chain 
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% 

for ij=((mod_cnt-

1)*num_chains)+1:(mod_cnt)*num_chains 

    % 

    %   find TRP residues 

    % 

    

trp_ind=0;                                              % 

reset TRP index counter 

    % 

    

chn_ind=find(strcmp([chains(ij),'TRP'],atom_chn_re

s)>0); 

    %chn_ind=strfind(pdbstruct.Sequence(ij).Sequen

ce,'AA')'; 

% 

    trp_res_nos_un=[]; 

    if ~isempty(chn_ind) 

        res_nos=[]; 

        

res_nos=[res_nos,pdbstruct.Model(mod_cnt).Atom(chn

_ind).resSeq]'; %get residue numbers of 

ChainID|TRP 

        

trp_res_nos_un=unique(res_nos);                             

%find the unique residue numbers 

    end 

%     

A_total(18,ij,mod_cnt)=length(trp_res_nos_un); 

%      

%     cmp_var = trp_res_nos_un(2:end); 

%     cmp_var = [cmp_var; -1]; 

%     diff = cmp_var - trp_res_nos_un; 

%     check_var = [find(diff==1), 

find(diff==1)+1]'; 

%     check_var = reshape(check_var, 

[size(check_var, 2)*2, 1]); 

%     check_var_u = unique(check_var); 

%     trp_res_nos_un = 

trp_res_nos_un(check_var_u); 
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AA_total(18,ij,mod_cnt)=length(trp_res_nos_un);                

                     % 

    for 

jk=1:length(trp_res_nos_un)                             

% test all of TRP residues 

        

res_ind=find(res_nos==trp_res_nos_un(jk));                    

  %get the indeces of Chain|TRP(jk) 

% 

        if (length(res_ind)>5) 

            rcount=rcount+1; 

            trp_ind=trp_ind+1; 

            trp_chn_ind{1,ij}(trp_ind,1)=rcount; 

            resd_name=['TRP-

',chains(ij),num2str(trp_res_nos_un(jk)),']']; 

            %resd_name=['TYR-

',chains(ij),num2str(tyr_res_nos_un(jk)),']']; 

            AA(18,ij,mod_cnt)=AA(18,ij,mod_cnt)+1; 

% 
  

            atms=min(14,length(res_ind)); 

            tmpX=[]; 

            tmpY=[]; 

            tmpZ=[]; 

            

tmpX=[tmpX,pdbstruct.Model(mod_cnt).Atom(chn_ind(r

es_ind(6:atms))).X]; 

            

tmpY=[tmpY,pdbstruct.Model(mod_cnt).Atom(chn_ind(r

es_ind(6:atms))).Y]; 

            

tmpZ=[tmpZ,pdbstruct.Model(mod_cnt).Atom(chn_ind(r

es_ind(6:atms))).Z]; 

            % check for surface atoms 

            [ surf_tst ] = 

surf_atom( [tmpX',tmpY',tmpZ'],[allX',allY',allZ']

); 
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            % 
             

            if surf_tst==1 

                resd_name=['[*',resd_name]; 

            else 

                resd_name=['[',resd_name]; 

            end 

            REDOX_CHAIN{1,1}{rcount,1}=resd_name; 

            

REDOX_CHAIN{1,2}{rcount,1}=chn_ind(res_ind(6:atms)

)'; 

        end 

% 

    end 

end 

% 
  

% 

tyr_chn_ind=cell(1,num_chains);                             

%cell array of TYR indeces for each chain 

% 

for ij=((mod_cnt-

1)*num_chains)+1:(mod_cnt)*num_chains 

    % 

    %   find TYR residues 

    % 

    

tyr_ind=0;                                              % 

reset TYR index counter 

    % 

    

chn_ind=find(strcmp([chains(ij),'TYR'],atom_chn_re

s)>0); 

    %chn_ind=strfind(pdbstruct.Sequence(ij).Sequen

ce,'AA')'; 

% 

    tyr_res_nos_un=[]; 

    if ~isempty(chn_ind) 

        res_nos=[]; 
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res_nos=[res_nos,pdbstruct.Model(mod_cnt).Atom(chn

_ind).resSeq]'; %get residue numbers of 

ChainID|TYR 

        

tyr_res_nos_un=unique(res_nos);                             

%find the unique residue numbers 

    end 

%     

A_total(19,ij,mod_cnt)=length(tyr_res_nos_un); 

%      

%     cmp_var = tyr_res_nos_un(2:end); 

%     cmp_var = [cmp_var; -1]; 

%     diff = cmp_var - tyr_res_nos_un; 

%     check_var = [find(diff==1), 

find(diff==1)+1]'; 

%     check_var = reshape(check_var, 

[size(check_var, 2)*2, 1]); 

%     check_var_u = unique(check_var); 

%     tyr_res_nos_un = 

tyr_res_nos_un(check_var_u); 
  
     

    

AA_total(19,ij,mod_cnt)=length(tyr_res_nos_un);                

                     % 

    for 

jk=1:length(tyr_res_nos_un)                             

% test all of TYR residues 

        

res_ind=find(res_nos==tyr_res_nos_un(jk));                   

   %get the indeces of Chain|TYR(jk) 

% 

        if (length(res_ind)>5) 

            rcount=rcount+1; 

            tyr_ind=tyr_ind+1; 

            tyr_chn_ind{1,ij}(tyr_ind,1)=rcount; 

            resd_name=['TYR-

',chains(ij),num2str(tyr_res_nos_un(jk)),']']; 

            %resd_name=['TYR-

',chains(ij),num2str(tyr_res_nos_un(jk)),']']; 
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            AA(19,ij,mod_cnt)=AA(19,ij,mod_cnt)+1; 

% 
  

            atms=min(12,length(res_ind)); 

            tmpX=[]; 

            tmpY=[]; 

            tmpZ=[]; 

            

tmpX=[tmpX,pdbstruct.Model(mod_cnt).Atom(chn_ind(r

es_ind(6:atms))).X]; 

            

tmpY=[tmpY,pdbstruct.Model(mod_cnt).Atom(chn_ind(r

es_ind(6:atms))).Y]; 

            

tmpZ=[tmpZ,pdbstruct.Model(mod_cnt).Atom(chn_ind(r

es_ind(6:atms))).Z]; 

            % check for surface atoms 

            [ surf_tst ] = 

surf_atom( [tmpX',tmpY',tmpZ'],[allX',allY',allZ']

); 

            % 
             

            if surf_tst==1 

                resd_name=['[*',resd_name]; 

            else 

                resd_name=['[',resd_name]; 

            end 

            REDOX_CHAIN{1,1}{rcount,1}=resd_name; 

            

REDOX_CHAIN{1,2}{rcount,1}=chn_ind(res_ind(6:atms)

)'; 

        end 

% 

    end 

end 

% 
  

% 

val_chn_ind=cell(1,num_chains);                             

%cell array of VAL indeces for each chain 
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% 

for ij=((mod_cnt-

1)*num_chains)+1:(mod_cnt)*num_chains 

    % 

    %   find VAL residues 

    % 

    

val_ind=0;                                              % 

reset VAL index counter 

    % 

    

chn_ind=find(strcmp([chains(ij),'VAL'],atom_chn_re

s)>0); 

    %chn_ind=strfind(pdbstruct.Sequence(ij).Sequen

ce,'AA')'; 

% 

    val_res_nos_un=[]; 

    if ~isempty(chn_ind) 

        res_nos=[]; 

        

res_nos=[res_nos,pdbstruct.Model(mod_cnt).Atom(chn

_ind).resSeq]'; %get residue numbers of 

ChainID|VAL 

        

val_res_nos_un=unique(res_nos);                             

%find the unique residue numbers 

    end 

%     

A_total(20,ij,mod_cnt)=length(val_res_nos_un); 

%      

%      

%     cmp_var = val_res_nos_un(2:end); 

%     cmp_var = [cmp_var; -1]; 

%     diff = cmp_var - val_res_nos_un; 

%     check_var = [find(diff==1), 

find(diff==1)+1]'; 

%     check_var = reshape(check_var, 

[size(check_var, 2)*2, 1]); 

%     check_var_u = unique(check_var); 

%     val_res_nos_un = 
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val_res_nos_un(check_var_u); 
  
     

    

AA_total(20,ij,mod_cnt)=length(val_res_nos_un);                

                     % 

    for 

jk=1:length(val_res_nos_un)                             

% test all of VAL residues 

        

res_ind=find(res_nos==val_res_nos_un(jk));                   

   %get the indeces of Chain|VAL(jk) 

% 

        if (length(res_ind)>5) 

            rcount=rcount+1; 

            val_ind=val_ind+1; 

            val_chn_ind{1,ij}(val_ind,1)=rcount; 

            resd_name=['VAL-

',chains(ij),num2str(val_res_nos_un(jk)),']']; 

            %resd_name=['TYR-

',chains(ij),num2str(tyr_res_nos_un(jk)),']']; 

            AA(20,ij,mod_cnt)=AA(20,ij,mod_cnt)+1; 

% 
  

            atms=min(7,length(res_ind)); 

            tmpX=[]; 

            tmpY=[]; 

            tmpZ=[]; 

            

tmpX=[tmpX,pdbstruct.Model(mod_cnt).Atom(chn_ind(r

es_ind(6:atms))).X]; 

            

tmpY=[tmpY,pdbstruct.Model(mod_cnt).Atom(chn_ind(r

es_ind(6:atms))).Y]; 

            

tmpZ=[tmpZ,pdbstruct.Model(mod_cnt).Atom(chn_ind(r

es_ind(6:atms))).Z]; 

            % check for surface atoms 

            [ surf_tst ] = 

surf_atom( [tmpX',tmpY',tmpZ'],[allX',allY',allZ']
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); 

            % 
             

            if surf_tst==1 

                resd_name=['[*',resd_name]; 

            else 

                resd_name=['[',resd_name]; 

            end 

            REDOX_CHAIN{1,1}{rcount,1}=resd_name; 

            

REDOX_CHAIN{1,2}{rcount,1}=chn_ind(res_ind(6:atms)

)'; 

        end 

% 

    end 

end 

% 
  

end               %end the model counting loop 

% 

% Now generate the distance matrix, DIST; 

% 

%    new algorithm 

% 

DIST=zeros( sum(sum(sum(AA))), 

sum(sum(sum(AA))) ); 

% 

% 

jk_cnt=0; 

% 

for mod_cnt1=1:models 

% 

% 

    for jk=1:sum(sum(AA(:,:,mod_cnt1))) 

        jk_cnt=jk_cnt+1; 

        kl_cnt=0; 

        atms1=length(REDOX_CHAIN{1,2}{jk_cnt}); 

    % 

        

test_X=[pdbstruct.Model(mod_cnt1).Atom(REDOX_CHAIN
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{1,2}{jk_cnt}).X]; 

        

test_Y=[pdbstruct.Model(mod_cnt1).Atom(REDOX_CHAIN

{1,2}{jk_cnt}).Y]; 

        

test_Z=[pdbstruct.Model(mod_cnt1).Atom(REDOX_CHAIN

{1,2}{jk_cnt}).Z]; 

        % 

        for mod_cnt2=1:models 

            % 

            for kl=1:sum(sum(AA(:,:,mod_cnt2))) 

                kl_cnt=kl_cnt+1; 

    % 

                

atms2=length(REDOX_CHAIN{1,2}{kl_cnt}); 

    % 

                Amat_X=((test_X'*ones(1,atms2))-

(ones(atms1,1)*[pdbstruct.Model(mod_cnt2).Atom(RED

OX_CHAIN{1,2}{kl_cnt}).X])).^2; 

                Amat_Y=((test_Y'*ones(1,atms2))-

(ones(atms1,1)*[pdbstruct.Model(mod_cnt2).Atom(RED

OX_CHAIN{1,2}{kl_cnt}).Y])).^2; 

                Amat_Z=((test_Z'*ones(1,atms2))-

(ones(atms1,1)*[pdbstruct.Model(mod_cnt2).Atom(RED

OX_CHAIN{1,2}{kl_cnt}).Z])).^2; 

    % 

                Amat_XYZ=sqrt(Amat_X+Amat_Y+Amat_Z); 

                dist=min(min(Amat_XYZ)); 

    % 
     

                DIST(jk_cnt,kl_cnt)=min(min(dist)); 

    %        end 

    % 

            end 

        end 

    end 

% 

end             %end the model counting loop 

% 

% 
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tmp=ones( sum(sum(sum(AA))), sum(sum(sum(AA))) ); 

%V=1:sum(sum(sum(YWMFHCTS)))+1:(sum(sum(sum(YWMFHC

TS))))^2; 

%tmp(V)=0; 

tmp=tril(tmp,-1); 

DIST=DIST./tmp;     % put Inf along and above the 

main diagonal 

indy= DIST>cutoff2; 

   % put Inf at all places where distance > cutoff 

DIST(indy)=Inf; 

indy= DIST==cutoff; 

DIST(indy)=Inf; 

indy= DIST<cutoff; 

DIST(indy)=Inf; 

% 

% 

if isempty(REDOX_CHAIN{1}) 

    fprintf(' No residues') 

    AA_pairs=zeros(20,5);     % OUTPUT RESULT 

    fclose('all'); 

    return     

end 

%     

K=strfind(REDOX_CHAIN{1},'ALA');   % compare all 

residues to ALA 

A_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'ARG');   % compare all 

residues to ARG 

R_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'ASN');   % compare all 

residues to ASN 

N_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'ASP');   % compare all 
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residues to ASP 

D_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'CYS');   % compare all 

residues to CYS 

C_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'GLU');   % compare all 

residues to GLU 

E_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'GLN');   % compare all 

residues to GLN 

Q_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'GLY');   % compare all 

residues to GLY 

G_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'HIS');   % compare all 

residues to HIS 

H_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'ILE');   % compare all 

residues to Ile 

I_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'LEU');   % compare all 

residues to Leu 

L_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'LYS');   % compare all 
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residues to Lys 

K_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'MET');   % compare all 

residues to Met 

M_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'PHE');   % compare all 

residues to Phe 

F_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'PRO');   % compare all 

residues to PRO 

P_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'SER');   % compare all 

residues to SER 

S_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'THR');   % compare all 

residues to THR 

T_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'TRP');   % compare all 

residues to TRP 

W_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'TYR');   % compare all 

residues to TYR 

Y_ind=find(cellfun(@isempty,K)==0); 

% 

% 

K=strfind(REDOX_CHAIN{1},'VAL');   % compare all 
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residues to VAL 

V_ind=find(cellfun(@isempty,K)==0); 

% 

% 
  

DISTA=DIST(A_ind,A_ind)./tril(ones(length(A_ind)),

-1); 

DISTR=DIST(R_ind,R_ind)./tril(ones(length(R_ind)),

-1); 

DISTN=DIST(N_ind,N_ind)./tril(ones(length(N_ind)),

-1); 

DISTD=DIST(D_ind,D_ind)./tril(ones(length(D_ind)),

-1); 

DISTC=DIST(C_ind,C_ind)./tril(ones(length(C_ind)),

-1); 

DISTE=DIST(E_ind,E_ind)./tril(ones(length(E_ind)),

-1); 

DISTQ=DIST(Q_ind,Q_ind)./tril(ones(length(Q_ind)),

-1); 

DISTG=DIST(G_ind,G_ind)./tril(ones(length(G_ind)),

-1); 

DISTH=DIST(H_ind,H_ind)./tril(ones(length(H_ind)),

-1); 

DISTI=DIST(I_ind,I_ind)./tril(ones(length(I_ind)),

-1); 

DISTL=DIST(L_ind,L_ind)./tril(ones(length(L_ind)),

-1); 

DISTK=DIST(K_ind,K_ind)./tril(ones(length(K_ind)),

-1); 

DISTM=DIST(M_ind,M_ind)./tril(ones(length(M_ind)),

-1); 

DISTF=DIST(F_ind,F_ind)./tril(ones(length(F_ind)),

-1); 

DISTP=DIST(P_ind,P_ind)./tril(ones(length(P_ind)),

-1); 

DISTS=DIST(S_ind,S_ind)./tril(ones(length(S_ind)),

-1); 

DISTT=DIST(T_ind,T_ind)./tril(ones(length(T_ind)),

-1); 

DISTW=DIST(W_ind,W_ind)./tril(ones(length(W_ind)),
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-1); 

DISTY=DIST(Y_ind,Y_ind)./tril(ones(length(Y_ind)),

-1); 

DISTV=DIST(V_ind,V_ind)./tril(ones(length(V_ind)),

-1); 
  
  

tmp=sum(sum(AA_total,3),2); 

tmp=[tmp;zeros(0,1)]; 

AA_pairs(:,6)=tmp;     % put total number of each 

residue in seq pairs in column 6 
  

% tmp=sum(sum(A_total,3),2); 

% tmp=[tmp;zeros(0,1)]; 

% AA_pairs(:,5)=tmp;     % put total number of 

each residue in column 5 
  

AA_string={}; 

str_cnt=0; 

% 

str_cnt=str_cnt+1;    

AA_string{str_cnt,1}=[pdb_id,': 

',num2str(cutoff),' ? cutoff distance']; 

tmp='  '; 

str_cnt=str_cnt+1;    

AA_string{str_cnt,1}=tmp; 

% 

% 

[I,J]=find(isfinite(DISTA)&(DISTA>0)); 

tmp='ALA-ALA:'; 

str_cnt=str_cnt+1; 

str_cnt2=1;  

AA_string{str_cnt,1}=tmp; 

if ~isempty(I) 

    for lpY=1:length(I) 

        tmp=[REDOX_CHAIN{1,1}{A_ind(I(lpY)),1},'-

',REDOX_CHAIN{1,1}{A_ind(J(lpY)),1},': 

',num2str(DISTA(I(lpY),J(lpY))),' ?'];    

%         if 

REDOX_CHAIN{1,1}{A_ind(I(lpY)),1}(2)=='*' 

%            chain_name = 
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REDOX_CHAIN{1,1}{A_ind(I(lpY)),1}(7); 

%            chain_num = 

REDOX_CHAIN{1,1}{A_ind(I(lpY)),1}(8:end-1); 

%         else 

%            chain_name = 

REDOX_CHAIN{1,1}{A_ind(I(lpY)),1}(6); 

%            chain_num = 

REDOX_CHAIN{1,1}{A_ind(I(lpY)),1}(7:end-1); 

%         end 

%         chain_num = str2num(chain_num); 

%  

%         if 

REDOX_CHAIN{1,1}{A_ind(J(lpY)),1}(2)=='*' 

%            chain_name2 = 

REDOX_CHAIN{1,1}{A_ind(J(lpY)),1}(7); 

%            chain_num2 = 

REDOX_CHAIN{1,1}{A_ind(J(lpY)),1}(8:end-1); 

%         else 

%            chain_name2 = 

REDOX_CHAIN{1,1}{A_ind(J(lpY)),1}(6); 

%            chain_num2 = 

REDOX_CHAIN{1,1}{A_ind(J(lpY)),1}(7:end-1); 

%         end 

%         chain_num2 = str2num(chain_num2); 

%         if (chain_name == chain_name2) && 

(abs(chain_num2 - chain_num) == 1) 
         

            str_cnt=str_cnt+1;    

            AA_string{str_cnt,1}=tmp;   
             

            tmp=[REDOX_CHAIN{1,1}{A_ind(I(lpY)),1}];   

            A_string{str_cnt2,1}=tmp; 

            str_cnt2=str_cnt2+1;  

            tmp=[REDOX_CHAIN{1,1}{A_ind(J(lpY)),1}]; 

            A_string{str_cnt2,1}=tmp; 

            str_cnt2=str_cnt2+1;  
             

            

indy1=strfind(REDOX_CHAIN{1}{A_ind(I(lpY)),1},'*')

; 



210 

            

indy2=strfind(REDOX_CHAIN{1}{A_ind(J(lpY)),1},'*')

; 

            if ~isempty(indy1)&&~isempty(indy2) 

                AA_pairs(1,3)=AA_pairs(1,3)+1; 

            elseif ~isempty(indy1)||~isempty(indy2) 

                AA_pairs(1,2)=AA_pairs(1,2)+1; 

            else 

                AA_pairs(1,1)=AA_pairs(1,1)+1; 

            end 

%         end 

    end 

% 

end 
  

% A_string_value=strfind(A_string(4,1),'ALA');  

if contains(AA_string{str_cnt,1},'ALA-ALA:')==1 

    AA_pairs(1,4)=0; 

elseif contains(A_string{1,1},'ALA')==1 

    

A_number_as_pair=unique(cellfun(@num2str,A_string,

'uni',false)); 

    AA_pairs(1,4)=length(A_number_as_pair); 

    A_surf=count(A_number_as_pair, '*'); 

    AA_pairs(1,5)=sum(A_surf); 

end 
  

    % 

A_number_as_pair=cell2table(A_number_as_pair); 

    % 

AA_pairs(1,4)=length(unique(A_number_as_pair, 

'rows')); 
  

tmp='  '; 

str_cnt=str_cnt+1;    

AA_string{str_cnt,1}=tmp; 

% 

% 

[I,J]=find(isfinite(DISTR)&(DISTR>0)); 

tmp='ARG-ARG:'; 
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str_cnt2=1;  

str_cnt=str_cnt+1;    

AA_string{str_cnt,1}=tmp; 

if ~isempty(I) 

    for lpY=1:length(I) 

        tmp=[REDOX_CHAIN{1,1}{R_ind(I(lpY)),1},'-

',REDOX_CHAIN{1,1}{R_ind(J(lpY)),1},': 

',num2str(DISTR(I(lpY),J(lpY))),' ?']; 

%         if 

REDOX_CHAIN{1,1}{R_ind(I(lpY)),1}(2)=='*' 

%            chain_name = 

REDOX_CHAIN{1,1}{R_ind(I(lpY)),1}(7); 

%            chain_num = 

REDOX_CHAIN{1,1}{R_ind(I(lpY)),1}(8:end-1); 

%         else 

%            chain_name = 

REDOX_CHAIN{1,1}{R_ind(I(lpY)),1}(6); 

%            chain_num = 

REDOX_CHAIN{1,1}{R_ind(I(lpY)),1}(7:end-1); 

%         end 

%         chain_num = str2num(chain_num); 

%  

%         if 

REDOX_CHAIN{1,1}{R_ind(J(lpY)),1}(2)=='*' 

%            chain_name2 = 

REDOX_CHAIN{1,1}{R_ind(J(lpY)),1}(7); 

%            chain_num2 = 

REDOX_CHAIN{1,1}{R_ind(J(lpY)),1}(8:end-1); 

%         else 

%            chain_name2 = 

REDOX_CHAIN{1,1}{R_ind(J(lpY)),1}(6); 

%            chain_num2 = 

REDOX_CHAIN{1,1}{R_ind(J(lpY)),1}(7:end-1); 

%         end 

%         chain_num2 = str2num(chain_num2); 

%         if (chain_name == chain_name2) && 

(abs(chain_num2 - chain_num) == 1) 
         

            str_cnt=str_cnt+1;    

            AA_string{str_cnt,1}=tmp; 
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            tmp=[REDOX_CHAIN{1,1}{R_ind(I(lpY)),1}];   

            R_string{str_cnt2,1}=tmp; 

            str_cnt2=str_cnt2+1;  

            tmp=[REDOX_CHAIN{1,1}{R_ind(J(lpY)),1}]; 

            R_string{str_cnt2,1}=tmp; 

            str_cnt2=str_cnt2+1;  

    %        

            

indy1=strfind(REDOX_CHAIN{1}{R_ind(I(lpY)),1},'*')

; 

            

indy2=strfind(REDOX_CHAIN{1}{R_ind(J(lpY)),1},'*')

; 

            if ~isempty(indy1)&&~isempty(indy2) 

                AA_pairs(2,3)=AA_pairs(2,3)+1; 

            elseif ~isempty(indy1)||~isempty(indy2) 

                AA_pairs(2,2)=AA_pairs(2,2)+1; 

            else 

                AA_pairs(2,1)=AA_pairs(2,1)+1; 

            end 

%         end 

    end 

% 

end 
  

if contains(AA_string{str_cnt,1},'ARG-ARG:')==1 

    AA_pairs(2,4)=0; 

elseif contains(R_string{1,1},'ARG')==1 

    

R_number_as_pair=unique(cellfun(@num2str,R_string,

'uni',false)); 

    AA_pairs(2,4)=length(R_number_as_pair); 

    R_surf=count(R_number_as_pair, '*'); 

    AA_pairs(2,5)=sum(R_surf); 

end 
  

tmp='  '; 

str_cnt=str_cnt+1;    

AA_string{str_cnt,1}=tmp; 
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% 

%  end 

% 

• 

• 

• 

• 

• 

[I,J]=find(isfinite(DISTW)&(DISTW>0)); 

tmp='TRP-TRP:'; 

str_cnt2=1; 

str_cnt=str_cnt+1;    

AA_string{str_cnt,1}=tmp; 

if ~isempty(I) 

    for lpY=1:length(I) 

        tmp=[REDOX_CHAIN{1,1}{W_ind(I(lpY)),1},'-

',REDOX_CHAIN{1,1}{W_ind(J(lpY)),1},': 

',num2str(DISTW(I(lpY),J(lpY))),' ?']; 

%         if 

REDOX_CHAIN{1,1}{W_ind(I(lpY)),1}(2)=='*' 

%            chain_name = 

REDOX_CHAIN{1,1}{W_ind(I(lpY)),1}(7); 

%            chain_num = 

REDOX_CHAIN{1,1}{W_ind(I(lpY)),1}(8:end-1); 

%         else 

%            chain_name = 

REDOX_CHAIN{1,1}{W_ind(I(lpY)),1}(6); 

%            chain_num = 

REDOX_CHAIN{1,1}{W_ind(I(lpY)),1}(7:end-1); 

%         end 

%         chain_num = str2num(chain_num); 

%  

%         if 
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REDOX_CHAIN{1,1}{W_ind(J(lpY)),1}(2)=='*' 

%            chain_name2 = 

REDOX_CHAIN{1,1}{W_ind(J(lpY)),1}(7); 

%            chain_num2 = 

REDOX_CHAIN{1,1}{W_ind(J(lpY)),1}(8:end-1); 

%         else 

%            chain_name2 = 

REDOX_CHAIN{1,1}{W_ind(J(lpY)),1}(6); 

%            chain_num2 = 

REDOX_CHAIN{1,1}{W_ind(J(lpY)),1}(7:end-1); 

%         end 

%         chain_num2 = str2num(chain_num2); 

%         if (chain_name == chain_name2) && 

(abs(chain_num2 - chain_num) == 1) 
         

            str_cnt=str_cnt+1;    

            AA_string{str_cnt,1}=tmp; 
             

            tmp=[REDOX_CHAIN{1,1}{W_ind(I(lpY)),1}];   

            W_string{str_cnt2,1}=tmp; 

            str_cnt2=str_cnt2+1;  

            tmp=[REDOX_CHAIN{1,1}{W_ind(J(lpY)),1}]; 

            W_string{str_cnt2,1}=tmp; 

            str_cnt2=str_cnt2+1;  

    % 

            

indy1=strfind(REDOX_CHAIN{1}{W_ind(I(lpY)),1},'*')

; 

            

indy2=strfind(REDOX_CHAIN{1}{W_ind(J(lpY)),1},'*')

; 

            if ~isempty(indy1)&&~isempty(indy2) 

                AA_pairs(18,3)=AA_pairs(18,3)+1; 

            elseif ~isempty(indy1)||~isempty(indy2) 

                AA_pairs(18,2)=AA_pairs(18,2)+1; 

            else 

                AA_pairs(18,1)=AA_pairs(18,1)+1; 

            end 

%         end 

    end 
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% 

end 
  

if contains(AA_string{str_cnt,1},'TRP-TRP:')==1 

    AA_pairs(18,4)=0; 

elseif contains(W_string{1,1},'TRP')==1 

    

W_number_as_pair=unique(cellfun(@num2str,W_string,

'uni',false)); 

    AA_pairs(18,4)=length(W_number_as_pair); 

    W_surf=count(W_number_as_pair, '*'); 

    AA_pairs(18,5)=sum(W_surf); 

end 
  

tmp='  '; 

str_cnt=str_cnt+1;    

AA_string{str_cnt,1}=tmp; 

% 

%  end 

% 
  

[I,J]=find(isfinite(DISTY)&(DISTY>0)); 

tmp='TYR-TYR:'; 

str_cnt2=1; 

str_cnt=str_cnt+1;    

AA_string{str_cnt,1}=tmp; 

if ~isempty(I) 

    for lpY=1:length(I) 

        tmp=[REDOX_CHAIN{1,1}{Y_ind(I(lpY)),1},'-

',REDOX_CHAIN{1,1}{Y_ind(J(lpY)),1},': 

',num2str(DISTY(I(lpY),J(lpY))),' ?']; 

%         if 

REDOX_CHAIN{1,1}{Y_ind(I(lpY)),1}(2)=='*' 

%            chain_name = 

REDOX_CHAIN{1,1}{Y_ind(I(lpY)),1}(7); 

%            chain_num = 

REDOX_CHAIN{1,1}{Y_ind(I(lpY)),1}(8:end-1); 

%         else 

%            chain_name = 

REDOX_CHAIN{1,1}{Y_ind(I(lpY)),1}(6); 
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%            chain_num = 

REDOX_CHAIN{1,1}{Y_ind(I(lpY)),1}(7:end-1); 

%         end 

%         chain_num = str2num(chain_num); 

%  

%         if 

REDOX_CHAIN{1,1}{Y_ind(J(lpY)),1}(2)=='*' 

%            chain_name2 = 

REDOX_CHAIN{1,1}{Y_ind(J(lpY)),1}(7); 

%            chain_num2 = 

REDOX_CHAIN{1,1}{Y_ind(J(lpY)),1}(8:end-1); 

%         else 

%            chain_name2 = 

REDOX_CHAIN{1,1}{Y_ind(J(lpY)),1}(6); 

%            chain_num2 = 

REDOX_CHAIN{1,1}{Y_ind(J(lpY)),1}(7:end-1); 

%         end 

%         chain_num2 = str2num(chain_num2); 

%         if (chain_name == chain_name2) && 

(abs(chain_num2 - chain_num) == 1) 
         

            str_cnt=str_cnt+1;    

            AA_string{str_cnt,1}=tmp; 
             

            tmp=[REDOX_CHAIN{1,1}{Y_ind(I(lpY)),1}];   

            Y_string{str_cnt2,1}=tmp; 

            str_cnt2=str_cnt2+1;  

            tmp=[REDOX_CHAIN{1,1}{Y_ind(J(lpY)),1}]; 

            Y_string{str_cnt2,1}=tmp; 

            str_cnt2=str_cnt2+1;  

    % 

            

indy1=strfind(REDOX_CHAIN{1}{Y_ind(I(lpY)),1},'*')

; 

            

indy2=strfind(REDOX_CHAIN{1}{Y_ind(J(lpY)),1},'*')

; 

            if ~isempty(indy1)&&~isempty(indy2) 

                AA_pairs(19,3)=AA_pairs(19,3)+1; 

            elseif ~isempty(indy1)||~isempty(indy2) 
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                AA_pairs(19,2)=AA_pairs(19,2)+1; 

            else 

                AA_pairs(19,1)=AA_pairs(19,1)+1; 

            end 

%         end 

    end 

% 

end 
  

if contains(AA_string{str_cnt,1},'TYR-TYR:')==1 

    AA_pairs(19,4)=0; 

elseif contains(Y_string{1,1},'TYR')==1 

    

Y_number_as_pair=unique(cellfun(@num2str,Y_string,

'uni',false)); 

    AA_pairs(19,4)=length(Y_number_as_pair); 

    Y_surf=count(Y_number_as_pair, '*'); 

    AA_pairs(19,5)=sum(Y_surf); 

end 
  

tmp='  '; 

str_cnt=str_cnt+1;    

AA_string{str_cnt,1}=tmp; 

% 

%  end 

% 
  

[I,J]=find(isfinite(DISTV)&(DISTV>0)); 

tmp='VAL-VAL:'; 

str_cnt2=1; 

str_cnt=str_cnt+1;    

AA_string{str_cnt,1}=tmp; 

if ~isempty(I) 

    for lpY=1:length(I) 

        tmp=[REDOX_CHAIN{1,1}{V_ind(I(lpY)),1},'-

',REDOX_CHAIN{1,1}{V_ind(J(lpY)),1},': 

',num2str(DISTV(I(lpY),J(lpY))),' ?']; 

%         if 

REDOX_CHAIN{1,1}{V_ind(I(lpY)),1}(2)=='*' 

%            chain_name = 
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REDOX_CHAIN{1,1}{V_ind(I(lpY)),1}(7); 

%            chain_num = 

REDOX_CHAIN{1,1}{V_ind(I(lpY)),1}(8:end-1); 

%         else 

%            chain_name = 

REDOX_CHAIN{1,1}{V_ind(I(lpY)),1}(6); 

%            chain_num = 

REDOX_CHAIN{1,1}{V_ind(I(lpY)),1}(7:end-1); 

%         end 

%         chain_num = str2num(chain_num); 

%  

%         if 

REDOX_CHAIN{1,1}{V_ind(J(lpY)),1}(2)=='*' 

%            chain_name2 = 

REDOX_CHAIN{1,1}{V_ind(J(lpY)),1}(7); 

%            chain_num2 = 

REDOX_CHAIN{1,1}{V_ind(J(lpY)),1}(8:end-1); 

%         else 

%            chain_name2 = 

REDOX_CHAIN{1,1}{V_ind(J(lpY)),1}(6); 

%            chain_num2 = 

REDOX_CHAIN{1,1}{V_ind(J(lpY)),1}(7:end-1); 

%         end 

%         chain_num2 = str2num(chain_num2); 

%         if (chain_name == chain_name2) && 

(abs(chain_num2 - chain_num) == 1) 
         

            str_cnt=str_cnt+1;    

            AA_string{str_cnt,1}=tmp; 
             

            tmp=[REDOX_CHAIN{1,1}{V_ind(I(lpY)),1}];   

            V_string{str_cnt2,1}=tmp; 

            str_cnt2=str_cnt2+1;  

            tmp=[REDOX_CHAIN{1,1}{V_ind(J(lpY)),1}]; 

            V_string{str_cnt2,1}=tmp; 

            str_cnt2=str_cnt2+1;  

    % 

            

indy1=strfind(REDOX_CHAIN{1}{V_ind(I(lpY)),1},'*')

; 
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indy2=strfind(REDOX_CHAIN{1}{V_ind(J(lpY)),1},'*')

; 

            if ~isempty(indy1)&&~isempty(indy2) 

                AA_pairs(20,3)=AA_pairs(20,3)+1; 

            elseif ~isempty(indy1)||~isempty(indy2) 

                AA_pairs(20,2)=AA_pairs(20,2)+1; 

            else 

                AA_pairs(20,1)=AA_pairs(20,1)+1; 

            end 

%         end 

    end 
  

if contains(AA_string{str_cnt,1},'VAL-VAL:')==1 

    AA_pairs(20,4)=0; 

elseif contains(V_string{1,1},'VAL')==1 

    

V_number_as_pair=unique(cellfun(@num2str,V_string,

'uni',false)); 

    AA_pairs(20,4)=length(V_number_as_pair); 

    V_surf=count(V_number_as_pair, '*'); 

    AA_pairs(20,5)=sum(V_surf); 

end 
  

% 

% end 

% tmp='  '; 

% str_cnt=str_cnt+1;    

% AA_string{str_cnt,1}=tmp; 

% 

%  end 

% 

% 

end 

% 

%  

filename=[pname,'mat\',pdb_id,'_AA_pairs_struct_0_

5.mat']; 

save(filename,'pdb_id','cutoff','AA_pairs','AA_str

ing'); 
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% 

delete('C:\Users\Jieun 

Shin\Desktop\bioinf\pub\pdb\data\biounit\coordinat

es\all\*.gz') 

end 

 


