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ABSTRACT

Boundary layers are everywhere and computing direct numerical simulations (DNS)
of them is crucial for drag reduction. However, traditional DNS of flat-plate bound-
ary layers are prohibitively expensive. Due to the streamwise inhomogeneity of the
boundary layer, simulations of spatially growing boundary layer simulations require
long domains and long convergence times. Current methods to overcome stream-
wise inhomogeneity (and allow for shorter streamwise domains) either suffer from
a lack of stationarity or have difficult numerical implementation. The goal of this
thesis is to develop and validate a more efficient method for simulating boundary
layers that will be both statistically stationary and streamwise homogeneous.

The current methodology is developed and validated for the flat plate, zero pressure
gradient, incompressible boundary layer. The Navier-Stokes equations are rescaled
by a boundary layer thickness to produce a new set of governing equations that resem-
ble the original Navier-Stokes equations with additional source terms. Streamwise
homogeneity and statistical stationarity are verified through non-periodic and peri-
odic simulations, respectively. To test the accuracy of the methodology, a sweep
of Reynolds number simulations is conducted in streamwise periodic domains for
𝑅𝑒𝛿∗ = 1460 − 5650. The global quantities show excellent agreement with estab-
lished empirical values: the computed shape factor and skin friction coefficient for
all cases are within 3% and 1% of empirical values, respectively. Furthermore, to
obtain accurate two-point correlations, it is sufficient to have a computational do-
main of length 14𝛿99 and width 5𝛿99, thus, leading to large computational savings by
one-to-two orders of magnitude. This translates into increasing the largest possible
Reynolds number one could simulate by about a factor of 3.

Thanks to the streamwise homogeneous nature of the simulation results, it is now
possible to apply cost-efficient data-driven techniques like spectral proper orthogonal
decomposition (SPOD; Towne et al. 2018) to extract turbulent structures. Particular
emphasis is place on identifying structures for waves in the inner and outer layers.
To interpret these structures, 1D resolvent analysis (McKeon & Sharma 2010) is
leveraged. The peak location for the extracted inner wave is captured by traditional
resolvent analysis, assuming a parallel flow. However, the peak location for the
extracted outer wave differs from that predicted by the classic 1D resolvent analysis
by 20%. Recovering the peak location requires including in the resolvent operator
the mean wall-normal velocity profile and the streamwise growth of the boundary
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layer.

This methodology has natural extensions to slowly growing boundary layer flows,
including thermal boundary layers, rough wall boundary layers and mild pressure
gradient flows.
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C h a p t e r 1

INTRODUCTION

1.1 Background
It would be little exaggeration to say that climate change and environmental sustain-
ability may well be one of the defining problems of the century. With increasing
air tourism, and the fact that the aviation industry contributes at minimum 2% [1]
of the total CO2 emissions globally, efficiency in air travel plays an important role
in reduction of greenhouse gas emissions. While there are concerted efforts to dis-
cover and implement alternative fuels, in the mean time, drag reduction, especially
for aircrafts, remains a key component of carbon reduction strategies. It is also in
direct alignment with the financial interests of aviation industries. Fuel costs make
up nearly 15-20% [2] of total costs for aircrafts and even a 10% difference in fuel
efficiency can result in millions of dollars saved. Minimizing drag will always serve
as a key motivator for increased study into wall-bounded flows.

But what causes drag to begin with? Drag is proportional to the shear stress at the
wall

𝜏𝑤 = 𝜇
𝜕𝑢1

𝜕𝑥2
|𝑥2=0 (1.1)

where 𝜏𝑤 is the wall shear stress, 𝜇 the kinematic viscosity of the fluid, 𝑢1, the
ensemble averaged streamwise velocity component, and 𝑥2 is the wall-normal lo-
cation centered at the wall. From an inspection of this equation, one finds that the
critical aspect to drag is the mean velocity gradients at the wall. Because fluids are
capable of undergoing near infinite amounts of shear, effectively being capable of
sticking to a surface (called the no slip condition), a continuous velocity gradient is
induced between the free-stream and the surface. Strong gradients lead to stronger
skin friction. These gradients are strongly intensified by orders of magnitude as
the boundary layer transitions from a laminar regime to fully developed turbulence.
Throughout the years, creative designs to reduce drag have been tested, whether
through variated roughness on the wall, linear control of wall-normal jets, or other
changes to wall conditions [3–5]. These methods have been shown to decrease drag
from as little as 5% and even up to 20% under various conditions [4]. Unfortunately,
such methods are often either Reynolds number-specific or dependent on other con-
ditions such as pre-existing pressure gradients and wall curvature. Reducing drag
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on ship freighters has been shown to potentially reduce fuel usage by over 20%, [5]
and there is potential for similar gains for commercial aircrafts as well.

1.1.1 The zero-pressure gradient boundary layer
Boundary layers develop in many complex conditions and are highly sensitive to
(1) heat transfer effects, (2) pressure gradients, and (3) roughness. Each of these
variables provides yet another dimension that compounds the difficulty in simulating
the flow. Naturally, the most fundamental turbulent boundary layer studied is that
of the incompressible zero-pressure gradient smooth flat plate turbulent boundary
layer (IZPGSFPTBL). However, even the study of the most fundamental boundary
layer remains difficult due to one key feature: streamwise inhomogeneity.

Streamwise inhomogeneity remains the key roadblock especially for numerical sim-
ulations of boundary layer flow. Provided this hurdle is overcome, simulations with
heat transfer, pressure gradients, and roughness will be more forthcoming. Con-
sequently, this thesis will focus on developing and validating methods specifically
for overcoming streamwise inhomogeneity effects in IZPGSFPTBL as a proof-of-
concept. Descriptions are given in Chapter 6 (the conclusion) for how one can use
this method to potentially include heat transfer, pressure gradient, and roughness
effects.

But what about streamwise inhomogeneity makes boundary layer study so diffi-
cult? To answer this question, we must first describe boundary layer flows’ nearest
fundamental relative: channel flows.

Channel flows are flows between two infinite, parallel flat plates, driven by a stream-
wise pressure gradient. They share similarities with boundary layers in that near
the wall, there is a thin layer of high shear due to the "no slip" condition mentioned
previously. The key distinction is that canonical channel flows are statistically
homogeneous in the streamwise direction, usually interpreted analytically and in-
corporated in simulations as streamwise periodic boundary conditions. This simple
observation reduces several of the complexities of the governing equations. Channel
flows are also fully internal flows and so boundary conditions can often be more
conveniently specified than for external flows.

The analogy between channel and boundary layer flows near the wall is often
tantalizingly good. The mean streamwise velocity profiles even share many of
the same features: a near-wall viscous sublayer, a logarithmically growing mean
velocity (known as the log layer), and then a wake far from the wall. In the inner



3

layer, where growth of the boundary layer is logarithmically slow, the boundary layer
often behaves similarly to channel flow. Turbulent streaks have been found in both
flows, often with long streamwise lengths and near the wall, the heartbeat of turbulent
structures, sometimes referred to as the "engine of turbulence" [6] are quite similar.
A set of similarity variables near the wall (𝑢𝜏 =

√︁
𝜏𝑤/𝜌, 𝛿𝜈 = 𝜇/(𝜌𝑢𝜏), where 𝜌 is

fluid density) can be used to scale both profiles to overlap in the viscous sublayer
(𝑥2/𝛿𝜈 . 5), the buffer layer (5 . 𝑥2/𝛿𝜈 . 30), the mesolayer (30 . 𝑥2/𝛿𝜈 . 300),
and nearly overlap in the log layer (collectively called the inner region). Although
there have been arguments for whether profile in the log layer differs by 1 − 2% [7],
the overall qualitative agreement is quite clear.

Differences, however, manifest once out of the log layer. Boundary layers are
inherently streamwise inhomogeneous and grow. The rapid growth of the outer
scale 𝛿99, or the height where the mean streamwise velocity (𝑢1) profile reaches
99% of the free-stream velocity, extends the boundary layer deep into a quiescent
free-stream. This entrains irrotational flow from the free-stream to continuously
enter the boundary layer, drastically changing the biome of turbulent structures
present in the flow. Channel flows, on the other hand, are not quiescent anywhere
in the domain, even far from the wall. Coles (1956) showed that the boundary layer
features an extensive wake will encompass a large and roughly consistent portion of
the boundary layer, which is far different from channel flow far-wall behavior.

Even comparisons of inner layer statistics between channel and boundary layer
flows face difficulties. Usually, comparisons are made by matching the channel flow
friction Reynolds number 𝑅𝑒𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝜏 = ℎ/𝛿𝜈, where h is the channel half-height, with
the boundary layer friction Reynolds number 𝑅𝑒𝜏 = 𝛿99/𝛿𝜈. This Reynolds number
is an indicator of so-called "scale separation" as 𝛿99 is representative of the largest
structures in the flow and 𝛿𝜈 is representative of the smallest structures of the flow.
The majority of channel flow is dominated by inner-scaling (with 𝛿𝜈, 𝑢𝜏). It has even
been argued, based on log layer location and thickness [9], that the two Reynolds
numbers for comparison should in fact be 𝑅𝑒𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝜏 and 𝑅𝑒𝛿∗ = 𝜌𝛿∗𝑢1,∞/𝜇, where
𝛿∗ =

∫ ∞
0 (1−𝑢1/𝑢1,∞)𝑑𝑥2 is the displacement thickness. However some of the largest

channel simulations have been at 𝑅𝑒𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝜏 ≈ 5000 and have a log layer spanning at
least a decade in 𝑥2/𝛿𝜈, whereas boundary layer simulations at 𝑅𝑒𝛿∗ ≈ 5000 barely
have any indication of a logarithmic layer. Difficulty reaching high enough Reynolds
numbers to observe asymptotic behavior (similar to channel flows) is a key hurdle
yet to overcome for boundary layers.
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The streamwise growth of the boundary layer is directly due to presence of a qui-
escent free-stream and a solid wall. The combination of these boundary conditions
imposes several restrictions on analytical methods. The boundary layer also requires
careful tripping methods, and in all cases, long streamwise extents are needed. One
must always keep in mind that the current visible turbulent behaviors were poten-
tially caused upstream under the circumstances of a different Reynolds number.
Convergence also becomes a limiting factor. Specifically, the growth of the bound-
ary layer forces the expansion of the flow and drastically changes different mean
quantities, like drag and the shape of the mean velocity profiles. For example, a
boundary layer can have a 10% change in Reynolds number over the course of 10𝛿99.
It has been shown [10, 11] that there is remarkable scatter in boundary layer data.
These restrictions carry over to simulations research as well. Due to streamwise in-
homogeneity, the methods and expectations of channel flow do not always translate
well to boundary layers, thus potentially stunting boundary layer research.

1.2 Numerical limitations and difficulties
Numerically, the difference between the two flows becomes more stark. Boundary
layers are often simulated in the streamwise growing regime and often require inflow
conditions. As mentioned previously, boundary layers often have an origin as well
a distance from their transition to turbulence. The simulation of transition is often
expensive and can span large swathes of simulation domain. The most common
methods to avoid simulating transition have injected flows with either synthetic
turbulence [12] or using recycling and rescaling [13], where flow is taken from an
upstream plane, rescaled, and used as an inlet plane. The costs for the latter can be
upwards of 25% of the streamwise domain, if not longer, and in general the costs
for both can reach 30% of the streamwise domain as turbulence from any inflow
requires recovery from the inlet [14].

Costs from the recycling-rescaling operation have been notably high especially due
to spurious linking in the observed turbulent structures [15]. To relax periodic
linking, the recycle domain is often further extended [14, 16]. However, as noted
by [16], the impact of periodicity can still seen even 30𝛿99,inlet from the inlet.

Additionally, wall-bounded domains require long streamwise extents to fully capture
turbulent structures of length 20𝛿99 [17–20], known as very-large-scale motions
(VLSMs). These turbulent structures remain controversial and it has been argued
by [21, 22] that the longer structures in shortened domains still exist, but aliased
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into "linked" structures, and that the very-large-scale-motions (VLSM) are merely
spanwise meandering structures of much shorter length 𝑂 (3 − 4𝛿99). While these
arguments serve as a priori justifications for shorter streamwise domains, the general
consensus has been to err on the side of caution, usually requiring domains much
longer than potentially necessary.

There are further difficulties with respect to computational implementation. As the
boundary layer grows in space (𝑑𝛿∗/𝑑𝑥1 > 0), momentum is displaced away from the
wall, and mass leaves through the top surface of the computational domain (𝑢2,∞ >

0). This transpiration velocity is an often overlooked boundary layer quantity.
Because it is small compared to the free-stream velocity (𝑢2,∞ ∼ 0.005𝑢1,∞), it is
difficult to resolve in experimental data and overall difficult to validate numerically.
Moreover, to enforce global mass conservation in incompressible DNS, an a priori
streamwise dependence of 𝑢2,∞ must be imposed over the entire domain[13, 14, 18].
The imposition of 𝑢2,∞ consequently enforces a particular boundary layer growth
rate. This is easily seen by integrating continuity (𝑢2,∞ = 𝑢1,∞

𝑑𝛿∗

𝑑𝑥1
). Under these

conditions, one might ask if boundary layer simulations with fixed growth rates are
even true DNS.

The high simulation cost makes it difficult for boundary layer simulations to con-
sistently reach higher Reynolds number, reaching at most 𝑅𝑒𝜏 ≈4000 [23], using a
staggering 34 billion grid points. A smaller (but still impressively large) boundary
layer simulation (4 billion grid points) by Wu et al. (2017) took over 5 calendar
years to complete. A similar boundary layer simulation by Orlu et al.(2013) (3
billion grid points) used over 9 million cpu-hours. Pushing the Reynolds number
limit faces further difficulties. The numerical grid requirements scale with 𝑅𝑒

9/4
𝜏 ,

and it isn’t any exaggeration to say that some of the most expensive simulations
conducted have been boundary layer simulations.

Beyond increasing Reynolds number simulations, a new age of data-driven tech-
niques [25, 26] has emerged, owing to significant advances in numerical efficiency
and storage space. These techniques have proven crucial in understanding behavior
in pipe flows, jets, channel flows, and more [27–29]. The goal of each of these tech-
niques is to extract the underlying motions inherent to the flow and the governing
mechanisms for them. The largest turbulent structures are known to contain over
50% of turbulent kinetic energy [9], and for the purposes of drag reduction, they
can have serious impacts on the near wall behavior. It has been found that part of
the reason many of the current drag reduction methods work is that they interfere
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with the development of coherent structures near the wall [30, 31].

All of these discoveries require terabytes if not petabytes of data. Because turbulent
flow is near-stochastic, gigabytes of data are already needed to converge one-point
statistics, but terabytes of data are often needed to converge time-averaged two-
point statistics. While there are plenty of methods that focus on extracting spatially
coherent structures (proper orthogonal decomposition), the clear focus has been
on temporally and spatially developing structures, thus increasing the data storage
hurdle. In addition, the different data-driven techniques scale with the number of
data points: superlinearly at minimum and potentially quadratically at worst.

How popular are these data-driven methods with respect to boundary layers? At
the moment, there are several early applications of these methods, specifically for
transition [32]. The application of proper orthogonal decomposition, spectral proper
orthogonal decomposition (SPOD) and dynamic mode decomposition (DMD) for
turbulent structure extraction tends to become prohibitively expensive. For simula-
tions similar in size to Orlu (2013), each data file is at minimum 100 GB. For popular
and trusted data-driven techniques such as DMD, and SPOD, there are heavy re-
quirements for the number of data files needed for 2D inhomogeneous flows, on the
order of 10,000 data files. In contrast, streamwise homogeneous flows like pipe and
channel flows do not require as many data files and have been shown to use even
3000 data files effectively [27]. Shorter streamwise domains (for pipe and channel
flows) also reduce storage size by at least an order of magnitude, making the overall
endeavor much more manageable.

The dual concerns of high Reynolds flow behavior and turbulent structure extrac-
tion for boundary layer flows are critical to this thesis. The key issue preventing
advancement is the streamwise inhomogeneity of the boundary layer.

1.3 Historical treatment of streamwise periodicity
To combat the high computational expense of a growing boundary layer, scientists
developed methods to impose streamwise periodicity. Some of the earliest studies
[33, 34] have focused on running boundary layer simulations that were periodic for
short periods of time. This methodology was known, by the community, as the
Temporal DNS.

Domains would often be roughly (3−6𝛿99) in streamwise length, (1−3𝛿99) in width
and (2−3𝛿99) in height [33, 34] . More recent methods [35] have focused on running
simulations with larger streamwise and spanwise extent to contain more turbulent
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structures. As the name implies, the TDNS do not reach statistical stationarity.
While the flow produces profiles that are quantitatively and qualitatively accurate,
the convergence leaves much to be desired. When imposing periodic boundary
conditions on a boundary layer, it can be readily shown from the governing equations
that the boundary layer grows in time. Specifically, the displacement thickness grows
at a rate of 𝑢−1

1,∞𝜕𝑡𝛿
∗ = 1/2𝐶 𝑓 = 𝜏𝑤/(𝜌𝑢2

1,∞).

The idea of the TDNS was to conduct the simulation as if in a moving frame of
reference (at a speed of 𝑢1,∞). In this frame of reference, the free-stream would stay
constant while the wall would move in the opposite direction, and a boundary layer
would form in time. Conceptually, the strength of this method was that, with a limited
domain size, one could potentially reach higher Reynolds numbers. With the added
benefit that boundary layers grow "slowly" (as mentioned, the nondimensionalized
displacement thickness growth rate is 1/2𝐶 𝑓 ∼ 𝑂 (10−3)), the boundary layer may
remain at the desired Reynolds number long enough for statistics to be sampled [33].

These methods however, do not meet modern standards for convergence. For most
growing boundary layers, the eddy turnover time 𝛿99/𝑢𝜏 ≈ 100𝛿∗/𝑢1,∞. Ideally
a streamwise simulation would be sampled over at least one eddy turnover time.
Assuming a skin friction coefficient𝐶 𝑓 ≈ 2×10−3, over a single eddy-turnover time,
the boundary layer thickness would have had a relative growth of 10%. For TDNS,
there is little time (0.1𝛿99/𝑢𝜏) to actually converge statistics before the Reynolds
number has changed by over 1%. Modern standards often call for sampling times
for a single Reynolds number of at least 10𝛿99/𝑢𝜏, about two orders of magnitude
larger than that possible by the TDNS. Although modern TDNS can boast larger
streamwise domains (𝑂 (10𝛿99)) [35], the improvement in convergence is not nearly
enough to make up for the severe lack in overall convergence.

To counteract statistical transience, Spalart & Leonard (1985) developed a technique
to leverage self-similarity. For example, the mean streamwise velocity profile has
the following inner layer and outer layer self-similar scalings

𝑢1 = 𝑢𝜏 𝑓𝑖 (𝑥2/𝛿𝜈) 𝑢1 = 𝑢𝜏 𝑓𝑜 (𝑥2/𝛿99) + 𝑢1,∞ (1.2)

where 𝑓𝑖, 𝑓𝑜 are the inner and outer layer similarity functions, respectively. A wall-
normal coordinate 𝜂 would match 𝑥+2 = 𝑥2/𝛿𝜈 in the inner layer (𝑥+2 < 15) and match
𝑥2/𝛿99 in outer layer (𝑥2 > 0.1𝛿99). The simulation would then be solved following
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coordinates of 𝜂. The multiple velocity scales 𝑢𝜏, 𝑢1,∞ also have streamwise growth
rates and their growth terms were included in the coordinate transformation.

The method furthermore decomposed streamwise derivatives into "fast" and "slow"
derivatives, which allowed for a different set of source terms than conventional
coordinate transformations. Then, the authors implemented different rescalings for
the mean and turbulent fluctuations. Each layer involved different source terms of
different types, each with requirements for closure. To solve for the "slow" and "fast"
growth terms instantaneously, a linear system based on the log law and integrated
streamwise momentum equation was solved at each time-step. Finally, to handle the
nonlinear change of 𝜂 between the inner and outer regions, a "switching" function
was used in the "log layer" at a prescribed 𝑥+2 .

Although complicated, the method would allow one to focus on a specific Reynolds
number throughout the simulation and furthermore avoid simulating all previous
Reynolds number prior to it. The resulting simulation was statistically stationary and
produced both two-point and one-point statistics that, for its time, were surprisingly
accurate, given the modern perspective of how the simulations were heavily under-
resolved with Δ𝑥+1 ≈ 20,Δ𝑥+3 ≈ 10. However, the near wall rms profiles for various
Reynolds numbers did not collapse under inner-scaling (scaling velocities with
𝑢𝜏 and length-scales with 𝛿𝜈). At the time the authors considered the complicated
rescaling of the fluctuations to be the cause of issues and that perhaps the computation
of the metrics related to the "slow-growth" and "fast-growth" terms were not accurate
enough.

Consequently, a new method was developed by Spalart in 1987. Multiple peri-
odic boundary layer stations were chosen to be simulated. The first station at
a low Reynolds number, would be simulated using the previous method. Sta-
tions at higher Reynolds numbers would compute the "slow" derivatives using
the values already established at the lower Reynolds number. For example, par-
tial differentiation in the streamwise coordinate of 𝛿𝜈 would be given by 𝜕𝑥1𝛿𝜈 =

(𝛿𝜈,station1 − 𝛿𝜈,station2)/(𝑥1,station1 − 𝑥1,station2), where the difference in streamwise
locations would be estimated by 1/2𝐶 𝑓 ≈ 𝜕𝑥1𝜃 ≈ (𝜃1 − 𝜃2)/(𝑥1,station1 − 𝑥1,station2),
for constant kinematic viscosity 𝜈, and free-stream velocity 𝑢1,∞.

The simulations would increase their Reynolds number in a consecutive manner.
Again, for its time and resolution limits, there was agreement of mean and rms
profiles with experimental profiles. The study even showed that at the spanwise and
wall-normal rms velocity profiles show limited inner-scaling.
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Another key issue became apparent: in order to simulate larger Reynolds number
flows with this method, one would have to simulate several streamwise stations with
lower Reynolds numbers. As it became increasingly more straightforward to directly
simulate the entire boundary layer, Spalart’s method soon fell out of favor since the
computational savings would become nearly negligible. The idea of streamwise
periodic boundary layers would largely fall by the wayside, and with it, its ability to
drastically reduce simulation cost.

1.4 Objectives and outline
The key limiting problem for boundary layer simulations is the streamwise inho-
mogeneity of the boundary layer. For both the hopes of achieving higher Reynolds
numbers, and being able to apply state-of-the-art data extraction techniques, a com-
putational framework allowing streamwise homogeneity is critical. To develop such
a technique, we limit ourselves to the study of the incompressible, zero-pressure gra-
dient, smooth flat-plate boundary layer. This thesis focuses employing streamwise
periodicity via a single length-scale rescaling of the Navier-Stokes equations and
validates the simulation of streamwise periodic boundary layer flows. This thesis
has the following objectives:

1. Develop a new rescaling method that vastly simplifies Spalart’s (1987) method
for the restricted case of the smooth flat-plate boundary layer.

2. Quantify performance of the new method from a priori and a posteriori
perspectives with respect to one-point statistics.

3. Describe how the method behaves with high Reynolds number behavior and
quantify how the method affects sensititve parameters like transpiration ve-
locity 𝑢2,∞.

4. Prescribe computational domain size recommendations.

5. Investigate turbulent structures either predicted via resolvent analysis [38] or
extracted from data sets via spectral proper orthogonal decomposition [25].

This thesis has the following structure. The governing equations, corresponding
simulations, and results are presented in Chapter 2, fulfilling Objectives 1 and 2.
Portions of Objecitve 3 are satisfied by the investigation of the transpiration velocity
for the periodic boundary layer in Chapter 3. The rest of Objective 3 and Objective
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4 are completed in Chapter 4 in descriptions of the two-point correlations. Finally,
Chapter 5 fulfills Objective 5.
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C h a p t e r 2

DIRECT NUMERICAL SIMULATIONS OF A STATISTICALLY
STATIONARY STREAMWISE PERIODIC BOUNDARY LAYER

VIA THE HOMOGENIZED NAVIER-STOKES EQUATIONS

[1] J. Ruan and G. Blanquart. “Direct numerical simulations of a statistically
stationary streamwise periodic boundary layer via the homogenized Navier-
Stokes equations”. In: Physical Review Fluids 6.2 (Feb. 2021). doi: 10.
1103/physrevfluids.6.024602.

There is currently no computational framework for the simulation of boundary
layers that is 1) statistically homogeneous in the streamwise direction, 2) statistically
stationary, and 3) fully closed. The objective of the present work is to propose a new
framework to improve on Spalart’s preliminary method such that it does not rely
on auxiliary simulations for closure. The overall concept remains the same: to use
periodic boundary conditions and a scaling enforced by a coordinate transformation
to keep the boundary layer statistically stationary.

We will detail the principles of the transformation in Section 2.1 and conduct
extended domain simulations in Section 2.2 to justify streamwise statistical homo-
geneity. We highlight the numerical methods in Section 2.3. In Section 2.4, we
present validation and comparisons to DNS data from Refs. [39] and [14] and
empirical fits by Refs. [10, 11]. Finally, in Section 2.5, we discuss computational
savings.

2.1 Analysis of stationary boundary layer
The goal of this section is to describe the new proposed method of simulating
flat plate turbulent boundary layers. It begins with a description of the spatial
transformation, and a discussion of the simplifications leading to the final set of
equations.

2.1.1 Transformation of the Navier-Stokes equations
The flat plate turbulent boundary layer is analyzed in the Cartesian coordinate system
using index notation such that the velocity components in the Cartesian streamwise
(𝑥1), wall-normal (𝑥2), and spanwise (𝑥3) directions are 𝑢1, 𝑢2, and 𝑢3 respectively.
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With pressure and density as 𝑃 and 𝜌, respectively, the incompressible Navier-Stokes
equations for mass and momentum conservation are

𝜕𝑢 𝑗

𝜕𝑥 𝑗
= 0 (2.1)

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗
= −1

𝜌

𝜕𝑃

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝑥2
𝑗

(2.2)

We now apply a coordinate transformation from 𝑥𝑖 to 𝜉𝑖 which rescales the wall-
normal coordinate by a streamwise varying 𝐶2 function 𝑞 = 𝑞(𝑥1).

𝜉1 = 𝑥1 𝜉2 =
𝑞0

𝑞
𝑥2 𝜉3 = 𝑥3 (2.3)

where 𝑞0 = 𝑞(𝑥0) is a normalization constant that is yet to be determined. Applying
this coordinate transformation directly to the Navier-Stokes equations yields the
following set of equations for mass and momentum conservation.

𝜕𝑢 𝑗

𝜕𝜉 𝑗
= 𝜉2

𝑞′

𝑞

𝜕𝑢1

𝜕𝜉2
+ 𝐻𝑐 (2.4)

𝜕𝑢𝑖

𝜕𝑡
= −𝑢 𝑗

𝜕𝑢𝑖

𝜕𝜉 𝑗
− 1

𝜌

𝜕𝑃

𝜕𝜉𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝜉2
𝑗

+ 𝜉2
𝑞′

𝑞
𝑢1

𝜕𝑢𝑖

𝜕𝜉2

+𝐻𝑝 (𝑢𝑖) + 𝐻𝜈 (𝑢𝑖) (2.5)

where
𝐻𝑐 =

(
1 − 𝑞0

𝑞

)
𝜕𝑢2

𝜕𝜉2
(2.6)

𝐻𝑝 (𝑢𝑖) = 𝛿1𝑖
1
𝜌

𝑞′

𝑞
𝜉2

𝜕𝑃

𝜕𝜉2
+(

𝑞 − 𝑞0

𝑞

) (
𝛿2𝑖

1
𝜌

𝜕𝑃

𝜕𝜉2
+ 𝑢2

𝜕𝑢𝑖

𝜕𝜉2

)
(2.7)

𝐻𝜈 (𝑢𝑖) = 𝜈

[
1 −

(
𝑞0

𝑞

)2
+

(
𝜉2
𝑞′

𝑞

)2
]
𝜕2𝑢𝑖

𝜕𝜉2
2

+𝜈
[
2
(
𝑞′

𝑞

)2
− 𝑞′′

𝑞

]
𝜉2

𝜕𝑢𝑖

𝜕𝜉2
− 2𝜈𝜉2

𝑞′

𝑞

𝜕2𝑢𝑖

𝜕𝜉1𝜕𝜉2
(2.8)

where 𝛿𝑖 𝑗 is the delta-Dirac function, 𝐻𝑐 is an additional continuity term, 𝐻𝑝 contains
convective and pressure additional metric terms, and 𝐻𝜈 contains the viscous metric
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terms. The equations as shown are exact and equivalent to the original Navier-Stokes
equations. At the moment, 𝑞(𝑥1) still requires a closure equation for the transformed
Navier-Stokes equations to be complete. There are several possible choices to choose
from such as the 99% boundary layer thickness 𝛿99, the displacement thickness 𝛿∗,
and the momentum thickness 𝜃. Each choice yields a unique and mathematically
valid coordinate transformation.

2.1.2 a priori analysis
We perform a budget analysis of the streamwise and wall-normal momentum equa-
tions Eq. 2.4-2.7 and the turbulent kinetic energy equation Eq. C.1-C.4. This a
priori analysis is performed using the DNS data from Ref. [14] near 𝑅𝑒𝜃0 = 4000.

Any a priori analysis of Eq. 2.4-2.7 requires estimates for the function 𝑞(𝑥1). This
function is here approximated by 𝜃 (𝑥1), and justification for the estimate will be given
in Section 2.1.4. Empirical fits from [10] provide value for 𝜃 ′

𝜃
𝜃0 at 𝑅𝑒𝜃0 = 4000.

We start with the streamwise momentum equation. First, we evaluate all terms at 𝑞 =

𝑞0. This reduces 𝐻𝑝 to a single term, removes a term from 𝐻𝜈, and completely elimi-
nates𝐻𝑐. We also group the main convective terms,𝐶𝑁𝑆 = 𝑢1𝜕𝑢1/𝜕𝜉1+𝑢2𝜕𝑢1/𝜕𝜉2+
𝑢3𝜕𝑢1/𝜕𝜉3, and the main viscous terms,𝑉𝑁𝑆 = 𝜈(𝜕2𝑢1/𝜕𝜉2

1+𝜕
2𝑢1/𝜕𝜉2

2+𝜕
2𝑢1/𝜕𝜉2

3).
The source term for this equation is given by 𝑆𝑟𝑐 = 𝑞′/𝑞𝜉2𝑢1𝜕𝑢1/𝜕𝜉2. Figure 2.1a
shows the budget analysis of the streamwise momentum equation. All terms have
been first averaged over time and spanwise coordinate, represented by 〈·〉𝜉3,𝑡 , and
then the inner-scaled absolute values of these averages are plotted. Notably, the
main convective terms the wall to balance the main viscous terms and the source
term is not dominant.

As expected, the most dominant terms are the convective and viscous terms,
𝐶𝑁𝑆 and 𝑉𝑁𝑆. Furthermore, Fig. 2.1a shows that the convective metric term
𝜉2𝑢1 (𝑞′/𝑞) 𝜕𝑢1/𝜕𝜉2 is the most dominant of the additional metric terms. It balances
the main convective terms near the end of the logarithmic region and throughout
the wake region (80 < 𝜉+2 < 2000). In contrast, the viscous metric term 𝐻𝜈 is over
six orders of magnitude smaller than the streamwise convective term throughout the
entire boundary layer. Similarly, the 𝐻𝑝 term is at least three orders of magnitude
smaller than the streamwise convective metric term until the end of the wake region
near the free-stream. From an a priori perspective, the neglecting of 𝐻𝜈 and 𝐻𝑝 is
justified.

One can also apply a similar analysis to the wall-normal momentum equation. In
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(a) streamwise momentum budget (b) wall-normal momentum budget

Figure 2.1: Budgets of (a) streamwise momentum and (b) wall-normal momentum
equations from DNS data (Ref. [14]). Lines: (solid black) 〈𝐶𝑁𝑆〉𝜉3,𝑡 ; (solid ma-
genta) −〈𝑉𝑁𝑆〉𝜉3,𝑡 ; (solid green) 〈𝑃𝑁𝑆〉𝜉3,𝑡 ; (dashed black) −〈𝑆𝑟𝑐〉𝜉3,𝑡 ; (dashed green)
−〈𝐻𝑝〉𝜉3,𝑡 |; (dashed magenta) −〈𝐻𝜈〉𝜉3,𝑡 .

this case, the convective terms are bundled as 𝐶𝑁𝑆 = 𝑢1𝜕𝑢2/𝜕𝜉1 + 𝑢2𝜕𝑢2/𝜕𝜉2 +
𝑢3𝜕𝑢2/𝜕𝜉3, and the main viscous terms are collected in 𝑉𝑁𝑆 = 𝜈(𝜕2𝑢2/𝜕𝜉2

1 +
𝜕2𝑢2/𝜕𝜉2

2 + 𝜕2𝑢2/𝜕𝜉2
3). The remaining terms are the mean pressure gradient term

𝑃𝑁𝑆 = 1/𝜌𝜕𝑃/𝜕𝜉2 and the source term 𝑆𝑟𝑐 = 𝑞′/𝑞𝜉2𝑢1𝜕𝑢2/𝜕𝜉2. Figure 2.1b shows
the budget analysis of the wall-normal momentum equation. Again, all terms have
been first averaged over time and spanwise coordinate, and then the inner-scaled
absolute values of these averages are plotted.

In this case, the balance between the pressure and the convective terms dominates
the entire budget. The magnitude of the source term is between that of the convective
and viscous terms. The viscous metric term remains 7 orders of magnitude smaller
than the pressure and convective terms throughout the boundary layer and thus can
justifiably be neglected in the wall-normal momentum equation. Near the free-
stream (𝜉+2 > 2000), the source term and the convective term balance the pressure
gradient term.

Finally, one can apply a similar analysis to the turbulent kinetic energy equation
(Appendix A.3) and track relative contributions of the 𝐻𝑝, 𝐻𝜈 and the source term.
The results are shown in Fig. 2.2. The metric source term contribution balances
the turbulent advection term which is at least three orders of magnitude below the
dominant budget terms. Throughout the boundary layer, the contributions of both
𝐻𝜈 and 𝐻𝑝 to the kinetic energy budget remain several orders of magnitude lower
than the dominant budget terms. From an a priori perspective, their impact on
turbulent intensities is negligible.
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Figure 2.2: Mean turbulent kinetic energy budget from DNS data (Ref. [14]). Lines:
(solid black) Turbulent production, (red) Dissipation, (green) pressure diffusion,
(black) Turbulent diffusion, (cyan) advection, (magenta) Viscous diffusion, (dashed
green) 𝐻𝑝 contribution, (dashed magenta) 𝐻𝜈 contribution, (dashed black) metric
source term contribution.

2.1.3 Streamwise variation of source terms
The previous subsection presented an a priori budget analysis of the governing
equations for a specific streamwise location 𝑥1 = 𝑥0. The net conclusion was that for
this particular streamwise location, 𝐻𝑝, 𝐻𝜈 and 𝐻𝑐 are negligible in comparison to
the other terms in the governing equations. However, it is also important to quantify
the streamwise extents for which the terms 𝐻𝑐, 𝐻𝑝, 𝐻𝜈 remain negligible.

The time and spanwise averaged 𝐻𝑐 term is given by(
1 − 𝑞0

𝑞

)
𝜕〈𝑢2〉𝜉3,𝑡

𝜕𝜉2
(2.9)

In order for 𝐻𝑐 to be negligible, the ratio of 𝐻𝑐 to dominant terms in continuity
must be small. Specifically, one can compute the ratio of 𝐻𝑐 to the gradient of mean
wall-normal velocity and find that it is 1−𝑞0/𝑞(𝑥1) ≈ 𝑞′0/𝑞0𝜉1. Following the same
approximation that 𝑞 ∼ 𝜃, then 𝑞′0/𝑞0 ≈ 𝜃′0/𝜃 ≈ 1/2𝐶 𝑓 ,0/𝜃0. For 𝑅𝑒𝜃0 = 4000,
𝐶 𝑓 ≈ 3×10−3. For a ratio of 10% , one can have a streamwise extent of 𝜉1 ≈ 𝑥0±60𝜃0

and for a 1% ratio, one can have a streamwise extent of 𝜉1 ≈ 𝑥0±6𝜃0. Since the skin
friction coefficient slowly decays with Reynolds number, for increasing Reynolds
number, this streamwise extent is only expected to increase.

The time and spanwise averaged 𝐻𝑝 (𝑢𝑖) term is provided by

〈𝐻𝑝 (𝑢𝑖)〉𝜉3,𝑡 =

(
1 − 𝑞0

𝑞

) 〈 (
𝛿2𝑖

1
𝜌

𝜕𝑃

𝜕𝜉2
+ 𝑢2

𝜕𝑢𝑖

𝜕𝜉2

) 〉
𝜉3,𝑡︸                                          ︷︷                                          ︸

Term 1

+ 𝛿1𝑖

〈
1
𝜌

𝑞′

𝑞
𝜉2

𝜕𝑃

𝜕𝜉2

〉
𝜉3,𝑡︸                  ︷︷                  ︸

Term 2

(2.10)
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It’s easy to estimate the magnitude of Term 1 because it has the same analytical form
of terms currently in the momentum equations. In the mean streamwise momentum
equation, Term 1 simplifies to the Reynolds shear stress scaled by 1−𝑞0/𝑞. Following
a similar argument as for 𝐻𝑐, it can be shown that Term 1 is less than 10% of the
dominant Reynolds shear stress term for a streamwise extent of 120𝜃0 centered on
𝑥0. The pressure gradient term ((1 − 𝑞0/𝑞)/𝜌𝜕𝑃/𝜕𝜉2) in 𝐻𝑝 only appears in the
wall-normal momentum equation and can be directly compared to the wall-normal
pressure gradient term. Again, a streamwise extent of 120𝜃0 centered on 𝑥0 is
sufficient to keep the magnitude of this term an order of magnitude less than the
other terms in the wall-normal momentum equation.

Term 2 has no immediate analogue in the streamwise momentum equation for direct
comparison. To estimate term 2, we follow von Kármán (1930) and approximate
the mean wall-normal pressure gradient in Cartesian coordinates by

1
𝜌

𝜕〈𝑃〉𝑥3,𝑡

𝜕𝑥2
≈ −

〈
𝑢2

𝜕𝑢2

𝜕𝑥2

〉
𝑥3,𝑡

(2.11)

This estimate (Eq. 2.11) comes from a balance of the wall-normal momentum
equation and is consistent with the wall-normal budget shown in Fig. 2.1b. Then,
Term 2 is approximated by

1
𝜌

𝑞′

𝑞
𝜉2
𝜕〈𝑃〉𝜉3,𝑡

𝜕𝜉2
=

1
𝜌

𝑞′

𝑞
𝑥2

𝜕〈𝑃〉𝑥3,𝑡

𝜕𝑥2
≈ −𝑞′

𝑞

〈
𝑥2𝑢2

𝜕𝑢2

𝜕𝑥2

〉
𝑥3,𝑡

= −𝑞′

𝑞

〈
𝜉2𝑢2

𝜕𝑢2

𝜕𝜉2

〉
𝜉3,𝑡

(2.12)

The magnitude of Term 2 can be compared to the magnitude of the nominally domi-
nant source term in the streamwise momentum equation, namely 𝑞′/𝑞𝜉2〈𝑢1𝜕𝑢1/𝜕𝜉2〉𝜉3,𝑡 .
This comparison is similar to comparing the magnitudes of 𝜕〈𝑢2

1〉𝜉3,𝑡/𝜕𝜉2 and
𝜕〈𝑢2

2〉𝜉3,𝑡/𝜕𝜉2. The ratio of these two terms is at most 10−3 throughout the boundary
layer for 𝑅𝑒𝜃0 = 4000, is independent from the length of the domain, and is expected
to decrease with increasing Reynolds number.

The time and spanwise averaged 𝐻𝜈 is given by

〈𝐻𝜈 (𝑢𝑖)〉𝜉3,𝑡 = 𝜈

[
1 −

(
𝑞0

𝑞

)2
+

(
𝜉2
𝑞′

𝑞

)2
]
𝜕2〈𝑢𝑖〉𝜉3,𝑡

𝜕𝜉2
2︸                                        ︷︷                                        ︸

Term 3

+ 𝜈

[
2
(
𝑞′

𝑞

)2
− 𝑞′′

𝑞

]
𝜉2
𝜕〈𝑢𝑖〉𝜉3,𝑡

𝜕𝜉2︸                               ︷︷                               ︸
Term 4

(2.13)

Term 3 is just the mean wall-normal viscous term in the respective momentum
equations scaled by

[
1 − (𝑞0/𝑞)2 + (𝜉2𝑞

′/𝑞)2] . Given that the mean velocity pro-
files all sharply decay past 𝜉2 > 𝛿99,0, it is appropriate to restrict our analysis to
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𝜉2 < 𝛿99,0 ≈ 7𝜃0. Then, the ratio of Term 3 to the mean wall-normal viscous term
is approximated by

1 −
(
𝑞0

𝑞

)2
+

(
𝛿99,0

𝑞′

𝑞

)2
≈ 2𝜉1

(
𝑞′0
𝑞0

)
+

(
7𝜃0

𝑞′0
𝑞0

)2

(2.14)

where a Taylor expansion has been applied. If one uses that 𝑞 ∼ 𝜃, then 𝑞′0 ≈ 1/2𝐶 𝑓 .
For 𝑅𝑒𝜃0 = 4000, the ratio of Term 3 to the mean wall-normal viscous term is less
than 10% for a streamwise extent of 60𝜃0. Again, with increasing Reynolds number
(decreasing 𝐶 𝑓 ), this streamwise extent is only expected to increase.

Term 4 has no immediate analogue in any of the momentum equations, but it bears
resemblance to the dominant source term of each equation. For simplicity, we will
focus on the streamwise momentum equation. In this case, the ratio between Term
4 and the dominant source term is given by

𝜈

[
2 𝑞′

𝑞
− 𝑞′′

𝑞′

]
〈 𝜕𝑢1
𝜕𝜉2

〉𝜉3,𝑡

〈𝑢1
𝜕𝑢1
𝜕𝜉2

〉𝜉3,𝑡

≈
𝑅𝑒−1

𝜃0

[
𝐶 𝑓 + 1√

2𝜅
𝐶

3/2
𝑓

]
〈𝑢1/𝑢1,∞

𝜕𝑢1
𝜕𝑥2

〉𝜉3,𝑡/〈
𝜕𝑢1
𝜕𝑥2

〉𝜉3,𝑡

(2.15)

where we have used that, provided 𝑞 ∼ 𝜃, as 𝑞𝑞′′/𝑞′ ≈ 𝜕𝐶 𝑓 /𝜕𝑅𝑒𝜃𝑅𝑒𝜃 for constant
𝑢1,∞ and 𝜈, and given the Coles-Fernholz relation, this is approximately −

√
2/𝜅𝐶3/2

𝑓
,

where 𝜅 is the Kármán constant. Equation 2.15 is not easily computed. However,
if one considers the maximum magnitude of the numerator and the maximum
magnitude of the denominator over the boundary layer, the ratio is consistently less
than 10−4 for streamwise extents in excess of 𝑥1 = 𝑥0 ± 30𝜃0.

Based solely on the mean values of each of the additional source terms, it has been
shown that for streamwise extents of 60𝜃0 ≈ 40𝛿∗ ≈ 7𝛿99, the terms 𝐻𝑝, 𝐻𝜈, and 𝐻𝑐

all remain at approximately one order of magnitude smaller than the other terms in
the governing equations.

2.1.4 Simplified equations and closure
We can now make the following two critical assumptions:

1. The governing equations evaluated at 𝑞(𝑥1) = 𝑞0 are valid for a narrow
streamwise domain centered at 𝑥1 = 𝑥0.
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2. There exists a function 𝑞(𝑥1) such that ensemble-averaged quantities are both
statistically stationary and statistically homogeneous in the 𝜉1, 𝜉3 directions.

Given both assumptions and with the neglecting of 𝐻𝜈 and 𝐻𝑝, the governing
equations simplify to

𝜕𝑢 𝑗

𝜕𝜉 𝑗
= 𝜉2

𝑞′0
𝑞0

𝜕𝑢1

𝜕𝜉2
(2.16)

𝜕𝑢𝑖

𝜕𝑡
= −𝑢 𝑗

𝜕𝑢𝑖

𝜕𝜉 𝑗
− 1

𝜌

𝜕𝑃

𝜕𝜉𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝜉2
𝑗

+ 𝜉2
𝑞′0
𝑞0

𝑢1
𝜕𝑢𝑖

𝜕𝜉2
(2.17)

These are the final governing equations to be solved via streamwise periodic simu-
lation. Section 2.2 presents an a posteriori analysis justifying both the neglecting
of 𝐻𝜈 and 𝐻𝑝 and the streamwise statistical homogeneity of Eq. 2.16-2.17.

The use of both assumptions and the neglecting of 𝐻𝜈 and 𝐻𝑝 mean that the
governing equations can be more accurately described as homogenized Navier-
Stokes equations (HNSE). Consequently, simulations utilizing this set of equations
are still DNS but do not directly solve the NSE. The rest of the chapter seeks to
compare the solutions of the HNSE to experimental and numerical solutions to the
NSE.

We now seek to generate a closure equation for 𝑞′0/𝑞0 by considering the 𝜉2 integrated
continuity and streamwise momentum equations in conservative form.

∫ ∞

0

(
𝜕𝑢1

𝜕𝜉1
+ 𝜕𝑢3

𝜕𝜉3

)
𝑑𝜉2 + 𝑢2,∞

=
𝑞′0
𝑞0

∫ ∞

0

(
𝜉2
𝜕𝑢1

𝜕𝜉1

)
𝑑𝜉2 (2.18)

∫ ∞

0

(
𝜕𝜌𝑢1

𝜕𝑡
+
𝜕𝜌𝑢1𝑢 𝑗

𝜕𝜉 𝑗
+ 𝜕𝑃

𝜕𝜉1

)
𝑑𝜉2

=
𝑞′0
𝑞0

∫ ∞

0

(
𝜉2
𝜕𝜌𝑢1𝑢1

𝜕𝜉1

)
𝑑𝜉2 +

∫ ∞

0
𝜇
𝜕2𝑢1

𝜕𝜉2
𝑘

𝑑𝜉2 (2.19)
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We now ensemble average Eq. 2.18-2.19 and denote ensemble averaged quantities
by 〈·〉. Applying Assumption 2 yields the following equations.

𝑢2,∞ =
𝑞′0
𝑞0

∫ ∞

0

(
𝑢1,∞ − 〈𝑢1〉

)
𝑑𝜉2 =

𝑞′0
𝑞0

𝑢1,∞𝛿
∗ (2.20)

𝑢1,∞𝑢2,∞ + 𝜏𝑤

𝜌
=
𝑞′0
𝑞0

∫ ∞

0

(
𝑢1,∞

2 − 〈𝑢1𝑢1〉
)
𝑑𝜉2 (2.21)

where 𝜏𝑤 = 𝜇〈𝜕𝑢1/𝜕𝜉2〉|𝜉2=0 is the wall shear stress. Some further manipulation
gives our final closure equation.

𝑞′0
𝑞0

=
𝜏𝑤/𝜌∫ ∞

0
(
𝑢1,∞〈𝑢1〉 − 〈𝑢1𝑢1〉

)
𝑑𝜉2

(2.22)

This expression fully closes the simplified governing equations (Eq. 2.16-2.17) and
is used in the streamwise periodic numerical simulations of Section 2.3.

Before discussing the results, it is interesting to estimate a priori the right hand side
of the above equation. The von Kármán momentum integral equation for a flat-plate
boundary layer estimates the growth rate of the momentum thickness by

𝜃′ =
𝜏𝑤

𝜌𝑢2
1,∞

(2.23)

By definition,

𝑢2
1,∞𝜃 =

∫ ∞

0

(
𝑢1,∞〈𝑢1〉 − 〈𝑢1〉〈𝑢1〉

)
𝑑𝜉2 (2.24)

The streamwise fluctuations 〈𝑢′1𝑢
′
1〉 are known to scale with 𝑢2

𝜏, whereas the stream-
wise mean velocity profile scales with 𝑢2

1,∞ in the outer layer, which encompasses
the majority of the boundary layer. Thus, for the majority of the boundary layer
〈𝑢1〉2 � 〈𝑢′1𝑢

′
1〉 and so, within the wall-normal integral, 〈𝑢1〉2 ≈ 〈𝑢2

1〉. With this
approximation, the von Kármán momentum integral equation becomes

𝜃′

𝜃
≈ 𝜏𝑤/𝜌∫ ∞

0
(
𝑢1,∞〈𝑢1〉 − 〈𝑢1𝑢1〉

)
𝑑𝜉2

=
𝑞′0
𝑞0

(2.25)
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Table 2.1: DNS parameters for the streamwise non-periodic turbulent boundary
layer simulation cases.

Dataset 𝐿𝑥 Governing Eq. Closure Eq. Time 𝛿99/𝑢𝜏
BL_Cart 15𝛿99 Eq. 2.1-2.2 None 15
BL_Full 15𝛿99 Eq. 2.4-2.8 Empirical Value 30
BL_Simp 15𝛿99 Eq. 2.16-2.17 Empirical Value 30
BL_Plus 15𝛿99 Eq. 2.4-2.8 1.1 × Empirical Value 15

BL_Minus 15𝛿99 Eq. 2.16-2.17 0.9 × Empirical Value 15
BL_Per 7.5𝛿99 Eq. 2.16-2.17 Eq. 2.22 30

This completes the intuition that 𝑞(𝑥) scales like 𝜃 (𝑥) and furthermore provides an
estimate for 𝑞′0/𝑞0.

𝑞′0
𝑞0

≈ 𝜃′

𝜃
=

1
2𝛿∗

𝐶 𝑓𝐻12 (2.26)

where𝐶 𝑓 = 𝜏𝑤/
(

1
2𝜌𝑢

2
1,∞

)
is the skin-friction coefficient and 𝐻12 = 𝛿∗/𝜃 is the shape

factor.

Note that the closure equation ensures a statistically stationary flow and consequently
the solution will be specific to a single Reynolds number. This is in direct contrast
with recycling and rescaling methods which solve for a range of Reynolds numbers
but also use flow at high Reynolds number stations as a substitute for a low Reynolds
number inflow. The net effect of the closure equation (Eq. 2.22) is to allow the current
method to avoid unphysical inflows by focusing on a single Reynolds number.

2.2 Spatially developing simulations
We conduct six sets of boundary layer simulations, each solving a different set of
governing equations and boundary conditions, summarized in table 2.1. The results
are used to justify assumptions (1) and (2), and the simplifications made to the
governing equations in Section 2.1.2.

2.2.1 Simulations and numerical methods
With the exception of BL_Per, all of the cases have streamwise non-periodic bound-
aries in an inflow/outflow set-up. Case BL_Per corresponds to the most "modified"
case: it solves Eq. 2.16-2.17 with Eq. 2.22 and implements streamwise periodic
boundary conditions. Case BL_Simp also solves Eq. 2.16-2.17 but does not use
streamwise periodic boundary conditions. Case BL_Full solves Eq. 2.4-2.8 and
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contains all of the previously neglected terms. Cases BL_Full and BL_Simp use
empirical relations for low Reynolds number [11] for the closure of 𝑞′0/𝑞0 by ap-
proximating 𝑞 ≈ 𝜃. Cases BL_Plus and BL_Minus differ from BL_Simp by using
a closure for 𝑞0 artificially increased and decreased by 10%, respectively. Finally,
case BL_Cart solves the regular Cartesian Navier-Stokes equations (Eq. 2.1-2.2).

All of the cases have periodic spanwise directions and non-periodic wall-normal
directions. The bottom of the domain is treated with a no-slip boundary condition,
and the top of the computational domain is treated with a Neumann boundary
condition. Each of the five inflow/outflow cases use planes from case BL_Per as
an inflow (at 𝜉1 = 0). All of the streamwise non-periodic cases use convective
outflow conditions at the streamwise outlet and have mass conservation conducted
at the streamwise outlet. In contrast, case BL_Per has mass conservation conducted
at the wall-normal outlet. The top of the computational domain requires vertical
transpiration for all six cases. BL_Cart imposes a transpiration velocity given by
Ref. [10], similar to Ref. [14]. For the remaining cases, Eq. 2.18 shows that any
closure for 𝑞′0/𝑞0 directly provides a value for 𝑢2,∞.

All of the cases have the same spanwise length of 𝐿𝑧 = 2.6𝛿99 and wall-normal
height of 𝐿𝑦 = 3.4𝛿99. They all have the same spatial resolution: Δ𝑥+ = 9,Δ𝑦+min =

0.3,Δ𝑧+ = 6. The key difference between the streamwise periodic and streamwise
non-periodic cases is the streamwise domain length. BL_Per has a domain length
of 𝐿𝑥 = 7.5𝛿99, whereas the rest of the cases have a domain length of 𝐿𝑥 = 15𝛿99. It
is known from [40] that the flow recovers from this particular inflow technique after
∼ 4-5𝛿99. Accounting for potential outflow effects of at most ∼ 2𝛿99, this leaves
about 8𝛿99 of uncontaminated statistics.

Each set of governing equations is solved using the computational solver NGA
[41]. The numerical code solves the conservative-variable formulation of the low-
Mach Navier-Stokes equations with staggered finite difference operators and uses a
fractional step method to enforce continuity. The code is run fully second order in
space and time.

2.2.2 Results
Figures 2.3ab present the normalized displacement thickness and momentum thick-
ness averaged in 𝜉3 and in time for the streamwise non-periodic cases. Each of
the streamwise non-periodic simulation cases is affected by the convective outflow
condition, seen in case BL_Cart. Each of the displacement thickness and mo-
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(a) Displacement thickness (b) Momentum thickness

(c) Shape factor (d) Skin friction coefficient

Figure 2.3: streamwise variation of (a) displacement thickness (𝛿∗), (b) momentum
thickness (𝜃), (c) shape factor (𝐻12) and (d) skin friction coefficient (𝐶 𝑓 ). Lines:
(solid black) BL_Full; (solid green) BL_Simp; (solid cyan) BL_Minus; (solid
magenta) BL_Plus; (solid red) BL_Cart; (dashed black) BL_Per; (dashed black)
scaled empirical fit [11] to match inlet skin friction coefficient

mentum thickness plots deviate in slope at about 1𝛿99 from the streamwise outlet.
Because BL_Cart represents a spatially developing boundary layer, the displace-
ment thickness increases from its original inflow value. The present increase by
about 20% is expected given that 𝑑𝛿∗/𝑑𝑥 = 𝑢2,∞/𝑢1,∞ and the imposed value of
𝑢2,∞/𝑢1,∞ ≈ 3×10−3. Cases BL_Full and BL_Simp are indistinguishable and show
relatively constant values of 𝛿∗ and 𝜃 with fluctuation magnitudes of ±0.3% of the
inflow nominal value. The thicknesses of BL_Plus and BL_Minus show immediate
departures from the nominal value, by approximately 2% of the original inflow
value.

Refs. [42] and [43] underscore the need for consistency when comparing DNS
profiles of boundary layers. For the sake of comparison, integral and global quan-
tities are computed as described by Ref. [42]. Specifically, the shape factor, 𝐻12 is
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evaluated as

𝐻12 =

∫ 𝛿99

0 (1 − 𝑢1/𝑢1,∞)𝑑𝜉2∫ 𝛿99

0 (𝑢1/𝑢1,∞) (1 − 𝑢1/𝑢1,∞)𝑑𝜉2
(2.27)

where, for the remainder of this section, the · represents temporal and spanwise av-
eraging. Similarly, the wall shear stress is evaluated by 𝜏𝑤 = 𝜇𝜕𝑢1/𝜕𝜉2 |𝜉2=0. Figure
2.3c presents the shape factor for the non-streamwise periodic cases. BL_Cart has a
shape factor that monotonically drops by 2% from its inflow value, as expected from
empirical fits by [10] with respect to Reynolds number. BL_Plus and BL_Minus
also exhibit a slowly varying shape factor, changing by approximately ±0.3% from
the inflow value. This is in contrast with BL_Full and BL_Simp, whose shape
factors are virtually identical and do not exhibit major mean variations.

Figure 2.3d presents the skin friction coefficient, averaged in 𝜉3 and in time for the
non-streamwise periodic cases. Case BL_Cart features a decreasing skin friction
coefficient over the domain, consistent with increasing Reynolds number. The
skin friction coefficients of BL_Plus, BL_Minus, BL_Full, and BL_Simp have
fluctuations of about 1% of their expected mean value. Any variations of the value
with streamwise distance are masked by these fluctuations. Again, BL_Simp and
BL_Full are virtually indistinguishable.

Figure 2.4 shows temporal and spanwise averaged profiles of 𝑢1, 𝑢1,rms, 𝑢2,rms and
−𝑢′

1𝑢
′
2 from Case BL_Simp and BL_Full. These profiles are extracted from three

streamwise locations: near the inlet (𝜉1 = 0) and outlet (𝜉1 = 13𝛿99) for Case
BL_Simp, and in the middle of the domain (𝜉1 = 7.5𝛿99) for both cases BL_Simp
& BL_Full. The mean streamwise velocity profiles are within ±0.5% of each other.
The streamwise and wall-normal rms collapse within ±1% of each other. The
Reynolds stress profiles show a strong collapse in both the inner and outer regions.

Overall, these streamwise non-periodic simulations show that under a rescaling by
𝑞(𝑥), the resulting flow does not feature observable streamwise inhomogeneities
over a sizeable streamwise domain. The neglecting of 𝐻𝜈 and 𝐻𝑝 terms and the use
of streamwise periodic conditions under Eq. 2.16-2.17 are consequently justified.

2.3 Numerical set-up of streamwise periodic simulations
The present section outlines the simulations conducted in streamwise periodic do-
mains. It clarifies domain constraints and initial conditions, and describes additional
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(a) streamwise velocity (b) streamwise rms

(c) Wall-normal rms (d) Reynolds shear stress

Figure 2.4: Inner scaled (a) mean streamwise velocity 𝑢+1 , (b) streamwise rms
(𝑢+1,rms), (c) wall-normal rms (𝑢+2,rms), and (d) Reynolds shear stress−𝑢′+

1 𝑢
′+
2 , averaged

over time and spanwise direction (𝜉3) for Case BL_Simp at different streamwise
locations and BL_Full at the middle of the domain. Symbols : (green) BL_Simp
at 𝜉1 = 0 (inlet), (black) BL_Simp at 𝜉1 = 7.5𝛿99, (red) BL_Simp at 𝜉1 = 13𝛿99, ◦
BL_Full at 𝜉1 = 7.5𝛿99 .

numerical techniques used during simulation.

2.3.1 Simulation cases
We now solve Eq. 2.16-2.17 with streamwise periodic boundary conditions for four
different Reynolds numbers, summarized in table 2.2. Case BL1460 is equivalent
to BL_Per. Cases BL2830, BL3550 and BL5650 were chosen for direct comparison
against the DNS and experiments of [39].

The domain size, (𝐿𝑥 , 𝐿𝑦, 𝐿𝑧), is determined primarily by the sizes of the largest
turbulent structures. The pressure fluctuations are known to reach the furthest out
of the boundary layer to about 2.4𝛿99 [16], setting the minimum requirement for
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wall-normal height. We set our domain height to 18𝛿∗ ∼ 3𝛿99 to fully capture these
fluctuations. Since low-momentum streaks are approximately 0.5𝛿99 in width [18,
44], we opt for a spanwise width of 14𝛿∗ ∼ 2.5𝛿99 which is comparable to the
domain size of Ref. [39]. The large-scale motions (LSMs) corresponding to bulges
or hairpin packets have a maximum streamwise length of 3𝛿99 [45–49]. In contrast,
the very-large-scale-motions (VLSMs) have lengths of up to 10𝛿99 in the streamwise
direction [47–49]. Lee & Sung (Ref. [18]) have found that these structures have
a mean streamwise length of less than 6𝛿99, and that statistically over 95% of the
turbulent structures in their DNS had streamwise lengths of < 6𝛿99. And so, we opt
for a domain of 40𝛿∗ ∼ 7𝛿99 in streamwise length.

The resolution is chosen so that the smallest turbulent structures can be adequately
resolved. The streamwise and spanwise grids are uniform with Δ𝑥+ = 9,Δ𝑧+ = 6
which is comparable to the resolution parameters of Sillero et.al [14] (Δ𝑥+ ≈ 7,
Δ𝑧+ ≈ 4.7 ) and Orlu et.al [39] (Δ𝑥+ ≈ 8.5, Δ𝑧+ ≈ 4). The wall-normal domain
uses a hyperbolic stretching with 8 points in the viscous sub-layer, (𝜉2 < 5𝛿𝜈), with
Δ𝑦+min ≈ 0.3. This is comparable to the wall-normal resolution of Sillero et.al [14]
who also had 8 points in the viscous sub-layer at the inlet and that of Orlu et.al
[39] who had 10 points in the viscous sub-layer at their lowest Reynolds number.
To improve accuracy, we opt to use 4th order finite difference spatial operators.
Appendix A.1 compares the effect of both higher and lower finite difference spatial
operators on case BL1460.

Cases BL2830, BL3550, and BL5650 are sampled over a period of 15 𝛿99/𝑢𝜏
whereas Case BL1460 is sampled over a period of 30 𝛿99/𝑢𝜏. BL1460 was run for
longer specifically to gather temporal statistics of the global quantities, e.g. skin
friction coefficient and shape factor.

BL1460 uses a laminar boundary layer superimposed with white noise of fixed
amplitude 0.1𝑢1,∞ as an initial condition. Cases BL2830, BL3550 and BL5650
use fully turbulent fields from lower Reynolds number simulations as initial condi-
tions. For example, BL5650 uses fields from BL2830, and BL2830 uses fields from
BL1460. It will be shown in Section 2.3.1 that the statistically stationary solution is
independent of the initial conditions used. The use of already turbulent fields as an
initial condition greatly reduces the duration of the numerical transient when com-
pared to using a laminar boundary layer as an initial condition. For completeness,
laminar flows initialized with turbulent fields are shown in Appendix A.2.

To investigate the transient period, a set of turbulent cases were run at 𝑅𝑒𝛿∗ = 2830
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with varying initial conditions. This specific Reynolds number was chosen to
investigate the impact of using both higher and lower Reynolds number fields as
initial conditions. The complete list of different cases are also shown in Table
2.2. Each case has the same domain size and resolution as BL2830. BL2830Wn
utilizes only white noise with an amplitude of 0.1𝑢1,∞. Lower amplitudes of white
noise are found to be insufficient to directly trigger turbulence and cause the flow
to re-laminarize, similar to what can occur in LWS recycling [50, 51]. BL2830Eig
uses the same initial field as BL2830Wn but with a single superimposed streamwise
mode as well as its corresponding wall-normal eigenfunction which are both based
on stability analysis from Ref. [52]. Taking further inspiration from Ref. [37], cases
BL2830 and BL2830H use fully turbulent fields from cases BL1460 and BL5650,
respectively, after interpolating them to the appropriate resolution. Finally, case
BL2830Sill uses an instantaneous data file from Ref. [14] at 𝑅𝑒𝛿∗ = 5650. A
streamwise section of ∼ 7𝛿99 is taken and then interpolated to match the appropriate
resolution.

2.3.2 Implementation of 𝑞′0/𝑞0

In practice, the ensemble averages used in Eq. 2.22 to calculate 𝑞′0/𝑞0 are approxi-
mated by spanwise and streamwise averages. From this value, the given metric terms
are calculated, and the continuity and momentum equations (Eq. 2.16-2.17) are fur-
ther solved at each time step. In this way, the simulation is fully independent of any
a priori information and undercuts Ref. [37]’s original need for upstream stations.
However, over the course of a simulation, computational errors may accumulate and
cause 𝛿∗ to eventually drift. This could ultimately result in a substantial temporal
drift in all integrated quantities and profiles. To prevent this, we implement a single
relaxation term in the streamwise momentum equation to relax 𝛿∗ to a targeted value
𝛿∗d.

𝜕𝑢1

𝜕𝑡
= −𝑢 𝑗

𝜕𝑢1

𝜕𝜉 𝑗
− 1

𝜌

𝜕𝑃

𝜕𝜉1
+ 𝜈

𝜕2𝑢1

𝜕𝜉2
𝑗

+ (2.28)

𝜉2
𝑞′0
𝑞0

𝑢1
𝜕𝑢1

𝜕𝜉2
+ 𝛼

𝑢1,∞

(𝛿∗ − 𝛿∗d)
𝛿∗

𝜉2𝑢1
𝜕𝑢1

𝜕𝜉2

where the time-scale 𝛼 = 𝑢𝜏/𝛿99 is chosen so as to not introduce an additional
time-scale in the flow. It should be noted that this relaxation term is the only method
of prescribing a specific 𝛿∗ to the simulation. Volumetric integration of Eq. 2.28
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(a) Skin friction coefficient (b) Shape factor (c) Closure term

Figure 2.5: Temporal evolution of (a) skin friction coefficient 𝐶 𝑓 , (b) shape factor
𝐻12, and (c) normalized closure term 𝛿∗

𝑞′0
𝑞0

, for the turbulent cases shown in table
2.2. Lines: (black) BL2830 in the statistical steady-state, (gold) BL2830Wn, (green)
BL2830Eig, (red) BL2830, – (orange) BL2830H, (purple) BL2830Sill, (solid black)
empirical values, (dashed black) ±10% of empirical values for 𝐶 𝑓 and 𝐻12

directly shows that the relaxation term describes to first-order an exponential decay
of the instantaneous 𝛿∗ towards the desired value.

Results from the simulation cases described in table 2.2 are given in this section.
In particular, integrated quantities such as shape factor 𝐻12, skin friction coefficient
𝐶 𝑓 , and the various moments of 𝑢1 are presented in comparison to values found in
the literature.

2.4 Results and verifications
2.4.1 Transient behavior
A major benefit of periodic boundary conditions is the independence of the statistical
steady-state solution from the initial conditions. Here, we present transient behavior
for turbulent boundary layers from a variety of initial conditions.

The shape factor is still calculated by Eq. 2.27 and the wall shear-stress is still
calculated by 𝜏𝑤 = 𝜇𝜕𝑢1/𝜕𝜉2 |𝜉2=0. However, for the current and following sections,
· will denote averaging in time and in both spanwise and streamwise directions.
Figure 2.5 shows the transient behavior of each turbulent case listed in table 2.2.
After a "wash-out" time, the flow reaches a statistical stationary state. Regardless of
the initial condition, the integral quantities converge to the same statistical steady-
state values. Moreover, cases BL2830Wn and BL2830Eig show a much slower
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(a) Skin friction coefficient (b) Shape factor

Figure 2.6: Temporal Evolution of (a) 𝐶 𝑓 and (b) 𝐻12 for case BL1460. Colors:
(red) instantaneous values, (black) mean value, and (black) empirical value.

convergence than the other cases by at least a factor of 4. This provides justification
for using lower Reynolds number turbulent fields as initial conditions for higher
Reynolds number simulations, similar to extended TDNS methods [33]. Case
BL2830Sill demonstrates that even streamwise non-periodic initial data can still be
used as an initial condition to achieve the same results.

The transient period lasts at most 2𝛿99/𝑢𝜏 and can be as short as 0.5𝛿99/𝑢𝜏. As
expected these transient periods are far shorter than with laminar initial fields. It
has been argued by Nagib et al. (2007) [53] that the appropriate turbulent boundary
layer time-scale is 𝛿99/𝑢𝜏. Transient periods on the same order of magnitude are to
be expected. To further quantify the temporal evolution, Figure 2.5c shows 𝛿∗𝑞′0/𝑞0

over time for the cases presented in table 2.2. During the transient period, 𝛿∗𝑞′0/𝑞0

grows from its initial value to the nominal turbulent value.

Under statistically stationary conditions, the 𝐶 𝑓 has an rms of 2.2 % of its mean
value and its fluctuations have an integral timescale of ∼ 0.3𝛿99/𝑢𝜏 as shown in
Fig. 2.6a. In contrast, 𝐻12 has an rms of 0.8% of its mean value with a much
larger integral timescale of ∼ 1.9𝛿99/𝑢𝜏, as shown in Fig. 2.6b. Both of the integral
timescales for skin friction and shape factor were calculated by first computing the
two-time autocorrelation function during the statistically steady regime and then
integrating the function only up to the autocorrelation function’s first zero-crossing.
𝛿∗𝑞′0/𝑞0 has fluctuations similar to 𝐶 𝑓 rather than 𝐻12 and these can already be seen
in Fig. 2.5c. These temporal oscillations are due to the approximation of ensemble
averages by planar averages in the evaluation of Eq. 2.22.
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(a) Shape factor (b) Skin friction coefficient

Figure 2.7: (a) Shape factor 𝐻12 as a function of Reynolds number 𝑅𝑒𝛿∗ . Solid line
represents empirical fit by [10], and dashed lines indicate ±1%. (b) Skin friction
as a function of 𝑅𝑒𝛿∗ . Solid line represents the extended Coles-Fernholz relation
with 𝜅 = 0.384, 𝐶 = 3.3, 𝐷0 = 182, 𝐷1 = −2466 [11]. Dashed lines indicate ±3%.
Symbols: 4(red) DNS [39]; � (green) DNS [14]; ◦ (black) current study.

2.4.2 Integral and global quantities
Monkewitz et al. [10] generated empirical fits of experiments for 𝐻12 against
Reynolds number and these will be used as a guide for appropriate values. Similarly,
we use Chauhan’s extended Coles-Fernholz skin friction relation

√︄
2
𝐶 𝑓

=
1
𝜅

ln(𝑅𝑒𝛿∗) + 𝐶 + 𝐷0
ln 𝑅𝑒𝛿∗

𝑅𝑒𝛿∗
+ 𝐷1

𝑅𝑒𝛿∗
(2.29)

with 𝜅 = 0.384, 𝐶 = 3.3, 𝐷0 = 182, and 𝐷1 = −2466 [11]. While there are a
broad variety of composite profiles, the previous empirical profiles use up-to-date
experimental data and account for low Re effects.

The final values of 𝐻12 obtained for the simulation cases are shown in Fig. 2.7a
alongside the empirical fit in the numerical results with 1% error margins. Error
bars were evaluated consistent with the method used in Ref. [54]. Noticeably the
calculated values are within ± 0.7% of the empirical values. Following suit, the
skin friction coefficient, 𝐶 𝑓 , is compared against the extended Coles-Fernholz skin
friction relation [11]. The results are shown in Fig. 2.7b with corresponding error
bars, and the given simulations are within at most ±2.5% of the empirical values.
It is interesting to note that the present results are closer to the composite fit of the
experimental data than the DNS results of Ref. [39].
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2.4.3 Mean velocity profiles
Figure 2.8 displays the inner-scaled mean streamwise velocity profiles of the different
Reynolds number simulation results plotted against those of [39]. Since the shape
factors of growing and homogeneous boundary layers are within 1% of each other,
it is no surprise that the streamwise mean velocity profiles show similar agreement.
The maximum numerical uncertainty in 𝑢+1 and 𝑢+1,𝑟𝑚𝑠

for all cases was 0.003 and
0.01, respectively, estimated using the methodology of [55].

We also compute the log-intercept function Ψ+ ≡ 𝑢+1 − 𝜅−1 ln(𝜉+2 ) and the log-
indicator function Ξ ≡ 𝜉+2 𝑑𝑢

+
1/𝑑𝜉

+
2 . These two functions are often used to calculate

the two constants required by the log-law. A nominal value of 𝜅 = 0.384 was used.
Figure 2.8c shows that at lower Reynolds numbers, the log-layer is not yet formed.
This is indicative of inadequate scale-separation. As the Reynolds number increases,
however, a log-layer appears to form around 𝜉+2 = 40−100 for 𝑅𝑒𝛿∗ = 5650. The log-
intercept function is similarly constant in the log-layer and also appears to plateau
for 𝜉+2 = 40− 100. Experimental data [39] are also plotted for both the log-intercept
and log-indicator functions and show good agreement with the current simulations.
In particular, near the wake region (𝜉+2 & 800), the profiles given for 𝑅𝑒𝛿∗ = 3550
agree better with experimental results than the corresponding profiles from the DNS
of Ref. [39]. Ref. [39] noted that due to low resolution near the wall, the velocity
profile of the experimental data for 𝜉+2 < 15 is under-resolved. This is represented
by a large scatter in experimental data for the log-indicator function.

The Reynolds stress and rms velocity profiles are shown with inner scaling in Fig. 2.9.
All of the profiles exhibit a near-wall peak, and the peak locations coincide with those
of the profiles from Ref. [39]. There is a minor deviation in 𝑢+1,rms in the log-layer
and wake region at around 𝜉+2 ≈ 100− 200 of at most 5%. The experimental results
for 𝑅𝑒𝛿∗ = 3550 and 5650 [39] are also plotted and show good agreement with the
current study in the region of deviation. Interestingly, in the region 𝜉+2 = 100− 200,
the experimental data for 𝑅𝑒𝛿∗ = 3550 stand at equal distance between our DNS
results and the previous DNS results of Ref. [39]. The 𝑢+2,rms profile features slightly
higher values near the free-stream. These fluctuations can be somewhat reduced
by extending the domain in the wall-normal direction. However, in the present
formulation, the 𝑢2,rms will never reach zero. Indeed, from integration of continuity
(Eq. 2.16), 𝑢2,∞ = (𝑞′0/𝑞0)𝑢1,∞𝛿∗. Since the closure for 𝑞′0/𝑞0 is not an a priori fixed
quantity, 𝑞′0/𝑞0 varies in time, and hence the transpiration velocity also fluctuates
in time. As mentioned previously, due to the low near-wall resolution of Ref. [39],
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(a) streamwise velocity

(b) Log-intercept function (c) Log-indicator function

Figure 2.8: Mean inner scaled (a) streamwise velocity (𝑢+1), (b) log-intercept function
Ψ+ ≡ 𝑢+1 − 𝜅−1 ln(𝜉+2 ) with 𝜅 = 0.384, (c) log-indicator function Ξ ≡ 𝜉+2

𝜕𝑢+1
𝜕𝜉+2

vs. 𝜉+2
for different Reynolds numbers. From bottom to top, shifted by 5𝑢+1 : 𝑅𝑒∗

𝛿
=

1460, 2830, 3550, 5650. Legend: (red) [39] DNS data; (black) present work; (green)
[14]; � (black) [39] experimental data.

the inner layer peak for experimental data at 𝜉+2 ∼ 15 is not fully captured. Finally,
a small deviation may be observed in the spanwise and wall-normal rms velocity
profiles in the near-wall region.

2.5 Computational cost
The most popular method of boundary layer simulation remains the spatially growing
boundary layer. However, this computational method is more computationally
expensive than the current framework for three main reasons: an overall longer
streamwise domain, slower statistical convergence, and smaller time-step.

Spatially developing boundary layer simulations require large streamwise domains
to reach the largest Reynolds numbers. Inflow generation methods, such as recy-
cling and rescaling, heavily reduce the overall simulation cost by bypassing tran-
sition and increasing the initial Reynolds number. The recycling domain covers
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(a) Streamwise rms (b) Wall-normal rms

(c) Spanwise rms (d) Reynolds shear stress

Figure 2.9: (a) 𝑢+1,rms (b) 𝑢+2,rms (c) 𝑢+3,rms (d) −𝑢′+
1 𝑢

′+
2 vs. 𝜉+2 for different Reynolds

numbers. From bottom to top: 𝑅𝑒∗
𝛿
= 1460, 2830, 3550, 5650. Legend: (red) [39]

DNS data; (black) current study; (green) [14]; � (black) [39] experimental data.

a large portion of the streamwise domain and for Ref. [14], the recycling domain
was 115𝛿99,recy. inlet ≈ 44𝛿99,prod. inlet. Moreover, all simulations that use inflow
generation techniques must also undergo an "eddy-turnover recovery length" that
increases with inlet Reynolds number [14]. Over this distance, none of the calculated
statistics match empirical values within appropriate tolerance. For Ref. [14], this
length-scale encompassed over a quarter of their production domain (27𝛿99,prod. inlet

out of a domain of 110𝛿99,prod. inlet). In summary, a recycling and rescaling set-
up like that of Ref. [14] would therefore require an upstream domain length of at
least 71𝛿99,prod .inlet or 48 𝛿99,0, where 𝛿99,0 is the boundary layer thickness at the
location where statistics are extracted. Ref. [39] required 56𝛿99,0 to reach the given
Reynolds number as well. In contrast, our simulation at a Reynolds number of 5650
(BL5650) only required a streamwise domain of 7𝛿99,0. Therefore, the proposed
method reduces the streamwise domain by about an order of magnitude.

Statistical convergence is another limiting factor of boundary layer simulation. Due
to the growth of the boundary layer, the streamwise distance for which the boundary
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layer thickness remains within ±0.5% of a specific value is approximately 1𝛿99.
Thus streamwise developing boundary layer simulations are only able to average
over streamwise slabs of approximately 1𝛿99 in streamwise length. In contrast, the
current method uses a streamwise domain of 7𝛿99 in length and due to statistical
homogeneity in the streamwise direction, the current method can average over a
larger sample. In other words, the current method is expected to be seven times
faster at converging statistics.

Finally, for a streamwise developing boundary layer DNS, the wall-normal resolution
is determined by the inner layer thickness at the inlet (i.e. the lowest turbulent
Reynolds number in the flow) so that all inner layer dynamics are fully resolved.
Since the inner layer grows with streamwise distance, by the end of the production
domain, the flow is over-resolved in the viscous sublayer. For example, the inner
layer grew by 12% and by 20% for Refs. [14] and [39], respectively. In addition, the
convective Courant-Friedrichs-Lewy (CFL) number in the wall-normal direction is
usually the leading constraint on the time-step size for flat plate boundary layer DNS
owing in large part to the wall-normal stretching of the mesh. Thus, Refs. [39] and
[14] have time-steps that could potentially be 20% and 12% larger, respectively, if
the high fidelity simulations could be run on grids with the ideal resolution. Because
the proposed method uses a q’/q calculated specifically to keep 𝛿∗ constant, it will
maintain the initial boundary layer thickness. Since viscosity is prescribed and the
free-stream is far from the boundary layer, the method effectively specifies a single
Reynolds number for the simulation. Therefore, an ideal resolution can be used and,
consequently, a larger time-step can be applied. Overall, the expected savings from
a more ideal wall-normal resolution and larger time-steps is at least 25%.

The net cost reduction from the proposed method is about two orders of magnitude
and is theoretically independent of the streamwise and spanwise domain length of
the proposed method. For example, although a domain 14𝛿99 in length would use
twice the number of streamwise grid-points, it would also have twice the sample
range. Similar statements can be made for the spanwise direction as well.

Given a potential computational cost reduction of one to two orders of magnitude
(by a factor of ∼ 60), one might wonder: if one had the computational resources
of Orlu et al. (2013), whose largest Reynolds number was 𝑅𝑒𝛿∗ = 5650 (𝑅𝑒𝜏 ≈
1300), then what would be the largest Reynolds number achieved using the rescaling
methodology? The computational domain of Orlu et al. (2013) had dimensions
of 𝐿𝑥 ≈ 55𝛿99, 𝐿𝑦 ≈ 3𝛿99, 𝐿𝑧 ≈ 2.5𝛿99, based on 𝛿99 measured at the streamwise
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location where 𝑅𝑒𝛿∗ = 5650. The domain also had resolution requirements of
Δ𝑥+ ≈ 7, Δ𝑦+m𝑖𝑛

≈ 0.3 and Δ𝑧+ ≈ 4, and was sampled for a total of 40𝛿99/𝑢𝜏 over
streamwise slabs of 1𝛿99 for a total computational cost of 9 million cpu-hours.

The computational savings allow for a reduction in streamwise domain size to 7𝛿99,
a reduction in sample time by a factor of 7, and optimization of time-step and wall-
normal grid resolution. However, the domain size requirements are in terms of 𝛿99,
while the grid resolution requirements are in terms of 𝛿𝜈. Similarly, the sample time
requirement is in terms of 𝛿99, and the time-step is constrained by flow near the wall,
and so it will be in highly dependent on 𝛿𝜈. The overall computational cost therefore
roughly scales like 𝑅𝑒4

𝜏. In other words, the computational cost reduction of 60
corresponds to an increase in 𝑅𝑒𝜏 of approximately 2.8. Therefore, if one had the
computational resources of Orluet al. (2013), one could reach a total 𝑅𝑒𝛿∗ ≈ 17500
(𝑅𝑒𝜏 ≈ 3600). For reference, the lower limit for the existence of an inertial subrange
in the velocity spectra for pipe flows was estimated by McKeon & Morrison (2007)
to be at 𝑅𝑒𝑝𝑖𝑝𝑒𝜏 & 5000. Assuming the same limit for boundary layer flow, one
would only require ∼ 33 million cpu-hours.

2.6 Conclusion
A new method for simulating flat-plate turbulent boundary layers has been presented.
The proposed method solves the Navier-Stokes equations in rescaled coordinates and
was derived based on the assumption that self-similarity holds locally for a turbulent
boundary layer. The method improves upon Spalart’s original work by removing
the dependence on lower Reynolds number simulations.

To derive the method, we rescaled the wall-normal coordinate by a single length-
scale, 𝑞(𝑥1), and found by an a priori analysis that the additional terms resulting from
rescaling counterbalances the Reynolds stresses in the wake region, thus keeping
the boundary layer statistically stationary. To complete the derivation, we made
two critical assumptions: (1) the modified Navier-stokes equations hold over a
narrow streamwise domain and (2) after rescaling, the flow is statistically stationary
and statistically homogeneous in streamwise and spanwise directions. The key
requirement for the use of this methodology is that 𝑞′/𝑞𝛿99 � 1. The method was
then applied to a variety of Reynolds number cases, and the integral quantities and
profiles were presented. The shape factor and skin friction coefficients were within
±1% and ±3% of aggregated experimental fits, respectively. Near 𝜉+2 = 100, the
𝑢+1,rms compares favorably with the experimental values and deviates with respect
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to the DNS of [14] and [39] by about 5%. The mean wall-normal velocity profile
was also compared to that of Refs. [14] and [39]. Overall, the method was
computationally less expensive than competing simulations by one to two orders of
magnitude.
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C h a p t e r 3

ERROR ESTIMATION OF ONE-POINT STATISTICS OF A
HOMOGENIZED STREAMWISE PERIODIC BOUNDARY

LAYER

Although much of the current literature on boundary layer simulation has been
focused on the inflow conditions [13, 14, 16, 18, 39, 42], the majority of the
streamwise growing boundary layer simulations [14, 16, 18, 39, 42] impose a
𝑢2,∞(𝑥1) profile at the top of the domain. The streamwise periodic framework
of Chapter 2 imposed no such transpiration velocity, and yet the resultant global
quantities of interest were as good as if not better than those of streamwise growing
simulations. These surprisingly good results form the basis for the present study.
Since no transpiration velocity was imposed, the resultant transpiration velocity
within the periodic simulation can be used to as a quantification of error. Given
how deeply tied the transpiration velocity is to boundary layer dynamics [58], it is
necessary to 1) investigate and quantify the error in transpiration velocity and 2)
modify the current method from Chapter 2 to capture the transpiration velocity.

First, we theorize how errors in the transpiration velocity might develop. Then,
we investigate the multiscale nature of the boundary layer, from an a priori and a
posteriori perspective. Finally,we provide an interrogation of the continuity equation
via an error budget.

3.1 Wall-normal velocity profile
The governing equations in Eq. 2.16-2.22 rely only on a single scaling. Because 𝑞

broadly rescales the entire boundary layer and since the majority of the boundary
layer is covered by the outer layer, it can be assumed that 𝑞 is an outer-scale. This was
confirmed in Chapter 2 and 𝑞′/𝑞 was found to be approximated by 𝜃′/𝜃. However, in
the near-wall region (𝑥+2 < 10), the relevant near-wall length-scale is 𝛿𝜈 = 𝜈/

√︁
𝜏𝑤/𝜌.

One might expect the relevant source term to be proportional to 𝛿′𝜈/𝛿𝜈 rather than
𝑞′/𝑞. One can show that this may lead to a discrepancy in the transpiration velocity
profiles of growing and periodic boundary layers.

Consider the ensemble averaged continuity equation and its wall-normal integrated
form
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Figure 3.1: Profiles of normalized wall-normal velocity 𝑢2/𝑢1,∞ and for Re𝛿∗ =

1460. Colors: (red) streamwise developing DNS [60], (black) Periodic DNS [59].

𝜕𝑢2

𝜕𝜉2
= 𝜉2

𝑞′

𝑞

𝜕𝑢1

𝜕𝜉2
(3.1)

𝑢2(𝜉2) =
∫ 𝜉2

0

𝑞′

𝑞
𝜉∗2

𝜕𝑢1

𝜕𝜉∗2
𝑑𝜉∗2 (3.2)

where · defines ensemble-averaged quantities. Figure 3.1 compares the wall-normal
velocity profiles between a streamwise growing [39] and periodic [59] boundary
layer at Re𝛿∗ = 1460. The periodic profile overshoots the non-periodic profile in
the inner layer and as a direct consequence, overshoots the final free-stream value
by about 5%. This result is consistent with the fact that the inner layer grows
much more slowly than the outer layer and so the broadband use of 𝑞′/𝑞 as a
rescaling parameter throughout the boundary layer provides small inaccuracies in
the transpiration velocity. A wall-normal varying value of 𝑞′/𝑞 may be necessary
to capture appropriately the evolution of 𝑢2,∞. Obtaining a wall-normal varying
metric source term of 𝑞′/𝑞 would require rescaling the wall-normal coordinate by
𝑞𝑚𝑠 (𝑥1, 𝑥2) instead of 𝑞(𝑥1).

3.2 A priori multiscale analysis
The current section analyzes the multiscale nature of the boundary layer and inves-
tigates the impact of multiscale terms on the mean velocity profile.

3.2.1 A priori analytical multiscale behavior
The discussion in the previous section suggested that a rescaling by 𝑞𝑚𝑠 = 𝑞𝑚𝑠 (𝑥1, 𝑥2)
might be necessary to better capture streamwise growth effects on the mean flow.
For example, after applying a wall-normal rescaling by 𝑞𝑚𝑠 to 𝜕〈𝑢1〉𝑥3,𝑡/𝜕𝑥1, one
would expect the following relation:
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(a) Re𝛿∗ = 1460 (b) Re𝛿∗ = 3550

Figure 3.2: Normalized profiles of 𝑞𝑚𝑠
𝑥 /𝑞𝑚𝑠 extracted from Ref. [39] for Re𝛿∗ =

1460 (a), 3550 (b). Lines: (black) 𝛿∗𝑞′/𝑞 (Eq. 2.22); (black) Extracted 𝛿∗𝑞𝑚𝑠
𝑥 /𝑞𝑚𝑠

(Eq. 3.3); (red) Blending 𝛿∗𝑞𝑚𝑠
𝑥 /𝑞𝑚𝑠 (Eq. 3.18, 3.20).
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𝜕𝑥1
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(3.3)

Boundary layer data from spatially growing DNS [39] can be used to evaluate the
LHS and RHS of Eq. 3.3 to extract a profile for 𝑞𝑚𝑠

𝑥 /𝑞𝑚𝑠. Figure 3.2 compares the
resulting extracted profiles against extracted values of 𝑞′/𝑞 using Eq. 2.22 for two
different R𝑒𝛿∗ . 𝑞𝑚𝑠

𝑥 /𝑞𝑚𝑠 varies throughout the buffer and mesolayer, up to 𝜉+2 ≈ 100.
In both the near wall region (𝜉+2 < 10), and in the outer layer (𝜉2/𝛿99 & 0.1),
𝑞𝑚𝑠
𝑥 /𝑞𝑚𝑠 is approximately constant.

The near-wall plateau can be understood by invoking the law of the wall (𝑢+1 ≈ 𝜉+2
for 𝜉+2 < 10). The right hand side of Eq. 3.3 becomes
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where inner-scale notation has been used: 𝑢+ = 〈𝑢1〉𝜉3,𝑡/𝑢𝜏, 𝜉+2 = 𝜉2/𝛿𝜈, 𝑢𝜏 = 𝜈/𝛿𝜈.
A Taylor expansion of the LHS of Eq. 3.3 around 𝜉2 = 0 yields

−
𝜕〈𝑢1〉𝜉3,𝑡

𝜕𝑥1
≈ −𝜉2

𝜕

𝜕𝑥1
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𝜕𝜉2
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)
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𝜏′𝑤
𝜇

(3.5)

Finally, Eq. 3.3 simplifies to
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The outer plateau can be understood by using the law of the wake (𝑢+ = 𝑢+1,∞ +
𝑓𝑜 (𝜉2/Δ), for some universal profile 𝑓𝑜, and the Clauser thickness Δ = 𝛿∗𝑢+1,∞). The
LHS of Eq. 3.3 gives

−
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′
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where |𝑢′𝜏/𝑢𝜏 | � |Δ′/Δ| has been used to simplify the equation. The RHS of Eq. 3.3
also gives
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Finally, Eq. 3.3 simplifies to
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3.2.2 Budget analysis of multiscale behavior
The following analysis focuses on the effects of employing the wall-normal rescaling
by 𝑞𝑚𝑠 (𝑥1, 𝑥2) on the u-momentum equation in contrast to the effects of employing
a constant wall-normal rescaling by 𝑞(𝑥1).

The full transformed equations are given by
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𝜕𝑢𝑖

𝜕𝜉 𝑗
− 1

𝜌

𝜕𝑃

𝜕𝜉𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝜉2
𝑗

+ 𝜉2
𝑞𝑚𝑠
𝑥

𝑞𝑚𝑠
𝑢1

𝜕𝑢𝑖

𝜕𝜉2

+𝐻𝑚𝑠
𝑝 (𝑢𝑖) + 𝐻𝑚𝑠

𝜈 (𝑢𝑖) (3.11)

where

𝐻𝑚𝑠
𝑐 =

(
1 −

𝑞𝑚𝑠
0

𝑞𝑚𝑠
− 𝑥2

𝜕

𝜕𝑥2

[
𝑞𝑚𝑠

0
𝑞𝑚𝑠

] )
𝜕𝑢2

𝜕𝜉2
(3.12)
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𝐻𝑚𝑠
𝑝 (𝑢𝑖) =

1
𝜌
𝛿1𝑖𝜉2

𝑞𝑚𝑠
𝑥

𝑞𝑚𝑠

𝜕𝑃

𝜕𝜉2
+

(
1 −

𝑞𝑚𝑠
0

𝑞𝑚𝑠
− 𝑥2

𝜕

𝜕𝑥2

[
𝑞𝑚𝑠

0
𝑞𝑚𝑠

] ) (
𝑢2

𝜕𝑢𝑖

𝜕𝜉2
+ 𝛿𝑖2

1
𝜌

𝜕𝑃

𝜕𝑥𝑖

)
(3.13)

𝐻𝑚𝑠
𝜈 (𝑢𝑖) = 𝜈

[
1 −

(
𝑞𝑚𝑠

0
𝑞𝑚𝑠

+ 𝑥2
𝜕

𝜕𝑥2

[
𝑞𝑚𝑠

0
𝑞𝑚𝑠

] )2

+
(
𝜉2
𝑞𝑚𝑠
𝑥

𝑞𝑚𝑠
0

)2
]
𝜕2𝑢𝑖

𝜕𝜉2
2

+𝜈
(
𝜕

𝜕𝑥2

[
𝑞𝑚𝑠

0
𝑞𝑚𝑠

]
+ 𝑥2

𝜕2

𝜕𝑥2
2

[
𝑞𝑚𝑠

0
𝑞𝑚𝑠

])
𝜕𝑢𝑖

𝜕𝜉2

+𝜈
[
2
(
𝑞𝑚𝑠
𝑥

𝑞𝑚𝑠
0

)2
−
𝑞𝑚𝑠
𝑥𝑥

𝑞𝑚𝑠
0

]
𝜉2

𝜕𝑢𝑖

𝜕𝜉2
− 2𝜈𝜉2

𝑞𝑚𝑠
𝑥

𝑞𝑚𝑠
0

𝜕2𝑢𝑖

𝜕𝜉1𝜕𝜉2
(3.14)

Note that 𝑞𝑚𝑠
0 = 𝑞𝑚𝑠 (𝑥0, 𝑥2), and 𝑞𝑚𝑠 is assumed to be 𝐶3. Thus, the evaluation of

𝑥1 at 𝑥0 can be commuted with differentiation by 𝑥2. Post evaluation at 𝑥1 = 𝑥0,
the terms 𝐻𝑚𝑠

𝑐 , 𝐻𝑚𝑠
𝑝 , and 𝐻𝑚𝑠

𝜈 are of the exact same form of 𝐻𝑐, 𝐻𝑝, and 𝐻𝜈,
respectively, with 𝑞′0/𝑞0 replaced by 𝑞𝑚𝑠

𝑥 /𝑞𝑚𝑠
0 . In Section 3.2.1, it was shown that in

the outer layer, 𝑞𝑚𝑠
𝑥 /𝑞𝑚𝑠

0 is of the same order as 𝑞′0/𝑞0 or less. Consequently, 𝐻𝑚𝑠
𝑐 ,

𝐻𝑚𝑠
𝑝 and 𝐻𝑚𝑠

𝜈 are of the same order as 𝐻𝑐, 𝐻𝑝, and 𝐻𝜈. The following governing
equations are obtained after applying the two assumptions of statistical homogeneity
and a narrow streamwise domain, and after applying the same order-of-magnitude
simplifications (see Chapter 2, Section 1).

𝜕𝑢𝑖

𝜕𝜉𝑖
= 𝜉2

𝑞𝑚𝑠
𝑥

𝑞𝑚𝑠

𝜕𝑢1

𝜕𝜉2
(3.15)

𝜕𝑢𝑖

𝜕𝑡
= −𝑢 𝑗

𝜕𝑢𝑖

𝜕𝜉 𝑗
− 1

𝜌

𝜕𝑃

𝜕𝜉𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝜉2
𝑗

+ 𝜉2
𝑞𝑚𝑠
𝑥

𝑞𝑚𝑠
𝑢1

𝜕𝑢𝑖

𝜕𝜉2
(3.16)

An a priori analysis of the streamwise momentum equation is now conducted. To
do so, spanwise and temporal averages are applied to Eq. 3.16 to obtain

〈
𝑢 𝑗

𝜕𝑢𝑖

𝜕𝜉 𝑗

〉
𝜉3,𝑡︸        ︷︷        ︸

convective terms

= 𝜈
𝜕2〈𝑢𝑖〉𝜉3,𝑡

𝜕𝜉2
𝑗︸       ︷︷       ︸

viscous terms

+ 𝜉2

〈
𝑞𝑚𝑠
𝑥

𝑞𝑚𝑠
𝑢1

𝜕𝑢𝑖

𝜕𝜉2

〉
𝜉3,𝑡︸                 ︷︷                 ︸

source term

(3.17)

A wall-normal budget of the streamwise momentum equation is computed using
DNS data [39] at Re𝛿∗ = 5600 and the results are shown in Fig. 3.3. On the
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Figure 3.3: streamwise momentum magnitude budget from DNS data (Ref. [39])
at Re𝛿∗ = 5600. Lines: (solid black) Convective terms; (solid magenta) Viscous
terms; (dashed black) |〈 𝑞

′

𝑞
𝜉2𝑢1

𝜕𝑢1
𝜕𝜉2

〉𝜉3,𝑡 |; (dashed cyan) |〈 𝑞
𝑚𝑠
𝑥

𝑞𝑚𝑠 𝜉2𝑢1
𝜕𝑢1
𝜕𝜉2

〉𝜉3,𝑡 |.

same budget, the original source term 〈𝜉2(𝑞′/𝑞)𝑢1𝜕𝜉2 (𝑢1)〉𝜉3,𝑡 is shown for direct
comparison against the new source term from Eq. 3.17.

The original and new metric source terms balance the Reynolds shear stress in outer
layer. As expected, they differ by a factor of ∼ 4 in the inner layer. However, they
both remain orders of magnitudes smaller than the convective and viscous terms.
This observation is consistent with Klewicki et al. (2007) , who noted that in the
near wall region, the viscous and shear stress terms balance nearly completely.

In the near-wall region, the contribution of the multiscale source term will always re-
main many orders of magnitude smaller than all other terms, regardless of Reynolds
number. It can be shown that the viscous term scales like 𝑢2

𝜏/𝛿𝜈 in the inner layer.
The multiscale metric term scales like 𝑢2

𝜏𝑞
𝑚𝑠
𝑥 /𝑞𝑚𝑠. Hence, the ratio of the multiscale

metric term to the viscous term scales like 𝛿𝜈𝑞𝑚𝑠
𝑥 /𝑞𝑚𝑠 ∼ 𝛿′𝜈, which is monotonically

decreasing with Reynolds number. Similarly, the single-scale metric term scales
like 𝑢2

𝜏𝑞
′/𝑞 and its ratio to the viscous term scales like 𝛿𝜈𝑞

′/𝑞 ≈ 𝛿𝜈𝜃
′/𝜃 ∼ 𝐶 𝑓 /𝑅𝑒𝜏.

This ratio is also monotonically decreasing with Reynolds number. In both cases,
neither metric source term is significant in the near wall region with respect to the
viscous term.

In summary, from an a priori point of view, implementing a multiscale rescaling
function 𝑞𝑚𝑠

𝑥 /𝑞𝑚𝑠 should not provide significant benefits on the mean profile of
streamwise velocity. However, an a posteriori perspective is still needed to clarify
impacts on other turbulent quantities.
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3.3 A posteriori analysis of multiscale simulations
In this section, simulations are performed using the a model for 𝑞𝑚𝑠

𝑥 /𝑞𝑚𝑠. The key
purpose of this section is to conduct an a posteriori analysis of multiscale effects.

3.3.1 Fitted blending function
Conducting a posteriori analyses requires imposing a functional form for 𝑞𝑚𝑠

𝑥 /𝑞𝑚𝑠

similar to methods used in [36]. Section 3.2.1 has shown that near the wall
𝑞𝑚𝑠
𝑥 /𝑞𝑚𝑠 ≈ 2𝛿′𝜈/𝛿𝜈, and far from the wall, 𝑞𝑚𝑠

𝑥 /𝑞𝑚𝑠 ≈ Δ′/Δ. To transition smoothly
between the two regions, a one-parameter smoothed step function is employed.

𝑞𝑚𝑠
𝑥

𝑞𝑚𝑠
=
Δ′

Δ
𝑔(𝜉2) + 2

𝛿′𝜈
𝛿𝜈

[1 − 𝑔(𝜉2)]

=
Δ′

Δ

[
𝑔(𝜉2) +

2(1 − 𝑔(𝜉2))
𝜅𝑢+1,∞ + 1

]
(3.18)

where the log-law has been used to relate 𝛿′𝜈/𝛿𝜈 to Δ′/Δ, and 𝑔(𝜉2) is a smooth step
function defined by

𝑔(𝜉2) =


0 𝜉+2 ≤ 10

6𝑟5 − 15𝑟4 + 10𝑟3 𝜉2 ∈ [10𝛿𝜈, 0.1𝛿99]

1 𝜉2 ≥ 0.1𝛿99

(3.19)

where 𝑟 = ln(𝜉+2/10)/ln(0.1𝛿99/𝛿𝜈). Here, it has been assumed that the near-wall
region extends up to 10𝛿𝜈, and the wake region extends down to 1𝜃. Thus, Eq. 3.18
provides a closure equation for 𝑞𝑚𝑠

𝑥 /𝑞𝑚𝑠 in terms of Δ′/Δ.

To complete the closure for Δ′/Δ, the u-momentum and continuity equations were
integrated in the wall-normal direction and then averaged in the statistically homo-
geneous directions (𝜉1, 𝜉3) to provide the following closure equation

𝜏𝑤

𝜌

Δ

Δ′ =

∫ ∞

0

[
𝑔(𝜉2) +

2(1 − 𝑔(𝜉2))
𝜅𝑢+1,∞ + 1

]
𝜉2

𝜕

𝜕𝜉2

(
〈𝑢2〉𝜉1,𝜉3,𝑡 − 〈𝑢〉𝜉1,𝜉3,𝑡𝑢1,∞

)
𝑑𝜉2(3.20)

Overall, Eq 3.18-3.20 provide a fitted function to the actual 𝑞𝑚𝑠
𝑥 /𝑞𝑚𝑠 extracted via

Eq. 3.3. A comparison between the fitted and extracted profiles of 𝑞𝑚𝑠
𝑥 /𝑞𝑚𝑠 is shown

in Fig. 3.2 for Re𝛿∗ = 1460 and 3550. The fit agrees well with the extracted function
in both the outer layer plateau all the way down to 𝜉+2 = 10. There is a 10% relative
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Table 3.1: DNS parameters for the turbulent boundary layer simulation cases. *
indicates simulations taken from Chapter 2.

Dataset Re𝛿∗ Governing Equations Nx × Ny × Nz Sample Time 𝛿99/𝑢𝜏
BL1460* 1460 Eq. 2.16-2.22 300 x 120 x 160 30
BL3550* 3550 Eq. 2.16-2.22 648 x 230 x 338 15

BL1460MS 1460 Eq. 3.15-3.16,3.20 300 x 120 x 160 15
BL3550MS 3550 Eq. 3.15-3.16,3.20 648 x 230 x 338 15

error in the outer layer plateau value for the lower Reynolds number comparison, but
only a 3% relative error for the higher Reynolds number comparison. The inner layer
plateau is also within 5%. This difference is primarily due to the use of the log-law
for low Reynolds number flows and these differences are expected to decrease with
increased Reynolds number.

It should be noted that Eq. 3.20 will be solved in real time for simulation purposes.
Thus, the governing equations are completely closed.

3.3.2 Simulation parameters and numerical methods
The following cases were simulated and are summarized in Table 3.1. Cases
BL1460MS and BL3550MS solve Eq. 3.15-3.16 with closure Eq. 3.20. All new
cases (BL1460MS and BL3550MS) were simulated with the same domain size, res-
olutions and boundary conditions of the periodic simulations in Chapter 2 (BL1460,
BL3550, etc.)

3.3.3 Simulation results
Figure 3.4 compares calculated skin-friction coefficients and shape factors from
simulations BL1460MS and BL3550MS against those from single-scale simulations
values [59], growing simulations [39], and empirical fits [10, 11]. The multiscale
simulations have shape factors that are within 0.1% of the single-scale values and are
within 0.4% of the streamwise growing DNS values. The multiscale skin-friction
coefficients are within 0.6% of the single-scale values and are within 2% of the
streamwise growing DNS values. The multiscale simulation shape factor and skin-
friction coefficient both remain well within 0.5% and 2.2% of the corresponding
empirical values, respectively. More importantly, the differences between the single-
scale and multiscale simulation results are significantly less than between either and
the growing simulation results

Figure 3.5 shows the inner-scaled mean streamwise velocity profiles of the different
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(a) Shape factor (b) skin-friction coefficient

Figure 3.4: (a) Shape factor 𝐻12 as a function of Reynolds number Re𝛿∗ . Solid line
represents empirical fit by [10], and dashed lines indicate ±1%. (b) skin-friction
as a function of Re𝛿∗ . Solid line represents the extended Coles-Fernholz relation
with 𝜅 = 0.384, 𝐶 = 3.3, 𝐷0 = 182, 𝐷1 = −2466 [11]. Dashed lines indicate ±3%.
Symbols: 4(red) DNS [39]; � (green) Cases BL1460MS and BL3550MS (DNS) ;
◦ (black) Cases BL1460 and BL3550 (DNS) [59].

(a) streamwise velocity (b) streamwise rms

(c) Reynolds shear stress (d) Wall-normal velocity

Figure 3.5: (a) 𝑢+1 (b) 𝑢+1,rms (c) −𝑢′+
1 𝑢

′+
2 (d) 𝑢+2 vs. 𝜉+2 for Re𝛿∗ = 1460, 3550.

Legend: (red) DNS [39]; (black) Single-scale cases BL1460, BL3550 [59]; (green)
multiscale DNS cases BL1460MS and BL3550MS; � (black) [39] experimental
data.
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Reynolds number simulation results in contrast with those of Ref. [39], which had
a streamwise growing boundary layer, and the single-scale simulation results of
Chapter 2. The shape factors and skin-friction coefficients being within 1 and
3%, respectively, of growing boundary layer simulation values directly implies the
mean streamwise velocity profiles will be within 3% of growing boundary layer
simulations for both Re𝛿∗ = 1460 and 3550. The normalized Reynolds stress and
rms profiles are also plotted in Fig. 3.5. The agreement of the near wall-peak at
𝜉+2 ≈ 15 with a relative difference 2% confirms that the multiscale rescaling effects
are minimal on both the measured quantities of mean streamwise velocity and rms.
These results are consistent with the a priori analyses conducted in Section 3.3.

Figure 3.5d shows the wall-normal velocity profiles. There is marked improvement
in both the near-wall behavior and free-stream value. Specifically, 𝑢+2,∞ varies by
about 5% between the multiscale and single-scale cases, and the near wall behavior
has a relative deviation of 3% between the multiscale and single-scale cases as
well. The deviation between the single-scale simulation and multiscale simulation
decreases with increasing Reynolds number.

3.4 Discussion of Reynolds number contribution
3.4.1 Reynolds number dependence
Classical descriptions of the boundary layer require two different scalings for the
inner and outer layers [8]. To avoid the controversy of suggesting what velocity and
length-scales are involved [7, 62], we will appeal to analysis via non-dimensional
groups. For flat plate boundary layers, the ensemble-averaged mean streamwise
velocity is given by

𝑢1

𝑢1,∞
= 𝑓

(
𝑥2

𝑞
,Re𝑞

)
(3.21)

Consequently, the streamwise derivative is given by

𝜕𝑢1

𝜕𝑥1
= −𝑥2

𝑞′

𝑞

𝜕𝑢1

𝜕𝑥2︸      ︷︷      ︸
s𝑜𝑢𝑟𝑐𝑒 𝑡𝑒𝑟𝑚

+ 𝑞′

𝑞
Re𝑞

𝜕𝑢1

𝜕Re𝑞︸         ︷︷         ︸
e𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚

(3.22)

Note that the last term in Eq. 3.22 is omitted in Eq. 2.16 as a consequence of
Assumption #1. Correspondingly, Eq. 2.16-2.22 lack any Reynolds number partial
terms. Note that the neglecting of explicit Reynolds number partial derivative terms
does not remove the Reynolds number dependence of the mean quantities, i.e., the
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viscous terms still provide an implicit dependence on the Reynolds number. The
evolution of the shape and skin-friction coefficient (see Fig. 3.4) are illustrative
examples of this Reynolds number dependence. The good agreement in the global
quantities implies that the exclusion of the Reynolds number partial terms has a
negligible impact on the mean streamwise velocity for the current range of Reynolds
numbers. However, it is unclear if this result persists for high Re𝛿∗ .

The current objective is to determine the magnitude of this "error" term over a large
range of Reynolds numbers and compare its magnitude to that of the source term.
First, we start by recognizing that the source term in the continuity equation and in
Eq. 3.22 is nothing more than the log-indicator function Ψ = 𝑥2𝜕𝑢1/𝜕𝑥2 rescaled
by 𝑞′/𝑞. It can be computed easily from any DNS data. Figure 3.6a presents
the re-scaled source term calculated from various DNS and experimental databases
[14, 39, 59] for 𝑅𝑒𝜃 = 4000. All curves feature two peaks: one in the inner and
one in the outer layer. Overall, there is good agreement between experimental and
DNS profiles, with the experimental values featuring scatter near the wall due to
resolution [39].

The "error" term can be extracted from streamwise growing boundary layers using
Eq. 3.22. Unfortunately, experimental data for this particular quantity are not
available. Similarly, the "error term" is also not accessible from single-scale periodic
simulations. The resulting profiles are shown in Fig. 3.6b. Both profiles agree on
a near-wall peak and its location, and show only small deviations on its magnitude.
Further from the wall, the extracted profiles are close to zero and are noisy. From
Eq. 3.22, the low magnitude of the "error" term in the outer layer indicates that the
majority of the streamwise variation of 𝑢1 is captured by the source term. Since
𝑞 ≈ 𝜃 is an outer scale, and since the source term describes the growth of the
boundary layer due to the growth of 𝑞, it is expected that the source term should
capture most of the streamwise variation of the outer layer. In contrast, the large
magnitude of the "error" term in the inner layer indicates that the majority of the
streamwise variation of 𝑢1 in the inner layer is not captured by the source term. This
is consistent with the results shown in Fig. 3.2. It was found that the metric term
𝑞′/𝑞 overshoots the actual value of 2𝛿′𝜈/𝛿𝜈. Because the source term and "error"
term have opposite signs in Eq. 3.22, it can be understood that in the inner layer,
the source term overestimates the actual streamwise variation and the "error" term
accounts for the overshoot. One could conclude that the effect of the "error" term is
primarily concentrated in the inner layer.
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(a) Scaled source term (b) "Error" term

Figure 3.6: (a) Scaled source term Ψ/𝑈∞ = 𝑥2𝜕 (𝑢1/𝑢1,∞)/𝜕𝑥2 (b) "error" term
Re𝜃𝜕 (𝑢1/𝑢1,∞)𝜕Re𝜃 at Re𝜃 ≈ 4000. Symbols indicate experiments. Colors: (black)
Composite fit at Re𝜃 ≈ 4000. [10]; (green) [14]; (black) [59]; (red) [39].

To extrapolate these results to higher Reynolds numbers, we turn to a composite
fit [10]. The log indicator function is extracted from composite fit profiles and
compared to the experimental and numerical profiles. The profiles are with in 1%
in the inner layer. The composite fit overshoots the outer layer peak magnitude by
∼10% , and this may be due to low-Reynolds number effects. Overall, the composite
fit agrees with experimental and DNS results quite satisfactorily. Similarly, the
composite fit is used to compute the "error" term and the resulting profile is shown
in Fig. 3.6b. Once again, the profile agrees with the extracted DNS profiles on the
location of the peak at 𝑥2/𝜃 ≈ 0.1. They only differ in the peak value by 16%.

The "error" term is plotted over a range of Reynolds numbers in Fig. 3.7b. The
magnitude of the term decreases only slightly with increasing Reynolds number (a
factor of 2 from R𝑒𝜃 = 103 to R𝑒𝜃 = 108) and the peak appears to be fixed within
the inner layer. For comparison, the source term contribution is plotted in Fig. 3.7a
for the same series of Reynolds numbers.

3.4.2 Global quantities
The previous Reynolds number dependence of the mean velocity profiles can be
expressed by analyzing the differences between the solutions to the original Navier-
Stokes equations and the solutions to Eq. 2.16-2.22. One can equivalently subtract
the ensemble average of Eq. 2.16 from Eq. 3.22 and evaluate at 𝑥1 = 𝑥0 to obtain

𝑥2
𝜕
(
𝑢1 − 𝑢∗1

)
𝜕𝑥2

− 𝑞

𝑞′
𝜕
(
𝑢2 − 𝑢∗2

)
𝜕𝑥2

=
𝜕𝑢1

𝜕Re𝑞
|𝑥0Re𝑞 (3.23)
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(a) Scaled source term (b) "Error" term

Figure 3.7: (a) Scaled source term Ψ/𝑢1,∞ = 𝑥2𝜕 (𝑢1/𝑢1,∞)/𝜕𝑥2 (b) "error" term
Re𝜃𝜕 (𝑢1/𝑢1,∞)𝜕Re𝜃 , predicted with the composite fit [10], for a range of Re𝜃 =

103 − 108.

where 𝑞′/𝑞 has been divided out and asterisks denote solutions to the transformed
governing equations. Stated differently, the difference between the solutions to
the Cartesian (𝑢1, 𝑢2) and transformed governing equations (𝑢∗1, 𝑢

∗
2) is given by the

Reynolds number derivative of the mean velocity profile. Equation 3.23 can now
be used to investigate the impact of this "error" term onto global quantities like the
skin-friction coefficient and shape factor.

Integrating Eq. 3.23 in the wall-normal direction and dividing by 𝜃 gives

𝐻12 − 𝐻∗
12︸      ︷︷      ︸

𝐻12 Error

− 1
𝑞′𝑢1,∞

(𝑢2,∞ − 𝑢∗2,∞) =

∫ ∞

0
Re𝜃

𝜕𝑢1/𝑢1,∞
𝜕𝑅𝑒𝜃

|𝑥0𝑑

(𝑥2

𝜃

)
= −Re𝜃

𝜕𝐻12

𝜕Re𝜃︸       ︷︷       ︸
"Error" Term

(3.24)

To leading order of ln(Re𝜃), the shape factor in the limit of large Reynolds number
is approximated by 𝐻12 − 1 ∼ 7.11𝜅 ln(Re𝜃)−1 [11]. The RHS of Eq. 3.24 can then
be approximated as

−Re𝜃
𝜕𝐻12

𝜕Re𝜃
∼ 7.11𝜅 ln(Re𝜃)−2 (3.25)

For cases BL1460 and BL3550, this "error" term is nearly 6% of the shape factor
value. Since the relative error in shape factors from the single-scale simulations [59]
was less than 1%, one can conclude that the majority of the "error" term is instead
balanced by the second term on the LHS of Eq. 3.24. This second term describes a
difference in transpiration velocities. For cases BL1460 and BL3550, it can be seen
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from Fig. 3.5d that the transpiration velocities of the single-scale simulations was
greater than that of the growing simulation by at most 5%.

The error in the transpiration velocity to leading order of Re monotonically decays
with log of Reynolds number. For larger Reynolds numbers, the agreement in shape
factor is only expected to improve.

3.5 Conclusion
In this chapter, we investigated the transpiration velocity of single-scale periodic
simulations. Unlike other simulations of turbulent boundary layers, the single-scale
periodic boundary layer simulation does not impose a transpiration velocity. In this
way, the transpiration velocity characterizes the numerical error in the streamwise
periodic simulation. More specifically, after integrating continuity, the transpira-
tion velocity error was primarily caused by a difference in inner and outer layer
growth rates. A second streamwise periodic numerical framework was formulated
to account for the differing layer growth rates. Doing so required generating a fit to
smoothly transition from 2𝛿′𝜈/𝛿𝜈 in the inner layer to Δ′/Δ in the outer layer. Under
this framework, we verified that the transpiration velocity improved from at most 5%
to 1% but the remaining mean and turbulent intensities were virtually unchanged.
The streamwise periodic simulations appears insensitive to the transpiration velocity,
and the "improved" numerical framework may be superfluous.

Finally, through an error budget of the mean continuity equation, the errors in mean
continuity equation must manifest either as errors in the shape factor or as an errors
the transpiration velocity. Based on low Reynolds number results, the former error
is orders of magnitude smaller than the latter error. Furthermore, using a composite
fit [10], it can be shown that this error vanishes with increasing Reynolds number.
Thus, it can be concluded that for larger and more practical Reynolds numbers that
the use of single-scale streamwise periodic simulations remains robust.
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C h a p t e r 4

TWO-POINT CORRELATIONS OF A HOMOGENIZED
STREAMWISE PERIODIC BOUNDARY LAYER

The previous chapters investigated the accuracy of the one-point statistics (Chapter
2) and its behavior with respect to higher Reynolds numbers (Chapter 3). The results
show consistently strong accuracy and are expected to improve even more at high
Reynolds numbers. This behavior, combined with cheaper computation cost, gives
optimism that the method can be used to capture turbulent boundary layer dynamics
beyond mean velocity profiles. The bulk of the computational savings relies on
a shortened streamwise domain (7𝛿99 vs 50𝛿99). One might question whether
these periodic simulations can contain the largest turbulent motions attributed to
the boundary layer [16–20]. That is why the current chapter focuses on two-point
statistics and investigates how different choices of domain sizes might affect the
largest turbulent scales. Two-point correlations of the periodic boundary layer
simulation for 𝑅𝑒𝛿∗ = 5650 will be directly compared to those of growing boundary
layers [63] and simulations with larger domains.

4.1 Two-point statistics formulation and a priori analysis
In this section, the full cases are outlined, and the numerical method for computation
of the two-point statistics is presented. This section also provides a validation of the
one-point statistics for any additional cases.

4.1.1 Cases explored
The key motivating questions of interest are whether the simulations BL1460 and
BL5650 from Chapter 2 have turbulent features that are 1) restricted by the compu-
tational domain and 2) similar to the growing boundary layer turbulent structures.

The first concern can be dealt with by conducting simulations with computational
domains much longer in streamwise and spanwise extent. Following [21], we opt
to run four additional simulations with extended domains for our lowest Reynolds
number case, i.e. cases BL1460_x2, BL1460_xz2, BL1460_xz4. BL1460_x2 and
BL1460_xz2 both have streamwise computational domains double that of BL1460,
while BL1460_xz4 has a streamwise computational domain quadruple that of
BL1460. BL1460_xz2 and BL1460_xz4 have spanwise computational domains
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Case 𝑅𝑒𝛿∗ (𝐿𝑥 , 𝐿𝑦, 𝐿𝑧)/𝛿99 (Δ𝑥+,Δ𝑦+min,Δ𝑧
+) Type Legend

BL1460 1460 (7,3,2.5) (9,0.3,6) Periodic - (black)
BL1460_x2 1460 (14,3,2.5) (9,0.3,6) Periodic - (red)
BL1460_xz2 1460 (14,3,5) (9,0.3,6) Periodic - (cyan)
BL1460_xz4 1460 (28,3,10) (9,0.3,6) Periodic - (magenta)
BL5650 5650 (7,3,2.5) (9,0.3,6) Periodic - (black)
Sill14 5650* (78,4,12) (7,0.2,4) Growing - (green)

Table 4.1: Parameters of numerical simulations performed. Consistent with Chap-
ter 2, 𝐿𝑥 , 𝐿𝑦, 𝐿𝑧 are the streamwise, wall-normal, and spanwise domain lengths,
(Δ𝑥+,Δ𝑦+min,Δ𝑧

+) are the respective resolutions. 𝛿99 and 𝛿𝜈 for Sill14 [63] are taken
from theirs values at 𝑅𝑒𝛿∗ = 5650

double and quadruple that of BL1460, respectively.

The second concern can be dealt with by comparing the results of BL5650 with
those of Sill14 (see Table 4.1). As the BL5650 is statistically homogeneous, the
two-point correlations for the streamwise periodic boundary layer can be averaged
them over the entire streamwise domain. Sillero et al. 2014 computed two-point
correlations over streamwise boxes of length ±10𝛿99 and averaged over streamwise
slabs of length ±0.5𝛿99. Over each slab, the boundary layer changes in Reynolds
number by∼ 0.5% and over the entire correlation box, the Reynolds number changes
by 10%. The specific Reynolds number (𝑅𝑒𝛿∗ = 5650) chosen is at a streamwise
location one-third of the way through the streamwise domain of Sill14.

All of the cases used in this chapter are summarized in Table 4.1. As mentioned
in Chapter 2, the resolutions between the periodic and growing boundary layers are
comparable, but the domain sizes are certainly different: case Sill14 uses over 420x
more points than BL5650. The streamwise and spanwise domains of Sill14 are 15x
and 5x larger than those of BL5650, respectively.

4.1.2 One-point statistics of extended domains
The streamwise mean and rms velocity profiles for the domain dimension simulations
(BL1460_*) are provided in Fig. 4.1. The profiles are shown in inner scaling and
there is good agreement for all domain sizes. The relative difference in the mean
velocity profile is at most 0.5%, which is on the order of the statistical uncertainty
computed for the mean from Chapter 2, Section 2.5. There are minute differences
in 𝑢+1,∞, but interestingly, the smallest domain features the "largest" value, and the
largest domain featured the "smallest" value. As expected, the shape factor also
features good agreement, with relative differences of at most 0.4%.
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(a) Mean (b) rms

Figure 4.1: Streamwise (a) mean (𝑢1) and (b) rms (𝑢′1) profiles comparing the
different cases in Table 4.1 for 𝑅𝑒𝛿∗ = 1460.

The rms profiles have relative differences being at most 2%, which is on the order
of the statistical uncertainty computed for the rms from Chapter 2. Near the peak at
𝜉+2 ≈ 10, the rms profiles of BL1460 and BL1460_x2 are nearly indistinguishable
and are both distinct from BL1460_xz2 and BL1460_xz4. Increasing the spanwise
domain has an effect on the rms profiles, if only slightly.

4.1.3 Computation of two-point statistics
Correlations are computed in physical space in the streamwise direction. The time-
averaged autocorrelation in growing boundary layers is defined by

𝐶
g
𝜙𝜓
(𝑥1, 𝑥2, 𝑥3, 𝑟1, 𝑟2, 𝑟3) =

〈𝜙(𝑥1, 𝑥2, 𝑥3), 𝜓(𝑥1 + 𝑟1, 𝑥2 + 𝑟2, 𝑥3 + 𝑟3)〉𝑡/(𝜎𝜙𝜎𝜓) (4.1)

where 𝜓, 𝜙 are arbitrary variables with zero mean, 𝜎𝜙 is the standard deviation of
𝜙 at a specific location, and 𝑟𝑖 are correlation distances. Consistent with notation
described in Chapter 2, 𝑥1, 𝑥2, 𝑥3 are the streamwise, wall-normal, and spanwise
directions, respectively, and 〈·〉 describes averaging.

It should be noted that the rescaling of the streamwise boundary layer produces the
following relation between the homogenized correlation coefficient (𝐶h

𝜓𝜙
) and the

growing correlation coefficient (𝐶g
𝜓𝜙

) for fixed 𝑥1, 𝑥2, 𝑥3, 𝑟1, 𝑟2, 𝑟3

𝐶
g
𝜓𝜙

=
〈
𝜙

(
𝜉1, 𝜉2

𝑞(𝑥1)
𝑞0

, 𝜉3

)
, 𝜓

(
𝜉1 + 𝑟1, (𝜉2 + 𝑟2)

𝑞(𝑥1 + 𝑟1)
𝑞0

, 𝜉3 + 𝑟3

) 〉
𝑡
/(𝜎𝜙𝜎𝜓)(4.2)
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After evaluating at 𝑥1 = 𝑥0 and Taylor expanding to first order, one gets the following
relationship between the covariances of the streamwise growing (𝐶g

𝜓𝜙
) and the

parallelized boundary layer (𝐶h
𝜓𝜙

)

𝐶
g
𝜓𝜙

≈ 𝐶h
𝜓𝜙 + (4.3)〈

𝜙(𝜉1, 𝜉2, 𝜉3) (𝜉2 + 𝑟2)𝑟1
𝑞′

𝑞

𝜕

𝜕𝜉∗2

[
𝜓(𝜉1 + 𝑟1, 𝜉

∗
2, 𝜉3 + 𝑟3)

]
|𝜉∗2=𝜉2+𝑟2

〉
𝑡
+ (4.4)〈 𝜕

𝜕𝜉∗2

(
𝜙(𝜉1, 𝜉

∗
2, 𝜉3)

)
|𝜉∗2=𝜉2 (𝜉2)𝑟1

𝑞′

𝑞

𝜕

𝜕𝜉∗2

[
𝜓(𝜉1 + 𝑟1, 𝜉

∗
2, 𝜉3 + 𝑟3)

]
|𝜉∗2=𝜉2+𝑟2

〉
𝑡

(4.5)

where a new correlation source term, 𝐶src
𝜓𝜙

, has been produced. The superscripts
differentiating the different autocorrelations will be dropped going forward and the
coordinate system will be written in terms of (𝜉1, 𝜉2, 𝜉3).

4.2 Velocity correlations
In this section, two-dimensional autocorrelations and cross-correlations are pre-
sented, as well as analyses of the integral length-scale.

4.2.1 Single height 1D streamwise autocorrelations
Single height (𝑟2 = 0 and either 𝑟1 = 0 or 𝑟3 = 0) autocorrelation coefficients with
respect to a single direction are often useful to verify that the simulation domain
is large enough to contain fully decorrelated turbulence. These 1D correlations
can be directly computed from 3D correlations via integration along the discarded
direction. For example, the single-height streamwise autocorrelation of 𝑢1 is given
by

𝐶𝑢𝑢,𝑥 (𝜉1, 𝑟1, 𝜉2) =
∫

𝐶𝑢𝑢 (𝜉1, 𝜉2, 𝜉3, 𝑟1, 𝑟2 = 0, 𝑟3 = 0)𝑑𝜉3 (4.6)

Two-point correlations will be computed at three key locations 𝜉2 = 15𝛿𝜈, 𝜉2 =

0.1𝛿99, 𝜉2 = 0.6𝛿99 as representative of the inner layer, log layer, and outer layer,
respectively.

The streamwise autocorrelation coefficient for the streamwise velocity component
(𝐶𝑢𝑢,𝑥) is shown in Fig. 4.2. The extended domain simulations (cases BL1460,
BL1460_x2, BL1460_xz2, BL1460_xz4) produce results that agree well with each
other for the near wall (𝜉2 = 15𝛿𝜈) and lower log (𝜉2 = 0.1𝛿99) regions, specifically
near the peak 𝑟1 = 0. They feature relative differences of at most 2%. At (𝜉2 =

0.1𝛿99), BL1460 features a sharper drop-off in correlation with a maximum absolute
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(a) Inner layer (𝜉2 = 15𝛿𝜈) (b) Log layer (𝜉2 = 0.1𝛿99)

(c) Outer layer (𝜉2 = 0.6𝛿99)

Figure 4.2: Single height streamwise autocorrelation function 𝐶𝑢𝑢,𝑥 (a) 𝜉2 = 15𝛿𝜈,
(b) 𝜉2 = 0.1𝛿99 and (c) 𝜉2 = 0.6𝛿99. Simulations at 𝑅𝑒𝛿∗ = 5650 are offset by 0.4
for clarity. Legend is as given in Table 4.1.

error of 0.07. This indicates that in the wake region, the shortest domain has
shorter streamwise structures, whereas all of the longer domains appear to overlap.
Specifically, the BL1460_xz2 and BL1460_xz4 have wider lobes compared to the
autocorrelations of BL1460_x2 and BL1460.

BL5650 and Sill14 show qualitative agreement. For all heights, the curves overlap
for 𝑟1 < 0.25𝛿99, and the maximum absolute difference between the autocorrelation
function is 0.02. For all stations, the autocorrelation function of Sill14 appears to
decrease faster than that of BL5650, which implies that the boundary layer of Sill14
is populated by slightly shorter purely streamwise structures. As will be shown in
Section 5.3.2, the streamwise extents of 𝐶𝑢𝑢 are in fact greater for Sill14 due to
the inclination angle of the autocorrelation function. The correlation coefficients at
these locations eventually decay to less than 2% of the total value (Fig. 4.2), which
is on the order of statistical uncertainty for the flow. Since the autocorrelations in
the outer layer scale with the outer length-scale, streamwise domains between 7𝛿99

and 14𝛿99 for fully decorrelated turbulence.
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(a) Wall-normal velocity (b) Spanwise velocity

Figure 4.3: Single height streamwise autocorrelation function for (a) wall-normal
𝐶𝑣𝑣,𝑥 and (b) spanwise 𝐶𝑤𝑤,𝑥 velocity components. Simulations at 𝑅𝑒𝛿∗ = 5650 are
offset by 0.4 for clarity. Legend as provided in Table 4.1.

The streamwise autocorrelations for the spanwise (𝐶𝑤𝑤,𝑥) and wall-normal velocities
(𝐶𝑣𝑣,𝑥) are shown (Fig. 4.3) at one location: 𝜉2 = 0.6𝛿99. The autocorrelations at
the inner and log layer locations behave similarly to 𝐶𝑢𝑢,𝑥 and are therefore omitted.
Note that the streamwise extent of the autocorrelations for the spanwise and wall-
normal velocity components is about 1𝛿99 less than that of the streamwise velocity
component, and they appear less affected by domain size changes.

The profiles for 𝐶𝑣𝑣,𝑥 are virtually indistinguishable for each set of 𝑅𝑒𝛿∗ . 𝐶𝑤𝑤,𝑥

features differences at 𝑟1 = 1𝛿99 for the 𝑅𝑒𝛿∗ = 1460 cases. Specifically, BL1460
and BL1460_x2 appear to overlap whereas BL1460_xz2 and BL1460_xz4 deviate
slightly. Specifically, the outermost lobes of 𝐶𝑣𝑣,𝑥 for both BL1460 and BL1460_x2
appear to reach zero earlier than those of 𝐶𝑣𝑣,𝑥 for the extended domain cases
(BL1460_xz2, BL1460_xz4), potentially indicating that the turbulent structures for
even BL1460_x2 are shorter than those of BL1460_xz2.

4.2.2 Single height 1D spanwise autocorrelations
The single-height spanwise autocorrelation coefficient for the streamwise velocity
component (𝐶𝑢𝑢,𝑧) is shown in Fig. 4.4. The near wall (𝜉2 = 15𝛿𝜈) autocorrelations
are nearly indistinguishable. The sharp negative lobe is captured for both BL5650
and BL1460. BL5650 and Sill14 at 𝜉2 = 0.1𝛿99 are within 5% of each other. The
similar statements can be made for the domain extension cases BL1460, but BL1460
deviates near the negative lobe. It has been previously noted [63] that the spanwise
widths of the autocorrelation functions (and consequently the turbulent structures)
scale with wall-normal height. This is indeed the case for both the periodic and
growing boundary layers.
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(a) Inner layer (𝜉2 = 15𝛿𝜈) (b) Log layer (𝜉2 = 0.1𝛿99)

(c) Outer Layer (𝜉2 = 0.6𝛿99)

Figure 4.4: Single height spanwise autocorrelation function 𝐶𝑢𝑢,𝑧 (a) 𝜉2 = 15𝛿𝜈, (b)
𝜉2 = 0.1𝛿99 and (c) 𝜉2 = 0.6𝛿99. Simulations at 𝑅𝑒𝛿∗ = 5650 are offset by 0.4 for
clarity. Legend is as given in Table 4.1.

For 𝑟 < 0.5, the autocorrelation function 𝐶𝑢𝑢,𝑧 at 𝜉2 = 0.6𝛿99 for BL5650 and Sill14
are within 5% of each other. However, 𝐶𝑢𝑢,𝑧 for BL5650 does not entirely vanish
at the end of the correlation and instead plateaus to approximately -0.07, whereas
both BL1460_x2 and BL1460 plateau to -0.1. An increase in spanwise domain
dimension resolves the issue as both BL1460_xz4 and BL1460_xz2 capture the full
spanwise width of the autocorrelation. Since the autocorrelations in the outer layer
scale with the outer length-scale, spanwise domains of 5𝛿99 are sufficient to capture
the full autocorrelation.

The spanwise and wall-normal autocorrelations (𝐶𝑣𝑣,𝑧, 𝐶𝑤𝑤,𝑧) are shown for 𝜉2 =

0.6𝛿99 in Fig. 4.5. The domain dimension has little effect on the outermost lobes
of the autocorrelation function and the contours are within 5% of each other. 𝐶𝑤𝑤,𝑧

mirrors 𝐶𝑢𝑢,𝑧 in that the shorter spanwise domains do not acheive full decorrelation.
BL5650 achieves a final value of -0.06 whereas BL1460 and BL1460_x2 achieve a
final value of -0.08.
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(a) Wall-normal velocity (b) Spanwise velocity

Figure 4.5: Single height spanwise autocorrelation function for (a) wall-normal
𝐶𝑣𝑣,𝑧 and (b) spanwise 𝐶𝑤𝑤,𝑧 velocity components. Simulations at 𝑅𝑒𝛿∗ = 5650 are
offset by 0.4 for clarity. Legend as provided in Table 4.1.

Figure 4.6: Magnitude of error term from Eq. 4.5𝐶𝑢𝑢,𝑥 for 𝜉2 = 0.6𝛿99, for BL1460,
BL1460_xz4 and BL5650. Legend is as provided in Table 4.1.

4.2.3 Error term & integral length-scale
The magnitude of the error term due to the rescaling (Eq.4.5) for the 1D streamwise
autocorrelation function is shown in Fig. 4.6 for BL1460, BL1460_xz4 and BL5650
at 𝜉2 = 0.6𝛿99. This wall-normal location was chosen as it is where 𝐶𝑢𝑢,𝑥 had
the largest discrepancies between cases of the same 𝑅𝑒𝛿∗ . As shown, magnitude
of the error term is only 10−3 and is orders of magnitude smaller than the actual
autocorrelation term. This result is not altogether unsurprising. The mean turbulent
kinetic energy (TKE) is used to normalize the autocorrelation function, and so one
might expect both the TKE and the autocorrelation function to share sensitivity
(and insensitivity) to the same variables. Because the rescaling operation has been
demonstrated to have little impact on the turbulent kinetic energy budget (Chapter
2), one might also have expected similar for the autocorrelation function as well.

The streamwise integral length-scale for the streamwise velocity component can be
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Case 𝐼𝑢𝑥 𝐼𝑢𝑧
BL1460 0.90 0.33
BL1460_x2 1.01 0.35
BL1460_xz2 1.10 0.36
BL1460_xz4 1.08 0.36
BL5650 0.92 0.28
Sill14 0.85 0.26

Table 4.2: Integral length-scales computed using Eq. 4.7 at 𝜉2 = 0.6𝛿99.

defined as

𝐼𝑢1
𝑥 =

∫ 𝑧0

0
𝐶𝑢𝑢,𝑥𝑑𝑟𝑖 (4.7)

where 𝑧0 is the first zero crossing of the autocorrelation. Similar quantities can be
defined for the other velocity components and for the spanwise integral length-scale.

The streamwise and spanwise integral length-scales for 𝜉2 = 0.6𝛿99 are provided in
Table 4.2. The streamwise integral length-scales for 𝜉2 = 0.6𝛿99 are approximately
1𝛿99. Consistent with the results shown in Section 4.2.1, a spanwise domain of at
least 5𝛿99 produces a converged streamwise integral length-scale.

The spanwise integral length-scale is deceptive, as the current definition Eq. 4.7
gives a value of ∼ 0.4𝛿99, whereas the spanwise extent is much larger than just 0.4
𝛿99. This spanwise extent is largely due to the negative lobes of autocorrelation.
These lobes are small in magnitude but also have longer spanwise extent, and so
their contribution to the integral length-scale is minimal.

Throughout this section, it has been shown that periodic boundary layers agree
well with streamwise growing boundary layers with regards to 1D single-height
autocorrelations. In particular, despite only having a streamwise domain of ∼ 7𝛿99,
BL5650 showed strong agreement for 𝑟3 < 0.8. It furthermore appears that a
streamwise domain size of 14𝛿99 and a spanwise domain size of 5𝛿99 are sufficient
to capture the full 1D autocorrelations.

4.2.4 Two-dimensional autocorrelations
We now focus on two-dimensional slices of the correlation function, centering on
two key locations: 𝜉2 = 0.1𝛿99 in the lower logarithmic layer and 𝜉2 = 0.6𝛿99 in the
wake region.

Figure 4.7 presents the streamwise sections (𝐶𝑢𝑢,𝑥𝑦) for BL5650, Sill14, and the
cases run at 𝑅𝑒𝛿∗ = 1460. For all cases, the streamwise correlations 𝐶𝑢𝑢,𝑥𝑦 are
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(a) Log layer, 𝑅𝑒𝛿∗ = 1460 (b) Outer layer, 𝑅𝑒𝛿∗ = 1460

(c) Log layer, 𝑅𝑒𝛿∗ = 5650 (d) Outer layer, 𝑅𝑒𝛿∗ = 5650

Figure 4.7: Streamwise sections (𝐶𝑢𝑢,𝑥𝑦) of the autocorrelation function for 𝑅𝑒𝛿∗ =
1460 at (a) 𝜉2 = 0.1𝛿99, and (b) 𝜉2 = 0.6𝛿99 and for 𝑅𝑒𝛿∗ = 5650 at (c) 𝜉2 = 0.1𝛿99
and (d) 𝜉2 = 0.6𝛿99. Legend is as given in Table 4.1. Positive contours are from
[0.1:0.1:1.0]. Negative contours are from [-0.1:-0.1:-1] and are shown as dashed.

inclined with respect to the wall, and this inclination appears to increase with height.
Consistent with the 1D results shown in the previous section, the 2D autocorrelations
agree well for 𝑟1 < 0.8𝛿99. Furthermore, both BL5650 and Sill14 appear to agree
on an incline angle of approximately 15◦ for 𝜉2 = 0.1𝛿99. The outermost contour
of the autocorrelation, 𝐶𝑢𝑢,𝑥𝑦 = 0.1 of Fig. 4.7, corresponds to the largest turbulent
structures and it decays faster for BL5650 than for Sill14. A similar behavior is
observed in the BL1460 cases, where the BL1460 autocorrelation decays more
quickly than that of BL1460_x2, BL1460_xz2, and BL1460_xz4. The sudden drop
in autocorrelation is chiefly due to domain size. Furthermore, because there are
differences between BL1460_x2 and BL1460_xz2 in autocorrelation extent, it is
clear that the spanwise domain is critical to capturing an accurate autocorrelation
coefficient.

Surprisingly, at 𝜉2 = 0.6𝛿99, the correlation function for Sill14 appears to reach into
the free-stream with lobes of negative correlation. This behavior isn’t present in
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(a) Log layer, 𝑅𝑒𝛿∗ = 1460 (b) Outer layer, 𝑅𝑒𝛿∗ = 1460

(c) Log layer, 𝑅𝑒𝛿∗ = 5650 (d) Outer layer, 𝑅𝑒𝛿∗ = 5650

Figure 4.8: Streamwise sections (𝐶𝑣𝑣,𝑥,𝜉2) of the autocorrelation function for 𝑅𝑒𝛿∗ =
1460 at (a) 𝜉2 = 0.1𝛿99 and (b) 𝜉2 = 0.6𝛿99, and for 𝑅𝑒𝛿∗ = 5650 at (c) 𝜉2 = 0.1𝛿99
and (d) 𝜉2 = 0.6𝛿99. Legend is as given in Table 4.1. Positive contours are from
[0.1:0.1:1.0]. Negative contours are from [-0.1:-0.1:-1] and are shown as dashed.

either BL5650 or any of the BL1460 results, all of which remain within 1𝛿99 of the
wall. Similar free-stream correlations appear in the streamwise autocorrelation of
the wall-normal (𝐶𝑣𝑣,𝑥𝑦) and spanwise (𝐶𝑣𝑣,𝑥𝑦) components (Figs. 4.8d and 4.9d).
This behavior is further discussed in Section 4.2.6.

Besides these free-stream correlations, for both 𝐶𝑣𝑣,𝑥𝑦 and 𝐶𝑤𝑤,𝑥𝑦, BL5650 shares
many of the same features with Sill14 (Fig. 4.8-4.9). Similar to 𝐶𝑢𝑢,𝑥𝑦 there is an
additional extension of the autocorrelation function upstream and towards the wall
for BL5650.

The impact of domain extension is less dramatic for both 𝐶𝑣𝑣,𝑥𝑦 and 𝐶𝑤𝑤,𝑥𝑦, as
the outermost contour is only extended by a maximum of 8%. The autocorrelation
functions for BL1460 and BL1460_x2 nearly overlap for all locations and velocities.
For 𝑢2 and 𝑢3, the autocorrelation functions appear to be more sensitive to spanwise
extensions of the domain rather than streamwise extensions.

Figure 4.10 displays the spanwise autocorrelation of the streamwise velocity com-
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(a) Log layer, 𝑅𝑒𝛿∗ = 1460 (b) Outer layer, 𝑅𝑒𝛿∗ = 1460

(c) Log layer, 𝑅𝑒𝛿∗ = 5650 (d) Outer layer, 𝑅𝑒𝛿∗ = 5650

Figure 4.9: Streamwise sections (𝐶𝑤𝑤,𝑥𝑦) of the autocorrelation function for 𝑅𝑒𝛿∗ =
1460 at (a) 𝜉2 = 0.1𝛿99 and (b) 𝜉2 = 0.6𝛿99, and for 𝑅𝑒𝛿∗ = 5650 at (c) 𝜉2 = 0.1𝛿99
and (d) 𝜉2 = 0.6𝛿99. Legend is as given in Table 4.1. Positive contours are from
[0.1:0.1:1.0]. Negative contours are from [-0.1:-0.1:-1] and are shown as dashed.

ponent (𝐶𝑢𝑢,𝑧𝑦). In all three cases, the spanwise extent of the correlations does not
appear to surpass 2𝛿99 and appears to grow with height. The effect of shortening
the spanwise domain is visible in the negative lobes of 𝐶𝑢𝑢,𝑧𝑦 at 𝜉2 = 0.6𝛿99. With
a larger streamwise domain, negative lobes to the left and right are recovered. As
with 𝐶𝑣𝑣,𝑥𝑦 and 𝐶𝑤𝑤,𝑥𝑦, 𝐶𝑢𝑢,𝑧𝑦 for Sill14 at 𝜉2 = 0.6𝛿99 features correlations that
reach deep into the free-stream.

Finally, only the spanwise sections (𝐶𝑤𝑤,𝑧𝑦) are shown (Fig. 4.11), as 𝐶𝑣𝑣,𝑧𝑦 behaves
similarly. Note that spanwise symmetry is expected as there is no mean flow in the
spanwise direction. The autocorrelation function is surprisingly larger for BL5650
than for Sill14 in contrast to previous autocorrelations.

4.2.5 Discussion of turbulent structures
The streamwise extent of the autocorrelation function is approximately 𝑂 (4−5𝛿99),
which is consistent with experimentally observed autocorrelation lengths as well as
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(a) Log layer, 𝑅𝑒𝛿∗ = 1460 (b) Outer layer, 𝑅𝑒𝛿∗ = 1460

(c) Log layer, 𝑅𝑒𝛿∗ = 5650 (d) Outer layer, 𝑅𝑒𝛿∗ = 5650

Figure 4.10: Spanwise sections (𝐶𝑢𝑢,𝑧𝑦) of the autocorrelation function for 𝑅𝑒𝛿∗ =
1460 at (a) 𝜉2 = 0.1𝛿99 and (b) 𝜉2 = 0.6𝛿99, and for 𝑅𝑒𝛿∗ = 5650 at (c) 𝜉2 = 0.1𝛿99
and (d) 𝜉2 = 0.6𝛿99. Legend is as given in Table 4.1. Positive contours are from
[0.1:0.1:1.0]. Negative contours are from [-0.1:-0.1:-1] and are shown as dashed.

spectra [44]. Based on Fig. 4.7, even domain sizes of 𝑂 (7𝛿99) are still not sufficient
to capture the full range of the autocorrelation function. A similar observation has
been noted in channel flows of shortened streamwise domain size [21, 22, 63, 64].

The streamwise extent of autocorrelation functions are not necessarily representa-
tive of the streamwise lengths of the longest turbulent structures within the flow
(𝑂 (20𝛿99)) [17]. Thus, to fully capture the longest structures, one might expect
a streamwise domain requirement of at least 20𝛿99. However, it has been argued
by [21, 22, 63, 64], that these structures exist in the simulated flows with shorter
domains, but are simply aliased onto structures of shorter length. Regardless of
whether these claims are true or not, the two-point correlations of Section 4.2.4
show that these authors’ claims can only be true provided the spanwise domain is
sufficiently large (e.g. 𝐿𝑧 ≈ 5𝛿99). Due to the small aspect ratios of large scale
motions in the wake, narrow spanwise domains may artificially limit the maximum
length of wider structures within the computational domain.
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(a) Log layer, 𝑅𝑒𝛿∗ = 1460 (b) Outer layer, 𝑅𝑒𝛿∗ = 1460

(c) Log layer, 𝑅𝑒𝛿∗ = 5650 (d) Outer layer, 𝑅𝑒𝛿∗ = 5650

Figure 4.11: Spanwise sections (𝐶𝑤𝑤,𝑧𝑦) of the autocorrelation function for 𝑅𝑒𝛿∗ =
1460 at (a) 𝜉2 = 0.1𝛿99, and (b) 𝜉2 = 0.6𝛿99 and for 𝑅𝑒𝛿∗ = 5650 at (c) 𝜉2 = 0.1𝛿99
and (d) 𝜉2 = 0.6𝛿99. Legend is as given in Table 4.1. Positive contours are from
[0.1:0.1:1.0]. Negative contours are from [-0.1:-0.1:-1] and are shown as dashed.

4.2.6 Discussion of free-stream correlations
All of the streamwise sections (𝐶𝑢𝑢,𝑥𝑦,𝐶𝑣𝑣,𝑥𝑦, 𝐶𝑤𝑤,𝑥𝑦) of Sill14 at 𝜉2 = 0.6𝛿99 feature
correlations that cross the boundary layer thickness (𝜉2 > 1𝛿99). No such behavior
was found for any of the periodic boundary layer cases.

At first glance, it is possible that this effect is numerical. The code used for Sill14
was noted [16] to have free-stream fluctuations in the inlet plane. Specifically, the
authors stated that "the residual free-stream fluctuations consist mostly of large-
scale vorticity waves advected by the free-stream, and introduced at the inflow by
the sloshing created by the interaction of the boundary layer with the exit. Such
fluctuations are unavoidable. The streamwise derivatives [𝜕𝑥1𝑢2] and [𝜕𝑥1𝑢3] cannot
be imposed at the inflow boundary, and there is no way of enforcing the strict
irrotationality of the inflow. The incoming vorticity is fixed by the global pressure
fluctuations, which are in turn created when the largest eddies leave the domain." It is
possible that coherent structures in the wake region might form spurious correlations
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with the noted artificial vortices of similar size in the free-stream.

In contrast, no such correlation exists in the periodic boundary layer. In a growing
boundary layer, an arbitrary disturbance in the free-stream is advected vertically by
the transpiration velocity 𝑢2,∞. Because the boundary layer displacement thickness
grows at a rate of 𝑢2,∞/𝑢1,∞, the disturbance’s height, relative to 𝛿∗, remains constant.
However, since 𝛿99 is known to grow faster than 𝛿∗, the disturbance, relative to 𝛿99,
will eventually enter the boundary layer. Given enough streamwise distance, any
disturbance from the inlet will eventually be entrained into the boundary layer
due to this effect. The periodic boundary layer shows this effect most directly
through the linearized rescaled momentum equation. After neglecting the nonlinear
terms, approximating 𝑢𝑖 by 𝑢𝑖,∞, zeroing out mean shear terms 𝜕𝜉 𝑗𝑢𝑖, and assuming
a negligible pressure gradient, one has that for a small perturbation 𝑢′1 initially
residing in the free-stream:

𝜕𝑢′1
𝜕𝑡

+ 𝑢1,∞
𝜕𝑢′1
𝜕𝜉1

+
(
𝑢2,∞ − 𝑞′

𝑞
𝜉2𝑢1

)
𝜕𝑢′1
𝜕𝜉2

= 𝜈
𝜕2𝑢′1
𝜕𝜉2

𝑘

(4.8)

The cross-boundary layer correlations shown in𝐶𝑢𝑢,𝑥𝑦, 𝐶𝑣𝑣,𝑥𝑦, and𝐶𝑤𝑤,𝑥𝑦 all appear
to be of streamwise extent 1𝛿99. At this wavelength and Reynolds number, the
impact of viscosity is small.

Given that 𝑢2,∞ > 𝑞′/𝑞𝛿∗ and in the free-stream 𝜉2 > 𝛿99, the effective wall-normal
velocity is negative and wall-normal advection will eventually draw the fluctuation
into the periodic boundary layer. For example, normalized by the free-stream
velocity, a disturbance initially at 2𝛿99 will reach the boundary layer thickness
1𝛿99 after approximately 2.2𝛿99/𝑢𝜏 or approximately 10-20% of most boundary
layer simulations’ [14, 16, 39, 65] convergence times. For periodic simulations,
this analysis implies that with enough time, the free-stream will be free of initial
disturbances.

4.2.7 Reynolds stress correlations
The Reynolds shear stress is an indicator of momentum transfer from the near wall
region to the outer region [66, 67]. In particular, there is interest in its behavior
in the near-wall cycle and in the outer regions. Figures 4.12 show the Reynolds
shear stress correlations (𝐶𝑢𝑣,𝜉1𝜉2) at the heights of 𝜉2 = 15𝛿𝜈 (𝜉2 ≈ 0.04𝛿99) and
𝜉2 = 0.6𝛿99 for 𝑅𝑒𝛿∗ = 5650.
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It should be noted that unlike the autocorrelations with are perfectly normalized, the
cross-correlation is only nondimensionalized by the standard deviations of 𝑢1 and 𝑢2.
Consequently, the magnitude of the peak of the cross-correlation is approximately
-0.5 for 𝜉2 = 15𝛿𝜈 and 𝜉2 = 0.6𝛿99. The peak location for the cross-correlation is
also likewise changed to be offset at around 𝑟+1 ≈ 5 and 𝑟+2 ≈ 5. The correlations are
also opposite in sign, matching the overall sign of the Reynolds shear stress.

Consistent with many of the previous contours,𝐶𝑢𝑣,𝜉1𝜉2 for BL5650 shares qualitative
similarities with that of Sill14 near the wall, and far from the wall, they compare
favorably. The outer location 𝜉2 = 0.6𝛿99 does show an interesting agreement, as
both BL5650 and Sill14 agree on both an area of positive correlation outside of
the boundary layer as well as an area of negative correlation. The fact that both
simulations agree on this connection indicates that the correlation is unlikely to be
due to initial conditions or inflow effects.

Having both positively and negatively correlated 𝑢′2 is indicative of large-scale
vorticity in the free-stream. On the other hand, the large area of negative correlation
within the boundary layer indicates either ejection or sweeping style behaviors, both
of which involve movement of a large scale structure towards or away from the
boundary layer edge. This mechanism is likely the same one as noted by Kim et
al. (2017), which allows large scale motions in the log and outer layers to wrinkle
the turbulent/non-turbulent interface. Regardless of the cause of the correlations
crossing the free-stream, the domain sizes for BL5650 appear adequate to capture
the key features of the Reynolds shear stress cross-correlations.

4.3 Conclusion
Throughout this chapter, it has been shown that the domain size required for periodic
boundary layer simulation is much larger than the expected requirement to capture
the integral length-scales (∼ 1𝛿99) and the LSMs (3 − 4𝛿99). Furthermore, it was
shown that the spanwise domain must be of a certain size to fully capture large
scale motions in the streamwise direction. Overall, it is expected that with domain
dimensions of 𝐿𝑥 ≈ 14𝛿99 and 𝐿𝑧 ≈ 5𝛿99, one has a sufficiently large domain to
capture the full two-point correlation functions for the flow. The cost-savings from
Chapter 2 still apply, albeit to a slightly subdued degree.
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(a) Inner layer (b) Outer layer

Figure 4.12: Streamwise sections (𝐶𝑢𝑣,𝜉1𝜉2) of the cross-correlation function for
𝑅𝑒𝛿∗ = 1460 at (a) 𝜉2 = 0.1𝛿99 and (b) 𝜉2 = 0.6𝛿99, and for 𝑅𝑒𝛿∗ = 5650 at (c)
𝜉2 = 0.1𝛿99 and (d) 𝜉2 = 0.6𝛿99. Legend is as given in Table 4.1. Positive contours
are from [0.1:0.1:1.0]. Negative contours are from [-0.1:-0.1:-1] and are shown as
dashed.
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C h a p t e r 5

TURBULENT STRUCTURES AND THEIR PREDICTION

The previous chapters dealt with the various one-point and two-point statistics
of the streamwise periodic boundary layer. In this section, we first compute the
power spectral density of the boundary layer flow and discuss different locations
of interest. The specific spatial and temporal frequencies motivate the proceeding
sections: turbulent structure prediction and extraction. The key tool for this is the
resolvent formalism [38], specifically that of the 1D resolvent, which is introduced in
this chapter and is heavily dependent on the choice of frequency. We apply it to the
periodic boundary layer and the corresponding rescaled governing equations. The
resolvent operators for various frequencies are given and their singular spectra and
response modes are examined. Finally, spectral proper orthogonal decomposition
(SPOD) [25] is introduced and applied to data of BL1460. The extracted results are
finally compared to predicted modes from the resolvent operator.

5.1 Spectra
In this section, the power spectral density (PSD) is computed for the boundary layer.
Specific focus is placed on the computation of the PSD in time as the most energetic
modes will be the focus of investigation for subsequent sections.

5.1.1 Spatial spectra
Energy spectra allow one to determine the general sizes of the most energetic
flow features and associate peaks in kinetic energy spectra with specific observed
mechanisms. For pipe and channel flows, streamwise spectra have proved useful in
estimating the relative sizes of the most energetic motions[64, 68, 69].

In contrast, growing boundary layers are not by nature streamwise homogeneous and
therefore, computing streamwise spectra cannot normally be done. To compensate
for this, approximate spectra are computed by taking Fourier transforms of either
windowed streamwise autocorrelation functions or symmetric components of the
autocorrelation function:

𝐶𝑒𝑣𝑒𝑛
𝑢𝑢,𝑥 (𝑟1) =

1
2
(𝐶𝑢𝑢,𝑥 (−𝑟1) + 𝐶𝑢𝑢,𝑥 (𝑟1)) (5.1)

Due to the boundary layer’s quasi parallel growth, the odd components of the single-
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height 2D autocorrelation have magnitude of less than 5% of the even components.
In the case of the periodic boundary layer, direct Fourier Transforms can be taken.

For a streamwise and spanwise periodic stationary flow, like the periodic boundary
layer, one has the following definition for power spectral density

𝐸𝑢𝑢 (𝜅1, 𝜉2, 𝜅3, 𝜔) =
1
2

∭
𝑒−𝑖𝜅1𝑟1−𝑖𝜅3𝑟3+𝑖𝜔𝑟𝑡

〈𝑢𝑖 (𝜉1, 𝜉2, 𝜉3, 𝑡)𝑢𝑖 (𝜉1 + 𝑟1, 𝜉2, 𝜉3 + 𝑟3, 𝑡 + 𝑟𝑡)〉𝜉1,𝜉3,𝑡𝑑𝑟1𝑑𝑟3𝑑𝑟𝑡 (5.2)

where (𝜅1, 𝜅3, 𝜔) are the streamwise, spanwise, and temporal wavenumbers which
are related to their respective "wavelengths" by 𝜆1 = 2𝜋/𝜅1, 𝜆3 = 2𝜋/𝜅3, 𝜆𝑡 = 2𝜋/𝜔.

One should also note that the streamwise spatial spectra in Cartesian coordinates
are not quite the same as the streamwise spatial spectra in rescaled coordinates.
The physical analogue is to compare waves at constant 𝑥2 in the Cartesian case and
waves at constant 𝜉2 in the rescaled coordinate case. Notably, there is a difference
associated with the rescaling: coordinate lines at constant 𝜉2 are slightly inclined
with respect to the wall.

This alignment error between Cartesian and rescaled grids for the spatial spectra
has an autocorrelation analogue. In Chapter 4, it was estimated and was found
to be orders of magnitude smaller than the autocorrelation function. Since the
energy spectra is the Fourier transform of the autocorrelation function, the error
associated with computing Fourier transforms at constant 𝑥2 vs. 𝜉2 is also negligible.
Therefore, direct comparisons between spatial spectra are appropriate. Further
discussion is provided in Section 5.2.6. It should be noted that the majority of
experimental measurements for boundary layer streamwise spectra broadly rely on
Taylor’s hypothesis of frozen turbulence to convert temporal spectra (from hotwire
probes) into spatial spectra [70–76]. The reader is referred to [77, 78] for more
details regarding the applicability of Taylor’s hypothesis to boundary layer flow.
Full spatio-temporal spectra have been measured via particle image velocimetry
[78–80], but often face challenges of grid resolution and optimal window size. For
an in-depth analysis of spatio-temporal spectra of the boundary layer, the reader is
referred to [81].

We first present a comparison of premultiplied spatial spectra, namely the PSD
integrated over all 𝜔, for Sill14, BL5650, and BL1460 at the inner layer location
𝜉+2 = 15 (Fig. 5.1). The premultiplication of spectra is meant so that each decade
of wavenumbers contains the same total amount of turbulent kinetic energy; upon
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(a) BL5650 (b) Sill14

(c) BL1460 (d) Channel Flow [27].

Figure 5.1: Premultiplied energy spectra 𝜅+1𝜅
+
3𝐸

+
𝑢𝑢 at 𝜉2 = 15𝛿𝜈 for (a) BL5650,

(b) Sill14, (c) BL1460, (d) Channel flow at an 𝑅𝑒𝜏 = 550 [27]. Reproduced
with permission from author. Black cross represents wavelength pair of interest in
Sections 5.2-5.5.

integration of contour map of the premultiplied spectra in log of wavelength(s), one
obtains the total turbulent kinetic energy. All spectra qualitatively agree, and have a
near-wall peak. The larger Reynolds number spectra (𝑅𝑒𝛿∗ = 5650) have a peak at
(𝜆+1 , 𝜆

+
3) ≈ (500, 100) ± (100, 30). The streamwise spectra for the lower Reynolds

number spectra have a peak approximately at (𝜆+1 , 𝜆
+
3) ≈ (550, 100) ± (100, 30),

which is near the peak shown for channel flow at (𝜆+1 , 𝜆
+
3) ≈ (1000, 100) [27]. This

peak value is associated with key near-wall features, such as the near-wall cycle and
the formation of streamwise rollers [64, 68, 69]. The spectra for both boundary
layers appear similar to that of the channel flow despite large differences in 𝑅𝑒𝜏.

The premultiplied spectrum for BL1460 at 𝜉2 = 0.6𝛿99 is shown in Fig. 5.2. The
spectrum shows an outer peak at (𝜆1/𝛿99, 𝜆3/𝛿99) ≈ (1.7, 1.2) ± (0.25, 0.13). In
inner units, this peak corresponds to (𝜆+1 , 𝜆

+
3) ≈ (650, 450) ± (100, 50). For future

comparisons with the "inner" wavelength pair, this wavelength pair will be described
with inner scaling. It still corresponds to a wave in the outer layer. Note that the
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Figure 5.2: Outer-scaled premultiplied energy spectra 𝜅1𝛿99𝜅3𝛿99𝐸
+
𝑢𝑢 for 𝜉2 = 0.6𝛿99

for BL1460. Black cross represents wavelength pair of interest in Sections 5.2-5.5.

change in aspect ratio (𝜆1/𝜆3) is indicative of changing aspect ratios of turbulent
structures.

5.1.2 Temporal spectra
The spatial energy spectra were conducted in a time-averaged setting: independent
snapshots of the flow were averaged to compute correlation functions. A similar
method (following the method for spectral proper orthogonal decomposition [25,
82]) is also possible to compute temporal statistics, given that the flow is statistically
stationary. One first takes a stream of data files and divides it into overlapping blocks
(50%) of consecutive datafiles, similar to the procedure used in SPOD. Then, one
can conduct Fourier transforms in time for each block to capture the power spectral
density. As noted by Schmidt & Colonius (2020), conducting a discrete Fourier
transform on the entire signal does not decrease the uncertainty in the energy, and
thus this entire procedure is necessary to converge the statistics.

The amount of data necessary to converge these temporal frequencies ends up being
much larger than those needed to converge spatial statistics in terms of both storage
and simulation run-time. The following analysis is conducted only on BL1460 as it
is the smallest Reynolds number case on hand. Due to storage limits, the data files
were further down-sampled in the streamwise and spanwise directions by factors of
4 and 2, respectively. Thus, the shortest streamwise and spanwise wavelengths are
increased from (Δ𝑥+,Δ𝑧+) ≈ (18, 12) to (Δ𝑥+,Δ𝑧+) ≈ (72, 24).

Following the observation from the spatial spectra (Section 5.1.1), we focus on two
specific spatial wavelength pairs (𝜆+1 , 𝜆

+
3) = (550, 100) for the "inner" wave and

(𝜆+1 , 𝜆
+
3) = (650, 450) for the "outer" wave and compute the temporal PSD for fixed
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(a) Inner (b) Outer

Figure 5.3: Power spectral density log10(𝐸+
𝑢𝑢) for (𝜆+1 , 𝜆

+
3) = (a) (550,100) and (b)

(650,450). The red dashed line identifies, for the respective 𝑐, the location where
𝑢+1 (𝜉

+
2 ) = 𝑐. The black cross specifies the temporal wavelength of interest in the

proceeding sections.

spatial wavelength, shown in Fig. 5.3. Note that the PSD are not premultiplied, in
contrast to the spatial spectra of Section 5.1.1. To show more details of the spectra
structure, the log of the PSD is taken.

In comparison to the time averaged spatial spectra of Section 5.1.1, the temporal
PSD is much more local. For example, the peaks shown in for the spatial spectra
often spanned half a decade in inner-normalized streamwise wavelength. In contrast,
both Fig. 5.3a and Fig. 5.3b are focused to less than a quarter of a decade in inner-
normalized streamwise wavelength.

The PSD of the "inner" spatial wavelength pair (𝜆+1 , 𝜆
+
3) = (550, 100) features a peak

at 𝜆+𝑡 = 40 − 60 whereas the "outer" spatial wavelength pair (𝜆+1 , 𝜆
+
3) = (650, 450)

features a peak that spans across 𝜆+𝑡 ≈ 30 − 50. The "inner" PSD also appears
"horizontal" with increasing 𝜆+𝑡 ; for decreasing 𝜆+𝑡 , there is an inclination towards
higher 𝜉+2 . This trait is exacerbated in the "outer" spatial frequency and can be
understood as being due to the mean streamwise velocity profile. The waves carried
by the mean flow travel at a wave speed 𝑐+ = 𝜆+1/𝜆

+
𝑡 centered at the mean flow

location. Hence, the energy, for different frequencies, is expected to be centered at
𝑢+(𝜉+2 ) = 𝑐+ = 𝜆+1/𝜆

+
𝑡 . A red dashed line is shown on each contour indicating the

locations where 𝑢+(𝜉+2 ) = 𝑐+ = 𝜆+1/𝜆
+
𝑡 . For linear stability analysis, this location is

known as the critical layer, and it will be investigated more thoroughly in Section
5.4. This concept is helpful for explaining the inclination and centering of the peak,
but appears to weaken in agreement in the outer layer.

To specifically study wavelengths characteristic of "inner" and "outer” layer behavior,
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in Section 5.2, we shall restrict ourselves to the study of the wavelength triplets
(𝜆+1 , 𝜆

+
3 , 𝜆

+
𝑡 ) = (550, 100, 50) and (𝜆+1 , 𝜆

+
3 , 𝜆

+
𝑡 ) = (650, 450, 33).

5.2 Resolvent analysis
This section describes the different formulations of the resolvent operator in Carte-
sian and parallelized coordinates. First, a brief introduction and overview is provided
for resolvent analysis. Then, the 1D resolvent is provided specifically for boundary
layer flow.

5.2.1 Broad overview
The Navier-Stokes equation’s chief difficulty remains in interpreting and under-
standing the effects of the nonlinear terms. However, it is apparent that several key
turbulent mechanisms are driven by linear processes [26, 83–86], and the study of
the linearized Navier-Stokes operator is crucial to fully understanding self-sustaining
cycles within turbulence. The key tool for this study is fully codified in McKeon &
Sharma (2010) and is known as resolvent analysis or input/output analysis. Similar
ideas existed in [85], but were not fully generalized. This method has been widely
applied to various flows, such as rough wall boundary layer flow [87], channel and
pipe flows [88], and turbulent jets [89]. Resolvent analysis treats the nonlinear terms
in the Navier-Stokes equations as external forcing terms and the remaining variables
as response terms. Similar to the linear stability studies for transition, resolvent
analysis is conducted in the frequency domain and finds forcings that correspond
to the most amplified response modes. Consequently, a key requirement for the
application of resolvent analysis is statistical stationarity.

Provided a state vector g = [𝑢1, 𝑢2, 𝑢3, 𝑝/𝜌]ᵀ, where ᵀ denotes transpose, one can
compute the Reynolds decomposition g = g + g′. Given statistical stationarity, one
can then conduct a Fourier transform in time and any other homogeneous direction.
Then, one can recast the Navier-Stokes equations as

ĝ′ = C(𝑖𝜔I − 𝐿 (g))−1B︸                  ︷︷                  ︸
R

f̂ = Rf̂ (5.3)

where L is the Fourier transformed linearized Navier-Stokes operator based on the
mean state vector g, (·̂) denotes variables in the transformed domain, 𝑖2 = −1, ĝ
is the Fourier transform of g, f̂ = [ 𝑓1, 𝑓2, 𝑓3] is the Fourier transformed nonlinear
terms, treated as external forcing, and B and C are operators that restrict the output
and input quantities, e.g. enforcing that the forcing is only present in the momentum
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equations and not the continuity equation. One should note that the linearized
Navier-Stokes operator is dependent on an a priori mean profile, obtained through
experiment, simulation, or empirical fits. Resolvent analysis then proceeds to study
the linear properties of R numerically, via the singular value decomposition (SVD),
described in Section 5.2.4.

The complexity in studying R is dramatically reduced with additional homogeneous
directions. Each subsequent Fourier transform allows one to more specifically focus
the study of R for turbulent motions of specific aspect ratios and sizes. The benefits
extend numerically as well, since the numerical cost of conducting the SVD is
greatly reduced.

5.2.2 1D Cartesian resolvent operator
We now restrict the resolvent analysis to the 1D case for boundary layers. Classical
1D resolvent analysis [87, 90] utilizes two key approximations to simplify the
governing equations:

1. The flow is statistically stationary and is statistically homogeneous in the
spanwise (𝑥3) and, more critically, the streamwise (𝑥1) directions.

2. The base flow is parallel in the streamwise direction and has negligible 𝑢2.

Specifically for the boundary layer, the state variable g can be decomposed using
Fourier transforms in the two homogeneous directions and time

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑡) =
∭

ĝ(𝑥2; 𝜅1, 𝜅3, 𝜔)𝑒𝑖(𝜅1𝑥1+𝜅3𝑥3−𝜔𝑡)𝑑𝜅1𝑑𝜅3𝑑𝜔 (5.4)

where, 𝜅1 and 𝜅3 denote the streamwise and spanwise wavenumbers, and 𝜔 is the
temporal wavenumber, respectively. In this way, the current equations are equivalent
for both the (assumed parallel) boundary layer and channel flow.

Given the previous streamwise parallel approximation, the boundary layer base flow
can be written as ḡ ≈ [𝑢1(𝑥2), 0, 0, 𝑝/𝜌(𝑥2)]ᵀ. This base flow corresponds to
(𝜅1, 𝜅3, 𝜔) = (0, 0, 0).

The governing equations can be rewritten for each (𝜅1, 𝜅3, 𝜔) as
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𝑖𝜅1�̂�1 +
𝜕�̂�2

𝜕𝑥2
+ 𝑖𝜅3�̂�3 = 0 (5.5)

[−𝑖𝜔 + 𝐿𝑐] �̂�1 +
𝑑𝑢1

𝑑𝑥2
�̂�2 + 𝑖𝜅1𝑝/𝜌 = 𝑓1 (5.6)

[−𝑖𝜔 + 𝐿𝑐] �̂�2 +
1
𝜌

𝜕𝑝

𝜕𝑥2
= 𝑓2 (5.7)

[−𝑖𝜔 + 𝐿𝑐] �̂�3 + 𝑖𝜅3𝑝/𝜌 = 𝑓3 (5.8)

where

𝐿𝑐 [�̂�] =
[
−𝑖𝜔 + 𝑖𝜅1𝑢1 + 𝜈

(
𝜅2

1 + 𝜅2
3 −

𝜕2

𝜕𝑥2
2

)]
�̂� (5.9)

and f̂ contains the Fourier transformed non-linear terms. The Fourier transformed
fluctuating component can be expressed by

g = R𝑐

©­­­­­«
0
𝑓1

𝑓2

𝑓3

ª®®®®®¬
(5.10)

where

R𝑐
−1 =

©­­­­­«
𝑖𝜅1 𝜕𝑥2 𝑖𝜅3 0
𝐿𝑐 𝜕𝑥2𝑢1 0 𝑖𝜅1/𝜌
0 𝐿𝑐 0 1

𝜌
𝜕𝑥2

0 0 𝐿𝑐 𝑖𝜅3/𝜌

ª®®®®®¬
(5.11)

R𝑐 = R𝑐 (𝑥2; 𝜅1, 𝜅3, 𝜔) is the 1D resolvent operator and exists provided the linearized
Navier-Stokes equations are non-singular. For each chosen set of spatio-temporal
frequencies (𝜅1, 𝜅3, 𝜔), a linear analysis of the resolvent operator describes the most
amplified modes.

There are several limits to this analysis. The 1D boundary layer resolvent analysis
broadly imposes streamwise periodicity on the flow while also assuming statistical
stationarity. Although the flow is only weakly streamwise inhomogeneous, every
DNS of a boundary layer with imposed streamwise periodic boundary conditions
in the Cartesian coordinate system has always been non-stationary. Specifically, it
has been noted that for temporally developing boundary layers, the boundary layer
growth was enough to significantly reduce statistical convergence of many of the
key profiles [35].
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Additionally, the neglecting of the streamwise growth of the boundary layer in
governing equations is equivalent to assuming that turbulent fluctuations throughout
the boundary layer remain at approximately the same wall-normal height. However,
the rms profiles of the boundary layer scale with 𝛿99 in the wake and so, consequently,
the current 1D resolvent analysis may not be suitable for prediction of turbulent
structures located in the outer region.

Finally, the removal of the mean wall-normal velocity is consistent with streamwise
periodicity. The existence of a mean-wall-normal velocity profile implies, via conti-
nuity, streamwise inhomogeneity of the mean streamwise velocity profile. However,
this points out yet another limitation of 1D boundary layer resolvent analysis. Espe-
cially in the wake region where turbulent intensities are sufficiently weaker, transport
by the mean wall-normal velocity might eventually dominate over both the Reynolds
stresses and viscous terms in the wall-normal momentum equation. Neglecting the
wall-normal profile might result in the loss of crucial information on the behavior
of turbulent transport.

Throughout this chapter, the resolvent operator R𝑐 associated with the previous
analysis will be referred to as the Cartesian resolvent operator. Similarly, the
resulting response and forcing modes will be referred to as the Cartesian response
and forcing modes.

5.2.3 Resolvent analysis with wall-normal rescaling
The wall-normal rescaling introduced in Chapter 2 defines a new set of equations
that are statistically homogeneous in the streamwise direction as well as statistically
stationary. The agreement of the one-point and two-point statistics suggests that the
previous 1D resolvent framework can be improved upon by adopting this wall-normal
rescaling. Specifically, in the rescaled coordinate system, resolvent analysis can
finally impose streamwise periodic boundary conditions more directly. Furthermore,
the neglecting of the mean wall-normal velocity profile can be relaxed.

Applying a Fourier transform in time and in the streamwise and spanwise directions
to the rescaled governing equations (Eq. 2.16-2.17), one obtains the following
equations
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𝑖𝜅1�̂�1 +
𝜕�̂�2

𝜕𝜉2
+ 𝑖𝜅3�̂�3 −

𝑞′

𝑞
𝜉2
𝜕�̂�1

𝜕𝜉2
= 0 (5.12)[

−𝑖𝜔 + 𝐿𝑝 −
𝑞′

𝑞
𝜉2
𝑑𝑢1

𝑑𝜉2

]
�̂�1 +

𝑑𝑢1

𝑑𝜉2
�̂�2 + 𝑖𝜅1𝑝/𝜌 = 𝑓1 (5.13)

−𝑞′

𝑞
𝜉2
𝑑𝑢2

𝑑𝜉2
�̂�1 +

[
−𝑖𝜔 + 𝐿𝑝 +

𝑑𝑢2

𝑑𝜉2

]
�̂�2 +

1
𝜌

𝜕𝑝

𝜕𝜉2
= 𝑓2 (5.14)[

−𝑖𝜔 + 𝐿𝑝

]
�̂�3 + 𝑖𝜅3𝑝/𝜌 = 𝑓3 (5.15)

where

𝐿𝑝 [�̂�] =
[
−𝑖𝜔 + 𝑖𝜅1𝑢1 + 𝜈

(
𝜅2

1 + 𝜅2
3 −

𝜕2

𝜕𝜉2
2

)]
�̂� + 𝑢2

𝜕�̂�

𝜕𝜉2
− 𝑞′

𝑞
𝜉𝑢1

𝜕�̂�

𝜕𝜉2
(5.16)

The governing equations can be recast into

ĝ(𝜉2, 𝜅1, 𝜅3, 𝜔) = R𝑝 (𝜅1, 𝜅3, 𝜔) f̂(𝜉2, 𝜅1, 𝜅3, 𝜔) (5.17)

R𝑝
−1 =

©­­­­­«
𝑖𝜅1 − 𝑞′

𝑞
𝜉2𝜕𝜉2 𝜕𝜉2 𝑖𝜅3 0

𝐿𝑝 − 𝑞′

𝑞
𝜉2𝜕𝜉2 (𝑢1) 𝜕𝜉2𝑢1 0 𝑖𝜅1/𝜌

− 𝑞′

𝑞
𝜉2𝜕𝜉2 (𝑢2) 𝐿𝑝 + 𝜕𝜉2𝑢2 0 1

𝜌
𝜕𝜉2

0 0 𝐿𝑝 𝑖𝜅3/𝜌

ª®®®®®¬
(5.18)

where R𝑝 is now the resolvent operator pertaining to the parallelized boundary layer.

Throughout this chapter, the resolvent operator R𝑝 associated with the rescaled
governing equation will be referred to as the parallelized resolvent operator. Simi-
larly, the resulting response and forcing modes will be referred to as the parallelized
response and forcing modes.

The rescaled governing equations effectively provide new terms that capture the
streamwise growth of the mean and fluctuations. In the Cartesian 1D resolvent
analysis, this growth can also be understood as being bundled into the forcing term.
In other words, a portion of the forcing term is being captured by the linearized
rescaling terms added in 𝑅𝑝.

Alternative methods of modeling the forcing term also exist, specifically via the
addition of an eddy-viscosity term. It has been proven to be successful for channel
flows [31, 91, 92] and in jets [29, 93]. There are various difficulties associated
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either with interpretation of the forcing, or even the specific eddy-viscosity model
chosen. In the analysis by Pickering et al. (2021), the response modes obtained
from using resolvent analysis using different eddy-viscosity models, either using a
RANS model or an "SPOD-optimized" model, featured sharp differences. For a
full discussion on the impact of eddy-viscosity on resolvent analysis, the reader is
referred to [91, 93].

5.2.4 Singular value decomposition
Regardless of the choice of R𝑐 or R𝑝, the overall goal of resolvent analysis is to
apply a Schmidt decomposition to the resolvent operator to find the most energetic
modes. The selected norm is the constant kinetic energy norm, provided by

< g, g >=

∫ ∞

0
𝑢
†
𝑖
𝑢𝑖𝑑𝑥2 (5.19)

We then proceed forward with the Schmidt decomposition

R =

∞∑︁
𝑗=1

𝜓 𝑗𝜎𝑗𝜙
†
𝑗

(5.20)

where † denotes conjugate transpose, and 𝜓 𝑗 and 𝜙 are the left and right singular
vectors, respectively, and form an orthonormal basis. They are also known as the
response and forcing modes and will be referred to as such hereafter. The choice of
basis set is unique up to a unitary complex factor.

5.2.5 Numerical set-up
Resolvent analysis operates on discretized governing equations on a grid with both
flow velocities and pressure evaluated at collocated points in the wall-normal direc-
tion. The overall code was adapted from [94] and executed in MATLAB.

To construct the resolvent operators, discrete numerical profiles were taken from
Orlu et al. (2013) and from Chapter 2 for 𝑅𝑒𝛿∗ = 1460, where the boundary layer
growth term is expected to be largest. An exhaustive study of all potential waves
is not particularly meaningful if the waves are not energetic in the real flow. The
analysis of the spatial and temporal spectra conducted in Sections 5.1.1-5.1.2 allows
us to focus our study on energetic waves located in the inner and outer layers.
Specifically, we will now focus on two waves corresponding to two specific sets
of spatio-temporal wavelengths: (𝜆+1 , 𝜆

+
3 , 𝜆

+
𝑡 ) ≈ (550, 100, 50) and (𝜆+1 , 𝜆

+
3 , 𝜆

+
𝑡 ) ≈

(650, 450, 33), referred to as the "inner" and "outer" waves, respectively. The term
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"waves" is chosen to specifically differentiate them from the modes of the resolvent
operator or SPOD. The term is also accurate since each set of spatio-temporal
wavelengths describes a traveling wave in the streamwise direction and a standing
wave in the spanwise direction.

The corresponding wave speeds are approximately 𝑐+ ≈ 10, 20 or 𝑐/𝑢1,∞ ≈ 0.5, 0.95
for the "inner" and "outer" waves, respectively. These "inner" and "outer" phase
speeds approximately agree with previously studied phase speeds in Bae et al.
(2020) (𝑐/𝑢1,∞ = 0.5, 0.98). Bae et al. (2020) had identified that at these particular
phase speeds, the respective inner and outer response modes had mode shapes and
heights with inner and outer scalings, respectively.

In Section 5.1.2, it was noted that the peak location of the energy spectra approxi-
mately follows the curve 𝜉2 = 𝑢−1

1 (𝜔/𝜅1). One should expect then that the peak in
the response modes will align with the peaks of the energy spectra. This was noted
to coincide with the classical definition of the critical layer [95]. In linear stability
theory, the transitional critical layer is the wall-normal location where the inviscid
parallel flow equations are singular with respect to a small perturbation. One can
very classically determine from the governing equations exactly where the critical
layer will occur. In this layer, viscosity is often restored and solutions are often
found centering around these critical points.

The critical layer for resolvent analysis is typically described as the wall-normal
location where the response mode is most amplified. It was shown in McKeon et
al. (2010), that the turbulent critical layer of the response mode of the 1D Cartesian
resolvent operator exactly coincides with the location of the classically defined
critical layer, e.g. in Cartesian coordinates, 𝑥2 = 𝑢−1

1 (𝜔/𝜅1). This result can be
observed through inspection of 𝐿𝑐. If one assumes the viscous terms are largely
negligible throughout the outer layer, then at 𝑥2 = 𝑢−1

1 (𝜔/𝜅1), the magnitude of 𝐿𝑐

vanishes. Consequently, 𝑅𝑐 will have high resolvent norm.

The operator 𝐿𝑝 is not nearly so tractable. The additional term 𝑞′0/𝑞0𝜉2𝜕�̂�𝑖/𝜕𝜉2 is
active away from the wall and the derivative term requires some prior knowledge
of the shape of �̂�𝑖 to find where the magnitude of 𝐿𝑝 is minimized. It is therefore
difficult, from a purely mathematical standpoint, to explicitly predict where the
critical layer lies for the new operator 𝑅𝑝. However, it will be shown in Section 5.4
that provided one has already computed the response mode of 𝑅𝑐, one can predict
the peak location of the response mode of 𝑅𝑝.
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5.2.6 Comparisons between coordinate systems
It was noted earlier in Sec. 5.1.1 that the Fourier transforms conducted in the 1D
Cartesian coordinate system are different from those conducted in the 1D rescaled
coordinate system. Specifically in the coordinate system of 𝑅𝑐, Fourier transforms
of the velocity components and pressure are conducted at constant 𝑥2. On the other
hand, in the coordinate system of 𝑅𝑝, Fourier transforms are conducted at constant
𝜉2. Consequently, the waves specified in the previous subsection are theoretically not
the same waves in Cartesian and rescaled coordinates: in the Cartesian coordinates,
these waves travel at a constant wall-normal height 𝑥2, and in rescaled coordinates,
these waves travel at constant 𝑥2𝑞0/𝑞, or along coordinate lines that follow the
growth of the boundary layer.

The goal of this section is to estimate the difference between the waves in the two
different coordinate systems. Put differently, our goal is to investigate how Fourier
transforms differ with respect to constant 𝜉2 = ℎ from those with respect to constant
𝑥2 = ℎ.

From a geometric perspective, the inclination angle of the boundary layer can
be estimated by tan−1(𝑞′0/𝑞0𝑥2). At the very edge of the boundary layer, the
inclination angle is less than 1◦. In comparison, wall-attached turbulent structures
have inclination angles of about 45◦ [70]. From this perspective, it is not expected
that the spectra are influenced by conducting Fourier transforms at constant 𝜉2 vs.
constant 𝑥2.

To illustrate this, we will consider Fourier transforms of the same arbitrary turbulent
quantity 𝑠 of a growing boundary layer with a streamwise domain of length 𝐿𝑥 ,
centered around 𝑥0 = 0, for either 𝑥2 = ℎ or 𝜉2 = ℎ.

First, the “Cartesian" Fourier transform for constant 𝑥2 = ℎ is given by

𝑠𝑐 (𝜅1, 𝑥3, 𝑡) =
1
𝐿𝑥

∫ 𝐿𝑥/2

−𝐿𝑥/2
𝑠(𝑥1, 𝑥2, 𝑥3, 𝑡) |𝑥2=ℎ𝑒

−𝑖𝜅1𝑥1𝑑𝑥1 (5.21)

The corresponding “parallel" Fourier transform for constant 𝜉2 = ℎ is given by

𝑠𝑝 (𝜅1, 𝜉3, 𝑡) |𝜉2=ℎ =
1
𝐿𝑥

∫ 𝐿𝑥/2

−𝐿𝑥/2
𝑠(𝜉1, 𝜉2, 𝜉3, 𝑡) |𝜉2=ℎ𝑒

−𝑖𝜅1𝜉1𝑑𝜉1 (5.22)

The dependencies on spanwise and time coordinates will be dropped from this point
onwards. Our goal is then to compute the difference 𝑠𝑐 − 𝑠𝑝. To do so, we transform
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the coordinates of Eq. 5.22 back to Cartesian coordinates to obtain

𝑠𝑟 (𝜅1) =
1
𝐿𝑥

∫ 𝐿𝑥/2

−𝐿𝑥/2
𝑠(𝑥1, 𝑥2) |𝑥2=ℎ𝑞(𝑥1)/𝑞0𝑒

−𝑖𝜅1𝑥1𝑑𝑥1 (5.23)

Conducting a first order Taylor expansion of 𝑥2 = ℎ𝑞(𝑥1)/𝑞0 in 𝑥1 centered at 𝑥1 = 𝑥0

gives that 𝑠(𝑥1, 𝑥2) |𝑥2=ℎ𝑞/𝑞0 ≈ 𝑠(𝑥1, ℎ + ℎ𝑥1𝑞
′
0/𝑞0). One can then conduct a first

order Taylor expansion of 𝑠(𝑥1, ℎ + ℎ𝑞′0/𝑞0) centered at (𝑥1, ℎ). The combination
of both Taylor expansions gives that

𝑠(𝑥1, 𝑥2) |𝑥2=ℎ𝑞(𝑥1)/𝑞0 ≈ 𝑠(𝑥1, 𝑥2 = ℎ + ℎ𝑥1𝑞
′
0/𝑞0) ≈

𝑠(𝑥1, ℎ) + 𝑥1ℎ
𝑞′0
𝑞0

(
𝜕𝑠

𝜕𝑥2

) ����
𝑥2=ℎ

(5.24)

Thus, the difference between the Fourier transforms is approximated by

𝑠𝑝 − 𝑠𝑐 ≈ ℎ

𝐿𝑥

𝑞′0
𝑞0

∫ 𝐿𝑥/2

−𝐿𝑥/2
𝑥1

𝜕𝑠

𝜕𝑥2

����
𝑥2=ℎ

𝑒−𝑖𝜅1𝑥1𝑑𝑥1 (5.25)

The most convenient method to investigate the relative impact of this difference is
to evaluate 〈(𝑠𝑝 − 𝑠𝑐)𝑠𝑐,†〉𝜅1,𝜉3,𝑡 and compare it with 〈𝑠𝑐𝑠𝑐,†〉𝜅1,𝜉3,𝑡 for fixed 𝑥2 = ℎ.
From Parseval’s theorem, this ratio is equivalent to the autocorrelation “error" term
discussed in Chapter 4! In Chapter 4, the error term was found to be several orders
of magnitude smaller than the autocorrelation function. The same conclusions from
Chapter 4 also apply here: due to the very slow growth of the boundary layer, the
difference between Fourier transforms is largely negligible.

For the remainder of this chapter, we will directly compare the waves from the
Cartesian and rescaled coordinate systems, under the assumption that the differences
between the two systems are minute. This assumption will also carry over to the
physical interpretation of the modes: because the inclination angle is negligibly
small, the discovered linear mechanisms (“lift-up" and “Orr", to be described in
Section 5.5.3) in the rescaled coordinate system will be identified with their Cartesian
analogue.

5.3 Resolvent analysis results
In this section, the singular spectra and mode shapes for R𝑐 and R𝑝 are compared.
Special considerations are given to data origin and wall-normal velocity profile.

5.3.1 Impact of numerical source: 𝑢1 profile
As described in Section 5.2.3, the resolvent analysis requires a mean velocity profile
𝑢1. The singular value spectra of the parallelized resolvent operator (R𝑝) for the



82

(a) Inner wave (b) Outer wave

Figure 5.4: Singular value spectra of 𝑅𝑝 for (a) inner and (b) outer waves at
𝑅𝑒𝛿∗ = 1460. Colors: (black) [59], (green) [39] and (red) R𝑝, 𝑓 𝑖𝑐

inner and outer waves are shown in Figs. 5.4a-5.4b, respectively, using the growing
boundary layer dataset [39] and the periodic boundary layer dataset (Chapter 2).
Several observations can be drawn. First, the singular spectra for different mean
velocity profiles are virtually identical. Stated differently the choice of mean profile
(either from [39] or BL1460 from Chapter 2), has negligible impact on the singular
spectra. The difference in magnitude of the first mode is within 2% for the two mean
profiles, and for higher modes, the difference in magnitude only marginally increases
to 3%. This is expected since the shape factors between the two mean velocity
profiles were within 3% to begin with. Because both profiles were interpolated onto
the same grid, it is only expected that the spectra should be similar.

The different velocity components of the dominant resolvent modes of R𝑝 are shown
in Figs. 5.5-5.6 for the inner and outer waves, respectively. It is clear that for both
the streamwise and spanwise components, the dominant resolvent modes are nearly
indistinguishable. A discrepancy of ∼ 6% appears in the wall-normal component,
specifically near the peak. This is somewhat understandable since the mean velocity
profiles featured differences in shape factors of up to 1%. It was also shown in
Chapter 2 that the relative differences in 𝑢2 between growing and parallel datasets
is at most 5%. The peak location and mode envelope shape appear geometrically
similar. Furthermore, the streamwise component is approximately 5x in magnitude
compared to the wall-normal component. Based on continuity, a ∼ 6% relative
difference in �̂�2 results in at most a 1% relative difference in �̂�1 .
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(a) |�̂�1 | (b) |�̂�2 |

(c) |�̂�3 |

Figure 5.5: Dominant mode components (a) |�̂�1 |, (b) |�̂�2 |, and (c) |�̂�3 | for the inner
wave at 𝑅𝑒𝛿∗ = 1460. Colors: (black) [59], (green) [39] and (red) R𝑝, 𝑓 𝑖𝑐.

5.3.2 Impact of numerical source: 𝑢2 profile
The resolvent analysis for the homogenized boundary layer also requires a mean
wall-normal velocity profile (𝑢2). Unfortunately, the mean profiles extracted from
growing boundary layer dataset [39] do not satisfy the mean rescaled continuity
reproduced in Eq. 5.26.

𝜕𝑢2

𝜕𝜉2
=
𝑞′

𝑞
𝜉2
𝜕𝑢1

𝜕𝜉2
(5.26)

To investigate whether the source of the mean wall-normal velocity profile has any
impact on the computation of singular spectra and dominant response modes of R𝑝,
one can construct a fictitious 𝑢 𝑓 𝑖𝑐

2 from the streamwise velocity profile via

𝑢
𝑓 𝑖𝑐

2 =

∫ 𝜉2

0
𝜉∗2

𝑞′

𝑞

𝜕𝑢1

𝜕𝜉∗2
𝑑𝜉∗2 (5.27)
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(a) |�̂�1 | (b) |�̂�2 |

(c) |�̂�3 |

Figure 5.6: Dominant mode components (a) |�̂�1 |, (b) |�̂�2 |, and (c) |�̂�3 | for the outer
wave at 𝑅𝑒𝛿∗ = 1460. Colors: (black) [59], (green) [39] and (red) R𝑝, 𝑓 𝑖𝑐.

One can replace the mean wall-normal velocity profile from [39] with this fictitious
mean wall-normal velocity profile and investigate the impact these profiles have on
R𝑝. We denote the operator R𝑝 with the fictitious 𝑢2 as R𝑝, 𝑓 𝑖𝑐.

The singular spectra of R𝑝, 𝑓 𝑖𝑐. are shown in Fig. 5.4. The effects of changing 𝑢2 are
minimal, with relative differences being at most 1% for the larger singular values.
The dominant modes for outer and inner waves are shown in Fig. 5.6 and Fig. 5.5,
respectively. Once again, there are virtually no differences for each component with
exception of the wall-normal mode. In summary, the resolvent singular spectra and
response modes are not sensitive to the original source of the wall-normal velocity
profile.

5.3.3 Mode shapes
The envelope (magnitude) of the dominant mode for the inner wave (Fig. 5.5) has a
distinctive shape. There is a peak in the magnitude near the wall, and the streamwise
component is at least an order of magnitude larger than both the wall-normal and
spanwise components. The peak location of the predicted dominant response mode



85

(𝜉+2 ≈ 15, 𝜉2 ≈ 0.04𝛿99) is within 5% of the extracted peak location of the temporal
PSD of Section 5.1 (𝜉+2 ≈ 20, 𝜉2 ≈ 0.05𝛿99).

Furthermore, as anticipated by [38, 90, 96], the inner wave mode features near-wall
scaling. The �̂�1, �̂�3 components of the dominant mode have a linear envelope in
the near wall region 𝑦+ < 5. On the other hand, the envelope of the �̂�2 component
is parabolic near the wall. This mirrors the behavior of 𝑢1 and 𝑢2, where 𝑢1 is
approximately linear near the wall and 𝑢2 is approximately parabolic. In fact, both
sets of behaviors are caused by continuity.

The envelope for the outer wave (Fig. 5.6) is closer to a Gaussian, and as noted by
[96], resolvent modes ten to feature an expected Gaussian envelope. As expected,
the magnitude peak is in the outer layer. Again, the peak location of the predicted
response mode (𝜉2 ≈ 0.6𝛿99) is within 10% of the extracted peak location of the
temporal PSD of Section 5.1 (𝜉2 ≈ 0.7𝛿99).

5.3.4 R𝑐 vs R𝑝

The singular spectra of R𝑐 and R𝑝 are now compared in Fig. 5.7. It was shown
in the previous subsection that the resolvent operator R𝑝 had singular spectra with
a larger, dominant singular value. The singular spectra for both inner and outer
waves show that the magnitude of the dominant mode is larger than that of the other
singular values by almost an order of magnitude. This trait is shared by both R𝑐 and
R𝑝. Both resolvent operators are low-rank and the bulk of the predicted turbulent
response to this particular spatio-temporal frequency will be dominated by the first
mode.

The singular spectra for both inner and outer waves also feature several important
differences. The singular value of the dominant mode for the outer wave spectra
are of similar orders of magnitude, whereas for the inner wave spectra, the singular
values overlap. Finally, for the highest singular response modes, the singular value
drop-offs overlap. For both the inner and outer waves, this overlap occurs at mode
number 130 which approximately corresponds to the number of grid points in the
wall-normal direction.

The components of the dominant response mode of R𝑐 and R𝑝 are shown in Figs. 5.8
and 5.9. They are all virtually indistinguishable and share the same inner layer peak.
For the inner wave, the additions in R𝑝 (the wall-normal velocity profile and the
source terms) are not large enough in magnitude to affect the dominant response
mode. This is expected; it was shown in Chapter 2 that the source terms have
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(a) Singular spectra for the inner wave (b) Singular spectra for the outer wave

Figure 5.7: Singular value spectra of the resolvent operators for (a) inner and (b)
outer frequencies at 𝑅𝑒𝛿∗ = 1460. Colors: (black) R𝑐, (black) R𝑝.

negligible impact on the mean velocity profiles in the near-wall region.

The source terms added in R𝑝 have a non-negligible impact on the mode location
and width. Again, this is consistent with the results shown in Chapter 2, which
showed that in the outer layer, the source terms have significant impacts on the mean
velocity profiles. The mode location has shifted from the Cartesian wall-normal
peak location 𝜉2 = 0.91𝛿99 to a new location 𝜉2 = 0.73𝛿99.

This shift can be interpreted as "suction" due to the wall-normal rescaling. The
additional source term in the rescaled momentum equations acts to counter wall-
normal advection. In the mean streamwise momentum equation, the source term
shares the same sign with the viscous terms and is also demonstrably non-negative.
It consequently draws flow towards the wall, keeping the boundary layer statistically
stationary.

5.3.5 Impact of 𝑢2

Given that the transpiration velocity is many orders of magnitude smaller than
the free-stream velocity (𝑢2,∞ ≈ 10−3𝑢1,∞), one might wonder if the transpiration
velocity has any effect on the operators. To explore this, we denote the operators
R𝑐,+𝑣 and R𝑝,−𝑣 as operators R𝑐 and R𝑝 with the wall-normal velocity included and
excluded, respectively.

First, the singular spectra for the inner wave are shown in Fig. 5.10a. The inclu-
sion/exclusion of the wall-normal velocity profile does not affect the singular spectra
of R𝑐 and R𝑝. The differences, especially in the dominant mode, are smaller than
the differences caused by different datasets. Figure 5.10b shows the singular spectra
for the outer wave. The relative differences in the first mode energy value are within



87

(a) |�̂�1 | (b) |�̂�2 |

(c) |�̂�3 |

Figure 5.8: Dominant mode components (a) |�̂�1 |, (b) |�̂�2 |, and (c) |�̂�3 | for the inner
wave at 𝑅𝑒𝛿∗ = 1460. Colors: (black) R𝑐, (black) R𝑝.

1%. Across the spectrum, R𝑝 and R𝑝,−𝑣 have singular values within 5% of each
other. The Cartesian operators (R𝑐 and R𝑐,+𝑣) only have relative differences of at
most 1% in the first mode.

We now investigate the outer wave dominant mode behavior. The components
of the dominant response modes are shown in Fig. 5.11. All modes maintain a
Gaussian-like envelope. The impact of the mean wall-normal velocity term is much
more visible. The peak location for the streamwise component has shifted for both
R𝑝,−𝑣 and R𝑐,+𝑣 and there is even a difference in shape for R𝑐,+𝑣. Consistent with
the singular spectra, the differences between R𝑝 and R𝑝,−𝑣 are much smaller than
those between R𝑐 and R𝑐,+𝑣. The addition of 𝑢2 is correlated with shifting the peak
towards the free-stream, and conversely, removing 𝑢2 is correlated with shifting the
peak location closer to the wall. Finally, the free-stream behavior of R𝑐,+𝑣 mimics
that of R𝑝. On the other hand, the wall-normal component apparently drops in
magnitude by at least 10%, but does not feature a shift in peak location.
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(a) |�̂�1 | (b) |�̂�2 |

(c) |�̂�3 |

Figure 5.9: Dominant mode components (a) |�̂�1 |, (b) |�̂�2 |, and (c) |�̂�3 | for the outer
wave at 𝑅𝑒𝛿∗ = 1460. Colors: (black) R𝑐, (black) R𝑝.

5.4 Displacement of the peak location
The streamwise components of the dominant modes of R𝑐 and R𝑝 for the outer
wave feature different peak locations and widths, but they have similar shapes. As
the streamwise component is responsible for over 80% of the energy in the overall
mode, we focus our attention on this component only. More precisely, for a narrow
region around the peak, we make the assumption that there exists 𝜂2 such that

�̂�1,𝑐𝑎𝑟𝑡

(
𝑦𝑝

𝑦𝑐
𝑥2

)
= 𝑆�̂�1,𝑝𝑎𝑟 (𝜂2) (5.28)

for |𝑥2 − 𝑦𝑐 | <
𝑦𝑝
𝑦𝑐
𝜖 , where the (𝑐𝑎𝑟𝑡), and (𝑝𝑎𝑟) subscripts denote the dominant

modes respectively of the Cartesian and parallelized resolvent operator, 𝑆 denotes
a scaling factor, and 𝑦𝑝 and 𝑦𝑐 denote the peak locations of the optimal response
modes for the parallel and Cartesian operators. Because the dominant modes are
defined up to a complex constant with magnitude 1, without any loss of generality,
we impose that at 𝑦𝑐, �̂�1,𝑐𝑎𝑟𝑡 is purely real with positive coefficient. We also make
the assumption that at 𝑦𝑐, <[𝜕𝑥2 �̂�1,𝑐𝑎𝑟𝑡] ≈ 0.
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(a) Inner wave (b) Outer wave

Figure 5.10: Singular value spectra of the resolvent operators for the (a) inner and
(b) outer waves at 𝑅𝑒𝛿∗ = 1460. Colors: (black) R𝑐, (black) R𝑝, (red) R𝑐,+𝑣, (cyan)
R𝑝,−𝑣.

Following the simplifications of [96] (dropping the forcing and the pressure terms),
the streamwise momentum equation for the Cartesian resolvent operator near 𝑥2 ≈ 𝑦𝑐

yields

[𝐿𝑐] �̂�1,𝑐𝑎𝑟𝑡 +
𝑑𝑢1,𝑐𝑎𝑟𝑡

𝑑𝑥2
�̂�2,𝑐𝑎𝑟𝑡 ≈ 0 (5.29)

Similarly, following similar simplifications, the rescaled streamwise momentum
equation near 𝜂2 ≈ 𝑦𝑝 gives

[
𝐿𝑝

]
�̂�1,𝑝𝑎𝑟 +

𝑑𝑢1,𝑝𝑎𝑟

𝑑𝜂2
�̂�2,𝑝𝑎𝑟 ≈ 0 (5.30)

where the term 𝑞′/𝑞𝜂2𝜕𝑑𝑢1,𝑝𝑎𝑟 �̂�1,𝑝𝑎𝑟 will be neglected as its magnitude much smaller
than that of the streamwise advection term 𝑖𝜅1𝑢1 in the outer layer. In the Cartesian
streamwise momentum equation, the balance near the peak is only a balance between
the streamwise convective and temporal terms 𝑖𝜅1𝑢1�̂�1 − 𝑖𝜔�̂�1. The wall-normal
location where this is satisfied is the location of the peak of the dominant singular
mode (i.e. 𝑢1(𝑦𝑐) = 𝜔/𝜅1). However, since the rescaled peak location has shifted,
the streamwise momentum is no longer just a balance of the streamwise convective
and unsteady terms. The additional source term 𝑞′/𝑞𝜉2𝜕𝜉2 �̂�1 and 𝑢2 term must be
retained.

Closures for �̂�2,𝑐𝑎𝑟𝑡 and �̂�2,𝑝𝑎𝑟 can be provided by an approximation of continuity:
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(a) |�̂�1 | (b) |�̂�2 |

(c) |�̂�3 |

Figure 5.11: Dominant mode components (a) |�̂�1 |, (b) |�̂�2 |, and (c) |�̂�3 | for outer
wave at 𝑅𝑒𝛿∗ = 1460. Colors: (black) R𝑐, (black) R𝑝, (red) R𝑐,+𝑣, (cyan) R𝑝,−𝑣.

�̂�2,𝑝𝑎𝑟 (𝜂2) ≈
𝑦𝑐

𝑦𝑝
𝑆�̂�2,𝑐𝑎𝑟𝑡

(
𝑦𝑝

𝑦𝑐
𝑥2

)
(5.31)

The similarity assumption (Eq. 5.28), reduced momentum equations (Eq. 5.29-5.30),
and reduced continuity equation (Eq. 5.31) provide the following expression after
Taylor expansion around 𝑥2 = 𝑦𝑐 and neglecting of the viscous terms

(
𝑦𝑝

𝑦𝑐
− 1

) [
𝜅1

(
𝑑𝑢1

𝑑𝑥2

)
𝑦𝑐𝑅𝑒[�̂�1,𝑐𝑎𝑟𝑡] +

𝑑𝑢1

𝑑𝑥2
𝐼𝑚 [�̂�2,𝑐𝑎𝑟𝑡]

]
+(

𝑢2(𝑦𝑝) −
𝑞′

𝑞
𝑦𝑝

)
𝑦𝑐

𝑦𝑝
𝐼𝑚

[
𝑑�̂�1,𝑐𝑎𝑟𝑡

𝑑𝑥2

]
= 0 (5.32)

where, unless otherwise specified, terms are evaluated at 𝑥2 = 𝑦𝑐. To first order in
𝑦𝑝/𝑦𝑐, we obtain the following approximation

𝑦𝑝

𝑦𝑐
≈ 1 −

(
𝑢2(𝑦𝑝) − 𝑞′

𝑞
𝑦𝑝

)
𝐼𝑚

[
𝑑�̂�1,𝑐𝑎𝑟𝑡
𝑑𝑥2

]
𝜅1𝑦𝑐

𝑑𝑢1
𝑑𝑥2

𝑅𝑒[�̂�1,𝑐𝑎𝑟𝑡] + 𝑑𝑢1
𝑑𝑥2

𝐼𝑚 [�̂�2,𝑐𝑎𝑟𝑡]
(5.33)
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Note that due to the linearity of Eq. 5.30 in �̂�1,𝑝𝑎𝑟 , �̂�2,𝑝𝑎𝑟 , the scaling parameter 𝑆
does not play a direct role in the final expression for the shift in peak location.

For R𝑝, the actual peak of the dominant mode is located at 𝜉2/𝛿99 = 0.73 whereas
the similarity prediction expects 𝜉2/𝛿99 = 0.74. In the case of R𝑐,+𝑣 the actual peak
is located at 𝑦/𝛿99 = 0.95 and the predicted peak is located at 0.96. In both cases,
the prediction is within 95% of the actual value.

Equation 5.33 can be interpreted as the translation of the flow due to vertical
advection. The numerator of Eq. 5.33 contains metric terms due to vertical advection
from boundary layer growth and the denominator contains terms related to horizontal
advection and production of turbulent fluctuations. The ratio of the two provides
a relative context for how quickly a fluctuation might be pulled towards/away from
the wall with respect to advection by the mean flow. It is also clear that the effect of
the mean wall-normal velocity profile will always be opposite that of the rescaling
terms. Finally, in the limit of infinite Reynolds number, the metric term 𝑞′/𝑞 and the
wall-normal velocity both approach zero. In this limit, the Cartesian and parallelized
resolvent operators would produce the same modes.

5.5 Spectral proper orthogonal decomposition
The current section gives a brief overview of SPOD. Then SPOD is applied to a
boundary layer dataset and modes are extracted for comparison against the predicted
resolvent modes.

5.5.1 Method overview
The present analysis utilizes SPOD and follows the procedure of Towne et al. (2018).
The method consists of organizing a long time stream of data files of the state vector
g′ into overlapping blocks (via the snapshot method) and then conducting Fourier
transforms in time and in the homogeneous directions of each block. Specifically for
the periodic boundary layer, the Fourier transforms are conducted in the streamwise,
spanwise, and temporal directions. One then specifies a set of wavenumbers 𝜅 =
(𝜅1, 𝜅3, 𝜔) and extracts data in the form of an array Q̃ of size 4𝑁𝑦×𝑁blks, where 𝑁blks

is the number of blocks and 4𝑁𝑦 is the length of the incompressible state vector.

The two-point cross-spectral density tensor S is then estimated by S = Q̃Q̃†/𝑁blks.
An eigenvector decomposition is finally applied to the cross-spectral density tensor
to obtain eigenfunctions �̂� such that
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∫
S(𝜉2, 𝜉

′
2, 𝜅)𝜓(𝜉

′
2, 𝜅)𝑑𝜉

′
2 = 𝜆(𝜅)𝜓𝜉2, 𝜅 (5.34)

Because S is Hermitian, the eigenfunctions are orthogonal and the eigenvalues are
positive and real and can be sorted from largest to smallest. The eigenfunction
associated with the largest eigenvalue can be loosely interpreted as representations
of turbulent structures that appear most prominently in each flow snapshot for the
specific set of wavenumbers 𝜅.

Comparisons between resolvent analysis and SPOD have been numerous [25, 27,
82]. One can relate the modes predicted by resolvent analysis with the modes
extracted by SPOD, provided the resolvent operator is suitably low-rank. In this
situation, cross spectral density may be dominated by the optimal resolvent response
mode [25, 97, 98].

5.5.2 Numerics
To reduce memory and storage costs, each snapshot was down-sampled by a factor of
four in the streamwise direction and two in the spanwise direction, corresponding to
filtering out waves of streamwise length 𝜆+1 < 72 and spanwise length 𝜆+3 < 24. The
down-sampling was conducted in Fourier space with a sharp wavenumber cutoff to
prevent aliasing. Since the flow is simulated with streamwise and spanwise periodic
boundary conditions, and SPOD is conducted fully in Fourier space for the same
directions, the down-sampling does not affect results.

A total of 6250 snapshots were used with time increment Δ𝑡𝑈∞/𝛿99 ≈ 0.3, Δ𝑡+ ≈
6.5. Each block was formed with 256 snapshots for a total temporal wavelength
of Δ𝑇+ ≈ 1600, Δ𝑇𝑈∞/𝛿99 ≈ 84, Δ𝑇𝑢𝜏/𝛿99 ≈ 4 so as to fully capture the longest
temporal wavelength of interest (𝜆+𝑡 ≈ 100). For the bulk of the results used in this
chapter, each block had an overlap of 50%, for a total of 47 blocks. A study of the
convergence of the modes is provided in Appendix A.4.

5.5.3 Resolvent and SPOD comparisons
It was shown in Section 5.3 that for both modes, the resolvent operator was ap-
proximately low-rank. Analogous results are shown in Fig. 5.12 for the eigenvalue
spectra of each wave. The outer wave shows low-rank behavior, with the first mode
having an eigenvalue nearly twice that of the subdominant mode. The inner wave
shows much stronger low-rank behavior as the dominant mode has an eigenvalue
nearly five times that of the subdominant mode. Similar to the singular spectra of
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Figure 5.12: Eigenspectra for SPOD modes associated with (green) outer
wave (𝜆+1 , 𝜆

+
3 , 𝜆

+
𝑡 ) = (650, 450, 33) and (magenta) inner wave (𝜆+1 , 𝜆

+
3 , 𝜆

+
𝑡 ) =

(550, 100, 100). Gray shading indicates 95% confidence interval.

the resolvent operators, there is a sharp drop in eigenvalue energy at around mode
number 100, which is on the order of the number of points used in the wall-normal
direction.

Following Section 5.3, we show the magnitude of the streamwise component of the
dominant SPOD and optimal resolvent modes for the inner and outer waves . Figure
(5.13a) shows the magnitude of the inner wave SPOD and resolvent modes. The
streamwise component is consistently larger in magnitude compared to the other two
components. The location of the peak in the inner layer is within 5%, and the three
velocity component (not shown) shapes all share similar features. The wall-normal
and spanwise components of the SPOD mode have magnitudes are much smaller
in magnitude compared to the streamwise component, which is consistent with the
dominant resolvent mode. The streamwise component for the SPOD mode is slightly
smaller than predicted by the resolvent modes and consequently, the wall-normal
and spanwise components of the SPOD modes are slightly larger than the predicted
modes by resolvent analysis. Finally, the wall-normal extent is larger than predicted.

Figure 5.13b shows the magnitude of the outer wave SPOD and resolvent modes.
The peak location and relative magnitude of the SPOD mode is captured by the
optimal resolvent mode 𝑅𝑝 within 5%. The 𝑅𝑝 optimal mode is tilted towards the
wall, but overall, appears to capture the SPOD mode amplitude shape and location
well. In comparison, the 𝑅𝑐 optimal mode does not predict the location or mode
width well. It does appear that the free-stream extent of the SPOD mode is more
subdued than that predicted by 𝑅𝑝 and the SPOD mode also has a much longer
near-wall extent.

Figure 5.14 shows the reconstructed dominant SPOD modes compared with the
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(a) Inner wave (b) Outer wave

Figure 5.13: Envelopes for streamwise component of dominant resolvent and SPOD
modes for (b) Inner (𝜆+1 , 𝜆

+
3 , 𝜆

+
𝑡 ) = (550, 100, 100) and (b) Outer waves (𝜆+1 , 𝜆

+
3 , 𝜆

+
𝑡 )

= (650, 450, 33). Colors: (black) Predicted mode from R𝑐, (black) Predicted mode
from R𝑝, (green) SPOD mode.

reconstructed optimal resolvent response modes for BL1460. In red and black are
positive and negative contours, respectively, of streamwise 𝑢′1 velocity whereas the
arrows indicate the wall-normal velocity 𝑢′2. The inner wave modes between 𝑅𝑐 and
𝑅𝑝 are indistinguishable. Noticeably, for the SPOD and resolvent inner wave modes,
the positive lobes of 𝑢′1 are correlated with negative values of 𝑢′2 specifically near
the peak amplitude of the fluctuations. This is indicative of the lift-up mechanism
in the resolvent formalism.

To differentiate the resolvent lift-up mechanism from the classical lift-up mechanism,
we follow the explanation given by [28]. In classical linear instability analysis, the
lift-up mechanism corresponds to a linear instability mechanism where wall-normal
velocity fluctuations cause an algebraic increase in streamwise velocity fluctuations
[99]. For example, if one considers streamwise and wall-normal fluctuations 𝑢′1 and
𝑢′2, respectively, in inviscid, parallel flow with mean velocity 𝑢1, one finds from the
streamwise momentum equation

𝜕𝑢′1
𝜕𝑡

= −𝑢′2
𝜕𝑢1

𝜕𝑥2
(5.35)

where it can be seen that the perturbation 𝑢′1 is amplified in the presence of -𝑢′2.
The term 𝑢′2𝜕𝑢1/𝜕𝑥2 is responsible for the classical lift-up mechanism. Lift-up
tends to force slow-moving fluid away from the wall and vice-versa, which aids
the formation of streamwise streaks. [100]. Thus, the classical lift-up mechanism
specifically concerns instabilities that grow linearly with time.
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(a) Inner wave, SPOD (b) Outer wave, SPOD

(c) Inner wave, R𝑝 (d) Outer wave, R𝑝

(e) Inner wave, R𝑐 (f) Outer wave, R𝑐

Figure 5.14: Velocity fields in cross-stream (zy) view for dominant modes of SPOD
(a,b), R𝑐 (c,d) and R𝑝 (e,f) for (a,c,e) outer wave (𝜆+1 , 𝜆

+
3 , 𝜆

+
𝑡 ) = (650, 450, 33)

and (b,d,f) inner wave (𝜆+1 , 𝜆
+
3 , 𝜆

+
𝑡 ) = (550, 100, 100). Colored contours represent

𝑅𝑒[�̂�′1] and quiver arrows represent 𝑅𝑒[�̂�′2 − �̂�′3].
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(a) R𝑝 (b) R𝑐

Figure 5.15: Optimal forcings in cross-stream (zy) view for outer wave for (a) R𝑝 and
(b)R𝑐. Colored contours represent 𝑅𝑒[ 𝑓 ′1] and quiver arrows represent 𝑅𝑒[ 𝑓 ′2 − 𝑓 ′3].

In the resolvent formalism, the streamwise vortices (fluctuations in 𝑢′2 and 𝑢′3) are
energized by forcing components 𝑓2 and 𝑓3. Once energized, these fluctuations in 𝑢′2
can then amplify fluctuations in 𝑢′1. And so, unlike the classical lift-up mechanism,
the resolvent lift-up mechanism has nonlinear terms exciting streamwise vortices.
These streamwise vortices eventually amplify streaks which, eventually break down
due. This is a broad description of the near-wall cycle, and for more details, the
reader is referred to [99, 101]. In the resolvent case, the lift-up mechanism can be
characterized by the presence of negative wall-normal momentum associated with
positive streamwise momentum, specifically in the vicinity of the location where
the fluctuations have peak amplitude [99]. From this description, it is clear that the
inner wave SPOD and resolvent modes feature lift-up.

For the outer wave, all three modes also feature lift-up (near the peak, 𝑢′1 is negatively
correlated with 𝑢′2), and all peak in the outer layer. The optimal 𝑅𝑝 response mode
shows agreement in free-stream behavior with the SPOD extracted mode. where
both modes change inclination angle. This is in contrast to the optimal 𝑅𝑐 response
mode, which maintains a steady inclination angle in the free-stream.

Differences in optimal response modes are generally indicative of differences in
optimal forcing modes as well. The forcing modes for both 𝑅𝑐 and 𝑅𝑝 are shown in
Fig. 5.15. Both 𝑅𝑐 and 𝑅𝑝 feature forcing modes tilted upstream, which is indicative
of the resolvent Orr mechanism [83, 84]. The classic Orr mechanism is derived from
linear stability analysis of inviscid, parallel shear flows, and there describes the linear
phenomenon where vorticity perturbations oscillate between being aligned with and
against the mean shear. The energy of these perturbations grows algebraically in
time.
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The resolvent Orr mechanism is characterized by nonlinear forcings that are tilted
against the shear, which amplify a response that is tilted with the shear. The optimal
forcing mode of 𝑅𝑐 has a smaller angle of inclination, indicating that 𝑅𝑝 predicts
a much weaker Orr mechanism than 𝑅𝑐. Given the good agreement between the
SPOD modes and the resolvent modes, it is likely that the Orr mechanism is weaker
in the outer layer than previously predicted by the 1D Cartesian resolvent operator.

5.6 Conclusion
The present chapter extended the analysis of the rescaled governing equations via
resolvent analysis and SPOD. First, the energy spectra were computed both spatially
and temporally to discover the most energetic modes for specific sets of wavenumbers
that would be representative of turbulent motions in the outer and inner layers.
Once these modes were identified, 1D resolvent analysis was conducted for both
of the specified wavenumber triplets. It was found that the rescaled governing
equations predict a shift in optimal mode peak location. Through an investigation
of the left singular vectors of the rescaled and Cartesian resolvent operators, it
was shown that both the rescaling metric term and the mean wall-normal velocity
profile leave impacts on the peak mode location, especially for modes in the outer
layer. Furthermore, it was shown through a Taylor series expansion of the resolvent
analysis equations near the peak mode location, that the displacement in peak mode
location can be directly interpreted in terms of a ratio between vertical advection
and horizontal advection. The rescaling operation moved the mode peak closer
to the wall, whereas vertical transpiration moved the mode peak further from the
wall. SPOD was then conducted on case BL1460, and the dominant modes were
extracted. The rescaled resolvent predicted the peak location of extracted mode
within 5%, and shared mode features like inclination angle in the free-stream. It
was concluded that the Orr mechanism in the outer layer is far weaker than predicted
by the 1D resolvent operator.
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C h a p t e r 6

CONCLUSIONS & FUTURE WORK

A novel method of simulating incompressible flat plate boundary layers in a stream-
wise periodic domain was developed. The method was validated, and investigations
were conducted into the behavior of the equations with increased Reynolds number
as well as the numerical requirements to fully capture the largest turbulent features
in the flow. Finally, the method was applied to resolvent analysis and SPOD was
conducted on resulting periodic simulation data.

6.1 Development and validation of the periodic boundary layer
Based on the boundary layer rescaling methods pioneered by Spalart (1987), a new
wall-normal rescaling (by a single length-scale 𝑞) was applied to the Navier-Stokes
equations to obtain the Homogenized Navier-Stokes equations. The new governing
equations shared a similar form to the original Navier-Stokes equations but with
additional source terms. Each of these source terms were proportional to a factor of
𝑞′/𝑞, and it was shown that in order for the Homogenized Navier-Stokes equations
to be stationary, the rescaling metric 𝑞′/𝑞 is approximately 1

2𝐶 𝑓 /𝜃. Consequently,
it was also shown that the length-scale 𝑞 scales like 𝜃 and that one could understand
this rescaling as a rescaling by the momentum thickness.

Several a priori tests were conducted to investigate the role of the source terms.
First, it was shown that the momentum source terms were most active in the outer
layer. More specifically, in the streamwise momentum equation, the additional
source terms directly balance the effect of the Reynolds shear stress. The a priori
tests also revealed that several of the additional source terms (specifically viscous
and pressure rescaling terms) in the rescaled governing equations were negligible
and were thus neglected in the governing equations.

Several non-periodic simulations were then conducted using the rescaled governing
equations. It was found that the neglected terms did not leave significant impacts on
the streamwise mean or rms profiles. It was also shown that given fixed values of
𝑞′/𝑞, the governing equations allowed for a statistically streamwise homogeneous
flow. It was concluded that streamwise periodic boundary conditions could be ap-
propriately applied without artificially enforcing streamwise statistical homogeneity.
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Four key periodic boundary layer simulations were conducted at 𝑅𝑒𝛿∗ = 1460, 2830,
3550, and 5650. The shape factor and skin friction coefficient were found to be
within 1% and 3% of empirical values and showed excellent agreement with growing
simulation results. Notably, the rms profiles were within 5% of experimental values
for 𝑅𝑒𝛿∗ = 3550, 5650.

There was significant computational cost reduction due to a reduction in streamwise
domain length. For example, for a 𝑅𝑒𝛿∗ = 5650, the streamwise domain of the
periodic simulation was ∼ 7𝛿99. In comparison, the streamwise domain of growing
simulations required ∼ 55-60𝛿99 to reach the same Reynolds number for both [39]
and [14]. Based solely on streamwise domain length, the expected cost reduction
is about an order of magnitude. This cost reduction is only expected to improve
with increasing Reynolds number as inflow relaxation lengths for growing boundary
layer simulations often scale with Reynolds number [14]. It was concluded that the
periodic boundary layer was both highly cost-efficient and accurate.

An investigation was then conducted into whether there were any near-wall effects
missing from the current Homogenized Navier-Stokes equations. The most clear
evidence of near-wall impact is in the mean wall-normal velocity profile. It was
shown that there were at most 5% relative differences in the transpiration velocity
𝑢2,∞ between the growing and periodic boundary layer simulations. These differ-
ences were shown to be caused by an overestimation of 𝑞′/𝑞 in the inner region.
Consequently, it was shown that by modifying the expression for 𝑞 to vary in the
wall-normal direction, one could obtain mean transpiration velocities within 1-2%
of the growing boundary layer simulation values. It was finally shown, however,
that such changes are much more significant with lower Reynolds number, and such
differences decay logarithmically with Reynolds number.

The numerical domain size was then investigated to understand what domain sizes
were necessary so that a periodic simulation could obtain accurate two-point correla-
tions. It was found that spanwise domain lengths of𝑂 (5𝛿99) are sufficient to capture
the longest streamwise structures in the domain. Furthermore, it was concluded that
shorter spanwise domains in fact reduce the longest possible streamwise structures
in the computational domain. It was concluded that for adequately large domain size
(14𝛿99 in length, 5𝛿99 in width), the two-point statistics of the growing boundary
layer are accurately captured by the periodic boundary layer and consequently, the
turbulent structures of such size are also accurately captured.

Spatial and temporal PSD were then computed to find the wavelengths corresponding
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to the most energetic waves in the boundary layer. For 𝑅𝑒𝛿∗ = 1460, these were found
to be at (𝜆+1 , 𝜆

+
3 , 𝜆

+
𝑡 ) = (550, 100, 50), (650, 450, 33) for the inner and outer waves,

respectively. A study was then conducted on how the 1D resolvent operator changes
if one uses the Homogenized Navier-Stokes equations instead of the Cartesian
Navier-Stokes equations. The optimal modes were extracted for each wave. No
differences between the 1D operators were found for the inner wave, but the outer
wave featured a shift in the peak location as well as different free-stream behavior.
It was shown that this shift in peak location could be approximately explained by
a ratio of advection terms. Furthermore, it was shown that the rescaling terms
displaced the peak towards the wall, whilst the mean wall-normal velocity pushed
the peak towards the free-stream. Finally, to verify that these behaviors were in fact
found in periodic boundary layers, SPOD was conducted on a case at 𝑅𝑒𝛿∗ = 1460
and the dominant modes were extracted for the inner and outer waves. The peak
location of the outer wave SPOD mode was predicted within 5% by the rescaled
resolvent operator mode.

6.2 Conditions for application
Throughout each chapter, the rescaling method has been successful due to one condi-
tion: the streamwise growth of the boundary layer must be slow, or that 𝑞′0/𝑞0𝛿

∗ � 1.
In other words, the flow must be quasi-homogeneous in the streamwise direction.

In Chapter 2, it was noted that the source term was orders of magnitude smaller
than the dominant terms in the near-wall region, and so, despite the near wall
region featuring an altogether different wall-normal rescaling, the effect on the
mean streamwise velocity profile was minimal. This argument is only possible
because the growth rate 𝑞′0/𝑞0𝛿

∗ is small. Even so, the effect still manifested itself
through the form of a transpiration velocity error (Chapter 3). It was found that the
mean and rms velocity profiles are largely insensitive to differences in transpiration
velocity. The same conclusion could not be made if the transpiration velocity was
several orders of magnitude larger. Note that 𝑢2,∞/𝑢1,∞ ≈ 𝑞′0/𝑞0𝛿

∗, and so, yet
again, the insensitivity of the boundary layer to errors in 𝑢2,∞ is fundamentally
related to the small value of 𝑞′0/𝑞0𝛿

∗.

In Chapter 4, the two-point correlation functions were compared between growing
and homogeneous boundary layers. The inclination angle for the two-point correla-
tions were similar, which is yet another natural consequence of 𝑞′0/𝑞0𝛿

∗ being small.
If the growth were even an order of magnitude larger, the inclination angles would
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differ significantly. Furthermore, the alignment error caused by the differences in
coordinate systems was computed and found to be negligible. This small alignment
error would play a crucial role in Chapter 5. Direct comparisons between Fourier
transforms in Cartesian and rescaled coordinates would not be possible if the two
coordinate systems were heavily misaligned.

In each of the chapters, the same requirement backing each of the successes is that
the growth rate 𝑞′0/𝑞0𝛿

∗ � 1. For fully turbulent flows, a slow streamwise growth
rate allows for relative streamwise homogeneity.

For boundary layer flows with large pressure gradients, the growth and/or change of
the boundary layer may become significant enough that 𝑢2,∞/𝑢1,∞, or equivalently,
𝑞′0/𝑞0𝛿

∗ is large. In these situations, the rescaling technique cannot be applied.
Consequently, this requirement excludes several types of flows.

6.3 Extensions
It was noted in the introduction that boundary layers cover a wide range of complex
geometries and are sensitive to at least three different conditions: (1) heat transfer
effects, (2) roughness, and (3) pressure gradients. Extensions for each of these will
be considered in the following subsections.

6.3.0.1 Thermal boundary layers

Just like momentum boundary layers, thermal boundary layers develop over surfaces.
In this case, the thermal boundary thickness growth rate is dependent not only
on the Reynolds number but the Péclet number. Provided slow variation in the
thermal boundary layer thickness, one can envision a second wall-normal coordinate
rescaling for the temperature equation. The wall-normal rescaling will specifically
be with respect to the thermal boundary layer thickness 𝑞𝑇 . One will obtain source
terms in the temperature equation related to 𝑞′

𝑇
/𝑞𝑇 . The resulting simulation will

inherently be conducted at a user-imposed Péclet and Reynolds number. This is
equivalent to specifying a constant ratio of the momentum boundary layer thickness
to the thermal boundary layer thickness for constant Reynolds number and Prandtl
number.

6.3.0.2 Roughness

The mean velocity profiles for rough wall boundary layers feature self-similarity
with respect to the wall-normal coordinate in the outer layer, away from the rough-
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(a) Unscaled (b) Scaled

Figure 6.1: Profiles of streamwise velocity (a) unscaled mean and (b) scaled mean in
outer units 𝑈𝑒 and 𝛿∗ of an adverse pressure gradient with 𝛽 = 𝜕𝑃/𝜕𝑥1/𝜏𝑤𝛿∗ = 39.
Colors: (red) profiles from 𝑅𝑒𝜃 = 7600 − 1000. Data from Kitsios et al. 2017.

ness sublayer. Here, the flow is primarily dependent on the momentum thickness
Reynolds number, the roughness Reynolds number and rescaled wall-normal coor-
dinate. If one has any a priori estimates of the viscous stresses in the roughness
sublayer, one can estimate whether the rescaling source terms are negligible in the
roughness sublayer. In this case, assuming that the roughness elements are also
approximately streamwise homogeneous in the rescaled coordinate system, one can
apply the rescaling methodology to a rough wall boundary layer flow after prescrib-
ing both Reynolds numbers.

6.3.0.3 Pressure gradient flow

Supposing one has a boundary layer under a pressure gradient such that its relative
change in boundary layer thickness is small, then it would be possible to extend the
current rescaling methodology to the pressure gradient boundary layer.

It is known that there exist self-similar boundary layers 𝑢1 = 𝑈𝑒𝑢
∗
1(𝑥2/𝛿99) even

under pressure gradient (see Fig. 6.1), where 𝑈𝑒 (𝑥1) is the boundary edge velocity
and 𝑃𝑒 (𝑥1, 𝑥2) is the edge pressure, computed via RANS simulation or otherwise.
One can then solve for the following homogenized variables 𝑢∗1, 𝑢

∗
2, 𝑢

∗
3, and 𝑃∗,

which are defined as follows

𝑢1 = 𝑢∗1
𝑈𝑒 (𝑥1)
𝑢1,∞

𝑢2 = 𝑉𝑒 + 𝑢∗2 𝑢∗3 = 𝑢3 𝑃 = 𝑃∗ + 𝑃𝑒 (6.1)

where 𝑉𝑒 = −𝑥2𝑈
′
𝑒, and 𝑢1,∞ = 𝑈𝑒 (𝑥0), which is the value that 𝑢∗1 approaches at

the boundary layer edge. 𝑈𝑒, 𝑉𝑒, and 𝑃𝑒, by construction, satisfy the free-stream
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equations outside of the boundary layer (potential flow or otherwise), but have
limited validity near the wall. The form of𝑉𝑒 completes the solution at the boundary
layer edge. As with Chapter 2, we focus on a particular streamwise location 𝑥0. In
these equations, 𝑢∗1, 𝑢

∗
2, and 𝑢∗3 are assumed to have Dirichlet conditions at the wall

and Neumann conditions at the free-stream.

The rescaled continuity equation is given by

𝜕𝑢∗
𝑗

𝜕𝜉 𝑗
= 𝜉2

𝑞′

𝑞

𝜕𝑢∗1
𝜕𝜉2

+
𝑈′
𝑒

𝑢1,∞

(
𝑢1,∞ − 𝑢∗1

)
+ 𝐻

𝑝
𝑐 (6.2)

with

𝐻
𝑝
𝑐 =

(
1 − 𝑈𝑒

𝑢1,∞

)
𝜕𝑢∗1
𝜕𝜉1

+
(
1 − 𝑞0

𝑞

)
𝜕𝑢∗2
𝜕𝜉2

(6.3)

Similarly, the momentum equations are given by

𝜕𝑢∗
𝑖

𝜕𝑡
+ 𝑢∗𝑗

𝜕𝑢∗
𝑖

𝜕𝜉 𝑗
+ 1
𝜌

𝜕𝑃

𝜕𝜉𝑖
− 𝜈

𝜕2𝑢∗
𝑖

𝜕𝜉2
𝑘

= −𝛿1𝑖
𝑈′
𝑒

𝑢1,∞
𝑢
∗,2
1 −𝑉𝑒

𝜕𝑢∗
𝑖

𝜕𝜉2
− 1

𝜌

𝜕𝑃𝑒

𝜕𝜉𝑖
+ 𝜉2

𝑞′

𝑞
𝑢1

𝜕𝑢∗
𝑖

𝜕𝜉1

+𝐻𝑝
𝑝 (𝑢𝑖) + 𝐻

𝑝
𝜈 (𝑢𝑖)

(6.4)

where

𝐻
𝑝
𝑝 (𝑢𝑖) = 𝛿1𝑖𝜉2

𝑞′

𝑞

1
𝜌

𝜕𝑃𝑒 + 𝑃∗

𝜕𝜉2
+

(
1 − 𝑞0

𝑞

) (
(𝑢∗2 +𝑉𝑒)

𝜕𝑢∗1
𝜕𝜉2

+ 𝛿2𝑖
1
𝜌

𝜕𝑃∗

𝜕𝜉2

)
+

(
1 − 𝑈𝑒

𝑢1,∞

) (
𝛿1𝑖

𝑈′
𝑒

𝑈𝑒

𝑢
∗,2
1 + 𝑢∗1

𝜕𝑢∗
𝑖

𝜕𝑥1

(
1 − 𝛿1𝑖 + 𝛿1𝑖

𝑈𝑒

𝑢1,∞

))
(6.5)

𝐻
𝑝
𝜈 (𝑢𝑖) = 𝜈𝛿1𝑖

(
𝑈′′
𝑒

𝑢1,∞
𝑢∗1 + 2

𝑈′
𝑒

𝑢1,∞

[
𝜕𝑢∗1
𝜕𝜉1

− 𝜉2
𝑞′

𝑞

𝜕𝑢∗1
𝜕𝜉2

] )
+

(
1 − 𝛿1𝑖 + 𝛿1𝑖

𝑈𝑒

𝑢1,∞

)
×

[
𝜈

[
1 −

(
𝑞0

𝑞

)2
+

(
𝜉2
𝑞′

𝑞

)2
]
𝜕2𝑢∗

𝑖

𝜕𝜉2
2
+ 𝜈

[
2
(
𝑞′

𝑞

)2
− 𝑞′′

𝑞

]
𝜉2
𝜕𝑢∗

𝑖

𝜕𝜉2
− 2𝜈𝜉2

𝑞′

𝑞

𝜕2𝑢∗
𝑖

𝜕𝜉1𝜕𝜉2

]
(6.6)

After evaluation at 𝜉1 = 𝑥0, a few important terms remain: 𝑈′
𝑒, 𝑃𝑒 and 𝑈′′

𝑒 . For
flows with slow streamwise development, the impact of 𝑈′′

𝑒 is likely to be small.
The remaining inputs can be directly related via the streamwise momentum equation
in the free-stream, and thus, the only input required will be the edge pressure, or
equivalently, its gradient.
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A p p e n d i x A

ORDER OF ACCURACY

Periodic flows are typically computed using spectral codes. The main results of this
manuscript use 4th order finite difference operators. To verify that these spatial op-
erators are adequate, case BL1460 was rerun with 2nd and 6th order finite difference
operators. The results are shown in Fig. A.1

The skin friction coefficients vary by less than 0.2%. In terms of mean profiles,
the deviation between all three methods was less than 1%. Consequently, the shape
factors are within 0.5% of each other. There is a slight discrepancy in the mean
profile at the overlap region 𝜉+2 ≈ 500 between the 2nd order and higher order
profiles.

(a) streamwise mean (b) streamwise rms

Figure A.1: Streamwise mean (a) velocity and (b) rms profiles for 𝑅𝑒𝛿∗ = 1460 for
different order spatial operators. Colors: (red) 2nd Order, (black) 4th Order, (green)
6th Order.
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A p p e n d i x B

RE-LAMINARIZATION

The current method can obtain a statistically stationary turbulent field from an
initially laminar boundary layer superimposed with white noise. The converse is
also possible: a laminar profile can be re-obtained from a fully turbulent profile. A
simulation was initialized with a turbulent field at R𝑒𝛿∗ = 1460 and then run with a
high viscosity (corresponding to R𝑒𝛿∗ = 100). Instantaneous mean velocity and rms
profiles are computed through averaging in the streamwise and spanwise directions
and are shown in Fig. B.1.

The turbulent fluctuations quickly decay near the wall and more slowly far from the
wall. The mean profile initially reduces its gradient near the wall and later steepens
in the wake region. Eventually, the Blasius solution is obtained with zero residual
turbulent fluctuations.

(a) Instantaneous mean (b) Instantaneous rms

Figure B.1: Instantaneous (a) mean and (b) rms profiles for a laminarization of
an initially turbulent boundary layer. Colors: (black ◦) Blasius solution, (black)
Instantaneous profiles.
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A p p e n d i x C

TURBULENT KINETIC ENERGY

The turbulent kinetic energy equation post evaluation at 𝑥 = 𝑥0 is given by

𝜕𝑘

𝜕𝑡
+ 𝑢2

𝜕𝑘

𝜕𝜉2︸ ︷︷ ︸
T𝑢𝑟𝑏.𝐴𝑑𝑣𝑒𝑐.

= − 1
𝜌

𝜕𝑢′2𝑝
′

𝜕𝜉2︸   ︷︷   ︸
P𝑟𝑒𝑠.𝐷𝑖 𝑓 𝑓 .

− 1
2
𝜕𝑢′

𝑗
𝑢′
𝑗
𝑢′2

𝜕𝜉2︸       ︷︷       ︸
T𝑢𝑟𝑏.𝐷𝑖 𝑓 𝑓 .

+

𝜈
𝜕2𝑘

𝜕𝜉2
2︸︷︷︸

V𝑖𝑠𝑐.𝐷𝑖 𝑓 𝑓 .

− 𝑢′
𝑖
𝑢′2

𝜕𝑢𝑖

𝜕𝜉2︸   ︷︷   ︸
P𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

− 𝜈
𝜕𝑢′

𝑖

𝜕𝜉 𝑗

𝜕𝑢′
𝑖

𝜕𝜉 𝑗︸     ︷︷     ︸
D𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

+

S𝑟𝑐 𝐶𝑜𝑛𝑡. + 𝐻𝜈 C𝑜𝑛𝑡. + 𝐻𝑝 C𝑜𝑛𝑡. (C.1)

where 𝑘 = 1/2𝑢′
𝑖
𝑢

′
𝑖
and the Src, 𝐻𝑝 and 𝐻𝜈 contributions are given by

S𝑟𝑐 𝐶𝑜𝑛𝑡. =
𝑞′

𝑞
𝜉2

(
𝑢1

𝜕𝑘

𝜕𝜉2
+ 1

2
𝜕𝑢′

𝑗
𝑢′
𝑗
𝑢′1

𝜕𝜉2
+ 𝑢′

𝑖
𝑢′1

𝜕𝑢𝑖

𝜕𝜉2

)
(C.2)

H𝑝 𝐶𝑜𝑛𝑡. =
𝑞′

𝑞
𝜉2
𝜕𝑢′1𝑝

′

𝜕𝜉2
(C.3)

H𝜈 𝐶𝑜𝑛𝑡. = 𝜈

(
𝜉2
𝑞′

𝑞

)2
𝜕2𝑘

𝜕𝜉2
2
+

𝜈

[
2
(
𝑞′

𝑞

)2
− 𝑞′′

𝑞

]
𝜉2

𝜕𝑘

𝜕𝜉2
+

−𝜈
(
𝜉2
𝑞′

𝑞

)2 (
𝜕𝑢′

𝑖

𝜕𝜉2

𝜕𝑢′
𝑖

𝜕𝜉2

)
+ 𝜈𝜉2

𝑞′

𝑞

(
𝜕𝑢′

𝑖

𝜕𝜉1

𝜕𝑢′
𝑖

𝜕𝜉2

)
(C.4)
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A p p e n d i x D

CONVERGENCE OF SPOD MODES

SPOD mode convergence depends on block sizes, block overlap and the number
of total data files. To verify the convergence of the dominant SPOD modes, we
follow [27] and conduct a miniature cross-validation convergence analysis. This test
involves splitting the total dataset into two roughly equal portions that each contain
75% of the original dataset and then applying SPOD to each subset. The extracted
SPOD modes for each subset will then be compared to the SPOD modes of using
the entire dataset. The comparison takes the form of a projection metric 𝛾𝑘 . If Ψ𝑘

is the 𝑘 𝑡ℎ eigenvector computed via SPOD,then 𝛾𝑘 is defined by

𝛾𝑘 =
|〈Ψfull

𝑘
,Ψ𝑙

𝑘
〉|

| |Ψfull
𝑘

| | | |Ψ𝑙
𝑘
| |

(D.1)

where the inner product is the constant kinetic energy norm introduced in Chapter 5,
the superscript l denotes that the eigenvector is from a different data configuration,
and the "full" superscript denotes the mode computed using the entire dataset. We
can use the same projection coefficient to compute differences when using 75%
overlap and 25% overlap (with 256 snapshots/block) as well as computing with
blocks of 128 files and 512 files (with 50% overlap) for the entire dataset. The

(a) Inner wave (b) Outer wave

Figure D.1: Convergence metric 𝛾 of the SPOD modes for (a) inner and (b) outer
waves. Colors: (black) Ψ𝑘 computed from the first subset using 75% of the dataset,
(red) Ψ𝑘 computed from the second subset using 75% of the entire dataset, (green)
Ψ𝑘 computed with 75% overlap, (magenta) Ψ𝑘 using 25% overlap, (cyan) 128
snapshots/block, and (black) 512 snapshots/block.
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hope is that, for all cases, the dominant mode is reasonably converged. Figure D.1
shows the comparison metrics for inner and outer waves, with red and black curves
corresponding to convergence metrics using subsets of the entire dataset, magenta
and green corresponding to the convergence metric for overlaps of 75% and 25%,
respectively, and black and cyan corresponding to the same metric for blocks using
512 snapshots/block and 128 snapshots/block, respectively. The dominant and
subdominant modes extracted from 75% of the entire dataset have 𝛾 ≥ 0.95. For
higher modes, the agreement drops sharply, dropping to 𝛾 ≈ 0.6 by the 5th mode. It
has been noted by Schmidt & Colonius (2020) that ≥ 50% overlap between SPOD
blocks does not give much improvement to the SPOD modes due to the decreasing
independence of each block. This is verified in Fig. D.1, as for both spatio-temporal
frequencies, 𝛾 associated with 75% overlap (green) does not decrease past 0.7 for any
of the modes shown. In contrast, 25% overlap (magenta) shows sharp differences
by the 5th mode. For blocks using 512 and 128 snapshots/block, the first two modes
are fully converged for both inner and outer waves. This implies that the block sizes
are appropriately chosen for these waves. Overall, the extracted dominant SPOD
modes for both inner and outer waves are fully converged.
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