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ABSTRACT

Nematic elastomers are programmable soft materials that display large, reversible,
and predictable deformation under an external stimulus such as a change in temper-
ature or light. They are composed of a lightly crosslinked polymer network with
stiff, rod-like liquid crystal molecules incorporated within the polymer chains. In
thermotropic nematic elastomers, the liquid crystals undergo a continuous and re-
versible phase transition between the randomly oriented isotropic state and the highly
oriented nematic state. Further, there is a direct thermo-mechanical coupling be-
tween the underlying temperature-responsive orientational order of the liquid crystal
molecules and the macroscopic shape change of the surrounding elastomer chains.
Finally, these materials display an unusually soft behavior. These remarkable prop-
erties make them promising materials for applications in aerospace as deployable
structures and skins, in biomedical engineering as a soft pump, and in communica-
tions as the actuation mechanism in a reconfigurable antenna. Motivated by these
applications, this thesis discusses the theoretical, computational, and experimental

characterization of nematic elastomers.

We begin by investigating an example of actuation that takes advantage of the
programmable, soft nature of these materials as well as instabilities associated
with large deformation. We outline the multi-stable equilibrium solutions to a
cylindrical balloon subjected to internal inflation, the material’s microstructure
formation due to this deformation, and its use as a soft pump with large ejection
fraction, which involves a snap-through instability. Then we extend the Agostiniani-
DeSimone-Dolzmann relaxed energy to a generalized Mooney-Rivlin constitutive
relation and study four examples of Ericksen’s universal deformations—the inflation
of cylindrical and spherical balloons, the cavitation of a disk, and the bending of a
block.

We then move beyond the modeling of ideal materials and present a new consti-
tutive relation for isotropic-genesis polydomain nematic elastomers. It is based on
internal variables that describe the fine-scale domain patterns and evolve accord-
ing to a kinetic process with dissipation. We discuss the model’s implementation
in the commercial finite-element software, ABAQUS, and study the problem of tor-
sion of a cylinder. We identify an interesting instability at large torsional strains

as a result of the Poynting effect. Finally, we present the design of a thermo-
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mechanical tensile setup and the experimental results for strain-rate dependence and

temperature-dependence of samples that we synthesize in-house.
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Chapter 1

INTRODUCTION

1.1 Nematic elastomers

Liquid crystal elastomers (LCEs) are remarkable stimuli-responsive materials that
have recently been explored for their use in actuation [77]. LCEs are lightly
crosslinked elastomer networks with liquid crystal molecules incorporated into the
underlying polymer chains. P. G. de Gennes first envisioned the coupling between
the orientational order of liquid crystals with the macroscopic shape change of a
crosslinked elastomer network in 1975 [21]. There are different types of liquid
crystal elastomers, including nematic, cholesteric, and smectic, and they can be re-
sponsive to different types of stimuli, including a change in temperature, pH, electric
field, and light.

cool

. ‘ nematic
1sotropic - ‘
]
R
<) A
\/
r=1
\\ ) // > 1

~.__ heat -~

Figure 1.1: Isotropic-nematic phase transition in nematic elastomers with the
isotropic with r = 1 at high temperatures and nematic phase with » > 1 at low
temperatures.

Of particular interest are nematic elastomers, which are liquid crystal elastomers
with stiff, rod-like liquid crystal molecules. They undergo an isotropic-to-nematic
transition accompanied by a significant stretch (by as much as a factor of two
or more) along the nematic director (in the direction parallel to a unit vector n)
and lateral contraction, as shown schematically in Figure 1.1. In this thesis, we
focus on thermotropic nematic elastomers, which undergo the phase transition at

a characteristic nematic-isotropic temperature 7,;. At temperatures above T},;, the
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material is in the isotropic state, where the liquid crystal molecules are randomly
oriented, and at temperatures below 7j,;, the material is in the nematic state, where
the liquid crystal molecules are aligned along a preferred direction, denoted by n.
Because of the direct thermo-mechanical coupling between the nematic orientation
and the surrounding polymer network, this phase transition induces a deformation
of the underlying polymer chains in the nematic elastomer, so a macroscopic shape
change is observed, in which the polymer chains stretch parallel to the mesogen
alignment and contract perpendicular to it. The phase transition, and consequently
the change of shape, is continuous and completely reversible. The degree of order
observed in the liquid crystal molecules determines the degree of anisotropy, denoted

by r throughout this thesis.

These materials can be synthesized as a monodomain or polydomain. Monodomains
can be thought of as the elastomer equivalent of a single crystal, in which the entire
sample is aligned along one direction in the nematic state. A polydomain sample is
macroscopically randomly oriented in the nematic state, but at a mesoscale, there is

nematic alignment within each domain (see Figure 1.2 for a schematic).

AN

@

monodomain

polydomain

Figure 1.2: Schematics of polydomain and monodomain nematic elastomer.

1.2 Actuation

The study of materials for actuation applications traditionally focused on systems
driven by mechanisms such as pneumatics, hydraulics, or motors. Active materials
such as piezoelectrics, dielectric elastomers, a type of electroactive polymer (EAP),
and shape memory alloys which undergo the austenite-martensite phase transition,
offer much in the way of actuation without complex hardware and moving parts.
Using the material as the machine [6] is a powerful idea motivating the study of

active materials.

Nematic elastomers are advantageous choices in the field of active materials because
they are soft, they can deliver a large energy per unit volume, their shape change is

completely reversible in the presence or absence of the stimuli, and their director field
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is programmable [2, 48, 49, 57, 76]. Further, it is possible to incorporate photo-
active molecules into nematic elastomers, giving rise to photo-active materials
that are actuated by light. Some compelling examples include refreshable Braille
displays for reading instruments for the visually impaired [14], untethered robotic
matter [41], and shape morphing [26]. Additionally, nematic elastomers can be
programmed for wrinkle control in thin sheets due to microstructure development,

for possible applications in deployable structures for aerospace applications [56].

1.3 Beyond actuation from flat sheets

Nematic elastomers have been exploited for programmable actuation and shape-
morphing of thin sheets. Modes, Bhattacharya, and Warner [48, 49] suggested
that if sheets of nematic elastomer with prescribed director patterns were fabricated
in the nematic state and subsequently heated, they could deform out of plane into
three-dimensional shapes. For example, a +1 disclination with an azimuthal director
distribution would deform into a cone. This was demonstrated in nematic glasses
by de Haan ez al. [22]. Ware et al. [76] developed a method of synthesizing nematic
elastomers where the director pattern could be written pixel by pixel on flat sheets
and demonstrated the formation of these cones. Moreover, they showed that this
actuation was extremely robust, as the cone-lifting weights were many hundreds of
times larger than the structure itself. Since then, there have been a number of other
studies on nematic elastomers [2, 47, 50, 57, 58], including the inverse problem of
identifying the director pattern that would lead to a given actuated shape [3, 57].

All of these works address the programming and actuation of initially flat sheets.

Recent advances in 3D printing and other methods of directed synthesis have en-
abled the synthesis of curved shells [4, 32], and such structures change shape upon
heating. In particular, Ambulo ef al. demonstrated dramatic snap-through buckling
of structures involving regions of positive Gauss curvature and regions of negative
Gauss curvature [4]. More recently, magnetic fields have been used to independently
control director orientation during 3D printing [68]. These developments in syn-
thesis techniques motivate the work in Chapter 2, where we analyze a balloon made
of nematic elastomer, subjected to internal inflation. The study of these materials
in different configurations beyond flat sheets opens the doors to applications with

more complex boundary conditions and loading configurations.



1.4 Microstructure formation

The interesting material properties of nematic elastomers are due to the interplay
amongst features at distinct length scales. The macroscopic shape of the lightly
crosslinked polymer network, which can be on the order of centimeters, is deter-
mined by the nematic mesogens, which can have a length on the order of nanometers,
and domains of nematic alignment can exist in some mesoscale with a characteristic

length of micrometers.

~ 1 cm
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Figure 1.3: Schematic of the experiment in which a monodomain sample is pulled
perpendicular to its nematic director, giving rise to stripe domains, which can be
seen under polarized light microscopy (in the left-most circle).

70 pm 1

The stripe-domain formation in monodomains pulled perpendicular to their nematic
alignment exhibit the classical example of fine-scale microstructure formation (see
Figure 4 of [42], also shown schematically in Figure 1.3). In this experiment, a
monodomain sample with a uniform nematic alignment is clamped on one end and
pulled uniaxially in the direction perpendicular to the nematic director. The liquid
crystal molecules rotate to align themselves parallel to the direction of stretch, and
they do so by forming alternating stripes in which the molecules rotate at opposite
angles. When the liquid crystal molecules complete this reorientation process, the
sample becomes a monodomain with the nematic director parallel to the direction
of stretch. The stripe domains can be seen using polarized light microscopy, an
example of which is shown in the left-most circle of Figure 1.3. The stripes are
relatively uniform, and the width can vary depending on the specific synthesis
methods and possibly also the geometry of the sample. The stripes exhibited by the
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samples in our lab are about 70 micrometers in width, whereas the stripes in Figure

4 of [42] have a width closer to 15 micrometers.

At the beginning of the experiment, the clamped monodomain sample appears trans-
parent because all of the liquid crystal molecules are aligned uniformly, but as the
experiment progresses, the sample becomes opaque as the microstructure devel-
ops, and the liquid crystal molecules are no longer uniformly aligned. Eventually,
when the liquid crystal molecules have finished reorienting and are again uniformly

aligned, the sample has become a monodomain and therefore appears transparent.

The microstructure formation gives rise to the phenomenon of soft elasticity—the
reorientation of the mesogens happens at zero stress, which is depicted by the stress
plateau in stress-strain curves of the uniaxial extension of monodomains pulled
perpendicular to their nematic alignment (see Figure 9 of [43]). Stripe domains are

discussed in the context of the cylindrical balloon explored in Chapter 2.

A related experiment is the uniaxial stretch of a polydomain sample, which un-
dergoes a transition known as the polydomain-to-monodomain transition. The
associated stress-strain curve also exhibits soft elasticity, as mesogens within each
mesoscale domain reorient towards the direction of most stretch. The soft behav-
ior has largely been studied in uniaxial deformation, and more recently in biaxial
deformation [71]. This motivates Chapter 3, where we study the consequences of

softness on complex deformations.

1.5 Viscoelasticity and damping in nematic elastomers

It is important to understand and characterize the effect of viscoelasticity, or time
dependence, in nematic elastomers if they are to be used in actuation applications,
which are typically cyclic in nature. Existing work in this field includes stress-
relaxation experiments on these materials, as well as uniaxial experiments at varying
strain rates, e.g. through the polydomain-monodomain (P-M) transition [5, 16, 36,
54, 67, 69]. Some of these authors have also used dynamic mechanical analysis
(DMA) of monodomain samples under simple shear. Hotta and Terentjev also
applied the principle of time-temperature superposition to build a master curve of
the material response over a range of frequencies using data from tests at different

temperatures, e.g. [5, 35].

The large hysteresis between the loading and unloading stress-strain curves in uni-
axial experiments on polydomain samples, e.g. in Figure 5 of [5], is indicative

of the material’s ability to dissipate a large amount of energy. Merkel ef al. [46]
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investigated the effect of temperature, and therefore degree of anisotropy, in the
dynamic loading of polydomain nematic elastomers. A combination of the reori-
entation of the liquid crystal molecules and the viscosity of the polymer chains
provides a mechanism to dissipate and absorb applied mechanical energy. Clarke
et al. discussed the potential for nematic elastomers in mechanical damping appli-
cations due to the internal relaxation of the liquid crystal molecules, independent
of the polymer backbone [17]. Examples of applications where efficient dissipation
of mechanical energy are desirable include the automotive, aerospace, and white
goods (e.g. washing machines, refrigerators) industries. One can imagine tuning

the mesogen response for variable vibration and noise suppression.

We address the formulation of a finite-deformation constitutive relation that could
model such viscoelastic effects in Chapter 4, which incorporates viscosity associated
with the polymer network as well as evolution of some internal variables according

to a dissipative kinetic process.

1.6 Nematic elastomers as an engineering material

Studies of monodomain nematic elastomers are extremely useful to characterize a
structure or be able to predict material response, especially for actuation applications.
However, polydomains, with their domains of fine-scale microstructure, are easier
and less expensive to manufacture because they require no director alignment, and

can be viewed as an engineering material.

Previous theories largely dealt with simple deformations or idealized materials.
The goal of Chapter 4 is to formulate a model for nematic elastomers as an engi-
neering material—with microstructure formation through the relaxed energy and

viscoelasticity through the internal variables.

1.7 Thesis outline

This thesis is organized in the following way: First, in Chapter 2, we study the
actuation of a cylindrical nematic elastomer balloon. This work is a step away
from the established field of actuation from flat sheets, as we focus on actuation
from an already three-dimensional reference state. We analyze the deformation of
a cylindrical shell of a patterned nematic elastomer under pressure, show that it can
undergo an enormous change of volume with changing temperature, and suggest its

application as a pump with extremely high ejection fraction.
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In Chapter 3, we build upon the framework of DeSimone and Dolzmann [23] and
Agostiniani and DeSimone [1] for the relaxed energy of nematic elastomers. We
again extend this energy into a generalized Mooney-Rivlin type energy density to
capture correctly the elasticity of these materials at very high stretch, and we use
this model to solve four examples of Ericksen’s so-called universal deformations:
expansion of a spherical balloon, expansion of a cylindrical balloon, cavitation of
a disk, and bending of a block. The solutions are presented for varying anisotropy
parameters, including the case where the material is isotropic, which corresponds

to a rubber without liquid crystals.

Chapter 4 presents an engineering model involving internal variable evolution that
captures the macroscopic behavior of isotropic-genesis polydomain nematic elas-
tomers. We present the formulation for the model, its implementation in the com-
mercial finite-element software ABAQUS, and some results under various deforma-
tions, including planar extension, biaxial stretch, and torsion. Our numerical results

identify an unusual torsional instability driven by the Poynting effect.

In Chapter 5, we present the synthesis technique of thermotropic nematic elastomer
samples, the design of our custom-built thermo-mechanical test setup, and the test
results from uniaxial extension of these samples in the experimental setup at various

crosslinked configurations and temperatures.

Finally, we summarize the findings of this thesis and conclude with comments on the
future outlook of this exciting and expansive field of research in Chapter 6. Nematic
elastomers play only a small role in the field of stimulus-responsive actuators. There
are many promising avenues for further research and development of these materials,

experimentally, theoretically, and computationally.



Chapter 2

ACTUATION OF CYLINDRICAL NEMATIC ELASTOMER
BALLOONS

Victoria Lee and Kaushik Bhattacharya. Actuation of cylindrical nematic
elastomer balloons. Journal of Applied Physics, 129(114701), 2021. doi:
10.1063/5.0041288. URL https://doi.org/10.1063/5.0041288.

Reproduced from the above citation, with the permission of AIP Publishing.

2.1 Introduction

The goal of this work is two-fold. The first is to explore the combination of
programmed synthesis of nematic shells and the geometric instabilities associated
with the large deformation of slender structures. Similar instabilities have been
exploited in other stimuli-responsive materials including electroactive materials [33,
63, 84]. In this work, we focus on the so-called aneurysm instability of pressurized
cylinders [28]. As observed in long toy balloons, one observes a discontinuous
change of radius (or volume) with an increase of pressure: typically the balloon
inflates till it reaches a particular radius, beyond which point a bump (aneurysm)
with a significantly larger radius appears in this region, and it propagates through
the entire balloon before the radius further increases. We explore the response of a
cylindrical shell made of a nematic elastomer and study how the isotropic-nematic
phase transition affects this instability. Our work is closely related to that of Giudici
and Biggins [31] who recently studied the ballooning instability in both nematic and
isotropic LCEs using a Gent-style energy. He et al. [34] have studied the anomalous
behavior of (isotropic-genesis polydomain) nematic balloons under tension. We
then show how this instability can be used as a high ejection-fraction pump. The
second goal is to study actuation and shape-morphing in the presence of mechanical

loads. The prior literature has largely focused on free recovery.

We introduce the model of the nematic elastomers at large deformation in Section
2.2 and analyze the deformation of a nematic elastomer cylinder under internal
pressure in Section 2.3. We then use the results to motivate a pump with extremely
large ejection fraction in Section 2.4.


https://doi.org/10.1063/5.0041288

2.2 Large deformation model of nematic elastomers

We begin with the neo-classical theory of nematic elastomers following Bladon,
Terentjev and Warner [10, 77]. The state of a liquid crystal elastomer is described
by an anisotropy parameter r, a director n» and the deformation gradient F’ relative
to a stress-free reference configuration with anisotropy parameter ro and director 1.
The anisotropy parameter is a function of temperature with » = 1 in the isotropic
state above the transformation, and gradually increases with decreasing temperature
so that r > 1 in the nematic state. We consider the material to be incompressible
so that det F' = 1. The neo-classical theory considers the entropy of the polymer

chains in the Gaussian approximation, and the free energy density is given as
Wwr(F,n,r) = & (t (€, FTe F) -3 2.1
WT ’ na r)= 2 r no n ’ ( . )
where u is the shear modulus of the material, and

L=r'BI+@r-nen) (2.2)
by =15 (T + (r0 — 1)o ® 1) (2.3)

are the step-length tensors in the current and reference configurations that collect

the anisotropy parameter and the director. It is easy to show that
War(F.n.r) = Wan (6,2 F8,) 24

where Wyn(F) = 5(tr C(F)) - 3), with C(F) = F'F, is the neo-Hookean
energy density which describes the entropy of polymer chains in ordinary rubber in

the Gaussian approximation [72].

The neo-classical theory is known to describe complex features of nematic elas-
tomers at finite, but moderate, deformation. However, at extremely large stretches,
the Gaussian approximation does not hold, and this theory does not adequately
describe the stiffening much like its neo-Hookean counterpart. Various constitutive
relations are used to describe rubber in this high-stretch regime. A common fea-
ture of many of these models is that the energy density depends only on principle
stretches A; of F' (equivalently the eigenvalues /ll.z of C'(F)):

WE(F) = f(A1, 42, 43). (2.5)

For example, in the Ogden model [53] the energy density is

N
p :
Wo(F) =Y ﬁ_z (ﬁ‘fp w0 A - 3) , (2.6)
p=l
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where N, u,,, and 3, are material constants. The shear modulus is y = % Zgz | MpBp.
When N =1 and 1 = 2, the Ogden energy is the neo-Hookean energy, and when
N =2, 81 =2, and B, = -2, the Ogden energy is the Mooney-Rivlin energy. We
use the Ogden energy to demonstrate our results following [63], though we can
adapt them to any constitutive relation that describes the high stretch behavior. We
adopt the elastic energy density (2.5) to nematic elastomers analogously to (2.4).
See [1] for similar energies and their relaxation in the ideal case. Other approaches
have been proposed to capture the high-stretch regime including the logarithmic

correction by Gent [27] which was used by Giudici and Biggins [31] in their work.

Further, the cross-link density and the polymer network may carry an imprint of the
initial director, and this leads to a breaking of symmetry (isotropy) leading to the
preference of the director to remain in the original orientation. Such an interaction

can be described using an additional non-ideal energy density [9]:
Wyt (F,n) = agtr (F(I —np®ny)Fne n) : 2.7)

Note that this energy is minimized when n = ny. Putting these together, we take

the energy density of the nematic elastomer to be

W(F,n,r) = Wg (e,;l/ZFe},gz) + Wai(F,m). (2.8)

For future use, we note a particular invariance of this energy density. Let Q be a
rotation tensor that leaves the reference director invariant: Qny = +ng. Then, we

claim that
W(QFQ",Qn,r) = W(F,n,r). (2.9)

Note that

C((Q&QNH ' QFQNLY) = £, (QFQN (QL,Q) ™ (QFQNE,
= 6 QF L FQ e,
= QL) FTL, Fu, Q"
= QC(;' " Fe, Q.
(2.10)
where we have used the invariance of ny under @ in the third equality. It follows
that both tensors have the same eigenvalues and thus the same Ogden energy den-

sity. A similar calculation holds for the non-ideal energy density as well, thereby
establishing (2.9).
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Figure 2.1: Inflation, extension, and torsion of a cylinder.

2.3 Inflation of a nematic cylinder

Consider a cylindrical shell of initial (reference) length H, inner radius R;, and un-
deformed outer radius R, subjected to an internal pressure p. Following Rivlin [61]
and Ericksen [25], the deformation of the cylinder is described by the universal
volume-preserving deformation involving radial expansion, axial extension and tor-

sion (see Figure 2.1). The mapping is

p=p(R)
6=0+DZ , (2.11)
2=&7

where {R, 0, Z} and {p, 0, z} denote the cylindrical coordinate system in the ref-
erence and deformed coordinate systems respectively. p(R) describes the radial
expansion, D the twist, and ¢ the axial stretch. The deformation gradient in the

cylindrical coordinate system is

o 0 0 % 0 0
F=l0 £ ARD|[=|0 a1 ARD|, (2.12)
0 0 é 0 0 é

where we have introduced the hoop stretch A(R) = p(R)/R and used the incompress-
ibility to obtain the second equality. There is an off-diagonal term in the deformation
gradient because we would like to allow shear or twist that may accompany director

reorientation. We will see later that this indeed plays a role.
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We assume that the director both in the reference and deformed configuration are tan-
gential to the cylinder and make an angle ¢ and ¢, respectively, with the azimuthal

coordinate. Thus, in cylindrical coordinates,

0 0
no=|cos¢o| and . =|cos ¢ |. (2.13)
sin ¢ sin ¢

The total potential energy of the system is
D= / W(F,n,r)dV — pAV, (2.14)
Q

where AV is the difference in the deformed and undeformed volumes. Applied to a
balloon with height H, we obtain

H p21 pR,
@ = / / / W(F,n,r)RARAOIZ — p (npsz - nRzH)
0 0 R;

R=R;  (2.15)
~ 2nRHTW(F,n,r) — pnR2H (gaz - 1) :

Above we have assumed that the shell is thin, 7 := (R, — R;) << R;, to evaluate the
integral.

For a given pressure p and anisotropy parameter r, we can now find the equilibrium

as
ob 9D  dd 9D

91~ 9 D dp
Physically, these equations describe the balance between the hoop stress in the

(2.16)

cylinder and the internal pressure, the balance between the axial stress and the
internal pressure, the balance of torque, and the balance of internal (material) torque

on the director respectively.

To demonstrate the results, we consider a cylinder where the initial director is axial
(¢o = 90°) and which is mildly nematic with initial anisotropy parameter ro = 2.
The rest of the parameters are shown in Table 2.1, and were chosen to be broadly
consistent with an experiment conducted in our laboratory. We fix the current
anisotropy parameter r and the hoop stretch A and solve (2.16) for the pressure p,
axial stretch &, the twist D, and the current director angle ¢. We find that the

system has two solutions, shown in Figure 2.2 for four different current anisotropy

parameters r! and the classical neo-Hookean case, ro = r = 1. Note that the
pressure has been normalized as p = ﬂ(é’f_"Ri), where y = %22:1 HpBp =6.80- 10*

Pa represents the reference shear modulus.

I'There is a third unstable solution where the director does not rotate, which we ignore.
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Figure 2.2: Inflation of a nematic cylinder: (a) Pressure vs. hoop stretch (solutions
1 and 2), (b) Axial stretch vs. hoop stretch (solutions 1 and 2), (c) Director angle vs.
hoop stretch (solution 1), (d) Twist vs. hoop stretch (solution 1), (e) Director angle
vs. hoop stretch (solution 2), (f) Twist vs. hoop stretch (solution 2).
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Table 2.1: Table of parameters

Inner radius R, 1lcm
Outer radius R, 1.05cm
Height of cylinder H 5S5cm
Initial director angle ¢o 90°
Initial anisotropy parameter rg 2
Non-ideality parameter a 03

Ogden model shear modulus ;1.0 10° Pa
Ogden model shear modulus u, 1.904762 - 10> Pa
Ogden model shear modulus  p3 —1.5873-10° Pa

Ogden model constant p1 1.3
Ogden model constant B> 6
Ogden model constant Bz -3

Consider the first solution, Figure 2.2(a)-(d). We observe that for ry # r, hoop stretch
vs. pressure does not pass through (1, 0) but through ((r/ry)~'/6, 0) since the change
of the anisotropy parameter gives rise to a spontaneous deformation of the cylinder.
The hoop stretch vs. pressure is non-monotone (Figure 2.2(a)): the pressure initially
increases but then drops before increasing again with increasing hoop stretch. This
reflects the well-known balloon instability: with increasing pressure, the radius
increases till it reaches a critical pressure at which it jumps to a large radius. The
onset and the extent of this instability is amplified in nematic elastomers due to a
rotation of the director. Figure 2.2(c) shows that the director begins to rotate with
inflation, reaching the hoop direction asymptotically. To understand this, an increase
in radius increases the volume more than an increase in axial stretch, since the former
leads to an increase of included area rather than length. Therefore, the pressure seeks
to increase the circumference by reorienting the director. This reorientation also
leads to a decrease of the axial stretch (Figure 2.2(b)). Consequently the axial stretch
is also non-monotone: it decreases during reorientation but increases again as the
director stabilizes. Finally, the reorientation leads to a twist in the cylinder (Figure
2.2(d)). The magnitude of all of these trends increases with increasing anisotropy
parameter r. In particular, the critical pressure decreases and the change of hoop

stretch increases with increasing anisotropy parameter r.

The reorientation, however, is resisted by the non-ideality as shown by varying the
non-ideality parameter « in Figure 2.3. Note that the director rotation from the

vicinity of the initial orientation ¢o = 7 is increasingly delayed as the non-ideality
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Figure 2.3: Effect of non-ideality parameter @ upon pressure, axial stretch, director
angle, and angle of twist for ro = r = 2.

parameter increases. The balance between the pressure-assisted reorientation and

the non-ideality-mediated resistance leads to the observed behavior.

The second solution, Figure 2.2(a)-(b),(e)-(f), is very similar to the first, except that
the reorientation and twist change sign. The pressure vs. hoop-stretch and the axial
stretch vs. hoop-stretch curves remain unchanged. Consequently, both solutions
have the same pressure vs. volume curves which are shown in Figure 2.4(a). The
volume strain is plotted on a logarithmic scale due to the dramatic change of volume
during the instability.

It is useful to understand the origin of the two solutions. The material is not chiral,
and neither is the initial configuration. Therefore a breaking of the chiral symmetry
by rotation of the director has to be accompanied by a symmetry-related counterpart.
To elaborate on this, recall the invariance (2.9). Let Q be a 180° rotation about the

azimuthal direction,

-1 0 0
Q=0 1 o0]. (2.17)
0 0 -1
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Note that Qn = —ny so that it satisfies the requirement for (2.9). It is easy to check
that for F' and n in (2.12) and (2.13),

w® 0 0 0
QFQ"=l0 1 -arD|. Qn=| cos¢ |. (2.18)
0 0 3 —sin¢

Thus, the invariance (2.9) implies that any solution with chirality has a symmetric

counterpart with the same radial and azimuthal stretches.

The presence of the two symmetric solutions enables the formation of stripe domains
that avoid overall torsion as shown in Figure 2.4(b). We divide the cylinder into
short cylindrical rings and alternate between the two solutions. This leads to a
continuous deformation, where one ring twists one way and the other the other
way in an alternating pattern, but they meet continuously across the boundaries
as indicated by the initially straight fiducial dashed line shown in the figure. The
overall torsion is zero while the overall hoop and axial stretch are as before, leading
to the pressure-volume curve shown in 2.4(a), where volume strain is defined as the

current volume divided by the reference volume.

Stripe domains are widely observed in nematic elastomers, especially in uniaxial
tension, where rigid grips prevent any shear [77]. In uniaxial tension of a nematic
sheet along an axis that is perpendicular to the initial director orientation, director
rotation accommodates stretch but causes shear. However, shear breaks the sym-
metry and therefore there are two solutions (rotation to the right or left), which
alternate to form the stripe domains. The domains are fine, typically with the width
of microns, and the interfaces are very sharp, with a width of nanometers. The

stripe domains in Figure 2.4(b) are the exact analogs of those in uniaxial tension.

2.4 Pump

The pressure-volume curves in Figure 2.4(a) motivate the application of this cylin-
drical nematic elastomer balloon as a pump. Recall that the anisotropy parameter
r depends on temperature, and therefore the four pressure-volume curves represent
four distinct temperatures. In a typical monodomain nematic elastomer, r = 2
at a high temperature of about 85°C, while » = 8 at a low temperature of about
25°C [77]. These two pressure-volume curves are re-plotted in Figure 2.5 as the
hot and cold nematic elastomers. An important observation is that the lower-critical
pressure (point E) of the pressure-volume curve at the high temperature is higher

than the upper-critical pressure (point B) of the pressure-volume curve at the low
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Figure 2.4: (a) Pressure-volume relation for the inflation of a nematic cylinder. (b)
Formation of stripe domains that avoid any torsion—the lines describe the director,
while the dashed line is the deformed shape of a fiducial line that is initially straight
and axial.

temperature. This enables the operation as a pump between an inlet pressure p; and

outlet pressure p,, where pp < p; < po, < PE.

Also shown in the figure are the isotherms (pressure-volume relation) of a fixed
mass of fluid, in this case air, at the hot and the cold temperatures of 85°C and
25°C, respectively. These isotherms were calculated using the ideal gas law. The
cold fluid isotherm is given by pcoa(V) = ncRTco1a/V, wWhere ne is the number
of moles of air at point C, R = 8.3145 is the ideal gas law constant, and Tiqq is
the cold fluid temperature. The hot fluid isotherm pressure is analogously given

by the corresponding number of moles at point D and the hot fluid temperature:
Prot(V) = npRThot/V.

The pump operates as follows. Let us begin at the high temperature with the outlet
closed and the inlet open so that the nematic pump is at the point A. Now, cool the
pump with the inlet open so that the pressure remains at p;. On cooling fully to
the cold temperature when r = 8, the only equilibrium solution is point C, which
has a very large volume. So, the balloon would draw in a large volume of air from
A to C. We note that this process does not proceed smoothly. As the pump is
cooled from the high temperature, the volume changes gradually till the temperature

when the upper critical pressure (the point corresponding to B at the intermediate
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Figure 2.5: The operation of a pump with an input pressure p; and output pressure
Po by heating and cooling a nematic cylinder.

temperature) equals p;. At this point, there will be an instability (likely accompanied
by an aneurysm), and the volume jumps to something close to C. This instability has
been analyzed by Giudici and Biggins [31], and may be of interest in microfluidics.

Subsequent cooling takes it to point C.

Now close the inlet and start heating the pump. The mass of fluid in the pump is
fixed, and so its behavior shifts from that of the cold isotherm to that of the hot
isotherm. In the interim, the pressure-volume curve of the pump also changes to
that of the hot material. Therefore, the equilibrium shifts from C to D. Now, open
the outlet so that the pressure decreases to p,. The only available state in the hot
pump is at F, and so the pump goes from point D, with very large volume, to point F,
with small volume, expelling the fluid. This is again accompanied by an instability
from E to F. Closing the outlet and opening the inlet takes us from F to A, resetting
the pump.

A pump can be characterized by its ejection fraction. In this case, the ejection
fraction is

(filled volume) — (empty volume) Ve — Vg
filled volume Ve

= 98.6%, (2.19)
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Figure 2.6: Ejection fraction as a function of anisotropy parameter, r.

which means that 98.6% of the fluid is pumped out of a filled balloon during
each cycle. This is extremely high: a normal human heart has a left ventricular
ejection fraction between 50% and 70%, according to the American College of
Cardiology [39]. A plot of ejection fraction for fixed ro = 2 and varying r can be

seen in Figure 2.6.

2.5 Conclusion

We have introduced a modified formulation of the standard Warner-Terentjev energy
density incorporated into a higher-order Ogden model to more accurately describe
the behavior of nematic elastomers at large deformation. Furthermore, this work
has initiated the study of actuation from geometries beyond flat, two-dimensional
sheets by exploring a curvilinear three-dimensional geometry. We have outlined the
deformation of a nematic elastomer balloon under simple expansion and twist. The
material is actuated remotely by changing the temperature to dictate the degree of
anisotropy, and the response is tunable. The foundation for our understanding of
nematic elastomer actuation from flat geometries has already been well established
with respect to the design, optimization, manufacturing, and tuning (e.g. voxelated
sheets [76], wrinkling-resistant membranes [56], and moving inchworm [81]). Fu-
ture applications based on more complex geometries and loading conditions, for
instance incorporation of disclination defects and gradients of director or tempera-
ture across the thickness, can build upon this framework. Finally, the actuation can
be effected by light instead of temperature [79]. For example, the pump described

here would function with a light-driven actuation from r = 8 to r = 2. A practical
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difficulty to be overcome is that many photo-active materials have a low penetration

depth and the actuation is in bending, rather than stretching.
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Chapter 3

UNIVERSAL DEFORMATIONS OF NEMATIC ELASTOMERS

3.1 Introduction

The goal of this chapter is to understand how the soft elasticity of nematic elastomers
affects complex inhomogeneous deformations. We have already seen in Chapter 2
that nematic elastomers can form fine-scale patterns called stripe domains. Stripe
domains were first observed by Kundler and Finkelmann [42] in monodomain ne-
matic sheets subjected to uniaxial tension in a direction normal to the original
director. These domains were associated with soft elasticity. Mathematically, the
Bladon-Terentjev-Warner theory [10] leads to an energy that is not convex, and its
relaxation leads to fine-scale structure and soft-behavior [23]. This has been studied
in homogeneous deformations (largely in uniaxial stretch [18, 19, 56], but more
recently in biaxial stretch [85]), where we see different regimes depending on the
imposed deformation. We expect these regimes to interact when the material is

subjected to inhomogeneous deformation, and this motivates the current work.

We begin by describing the Bladon-Terentjev-Warner theory [10] and its relaxation
due to Dolzmann and DeSimone [23]. The BTW theory uses a Gaussian approx-
imation to treat the entropy of polymer chains. However, when polymer chains
are subjected to large deformation, this approximation is no longer accurate as the
polymer chains themselves are stretched, so we propose a generalization based on
a Mooney-Rivlin energy. We then find its relaxation, which was independently
done by Agosiniani and DeSimone [1]. We use this relaxed energy to study a se-
ries of problems—the spherical balloon expansion, cylindrical balloon expansion,
cavitation, and bending of a beam. The key idea here is to exploit the notion of
universal deformations proposed by Ericksen [25]. He showed that there are certain
deformations that automatically satisfy the equations of elasticity in all isotropic

incompressible elastic bodies, and this is the basis of much work in finite elasticity.

3.2 Energy

Bladon-Terentjev-Warner theory

We begin by recalling the Bladon-Terentjev-Warner (BTW) theory for ideal nematic
elastomers, introduced in Chapter 2. We pick a reference configuration to be the

stress-free isotropic state and lower the temperature so that the material is in a
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nematic state. The BTW theory adapts the Gaussian chain model to this situation,

and shows that the free energy density is given by

S (FT€,'"F) =3] detF=1,|n|=1

WEIW(F, n) = (3.1

%) else

with step-length tensor £, = r~'/3 (I+ (r — 1)n ® n). The anisotropy parameter
r describes the mesogen ordering: r = 1 represents the isotropic state, and r >
1 represents the anisotropic nematic state. Note that W5TW = 0 if and only if
F = QhR, n = Qéy for Q,R € SO(3), ép a fixed unit vector, and £, =
I3 (I +(r—1)éy® é).

DeSimone-Dolzmann relaxation
The BTW free energy is not convex, and this leads to fine-scale microstructure.
DeSimone and Dolzmann computed the relaxation [23]. To do so, minimize over
the nematic director n to obtain
g [r1/3 (ﬁ+ﬁ+i)—3] det F =1
W(F)= min 1WBTW(F, n) = 2 oo ,

ns.t |n|= 00 else
(3.2)
where s is the largest singular value of F', and ¢ is the largest singular value of cof F'.

The relaxed energy is given by:

0 FelL
u /3 2t )
5\==+5c-3)] FeM
Wi (F) =4 ? ( 2t , (3.3)
W(F) FeSs
IS else

where L represents the liquid-like region, M represents the microstructure-formation

region, and S represents the solid-like region:
L:{(s,0):t<s> t>s, t<r'/%

M:{(s,0):t>r'% 1t <s% 1 >r 2% (3.4)

S:{(s,t) 11>, 1t <r V22
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We can rewrite these constraints in terms of the principal stretches of F' (details can

be seen in the Appendix in Section A.4):
1”1 /6}

A
1/6 max \/_
r', — < vr
F 3 3.5)

L: {Amax/lmid

M : {/lmax/lmid

Amax 2 \/;}

mid

IA

\%

S {

This describes the energy after the material has formed fine-scale microstructure.

Figure 3.1 shows an illustration of the regions L, M, and S.

2 a2g

Figure 3.1: Regions of L, M, and S in the phase diagram of (s, ).

Physically, a liquid-like deformation in region L is accommodated by unstressed
microstructure in which the nematic director is in three dimensions (not confined to
a plane). In region M, the deformation is accommodated by stressed microstructure
in which the nematic director is planar (confined to a two-dimensional plane).
For example, stripe domains are examples of microstructure that form in region
M. The solid-like region S corresponds to the stressed response of the polymer
network without any liquid crystal molecule reorientation, for instance stretching a

monodomain parallel to its nematic director.

One would expect that a nematic elastomer in region L to be opaque due to the
scattering of light because the nematic directors are reorienting in 3D. A nematic
elastomer undergoing planar microstructure in region M would be macroscopically
opaque, but under polarized light microscopy there may be patterned features such

as stripe domains detectable at the micrometer length scale. A sample in region §
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would appear transparent, because the nematic mesogens would be fully aligned as

a monodomain.

Generalized Mooney-Rivlin energy
This generalization and relaxation was independently proposed by Agostiniani and
DeSimone [1]. Note that the trace formula is simply an extension of the neo-
Hookean model for rubbers. This can be seen clearly when the energy is rewritten
as such:

WBTW (F) = ’5‘ [t (FTF) -3], (3.6)
where

F=¢""F. (3.7)

Because the trace formula still relies on Gaussian chain modeling, it cannot model
the stress build-up at large stretches. We will work to construct an energy density

that is based on a generalized Mooney-Rivlin model.

Because a nematic elastomer is isotropic, our free energy density needs to be a

function of the three invariants of the left Cauchy-Green tensor b:
W= f(l, I, I5). (3.8)

The three invariants of the second-order tensor b = F'F'T are

I =trb=tr (FFT) (3.9)
_ 1 2 2

h=3 [(tr b2 —tr (b )] (3.10)

I; =detb=det (FFT) = (det F)?. (3.11)

Due to incompressibility of the material, the third invariant /3 = 1, so
W =gl ). (3.12)

We notice that the first invariant is a function of F' and the second invariant is a

function of cof F':
Li=trb=tr (FFT) (3.13)
L=trb ! =tr(cof b) =tr [(cof F) (cof F)T] ) (3.14)

Thus, we begin by looking at an energy based on the first invariant. For a rubber

with deformation gradient F',

Wi, (F) = c|I, - 3|7 (3.15)
= c|(FFT) = 3P. (3.16)
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For a nematic elastomer with deformation gradient F',

Wy, (F) =Wy, (8,"*F) (3.17)
)4
_ (3.18)

=cC

tr (e;lb) 3

After minimizing the energy over the nematic director n, we obtain:

2 2 p
t 1
r1/3(—s +—+—)—3
r 2

=cC

p

min W, (e,;l/zF):c . (3.19)

n s.t. |nl=1

Wi(s,t
> 1(s, 1)

Details can be seen in the Appendix in Section A.2. Similarly, the energy based on

the second invariant is as follows for rubbers:

WL (F) =d|I, - 3|1 (3.20)
q
=d|tr [(cof F) (cof F)"| - 3| . (3.21)
For a nematic elastomer with deformation gradient F’,
Wi, (F) = Wy, (6,"*F) (3.22)
-1 q
- dtr[(e,;lb) ]—3 . (3.23)
After minimizing the energy over the nematic director n, we obtain:
i g2 q q
min Wi, (e;, / F) —d|r'? (—2 + 4 rz) 23| =dWas, 0| . (3.24)
n s.t. |n|=1 s t

Details can be seen in the Appendix in Section A.3. Thus, we can create a generalized
Mooney-Rivlin energy for an isotropic, incompressible nematic elastomer based on
Wi(s,t) and Wy (s, t) as follows:

M

2 2 pi
t 1
Zcirl/3(s—+—2+—2)—3
=1 r S t
(5. N ) i detF' =1 (3.25)
WS,I =3 _1/3 r 2 7 0 .

+]Z::‘djr (S—2+t—2+t -3
00 else

where s is the largest singular value of F', 7 is the largest singular value of cof F',
andc; (i=1:M)andd; (j =1 :N) are constants.



26

Relaxation of the generalized Mooney-Rivlin energy
Based on previous work done in this field [1, 65], the free energy density in Equation

3.25 is not convex in s or 7.

The relaxed form of this energy is:

M N
WICs, 1) = ) e (WIPYE + ) dj (IWal)e, (3.26)
i=1 j=1
where
0 FelL
rl1/3 2t b
ac = 76 T 3 FeM
(IW1P)€ (s,1) = 5 (3.27)
|W|Pi Fes
) else
and
0 FelL
1/6 qj
‘ rB+ 22— -3 FeM
(IW2]99)2¢ (s,1) = (3.28)
|W) |9 FesS
00 else

The regions L, M, and S are given by Equation 3.5, and the restrictions upon the

exponents p; > 1 (i=1: M) andg; > 1 (j =1 : N) must be satisfied.

3.3 Stress

Based on its principal values and directions, the left Cauchy-Green tensor is b =
?:1 /lfﬁl- ® v;. If the strain energy density of a material can be written in the form

W = W(4;), where 11 > A, > A3 are the principal stretches, then the Cauchy stress

of an incompressible, isotropic hyperelastic body is
oW
=-—nl+ ) li—b;, Q0. 3.29

Here, the vectors 9; are normalized eigenvectors. We can derive the stresses for
the relaxed generalized Mooney-Rivlin energy of Equation 3.26 in all three regions:

W = W(s,t). In region L, the stresses are

ol =-ntI. (3.30)



In region M, W9¢(s,t) = 2%1 cilAp|Pt + Z?’:l dj|By|%, where

244
B2 4 2172
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Ay = -3 3.31
M 16 (3.31)
By = r7B203 + 225010 - 3. (3.32)
The principal Cauchy stresses are
= "I+ Z PRALSPYS (3.33)
where
oW _
> _Z cipil AP~ 2r 1/6/11/12+Zd]q]|BM|‘1/ 7182203 (3.34)
i=1 j=1
oW oW
A =1 3.35
2oh S (3.35)
owae 1n1/32 In.1/6
3 = cipill AP 2r P A5+ ) diqi|Byu|TT 2r P 25, (3.36)
023 Z‘ ]Z::J /
In region S, W€ (s,t) = ?;Il ci|As|Pi + Z?’:l d;j|Bg|9/, where
As=r'Ba+r' B +r2R07 -3 (3.37)
Bs=r B2+ B2 4+ 22303 - 3. (3.38)
The principal Cauchy stresses are
= —nSI+Z/l W 5 & o, (3.39)
where
owae M N
A T Z cipilAs|PiT12r 2322 + Z d;q;|Bs|T™'2r71 P22 (A% + 23) (3.40)
i=1 J=1
M N
awc _ — _
g = D el AslP T2 PG+ " dq;|Bs|T 245 (r 7 RAg + 2 A3)
i=1 =1
(3.41)
W & 1n,1/3 92 10 12(=1/3 2 4 203 2
B3 = = > epilAslP2r! +Zd,q]|35|qf 282771 P2 4 2322,

i=1 j=1

(3.42)
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3.4 Ericksen’s ‘“universal deformations'

J. L. Ericksen established the problem of determining all deformations which can be
produced in every isotropic, incompressible, hyperelastic body by the application
of surface tractions alone (no body forces) [25]. Because these universal relations
are independent of constitutive relation, they are a powerful tool in continuum

mechanics.

Below are the solution families known thus far for a point (x, y,z), (p,8,z), or
(p, 0, ¢) with respective material point (X, Y, Z), (R,0,Z), or (R, ®, ®), and con-
stant a, b, c,d, e, f:

Family 0: Homogeneous deformations (for spatial point & with material point X

and deformation gradient F', constant vector c)
r=FX+c (3.43)
Family 1: Bending, stretching, and shearing of a rectangular block

Z
p=V2aX,0=>bY,z= b bcY (3.44)
a

Family 2: Straightening, stretching, and shearing of a sector of a tube
1
x=zab’R%y=—,2== - — (3.45)

Family 3: Inflation, bending, torsion, extension, and shearing of an annular wedge,
witha(cf —de) =1

p=VaR?>+b,0=cO+dZ,z=e®+ fZ (3.46)
Family 4: Inflation or eversion of a sector of a spherical shell
p=[+R+a]'?,0=10,¢=d (3.47)

Family 5: Inflation, bending, extension, and azimuthal shearing of an annular
wedge [38, 66]

p=a?R,0=dIn(bR) +¢®,z =e¢Z, ace =1 (3.48)

In this work, we address three of the families, as applied to nematic elastomers: the
bending of a block is a Family 1 deformation, the inflation of a cylindrical balloon
is a Family 3 deformation, and the inflation of a spherical balloon and the cavitation

of a disk are classified as Family 4 deformations.
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Figure 3.2: Cross-section of spherical balloon.

3.5 Spherical balloon

Deformation of spherical balloon expansion

We are interested in the deformation of a balloon, which can be modeled as a
spherical shell subjected to an internal pressure. In the undeformed configuration,
the balloon has inner radius R; and outer radius R,. The internal pressure is
denoted by p. The spherical balloon is assumed to remain spherical throughout the
deformation. The undeformed sphere has radial coordinate R € [R;, R, |, azimuthal
angle ® € [0,2x), and polar angle ® € [0, ), while the deformed sphere has
coordinate system p € [p;, po], 6 € [0,27), and ¢ € [0, ). Following Ericksen,

we make the ansatz

p=p(R)
0=0 . (3.49)
¢=0o

The deformation gradient in spherical coordinates is

dp
dR

F = (3.50)

=

=

With incompressibility, det F' = 1, we obtain this first-order differential equation

do p* _

— = 3.51
dR R? @D

Solving for the deformed radius p as a function of the undeformed radius R:

5 1/3
p= (R +c) , (3.52)
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where c is a constant. Let A denote the azimuthal stretch, A = %, and let 1, denote

the azimuthal stretch at the outer radius, A, = %. Then,

1/3
(R +c)"

R,

Solving for ¢ and plugging ¢ back into Equation 3.52 yields
1/3
p= (R3+R3 (/13— 1)) :

and the azimuthal stretch is

A= (1+ (%)3 (Ag— 1))

Thus, the deformation gradient is

1/3

The principal stretches are 41 = A = A (corresponding to ey and e4) and A3 = -

(corresponding to e,). Thus, s = A and 7 = A%. The regions are:

L:{R >R"}
M:{R<R'r>1}
S:{r <1},

where

R* =R -1\
A VAV

This leads to the possibility of three cases:

* Case 1: r > 1 and R* < R;: the entire balloon is in region L

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

1
A2

(3.58)

(3.59)
(3.60)

(3.61)

e Case 2: r > 1 and R; < R* < R,: the inner region of the balloon R € [R;, R*]

is in M, and the outer region R € [R*,R,] isin L
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L L
M M

Case 1 Case 2 Case 3 Case 4

Figure 3.3: Diagram of all possible cases in the inflation of a nematic elastomer
spherical balloon.

e Case 3: r > 1 and R* > R,: the entire balloon is in region M

* Case 4: r = 1 and the entire balloon is in region S
A diagram illustrating the various cases can be seen in Figure 3.3.

Note that Figure 3.1 can provide us with insight into the regions that this deformation
will experience. The spherical balloon expansion is merely equibiaxial stretch (see
the deformation gradient of Equation 3.56). Recalling that s is the largest singular
value of F' and ¢ is the largest singular value of cof F', this means that r = s> for

2

this deformation. Following along the ¢ = s“ curve in Figure 3.1, we see that the

deformation will move progressively through region L then M, never touching S for

r> 1.

Stress

The expressions for stress are as follows: In region L,
ol =—ntrI. (3.62)

In region M, the non-zero components of the stress are:

M M g 12r1/3 % 1271/6
Tpp =T +Zcipi|AM|pi_ B +ZdeIj|BM|qj_

2
i=1 j=1 z
M 2 N
121 L (3.63)
G%Z_UM'*‘ZCipilAM'pl IM"’ZdeIj'BM'qJ o134
i=1 j=1
M M
99 = 60>
where
e
M=
(3.64)
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In region S, r = 1 and the non-zero components of the stress are

M 5 W 1
ooy =1+ Z Cipi|AS|p[_1F + Z djc]leslq’_lﬁ
i=1 j=1

S s c pi—177732 < gi-17~732y | 52 1 (3.65)
0y = =1+ ) il As|P TN @A%) + ) dyq | Bs VT 22) |2+
i=1 j=1

S _ S
Tpp = Tops
where

1
AS:F+2/12—3

2
Bsza4+ﬁ—3.

(3.66)

Solving static equilibrium
The static equilibrium equations (in the absence of body forces) in spherical coor-

dinates are

do, o 1 0o, t 1 Jo 1
p:—LL 4 PPy~ ¢p+CO¢O_¢p+ : 9p——(0'99+0'¢¢):0
ap p p 99 P psing 96 p
(3.67)
Jo, oy 100, 1 0 oy t
g 2000 pTe0 (10000 | 1 000 Top  COUP L res) =0 (3.68)
ap p p 0¢ psing 96  p p
do, o 1 0o, 1 Odo lop t
¢ —LL okl J 0 9 & ¢p+co¢(0'¢¢—0'99):0,
ap p p d¢ psing 90  p p
(3.69)
and the boundary conditions for this problem are as follows:
Tpplp=p; = =P (3.70)
Opplp=p, = 0. (3.71)

In all cases, solving the ¢ equation yields n = 1 (p,#). Similarly, solving the 6
equation, we find that n = i (p). Finally, to solve the p equation, we will rewrite

the stress expressions as

Opp =N+ 0pp (3.72)

099 = Tpp = —1] + Ty, (3.73)
and so the boundary conditions can be rewritten as follows

—n(p = pi) +0pp(p =pi) =-p (3.74)
(0 = po) + pp(p = po) = 0. (3.75)
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Case 1

In Case 1, the entire balloon is in region L. The two boundary conditions for this

case are:
L _ A L _ —
-n"(p =pi) +0,,(p=pi) =-p (3.76)
=1"(p = po) + G5, (p = po) = 0. (3.77)

The stress in this region is found in Equation 3.62. Thus, the p equilibrium equation

yields
dot ok 1
P42t (ol +aly) =0 (378)
dp p P
d(-n*+a6k) (-t +0k) 1
+2 ——(—nL+&L—nL+&L):o (3.79)
dp o p o6 e
Po Po
/ d(-n"+ok,) = / 0dp  (3.80)
Pi Pi
p=0 (3.81)
Thus, for Case 1, the inner pressure is:
p=0. (3.82)

Case 2

In Case 2, R € [R;, R*] is in region M, and the R € [R*,R,] is in L. The two

boundary conditions can be rewritten specific to the region:

- (p = pi) + ) (p = pi) = —p (3.83)
—n"(p = po) + 6, (p = po) =0, (3.84)

and there is an additional boundary condition for continuity between the two regions:

—n"(p=p)+65,(p=p)=—n"(p=p")+5)(p=p"). (3.85)
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First, we solve the equilibrium equations in region L. Again, the stress in region L

is found in Equation 3.62. The p equation yields:

dot ok 1

PP PP L L
p AL =0 3.86
o + p p(0'99+0'¢¢) ( )

d(-n*+&k) (-t +0f) 1

2 ——(-nt+6k -nt+6L) =0 3.87
& + 5 p( N+ 0y —n +0'¢¢) (3.87)

d (—nL +6'pr)
=0 (3.88)

dp

(" + af,fp) fo=0  (3.89)
( n*(po) + 0 (po)) ( n"(p*) + 6, (p° )) (3.90)
—n"(p*") +6L,(p%) = (3.91)

In region M, the stress is that of Eqns. 3.63 and 3.64. The p equation yields:

doM oM
e (coa +p) =0 (3.92)

dp p
d(-n"+050) 1 5M _ A M
T p = (2op -t - 5pt) =0 (3.93)

ul

):_/pp %( oM %)dp (3.94)

\
(000 0t - (0o wattion) = [ 2 (s~} o G99)

pi P
20 m m
p= — (0'09 - Upp) dp. (3.96)
pi P

The right- hand side requires a change of integration variable from p to R. Noting

that dp = —5=dR, we obtain an expression for the inner pressure:

/I(R)2
R* 2
P= /R A(R)?R 595 (p = ARIR) = &5 (0 = A(R)R)] dR. (3.97)

Case 3

In Case 3, all of the balloon is in region M. The two boundary conditions for this

case arc:

—n"(p=p)+)(p=pi)=-p (3.98)
1" (p = po) + 04 (p = po) = 0. (3.99)
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The stress in region M can be found in Eqns. 3.63 and 3.64. The p equilibrium
equation yields:

doM o
i +2ﬂ——(0%+agfﬁ) =0
0

dp p
(3.100)
d(_UM"'a-f% Lioom am  am
T+/—)(20'pp Ogg — 0'¢¢) 0
(3.101)
Po 2
[, alrreat)== [ 5 ot -ant)a
Pi Pi
(3.102)
Po D
(=0 + 3500)) = (=n™ o0 + a3 00) = [ (o - o)t ) d
Pi
(3.103)
Po 2
Pi
(3.104)

As in Case 2, we employ a change of integration variable from p to R and obtain

the inner pressure as:
R,
p= [ o [0M e = ARIB <ol = ARID] R (3.105)
R /l(R)3R 60 Tpp ) :

Case 4

In Case 4, all of the balloon is in region S. Note that only the isotropic state (r = 1)

falls under this case. The two boundary conditions specific to this case are

7’ (p=pi) + 05, (p=pi) =—p (3.106)
—n°(p = po) + 07, (p = po) = 0. (3.107)
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The stress in region S can be found in Eqns. 3.65 and 3.66. The p equilibrium

equation yields:

doM o1
pp pp M, M\ _
?*‘27—;(0—094'0'45(15) =0
(3.108)
& 5 (2 pp ~ ap ~ ¢¢) 0
(3.109)
Po 2
[ o)== [ oot
pi pi
(3.110)
M Po 2 A M
( (po) + 0 (Po)) ( n (Pl) +0 (pz " O-pp) dp
(3.111)
Po 2
p= — dp.
pi P p)
(3.112)

As in Case 2, we employ a change of integration variable from p to R and obtain
the inner pressure as:
Fo 2 ~M ~M

p= /R,- AR°R |66 (0 = A(R)R) = 6, (p = A(R)R)] dR. (3.113)
Results
The calculations were performed in MATLAB. The solutions are plotted in Figures 3.4—
3.5b with the inner radius R; = 1 cm and outer radius R, = 1.1 cm. The following
parameters for the generalized Mooney-Rivlin model were used: M =2, N = 1,
c1 =1.0-10°Pa, ¢, = 1.90-10? Pa, d; = 1.59-1072Pa, p; = 1.3, p, = 5,and g; = 2.
This yields an effective shear modulus y = % (Zfi] cipi + Z?’[Zl djqj) =6.52-10%
Pa.

The pressure p, normalized by the effective shear modulus y, is plotted as a function
of the azimuthal stretch at the outer radius A,. Figure 3.4 shows the comparison
between the generalized Mooney-Rivlin model of this work and the BTW (neo-
Hookean) model of previous work in the field [23] for an anisotropy parameter of
r = 8. The neo-Hookean model is unable to capture the correct effect of elasticity
in the material at very high values of stretch (e.g. for 4, greater than about 6). As

seen in experiments of rubber balloons [73], the balloon experiences a subsequent
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——Generalized Mooney-Rivlin
— —Trace formula

e
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Azimuthal stretch at outer radius, A,

Figure 3.4: Comparison of this work’s generalized Mooney-Rivlin model with the
trace formula model of [23] for inflation pressure of a spherical balloon.

stiffening due to the further stretching of the polymer, or “effects of the limited
extensibility of the network", as indicated by the increase in pressure at high stretch,

which is correctly captured by our generalized Mooney-Rivlin model.
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Figure 3.5: Spherical balloon results: (a) Pressure-stretch curves at varying
anisotropy parameter. (b) Progression of the spherical balloon solution through
individual case numbers.

Figure 3.5a shows the results for varying anisotropy parameter r. The response of
the balloon is stiffest in the isotropic state (r = 1), and gets correspondingly softer
as r increases, as expected. As the pressure p increases, the balloon undergoes
deformation according to the various cases, as seen in Figure 3.5b. For r = 1
(rubber), the balloon is in Case 1 (region L) at 4, = 1 when there is no deformation,
but for the rest of the deformation the balloon is entirely in region S, corresponding to
a solid-like response with no microstructure formation, since the material is a rubber

with no liquid crystals. For r > 1, the solutions move progressively from Case 1
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to 2 to 3 throughout the deformation. At a stretch of 1, = 1, the balloon is again
in Case 1, corresponding to being entirely in the L region because no deformation
has occurred. Immediately upon inflation of the balloon, the balloon jumps to Case
2, where the inner part of the balloon experiences region M, developing fine-scale
microstructure. Then shortly after, the balloon will become entirely in region M,
and the rest of the balloon will develop fine-scale microstructure in response to the
pressure. This formation of microstructure by the liquid crystal molecules creates a

softer response than the rubber without liquid crystals.

3.6 Cylindrical balloon

Deformation of cylindrical balloon expansion

We are interested in the deformation of a cylindrical shell composed of the nematic
elastomer, capped off at both ends, subjected to an internal pressure. The shell
has undeformed height H, inner radius R;, and undeformed outer radius R,. Note
that there is no thin-wall approximation used in this formulation. The intern