
Theoretical, computational, and experimental
characterization of nematic elastomers

Thesis by
Victoria Lee

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2021
Defended May 24, 2021

ii

© 2021

Victoria Lee
ORCID: 0000-0002-2748-0089

All rights reserved except where otherwise noted

iii

ACKNOWLEDGMENTS

I’d like to first thank my mentor and advisor, Kaushik Bhattacharya. Kaushik
has been a wonderful guide throughout my entire grad career, from academics and
research to career advising andmentorship. He has giftedmewith the space and time
to grow as a researcher here at Caltech, providing me with ample opportunities for
enrichment through research collaborations, teaching assistantships, and conference
presentations. I would not have been able to accomplish all of this without his
valuable insight, and I’m truly grateful for all the knowledge that I’ve gained while
exploring my research under Kaushik’s advisement.

I’d also like to thank my thesis committee members, two of whom also served on
my candidacy committee a few years ago: G. Ravichandran, Chiara Daraio, and
Sergio Pellegrino. Ravi has always taken the time to check in with me and offer his
help whenever I needed it. He is an inspiring teacher, and I value his advice greatly.
Chiara is wonderfully supportive and inspiring, and I admire her enthusiasm and
devotion. I’m grateful for the cheerful collaboration that exists between Chiara’s lab
and Kaushik’s, which are just next door to each other. I’d like to thank Sergio for
leading thought-provoking discussions and providing helpful feedback during our
MURI meetings.

I’d like to extend a huge thank you to the inspiring professors I had at Brown, who
provided me with a solid foundation for engineering and advised me throughout
my undergraduate career: Haneesh Kesari, Karen-Marie Haberstroh, Allan Bower,
Jennifer Franck, Christian Franck, David Henann, Pradeep Guduru, and many more.

I have been fortunate to work with great collaborators while exploring various
research directions of nematic elastomers: Kenji Urayama, Pierluigi Cesana, Tim
White and his group at Wright-Patterson AFRL, Taylor Ware, Cedric Ambulo, and
Connor McMahan. I am grateful for the financial support of the US Air Force Office
of Scientific Research through the MURI Grant No. FA9550-16-1-0566.

I have really enjoyed being a part of Kaushik’s research group and getting to know
its members. I thank them for fun conversations within our office and around Gates-
Thomas: Ying Shi, Paul Plucinsky, Paul Mazur, Jin, Ruobing, Stella, Burigede,
Kevin, Hao, Sharan, Eric, Lincoln, Louisa, Dingyi, Andy, and many more. I am
deeply grateful to Jenni Campbell for helpingmewith any kind of administrative and
logistical issue I have; you always take care of us with a smile! I’m also glad to have

iv

gotten to know many of the members of Ravi, Chiara, Michael, and Sergio’s groups
through group meetings and lab collaborations, especially Erika, Will, Trent, Amir,
Xingsheng, Manav, Eleftheria, Connor, Suraj, Vatsa, Jack, Fabien, and Charlie.

I want to thank various members of the MCE department for making my past five
to six years an inclusive and enjoyable place to work. I feel very lucky to have
had a great first-year cohort (including our counterparts in GALCIT!) to collaborate
with on classwork and to study for quals together. I’m really grateful to all of my
fellow SOPS leaders for devoting endless hours towards making the department a
community, especially Will, Marcus, Leah, Alex, Kevin, Prithvi, Maegan, Natalie,
and Dingyi. It was a pleasure working with Nadia, José, Melany, Tim, Domniki,
Guillaume, and many other professors in the context of SOPS initiatives. The MCE
staff are absolutely amazing and such instrumental members of the community:
Jenni, Lynn, Holly, Sonya, Carolina, and Mikaela. I’m also extremely grateful to
John, Bruce, and Paul for all their help in the machine shop.

I’m so thankful for all of the staff at the CCID for their tireless DEI work, especially
Hanna Song and Erin-Kate for helping us out with the DEI database and organizing
Women in MCE events! I also want to thank Grace Ho, Maggie Ateia, and Liz
Jackman for their absolutely wonderful support!

I want to thank all of my wonderfully supportive friends. Amanda, thank you for
being the best roommate and friend ever since we met on those long-ago Visit Days,
and throughout all the ups and downs we’ve shared since. Kavya, Ying Shi, Erika,
and Becky, thank you for bringing me joy and a deep sense of belonging both on and
off campus. Nick and Eric, thank you especially for all of the fun times exploring
Pasadena and SoCal.

Finally, I want to thank my incredible family, who have been with me every step of
the way. Mom, Dad, and Oppa: you guys are simply the best, and I’m so fortunate
to have your support and love. Stephen, thank you for absolutely everything, but
especially in the context of this thesis, for the times you helped me debug my code
or troubleshoot something electrical engineering-y in the lab!

v

ABSTRACT

Nematic elastomers are programmable soft materials that display large, reversible,
and predictable deformation under an external stimulus such as a change in temper-
ature or light. They are composed of a lightly crosslinked polymer network with
stiff, rod-like liquid crystal molecules incorporated within the polymer chains. In
thermotropic nematic elastomers, the liquid crystals undergo a continuous and re-
versible phase transition between the randomly oriented isotropic state and the highly
oriented nematic state. Further, there is a direct thermo-mechanical coupling be-
tween the underlying temperature-responsive orientational order of the liquid crystal
molecules and the macroscopic shape change of the surrounding elastomer chains.
Finally, these materials display an unusually soft behavior. These remarkable prop-
erties make them promising materials for applications in aerospace as deployable
structures and skins, in biomedical engineering as a soft pump, and in communica-
tions as the actuation mechanism in a reconfigurable antenna. Motivated by these
applications, this thesis discusses the theoretical, computational, and experimental
characterization of nematic elastomers.

We begin by investigating an example of actuation that takes advantage of the
programmable, soft nature of these materials as well as instabilities associated
with large deformation. We outline the multi-stable equilibrium solutions to a
cylindrical balloon subjected to internal inflation, the material’s microstructure
formation due to this deformation, and its use as a soft pump with large ejection
fraction, which involves a snap-through instability. Then we extend the Agostiniani-
DeSimone-Dolzmann relaxed energy to a generalized Mooney-Rivlin constitutive
relation and study four examples of Ericksen’s universal deformations—the inflation
of cylindrical and spherical balloons, the cavitation of a disk, and the bending of a
block.

We then move beyond the modeling of ideal materials and present a new consti-
tutive relation for isotropic-genesis polydomain nematic elastomers. It is based on
internal variables that describe the fine-scale domain patterns and evolve accord-
ing to a kinetic process with dissipation. We discuss the model’s implementation
in the commercial finite-element software, ABAQUS, and study the problem of tor-
sion of a cylinder. We identify an interesting instability at large torsional strains
as a result of the Poynting effect. Finally, we present the design of a thermo-

vi

mechanical tensile setup and the experimental results for strain-rate dependence and
temperature-dependence of samples that we synthesize in-house.

vii

PUBLISHED CONTENT AND CONTRIBUTIONS

Victoria Lee and Kaushik Bhattacharya. Actuation of cylindrical nematic
elastomer balloons. Journal of Applied Physics, 129(114701), 2021. doi:
10.1063/5.0041288. URL https://doi.org/10.1063/5.0041288.

V. Lee performed all calculations, created all plots, and co-wrote the manuscript.

Content is reproduced from the above citation, with the permission of AIP Publish-
ing.

https://doi.org/10.1063/5.0041288

viii

TABLE OF CONTENTS

Acknowledgments . iii
Abstract . v
Published Content and Contributions . vii
Table of Contents . vii
List of Illustrations . x
List of Tables . xv
Chapter I: Introduction . 1

1.1 Nematic elastomers . 1
1.2 Actuation . 2
1.3 Beyond actuation from flat sheets 3
1.4 Microstructure formation . 4
1.5 Viscoelasticity and damping in nematic elastomers 5
1.6 Nematic elastomers as an engineering material 6
1.7 Thesis outline . 6

Chapter II: Actuation of cylindrical nematic elastomer balloons 8
2.1 Introduction . 8
2.2 Large deformation model of nematic elastomers 9
2.3 Inflation of a nematic cylinder . 11
2.4 Pump . 16
2.5 Conclusion . 19

Chapter III: Universal deformations of nematic elastomers 21
3.1 Introduction . 21
3.2 Energy . 21
3.3 Stress . 26
3.4 Ericksen’s “universal deformations" 28
3.5 Spherical balloon . 29
3.6 Cylindrical balloon . 38
3.7 Cavitation . 47
3.8 Bending . 53
3.9 Conclusion . 68

Chapter IV: A general constitutive model for a non-ideal isotropic-genesis
polydomain nematic elastomer . 69
4.1 Introduction . 69
4.2 Formulation of the constitutive relation 70
4.3 Validation of the model . 75
4.4 Implementation in ABAQUS . 81
4.5 Results from the ABAQUS implementation 90
4.6 Conclusion . 101

Chapter V: Experimental characterization of nematic elastomers 102

ix

5.1 Introduction . 102
5.2 Sample preparation . 103
5.3 Experimental setup . 110
5.4 Experimental results . 118
5.5 Conclusion . 123

Chapter VI: Conclusion and future outlook 124
6.1 Summary and impact of the findings 124
6.2 Future outlook . 128

Bibliography . 131
AppendixA: Supplementary information in developing the generalizedMooney-

Rivlin model . 139
A.1 Principal stretches . 139
A.2 Minimization of the energy with respect to the nematic director . . . 139
A.3 Energy based on the second invariant 140
A.4 Simplification of the regions . 141

Appendix B: Deriving DDSDDE for the UMAT 143
B.1 Useful items for deriving the material Jacobian 143
B.2 Auxiliary remark for the material Jacobian 143
B.3 Auxiliary remark for the material Jacobian 144

Appendix C: Synthesis and testing . 145
C.1 Chemical details . 145
C.2 Synthesis template . 145
C.3 Tensile test template . 147

Appendix D: Code . 149
D.1 UMAT code for simulations of nematic elastomers in ABAQUS 149
D.2 MATLAB code for the thermo-mechanical characterization experiments 164

x

LIST OF ILLUSTRATIONS

Number Page
1.1 Isotropic-nematic phase transition in nematic elastomers with the

isotropic with A = 1 at high temperatures and nematic phase with
A > 1 at low temperatures. 1

1.2 Schematics of polydomain and monodomain nematic elastomer. . . . 2
1.3 Schematic of the experiment inwhich amonodomain sample is pulled

perpendicular to its nematic director, giving rise to stripe domains,
which can be seen under polarized light microscopy (in the left-most
circle). 4

2.1 Inflation, extension, and torsion of a cylinder. 11
2.2 Inflation of a nematic cylinder: (a) Pressure vs. hoop stretch (solu-

tions 1 and 2), (b) Axial stretch vs. hoop stretch (solutions 1 and 2),
(c) Director angle vs. hoop stretch (solution 1), (d) Twist vs. hoop
stretch (solution 1), (e) Director angle vs. hoop stretch (solution 2),
(f) Twist vs. hoop stretch (solution 2). 13

2.3 Effect of non-ideality parameter U upon pressure, axial stretch, di-
rector angle, and angle of twist for A0 = A = 2. 15

2.4 (a) Pressure-volume relation for the inflation of a nematic cylinder.
(b) Formation of stripe domains that avoid any torsion—the lines
describe the director, while the dashed line is the deformed shape of
a fiducial line that is initially straight and axial. 17

2.5 The operation of a pumpwith an input pressure ?8 and output pressure
?> by heating and cooling a nematic cylinder. 18

2.6 Ejection fraction as a function of anisotropy parameter, A. 19
3.1 Regions of !, " , and (in the phase diagram of (B, C). 23
3.2 Cross-section of spherical balloon. 29
3.3 Diagram of all possible cases in the inflation of a nematic elastomer

spherical balloon. 31
3.4 Comparison of this work’s generalized Mooney-Rivlin model with

the trace formula model of [23] for inflation pressure of a spherical
balloon. 37

xi

3.5 Spherical balloon results: (a) Pressure-stretch curves at varying
anisotropy parameter. (b) Progression of the spherical balloon solu-
tion through individual case numbers. 37

3.6 (a) Cross-section of cylindrical shell. (b) Schematic showing cylin-
drical coordinates. 38

3.7 Diagram of all possible cases in the inflation of a nematic elastomer
cylindrical balloon. 40

3.8 Comparison of this work’s generalized Mooney-Rivlin model with
the trace formula model of [23] for inflation pressure of a cylindrical
balloon. 46

3.9 Cylindrical balloon results: (a) Results for cylindrical balloon ex-
pansion at varying anisotropy parameter. (b) Progression of the
cylindrical balloon solution through individual case numbers. 47

3.10 Schematic showing the cross-section of a disk of nematic elastomer
bonded to parallel plates, which are stretched in uniaxial tension. . . . 48

3.11 Nematic elastomeric sphere with radius '> with spherical void of
radius '8, subjected to external pressure ?outer. 48

3.12 Comparison of this work’s generalized Mooney-Rivlin model with
the trace formula model of [23] for pressure of a growing spherical
cavity inside a bulk disk. 52

3.13 Cavitation results: (a) Results for cavitation at varying anisotropy pa-
rameter. (b) Progression of the cavitation solution through individual
case numbers. 52

3.14 Schematic depicting the mid-plane of a rectangular block undergoing
bending deformation. 53

3.15 Schematic depicting the neutral axis of a rectangular block with arc
length B equal to the length of the undeformed beam, 2!. 57

3.16 Breakdown of the regions !, " , and (along the radius d in the
bending deformation. 57

3.17 Diagram of all possible cases in the bending of a nematic elastomer
block. 59

3.18 Legend for Figures 3.19 and 3.20. 66
3.19 Results for bending moment at varying anisotropy parameter. 67
3.20 Progression of the bending solution through individual case numbers. 68
4.1 Triangular region T in (_, X) space enclosed by the three constraints:

X ≤ A1/6, X ≤ _2, and X ≥
√
_. 71

xii

4.2 Uniaxial extension. 77
4.3 Planar extension. 77
4.4 Equibiaxial extension. 78
4.5 Unequal biaxial extension, V = 5/3. 79
4.6 Unequal biaxial extension, V = 5/2. 79
4.7 Unequal biaxial extension, V = 5/1. 80
4.8 Experimental stress, plotted as a function of _I. 80
4.9 Theoretical stress, plotted as a function of _I. 81

4.10 Load/unload curves for the (a) PE deformation and (b) U deformation. 81
4.11 Uniaxial single-element simulation results plotted against theoretical

results. 91
4.12 Planar extension single-element simulation results plotted against

theoretical results. 91
4.13 Equibiaxial single-element simulation results plotted against theoret-

ical results. 92
4.14 Unequal biaxial (with stretch ratio 5/3) single-element simulation

results plotted against theoretical results. 92
4.15 Unequal biaxial (with stretch ratio 5/2) single-element simulation

results plotted against theoretical results. 93
4.16 Unequal biaxial (with stretch ratio 5/1) single-element simulation

results plotted against theoretical results. 93
4.17 Uniaxial load and unload curves for varying UX and fixed strain rates:

(a) slow (1 × 10−4/s), (b) medium (1 × 10−3/s), and (c) fast (1 × 10−2/s). 94
4.18 Uniaxial load and unload curves for all UX values and all strain rates. . 95
4.19 Meshed cylindrical bodies for varying � : � ratio. 96
4.20 Schematic of the twist �� in the cylinder torsion deformation. 96
4.21 Moment " and normal force � of the cylinder under torsion for

varying anisotropy parameters A. The � : � ratio is fixed at 1 : 1. . . 96
4.22 Moment " and normal force � of the cylinder under torsion for

varying height-to-diameter (� : �) ratios. The anisotropy parameter
is fixed at A = 3. 97

4.23 Plot of the absolute value of the ratio between torsional stress at the
outer rim g and normal stress # for varying anisotropy parameters A
and height-to-diameter ratios � : �. 98

4.24 Kinking instability for A = 3, � : � = 3 : 1: (a) Cross-sectional
view, halfway through the height of the cylinder. (b) Side view. . . . 98

xiii

4.25 Nodes with increasing radii A1 through A5 in the cross-section halfway
through the height of the cylinder. 98

4.26 Evolution of the internal variables, depicted in the triangular region
T for nodes of varying radii. 99

4.27 Evolution of the internal variables as a function of twist for nodes of
varying radii. 99

4.28 First five eigenmodes for A = 3 and � : � = 2 : 1. The colors
represent the magnitude of displacement, from zero displacement
(blue) to high displacement (red). 100

4.29 Eigenvalues from the first eigenmode plotted against anisotropy pa-
rameter for fixed � : � = 1 : 1. 101

5.1 (a) SolidWorks model of a portion of the experimental setup. (b)
Picture of the experimental setup. 103

5.2 HDPE molds with CNCed pockets for samples to be poured into. . . 105
5.3 (a) LCE solution immediately before being poured into mold. (b)

Polydomain sample clamped in a stretched monodomain state, ready
for UV crosslinking. 108

5.4 Picture of experimental setup. 110
5.5 Schematic of experimental setup. 111
5.6 Schematic of the optical portion of the experimental setup. 111
5.7 Instructions for setting the setpoint temperature in the temperature

controller. 114
5.8 (a) Stress-strain curve of polydomain samples that were pulled til

break. (b) Load and unload stress-strain curves for polydomain sam-
ples at fast strain rate. 118

5.9 (a) Load and unload stress-strain curves for polydomain samples at
medium strain rate. (b) Load and unload stress-strain curves for
polydomain samples at slow strain rate. 118

5.10 Stress-strain loading curves for all room-temperature polydomain
samples at all strain rates. 119

5.11 (a) Stress-strain curve of monodomain samples that were pulled til
break. (b) Load and unload stress-strain curves for monodomain
samples at fast strain rate. 119

5.12 (a) Load and unload stress-strain curves for monodomain samples
at medium strain rate. (b) Load and unload stress-strain curves for
monodomain samples at slow strain rate. 120

xiv

5.13 Stress-strain loading curves for all monodomain samples at all strain
rates. 120

5.14 Image of stripe domains that appeared in the uniaxial stretch of a
monodomain sample pulled perpendicular to its nematic alignment
direction (tested at room temperature, imaged with cross-polarizers). 121

5.15 (a) Stress-strain loading curves for samples at high temperature at
varying strain rates. (b) Stress-strain loading curves for all samples
at low and high temperatures and varying strain rates. Note that the
high-temperature curves appear very close to the origin. 121

5.16 Cyclic stress-strain curves for a single sample over 20 cycles. 122
6.1 Regions of !, " , and (in the phase diagram of (B, C). Also shown

are common deformations and their paths through the three regions:
equibiaxial stretch (EB), unequal biaxial stretch (UB) with various
strain ratios (5/3, 5/2, 5/1), planar extension (PE), and uniaxial stretch
(U). 126

xv

LIST OF TABLES

Number Page
2.1 Table of parameters . 14
4.1 Material properties used in MATLAB simulations 76
4.2 Additional material properties used in ABAQUS simulations 90
4.3 Dimensions of the cylinder under torsion 95
5.1 Table of chemicals . 104
5.2 Table of testing strain rates . 114
5.3 Tests at nematic temperature (room temperature ≈ 22°C) 117
5.4 Tests at isotropic temperature (≈ 130°C) 117

1

C h a p t e r 1

INTRODUCTION

1.1 Nematic elastomers
Liquid crystal elastomers (LCEs) are remarkable stimuli-responsive materials that
have recently been explored for their use in actuation [77]. LCEs are lightly
crosslinked elastomer networks with liquid crystal molecules incorporated into the
underlying polymer chains. P. G. de Gennes first envisioned the coupling between
the orientational order of liquid crystals with the macroscopic shape change of a
crosslinked elastomer network in 1975 [21]. There are different types of liquid
crystal elastomers, including nematic, cholesteric, and smectic, and they can be re-
sponsive to different types of stimuli, including a change in temperature, pH, electric
field, and light.

Figure 1.1: Isotropic-nematic phase transition in nematic elastomers with the
isotropic with A = 1 at high temperatures and nematic phase with A > 1 at low
temperatures.

Of particular interest are nematic elastomers, which are liquid crystal elastomers
with stiff, rod-like liquid crystal molecules. They undergo an isotropic-to-nematic
transition accompanied by a significant stretch (by as much as a factor of two
or more) along the nematic director (in the direction parallel to a unit vector n)
and lateral contraction, as shown schematically in Figure 1.1. In this thesis, we
focus on thermotropic nematic elastomers, which undergo the phase transition at
a characteristic nematic-isotropic temperature)=8. At temperatures above)=8, the

2

material is in the isotropic state, where the liquid crystal molecules are randomly
oriented, and at temperatures below)=8, the material is in the nematic state, where
the liquid crystal molecules are aligned along a preferred direction, denoted by n.
Because of the direct thermo-mechanical coupling between the nematic orientation
and the surrounding polymer network, this phase transition induces a deformation
of the underlying polymer chains in the nematic elastomer, so a macroscopic shape
change is observed, in which the polymer chains stretch parallel to the mesogen
alignment and contract perpendicular to it. The phase transition, and consequently
the change of shape, is continuous and completely reversible. The degree of order
observed in the liquid crystalmolecules determines the degree of anisotropy, denoted
by A throughout this thesis.

Thesematerials can be synthesized as amonodomain or polydomain. Monodomains
can be thought of as the elastomer equivalent of a single crystal, in which the entire
sample is aligned along one direction in the nematic state. A polydomain sample is
macroscopically randomly oriented in the nematic state, but at a mesoscale, there is
nematic alignment within each domain (see Figure 1.2 for a schematic).

Figure 1.2: Schematics of polydomain and monodomain nematic elastomer.

1.2 Actuation
The study of materials for actuation applications traditionally focused on systems
driven by mechanisms such as pneumatics, hydraulics, or motors. Active materials
such as piezoelectrics, dielectric elastomers, a type of electroactive polymer (EAP),
and shape memory alloys which undergo the austenite-martensite phase transition,
offer much in the way of actuation without complex hardware and moving parts.
Using the material as the machine [6] is a powerful idea motivating the study of
active materials.

Nematic elastomers are advantageous choices in the field of active materials because
they are soft, they can deliver a large energy per unit volume, their shape change is
completely reversible in the presence or absence of the stimuli, and their director field

3

is programmable [2, 48, 49, 57, 76]. Further, it is possible to incorporate photo-
active molecules into nematic elastomers, giving rise to photo-active materials
that are actuated by light. Some compelling examples include refreshable Braille
displays for reading instruments for the visually impaired [14], untethered robotic
matter [41], and shape morphing [26]. Additionally, nematic elastomers can be
programmed for wrinkle control in thin sheets due to microstructure development,
for possible applications in deployable structures for aerospace applications [56].

1.3 Beyond actuation from flat sheets
Nematic elastomers have been exploited for programmable actuation and shape-
morphing of thin sheets. Modes, Bhattacharya, and Warner [48, 49] suggested
that if sheets of nematic elastomer with prescribed director patterns were fabricated
in the nematic state and subsequently heated, they could deform out of plane into
three-dimensional shapes. For example, a +1 disclination with an azimuthal director
distribution would deform into a cone. This was demonstrated in nematic glasses
by de Haan et al. [22]. Ware et al. [76] developed a method of synthesizing nematic
elastomers where the director pattern could be written pixel by pixel on flat sheets
and demonstrated the formation of these cones. Moreover, they showed that this
actuation was extremely robust, as the cone-lifting weights were many hundreds of
times larger than the structure itself. Since then, there have been a number of other
studies on nematic elastomers [2, 47, 50, 57, 58], including the inverse problem of
identifying the director pattern that would lead to a given actuated shape [3, 57].
All of these works address the programming and actuation of initially flat sheets.

Recent advances in 3D printing and other methods of directed synthesis have en-
abled the synthesis of curved shells [4, 32], and such structures change shape upon
heating. In particular, Ambulo et al. demonstrated dramatic snap-through buckling
of structures involving regions of positive Gauss curvature and regions of negative
Gauss curvature [4]. More recently, magnetic fields have been used to independently
control director orientation during 3D printing [68]. These developments in syn-
thesis techniques motivate the work in Chapter 2, where we analyze a balloon made
of nematic elastomer, subjected to internal inflation. The study of these materials
in different configurations beyond flat sheets opens the doors to applications with
more complex boundary conditions and loading configurations.

4

1.4 Microstructure formation
The interesting material properties of nematic elastomers are due to the interplay
amongst features at distinct length scales. The macroscopic shape of the lightly
crosslinked polymer network, which can be on the order of centimeters, is deter-
mined by the nematic mesogens, which can have a length on the order of nanometers,
and domains of nematic alignment can exist in some mesoscale with a characteristic
length of micrometers.

Figure 1.3: Schematic of the experiment in which a monodomain sample is pulled
perpendicular to its nematic director, giving rise to stripe domains, which can be
seen under polarized light microscopy (in the left-most circle).

The stripe-domain formation in monodomains pulled perpendicular to their nematic
alignment exhibit the classical example of fine-scale microstructure formation (see
Figure 4 of [42], also shown schematically in Figure 1.3). In this experiment, a
monodomain sample with a uniform nematic alignment is clamped on one end and
pulled uniaxially in the direction perpendicular to the nematic director. The liquid
crystal molecules rotate to align themselves parallel to the direction of stretch, and
they do so by forming alternating stripes in which the molecules rotate at opposite
angles. When the liquid crystal molecules complete this reorientation process, the
sample becomes a monodomain with the nematic director parallel to the direction
of stretch. The stripe domains can be seen using polarized light microscopy, an
example of which is shown in the left-most circle of Figure 1.3. The stripes are
relatively uniform, and the width can vary depending on the specific synthesis
methods and possibly also the geometry of the sample. The stripes exhibited by the

5

samples in our lab are about 70 micrometers in width, whereas the stripes in Figure
4 of [42] have a width closer to 15 micrometers.

At the beginning of the experiment, the clampedmonodomain sample appears trans-
parent because all of the liquid crystal molecules are aligned uniformly, but as the
experiment progresses, the sample becomes opaque as the microstructure devel-
ops, and the liquid crystal molecules are no longer uniformly aligned. Eventually,
when the liquid crystal molecules have finished reorienting and are again uniformly
aligned, the sample has become a monodomain and therefore appears transparent.

The microstructure formation gives rise to the phenomenon of soft elasticity—the
reorientation of the mesogens happens at zero stress, which is depicted by the stress
plateau in stress-strain curves of the uniaxial extension of monodomains pulled
perpendicular to their nematic alignment (see Figure 9 of [43]). Stripe domains are
discussed in the context of the cylindrical balloon explored in Chapter 2.

A related experiment is the uniaxial stretch of a polydomain sample, which un-
dergoes a transition known as the polydomain-to-monodomain transition. The
associated stress-strain curve also exhibits soft elasticity, as mesogens within each
mesoscale domain reorient towards the direction of most stretch. The soft behav-
ior has largely been studied in uniaxial deformation, and more recently in biaxial
deformation [71]. This motivates Chapter 3, where we study the consequences of
softness on complex deformations.

1.5 Viscoelasticity and damping in nematic elastomers
It is important to understand and characterize the effect of viscoelasticity, or time
dependence, in nematic elastomers if they are to be used in actuation applications,
which are typically cyclic in nature. Existing work in this field includes stress-
relaxation experiments on these materials, as well as uniaxial experiments at varying
strain rates, e.g. through the polydomain-monodomain (P-M) transition [5, 16, 36,
54, 67, 69]. Some of these authors have also used dynamic mechanical analysis
(DMA) of monodomain samples under simple shear. Hotta and Terentjev also
applied the principle of time-temperature superposition to build a master curve of
the material response over a range of frequencies using data from tests at different
temperatures, e.g. [5, 35].

The large hysteresis between the loading and unloading stress-strain curves in uni-
axial experiments on polydomain samples, e.g. in Figure 5 of [5], is indicative
of the material’s ability to dissipate a large amount of energy. Merkel et al. [46]

6

investigated the effect of temperature, and therefore degree of anisotropy, in the
dynamic loading of polydomain nematic elastomers. A combination of the reori-
entation of the liquid crystal molecules and the viscosity of the polymer chains
provides a mechanism to dissipate and absorb applied mechanical energy. Clarke
et al. discussed the potential for nematic elastomers in mechanical damping appli-
cations due to the internal relaxation of the liquid crystal molecules, independent
of the polymer backbone [17]. Examples of applications where efficient dissipation
of mechanical energy are desirable include the automotive, aerospace, and white
goods (e.g. washing machines, refrigerators) industries. One can imagine tuning
the mesogen response for variable vibration and noise suppression.

We address the formulation of a finite-deformation constitutive relation that could
model such viscoelastic effects in Chapter 4, which incorporates viscosity associated
with the polymer network as well as evolution of some internal variables according
to a dissipative kinetic process.

1.6 Nematic elastomers as an engineering material
Studies of monodomain nematic elastomers are extremely useful to characterize a
structure or be able to predictmaterial response, especially for actuation applications.
However, polydomains, with their domains of fine-scale microstructure, are easier
and less expensive to manufacture because they require no director alignment, and
can be viewed as an engineering material.

Previous theories largely dealt with simple deformations or idealized materials.
The goal of Chapter 4 is to formulate a model for nematic elastomers as an engi-
neering material—with microstructure formation through the relaxed energy and
viscoelasticity through the internal variables.

1.7 Thesis outline
This thesis is organized in the following way: First, in Chapter 2, we study the
actuation of a cylindrical nematic elastomer balloon. This work is a step away
from the established field of actuation from flat sheets, as we focus on actuation
from an already three-dimensional reference state. We analyze the deformation of
a cylindrical shell of a patterned nematic elastomer under pressure, show that it can
undergo an enormous change of volume with changing temperature, and suggest its
application as a pump with extremely high ejection fraction.

7

In Chapter 3, we build upon the framework of DeSimone and Dolzmann [23] and
Agostiniani and DeSimone [1] for the relaxed energy of nematic elastomers. We
again extend this energy into a generalized Mooney-Rivlin type energy density to
capture correctly the elasticity of these materials at very high stretch, and we use
this model to solve four examples of Ericksen’s so-called universal deformations:
expansion of a spherical balloon, expansion of a cylindrical balloon, cavitation of
a disk, and bending of a block. The solutions are presented for varying anisotropy
parameters, including the case where the material is isotropic, which corresponds
to a rubber without liquid crystals.

Chapter 4 presents an engineering model involving internal variable evolution that
captures the macroscopic behavior of isotropic-genesis polydomain nematic elas-
tomers. We present the formulation for the model, its implementation in the com-
mercial finite-element software ABAQUS, and some results under various deforma-
tions, including planar extension, biaxial stretch, and torsion. Our numerical results
identify an unusual torsional instability driven by the Poynting effect.

In Chapter 5, we present the synthesis technique of thermotropic nematic elastomer
samples, the design of our custom-built thermo-mechanical test setup, and the test
results from uniaxial extension of these samples in the experimental setup at various
crosslinked configurations and temperatures.

Finally, we summarize the findings of this thesis and conclude with comments on the
future outlook of this exciting and expansive field of research in Chapter 6. Nematic
elastomers play only a small role in the field of stimulus-responsive actuators. There
aremany promising avenues for further research and development of thesematerials,
experimentally, theoretically, and computationally.

8

C h a p t e r 2

ACTUATION OF CYLINDRICAL NEMATIC ELASTOMER
BALLOONS

Victoria Lee and Kaushik Bhattacharya. Actuation of cylindrical nematic
elastomer balloons. Journal of Applied Physics, 129(114701), 2021. doi:
10.1063/5.0041288. URL https://doi.org/10.1063/5.0041288.

Reproduced from the above citation, with the permission of AIP Publishing.

2.1 Introduction
The goal of this work is two-fold. The first is to explore the combination of
programmed synthesis of nematic shells and the geometric instabilities associated
with the large deformation of slender structures. Similar instabilities have been
exploited in other stimuli-responsivematerials including electroactive materials [33,
63, 84]. In this work, we focus on the so-called aneurysm instability of pressurized
cylinders [28]. As observed in long toy balloons, one observes a discontinuous
change of radius (or volume) with an increase of pressure: typically the balloon
inflates till it reaches a particular radius, beyond which point a bump (aneurysm)
with a significantly larger radius appears in this region, and it propagates through
the entire balloon before the radius further increases. We explore the response of a
cylindrical shell made of a nematic elastomer and study how the isotropic-nematic
phase transition affects this instability. Our work is closely related to that of Giudici
and Biggins [31] who recently studied the ballooning instability in both nematic and
isotropic LCEs using a Gent-style energy. He et al. [34] have studied the anomalous
behavior of (isotropic-genesis polydomain) nematic balloons under tension. We
then show how this instability can be used as a high ejection-fraction pump. The
second goal is to study actuation and shape-morphing in the presence of mechanical
loads. The prior literature has largely focused on free recovery.

We introduce the model of the nematic elastomers at large deformation in Section
2.2 and analyze the deformation of a nematic elastomer cylinder under internal
pressure in Section 2.3. We then use the results to motivate a pump with extremely
large ejection fraction in Section 2.4.

https://doi.org/10.1063/5.0041288

9

2.2 Large deformation model of nematic elastomers
We begin with the neo-classical theory of nematic elastomers following Bladon,
Terentjev and Warner [10, 77]. The state of a liquid crystal elastomer is described
by an anisotropy parameter A, a director n and the deformation gradient F relative
to a stress-free reference configuration with anisotropy parameter A0 and directorn0.
The anisotropy parameter is a function of temperature with A = 1 in the isotropic
state above the transformation, and gradually increases with decreasing temperature
so that A > 1 in the nematic state. We consider the material to be incompressible
so that detF = 1. The neo-classical theory considers the entropy of the polymer
chains in the Gaussian approximation, and the free energy density is given as

,WT(F ,n, A) =
`

2

(
tr

(
`=0F

)`−1
= F

)
− 3

)
, (2.1)

where ` is the shear modulus of the material, and

`= = A
−1/3 (I + (A − 1)n ⊗ n) (2.2)

`=0 = A
−1/3
0 (I + (A0 − 1)n0 ⊗ n0) (2.3)

are the step-length tensors in the current and reference configurations that collect
the anisotropy parameter and the director. It is easy to show that

,WT(F ,n, A) = ,NH

(
`−1/2
= F`1/2

=0

)
, (2.4)

where ,NH(F) = `

2 (tr C (F)) − 3), with C (F) = F)F , is the neo-Hookean
energy density which describes the entropy of polymer chains in ordinary rubber in
the Gaussian approximation [72].

The neo-classical theory is known to describe complex features of nematic elas-
tomers at finite, but moderate, deformation. However, at extremely large stretches,
the Gaussian approximation does not hold, and this theory does not adequately
describe the stiffening much like its neo-Hookean counterpart. Various constitutive
relations are used to describe rubber in this high-stretch regime. A common fea-
ture of many of these models is that the energy density depends only on principle
stretches _8 of F (equivalently the eigenvalues _2

8
of C (F)):

,E(F) = 5 (_1, _2, _3). (2.5)

For example, in the Ogden model [53] the energy density is

,O(F) =
#∑
?=1

`?

V?

(
_
V?

1 + _
V?

2 + _
V?

3 − 3
)
, (2.6)

10

where # , `?, and V? are material constants. The shear modulus is ` = 1
2
∑#
?=1 `?V?.

When # = 1 and V1 = 2, the Ogden energy is the neo-Hookean energy, and when
= 2, V1 = 2, and V2 = −2, the Ogden energy is the Mooney-Rivlin energy. We
use the Ogden energy to demonstrate our results following [63], though we can
adapt them to any constitutive relation that describes the high stretch behavior. We
adopt the elastic energy density (2.5) to nematic elastomers analogously to (2.4).
See [1] for similar energies and their relaxation in the ideal case. Other approaches
have been proposed to capture the high-stretch regime including the logarithmic
correction by Gent [27] which was used by Giudici and Biggins [31] in their work.

Further, the cross-link density and the polymer network may carry an imprint of the
initial director, and this leads to a breaking of symmetry (isotropy) leading to the
preference of the director to remain in the original orientation. Such an interaction
can be described using an additional non-ideal energy density [9]:

,NI(F ,n) = U
`

2
tr

(
F (I − n0 ⊗ n0)F)n ⊗ n

)
. (2.7)

Note that this energy is minimized when n = n0. Putting these together, we take
the energy density of the nematic elastomer to be

, (F ,n, A) = ,E

(
`−1/2
= F`1/2

=0

)
+,NI(F ,n). (2.8)

For future use, we note a particular invariance of this energy density. Let Q be a
rotation tensor that leaves the reference director invariant: Qn0 = ±n0. Then, we
claim that

, (QFQ) ,Qn, A) = , (F ,n, A). (2.9)

Note that

C ((Q`=Q))−1/2(QFQ))`1/2
=0) = `

1/2
=0 (QFQ

))) (Q`=Q))−1(QFQ))`1/2
=0

= `1/2
=0 QF

)`−1
= FQ

)`1/2
=0

= Q`1/2
=0 F

)`−1
= F`

1/2
=0 Q

)

= QC (`−1/2
= F`1/2

=0)Q
) ,

(2.10)
where we have used the invariance of n0 under Q in the third equality. It follows
that both tensors have the same eigenvalues and thus the same Ogden energy den-
sity. A similar calculation holds for the non-ideal energy density as well, thereby
establishing (2.9).

11

Figure 2.1: Inflation, extension, and torsion of a cylinder.

2.3 Inflation of a nematic cylinder
Consider a cylindrical shell of initial (reference) length �, inner radius '8, and un-
deformed outer radius '> subjected to an internal pressure ?. Following Rivlin [61]
and Ericksen [25], the deformation of the cylinder is described by the universal
volume-preserving deformation involving radial expansion, axial extension and tor-
sion (see Figure 2.1). The mapping is

d = d(')

\ = Θ + �/

I = b/

, (2.11)

where {',Θ, /} and {d, \, I} denote the cylindrical coordinate system in the ref-
erence and deformed coordinate systems respectively. d(') describes the radial
expansion, � the twist, and b the axial stretch. The deformation gradient in the
cylindrical coordinate system is

F =
©«
d′ 0 0
0 d

'
_'�

0 0 b

ª®®®¬ =
©«

1
_b

0 0
0 _ _'�

0 0 b

ª®®®¬ , (2.12)

wherewe have introduced the hoop stretch_(') = d(')/' and used the incompress-
ibility to obtain the second equality. There is an off-diagonal term in the deformation
gradient because we would like to allow shear or twist that may accompany director
reorientation. We will see later that this indeed plays a role.

12

We assume that the director both in the reference and deformed configuration are tan-
gential to the cylinder and make an angle q0 and q, respectively, with the azimuthal
coordinate. Thus, in cylindrical coordinates,

n0 =
©«

0
cos q0

sin q0

ª®®®¬ and n =
©«

0
cos q
sin q

ª®®®¬ . (2.13)

The total potential energy of the system is

Φ =

∫
Ω

, (F ,n, A)3+ − ?Δ+, (2.14)

where Δ+ is the difference in the deformed and undeformed volumes. Applied to a
balloon with height �, we obtain

Φ =

∫ �

0

∫ 2c

0

∫ '>

'8

, (F ,n, A)'3'3Θ3/ − ?
(
cd2b� − c'2�

) ����
'='8

≈ 2c'8�), (F ,n, A) − ?c'2
8 �

(
b_2 − 1

)
.

(2.15)

Above we have assumed that the shell is thin,) := ('> − '8) << '8, to evaluate the
integral.

For a given pressure ? and anisotropy parameter A , we can now find the equilibrium
as

mΦ

m_
=
mΦ

mb
=
mΦ

m�
=
mΦ

mq
= 0. (2.16)

Physically, these equations describe the balance between the hoop stress in the
cylinder and the internal pressure, the balance between the axial stress and the
internal pressure, the balance of torque, and the balance of internal (material) torque
on the director respectively.

To demonstrate the results, we consider a cylinder where the initial director is axial
(q0 = 90°) and which is mildly nematic with initial anisotropy parameter A0 = 2.
The rest of the parameters are shown in Table 2.1, and were chosen to be broadly
consistent with an experiment conducted in our laboratory. We fix the current
anisotropy parameter A and the hoop stretch _ and solve (2.16) for the pressure ?,
axial stretch b, the twist �, and the current director angle q. We find that the
system has two solutions, shown in Figure 2.2 for four different current anisotropy
parameters A 1 and the classical neo-Hookean case, A0 = A = 1. Note that the
pressure has been normalized as ?̂ = ?'>

`('>−'8) , where ` =
1
2
∑3
?=1 `?V? = 6.80 · 104

Pa represents the reference shear modulus.
1There is a third unstable solution where the director does not rotate, which we ignore.

13

Figure 2.2: Inflation of a nematic cylinder: (a) Pressure vs. hoop stretch (solutions
1 and 2), (b) Axial stretch vs. hoop stretch (solutions 1 and 2), (c) Director angle vs.
hoop stretch (solution 1), (d) Twist vs. hoop stretch (solution 1), (e) Director angle
vs. hoop stretch (solution 2), (f) Twist vs. hoop stretch (solution 2).

14

Table 2.1: Table of parameters

Inner radius '8 1 cm
Outer radius '> 1.05 cm
Height of cylinder � 5 cm
Initial director angle q0 90°
Initial anisotropy parameter A0 2
Non-ideality parameter U 0.3
Ogden model shear modulus `1 1.0 · 105 Pa
Ogden model shear modulus `2 1.904762 · 102 Pa
Ogden model shear modulus `3 −1.5873 · 103 Pa
Ogden model constant V1 1.3
Ogden model constant V2 6
Ogden model constant V3 -3

Consider the first solution, Figure 2.2(a)-(d). We observe that for A0 ≠ A, hoop stretch
vs. pressure does not pass through (1, 0) but through ((A/A0)−1/6, 0) since the change
of the anisotropy parameter gives rise to a spontaneous deformation of the cylinder.
The hoop stretch vs. pressure is non-monotone (Figure 2.2(a)): the pressure initially
increases but then drops before increasing again with increasing hoop stretch. This
reflects the well-known balloon instability: with increasing pressure, the radius
increases till it reaches a critical pressure at which it jumps to a large radius. The
onset and the extent of this instability is amplified in nematic elastomers due to a
rotation of the director. Figure 2.2(c) shows that the director begins to rotate with
inflation, reaching the hoop direction asymptotically. To understand this, an increase
in radius increases the volumemore than an increase in axial stretch, since the former
leads to an increase of included area rather than length. Therefore, the pressure seeks
to increase the circumference by reorienting the director. This reorientation also
leads to a decrease of the axial stretch (Figure 2.2(b)). Consequently the axial stretch
is also non-monotone: it decreases during reorientation but increases again as the
director stabilizes. Finally, the reorientation leads to a twist in the cylinder (Figure
2.2(d)). The magnitude of all of these trends increases with increasing anisotropy
parameter A. In particular, the critical pressure decreases and the change of hoop
stretch increases with increasing anisotropy parameter A.

The reorientation, however, is resisted by the non-ideality as shown by varying the
non-ideality parameter U in Figure 2.3. Note that the director rotation from the
vicinity of the initial orientation q0 =

c
2 is increasingly delayed as the non-ideality

15

Figure 2.3: Effect of non-ideality parameter U upon pressure, axial stretch, director
angle, and angle of twist for A0 = A = 2.

parameter increases. The balance between the pressure-assisted reorientation and
the non-ideality-mediated resistance leads to the observed behavior.

The second solution, Figure 2.2(a)-(b),(e)-(f), is very similar to the first, except that
the reorientation and twist change sign. The pressure vs. hoop-stretch and the axial
stretch vs. hoop-stretch curves remain unchanged. Consequently, both solutions
have the same pressure vs. volume curves which are shown in Figure 2.4(a). The
volume strain is plotted on a logarithmic scale due to the dramatic change of volume
during the instability.

It is useful to understand the origin of the two solutions. The material is not chiral,
and neither is the initial configuration. Therefore a breaking of the chiral symmetry
by rotation of the director has to be accompanied by a symmetry-related counterpart.
To elaborate on this, recall the invariance (2.9). LetQ be a 180° rotation about the
azimuthal direction,

Q =
©«
−1 0 0
0 1 0
0 0 −1

ª®®®¬ . (2.17)

16

Note thatQn0 = −n0 so that it satisfies the requirement for (2.9). It is easy to check
that for F and n in (2.12) and (2.13),

QFQ) =

©«
1
_b

0 0
0 _ −_'�
0 0 b

ª®®®¬ , Qn =
©«

0
cos q
− sin q

ª®®®¬ . (2.18)

Thus, the invariance (2.9) implies that any solution with chirality has a symmetric
counterpart with the same radial and azimuthal stretches.

The presence of the two symmetric solutions enables the formation of stripe domains
that avoid overall torsion as shown in Figure 2.4(b). We divide the cylinder into
short cylindrical rings and alternate between the two solutions. This leads to a
continuous deformation, where one ring twists one way and the other the other
way in an alternating pattern, but they meet continuously across the boundaries
as indicated by the initially straight fiducial dashed line shown in the figure. The
overall torsion is zero while the overall hoop and axial stretch are as before, leading
to the pressure-volume curve shown in 2.4(a), where volume strain is defined as the
current volume divided by the reference volume.

Stripe domains are widely observed in nematic elastomers, especially in uniaxial
tension, where rigid grips prevent any shear [77]. In uniaxial tension of a nematic
sheet along an axis that is perpendicular to the initial director orientation, director
rotation accommodates stretch but causes shear. However, shear breaks the sym-
metry and therefore there are two solutions (rotation to the right or left), which
alternate to form the stripe domains. The domains are fine, typically with the width
of microns, and the interfaces are very sharp, with a width of nanometers. The
stripe domains in Figure 2.4(b) are the exact analogs of those in uniaxial tension.

2.4 Pump
The pressure-volume curves in Figure 2.4(a) motivate the application of this cylin-
drical nematic elastomer balloon as a pump. Recall that the anisotropy parameter
A depends on temperature, and therefore the four pressure-volume curves represent
four distinct temperatures. In a typical monodomain nematic elastomer, A = 2
at a high temperature of about 85°C, while A = 8 at a low temperature of about
25°C [77]. These two pressure-volume curves are re-plotted in Figure 2.5 as the
hot and cold nematic elastomers. An important observation is that the lower-critical
pressure (point E) of the pressure-volume curve at the high temperature is higher
than the upper-critical pressure (point B) of the pressure-volume curve at the low

17

Figure 2.4: (a) Pressure-volume relation for the inflation of a nematic cylinder. (b)
Formation of stripe domains that avoid any torsion—the lines describe the director,
while the dashed line is the deformed shape of a fiducial line that is initially straight
and axial.

temperature. This enables the operation as a pump between an inlet pressure ?8 and
outlet pressure ?>, where ?� < ?8 ≤ ?> ≤ ?� .

Also shown in the figure are the isotherms (pressure-volume relation) of a fixed
mass of fluid, in this case air, at the hot and the cold temperatures of 85°C and
25°C, respectively. These isotherms were calculated using the ideal gas law. The
cold fluid isotherm is given by ?cold(+) = =�')cold/+ , where =� is the number
of moles of air at point C, ' = 8.3145 is the ideal gas law constant, and)cold is
the cold fluid temperature. The hot fluid isotherm pressure is analogously given
by the corresponding number of moles at point D and the hot fluid temperature:
?hot(+) = =�')hot/+ .

The pump operates as follows. Let us begin at the high temperature with the outlet
closed and the inlet open so that the nematic pump is at the point A. Now, cool the
pump with the inlet open so that the pressure remains at ?8. On cooling fully to
the cold temperature when A = 8, the only equilibrium solution is point C, which
has a very large volume. So, the balloon would draw in a large volume of air from
A to C. We note that this process does not proceed smoothly. As the pump is
cooled from the high temperature, the volume changes gradually till the temperature
when the upper critical pressure (the point corresponding to B at the intermediate

18

cool + inflow

Figure 2.5: The operation of a pump with an input pressure ?8 and output pressure
?> by heating and cooling a nematic cylinder.

temperature) equals ?8. At this point, there will be an instability (likely accompanied
by an aneurysm), and the volume jumps to something close to C. This instability has
been analyzed by Giudici and Biggins [31], and may be of interest in microfluidics.
Subsequent cooling takes it to point C.

Now close the inlet and start heating the pump. The mass of fluid in the pump is
fixed, and so its behavior shifts from that of the cold isotherm to that of the hot
isotherm. In the interim, the pressure-volume curve of the pump also changes to
that of the hot material. Therefore, the equilibrium shifts from C to D. Now, open
the outlet so that the pressure decreases to ?>. The only available state in the hot
pump is at F, and so the pump goes from point D, with very large volume, to point F,
with small volume, expelling the fluid. This is again accompanied by an instability
from E to F. Closing the outlet and opening the inlet takes us from F to A, resetting
the pump.

A pump can be characterized by its ejection fraction. In this case, the ejection
fraction is

(filled volume) − (empty volume)
filled volume

=
+� −+�
+�

= 98.6%, (2.19)

19

Figure 2.6: Ejection fraction as a function of anisotropy parameter, A.

which means that 98.6% of the fluid is pumped out of a filled balloon during
each cycle. This is extremely high: a normal human heart has a left ventricular
ejection fraction between 50% and 70%, according to the American College of
Cardiology [39]. A plot of ejection fraction for fixed A0 = 2 and varying A can be
seen in Figure 2.6.

2.5 Conclusion
We have introduced a modified formulation of the standardWarner-Terentjev energy
density incorporated into a higher-order Ogden model to more accurately describe
the behavior of nematic elastomers at large deformation. Furthermore, this work
has initiated the study of actuation from geometries beyond flat, two-dimensional
sheets by exploring a curvilinear three-dimensional geometry. We have outlined the
deformation of a nematic elastomer balloon under simple expansion and twist. The
material is actuated remotely by changing the temperature to dictate the degree of
anisotropy, and the response is tunable. The foundation for our understanding of
nematic elastomer actuation from flat geometries has already been well established
with respect to the design, optimization, manufacturing, and tuning (e.g. voxelated
sheets [76], wrinkling-resistant membranes [56], and moving inchworm [81]). Fu-
ture applications based on more complex geometries and loading conditions, for
instance incorporation of disclination defects and gradients of director or tempera-
ture across the thickness, can build upon this framework. Finally, the actuation can
be effected by light instead of temperature [79]. For example, the pump described
here would function with a light-driven actuation from A = 8 to A = 2. A practical

20

difficulty to be overcome is that many photo-active materials have a low penetration
depth and the actuation is in bending, rather than stretching.

21

C h a p t e r 3

UNIVERSAL DEFORMATIONS OF NEMATIC ELASTOMERS

3.1 Introduction
The goal of this chapter is to understand how the soft elasticity of nematic elastomers
affects complex inhomogeneous deformations. We have already seen in Chapter 2
that nematic elastomers can form fine-scale patterns called stripe domains. Stripe
domains were first observed by Kundler and Finkelmann [42] in monodomain ne-
matic sheets subjected to uniaxial tension in a direction normal to the original
director. These domains were associated with soft elasticity. Mathematically, the
Bladon-Terentjev-Warner theory [10] leads to an energy that is not convex, and its
relaxation leads to fine-scale structure and soft-behavior [23]. This has been studied
in homogeneous deformations (largely in uniaxial stretch [18, 19, 56], but more
recently in biaxial stretch [85]), where we see different regimes depending on the
imposed deformation. We expect these regimes to interact when the material is
subjected to inhomogeneous deformation, and this motivates the current work.

We begin by describing the Bladon-Terentjev-Warner theory [10] and its relaxation
due to Dolzmann and DeSimone [23]. The BTW theory uses a Gaussian approx-
imation to treat the entropy of polymer chains. However, when polymer chains
are subjected to large deformation, this approximation is no longer accurate as the
polymer chains themselves are stretched, so we propose a generalization based on
a Mooney-Rivlin energy. We then find its relaxation, which was independently
done by Agosiniani and DeSimone [1]. We use this relaxed energy to study a se-
ries of problems—the spherical balloon expansion, cylindrical balloon expansion,
cavitation, and bending of a beam. The key idea here is to exploit the notion of
universal deformations proposed by Ericksen [25]. He showed that there are certain
deformations that automatically satisfy the equations of elasticity in all isotropic
incompressible elastic bodies, and this is the basis of much work in finite elasticity.

3.2 Energy
Bladon-Terentjev-Warner theory
We begin by recalling the Bladon-Terentjev-Warner (BTW) theory for ideal nematic
elastomers, introduced in Chapter 2. We pick a reference configuration to be the
stress-free isotropic state and lower the temperature so that the material is in a

22

nematic state. The BTW theory adapts the Gaussian chain model to this situation,
and shows that the free energy density is given by

,�), (F ,n) =

`

2
[
tr

(
F >`−1

= F
)
− 3

]
detF = 1, |n| = 1

∞ else
(3.1)

with step-length tensor `= = A−1/3 (I + (A − 1)n ⊗ n). The anisotropy parameter
A describes the mesogen ordering: A = 1 represents the isotropic state, and A >
1 represents the anisotropic nematic state. Note that ,�), = 0 if and only if
F = Q`0R, n̂ = Qê0 for Q,R ∈ ($ (3), ê0 a fixed unit vector, and `0 =

A1/3 (I + (A − 1)ê0 ⊗ ê0).

DeSimone-Dolzmann relaxation
The BTW free energy is not convex, and this leads to fine-scale microstructure.
DeSimone and Dolzmann computed the relaxation [23]. To do so, minimize over
the nematic director n to obtain

, (F) = min
n s.t. |n|=1

,�), (F ,n) =

`

2

[
A1/3

(
B2

A
+ C2

B2 + 1
C2

)
− 3

]
detF = 1

∞ else
,

(3.2)
where B is the largest singular value ofF , and C is the largest singular value of cof F .
The relaxed energy is given by:

,@2 (F) =

0 F ∈ !
`

2

(
A1/3

C2
+ 2C
A1/6 − 3

)
F ∈ "

, (F) F ∈ (

∞ else

, (3.3)

where ! represents the liquid-like region," represents themicrostructure-formation
region, and (represents the solid-like region:

! : {(B, C) : C ≤ B2, C ≥
√
B, C ≤ A1/6}

" : {(B, C) : C ≥ A1/6, C ≤ B2, C ≥ A−1/2B2}
(: {(B, C) : C ≥

√
B, C ≤ A−1/2B2}

(3.4)

23

We can rewrite these constraints in terms of the principal stretches of F (details can
be seen in the Appendix in Section A.4):

! : {_<0G_<83 ≤ A1/6}

" : {_<0G_<83 ≥ A1/6,
_<0G

_<83
≤
√
A}

(: {_<0G
_<83

≥
√
A}

. (3.5)

This describes the energy after the material has formed fine-scale microstructure.
Figure 3.1 shows an illustration of the regions !, " , and (.

Figure 3.1: Regions of !, " , and (in the phase diagram of (B, C).

Physically, a liquid-like deformation in region ! is accommodated by unstressed
microstructure in which the nematic director is in three dimensions (not confined to
a plane). In region " , the deformation is accommodated by stressed microstructure
in which the nematic director is planar (confined to a two-dimensional plane).
For example, stripe domains are examples of microstructure that form in region
" . The solid-like region (corresponds to the stressed response of the polymer
network without any liquid crystal molecule reorientation, for instance stretching a
monodomain parallel to its nematic director.

One would expect that a nematic elastomer in region ! to be opaque due to the
scattering of light because the nematic directors are reorienting in 3D. A nematic
elastomer undergoing planar microstructure in region " would be macroscopically
opaque, but under polarized light microscopy there may be patterned features such
as stripe domains detectable at the micrometer length scale. A sample in region (

24

would appear transparent, because the nematic mesogens would be fully aligned as
a monodomain.

Generalized Mooney-Rivlin energy
This generalization and relaxation was independently proposed by Agostiniani and
DeSimone [1]. Note that the trace formula is simply an extension of the neo-
Hookean model for rubbers. This can be seen clearly when the energy is rewritten
as such:

,�), (�) = `

2
[
tr

(
F̃ >F̃

)
− 3

]
, (3.6)

where
F̃ = `−1/2

= F . (3.7)

Because the trace formula still relies on Gaussian chain modeling, it cannot model
the stress build-up at large stretches. We will work to construct an energy density
that is based on a generalized Mooney-Rivlin model.

Because a nematic elastomer is isotropic, our free energy density needs to be a
function of the three invariants of the left Cauchy-Green tensor b:

, = 5 (�1, �2, �3). (3.8)

The three invariants of the second-order tensor b = FF > are

�1 = tr b = tr
(
FF >

)
(3.9)

�2 =
1
2

[
(tr b)2 − tr

(
b2

)]
(3.10)

�3 = det b = det
(
FF >

)
= (detF)2 . (3.11)

Due to incompressibility of the material, the third invariant �3 = 1, so

, = 6(�1, �2). (3.12)

We notice that the first invariant is a function of F and the second invariant is a
function of cof F :

�1 = tr b = tr
(
FF >

)
(3.13)

�2 = tr b−1 = tr (cof b) = tr
[
(cof F) (cof F)>

]
. (3.14)

Thus, we begin by looking at an energy based on the first invariant. For a rubber
with deformation gradient F ,

,�1 (F) = 2 |�1 − 3|? (3.15)

= 2 |tr(FF >) − 3|? . (3.16)

25

For a nematic elastomer with deformation gradient F ,

,�1 (F̃) = ,�1 (`
−1/2
= F) (3.17)

= 2

����tr (`−1
= b

)
− 3

����? . (3.18)

After minimizing the energy over the nematic director n, we obtain:

min
n s.t. |n|=1

,�1

(
`−1/2
= F

)
= 2

����A1/3
(
B2

A
+ C

2

B2 +
1
C2

)
− 3

����? = 2����,1(B, C)
����? . (3.19)

Details can be seen in the Appendix in Section A.2. Similarly, the energy based on
the second invariant is as follows for rubbers:

,�2 (F) = 3 |�2 − 3|@ (3.20)

= 3

����tr [(cof F) (cof F)>] − 3
����@ . (3.21)

For a nematic elastomer with deformation gradient F ,

,�2 (F̃) = ,�2 (`
−1/2
= F) (3.22)

= 3

����tr [(`−1
= b

)−1
]
− 3

����@ . (3.23)

After minimizing the energy over the nematic director n, we obtain:

min
n s.t. |n|=1

,�2

(
`−1/2
= F

)
= 3

����A−1/3
(
A

B2 +
B2

C2
+ C2

)
− 3

����@ = 3����,2(B, C)
����@ . (3.24)

Details can be seen in theAppendix in SectionA.3. Thus, we can create a generalized
Mooney-Rivlin energy for an isotropic, incompressible nematic elastomer based on
,1(B, C) and,2(B, C) as follows:

, (B, C) =

"∑
8=1

28

����A1/3
(
B2

A
+ C

2

B2 +
1
C2

)
− 3

����?8
+

#∑
9=1

3 9

����A−1/3
(
A

B2 +
B2

C2
+ C2

)
− 3

����@ 9
detF = 1

∞ else

, (3.25)

where B is the largest singular value of F , C is the largest singular value of cof F ,
and 28 (8 = 1 : ") and 3 9 (9 = 1 : #) are constants.

26

Relaxation of the generalized Mooney-Rivlin energy
Based on previous work done in this field [1, 65], the free energy density in Equation
3.25 is not convex in B or C.

The relaxed form of this energy is:

,@2 (B, C) =
"∑
8=1

28 (|,1 |?8)@2 +
#∑
9=1

3 9 (|,2 |@ 9)@2 , (3.26)

where

(|,1 |?8)@2 (B, C) =

0 F ∈ !���� A1/3

C2
+ 2C
A1/6 − 3

����?8 F ∈ "

|,1 |?8 F ∈ (

∞ else

(3.27)

and

(|,2 |@ 9)@2 (B, C) =

0 F ∈ !����A−1/3C2 + 2A1/6

C
− 3

����@ 9

F ∈ "

|,2 |@ 9 F ∈ (

∞ else

. (3.28)

The regions !, " , and (are given by Equation 3.5, and the restrictions upon the
exponents ?8 ≥ 1 (8 = 1 : ") and @ 9 ≥ 1 (9 = 1 : #) must be satisfied.

3.3 Stress
Based on its principal values and directions, the left Cauchy-Green tensor is b =∑3
8=1 _

2
8
v̂8 ⊗ v̂8. If the strain energy density of a material can be written in the form

, = , (_8), where _1 ≥ _2 ≥ _3 are the principal stretches, then the Cauchy stress
of an incompressible, isotropic hyperelastic body is

σ = −[I +
3∑
8=1

_8
m,

m_8
v̂8 ⊗ v̂8 . (3.29)

Here, the vectors v̂8 are normalized eigenvectors. We can derive the stresses for
the relaxed generalized Mooney-Rivlin energy of Equation 3.26 in all three regions:
, = ,@2 (B, C). In region !, the stresses are

σ! = −[!I . (3.30)

27

In region " ,,@2 (B, C) = ∑"
8=1 28 |�" |?8 +

∑#
9=1 3 9 |�" |@ 9 , where

�" = A
1/3_2

3 +
2_1_2

A1/6 − 3 (3.31)

�" = A
−1/3_2

1_
2
2 + 2_3A

1/6 − 3. (3.32)

The principal Cauchy stresses are

σ" = −["I +
3∑
8=1

_8
m,@2

m_8
v̂8 ⊗ v̂8, (3.33)

where

_1
m,@2

m_1
=

"∑
8=1

28?8 |�" |?8−12A−1/6_1_2 +
#∑
9=1

3 9@ 9 |�" |@ 9−12A−1/3_2
1_

2
2 (3.34)

_2
m,@2

m_2
= _1

m,@2

m_1
(3.35)

_3
m,@2

m_3
=

"∑
8=1

28?8 |�" |?8−12A1/3_2
3 +

#∑
9=1

3 9@ 9 |�" |@ 9−12A1/6_3. (3.36)

In region (,,@2 (B, C) = ∑"
8=1 28 |�(|?8 +

∑#
9=1 3 9 |�(|@ 9 , where

�(= A
1/3_2

3 + A
1/3_2

2 + A
−2/3_2

1 − 3 (3.37)

�(= A
−1/3_2

1_
2
2 + A

−1/3_2
1_

2
3 + A

2/3_2
2_

2
3 − 3. (3.38)

The principal Cauchy stresses are

σ(= −[(I +
3∑
8=1

_8
m,@2

m_8
v̂8 ⊗ v̂8, (3.39)

where

_1
m,@2

m_1
=

"∑
8=1

28?8 |�(|?8−12A−2/3_2
1 +

#∑
9=1

3 9@ 9 |�(|@ 9−12A−1/3_2
1(_

2
2 + _

2
3) (3.40)

_2
m,@2

m_2
=

"∑
8=1

28?8 |�(|?8−12A1/3_2
2 +

#∑
9=1

3 9@ 9 |�(|@ 9−12_2
2(A
−1/3_2

1 + A
2/3_2

3)

(3.41)

_3
m,@2

m_3
=

"∑
8=1

28?8 |�(|?8−12A1/3_2
3 +

#∑
9=1

3 9@ 9 |�(|@ 9−12_2
3(A
−1/3_2

1 + A
2/3_2

2).

(3.42)

28

3.4 Ericksen’s “universal deformations"
J. L. Ericksen established the problem of determining all deformations which can be
produced in every isotropic, incompressible, hyperelastic body by the application
of surface tractions alone (no body forces) [25]. Because these universal relations
are independent of constitutive relation, they are a powerful tool in continuum
mechanics.

Below are the solution families known thus far for a point (G, H, I), (d, \, I), or
(d, \, q) with respective material point (-,., /), (',Θ, /), or (',Θ,Φ), and con-
stant 0, 1, 2, 3, 4, 5 :

Family 0: Homogeneous deformations (for spatial point x with material point X
and deformation gradient F , constant vector c)

x = FX + c (3.43)

Family 1: Bending, stretching, and shearing of a rectangular block

d =
√

20-, \ = 1., I =
/

01
− 12. (3.44)

Family 2: Straightening, stretching, and shearing of a sector of a tube

G =
1
2
012'2, H =

Θ

01
, I =

/

1
− 2Θ
01

(3.45)

Family 3: Inflation, bending, torsion, extension, and shearing of an annular wedge,
with 0(2 5 − 34) = 1

d =
√
0'2 + 1, \ = 2Θ + 3/, I = 4Θ + 5 / (3.46)

Family 4: Inflation or eversion of a sector of a spherical shell

d = [±'3 + 0]1/3, \ = ±Θ, q = Φ (3.47)

Family 5: Inflation, bending, extension, and azimuthal shearing of an annular
wedge [38, 66]

d = 01/2', \ = 3 ln (1') + 2Θ, I = 4/, 024 = 1 (3.48)

In this work, we address three of the families, as applied to nematic elastomers: the
bending of a block is a Family 1 deformation, the inflation of a cylindrical balloon
is a Family 3 deformation, and the inflation of a spherical balloon and the cavitation
of a disk are classified as Family 4 deformations.

29

Figure 3.2: Cross-section of spherical balloon.

3.5 Spherical balloon
Deformation of spherical balloon expansion
We are interested in the deformation of a balloon, which can be modeled as a
spherical shell subjected to an internal pressure. In the undeformed configuration,
the balloon has inner radius '8 and outer radius '>. The internal pressure is
denoted by ?. The spherical balloon is assumed to remain spherical throughout the
deformation. The undeformed sphere has radial coordinate ' ∈ ['8, '>], azimuthal
angle Θ ∈ [0, 2c), and polar angle Φ ∈ [0, c), while the deformed sphere has
coordinate system d ∈ [d8, d>], \ ∈ [0, 2c), and q ∈ [0, c). Following Ericksen,
we make the ansatz

d = d(')

\ = Θ

q = Φ

. (3.49)

The deformation gradient in spherical coordinates is

F =
©«
3d

3'
d

'
d

'

ª®®®¬ . (3.50)

With incompressibility, detF = 1, we obtain this first-order differential equation

3d

3'

d2

'2 = 1. (3.51)

Solving for the deformed radius d as a function of the undeformed radius ':

d =

(
'3 + 2

)1/3
, (3.52)

30

where 2 is a constant. Let _ denote the azimuthal stretch, _ = d

'
, and let _> denote

the azimuthal stretch at the outer radius, _> = d('>)
'>

. Then,

_> =

(
'3
> + 2

)1/3

'>
. (3.53)

Solving for 2 and plugging 2 back into Equation 3.52 yields

d =

(
'3 + '3

>

(
_3
> − 1

))1/3
, (3.54)

and the azimuthal stretch is

_ =

(
1 +

(
'>

'

)3 (
_3
> − 1

))1/3

. (3.55)

Thus, the deformation gradient is

F =
©«

1
_2

_

_

ª®®®¬ , (3.56)

and the left Cauchy-Green tensor, b = FF > is

b =
©«

1
_4

_2

_2

ª®®®¬ . (3.57)

The principal stretches are _1 = _2 = _ (corresponding to e\ and eq) and _3 =
1
_2

(corresponding to ed). Thus, B = _ and C = _2. The regions are:

! : {' ≥ '∗} (3.58)

" : {' ≤ '∗, A ≥ 1} (3.59)

(: {A ≤ 1}, (3.60)

where

'∗ = '>

(
_3
> − 1

A1/4 − 1

)1/3
. (3.61)

This leads to the possibility of three cases:

• Case 1: A > 1 and '∗ ≤ '8: the entire balloon is in region !
• Case 2: A > 1 and '8 < '∗ < '>: the inner region of the balloon ' ∈ ['8, '∗]
is in " , and the outer region ' ∈ ['∗, '>] is in !

31

Figure 3.3: Diagram of all possible cases in the inflation of a nematic elastomer
spherical balloon.

• Case 3: A > 1 and '∗ ≥ '>: the entire balloon is in region "
• Case 4: A = 1 and the entire balloon is in region (

A diagram illustrating the various cases can be seen in Figure 3.3.

Note that Figure 3.1 can provide us with insight into the regions that this deformation
will experience. The spherical balloon expansion is merely equibiaxial stretch (see
the deformation gradient of Equation 3.56). Recalling that B is the largest singular
value of F and C is the largest singular value of cof F , this means that C = B2 for
this deformation. Following along the C = B2 curve in Figure 3.1, we see that the
deformation will move progressively through region ! then " , never touching (for
A > 1.

Stress
The expressions for stress are as follows: In region !,

σ! = −[!I . (3.62)

In region " , the non-zero components of the stress are:

f"dd = −[" +
"∑
8=1

28?8 |�" |?8−1 2A1/3

_4 +
#∑
9=1

3 9@ 9 |�" |@ 9−1 2A1/6

_2

f"\\ = −[" +
"∑
8=1

28?8 |�" |?8−1 2_2

A1/6 +
#∑
9=1

3 9@ 9 |�" |@ 9−12A−1/3_4

f"qq = f
"
\\ ,

(3.63)

where
�" =

A1/3

_4 +
2_2

A1/6 − 3

�" = A
−1/3_4 + 2A1/6

_2 − 3.
(3.64)

32

In region (, A = 1 and the non-zero components of the stress are

f(dd = −[(+
"∑
8=1

28?8 |�(|?8−1 2
_4 +

#∑
9=1

3 9@ 9 |�(|@ 9−1 4
_2

f(\\ = −[
(+

"∑
8=1

28?8 |�(|?8−1(2_2) +
#∑
9=1

3 9@ 9 |�(|@ 9−1(2_2)
(
_2 + 1

_4

)
f(qq = f

(
\\ ,

(3.65)

where
�(=

1
_4 + 2_2 − 3

�(= _
4 + 2

_2 − 3.
(3.66)

Solving static equilibrium
The static equilibrium equations (in the absence of body forces) in spherical coor-
dinates are

d :
mfdd

md
+ 2

fdd

d
+ 1
d

mfqd

mq
+ cot q

d
fqd +

1
d sin q

mf\d

m\
− 1
d

(
f\\ + fqq

)
= 0

(3.67)

\ :
mfd\

md
+ 2

fd\

d
+ 1
d

mfq\

mq
+ 1
d sin q

mf\\

m\
+
f\d

d
+ cot q

d

(
fq\ + f\q

)
= 0 (3.68)

q :
mfdq

md
+ 2

fdq

d
+ 1
d

mfqq

mq
+ 1
d sin q

mf\q

m\
+
fqd

d
+ cot q

d

(
fqq − f\\

)
= 0,

(3.69)

and the boundary conditions for this problem are as follows:

fdd |d=d8 = −? (3.70)

fdd |d=d> = 0. (3.71)

In all cases, solving the q equation yields [= [(d, \). Similarly, solving the \
equation, we find that [= [(d). Finally, to solve the d equation, we will rewrite
the stress expressions as

fdd = −[+ f̂dd (3.72)

f\\ = fqq = −[+ f̂\\ , (3.73)

and so the boundary conditions can be rewritten as follows

−[(d = d8) + f̂dd (d = d8) = −? (3.74)

−[(d = d>) + f̂dd (d = d>) = 0. (3.75)

33

Case 1

In Case 1, the entire balloon is in region !. The two boundary conditions for this
case are:

−[! (d = d8) + f̂!dd (d = d8) = −? (3.76)

−[! (d = d>) + f̂!dd (d = d>) = 0. (3.77)

The stress in this region is found in Equation 3.62. Thus, the d equilibrium equation
yields

3f!dd

3d
+ 2

f!dd

d
− 1
d

(
f!\\ + f!qq

)
= 0 (3.78)

3 (−[! + f̂!dd)
3d

+ 2
(−[! + f̂!dd)

d
− 1
d

(
−[! + f̂!\\ − [! + f̂!qq

)
= 0 (3.79)∫ d>

d8

3

(
−[! + f̂!dd

)
=

∫ d>

d8

03d (3.80)

? = 0 (3.81)

Thus, for Case 1, the inner pressure is:

? = 0. (3.82)

Case 2

In Case 2, ' ∈ ['8, '∗] is in region " , and the ' ∈ ['∗, '>] is in !. The two
boundary conditions can be rewritten specific to the region:

−[" (d = d8) + f̂"dd (d = d8) = −? (3.83)

−[! (d = d>) + f̂!dd (d = d>) = 0, (3.84)

and there is an additional boundary condition for continuity between the two regions:

− [! (d = d∗) + f̂!dd (d = d∗) = −[" (d = d∗) + f̂"dd (d = d∗). (3.85)

34

First, we solve the equilibrium equations in region !. Again, the stress in region !
is found in Equation 3.62. The d equation yields:

3f!dd

3d
+ 2

f!dd

d
− 1
d

(
f!\\ + f!qq

)
= 0 (3.86)

3 (−[! + f̂!dd)
3d

+ 2
(−[! + f̂!dd)

d
− 1
d

(
−[! + f̂!\\ − [! + f̂!qq

)
= 0 (3.87)

3

(
−[! + f̂!dd

)
3d

= 0 (3.88)(
−[! + f̂!dd

)
|d>
d∗ = 0 (3.89)(

−[! (d>) + f̂!dd (d>)
)
−

(
−[! (d∗) + f̂!dd (d∗)

)
= 0 (3.90)

−[! (d∗) + f̂!dd (d∗) = 0 (3.91)

In region M, the stress is that of Eqns. 3.63 and 3.64. The d equation yields:

3f"dd

3d
+ 2

f"dd

d
− 1
d

(
f"\\ + f"qq

)
= 0 (3.92)

3 (−[" + f̂"dd)
3d

+ 1
d

(
2f̂"dd − f̂"\\ − f̂"qq

)
= 0 (3.93)∫ d∗

d8

3

(
−[" + f̂"dd

)
= −

∫ d∗

d8

2
d

(
f̂"dd − f̂"\\

)
3d (3.94)(

−[" (d∗) + f̂"dd (d∗)
)
−

(
−[" (d8) + f̂"dd (d8)

)
=

∫ d∗

d8

2
d

(
f̂"\\ − f̂"dd

)
3d (3.95)

? =

∫ d∗

d8

2
d

(
f̂"\\ − f̂"dd

)
3d. (3.96)

The right-hand side requires a change of integration variable from d to '. Noting
that 3d = 1

_(')2 3', we obtain an expression for the inner pressure:

? =

∫ '∗

'8

2
_(')3'

[
f̂"\\ (d = _(')') − f̂"dd (d = _(')')

]
3'. (3.97)

Case 3

In Case 3, all of the balloon is in region " . The two boundary conditions for this
case are:

−[" (d = d8) + f̂"dd (d = d8) = −? (3.98)

−[" (d = d>) + f̂"dd (d = d>) = 0. (3.99)

35

The stress in region " can be found in Eqns. 3.63 and 3.64. The d equilibrium
equation yields:

3f"dd

3d
+ 2

f"dd

d
− 1
d

(
f"\\ + f"qq

)
= 0

(3.100)
3 (−[" + f̂"dd)

3d
+ 1
d

(
2f̂"dd − f̂"\\ − f̂"qq

)
= 0

(3.101)∫ d>

d8

3

(
−[" + f̂"dd

)
= −

∫ d>

d8

2
d

(
f̂"dd − f̂"\\

)
3d

(3.102)(
−[" (d>) + f̂"dd (d>)

)
−

(
−[" (d8) + f̂"dd (d8)

)
=

∫ d>

d8

2
d

(
f̂"\\ − f̂"dd

)
3d

(3.103)

? =

∫ d>

d8

2
d

(
f̂"\\ − f̂"dd

)
3d.

(3.104)

As in Case 2, we employ a change of integration variable from d to ' and obtain
the inner pressure as:

? =

∫ '>

'8

2
_(')3'

[
f̂"\\ (d = _(')') − f̂"dd (d = _(')')

]
3'. (3.105)

Case 4

In Case 4, all of the balloon is in region (. Note that only the isotropic state (A = 1)
falls under this case. The two boundary conditions specific to this case are

−[((d = d8) + f̂(dd (d = d8) = −? (3.106)

−[((d = d>) + f̂(dd (d = d>) = 0. (3.107)

36

The stress in region (can be found in Eqns. 3.65 and 3.66. The d equilibrium
equation yields:

3f"dd

3d
+ 2

f"dd

d
− 1
d

(
f"\\ + f"qq

)
= 0

(3.108)
3 (−[" + f̂"dd)

3d
+ 1
d

(
2f̂"dd − f̂"\\ − f̂"qq

)
= 0

(3.109)∫ d>

d8

3

(
−[" + f̂"dd

)
= −

∫ d>

d8

2
d

(
f̂"dd − f̂"\\

)
3d

(3.110)(
−[" (d>) + f̂"dd (d>)

)
−

(
−[" (d8) + f̂"dd (d8)

)
=

∫ d>

d8

2
d

(
f̂"\\ − f̂"dd

)
3d

(3.111)

? =

∫ d>

d8

2
d

(
f̂"\\ − f̂"dd

)
3d.

(3.112)

As in Case 2, we employ a change of integration variable from d to ' and obtain
the inner pressure as:

? =

∫ '>

'8

2
_(')3'

[
f̂"\\ (d = _(')') − f̂"dd (d = _(')')

]
3'. (3.113)

Results
The calculationswere performed inMATLAB. The solutions are plotted in Figures 3.4–
3.5b with the inner radius '8 = 1 cm and outer radius '> = 1.1 cm. The following
parameters for the generalized Mooney-Rivlin model were used: " = 2, # = 1,
21 = 1.0·105 Pa, 22 = 1.90·102 Pa, 31 = 1.59·10−2 Pa, ?1 = 1.3, ?2 = 5, and @1 = 2.
This yields an effective shear modulus ` = 1

2

(∑#
8=1 28?8 +

∑"
9=1 3 9@ 9

)
= 6.52 · 104

Pa.

The pressure ?, normalized by the effective shear modulus `, is plotted as a function
of the azimuthal stretch at the outer radius _>. Figure 3.4 shows the comparison
between the generalized Mooney-Rivlin model of this work and the BTW (neo-
Hookean) model of previous work in the field [23] for an anisotropy parameter of
A = 8. The neo-Hookean model is unable to capture the correct effect of elasticity
in the material at very high values of stretch (e.g. for _> greater than about 6). As
seen in experiments of rubber balloons [73], the balloon experiences a subsequent

37

Figure 3.4: Comparison of this work’s generalized Mooney-Rivlin model with the
trace formula model of [23] for inflation pressure of a spherical balloon.

stiffening due to the further stretching of the polymer, or “effects of the limited
extensibility of the network", as indicated by the increase in pressure at high stretch,
which is correctly captured by our generalized Mooney-Rivlin model.

(a) (b)

Figure 3.5: Spherical balloon results: (a) Pressure-stretch curves at varying
anisotropy parameter. (b) Progression of the spherical balloon solution through
individual case numbers.

Figure 3.5a shows the results for varying anisotropy parameter A. The response of
the balloon is stiffest in the isotropic state (A = 1), and gets correspondingly softer
as A increases, as expected. As the pressure ? increases, the balloon undergoes
deformation according to the various cases, as seen in Figure 3.5b. For A = 1
(rubber), the balloon is in Case 1 (region !) at _> = 1 when there is no deformation,
but for the rest of the deformation the balloon is entirely in region (, corresponding to
a solid-like response with no microstructure formation, since the material is a rubber
with no liquid crystals. For A > 1, the solutions move progressively from Case 1

38

to 2 to 3 throughout the deformation. At a stretch of _> = 1, the balloon is again
in Case 1, corresponding to being entirely in the ! region because no deformation
has occurred. Immediately upon inflation of the balloon, the balloon jumps to Case
2, where the inner part of the balloon experiences region " , developing fine-scale
microstructure. Then shortly after, the balloon will become entirely in region " ,
and the rest of the balloon will develop fine-scale microstructure in response to the
pressure. This formation of microstructure by the liquid crystal molecules creates a
softer response than the rubber without liquid crystals.

3.6 Cylindrical balloon
Deformation of cylindrical balloon expansion
We are interested in the deformation of a cylindrical shell composed of the nematic
elastomer, capped off at both ends, subjected to an internal pressure. The shell
has undeformed height �, inner radius '8, and undeformed outer radius '>. Note
that there is no thin-wall approximation used in this formulation. The internal
pressure is denoted by ?, as seen in Figure 3.6a. The cylindrical shell is assumed to
deform uniformly, i.e. the cylinder remains a cylinder throughout the deformation.
The undeformed cylinder has coordinate system ', Θ, and / , while the deformed
cylinder has coordinate system d, \, and I, as seen in Figure 3.6b. The liquid crystals
are in an isotropic reference state and free to move throughout the deformation. The
nematic elastomer is assumed to be incompressible.

(a) (b)

Figure 3.6: (a) Cross-section of cylindrical shell. (b) Schematic showing cylindrical
coordinates.

We assume that the cylinder remains a cylinder throughout the deformation, so the
mapping that describes this progression is ϕ = ded + IeI. Following Ericksen, we

39

look for a solution of the form
d = d(')

\ = Θ

I = b/

. (3.114)

Following the convention found in the paper by Rudykh et al. on electroactive
balloons [63], let _ = A/' be the hoop stretch ratio. Let b denote the axial stretch
ratio. Thus the associated deformation gradient is:

F =
©«

1
_b

0 0
0 _

0 0 b

ª®®®¬ , (3.115)

where

_ =

√
1
b
+ '

2
>

'2

(
_2
> −

1
b

)
. (3.116)

For fixed axial ratio b = 1, the principal stretches _1 ≥ _2 ≥ _3 are _1 = _,
corresponding to ê\ , _2 = 1, corresponding to êI, and _3 =

1
_
, corresponding to êd.

Simplifying the regions, we find:

! : ' ≥ '2 (3.117)

" : '1 ≤ ' ≤ '2 (3.118)

(: ' ≤ '1, (3.119)

where '1 =

√
'2
> (_2

>−1)
A−1 and '2 =

√
'2
> (_2

>−1)
A1/3−1 .

This leads to the possibility of the following cases:

• Case 0: A > 1 and '1 ≤ '2 ≤ '8: the entire balloon is in region !
• Case 1: A > 1 and '1 ≤ '8 < '2 < '>: the inner portion of the balloon is in
region " and the outer portion is in !

• Case 2: A > 1 and '1 ≤ '8 < '> ≤ '2: the entire balloon is in region "
• Case 3: A > 1 and '8 < '1 < '> ≤ '2: the inner portion of the balloon is in
region (and the outer portion is in "

• Case 4: A > 1 and '8 < '1 < '2 < '>: the balloon is in regions (, then " ,
then ! from inside to outside

• Case 5: A ≥ 1 and '> ≤ '1 ≤ '2: the entire balloon is in region (

40

Figure 3.7: Diagram of all possible cases in the inflation of a nematic elastomer
cylindrical balloon.

A diagram illustrating the various cases can be seen in Figure 3.7.

As in the spherical balloon deformation, we can gain insight from Figure 3.1 re-
garding the regions that this deformation will experience. The cylindrical balloon
expansion with fixed axial ration b = 1 is the same as a planar extension deformation
(the deformation gradient of Equation 3.115 is F = diag(1/_, _, 1)). Recalling that
B is the largest singular value of F and C is the largest singular value of cof F , this
means that C = B for this deformation. If we were to follow along the C = B line in
Figure 3.1, we see that the deformation will move progressively through region !
then " then (.

Stress
The stress in region ! is

σ! = −[!I . (3.120)

The non-zero components of stress in region " are

f"dd = −[" +
"∑
8=1

28?8 |�" |?8−12
A1/3

_2 +
#∑
9=1

3 9@ 9 |�" |@ 9−1 2A1/6

_

f"\\ = −[" +
"∑
8=1

28?8 |�" |?8−1 2_
A1/6 +

#∑
9=1

3 9@ 9 |�" |@ 9−12A−1/3_2

f"II = f
"
\\ ,

(3.121)

where
�" =

A1/3

_2 +
2_
A1/6 − 3

�" = A
−1/3_2 + 2A1/3

_
− 3.

(3.122)

41

The non-zero components of stress in region (are

f(dd = −[(+
"∑
8=1

28?8 |�(|?8−12
A1/3

_2 +
#∑
9=1

3 9@ 9 |�(|@ 9−1 2
_2 (A

−1/3_2 + A2/3)

f(\\ = −[
(+

"∑
8=1

28?8 |�(|?8−12_2A−2/3 +
#∑
9=1

3 9@ 9 |�(|@ 9−1(2A−1/3_2)
(
1 + 1

_2

)
f(II = −[(+

"∑
8=1

28?8 |�(|?8−12A1/3 +
#∑
9=1

3 9@ 9 |�(|@ 9−1
(
2A−1/3_2 + 2

A2/3

_2

)
,

(3.123)
where

�(=
A1/3

_2 + A
1/3 + A−2/3_2 − 3

�(= A
−1/3_2 + A−1/3 + A

2/3

_2 − 3.
(3.124)

Solving static equilibrium
Static equilibrium (in the absence of body forces) is obtained when div σ = 0. In
cylindrical coordinates and for a symmetric tensor σ,

mfdd

md
+ 1
d

mfd\

m\
+
fdd − f\\

d
+
mfdI

mI
= 0,

mfd\

md
+ 1
d

mf\\

m\
+

2fd\
d
+ mf\I

mI
= 0,

mfdI

md
+ 1
d

mf\I

m\
+
fdI

d
+ mfII

mI
= 0.

(3.125)

The boundary conditions for this problem are as follows:

fdd |d=d8 = −? (3.126)

fdd |d=d> = 0. (3.127)

For every case, the \ and I equilibrium equations yield that [= [(d). This leaves
only the d equilibrium equation to be solved. We will rewrite the stress expressions
as

fdd = −[+ f̂dd (3.128)

f\\ = −[+ f̂\\ . (3.129)

42

Case 0

In Case 0, the entire balloon is in region !. The two boundary conditions for this
case are:

−[! (d = d8) + f̂!dd (d = d8) = −? (3.130)

−[! (d = d>) + f̂!dd (d = d>) = 0. (3.131)

The d equilibrium equation yields
3f!dd

3d
+ 1
d

(
f!dd − f!\\

)
= 0 (3.132)

3 (−[! + f̂!dd)
3d

+ 1
d

(
f̂!dd − f̂!\\

)
= 0 (3.133)∫ d>

d8

3

(
−[! + f̂!dd

)
=

∫ d>

d8

03d (3.134)

? = 0, (3.135)

and thus, for Case 1, the inner pressure is:

? = 0. (3.136)

Case 1

In Case 1, ' ∈ ['8, '2] is in region " , and the ' ∈ ['2, '>] is in !. The two
boundary conditions can be rewritten specific to the region:

−[" (d = d8) + f̂"dd (d = d8) = −? (3.137)

−[! (d = d>) + f̂!dd (d = d>) = 0, (3.138)

and there is an additional boundary condition for continuity between the two regions:

− [! (d = d2) + f̂!dd (d = d2) = −[" (d = d2) + f̂"dd (d = d2). (3.139)

First, we solve the equilibrium equations in region !. The d equation yields:
3f!dd

3d
+ 1
d

(
f!dd − f!\\

)
= 0 (3.140)

3 (−[! + f̂!dd)
3d

= 0 (3.141)∫ d>

d2

3

(
−[! + f̂!dd

)
=

∫ d>

d2

03d (3.142)(
−[! + f̂!dd

)
|d>d2 = 0 (3.143)

[" (d2) − f̂"dd (d2) = 0. (3.144)

43

In region M, the d equation yields:
3f"dd

3d
+ 1
d

(
f"dd − f"\\

)
= 0 (3.145)

3 (−[" + f̂"dd)
3d

+ 1
d

(
f̂"dd − f̂"\\

)
= 0 (3.146)∫ d2

d8

3

(
−[" + f̂"dd

)
=

∫ d2

d8

1
d

(
f̂"\\ − f̂"dd

)
3d (3.147)

? =

∫ d2

d8

1
d

(
f̂"\\ − f̂"dd

)
3d. (3.148)

The right-hand side requires a change of integration variable from d to '. Noting
that 3d = 1

_(')2 3', we obtain an expression for the inner pressure:

? =

∫ '2

'8

1
_(')3'

[
f̂"\\ (d = _(')') − f̂"dd (d = _(')')

]
3'. (3.149)

Case 2

In Case 2, ' ∈ ['8, '>] is in region " . The boundary conditions are:

−[(d8) + f̂"dd (d8) = −? (3.150)

−[(d>) + f̂"dd (d>) = 0. (3.151)

Similar to the previous cases, the d equilibrium equation yields the pressure:

? =

∫ '>

'8

1
_(')3'

[
f̂"\\ (d = _(')') − f̂"dd (d = _(')')

]
3'. (3.152)

Case 3

In Case 3, ' ∈ ['8, '1] is in region (and ' ∈ ['1, '>] is in region " . The
boundary conditions are as follows:

−[" (d = d>) + f̂"dd (d = d>) = 0 (3.153)

−[((d = d8) + f̂(dd (d = d8) = −?, (3.154)

and there is an additional boundary condition for continuity between the two regions:

− [" (d = d1) + f̂"dd (d = d1) = −[((d = d1) + f̂(dd (d = d1). (3.155)

In region " , the d equilibrium equation yields

[((d1) − f̂(dd (d1) = int1 (3.156)

=

∫ '>

'1

1
_(')3'

[
f̂"\\ (d = _(')') − f̂"dd (d = _(')')

]
3'.

(3.157)

44

In region (, we have ∫ d1

d8

3

(
−[(+ f̂(dd

)
=

∫ d1

d8

1
d

(
f̂(\\ − f̂

(
dd

)
3d (3.158)

−[((d1) + f̂(dd (d1) − f̂(dd (d8) + [((d8) =
∫ d1

d8

1
d

(
f̂(\\ − f̂

(
dd

)
3d (3.159)

−int1 + ? = int2, (3.160)

where

int2 = f̂(dd (d1) =
∫ '1

'8

1
_(')3'

[
f̂(\\ (d = _(')') − f̂

(
dd (d = _(')')

]
3'.

(3.161)
This yields the result

? = int1 + int2, (3.162)

or
? =

∫ '>

'1

1
_(')3'

[
f̂"\\ (d = _(')') − f̂"dd (d = _(')')

]
3'

+
∫ '1

'8

1
_(')3'

[
f̂(\\ (d = _(')') − f̂

(
dd (d = _(')')

]
3'.

(3.163)

Case 4

In Case 4, ' ∈ ['8, '1] is in region (, ' ∈ ['1, '2] is in region" , and ' ∈ ['2, '>]
is in region !. The boundary conditions are

−[! (d = d>) + f̂!dd (d = d>) = 0 (3.164)

−[((d = d8) + f̂(dd (d = d8) = −?, (3.165)

and there are additional boundary conditions for continuity between the regions:

−[" (d = d1) + f̂"dd (d = d1) = −[((d = d1) + f̂(dd (d = d1) (3.166)

−[" (d = d2) + f̂"dd (d = d2) = −[! (d = d2) + f̂!dd (d = d2). (3.167)

Region ! yields the result

[! (d2) − f̂!dd (d2) = 0. (3.168)

45

Region " yields

−[" (d2) + f̂"dd (d2) − f̂"dd (d1) + [" (d1) =
∫ d2

d1

1
d

(
f̂"\\ − f̂"dd

)
3d (3.169)

−[! (d2) + f̂!dd (d2) − f̂(dd (d1) + [((d1) =
∫ d2

d1

1
d

(
f̂"\\ − f̂"dd

)
3d (3.170)

[((d1) − f̂(dd (d1) =
∫ d2

d1

1
d

(
f̂"\\ − f̂"dd

)
3d, (3.171)

so

[((d1) − f̂(dd (d1) = int1 (3.172)

=

∫ '2

'1

1
_(')3'

[
f̂"\\ (d = _(')') − f̂"dd (d = _(')')

]
3'.

(3.173)

Region (yields

−[((d1) + f̂(dd (d1) − f̂(dd (d8) + [((d8) =
∫ d1

d8

1
d

(
f̂"\\ − f̂"dd

)
3d (3.174)

−int1 + ? =
∫ d1

d8

1
d

(
f̂"\\ − f̂"dd

)
3d (3.175)

−int1 + ? = int2, (3.176)

where

int2 =
∫ '1

'8

1
_(')3'

[
f̂(\\ (d = _(')') − f̂

(
dd (d = _(')')

]
3'. (3.177)

Thus,
? = int1 + int2, (3.178)

or
? =

∫ '2

'1

1
_(')3'

[
f̂"\\ (d = _(')') − f̂"dd (d = _(')')

]
3'

+
∫ '1

'8

1
_(')3'

[
f̂(\\ (d = _(')') − f̂

(
dd (d = _(')')

]
3'.

(3.179)

Case 5

In Case 5, ' ∈ ['8, '>] is in region (. The boundary conditions are as follows:

−[((d = d>) + f̂(dd (d = d>) = 0 (3.180)

−[((d = d8) + f̂(dd (d = d8) = −?. (3.181)

The d equilibrium equation yields the result

? =

∫ '>

'8

1
_(')3'

[
f̂(\\ (d = _(')') − f̂

(
dd (d = _(')')

]
3'. (3.182)

46

Results
The calculations were performed in MATLAB with inner radius '8 = 1 cm and outer
radius '> = 1.1 cm. The parameters that were used for the generalized Mooney-
Rivlin model are the same as for the spherical balloon except with ?2 = 5, which
yields an effective shear modulus ` = 1

2

(∑#
8=1 28?1 +

∑"
9=1 3 9@ 9

)
= 6.55 · 104 Pa.

The results for the inflation a cylindrical balloon with fixed axial stretch can be seen
in Figures 3.8–3.9b.

Figure 3.8: Comparison of this work’s generalized Mooney-Rivlin model with the
trace formula model of [23] for inflation pressure of a cylindrical balloon.

Figure 3.8 compares the results from the generalized Mooney-Rivlin model with
that of the BTW theory (which features a neo-Hookean energy structure). Similarly
to the spherical balloon, the BTW model is unable to capture the correct effect of
elasticity in the material at very high values of stretch, so the two curves deviate
starting around a stretch of _> ≈ 3. This work’s Mooney-Rivlin model captures the
physics of the rubber extension at high stretch correctly.

Figure 3.9a and 3.9b shows the results for the balloon inflation at varying anisotropy
parameter A. The response of the balloon is stiffest in the isotropic state (A = 1),
and gets correspondingly softer as A increases, as expected. We also note that
for A = 1, the deformation of the balloon passes through (_>, ?/`) = (1, 0) in its
undeformed state and then the pressure begins immediately rising upon _> becoming
greater than 1. However, for A > 1, the fact that the balloon moves through Case
0 for finite values of _> means that the balloon starts inflating at points that are
not at (_>, ?/`) = (1, 0), as mentioned in Chapter 2. This is due to the fact
that there is a spontaneous deformation associated with the nematic state, because
the liquid crystal molecules spontaneously orient along a preferred direction and

47

(a) (b)

Figure 3.9: Cylindrical balloon results: (a) Results for cylindrical balloon expansion
at varying anisotropy parameter. (b) Progression of the cylindrical balloon solution
through individual case numbers.

the surrounding polymer network deforms accordingly, with a stretch along that
preferred direction and contraction in the transverse axes. Macroscopically, this
means that the cylindrical balloon experiences finite stretch with zero stress.

Figure 3.9b shows the solution’s progression through Cases 0 through 5 throughout
the deformation. For A = 1 (rubber), the balloon is in Case 0 (corresponding to
region !) at _> = 1 because there is no deformation, but after that point the balloon
is entirely in Case 5 (region (), corresponding to a solid-like response without
microstructure formation. For A > 1, the balloons begin in Case 0 (entirely in region
!). Then the balloons will develop an inner portion that lies in region " (Case 1),
corresponding to fine-scale microstructure formation in the inner part of the balloon,
due to the boundary condition that there is internal pressure at the inner radius of
the balloon. Then the balloon will then become entirely in region " (Case 2) before
the inner portion of the balloon will develop a solid-like response because it will be
in region ((Case 3). Finally, the balloon will become entirely in region (, and the
balloon will have a purely rubber response (Case 5). Note that we do not encounter
the case in which !, " , and (are all present within the balloon (Case 4) in these
calculations.

3.7 Cavitation
Deformation
The original experiments of cavitation by Gent and Lindley demonstrated that when
rubber cylinders bonded to parallel plates are subjected to a tensile load, spherical

48

ruptures form and grow in radius [30]. A schematic for the deformation of cavitation
is shown in Figure 3.10.

Figure 3.10: Schematic showing the cross-section of a disk of nematic elastomer
bonded to parallel plates, which are stretched in uniaxial tension.

This experiment can be modeled as a spherical void inside of an infinite medium
subjected to a state of triaxial extension, as seen in Figure 3.11. We do not consider
nucleation (we assume that the spherical void already exists), and we assume that
the cavity remains spherical throughout the deformation, which is consistent with
the experiments. We are interested in the behavior as the spherical void becomes

Figure 3.11: Nematic elastomeric sphere with radius '> with spherical void of
radius '8, subjected to external pressure ?outer.

infinitesimally small (the limit as '8 → 0) or, equivalently, when the sphere of
nematic elastomer is infinitely large (the limit as '> → ∞). The deformation
mapping for the growth of such a spherical void is as follows:

d = d(')

\ = Θ

q = Φ

. (3.183)

The deformation gradient for this specific mapping then is

F = md

m'
e〈d〉 ⊗ E〈'〉 + m\

mΘ

d sin q
' sinΦ

e〈\〉 ⊗ E〈Θ〉 + mq
mΦ

d

'
e〈q〉 ⊗ E〈Φ〉 (3.184)

=
3d

3'
e〈d〉 ⊗ E〈'〉 + d

'
e〈\〉 ⊗ E〈Θ〉 + d

'
e〈q〉 ⊗ E〈Φ〉. (3.185)

49

Thus,

F〈8 9〉 =
©«
3d

3'
d

'
d

'

ª®®®¬ . (3.186)

Since nematic elastomers are incompressible, we constrain detF = 1:

3d

3'

d2

'2 = 1 (3.187)

d23d = '23' (3.188)

d3 = '3 + 2. (3.189)

We solve for the constant 2 in terms of d8 (the deformed radius at the undeformed
radius ' = '8) and obtain

2 = d3
8 − '3

8 , (3.190)

so we have a new expression for the deformed radius, Aℎ>:

d =
[
'3 + d3

8 − '3
8

]1/3
. (3.191)

Let the non-dimensional azimuthal stretch at the inner radius be denoted by

_8 =
d8

'8
. (3.192)

Then in terms of _8, the deformed radius is

d =

[
'3 + '3

8

(
_3
8 − 1

)]1/3
, (3.193)

and the ratio of the deformed radius to undeformed radius is

_ =
d

'
=

[
1 +

'3
8

'3

(
_3
8 − 1

)]1/3

. (3.194)

Thus, the deformation gradient is

F〈8 9〉 =
©«

1
_2

_

_

ª®®®¬ . (3.195)

The principal values of F are _1 ≥ _2 ≥ _3: _1 = _2 = _ (which correspond to ê\
and êq) and _3 =

1
_2 (corresponding to êd).

There are the same possible cases as presented in the spherical balloon, except that
for cavitation we have a new definition for '∗:

'∗ = '8

(
_3
8
− 1

A1/4 − 1

)1/3

. (3.196)

50

Stress
The stress state is the same as that for the spherical balloon, seen in Section 3.5.

Solving static equilibrium
This section is the same as that of the spherical balloon, but with the following
boundary conditions imposed:

fdd (d =>) = ? (3.197)

fdd (d =8) = 0. (3.198)

We solve static equilibrium in the absence of body forces.

Case 1

In Case 1, ' ∈ ['8, '>] is in region !. The outer pressure then is

? = 0. (3.199)

Case 2

In Case 2, ' ∈ ['8, '∗] is in region " and ' ∈ ['∗, '>] is in region !. The two
boundary conditions can be rewritten specific to the region:

−[" (d = d8) + f̂"dd (d = d8) = 0 (3.200)

−[! (d = d>) + f̂!dd (d = d>) = ?, (3.201)

and there is an additional boundary condition for continuity between the two regions:

− [! (d = d∗) + f̂!dd (d = d∗) = −[" (d = d∗) + f̂"dd (d = d∗). (3.202)

The result from region ! is

− [! (d∗) + f̂!dd (d∗) = ?. (3.203)

The result from region " is

−[" (d∗) + f̂"dd (d∗) − f̂"dd (d8) + [" (d8) =
∫ d∗

d8

2
d

(
f̂"\\ − f̂"dd

)
3d, (3.204)

or

? =

∫ '∗

'8

2
_(')'

[
f̂"\\ (d = _(')') − f̂"dd (d = _(')')

] 1
_(')2

3'. (3.205)

51

Case 3

In Case 3, all of the balloon is in region " . Note that the isotropic state (A = 1 and
_ ≥ 1) falls under this case. The two boundary conditions for this case are:

−[" (d = d8) + f̂"dd (d = d8) = 0 (3.206)

−[" (d = d>) + f̂"dd (d = d>) = ?. (3.207)

The result of solving static equilibrium is

? =

∫ '>

'8

2
_(')'

[
f̂"\\ (d = _(')') − f̂"dd (d = _(')')

] 1
_(')2

3'. (3.208)

Case 4

In Case 4, all of the balloon is in region (. Note that the isotropic state (A = 1) falls
under this case. The two boundary conditions for this case are:

−[((d = d8) + f̂(dd (d = d8) = 0 (3.209)

−[((d = d>) + f̂(dd (d = d>) = ?. (3.210)

The result of solving static equilibrium is

? =

∫ '>

'8

2
_(')'

[
f̂(\\ (d = _(')') − f̂

(
dd (d = _(')')

] 1
_(')2

3'. (3.211)

Results
The calculations were performed in MATLAB and the solutions are plotted below.
The outer radius is '> = 1 cm, and we take the inner radius to be much smaller
than the outer radius with a value of '8 = 1 · 10−8 m. The parameters used for the
generalized Mooney-Rivlin model were the same as for the spherical balloon.

The pressure ?, normalized by the shear modulus `, is plotted as a function of the
azimuthal stretch at the inner radius _8. Figure 3.12 shows the comparison between
the generalized Mooney-Rivlin model of this work and the neo-Hookean model of
previous work [23] for an anisotropy parameter of A = 8. The BTW theory and
generalized Mooney-Rivlin theory deviate starting around a stretch of _8 ≈ 15. The
BTW model predicts that the cavitation pressure plateaus, whereas the Extended
Mooney-Rivlin model does not.

Figure 3.13a shows the cavitation results for varying anisotropy parameter A. As
expected, the isotropic case, A = 1, is the stiffest response, and the response is softer
as A increases and becomes more nematic.

52

Figure 3.12: Comparison of this work’s generalized Mooney-Rivlin model with the
trace formula model of [23] for pressure of a growing spherical cavity inside a bulk
disk.

(a) (b)

Figure 3.13: Cavitation results: (a) Results for cavitation at varying anisotropy pa-
rameter. (b) Progression of the cavitation solution through individual case numbers.

Figure 3.13b shows the solution’s case at various values of _8. The disk is in Case
1 where the entire structure is undeformed and in region !. Then, for A = 1, the
rest of the deformation belongs to Case 4, where the disk is entirely in region (,
having a purely elastomer response with no liquid crystal effects. For A > 1, the disk
develops microstructure in the area immediately surrounding the void that forms
during cavitation. Because the void is so small compared to the length scale of the
disk, the structure never moves into Case 3 (where the entire disk would be in region
").

53

3.8 Bending
Deformation of bending
The deformation analyzed in this section is the bending of a rectangular block into
an arc of a circle, following Ericksen. A schematic of the two-dimensional cross-
section of the body is shown in Figure 3.14. In the reference configuration, the block

Figure 3.14: Schematic depicting the mid-plane of a rectangular block undergoing
bending deformation.

has Cartesian coordinates (-1, -2, -3), where

-1 ∈ [−,,,] , -2 ∈ [−!, !] , -3 ∈ [−�, �] . (3.212)

The planes -1 = constant become sectors of the cylindrical surface d = constant,
the planes -2 = constant become planes \ = constant, and the planes -3 = constant
become planes I = constant. We provide an ansatz for the deformation mapping:

d = 5 (-1)

\ = 6(-2)

I = _-3

, (3.213)

where 5 and 6 are functions only of -1 and -2 respectively. Therefore, the Cartesian
coordinates in the current configuration become

G1 = d cos \ = 5 (-1) cos (6(-2))

G2 = d sin \ = 5 (-1) sin (6(-2))

G3 = I = _-3

. (3.214)

54

The deformation gradient in Cartesian coordinates is then

F =∇x (3.215)

=
©«
5 ′(-1) cos (6(-2)) − 5 (-1)6′(-2) sin (6(-2)) 0
5 ′(-1) sin (6(-2)) 5 (-1)6′(-2) cos (6(-2)) 0

0 0 _

ª®®®¬ . (3.216)

Due to incompressibility, we must reinforce that detF = 1:

_ 5 ′(-1) 5 (-1)6′(-2) cos2 (6(-2)) + _ 5 (-1) 5 ′(-1)6′(-2) sin2 (6(-2)) = 1
(3.217)

_ 5 (-1) 5 ′(-1)6′(-2) = 1 (3.218)

6′(-2) =
1

_ 5 (-1) 5 ′(-1)
. (3.219)

To solve for the functions 5 and 6, we employ separation of variables, yielding two
equations to be solved:

1
_ 5 (-1) 5 ′(-1)

= U (3.220)

6′(-2) = U. (3.221)

Solving Equation 3.220, we obtain

1
U_

= 5
35

3-1
(3.222)∫

1
U_
3-1 =

∫
5 35 (3.223)

1
U_
-1 + 2̂ =

5 2

2
(3.224)

5 2 =
2
U_
-1 + V. (3.225)

Since d = 5 , we have
d2 =

2
U_
-1 + V, (3.226)

where V is a constant. Solving Equation 3.221 yields

36

3-2
= U (3.227)∫

36 =

∫
U3-2 (3.228)

6 = U-2 + 2̃, (3.229)

55

where 2̃ is a constant. Since \ = 6, we have

\ = U-2 + 2̃. (3.230)

Assuming that the deformation is symmetric around the -1-axis,

\ (-2) = −\ (−-2), (3.231)

so 2̃ = 0. We then have
\ = U-2. (3.232)

Finally, our deformation mapping is
d2 = 2

U_
-1 + V

\ = U-2

I = _-3

, (3.233)

with d ∈
[√
−2,
U_
+ V,

√
2,
U_
+ V

]
, \ ∈ [−U!, U!], and I ∈ [−_�, _�]. The

deformation gradient will be written in mixed cylindrical/Cartesian coordinates.
Thus, we have the reference configuration general coordinates as follows:

- 8 = {-1, -2, -3}, (3.234)

and the current configuration general coordinates are

b8 = {d, \, I}, (3.235)

with definitions from Equation 3.233. The position vector of a point in the current
configuration is

x = d cos \E1 + d sin \E2 + IE3. (3.236)

The covariant basis vectors are defined as e8 = mx
mb8

, so we have

ed =
mx

md
= cos \E1 + sin \E2 (3.237)

e\ =
mx

m\
= −d sin \E1 + d cos \E2 (3.238)

eI =
mx

mI
= E3 (3.239)

with magnitudes

|ed | = 1 (3.240)

|e\ | = d (3.241)

|eI | = 1. (3.242)

56

We introduce the physical basis

e〈8〉 = e8
|e8 |

=
e8

|e8 | (3.243)

so that we can obtain our deformation gradient:

F =
mb8

m- 9
|e8 | |E 9 |−1︸ ︷︷ ︸
�〈8 9〉

e〈8〉 ⊗ E〈 9〉

=
1
U_d

e〈d〉 ⊗ E〈1〉 + Ude〈\〉 ⊗ E〈2〉 + _e〈I〉 ⊗ E〈3〉.

(3.244)

Note that md

m-1
= 1
U_d

. The left Cauchy-Green tensor is

b =
mb8

m- 9

mb:

m- 9
|e8 | |e: | |E 9 |−2︸ ︷︷ ︸

�〈8:〉 = �〈8 9〉�〈: 9〉

e〈8〉 ⊗ e〈:〉

=
1

U2_2d2e〈d〉 ⊗ e〈d〉 + U
2d2e〈\〉 ⊗ e〈\〉 + _2e〈I〉 ⊗ e〈I〉,

(3.245)

and the principal stretches are
1
U_d

, Ud, _. (3.246)

If the strain energy density of a material can be written in the form , = , (_8),
where _8 are the principal stretches, then the Cauchy stress of an incompressible,
isotropic hyperelastic body is

σ = −?I +
3∑
8=1

_8
m,

m_8
e〈8〉 ⊗ e〈8〉. (3.247)

Static equilibrium (in the absence of body forces) is obtained when div σ = 0. In
cylindrical coordinates and for a symmetric tensorσ, the equations we need to solve
are:

(div σ)〈d〉 = mf〈dd〉
md

+ 1
d

mf〈d\〉
m\

+ f〈dd〉 − f〈\\〉
d

+ mf〈dI〉
mI

,

(div σ)〈\〉 = mf〈d\〉
md

+ 1
d

mf〈\\〉
m\

+ 2f〈d\〉
d

+ mf〈\I〉
mI

,

(div σ)〈I〉 = mf〈dI〉
md

+ 1
d

mf〈\I〉
m\

+ f〈dI〉
d
+ mf〈II〉

mI
.

(3.248)

Let d = ^, where ^ = 1
U
is the radius of the neutral axis in the beam. This neutral

axis is the axis that experiences zero extension because the arc length of the beam at

57

this radius does not change from the reference length throughout deformation. The
length of the beam in the undeformed configuration is 2!, as is the arc length of
the neutral axis in the current configuration (B = d\), i.e. the product of the radius
(^ = 1

U
) and the angle (2U!). See Figure 3.15 for details.

Figure 3.15: Schematic depicting the neutral axis of a rectangular block with arc
length B equal to the length of the undeformed beam, 2!.

For the case of plane strain (the stretch in the I direction is fixed at _ = 1), the
principal stretches are d

^
(corresponding to ê\), 1 (corresponding to êI), and ^

d

(corresponding to êd). The relative magnitudes of the principal stretches depends
on the relationship between d and ^. This leads to a breakdown of the regions !,
" , and (as in Figure 3.16.

Figure 3.16: Breakdown of the regions !," , and (along the radius d in the bending
deformation.

The radius of the neutral axis, d = ^ lies in the region !. Let us denote the part of
the beam where d < ^ by 1O, and for d > ^ by 2O. The ends of the beam are located
at d1 =

√
−2,
U_
+ V and d2 =

√
2,
U_
+ V. These radii are an unknown and will be

solved for using the static equilibrium equation. We will define the following radii

58

for convenience:

d1
"(=

^

A1/2 (3.249)

d1
!" =

^

A1/6 (3.250)

d2
!" = ^A

1/6 (3.251)

d2
"(= ^A

1/2. (3.252)

The boundary conditions in this problem are:

fdd |d=d1 = fdd |d=d2 = 0. (3.253)

In addition, continuity in the radial stresses at the boundaries between regions must
be enforced, i.e. at d = d1

"(
, d = d1

!"
, d = d2

!"
, d = d2

"(
. The possible cases that

arise are:

• Case 1: A > 1 and d1
!"
≤ d1 ≤ ^ ≤ d2 ≤ d2

!"
: All of the beam lies in region

!

• Case 2: A > 1 and d1
"(
≤ d1 ≤ d1

!"
≤ ^ ≤ d2

!"
≤ d2 ≤ d2

"(
: The inner

portion of the beam lies in region !, and the outer regions lie in "
• Case 3a: A > 1 and d1 ≤ d1

"(
≤ d1

!"
≤ ^ ≤ d2

!"
≤ d2 ≤ d2

"(
: The beam,

in order of increasing radius, lies in region (, then " , then !, then "
• Case 3b: A > 1 and d1

"(
≤ d1 ≤ d1

!"
≤ ^ ≤ d2

!"
≤ d2

"(
≤ d2: The beam,

in order of increasing radius, lies in region " , then !, then " , then (
• Case 4: A > 1 and d1 ≤ d1

"(
≤ d1

!"(
≤ ^ ≤ d2

!"
≤ d2

"(
≤ d2: The beam,

in order of increasing radius, lies in region (, then " , then !, then " , then (
• Case 5: A = 1 and d1 ≤ ^ ≤ d2: The entire beam is in region (

A diagram illustrating the various cases can be seen in Figure 3.17. The heavy black
line shows the beam with ends d = d1 and d = d2.

As in the previous deformations, we can gain insight from Figure 3.1 regarding the
regions that this deformation will experience. The plane-strain (_ = 1) bending of
a block is the same as a planar extension deformation (the deformation gradient of
Equation 3.244 is F = diag(1/(Ud), Ud, 1)). Therefore, like the cylindrical balloon
with b = 1, this means that C = B for this deformation (recalling that B is the largest
singular value of F and C is the largest singular value of cof F). If we were to
follow along the C = B line in Figure 3.1, we see that the deformation will move
progressively through region ! then " then (.

59

Figure 3.17: Diagram of all possible cases in the bending of a nematic elastomer
block.

Stress, moment, and forces
Static equilibrium (in the absence of body forces) is obtained when div σ = 0. In
cylindrical coordinates and for a symmetric tensor σ,

mfdd

md
+ 1
d

mfd\

m\
+
fdd − f\\

d
+
mfdI

mI
= 0,

mfd\

md
+ 1
d

mf\\

m\
+

2fd\
d
+ mf\I

mI
= 0,

mfdI

md
+ 1
d

mf\I

m\
+
fdI

d
+ mfII

mI
= 0.

(3.254)

The boundary conditions for this problem are as follows:

fdd |d=d1 = 0 (3.255)

fdd |d=d2 = 0. (3.256)

For every case, the \ and I equilibrium equations yield that [= [(d). This leaves
only the d equilibrium equation to be solved. After obtaining the stresses, we can
calculate the following three quantities. First, the magnitude of the force in the
\-direction is

|F\ | =
∫ _�

−_�

∫ d2

d1

f\\3d3I. (3.257)

(Note that _ = 1 here.) Second, the magnitude of the force in the I-direction is

|FI | =
∫ !

^

− !
^

∫ d2

d1

fII3d3\. (3.258)

60

Finally, the moment is

" =

∫ _�

−_�

∫ d2

d1

f\\d3d3I. (3.259)

Solving static equilibrium
Case 1

In this trivial case, the beam lies entirely in the ! region. That is, the radius
d ∈ [d1, d2] is such that

d1
!" ≤ d1 ≤ ^ ≤ d2 ≤ d2

!" . (3.260)

Thus, the stress condition is simply the Lagrange multiplier:

σ! = −[!I . (3.261)

We can solve for static equilibrium by solving div σ = 0 in cylindrical coordinates,
given by Equation 3.248:

I : [! = [! (d, \) (3.262)

\ : [! = [! (d) (3.263)

d :
mf!dd

md
+ 1
d

(
f!dd − f!\\

)
= 0→ f!dd = const→ [! = const. (3.264)

We can use the traction boundary condition, f!dd |d=d1 = f
!
dd |d=d2 = 0. Thus, we find

that the Lagrange multiplier [! = 0. The magnitude of the force in the \-direction
is calculated from Equation 3.257:

|F\ | =
∫ _�

−_�

∫ d2

d1

f!\\3d3I = 0. (3.265)

The magnitude of the force in the I-direction is calculated from Equation 3.258:

|FI | =
∫ !

^

− !
^

∫ d2

d1

f!II3d3\ = 0. (3.266)

Finally, the moment is calculated from Equation 3.259:

" =

∫ _�

−_�

∫ d2

d1

f!\\d3d3I = 0. (3.267)

This case physically refers to a beamwith ^ →∞ (the radius of curvature is infinitely
large, so the beam is flat). This refers to the undeformed case, which corresponds
to zero stresses.

61

Case 2

In Case 2, the beam has outer regions " and inner regions !, and the radius
d ∈ [d1, d2] is such that

d1
"(≤ d1 ≤ d1

!" ≤ ^ ≤ d2
!" ≤ d2 ≤ d2

"(. (3.268)

The boundary conditions (BCs) specific to this case are:

f" 1n
dd (d1) = 0 (3.269)

f" 1n
dd (d1

!") = f! 1n
dd (d1

!") (3.270)

f! 1n
dd (^) = f! 2n

dd (^) (3.271)

f! 2n
dd (d2

!") = f" 2n
dd (d2

!") (3.272)

f" 2n
dd (d2) = 0. (3.273)

We solve the equations of static equilibrium using Equation 3.248, which are in
cylindrical coordinates. For every region, we only need to solve the equation in d:

mfdd

md
+ 1
d

(
fdd − f!\\

)
= 0. (3.274)

Moving from left to right within the beam, we start at region " 1n:

− 3[
" 1n
3d

+
3f̂" 1n

dd

3d
+ 1
d

(
f̂" 1n
dd − f̂" 1n

\\

)
= 0. (3.275)

Solving for [" 1nyields

[" 1n=
∫ [

3f̂" 1n
dd

3d
+ 1
d

(
f̂" 1n
dd − f̂" 1n

\\

)]
3d + �1. (3.276)

Using the first BC, we can obtain �1. Next, in region ! 1n, we repeat the same
procedure and obtain:

[! 1n=
∫ [

3f̂! 1n
dd

3d
+ 1
d

(
f̂! 1n
dd − f̂! 1n

\\

)]
3d + �2. (3.277)

Using the second BC, we can obtain �2. Repeating the same procedure in ! 2n, we
have

[! 2n=
∫ [

3f̂! 2n
dd

3d
+ 1
d

(
f̂! 2n
dd − f̂! 2n

\\

)]
3d + �3. (3.278)

Using the third BC gives us �3. Finally, in region " 2n, we have

[" 2n=
∫ [

3f̂" 2n
dd

3d
+ 1
d

(
f̂" 2n
dd − f̂" 2n

\\

)]
3d + �4. (3.279)

62

Using the fourth BC gives us �4, and using the last BC gives us the unknown V,
which gives us the deformed radii of the beam, d1 and d2. Thus, we now have
all the stress values and can calculate |F\ |, |FI |, and " from Eqns. 3.257, 3.258,
and 3.259 respectively. The integral in d between d1 and d2 must be broken into
individual regions with corresponding bounds:

|F\ | =
∫ _�

−_�

[∫ d1!"

d1

f" 1n
\\ 3d +

∫ ^

d1
!"

f! 1n
\\ 3d

]
3I (3.280)

+
∫ _�

−_�

[∫ d2!"

^

f! 2n
\\ 3d +

∫ d2

d2
!"

f" 2n
\\ 3d

]
3I (3.281)

|FI | =
∫ !

^

− !
^

[∫ d1!"

d1

f" 1n
II 3d +

∫ ^

d1
!"

f! 1n
II 3d

]
(3.282)

+
∫ !

^

− !
^

[∫ d2!"

^

f! 2n
II 3d +

∫ d2

d2
!"

f" 2n
II 3d

]
3\ (3.283)

" =

∫ _�

−_�

[∫ d1!"

d1

f" 1n
\\ d3d +

∫ ^

d1
!"

f! 1n
\\ d3d

]
(3.284)

+
∫ _�

−_�

[∫ d2!"

^

f! 2n
\\ d3d +

∫ d2

d2
!"

f" 2n
\\ d3d

]
3I. (3.285)

Case 3a

In Case 3a, the beam, in order of increasing radius, has portions that are in region
" , !, " , and (. The radius d ∈ [d1, d2] is such that

d1 ≤ d1
"(≤ d

1
!" ≤ ^ ≤ d2

!" ≤ d2 ≤ d2
"(, (3.286)

and the boundary conditions specific to this case are:

f(1n
dd (d1) = 0 (3.287)

f(1n
dd (d1

"() = f
" 1n
dd (d1

"() (3.288)

f" 1n
dd (d1

!") = f! 1n
dd (d1

!") (3.289)

f! 1n
dd (^) = f! 2n

dd (^) (3.290)

f! 2n
dd (d2

!") = f" 2n
dd (d2

!") (3.291)

f" 2n
dd (d2) = 0. (3.292)

Solving from left to right within the beam, we start at region (1n:

[(1n=
∫ [

3f̂(1n
dd

3d
+ 1
d

(
f̂(1n
dd − f̂(1n

\\

)]
3d + �1. (3.293)

63

We can use the first BC to solve for �1. In region " 1nwe have

[" 1n=
∫ [

3f̂" 1n
dd

3d
+ 1
d

(
f̂" 1n
dd − f̂" 1n

\\

)]
3d + �2. (3.294)

Solving the second BC gives us �2. In region ! 1nwe have

[! 1n=
∫ [

3f̂! 1n
dd

3d
+ 1
d

(
f̂! 1n
dd − f̂! 1n

\\

)]
3d + �3. (3.295)

Solving the third BC gives us �3. In region ! 2nwe have

[! 2n=
∫ [

3f̂! 2n
dd

3d
+ 1
d

(
f̂! 2n
dd − f̂! 2n

\\

)]
3d + �4. (3.296)

Solving the fourth BC gives us �4. Finally, in region " 2nwe have

[" 2n=
∫ [

3f̂" 2n
dd

3d
+ 1
d

(
f̂" 2n
dd − f̂" 2n

\\

)]
3d + �5. (3.297)

Solving the fifth BC gives us �5, and solving the last BC gives us V. We can
calculate |F\ |, |FI |, and " from Eqns. 3.257, 3.258, and 3.259 analogously as we
did in Case 2, breaking the integrals down to their individual regions between d1

and d2.

Case 3b

Case 3b is very similar to Case 3a. In this case, the beam has portions that are in
region (, " , !, and " , in order of increasing radius. The radius d ∈ [d1, d2] is
such that

d1
"(≤ d1 ≤ d1

!" ≤ ^ ≤ d2
!" ≤ d2

"(≤ d2, (3.298)

and the boundary conditions specific to this case are:

f" 1n
dd (d1) = 0 (3.299)

f" 1n
dd (d1

!") = f! 1n
dd (d1

!") (3.300)

f! 1n
dd (^) = f! 2n

dd (^) (3.301)

f! 2n
dd (d2

!") = f" 2n
dd (d2

!") (3.302)

f" 2n
dd (d2

"() = f
(2n
dd (d2

"() (3.303)

f(2n
dd (d2) = 0. (3.304)

64

Solving from left to right within the beam, we start at region " 1n:

[" 1n=
∫ [

3f̂" 1n
dd

3d
+ 1
d

(
f̂" 1n
dd − f̂" 1n

\\

)]
3d + �1. (3.305)

We can use the first BC to solve for �1. In region ! 1nwe have

[! 1n=
∫ [

3f̂! 1n
dd

3d
+ 1
d

(
f̂! 1n
dd − f̂! 1n

\\

)]
3d + �2. (3.306)

Solving the second BC gives us �2. In region ! 2nwe have

[! 2n=
∫ [

3f̂! 2n
dd

3d
+ 1
d

(
f̂! 2n
dd − f̂! 2n

\\

)]
3d + �3. (3.307)

Solving the third BC gives us �3. In region " 2nwe have

[" 2n=
∫ [

3f̂" 2n
dd

3d
+ 1
d

(
f̂" 2n
dd − f̂" 2n

\\

)]
3d + �4. (3.308)

Solving the fourth BC gives us �4. Finally, in region (2nwe have

[(2n=
∫ [

3f̂(2n
dd

3d
+ 1
d

(
f̂(2n
dd − f̂(2n

\\

)]
3d + �5. (3.309)

Solving the fifth BC gives us�5, and solving the last BC gives us V. We can calculate
|F\ |, |FI |, and " from Eqns. 3.257, 3.258, and 3.259 as in Case 3a.

Case 4

In Case 4, in order of increasing radius, the beam lies in regions (, " , !, " , and (.
The radius d ∈ [d1, d2] is such that

d1 ≤ d1
"(≤ d

1
!"(≤ ^ ≤ d

2
!" ≤ d2

"(≤ d2. (3.310)

The boundary conditions specific to this case are:

f(1n
dd (d1) = 0 (3.311)

f" 1n
dd (d1

"() = f
(1n
dd (d1

"() (3.312)

f" 1n
dd (d1

!") = f! 1n
dd (d1

!") (3.313)

f! 1n
dd (^) = f! 2n

dd (^) (3.314)

f! 2n
dd (d2

!") = f" 2n
dd (d2

!") (3.315)

f" 2n
dd (d2

"() = f
(2n
dd (d2

"() (3.316)

f(2n
dd (d2) = 0. (3.317)

65

Solving from left to right within the beam, we start at region (1n:

[(1n=
∫ [

3f̂(1n
dd

3d
+ 1
d

(
f̂(1n
dd − f̂(1n

\\

)]
3d + �1. (3.318)

We can use the first BC to solve for �1. In region " 1nwe have

[" 1n=
∫ [

3f̂" 1n
dd

3d
+ 1
d

(
f̂" 1n
dd − f̂" 1n

\\

)]
3d + �2. (3.319)

Solving the second BC gives us �2. In region ! 1nwe have

[! 1n=
∫ [

3f̂! 1n
dd

3d
+ 1
d

(
f̂! 1n
dd − f̂! 1n

\\

)]
3d + �3. (3.320)

Solving the third BC gives us �3. In region ! 2nwe have

[! 2n=
∫ [

3f̂! 2n
dd

3d
+ 1
d

(
f̂! 2n
dd − f̂! 2n

\\

)]
3d + �4. (3.321)

Solving the fourth BC gives us �4. In region " 2nwe have

[" 2n=
∫ [

3f̂" 2n
dd

3d
+ 1
d

(
f̂" 2n
dd − f̂" 2n

\\

)]
3d + �5. (3.322)

Solving the fifth BC gives us �5. Finally, in region (2nwe have

[(2n=
∫ [

3f̂(2n
dd

3d
+ 1
d

(
f̂(2n
dd − f̂(2n

\\

)]
3d + �6 (3.323)

Solving the sixth BC gives us �6, and solving the last BC gives us V. We can
calculate |F\ |, |FI |, and " from Eqns. 3.257, 3.258, and 3.259.

Case 5

In Case 5, the entire beam is in region ((d1 ≤ ^ ≤ d2), and the anisotropy parameter
A = 1, corresponding to a rubber material, and not a nematic elastomer. The radius
d ∈ [d1, d2] is such that

d1 ≤ ^ ≤ d2. (3.324)

The boundary conditions specific to this case are:

f(1n
d (d1) = 0 (3.325)

f(1n
dd (^) = f(2n

dd (^) (3.326)

f(2n
dd (d2) = 0. (3.327)

66

Notice that at d = ^, the stress in the r-directionwill be zero: f(1n
dd (^) = f(2n

dd (^) = 0,
corresponding to the neutral axis at the radius of curvature. We begin by solving in
the region A ≤ ^ with (1n:

[(1n=
∫ [

3f̂(1n
dd

3d
+ 1
d

(
f̂(1n
dd − f̂(1n

\\

)]
3d + �1. (3.328)

We can use the first BC to get �1, then move to the region A ≥ ^ with (2n:

[(2n=
∫ [

3f̂(2n
dd

3d
+ 1
d

(
f̂(2n
dd − f̂(2n

\\

)]
3d + �2. (3.329)

We use the second BC to get �2, and then the third BC to get V. With all the
unknowns known, we again calculate |F\ |, |FI |, and " from Eqns. 3.257, 3.258,
and 3.259.

Results
The stresses, forces, and moments as well as the deformed radii were all solved
for using Mathematica using the following parameters: 21 = 1.03 · 105 Pa, 22 =

1.96 · 102 Pa, 31 = 1.63 · 10−2 Pa, ?1 = 1, ?2 = 1, and @1 = 2. The beam’s width is
, = 1 cm, and its length is ! = 2, . Figures 3.19 and 3.20 (with the legend in Figure
3.18) plot the bending moment and the cases as a function of U = 1/^ (the radius
of curvature). A value of ^ → ∞ (or U = 1

^
= 0) corresponds to the undeformed

beam (with an infinite radius of curvature), and as ^ decreases (U increases), this
corresponds to the beam bending more and more.

Figure 3.18: Legend for Figures 3.19 and 3.20.

The case A = 1 yields the highest bending moment, as expected for the isotropic
material. The solution is entirely in Case 5, i.e. the beam is entirely in the (region,

67

Figure 3.19: Results for bending moment at varying anisotropy parameter.

so it has a solid-like rubber response. For A > 1, we first note the spontaneous
deformation associated with the nematic state, similar to what we observed in the
balloon inflation deformations. Due to the change in temperature associated with an
anisotropy parameter A > 1, the blockwill experience a spontaneous stretching along
some preferred direction and contraction perpendicular in the transverse directions.
There is a change in the block’s curvature at zero moment associated with this
spontaneous deformation.

Next, we turn our attention to the fact that there are sometimes multiple cases
that yield an equilibrium solution for a given value of U = 1/^, so all possible
solutions are plotted. For instance, for A = 2, the beam begins in Case 1 at U = 0,
where all of the beam lies in region ! and there is no deformation. Then for
every point U > 0, the beam has equilibrium solutions in Case 2, where the inner
part of the beam is in region !, and the outer parts of the beam lie in region " .
Physically, the beam is developing fine-scale microstructure in the innermost region
(which is experiencing compressive stress) and the outermost region (which is
experiencing tensile stress). The region in between is still in region !, experiencing
zero stress. Then for U approximately between 40 and 100, the beam has three
possible equilibrium solutions, in Cases 2, 3a, and 4. Case 3a physically corresponds
to some development of region (in the innermost part of the beam, and Case 4
corresponds to development of region (in both the innermost and outermost parts

68

of the beam. Then Case 3a stops being a viable equilibrium solution, then shortly
after that Case 4 stops being a possible equilibrium solution, and for U > 160, Case
2 is the only equilibrium solution, and the bending moment decreases.

Figure 3.20: Progression of the bending solution through individual case numbers.

3.9 Conclusion
The remarkable softness that is characteristic of nematic elastomers has emphasized
the need for an energy density that extends beyond the limitations of the neo-Hookean
trace formula. In this work we have developed a generalized Mooney-Rivlin energy
density and have used this model to solve some examples of universal deformations
in nematic elastomers. Nematic elastomers have been studied extensively in classical
geometries, such as the deformation of thin sheets, and traditional loading conditions,
such as uniaxial tension, but they have yet to be explored in-depth as deformations
applied to the bulk material, such as the bending of a block, cavitation of a disk,
and internal pressure of a balloon. With the relatively recent developments in
synthesizing these materials in the bulk with click chemistry and 3D printing, more
complex geometries and loading configurations can be explored, and the solutions
to the universal deformations for nematic elastomers is a significant step in this
direction.

69

C h a p t e r 4

A GENERAL CONSTITUTIVE MODEL FOR A NON-IDEAL
ISOTROPIC-GENESIS POLYDOMAIN NEMATIC ELASTOMER

4.1 Introduction
The previous chapter addressed ideal nematic elastomers. In these ideal materials,
the director can reorient freely. Consequently, the fine-scale domain patterns can
form and change freely, and the overall behavior is described by the relaxed energy.
However, in reality, there is a resistance to changing domain patterns. Specifically,
as a result of the synthesis process, there may be a local preference to director
alignment at each material point. This preference is extremely large in nematic-
genesis elastomers (materials crosslinked in the nematic state), but relatively small in
the isotropic-genesis elastomers (materials crosslinked in the isotropic state) [8, 74].
Consequently, isotropic-genesis elastomers still show soft behavior, though one
needs to apply a small stress to change domain patterns—see Figure 4a from [74].
Further, isotropic-genesis elastomers have a fine polydomain structure as synthesized
because the director preference is random—see Figure 2a from [74]. This preference
can be modeled as non-ideality [7], a term that is small in isotropic-genesis nematic
elastomers (also discussed in Chapter 2 of this thesis). Since the material is now
possibly heterogenous, one has to relax and homogenize: this can be accomplished
through bounds [9] or numerically [85].

In this chapter, we develop a constitutivemodel to describe themacroscopic response
of nematic elastomers (on a scale large compared to domain patterns, but small
compared to the scale of application). The idea is to use the relaxation and identify
internal variables that describe the fine-scale domain patterns and then impose
a kinetic process with dissipation on these internal variables. We validate the
model against the experiments of Tokumoto, Takabe, and Urayama, as reported in
Tokumoto et al. [71]. Finally, we implement the model in the finite element program
ABAQUS. After verifying it using homogenous deformations, we study the problem
of torsion of a cylinder. We identify an interesting instability at large torsional
strains as a result of the Poynting effect.

This continuum-level model, and its implementation for finite element analysis, is
the first of its kind for modeling non-ideal polydomain nematic elastomers in 3D.

70

It is a powerful tool that can be used to analyze nematic elastomers in arbitrarily
complex deformations, which will contribute towards nematic elastomers becoming
an accessible engineering material.

4.2 Formulation of the constitutive relation
Revisiting the relaxed energy of an ideal nematic elastomer
We follow the work of DeSimone and Dolzmann [23] using the same three regions
of interest, a liquid-like region !, a solid-like region (, and a region " in which
laminated microstructure occurs. Recall the generalized energy density of a nematic
elastomer

,NE(F ,n) = 5 (F)`−1
n F), (4.1)

where `n = A−1/3((A − 1)n ⊗ n + I) is the “step-length tensor" that describes the
metric of the nematic elastomer in the “stress-free state". The corresponding elastic
energy is

, (F) = min
n
,#� (F ,n) = min

Q∈($ (3)
5 (F >`−1

Qn0
F) = min

Q∈($ (3)
5 (F >Q`−1

n0Q
>F).
(4.2)

Now, consider a situation where the nematic elastomer has formed a fine-scale
domain pattern so that the resulting “stress-free" state is described by a metric G.
We know from previous chapters that

G = QG0(_, X)Q>, (4.3)

where

Q ∈ ($ (3), (4.4)

G0(_, X) =
©«
_2 0 0
0 X2

_2 0
0 0 1

X2

ª®®®¬ , and (4.5)

_, X ∈ T := {(B, C) : C ≤ A1/6, C ≤ B2, C ≥
√
B}. (4.6)

The triangular region T is depicted in Figure 4.1.

In analogy to (4.2), we may write the energy of a nematic elastomer with fine-scale
domain pattern characterized by _, X to be

,PNE(F , _, X) = min
Q∈($ (3)

5 (F >QG−1
0 Q

>F), (4.7)

71

Figure 4.1: Triangular region T in (_, X) space enclosed by the three constraints:
X ≤ A1/6, X ≤ _2, and X ≥

√
_.

so that the effective energy over arbitrary domain patterns is given by

,eff(F) = min
_,X∈T

min
Q∈($ (3)

5 (F >QG−1
0 Q

>F). (4.8)

Theorem 1. With the definitions above,

,eff(F) = ,qc(F). (4.9)

Proof. Let B be the largest singular value of F and C the product of the largest
singular values of F . Then,

,eff(F) = min
_,X∈T

5

©«
(
B
_

)2 (
C_
XB

)2 (
X
C

)2

ª®®®¬ . (4.10)

Now, recall that

5 (A) =
∑
8

28 (trA − 3)?8 +
∑
9

3 9 (tr(cofA) − 3)@ 9 (4.11)

where ?8, @ 9 ≥ 1 so that

,PNE(F , _, X) =
∑
8

28

(
B2

_2 +
C2_2

X2B2 +
X2

C2
− 3

) ?8
+

∑
9

3 9

(
_2

B2 +
X2B2

C2_2 +
C2

X2 − 3
)@ 9

(4.12)
and

,eff(F) = min
_,X∈T

(∑
8

28

(
B2

_2 +
C2_2

X2B2 +
X2

C2
− 3

) ?8
+

∑
9

3 9

(
_2

B2 +
X2B2

C2_2 +
C2

X2 − 3
)@ 9

)
.

(4.13)

72

In light of the constraint _, X ∈ T , we have multiple cases.

Case 1: Attained minimum. We solve
m,eff
m_

=
m,eff
mX

= 0. (4.14)

Since 28, 3 9 > 0, ?8, @ 9 ≥ 1, it is sufficient (and necessary in a generic sense) that

m

m_

(
B2

_2 +
C2_2

X2B2 +
X2

C2

)
= 0, (4.15)

m

mX

(
B2

_2 +
C2_2

X2B2 +
X2

C2

)
= 0, (4.16)

m

m_

(
_2

B2 +
X2B2

C2_2 +
C2

X2

)
= 0, (4.17)

m

mX

(
_2

B2 +
X2B2

C2_2 +
C2

X2

)
= 0, (4.18)

or

m,

m_
= 0→ _4

B4 =
X2

C2
,

m,

mX
= 0→ _2

B2 =
X4

C4
⇐⇒ _ = B, X = C =⇒ ,eff(�) = 0.

(4.19)
This is possible if and only if B, C ∈ T . Recalling that ,qc = 0 when B, C ∈ T , we
conclude

,eff(�) = ,qc(�) in !. (4.20)

Case 2: C > A1/6. We set X = A1/6 and solve
m,eff
m_

= 0. (4.21)

Arguing as before, we conclude

_

B
=
A1/12

C1/2
(4.22)

which implies

,eff(�) =
∑
8

28

(
2
C

A1/6 +
A1/3

C2
− 3

) ?8
+

∑
9

3 9

(
2
A1/6

C
+ C2

A1/3 − 3
)@ 9

. (4.23)

Note that this coincides with the expression for,qc in " . However, for X = A1/6 and
_ according to (4.22), _, X ∈ T if and only if 1 ≤ B/C1/2 ≤ A1/4 or C ≤ B2 ≤ A1/2C.
By assumption, C > A1/6. So this is the region " . We conclude,

,eff(�) = ,qc(�) in ". (4.24)

73

Case 3: B2 > A1/2C, C > A1/6. Note that this is the region (. We set _ = A1/3, X =

A1/6, and it is easy to verify that

,eff(�) = ,qc(�) in (. (4.25)

�

Constitutive relation
The effective or relaxed energy (4.8) is obtained by assuming that the microstructure
evolves instantaneously to minimize the energy. However, microstructure evolves
according to a kinetic process which is dissipative. Further, some domains may be
locally pinned, and this introduces a hardening energy. Finally, there is viscosity
associated with the polymer network. All of these considerations motivate the
following constitutive relation. We describe this for the isothermal situation where
the temperature is fixed. However, this is easily generalized to a general temperature-
dependent situation.

We assume that the state of a non-ideal isotropic-genesis polydomain nematic elas-
tomer is described by the deformation gradient F , internal variables _, X, and
temperature) . We postulate that the stored energy density of a non-ideal isotropic-
genesis polydomain nematic elastomer is given by

, (F , _, X,)) = ,PNE(F , _, X,)) +,h(_, X,)), (4.26)

where

,PNE(F , _, X,)) =
∑
8

28

(
B2

_2 +
C2_2

X2B2 +
X2

C2
− 3

) ?8
+

∑
9

3 9

(
_2

B2 +
X2B2

C2_2 +
C2

X2 − 3
)@ 9

(4.27)
as before, and

,h(_, X,)) = �
X − 1

(A1/6 − X):
(4.28)

is the hardening energy. The form of the hardening is chosen to penalize X → A1/6,
i.e. the completion of the polydomain-to-monodomain transition. The moduli 28, 38
as well as the parameter A may depend on temperature.

The Cauchy stress is given by

σ(F , _, X) = −?I + m,PNE
mF

(F , _, X)F > + Vd, (4.29)

74

where ? is an unknown pressure, d = 1
2 (¤FF

−1+F −> ¤F >) is the rate-of-deformation
tensor, and V is the viscosity. The microstructure parameters _, X evolve according
to the equations

¤_ = −U_
m

m_
(,PNE +,h)

¤X = −UX
m

mX
(,PNE +,h)

subject to _, X ∈ T . (4.30)

Note that A, and hence T , depends on temperature. It is convenient to introduce a
rate-of-dissipation potential for the microstructure evolution

� (¤_, ¤X, 3) = 1
2

(
U_ | ¤_ |2 + UX | ¤X |2

)
. (4.31)

If we discretize the evolution equation by a backward Euler (implicit) time dis-
cretization, we can update the variables as

_=+1, X=+1 = argmin
_=+1,X=+1∈T

[
,PNE(F , _=+1, X=+1,)) +,h(_=+1, X=+1,))

+ ΔC�
(
_=+1 − _=

ΔC
,
X=+1 − X=
ΔC

)]
.

(4.32)

Useful calculation It is useful to compute the rotation associated with the mini-
mization in (4.8). Let _8 be the principal values of F with _1 ≥ _2 ≥ _3. Let

C = F >F =

3∑
8=1

_2
8N8 ⊗N8, b = FF > =

3∑
8=1

_2
8n8 ⊗ n8 . (4.33)

It follows that

� =

3∑
8=1

_8n8 ⊗N8 . (4.34)

Set

G0 =

3∑
8=1

b8e8 ⊗ e8, (4.35)

where b1 ≥ b2 ≥ b3. Therefore,

F >QG−1
0 Q

>F =
∑
8, 9 ,:

8:b
−1
9 (n8 ·Qe 9) (n: ·Qe 9)N8 ⊗N: , (4.36)

(F >QG−1
0 Q

>F)−> =
∑
8, 9 ,:

_−1
8 _
−1
: b 9 (n8 ·Qe 9) (n: ·Qe 9)N8 ⊗N: . (4.37)

75

Now, in light of (4.11), maximizing 5 (A) over A is equivalent to maximizing the
trace ofA and cof(A). Examining the above, we see that we maximize the trace of
F >QG−1

0 F , cof(F >QG−1
0 F) = (F

>QG−1
0 F)

−> exactly when

n8 = Qe8, 8 = 1, 2, 3. (4.38)

Thus, the maximizingQ is

Q =

3∑
8=1
n8 ⊗ e8 (4.39)

so that for the maximizingQ,

G =

3∑
8=1

b8n8 ⊗ n8, (4.40)

i.e. G shares an eigenbasis with b and

F >QG−1
0 Q

>F =

3∑
8=1

_2
8 b
−1
8 N8 ⊗N8, (4.41)

(F >QG−1
0 Q

>F)−> =
3∑
8=1

_−2
8 b8N8 ⊗N8 . (4.42)

4.3 Validation of the model
We now validate the model against the experiments of Tokumoto, Takabe, and
Urayama, as reported in Tokumoto et al. [71]. They subjected sheets of isotropic-
genesis polydomain nematic elastomers to biaxial extension while leaving the faces
of the sheet traction-free, i.e. deformations of the form

F =
©«
_G 0 0
0 _H 0
0 0 (_G_H)−1

ª®®®¬ (4.43)

where _G , _H are imposed stretches. In all their experiments _G_H > 1, and we
assume that _G > _H. Therefore,

B = _G , C = _G_H . (4.44)

We neglect viscosity (V = 0), and so the Cauchy stress σ is

©«
−? + `1

B2

_2 + `2

(
B2X2

C2_2 + C2

X2

)
0 0

0 −? + `1
C2_2

B2X2 + `2

(
_2

B2 + C2

X2

)
0

0 0 −? + `1
X2

C2
+ `2

(
_2

B2 + B2X2

C2_2

)ª®®®®¬
.

76

Since the faces of the sheet are traction-free, f33 = 0. It follows,

? = `1
X2

C2
+ `2

(
_2

B2 +
B2X2

C2_2

)
, (4.45)

and the two non-zero components of stress are

f11 = `1

(
B2

_2 −
X2

C2

)
+ `2

(
C2

X2 −
_2

B2

)
(4.46)

f22 = `1

(
C2_2

B2X2 −
X2

C2

)
+ `2

(
C2

X2 −
B2X2

C2_2

)
. (4.47)

It remains to solve for the evolution of the internal variables _, X. We do so
by implementing (4.32) using MATLAB. We use the Bladon-Warner-Terentjev form
(generalization of the neo-Hookean), where 21 = `1/2, ?1 = 1 and 28, 3 9 = 0 for
8 > 1, 9 ≥ 1. Table 4.1 summarizes the material parameters used. In MATLAB, a
gradient descent codewas implemented to fit the various parameters in the theoretical
model to the experimental data.

Table 4.1: Material properties used in MATLAB simulations

Shear modulus `1 = 4.93752 · 104 Pa
LCE anisotropy parameter A = 9.1393
Hardening coefficient � = 298 Pa
Hardening exponent : = 2
Dissipation property UX = 2.1838 · 107 Pa
Dissipation property U_ =

UX

100 = 2.1838 · 105 Pa
Exponent in dissipation potential � ? = 2

We explore four specific deformations in the following sections: uniaxial (U) exten-
sion, planar extension (PE), equibiaxial (EB) extension, and unequal-biaxial (UB)
extension. The general deformation gradient, following from Equation 4.43 and
4.44, is F = diag(B, C/B, 1/C). Figs. 4.2 – 4.7 are plots for each individual deforma-
tion with more detail. In each figure, the top left subplot depicts the stress-stretch
curve, the top right plot shows the (red) path that the internal variables take through
the (black) triangular region T , the bottom left plot shows the internal variables as a
function of stretch, and the bottom right plot shows the energy density as a function
of stretch.

Uniaxial extension (U) In the uniaxial case, the body is subjected to uniaxial stress
in the G-direction and traction-free in the H- and I-directions. Thus, f22 = f33 = 0.
The relationship between the stretches is C =

√
B. Thus, the deformation gradient is

F = diag(B, 1/
√
B, 1/
√
B).

77

Figure 4.2: Uniaxial extension.

Planar extension (PE) In the planar extension deformation, the stretch in the
H-direction is fixed at a ratio of 1, yielding _H = 1, and the body is traction-
free in the I-direction. Thus, we have C = B, and the deformation gradient is
F = diag(B, 1, 1/B).

Figure 4.3: Planar extension.

78

Equibiaxial extension (EB) In the equibiaxial deformation, the stretch in the G-
direction and H-direction are equal, and the body is traction-free in the I-direction.
Thus, B = C

B
or C = B2, and the deformation gradient is F = diag(B, B, 1/B2).

Figure 4.4: Equibiaxial extension.

Unequal biaxial extension (UB) In the case of the unequal-biaxial extension, the
body is traction-free in the I-direction. The experiments are performed by fixing
the ratio of YG

YH
=
_G−1
_H−1 to be a constant V, where V has values equal to 5/3, 5/2, 5/1.

(Note that V = 1 recovers the equibiaxial case.) This means that we have B−1
C/B−1 = V,

so C = B
V
(B − 1 + V). Thus, the deformation gradient is F = diag

(
B,
B−1+V
V
,

V

B(B−1+V)

)
.

The figures can be seen in Figures 4.5–4.7.

79

Figure 4.5: Unequal biaxial extension, V = 5/3.

Figure 4.6: Unequal biaxial extension, V = 5/2.

80

Figure 4.7: Unequal biaxial extension, V = 5/1.

Summary: liquid-like behavior Figures 4.8 and 4.9 show a comparison of
the stress-stretch data, plotted for the experimental data from Urayama’s research
group [71] and the theoretical model for various deformations.

Figure 4.8: Experimental stress, plotted as a function of _I.

81

Figure 4.9: Theoretical stress, plotted as a function of _I.

Hysteresis Finally, Figures 4.10a and 4.10b show the load/unload curve for the
U and PE deformations. The model is able to capture energy dissipation between
the load and unload curves, depicted by the hysteresis between the dashed and solid
curves.

(a) (b)

Figure 4.10: Load/unload curves for the (a) PE deformation and (b) U deformation.

4.4 Implementation in ABAQUS
We now discuss the model’s implementation in a custom user-material, or UMAT, for
use in ABAQUS. The code for the UMAT, written in FORTRAN, can be found inAppendix
D.1. It is useful for numerical purposes to consider a compressible model. Further,
our validation showed good agreement with the neo-Hookean. So we take the strain

82

energy density to be:

,̄ =
`

2

[
�−2/3tr

(
F >G−1F

)
− 3

]
+ ^

2
(ln �)2 , (4.48)

whereF is the deformation gradient, � = detF is the determinant of the deformation
gradient, and b = FF > is the left Cauchy-Green tensor. G is the tensor of internal
variables that follow an evolution law and shares the same principal basis as b. In
the following sections, we show that the energy density can be rewritten in terms
of a tensor G̃ which shares the same principal basis as C, the right Cauchy-Green
tensor:

, =
`

2

[
�−2/3tr

(
FG̃−1F >

)
− 3

]
+ ^

2
(ln �)2 . (4.49)

Notation
We have the right stretch tensor,

U =

3∑
8=1

_8N8 ⊗N8 =
√
C (4.50)

and the right Cauchy-Green tensor

C =

3∑
8=1

_2
8N8 ⊗N8 . (4.51)

From polar decomposition, we have

F = RU = V R, (4.52)

where U is the right stretch tensor as above, R ∈ ($ (3), and U ∈ �! (3) sym-
metric and positive-definite. Because U is symmetric and real, we can write its
eigendecomposition as

U = Q�Q>, (4.53)

where the orthogonal matrixQ is

Q =
©« N1 N2 N3

ª®®®¬ (4.54)

and

� =
©«
_1

_2

_3

ª®®®¬ . (4.55)

83

The right Cauchy-Green tensor is

C = U 2 (4.56)

= Q�2Q> (4.57)

=

3∑
8=1

_2
8N8 ⊗N8 . (4.58)

The left Cauchy-Green tensor is

b = V 2 (4.59)

= RQ�2Q>R> (4.60)

=

3∑
8=1

_2
8n8 ⊗ n8, (4.61)

where the eigenvectors of b are related to the eigenvectors of C through n = RN .
The internal variable tensorG shares the same principal basis as b:

G = RQ�Q>R> (4.62)

=

3∑
8=1

b2
8 n8 ⊗ n8, (4.63)

where

� =
©«
b1

b2

b3

ª®®®¬ =
©«
_2

X2/_2

1/X2

ª®®®¬ . (4.64)

A related internal variable tensor G̃ shares the same principal basis as C:

G̃ = Q�Q> (4.65)

=

3∑
8=1

b2
8N8 ⊗N8 . (4.66)

Rewritten energy density
The original energy density for our constitutive model was

, =
`

2

[
�−2/3tr

(
F >G−1F

)
− 3

]
+ ^

2
(ln �)2 . (4.67)

84

We can rewrite the energy as a function of G̃:

, =
`

2

[
�−2/3tr

(
G−1b

)
− 3

]
+ ^

2
(ln �)2 (4.68)

=
`

2

[
�−2/3tr

(
RQ�−1Q>R>RQ�2Q>R>

)
− 3

]
+ ^

2
(ln �)2 (4.69)

=
`

2

[
�−2/3tr

(
Q�−1Q>Q�2Q>

)
− 3

]
+ ^

2
(ln �)2 (4.70)

=
`

2

[
�−2/3tr

(
FG̃−1F >

)
− 3

]
+ ^

2
(ln �)2 . (4.71)

We can also rewrite the energy as a function of the principal values:

, =
`

2

[
�−2/3tr

(
RQ�−1Q>R>RQ�2Q>R>

)
− 3

]
+ ^

2
(ln �)2 (4.72)

=
`

2

[
�−2/3tr

(
�−1�2

)
− 3

]
+ ^

2
(ln �)2 (4.73)

=
`

2

[
�−2/3

(
_2

1

b2
1
+
_2

2

b2
2
+
_2

3

b2
3

)
− 3

]
+ ^

2
(ln �)2, (4.74)

or

, =
`

2

[
�−2/3

(
_2

1

b2
1
+
_2

2

b2
2
+
_2

3

b2
3

)
− 3

]
+ ^

2
(ln �)2, (4.75)

where � = det � = _1_2_3.

Adding in viscosity
Here, we note that we have added a viscous part of the stress. We assume an additive
decomposition of the Piola-Kirchhoff stressP into an elastic portion and a viscosity
portion:

P = P 4 + P E, (4.76)

where

P 4 =
m,

mF
(4.77)

and P E = V�dF −> is the viscosity portion. Thus, we have the Cauchy stress:

σ = σ4 + σE (4.78)

=
1
�

m,

mF
F > + Vd. (4.79)

Stress measures
Second Piola-Kirchhoff stress

Let us calculate the second Piola-Kirchhoff stress. Let a symmetric, 3x3 tensor C
have eigenvalues `8 and eigenvectorsN8 so that

CN8 = `8N8 (no sum over 8). (4.80)

85

Then, from [37],
m`8

mC
=N8 ⊗N8 . (4.81)

Here, the eigenvalues of the right Cauchy-Green tensor are `8 = _2
8
. Thus, we obtain

S = 2
m,

mC
(4.82)

= 2

(
m,

m_2
1

m_2
1

mC
+ m,
m_2

2

m_2
2

mC
+ m,
m_2

3

m_2
3

mC

)
(4.83)

= 2

(
m,

m_2
1
N1 ⊗N1 +

m,

m_2
2
N2 ⊗N2 +

m,

m_2
3
N3 ⊗N3

)
(4.84)

= `�−2/3
(

1
b2

1
N1 ⊗N1 +

1
b2

2
N2 ⊗N2 +

1
b2

3
N3 ⊗N3

)
(4.85)

− `
3
�−5/3

(
_2

1

b2
1
+
_2

2

b2
2
+
_2

3

b2
3

) (
_2_3
_1

N1 ⊗N1 +
_1_3
_2

N2 ⊗N2 +
_1_2
_3

N3 ⊗N3

)
(4.86)

+ ^ ln �
�

(
_2_3
_1

N1 ⊗N1 +
_1_3
_2

N2 ⊗N2 +
_1_2
_3

N3 ⊗N3

)
. (4.87)

Recognizing that

G̃−1 =
1
b2

1
N1 ⊗N1 +

1
b2

2
N2 ⊗N2 +

1
b2

3
N3 ⊗N3 (4.88)

tr(G̃−1C) =
_2

1

b2
1
+
_2

2

b2
2
+
_2

3

b2
3

(4.89)

�C−1 =
_2_3
_1

N1 ⊗N1 +
_1_3
_2

N2 ⊗N2 +
_1_2
_3

N3 ⊗N3, (4.90)

we are left with

S = `�−2/3G̃−1 − `
3
�−5/3tr(G̃−1C)�C−1 + ^ ln �

�
�C−1, (4.91)

or
S = `�−2/3

[
G̃−1 − 1

3
tr(G̃−1C)C−1

]
+ ^(ln �)C−1. (4.92)

Note that we also reached this stress expression by computing the tensor derivative
as follows:

S = 2
m, (C)
mC

, (4.93)

where
, (C) = `

2

[
(detC)−1/3tr(G̃−1C) − 3

]
+ ^

8
[ln(detC)]2 (4.94)

with mG̃
mC = 0.

86

First Piola-Kirchhoff stress

The first Piola-Kirchhoff stress can be computed as follows:

P = FS (4.95)

P = `�−2/3
[
FG̃−1 − 1

3
tr

(
G̃−1C

)
F −>

]
+ ^ (ln �) F −>. (4.96)

Cauchy stress

The Cauchy stress expression is needed for ABAQUS. We find

σ =
1
�
PF > =

1
�
FSF > (4.97)

σ = `�−5/3
[
FG̃−1F > − 1

3
tr(G̃−1C)I

]
+ ^ ln �

�
I . (4.98)

Note that when G̃ = I , the Cauchy stress recovers the neo-Hookean stress, as
expected.

Kirchhoff stress

The Kirchhoff stress is simply

τ = �σ = FSF > (4.99)

τ = `�−2/3
[
FG̃−1F > − 1

3
tr(G̃−1C)I

]
+ ^ (ln �) I . (4.100)

Derivation of the material Jacobian, DDSDDE
Jaumann rate of the Kirchhoff stress

The Jaumann rate of the Kirchhoff stress is

O
τ
(�)

= ¤τ −wτ + τw, (4.101)

87

where w = 1
2 (` − `

>) is the spin tensor. In symbolic form, we have

O
τ
(�)

= −2`
3
�−2/3(tr `)

[
FG̃−1F > − 1

3
tr

(
G̃−1C

)
I

]
− `

3
�−2/3

[
tr

(
G̃−1 ¤C

)
X8 9

]
+ `�−2/3 [

dFG̃−1F > + FG̃−1F >d
]

+ ^(tr `)I

+ `�−2/3
[
F ¤̃G−1F > − 1

3
tr

(¤̃G−1C
)
I

]
.

(4.102)

Consistent Jacobian, DDSDDE

The consistent Jacobian matrix (called DDSDDE in ABAQUS), is defined as

O
τ
(�)

= � (DDSDDE) : d, (4.103)

or

O
g
(�)
8 9 = � DDSDDE8 9 :;3:; . (4.104)

We can rewrite Oτ
(�)

in the following way so that the DDSDDE expression is easily
extricated. Note that we will make use of Section B.2.

O
g
(�)
8 9 = −2`

3
�−2/3

[(
FG̃−1F >

)
8 9
X:; −

1
3
tr

(
G̃−1C

)
X8 9X:;

]
3:;

− 2`
3
�−2/3

[(
FG̃−1F >

)
:;
X8 9

]
3:;

+ `
2
�−2/3

[(
FG̃−1F >

)
; 9
X8: +

(
FG̃−1F >

)
8:
X 9 ; +

(
FG̃−1F >

)
8;
X 9 : +

(
FG̃−1F >

)
9 :
X8;

]
3:;

+ ^
[
X8 9X:;

]
3:;

+ `�−2/3
[(
F ¤̃G−1F >

)
8 9
− 1

3
tr

(¤̃G−1C
)
X8 9

]
.

(4.105)
For the last line, we have used the auxiliary Section B.3, where

�8 9 =

[(
F ¤̃G−1F >

)
8 9
− 1

3
tr

(¤̃G−1C
)
X8 9

]
. (4.106)

88

Thus, the material Jacobian, from Equation 4.104, is

DDSDDE8 9 :; = −
2`
3
�−5/3

[(
FG̃−1F >

)
8 9
X:; +

(
FG̃−1F >

)
:;
X8 9

]
+ 2`

9
�−5/3tr

(
G̃−1C

)
X8 9X:; +

^

�
X8 9X:;

+ `
2
�−5/3

[(
FG̃−1F >

)
; 9
X8: +

(
FG̃−1F >

)
8:
X 9 ;

]
+ `

2
�−5/3

[(
FG̃−1F >

)
8;
X 9 : +

(
FG̃−1F >

)
9 :
X8;

]
+ `�−5/3

[
1
|d|2

(
�8 93:; + 38 9 �:;

)
− 1
|d|4

�<=3<=38 93:;

]
.

(4.107)

Note that we can check that the material Jacobian satisfies the symmetries

DDSDDE8 9 :; = DDSDDE:;8 9 = DDSDDE8 9 ;: . (4.108)

We can also confirm that when G̃ = I (and therefore ¤̃G = 0), we recover the
neo-Hookean material Jacobian.

Also note that in approximating the spatial velocity gradient ` and consequently
the rate-of-deformation tensor d and spin tensorw, we use the approximation from
Weber, Anand (1999) [78]:

`= =
1
ΔC

(
F=F

−1
=−1 − I

)
. (4.109)

We considered other approximations; the first was a finite difference approximation:

¤F= =
F= − F=−1

ΔC
, (4.110)

and the second used the increment DSTRAN, as suggested in Nguyen and Waas [52]:

d =
DSTRAN

ΔC
. (4.111)

Optimization using NLOpt
Inside the UMAT, we will be using an external optimization algorithm called NLOpt
(documentation here) to conduct the constrained optimization of the internal vari-
ables. For algorithms that use a gradient-based method, we need to compute the
derivatives of the objective function with respect to the internal variables _ and X.

Recall the minimization problem from Equation 4.32. Written explicitly, we have

https://nlopt.readthedocs.io/en/latest/

89

(_, X) = arg inf
(_,X)∈T

{
`

2

[
�−2/3

(
_2

1

b2
1
+
_2

2

b2
2
+
_2

3

b2
3

)
− 3

]
+ ^

2
(ln �)2

+ � X − 1
(A1/6 − X):

+ ΔC
(U_

2
¤_? + UX

2
¤X?

) } , (4.112)

where _8 (8 = 1 : 3) are the principal stretches of F , � = detF = _1_2_3,
G̃ = Q�Q>, and b1 = _

2, b2 =
X2

_2 , b3 =
1
X2 . We wish for the internal variables to

evolve at different speeds, so the parameters of dissipation must satisfy the relation

U_ � UX . (4.113)

Strain rate
This is the loading for a uniaxial block. We begin with the equation relating stretch
and strain:

Y =
! − !0
!0

=
Δ!

!0
=
!

!0
− 1 = _ − 1. (4.114)

We choose a reference length for the model !0, e.g. in some simulations we have
!0 = 0.01m, or 1 cm. We choose the desired final strain Y 5 = 3, or a desired final
stretch of _ 5 = Y 5 + 1 = 4. Then the distance that the block needs to stretch is
Δ! = Y 5 !0. The velocity that the block needs to move is determined by E = ¤Y!0,
or in other words the strain rate is determined by ¤Y = E

!0
. The total time for the

simulation is C∗ = Δ!
E
, and the stretch as a function of time _(C) is

_(C) = ¤YC + 1 =
E

!0
C + 1 =

Y 5

C∗
C + 1. (4.115)

Eigenvector/eigenvalue coding
We find the eigendecomposition of C, the right Cauchy-Green tensor using a sub-
routine called Jacobi. We find the eigenvalues of C and then order them from
greatest to least (using a bubble sort): _2

1 ≥ _
2
2 ≥ _

2
3, and the square root of the

eigenvalues are collected into the principal stretch matrix is

� =
©«
_1

_2

_3

ª®®®¬ . (4.116)

90

We also order the corresponding normalized eigenvectorsN1,N2,N3. The eigen-
vectors are collected into the orthogonal eigenvector matrixQ:

Q =
©« N1 N2 N3

ª®®®¬ . (4.117)

Then C = Q�Q>. Recall the energy density (where � = det � = _1_2_3)

, =
`

2

[
�−2/3

(
_2

1

b2
1
+
_2

2

b2
2
+
_2

3

b2
3

)
− 3

]
+ ^

2
(ln �)2. (4.118)

So each _8 correlates with b8, 8 = 1 : 3. Thus we have the internal variable matrix
G̃ = Q�Q>, whereQ is the same as Equation 4.117 and the eigenvalues b1, b2, b3

correlate to _1 ≥ _2 ≥ _3:

� =
©«
b1

b2

b3

ª®®®¬ =
©«
_2

X2

_2
1
X2

ª®®®¬ . (4.119)

This allows us to compute the quantity FG̃−1F > and therefore the energy density.

4.5 Results from the ABAQUS implementation
Verification of the model
We compute the results for a single element undergoing the following deformations:
uniaxial (U), planar extension (PE), equibiaxial (EB), and unequal biaxial (UB) with
stretch ratios of 5/3, 5/2, and 5/1. In all of these cases, we have a match between
the theoretical model, solved in MATLAB, and the ABAQUS simulation results. The
parameters used in these results are the same as in Table 4.1, with additional
parameters shown in Table 4.2. In each deformation, we see that the results match.

Table 4.2: Additional material properties used in ABAQUS simulations

Bulk modulus ^ = 4.93752 · 108 Pa
Viscosity V = 1 · 106 Pa · s
Proportionality constant for
¤̃G−1 = U ¤C−1

U = 5 · 10−6

We repeated the calculations with multiple elements (e.g. cubes meshed with
5×5×5 and 10×10×10 elements) with the same boundary conditions and loading
conditions as above and confirmed that the results agreed perfectly with the 1×1×1
simulations.

91

U

Figure 4.11: Uniaxial single-element simulation results plotted against theoretical
results.

PE

Figure 4.12: Planar extension single-element simulation results plotted against
theoretical results.

92

EB

Figure 4.13: Equibiaxial single-element simulation results plotted against theoretical
results.

UB 5/3

Figure 4.14: Unequal biaxial (with stretch ratio 5/3) single-element simulation
results plotted against theoretical results.

93

UB 5/2

Figure 4.15: Unequal biaxial (with stretch ratio 5/2) single-element simulation
results plotted against theoretical results.

UB 5/1

Figure 4.16: Unequal biaxial (with stretch ratio 5/1) single-element simulation
results plotted against theoretical results.

94

Dependence upon strain rate and dissipation coefficients in uniaxial stretch
This section summarizes the results from single-element uniaxial stretch for three
different strain rates—fast (1 × 10−2/s), medium (1 × 10−3/s), and slow (1 × 10−4/s)—
and three different values of UX—big (2.1838 × 108 Pa), medium (2.1838 × 107 Pa),
and small (2.1838 × 106 Pa).

Figure 4.17: Uniaxial load and unload curves for varying UX and fixed strain rates:
(a) slow (1 × 10−4/s), (b) medium (1 × 10−3/s), and (c) fast (1 × 10−2/s).

As seen in Figure 4.18, the material response has correspondingly less hysteresis
for slower strain rates, as is expected. We can also see that the smaller values of UX
correspond to less hysteresis as well.

95

Figure 4.18: Uniaxial load and unload curves for all UX values and all strain rates.

Torsion of a cylinder
We move beyond the deformation of thin sheets or ribbons and study the bulk
response of a solid cylinder of nematic elastomer under torsion, which have not
been modeled before using FEA. The cylinder has height �, diameter �, and
varying height-to-diameter ratios � : �, as shown in Table 4.3. We use a C3D8H
element in ABAQUSwith hybrid formulation, and the mesh is depicted in Figure 4.19.

Table 4.3: Dimensions of the cylinder under torsion

� : � ratio Height, � [m] Diameter, � [m] Number of elements
1:1 0.01 0.01 1652
2:1 0.02 0.01 3509
3:1 0.03 0.01 4859

The boundary conditions are such that the right face of the cylinder is entirely
fixed in displacement and rotation in all three directions (U1 = U2 = U3 = 0 and
VRG = VRH = VRI = 0 in ABAQUS) and the left face is zero entirely except for a
prescribed angular velocity l = 0.0026 rad/s (VRI = 0.0026 in ABAQUS). There
is a tie constraint between the cylinder’s face and a rigid plate at each end of the
cylinder.

The angle �� describes the angle that one end of the cylinder twists with respect
to the other end, as seen in Figure 4.20. We can define the strain rate at the outer
rim as ¤�'>, where '> is the half the diameter. For example, for l = ¤�� = 0.0026
rad/s and � : � = 1 : 1, the strain rate at the outer rim is 0.0013 rad/s.

96

Figure 4.19: Meshed cylindrical bodies for varying � : � ratio.

Figure 4.20: Schematic of the twist �� in the cylinder torsion deformation.

The moment and normal force obtained from the ABAQUS results are plotted in Figs.
4.21 and 4.22, separated by anisotropy parameter and � : � ratio. The fact that
the normal force � is nonzero and compressive is due to the Poynting effect [59].
Without �, the cylinder would elongate in the axial direction.

Figure 4.21: Moment" and normal force � of the cylinder under torsion for varying
anisotropy parameters A. The � : � ratio is fixed at 1 : 1.

Based on the moment " and normal force �, we can also define two helpful
quantities: torsional stress at the outer rim g = 2"

c'3
>

and normal stress # = 2�
c'2

>
.

Rivlin and Saunders [62] found that for rubbers, " was proportional to � and |# |

97

Figure 4.22: Moment" and normal force � of the cylinder under torsion for varying
height-to-diameter (� : �) ratios. The anisotropy parameter is fixed at A = 3.

was proportional to �2. So in Figure 4.23, we plot
����#g ���� and indeed see that it is linear

with �'> for rubber (anisotropy parameter A = 1). For the nematic elastomers

(A > 1), the behavior of
����#g ���� is nonlinear. There are two distinct regimes of linear

behavior with different slopes. The first, higher-slope regime corresponds to the
reorientation of the liquid crystals, and the second, lower-slope regime corresponds
to the response of the polymer chains.

For both the nematic elastomers (A > 1) and ordinary rubber (A = 1), the cylinders
develop a kinking instability at certain critical values of twist, which corresponds
to the abrupt change from positive to negative slope in the |#/g | plots. The onset
of kinking is a function of the � : � ratios: the larger � : � is, the easier it is
for the structure to form a kink. Figs. 4.24a and 4.24b show views of the kink for
anisotropy parameter A = 3 and height-to-diameter ratio � : � = 3 : 1. Note that
the cross-section develops a pinch and no longer remains circular.

We also plot the evolution of the internal variables, _ and X, throughout the defor-
mation. Figures 4.26 and 4.27 show _ and X for varying nodes of radii A1 through A5

in the cross-section halfway through the height of the cylinder (see Figure 4.25).

Due to the Poynting effect, twisting the incompressible cylinder will produce a
lengthening in the axial direction, but since the cylinder is constrained in the length,
the cylinder instead continuously develops an instability. Similar instabilities were
observed expeirmentally in rubber cylinders that were subjected to twist, with and
without axial stretch [29, 70]. Coyne [20] and Thompson and Champneys [70]

98

Figure 4.23: Plot of the absolute value of the ratio between torsional stress at the
outer rim g and normal stress # for varying anisotropy parameters A and height-to-
diameter ratios � : �.

(a)

(b)

Figure 4.24: Kinking instability for A = 3, � : � = 3 : 1: (a) Cross-sectional view,
halfway through the height of the cylinder. (b) Side view.

Figure 4.25: Nodes with increasing radii A1 through A5 in the cross-section halfway
through the height of the cylinder.

99

Figure 4.26: Evolution of the internal variables, depicted in the triangular region T
for nodes of varying radii.

Figure 4.27: Evolution of the internal variables as a function of twist for nodes of
varying radii.

100

describe the development of a quasi-static localization or helix similar to what
we observe in Figure 4.24b. The kink has directionality based on the direction the
cylinder is twisted; the helical shape develops as a continuation of the twist direction.

It is not surprising that the nematic elastomer cylinders kink, as the ordinary rubbers
do so as well. If the height-to-diameter ratio were longer, we would expect that the
cylinders would form loops and upon further loading, the loops would twist, similar
to the experiments of [70]. However, the behavior of the normal stress and torsional
stress from Figure 4.23 is a new finding.

To understand the instability further, we conducted an eigenvalue analysis in ABAQUS
of the cylinder under torsion at various height-to-diameter ratios and anisotropy pa-
rameters. The cylinder is first preloaded under the torsion deformation described
above, then a buckling step is conducted to gain the eigenvalues and eigenmodes.
The viscosity is fixed at V = 0 throughout the simulation. The first five modes for
A = 3 and � : � = 2 : 1 are shown in Figure 4.28. We observe shear banding as the
deformation mode, which is very similar across the five modes. The correspond-
ing eigenvalues, from Mode 1 to 5, are (4.5688, 4.5689, 4.5711, 4.5715, 4.5746).
The eigenvalues are very close together, which speaks to an imperfection-sensitive
structure [24].

Figure 4.28: First five eigenmodes for A = 3 and � : � = 2 : 1. The colors represent
the magnitude of displacement, from zero displacement (blue) to high displacement
(red).

101

The eigenvalues from the first mode are plotted as a function of anisotropy parameter
in Figure 4.29, where the eigenvalues for A > 1 start to move away from the isotropic
(A = 1) eigenvalue.

1 5 10 15

Anisotropy parameter

2.264

2.266

2.268

2.27

2.272

2.274

2.276

Figure 4.29: Eigenvalues from the first eigenmode plotted against anisotropy pa-
rameter for fixed � : � = 1 : 1.

4.6 Conclusion
In this chapter, we have formulated a constitutive relation to describe non-ideal
isotropic-genesis polydomain nematic elastomers, which builds upon the work of
DeSimone and Dolzmann [23]. We introduced internal variables that evolve accord-
ing to a dissipative kinetic process that represent the material behavior throughout
the classic regions of interest: a liquid-like region, a region in which fine-scale
microstructure develops, and a solid-like region. We verify the model in MATLAB,
performing the constrained optimization within the triangular region T using the
fmincon function, then validate it with comparison against experimental results
for various biaxial tension tests performed by Kenji Urayama’s group. Finally, we
adapt the constitutive relation for input as a user-defined material code in ABAQUS
and study the deformation of torsion in a solid cylindrical body. We now have a tool
to study these non-ideal polydomain nematic elastomers under arbitrarily complex
loading configurations and boundary conditions in the future.

102

C h a p t e r 5

EXPERIMENTAL CHARACTERIZATION OF NEMATIC
ELASTOMERS

5.1 Introduction
The previous chapters of this thesis have addressed the theoretical and computa-
tional characterization of nematic elastomers, discussing various deformations of
both monodomains and polydomains. The goal of this chapter is to character-
ize the rate dependence and temperature dependence of these nematic elastomers
experimentally.

The synthesis techniques of temperature-responsive nematic elastomers began with
thin films. There has been much work in developing ways to align the nematic
director field within the plane of the thin film of nematic elastomer, e.g. through
applied magnetic field, mechanical strain, and textured surface patterning [12, 13,
45, 74–76, 81–83]. The advent of “click chemistry" allowed bulk nematic elastomers
to be made partially crosslinked in molds, after which another crosslinking process
could induce nematic alignment, without the limitations of thin films [55, 64, 80].
Further, the capability to 3D print of nematic elastomers with shear-alignment of
the liquid crystal mesogens have been developed [4, 40].

In this thesis, we make samples of nematic elastomers in-house using the click-
chemistry method of synthesizing nematic elastomers following [64], discussed in
Section 5.2. This technique involves an easy-to-follow, one-pot chemistry recipe
in which the polymer mixture is poured into open-faced molds, and after curing,
polydomain nematic elastomers are formed. If a UV crosslinker is added to the
mixture, then there exists the option to undergo a second crosslinking step to create
a monodomain, using applied mechanical strain as the alignment technique.

In Chapter 5.3, we discuss the design and build of a thermo-mechanical tensile test
setup capable of testing nematic elastomers at various temperatures while capturing
strain, stress, temperature, and imaging data. Figure 5.1a shows the SolidWorks
design of the experimental setup, and Figure 5.1b shows a picture of the actual setup
in the lab. We have implemented an imaging setup using polarized light microscopy.
Due to the underlying optical properties of the liquid crystals, useful information
can be gained from the optical properties of nematic elastomers. Viewing a sample

103

of nematic elastomer between cross-polarizers can help determine the amount of
ordering existing in the system due to the material’s birefringence. Macroscopically,
a monodomain sample in its nematic state appears transparent, and a polydomain
sample appears cloudy and opaque. Using a microscope can help study a sample
more closely and reveal information about anisotropy and domains.

(a)

(b)

Figure 5.1: (a) SolidWorks model of a portion of the experimental setup. (b)
Picture of the experimental setup.

Finally, Section 5.4 shows the stress-strain curves resulting from tests at varying
temperatures, and the code used to run the experiments can be found in the Appendix
D.2.

5.2 Sample preparation
Materials
For sample preparation, we synthesize main-chain polydomain nematic elastomers,
following [64]. We include the photoinitiator HHMP to allow for a second crosslink-
ing, used for director alignment into a polydomain. We use the following chemicals
for the synthesis procedure:

104

Table 5.1: Table of chemicals

Chemical name and
purpose

Full chemical formula Manufacturer

RM257, di-acrylate
mesogen

1,4-Bis-[4-(3-
acryloyloxypropyloxy)
benzoyloxy]-2-
methylbenzene

Wilshire Technologies

EDDET, di-thiol spacer 2,2’-(ethylenedioxy)
diethanethiol

Sigma Aldrich

PETMP, tetra-thiol
crosslinker

Pentaerythritol tetrakis
(3-mercaptopropionate)

Sigma Aldrich

DPA, catalyst Dipropylamine Sigma Aldrich
HHMP, photoinitiator 2-Hydroxy-4’-(2-

hydroxyethoxy)-2-
methylpropiophenone

Sigma Aldrich

Toluene, solvent Toluene Sigma Aldrich

Please see Section C.1 for further details. The following lab equipment was used in
preparing the samples:

• Fume hood
• Vortex mixer (VWR 10153-834)
• Vacuum oven (VWR 89508-428) and vacuum pump (VWR 89209-762)
• HDPE molds (McMaster 8619K614, then machined by CNC)
• Hot plate (VWR 12620-978)
• Eppendorf micro-pipettes (Sigma Aldrich Z683884)
• Precision scale (VWR 75802-858)
• UV lamp (CureUV 191340), protective box, and UV-protecting glasses (Thor-
Labs LG3)

• Compartmented sample boxes (McMaster 4629T15)

The molds that were used to make the samples were made from 6”× 6”× 1” HDPE
blocks, and we CNCed them into custom shapes in the machine shop.

105

Figure 5.2: HDPE molds with CNCed pockets for samples to be poured into.

We made various molds for making polydomain dogbone samples, as well as larger
polydomain samples that could be clamped and stretched into monodomains. The
corners of pockets are filleted, rather than manufactured with a sharp corner. The
sharp corners often lead to cracks in the finished sample, since removing the cured
samples is a delicate process, and the polymer can easily get caught on snags and
the sample may rip.

Synthesis procedure
The sample preparation has been modified slightly from the original source in [64].
Note that there is a template that helps to follow the procedure, found in Section
C.2. Below are instructions for following the synthesis procedure.

Record your name, date, and the time you start the synthesis procedure. Make sure
you have on the following personal protective equipment (PPE): lab coat, safety
glasses, gloves, closed-toe shoes, and long hair tied back. Clean the mold that you
will use with isopropyl alcohol, rinse it with deionized water, and wipe it down with
a Kim wipe so that it is completely dry. Prepare two glass vials of 30mL capacity,
one labeled as “LCE solution," and the other labeled as “DPA+toluene," which will
hold the diluted catalyst solution.

Set the hot plate dial level to between 7 and 7.5. Place a beaker with water on top of
the hot plate, and place the glass thermometer (held by the stand) inside the beaker
of water. Allow the water to heat to ≈ 80° C.

106

We will follow a triple batch recipe because making a larger batch attains better
accuracy than the single batch recipe from [64]. 1 This is also the recipe for 50
mol% PETMP, but the crosslink density can be changed by modifying the amount
of PETMP and EDDET accordingly. Where possible, fill out the template with the
actual weight before and after transferring the chemical to the vial, and calculate the
percent error between the actual weight and the expected weight.

Start by taring a weigh boat, measuring 12g of RM257 in the weigh boat, and
transfer about half of the RM257 to the “LCE solution" vial. Set the rest of the
RM257 aside. Add in 3000`L of toluene to the vial via micro-pipette. Place the
vial on the hot plate, starting a timer. Occasionally swirl around the solution in the
vial by hand.

While waiting for the solution to completely dissolve, prepare the HHMP. Fold a
square piece of weigh paper in half across the diagonal, and weigh out 0.0257g of
HHMP. Add the HHMP to the vial, and continue heating it on the hot plate. (Since
you want to keep the scale tared to the RM257 weigh boat measurement, you’ll need
to do the HHMP math by hand. Record the weight of the weigh paper, then the
weight of the weigh paper plus HHMP, and finally the weight of the leftover HHMP
on the weigh paper.) When the RM257+toluene mixture has dissolved enough that
there is enough room in the vial to add more RM257 and toluene, finish adding the
rest of the RM257 and 2549.1`L of toluene via micro-pipette. Record the weight
of any leftover RM257 on the weigh boat. Place the vial back on the hot plate.

While waiting for the solution to fully dissolve again, prepare the catalyst solution in
the separate vial. Make 1.5 times what the solution needs, measuring out 0.0549g
of DPA (74.25`L via micro-pipette) and 2.5011g of toluene (2891.25`L via micro-
pipette). Mix the catalyst solution on the Vortex mixer thoroughly.

When the LCE solution has fully dissolved and there are no solids left, record the
time that it took to heat the solution. Without waiting, move forward with adding
2.1657g of PETMP (1691.64`L via micro-pipette). The PETMP is a very viscous
liquid so if you choose to use the micro-pipette, you will need to wait for the solution
to be fully drawn into themicro-pipette tip. Add 1.6158g of EDDET (1442.67`L via
micro-pipette). Vortex mix the catalyst solution one last time and then add 1.7043g
of the solution (1974`L via micro-pipette) to the LCE solution. Vortex mix the
LCE solution for ≈ 20 seconds. Slightly loosen the cap on the vial and place the

1I thank Ruobing Bai for this suggestion.

107

vial in the vacuum oven and pull a vacuum of 20in Hg at room temperature. Keep
a constant vacuum of 20in Hg for 45 seconds, then release the vacuum.

Look at the solution and see if there are any solids that have precipitated in the
solution. Note the solution appearance: cloudy, clear, undissolved solids? Then
if there are undissolved solids, put it back on the hot plate and record the time it
takes to get a fully dissolved solution again. Take a picture of the solution and then
immediately pour the solution into the mold. An example picture is shown in Figure
5.3a. Make sure the solutions are filled completely without any air bubbles and that
each pocket is filled to approximately the same depth. Take a picture of the mold.

Allow the mold to rest in the fume hood at room temperature for about 12 hours
before moving onto the next step, which is placing the samples into the vacuum
oven.

Cleanup: Record the time that the sample preparation finished, dispose of any
hazardous waste appropriately, clean utensils and dishes, turn off the scale, and turn
off the hot plate.

Placing samples into vacuum oven. Roughly 12 hours later, put the samples into
the vacuum oven. Record the date and time. Wearing gloves, place the mold into
the center of the middle shelf of the vacuum oven. Pull the vacuum level to 20.5
in Hg by setting the handle to “evacuate," turning on the vacuum pump, and when
the vacuum level reads 20.5 then simultaneously turn off the vacuum pump with
one hand and setting the handle to “closed" with the other hand. (We overshoot the
vacuum level because the vacuum level will settle to ≈ 20in Hg after a few hours.)
Turn on the temperature switch, with the temperature dial set to 1.5. Take note of
anything irregular. Record the temperature at a couple times throughout the 24 hour
period.

Taking samples out of vacuum oven. Roughly 24 hours later, take the samples
out of the vacuum oven. Record the date. Turn off the temperature switch on the
vacuum oven, and release the vacuum by setting the handle to read “vent." Take the
samples out of the vacuum oven using a heat-protecting glove, and place them in the
fume hood. Write down the time that the samples are taken out of the oven. Note
anything irregular.

108

For sample storage, be sure to keep the samples stored inside a sealed box in a cool,
dry cabinet, protected from ambient light and air. Whenever samples are not being
prepared or used, store them in this way. You can also vacuum seal them.

About 30 minutes later, write down the time. Wear gloves and use a metal spatula to
gently take each sample out of the mold. Heat each sample until it is in its isotropic
state, then place it in a labeled sample box. Note any cracks, bubbles, or other
irregularities in the samples.

UV crosslinking. Anytime after the samples have come out of the molds, you can
UV crosslink them at room temperature (as long as the samples were made with
HHMP, the photoinitiator). Record the date and time that you are UV crosslinking
the samples, as well as the UV crosslinking equipment. You must wear UV-
protecting glasses at all times during this process. Wearing gloves, clamp the
sample in the desired configuration and place it inside the UV crosslinking box.
Turn on the UV lamp and use a stopwatch to be able to record the time spent under
the UV light. If necessary, flip sample over and repeat process until the sample is
fully crosslinked in the desired configuration. Take pictures, and take note of the
temperature of the box (the UV lamp may cause the box to heat up) and any other
irregularities.

For instance, Figure 5.3b shows a polydomain sample that was clamped until it
became optically clear, which forms a monodomain when crosslinked in that con-
figuration.

(a) (b)

Figure 5.3: (a) LCE solution immediately before being poured into mold. (b) Poly-
domain sample clamped in a stretchedmonodomain state, ready forUV crosslinking.

109

Best practices
Below are a list of items to consider when making samples:

• When solution is inside the vial, keep the lid on the vial as much as possible
because liquid can evaporate and disturb any weight measurements.

• When weighing on the scale, close all doors to the scale to limit air flow
that will disturb the measurements, and wait for the numbers to settle before
recording the measurement.

• Never exceed the maximum scale weight, or 60g.
• Always return micro-pipettes to their maximum stated capacity for storage.
(e.g. If it is a 1000`L micro-pipette, turn the reading to 1000`L.)

• Always use a new tip when using micro-pipettes. Keep the tip of the micro-
pipette submerged in the liquid you are retrieving at all times. Wipe off any
excess liquid from the micro-pipette tips before transferring the solution to
the vial. Ensure that there are no bubbles inside the micro-pipette tip.

• The synthesis should take place roughly 12 hours before the samples go into
the vacuum oven (if necessary, more than 12 hours can pass, but not less).
Then another 24 hours should pass before the samples are taken out of the
vacuum oven (if necessary, slightly more than 24 hours can pass, but not
less). Then you can carefully take the samples out of the molds about 30
minutes after they have been taken out of the vacuum oven. You can UV
crosslink anytime after they have been taken out of the molds, but testing of
these samples should ideally take place within 2 days of being taken out of
the molds.

110

5.3 Experimental setup
Design, manufacturing, and assembly

Figure 5.4: Picture of experimental setup.

Figure 5.4 shows the entire experimental system with labels, and the schematics in
Figure 5.5 and 5.6 depict the connections in the test setup. The system is made up
of the following subsystems: chamber assembly (chamber with windows, stationary
bottom clamp, and moving pullrod with clamp), heating (heaters, RTD sensors, and
temperature controller), extension (linear stage, and linear stage controller, and sus-
pension assembly), load (load cell and external power supply), optics (optical table,
lighting, microscope, camera, cross-polarizers), and data acquisition (computer and
DAQ).

The setup was designed in SolidWorks (see Figure 5.1a), with metal adapters to
connect the chamber to the optical table, the pullrod to the load cell, and the load
cell to the linear stage. Glass windows were designed in the front and the back of
the chamber to accommodate the optical setup. The pullrod and one of the adapters
was originally manufactured in metal, but conversations with Sam Daly led to them
being remade in machinable ceramic to prevent the load cell from overheating. We
used the Jim Hall Design and Prototyping Lab (the machine shop in the Mechanical
and Civil Engineering department of Caltech) to manufacture all of the metal and
machinable ceramic pieces.

111

Figure 5.5: Schematic of experimental setup.

Figure 5.6: Schematic of the optical portion of the experimental setup.

The data acquisition system involved soldering the wires of one of the RTDs and
the load cell to the DAQ, and coding in MATLAB to obtain the temperature and load
data. It also required further coding in MATLAB to acquire the extension data from
the linear stage. Julia Combs, a student who worked in the lab for a summer via the
Summer Undergraduate Research Fellowships (SURF) program, figured out how to
obtain imaging data from the camera in MATLAB.

Clamping the sample can be difficult, depending on the stiffness and texture of
the sample. We chose to use binder clips to clamp the samples because they are
self-tightening. Binder clips of different sizes and materials were used depending
on the sample. Clamping at high temperature is especially challenging because the

112

samples became susceptible to breakage at the clamping point. To avoid the sample
slipping in the grips, we handle the test samples only with gloves, so that the sample
does not retain any oils from skin. Additionally, sanding the insides of the binder
clip can help to create friction between the sample and the clamp, or adding a piece
of rubber (e.g. from a rubber glove) can also create more friction so that the samples
do not slip out.

Materials
The various components of the setup, listed by subsystem, are:

• Custom-made chamber assembly
Chamber components (McMaster 1658A12, 8983K128, 8983K118, 2313N23)
Various hardware (nuts, bolts, washers, etc.)
Various adapters (McMaster 8489K44, 4416T47)
Windows and sealing (McMaster 8476K999, 92320A662)
Stationary bottomclamp andmoving clamponpullrod (McMaster 12755T82)
Moving pullrod (McMaster 8489K46)

• Heating
Two heaters (Omega OTF-102/120V)
Two RTD air temperature sensors (Omega RTD-805-B)
Temperature controller (Omega CSI32RTD-C24)

• Extension
Linear stage (Physik Instrumente M-531.EC)
Linear stage controller (Physik Instrumente C-863.11)
Linear stage I-axis mounting bracket (Physik Instrumente M-592.10)
Suspension system (ThorLabs VB01B)

• Load
Load cell (Omega LC101-50)
External 10V power supply

• Optics
Vibration-isolation table (ThorLabs T46J)
LED backlight (Edmund Optics 83-873)
Long working-distance microscope (Infinity K2/SC)
Camera (Edmund Optics 86-770)
Cross-polarizers (Infinity 991167, Edmund Optics 45-669)
Calibration slide (ThorLabs R1L3S5P)

• Data acquisition

113

Lab computer (Lenovo ThinkStation P330)
DAQ (Omega INET-600)
MATLAB software

Tensile test procedure
Below are instructions for the tensile test procedure:

Start by donning the proper PPE: put on safety glasses, gloves when handling
samples, and heat-protection gloves when you will be in contact with the chamber
when it is hot. On the lab computer, make a new file folder that will hold the test
results (naming it with the date of the test, sample information, etc.) and also start
a new file in OneNote using the test results template found in Section C.3. Copy in
the MATLAB code to the folder (see the Appendix in Section D.2).

Visually check that the linear stage has no obstructions in its path, andmake sure that
anywhere the load cell moves will not crush it or cause damage to it. A suggestion
is to put up a sign on the door to the lab saying that a test is in progress, and make
sure that no wires or other objects will touch the optical table throughout the test.

Refer to the schematic in Figure 5.5 for all relevant connections. Turn on the external
10V power supply, linear stage controller, and temperature controller. Plug in the
3 USB connectors to the computer: the linear stage controller, the iNet600 data
acquisition (DAQ), and the camera. For optical data, turn on the LED backlight
and position the cross-polarizers. There is an in-line cross-polarizer inside the
microscope, and another cross-polarizer should be between the sample and the LED
backlight, as seen in Figure 5.6. Then open MATLAB, set the working directory to
the current test’s folder, and open the main .m file (see Section D.2).

Wearing gloves, heat the sample you wish to test and let it cool completely. Then
cut the sample into a strip using a new, sharp razor blade. With calipers, measure
the width and thickness of the sample. Record these measurements in the OneNote
template and in the MATLAB code, taking care to keep the units consistent.

If collecting imaging data, open the uEye Cockpit software. Make sure that the
camera is facing in the correct orientation (see the red sticker on the camera). Take
and save a picture of the ThorLabs calibration slide so that you can create a size
scale. Ensure that polarizing filters are in place. You can set up a sequence of
images to be taken, or you can capture a video. Be sure to take a picture that allows
you to correlate the image to the timing of the test.

114

Figure 5.7: Instructions for setting the setpoint temperature in the temperature
controller.

If the test is performed at a temperature higher than room temperature, then use
the Omega temperature controller to set the setpoint temperature according to the
instructions manual (see Figure 5.7). Note that the temperature is in Farenheit, not
Celsius. Preheat the test setup to the desired temperature and then clamp the samples
in to begin the test, using the preheat section of the code to record the preheat data.
Put the insulation on the top of the chamber, to keep the load cell cool. Close the
chamber door, and point the floor fan (on a low speed) at the load cell to keep it cool
as well2.

In the code, enter in the desired strain and strain rate, according to Table 5.2. Also
set the position where the test will start using startCoarsePos. Ensure that this
position will never cause the pullrod to crash into anything, which would damage
the linear stage and the load cell.

Table 5.2: Table of testing strain rates

Fast strain rate 10−2/sec
Medium strain rate 10−3/sec
Slow strain rate 10−4/sec

Double-check that the linear stage is free to move without obstruction. Run the
block of code that connects MATLAB to the linear stage controller and references the
linear stage. This code will cause the linear stage to move to its reference position
at 153mm, which is in the exact middle of the 306mm-long stage.

2I thank Sam Daly for this tip about using a fan to cool the load cell.

115

Attach the pullrod to the load cell. With gloves on, carefully clamp the sample into
the top clamp. You can finish clamping the sample using one of two methods. For
the first method, if you know that the start position in startCoarsePos is a good
location to hold the specimen in the clamps, then hold the bottom clamp open and
execute the next block of code, which moves the linear stage to the start position.
Skip the next block of code, which allows you to jog the linear stage up and down,
without executing it. Or you may do the second method, which is to execute the
block of code that moves the pullrod to startCoarsePos, and you can execute the
block of code after that to jog the linear stage up and down to get the specimen
clamped in position well. Type u or d to move the linear stage up or down in small
increments until you are satisfied with the position, and you can clamp the sample in
this way. Do not introduce any stresses to the specimen, and make sure the specimen
is aligned well. When the specimen is fully clamped, close the chamber door.

The next block of code queries the linear stage for its position and then calculates
the gauge length automatically. There is no action needed here.

The next block of code calculates the extension of the linear stage, the velocity, and
the time that the test will take. This code assumes a full cycle through loading and
unloading. The code also calculates the cross-sectional area. Modify the step size
accordingly for various strain rates, ensuring that the linear stage will not move too
fast or too slow for its specifications.

After that, the next block of code will configure the linear stage, calculating the
starting position, the stopping position, and the array called steps. Also execute
the initialization of the data acquisition system, using the correct .prf file thatmatches
the correct load cell and temperature sensors signals. There is no action required
from you here.

Finally, the move function is called in the next block of code, and the position,
temperature, and load data are saved in their corresponding structures. Be sure not
to disturb the test in any way by touching the optical table. After the test is finished,
the last blocks of code can be executed to plot and save the data, which includes the
stress-strain curve.

Save the files and data, complete the test template as you go, and remove the specimen
from the clamps. Create a new folder for each test performed, and repeat this testing
process as needed. After you complete testing, then there are cleanup procedures
to follow. Save all data, exit MATLAB, and unplug the 3 USB connectors from the

116

computer (linear stage controller, camera, and data acquisition). Turn the power off
to the linear stage, the temperature controller, and the external power supply. Cover
up the camera lens and store it so that no light or dust enters the sensor. Take the
pullrod off the load cell for storage so that the load cell is unloaded when not in use.
Be sure to store the specimens properly (in containers, inside closed cabinets) so
that they do not age as quickly in the ambient air or light.

Best practices
Below is a list of items to consider when using the tensile test setup:

• Don’t touch the vibration isolation table while test is running!
• It might be helpful to put a sign on the lab door saying "testing in progress"
so people don’t come into the lab and disrupt the test.

• Wear safety glasses (in case of fracture).
• Make sure that when the linear stage moves, the wires and everything are not
going to get caught, that the load cell won’t be jammed or overloaded.

• Shut the door of the chamber during the test, because we don’t want ambient
air in the lab to affect it.

• Handle samples with gloves so that your hand’s oils don’t transfer to the
sample, making it harder for the clamp to hold onto the sample.

• Use a new sharp razor blade to cut samples
• Store any samples inside the box in darkness when not being tested.
• Test samples starting on the day that the samples came out of the oven, and
finish tests within 2 days.

• Use virgin samples for all the tests, unless stated otherwise. Make a note of
the sample’s loading and heating history.

• I am able to leave the experiment unattended when testing is done at room
temperature, with the permission from the Safety Office, who has inspected
the experimental setup. However, I do not leave the experiment unattended
when testing is done at high temperature because the heaters present a fire
risk.

• When testing a sample in the load/unload cycle, ensure that you choose a
strain that will be safe enough for the sample not to fail prematurely during
the test.

117

Test matrix
Here we have the completed test matrix, with each cell denoting the date that the
samples are synthesized (not tested). The “polydomain" samples are not treated to
a second crosslinking and are therefore in the polydomain state at nematic temper-
atures, while the “monodomain ⊥" samples are pulled in a uniform direction and
treated to a second crosslinking so that they are in the monodomain state at nematic
temperatures. The monodomain samples are pulled in tension perpendicular to the
direction of the mesogen orientation.

Table 5.3: Tests at nematic temperature (room temperature ≈ 22°C)

Fast strain rate Medium strain
rate

Slow strain rate

Polydomain pull
til failure

7/29/20 8/12/20 11/4/20

Polydomain
load/unload
sample 1

7/29/20 7/29/20 7/29/20

Polydomain
load/unload
sample 2

7/29/20 7/29/20 7/29/20

Polydomain
load/unload
sample 3

7/29/20 7/29/20 7/29/20

Monodomain ⊥
pull til failure

8/12/20 8/12/20 8/12/20

Monodomain ⊥
load/unload
sample 1

8/12/20 8/12/20 8/12/20

Monodomain ⊥
load/unload
sample 2

8/12/20 8/12/20 8/12/20

Monodomain ⊥
load/unload
sample 3

8/12/20 – –

Table 5.4: Tests at isotropic temperature (≈ 130°C)

Fast strain rate Medium strain rate Slow strain rate
Polydomain pull til failure 4/8/2021 4/8/2021 4/8/2021

118

5.4 Experimental results
In this section, all samples have 50mol%PETMP. Each curve corresponds to distinct
samples (no samples were reused). The stress is defined as force divided by the
undeformed cross-sectional area.

Results for polydomain samples at room temperature
Figure 5.8a shows the results for polydomain samples pulled til failure at three
different strain rates, all at room temperature. The fastest strain rate corresponds to
the stiffest response, as expected. Figure 5.8b plots 3 samples tested at the fastest
strain rate with their load and unload curves. Figure 5.9a shows the same for the
medium strain rate, and Figure 5.9b shows the same for the slowest strain rate.

(a) (b)

Figure 5.8: (a) Stress-strain curve of polydomain samples that were pulled til break.
(b) Load and unload stress-strain curves for polydomain samples at fast strain rate.

(a) (b)

Figure 5.9: (a) Load and unload stress-strain curves for polydomain samples at
medium strain rate. (b) Load and unload stress-strain curves for polydomain samples
at slow strain rate.

119

Figure 5.13 shows the stress-strain curves for all the polydomain samples at all strain
rates.

Figure 5.10: Stress-strain loading curves for all room-temperature polydomain
samples at all strain rates.

Results for monodomain samples at room temperature
Figure 5.11a shows the results from monodomain samples that were pulled perpen-
dicular to their crosslinked nematic pattern until failure (all at room temperature).
Figures 5.11b, 5.12a, and 5.12b show the load and unload curves for samples that
were pulled at the fastest, medium, and slowest strain rates, respectively.

(a) (b)

Figure 5.11: (a) Stress-strain curve of monodomain samples that were pulled til
break. (b) Load and unload stress-strain curves for monodomain samples at fast
strain rate.

120

(a) (b)

Figure 5.12: (a) Load and unload stress-strain curves for monodomain samples
at medium strain rate. (b) Load and unload stress-strain curves for monodomain
samples at slow strain rate.

Figure 5.13 show the stress-strain response for all the monodomain samples at all
strain rates at room temperature.

Figure 5.13: Stress-strain loading curves for all monodomain samples at all strain
rates.

Figure 5.14 shows the image of stripe domains that formed in the uniaxial stretch of
a monodomain sample. The stretch direction is vertical, and the stripes are parallel
to the direction of stretch. The width of a stripe is about 75`m.

121

Figure 5.14: Image of stripe domains that appeared in the uniaxial stretch of a
monodomain sample pulled perpendicular to its nematic alignment direction (tested
at room temperature, imaged with cross-polarizers).

Results for polydomain samples at high temperature
In this section, polydomain samples were tested at high temperature, ≈ 130 degC.
The entire testing chamber was preheated to the high temperature and then the
samples were clamped in to begin the test. Figure 5.15a shows the stress-strain
curves of the polydomain samples at all strain rates at high temperature, and Figure
5.15b shows the stress-strain curves of the polydomain samples at room temperature
and high temperature for comparison.

(a) (b)

Figure 5.15: (a) Stress-strain loading curves for samples at high temperature at
varying strain rates. (b) Stress-strain loading curves for all samples at low and high
temperatures and varying strain rates. Note that the high-temperature curves appear
very close to the origin.

122

The samples broke in the clamps extremely quickly at high temperature, so there
was not much stress-strain data gathered in these tests. Strain rate does not have
the expected effect upon the stress-strain curves in Figure 5.15a; the fastest strain
rate corresponds to the softest sample, and the slowest strain rate corresponds to the
stiffest sample. However, when analyzing the effect of temperature in Figure 5.15b,
the three samples at high temperature are all stiffer than the three samples at low
temperature, which is the expected effect.

Cyclic testing results
This test was conducted by Julia Combs. She tested a polydomain sample with 15
mol% PETMP at a strain rate of 10−2/sec at room temperature. She used one sample
throughout the twenty cycles. For a given cycle, she clamped it, loaded it, unloaded
it, heated it up in the clamp (without unclamping it) using the heat gun, waited for
it to cool (≈ 3 min), then repeated. The results can be seen in Figure 5.16. The
stress at 200% strain decreases with the number of cycles, while the stress at which
mesogen reorientation occurs increases with the number of cycles. We suspect that
some cycles have a higher stress plateau than others because the sample wasn’t fully
cooled down to room temperature, so the sample would be stiffer due to being in a
more isotropic state.

0 50 100 150 200

Strain [%]

0

10

20

30

40

50

60

Cyclic Loading of Nematic Elastomers

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
18
19
20

Cycle #

Figure 5.16: Cyclic stress-strain curves for a single sample over 20 cycles.

Repeatedly testing the same sample, or different samples from the same synthesis
batch, would provide insight into the aging of the samples over time. Aging in
polymers is well understood, but not well-studied in nematic elastomers. Aging

123

can depend upon the particular chemistry of synthesis, temperature, loading history,
radiation, and more, and aging would affect nematic elastomers’ use in various
long-term applications.

5.5 Conclusion
In this chapter, we have described the synthesis of nematic elastomer samples that
were tested in our experimental tensile test apparatus, which features a temperature-
controlled chamber and polarized light microscopy capabilities. We presented the
results for the uniaxial stretch of polydomain and monodomain nematic elastomers
in their isotropic and nematic temperatures. We observed stripe domains in mon-
odomain samples pulled perpendicular to their nematic alignment, and we have also
conducted cyclic loading tests.

There exists much potential to build upon the current experimental setup for future
research directions. For example, a future avenue of research could be obtaining
full strain fields through digital image correlation (DIC). There are also some im-
provements that can be made to the experimental setup. The chamber design could
be improved for easier clamping of samples when the setup is pre-heated, and the
clamping mechanism could be improved beyond simple butterfly clamps.

Future experiments that could be conducted include uniaxial stretch of monodomain
samples at varying angles with respect to director alignment, in-depth characteriza-
tion of aging in samples over time, cavitation of a disk (for comparison with results
from Chapter 3), and cyclic testing of samples at varying temperatures, strain rates,
and director orientation.

124

C h a p t e r 6

CONCLUSION AND FUTURE OUTLOOK

6.1 Summary and impact of the findings
Liquid crystal elastomers = liquid crystals + elastomer
At the heart of liquid crystal elastomers lies the interplay between two aspects of
its microscopic makeup, i.e. the liquid crystal molecules embedded within a lightly
crosslinked polymer backbone, and the macroscopic shape change. The microscale
affects the macroscale, and vice versa. In response to an external stimulus such as
change in temperature, nematic elastomers continuously deform between a high-
temperature isotropic state, in which the liquid crystals are randomly oriented and
there is no orientational order, and a low-temperature nematic state, in which it is
energetically favorable for the rigid, rod-like liquid crystal molecules to align along
a preferential direction. In return, external stretch of the material at the macroscale
induces a change in the microscale, where the liquid crystal molecules reorient to
align along the direction of most stretch. Furthermore, they have both liquid-like
behavior (during mesogen reorientation) and solid-like behavior (during the elastic
response of the elastomer chains). Finally, this unique microscopic structure leads
to the ability for the material to develop fine-scale microstructure, and consequently
exhibit their unusually soft behavior. These characteristics continue to inspire
researchers in this field since the foundational stripe domains from the uniaxial
stretch experiments of Kundler and Finkelmann [42].

Modeling nematic elastomers
This thesis utilized three different approaches to the continuum-level modeling of
nematic elastomers. In Chapter 2, we introduced the classical model to characterize
nematic elastomers, which is the Bladon-Terentjev-Warner (BTW) model, or “trace
formula" [10]. However, because this model is an extension of the neo-Hookean
model for rubbers and is therefore derived from Gaussian chain modeling, it works
well to capture the material behavior at small to moderate stretches, but it fails to
predict the stiffer behavior when the polymer chains are stretched sufficiently far
such that Gaussian statistics are violated. For instance, the BTW model cannot
capture the correct behavior at large stretch in the case of the expansion of a balloon
subjected to internal pressure. Thus, we used the Ogden extension of the BTW

125

theory in Chapter 2, which allowed us to study the large-deformation behavior of a
cylindrical nematic elastomer balloon and its application as a soft pump.

In Chapter 3, we introduced DeSimone and Dolzmann’s theoretical model that
captures fine-scale microstructure through relaxation of the BTW theory [23]. In
the model, nematic elastomers can form domains of region !, denoting a liquid-like
behavior, region " , denoting the formation of fine-scale microstructure, and region
(, denoting the solid-like behavior where there is no nematic mesogen reorientation.
Again, the BTW theory is unable to capture the correct physics of nematic elastomers
at large stretch, so we employed a generalized Mooney-Rivlin model, following
Silhavy, Agostiniani, and DeSimone [1, 65].

Finally, Chapter 4 discussed the new constitutive relation that we developed to
describe non-ideal isotropic-genesis polydomain nematic elastomers. The model
featured internal variables that corresponded to the formation of microstructure,
which evolved according to a dissipative relation, and viscosity associated with the
polymer network.

Cylindrical balloon and corresponding pump
In Chapter 2, we analyzed a monodomain cylindrical balloon in which the nematic
director was axially oriented in its undeformed state. We found multiple equilibrium
solutions. One solution was metastable, where the nematic mesogens would not ro-
tate from their original axial orientation. The other two solutions featured fine-scale
microstructure development, where the nematic director rotated symmetrically at a
positive or negative angle in opposite directions to accommodate the deformation.
The balloon would form alternating domains of the two symmetric solutions, and the
macroscopic behavior of the twist would also alternate between the two solutions.

Then we described how such a cylindrical balloon could form a pumping cycle
through a combination of inflow, outflow, and changing temperature. We measured
the ejection fraction of the pump, which described howmuch fluid the balloon could
pump in a given cycle, and found that it was extremely high due to the softness of
the material and thus the nature of the pressure-volume curve.

This work was one of the first examples of actuation from geometries beyond flat,
two-dimensional sheets, and analyzed nematic elastomers under a more complex
loading and condition than previously considered.

126

Universal deformations of nematic elastomers
In Chapter 3, we studied the four deformations of cylindrical balloon expansion,
spherical balloon expansion, cavitation of a disk, and bending of a block. We
discussed how the materials can form regions of !, " , and (in response to the
boundary conditions (e.g. for the spherical and cylindrical balloons, see Figures
3.3, 3.7 respectively). For the balloons, due to the boundary condition of internal
pressure, the area of most stress was in the inner radius of the balloon, which was
where the balloon formed microstructure first, before eventually the entire cross-
section became enveloped by region " . We discussed how the deformation of the
spherical balloon inflationwas essentially the deformation of equibiaxial stretch, so it
followed the EB curve of Figure 6.1, while the cylindrical balloon inflationwith fixed
axial stretch was a manifestation of planar extension, so its deformation path was
the PE curve. Consequently, the spherical balloon remained in the microstructure-
formation region for the rest of its deformation, whereas the cylindrical balloon
stopped microstructure formation at a certain point and had a solid-like response at
high stretch.

Figure 6.1: Regions of !, " , and (in the phase diagram of (B, C). Also shown are
common deformations and their paths through the three regions: equibiaxial stretch
(EB), unequal biaxial stretch (UB) with various strain ratios (5/3, 5/2, 5/1), planar
extension (PE), and uniaxial stretch (U).

127

Furthermore, there was a spontaneous deformation associated with the temperature-
induced phase transition, in which the surrounding polymer chains stretch parallel to
the preferred direction and contract in the transverse directions. This phenomenon,
which occurs at zero stress, was observed in both Chapters 2 and 3. In the case of the
balloons subjected to internal pressure, for anisotropy parameters greater than 1, the
pressure-stretch curves did not begin inflation at the point (_>, ?) = (1, 0). It was
also seen clearly in the plot of moment vs. stretch for the deformation of bending.
These spontaneous deformations associated with the unique thermo-mechanical
coupling in nematic elastomers exemplify why these materials are so compelling to
study.

We also discussed the cavitation of a disk, which was originally studied for ordi-
nary rubber by Gent and Lindley [30], and the bending of a block. We compared
the results between ordinary rubber response and the nematic elastomer response.
Interestingly, in the bending deformation, we found that there were multiple equi-
librium solutions as the deformation progressed, similar to the multiple equilibrium
solutions found in Chapter 2.

Previous work in the field of nematic elastomers has focused on studying homo-
geneous deformations, so this chapter is a significant step towards understanding
nematic elastomers under various inhomogeneous deformations.

Computational characterization of non-ideal, isotropic-genesis polydomain ne-
matic elastomers
In Chapter 4, we developed an entirely new constitutive model to describe non-ideal,
isotropic-genesis polydomain nematic elastomers. We implemented the model in
the commercial finite-element software ABAQUS by writing a custom UMAT. We
verified the ABAQUS code against the one-dimensional theory in MATLAB for various
biaxial extension tests (uniaxial extension, planar extension, equibiaxial extension,
and unequal biaxial extension), then validated the results from the model against
experimental results for the same biaxial extension tests. We found great agreement
between the simulation and the experiments, which were conducted by Tokumoto
et al. [71]. We then studied cylinder torsion at various height-to-diameter ratios
and anisotropy parameters. We compared the results between ordinary rubber and
nematic elastomer and discussed the kinking instability.

Though nematic elastomers have been studied through multiple decades, there are
still barriers in realizing thesematerials in engineering applications, unlikematerials

128

such as shape memory alloys, which are commercially available and accepted in
industry [11, 51]. The finite element model using our constitutive relation from
Chapter 4 is a significant step towards a tool that can study nematic elastomers as
an engineering material.

Experimental characterization of rate dependence and temperature depen-
dence in polydomain and monodomain nematic elastomers
Finally, Chapter 5 described the synthesis of nematic elastomer samples that were
tested in our experimental tensile test apparatus, which featured a temperature-
controlled chamber. We presented the results for the uniaxial stretch of polydo-
main and monodomain nematic elastomers tested at their isotropic and nematic
temperatures. The thermo-mechanical coupling inherent in nematic elastomers
is responsible for the characteristic stress-strain curves presented in this chapter,
for example in the polydomain-to-monodomain transition and in the monodomain-
pull-perpendicular experiments that yielded the stripe domain patterns. We could
clearly identify the distinct regimes in the stress-strain plots where the liquid crystal
mesogen reorientation dominates vs. where the elasticity of the polymer backbone
dominates.

The experimental setup also featured polarized light microscopy capabilities. Be-
cause of nematic elastomers’ optical properties derived from the underlying liquid
crystals, we were able to gain valuable information from viewing samples under
cross-polarizers. We observed the formation of fine-scale microstructure, exhibited
by stripe domains in monodomain samples pulled perpendicular to their nematic
alignment. Finally, we also studied viscoelastic effects by studying the hysteresis at
various strain rates and conducting a cyclic loading test.

6.2 Future outlook
Following the work presented in this thesis, there aremany exciting future avenues of
research within the field of nematic elastomers, and more broadly, active materials.

Theoretical characterization
The natural next steps in characterizing these materials theoretically are to use
the relaxed generalized Mooney-Rivlin model to obtain analytical solutions to the
remaining families of universal deformations that we did not cover in Chapter 3.
Additionally, the cylindrical balloon deformation in Chapter 2 had multiple stable
solutions, as did the bending deformation in Chapter 3. There is a lot of potential

129

for designing structures with multiple stable solutions for energy-efficiency reasons,
so that the only energy expended is moving between the various stable states. The
snap-through instability of Chapter 2 and the kinking instability of Chapter 4 are
both interesting phenomena that result from finite elasticity at large deformation,
and it would be interesting to continue studying other such instabilities in nematic
elastomers.

Computational characterization
To build upon the computational work of Chapter 4, one could perform simulations
of the universal deformations in ABAQUS using the constitutive relation for non-ideal
polydomains, and investigating the effects of viscoelasticity, for instance plotting the
hysteresis between loading and unloading. We also saw that interesting instabilities
can arise, for instance in the torsion of a cylinder, opening the door to further
investigation regarding the onset of such instabilities in nematic elastomers, the
dependence of the instability upon material parameters and geometry, and more.
With the UMAT built, further finite element simulations answering such questions are
straightforward to run and analyze.

Experimental characterization
The natural next step in experimentally characterizing these materials is to expand
upon the experimental results of Chapter 5 to build a complete set of material
parameters to match an Ogden model for nematic elastomers for the ideal Bladon-
Terentjev-Warner model with the non-ideality in Chapter 2, the relaxed generalized
Mooney-Rivlin model of Chapter 3, and the constitutive relation for non-ideal
polydomains for Chapter 4. Then, one can perform experiments on the expansion of
a monodomain nematic elastomer balloon and quantitatively compare the expansion
and twist parameters from Section 2.3, as well as manufacturing and testing a
pump made from this monodomain balloon to construct pressure-volume curves at
different anisotropy parameters, as described in Section 2.4. The physical size of
such a pump could be on the order of centimeters, such as the balloon found in [34].

Furthermore, one can perform experiments within various classes of universal defor-
mations, e.g. the bending of a polydomain block, inflation of polydomain balloons
(spherical and cylindrical), and cavitation of a polydomain disk, and match the ex-
perimental results with the theoretical results of Chapter 3. Other experiments that
were traditionally performed on thin films, such as the bulge and blister tests, would
also be useful avenues of exploration to characterize the material.

130

Nematic elastomers and other active materials
Within the field of active materials, there are exciting paths forward leading to-
wards the multifunctional, the adaptable, and the autonomous. We can think of the
integration of active materials with origami/kirigami for shape-morphing applica-
tions, as well as designing adaptable features such as roughness and stickiness for
bio-inspired soft robotics applications.

Thermotropic nematic elastomers are quick to heat, but the cooling time can be slow
in ambient air based on the temperature differential and the geometry of the sample.
Actuating within a bath increases response times but can be limiting depending on
the application. Phototropic nematic elastomers, for instance, have better response
times, although there are other issues associated with penetration depth of the light.
The combination of such nematic elastomers responding to multiple stimuli, or the
combination of various active materials responding to multiple stimuli, can create
multifunctional structures in which the order and extent of the responses can be
controlled and tuned for the desired actuation. Additionally, composites of nematic
elastomers can be designed for one or more desired properties, e.g. fiber-reinforced
elastomers for augmented mechanical behavior, stretchable wiring for augmented
electrical capabilities. Composites of active materials can be optimized for various
loading configurations using topology optimization.

As mentioned previously, we observe three distinct length scales in nematic elas-
tomers: the nematic mesogens (order of nanometers), domains of nematic alignment
(order of microns), and the macroscale (on the order of centimeters). However, if
a desired application is of a different macroscopic length scale than this, perhaps
designing artificial nematic elastomers, featuring a fundamental phase transition
occurring at the smallest length scale fully coupled with shape change at the macro-
scale, might be a fruitful area of exploration.

131

BIBLIOGRAPHY

[1] V. Agostiniani and A. DeSimone. Ogden-type energies for nematic elastomers.
International Journal of Non-Linear Mechanics, 47(2):402–412, 2012. ISSN
0020-7462. doi: 10.1016/J.ĲNONLINMEC.2011.10.001.

[2] H. Aharoni, E. Sharon, and R. Kupferman. Geometry of Thin Nematic Elas-
tomer Sheets. Physical Review Letters, 113(257801):257801, 2014. doi:
10.1103/PhysRevLett.113.257801.

[3] H. Aharoni, Y. Xia, X. Zhang, R. D. Kamien, and S. Yang. Universal inverse
design of surfaces with thin nematic elastomer sheets. Proc. Nat. Adad. Sci.,
115(28):7201–7211, 2018. ISSN 10916490. doi: 10.1073/pnas.1804702115.

[4] C. P. Ambulo, J. J. Burroughs, J.M. Boothby, H. Kim,M. R. Shankar, and T. H.
Ware. Four-dimensional Printing of Liquid Crystal Elastomers. ACS Applied
Materials and Interfaces, 9(42):37332–37339, 2017. ISSN 1944-8244. doi:
10.1021/acsami.7b11851.

[5] A. Azoug, V. Vasconcellos, J. Dooling, M. Saed, C. Yakacki, and T. Nguyen.
Viscoelasticity of the polydomain-monodomain transition in main-chain liquid
crystal elastomers. Polymer, 98(98):165–171, 2016. ISSN 1359-0286. doi:
10.1016/j.cossms.2010.07.001.

[6] K. Bhattacharya and R. D. James. The material is the machine. Science, 307
(5706):53–54, 2005. ISSN 00368075. doi: 10.1126/science.1100892.

[7] J. S. Biggins, E. M. Terentjev, and M. Warner. Semisoft elastic response of
nematic elastomers to complex deformations. Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics, 78(4):1–9, 2008. ISSN 15393755. doi:
10.1103/PhysRevE.78.041704.

[8] J. S. Biggins, M. Warner, and K. Bhattacharya. Supersoft elasticity in poly-
domain nematic elastomers. Physical Review Letters, 103(3), 2009. ISSN
00319007. doi: 10.1103/PhysRevLett.103.037802.

[9] J. S. Biggins, M. Warner, and K. Bhattacharya. Elasticity of polydomain
liquid crystal elastomers. Journal of the Mechanics and Physics of Solids, 60
(4):573–590, 2012. ISSN 00225096. doi: 10.1016/j.jmps.2012.01.008.

[10] P. Bladon, M. Terentjev, and M. Warner. Transitions and instabilities in liquid-
crystal elastomers. Physical Review E, 47(6):3838–3840, 1993.

[11] Boeing. Boeing Frontiers, 2006. URL https://www.boeing.com/news/
frontiers/archive/2006/march/i_tt.html.

https://www.boeing.com/news/frontiers/archive/2006/march/i_tt.html
https://www.boeing.com/news/frontiers/archive/2006/march/i_tt.html

132

[12] J. M. Boothby and T. H. Ware. Dual-responsive, shape-switching bilayers
enabled by liquid crystal elastomers. Soft Matter, 13(24):4349–4356, 2017.
ISSN 1744-683X. doi: 10.1039/C7SM00541E.

[13] M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley. Fast
liquid-crystal elastomer swims into the dark. Nature Materials, 3(5):307–310,
2004. ISSN 1476-1122. doi: 10.1038/nmat1118.

[14] C. J. Camargo, H. Campanella, J. E. Marshall, N. Torras, K. Zinoviev, E. M.
Terentjev, and J. Esteve. Batch fabrication of optical actuators using nanotube-
elastomer composites towards refreshable Braille displays. Journal of Mi-
cromechanics and Microengineering, 22(7), 2012. ISSN 09601317. doi:
10.1088/0960-1317/22/7/075009.

[15] S. A. Chester. Abaqus Subroutines. URL https://web.njit.edu/$\
sim$sac3/Software.html.

[16] S. M. Clarke and E. M. Terentjev. Slow stress relaxation in liquid crystal
elastomers and gels. Faraday Discussions, 112:352–333, 1999.

[17] S. M. Clarke, A. R. Tajbakhsh, E. M. Terentjev, C. Remillat, G. R. Tomlinson,
and J. R. House. Soft elasticity and mechanical damping in liquid crystalline
elastomers. Journal of Applied Physics, 89(11 I):6530–6535, 2001. ISSN
00218979. doi: 10.1063/1.1368177.

[18] S. Conti, A. DeSimone, and G. Dolzmann. Soft elastic response of stretched
sheets of nematic elastomers: a numerical study. Journal of the Mechanics
and Physics of Solids, 50(7):1431–1451, 2002. ISSN 0022-5096. doi: 10.
1016/S0022-5096(01)00120-X.

[19] S. Conti, A. Desimone, and G. Dolzmann. Semisoft elasticity and director
reorientation in stretched sheets of nematic elastomers. Physical Review E, 66
(061710), 2002. doi: 10.1103/PhysRevE.66.061710.

[20] J. Coyne. Analysis of the Formation and Elimination of Loops in Twisted
Cable. IEEE Journal of Oceanic Engineering, 15(2):72–83, 1990. ISSN
15581691. doi: 10.1109/48.50692.

[21] P.-G. de Gennes. Réflexions sur un type de polymères nématiques. Comptes
rendus de l’Académie des Sciences, Série B, 281:101–103, 1975.

[22] L. T. de Haan, C. Sánchez Somolinos, C. M. W. Bastiaansen, A. P. H. J.
Schenning, and D. J. Broer. Engineering of Complex Order and the Macro-
scopic Deformation of Liquid Crystal Polymer Networks. Angewandte Chemie
International Edition, 51(50):12469–12472, 2012.

[23] A. DeSimone and G. Dolzmann. Macroscopic Response of Nematic Elas-
tomers via Relaxation of a Class of SO(3)-Invariant Energies. Archive for

https://web.njit.edu/$\sim $sac3/Software.html
https://web.njit.edu/$\sim $sac3/Software.html

133

Rational Mechanics and Analysis, 161(3):181–204, 2002. ISSN 0003-9527.
doi: 10.1007/s002050100174.

[24] A. Documentation. Eigenvalue buckling prediction, 2020.

[25] J. L. Ericksen. Deformations possible in every isotropic, incompressible,
perfectly elastic body. Zeitschrift für angewandte Mathematik und Physik
ZAMP, 5(6):466–489, 1954. ISSN 00442275. doi: 10.1007/BF01601214.

[26] M. J. Ford, C. P. Ambulo, T. A. Kent, E. J. Markvicka, C. Pan, J. Malen,
T. H. Ware, and C. Majidi. A multifunctional shape-morphing elastomer with
liquid metal inclusions. Proceedings of the National Academy of Sciences of
the United States of America, 116(43):21438–21444, 2019. ISSN 10916490.
doi: 10.1073/pnas.1911021116.

[27] A. N. Gent. A new constitutive relation for rubber. Rubber Chemistry and
Technology, 69(1):59–61, 1996. ISSN 00359475. doi: 10.5254/1.3538357.

[28] A. N. Gent. Elastic instabilities of inflated rubber shells. Rubber Chemistry
and Technology, 72(2):263–268, 1999. doi: 10.5254/1.3538799.

[29] A. N. Gent and K. C. Hua. Torsional instability of stretched rubber cylinders.
International Journal of Non-Linear Mechanics, 39(3):483–489, 2004. ISSN
00207462. doi: 10.1016/S0020-7462(02)00217-2.

[30] A. N. Gent and P. B. Lindley. Internal rupture of bonded rubber cylinders in
tension. Proceedings of the Royal Society A, 249(1257):195–205, 1959. ISSN
2053-9169. doi: 10.1098/rspa.1959.0016.

[31] A. Giudici and J. S. Biggins. Giant deformations and soft-inflation in LCE
balloons. EPL, 132(3):1–7, 2020. ISSN 12864854. doi: 10.1209/0295-
5075/132/36001.

[32] A. S. Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, J. A. Lewis,
A. Sydney Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, and J. A.
Lewis. Biomimetic 4D Printing. Nat. Mater., 15(4):413?418, 2016. ISSN
14764660. doi: 10.1038/nmat4544.

[33] N. Goulbourne, E. Mockensturm, and M. Frecker. A nonlinear model for
dielectric elastomer membranes. Journal of Applied Mechanics, 72(6):899–
906, 2005.

[34] Q. He, Y. Zheng, Z.Wang, X. He, and S. Cai. Anomalous inflation of a nematic
balloon. J Mech Phys Solids, 142(104013):104013, 2020. ISSN 00225096.
doi: 10.1016/j.jmps.2020.104013.

[35] A. Hotta and E. Terentjev. Dynamic soft elasticity in monodomain nematic
elastomers. The European Physical Journal E, 10(4):291–301, 2003. ISSN
1292-8941. doi: 10.1140/epje/i2002-10005-5.

134

[36] A. Hotta and E. M. Terentjev. Long-time stress relaxation in polyacrylate
nematic liquid crystalline elastomers. Journal of Physics: Condensed Matter,
13(50):11453–11464, 2001. ISSN 0953-8984. doi: 10.1088/0953-8984/13/
50/305.

[37] A. Kelly, A. P. Stebner, and K. Bhattacharya. A micromechanics-inspired
constitutive model for shape-memory alloys that accounts for initiation and
saturation of phase transformation. Journal of the Mechanics and Physics of
Solids, 97:197–224, 2016. ISSN 00225096. doi: 10.1016/j.jmps.2016.02.007.

[38] W. W. Klingbeil and R. T. Shield. On a class of solutions in plane finite
elasticity. Zeitschrift für angewandte Mathematik und Physik ZAMP, 17(4):
489–511, 1966. ISSN 00442275. doi: 10.1007/BF01595984.

[39] A. Kosaraju, A. Goyal, Y. Grigorova, and A. N. Makaryus. Left Ventricular
Ejection Fraction. [Updated 2020 May 5]. In StatPearls [Internet]. StatPearls
Publishing, Treasure Island, 2020.

[40] A. Kotikian, R. L. Truby, J. W. Boley, T. J. White, and J. A. Lewis. 3D Printing
of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic
Order. Advanced Materials, 30(10):1706164, 2018. ISSN 09359648. doi:
10.1002/adma.201706164.

[41] A. Kotikian, C. McMahan, E. C. Davidson, J. M. Muhammad, R. D. Weeks,
C. Daraio, and J. A. Lewis. Untethered soft robotic matter with passive control
of shape morphing and propulsion. Science Robotics, 4(33):7044, 2019. ISSN
24709476. doi: 10.1126/scirobotics.aax7044.

[42] I. Kundler and H. Finkelmam. Strain-induced director reorientation in nematic
liquid single crystal elastomers. Macromol. Rapid Commun, 16:679–686,
1995. ISSN 1022-1336.

[43] J. Küpfer and H. Finkelmann. Liquid crystal elastomers: Influence of the
orientational distribution of the crosslinks on the phase behaviour and reorien-
tation processes. Macromolecular Chemistry and Physics, 195(4):1353–1367,
1994. ISSN 10221352. doi: 10.1002/macp.1994.021950419.

[44] A. K. Landauer, X. Li, C. Franck, and D. L. Henann. Experimental character-
ization and hyperelastic constitutive modeling of open-cell elastomeric foams.
Journal of the Mechanics and Physics of Solids, 133:103701, 2019. ISSN
00225096. doi: 10.1016/j.jmps.2019.103701.

[45] C. Legge, F. Davis, and G. Mitchell. Memory effects in liquid crystal elas-
tomers. Journal de Physique II, 1(10):1253–1261, 1991.

[46] D. R. Merkel, R. K. Shaha, C. M. Yakacki, and C. P. Frick. Mechanical energy
dissipation in polydomain nematic liquid crystal elastomers in response to
oscillating loading. Polymer, 166:148–154, 2019. ISSN 0032-3861. doi:
10.1016/J.POLYMER.2019.01.042.

135

[47] C. Modes and M. Warner. Shape-programmable materials. Physics Today, 69
(1):32–38, 2016. doi: 10.1063/PT.3.3051.

[48] C. D. Modes, K. Bhattacharya, andM.Warner. Disclination-mediated thermo-
optical response in nematic glass sheets. Physical Review E, 81(60701), 2010.

[49] C. D. Modes, K. Bhattacharya, and M. Warner. Gaussian curvature from flat
elastica sheets. Proceedings of the Royal Society A, 467:1121–1140, 2011.
ISSN 1364-5021. doi: 10.1098/rspa.2010.0352.

[50] C. Mostajeran, M. Warner, T. H. Ware, and T. J. White. Encoding Gaussian
curvature in glassy and elastomeric liquid crystal solids. Proceedings of the
Royal Society A, 472(20160112), 2016.

[51] NASA. Metal with Memory: Shaping the Future of Aviation,
2017. URL https://www.nasa.gov/feature/metal-with-memory-
shaping-the-future-of-aviation.

[52] N. Nguyen and A. M. Waas. Nonlinear, finite deformation, finite element
analysis. Zeitschrift für angewandte Mathematik und Physik ZAMP, 67(3):
1–24, 2016. ISSN 00442275. doi: 10.1007/s00033-016-0623-5.

[53] R.W.Ogden. Non-linear elastic deformations. Ellis Harwood Ltd., Chichester,
1984. ISBN 0486696480.

[54] C. Ortiz, C. K. Ober, and E. Kramer. Stress relaxation of amain-chain, smectic,
polydomain liquid crystalline elastomer. Polymer, 39(16):3713–3718, 1998.
ISSN 0032-3861. doi: 10.1016/S0032-3861(97)10321-4.

[55] Z. Pei, Y. Yang, Q. Chen, E. M. Terentjev, Y. Wei, and Y. Ji. Mouldable liquid-
crystalline elastomer actuators with exchangeable covalent bonds. Nature
Materials, 13(1):36–41, 2013. ISSN 1476-1122. doi: 10.1038/nmat3812.

[56] P. Plucinsky andK. Bhattacharya. Microstructure-enabled control of wrinkling
in nematic elastomer sheets. Journal of the Mechanics and Physics of Solids,
102:125–150, 2017. ISSN 0022-5096. doi: 10.1016/J.JMPS.2017.02.009.

[57] P. Plucinsky, M. Lemm, and K. Bhattacharya. Programming complex shapes
in thin nematic elastomer and glass sheets. Physical Review E, 94(1), 2016.
doi: 10.1103/PhysRevE.94.010701.

[58] P. Plucinsky, B. A. Kowalski, T. J. White, and K. Bhattacharya. Patterning
nonisometric origami in nematic elastomer sheets. Soft Matter, 14:3127–3134,
2018. ISSN 1744-683X. doi: 10.1039/C8SM00103K.

[59] J. H. Poynting. On the Changes in the Dimensions of a Steel Wire when
Twisted, and on the Pressure of Distortional Waves in Steel. Proceedings of
the Royal Society A, 86:534–561, 1912.

https://www.nasa.gov/feature/metal-with-memory-shaping-the-future-of-aviation
https://www.nasa.gov/feature/metal-with-memory-shaping-the-future-of-aviation

136

[60] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in F77. Cambridge University Press, 1992. ISBN 052143064X.

[61] R. S. Rivlin. Large elastic deformations of isotropic materials VI. Further
results in the theory of torsion, shear and flexure. Philosophical Transactions
of the Royal Society A, 845(242):173–195, 1949.

[62] R. S. Rivlin and D. W. Saunders. Large Elastic Deformations of Isotropic
Materials VII. Experiments on the Deformation of Rubber. Philosophical
Transactions of the Royal Society of London. Series A, Mathematical and
Physical Sciences, 243(865), 1951. doi: 10.1007/978-1-4612-2416-7_8.

[63] S. Rudykh, K. Bhattacharya, andG.Debotton. Snap-through actuation of thick-
wall electroactive balloons. International Journal of Non-Linear Mechanics,
47(2):206–209, 2012. ISSN 00207462. doi: 10.1016/j.ĳnonlinmec.2011.05.
006.

[64] M. O. Saed, A. H. Torbati, D. P. Nair, and C. M. Yakacki. Synthesis of
Programmable Main-chain Liquid-crystalline Elastomers Using a Two-stage
Thiol-acrylate Reaction. Journal of Visualized Experiments, 107:1–10, 2016.
ISSN 1940-087X. doi: 10.3791/53546.

[65] M. Silhavý. Ideally soft nematic elastomers. Networks and Heterogeneous
Media, 2(2):279–311, 2007. ISSN 1556-1801. doi: 10.3934/nhm.2007.2.279.

[66] M. Singh and A. C. Pipkin. Note on Ericksen’s problem. Zeitschrift für ange-
wandteMathematik und Physik ZAMP, 16(5):706–709, 1965. ISSN 00442275.
doi: 10.1007/BF01590971.

[67] P. Stein, N. Aßfalg, H. Finkelmann, and P. Martinoty. Shear modulus of
polydomain, mono-domain and non-mesomorphic side-chain elastomers: In-
fluence of the nematic order. European Physical Journal E, 4(3):255–262,
2001. ISSN 12928941. doi: 10.1007/s101890170107.

[68] M. Tabrizi, T. H. Ware, and M. R. Shankar. Voxelated Molecular Patterning
in Three-Dimensional Freeforms. ACS Applied Materials and Interfaces, 11
(31):28236–28245, 2019.

[69] E. M. Terentjev, A. Hotta, S. M. Clarke, and M. Warner. Liquid Crystalline
Elastomers: Dynamics andRelaxation ofMicrostructure. Philosophical Trans-
actions of the Royal Society A, 361(1805):653–664, 2003. ISSN 1364-503X.
doi: 10.1098/rsta.2002.1155.

[70] J. M. Thompson and A. R. Champneys. From helix to localized writhing in
the torsional post-buckling of elastic rods. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 452(1944):117–138, 1996.
ISSN 13645021. doi: 10.1098/rspa.1996.0007.

137

[71] H. Tokumoto, H. Zhou, A. Takebe, K. Kamitani, K. Kojio, A. Takahara,
K. Bhattacharya, and K. Urayama. Probing the in-plane liquid-like behavior
of liquid crystal elastomers. To appear. Science Advances, 2021.

[72] L. R. G. Treloar. The Physics of Rubber Elasticity. Oxford University Press,
Oxford, 1975.

[73] L. R. G. Treloar. The Physics of Rubber Elasticity. Oxford University Press,
Oxford, 3rd edition, 2005. ISBN 9780198570257.

[74] K. Urayama, E. Kohmon, M. Kojima, and T. Takigawa. Polydomain–
Monodomain Transition of Randomly Disordered Nematic Elastomers with
Different Cross-LinkingHistories.Macromolecules, 42(12):4084–4089, 2009.
ISSN 0024-9297. doi: 10.1021/ma9004692.

[75] T. H. Ware and T. J. White. Programmed liquid crystal elastomers with
tunable actuation strain. Polymer Chemistry, 6:4835–4844, 2015. doi: 10.
1039/c5py00640f.

[76] T. H. Ware, M. E. McConney, J. J. Wie, V. P. Tondiglia, and T. J. White.
Voxelated liquid crystal elastomers. Science, 347(6225):982–984, 2015. ISSN
0036-8075. doi: 10.1126/science.1261019.

[77] M. Warner and E. M. Terentjev. Liquid Crystal Elastomers. Oxford University
Press, Oxford, 2003. ISBN 0198527675.

[78] G. Weber and L. Anand. Finite deformation constitutive equations and a time
integration procedure for isotropic, hyperelastic-viscoplastic solids. Computer
Methods in Applied Mechanics and Engineering, 79(2):173–202, 1990. ISSN
00457825. doi: 10.1016/0045-7825(90)90131-5.

[79] T. White. Photomechanical Materials, Composites, and Systems: Wireless
Transduction of Light into Work. John Wiley and Sons, 2017. ISBN 978-1-
119-12330-9.

[80] C. M. Yakacki, M. Saed, D. P. Nair, T. Gong, S. M. Reed, and C. N.
Bowman. Tailorable and programmable liquid-crystalline elastomers using
a two-stage thiol–acrylate reaction. RSC Advances, 5:18997, 2015. doi:
10.1039/c5ra01039j.

[81] M. Yamada, M. Kondo, R. Miyasato, Y. Naka, J.-i. Mamiya, M. Kinoshita,
A. Shishido, Y. Yu, C. J. Barrett, and T. Ikeda. Photomobile polymer materi-
als—various three-dimensional movements. Journal of Materials Chemistry,
19(1):60, 2009. ISSN 0959-9428. doi: 10.1039/b815289f.

[82] H. Yang, A. Buguin, J.-M. Taulemesse, K. Kaneko, S. Méry, A. Bergeret, and
P. Keller. Micron-sized main-chain liquid crystalline elastomer actuators with
ultralarge amplitude contractions. Journal of the American Chemical Society,
131(41):15000–15004, 2009. ISSN 00027863. doi: 10.1021/ja905363f.

138

[83] C. Yuan, D. J. Roach, C. K. Dunn, Q. Mu, X. Kuang, C. M. Yakacki, T. J.
Wang, K. Yu, and H. J. Qi. 3D printed reversible shape changing soft actuators
assisted by liquid crystal elastomers. Soft Matter, 13(33):5558–5568, 2017.
ISSN 1744-683X. doi: 10.1039/C7SM00759K.

[84] X. Zhao and Z. Suo. Method to analyze electromechanical instability of
dielectric elastomers. Applied Physics Letters, 91:61921, 2007.

[85] H. Zhou andK. Bhattacharya. Accelerated computational micromechanics and
its applications to nematic elastomers. To appear. Journal of the Mechanics
and Physics of Solids, 2021.

139

A p p e n d i x A

SUPPLEMENTARY INFORMATION IN DEVELOPING THE
GENERALIZED MOONEY-RIVLIN MODEL

A.1 Principal stretches
Recall that the cofactor of a second-order tensor F is cof F = (detF) F −> when
detF ≠ 0. Let _<0G ≥ _<83 ≥ _<8= be the singular values or principal stretches of
F , and let _2

<0G ≥ _2
<83
≥ _2

<8=
be the eigenvalues of FF >. Let B = _<0G be the

largest singular value of F , and let C = _<0G_<83 be the largest singular value of
cof F . We can summarize the principal stretches in terms of B and C:

_<0G = B, _<83 =
C

B
, _<8= =

1
C
, (A.1)

where we have used incompressibility for the last relation (_<0G_<83_<8= = 1).

A.2 Minimization of the energy with respect to the nematic director
Energy based on the first invariant
The energy for nematic elastomers based on F is as follows:

,̃1 = min
n s.t. |n|=1

{
2

����tr (`−1
= b

)
− 3

����?}. (A.2)

Because �1 is an invariant, its value is the same no matter what basis is chosen.
Therefore, let us choose the principal basis:

b =
©«
_2
<0G

_2
<83

_2
<8=

ª®®®¬ . (A.3)

Minimizing the energy over the director n yields the result that n is parallel to the
eigenvector corresponding to the largest eigenvalue, _2

<0G . That is, n = (1, 0, 0)>.
Thus, the step-length tensor should be as follows:

`−1
= = A1/3

(
I +

(
1
A
− 1

)
n ⊗ n

)
(A.4)

=
©«
A−2/3

A1/3

A1/3

ª®®®¬ . (A.5)

140

Therefore, we have

,̃1(B, C) = 2
����tr (`−1

= b
)
− 3

����? (A.6)

= 2

����A1/3
(
_2
<0G

A
+ _2

<83 + _
2
<8=

)
− 3

����? (A.7)

= 2

����A1/3
(
B2

A
+ C

2

B2 +
1
C2

)
− 3

����?, (A.8)

where in the last equality we have used the fact that B = _<0G and C = _<0G_<83 .

A.3 Energy based on the second invariant
The energy for nematic elastomers based on cof F is as follows:

,̃2 = min
n s.t. |n|=1

{
3

����tr [(
F >`−1

= F
)−1

]
− 3

����@}. (A.9)

As in Section A.2, we will choose to work in the principal basis because �2 is an
invariant, which is independent of basis:

b =
©«
_2
<0G

_2
<83

_2
<8=

ª®®®¬ . (A.10)

Similarly to the case of ,�1 , minimizing the energy over the director n yields the
result that n is parallel to the eigenvector corresponding to the largest eigenvalue,
_2
<0G , making n = (1, 0, 0)>. Thus, the step-length tensor should be as follows:

`−1
= = A1/3

(
I +

(
1
A
− 1

)
n ⊗ n

)
(A.11)

=
©«
A−2/3

A1/3

A1/3

ª®®®¬ . (A.12)

Therefore, we have

,̃2(B, C) = 3
����tr [(`−1

= b
)−1

]
− 3

����@ (A.13)

= 3 |A−1/3
(
A

_2
<0G

+ 1
_2
<83

+ 1
_2
<8=

)
− 3|@ (A.14)

= 3

����A−1/3
(
A

B2 +
B2

C2
+ C2

)
− 3

����@ . (A.15)

Again, in the last equality we have used the fact that B = _<0G and C = _<0G_<83 .

141

A.4 Simplification of the regions
The regions are defined by the following constraints:

! : {(B, C) : C ≤ B2, C ≥
√
B, C ≤ A1/6}

" : {(B, C) : C ≥ A1/6, C ≤ B2, C ≥ A−1/2B2}
(: {(B, C) : C ≥

√
B, C ≤ A−1/2B2}

(A.16)

We can rewrite these constraints in terms of the principal stretches of F , _<0G ≥
_<83 ≥ _<8=, by using the relations found in Equation A.1. For region !, the first
constraint is:

C ≤ B2 (A.17)

<0G<83 ≤ _2
<0G (A.18)

_<83 ≤ _<0G (A.19)

This is true always, so it is not necessary to state this as a constraint. Similarly, the
second constraint simplifies to:

C ≥
√
B (A.20)

<0G<83 ≥
√
_<0G (A.21)

_2
<0G_

2
<83 ≥ _<0G (A.22)

<0G
2
<83 ≥ 1 (A.23)

1
_<8=

_<83 ≥ 1 (A.24)

_<83 ≥ _<8= (A.25)

Again, this relation is true always. Thus, the last constraint in region ! becomes

C ≤ A1/6 (A.26)

<0G<83 ≤ A1/6 (A.27)

In region " , the first constraint is

C ≥ A1/6 (A.28)

<0G<83 ≥ A1/6 (A.29)

The second constraint in " is the same as the first constraint in region !. The third
constraint in " is

C ≥ A−1/2B2 (A.30)

<0G<83 ≥ A−1/2_2
<0G (A.31)

_<0G

_<83
≤ A1/2 (A.32)

142

In region (, the first constraint is the same as the second constraint in region !. The
second constraint in (is similar to the third constraint in ":

C ≤ A−1/2B2 (A.33)
_<0G

_<83
≥ A1/2 (A.34)

Thus, we have:
! : {_<0G_<83 ≤ A1/6}

" : {_<0G_<83 ≥ A1/6,
_<0G

_<83
≤
√
A}

(: {_<0G
_<83

≥
√
A}

(A.35)

143

A p p e n d i x B

DERIVING DDSDDE FOR THE UMAT

B.1 Useful items for deriving the material Jacobian
Here is a useful derivative:

¤� = m (detF)
m�8�

m�8�

mC
(B.1)

= ��−>8� ¤�8� (B.2)

= � ¤�8��−1
�8 (B.3)

= �tr ` (B.4)

Additionally, we can prove that

tr ` = tr d (B.5)

by

tr d = tr
[
1
2

(
` + `>

)]
(B.6)

=
1
2

[
tr(`) + tr(`>)

]
(B.7)

=
1
2
[tr(`) + tr(`)] (B.8)

= tr ` (B.9)

or the fact that

tr(`) = tr(d +w) = tr(d) (B.10)

since tr(w) = 0.

B.2 Auxiliary remark for the material Jacobian
The time derivative of the right Cauchy-Green tensor can be related to the rate of
deformation tensor:

¤C =
¤

F >F (B.11)

= ¤F >F + F > ¤F (B.12)

= F >F −> ¤F >F + F > ¤FF −1F (B.13)

= F >`>F + F >`F (B.14)

= 2F >dF (B.15)

144

Thus,

tr
(
G̃−1 ¤C

)
= tr

(
2G̃−1F >dF

)
(B.16)

= 2tr
(
FG̃−1F >d

)
(B.17)

= 2
(
FG̃−1F >

)
8 9
3 98 (B.18)

B.3 Auxiliary remark for the material Jacobian
Given �8 9 = � 98, 38 9 = 3 98, find C8 9 :; = C:;8 9 = C8 9 ;: s.t. �8 9 = C8 9 :;3:; .

Remark: There are an infinity of solutions. Add any symmetric C with eigenvectors
perpendicular to 3.

One possible solution is

C8 9 :; = 01(�8 93:; + 38 9 �:;) + 0238 93:; . (B.19)

Then,
C8 9 :;3:; = 01�8 9 |d|2 + 38 9 (01�:;3:; + 02 |d|2). (B.20)

Pick: 01 =
1
|d|2 and 02 = −01

�:;3:;
|d|2 = − �:;3:;

|d|4 so that we have

C8 9 :;3:; = �8 9 . (B.21)

This means that

C8 9 :; =
1
|d|2

(
�8 93:; + 38 9 �:;

)
− 1
|d|4

�<=3<=38 93:; . (B.22)

145

A p p e n d i x C

SYNTHESIS AND TESTING

C.1 Chemical details
Item Density (g/mL) Molar weight (g/mol) Molecular formula

RM257 N/A 588.6 �33�32$10
Toluene 0.865 92.14 �7�8
HHMP N/A 224.25 �12�16$4
PETMP 1.28 488.66 �17�28$8(4
EDDET 1.12 182.3 �6�14$2(2
DPA 0.738 101.19 �6�15#

C.2 Synthesis template
Synthesis
Name:
Date:
Time start:
Time finish:
Sample type:
Molds used:
mol% PETMP:

To do:

� Wear PPE
� Lab coat
� Safety glasses
� Gloves
� Closed-toe shoes
� Tie long hair back

� Clean mold with IPA, DI water, Kim wipe
� Prepare 2 vials, labeled as “LCE solution" and “DPA+toluene"
� Prepare any glass pipettes

146

Hot plate dial level:
Hot plate temperature:

Note: This is the triple batch recipe (a larger batch attains better accuracy than the
single batch recipe from [64]).

Item Expected
weight
(g)

Micropipette
volume
(`L)

Actual
weight,
subtotal
(g)

Leftover
on
weigh
boat or
paper
(g)

Actual
weight,
final (g)

% er-
ror

RM257 12 g —–
Toluene 4.8g 5549.1`L
HHMP 0.0257g —–
Time on the hot plate:
Make catalyst solution (DPA+toluene) in separate vial:

DPA 0.0549
g

74.25 ` L

Toluene 0.0549
g

74.25 ` L

Mix catalyst solution on vortex mixer
PETMP (50
mol%)

2.1657
g

1691.64 ` L

EDDET 1.6158g 1442.67`L
Catalyst so-
lution

1.7043g 1974`L

Time on vortex mixer: 20 sec
Time in vacuum oven at 20in Hg at room temperature: 45 sec

Did sample recrystallize and need a 2nd time on hot plate?
Solution appearance (cloudy, clear, undissolved solids?):
Picture of sample in mold:

To do:

� Dispose of all hazardous waste inside plastic bag
� Clean beakers
� Clean utensils
� Turn off scale, hot plate, lights

147

Notes:

Placing samples into vacuum oven
Date:
Time into oven:

To do:

� Pull vacuum level to 20.5 in Hg
� Set temperature dial to 1.5

Notes:

Taking samples out of vacuum oven
Date:
Time out of oven:
Time of transferring samples from mold to sample boxes (should be ≈ 30 min later):

Notes:

UV Crosslinking
Date:
Time:
UV crosslinking equipment used:
Amount of time hit by UV light per side:
Pictures:
Notes:

C.3 Tensile test template
Name:
Date of test:
Time of test:
Test type (load only, lo ad/unload, pull til failure):
Temperature:
Strain rate:
Velocity:
Linear stage extension:
Total time of test:

148

Sample details:
Sample type (polydomain/monodomain):
Sample identifier:
Date of synthesis:
Amount of time after taken out of oven:
Dimensions of sample:
Width:
Thickness:
Gauge length:
Notes on heating/cooling history:
Notes on loading history:
Microscope/video?:
How did the sample break:
Pictures and data (stress-strain curve, temperature data, images of sample be-
fore/after test, etc.):
Notes:

149

A p p e n d i x D

CODE

D.1 UMAT code for simulations of nematic elastomers in ABAQUS
This section contains the FORTRAN code for the user material defined by Chapter 4,
implemented as a UMAT in ABAQUS. Some portions of code are reproduced from [15,
44, 60], explicitly denoted within comments in the code.

1 subroutine umat(stress,statev,ddsdde,sse,spd,scd,

2 + rpl,ddsddt,drplde,drpldt,

3 + stran,dstran,time,dtime,temp,dtemp,predef,dpred,cmname,

4 + ndi,nshr,ntens,nstatv,props,nprops,coords,drot,pnewdt,

5 + celent,dfgrd0,dfgrd1,noel,npt,layer,kspt,kstep,kinc)

6 !

7 include ’aba_param.inc’

8 !

9 character*80 cmname

10 dimension stress(ntens),statev(nstatv),

11 + ddsdde(ntens,ntens),ddsddt(ntens),drplde(ntens),

12 + stran(ntens),dstran(ntens),time(2),predef(1),dpred(1),

13 + props(nprops),coords(3),drot(3,3),dfgrd0(3,3),dfgrd1(3,3)

14 !

15 ! variables defined and used in the umat:

16 !

17 external myfunc, myconstraint1 , myconstraint2

18 integer i,j,k,l,mm,nn,aa,bb,cc, nrot,np

19 real*8 iden(3,3), material_jacobian(3,3,3,3), stress_3x3(3,3), dPdF(3,3,3,3)

20 real*8 F_3x3(3,3), detF, trb, b_3x3(3,3), Finv(3,3), C_3x3(3,3), detC

21 real*8 mu1, mu2, p_prop, r_prop, c_prop, k_prop, alpha_delta , alpha_lambda ,

kappa, lambda, delta, new_lambda , new_delta

22 real*8 G_diag(3,3), G_3x3(3,3), Ginv(3,3), Finvtranspose(3,3),trGinvb,

PKstress(3,3)

23 real*8 eigvalC(3),eigvec_mat(3,3),tol_val,alpha_const

24 real*8 eigvalb(3),eigvec_mat_b(3,3),dstran_3x3(3,3),prev_F(3,3)

25 real*8 prevFinv(3,3),l_3x3(3,3),d_3x3(3,3),trd

26 real*8 Gtilde_3x3(3,3),Gtildeinv(3,3),trGtildeinvC ,testscalar , dnorm,

Gtildeinvdot(3,3), prev_Gtildeinv(3,3)

27 real*8 A_3x3(3,3),AA_3x3(3,3),trA,trAA,trAAd,Gtildedot(3,3),Fdot(3,3),

prev_Gtilde(3,3)

28 real*8 Lambda_3x3(3,3), U_3x3(3,3), U_3x3_inv(3,3), R_3x3(3,3),F_3x3_check

(3,3),Gdiaginv(3,3),helper(3,3),oldA_3x3(3,3)

29 real*8 beta, w_3x3(3,3), temp_mat(6)

30 real*8 zero,one,two,three,four,five, six, nine,third,half

31 parameter(zero=0.d0,one=1.d0,two=2.d0,three=3.d0,four=4.d0,five=5.d0,six =6.

d0,nine=9.d0,third=1.d0/3.d0,half=1.d0/2.d0)

32 real*8 x(2), minf, lb(2), ub(2), c1data, c2data, fdata(22)

150

33 real*8 ps(3), anps(3,3)

34 integer*8 opt

35 integer ires ! ires is an integer return value which is positive on success

and negative on failure

36 include ’nlopt.f’

37 !

38 mu1 = props(1)

39 mu2 = props(2)

40 kappa = props(3)

41 r_prop = props(4)

42 c_prop = props(5)

43 k_prop = props(6)

44 alpha_delta = props(7)

45 alpha_lambda = alpha_delta/100.d0

46 p_prop = props(8)

47 !

48 tol_val = 5.d-5

49 alpha_const = 5.d-6

50 beta = 1.d6

51 !

52 F_3x3 = dfgrd1

53 statev(3) = F_3x3(1,1)

54 statev(4) = F_3x3(1,2)

55 statev(5) = F_3x3(1,3)

56 statev(6) = F_3x3(2,1)

57 statev(7) = F_3x3(2,2)

58 statev(8) = F_3x3(2,3)

59 statev(9) = F_3x3(3,1)

60 statev(10) = F_3x3(3,2)

61 statev(11) = F_3x3(3,3)

62 ! identity matrix

63 call onem(iden)

64 !

65 ! Compute the relative volume change

66 call mdet(F_3x3,detF)

67 !

68 ! Compute the inverse of the deformation gradient

69 call m3inv(F_3x3,Finv)

70 !

71 Finvtranspose = transpose(Finv)

72 !

73 ! compute the left & right Cauchy-Green tensor

74 b_3x3 = matmul(F_3x3, transpose(F_3x3)) ! matrix multiplication

75 C_3x3 = matmul(transpose(F_3x3),F_3x3) ! matrix multiplication

76 call mdet(C_3x3,detC)

77 !

78 ! get the eigenvalues and eigenvectors of C_3x3 (in descending order)

79 !write(*,*) ’in main code’

80 call zerom(temp_mat)

81 temp_mat(1) = C_3x3(1,1)

82 temp_mat(2) = C_3x3(2,2)

83 temp_mat(3) = C_3x3(3,3)

84 temp_mat(4) = C_3x3(1,2)

85 temp_mat(5) = C_3x3(1,3)

86 temp_mat(6) = C_3x3(2,3)

151

87 np = 3

88 call sprind(temp_mat ,eigvalC,eigvec_mat ,1,ndi,nshr)

89 eigvec_mat = transpose(eigvec_mat)

90 call eigsrt(eigvalC, eigvec_mat , 3, np)

91 call m3inv(dfgrd0,prevFinv)

92 l_3x3 = one/dtime*(matmul(F_3x3,prevFinv)-iden)

93 d_3x3 = half*(l_3x3+transpose(l_3x3))

94 w_3x3 = half*(l_3x3-transpose(l_3x3))

95 call tracem(d_3x3,trd)

96 call tracem(matmul(d_3x3,transpose(d_3x3)),dnorm)

97 !

98 !

99 ! at the start of an abaqus calculation , the state

100 ! variables are passed into umat with zero values.

101 ! initialize the state variables. at this point,

102 ! the time total_time and step_time both have a value

103 ! equal to zero and the step counter, kstep, is

104 ! equal to 1.

105 if ((time(1).eq.zero).and.(kstep.eq.1)) then

106 lambda = one

107 statev(1) = lambda

108 delta = one

109 statev(2) = delta

110 stress_3x3 = zero

111 !

112 end if

113 !

114 !

115 !

116 !

117 ! store the values of the state variables at the beginning of the time step

118 lambda = statev(1) ! at the previous time step

119 delta = statev(2) ! at the previous time step

120 !

121 !! UPDATE LAMBDA AND DELTA USING NLopt

122 opt = 0.d0

123 !call nlo_create(opt, NLOPT_LN_COBYLA , 2)

124 call nlo_create(opt, NLOPT_LD_MMA , 2) ! 2nd argument is the name of the

optimization algorithm

125 lb(1) = 1.d0

126 lb(2) = 1.d0

127 ub(1) = r_prop**(1.d0/3.d0)

128 ub(2) = r_prop**(1.d0/6.d0)

129 call nlo_set_lower_bounds(ires, opt, lb)

130 call nlo_set_upper_bounds(ires, opt, ub)

131 fdata(1) = mu1

132 fdata(2) = mu2

133 fdata(3) = detF

134 fdata(4) = kappa

135 fdata(5) = c_prop

136 fdata(6) = r_prop

137 fdata(7) = k_prop

138 fdata(8) = dtime

139 fdata(9) = alpha_lambda

140 fdata(10) = alpha_delta

152

141 fdata(11) = lambda

142 fdata(12) = delta

143 fdata(13) = p_prop

144 fdata(14) = F_3x3(1,1)

145 fdata(15) = F_3x3(1,2)

146 fdata(16) = F_3x3(1,3)

147 fdata(17) = F_3x3(2,1)

148 fdata(18) = F_3x3(2,2)

149 fdata(19) = F_3x3(2,3)

150 fdata(20) = F_3x3(3,1)

151 fdata(21) = F_3x3(3,2)

152 fdata(22) = F_3x3(3,3)

153 call nlo_set_min_objective(ires, opt, myfunc, fdata)

154 call nlo_add_inequality_constraint(ires, opt, myconstraint1 , c1data, 1.d-8)

155 call nlo_add_inequality_constraint(ires, opt, myconstraint2 , c2data, 1.d-8)

156 call nlo_set_xtol_rel(ires, opt, 1.d-8)

157 ! initialize w/ previous values

158 x(1) = lambda

159 x(2) = delta

160 !

161 call nlo_optimize(ires, opt, x, minf)

162 !if (ires.lt.0) then

163 ! write(*,*) ’kstep =’, kstep, ’increment num = ’, kinc, ’total time = ’,

time(2)

164 ! write(*,*) ’nlopt failed! ires = ’, ires

165 !else

166 ! write(*,*) ’kstep =’, kstep, ’increment num = ’, kinc, ’total time = ’,

time(2)

167 ! write(*,*) x(1), x(2), F_3x3(1,1)

168 ! write(*,*) ’min val = ’, minf, ’and ires =’, ires

169 !endif

170 call nlo_destroy(opt)

171 ! end of the NLopt scheme

172 !

173 new_lambda = x(1)

174 new_delta = x(2)

175 !

176 statev(1) = new_lambda

177 statev(2) = new_delta

178 !

179 ! calculate G_diag

180 call zerom(G_diag)

181 G_diag(1,1) = new_lambda**two ! double asterisk ** is for raising to a power

182 G_diag(2,2) = new_delta**two/(new_lambda**two)

183 G_diag(3,3) = one/(new_delta**two)

184 call m3inv(G_diag,Gdiaginv)

185 !

186 Gtilde_3x3 = matmul(eigvec_mat ,matmul(G_diag,transpose(eigvec_mat)))

187 call m3inv(Gtilde_3x3 ,Gtildeinv)

188 A_3x3 = matmul(F_3x3,matmul(Gtildeinv ,transpose(F_3x3)))

189 call tracem(A_3x3, trA)

190 !

191 ! 3x3 cauchy stress

192 stress_3x3 = (mu1*detF**(-two/three)*(A_3x3-(one/three)*trA*iden)

193 + + kappa*dlog(detF)*iden)/detF + beta*d_3x3

153

194 ! transform 3x3 stress into voigt notation

195 stress(1) = stress_3x3(1,1)

196 stress(2) = stress_3x3(2,2)

197 stress(3) = stress_3x3(3,3)

198 stress(4) = stress_3x3(1,2)

199 stress(5) = stress_3x3(1,3)

200 stress(6) = stress_3x3(2,3)

201 !

202 !

203 !

204 !

205 ! calculate the material jacobian

206 !

207 material_jacobian = zero

208 if (dnorm.lt.tol_val) then

209 do i=1,3

210 do j=1,3

211 do k=1,3

212 do l=1,3

213 material_jacobian(i,j,k,l) = material_jacobian(i,j,k,l)

214 + - (two/three)*mu1*detF**(-five/three)*(A_3x3(i,j)*iden(k,l)+A_3x3(k,l)*

iden(i,j))

215 + + (two/nine)*mu1*detF**(-five/three)*trA*iden(i,j)*iden(k,l)

216 + + kappa/detF*iden(i,j)*iden(k,l)

217 + + mu1/two*detF**(-five/three)*(A_3x3(j,l)*iden(i,k)+A_3x3(i,k)*iden(j,l

))

218 + + mu1/two*detF**(-five/three)*(A_3x3(i,l)*iden(j,k)+A_3x3(j,k)*iden(i,l

))

219 + + beta/two*trd*(iden(i,k)*iden(j,l)+iden(j,k)*iden(i,l))

220 + + beta/two*(iden(i,k)*w_3x3(l,j)+iden(i,l)*w_3x3(k,j)+w_3x3(k,i)*iden(l

,j)+w_3x3(l,i)*iden(j,k))

221 + + beta/(two*dtime)*(iden(i,k)*iden(j,l)+iden(j,k)*iden(i,l))

222 enddo

223 enddo

224 enddo

225 enddo

226 else

227 do i=1,3

228 do j=1,3

229 do k=1,3

230 do l=1,3

231 material_jacobian(i,j,k,l) = material_jacobian(i,j,k,l)

232 + - (two/three)*mu1*detF**(-five/three)*(A_3x3(i,j)*iden(k,l)+A_3x3(k,l)*

iden(i,j))

233 + + (two/nine)*mu1*detF**(-five/three)*trA*iden(i,j)*iden(k,l)

234 + + kappa/detF*iden(i,j)*iden(k,l)

235 + + mu1/two*detF**(-five/three)*(A_3x3(j,l)*iden(i,k)+A_3x3(i,k)*iden(j,l

))

236 + + mu1/two*detF**(-five/three)*(A_3x3(i,l)*iden(j,k)+A_3x3(j,k)*iden(i,l

))

237 + -two*mu1*alpha_const*detF**(-five/three)*(

238 + one/(dnorm**two)*(d_3x3(i,j)*d_3x3(k,l)-third*trd*(iden(i,j)*d_3x3(k,l)

+d_3x3(i,j)*iden(k,l)))

239 + +one/(dnorm**four)*third*(trd**two)*d_3x3(i,j)*d_3x3(k,l))

240 + + beta/two*trd*(iden(i,k)*iden(j,l)+iden(j,k)*iden(i,l))

154

241 + + beta/two*(iden(i,k)*w_3x3(l,j)+iden(i,l)*w_3x3(k,j)+w_3x3(k,i)*iden(l

,j)+w_3x3(l,i)*iden(j,k))

242 + + beta/(two*dtime)*(iden(i,k)*iden(j,l)+iden(j,k)*iden(i,l))

243 enddo

244 enddo

245 enddo

246 enddo

247 end if

248 !**

249 ! transform the tangent matrix into voigt notation. code from

250 ! Alexander K. Landauer, Xiuqi Li, Christian Franck, and David L. Henann.

251 ! Experimental characterization and hyperelastic constitutive modeling of

252 ! open-cell elastomeric foams. Journal of the Mechanics and Physics of

Solids

253 ! doi:10.1016/j.jmps.2019.103701.

254 !**

255 ddsdde = zero

256 !

257 do i=1,ndi

258 do j=1,ndi

259 ddsdde(i,j) = material_jacobian(i,i,j,j)

260 enddo

261 enddo

262 !

263 if (nshr.ne.0) then

264 do i=1,ndi

265 ddsdde(i,ndi+1) = material_jacobian(i,i,1,2)

266 ddsdde(ndi+1,i) = material_jacobian(1,2,i,i)

267 enddo

268 ddsdde(ndi+1,ndi+1) = material_jacobian(1,2,1,2)

269 if (nshr.ne.1) then

270 do i=1,ndi

271 ddsdde(i,ndi+2) = material_jacobian(i,i,1,3)

272 ddsdde(ndi+2,i) = material_jacobian(1,3,i,i)

273 enddo

274 ddsdde(ndi+2,ndi+2) = material_jacobian(1,3,1,3)

275 ddsdde(ndi+1,ndi+2) = material_jacobian(1,2,1,3)

276 ddsdde(ndi+2,ndi+1) = material_jacobian(1,3,1,2)

277 if (nshr.ne.2) then

278 do i=1,ndi

279 ddsdde(i,ndi+3) = material_jacobian(i,i,2,3)

280 ddsdde(ndi+3,i) = material_jacobian(2,3,i,i)

281 enddo

282 ddsdde(ndi+3,ndi+3) = material_jacobian(2,3,2,3)

283 ddsdde(ndi+1,ndi+3) = material_jacobian(1,2,2,3)

284 ddsdde(ndi+3,ndi+1) = material_jacobian(2,3,1,2)

285 ddsdde(ndi+2,ndi+3) = material_jacobian(1,3,2,3)

286 ddsdde(ndi+3,ndi+2) = material_jacobian(2,3,1,3)

287 end if

288 end if

289 end if

290 return

291 end subroutine umat

292 !

293 !***

155

294 !

295 subroutine myfunc(func_val , n, x, grad, need_gradient , fdata)

296 double precision x(n), grad(n), fdata(22)

297 real*8 func_val

298 integer i,j, n, need_gradient ,nrot,np, ndi, nshr

299 real*8 mu1, mu2, detF, kappa, c_prop, r_prop, k_prop, dtime, alpha_lambda ,

alpha_delta , lambda, delta, p_prop

300 real*8 F_3x3(3,3), temp1(3,3), temp2(3,3), trtemp1, trtemp2

301 real*8 C_3x3(3,3), eigvalC(3), eigvec_mat(3,3),G_diag(3,3),Gtilde_3x3(3,3),

Gtildeinv(3,3),A_3x3(3,3),trA

302 real*8 dGtildedlambda(3,3), dGtildeddelta(3,3),term1(3,3),trterm1,term2(3,3)

,trterm2,dDdlambda ,dDddelta ,dfddelta

303 real*8 W_val, f_val,diss_val , temp_mat(6)

304 real*8 zero,one,two,three,four,five, six, nine,third,half

305 parameter(zero=0.d0,one=1.d0,two=2.d0,three=3.d0,four=4.d0,five=5.d0,six =6.

d0,nine=9.d0,third=1.d0/3.d0,half=1.d0/2.d0)

306 mu1 = fdata(1)

307 mu2 = fdata(2)

308 detF = fdata(3)

309 kappa = fdata(4)

310 c_prop = fdata(5)

311 r_prop = fdata(6)

312 k_prop = fdata(7)

313 dtime = fdata(8)

314 alpha_lambda = fdata(9)

315 alpha_delta = fdata(10)

316 lambda = fdata(11)

317 delta = fdata(12)

318 p_prop = fdata(13)

319 F_3x3(1,1) = fdata(14)

320 F_3x3(1,2) = fdata(15)

321 F_3x3(1,3) = fdata(16)

322 F_3x3(2,1) = fdata(17)

323 F_3x3(2,2) = fdata(18)

324 F_3x3(2,3) = fdata(19)

325 F_3x3(3,1) = fdata(20)

326 F_3x3(3,2) = fdata(21)

327 F_3x3(3,3) = fdata(22)

328 !

329 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! func_val

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

330 np = 3

331 ndi = 3

332 nshr = 3

333 C_3x3 = matmul(transpose(F_3x3),F_3x3)

334 call zerom(temp_mat)

335 temp_mat(1) = C_3x3(1,1)

336 temp_mat(2) = C_3x3(2,2)

337 temp_mat(3) = C_3x3(3,3)

338 temp_mat(4) = C_3x3(1,2)

339 temp_mat(5) = C_3x3(1,3)

340 temp_mat(6) = C_3x3(2,3)

341 call sprind(temp_mat ,eigvalC,eigvec_mat ,1,ndi,nshr)

342 eigvec_mat = transpose(eigvec_mat)

343 call eigsrt(eigvalC, eigvec_mat , 3, np)

156

344 call zerom(G_diag)

345 G_diag(1,1) = x(1)**two ! double asterisk ** is for raising to a power

346 G_diag(2,2) = x(2)**two/(x(1)**two)

347 G_diag(3,3) = one/(x(2)**two)

348 Gtilde_3x3 = matmul(eigvec_mat ,matmul(G_diag,transpose(eigvec_mat)))

349 call m3inv(Gtilde_3x3 ,Gtildeinv)

350 A_3x3 = matmul(F_3x3,matmul(Gtildeinv ,transpose(F_3x3)))

351 call tracem(A_3x3, trA)

352 W_val = (mu1/two)*(detF**(-two/three)*trA-three) + (kappa/two)*(dlog(detF))

**two

353 f_val = c_prop*(x(2)-one)/((r_prop**(one/six)-x(2))**k_prop)

354 diss_val = (alpha_lambda/two)*((x(1)-lambda)/dtime)**p_prop + (alpha_delta/

two)*((x(2)-delta)/dtime)**p_prop

355 !

356 func_val = W_val + f_val + dtime*diss_val

357 !

358 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! gradient

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

359 !

360 call zerom(dGtildedlambda)

361 dGtildedlambda(1,1) = two*x(1)

362 dGtildedlambda(2,2) = -two*x(2)**two/(x(1)**three)

363 dGtildedlambda = matmul(eigvec_mat ,matmul(dGtildedlambda ,transpose(

eigvec_mat)))

364 call zerom(dGtildeddelta)

365 dGtildeddelta(2,2) = two*x(2)/(x(1)**two)

366 dGtildeddelta(3,3) = -two/(x(2)**three)

367 dGtildeddelta = matmul(eigvec_mat ,matmul(dGtildeddelta ,transpose(eigvec_mat)

))

368 !

369 term1 = matmul(Gtildeinv ,matmul(dGtildedlambda ,matmul(Gtildeinv ,C_3x3)))

370 call tracem(term1,trterm1)

371 term2 = matmul(Gtildeinv ,matmul(dGtildeddelta ,matmul(Gtildeinv ,C_3x3)))

372 call tracem(term2,trterm2)

373 !

374 dWdlambda = -(mu1/two)*detF**(-two/three)*trterm1

375 dWddelta = -(mu1/two)*detF**(-two/three)*trterm2

376 !

377 dDdlambda = (alpha_lambda/two)*(p_prop/dtime)*((x(1)-lambda)/dtime)**(p_prop

-one)

378 dDddelta = (alpha_delta/two)*(p_prop/dtime)*((x(2)-delta)/dtime)**(p_prop-

one)

379 !

380 dfddelta = c_prop*((r_prop**(one/six)-x(2)+(x(2)-one)*k_prop)/((r_prop**(one

/six)-x(2))**(k_prop+one)))

381 !

382 if (need_gradient.ne.0) then

383 grad(1) = dWdlambda + dtime*dDdlambda

384 grad(2) = dWddelta + dfddelta + dtime*dDddelta

385 endif

386 end

387 !

388 !***

389 !

390 subroutine myconstraint1(func_val, n, x, grad, need_gradient , d)

157

391 integer need_gradient

392 real*8 func_val , x(n), grad(n)

393 if (need_gradient.ne.0) then

394 grad(1) = 0.5d0/dsqrt(x(1))

395 grad(2) = -1.d0

396 endif

397 func_val = dsqrt(x(1)) - x(2)

398 end

399 !

400 !***

401 !

402 subroutine myconstraint2(func_val , n, x, grad, need_gradient , d)

403 integer need_gradient

404 real*8 func_val , x(n), grad(n)

405 if (need_gradient.ne.0) then

406 grad(1) = -2.d0*x(1)

407 grad(2) = 1.d0

408 endif

409 func_val = x(2) - x(1)**2.d0

410 end

411 !**
412 ! utility subroutines

413 !**
414 ! from shawn chester, https://web.njit.edu/~sac3/Software.html

415 !**
416 subroutine onem(a)

417 !

418 ! this subroutine initializes the 3x3 matrix a as the identity matrix

419 !

420 implicit none

421 !

422 integer i,j

423 !

424 real*8 a(3,3)

425 !

426 do i=1,3

427 do j=1,3

428 if (i .eq. j) then

429 a(i,j) = 1.d0

430 else

431 a(i,j) = 0.d0

432 end if

433 end do

434 end do

435 !

436 return

437 end subroutine onem

438
439 !**
440 ! this subroutine sets all entries of a 3 by 3 matrix to 0.d0.

441 ! from shawn chester, https://web.njit.edu/~sac3/Software.html

442 !**
443 subroutine zerom(a)

444 real*8 a(3,3)

445

158

446 do 1 i=1,3

447 do 1 j=1,3

448 a(i,j) = 0.d0

449 1 continue

450 !
451 return

452 end

453
454 !***
455 ! this subroutine calculates the trace of a 3 by 3 matrix [a]

456 ! and stores the result in the scalar tra

457 ! from shawn chester, https://web.njit.edu/~sac3/Software.html

458 !**
459 subroutine tracem(a,tra)

460
461 real*8 a(3,3),tra

462
463 tra = a(1,1) + a(2,2) + a(3,3)

464
465 return

466 end

467 !**
468 ! this subroutine calculates the determinant

469 ! of a 3 by 3 matrix [a].

470 ! from shawn chester, https://web.njit.edu/~sac3/Software.html

471 !**
472 subroutine mdet(a,det)

473
474 real*8 a(3,3), det

475
476 det = a(1,1)*a(2,2)*a(3,3)

477 + + a(1,2)*a(2,3)*a(3,1)

478 + + a(1,3)*a(2,1)*a(3,2)

479 + - a(3,1)*a(2,2)*a(1,3)

480 + - a(3,2)*a(2,3)*a(1,1)

481 + - a(3,3)*a(2,1)*a(1,2)

482
483 return

484 end

485 !**
486 ! this subroutine calculates the transpose of a 3 by 3

487 ! matrix [a], and places the result in atrans.

488 ! from shawn chester, https://web.njit.edu/~sac3/Software.html

489 !**
490 subroutine mtrans(a,atrans)

491
492 real*8 a(3,3),atrans(3,3)

493
494 do 1 i=1,3

495 do 1 j=1,3

496 atrans(j,i) = a(i,j)

497 1 continue

498
499 return

500 end

159

501 !**
502 ! this subroutine calculates the the inverse of a 3 by 3 matrix

503 ! [a] and places the result in [ainv].

504 ! if det(a) is zero, the calculation

505 ! is terminated and a diagnostic statement is printed.

506 !**
507 ! a(3,3) -- the matrix whose inverse is desired.

508 ! det -- the computed determinant of [a].

509 ! acofac(3,3) -- the matrix of cofactors of a(i,j).

510 ! the signed minor (-1)**(i+j)*m_ij

511 ! is called the cofactor of a(i,j).

512 ! aadj(3,3) -- the adjoint of [a]. it is the matrix

513 ! obtained by replacing each element of

514 ! [a] by its cofactor, and then taking

515 ! transpose of the resulting matrix.

516 ! ainv(3,3) -- returned as inverse of [a].

517 ! [ainv] = [aadj]/det.

518 !--
519 ! from shawn chester, https://web.njit.edu/~sac3/Software.html

520 subroutine m3inv(a,ainv)

521 real*8 a(3,3), ainv(3,3), det, acofac(3,3), aadj(3,3)

522 call mdet(a,det)

523 if (det .eq. 0.d0) then

524 write(*,10)

525 stop

526 endif

527 call mcofac(a,acofac)

528 call mtrans(acofac,aadj)

529 do 1 i = 1,3

530 do 1 j = 1,3

531 ainv(i,j) = aadj(i,j)/det

532 1 continue

533 10 format(5x,’--error in m3inv--- the matrix is singular’,/,

534 + 10x,’program terminated’)

535
536 return

537 end

538 !**
539 ! this subroutine calculates the cofactor of a 3 by 3 matrix [a],

540 ! and places the result in [acofac].

541 ! from shawn chester, https://web.njit.edu/~sac3/Software.html

542 !**
543 subroutine mcofac(a,acofac)

544
545 real*8 a(3,3), acofac(3,3)

546
547 acofac(1,1) = a(2,2)*a(3,3) - a(3,2)*a(2,3)

548 acofac(1,2) = -(a(2,1)*a(3,3) - a(3,1)*a(2,3))

549 acofac(1,3) = a(2,1)*a(3,2) - a(3,1)*a(2,2)

550 acofac(2,1) = -(a(1,2)*a(3,3) - a(3,2)*a(1,3))

551 acofac(2,2) = a(1,1)*a(3,3) - a(3,1)*a(1,3)

552 acofac(2,3) = -(a(1,1)*a(3,2) - a(3,1)*a(1,2))

553 acofac(3,1) = a(1,2)*a(2,3) - a(2,2)*a(1,3)

554 acofac(3,2) = -(a(1,1)*a(2,3) - a(2,1)*a(1,3))

555 acofac(3,3) = a(1,1)*a(2,2) - a(2,1)*a(1,2)

160

556
557 return

558 end

559 !**
560 subroutine Jacobi(a,n,np,d,v,nrot)

561 !===

562 ! Computes all eigenvalues and eigenvectors of a real symmetric matrix a,

which is of size n

563 ! by n, stored in a physical np by np array. On output, elements of a above

the diagonal are

564 ! destroyed. d returns the eigenvalues of a in its first n elements. v is a

matrix with the same

565 ! logical and physical dimensions as a, whose columns contain, on output,

the normalized

566 ! eigenvectors of a. nrot returns the number of Jacobi rotations that were

required.

567 !---

568 ! input ...

569 ! a(n,n): real symmetric matrix

570 ! np:

571 ! d(n): eigenvalues of a

572 ! v(n,n): columns contain normalized eigenvectors of a

573 ! nrot: # jacobi rotations that were required

574 !

575 ! Press, William H, Saul A Teukolsky , William T Vetterling , and Brian P

Flannery. Numerical

576 ! Recipes in F77. Numerical Methods for Fortran 77: The Art of Scientific

Computing , 1992.

577 !===

578 implicit none ! there’s no "implicit none" in the numerical recipes

579 INTEGER n,np,nrot,NMAX

580 REAL*8 a(np,np),d(np),v(np,np)

581 PARAMETER (NMAX=500)

582 INTEGER i,ip,iq,j

583 REAL c,g,h,s,sm,t,tau,theta,tresh,b(NMAX),z(NMAX)

584 real*8 zero,one,two,three,four,five, six, nine,third,half

585 parameter(zero=0.d0,one=1.d0,two=2.d0,three=3.d0,four=4.d0,five=5.d0,six =6.

d0,nine=9.d0,third=1.d0/3.d0,half=1.d0/2.d0)

586
587 do ip=1,n ! initialize to the identity matrix

588 do iq = 1,n

589 v(ip,iq) = 0.d0

590 end do

591 v(ip,ip) = 1.d0

592 end do

593 !

594 do ip=1,n

595 b(ip)=a(ip,ip) !Initialize b and d to the diagonal of a.

596 d(ip)=b(ip)

597 z(ip)=zero

598 enddo

599 !

600 nrot=0

601 do i = 1,50

602 sm=0.d0

161

603 do ip=1,n-1 !Sum off-diagonal elements.

604 do iq=ip+1,n

605 sm=sm+abs(a(ip,iq))

606 enddo

607 enddo

608 if(sm.eq.0.d0)return ! The normal return, which relies on quadratic

conver

609 if(i.lt.4)then ! gence to machine underflow.

610 tresh=0.2d0*sm/n**2.d0 !...on the first three sweeps.

611 else

612 tresh=0.d0 !...thereafter.

613 endif

614 !

615 do ip=1,n-1

616 do iq=ip+1,n

617 g=100.d0*abs(a(ip,iq)) !After four sweeps, skip the rotation if the

off-diagonal element is small.

618 if((i.gt.4).and.(abs(d(ip))+g.eq.abs(d(ip))).and.(abs(d(iq))+g.eq.abs(

d(iq))))then

619 a(ip,iq)=0.d0

620 else if(abs(a(ip,iq)).gt.tresh)then

621 h=d(iq)-d(ip)

622 if(abs(h)+g.eq.abs(h))then

623 t=a(ip,iq)/h ! t = 1/(2theta)

624 else

625 theta=0.5d0*h/a(ip,iq) !Equation (11.1.10).

626 t=1.d0/(abs(theta)+sqrt(1.d0+theta**2.d0))

627 if(theta.lt.0.d0)t=-t

628 endif

629 c=1.d0/sqrt(1.d0+t**2.d0)

630 s=t*c

631 tau=s/(1.d0+c)

632 h=t*a(ip,iq)

633 z(ip)=z(ip)-h

634 z(iq)=z(iq)+h

635 d(ip)=d(ip)-h

636 d(iq)=d(iq)+h

637 a(ip,iq)=0.d0

638 do j=1,ip-1 !Case of rotations 1 \leq j<p.

639 g=a(j,ip)

640 h=a(j,iq)

641 a(j,ip)=g-s*(h+g*tau)

642 a(j,iq)=h+s*(g-h*tau)

643 enddo

644 do j=ip+1,iq-1 !Case of rotations p<j<q.

645 g=a(ip,j)

646 h=a(j,iq)

647 a(ip,j)=g-s*(h+g*tau)

648 a(j,iq)=h+s*(g-h*tau)

649 enddo

650 do j=iq+1,n !Case of rotations q<j \leq n.

651 g=a(ip,j)

652 h=a(iq,j)

653 a(ip,j)=g-s*(h+g*tau)

654 a(iq,j)=h+s*(g-h*tau)

162

655 enddo

656 do j=1,n

657 g=v(j,ip)

658 h=v(j,iq)

659 v(j,ip)=g-s*(h+g*tau)

660 v(j,iq)=h+s*(g-h*tau)

661 enddo

662 nrot=nrot+1

663 endif

664 enddo

665 enddo

666 !

667 do ip=1,n

668 b(ip)=b(ip)+z(ip)

669 d(ip)=b(ip) ! Update d with the sum of tapq,

670 z(ip)=0.d0 ! and reinitialize z.

671 enddo

672 enddo

673 pause ’too many iterations in jacobi’

674 return

675 end

676 !**
677 subroutine eigsrt(d,v,n,np)

678 ! Given the eigenvalues d and eigenvectors v as output from jacobi (11.1) or

tqli (11.3),

679 ! this routine sorts the eigenvalues into descending order, and rearranges

the columns of v correspondingly.

680 ! The method is straight insertion.

681 !

682 ! Press, William H, Saul A Teukolsky , William T Vetterling , and Brian P

Flannery. Numerical

683 ! Recipes in F77. Numerical Methods for Fortran 77: The Art of Scientific

Computing , 1992.

684 implicit none

685 INTEGER n,np

686 REAL*8 d(np),v(np,np)

687 INTEGER i,j,k

688 REAL p

689 do i=1,n-1

690 k=i

691 p=d(i)

692 do j=i+1,n

693 if(d(j).ge.p)then

694 k=j

695 p=d(j)

696 endif

697 enddo

698 if(k.ne.i)then

699 d(k)=d(i)

700 d(i)=p

701 do j=1,n

702 p=v(j,i)

703 v(j,i)=v(j,k)

704 v(j,k)=p

705 enddo

163

706 endif

707 enddo

708 !

709 return

710 end

711
712 !**
713 ! this is a helper function. uncomment as needed to see eigenvalues , eigenvectors
714 !**
715 subroutine eighelp(A_3x3,eigvalA,eigvec_mat_A ,n,np,nrot)

716 INTEGER n,np,nrot

717 REAL*8 A_3x3(np,np),eigvalA(np),eigvec_mat_A(np,np)

718 real*8 temp_mat(3,3),LHS(3),RHS(3),vec1(3),vec2(3),vec3(3)

719 real*8 tempeigvec(3)

720 INTEGER i,j,k

721
722 !write(*,*) ’original matrix’

723 !write(*,*) A_3x3(1,1), A_3x3(1,2), A_3x3(1,3)

724 !write(*,*) A_3x3(2,1), A_3x3(2,2), A_3x3(2,3)

725 !write(*,*) A_3x3(3,1), A_3x3(3,2), A_3x3(3,3)

726 !write (*,202) ! eigenvalues

727 !write(*,*) eigvalA(1), eigvalA(2), eigvalA(3)

728 !write (*,203) ! eigenvectors

729 !write (*,*) eigvec_mat_A(1,1), eigvec_mat_A(1,2), eigvec_mat_A(1,3)

730 !write (*,*) eigvec_mat_A(2,1), eigvec_mat_A(2,2), eigvec_mat_A(2,3)

731 !write (*,*) eigvec_mat_A(3,1), eigvec_mat_A(3,2), eigvec_mat_A(3,3)

732 ! rename the eigenvectors to vector vec1, vec2, and vec3

733 do j = 1,3

734 vec1(j) = eigvec_mat_A(j,1)

735 vec2(j) = eigvec_mat_A(j,2)

736 vec3(j) = eigvec_mat_A(j,3)

737 end do

738 !write (*,*) vec1(1), vec2(1), vec3(1)

739 !write (*,*) vec1(2), vec2(2), vec3(2)

740 !write (*,*) vec1(3), vec2(3), vec3(3)

741 call zerom(temp_mat)

742 temp_mat(1,1) = eigvalA(1)

743 temp_mat(2,2) = eigvalA(2)

744 temp_mat(3,3) = eigvalA(3)

745 temp_mat = A_3x3 - matmul(eigvec_mat_A ,matmul(temp_mat,transpose(

eigvec_mat_A)))

746 !write(*,*) ’original matrix minus reconstructed matrix’

747 !write(*,*) temp_mat(1,1), temp_mat(1,2), temp_mat(1,3)

748 !write(*,*) temp_mat(2,1), temp_mat(2,2), temp_mat(2,3)

749 !write(*,*) temp_mat(3,1), temp_mat(3,2), temp_mat(3,3)

750 201 format (6f12.6)

751 202 format (/,’ Eigenvalues’)

752 203 format (/,’ Eigenvectors’)

753 !

754 !write(*,*) ’lets check A_{ij}*v_j = eigval_i*v_i’

755 !write(*,*) ’eigvalA(1)’

756 LHS = 0.D0

757 do i=1,3

758 do j = 1,3

759 LHS(i) = LHS(i) + A_3x3(i,j)*vec1(j)

164

760 enddo

761 RHS(i) = eigvalA(1)*vec1(i)

762 tempeigvec(i) = LHS(i) - RHS(i)

763 end do

764 !write(*,*) ’LHS - RHS vector =’, (tempeigvec(i),i=1,3)

765 !

766 !write(*,*) ’eigvalA(2)’

767 LHS = 0.D0

768 do i=1,3

769 do j = 1,3

770 LHS(i) = LHS(i) + A_3x3(i,j)*vec2(j)

771 end do

772 RHS(i) = eigvalA(2)*vec2(i)

773 tempeigvec(i) = LHS(i) - RHS(i)

774 end do

775 !write(*,*) ’LHS - RHS vector =’, (tempeigvec(i),i=1,3)

776 !

777 !write(*,*) ’eigvalA(3)’

778 LHS = 0.D0

779 do i=1,3

780 do j = 1,3

781 LHS(i) = LHS(i) + A_3x3(i,j)*vec3(j)

782 end do

783 RHS(i) = eigvalA(3)*vec3(i)

784 tempeigvec(i) = LHS(i) - RHS(i)

785 end do

786 !write(*,*) ’LHS - RHS vector =’, (tempeigvec(i),i=1,3)

787 !

788 return

789 end

D.2 MATLAB code for the thermo-mechanical characterization experiments
We include the code to run a uniaxial test using our custom setup, as discussed in
Chapter 5. Note that the code is specific to the type of linear stage and controller, the
load cell, data acquisition system, and camera. See Section 5.3 for the equipment
list. We include the following code:

• main.m: the main code with instructions for setting up, executing, and clean-
ing up a test

• test_parameters.m: the function that defines test parameters
• init_load.m: the function that initiates the data acquisition
• get_load.m: the function that obtains data from the DAQ
• PI_move.m: the function that controls movement of the linear stage

165

The main.m code:

1 %% CONSTANTS

2
3 % imput sample geometry here

4 width = .280; % inches, sample width

5 thickness = .051; % inches, sample thickness

6 eps = 500; % [%] desired strain

7 epsdot = 4.5*10^-3; %[1/sec]

8
9 % global variables

10 global pos_data;

11 global temp_data;

12 global load_data;

13 global time_data;

14 global datetime_starttest;

15 startCoarsePos = 249;

16 jog_step = 1; %mm

17 jog_velocity = 4; % mm/sec

18
19 % plotting constants

20 linewidth=1.5;

21 fontsize=16;

22 fontsizemult=1.2;

23
24 %% Connect to controller and reference stage (without sample connected)

25 % the stage will move to reference position of 102mm (the middle of the stage)

26 % this is for a single axis that is connected via USB.

27 % if you are using a different controller & stage, please set up in

28 % MikroMove first, then edit accordingly in connect_and_reference_loaner().

29 if ~exist(’PIdevice’)

30 [PIdevice, axis, Controller] = connect_and_reference_loaner();

31 end

32
33 disp(’’)

34 disp (’linear stage is done moving to reference position. position in mm =’)

35 disp(PIdevice.qPOS(axis))

36
37
38 %% put sample into top clamp

39 % Move to coarse start position and attach pullrod

40 PIdevice.VEL(axis, jog_velocity);

41 PIdevice.MOV(axis, startCoarsePos);

42 while(abs(PIdevice.qPOS(axis) - startCoarsePos) > 0.001)

43 continue

44 end

45
46 %% Jogging: move up/down to get specimen clamped in position

47 PIdevice.VEL(axis, jog_velocity);

48 u = ’u’;

49 d = ’d’;

50 while (1)

51 dir = input(’Move u or d? (hit enter when finished jogging.) ’);

166

52 if (dir == ’u’)

53 PIdevice.MOV(axis, PIdevice.qPOS(axis)-jog_step);

54 elseif (dir == ’d’)

55 PIdevice.MOV(axis, PIdevice.qPOS(axis)+jog_step);

56 else

57 break

58 end

59 end

60
61 clear u d

62
63 %% calculate gauge length

64 currPos = PIdevice.qPOS(axis); % mm

65 gaugelength_theoretical_mm = 273.6978-currPos; %mm

66 gaugelength_theoretical_in = gaugelength_theoretical_mm*0.0393701;

67 % measure and input the gauge length!

68 gaugelength_measured_in = .375; % inches, sample gauge length

69 gaugelength_measured_mm = SI(gaugelength_measured_in , ’in’)*10^3; %mm

70
71 abs(gaugelength_theoretical_in - gaugelength_measured_in)

72 gaugelength = gaugelength_theoretical_mm;

73 gaugelength_in = gaugelength_theoretical_in;

74
75 %% calculate test parameters

76 [extension , test_velocity , tmax, epsdot] = test_parameters(eps,

gaugelength_theoretical_in , ’in’,epsdot);

77 fprintf(’epsdot = %.3e\n’, epsdot)

78 fprintf(’test_velocity = %.3e\n’, test_velocity) % test_velocity in mm/sec

79 % extension: mm, this is how much total distance you want stage to

80 % move between startPos & stopPos

81 % this is positive if you want stage to physically move up

82 % (towards 0mm)

83 crosssecarea = width*thickness*(25.4)^2; %mm^2

84 sample_period = 1; % sec (must be >= 0.5)

85 step = test_velocity*sample_period; % mm

86
87 % Configure linear stage

88
89 startPos = PIdevice.qPOS(axis);

90 stopPos = startPos -extension;

91
92 if (startPos > stopPos)

93 steps = [startPos:-step:stopPos, (stopPos+step):step:startPos];

94 else

95 steps = [startPos:step:stopPos, (stopPos-step):-step:startPos];

96 end

97
98 max(steps)

99 min(steps)

100
101 %% Initialize inet + collect preheating data

102
103 if ~exist(’inet’)

104 inet = init_load(false, ’tori_RTD_louisaload_jun252020’); %.prf file

105 end

167

106
107 numb = 100000;

108 preheatload=NaN*zeros(size(numb));

109 preheattemp=NaN*zeros(size(numb));

110
111 for i = 1:numb

112 pause(2) % wait every 2 sec

113 [preheattemp(i), preheatload(i)] = get_load(inet);

114 end

115
116 % type ctrl+c when preheating is finished

117
118 %% save the preheat data

119 endnum = 410; % input the last index when you stop the preheating

120 preheattime = linspace(1,endnum*2,endnum);

121 figure;

122 subplot(2,1,1)

123 plot(preheattime ,preheattemp(1:endnum))

124 xlabel(’time (s)’)

125 ylabel(’temp (deg F)’)

126 subplot(2,1,2)

127 plot(preheattime ,preheatload)

128 xlabel(’time (s)’)

129 ylabel(’load (lbs)’)

130 %

131 save(’preheat_data.mat’,’preheattime’,’preheatload’,’preheattemp’)

132
133 %% MOVE

134 % Move routine

135
136 % extension data is saved in this variable pos_data

137 % even if you interrupt the script using ctrl+C, it will save the data in

138 % this variable, also saved in a .mat file

139
140 % create vector of zeros to fill to speed up data collection

141 pos_data = NaN*zeros(size(steps));

142 temp_data = NaN*zeros(size(steps));

143 load_data = NaN*zeros(size(steps));

144 time_data = NaN*zeros(size(steps));

145
146 PIdevice.VEL(axis, test_velocity);

147
148 move(startPos , stopPos, step, steps, PIdevice , axis, inet)

149
150 %% calculate the actual test_velocity

151 actual_test_velocity = diff(pos_data)./diff(time_data);

152 output_data(1,1) = test_velocity;

153 output_data(1,2) = mean(actual_test_velocity(actual_test_velocity >0));

154 output_data(1,3) = std(actual_test_velocity(actual_test_velocity >0));

155
156 output_data(1,:) % print out these items in the command window

157
158 %% Plot raw data

159 N = length(pos_data);

160 new_pos_data = zeros(N,1);

168

161
162 for i=1:N

163 new_pos_data(i) = pos_data(1)-pos_data(i);

164 end

165
166 halfway=floor(N/2);

167
168 figure;

169 subplot(2,1,1)

170 hold on;

171 %plot(new_pos_data(1:halfway), load_data(1:halfway), ’.-’)

172 %plot(new_pos_data(halfway+1:end), load_data(halfway+1:end), ’.-’)

173 plot0a=plot(new_pos_data ,load_data ,’.-’)

174 xlabel(’extension , mm’);

175 ylabel(’load, lbs’);

176 subplot(2,1,2)

177 plot0b=plot(pos_data, temp_data , ’.-’)

178 xlabel(’extension , mm’);

179 ylabel(’temperature , degrees’);

180 saveas(plot0a,’load_extension’,’png’); %saves it in the folder where this .m file

is

181 saveas(plot0b,’temp_extension’,’png’); %saves it in the folder where this .m file

is

182
183 %% Plot stress-strain

184 % this is for load_data being in lbs

185 stress_data = load_data*.4536*9.81/(crosssecarea/1000^2); %N/m^2=Pa

186 stress_data_zeroed = stress_data(:)-stress_data(1);

187 strain_data = new_pos_data/gaugelength;

188
189 figure;

190 plot1=plot(strain_data*100, stress_data_zeroed/1000,’.-’);

191 ax=gca;

192 xlabel(’Strain [%]’)

193 ylabel(’Stress [kPa]’)

194 yt=ax.YAxis;

195 yt.FontSize=fontsize;

196 xt=ax.XAxis;

197 xt.FontSize=fontsize;

198 set(gca,’linewidth’,linewidth);

199 set(plot1,’LineWidth’,linewidth);

200
201 saveas(plot1,’stress_strain’,’emf’); %saves it in the folder where this .m file is

202 saveas(plot1,’stress_strain’,’png’); %saves it in the folder where this .m file is

203
204
205 save(’stress_data.mat’,’strain_data’,’stress_data_zeroed’,’width’,’thickness’,’

gaugelength_in’,’gaugelength’,’crosssecarea’)

206
207 %% If you want to close the connection

208 % PIdevice.CloseConnection ();

209 %

210 % If you want to unload the dll and destroy the class object

211 % Controller.Destroy ();

212 % clear Controller;

169

213 % clear PIdevice;

The test_parameters.m code:

1 function [dl, ldot, t, epsdot_actual] = test_parameters(eps, lo, unit,epsdot)

2
3 eps = eps/100; % not percentage of strain

4
5 % make sure that everything is in the appropriate units

6 lo = 0.0254*lo*10^3; % [mm] convert the gauge length from inches into mm

7 dl = lo*eps; % [mm] total elongation needed for sample

8
9 %epsdot = 10e-2; % strain rate

10
11 ldot_desired = lo*epsdot; % [mm/s] velocity of sample

12 ldot = round(ldot_desired/.0005)*.0005;

13 epsdot_actual = ldot/lo;

14 epsdot_min = 0.0025/lo;

15 if ldot < .0025

16 warning(sprintf(’Test velocity too small (must be >= 0.0025 mm/s). For given

gauge length, epsdot must be >=%.3e’,epsdot_min))

17 end

18 warning(sprintf(’WARNING: Actual epsdot changed from %.3e to %.3e due to test

velocity quantization.\n’, epsdot, epsdot_actual))

19
20
21 t = 2*dl/ldot; % [s] time that the test will take to run

22
23 t = t/60; % [min] convert time to minutes

24
25 end

The init_load.m code:

1 function inet = init_load(varargin)

2 % --

3 % First optional argument ’simulate_i555_instead_of_connecting_to_hdwr ’:

4 % if true, simulate i555 hardware instead of working with real hardware.

5
6 if (length(varargin) >= 1)

7 simulate_i555_instead_of_connecting_to_hdwr = varargin{1};

8 else

9 simulate_i555_instead_of_connecting_to_hdwr = false;

10 end

11
12 % --

170

13 % Second optional argument ’instrunet_prf_settings_filename ’:

14 % name of .prf settings file to load, pass ’’ if you don’t want to load one.

15
16 if (length(varargin) >= 2)

17 instrunet_prf_settings_filename = varargin{2};

18 else

19 instrunet_prf_settings_filename = ’’;

20 end

21
22 % --

23 % Initialize instrunet and get one object that describes it called

24 % ’inet’. this is like running instrunet world software. you can only

25 % have one of these running at a time. and you cannot run instrunet

26 % world application software outside matlab while this object is alive.

27 % you need to dispose of it after you use it or stop running matlab and that

will

28 % dispose of it. To dispose of it, call ’Delete(inet)’.

29
30 inet = instruNet_Class(...

31 instrunet_prf_settings_filename , ... % name of .prf

settings file to load, pass ’’ if you don’t want to load one

32 simulate_i555_instead_of_connecting_to_hdwr , ... % if true, simulate

i555 hardware instead of working with real hardware

33 false, ... % show_alert_before_loading_settings_file , set to true if

you want to show an alert before loading prf file

34 true, ... % showAlertIfPrfIsNotFound , set to true if you want to

show an alert if prf is not found

35 false, ... % turn_off_all_alert_dialogs_when_initialize , set to true

if you don’t want any alerts during initialization

36 false, ... % showNetworkPageAfterLoadDriver , set to true if you want

to show instrunet world NETWORK page after loading

37 false); % showRecordPageAfterLoadDriver , set to true if you want

to show instrunet world RECORD page after loading

38
39 % --

40 % Get the quantity of differential analog input channel connected to MATLAB.

41
42 gNumOfDiVinChannels = inet.ain_di.qty;

43
44 % --

45 % Useful variables stored inside instruNet_Class object:

46 %

47 % inet.system.initializedSuccessfully - true if instruNet initialized ok

48 % inet.system.weAreSimulating_i555 - true if simulating i555

49 % inet.system.loadedPrfOk - true if loaded .prf settings file

without error

50 % inet.system.triedToLoadedPrfFile - true if tried to loaded .prf

settings file

51 % inet.system.prf_fileandpath_name - name of loaded .prf settings file,

if one was loaded

52 % inet.ain_di.qty - number of differential analog input

channels

53 % inet.ain_se.qty - number of single-ended analog input

channels

54 % inet.aout.qty - number of analog output channels

171

55
56 % --

57 % Run example code that reads/writes scalar values to/from instrunet

58 % hardware. This includes channels (e.g. analog input) and parameters

59 % (e.g. sensorType).

60
61 %instruNet_Class.ShowAlert(’TORI: How to read a scalar (i.e. one value) read/

write with instruNet hardware. Press OK to continue.’);

62
63 if (inet.ain_di.qty <= 0)

64 %instruNet_Class.ShowAlert(’TORI: We cannot run instrunet_scalar_io() due

to not having hardware channels. Does Matlab have iNet driver open in another

instance? If so, you need to close it (try Exiting Matlab and come back in).’)

;

65 iNetErr = 1;

66 return;

67 end

68
69 %%scalar reading

70 % Load iNet channel address (numNum, devNum, modNum, chNum) into

71 % structs ’sAin1’ and ’sDio30 ’.

72 loadcell1 = Load_Channel_Address(inet, 1,1,1, 13);

73 % Get loadcel1’s channel’s value given channel address stored in loadcell1

struct

74 [ain_valueIn , iNetErr] = GetChannelValue(inet, loadcell1);

75 ain_valueIn; %this should be the load in Newtons at the point when we run that

line

76
77 % try reading more data points of the load!

78 tic

79 [ain_valueIn2 , iNetErr] = GetChannelValue(inet, loadcell1);

80 toc

81 ain_valueIn2;

82 [ain_valueIn3 , iNetErr] = GetChannelValue(inet, loadcell1);

83 ain_valueIn3;

84 [ain_valueIn4 , iNetErr] = GetChannelValue(inet, loadcell1);

85 ain_valueIn4;

86
87
88 %% digitizing

89
90 % ------------------------

91 % End user sets this to ’true’ to open instrunet world RECORD page after we

digitize ,

92 % to see your data and check your set up.

93
94 open_record_page_to_see_data_after_we_finish_digitizing = true;

95
96 % ------------------------

97 % End user sets this to ’true’ to plot digitized data in new window

98
99 plot_digitized_data_in_new_window = true;

100
101 % ------------------------

102 % End user sets this to ’true’ to calculate average value of each

172

103 % digitized point for each channel.

104
105 calculate_average_value = false;

106
107 % ------------------------

108 % End user sets this to ’true’ if you want to process complete buffers (scans)

at a

109 % time. Alternatively , set to false to process little segments

110 % of data as they become available.

111
112 processOneScanAtATime = true;

113
114 % ------------------------

115 % End user sets this to ’true’ if you want mouse down to stop digitization

116
117 allowMouseDownToStopDigitize = false;

118
119 % make sure we are not digitizing and get ready to start digitizing

120 Stop_iNet_Digitizing(inet);

121
122 % ------------------------

123 % Get ’numOfDigitizeChannels ’ and ’ptsPerScan ’ values from iNet32.dll

124 % and also create zero’ed ram buffer to hold digitize data in

125 % matlab 2x2 array: ’inet.digitize.data.value(1:ptsPerScan , 1:

numOfDigitizeChannels)’.

126
127 Digitize__Allocate_2x2_Data_Matrix(inet);

128 end

The get_load.m code:

1 function [temp_val , load_val] = get_load(inet)

2 load_vals = [NaN, NaN];

3
4 % Collect Digitized Data

5 %

6 % It is ABSOLUTELY NECESSARY to let your computer’s processor service

7 % instruNet digitizing buffers periodicaly 10 to .3 times per second)

8 % while digitizing. This is done by continuously calling

9 % DigitizeListOfChannels() or Service_All_iNet_Digitize_Buffers() in a loop.

10
11 allowMouseDownToStopDigitize = false;

12 processOneScanAtATime = true;

13 check_for_controllerNotRespondingTimeout = true;

14 [iNetErr, ...

15 last_scanNum_base1_tsfred_inFull_oneCtlr_int64 , ...

16 we_stopped_digitizing_machine_or_it_finished_on_its_own , ...

17 we_started_digitizing_machine_since_it_was_not_on , ...

18 totalNumOfPtsAccessed_AllInputChannels_ThisRoutine_int64 , ...

19 endUser_sampleRate_PointsPerSecondPerChannel_actual_double , ...

20 total_time_for_entire_digitization_Secs_actual_double , ...

173

21 total_time_for_each_scan_Secs_actual , ...

22 user_pressed_mouse_button_to_stop_early ...

23] = DigitizeListOfChannels(inet, ...

24 allowMouseDownToStopDigitize , ...

25 processOneScanAtATime , ...

26 check_for_controllerNotRespondingTimeout);

27
28 if (iNetErr ~= 0)

29 return;

30 end

31
32 % Update these timing parameters (from internal inet32.dll memory):

33 % inet.digitize.p.ptsPerScan , inet.digitize.p.noOfScans , inet.digitize.p.

endUser_sampleRate

34
35 if (1) %weAreDoingOurFirstAccessOfData == true)

36 [iNetErr] = Digitize__UpdateTimingParameters(inet);

37 end

38
39 % scan thru all channels enabled for high speed digitize

40 for digiChNum_base1 = 1 : inet.digitize.p.numOfChannels

41
42 % READ DIGITIZED DATA

43 %

44 % find out how much data is in digitize channel # ’digiChNum_base1 ’

45 % data buffer, and move it into matlab 2x2 data array

46 % ’inet.digitize.data.value(1:ptsPerScan , 1:numOfDigitizeChannels)’.

47 %

48 % first_PointOfSegment_Indexbase1 = pointToPullindex_base1

49 % last_PointOfSegment_Indexbase1 = pointToPullindex_base1 +

numPointsToPull - 1

50 %

51 % first_PointOfSegment = inet.digitize.data.value(

first_PointOfSegment_Indexbase1 , digiChNum_base1)

52 % last_PointOfSegment = inet.digitize.data.value(

last_PointOfSegment_Indexbase1 , digiChNum_base1)

53 %

54 % data segment = inet.digitize.data.value(

first_PointOfSegment_Indexbase1 : last_PointOfSegment_Indexbase1 ,

digiChNum_base1)

55
56 [iNetErr, ...

57 src_pointToPullindex_base1 , ... % {1... numPtsPerScan)

index of the first point of the segment that we need to process (base 1 index)

58 src_numPointsToPull , ... % # of points to to pull

out of the buffer

59 src_scanNumberToPull_base1 ... % scan number {1...

numScans} of the scan that we are currently pulling (base 1)

60] = GetDigitizedSegment(inet, digiChNum_base1);

61
62
63 if (iNetErr ~= 0)

64 return;

65 end

66

174

67 % if we have new data from this channel (i.e. number of new points

68 % is specified by variable ’src_numPointsToPull ’)...

69 if (src_numPointsToPull > 0)

70 % Calculate the total # of pts that has been digitized since we

started digitizing

71 % totalPtsPulledSoFar(digiChNum_base1) = totalPtsPulledSoFar(

digiChNum_base1) + src_numPointsToPull;

72
73 % Calculate where segment is w.r.t. our ram buffer

74 % data segment = inet.digitize.data.value(

first_PointOfSegment_Indexbase1 : last_PointOfSegment_Indexbase1 ,

digiChNum_base1)

75 first_PointOfSegment_BufferIndexBase1 = src_pointToPullindex_base1;

76 last_PointOfSegment_BufferIndexBase1 = src_pointToPullindex_base1 +

src_numPointsToPull - 1;

77
78 % Calculate the time of the first and last points of the segment,

units Seconds, relative to when we started digitizing.

79 first_PointOfSegment_Secs = (double(

first_PointOfSegment_BufferIndexBase1 -1) * inet.digitize.p.

endUser_samplePeriodSecs) ...

80 + (double(src_scanNumberToPull_base1

-1) * inet.digitize.p.secsPerScan);

81
82 last_PointOfSegment_Secs = (double(first_PointOfSegment_Secs)

) ...

83 + (double(src_numPointsToPull -1) *

inet.digitize.p.endUser_samplePeriodSecs);

84
85 % true if segment includes the last point in the ram buffer

86 segmentIncludesLastPointInRamBuffer = (

last_PointOfSegment_BufferIndexBase1 == inet.digitize.p.ptsPerScan);

87
88 % true if segment includes the last point in the ram buffer

89 segmentIncludesLastPointInEntireDigitization =

segmentIncludesLastPointInRamBuffer && (src_scanNumberToPull_base1 == inet.

digitize.p.noOfScans);

90
91
92 load_vals(digiChNum_base1) = inet.digitize.data.value(

first_PointOfSegment_BufferIndexBase1 : last_PointOfSegment_BufferIndexBase1 ,

digiChNum_base1);

93 end

94 end

95 temp_val = load_vals(1);

96 load_val = load_vals(2);

97 end

The PI_move.m code:

1 function PI_move(startPos , stopPos, step, steps, PIdevice, axis, inet)

175

2 global pos_data;

3 global temp_data;

4 global load_data;

5 global time_data;

6 global datetime_starttest;

7 fid = fopen(’log.txt’, ’a+’);

8 finishup = onCleanup(@() myCleanUpFun(PIdevice, axis, fid));

9
10 logging = true;

11 %%% this following code is in the move function

12 % assume that referencing stuff has made it so that when this function is

called, the PIdevice is located at startPos

13
14 pos_data(1) = PIdevice.qPOS(axis);

15 start = tic;

16 time_data(1) = toc(start);

17 [temp_data(1), load_data(1)] = get_load(inet);

18 datetime_starttest = datetime;

19
20 waiting = true;

21 for i = 2:length(steps)

22 % Move the device

23 step_size = steps(i) - steps(i-1);

24 PIdevice.MOV(axis, steps(i) + step_size/2);

25 % Record current data

26 pos_data(i) = PIdevice.qPOS(axis);

27 [temp_data(i), load_data(i)] = get_load(inet);

28 time_data(i) = toc(start);

29 v = [time_data(i), pos_data(i),load_data(i), temp_data(i)]

30 if logging

31 try

32 fprintf(fid, ’%f,%f,%f,%f\n’, v);

33 catch

34 logging = false;

35 disp(’logging failed’)

36 end

37 end

38 if ~waiting

39 disp(’logging took too long’)

40 end

41 % Wait until it’s moved to the new location

42 step_sign = sign(step_size);

43 waiting = false;

44 while(step_sign*PIdevice.qPOS(axis) < step_sign*steps(i))

45 waiting = true;

46 continue;

47 end

48
49 end

50
51 end

52
53 function myCleanUpFun(PIdevice , axis,fid)

54 PIdevice.MOV(axis, PIdevice.qPOS(axis));

55 global pos_data

176

56 global temp_data

57 global time_data

58 global load_data

59 global datetime_starttest

60 save(’extension_data.mat’,’time_data’,’pos_data’,’temp_data’,’load_data’,’

datetime_starttest’)

61
62 try

63 fclose(fid)

64 catch

65 end

66 end

	Acknowledgments
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Nematic elastomers
	Actuation
	Beyond actuation from flat sheets
	Microstructure formation
	Viscoelasticity and damping in nematic elastomers
	Nematic elastomers as an engineering material
	Thesis outline

	Actuation of cylindrical nematic elastomer balloons
	Introduction
	Large deformation model of nematic elastomers
	Inflation of a nematic cylinder
	Pump
	Conclusion

	Universal deformations of nematic elastomers
	Introduction
	Energy
	Stress
	Ericksen's ``universal deformations"
	Spherical balloon
	Cylindrical balloon
	Cavitation
	Bending
	Conclusion

	A general constitutive model for a non-ideal isotropic-genesis polydomain nematic elastomer
	Introduction
	Formulation of the constitutive relation
	Validation of the model
	Implementation in ABAQUS
	Results from the ABAQUS implementation
	Conclusion

	Experimental characterization of nematic elastomers
	Introduction
	Sample preparation
	Experimental setup
	Experimental results
	Conclusion

	Conclusion and future outlook
	Summary and impact of the findings
	Future outlook

	Bibliography
	Supplementary information in developing the generalized Mooney-Rivlin model
	Principal stretches
	Minimization of the energy with respect to the nematic director
	Energy based on the second invariant
	Simplification of the regions

	Deriving DDSDDE for the UMAT
	Useful items for deriving the material Jacobian
	Auxiliary remark for the material Jacobian
	Auxiliary remark for the material Jacobian

	Synthesis and testing
	Chemical details
	Synthesis template
	Tensile test template

	Code
	UMAT code for simulations of nematic elastomers in ABAQUS
	MATLAB code for the thermo-mechanical characterization experiments

