
Learning to Optimize: from Theory to Practice

Thesis by
Jialin Song

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2021
Defended May 26, 2021

ii

© 2021

Jialin Song
ORCID: 0000-0001-5633-9909

All rights reserved except where otherwise noted

iii

ACKNOWLEDGEMENTS

First and foremost, I want to thank my advisor, Yisong Yue. This thesis would
not exist without your extraordinary guidance. Looking back at the almost six-year
journey, I am amazed at how far I have come as a researcher and I want to say a
sincere thank you. I have learned to love research from our countless one-on-one
meetings where your enthusiasm for research shines. I have also learned many
important life lessons from you. This journey did not start smoothly but your
encouragement and belief in me every step of the way kept me going. I thank you
for being the best advisor any student could dream of having.

I want to thank my thesis committee members, Bistra Dilkina, Richard Murray, and
AdamWierman, for taking the time to provide feedback and discussions to improve
my research.

I am privileged to have worked with a long list of talented collaborators who taught
me much over the years (in no particular order): Ravi Lanka, Albert Zhao, Aadylot
Bhatnagar, Masahiro Ono, Bistra Dilkina, Aaron Ferber, James Bowden, Yuxin
Chen, Thomas Desautels, Ayya Alieva, Aiden Aceves, Stephen Mayo, Neil Ab-
couwer, Shreyansh Daftry, Siddarth Venkatraman, Tyler del Sesto, Olivier Toupet,
Fengze Xie, Marcus Dominguez-Kuhne, Benjamin Riviere, Wolfgang Hoenig,
Soon-Jo Chung, Sihui Dai, Yury Tokpanov, Dagny Fleischman, Kate Fountaine,
Harry Atwater, Curtis Hawthorne, Erich Elsen, Adam Roberts, Ian Simon, Colin
Raffel, Jesse Engel, Sageev Oore, Douglas Eck, Joe Wenjie Jiang, Amir Yazdan-
bakhsh, Ebrahim Songhori, Anna Goldie, Navdeep Jaitly and Azalia Mirhoseini. I
want to especially thank Ravi Lanka and Masahiro Ono for your hard work. I am
truly lucky to have worked with you over the majority of my Ph.D. journey. It is
always exciting to hear about the amazing things happening at JPL.

The CMS department provided a great curriculum. I enjoyed classes by Joel Tropp,
Venkat Chandrasekaran, Yisong Yue, Adam Wierman, Thomas Vidick, Houman
Owhadi, Anima Anandkumar, and Pietro Perona.

My research would not have happened without the generous support from various
funding sources. The works in this thesis were funded in part by NSF awards
#1637598, #1645832, #1763108, NIH #T32GM112592, and support from JPL,
DARPA, DHS Center of Excellence “Critical Infrastructure Resilience Institute”,
Microsoft, the Rosen Bioengineering Center, Raytheon, Northrop Grumman, Be-

iv

yond Limits, and UChicago CDAC via a JTFI AI + Science Grant.

During my Ph.D., I spent two summers interning at Google and I grew under the
guidance of my mentors, Curtis (Fjord) Hawthorne, Doug Eck, Azalia Mirhoseini,
and Navdeep Jaitly. Thanks for showing me the ropes of doing research in the
industry and patiently answering my endless questions.

I also need to thank people from the Caltech community who helped me along the
way. I learned a lot from Stephan Zheng, Hoang Le, Eric Zhan, and Yuxin Chen
when I started out doing research. The Yue group have always been a source of
inspiration and I am grateful to explore the fascinating world of machine learning
with you.

I am lucky to share the office with awesome people such as Sumanth, Juba, Hao,
and Rachel. I will cherish the memories of our laughter as well as our despair.
Thank you to my friends De, Gautam, Navid, Florian, Mandy, Jennifer, Richard,
Xinying, Karena, Yu, Jenish, Andrea, Kamyar, John, and many more for all the good
time. You bring joy to my life. I especially want to thank De for being an awesome
roommate during the craziness of COVID-19.

Thank you to the always helpful CMS admins, Maria, Sidney, Diane, Carmen, and
Sheila, and CMS system admins David and Patrick, for tolerating my forgetting
passwords way too often. Thanks to Laura and Daniel from ISP for your help
navigating the international student life.

I want to thank my chamber music coaches Maia, Delores, and Robert for enriching
my life with music. It has been a great pleasure to escape to music when I get stuck
on research.

Finally, I want to thankmy parentswhose unconditional love and unwavering support
have always accompanied me. Our weekly video chat is always wonderful and I am
extremely grateful to have you in my life. You are the source of energy for me to
keep pushing forward and I hope I make you proud.

v

ABSTRACT

Optimization is at the heart of everyday applications, from finding the fastest route
for navigation to designing efficient drugs for diseases. The study of optimization
algorithms has focused on developing general approaches that do not adapt to specific
problem instances. While they enjoy wide applicability, they forgo the potentially
useful information embedded in the structure of an instance. Furthermore, as new
optimization problems appear, the algorithm development process relies heavily
on domain expertise to identify special properties and design methods to exploit
them. Such design philosophy is labor-intensive and difficult to deploy efficiently
to a broad range of domain-specific optimization problems, which are becoming
ubiquitous in the pursuit of ever more personalized applications.

In this dissertation, we consider different hybrid versions of classical optimization
algorithms with data-driven techniques. We aim to equip classical algorithms with
the ability to adapt their behaviors on the fly based on specific problem instances.
A common theme in our approaches is to train the data-driven components on a
pre-collected batch of representative problem instances to optimize some perfor-
mance metrics, e.g., wall-clock time. Varying the integration details, we present
several approaches to learning data-driven optimization modules for combinatorial
optimization problems and study the corresponding fundamental research questions
on policy learning. We provide multiple practical experimental results to showcase
the practicality of our methods which lead to state-of-the-art performance on some
classes of problems.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

Abcouwer, Neil et al. (2021). “Machine Learning Based Path Planning for Improved
Rover Navigation”. In: IEEE Aerospece Conference. url: https://arxiv.
org/abs/2011.06022.
J.S. participated in the discussion of the project.

Alieva, Ayya, Aiden Aceves, Jialin Song, Stephen Mayo, Yisong Yue, and Yuxin
Chen (2021). “Learning to Make Decisions via Submodular Regularization”.
In: International Conference on Learning Representations. url: https : / /
openreview.net/forum?id=ac288vnG_7U.
J.S. participated in the analysis of the algorithm and participated in the writing
of the manuscript.

Ferber, Aaron, Jialin Song, Bistra Dilkina, and Yisong Yue (2021). “Learning
Pseudo-Backdoors for Mixed Integer Programs”. In: Symposium on Combina-
torial Search.
J.S. participated in the conception of the project, conducted experiments jointly
with Aaron Ferber and participated in the writing of the manuscript.

Song, Jialin, Ravi Lanka, Yisong Yue, and Bistra Dilkina (2020). “A General Large
Neighborhood Search Framework for Solving Integer Linear Programs”. In: Ad-
vances in Neural Information Processing Systems. Vol. 33. url: https://
proceedings.neurips.cc/paper/2020/hash/e769e03a9d329b2e864b4bf4ff54ff39-
Abstract.html.
J.S. participated in the conception of the project, designed the algorithm, con-
ducted experiments jointly with Ravi Lanka, and participated in the writing of
the manuscript.

Song, Jialin, Ravi Lanka, Yisong Yue, and Masahiro Ono (2020). “Co-training for
policy learning”. In:Uncertainty in Artificial Intelligence. PMLR, pp. 1191–1201.
url: http://proceedings.mlr.press/v115/song20b.html.
J.S. participated in the conception of the project, designed and analyzed the
algorithm, conducted experiments jointly with Ravi Lanka, and participated in
the writing of the manuscript.

Song, Jialin, Ravi Lanka,Albert Zhao,AadyotBhatnagar, YisongYue, andMasahiro
Ono (2018). “Learning to search via retrospective imitation”. In: arXiv preprint.
url: https://arxiv.org/abs/1804.00846.
J.S. participated in the conception of the project, designed and analyzed the
algorithm, conducted experiments jointly with Ravi Lanka, and participated in
the writing of the manuscript.

https://arxiv.org/abs/2011.06022
https://arxiv.org/abs/2011.06022
https://openreview.net/forum?id=ac288vnG_7U
https://openreview.net/forum?id=ac288vnG_7U
https://proceedings.neurips.cc/paper/2020/hash/e769e03a9d329b2e864b4bf4ff54ff39-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e769e03a9d329b2e864b4bf4ff54ff39-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e769e03a9d329b2e864b4bf4ff54ff39-Abstract.html
http://proceedings.mlr.press/v115/song20b.html
https://arxiv.org/abs/1804.00846

vii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . v
Published Content and Contributions . vi
Table of Contents . vi
List of Illustrations . ix
List of Tables . xiii
Chapter I: Introduction . 1

1.1 Motivation . 1
1.2 Challenges . 3
1.3 Thesis Organization . 8

Chapter II: Related Works . 10
2.1 Related Works on Learning to Optimize 10
2.2 Policy Learning for Sequential Decision-Making 12

Chapter III: Learning to Search with Retrospective Imitation 14
3.1 Introduction . 14
3.2 Problem Setting & Preliminaries 16
3.3 Retrospective Imitation Learning 17
3.4 Theoretical Results . 21
3.5 Experimental Results . 25

Chapter IV: Co-training for Policy Learning 33
4.1 Introduction . 33
4.2 Background & Preliminaries . 35
4.3 A Theory of Policy Co-training . 38
4.4 The CoPiEr Algorithm . 43
4.5 Experiments . 45

Chapter V: Incorporating Existing Solvers as Sub-routines 51
5.1 A General Large Neighborhood Search Framework for Solving Inte-

ger Linear Programs . 52
5.2 Background on LNS . 54
5.3 Learning a Decomposition . 56
5.4 Emprical Validation for Learning-based LNS 59
5.5 Learning Pseudo-backdoors for Mixed Integer Programs 65
5.6 Problem Statement for Learning Pseudo-backdoors 66
5.7 Learning Pseudo-Backdoors . 66
5.8 Experiment Results for Learning Pseudo-backdoors 69

Chapter VI: Learning Surrogates for Optimization 73
6.1 Learning Safety Surrogate for the Perseverance Rover 73
6.2 Method for Learning Safety Surrogate 74
6.3 Evaluations of the Learned Safety Surrogate 76

viii

6.4 Learning Surrogate with Submodular-Norm Regularization 79
6.5 Background and Problem Statement 80
6.6 Learning with Submodular Regularization 82
6.7 Analysis for LeaSuRe . 83
6.8 Evaluations LeaSuRe on Protein Engineering 85

Chapter VII: Conclusion & Future Directions 89
Bibliography . 91
Appendix A: Appendix to Chapter 4 . 104

A.1 Proofs . 104
A.2 Pictorial Representation of the Two-views in Risk-aware Path Planning107
A.3 Risk-aware Path Planning Dataset Generation 107
A.4 Discrete/Continuous Control Results in Tabular Form 108

Appendix B: Appendix to Chapter 5 . 109
B.1 Algorithm Configuration Results 109
B.2 Visualization . 109
B.3 Model Architecture . 111
B.4 Domain Heuristics . 111

Appendix C: Appendix for Chapter 6 . 113
C.1 Proof for section 6.7 . 113
C.2 Supplemental Details for the Protein Engineering Experiments 114

ix

LIST OF ILLUSTRATIONS

Number Page
3.1 A visualization of retrospective imitation learning depicting compo-

nents of Algorithm 1. An imitation learning policy is initialized from
expert traces and is rolled out to generate its own traces. Then the
policy is updated according to the feedback generated by the retro-
spective oracle as in Figure 3.2. This process is repeated until some
termination condition is met. 17

3.2 Zoom-in views of Region A and B in Figure 3.1. At node E, the
retrospective feedback indicates selecting node H over F , G, and I .
At nodeM , the ? node is preferred over N 17

3.3 An example search trace by a policy. The solid black nodes (1→ 6→
8 → 9) make up the best trace to a terminal state in retrospect. The
empty red nodes are the mistakes made during this search procedure.
Every mistake increases the distance to the target node (node 9) by 1
unit, while every correct decision decreases the distance by 1 unit. . . 24

3.4 Representation of polygonal obstacle by disjuctive linear constraints. . 27
3.5 Retrospective imitation versus DAgger (top) and SMILe (bottom) for

maze solving (left) and risk-aware path planning (middle and right).
“Extrapolation” is the conventional imitation learning baseline, and
“Cheating” (left column only) gives imitation learning extra training
data. Retrospective imitation consistently and significantly outper-
forms imitation learning approaches in all settings. 29

3.6 Left to right: comparingManhattan distance heuristic, DAggerCheat-
ing and Retrospective DAgger on a 31 × 31 maze starting at upper
left and ending at lower right. Yellow squares are explored. Optimal
path is red. The three algorithms explore 333, 271 and 252 squares,
respectively. 29

3.7 (left) Retrospective imitation versus off-the-shelf methods. The RL
baseline performs very poorly due to sparse environmental rewards.
(middle, right) Single-step decision error rates, used for empirically
validating theoretical claims. 30

x

3.8 Retrospective DAgger (“select only” policy class) with off-the-shelf
branch-and-bound solvers using various search node budgets. Retro-
spective DAgger consistently outperforms baselines. 30

3.9 Relative objective value gaps of various methods compared with
retrospective imitation when restricted with a search budget of 250
nodes. Retrospective imitation consistently outperforms other meth-
ods, especially at large scales. 31

4.1 Two ways to encode minimum vertex cover (MVC) problems. Left:
policies learn to operate directly on the graph view to find theminimal
cover set E. Khalil, Le Bodic, et al., 2016. Right: we express
MVC as an integer linear program, then polices learn to traverse the
resulting combinatorial search space, i.e., learn to branch-and-bound
He, Daume III, and Eisner, 2014; J. Song, Lanka, Zhao, et al., 2018. . 35

4.2 Co-training with shared action space. 40
4.3 Graphical model encodes the conditional independence model. 41
4.4 Discrete & continuous control tasks. Experiment results are across 5

random seeded runs. Shaded area indicates ±1 standard deviation. . . 46
4.5 Comparison of CoPiEr with other learning-based baselines and a

commercial solver, Gurobi. The y-axis measure relative gaps of vari-
ous methods compared with CoPiEr Final. CoPiEr Final outperforms
all the baselines. Notably, the gaps are significant because getting
optimizing over large graphs is very challenging. 47

4.6 Comparison of CoPiEr with other learning-based baselines and a
commercial solver, Gurobi. The y-axis measure relative gaps of vari-
ous methods compared with CoPiEr Final. CoPiEr Final outperforms
all the baselines. Notably, the scale of problems as measured by
the number of integer variables far exceed previous state-of-the-art
method (J. Song, Lanka, Zhao, et al., 2018). 50

5.1 Improvements of objective values as more iterations of LNS are
applied. In all three cases, imitation learning methods, BC-LNS and
FT-LNS, outperform the Random-LNS. 63

xi

5.2 We compare LNS methods on how the objective values improve
as more wall-clock time is spent for some representative problem
instances. We also include Gurobi in the comparison. All LNS
methods find better solutions than Gurobi early on and it takes Gurobi
between 2 to 10 times more time to match the solution quality. For
MAXCUT (Fig 5.2d), after running for 2 hours, Gurobi is unable to
match the quality of solution found by Random-LNS in 5 seconds. . . 63

5.3 The pseudo-backdoor deployment pipeline visualizes the different
components used for solving a single MIP instance with the two
learned models, the scoring module S(P,B; θS) and the classifica-
tion module C(P,B; θC). First k pseudo-backdoor sets of decision
variables B1, . . . ,Bk are sampled according to the decision vari-
ables’ LP fractionality. These candidate pseudo-backdoor sets are
ranked according to the scoring module S(P,B; θS) to predict the
best pseudo-backdoor B∗. The classification module then determines
whether to run the solver using B∗ or not based on the predicted
pseudo-backdoor success C(P,B∗; θC). 67

6.1 An example of a Learned Heuristic. Sets of terrain heightmaps (a)
and maps generated by the ACE algorithm (b) were used to train a
neural network to generate an inferred ACE probability map (c). . . . 75

6.2 A summary of key rover path planning performance metrics across
various experiments. Incorporating heuristics produced more ef-
ficient paths, reduced the number of costly ACE evaluations, and
maintained or slightly increased the rate of successfully reaching the
goal. 77

6.3 Combining submodular regularization with a learned active learning
policy for a protein engineering task. In (b), Lambda = 0 corresponds
to the unregularized case. Error bars are plotted as standard error of
the mean across 50 replicates. 85

A.1 Two views for Risk-Aware Path Planning. On the left, the obstacle is
enclosed by a polytope (MILP view) and on the right the obstacle is
enclosed by an ellipse (QCQP view). 107

xii

B.1 Visualizing predicted decompositions in a risk-aware path planning
problem, with 4 consecutive solutions after 3 iterations of LNS. Each
blue square is an obstacle and each cross is a waypoint. The obstacles
in red and waypoints in dark blue are the most frequent ones in the
subsets that lead to high local improvement. 111

C.1 Supplemental results for the protein engineering experiments of Sec-
tion 6.8: (a) We observe that the policy learned by LeaSuRe pre-
forms approximately as well as the greedy oracle which it emulates.
In this experiment the policy was derived from the training set, but
the greedy oracle is operating on the test set. (b) Lambda linearly
scales the value of the regularizer term. When lambda takes value
0.01, the magnitude of the (scaled) regularizer term (represented by
the blue bar) aligns the best with the magnitude of the cross entropy
loss (represented by the orange bar). This is consistent with what we
observed in Figure 6.3b where λ = 0.01 leads to well-regularized
model behavior. 115

xiii

LIST OF TABLES

Number Page
5.1 Comparison of different LNS methods and Gurobi for MVC and

MAXCUT problems. 61
5.2 Comparison of different LNS methods and Gurobi for CATS problems. 61
5.3 Comparison of different LNSmethods andGurobi for risk-aware path

planning problems. 61
5.4 (Left) Comparison between LNS with the local-ratio heuristic for

MVC. (Right) Comparison between LNS with heuristics for MAXCUT. 62
5.5 Comparison between LNS with greedy and LP rounding heuristics

for CATS. 62
5.6 Wall-clock comparison between learning to branch GCNN models

(Gasse et al., 2019) and Gurobi. 62
5.7 LNS with SCIP as the ILP solver. 64
5.8 Runtime comparison in seconds of standard gurobi (grb), the score

model (scorer), and the score model with subsequent classification
(scorer+cls) across 3 hardness settings of gisp. In addition to mean
and standard deviation of the runtimes, we report the 25th, 50th, and
75th percentiles of the runtimes across the MIP instances to provide
further information about model performance at different points of
the distribution. Finally, we report win / tie / loss metrics across the
100 test instances for the given models against Gurobi. Note that the
scorer + classification module ties with Gurobi when it predicts to
use Gurobi rather than the suggested psuedo-backdoor. 72

B.1 Parameter sweep results for (k, t) of anMVC dataset for Erdős-Rényi
random graphs with 1000 vertices. Numbers represent improvement
ratios ∆/t for one decomposition, averaged over 5 random seeds. . . 109

B.2 Parameter sweep results for (k, t) of the MVC dataset for Barabási-
Albert random graphs with 1000 vertices. 109

B.3 Parameter sweep results for (k, t) of the MAXCUT dataset for Erdős-
Rényi random graphs with 500 vertices. 109

B.4 Parameter sweep results for (k, t)of theMAXCUTdataset forBarabási-
Albert random graphs with 500 vertices. 110

B.5 Parameter sweep results for (k, t) of the CATS dataset for the regions
distribution with 2000 items and 4000 bids. 110

xiv

B.6 Parameter sweep results for (k, t) of theCATS dataset for the arbitrary
distribution with 2000 items and 4000 bids. 110

B.7 Parameter sweep results for (k, t) of the risk-aware path planning for
30 obstacles. 110

B.8 Model architectures for all the experiments. 112

1

C h a p t e r 1

INTRODUCTION

1.1 Motivation
Optimization problems are at the heart of everyday applications, from finding the
fastest route to a destination to designing more effective drugs. The desire to
searching for better solutions is what drives human civilization forward. The study
of algorithm design for optimization problems spans areas in computer science
and mathematics. Traditionally, the design of a novel algorithm calls for a similar
level of creativity as in the production of a mathematical proof. An algorithm
designer must study special properties of a type of optimization problem, e.g.,
convexity or submodularity, then create an algorithm that exploits such properties.
Both identifying properties and making use of them take considerable expertise and
can potentially take a long time. The field of machine learning studies a relevant
problem: can an algorithm / a program be learned from data? Indeed, deep learning
has revolutionized areas such as computer vision. Instead of asking a human to
write an algorithm to label whether an image contains a cat, deep learning models
learn weights of deep neural networks from a large amount of labeled cat and no-cat
images. The result is a model, acting as a program, able to generalize to future
images. This is a fundamental perspective shift about how to solve problems in the
presence of large amounts of data: from manual design algorithms according to
problem descriptions, to automatic discovery of generalizable patterns from data.

Can we incorporate machine learning into the algorithm design process? This is
a broad question and this thesis provides several concrete approaches to combin-
ing learned models with standard algorithms. However, as a first step, we need
to consider the question of whether data-driven approaches can help. On closer
inspection of general optimization algorithms, we can break an algorithm into two
parts. Firstly, there is the outline of the algorithmwhich describes the steps to follow
to arrive at a final solution. This part is typically fixed independent of particular
problem instances. Secondly, some parameters in the outline control the behavior of
an algorithm in the optimization process for individual instances. For example, con-
sider the simple gradient descent algorithm for minimizing a differentiable function
f , where the algorithmic outline is the gradient update step xn+1 = xn−αn∇f(xn)

2

which is applied repeatedly. The parameter is the step size αn ∈ R+, which is
crucial for convergence of the algorithm (Boyd and Vandenberghe, 2004). While
there are theoretical results on what the step size should be (or be proportional to),
setting the actual value for each problem is still largely an exercise in intuition.
Andrychowicz et al. (2016) formulate setting learning rate as a learning problem
and apply recurrent neural networks to adaptively decide a learning rate for each
step.

Another example where the parameters are crucial is the heuristic function to esti-
mate cost-to-go in the A* algorithm (Hart, Nilsson, and Raphael, 1968). Dechter
and Pearl (1985) provide analysis on the consistent and admissible properties of a
heuristic function. However, consistency and admissibility only provide constraints
that a heuristic function needs to satisfy and there are usually many feasible choices.
In practice, simple heuristics such as the Euclidean distance or the Manhattan dis-
tance are commonly used, both of which are based on hand-crafted formulas. A
data-driven way differs in replacing heuristics with machine learning models to fully
exploit the structure of individual problem instances, as we have demonstrated in
(J. Song, Lanka, Zhao, et al., 2018).

The learning perspective favors adaptive models over hand-crafted rules for setting
those parameters. With an expressive enough model class, such as deep neural
networks, we are likely to be able to findmodels that outperform existing approaches.
Is there any downside to using a learned model? Algorithm design has traditionally
placed great emphasis on the correctness of an algorithm. For example, a large
portion of the popular introductory algorithmbook (Cormen et al., 2009) is dedicated
to proofs. Hand-crafted heuristics are nice for proofs: they usually have simple forms
and their properties are easily understandable. In contrast, a deep neural network,
which is notorious for its opaqueness, does not play well with theoretical analyses.
As a result, we need to trade-off guarantees with performances. That is not to say
that we have to sacrifice all the nice theoretical properties. Careful designs can result
in data-driven algorithm with guarantees (Balcan et al., 2018; B. Sun et al., 2020).
We will show in later chapters how to design learning algorithms that maintain
performance guarantees as well.

How to design a data-driven algorithm is the focus of this thesis. Generally speak-
ing, a data-driven approach can be characterized by the ratio of the data-driven
component to the traditional algorithm outline. One could discard all existing al-
gorithm structures and replace them with a machine learning model, as shown in

3

the recent works on using graph neural networks to solve the traveling salesman
problem (Kool, Hoof, and Welling, 2018; Joshi, Laurent, and Bresson, 2019). Of
course, one could adopt a more gentle approach and try to fuse machine learning
models into an existing algorithmic framework. In this thesis, we explore various
ways to realize the latter perspective.

Fundamentally, an optimization algorithm solves a search problem: from a feasi-
ble set of solutions, we want to find one that optimizes some objective function.
Depending on problem types, algorithms are designed to either evolve solutions it-
eratively or build up a complete solution through a sequential process. For example,
if the objective function is convex and differentiable, we can sequentially update the
solution by performing gradient descent until convergence to an optimum. Another
example is solving integer linear programs (ILPs) with the branch-and-bound (BnB)
algorithm (Lawler andWood, 1966). The search domain for an ILP is combinatorial
due to the presence of integer variables. The BnB algorithm builds a search tree to
navigate the search space sequentially.

Two important metrics to evaluate the quality of an optimization algorithm are
speed and solution quality. The speed reflects how fast an algorithm terminates
and the quality measures how good the solution at termination is. To achieve
better performance, we need to make good decisions on navigating the search space,
which often means that the search algorithm needs to dynamically adapt its behavior
based on history so that future efforts are spent on promising areas. Because of
the sequential nature of the search, we model general optimization problems as
sequential decision-making problems. The goal is to learn policies, which map
some featurization of states to actions, that result in good performance metrics. The
benefit of this approach is to reduce the dependency on domain experts and arrive
at more adaptive heuristics, as such a modeling approach allows more fine-grained
control on their behaviors.

1.2 Challenges
With the motivation clear, we now describe a common pipeline for learning to
optimize. In practical applications, we are often concerned with solving a narrow
collection of optimization problems. For example, airlines are interested in schedul-
ing problems while delivery services are interested in vehicle routing problems.
Furthermore, there are large overlaps between new problem instances and the old
ones, which is an ideal setting for applying machine learning algorithms as we know

4

the training and testing sets are similar. Thus, the learned model can generalize.
From these observations, we can set up a learning pipeline. For training, we have
a collection of readily available problem instances, e.g., already solved instances.
Then we will apply machine learning techniques tailored for those problems. At
test time, e.g., when new instances are presented, we apply the learned models to
solve them. The details in this pipeline depend on some unique properties that
optimization problems have, which we must consider when designing appropriate
machine learning algorithms. We briefly discuss three aspects that are the focuses
of this thesis.

Interface with Existing Solvers Thanks to previous research, there are existing
algorithms and solvers for widely studied optimization problems. They are often
capable to solve moderately sized problems but have scalability issues. This is a
major difference from other settings for sequential decision-making, such as those
in robotics where existing control policies can be quite bad. We view the existing
solvers as an asset for a learning method and explore ways to fuse them with
learning. Based on how much modification we make to a solver, we can roughly
divide learning to optimize approaches into two categories.

The first category targets a sub-routine in an optimization algorithm. For example,
in the BnB tree search algorithm, there are three decision modules in the evolution
of the search tree. The branching module decides which integer variable to branch
on. The node selection module decides which node to explore among the frontier
nodes in the current search tree. Finally, the pruning module decides when to
discard an entire subtree because it will not lead to better solutions. Research has
shown that these decisions significantly impact the solving time of integer programs
(J. T. Linderoth and M. W. Savelsbergh, 1999; Achterberg, 2009; Le Bodic and
Nemhauser, 2015). Innovating on their designs is an active research area involving
a large amount of heuristics. For example, the leading commercial solver Gurobi
has four branching strategies (Gurobi Optimization, 2021) based on different hand-
crafted scoring functions on variables. It is natural to wonder if better strategies
can adapt to both the problem structure and the search process. Machine learning
models provide an attractive alternative. Existing works on learning branching rules
have shown that it is possible to outperform the default ones (E. Khalil, Le Bodic,
et al., 2016; Gasse et al., 2019).

Another example is the genetic algorithm, which is a popular evolutionary opti-

5

mization approach that finds successful use cases from deep space scheduling for
satellites (Guillaume et al., 2007) to drug design (Douguet, Thoreau, and Grassy,
2000). It consists of three components: initialization, selection, and crossover (De
Jong, 2006). They are used iteratively to evolve existing solutions towards better
ones. Each component can be realized with a set of heuristic rules. For example,
the selection step uses a fitness function to imitate natural selection and filters out
low-quality solutions. Then the crossover phase happens by combining the remain-
ing members with heuristic rules to produce the next generation of solutions. As
a result, a concrete realization has several hand-crafted heuristics. Paliwal et al.
(2020) uses reinforcement learning to learn a machine learning model to perform
the crossover step and shows that the resulting model outperforms default crossover
rules by a large margin.

A limiting factor of this kind of approach is the requirement for access to internal
components of a solver or a highly flexible API, which is typically unavailable for
commercial solvers. This can be a significant disadvantage if we want to compete in
terms ofwall-clock runtimewith state-of-the-art solverswhich are often commercial,
e.g., Gurobi and CPLEX for solving integer programs.

The second category takes a more holistic view. Instead of updating a sub-routine
with a machine learning model, a model is tasked with modifying some global
behavior of the algorithm by setting high-level control parameters. This category
enjoys wider applicability as it can adapt to different solver interfaces and usually
requires no access to the internals of a solver. We can divide this category further
into two sub-categories. The first one is algorithm configuration (Hoos, 2011). The
motivation is that a typical solver has lots of parameterswe can set to alter its behavior
for different problem instances. The performance difference between a good setting
and a bad one is often quite dramatic. As a result, algorithm configuration aims
to learn a model that maps features of a problem instance to a parameter setting
which leads to good performance. A popular approach formulates the algorithm
configuration task as a model-based optimization problem. A machine learning
model takes a problem instance and a parameter setting as input, then outputs a
prediction on a performance metric, typically the runtime. At test time, the model
proposes multiple parameter settings to find the best one (Hutter, Hoos, and Leyton-
Brown, 2011; Kleinberg et al., 2019).

The second sub-category uses a solver as a sub-routine in a larger solving pipeline.
For example, Gomes and Selman (2001) takes advantage of the variability among

6

different stochastic search algorithms to construct a portfolio of algorithms and
explores various ways to combine running different algorithms. Machine learning
techniques have also been studied in the context of SAT solving (Xu et al., 2008)
which won several SAT competitions. The core idea is to learn a regression model
that predicts the runtime of each solver for a SAT instance. At test time, the model
chooses to run the solver with the lowest predicted runtime.

We will present learning algorithms covering all the categories and point out the
advantages and disadvantages in each scenario.

Choice of Learning Algorithms Because of the diverse interfacing methods with
existing solvers, there is a multitude of learning algorithm choices. As an optimiza-
tion algorithm typically operates sequentially, formulating the search as a sequential
decision-making problem allows us to connect with the existing policy learning
literature. Our ultimate goal is to learn a policy that maps a state feature that con-
tains information about the search history to an action that continues the search.
Popular policy learning algorithms can be categorized into reinforcement learning
and imitation learning.

In a reinforcement learning setting (Sutton and Barto, 2018), we have access to an
environment from which we can collect reward information. An agent interacts with
the environment by following a policy. Feedback from environmental rewards is
used to update the policy. By parametrizing policies with deep neural networks,
deep reinforcement learning has achieved impressive results from game playing
(Mnih, Kavukcuoglu, Silver, Rusu, et al., 2015; Silver et al., 2016) to robotics (Gu
et al., 2017; Haarnoja et al., 2019). However, reinforcement learning algorithms
are usually brittle (Henderson et al., 2018) and require millions of interactions
with the environment (Mnih, Kavukcuoglu, Silver, Rusu, et al., 2015; Silver et al.,
2016). Such challenges become more prominent when positive reward feedback
from the environment is sparse. In particular, for discrete optimization problems,
we often do not obtain any feedback, as the objective function value, until a complete
solution has been found. We often have control over the definition of the reward
function. To make the learning task more tractable, we can perform reward shaping
(Ng, Harada, and Russell, 1999) to mitigate the sparsity issue. For example, in
continuous optimization, we could shape the reward as the difference of objectives
between a new solution and an old one. Thismethod can provide dense feedback, but
in cases where good solutions are rare the rewards will be negative in most steps and

7

they provide limited information to guide the policy learning. As a result, applying
reinforcement learning successfully requires careful selection of problem domains
and proper formulations. Recent successes include learning to select cutting planes
for integer programming (Tang, Agrawal, and Faenza, 2020) and end-to-end models
for solving traveling salesman problems (Kool, Hoof, and Welling, 2018).

Imitation learning algorithms aim to address common challenges of reinforcement
learning by utilizing expert demonstrations. Similar to reinforcement learning,
imitation learning has seen applications in game playing (Aytar et al., 2018) and self-
driving cars (Bojarski et al., 2016). Imitation is an integral part of animal learning
(Galef Jr, 1988) and its impact has been studied extensively in social and cultural
settings (Heyes and Galef Jr, 1996; Nehaniv and Dautenhahn, 2007). Inspired by
such observations, we can incorporate demonstrations into policy learning. The
access to demonstrations reduces the need for sufficient exploration, which is the
root cause of the challenges that reinforcement learning faces. However, using
imitation learning for learning to optimize proves to be a challenging task itself due
to the following reasons.

• The type of demonstrations available is usually generated from existing
solvers, either in the form of final solutions or records of the search pro-
cess. Since the goal of learning is to outperform existing solvers (the experts),
simply applying existing imitation learning algorithms is not enough. Meth-
ods explicitly focusing on producing policies better than experts such as the
work byChang et al. (2015) still require large amounts of exploration. Another
complicating factor is the constraint resulting from interfacing with solvers.
A popular category of imitation learning algorithms gathers expert demon-
strations through interactive queries, e.g., (Stéphane Ross, Gordon, and D.
Bagnell, 2011; Jauhri, Celemin, and Kober, 2020). They require the ability to
obtain feedback at an arbitrary state. However, limited access to the internals
of optimization solvers greatly limits what states we can initialize a solver
with. This means that obtaining interactive feedback is nearly impossible and
poses challenges in algorithmic design. We will show our attempts to address
such challenges and their empirical effectiveness.

• In some cases, it is unclear what an expert is or it is infeasible to collect
demonstrations, e.g., it takes a solver too long to produce solutions. This
often happens when we consider novel formulations incorporating learning

8

components. It might seem paradoxical to do imitation learning without
an expert but we will show that creatively using heuristics can still produce
meaningful "demonstrations". A core technique is to useweaker policies, such
as random exploration or policies trained on easier problems, to jump-start
the learning process and iteratively refine the learned policies.

Data Collection Considerations Data are at the heart of every machine learning
application. From our discussion on the choices of learning algorithms, it is clear
that the required data collection is closely tied to the chosen learning algorithm.
We are faced with additional constraints for data collection in learning to optimize
because running solvers on problem instances to generate data is often expensive as
lots of problem classes are NP-hard in combinatorial optimization. As a result, the
total data volumewe can expect is typically smaller than traditional settings of policy
learning where cheap simulators are available, e.g., OpenAI Gym (Brockman et al.,
2016). To make matters worse, the rigidity of interfacing with solvers means that we
often are unable to collect some helpful information, e.g., the interactive feedback
for imitation learning. There has been a recent effort to make a more accessible
interface for learning to branch in integer programs (Prouvost et al., 2020), but this
challenge remains in other areas. As a result, our learning methods are usually
required to work with easily collectible statistics from solvers. Some examples are
final solutions, objective values, and solve time. We show that, by taking advantage
of properties of optimization problems and making proper algorithm choices, we
can still successfully integrate learning despite those challenges.

1.3 Thesis Organization
In this thesis, we use the three challenges outlined in the previous section as a guide
for learning algorithm designs. We focus on combinatorial optimization problems
and integer programs. Our study will be multi-faceted, covering the spectrum from
the theoretical analyses of algorithms to practical efficacy in real-world applications.
Through the chapters, we will give an account of our evolving understanding of the
research area.

In chapter 2, we review related works on learning to optimize and policy learning
for sequential decision-making problems.

In chapters 3 and 4, we present two novel policy learning algorithms that blend
imitation learning with reinforcement learning. Their creations are tightly related
to properties of combinatorial optimization and integer programs. The focus of

9

both chapters is on updating a component of a solver with a data-driven model.
In chapter 3, we propose the retrospective imitation learning algorithm (J. Song,
Lanka, Zhao, et al., 2018) that can turn sparse environmental rewards into dense
per-step feedback, which is ideal for reduction-based imitation learning algorithms.
We show that retrospective imitation provides one answer when we are unable to
collect expert demonstrations. In chapter 4, we are motivated by the observation that
various representations of optimization problems provide additional possibilities on
interactions between learning policies. The algorithm CoPiEr (J. Song, Lanka, Yue,
and Ono, 2020), inspired by the co-training algorithm (Blum and Mitchell, 1998),
applies to both reinforcement and imitation learning settings.

Then we proceed with chapter 5 to study more high-level integration of learning
algorithms with existing solvers. Both ideas originated from the issue of the de-
pendency on open-sourced solvers for internal access in the previous two chapters.
While our algorithmic contributions lead to improvement over the baseline solvers,
they are not competitive with state-of-the-art solvers in wall-clock time. We first
study a divide-and-conquer approach for integer programs that utilize a solver as
a sub-routine in the conquer step. The learned policy makes high-level decisions
on how to divide a problem into several sub-problems. Next, we present a project
motivated by the concept of backdoor variables (R. Williams, Gomes, and Selman,
2003; Dilkina, Gomes, and Sabharwal, 2009), which are a subset of variables that
capture the core hardness of optimization problems. We learn models to identify
such variables and the predictions can guide a solver by raising branching priorities
in solving mixed integer programs (MIPs). This chapter is based on two papers
(J. Song, Lanka, Yue, and Dilkina, 2020; Ferber, J. Song, et al., 2021).

In chapter 6, we explore two ideas that are influenced by the general philosophy of
learning to optimize. We design machine learning surrogate models to guide the
optimization process. In the first part, a safety cost module is learned to replace an
expensive computation process in Mars rover path planning. In the second part, a
surrogate regularized with a submodular-norm is learned to guide a search over a
combinatorial space. Both ideas embody the flexibility of the learning to optimize
framework and its potential for large practical impact. This chapter is based on two
papers (Abcouwer et al., 2021; Alieva et al., 2021).

Finally, we conclude with chapter 7 where we explore promising future directions
in the learning to optimize research area.

10

C h a p t e r 2

RELATED WORKS

2.1 Related Works on Learning to Optimize
An increasingly popular paradigm for the automated design and tuning of solvers
is to use learning-based approaches. Broadly speaking, one can categorize most
existing “learning to optimize” approaches into three categories: (1) learning search
heuristics such as for branch-and-bound; (2) tuning the hyperparameters of existing
algorithms; (3) learning to identify key substructures that an existing solver can
exploit; and (4) differentiating through an optimization algorithm. In this section,
we survey these paradigms.

Learning to Search In learning to search, one typically operates within the frame-
work of a search heuristic, and trains a local decision policy from training data. Per-
haps the most popular search framework for integer programs is branch-and-bound
(Land and Doig, 2010), which is a complete algorithm for solving integer pro-
grams (ILPs) to optimality. Branch-and-bound is a general framework that includes
many decision points that guide the search process, which historically have been
designed using carefully attained domain knowledge. To arrive at more automated
approaches, a collection of recent works explore learning data-driven models to
outperform manually designed heuristics, including learning for branching variable
selection (E. Khalil, Le Bodic, et al., 2016; Gasse et al., 2019), or node selection
(He, Daume III, and Eisner, 2014; J. Song, Lanka, Zhao, et al., 2018; J. Song,
Lanka, Yue, and Ono, 2020). Moreover, one can also train a model to decide when
to run primal heuristics endowed in many ILP solvers (E. B. Khalil et al., 2017).
Many of these approaches are trained as policies using reinforcement or imitation
learning.

Writing highly optimized software implementations is challenging, and so all pre-
vious work on learning to branch-and-bound were implemented within existing
software frameworks that admit interfaces for custom functions. The most common
choice is the open-source solver SCIP (Achterberg, 2009), while some previous
work relied on callback methods with CPlex (Bliek1ú, Bonami, and Lodi, 2014;
E. Khalil, Le Bodic, et al., 2016). However, in general, one cannot depend on highly
optimized solvers being amenable to incorporating learned decision procedures as

11

subroutines. For instance, Gurobi, the leading commercial ILP solver according
to (Mittelmann, 2017; Optimization, 2019), has very limited interface capabilities,
and to date, none of the learned branch-and-bound implementations can reliably
outperform Gurobi in wall-clock time.

Beyond branch-and-bound, other search frameworks that are amenable to data-
driven design include A* search (J. Song, Lanka, Zhao, et al., 2018), direct forward
search (E. Khalil, H. Dai, et al., 2017), path planning (Ichter, Harrison, and Pavone,
2018; B. Chen, B. Dai, and L. Song, 2020; T. Huang, Dilkina, and Koenig, 2021),
theorem proving (Balunovic, Bielik, and Vechev, 2018), evolutionary algorithms
(Paliwal et al., 2020) and Bayesian optimization (J. Song, Y. Chen, and Yue, 2019).

Some research has taken a more high level view of the search process and aims
to design end-to-end learning models to replace existing search framework. For
example, several works on solving the traveling salesman problems (H. Dai, E. B.
Khalil, et al., 2017; Kool, Hoof, and Welling, 2018; Joshi, Laurent, and Bresson,
2019) learn models that directly construct solutions from a problem description.
Such models can also be used within a standard look-ahead search framework such
as beam search or Monte-Carlo tree search to further boost their performances.

Algorithm Configuration Another area of using learning to speed up optimiza-
tion solvers is algorithm configuration (Hoos, 2011; Hutter, Hoos, and Leyton-
Brown, 2011; Ansótegui et al., 2015; Balcan et al., 2018; Kleinberg et al., 2019).
Existing solvers tend to have many customizable hyperparameters whose values
strongly influence the solver behaviors. Algorithm configuration aims to optimize
those parameters on a problem-by-problem basis to speed up the solver.

Algorithm portfolio (or algorithm selection) (Gomes and Selman, 2001) is another
related area. If we think algorithm configuration as exploiting the performance
variance as a consequence of solver parameters, algorithm portfolio exploits the
variance among different solvers. This class of methods learn a selection model that
dispatches different solvers based on problem instance features. Though concep-
tually simple, they have shown outstanding performance in applications from SAT
solving (Xu et al., 2008) to numerical optimization (Peng et al., 2010).

Learning to Identify Substructures The third category of approaches is learning
to predict key substructures of an optimization problem. A canonical example is
learning to predict backdoor variables (R. Williams, Gomes, and Selman, 2003;

12

Dilkina, Gomes, and Sabharwal, 2009), which are a set of variables that, once
instantiated, the remaining problem simplifies to a tractable form (Dilkina, Gomes,
and Sabharwal, 2009). Kilby et al. (2005) propose algorithms for finding backdoors
for SAT by collecting branching variables from a SAT solver. For MIP solving,
Fischetti and Monaci (2011) design a method to identify pseudo-backdoors for a
given MIP by solving a set covering problem, and observe that by branching on
variables in a pseudo-backdoor first a MIP solver can solve practical instances from
MIPLIB (Koch et al., 2011) faster. Dvořák et al. (2017) study a variant of backdoors
for MIPs called fracture backdoors which are variables whose removal would result
in a natural decomposition of MIPs. Our method is the first data-driven attempt to
predict pseudo-backdoors directly from MIP instances.

Other examples of this general paradigm include learning to pre-condition solvers,
such as generating an initial solution to be refined with a downstream solver, which
is typically more popular in continuous optimization settings (Kim et al., 2018).

End-to-end Differentiable Optimization The final category views optimizing an
optimization algorithm as a meta-problem. A common approach is to define some
parametrization of an algorithm and formulate a differentiable objective. The work
by (Andrychowicz et al., 2016) uses LSTMs to predict the learning rate for gradient
descent algorithms. The recurrent nature of the algorithm makes the whole pipeline
differentiable. While it is easier to tackle continuous optimization problemswith this
perspective, existing research has shown that clever algorithm designs can extend the
applicability into discrete optimization as well. Vlastelica et al. (2019) and Rolínek
et al. (2020) present algorithms to differentiate through blackbox combinatorial
solvers.

Another fascinating line of research studies embedding optimization algorithms as
differentiable layers into other models. Amos and Kolter (2017) embeds quadratic
programs into deep neural networks. Recent works (P.-W.Wang et al., 2019; Ferber,
Wilder, et al., 2020; Wilder et al., 2019) explore applications in SAT solving, MIP
solving and graph clustering.

2.2 Policy Learning for Sequential Decision-Making
Sequential decision making pertains to tasks where the policy performs a series
of actions in a stateful environment. A popular framework to characterize the
interaction between the agent and the environment is a Markov Decision Process

13

(MDP). There are two main approaches for policy learning in MDPs: reinforcement
learning and imitation learning.

Reinforcement learning Reinforcement learning (RL) uses the observed environ-
mental rewards to perform policy optimization. Recent works include Q-Learning
approaches such as deep Q-networks (Mnih, Kavukcuoglu, Silver, Graves, et al.,
2013), as well as policy gradient approaches such as DDPG (Lillicrap et al., 2015),
TRPO (Schulman, Levine, et al., 2015) and PPO (Schulman, Wolski, et al., 2017).
Despite its successful applications to a wide variety of tasks including playing games
(Mnih, Kavukcuoglu, Silver, Graves, et al., 2013; Silver et al., 2016), robotics
(Levine et al., 2016; Kober, J. A. Bagnell, and Peters, 2013) and combinatorial op-
timization (H. Dai, E. B. Khalil, et al., 2017; Mirhoseini et al., 2017), high sample
complexity and unstable learning pose significant challenges in practice (Henderson
et al., 2018), often causing learning to be unreliable.

Imitation Learning Imitation learning (IL) uses demonstrations (from an expert)
as the primary learning signal. One popular class of algorithms is reduction-based
(Daumé III, Langford, and Marcu, 2009; Stéphane Ross and D. Bagnell, 2010;
Stéphane Ross, Gordon, and D. Bagnell, 2011; Stephane Ross and J. A. Bagnell,
2014; Chang et al., 2015), which generates cost-sensitive supervised examples from
demonstrations. Other approaches include estimating the expert’s cost-to go (W.
Sun et al., 2017), inverse reinforcement learning Abbeel and Ng, 2004; Ho and
Ermon, 2016; Ziebart et al., 2008, and behavioral cloning U. Syed and Schapire,
2008. One major limitation of imitation learning is the reliance on demonstrations.
One solution is to combine imitation and reinforcement learning (H. Le et al., 2018;
Kang, Jie, and Feng, 2018; Cheng et al., 2018; Nair et al., 2018) to learn from fewer
or coarser demonstrations.

14

C h a p t e r 3

LEARNING TO SEARCH WITH RETROSPECTIVE IMITATION

Abstract We study the problem of learning a good search policy for combinatorial
search spaces. We propose retrospective imitation learning, which, after initial
training by an expert, improves itself by learning from retrospective inspections of
its own roll-outs. That is, when the policy eventually reaches a feasible solution in
a combinatorial search tree after making mistakes and backtracks, it retrospectively
constructs an improved search trace to the solution by removing backtracks, which
is then used to further train the policy. A key feature of our approach is that it can
iteratively scale up, or transfer, to larger problem sizes than those solved by the initial
expert demonstrations, thus dramatically expanding its applicability beyond that of
conventional imitation learning. We showcase the effectiveness of our approach
on a range of tasks, including synthetic maze solving and combinatorial problems
expressed as integer programs.

3.1 Introduction
Many challenging tasks involve traversing a combinatorial search space. Exam-
ples include branch-and-bound for constrained optimization problems (Lawler and
Wood, 1966), A* search for path planning (Hart, Nilsson, and Raphael, 1968) and
game playing, e.g., Go (Silver et al., 2016). Since the search space often grows ex-
ponentially with problem size, one key challenge is how to prioritize traversing the
search space. A conventional approach is to manually design heuristics that exploit
specific structural assumptions (cf. Gonen and Lehmann (2000) and Holmberg and
Yuan (2000)). However, this conventional approach is labor intensive and relies
on human experts developing a strong understanding of the structural properties of
some class of problems.

In this paper, we take a learning approach to finding an effective search heuristic.
We cast the problem as policy learning for sequential decision making, where the
environment is the combinatorial search problem. Viewed in this way, a seemingly
natural approach to consider is reinforcement learning, where the reward comes from
finding a feasible terminal state, e.g., reaching the target in A* search. However, in
our problem, most terminal states are not feasible, so the reward signal is sparse;
hence, we do not expect reinforcement learning approaches to be effective.

15

We instead build upon imitation learning (Stéphane Ross and D. Bagnell, 2010;
Stéphane Ross, Gordon, and D. Bagnell, 2011; Daumé III, Langford, and Marcu,
2009; He, Daume III, and Eisner, 2014), which is a promising paradigm here since
an initial set of solved instances (i.e., demonstrations) can often be obtained from
existing solvers, which we also call experts. However, obtaining solved instances
can be expensive, especially for large problems. Hence, one key challenge is to
avoid repeatedly querying experts during training.

We propose the retrospective imitation approach, where the policy can iteratively
learn from its own mistakes without repeated expert feedback. Instead, we use a
retrospective oracle to generate feedback by querying the environment on rolled-out
search traces (e.g., which part of the trace led to a feasible terminal state) to find the
shortest path in hindsight (retrospective optimal trace).

Our approach improves upon previous imitation approaches (Stéphane Ross and
D. Bagnell, 2010; Stéphane Ross, Gordon, and D. Bagnell, 2011; He, Daume III,
and Eisner, 2014) in two aspects. First, our approach iteratively refines towards
solutions that may be higher quality or easier for the policy to find than the original
demonstrations. Second and more importantly, our approach can scale to larger
problem instances than the original demonstrations, allowing our approach to scale
up to problem sizes beyond those that are solvable by the expert, and dramatically
extending the applicability beyond that of conventional imitation learning. We also
provide a theoretical characterization for a restricted setting of the general learning
problem.

We evaluate on two types of search problems: A* search and branch-and-bound in
integer programs. We demonstrate that our approach improves upon prior imitation
learning work (He, Daume III, and Eisner, 2014) as well as commercial solvers such
as Gurobi (for integer programs). We further demonstrate generalization ability by
learning to solve larger problem instances than contained in the original training
data.

In summary, our contributions are:

• We propose retrospective imitation, a general learning framework that gener-
ates feedback (via querying the environment) for imitation learning, without
repeatedly querying experts.

• We show how retrospective imitation can scale up beyond the problem size
where demonstrations are available, which significantly expands upon the

16

capabilities of imitation learning.

• We provide theoretical insights on when retrospective imitation can provide
improvements over imitation learning, such as when we can reliably scale up.

• Weevaluate empirically on three combinatorial search environments and show
improvements over both imitation learning baselines and off-the-shelf solvers.

3.2 Problem Setting & Preliminaries
Learning Search Policies forCombinatorial Search Problems. Given a combina-
torial search problem P , a policy π (i.e., a search algorithm) must make a sequence
of decisions to traverse a combinatorial search space to find a (good) feasible solution
(e.g., a setting of integer variables in an integer program that satisfies all constraints
and has good objective value). We focus on combinatorial tree search, where the
navigation of the search space is organized as search trees, i.e., our “environment”
is the search space. Given the current “state” st (the current search tree), which
contains the search history so far (e.g., a partial assignment of integer variables), the
policy chooses an action a, usually a new node to explore, to apply to the current
state st (i.e., to extend the current partial solution) and transitions to a new state
st+1 (a new search tree). The search terminates when a complete feasible solution
is found, which we also refer to as reaching a terminal state. Figure 3.1 depicts
(among other things) example roll-outs, or search traces, of such policies.

A typical objective is to minimize search time to a terminal state. In general, the
transition function is deterministic and known, but navigating a combinatorial search
space to find rare terminal states is challenging. Given a training set of problem
instances, we can use a learning approach to train π to perform well on test problem
instances.

Imitation Learning. We build upon the imitation learning paradigm to learn a
good search policy. Previous work assumes an expert policy πexpert that provides
interactive feedback on the trained policy He, Daume III, and Eisner, 2014. The
expert can be a human or an (expensive) solver. However, repeated queries to the
expert can be prohibitively expensive.

Our approach is based on the idea that retrospection (with query access to environ-
ment) can also generate feedback. A search trace typically has many dead ends and
backtracking before finding a terminal state. Thus, more efficient search traces (i.e.,
feedback) can be retrospectively extracted by removing backtracking, which forms

17

· · ·

· · · · · ·

· · ·

...

? · · · · · ·

· · ·

· · ·

· · · · · ·

· · ·

· · ·

· · ·

Expert Trace

· · ·

· · · · · ·

· · ·

· · · · · ·

· · ·

· · · · · ·

· · ·

...

? · · ·

· · ·

· · ·

· · ·

· · · · · ·

· · ·

Roll-out Trace

· · ·

· · · · · ·

· · ·

· · · · · ·

· · ·

· · · · · ·

· · ·

...

? · · ·

· · ·

· · ·

· · ·

· · · · · ·

· · ·

Region A

Region B

Imitation
Learning
Policy

Retrospective Oracle Feedback

1O Initial Learning

2O Polic
y Ro

ll-ou
t (op

tiona
l exp

lorat
ion)

3O Retrospective Oracle
(Algorithm 3)

4O Policy Update with Further Learning

Figure 3.1: A visualization of retrospective imitation learning depicting components
of Algorithm 1. An imitation learning policy is initialized from expert traces and
is rolled out to generate its own traces. Then the policy is updated according to
the feedback generated by the retrospective oracle as in Figure 3.2. This process is
repeated until some termination condition is met.

E

F

· · ·

· · · · · · G

· · ·

H

...

I

· · ·

M

? · · · N

· · ·

Figure 3.2: Zoom-in views of Region A and B in Figure 3.1. At node E, the
retrospective feedback indicates selecting node H over F , G, and I . At node M ,
the ? node is preferred over N .

the core algorithmic innovation of our approach (see Section 3.3). Retrospective
imitation also enables a form of transfer learning, where we iteratively train policies
to solve larger problems for which collecting demonstrations is infeasible (e.g., due
to computational costs of the original expert solver).

3.3 Retrospective Imitation Learning
We now describe the retrospective imitation learning approach. It is a general
framework that can be combined with a variety of imitation learning algorithms. We

18

Algorithm 1 Retrospective DAgger for Fixed Size
1: Inputs:,N the number of iterations, π1 an initial policy trained on expert traces,
α the mixing parameter, {Pj} a set of training problem instances,D0 the expert
traces dataset

2: initialize D = D0

3: for i = 1, · · · , N do
4: π̂i ← απi + (1− α)πexplore (optionally explore)
5: run π̂i on {Pj} to generate a set of search traces {τj}
6: for each τj , compute π∗(τj, s) for each terminal state s (Algorithm 3)
7: collect new dataset Di based on each π∗(τj, s)
8: update D with Di (i.e., D ← D ∪Di)
9: train πi+1 on D
10: end for
11: return best πi on validation

instantiate our approach using the data aggregation algorithm (DAgger) (Stéphane
Ross, Gordon, and D. Bagnell, 2011; He, Daume III, and Eisner, 2014) and we call
the resulting algorithm Retrospective DAgger (Algorithm 1). We also include the
instantiation with SMILe (Stéphane Ross and D. Bagnell, 2010) and call it Retro-
spective SMILe (Algorithm 2). In Section 3.5, we empirically evaluate retrospective
imitationwith bothDAgger and SMILe to showcase the generality of our framework.
For clarity of presentation, our presentation will focus on Retrospective DAgger.

We decompose our general framework into two steps. First, Algorithm 1 describes
our core procedure for learning on fixed size problems with a crucial retrospective
oracle subroutine (Algorithm 3). Algorithm 4 then describes how to scale up beyond
the fixed size. We will use Figure 3.1 as a running example. The ultimate goal is to
enable imitation learning algorithms to scale up to problems much larger than those
for which we have expert demonstrations, which is a significant improvement since
conventional imitation learning cannot naturally accomplish this.

Core Algorithm for Fixed Problem Size. We assume access to an initial dataset of
expert demonstrations to help bootstrap the learning process, as described in Line 3
in Algorithm 1 and depicted in step 1O in Figure 3.1. Learning proceeds iteratively.
In Lines 9-10, the current policy (potentially blended with an exploration policy)
runs until a termination condition, such as reaching one or more terminal states, is
met. In Figure 3.1, this is step 2O and the red node is a terminal state. In Line 11, a
retrospective oracle computes the retrospective optimal trace for each terminal state
(step 3O). This is identified by the path with red nodes from the root to the terminal
state. In Line 12, a new dataset is generated, as discussed below. In Lines 12-14, we

19

Algorithm 2 Retrospective SMILe for Fixed Size
1: Inputs: N number of iterations, π1 an initial policy trained on expert traces, α

the mixing parameter, {Pj} a set of problem instances
2: for i = 1, · · · , N do
3: run πi on {Pj} to generate trace {τj}
4: compute π∗(τj, s) for each terminal state s (Algorithm 3)
5: collect new dataset D based on π∗(τj, s)
6: train π̂i+1 on D

7: πi+1 = (1− α)iπ1 + α
i∑

j=1

(1− α)j−1π̂j

8: end for
9: return πN+1

Algorithm 3 Retrospective Oracle for Tree Search
1: Inputs: τ a search tree trace, s ∈ τ a terminal state
2: Output: retro_optimal: the retrospective optimal trace
3: while s is not the root do
4: parent← s.parent
5: retro_optimal(parent)← s
6: s← parent
7: end while
8: return retro_optimal

Algorithm 4 Retrospective Imitation for Scaling Up
1: Inputs: S1 the initial problem size, S2 the target problem size, πS1 a policy

trained on expert data of problem size S1

2: for s = S1 + 1, · · · , S2 do
3: generate problem instances {P s

i } of size s
4: train πs via Alg. 1 by running πs−1 on {P s

i } to generate initial search traces
5: end for

imitate the retrospective optimal trace (in this case using DAgger) to obtain a much
more efficient search policy. We then train a new policy and repeat the process.

Retrospective Oracle. A retrospective oracle (with query access to the environ-
ment) takes as input a search trace τ and outputs a retrospective optimal trace
π∗(τ, s) for each terminal state s. Note that optimality is measured with respect to
τ , and not globally. That is, based on τ , what is the fastest/shortest known action
sequence to reach a terminal state if we were to solve the same instance again? In
Figure 3.1, given the current trace with a terminal state ? (step 2O), the retrospective
optimal trace is the path along red nodes (step 3O). In general, π∗(τ, s)will be shorter
than τ , which implies faster search in the original problem. Algorithm 3 shows the

20

retrospective oracle for tree-structured search. Identifying a retrospective optimal
trace given a terminal state is equivalent to following parent pointers until the initial
state, as this results in the shortest trace.

Design Decisions in Training Data Creation. Algorithm 1 requires specifying
how to create each new dataset Di given the search traces and the retrospective
optimal ones (Line 12 of Algorithm 1). Intuitively Di should show how to correct
mistakes made during roll-out to reach a terminal state s. What constitutes a mistake
is influenced by the policy’s actions. For reduction-based imitation learning algo-
rithms such as DAgger and SMILe, the learning reduction converts the retrospective
optimal solution into per state-action level supervised learning labels. Two concrete
examples are shown in Figure 3.2.

Furthermore, in the case that τ contains multiple terminal states, we also need
to decide which to prioritize. See Section 3.5 for concrete instantiations of these
decisions for learning search heuristics for solving mazes and learning branch-and-
bound heuristics for solving integer programs.

Scaling Up. The most significant benefit of retrospective imitation is the ability to
scale up to problems of sizes beyond those in the initial dataset of expert demon-
strations. Algorithm 4 describes our overall framework, which iteratively learns to
solve increasingly larger instances using Algorithm 1 as a subroutine. We show in
the theoretical analysis that, under certain assumptions, retrospective imitation is
guaranteed able to scale, or transfer, to increasingly larger problem instances. The
basic intuition is that slightly larger problem instances are often “similar enough” to
the current size problem instances, so that the current learned policy can be used as
the initial expert when scaling up.

Incorporating Exploration. In practice, it can be beneficial to employ some
exploration. Exploration is typically more useful when scaling up to larger problem
instances. In our experiments, we have found the following two strategies to be most
useful.

• ε-greedy strategy allows a certain degree of random exploration. This helps
learned policies to discover new terminal states and enables retrospective
imitation learning to learn from a more diverse goal set. Discovering new
terminal states is especially important when scaling up because the learned
policies are trained for a smaller problem size; to counter the domain shift

21

when scaling up, we add exploration to enable the learned policies to find
better solutions for the new larger problem size.

• Searching formultiple terminal states and choosing the best one as the learning
target. This is an extension to the previous point since by comparing multiple
terminal states, we can pick out the one that is best for the policy to target,
thus improving the efficiency of learning.

• When scaling up, for the first training pass on each problem scale, we collect
multiple traces on each data point by injecting 0.05 variance Gaussian noise
into the regression model within the policy class, before choosing the best
feasible solution.

3.4 Theoretical Results
Summary of Theoretical Results
In this section, we provide theoretical insights on when we expect retrospective
imitation to improve reduction based imitation learning algorithms, such as DAgger
and SMILe.

For simplicity, we regard all terminal states as equally good, so we simply aim to
find one as quickly as possible. Note that our experiments evaluate settings beyond
those covered in the theoretical analysis.

Our analysis builds on a trace inclusion assumption: the search trace τ1 generated
by a trained policy contains the trace τ2 by an expert policy. While somewhat strict,
this assumption allows us to rigorously characterize retrospective imitation when
scaling up. We measure the quality of a policy using the following error rate:

ε =
#Non-optimal actions compared to retrospective optimal trace
#Actions to reach a terminal state in retrospective optimal trace

.

Intuitively, this metric measures how often a policy fails to agree with the retro-
spective oracle. The following proposition states that retrospective imitation can
effectively scale up and obtain a lower error rate.

Proposition 1. Let πS1 be a policy trained using imitation learning on problem size
S1. If, during the scaling-up training process to problems of size S2 > S1, the
trained policy search trace, starting from πS1 , always contains the (hypothetical)
expert search trace on problem of size S2 (trace inclusion assumption), then the final

22

error rate εS2 is at most that obtained by running imitation learning (with expert
demonstrations) directly on problems of size S2.

Proof. By the trace inclusion assumption, the dataset obtained by retrospective
imitation will contain feedback for every node in the expert trace. Furthermore, the
retrospective oracle feedback corresponds to the right training objective while the
dataset collected by imitation learning does not, as explained in Section 3.3. So
the error rate trained on retrospective imitation learning data will be at most that of
imitation learning.

Next we analyze how lower error rates impact the number of actions to reach a
terminal state. We restrict ourselves to decision spaces of size 2: branch to one of
its children or backtrack to its parent. Theorem 2 equates the number of actions to
hitting time for an asymmetric random walk.

Theorem2. Let π be a trained policy that has an error rate of ε ∈ (0, 1
2
) asmeasured

against the retrospective feedback. Let P be a search problem where the optimal
action sequence has length N , and let T be the number of actions by π to reach a
terminal state. Then the expected number of actions by π to reach a terminal state
is E[T] = N

1−2ε
. Moreover, P[T ≥ αN] ∈ O(exp(−α + E[T]/N)) for any α ≥ 0.

This result implies that lower error rates lead to shorter search time (in the original
search problem) with exponentially high probability. By combining this result
with the lower error rate of retrospective imitation (Proposition 1), we see that
retrospective imitation has a shorter expected search time than the corresponding
imitation learning algorithm. We provide further analysis in the appendix.

Additional Proofs
To prove Theorem 2 we need the following lemma on asymmetric 1-dimensional
random walks.

Lemma 3. Let Zi, i = 1, 2, · · · be i.i.d. Bernoulli random variables with the distri-
bution

Zi =

1, with probability 1− ε
−1, with probability ε

23

for some ε ∈ [0, 1
2
). Define Xn =

n∑
i=1

Zi and the hitting time TN = inf{n : Xn =

N} for some fixed integer N ≥ 0. Then E [TN] = N
1−2ε

and P [TN ≥ αN] ∈
O(exp(−α + E [TN] /N)).

Proof. The proof will proceed as follows: we will begin by computing the moment-
generating function (MGF) for T1 and then use it to compute the MGF of TN . Then,
we will use this MGF to produce a Chernoff-style bound on P [TN > αN].

The key observation for computing the MGF of TN is that TN
dist
=
∑N

i=1 T
(i)
1 , where

T
(1)
1 , . . . , T

(N)
1

iid∼ P [T1]. This is because the random walk moves by at most one
position at any given step, independent of its overall history. Therefore the time
it takes the walk to move N steps to the right is exactly the time it takes for the
walk to move 1 step to the right N times. So we have E

[
eβTN

]
= E

[
eβT1

]N by
independence.

With this in mind, let Φ(λ) = E
[
λT1
]
be the generating function of T1. Then, by

the law of total expectation and the facts above,

Φ(λ) = P [Z1 = 1]E
[
λT1 | Z1 = 1

]
+ P [Z1 = −1]E

[
λT1 | Z1 = −1

]
= (1− ε)E

[
λ1+T0

]
+ εE

[
λ1+T2

]
= λ

(
(1− ε)E

[
λ1+T0

]
+ εE

[
λ1+T

(1)
1 +T

(2)
1

])
= λ

(
(1− ε) + εΦ(λ)2

)
.

Solving this quadratic equation in Φ(λ) and taking the solution that gives Φ(0) =

E
[
0T1
]

= 0, we get

Φ(λ) =
1

2ε2λ

(
1−

√
1− 4ε(1− ε)λ2

)
.

Now, we note that the MGF of T1 is just Φ(eβ) = E
[
eβT1

]
. So E

[
eβTN

]
= Φ(eβ)N .

To prove the first claim, we can just differentiate E
[
eβTN

]
in β and evaluate it at

β = 0, which tells us that E [TN] = N
1−2ε

.

To prove the second claim, we can apply Markov’s inequality to conclude that for
any α, β ≥ 0,

P [TN ≥ αN] = P
[
eβTN ≥ eβαN

]
≤ E

[
eβTN e−βαN

]
=
(
E
[
eβT1

]
e−βα

)N
.

24

Letting β = 1
N
and taking the limit as N →∞, we get that

lim
N→∞

P [TN ≥ αN] ≤ exp

(
−α +

1

1− 2ε

)
.

which implies the concentration bound asymptotically.

1

2

3

z2 = 0

4

5

z3 = 0

z2 = 1

z1 = 0

6

7

z2 = 0

8

9

z3 = 0

z2 = 1

z1 = 1

Figure 3.3: An example search trace by a policy. The solid black nodes (1→ 6→
8→ 9) make up the best trace to a terminal state in retrospect. The empty red nodes
are the mistakes made during this search procedure. Every mistake increases the
distance to the target node (node 9) by 1 unit, while every correct decision decreases
the distance by 1 unit.

Now onto the proof for the Theorem 2.

Proof. We consider the search problem as a 1-dimensional randomwalk (see Figure
3.3). The random walk starts at the origin and proceeds in an episodic manner. The
goal is to reach the point N and at each time step, a wrong decision is equivalent
to moving 1 unit to the left whereas a right decision is equivalent to moving 1 unit
to the right. The error rate of the policy determines the probabilities of moving left
and right. Thus the search problem can be reduced to 1-dimensional random walk,
so we can invoke the previous lemma and assert (1) that the expected number of
time steps before reaching a feasible solution is N

1−2ε
, and (2) that the probability

that this number of time steps is greater than αN is O
(
exp

(
−α + 1

1−2ε

))
.

This theorem allows us to measure the impact of error rates on the expected number
of actions.

Corollary 3.1. With two policies π1 and π2 with corresponding error rates 0 < ε1 <

ε2 <
1
2
, π2 takes 1−2ε1

1−2ε2
times more actions to reach a feasible state in expectation.

25

Moreover, the probability that π1 terminates in αN time steps (for any α ≥ 0) is
exp

(
1

1−2ε2
− 1

1−2ε1

)
times higher.

3.5 Experimental Results
We empirically validate the generality of our retrospective imitation technique by in-
stantiating it with two well-known imitation learning algorithms, DAgger (Stéphane
Ross, Gordon, and D. Bagnell, 2011) and SMILe (Stéphane Ross and D. Bagnell,
2010). We showcase the scaling up ability of retrospective imitation by only using
demonstrations on the smallest problem size and scaling up to larger sizes in an
entirely unsupervised fashion through Algorithm 3. We experimented on both A*
search and branch-and-bound search for integer programs.

Environments and Datasets
We experimented on three sets of tasks, as described below.

Maze Solving with A* Search. We generate random mazes according to the
Kruskal’s algorithm (Kruskal, 1956). For imitation learning, we use search traces
provided by an A* search procedure equipped with the Manhattan distance heuristic
as initial expert demonstrations.

We experiment on mazes of 5 increasing sizes, from 11× 11 to 31× 31. For each
size, we use 48 randomly generated mazes for training, 2 for validation and 100 for
testing. We perform A* search with Manhattan distance as the search heuristic to
generate initial expert traces which are used to train imitation learning policies. The
learning task is to learn a priority function to decide which locations to prioritize
and show that it leads to more efficient maze solving. For our retrospective imitation
policies, we only assume access to expert traces of maze size 11× 11 and learning
on subsequent sizes is carried out according to Algorithm 3. Running retrospective
imitation resulted in generating ∼ 100k individual data points.

Integer Programming for Risk-aware Path Planning. We consider the risk-
aware path planning problem from Ono, B. C. Williams, and Blackmore (2013).
Our formulation is based on the MILP-based path planning originally presented by
(Schouwenaars et al., 2001), combined with risk-bounded constrained tightening
(Prékopa, 1999). It is a similar formulation as that of the state-of-the-art risk-aware
path planner pSulu (Ono, B. C. Williams, and Blackmore, 2013) but without risk
allocation.

We consider a path planning problem in Rn, where a path is represented as a

26

sequence of N way points x1, · · ·xN ∈ X . The vehicle is governed by a linear
dynamics given by:

xk+1 = Axk +Buk + wk

uk ∈ U,

where U ⊂ Rm is a control space, uk ∈ U is a control input, wk ∈ Rn is a
zero-mean Gaussian-distributed disturbance, and A and B are n-by-n and n-by-m
matices, respectively. Note that the dynamic of the mean and covariance of xi,
denoted by x̄i and Σi, respectively, have a deterministic dynamics:

x̄k+1 = Ax̄k +Buk + wk (3.1)

Σk+1 = AΣAT +W,

where W is the covariance of wk. We assume there are M polygonal obstacles in
the state space, hence the following linear constraints must be satisfied in order to
be safe (as in Figure 3.4):

N∧
k=1

M∧
i=1

Li∨
j=1

hijxk ≤ gij,

where
∧

is conjunction (i.e., AND),
∨

is disjunction (i.e., OR), Li is the number of
edges of the i-th obstacle, and hij and gij are constant vector and scaler, respectively.
In order for each of the linear constraints to be satisfiedwith the probability of 1−δkij ,
the following has to be satisfied:

N∧
k=1

M∧
i=1

Li∨
j=1

hijx̄k ≤ gij − Φ(δkij) (3.2)

Φ(δkij) = −
√

2hijkΣx,khTijk erf
−1(2δijk − 1),

where erf−1 is the inverse error function.

The problem that we solve is, given the initial state (x̄0,Σ0), to find u1 · · ·uN ∈ U
that minimizes a linear objective function and satisfies (3.1) and (3.2). An arbitrary
nonlinear objective function can be approximated by a piecewise linear function by
introducing integer variables. The disjunction in (3.2) is also replaced by integer
variables using the standard Big M method. Therefore, this problem is equivalent
to MILP. In the branch-and-bound algorithm, the choice of which linear constraint
to be satisfied among the disjunctive constraints in (3.2) (i.e., which side of the
obstacle xk is) corresponds to which branch to choose at each node.

27

Figure 3.4: Representation of polygonal obstacle by disjuctive linear constraints.

We generate 150 obstacle maps. Each map contains 10 rectangle obstacles, with
the center of each obstacle chosen from a uniform random distribution over the
space 0 ≤ y ≤ 1 , 0 ≤ x ≤ 1. The side length of each obstacle was chosen from
a uniform distribution in range [0.01, 0.02] and the orientation was chosen from a
uniform distribution between 0° and 360°. In order to avoid trivial infeasible maps,
any obstacles centered close to the destination are removed. The risk bound was
set to δ = 0.02. We started from problems with 10 way points and scaled up to 14

way points, in increments of 1. The number of integer variables range from 400 to
560, which can be quite challenging to solve. For training, we assume that expert
demonstrations by Gurobi are only available for the smallest problem size (10 way
points, 400 binary variables). We use 50 instances for each of training, validation
and testing. Running retrospective imitation resulted in generating ∼ 1.4 million
individual data points.

Integer Programming for Minimum Vertex Cover. Minimum vertex cover
(MVC) is a classical NP-hard combinatorial optimization problem, where the goal is
to find the smallest subset of nodes in a given graph, such that every edge is adjacent
to at least one node in this subset. This problem is quite challenging, and is difficult
for commercial solvers even with large computational budgets. We generate random
Erdős-Renyi graphs (Erdős and Rényi, 1960) with varying number of nodes from
100 to 500. For each graph, its MVC problem is compiled into an integer linear
program (ILP) and we use also the branch-and-bound search method to solve it.
The number of integer variables range from 100 to 500. We use 15 labeled and 45
unlabeled graphs for training and test on 100 new graphs for each scale. Running
retrospective imitation resulted in generating ∼ 350k individual data points.

28

Policy Learning
For A* search, we learn a ranking model as the policy. The input features are mazes
represented as a discrete-valued matrix indicating walls, passable squares, and the
current location. We instantiate using neural networks with 2 convolutional layers
with 32 3 × 3 filters each, 2 × 2 max pooling, and a feed-forward layer with 64
hidden units.

For branch-and-bound search in integer programs, we considered two policy classes.
The first follows (He, Daume III, and Eisner, 2014), and consists of a node selection
model (that prioritizes which node to consider next) and a pruning model (that
rejects nodes from being branched on), which mirrors the structure of common
branch-and-bound search heuristics. We use RankNet (Burges, Shaked, et al.,
2005) as the selection model, instantiated using two layers with LeakyReLU (Maas,
Hannun, and Ng, 2013) activation functions, and trained via cross entropy loss. For
the pruning model, we train a 1-layer neural network classifier with higher cost on
the optimal nodes compared to the negative nodes. We refer to this policy class as
"select & pruner". The other policy class only has the node selection model and is
referred to as "select only".

The features used can be categorized into node-specific and tree-specific features.
Node-specific features include an LP relaxation lower bound, objective value and
node depth. Tree-specific features capture global aspects that include the integrality
gap, number of solutions found, and global lower and upper bounds. We normalize
each feature to [-1,1] at each node, which is also known as query-based normalization
(Qin, Jun, and Hang, 2010).

Main Results
Comparing Retrospective Imitation with Imitation Learning. As retrospective
learning is a general framework, we validate with two different baseline imitation
learning algorithms, DAgger (Stéphane Ross, Gordon, and D. Bagnell, 2011) and
SMILe (Stéphane Ross and D. Bagnell, 2010). We consider two possible settings
for each baseline imitation learning algorithm. The first is “Extrapolation”, which is
obtained by training an imitation model only using demonstrations on the smallest
problem size and applying it directly to subsequent sizes without further learning.
Extrapolation is the natural baseline to compare with retrospective imitation as
both have access to the same demonstration dataset. The second baseline setting is
“Cheating”, where we provide the baseline imitation learning algorithm with expert

29

(a) (b) (c)

(d) (e) (f)

Figure 3.5: Retrospective imitation versus DAgger (top) and SMILe (bottom) for
maze solving (left) and risk-aware path planning (middle and right). “Extrapolation”
is the conventional imitation learning baseline, and “Cheating” (left column only)
gives imitation learning extra training data. Retrospective imitation consistently and
significantly outperforms imitation learning approaches in all settings.

Figure 3.6: Left to right: comparingManhattan distance heuristic, DAgger Cheating
and Retrospective DAgger on a 31 × 31 maze starting at upper left and ending at
lower right. Yellow squares are explored. Optimal path is red. The three algorithms
explore 333, 271 and 252 squares, respectively.

demonstrations on the target problem size, which is significantly more than provided
to retrospective imitation. Note that Cheating is not feasible in practice for settings
of interest.

Our main comparison results are shown in Figure 3.5. For this comparison, we
focus on maze solving and risk-aware path planning, as evaluating the true op-
timality gap for minimum vertex cover is intractable. We see that retrospective
imitation (blue) consistently and dramatically outperforms conventional Extrapo-
lation imitation learning (magenta) in every setting. We see in Figure 3.5a, 3.5d
that retrospective imitation even outperforms Cheating imitation learning, despite
having only expert demonstrations on the smallest problem size. We also note that

30

(a) (b) (c)

Figure 3.7: (left) Retrospective imitation versus off-the-shelf methods. The RL
baseline performs very poorly due to sparse environmental rewards. (middle, right)
Single-step decision error rates, used for empirically validating theoretical claims.

(a) (b) (c)

Figure 3.8: Retrospective DAgger (“select only” policy class) with off-the-shelf
branch-and-bound solvers using various search node budgets. Retrospective DAgger
consistently outperforms baselines.

Retrospective DAgger consistently outperforms Retrospective SMILe.

In the maze setting (Figure 3.5a, 3.5d), the objective is to minimize the number
of explored squares to reach the target location. Without further learning beyond
the base size, Extrapolation degrades rapidly and the performance difference with
retrospective imitation becomes very significant. Even compared with Cheating
policies, retrospective imitation still achieves better objective values at every prob-
lem size, which demonstrates its transfer learning capability. Figure 3.6 depicts a
visual comparison for an example maze.

In the risk-aware path planning setting (Figure 3.5b, 3.5c, 3.5e, 3.5f), the objective
is to find feasible solutions with low optimality gap, defined as the percentage differ-
ence between the best objective value found and the optimal (found via exhaustive
search). If a policy fails to find a feasible solution we impose an optimality gap
of 300% to arrive at a single comparison metric. We compare the optimality gap
of the algorithms at the same number of explored nodes. In Figure 3.5b, 3.5e we
first run the retrospective imitation version until termination, and then run the other

31

Figure 3.9: Relative objective value gaps of various methods compared with retro-
spective imitation when restricted with a search budget of 250 nodes. Retrospective
imitation consistently outperforms other methods, especially at large scales.

algorithms to the same number of explored nodes. In Figure 3.5c, 3.5f, we first run
the retrospective imitation with the “select only” policy class until termination, and
then run the other algorithms to the same number of explored nodes. We note that
the “select only” policy class (Figure 3.5c, 3.5f) significantly outperforms the “select
and pruner” policy class (Figure 3.5b, 3.5e), which suggests that utilizing concep-
tually simpler policy classes may be more amenable to learning-based approaches
in combinatorial search problems.

While scaling up, retrospective imitation obtains consistently low optimality gaps.
In contrast, DAgger Extrapolation in Figure 3.5b failed to find feasible solutions for
∼ 60% test instances beyond 12 way points, so we did not test it beyond 12 way
points. SMILe Extrapolation in Figure 3.5e failed for ∼ 75% of the test instance
beyond 13 way points. The fact that retrospective imitation continues to solve
larger MILPs with a very slow optimality gap growth suggests that our approach is
performing effective transfer learning.

Minimum vertex cover is a challenging setting where it is infeasible to compute
the optimal solution (even with large computational budgets). We thus plot relative
differences in objective with respect to retrospective imitation. We see in Fig-
ure 3.9 that retrospective imitation consistently outperforms conventional imitation
learning.

Comparing Retrospective Imitation with Off-the-Shelf Approaches. For maze
solving, we compare with: 1) A* search with the Manhattan distance heuristic, and
2) behavioral cloning followed by reinforcement learning with a deep Q-network
(Mnih, Kavukcuoglu, Silver, Rusu, et al., 2015). Figure 3.7a shows Retrospective
DAgger outperforming both methods. Due to the sparsity of the environmental
rewards (only positive reward at terminal state), reinforcement learning performs
significantly worse than even the Manhattan heuristic.

32

For risk-aware path planning and minimum vertex cover, we compare with a com-
mercial solver Gurobi (Version 6.5.1) and SCIP (Version 4.0.1, using Gurobi as the
LP solver). We implement our approach within the SCIP (Achterberg, 2009) integer
programming framework. Due to differences in implementation, we use the number
of explored nodes as a proxy for runtime. We control the search size for Retrospec-
tive DAgger (“select only”) and use its resulting search sizes to control Gurobi and
SCIP. Figures 3.8 & 3.9 show the results on a range of search size limits. We see
that Retrospective DAgger (“select only”) is able to consistently achieve the lowest
optimality gaps, and the optimality gap grows very slowly as the number of integer
variables scale far beyond the base problem scale. As a point of comparison, the
next closest solver, Gurobi, has an optimality gap ∼ 50% higher than Retrospective
DAgger (“select only”) at 14 waypoints (560 binary variables) in the risk-aware
path planning task and a performance gap of ∼ 40% compared with Retrospective
DAgger at the largest graph scale for minimum vertex cover.

Empirically Validating Theoretical Results. Finally, we evaluate how well our
theoretical results in Section 3.4 characterizes our experimental results. Figure 3.7b
and 3.7c presents the optimal move error rates for the maze experiment, which
validates Proposition 1 that retrospective imitation is guaranteed to result in a policy
that has lower error rates than imitation learning. The benefit of having a lower error
rate is explained by Theorem 2, which informally states that a lower error rate leads
to shorter search time. This result is also verified by Figure 3.5a and 3.5d, where
Retrospective DAgger/SMILe, having the lowest error rates, explores the smallest
number of squares at each problem scale.

33

C h a p t e r 4

CO-TRAINING FOR POLICY LEARNING

Abstract We study the problem of learning sequential decision-making policies in
settings with multiple state-action representations. Such settings naturally arise in
many domains, such as planning (e.g., multiple integer programming formulations)
and various combinatorial optimization problems (e.g., those with both integer
programming and graph-based formulations). Inspired by the classical co-training
framework for classification, we study the problem of co-training for policy learning.
We present sufficient conditions under which learning from two views can improve
upon learning from a single view alone. Motivated by these theoretical insights,
we present a meta-algorithm for co-training for sequential decision making. Our
framework is compatible with both reinforcement learning and imitation learning.
We validate the effectiveness of our approach across a wide range of tasks, including
discrete/continuous control and combinatorial optimization.

4.1 Introduction
Conventional wisdom in problem-solving suggests that there is more than one way
to look at a problem. For sequential decision making problems, such as those in
reinforcement learning and imitation learning, one can often utilize multiple dif-
ferent state-action representations to characterize the same problem. A canonical
application example is learning solvers for hard optimization problems such as com-
binatorial optimization (He, Daume III, and Eisner, 2014; Mirhoseini et al., 2017;
H. Dai, E. B. Khalil, et al., 2017; J. Song, Lanka, Zhao, et al., 2018; Balunovic,
Bielik, and Vechev, 2018). It is well-known in the operations research community
that many combinatorial optimization problems have multiple formulations. For
example, the maximum cut problem admits a quadratic integer program as well as
a linear integer program formulation (Boros and Hammer, 1991; Vega and Kenyon-
Mathieu, 2007). Another example is the traveling salesman problem, which admits
multiple integer programming formulations (Orman and H. Williams, 2007; Öncan,
Altınel, and Laporte, 2009). One can also formulate many problems using a graph-
based representation (see Figure 4.1). Beyond learning combinatorial optimization
solvers, other examples with multiple state-action representations include robotic
applications with multiple sensing modalities such as third-person view demonstra-

34

tions (Stadie, Abbeel, and Sutskever, 2017) and multilingual machine translation
(Johnson et al., 2017).

In the context of policy learning, one natural question is how different state-action
formulations impact learning and, more importantly, how learning can make use
of multiple formulations. This is related to the co-training problem (Blum and
Mitchell, 1998), where different feature representations of the same problem enable
more effective learning than using only a single representation (Wan, 2009; Kumar
and Daumé, 2011). While co-training has received much attention in classification
tasks, little effort has been made to apply it to sequential decision making problems.
One issue that arises in the sequential case is that some settings have completely
separate state-action representations while others can share the action space.

In this paper, we proposeCoPiEr (co-training for policy learning), a meta-framework
for policy co-training that can incorporate both reinforcement learning and imitation
learning as subroutines. Our approach is based on a novel theoretical result that
integrates and extends results from PAC analysis for co-training (Dasgupta, Littman,
and McAllester, 2002) and general policy learning with demonstrations (Kang, Jie,
and Feng, 2018). To the best of our knowledge, we are the first to formally extend
the co-training framework to policy learning.

Our contributions can be summarized as:

• We present a formal theoretical framework for policy co-training. Our results
include: 1) a general theoretical characterization of policy improvement, and
2) a specialized analysis in the shared-action setting to explicitly quantify the
performance gap (i.e., regret) versus the optimal policy. These theoretical
characterizations shed light on rigorous algorithm design for policy learning
that can appropriately exploit multiple state-action representations.

• We present CoPiEr (co-training for policy learning), a meta-framework for
policy co-training. We specializeCoPiEr in twoways: 1) a general mechanism
for policies operating on different representations to provide demonstrations
to each other, and 2) a more granular approach to sharing demonstrations in
the shared-action setting.

• We empirically evaluate on problems in combinatorial optimization and dis-
crete/continuous control. We validate our theoretical characterizations to
identify when co-training can improve on single-view policy learning. We

35

3

2 5

4

1 max −
∑5

i=1
xi,

subject to:
x1 + x2 ≥ 1,

x2 + x3 ≥ 1,

x3 + x4 ≥ 1,

x3 + x5 ≥ 1,

x4 + x5 ≥ 1,

xi ∈ {0, 1},∀i ∈ {1, · · · , 5}

Figure 4.1: Two ways to encode minimum vertex cover (MVC) problems. Left:
policies learn to operate directly on the graph view to find the minimal cover set E.
Khalil, Le Bodic, et al., 2016. Right: we express MVC as an integer linear program,
then polices learn to traverse the resulting combinatorial search space, i.e., learn to
branch-and-bound He, Daume III, and Eisner, 2014; J. Song, Lanka, Zhao, et al.,
2018.

further showcase the practicality of our approach for the combinatorial opti-
mization setting, by demonstrating superior performance compared to a wide
range of strong learning-based benchmarks as well as commercial solvers such
as Gurobi.

4.2 Background & Preliminaries
Markov Decision Process with Two State Representations. AMarkov decision
process (MDP) is defined by a tuple (S,A,P , r, γ,ST). Let S denote the state
space, A the action space, P(s′|s, a) the (probabilistic) state dynamics, r(s, a) the
reward function, γ the discount factor and (optinal) ST a set of terminal states
where the decision process ends. We consider both stochastic and deterministic
MDPs. AnMDPwith two views can bewritten asMA = (SA,AA,PA, rA, γA,SAT)

andMB = (SB,AB,PB, rB, γB,SBT). To connect the two views, we make the
following assumption about the ability to translate trajectories between the two
views.

Assumption 1. For a (complete) trajectory inMA, τA = (sA0 , a
A
0 , s

A
1 , a

A
1 , · · · , sAn),

there is a function fA→B that maps τA to its corresponding (complete) trajectory
τB in the other view MB: fA→B(τA) = τB = (sB0 , a

B
0 , s

B
1 , a

B
1 , · · · , sBm). The

rewards for τA and τB are the same under their respective reward functions, i.e.,∑n−1
i=0 r

A(sAi , a
A
i) =

∑m−1
j=0 rB(sBj , a

B
j). Similarly, there is a function fB→A that

36

maps trajectories inMB toMA which preserves the total rewards.

Note that in Assumption 1, the length of τA and τB can be different because of
different state and action spaces.

Combinatorial Optimization Example. Minimum vertex cover (MVC) is a com-
binatorial optimization problem defined over a graph G = (V,E). A cover set is a
subset U ⊂ V such that every edge e ∈ E is incident to at least one v ∈ U . The
objective is to find a U with the minimal cardinality. For the graph in Figure 4.1, a
minimal cover set is {2, 3, 4}.

There are two natural ways to represent an MVC problem as an MDP. The first is
graph-based (H. Dai, E. B. Khalil, et al., 2017) with the action space as V and
the state space as sequences of vertices in V representing partial solutions. The
deterministic transition function is the obvious choice of adding a vertex to the
current partial solution. The rewards are -1 for each selected vertex. A terminal
state is reached if the selected vertices form a cover.

The second way is to formulate an integer linear program (ILP) that encodes an
MVC problem:

max −
∑

v∈V
xv,

subject to :

xu + xv ≥ 1,∀e = (u, v) ∈ E,
xv ∈ {0, 1}, ∀v ∈ V.

We can then use branch-and-bound (Land and Doig, 2010) to solve this ILP, which
represents the optimization problem as a search tree, and explores different areas
of a search tree through a sequence of branching operations. The MDP states then
represent current search tree, and the actions correspond to which node to explore
next. The deterministic transition function is the obvious choice of adding a new
node into the search tree. The reward is 0 if an action does not lead to a feasible
solution and is the objective value of the feasible solution minus the best incumbent
objective if an action leads to a node with a better feasible solution. A terminal state
is a search tree which contains an optimal solution or reaches a limit on the number
of nodes to explore.

The relationship between solutions in the two formulations are clear. For a graph
G = (V,E), a feasible solution to the ILP corresponds to a vertex cover by selecting

37

all the vertices v ∈ V with xv = 1 in the solution. This correspondence ensures the
existence of mappings between two representations that satisfy Assumption 1.

Note that, despite the deterministic dynamics, solvingMVC and other combinatorial
optimization problems can be extremely challenging due to the very large state space.
Indeed, policy learning for combinatorial optimization is a topic of active research
E. Khalil, Le Bodic, et al., 2016; He, Daume III, and Eisner, 2014; J. Song, Lanka,
Zhao, et al., 2018; Mirhoseini et al., 2017; Balunovic, Bielik, and Vechev, 2018.

Policy Learning. We consider policy learning over a distribution of MDPs. For
instance, there can be a distribution of MVC problems. Formally, we have a
distributionD of MDPs that we can sample from (i.e.,M∼ D). For a policy π, we
define the following terms:

η(π,M) = Eτ∼π[
∑n−1

i=0
γir(si, ai)],

J(π) = EM∼D[η(π,M)],

Qπ(s, a) = Eτ∼π[
∑n−1

i=0
γir(si, ai)|s0 = s, a0 = a],

Vπ(s) = Eτ∼π[
∑n−1

i=0
γir(si, ai)|s0 = s],

Aπ(s, a) = Qπ(s, a)− Vπ(s),

with η being the expected cumulative reward of an individual MDP M, J the
overall objective, Q the Q function, V the value function, and A the advan-
tage function. The performance of two policies can be related via the advan-
tage function (Schulman, Levine, et al., 2015; Kakade and Langford, 2002):
η(π′,M) = η(π,M) + Eτ∼π′ [

∑n−1
i=0 γ

iAπ(si, ai)]. Based on Theorem 4 below,
we can rewrite the final term with the occupancy measure, ρπ(s, a) = P(π(s) =

a)
∑∞

i=0 γ
iP(si = s|π).

Theorem 4. (Theorem 2 of (U. Syed, Bowling, and Schapire, 2008)). For any policy
π, it is the only policy that has its corresponding occupancy measure ρπ, i.e., there
is a one-to-one mapping between policies and occupancy measures. Specifically,
P(π(s) = a) = ρπ(s,a)∑

a′ ρπ(s,a′)
.

With slight notation abuse, define ρπ(s) =
∑∞

i=0 γ
iP(si = s|π) to be the state

38

visitation distribution. In policy iteration, we aim to maximize:

Eτ∼π′ [
∑n−1

i=0
γiAπ(si, ai)],

=
∑n−1

i=0
Esi∼ρπ′ (s)[Eai∼π′(si)[γ

iAπ(si, ai)]],

≈
∑n−1

i=0
Esi∼ρπ(s)[Eai∼π′(si)[γ

iAπ(si, ai)]].

This is done instead of taking an expectation over ρπ′(s) which has a complicated
dependency on a yet unknown policy π′. Policy gradient methods tend to use the
approximation by using ρπ which depends on the current policy. We define the
approximate objective as:

ηπ(π′,M)

= η(π,M) +
∑n−1

i=0
Esi∼ρπ(s)[Eai∼π′(si)[γ

iAπ(si, ai)]],

and its associated expectation over D as Jπ(π′) = EM∼D[ηπ(π′,M)].

4.3 A Theory of Policy Co-training
In this section, we provide two theoretical characterizations of policy co-training.
These characterizations highlight a trade-off in sharing information between differ-
ent views, and motivates the design of our CoPiEr algorithm presented in Section
4.4.

We restrict our analysis to infinite horizon MDPs, and thus require a strict discount
factor γ < 1. We show in our experiments that our CoPiEr algorithm performs well
even in finite horizon MDPs with γ = 1. Due to space constraints, we defer all
proofs to the appendix.

We present two theoretical analyses with different types of guarantees:

• Section 4.3 quantifies the policy improvement in terms of policy advantages
and differences, and caters to policy gradient approaches.

• Section 4.3 quantifies the performance gap with respect to an optimal policy
in terms of policy disagreements, which is a stronger guarantee than policy
improvement. This analysis is restricted to the shared action space setting,
and caters to learning reduction approaches.

General Case: Policy Improvement with Demonstrations
For an MDPM ∼ D, consider the rewards of two policies with different views
ηA(πA,MA) and ηB(πB,MB). If ηA(πA,MA) > ηB(πB,MB), πA performs

39

better than πB on this instance , and we could use the translated trajectory of πA

as a demonstration for πB. Even when J(πA) > J(πB), because J is computed in
expectation over D, πB can still outperform πA on some MDPs. Thus it is possible
for the exchange of demonstrations to go in both directions.

Formally, we can partition the distribution D into two (unnormalized) parts D1 and
D2 such that the support of D, supp(D) = supp(D1) ∪ supp(D2) and supp(D1) ∩
supp(D2) = ∅, where for an MDPM ∈ supp(D1), η(πA,MA) ≥ η(πB,MB) and
for an MDPM ∈ supp(D2), η(πB,MB) > η(πA,MA). By construction, we can
quantify the performance gap as:

Definition 1.

δ1 = EM∼D1 [η(πA,MA)− η(πB,MB)] ≥ 0,

δ2 = EM∼D2 [η(πB,MB)− η(πA,MA)] > 0.

We can now state our first result on policy improvement.

Theorem 5. (Extension of Theorem 1 in (Kang, Jie, and Feng, 2018)) Define:

αAD = EM∼D[maxsDKL(πA(s)‖π′A(s))],

βBD2
= EM∼D2 [maxsDJS(πB(s)‖πA(s))],

αBD = EM∼D[maxsDKL(πB(s)‖π′B(s))],

βAD1
= EM∼D1 [maxsDJS(πA(s)‖πB(s))],

εBD2
= maxM∈supp(D2) maxs,a |AπB(s, a)|,

εAD = maxM∈supp(D) maxs,a |AπA(s, a)|,
εAD1

= maxM∈supp(D1) maxs,a |AπA(s, a)|,
εBD = maxM∈supp(D) maxs,a |AπB(s, a)|.

Here DKL & DJS denote the Kullback-Leibler and Jensen-Shannon divergence
respectively. Then we have:

J(π′A) ≥ JπA(π′A)−
2γA(4βBD2

εBD2
+ αADε

A
D)

(1− γA)2 + δ2,

J(π′B) ≥ JπB (π′B)−
2γB(4βAD1

εAD1
+ αBDε

B
D)

(1− γB)2 + δ1.

Compared to conventional analyses on policy improvement, the new key terms that
determine how much the policy improves are the β’s and δ’s. The β’s, which

40

s0

sA0

sB0

aA0

aB0

a0

πA

πB

s1

sA1

sB1

aA1

aB1

a1

πA

πB

Figure 4.2: Co-training with shared action space.

quantify the maximal divergence between πA and πB, hinders improvement, while
the δ’s contribute positively. If the net contribution is positive, then the policy
improvement bound is larger than that of conventional single view policy gradient.
This insight motivates co-training algorithms that explicitly aim to minimize the
β’s.

One technicality is how to compute DJS(πA(s)‖πB(s)) given that the state and
action spaces for the two representations might be different. Proposition 6 ensures
that we can measure the Jensen-Shannon divergence between two policies with
different MDP representations.

Proposition 6. For representationsMA andMB of an MDP satisfying Assumption
1, the quantities maxsDJS(πB(s)‖πA(s)) and maxsDJS(πA(s)‖πB(s)) are well-
defined.

Minimizing βBD2
and βAD1

is not straightforward since the trajectory mappings be-
tween the views can be very complicated. We present practical algorithms in Section
4.4.

Special Case: Performance Gap from Optimal Policy in Shared Action Setting
We now analyze the special case where the action spaces of the two views are the
same, i.e., AA = AB. Figure 4.2 depicts the learning interaction between πA and
πB. For each state s, we can directly compare actions chosen by the two policies
since the action space is the same. This insight leads to a stronger analysis result
where we can bound the gap between a co-trained policy with an optimal policy.
The approach we take resembles learning reduction analyses for interactive imitation
learning.

For this analysis we focus on discrete action spaces with k actions, deterministic
learned policies, and a deterministic optimal policy (which is guaranteed to exist
(Puterman, 2014)). We reduce policy learning to classification: for a given state s,

41

aA sA aBsB

a∗

Figure 4.3: Graphical model encodes the conditional independence model.

the task of identifying the optimal action π∗(s) is a classification problem. We build
upon the PAC generalization bound results in (Dasgupta, Littman, and McAllester,
2002) and show that under Assumption 2, optimizing a measure of disagreements
between the two policies leads to effective learning of π∗.

Assumption 2. For a state s, its two representations sA and sB are conditionally
independent given the optimal action π∗(s).

This assumption is common in analyses of co-training for classification (Blum
and Mitchell, 1998; Dasgupta, Littman, and McAllester, 2002). Although this
assumption is typically violated in practice (Nigam and Ghani, 2000), our empirical
evaluation still demonstrates strong performance.

Assumption 2 corresponds to a graphical model describing the relationship between
optimal actions and the state representations (Figure 4.3). The intuition is that,
when we do not know a∗ = π∗(s), we should maximize the agreement between
aA = πA(sA) and aB = πB(sB). By the data-processing inequality in information
theory (Cover and Thomas, 2012), we know that I(aA; a∗) ≥ I(aA; aB). In practice,
this means that if aA and aB agree a lot, they must reveal substantial information
about what a∗ is. We formalize this intuition and obtain an upper bound on the
classification error rate, which enables quantifying the performance gap. Notice
that if we do not have any information from π∗, the best we can hope for is to learn
a mapping that matches π∗ up to some permutation of the action labels (Dasgupta,
Littman, and McAllester, 2002). Thus we assume we have enough state-action pairs
from π∗ so that we can recover the permutation. In practice this is satisfied as we
demonstrate in Section 4.5.

Formally, we connect the performance gap between a learned policy and an op-
timal policy with an empirical estimation on the disagreement in action choices
among two co-trained policies. Let {τAi }mi=1 be sampled trajectories from πA and
{fA→B(τAi)}mi=1 be the mapped trajectories inMB. In {fA→B(τAi)}mi=1, letN(aA =

i) be the number of times action i is chosen by πA and N =
∑k

i=1N(aA = i) be
the total number of actions in one trajectory set. Let N(aB = i) be the number of

42

times action i is chosen by πB when going through the states in {fA→B(τAi)}mi=1 and
N(aA = i, aB = i) record when both actions agree on i.

We also require a measure of model complexity, as is common in PAC style analysis.
We use |π| to denote the number of bits needed to represent π. We can now state
our second main result quantifying the performance gap with respect to an optimal
policy:

Theorem 7. If Assumption 2 holds forM ∼ D and a deterministic optimal policy
π∗. Let πA and πB be two deterministic policies for the two representations.
Define:

P̂(aA = i | aB = i) =
N(aA = i, aB = i)

N(aB = i)
,

P̂(aA 6= i | aB = i) =
N(aA 6= i, aB = i)

N(aB = i)
,

εi(π
A, πB, σ) =

√
ln 2(|πA|+ |πB|) + ln (2k/σ)

2N(aB = i)
,

ζi(π
A, πB, σ) = P̂(aA = i | aB = i)

− P̂(aA 6= i | aB = i)− 2εi(π
A, πB, σ),

bi(π
A, πB, σ) =

1

ζi(πA, πB, δ)
(P̂(aA 6= i | aB = i)

+ εi(π
A, πB, σ)),

`(s, π) = 1(π(s) 6= π∗(s)),

εA = Es∼ρ
πA

[`(s, πA)].

Then with probability 1− σ:

εA ≤ maxj∈{1,··· ,k} bj(π
A, πB, σ),

η(πA,MA) ≥ η(π∗,M)− uTεA,

where T is the time horizon and u is the largest one-step deviation loss compared
with π∗.

To obtain a small performance gap compared to π∗, one must minimize εA, which
measures the disagreement between πA and π∗. However, we cannot directly es-
timate this quantity since we only have limited sample trajectories from π∗. Al-
ternatively, we can minimize an upper bound, maxj∈{1,··· ,k} bj(π

A, πB, δ), which

43

measures the maximum disagreement on actions between πA and πB and, impor-
tantly, can be estimated via samples. In Section 4.4, we design an algorithm that
approximately minimizes this bound. The advantage of two views over a single view
enables us to establish an upper bound on εA, which is otherwise unmeasurable.

4.4 The CoPiEr Algorithm
We now present practical algorithms motivated by the theoretical insights from
Section 4.3. We start with a meta-algorithm named CoPiEr (Algorithm 5), whose
important subroutines are EXCHANGE and UPDATE. We provide two concrete
instantiations for the general case and the special case with a shared action space.

Algorithm 5 CoPiEr (Co-training for Policy Learning)
1: Input: A distribution D of MDPs, two policies πA, πB, mapping functions
fA→B, fB→A

2: repeat
3: SampleM∼ D, formMA,MB

4: Run πA onMA to generate trajectories {τAi }mi=1

5: Run πB onMB to generate trajectories {τBj }nj=1

6: {τ ′iA}, {τ ′jB} ← EXCHANGE({τAi }, {τBj })
7: πA ← UPDATE(πA, {τAi }, {τ ′jA})
8: πB ← UPDATE(πB, {τBi }, {τ ′jB})
9: until Convergence

General Case
Algorithm 6 covers the general case for exchanging trajectories generated by the
two policies. First we estimate the relative quality of the two policies from sampled
trajectories (Lines 2-4 in Algorithm 6). Then we use the trajectories from the
better policy as demonstrations for the worse policy on this MDP. This mirrors the
theoretical insight presented in Section 4.3, where based on which sub-distribution
an MDP is sampled from, the relative quality of the two policies is different.

For UPDATE, we can form a loss function that is derived from either imitation
learning or reinforcement learning. Recall that we aim to optimize the β terms in
Theorem 5, however it is infeasible to directly optimize them. So we consider a
surrogate loss C (Line 2 of Algorithm 7) that measures the policy difference. In
practice, we typically use behavior cloning loss as the surrogate.

44

Algorithm 6 EXCHANGE: General Case
1: Input: Trajectories {τAi }mi=1 and {τBj }nj=1

2: Compute estimate η̂(πA,MA) = 1
m

∑m
i=1 r(τ

A
i)

3: Compute estimate η̂(πB,MB) = 1
n

∑n
j=1 r(τ

B
j)

4: if η̂(πA,MA) > η̂(πB,MB) then
5: {τA→Bi } ← {fA→B(τAi)}mi=1

6: {τB→Aj } ← ∅
7: else
8: {τA→Bi } ← ∅
9: {τB→Aj } ← {fB→A(τBj)}nj=1

10: end if
11: return {τA→Bi }, {τB→Aj }

Algorithm 7 UPDATE
1: Input: Current policy π, sampled trajectories from π, {τi}mi=1 and demonstra-

tions {τ ′j}nj=1

2: Forma loss functionL(π) =

{
−∑m

i=1 r(τi) + λC(π, {τ ′j}nj=1), RL with IL loss
λC(π, {τ ′j}nj=1), IL loss only

3: Update π ← π − α∇L(π)

Algorithm 8 EXCHANGE: Special Case
1: Input: Trajectories {τAi }mi=1 and {τBj }nj=1

2: DA→B = INTERACTIVE({fB→A(τBj)}nj=1, π
A)

3: DB→A = INTERACTIVE({fA→B(τAi)}mi=1, π
B)

4: return DA→B, DB→A

Special Case: Shared Action Space
For the special case with a shared action space, we can collect more informative
feedback beyond the trajectory level. Instead, we collect interactive state-level
feedback, as is popular in imitation learning algorithms such as DAgger (Stéphane
Ross, Gordon, and D. Bagnell, 2011) and related approaches W. Sun et al., 2017;
Daumé III, Langford, and Marcu, 2009; Stéphane Ross and D. Bagnell, 2010; J.
Song, Lanka, Zhao, et al., 2018; He, Daume III, and Eisner, 2014. Specifically,
we can use Algorithms 8 & 9 to exchange actions in a state-coupled manner. This
process is depicted in Figure 4.2, where πA’s visited states, sA0 and sA1 , are mapped
to sB0 and sB1 , resulting in receiving πB’s actions, aB0 and aB1 , in the exchange.

Unlike the general case where information exchange is asymmetric, as Theorem 7
indicates, we aim tominimize policy disagreement. Both policies are simultaneously

45

Algorithm 9 INTERACTIVE
1: Input: Trajectories {τi}mi=1, query policy π
2: D = ∅
3: for i← 1 tom do
4: for each state s ∈ τi do
5: D ← D ∪ {(s, π(s))}
6: end for
7: end for
8: return D

optimizing this objective, which requires both directions of information exchange
(Lines 2-3 in Algorithm 8). The update step (Algorithm 7) is the same as the general
case.

4.5 Experiments
We now present empirical results on both the special and general cases of CoPiEr.
We demonstrate the generality of our approach by applying three distinct combi-
nations of policy co-training: reinforcement learning on both views (Section 4.5),
reinforcement learning on one view and imitation learning on the other (Section 4.5),
and imitation learning on both views (Section 4.5). Furthermore, our experiments on
combinatorial optimization (Sections 4.5 & 4.5) demonstrate significant improve-
ments over strong learning-based baselines as well as commercial solvers, and thus
showcase the practicality of our approach. More details about the experiment setup
can be found in the appendix.

Discrete & Continuous Control: Special Case with RL+RL
Setup. We conduct experiments on discrete and continuous control tasks with Ope-
nAI Gym (Brockman et al., 2016) and Mujoco physical engine (Todorov, Erez, and
Tassa, 2012). We use the garage repository (Duan et al., 2016) to run reinforcement
learning for both views.

Two Views and Features. For each environment, states are represented by feature
vectors, typically capturing location, velocity and acceleration. We create two views
by removing different subsets of features from the complete feature set. Note that
both views have the same underlying action space as the original MDP, so it is
the special case covered in Section 4.4. We use interactive feedback for policy
optimization.

Policy Class. We use a feed-forward neural network with two hidden layers (64

46

0 20 40 60 80 100
Iterations

−450

−400

−350

−300

−250

−200

−150

−100

A
ve

ra
ge

R
et

ur
n

Acrobot

A (CoPiEr)

A (PG)

A (All)

B (CoPiEr)

B (PG)

B (All)

A+B

(a) Acrobot Swing-up. A
denotes removing the first
coordinate in the state vec-
tor and B removing the
second coordinate.

0 25 50 75 100 125 150 175 200
Iterations

−25

0

25

50

75

100

125

A
ve

ra
ge

R
et

ur
n

Swimmer

A (CoPiEr)

A (PG)

A (All)

B (CoPiEr)

B (PG)

B (All)

A+B

(b) Swimmer. A denotes
removing all even index
coordinates in the state
vector and B removing all
odd index ones.

0 100 200 300 400 500
Iterations

0

50

100

150

200

250

300

350

A
ve

ra
ge

R
et

ur
n

Hopper

A (CoPiEr)

A (PG)

A (All)

B (CoPiEr)

B (PG)

B (All)

A+B

(c) Hopper. A denotes re-
moving all even index co-
ordinates in the state vec-
tor and B removing all odd
index ones.

Figure 4.4: Discrete & continuous control tasks. Experiment results are across 5
random seeded runs. Shaded area indicates ±1 standard deviation.

& 32 units) and tanh activations as the policy class. For discrete actions, π(s)

outputs a soft-max distribution. For continuous actions, π(s) outputs a (multivariate)
Gaussian. For policy update, we use Policy Gradient (Sutton, McAllester, et al.,
2000) with a linear baseline function (Greensmith, Bartlett, and Baxter, 2004) and
define the loss function C in Algorithm 7 to be the KL-divergence between output
action distributions.

Methods Compared. We compare with single view policy gradient, labelled as “A
(PG)” and “B (PG)”, and with a policy trained on the union of the two views but test
on two views separately, labelled as “A (All)” and “B (All)”. We also establish an
upper bound on performance by training a model without view splitting (“A+B”).
Each method uses the same total number of samples (i.e., CoPiEr uses half per
view).

Results. Figure 4.4 shows the results. CoPiEr is able to converge to better or
comparable solutions in almost all cases except for view A in Hopper. The poor
performance in Hopper could be due to the disagreement between the two policies
not shrinking enough to make Theorem 7 meaningful. As a comparison, at end of
the training, the average KL-divergence for the two policies is about 2 for Hopper,
compared with 0.23 for Swimmer and 0.008 for Acrobot. One possible cause
for such large disagreement is that the two views have significance differences in
difficulty for learning, which is the case for Hopper by noticing A (PG) and B (PG)
have a difference in returns of about 190.

47

Figure 4.5: Comparison of CoPiEr with other learning-based baselines and a com-
mercial solver, Gurobi. The y-axis measure relative gaps of various methods com-
pared with CoPiEr Final. CoPiEr Final outperforms all the baselines. Notably, the
gaps are significant because getting optimizing over large graphs is very challenging.

Minimum Vertex Cover: General Case with RL+IL
Setup. We now consider the challenging combinatorial optimization problem of
minimum vertex cover (MVC). We use 150 randomly generated Erdős-Rényi (Erdős
and Rényi, 1960) graph instances for each scale, with scales ranging {100-200,
200-300, 300-400, 400-500} vertices. For training, we use 75 instances, which
we partition into 15 labeled and 60 unlabeled instances. We use the best solution
found by Gurobi within 1 hour as the expert solution for the labeled set to bootstrap
imitation learning. For each scale, we use 30 held-out graph instances for validation,
and we report the performance on 45 test graph instances.

Views and Features. The two views are the graphs themselves and integer linear
programs constructed from the graphs. For the graph view, we use DQN-based
reinforcement learning (H. Dai, E. B. Khalil, et al., 2017) to learn a sequential
vertex selection policy. We use structure2vec (H. Dai, B. Dai, and L. Song,
2016) to compute graph embeddings to use as state representations. For the ILP,
we use imitation learning (He, Daume III, and Eisner, 2014) to learn node selection
policy for branch-and-bound search. A node selection policy determines which node
to explore next in the current branch-and-bound search tree. We use node-specific
features (e.g., LP relaxation lower bound and objective value) and tree-specific
features (e.g., integrality gap, and global lower and upper bounds) as our state
representations. Vertex selection in graphs and node selection in branch-and-bound
are different. So we use the general case algorithm in Section 4.4.

Policy Class. For the graph view, our policy class is similar to (H. Dai, E. B. Khalil,
et al., 2017). In order to perform end-to-end learning of the parameters with labeled

48

data exchanged between the two views, we use DQN (Mnih, Kavukcuoglu, Silver,
Graves, et al., 2013) with supervised losses (Hester et al., 2018) to learn to imitate
better demonstrations from the ILP view. For all our experiments, we determined the
regularizer for the supervised losses and other parameters through cross-validation
on the smallest scale (100-200 vertices). The graph view models are pre-trained
with the labeled set using behavior cloning. We use the same number of training
iterations for all the methods.

For the ILP view, our policy class consists of a node ranking model that prioritizes
which node to visit next. We use RankNet (Burges, Renshaw, and Deeds, 1998)
as the ranking model, instantiated using a 2-layer neural network with ReLU as
activation functions. We implement our approach for the ILP view within the SCIP
(Achterberg, 2009) integer programming framework.

Methods Compared. At test time, when a new graph is given, we run both policies
and return the better solution. We term this practical version “CoPiEr Final" and
measure other policies’ performance against it. We compare with single view
learning baselines. For the graph view, we compare with RL-based policy learning
over graphs (H. Dai, E. B. Khalil, et al., 2017), labelled as “Graph (RL)". And for
the ILP view, we compare with imitation learning (He, Daume III, and Eisner, 2014)
“ILP (DAgger)", retrospective imitation (J. Song, Lanka, Zhao, et al., 2018) “ILP
(Retrospective Imitation)" and a commercial solver Gurobi (Gurobi Optimization,
2021). We combine “Graph (RL)" and “ILP (DAgger)" as non-CoPiEr (Final) by
returning the better solution of the two. We also show the performance of the
two policies in CoPiEr as standalone policies instead of combining them, labelled
“Graph (CoPiEr)" and “ILP (CoPiEr)". ILP methods are limited by the same node
budget in branch-and-bound trees.

Results. Figure 4.5 shows the results. We see that CoPiEr Final outperforms all
baselines as well as Gurobi. Interestingly, it also performs much better than either
standalone CoPiEr policies, which suggests that Graph (CoPiEr) is better for some
instances while ILP (CoPiEr) is better on others. This finding validates combining
the two views to maximize the benefits from both. For the exact numbers on the
final performance, please refer to Appendix A.4.

Risk-aware Path Planning: General Case with IL+IL
Setup. We finally consider a practical application of risk-aware path planning
(Ono and B. C. Williams, 2008). Given a start point, a goal point, a set of polygonal

49

obstacles, and an upper bound of the probability of failure (risk bound), wemust find
a path, represented by a sequence of way points, that minimizes cost while limiting
the probability of collision to within the risk bound. Details on the data generation
can be found in the Appendix A.3. We report the performance evaluations on 50
test instances.

Views and Features. This problem can be formulated into a mixed integer linear
program (MILP) as well as a quadratically constrained quadratic program (QCQP),
both of which can be solved using branch-and-bound (Land and Doig, 2010; J.
Linderoth, 2005). For each view, we learn a node selection policy for branch-and-
bound via imitation learning. Feature representations are similar to ILP view in
MVC experiment (Section 4.5). For the QCQP view, we use the state variables
bounds along the trace for each node from the root in the branch and bound tree
as an additional feature. Although the search framework is the same, because of
the different nature of the optimization problem formulations, the state and action
space are incompatible, and so we use the general case of CoPiEr. A pictorial
representation of the two views is presented in Appendix A.2.

Policy Class. The policy class for both MILP and QCQP views is similar to that of
ILP view in MVC (Section 4.5), and we learn node ranking models.

Methods Compared. Similar to MVC experiment, we compare other methods with
“CoPiEr Final” which returns the better solution of the two. We use single view
learning baselines, specifically those based on imitation learning (He, Daume III,
and Eisner, 2014), “QCQP (DAgger)” and “MILP(DAgger)”, and on retrospective
imitation (J. Song, Lanka, Zhao, et al., 2018), “QCQP (Retrospective Imitation)” and
“MILP (Retrospective Imitation)”. Two versions of non-CoPiEr Final are presented,
based on DAgger and Retrospective Imitation, respectively. Gurobi is also used to
solve MILPs but it is not able to solve the QCQPs because they are non-convex.

Results. Figure 4.6 shows the results. Like in MVC, we again see that CoPiEr
Final outperforms baselines as well as Gurobi. We also observe a similar benefit of
aggregating both policies. The effectiveness of CoPiEr enables solving much larger
problems than considered in previous work (J. Song, Lanka, Zhao, et al., 2018) (560
vs 1512 binary variables).

50

Figure 4.6: Comparison of CoPiEr with other learning-based baselines and a com-
mercial solver, Gurobi. The y-axis measure relative gaps of various methods com-
pared with CoPiEr Final. CoPiEr Final outperforms all the baselines. Notably,
the scale of problems as measured by the number of integer variables far exceed
previous state-of-the-art method (J. Song, Lanka, Zhao, et al., 2018).

51

C h a p t e r 5

INCORPORATING EXISTING SOLVERS AS SUB-ROUTINES

Abstract In this chapter, we take a more holistic view of incorporating existing
solvers. Comparedwith approaches presented in the previous two chapters, this view
has the benefit of enabling learning-based methods to compete with state-of-the-art
commercial solvers directly on wall-clock time.

Wefirst present a learning approach building on the large neighborhood search (LNS)
paradigm, which iteratively chooses a subset of variables to optimize while leaving
the remainder fixed. The appeal of LNS is that it can easily use any existing solver
as a subroutine, and thus can inherit the benefits of carefully engineered heuristic
or complete approaches and their software implementations. We show that one
can learn a good neighborhood selector using imitation and reinforcement learning
techniques. Through extensive empirical validation in bounded-time optimization,
we demonstrate that our LNS framework can significantly outperform compared to
state-of-the-art commercial solvers such as Gurobi.

Then, we describe a machine learning approach to quickly solving Mixed Integer
Programs (MIP) by learning to prioritize a set of decision variables, which we
call pseudo-backdoors, for branching that results in faster solution times. Learning-
based approaches have seen success in the area of solving combinatorial optimization
problems by being able to flexibly leverage common structures in a given distribution
of problems. Our approach takes inspiration from the concept of strong backdoors,
which corresponds to a small set of variables such that only branching on these
variables yields an optimal integral solution and a proof of optimality. Our notion
of pseudo-backdoors corresponds to a small set of variables such that only branching
on them leads to faster solve time (which can be solver dependent). A key advantage
of pseudo-backdoors over strong backdoors is that they are much amenable to data-
driven identification or prediction. Our proposedmethod learns to estimate the solver
performance of a proposed pseudo-backdoor, using a labeled dataset collected on a
set of training MIP instances. This model can then be used to identify high-quality
pseudo-backdoors on new MIP instances from the same distribution. We evaluate
our method on the generalized independent set problems and find that our approach
can efficiently identify high-quality pseudo-backdoors. In addition, we compare our

52

learned approach against Gurobi, a state-of-the-art MIP solver, demonstrating that
our method can be used to improve solver performance.

5.1 A General Large Neighborhood Search Framework for Solving Integer
Linear Programs

The design of algorithms for solving hard combinatorial optimization problems
remains a valuable and challenging task. Practically relevant problems are typically
NP-complete or NP-hard. Examples include any kind of search problem through a
combinatorial space, such as network designs (Du and Pardalos, 1998), mechanism
design (De Vries and Vohra, 2003), planning (Ono and B. C. Williams, 2008),
inference in graphical models (Wainwright, Jaakkola, and Willsky, 2005), program
synthesis (Manna and Waldinger, 1971), verification (Bérard et al., 2013), and
engineering design (Cui et al., 2006; Mirhoseini et al., 2017), amongst many others.

The widespread importance of solving hard combinatorial optimization problems
has spurred intense research in designing approximation algorithms and heuristics
for large problem classes, such as integer programming (Berthold, 2006; Fischetti
and Lodi, 2010; Land and Doig, 2010) and satisfiability (L. Zhang and Malik, 2002;
De Moura and Bjørner, 2008; Dilkina, Gomes, and Sabharwal, 2009). Histori-
cally, the design of such algorithms was done largely manually, requiring careful
understandings of the underlying structure within specific classes of optimization
problems. Such approaches are often unappealing due to the need to obtain sub-
stantial domain knowledge, and one often desires a more automated approach.

In recent years, there has been an increasing interest to automatically learn good
(parameters of) algorithms for combinatorial problems from training data. The
most popular paradigm, also referred to as “learning to search”, aims to augment
existing algorithmic templates by replacing hard-coded heuristic components with
parameterized learnable versions. For example, this has been done in the context
of greedy search for NP-hard graph problems (E. B. Khalil et al., 2017). However,
greedy as well as most general purpose heuristic or local search algorithms are
limited to combinatorial optimization problems, where the constraints are easy to
satisfy, and hence are difficult to apply to domains with intricate side constraints.
On the other hand, Integer Linear Programs (ILPs) are a widely applicable problem
class that can encode a broad set of domains as well as large number and variety
of constrains. Branch-and-bound, which is a complete search procedure, is the
state-of-the-art approach to ILPs and has also been recently extensively researched

53

through the lens of “learning to search” (He, Daume III, and Eisner, 2014; E. Khalil,
Le Bodic, et al., 2016; E. B. Khalil et al., 2017; J. Song, Lanka, Zhao, et al.,
2018; J. Song, Lanka, Yue, and Ono, 2020; Gasse et al., 2019). While this line of
research has shown promise, it falls short of delivering practical impact, especially
in improving wall-clock time. Practically improving the performance of branch-
and-bound algorithms through learning is stymied by the need to either modify
commercial solvers with limited access to optimized integration, or to modify open-
source solvers such as SCIP (Achterberg, 2009), which is considerably slower than
leading commercial solvers such as Gurobi and CPlex (usually by a factor of 10 or
more) (Mittelmann, 2017; Optimization, 2019).

Motivated by the aforementioned drawbacks, we study how to design abstractions
of large-scale combinatorial optimization problems that can leverage existing state-
of-the-art solvers as a generic black-box subroutine. Our goal is to arrive at new
approaches that can reliably outperform leading commercial solvers in wall-clock
time, can be applicable to broad class of combinatorial optimization problems, and
is amenable to data-driven design. We focus on solving integer linear programs
(ILPs), which are a common way to represent many combinatorial optimization
problems. We leverage the large neighborhood search (LNS) paradigm (Ahuja et
al., 2002), an incomplete algorithm that iteratively chooses a subset of variables to
optimize while leaving the remainder fixed. A major appeal of LNS is that it can
easily use any existing solver as a subroutine, including ones that can handle general
ILPs.

Our contributions can be summarized as:

• We propose a general LNS framework for solving large-scale ILPs. Our
framework enables easy integration of existing solvers as subroutines, and
does not depend on incorporating domain knowledge in order to achieve
strong performance. In our experiments, we combine our framework with
Gurobi, a leading commercial ILP solver.

• We show that, perhaps surprisingly, even using a random decision procedure
within our LNS framework significantly outperformsGurobi onmany problem
instances.

• We develop a learning-based approach that predicts a partitioning of the
integer variables, which then serves as a learned decision procedure within
our LNS framework. This procedure is effectively learning how to decompose

54

the original optimization problem into a series of sub-problems that can be
solved much more efficiently using existing solvers.

• We perform an extensive empirical validation across several ILP benchmarks,
and demonstrate superior wall-clock performance compared to Gurobi across
all benchmarks. These results suggest that our LNS framework can effectively
leverage leading state-of-the-art solvers to reliably achieve substantial speed-
ups in wall-clock time.

5.2 Background on LNS
We now present our large neighborhood search (LNS) framework for solving integer
linear programs (ILPs). LNS is a meta-approach that generalizes neighborhood
search for optimization, and iteratively improves an existing solution by local search.
As a concept, LNS has been studied for over two decades (Shaw, 1998; Ahuja et
al., 2002; Pisinger and Ropke, 2010). However, previous work studied specialized
settings with domain-specific decision procedures. For example, in Shaw, 1998, the
definition of neighborhoods is highly specific to vehicle routing, and so the decision
making of how to navigate the neighborhood is also domain-specific. We instead
aim to develop a general framework that avoids requiring domain-specific structures,
and whose decision procedures can be designed in a generic and automated way,
e.g., via learning as described in Section 5.3. In particular, our approach can be
viewed as a decomposition-based LNS framework that operates on generic ILP
representations, as described in Section 5.2.

Background
Formally, let X be the set of all variables in an optimization problem and S be all
possible value assignments of X . For a current solution s ∈ S, a neighborhood
function N(s) ⊂ S is a collection of candidate solutions to replace s, afterwards
a solver subroutine is evoked to find the optimal solution within N(s). Traditional
neighborhood search approaches define N(s) explicitly, e.g., the 2-opt operation in
the traveling salesman problem (Dorigo, Birattari, and Stutzle, 2006). LNS defines
N(s) implicitly through a destroy and a repairmethod. A destroy method destructs
part of the current solution while a repair method rebuilds the destroyed solution.
The number of candidate repairments is potentially exponential in the size of the
neighborhood, which explains the “large“ in LNS.

In the context of solving ILPs, the LNS is also used as a local search heuristics
for finding high quality incumbent solutions (Rothberg, 2007; Helber and Sahling,

55

2010; Hendel, 2018). The ways large neighborhoods are constructed are random
(Rothberg, 2007), manually defined (Helber and Sahling, 2010) and via bandit
algorithm selection from a pre-defined set (Hendel, 2018). Furthermore, these LNS
approaches often require interface access to the underlying solver, which is often
undesirable when designing frameworks that offer ease of deployment.

Recently, there has been some work on using learning within LNS (Hottung and
Tierney, 2019; A. A. Syed et al., 2019). These approaches are designed for specific
optimization problems, such as capacitated vehicle routing, and so are not directly
comparable with our generic approach for solving ILPs. Furthermore, they often
focus on learning the underlying solver (rather than rely on existing state-of-the-art
solvers), which makes them unappealing from a deployment perspective.

Decomposition-based Large Neighborhood Search for Integer Programs
We now describe the details of our LNS framework. At a high level, our LNS
framework operates on an ILP via defining decompositions of its integer variables
into disjoint subsets. Afterwards, we can select a subset and use an existing solver
to optimize the variables in that subset while holding all other variables fixed. The
benefit of this framework is that it is completely generic to any ILP instantiation of
any combinatorial optimization problem.

Without loss of generality, we consider the cost minimization objective. We first
describe a version of LNS for integer programs based on decompositions of integer
variables which is a modified version of the evolutionary approach proposed in
Rothberg, 2007, outlined in Alg 10. For an integer program P with a set of
integer variables X , we define a decomposition of the set X as a disjoint union
X1 ∪ X2 ∪ · · · ∪ Xk. Assume we have an existing feasible solution SX to P , we
view each subset Xi of integer variables as a local neighborhood for search. We
fix integers in X \ Xi with their values in the current solution SX and optimize
for variable in Xi (referred as the FIX_AND_OPTIMIZE function in Line 3 of Alg
10). As the resulting optimization is a smaller ILP, we can use any off-the-shelf ILP
solver to carry out the local search. In our experiments, we use Gurobi to optimize
the sub-ILP. A new solution is obtained and we repeat the process with the remaining
subsets.

DecompositionDecisionProcedures. Notice that a different decomposition defines
a different series of LNS problems and the effectiveness of our approach proceeds
with a different decomposition for each iteration. The simplest implementation is to

56

Algorithm 10 Decomposition-based LNS
1: Input: an optimization problem P , an initial solutions SX , a decomposition X =
X1 ∪X2 ∪ · · · ∪Xk, a solver F

2: for i = 1, · · · , k do
3: SX = FIX_AND_OPTIMIZE(P, SX , Xi, F)
4: end for
5: return SX

use a random decomposition approach, which we show empirically already delivers
very strong performance. We can also consider learning-based approaches that learn
a decomposition from training data, discussed further in Section 5.3.

5.3 Learning a Decomposition
In this study, we apply data-drivenmethods, such as imitation learning and reinforce-
ment learning, to learn policies to generate decompositions for the LNS framework
described in Section 5.2. We specialize a Markov decision process for our setting.
For a combinatorial optimization problem instance P with a set of integer variables
X , a state s ∈ S is a vector representing an assignment for variables in X , i.e., it
is an incumbent solution. An action a ∈ A is a decomposition of X as described
in Section 5.2. After running LNS through neighborhoods defined in a, we obtain
a (new) solution s′. The reward r(s, a) = J(s)− J(s′) where J(s) is the objective
value of P when s is the solution. We restrict to finite-horizon task of length T so
we set the discount factor γ to be 1.

Imitation Learning
In imitation learning, demonstrations (from an expert) serves as the learning signals.
However, we do not have the access to an expert to generate good decompositions.
Instead, we sample random decompositions and take the ones resulting in best ob-
jectives as demonstrations. This procedure is shown in Alg 11. The core of the
algorithm is shown on Lines 7-12 where we repeatedly sample random decompo-
sitions and call the Decomposition-based LNS algorithm (Alg 10) to evaluate
them. In the end, we record the decompositions with the best objective values
(Lines 13-16).

Once we have generated a collection of good decompositions {Di}ni=1, we apply two
imitation learning algorithms. The first one is behavior cloning (Pomerleau, 1989).
By turning each demonstration trajectoryDi = (s0, a0, s1, a1, · · · , sT−1, aT−1) into
a collection of state-action pairs {(s0, a0), (s1, a1), · · · , (sT−1, aT−1)}, we treat pol-

57

Algorithm 11 COLLECT_DEMOS
1: Input: a collection of optimization problems {Pi}ni=1 with initial solutions {Si}ni=1, T

the number of LNS iterations, m the number of random decompositions to sample, k
the number of subsets in a decompositon, F a solver.

2: for i = 1, · · · , n do
3: best_obj ←∞
4: best_decomp← None
5: for j = 1, · · · ,m do
6: decomps← []
7: for t = 1, · · · , T do
8: X ← RANDOM_DECOMPOSITION(Pi, k)
9: Si ←
10: Decomposition-based LNS(Pi, Si, X, F)
11: decomps.append(X)
12: end for
13: if J(Si) < best_obj then
14: best_obj ← J(Si)
15: best_decomp← decomps
16: end if
17: end for
18: Record best_decomp for Pi
19: end for
20: return best_decompos

Algorithm 12 Forward Training for LNS
1: Input: a collection of optimization problems {Pi}ni=1 with initial solutions {Si}ni=1, T

the time horizon,m the number of random decompositions to sample, k the number of
subsets in a decompositon, F a solver..

2: for t = 1, · · · , T do
3: {Di}ni=1 =
4: COLLECT_DEMOS({Pi}ni=1, {Si}ni=1, 1,m, k, F)
5: πt = SUPERVISE_TRAIN({Di}ni=1)
6: for i = 1, · · · , n do
7: X ← πt(Pi, Si)
8: Si ← Decomposition-based LNS(Pi, Si, X, F)
9: end for
10: end for
11: return π1, π2, · · · , πT

icy learning as a supervised learning problem. In our case, the action a is a
decomposition which we represent as a vector. Each element of the vector indicates
which subset Xi this particular variable belongs to. Thus, we reduce the learning
problem to a supervised classification task.

Behavior cloning suffers from cascading errors (Stéphane Ross and D. Bagnell,

58

2010). We use the forward training algorithm (Stéphane Ross and D. Bagnell, 2010)
to correct mistakes made at each step. We adapt the forward training algorithm for
our use case and present it as Alg 12. The main difference with behavior cloning
is the adaptive demonstration collection step on Line 4. In this case, we do not
collect all demonstrations beforehand, instead, they are collected dependent on the
predicted decompositions of previous policies.

Reinforcement Learning
For reinforcement learning, for simplicity, we choose to use REINFORCE (Sut-
ton, McAllester, et al., 2000) which is a classical Monte-Carlo policy gradi-
ent method for optimizing policies. The goal is to find a policy π that max-
imizes η(π) = Eπ[

∑∞
t=0 γ

tr(st, at)], the expected discounted accumulative re-
ward. The policy π is normally parameterized with some θ. Policy gradient
methods seek to optimize η(πθ) by updating θ in the direction of: ∇θη(πθ) =

Eπθ [
∑T

t=0∇θ log πθ(at|st)
∑T

t′=t r(st′ , at′)]. By sampling trajectories
(s0, a0, · · · , sT−1, aT−1, sT), one can estimate the gradient ∇θη(πθ).

Featurization of an Optimization Problem
In this section, we describe the featurization of two classes of combinatorial opti-
mization problems.

Combinatorial Optimization over Graphs. The first class of problems are defined
explicitly over graphs as those considered in E. Khalil, H. Dai, et al., 2017. Examples
include the minimum vertex cover, the maximum cut and the traveling salesman
problems. The (weighted) adjacencymatrix of the graph contains all the information
to define the optimization problem so we use it as the feature input to a learning
model.

General Integer Linear Programs. There are other classes of combinatorial
optimization problems that do not originate from explicit graphs such as those
in combinatorial auctions. Nevertheless, they can be modeled as integer linear
programs. We construct the following incidence matrix A between the integer
variables and the constraints. For each integer variable xi and a constraint cj ,
A[i, j] = coeff(xi, cj) where coeff(xi, cj) is the coefficient of the variable xi in the
constraint cj if it appears in it and 0 otherwise.

Incorporating Current Solution. As outlined in Section 5.2, we seek to adaptively
generate decompositions based on the current solution. Thus we need to include the

59

solution in the featurization. Regardless of which featurization we use, the feature
matrix has the same number of rows as the number of integer variables we consider,
so we can simply append the variable value in the solution as an additional feature.

5.4 Emprical Validation for Learning-based LNS
We present experimental results on four diverse applications covering both combi-
natorial optimization over graphs and general ILPs. We discuss the design choices
of crucial parameters in Section 5.4, and present the main results in Sections 5.4
& 5.4. Finally, we provide an empirical evaluation of a state-of-the-art learning to
branch model with Gurobi in Section 5.4 to highlight the necessity of our proposed
approach for practical impact.

Datasets & Setup
Datasets. We evaluate on 4 NP-hard benchmark problems expressed as ILPs.
The first two, minimum vertex cover (MVC) and maximum cut (MAXCUT), are
graph optimization problems. For each problem, we consider two random graph
distributions, the Erdős-Rényi (ER) (Erdős and Rényi, 1960) and the Barabási-
Albert (BA) (Albert and Barabási, 2002) random graph models. For MVC, we use
graphs of size 1000. For MAXCUT, we use graphs of size 500. All the graphs
are weighted and each vertex/edge weight is sampled uniformly from [0, 1] for
MVC and MAXCUT, respectively. We also apply our method to combinatorial
auctions (Leyton-Brown, Pearson, and Shoham, 2000) and risk-aware path planning
(Ono and B. C. Williams, 2008), which are not based on graphs. We use the
Combinatorial Auction Test Suite (CATS) (Leyton-Brown, Pearson, and Shoham,
2000) to generate auction instances from two distributions: regions and arbitrary.
For each distribution, we consider two sizes: 2000 items with 4000 bids and 4000
items with 8000 bids. For the risk-aware path planning experiment, we use a custom
generator to generate obstacle maps with 30 obstacles and 40 obstacles.

Learning a Decomposition. When learning the decomposition, we use 100 in-
stances for training, 10 for validation and 50 for testing. When using reinforcement
learning, we sample 5 trajectories for each problem to estimate the policy gradient.
For imitation learning based algorithms, we sample 5 random decompositions and
use the best one as demonstrations. All our experiment results are averaged over 5
random seeds.

Initialization. To run large neighborhood search, we require an initial feasible
solution (typically quite far from optimal). For MVC, MAXCUT, and CATS, we

60

initialize a feasible solution by including all vertices in the cover set, assigning all
vertices in one set and accepting no bids, respectively. For risk-aware path planning,
we initialize a feasible solution by running Gurobi for 3 seconds. This time is
included when we compare wall-clock time with Gurobi.

Hyperparameter Configuration. We must set two parameters for our LNS ap-
proach. The first is k, the number of equally sized subsets to divide variables X
into. The second is t, how long the solver runs on each sub-problem. A sub-ILP is
still fairly large so solving it to optimality can take a long time, so we impose a time
limit. We run a parameter sweep over the number of decompositions from 2 to 5 and
time limit for sub-ILP from 1 second to 3 seconds. For each configuration of (k, t),
the wall-clock time for one iteration of LNS will be different. For a fair comparison,
we use the ratio ∆/T as the selection criterion for the optimal configuration, where
∆ is the objective value improvement and T is the time spent. The configuration
results are in Appendix B.1.

Benchmark Comparisons with Gurobi
We now present our main benchmark evaluations. We instantiate our framework in
four ways:

• Random-LNS: using random decompositions

• BC-LNS: using a decomposition policy trained using behavior cloning

• FT-LNS: using a decomposition policy trained using forward training

• RL-LNS: using a decomposition policy trained using REINFORCE

We use Gurobi 9.0 as the underlying solver. For learned LNS methods, we se-
quentially generate 10 decompositions and apply LNS with these decompositions.
We use the same time limit setting for running each sub-problem, as a result, the
wall-clock among decomposition methods are very close.

We study the incomplete setting, where the goal is to find the best possible feasible
solution within a bounded running time. When comparing using just Gurobi, we
limit Gurobi’s runtime to the longest runtime across all instances from our LNS
methods. In other words, Gurobi’s runtime is longer than all the decomposition
based methods, which gives it more time to find the best solution possible.

61
MVC BA 1000 MVC ER 1000 MAXCUT BA 500 MAXCUT ER 500

Gurobi 440.08± 1.26 482.15± 0.82 −3232.53± 16.61 −4918.07± 12.43
Random-LNS 433.59± 0.51 471.21± 0.36 −3583.63± 3.81 −5488.49± 6.60

BC-LNS 433.09± 0.53 470.20± 0.34 −3584.90± 4.02 −5494.76± 6.51
FT-LNS 432.00± 0.52 470.04± 0.37 −3586.29± 3.33 −5496.29± 6.69
RL-LNS 434.16± 0.38 471.52± 0.15 −3584.70± 1.49 −5481.57± 2.97

Table 5.1: Comparison of different LNS methods and Gurobi for MVC and MAX-
CUT problems.

CATS Regions 2000 CATS Regions 4000 CATS Arbitrary 2000 CATS Arbitrary 4000
Gurobi −94559.9± 2640.2 −175772.9± 2247.89 −69644.8± 1796.9 −142168.1± 4610.0

Random-LNS −99570.1± 790.5 −201541.7± 1131.1 −85276.6± 680.9 −170228.3± 1711.7
BC-LNS −101957.5± 752.7 −207196.2± 1143.8 −86659.6± 720.2 −172268.1± 1594.8
FT-LNS −102247.9± 709.0 −208586.3± 1211.7 −87311.8± 676.0 −169846.7± 5293.2

Table 5.2: Comparison of different LNS methods and Gurobi for CATS problems.

30 Obstacles 40 Obstacles
Gurobi 0.7706± 0.23 0.7407± 0.13

Random-LNS 0.6487± 0.07 0.3680± 0.03
BC-LNS 0.5876± 0.07 0.3502± 0.07
FT-LNS 0.5883± 0.07 0.3567± 0.04

Table 5.3: Comparison of different LNS methods and Gurobi for risk-aware path
planning problems.

Main Results. Tables 5.1, 5.2 and 5.3 show the main results. We make two
observations:

• All LNS variants significantly outperform Gurobi (up to 50% improvement in
objectives), given the same amount or less wall-clock time. Perhaps surpris-
ingly, this phenomenon holds true even for Random-LNS.

• The imitation learning based variants, FT-LNS and BC-LNS, outperform
Random-LNS and RL-LNS in most cases.

Overall, these results suggest that our LNS approach can reliably offer substantial
improvements over state-of-the-art solvers such asGurobi. These results also suggest
that one can use learning to automatically design strong decomposition approaches,
and we provide a preliminary qualitative study of what the policy has learned in
Section B.2. It is possible that a more sophisticated RL method could further
improve RL-LNS.

Per-Iteration Comparison. We use a total of 10 iterations of LNS, and it is natural
to ask how the solution quality changes after each iteration. Figure 5.1 shows
objective value progressions of variants of our LNS approach on three datasets. For

62

MVC BA 1000 MVC ER 1000
Local-ratio 487.58± 1.16 498.20± 1.24
Best-LNS 432.00± 0.52 470.04± 0.37

MAXCUT BA 500 MAXCUT ER 500
Greedy −3504.79± 7.80 −5302.63± 17.59
Burer −3647.46± 7.63 −5568.18± 13.47

De Sousa −3216.86± 9.86 −4994.73± 10.60
Best-LNS −3586.29± 3.33 −5496.29± 6.69

Table 5.4: (Left) Comparison between LNS with the local-ratio heuristic for MVC.
(Right) Comparison between LNS with heuristics for MAXCUT.

CATS Regions 2000 CATS Regions 4000 CATS Arbitrary 2000 CATS Arbitrary 4000
Greedy −89281.4± 1296.4 −181003.5± 1627.5 −81588.7± 1657.6 −114015.9± 12313.8

LP Rounding −87029.9± 876.66 −173004.1± 1688.9 −74545.1± 1365.5 −104223.1± 11124.5
Best-LNS −102247.9± 709.0 −208586.3± 1211.7 −87311.8± 676.0 −172268.1± 1594.8

Table 5.5: Comparison between LNS with greedy and LP rounding heuristics for
CATS.

Set Cover Independence Set Facility CATS
GCNN (Gasse et al., 2019) 1489.91± 3.3% 2024.37± 30.6% 563.36± 10.7% 114.16± 10.3%

Gurobi 669.64± 0.55% 51.53± 5.25% 39.87± 3.91% 40.99± 7.19%

Table 5.6: Wall-clock comparison between learning to branchGCNNmodels (Gasse
et al., 2019) and Gurobi.

the two combinatorial auction datasets, BC-LNS and FT-LNS achieve substantial
performance gains over Random-LNS after just 2 iterations of LNS, while it takes
about 4 for the risk-aware path planning setting. These results show that learning a
decomposition method for LNS can establish early advantages over using random
decompositions.

Running Time Comparison. Our primary benchmark comparison limited all
methods to roughly the same time limit. We now investigate how the objective
values improve over time by performing 100 iterations of LNS. Figure 5.2 shows
four representative instances. We see that FT-LNS achieves the best performance
profile of solution quality vs. wall-clock.

How Long Does Gurobi Need? Figure 5.2 also allows us to compare with the
performance profile of Gurobi. In all cases, LNS methods find better objective
values than Gurobi early on and maintain this advantage even as Gurobi spends
significantly more time. Most notably, in Figure 5.2d, Gurobi was given 2 hours
of wall-clock time, and failed to match the solution found by Random-LNS in just
under 5 seconds (the time axis is in log scale).

63

(a) CATS with 2000 items
and 4000 bids from re-
gions distribution.

(b) CATS with 2000 items
and 4000 bids from arbi-
trary distribution.

(c) Risk-aware path plan-
ning for 30 obstacles.

Figure 5.1: Improvements of objective values as more iterations of LNS are applied.
In all three cases, imitation learning methods, BC-LNS and FT-LNS, outperform
the Random-LNS.

(a) CATSwith 4000
items and 8000 bids
from regions distri-
bution.

(b) CATS with
2000 items and
4000 bids from ar-
bitrary distribution.

(c) MVC over a
Barabási-Albert
random graph with
1000 vertices.

(d) MAXCUT over
a Barabási-Albert
random graph with
500 vertices.

Figure 5.2: We compare LNSmethods on how the objective values improve as more
wall-clock time is spent for some representative problem instances. We also include
Gurobi in the comparison. All LNS methods find better solutions than Gurobi early
on and it takes Gurobi between 2 to 10 times more time to match the solution quality.
For MAXCUT (Fig 5.2d), after running for 2 hours, Gurobi is unable to match the
quality of solution found by Random-LNS in 5 seconds.

Comparison with Domain-Specific Heuristics
We also compare with strong domain-specific heuristics for three classes of prob-
lems: MVC, MAXCUT, and CATS. We do not compare in the risk-aware path
planning domain, as there are no readily available heuristics. Please refer to Ap-
pendix B.4 for descriptions on these heuristics.

Overall, we find that our LNS methods are competitive with specially designed
heuristics, and can sometimes substantially outperform them. These results provide
evidence that our LNS approach is a promising direction for the automated design of
solvers that avoids the need to carefully integrate domain knowledge while achieving
competitive or state-of-the-art performance.

64
CATS Regions 2000

SCIP −86578.38± 606.21
Random-LNS −98944.90± 645.23

BC-LNS −100513.84± 702.05
FT-LNS −100913.77± 681.00

Table 5.7: LNS with SCIP as the ILP solver.

Table 5.4 (Left) summarizes results forMVC. The best LNS (FT-LNS) result outper-
forms by 11% on BA graphs and 6% on ER graphs. Table 5.4 (Right) shows results
for MAXCUT. The heuristic in Burer et al.(Burer, Monteiro, and Y. Zhang, 2002)
performs best for both random graph distributions, which shows that a specially
designed heuristic can still outperform a general ILP solver. For CATS, our LNS
approach outperforms both heuristics by up to 50% in objective values (Table 5.5).

Comparison with Learning to Branch Methods
Recently, there has been a surge of interest in applying machine learning methods
within a branch-and-bound solver. Most prior work builds on the open-source solver
SCIP (Achterberg, 2009), which is much slower than Gurobi and other commer-
cial solvers (Mittelmann, 2017; Optimization, 2019). Thus, it is unclear how the
demonstrated gains from these methods can translate to wall-clock time improve-
ment. For instance, Table 5.6 shows a benchmark comparison between Gurobi and
a state-of-the-art learning approach built on SCIP (Gasse et al., 2019) (reporting
the 1-shifted geometric mean of wall-clock time on hard instances in their paper).
These results highlight the large gap between Gurobi and a learning-augmented
SCIP, which exposes the issue of designing learning approaches without consider-
ing how to integrate with existing state-of-the-art software systems (if the goal is to
achieve good wall-clock time performance).

Use SCIP as the ILP Solver
Our LNS framework can incorporate any ILP solver to search for improvement over
incumbent solutions. Our main experiments focused on Gurobi because it is a state-
of-the-art ILP solver. Here, we also present results on using SCIP as the ILP solver.
With the same setting as in Section 5.4 on the CATS Regions distribution with
2000 items and 4000 bids, the results are shown in Table 5.7. They are consistent
with those when Gurobi is used as the ILP solver. Random-LNS significantly
outperforms standard SCIP while learning-based methods (BC-LNS and FT-LNS)
further improves upon Random-LNS.

65

5.5 Learning Pseudo-backdoors for Mixed Integer Programs
Mixed integer programs (MIPs) are widely used mathematical models for combi-
natorial optimization problems (Conforti, Cornuéjols, Zambelli, et al., 2014). An
optimal solution to a MIP can be found by the branch-and-bound algorithm (Land
and Doig, 2010), which systematically explores the solution space by building a
search tree through branching on integer variables. It has been shown empirically
that branching decisions have a significant impact on the solve time ofMIPs (Achter-
berg and Wunderling, 2013). Recently, a series of papers have explored data-driven
approaches to learning branching heuristics to improve MIP solve time (E. Khalil,
Le Bodic, et al., 2016; Gasse et al., 2019). As a branch-and-bound algorithm builds
the search tree sequentially, the total solve time of a MIP is proportional to the size
of the final search tree. As a result, one can reduce solve time by producing a more
compact search tree. The concept of backdoors is one structural property related
to the search tree size of combinatorial problems. Backdoors are first introduced
in (R. Williams, Gomes, and Selman, 2003) in the context of Boolean satisfiability
(SAT) problems. Weak backdoors are defined to be a small subset of variables that
satisfy the following property: there exists an assignment to this subset of variables
such that the remaining SAT formula can be solved in polynomial time. In a “strong
backdoor” any setting of the backdoor variables leads to a poly-time solvable sub-
problem. Given a backdoor, one can speed up SAT solving by restricting standard
backtrack search only on variables in the backdoor. Later, backdoors are generalized
to combinatorial optimization and MIPs (Dilkina, Gomes, Malitsky, et al., 2009),
where a strongMIP backdoor is a subset of integer variables such that only branching
on them yields an optimal integral solution and a certificate of optimality. Similarly
to SAT, solve time speedup in MIPs has been observed by prioritizing “backdoors”
in branching (Fischetti and Monaci, 2011). Technically, the prioritized variables do
not satisfy the definition of backdoors given in (Dilkina, Gomes, Malitsky, et al.,
2009), and to make this distinction clear we will refer to a subset of integer variables
as a pseudo-backdoor if prioritizing branching on them leads to faster solve time
compared with the default setting for a MIP solver.

In this extended abstract, we introduce a data-driven approach to predicting pseudo-
backdoors for distributions of MIPs by learning a ranking model to identify which
subset of variables is most likely to be a pseudo-backdoor and a classification model
to decide whether to use a candidate pseudo-backdoor or just use the default solver.
If the classifier decides to use the pseudo-backdoor, we prioritize a MIP solver to
branch on variables in the pseudo-backdoor above other integral decision variables.

66

We represent MIPs as bipartite graphs with different node-features for variables and
constraints as in (Gasse et al., 2019), and use graph attention networks (Veličković
et al., 2018) with pooling to learn both models. We conduct empirical evaluations
on the generalized independence set problem (GISP) (Colombi, Mansini, and M.
Savelsbergh, 2017) and show that our models achieve overall improvements over
Gurobi with its default setting.

5.6 Problem Statement for Learning Pseudo-backdoors
Our goal in finding pseudo-backdoors is to quickly solve MIPs. In a MIP we are
asked to find real-valued settings for n decision variables x ∈ Rn, which maximize
a linear objective function cTx, subject to m linear constraints Ax ≤ b, and with
a subset I ⊆ [n] of the decision variables required to be integral xi ∈ Z∀i ∈ I.
Overall the problem can be written as

maxx cTx

subject to Ax ≤ b

xi ∈ Z ∀i ∈ I.

Given a MIP problem, specified by P = (c, A, b, I), our goal is to find a pseudo-
backdoor subset B ⊆ I, of the integral decision variables such that prioritizing
branching on these decision variables yields fast solve times. We consider a dis-
tributional setting of MIP solving where we are given a training distribution of
instances and want to train a pseudo-backdoor selection model that performs well
on unseen instances from the same distribution.

5.7 Learning Pseudo-Backdoors
On a high level, our approach utilizes two learned models: a scoring model that
scores subsets of integer variables according to how their likelihood of being pseudo-
backdoors and a classifier that decides whether to use a predicted subset in the actual
MIP solving. The intuition of including the second model is that some MIPs do not
admit a small pseudo-backdoor in practice. For them, it is better to run a solver in
its default setting.

Figure 5.3 illustrates our method. At test time, given a new MIP instance, we
randomly sample subsets of integer variables according to their LP fractionality as
in (Dilkina, Gomes, Malitsky, et al., 2009), scoring the sampled subsets, and taking
the subset with the highest score as the predicted pseudo-backdoor. Then we use the
classifier to decide whether to use the predicted pseudo-backdoor in a MIP solver

67

LP Relaxation

MIP

Pseudo-Backdoor
samples
ℬ!
ℬ"
…
ℬ#

Scoring module
(GAT + Attention Pooling)

Classification module
Solve with ℬ∗ or gurobi?

(GAT + Attention Pooling)

ℬ∗

ℬ∗ or
Gurobi?

Solve with ℬ∗

ℬ∗

Solve with
GurobiScore

Figure 5.3: The pseudo-backdoor deployment pipeline visualizes the different com-
ponents used for solving a single MIP instance with the two learned models, the
scoring module S(P,B; θS) and the classification module C(P,B; θC). First k
pseudo-backdoor sets of decision variables B1, . . . ,Bk are sampled according to
the decision variables’ LP fractionality. These candidate pseudo-backdoor sets are
ranked according to the scoring module S(P,B; θS) to predict the best pseudo-
backdoor B∗. The classification module then determines whether to run the solver
using B∗ or not based on the predicted pseudo-backdoor success C(P,B∗; θC).

would result in faster solve time than the default setting. If the answer is positive, we
assign higher branching priorities to those integer variables than the rest; otherwise,
we run the solver with its default setting.

Concretely, the score model S(P,B; θS) is parametrized by neural network param-
eters θS which takes as input the MIP specification P , and a candidate subset B,
then predicts a score that characterizes if B is a good pseudo-backdoor. The clas-
sifier C(P,B; θC) is parametrized by neural network parameters θC which takes as
input the MIP specification P , and a candidate subset B, then predicts whether the
prioritizing B in branching would produce a smaller runtime compared to running
the solver.

Learning the Score Model
We train the score model S by learning to rank subsets of integer variables based
on their quality as pseudo-backdoors. For a MIP P and two subsets of integer vari-
ables B1,B2 of P , we compute score estimates s1 = S(P,B1; θ), s2 = S(P,B; θ).
Additionally, we compute a ranking label y which is−1 if B1 leads to a smaller run-
time, and 1 otherwise. We then compute the marginal ranking loss (Tsochantaridis
et al., 2005) as loss(s1, s2, y) = max(0,−y(s1− s2) +m) for a given margin value
m. The ranking loss allows the model to focus on distinguishing between relative
performance rather than accurately modeling the absolute performance.

68

Wewant to ensure thatS yields predictions that are invariant to changes that shouldn’t
modify the solver behavior such as permutations of variable labels. As a result, we
consider a bipartite graph representation of a MIP as in (Gasse et al., 2019). This
representation has two sets of nodes, one for variables and the other for constraints.
There is one variable node for each decision variable and one constraint node for
each constraint. Each variable node contains information such as the variable’s
objective coefficient, and root LP status. Each constraint node contains information
such as the right hand side constant bj , root LP dual variables, and sense (≤,≥ or
=). We use the same set of features as in (Gasse et al., 2019). To form the bipartite
graph, we add an edge between a variable i and a constraint j if variable i appears
in constraint j, i.e., Aij 6= 0 in the constraint matrix. The coefficient Aij is encoded
as an edge attribute. To represent a candidate pseudo-backdoor set B and retain the
permutation invariance afforded by the graph representation, we consider a binary
encoding of B by including an additional feature for each decision variable node
which takes a value of 1 if the variable is in B and 0 otherwise. Encoding the input
(P,B) as a graph now allows us to leverage state-of-the-art techniques in making
predictions on graphs which are amenable to variable input graph sizes and exhibit
permutation invariance.

We leverage the Graph Attention Network (Veličković et al., 2018) where the nodes
of the input graph are embedded by aggregating messages at a given node from its
neighbors. Once we have several iterations of message passing along the edges of
the bipartite graph, we aggregate all the node embeddings xi using global attention
pooling (Li et al., 2016) to yield a single feature vector representing the whole graph.
Performing these steps of obtaining node embeddings followed by aggregation across
the entire MIP enables us to use the same network architecture for MIPs of various
sizes. Now that we have a fixed-length representation of the MIP, we feed it into a
feedforward neural network to produce a scalar output as the score.

Learning the Classifier Model
For a given MIP instance, it may be difficult to sample valid pseudo-backdoors. As
a result, we learn a subsequent classifier to determine whether to use the candidate
subset or simply use a MIP solver in its default setting. The classifier has the same
architecture as the scoring model, taking as input the bipartite graph representation
of the MIP P and a candidate subset B, and outputting a scalar value. However, in
this module instead of ranking we perform binary classification. Thus, the last layer
score is fed through a sigmoid activation function to get an output in the range of

69

[0, 1] and the final binary output is obtained at a threshold of 0.5.

To generate training data, for every MIP instance in the training distribution, we
compute the solve time for a solver with its default setting and for using the candidate
pseudo-backdoor suggested by the previous score model. We then label the MIP
instance and pseudo-backdoor according to whether the pseudo-backdoor results in
a faster solve time. Finally, we compute a loss for this classification module as a
binary cross-entropy loss between the model outputs and the labels.

5.8 Experiment Results for Learning Pseudo-backdoors
Many real-world setting require solving a homogeneous family of problems, where
instances share similar structures, differing slightly in the problem size or numerical
coefficients. We evaluate the two components of our proposed method on problem
instances drawn from three hardness settings of the Generalized Independent Set
Problem (GISP) (Hochbaum and Pathria, 1997).

We run data collection and MIP solving on a cluster of five identical 32-core
machines with Intel 2.1 GHz processors and 264 GB of memory. We use the Python
API of Gurobi 9.1 (Gurobi Optimization, 2021) to performMIP data collection. For
model evaluation, we integrate our two models with Gurobi by setting the branching
priority of integer variables in a pseudo-backdoor to 1. To enable parallelization,
we run Gurobi in the single-threaded mode without other modifications. The deep
learning models are trained on a machine with four GeForce GTX 1080 Ti using
Pytorch (Paszke et al., 2019).

Generalized Independent Set Problem
The Generalized Independent Set Problem (GISP) is a graph optimization problem
initially proposed for forestry management (Hochbaum and Pathria, 1997). The
input consists of a graph G(V,E), a subset of removable edges E ′ ⊆ E, revenues
for each vertex upon selection and costs for each removable edge upon deletion. The
problem asks to select a subset of the vertices and remove a subset of removable
edges that maximize the net profit of total vertex revenues minus total edge costs
subject to the constraint that the selected vertices must be independent, i.e., pairs
of selected vertices should not share an edge, in the induced subgraph after E ′ are
removed from G.

We evaluate performance on randomly-generated GISP instances with varying pa-
rameters to yield different hardness settings. To generate a single instance we

70

randomly generate an Erdős-Rényi graph (Erdős and Rényi, 1960) with n nodes
and edge probability p. Edges are randomly added into removable edges E ′ with
probability α. Finally, edges have fixed costs of c, and nodes have fixed rewards
of r. We vary the problem hardness by varying the graph node count between 125
(easy), 150 (medium), and 175 (hard) nodes. We fix edge probabilities p to 0.3,
removable edge probability α to 0.25, edge cost c to 1, and node reward r to 100.

For each hardness setting, we generate 300 random instances in total: 100 instances
for training and validating the score model, 100 for training and validating the
classifier model, and the final 100 for testing the two models. We denote the scoring
dataset as Ds, the classification dataset as Dc, and the test dataset as Dt.

Data Generation
To train our score and classifier models, we randomly sample subsets of integer
variables for each training instance proportional to their LP-based fractionality as
in (Dilkina, Gomes, Malitsky, et al., 2009). For a MIP instance, the method first
computes the solution to its linear programming relaxation, and then randomly
samples subsets of the integral decision variables to be included in the candidate
pseudo-backdoor based on the fractionality, or how far away the value of a decision
variable is to being integral, with less-integral decision variables having higher
weight for entering into the backdoor. In (Dilkina, Gomes, Malitsky, et al., 2009),
they found that many instances were solved with a relatively small backdoor size.
So we randomly sample subsets of size p · |I| for p = 0.01, i.e., we expect a pseudo-
backdoor to contain 1% of the integer variables. We then collect runtime statistics
for all the sampled subsets by running the MIP solver with higher branching priority
on decision variables in the subsets.

For each MIP in our distribution, we collect performance metrics on 50 random
subsets sampled according to LP fractionality (Dilkina, Gomes, Malitsky, et al.,
2009). In total this yields a dataset of 15,000 pseudo-backdoors on which we will
train, validate, and test our models on.

Model Training
For a given hardness setting, we train the score model on the 100 instances in Ds.
For each instance, we use the learning to rank formulation to train a score model
that selects the best subset (with the fastest runtime) among the 50 random samples.
Given the trained score model, we run it to score the 50 random subsets for each
problem instance in Dc to produce a predicted pseudo-backdoor for each instance.

71

Then we compare the runtime using the predicted pseudo-backdoor with that by
Gurobi to generate labels for training the classifier model. Finally, we evaluate
the pipeline on the test set Dt, following the pipeline illustrated in Figure 5.3 by
identifying the best pseudo-backdoor with the score model, and then determining
whether to use the selected pseudo-backdoor or standard Gurobi with the classifier
model.

Main Results
We present testing results on the 100 MIPs from Dt for three hardness settings in
Table 5.8. To understand the impact of using the two components of the model, we
evaluate the standalone score model (scorer) in addition to the full pipeline (scorer
+ cls) with both the score model and the classifier model. We evaluate both absolute
model performance in terms of runtime in seconds, and runtime win / tie / loss over
Gurobi.

As we can see in Table 5.8, the score model alone performs well on many instances.
It outperforms Gurobi on the easy and hard distributions in terms of having faster
average runtimes and faster runtimes at different percentiles. The scoring module
has 6% faster runtimes on both easy and hard instances; however, it has 57% slower
runtimes on the medium instances. Furthermore, we can see from the win / loss rate
against Gurobi that the score model alone is able to outperform Gurobi on a large
number of the MIP instances, winning on 61 instances for easy, and 47 instances for
hard. Indeed, the score model is able to solve 41 instances faster than gurobi on the
medium difficulty instances, demonstrating that while it has poorer performance on
average, it has potential for yielding fast solve times onmany instances. Additionally,
we can see that the score model alone has much higher variability than Gurobi on
the medium instances. This undesired property further motivates the inclusion of
the classifier model to improve the overall performance.

The scorer + cls model outperforms Gurobi across all three different MIP distribu-
tions in terms of the time distribution for MIP solving. On average, it performs well
across distributions of instances, having the lowest solve times on average and at
different quantiles. The score + cls pipeline outperforms gurobi by 8%, 2%, and8%

on average for easy, medium, and hard instances respectively. In terms of win / tie
/ loss, we can see that this is partially due to reduced losses against Gurobi com-
pared with only using the score model while retaining a large proportion of its wins.
Furthermore, we can see that the variability on the medium difficulty instances is

72

Table 5.8: Runtime comparison in seconds of standard gurobi (grb), the score
model (scorer), and the score model with subsequent classification (scorer+cls)
across 3 hardness settings of gisp. In addition to mean and standard deviation of the
runtimes, we report the 25th, 50th, and 75th percentiles of the runtimes across the
MIP instances to provide further information about model performance at different
points of the distribution. Finally, we report win / tie / loss metrics across the 100 test
instances for the given models against Gurobi. Note that the scorer + classification
module ties with Gurobi when it predicts to use Gurobi rather than the suggested
psuedo-backdoor.

dataset solver mean stdev 25 pct median 75 pct win / tie / loss vs grb

gisp easy grb 108 34 79 109 128 0 / 100 / 0
gisp easy scorer 101 41 71 95 126 61 / 0 / 39
gisp easy scorer + cls 99 40 69 93 119 51 / 35 / 14

gisp medium grb 611 182 488 580 681 0 / 100 / 0
gisp medium scorer 960 755 515 649 915 41 / 0 / 59
gisp medium scorer + cls 601 247 481 568 663 24 / 70 / 6

gisp hard grb 2533 939 1840 2521 2976 0 / 100 / 0
gisp hard scorer 2373 855 1721 2262 2926 47 / 0 / 53
gisp hard scorer + cls 2326 855 1654 2215 2866 47 / 27 / 26

greatly reduced to be comparatively more on par with Gurobi than only the score
model as well.

73

C h a p t e r 6

LEARNING SURROGATES FOR OPTIMIZATION

Abstract Optimization algorithms employ different heuristic functions to guide
the search. Computation of these heuristic functions can be expensive. Given
historical data of the heuristic values, we can fit a machine learning model to
estimate them from features of optimization problems. In this way, we reduce the
computation time to simple feedforward computations if neural networks are used.
In this chapter, we present two projects that utilize this idea.

In the first project (Section 6.1), we learn to estimate a safety cost calledApproximate
Clearance Evaluation (ACE) (Otsu et al., 2020) which is used in the Enhanced
Navigation (ENav) (Toupet et al., 2020) library to plan paths for the Perseverance
Rover in the Mars 2020 mission (Williford et al., 2018). We show that a deep
convolutional neural network can predict the ACE costs with high accuracy and it
enables us to plan paths faster without compromising on safety.

In the second project (Section 6.4), we further equip the surrogate with additional
regularization properties, e.g., submodularity. This is motivated by cases where we
know structures about the heuristic functions. In particular, we focus on a class
of combinatorial problems that can be solved via submodular maximization (either
directly on the objective function or via submodular surrogates). We introduce a
data-driven optimization framework based on the submodular-norm loss, a novel
loss function that encourages the resulting objective to exhibit diminishing returns.
Our framework outputs a surrogate objective that is efficient to train, approximately
submodular, and can be made permutation-invariant. The latter two properties
allow us to prove strong approximation guarantees for the learned greedy heuristic.
Furthermore, our model is easily integrated with modern deep imitation learning
pipelines for sequential prediction tasks. We demonstrate the performance of our
algorithm on a data-driven protein engineering task.

6.1 Learning Safety Surrogate for the Perseverance Rover
The Mars 2020 mission Williford et al., 2018 and its Perseverance Rover will use
the Enhanced Navigation (ENav) library Toupet et al., 2020 to plan paths on the
Martian surface. ENav takes as input stereo imagery, maintains a 2.5D heightmap

74

describing the terrain, and chooses the best maneuver to safelymove the rover toward
the global goal. ENav uses the Approximate Clearance Evaluation (ACE) algorithm
Otsu et al., 2020 to evaluate a sorted list of paths for safe traversal. Running the
ACE algorithm on dozens of rover poses along hundreds of candidate rover paths
represents a significant computational burden, especially if the list is sorted poorly
and many paths fail the ACE check, which is more likely in complex and challenging
terrain.

In this project, we train a machine learning (ML) classifier to infer ACE values to
more effectively sort the rover paths before the ACE evaluation step. By incorpo-
rating the ML classifier into the ranking process, but still checking paths for safety
with ACE, we show how ML can be integrated into ENav without sacrificing safety
requirements. We present our results for various experiments and describe how each
heuristic affected the performance of ENav in Monte Carlo simulations across mul-
tiple terrains (Section 6.3). We show that integrating the heuristics improved path
efficiency, greatly reduced ACE evaluations, computation time, and the likelihood
of "overthinking" each planning cycle, and maintained or improved success rates
compared to the baseline performance.

6.2 Method for Learning Safety Surrogate
In order to find a more accurate heuristic for ACE cost, we trained a model to predict
ACE values based on heightmap data (Figure 6.1). In contrast to the Gradient Con-
volution heuristic, which was hand-coded by domain experts, the learned heuristic
is automatically encoded using a data-driven framework. More specifically, we de-
veloped a deep convolutional neural network (DCNN) based model that can directly
predict the outcome of the ACE algorithm for a given terrain heightmap. Using this
prediction, ENav can more optimally sort its initial list of potential paths and hence
reduce the average number of ACE evaluations required until finding a safe path.

We formulate this problem as a supervised-learning based classification. OurDCNN
model is based on amodified encoder-decoder style U-Net architecture Ronneberger,
Fischer, and Brox, 2015. The encoder consists of a series of convolutional layers
that down-samples the input to a low-dimensional feature map, and a decoder that
consists of up-sampling layers with convolutions that then take this feature map and
increase their resolution to that of the original input. U-Net also has a series of
residual connections from the encoder to the decoder feature maps that helps restore
the high-resolution details lost during down-sampling and also prevents vanishing

75

gradients during training.

The input to our model is a heightmap and the output is an ACE map, such that
the value for each pixel in the ACE map corresponds to the expected ACE cost
for the corresponding terrain parameters. However, ACE cost depends not only
on the terrain but also on the rover heading. We encode the rover heading as
part of the learning problem itself by extending the output to have a multi-channel
representation such that each channel represents a cardinal heading angle for the
rover. In our experiments, we have found a discretization of 8 heading angles (at
45 degree intervals) to be sufficient. Sigmoid activation is applied to each channel
to give a value in the range [0, 1] corresponding to the probability of a cell being
infinite ACE cost or not.

Training data was gathered by running a Monte Carlo simulation of the baseline
ENav algorithm on 1500 terrains, randomly sampling 8 heightmaps from each trial.
For each cell in each sampled heightmap, the ACE algorithm was run with the eight
fixed rover heading values, resulting in an “ACEmap” where each cell has eight
heading-specific values. Of the 12000 total heightmap, ACE map pairs, 9500 were
used as a training set, and 2500 were used as the validation set. The learned heuristic
model achieved 97.8% training accuracy and 95.3% validation accuracy.

Note the result of this prediction is a probability of ACE returning a safety violation,
which is different from the output of the ACE algorithm itself. ACE can return
finite or infinite costs, where finite costs represent how close the rover is to safety
violations, and infinite costs represent safety violations. Predicting the actual ACE
costs is a dual problem of classification and regression, and is more difficult that
segmentation alone. Efforts to predict these values have not yet yielded results.

(a) Height Map (b) ACE Map (c) Inferred ACE Map

Figure 6.1: An example of a Learned Heuristic. Sets of terrain heightmaps (a) and
maps generated by the ACE algorithm (b) were used to train a neural network to
generate an inferred ACE probability map (c).

76

6.3 Evaluations of the Learned Safety Surrogate
Described at length in Toupet et al., 2020, a Monte Carlo simulation environment
was built for testing ENav and Mars 2020 navigation. The Robotics Operating
System (ROS) Quigley et al., 2009 was used for inter-process communication. One
ROS node wraps ENav, and another wraps the HyperDrive Simulator (HDSim),
which simulates rover motion, terrain settling and slipping, and disparity images
for JPL rover missions. Simulated terrains, representing various slopes and rock
densities, are loaded into HDSim. Rock densities are classified by the cumulative
fractional area covered by rocks (CFA) Golombek and Rapp, 1997.

The rover starts at one side of the map and ENav is given a global goal 80m away at
the other end of the map. The trial is run until the rover either successfully reaches
the goal, or until a failure condition is found, such as when no feasible path can be
found, when the safety limits of the rover are violated, or when the duration of the
trial exceeds a time limit.

We leverage this existing simulation setup to run our experiments. In the case
of simulations employing the machine learning model, we use an additional ROS
node running TensorFlow, which receives heightmaps and publishes ACE estimates.
Because HDSim currently only runs on 32-bit systems, and TensorFlow only runs
on 64-bit systems, we use a ROS multi-master system to communicate between two
computers.

The discussion of the experiments notes potential gains in computation time. These
gains are theoretical and predicated on the notion that each call of the ACE algorithm
takes 10 to 20 ms on the RAD750 flight processor, these calls make up a very large
portion of ENav’s computation time, and reduction of these calls translates to a
gain in computation time. The use of non-flight-like computers, the need for multi-
master ROS, and lack of optimization in the added algorithms for this research
prevent meaningful comparisons of wall clock time.

The results of the following experiments are summarized in Figure 6.2. Each
simulation tracks results on two subsets of terrains: Benign terrains have a CFA
value of 7% or less, and a slope of 15◦ or less. Complex terrains have greater
slope or CFA. Each performance metric is calculated as a weighted average across
each subset of terrains (Benign or Complex), with terrains of greater complexity
being less likely to occur on Mars, and accordingly given less weight. We are more
concerned with tracking performance on complex terrain. Within each Monte Carlo
simulation, 780 trials are run on complex terrain, so n = 780 will be used when

77

Figure 6.2: A summary of key rover path planning performance metrics across var-
ious experiments. Incorporating heuristics produced more efficient paths, reduced
the number of costly ACE evaluations, and maintained or slightly increased the rate
of successfully reaching the goal.

calculating 95% confidence margins of error (MOE).

The following performance metrics are tracked:

• Success Rate is the percentage of trials for each terrain that result in the rover
reaching the global goal without timing out, reaching a point with no feasible
paths, or violating safety constraints. Higher values are better.

• Average Path Inefficiency is defined as the average length of the path taken
by the rover divided by the Euclidean distance from the start to the goal, minus
1, expressed as a percentage. For example, if the rover goal was 100 m away,
and the rover needed to travel a circuitous route with a length of 125 m to

78

avoid obstacles and reach the goal, the path inefficiency was 25%. Lower
values are better.

• Average ACE Evaluations is the average number of ACE evaluations con-
ducted per planning cycle. Lower values are better. Each evaluation takes an
estimated 10 to 20 ms on a RAD750 processor like that on Perseverance, so a
conversion to average cycle time can easily be made.

• Overthink Rate is the average percent of ENav planning cycles that required
more ACE evaluations than a threshold value (275 by default), which indicates
that the highest-ranked candidate paths were all deemed unsafe by ACE, and
therefore the initial ranking of paths was unsuitable. When the number of ACE
evaluations exceeds the threshold, it indicates that ENav is "overthinking" and
the rover may need to stop driving until a solution is found. Lower values are
better.

Our main results are shown in Figure 6.2. The simulation with the learned heuristic
showed improvements across almost every metric (Figure 6.3, Experiment 1b).
Complex success rate improved slightly, from 69.9% to 72.5% (within the MOE).
Path inefficiency significantly improved, especially for complex terrains, going from
25.4% to 20.4%. The number of ACE evaluations also reduced, especially in terms
of the overthink rate, which plummeted to 7.1% compared to 20.0% for the baseline.
This would result in far fewer cases of the rover needing to stop driving before the
next path can be found.

We asserted that ML could be added without sacrificing the safety guarantee of the
ACE algorithm, and this assertion holds. No trial failures were caused by violated
safety constraints; all failures are due to either timeouts or failures to find paths to
the goal. This was true for all experiments.

This experiment answers the most fundamental question of this work: can heuris-
tics, designed or learned, improve the performance of the baseline rover navigation
algorithm? The answer is yes. Heuristics can more effectively rank the set of candi-
date paths, reduce the average computation time needed to find a safe path, choose
maneuvers that increase path efficiency, and increase the likelihood of successfully
reaching the goal, while maintaining rover safety.

79

6.4 Learning Surrogate with Submodular-Norm Regularization
In real-world automated decisionmaking taskswe seek the optimal set of actions that
jointly achieve the maximal utility. Many of such tasks, either deterministic/non-
adaptive or stochastic/adaptive, can be viewed as combinatorial optimization prob-
lems over a large number of actions. As an example, consider the active learning
problem where a learner seeks the maximally-informative set of training examples
for learning a classifier. The utility of a training set could be measured by the mutual
information (Lindley, 1956) between the training set and the remaining (unlabeled)
data points, or by the expected reduction in generation error if the model is trained
on the candidate training set. Similar problems arise in a number of other domains,
such as experimental design (Chaloner and Verdinelli, 1995), document summa-
rization (Lin and Bilmes, 2012), recommender system (Javdani et al., 2014), and
policy making (Runge, Converse, and Lyons, 2011).

For a broad class of decision making problems whose optimization criterion is to
maximize the decision-theoretic value of information (e.g., active learning and ex-
perimental design), it has been shown that it is possible to design surrogate objective
functions that are (approximately) submodular while being aligned with the original
objective at the optimal solutions (Javdani et al., 2014; Y. Chen, Javdani, et al.,
2015; Choudhury et al., 2017). Despite the promising performance, a caveat for
these “submodular surrogate”-based approaches is that it is often challenging to en-
gineer such a surrogate objective without an ad-hoc design and analysis that requires
trial-and-error (Y. Chen, Javdani, et al., 2015; Satsangi et al., 2018). Furthermore,
for certain classes of surrogate functions, it is NP-hard to compute/evaluate the
function value (Javdani et al., 2014). In such cases, even a greedy policy, which iter-
atively picks the best action given the (observed) history, can be prohibitively costly
to design or run. Addressing this limitation requires more automated or systematic
ways of designing (efficient) surrogate objective functions for decision making.

Inspired by contemporary work in data-driven decision making, we aim to learn a
greedy heuristic for sequentially selecting actions. This heuristic acts as a surrogate
for invoking the expensive oracle when evaluating an action. Our key insight is that
many practical algorithms can be interpreted as greedy approaches that follow an
(approximate) submodular surrogate objective. In particular, we focus on the class
of combinatorial problems that can be solved via submodular maximization (either
directly on the objective function or via a submodular surrogate). We highlight
some of the key results below:

80

• Focusing on utility-based greedy policies, we introduce a data-driven opti-
mization framework based on the “submodular-norm” loss, which is a novel
loss function that encourages learning functions that exhibit “diminishing
returns”. Our framework, called LeaSuRe (Learning with Submodular Reg-
ularization), outputs a surrogate objective that is efficient to train, approxi-
mately submodular, and can be made permutation-invariant. The latter two
properties allow us to prove approximation guarantees for the resulting greedy
heuristic.

• We show that our approach can be easily integrated with modern imitation
learning pipelines for sequential prediction tasks. We provide a rigorous
analysis of the proposed algorithm and prove strong performance guarantees
for the learned objective.

• We demonstrate the performance of our approach on a data-driven protein
design task. Our results suggest that, compared to standard learning-based
baselines: (a) at training time, LeaSuRe requires significantly fewer oracle
calls to learn the target objective (i.e., to minimize the approximation error
against the oracle objective); and (b) at test time, LeaSuRe achieves superior
performance on the corresponding optimization task (i.e., to minimize the
regret for the original combinatorial optimization task). In particular, Lea-
SuRe has shown promising performance in the protein design task and will
be incorporated into a real-world protein design workflow.

6.5 Background and Problem Statement
Decision Making via Submodular Surrogates
Given a ground set of items V to pick from, let u : 2V → R be a set function that
measures the value of any given subset1 A ⊆ V . For example, for experimental
design, u(A) captures the utility of the output of the best experiment; for active
learning u(A) captures the generalization error after training with set A. We denote
a policy π : 2V → V to be a partial mapping from the set/sequence of items already
selected, to the next item to be picked. We use Π to denote our policy class. Each
time a policy picks an item e ∈ V , it incurs a unit cost. Given the ground set V , the
utility function u, and a budget k for selecting items, we seek the optimal policy π

1For simplicity, we focus on deterministic set functions in this section. Note that many of
our results can easily extent to the stochastic, by leveraging the theory of adaptive submodularity
(Golovin and Krause, 2011)

81

that achieves the maximal utility:

π∗ ∈ arg max
π∈Π

u(Sπ,k). (6.1)

Sπ,k is the sequence of items picked by π: Sπ,i = Sπ,i−1∪{π(Sπ,i−1)} for i > 0 and
Sπ,0 = ∅.

As we have discussed in the previous sections, many sequential decision making
problems can be characterized as constrained monotone submodular maximization
problem. In those scenarios u is:

• Monotone: For any A ⊆ V and e ∈ V \ A, u(A) ≤ u(A ∪ {e}).

• Submodular: For any A ⊆ B ⊆ V and e ∈ V \ B, u(A ∪ {e}) − u(A) ≥
u(B ∪ {e})− u(B).

In such cases, a mypopic algorithm following the greedy trajectory of u admits a
near-optimal policy. However, in many real-world applications, u is not monotone
submodular. Then one strategy is to design a surrogate function f : 2V → R which
is:

• Globally aligning with u: For instance, f lies within a factor of u: f(A) ∈
[c1 · u(A), c2 · u(A))] for some constants c1, c2 and any set A ⊆ V; or within a
small margin with u: f(A) ∈ [u(A)− ε, u(A) + ε] for a fixed ε > 0 and any
set A ⊆ V;

• Monotone submodular: Intuitively, a submodular surrogate function encour-
ages selecting items that are beneficial in the long run, while ensuring that
the decision maker does not miss out any actions that are “surprisingly good”
by following a myopic policy (i.e., future gains for any item are diminishing).
Examples that fall into this category include machine teaching (Singla et al.,
2014), active learning (Y. Chen, Hassani, et al., 2015), etc.

We argue that in real-world decision making scenarios—as validated later in Sec-
tion 6.8—the decision maker is following a surrogate objective that aligns with the
above characterization. In the following context, we will assume that such surrogate
function exists. Our goal is thus to learn from an expert policy that behaves greedily
according to such surrogate functions.

82

Learning to Make Decisions
We focus on the regime where the expert policy is expensive to evaluate. Let
g : 2V × V → R be the score function that quantifies the benefit of adding a new
item to an existing subset of V . For the expert policy and submodular surrogate f
discussed in Section 6.5, ∀A ⊆ V and e ∈ V:

gexp(A, e) = f(A ∪ {e})− f(A).

For example, in the active learning case, gexp(A, e) could be the expert acquisition
function that ranks the importance of labelling each unlabelled point, given the
currently labelled subset. In the set cover case, gexp(A, e) could be the function
that gives the score to each vertex and determines the next best vertex to add to
the cover set. Given a loss function `, our goal is to learn a score function ĝ
that incurs the minimal expected loss when evaluated against the expert policy:
ĝ = arg ming EA,e[`(g(A, e), gexp(A, e))]. Subsequently, the utility by the learned
policy is u(Sπ̂,k), where for any given history A ⊆ V , π̂(A) ∈ arg maxe∈V ĝ(A, e).

6.6 Learning with Submodular Regularization
To capture our intuition that a greedy expert policy tends to choose the most useful
items, we introduce LeaSuRe, a novel regularizer that encourages the learned
score function (and hence surrogate objective) to be submodular. We describe the
algorithm below.

Given the groundset V , let f : 2V → R be any approximately submodular surrogate
such that f(A) captures the “usefulness” of the set A. The goal of a trained
policy is to learn a score function g : 2V × V → R that mimics gexp(A, x) =

f(A∪{x})−f(A), which is often prohibitively expensive to evaluate exactly. Then,
given any such g, we can define a greedy policy π(A) = argmaxx∈Vg(A, x). With
LeaSuRe, we aim to learn such function g that approximates gexp well while being
inexpensive to evaluate at test time. Let Dreal = {(〈A, x〉, yexp = gexp(A, x))}m
be the gathered tuple of expert scores for each set-element pair. If the set 2V × V
was not too large, the LeaSuRe could be trained on the randomly collected tuples
Dreal. However, 2V tends to be too large to explore, and generating ground truth
labels could be very expensive. To leverage that, for a subset of set-element pairs
in Dreal we generate a set of random supersets to form an unsupervised synthetic
dataset of tuples Dsynth = {(〈A, x〉, 〈A′, x〉)|A � A′, 〈A, x〉 ∈ Dreal}n where A′

83

denote a randomly selected superset of A. Define:

Loss(g, gexp) =
∑

〈A,x〉,yexp∈Dreal

(yexp − g(A, x))2+

λ
∑

(〈A,x〉,〈A′,x〉)∈Dsynth

σ([g(A′, x)− g(A, x)]).

where λ > 0 is the regularization parameter and σ is the sigmoid function. In-
tuitively, such regularization term will force the learned function g to be close to
submodular, as it will lead to larger losses every time g(A′, x) > g(A, x). If we
expect f to be monotonic, we also introduce a second regularizer ReLu(−g(A′, x))

which pushes the learned function to be positive. Combined, the loss function
becomes (used in Line 11 in Algorithm 13):

Loss(g, gexp) =
∑

〈A,x〉,yexp∈Dreal

(yexp − g(A, x))2

+ λ
∑

(〈A,x〉,〈A′,x〉)∈Dsynth

σ([g(A′, x)− g(A, x)])

+ γ
∑

〈A′,x〉∈Dsynth

ReLu(−g(A′, x)),

where γ is another regularization strength parameter. Such loss should push g to
explore a set of approximately submodular, approximately monotonic functions.
Thus, if f exhibits the submodular and monotonic behavior, g trained on this loss
function should achieve a good local minima.

We next note that since 2V is too large to explore, instead of sampling random tuples
for Dreal, we use modified DAgger. Then g can learn not only from the expert
selections of 〈A, x〉, but it can also see the labels of the tuples the expert would not
have chosen.

Algorithm13 above describes our approach. A trajectory inLine 7 is a sequence of it-
eratively chosen tuples, (〈∅, x1〉, 〈{x1}, x2〉, 〈{x1, x2}, x3〉..., 〈{x1, ..., xT−1}, xT 〉),
collected using a mixed policy πi. In Line 8, expert feedback of selected actions
is collected to form Di. Note that in some settings, even collecting exact expert
labels gexp at train time could be too expensive. In that case, gexp can be replaced
with a less expensive, noisy approximate expert gexpε ≈ gexp. In fact, all three of our
experiments use noisy experts in one form or another.

6.7 Analysis for LeaSuRe
Estimating the expert’s policy. We first consider the bound on the loss of the
learned policy measured against the expert’s policy. Since LeaSuRe can be viewed

84

Algorithm 13 Learning to make decisions via Submodular Regularization
(LeaSuRe)
1: Input: Ground set V , expert score function gexp,

regularization parameters λ, γ, DAgger constant β, the length of trajectories T .

2: initialize Dreal ← ∅
3: initialize g to any function.
4: for i = 1 to N do
5: Let gi = gexp with probability β.
6: Sample a batch of T−step trajectories using πi(A) = xi =

argmaxx∈Vgi(A, x).
7: Get dataset Di = {〈Ai, xi〉, gexp(Ai, xi)} of labeled tuples on actions taken

by πi.
8: Dreal ← Dreal

⋃
Di.

9: Generate synthetic dataset Dsynth from Dreal.
10: Train gi+1 on Dreal and Dsynth using the loss function above.
11: end for
12: Output: gN+1

as a specialization of DAgger (Stéphane Ross, Gordon, and D. Bagnell, 2011) for
learning a submodular function, it naturally inherits the performance guarantees
from DAgger, which show that the learned policy efficiently converges to the
expert’s policy. Concretely, the following result, which is adapted from the original
DAgger analysis, shows that the learned policy is consistent with the expert policy
and thus is a no-regret algorithm:

Theorem 8 (Theorem 3.3, Stéphane Ross, Gordon, and D. Bagnell, 2011). Denote
the loss of π̂ at history state H as l(H, π̂) := `(g(H, π̂(H)), gexp(H, πexp(H))). Let
dπ̂ be the average distribution of states if we follow π̂ for a finite number of steps.
Furthermore, let Di be a set of m random trajectories sampled with πi at round
i ∈ {1, . . . , N}, and ε̂N = minπ

1
N

∑N
i=1 EHi∼Di [l(Hi, π̂)] be the training loss of

the best policy on the sampled trajectories. If N is O (T 2 log(1/δ)) andm is O (1)

then with probability at least 1 − δ there exists a π̂ among the N policies, with
EH∼dπ̂ [l(H, π̂)] ≤ ε̂N +O

(
1
T

)
.

Approximating the optimal policy. Note that the previous notion of regret corre-
sponds to the average difference in score function between the learned policy and
the expert policy. While this result shows that LeaSuRe is consistent with the
expert, it does not directly address how well the learned policy performs in terms
of the gained utility. We then provide a bound on the expected value of the learned

85

(a) Comparison to baseline methods (b) Effect of scaling parameter lambda

Figure 6.3: Combining submodular regularization with a learned active learning
policy for a protein engineering task. In (b), Lambda = 0 corresponds to the
unregularized case. Error bars are plotted as standard error of the mean across 50
replicates.

policy, measured against the value of the optimal policy. For specific decision
making tasks where the oracle follows an approximately submodular objective, our
next result, which is proved in the appendix, shows that the learned policy behaves
near-optimally.

Theorem 9. Assume that the utility function u is monotone submodular. Further-
more, assume the expert policy πexp follows a surrogate objective f such that for all
A ⊆ V , |f(A)− u(A)| < εE where εE > 0. Let ε̂N = minπ

1
N

∑N
i=1 l(Hi, π̂) be the

training loss of the best policy on the sampled trajectories. If N is O (T 2 log(1/δ))

then with probability at least 1− δ, the expected utility achieved by running π̂ for k
steps is

E[u(Sπ̂,k)] ≥ (1− 1/e)E[u(Sπ∗,k)]− k(εE + ∆maxε̂N)−O(1).

A closely related work in approximate policy learning is by Stephane Ross, Zhou, et
al., 2013, which also builds upon DAgger to tackle policy learning for submodular
optimization, via directly imitating the greedy oracle decision rather than learning a
surrogate utility. One key difference is that their approach can only yield guarantees
against an artificial benchmark (a set or list of simpler policies that each indepen-
dently selects an item to add to the action set), whereas our theoretical guarantees
are with respect to the optimal policy in our class.

6.8 Evaluations LeaSuRe on Protein Engineering
In this section, we demostrate the performance of LeaSuRe on a protein engineering
task.

86

Protein Engineering
By employing a large protein engineering database containing mutation-function
data (C. Y. Wang et al., 2019), we demonstrate that LeaSuRe enables the learning
of an optimal policy for imitating expert design of protein sequences (see Appendix
for detailed discussion of datasets). As in Liu, Buntine, and Haffari (2018) we
construct a fully data-driven “expert” which evaluates via 1-step roll-out the effect
of labeling each candidate data (in our case a protein mutant) with the objective of
minimizing loss on a downstream regression task (predicting protein fitness).

When training the policy to emulate the algorithmic expert via imitation learning,
we represent each state as two merged representations: (1) a fixed dimensional
representation of the protein being considered (as the last dense layer of the network
described in Appendix C), and (2) a similar fixed dimensional representation of the
data already included in the training set (as a sum of their embeddings), including
their average label value. At each step a random pool of data is drawn from the state
space and the expert policy greedily selects a protein to label, which minimizes the
expected regression loss on the downstream regression task (prediction of protein
fitness). Once the complete pool of data has been evaluated, the states are stored
along with their associated preference score, taken as their ability to reduce the loss
in the 1-step roll out. Using these scores, the expert selects a protein sequence to
add into the training set, and we retrain the model and use the updated model to
predict a protein with the maximum fitness. This paired state action data is used to
train the policy model at the end of each episode, as described in Liu, Buntine, and
Haffari (2018). As we observe in Figure 6.3a, this method trains a policy which
performs nearly identically to this 1-step oracle expert.

The use of submodular regularization enables the learning of a policy which gen-
eralizes to a fundamentally different protein engineering task. In our experiments,
LeaSuRe is trained to emulate a greedy oracle for maximizing the stability of pro-
tein G, a small bacterial protein used across a range of biotechnology applications
(Sjöbring, Björck, and Kastern, 1991). We evaluate our results by applying the
trained policy to select data for the task of predicting antibody binding to a small
molecule. As is the case with all protein fitness landscapes, the evaluation dataset
is highly imbalanced, with the vast majority of mutants conferring no improvement
at all. Because data is expensive to label in biological settings (proteins must be
synthesized, purified and tested), we are often limited in how many labels can feasi-
bly be generated, and the discriminative power among the best results is often more

87

important than among the worst. To construct a metric with real-world applicability
we assess each model by systemically examining the median Kd of the next ten data
points selected at each budget, from 10 to 110 total labels. This method is utilized in
recognisance of the extreme ruggedness of protein engineering landscapes, wherein
the vast majority of labels are of null fitness, and the ability to select rare useful
labels for the next experimental cycle is of key importance.

We observe thatLeaSuRe outperforms all evaluated baselines, and that the inclusion
of submodular optimization is mandatory to its success (Figure 6.3a). A greedy
active learner which labels the antibody mutation with the best predicted Kd (the
smallest) preforms approximately equivalently with selecting random labels. Use of
dropout as an approximation of model uncertainty as in Gal and Ghahramani (2016)
improves upon these baselines, although significant betterment is not achieved until
approximately 35 labels are added. In comparison, the results from LeaSuRe
diverge from all others nearly immediately, and the best model, which uses a lambda
of 0.1, achieves a notable improvement in Kd, 5.81µM, vs 7.27µM achieved by
entropy sampling. In support of methods success, we note that the learned policy
preforms approximately as well as the greedy oracle which it emulates (Appendix
Figure C.1a). We observe that the results are robust within a range of possible
lambda values (Figure Figure 6.3b and Appendix Figure C.1b), and that without
the use of submodular regularization the trained policy fails to learn a policy better
than the selection of random labels. This is an important finding, as the method
proposed by Liu, Buntine, and Haffari (2018) without LeaSuRe, has been shown
to be a state-of-the-art method for imitation learning.

Based on these empirical results, LeaSuRe demonstrates significant potential as
computational tool for real-world automated experimental design tasks: In particu-
lar, in the protein engineering task, LeaSuRe achieves the SOTA on the benchmark
data-sets considered in this work. While LeaSuRe does involve repeated retraining
of the protein engineering network, we observe that it returns strong results even
with a single step of training. Additionally, the networks that are employed are
very simple (Appendix C). This allows for reasonable training time (36 hours) and
nearly instantaneous inference. Given the considerable time and cost of protein
engineering, these computational budgets are quite modest. Protein engineering is
a time consuming (months to years) and expensive undertaking (10’s of thousands
to millions of dollars). These projects usually strive to achieve the best possible
results given a fixed budget. We have demonstrated in our work the ability deliver

88

significant improvements in protein potency for the modest fixed budgets. Although
the cost savings of engineering and testing an individual protein (or label) vary
significantly based on the system, ranging tens to hundreds of dollars, we observe
that to achieve a Kd of 8e-6 M LeaSuRe delivers an approximate cost savings of
65%, or 40 fewer labels than the next best method. The sequential synthesis and
evaluation of each of these labels would likely span several months and additionally
incur several thousands of dollars of materials costs.

89

C h a p t e r 7

CONCLUSION & FUTURE DIRECTIONS

In this thesis, we have presented several approaches to incorporate learning into
optimization algorithms. We coveredmethods from replacing a single component of
a solver to incorporating a complete solver as a sub-routine. Both theoretical analyses
and practical applications are considered. Many interesting research questions
remain to be explored and we describe several below.

Learning Interacting Components In chapters 3 and 4, we presented the retro-
spective imitation learning and co-training policy learning algorithms and applied
them to learn the node selection module in the branch-and-bound algorithm. Other
works have shown successes in learning the branching module and the cutting-plane
selection module. A practical question is how to combine different data-driven
components so that they work well together. As these modules interact closely, e.g.,
the branching decisions determine the candidates for node selection, we may want
to design learning algorithms that consider those interactions.

In chapter 4, we showed how to incorporate learning with the large neighborhood
search framework and with the backdoor prediction idea. Both methods use a solver
as a sub-routine. In principle, an improved solver will lead to better performance
since both methods rely on an underlying solver. Thus it is worth considering how
the component improvements can be used jointly with those high-level learning
methods. We can envision a feature-rich learning-based solver that utilizes machine
learning models in every level of decision-making.

Differentiating through Solvers In this thesis, we focused on formulating opti-
mization as sequential decision-making problems. The benefit is that we can connect
with existing research in policy learning and adapt them for specific problem settings.
A challenge with policy learning algorithms is their demand for large amounts of
environmental interactions. Both the online approaches, iteratively collecting data
during learning (chapters 3, 4 and 6), and the offline approaches, collecting data
before learning (chapters 5 and 6), have the same bottleneck. As a potential remedy,
end-to-end differentiable approaches hold promising answers. With the recent ap-

90

pearances of such methods, we can explore corresponding versions in the learning
tasks we have considered.

Interpreting the Learned Components Can we explain the behavior of a learned
decisionmodule? Is it possible to distill a machine learningmodel to a mathematical
formula so that domain experts can analyze its theoretical property? We believe
understanding these questions can benefit the learning to optimize community im-
mensely by bringing more solid theoretical groundings. By inspecting the distilled
version, we can potentially discover unknown structures about a particular optimiza-
tion problem. As a result, the learning community can contribute to the optimization
community by using models as a discovery tool.

Expanding to Other Applications Together with concrete algorithm develop-
ment, we also presented general perspectives on learning to optimize, such as
divide-and-conquer to incorporate solvers. We believe there are many more applica-
tions that can benefit from such perspectives. Some applications with combinatorial
search space include symbolic reasoning such as theorem proving and physical de-
sign problems in hardware. We see similar patterns in these areas: domain-specific
heuristics crafted by hand are prevalent and historical data are available. Thus, they
should also be amenable to data-driven approaches.

91

BIBLIOGRAPHY

Abbeel, Pieter and Andrew Y Ng (2004). “Apprenticeship learning via inverse
reinforcement learning”. In: International Conference on Machine Learning.

Abcouwer, Neil et al. (2021). “Machine Learning Based Path Planning for Improved
Rover Navigation”. In: IEEE Aerospece Conference. url: https://arxiv.
org/abs/2011.06022.

Achterberg, Tobias (2009). “SCIP: solving constraint integer programs”. In: Math-
ematical Programming Computation 1.1, pp. 1–41.

Achterberg, Tobias and Roland Wunderling (2013). “Mixed integer programming:
Analyzing 12 years of progress”. In:Facets of combinatorial optimization. Springer,
pp. 449–481.

Ahuja, Ravindra K et al. (2002). “A survey of very large-scale neighborhood search
techniques”. In: Discrete Applied Mathematics 123.1-3, pp. 75–102.

Albert, Réka and Albert-László Barabási (2002). “Statistical mechanics of complex
networks”. In: Reviews of modern physics 74.1, p. 47.

Alieva, Ayya, Aiden Aceves, Jialin Song, Stephen Mayo, Yisong Yue, and Yuxin
Chen (2021). “Learning to Make Decisions via Submodular Regularization”.
In: International Conference on Learning Representations. url: https : / /
openreview.net/forum?id=ac288vnG_7U.

Alley, E. C. et al. (2019). “Unified rational protein engineering with sequence-based
deep representation learning”. In: Nat. Methods.

Amos, Brandon and J Zico Kolter (2017). “Optnet: Differentiable optimization as
a layer in neural networks”. In: International Conference on Machine Learning.
PMLR, pp. 136–145.

Andrychowicz, Marcin et al. (2016). “Learning to learn by gradient descent by gra-
dient descent”. In: Advances in neural information processing systems, pp. 3981–
3989.

Ansótegui, Carlos et al. (2015). “Model-based genetic algorithms for algorithm
configuration”. In: AISTATS.

Aytar, Yusuf et al. (2018). “Playing hard exploration games by watching YouTube”.
In: Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 2935–2945.

Balcan, Maria-Florina et al. (2018). “Learning to Branch”. In: ICML.

Balunovic, Mislav, Pavol Bielik, and Martin Vechev (2018). “Learning to Solve
SMT Formulas”. In: Neural Information Processing Systems (NeurIPS).

https://arxiv.org/abs/2011.06022
https://arxiv.org/abs/2011.06022
https://openreview.net/forum?id=ac288vnG_7U
https://openreview.net/forum?id=ac288vnG_7U

92

Bar-Yehuda, Reuven and Shimon Even (1983). A Local-Ratio Theorm for Approx-
imating the Weighted Vertex Cover Problem. Tech. rep. Computer Science De-
partment, Technion.

Bérard, Béatrice et al. (2013). Systems and software verification: model-checking
techniques and tools.

Berthold, Timo (2006). “Primal heuristics for mixed integer programs”. In:

Bliek1ú, Christian, Pierre Bonami, and Andrea Lodi (2014). “Solving mixed-integer
quadratic programming problems with IBM-CPLEX: a progress report”. In:
RAMP.

Blum, Avrim and Tom Mitchell (1998). “Combining labeled and unlabeled data
with co-training”. In: Conference on Learning Theory (COLT).

Bojarski, Mariusz et al. (2016). “End to end learning for self-driving cars”. In: arXiv
preprint arXiv:1604.07316.

Boros, Endre and Peter L Hammer (1991). “The max-cut problem and quadratic
0–1 optimization; polyhedral aspects, relaxations and bounds”. In: Annals of
Operations Research.

Boyd, Stephen and Lieven Vandenberghe (2004). Convex optimization. Cambridge
university press.

Brockman, Greg et al. (2016). “Openai gym”. In: arXiv preprint arXiv:1606.01540.

Burer, Samuel, Renato DC Monteiro, and Yin Zhang (2002). “Rank-two relaxation
heuristics for max-cut and other binary quadratic programs”. In: SIAM Journal
on Optimization 12.2, pp. 503–521.

Burges, Chris, Erin Renshaw, and Matt Deeds (1998). “Learning to Rank using
Gradient Descent”. In: International conference on Machine learning.

Burges, Chris, Tal Shaked, et al. (2005). “Learning to rank using gradient descent”.
In: International Conference on Machine Learning (ICML).

Chaloner, K. and I. Verdinelli (1995). “Bayesian experimental design: A review”.
In: Statistical Science 10.3, pp. 273–304.

Chang, Kai-Wei et al. (2015). “Learning to search better than your teacher”. In:
International Conference on Machine Learning. PMLR, pp. 2058–2066.

Chen, Binghong, Bo Dai, and Le Song (2020). “Learning to Plan via Neural
Exploration-Exploitation Trees”. In: ICLR.

Chen, Yuxin, S Hamed Hassani, et al. (2015). “Sequential information maximiza-
tion:When is greedy near-optimal?” In:Conference on Learning Theory, pp. 338–
363.

Chen, Yuxin, Shervin Javdani, et al. (Jan. 2015). “Submodular Surrogates for Value
of Information”. In: Proc. Conference on Artificial Intelligence (AAAI).

93

Chen, Yuxin, Jean-Michel Renders, et al. (2017). “Efficient Online Learning for
Optimizing Value of Information: Theory and Application to Interactive Trou-
bleshooting”. In: Proceedings of the 33rd Conference on Uncertainty in Artificial
Intelligence (UAI 2017). Vol. 2. Curran Associates, Inc., pp. 966–983.

Cheng, Ching-An et al. (2018). “Fast policy learning through imitation and rein-
forcement”. In: Conference on Uncertainty in Artificial Intelligence.

Choudhury, Sanjiban et al. (2017). “Learning to gather information via imitation”.
In: 2017 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, pp. 908–915.

Colombi, Marco, Renata Mansini, and Martin Savelsbergh (2017). “The general-
ized independent set problem: Polyhedral analysis and solution approaches”. In:
European Journal of Operational Research 260.1, pp. 41–55.

Conforti, Michele, Gérard Cornuéjols, Giacomo Zambelli, et al. (2014). Integer
programming. Vol. 271. Springer.

Cormen, Thomas H et al. (2009). Introduction to algorithms. MIT press.

Cover, Thomas M and Joy A Thomas (2012). Elements of information theory. John
Wiley & Sons.

Cui, Jun et al. (2006). “Combinatorial search of thermoelastic shape-memory alloys
with extremely small hysteresis width”. In: Nature materials.

Dai, Hanjun, Bo Dai, and Le Song (2016). “Discriminative Embeddings of Latent
Variable Models for Structured Data”. In: International Conference on Machine
Learning, pp. 1–23.

Dai, Hanjun, Elias B Khalil, et al. (2017). “Learning combinatorial optimization
algorithms over graphs”. In: Neural Information Processing Systems.

Dasgupta, Sanjoy, Michael L Littman, and David A McAllester (2002). “PAC gen-
eralization bounds for co-training”. In: Neural information processing systems.

Daumé III, Hal, John Langford, and Daniel Marcu (2009). “Search-based structured
prediction”. In: Machine learning 75.3, pp. 297–325.

De Jong, Kenneth (Jan. 2006). Evolutionary Computation – A Unified Approach.
isbn: 978-0-262-04194-2.

De Moura, Leonardo and Nikolaj Bjørner (2008). “Z3: An efficient SMT solver”.
In: TACAS.

De Vries, Sven and Rakesh V Vohra (2003). “Combinatorial auctions: A survey”.
In: INFORMS Journal on computing.

Dechter, Rina and Judea Pearl (1985). “Generalized best-first search strategies and
the optimality of A”. In: Journal of the ACM (JACM) 32.3, pp. 505–536.

94

Dilkina, Bistra, Carla P Gomes, Yuri Malitsky, et al. (2009). “Backdoors to com-
binatorial optimization: Feasibility and optimality”. In: International Conference
on AI and OR Techniques in Constriant Programming for Combinatorial Opti-
mization Problems. Springer, pp. 56–70.

Dilkina, Bistra, Carla P Gomes, and Ashish Sabharwal (2009). “Backdoors in the
context of learning”. In: International Conference on Integration of AI and OR
Techniques inConstraint Programming forCombinatorialOptimizationProblems
(CPAIOR).

Dorigo, Marco, Mauro Birattari, and Thomas Stutzle (2006). “Ant colony optimiza-
tion”. In: IEEE computational intelligence magazine 1.4, pp. 28–39.

Douguet, Dominique, Etienne Thoreau, and Gérard Grassy (2000). “A genetic algo-
rithm for the automated generation of small organic molecules: drug design using
an evolutionary algorithm”. In: Journal of computer-aided molecular design 14.5,
pp. 449–466.

Du, Dingzhu and Panos M Pardalos (1998). Handbook of combinatorial optimiza-
tion. Vol. 4. Springer Science & Business Media.

Duan, Yan et al. (2016). “Benchmarking deep reinforcement learning for continuous
control”. In: International Conference on Machine Learning.

Dvořák, Pavel et al. (2017). “Solving integer linear programs with a small number of
global variables and constraints”. In: Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pp. 607–613.

Erdős, Paul and Alfréd Rényi (1960). “On the evolution of random graphs”. In:
Publ. Math. Inst. Hung. Acad. Sci.

Ferber, Aaron, Jialin Song, Bistra Dilkina, and Yisong Yue (2021). “Learning
Pseudo-Backdoors for Mixed Integer Programs”. In: Symposium on Combina-
torial Search.

Ferber, Aaron, Bryan Wilder, et al. (2020). “Mipaal: Mixed integer program as a
layer”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34.
02, pp. 1504–1511.

Fischetti, Matteo and Andrea Lodi (2010). “Heuristics in mixed integer program-
ming”. In:Wiley Encyclopedia of Operations Research andManagement Science.

Fischetti, Matteo and Michele Monaci (2011). “Backdoor branching”. In: Inter-
national Conference on Integer Programming and Combinatorial Optimization.
Springer, pp. 183–191.

Gal, Yarin and Zoubin Ghahramani (June 2016). “Dropout as a Bayesian Approxi-
mation: Representing Model Uncertainty in Deep Learning”. In: Proceedings of
The 33rd International Conference on Machine Learning. Ed. by Maria Florina
Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning
Research. New York, New York, USA: PMLR, pp. 1050–1059. url: http:
//proceedings.mlr.press/v48/gal16.html.

http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html

95

Galef Jr, Bennett G (1988). “Imitation in animals: History, definition, and interpreta-
tion of data from the psychological laboratory”. In: Social learning: Psychological
and biological perspectives 28.

Gasse, Maxime et al. (2019). “Exact Combinatorial Optimization with Graph Con-
volutional Neural Networks”. In: Advances in Neural Information Processing
Systems 32.

Golombek,M and Don Rapp (1997). “Size-frequency distributions of rocks onMars
and Earth analog sites: Implications for future landed missions”. In: Journal of
Geophysical Research: Planets 102.E2, pp. 4117–4129.

Golovin, Daniel and Andreas Krause (2011). “Adaptive submodularity: Theory
and applications in active learning and stochastic optimization”. In: Journal of
Artificial Intelligence Research 42, pp. 427–486.

Gomes, Carla P and Bart Selman (2001). “Algorithm portfolios”. In: Artificial
Intelligence 126.1-2, pp. 43–62.

Gonen, Rica and Daniel Lehmann (2000). “Optimal solutions for multi-unit com-
binatorial auctions: Branch and bound heuristics”. In: ACM Conference on Eco-
nomics and Computation (EC).

Greensmith, Evan, Peter L Bartlett, and Jonathan Baxter (2004). “Variance reduc-
tion techniques for gradient estimates in reinforcement learning”. In: Journal of
Machine Learning Research.

Gu, Shixiang et al. (2017). “Deep reinforcement learning for robotic manipulation
with asynchronous off-policy updates”. In: 2017 IEEE international conference
on robotics and automation (ICRA). IEEE, pp. 3389–3396.

Guillaume, Alexandre et al. (2007). “Deep space network scheduling using evolu-
tionary computational methods”. In: 2007 IEEE Aerospace Conference. IEEE,
pp. 1–6.

Gurobi Optimization, LLC (2021). Gurobi Optimizer Reference Manual. url:
http://www.gurobi.com.

Haarnoja, Tuomas et al. (2019). “Learning to Walk Via Deep Reinforcement Learn-
ing.” In: Robotics: Science and Systems.

Hart, Peter E, Nils J Nilsson, and Bertram Raphael (1968). “A formal basis for
the heuristic determination of minimum cost paths”. In: IEEE transactions on
Systems Science and Cybernetics 4.2, pp. 100–107.

He, He, Hal Daume III, and Jason M Eisner (2014). “Learning to Search in Branch
and Bound Algorithms”. In: Neural Information Processing Systems (NeurIPS).

Helber, Stefan and Florian Sahling (2010). “A fix-and-optimize approach for the
multi-level capacitated lot sizing problem”. In: International Journal of Produc-
tion Economics 123.2, pp. 247–256.

http://www.gurobi.com

96

Hendel, Gregor (2018). “Adaptive large neighborhood search for mixed integer
programming”. In:

Henderson, Peter et al. (2018). “Deep reinforcement learning that matters”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1.

Hester, Todd et al. (2018). “Deep Q-Learning from Demonstrations”. In: AAAI
Conference on Artificial Intelligence.

Heyes, Cecilia M and Bennett G Galef Jr (1996). Social learning in animals: the
roots of culture. Elsevier.

Ho, Jonathan and Stefano Ermon (2016). “Generative adversarial imitation learn-
ing”. In: Neural Information Processing Systems.

Hochbaum, Dorit S and Anu Pathria (1997). “Forest harvesting and minimum cuts:
a new approach to handling spatial constraints”. In: Forest Science 43.4, pp. 544–
554.

Holmberg, Kaj and Di Yuan (2000). “A Lagrangian heuristic based branch-and-
bound approach for the capacitated network design problem”. In: Operations
Research 48.3, pp. 461–481.

Hoos, Holger H (2011). “Automated algorithm configuration and parameter tuning”.
In: Autonomous search. Springer, pp. 37–71.

Hottung, André and Kevin Tierney (2019). “Neural Large Neighborhood Search for
the Capacitated Vehicle Routing Problem”. In: arXiv:1911.09539.

Huang, Taoan, Bistra Dilkina, and Sven Koenig (2021). “Learning Node-Selection
Strategies in Bounded-Suboptimal Conflict-Based Search for Multi-Agent Path
Finding”. In: Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 611–619.

Hutter, Frank, Holger HHoos, and Kevin Leyton-Brown (2011). “Sequential model-
based optimization for general algorithm configuration”. In: International confer-
ence on learning and intelligent optimization. Springer, pp. 507–523.

Ichter, Brian, James Harrison, and Marco Pavone (2018). “Learning sampling dis-
tributions for robot motion planning”. In: 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, pp. 7087–7094.

Jauhri, Snehal, Carlos Celemin, and JensKober (2020). “Interactive Imitation Learn-
ing in State-Space”. In: arXiv preprint arXiv:2008.00524.

Javdani, Shervin et al. (Apr. 2014). “Near-Optimal Bayesian Active Learning for
DecisionMaking”. In: In Proc. International Conference on Artificial Intelligence
and Statistics (AISTATS).

Johnson, Melvin et al. (2017). “Google’s multilingual neural machine translation
system: Enabling zero-shot translation”. In: Transactions of the Association for
Computational Linguistics.

97

Joshi, Chaitanya K, Thomas Laurent, and Xavier Bresson (2019). “An efficient
graph convolutional network technique for the travelling salesman problem”. In:
arXiv preprint arXiv:1906.01227.

Kakade, Sham and John Langford (2002). “Approximately Optimal Approximate
Reinforcement Learning”. In: International Conference on Machine Learning.

Kang, Bingyi, Zequn Jie, and Jiashi Feng (2018). “Policy optimization with demon-
strations”. In: International Conference on Machine Learning.

Khalil, Elias, Hanjun Dai, et al. (2017). “Learning combinatorial optimization al-
gorithms over graphs”. In: NeurIPS.

Khalil, Elias, Pierre Le Bodic, et al. (2016). “Learning to branch in mixed integer
programming”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 30. 1.

Khalil, Elias B et al. (2017). “Learning to Run Heuristics in Tree Search”. In:ĲCAI.

Kilby, Philip et al. (2005). “Backbones and backdoors in satisfiability”. In: Proceed-
ings of the 20th national conference on Artificial intelligence-Volume 3, pp. 1368–
1373.

Kim, Yoon et al. (2018). “Semi-amortized variational autoencoders”. In: ICML.

Kleinberg, Robert et al. (2019). “Procrastinating with Confidence: Near-Optimal,
Anytime, Adaptive Algorithm Configuration”. In: NeurIPS.

Kober, Jens, J Andrew Bagnell, and Jan Peters (2013). “Reinforcement learning in
robotics: A survey”. In: The International Journal of Robotics Research.

Koch, Thorsten et al. (2011). “MIPLIB 2010”. In: Mathematical Programming
Computation 3.2, pp. 103–163.

Kool, Wouter, Herke van Hoof, andMaxWelling (2018). “Attention, Learn to Solve
Routing Problems!” In: International Conference on Learning Representations.

Kruskal, Joseph B (1956). “On the shortest spanning subtree of a graph and the
traveling salesman problem”. In: Proceedings of the American Mathematical
society 7.1, pp. 48–50.

Kumar, Abhishek and Hal Daumé (2011). “A co-training approach for multi-view
spectral clustering”. In: International Conference on Machine Learning.

Land, Ailsa H and Alison G Doig (2010). “An automatic method for solving dis-
crete programming problems”. In: 50 Years of Integer Programming 1958-2008.
Springer, pp. 105–132.

Lawler, Eugene L and David E Wood (1966). “Branch-and-bound methods: A
survey”. In: Operations research 14.4, pp. 699–719.

Le, Hoang et al. (2018). “Hierarchical Imitation and Reinforcement Learning”. In:
International Conference on Machine Learning.

98

Le Bodic, Pierre and George L Nemhauser (2015). “How important are branching
decisions: fooling MIP solvers”. In: Operations Research Letters 43.3, pp. 273–
278.

Levine, Sergey et al. (2016). “End-to-end training of deep visuomotor policies”. In:
The Journal of Machine Learning Research.

Leyton-Brown, Kevin, Mark Pearson, and Yoav Shoham (2000). “Towards a uni-
versal test suite for combinatorial auction algorithms”. In: ACM conference on
Electronic commerce, pp. 66–76.

Li, Yujia et al. (Apr. 2016). “Gated Graph Sequence Neural Networks”. In: Pro-
ceedings of ICLR’16.

Lillicrap, Timothy P et al. (2015). “Continuous control with deep reinforcement
learning”. In: arXiv preprint arXiv:1509.02971.

Lin, Hui and Jeff Bilmes (2012). “Learning mixtures of submodular shells with ap-
plication to document summarization”. In:Conference onUncertainty in Artificial
Intelligence (UAI).

Linderoth, Jeff (2005). “A simplicial branch-and-bound algorithm for solving quadrat-
ically constrained quadratic programs”. In: Mathematical programming.

Linderoth, Jeff T and Martin WP Savelsbergh (1999). “A computational study of
search strategies for mixed integer programming”. In: INFORMS Journal on
Computing 11.2, pp. 173–187.

Lindley, Dennis V (1956). “On a measure of the information provided by an exper-
iment”. In: The Annals of Mathematical Statistics, pp. 986–1005.

Liu, Ming, Wray Buntine, and Gholamreza Haffari (2018). “Learning how to ac-
tively learn: A deep imitation learning approach”. In: Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 1874–1883.

Maas, Andrew L, Awni Y Hannun, and Andrew Y Ng (2013). “Rectifier nonlinear-
ities improve neural network acoustic models”. In: International Conference on
Machine Learning (ICML).

Manna, Zohar and Richard J Waldinger (1971). “Toward automatic program syn-
thesis”. In: Communications of the ACM 14.3, pp. 151–165.

Mirhoseini, Azalia et al. (2017). “Device placement optimizationwith reinforcement
learning”. In: International Conference on Machine Learning (ICML).

Mittelmann, Hans D (2017). “Latest Benchmarks of Optimization Software”. In:

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, et al. (2013).
“Playing atari with deep reinforcement learning”. In: arXiv.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, et al. (2015).
“Human-level control through deep reinforcement learning”. In: nature 518.7540,
pp. 529–533.

99

Nair, Ashvin et al. (2018). “Overcoming exploration in reinforcement learning with
demonstrations”. In: International Conference on Robotics and Automation.

Nehaniv, Chrystopher L and Kerstin Ed Dautenhahn (2007). Imitation and social
learning in robots, humans and animals: behavioural, social and communicative
dimensions. Cambridge University Press.

Ng, Andrew Y, Daishi Harada, and Stuart J Russell (1999). “Policy Invariance
Under Reward Transformations: Theory and Application to Reward Shaping”.
In: Proceedings of the Sixteenth International Conference on Machine Learning,
pp. 278–287.

Nigam, Kamal and Rayid Ghani (2000). “Analyzing the effectiveness and appli-
cability of co-training”. In: ACM Conference on Information and knowledge
Management.

Öncan, Temel, İ KubanAltınel, andGilbert Laporte (2009). “A comparative analysis
of several asymmetric traveling salesman problem formulations”. In: Computers
& Operations Research.

Ono, Masahiro and Brian C Williams (2008). “An Efficient Motion Planning Algo-
rithm for Stochastic Dynamic Systemswith Constraints on Probability of Failure.”
In: AAAI, pp. 1376–1382.

Ono, Masahiro, Brian C Williams, and Lars Blackmore (2013). “Probabilistic plan-
ning for continuous dynamic systems under bounded risk”. In: Journal of Artificial
Intelligence Research (JAIR) 46, pp. 511–577.

Optimization, Gurobi (2019). Gurobi 8 Performance Benchmarks. url: https:
//www.gurobi.com/pdfs/benchmarks.pdf.

Orman, AJ and HP Williams (2007). “A survey of different integer programming
formulations of the travelling salesman problem”. In: Optimisation, econometric
and financial analysis. Springer.

Otsu, Kyohei et al. (2020). “Fast approximate clearance evaluation for rovers with
articulated suspension systems”. In: Journal of Field Robotics 37.5, pp. 768–785.
doi: 10.1002/rob.21892. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/rob.21892. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/%20rob.21892.

Paliwal, Aditya et al. (2020). “Reinforced Genetic Algorithm Learning for Optimiz-
ing Computation Graphs”. In: International Conference on Learning Represen-
tations. url: https://openreview.net/forum?id=rkxDoJBYPB.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information Processing Systems
32. Curran Associates, Inc., pp. 8024–8035. url: http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf.

https://www.gurobi.com/pdfs/benchmarks.pdf
https://www.gurobi.com/pdfs/benchmarks.pdf
https://doi.org/10.1002/rob.21892
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21892
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21892
https://onlinelibrary.wiley.com/doi/abs/10.1002/%20rob.21892
https://onlinelibrary.wiley.com/doi/abs/10.1002/%20rob.21892
https://openreview.net/forum?id=rkxDoJBYPB
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

100

Peng, Fei et al. (2010). “Population-based algorithm portfolios for numerical op-
timization”. In: IEEE Transactions on evolutionary computation 14.5, pp. 782–
800.

Pisinger, David and Stefan Ropke (2010). “Large neighborhood search”. In: Hand-
book of metaheuristics.

Pomerleau, Dean A (1989). “Alvinn: An autonomous land vehicle in a neural net-
work”. In: NeurIPS.

Prékopa, András (1999). “The Use of Discrete Moment Bounds in Probabilistic
Constrained Stochastic ProgrammingModels”. In:Annals ofOperations Research
85, pp. 21–38.

Prouvost, Antoine et al. (2020). “Ecole: A Gym-like Library for Machine Learn-
ing in Combinatorial Optimization Solvers”. In: Learning Meets Combinatorial
Algorithms at NeurIPS2020. url: https://openreview.net/forum?id=
IVc9hqgibyB.

Puterman, Martin L (2014).Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

Qin, Tao, Tie-yan Liu Jun, and XuHang (2010). “LETOR : ABenchmark Collection
for Research on Learning to Rank for Information Retrieval”. In: Information
Retrieval 13(4), pp. 346–374.

Quigley, Morgan et al. (2009). “ROS: an open-source Robot Operating System”. In:
ICRA workshop on open source software. Vol. 3. 3.2. Kobe, Japan, p. 5.

Rao, Roshan et al. (Dec. 2019). “Evaluating Protein Transfer Learning with TAPE”.
eng. In:Advances in neural information processing systems32. PMC7774645[pmcid],
pp. 9689–9701. issn: 1049-5258.url: https://pubmed.ncbi.nlm.nih.gov/
33390682.

Rolínek, Michal et al. (2020). “Deep graph matching via blackbox differentiation of
combinatorial solvers”. In: European Conference on Computer Vision. Springer,
pp. 407–424.

Ronneberger, Olaf, Philipp Fischer, and ThomasBrox (2015). “U-net: Convolutional
networks for biomedical image segmentation”. In: International Conference on
Medical image computing and computer-assisted intervention. Springer, pp. 234–
241.

Ross, Stephane and JAndrewBagnell (2014). “Reinforcement and imitation learning
via interactive no-regret learning”. In: arXiv.

Ross, Stephane, Jiaji Zhou, et al. (2013). “Learning Policies for Contextual Submod-
ular Prediction”. In: International Conference on Machine Learning, pp. 1364–
1372.

Ross, Stéphane and Drew Bagnell (2010). “Efficient reductions for imitation learn-
ing”. In: pp. 661–668.

https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB
https://pubmed.ncbi.nlm.nih.gov/33390682
https://pubmed.ncbi.nlm.nih.gov/33390682

101

Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell (2011). “A reduction of imi-
tation learning and structured prediction to no-regret online learning”. In: Inter-
national Conference on Artificial Intelligence and Statistics.

Rothberg, Edward (2007). “An evolutionary algorithm for polishing mixed integer
programming solutions”. In: INFORMS Journal on Computing 19.4, pp. 534–
541.

Runge, M. C., S. J. Converse, and J. E. Lyons (2011). “Which uncertainty? Using ex-
pert elicitation and expected value of information to design an adaptive program”.
In: Biological Conservation.

Satsangi, Yash et al. (2018). “Exploiting submodular value functions for scaling up
active perception”. In: Autonomous Robots 42.2, pp. 209–233.

Schouwenaars, Tom et al. (2001). “Mixed Integer Programming for Multi-Vehicle
Path Planning”. In: European Control Conference, pp. 2603–2608.

Schulman, John, Sergey Levine, et al. (2015). “Trust region policy optimization”.
In: International Conference on Machine Learning.

Schulman, John, Filip Wolski, et al. (2017). “Proximal policy optimization algo-
rithms”. In: arXiv.

Shaw, Paul (1998). “Using constraint programming and local search methods to
solve vehicle routing problems”. In: CP.

Silver, David et al. (2016). “Mastering the game of Go with deep neural networks
and tree search”. In: nature 529.7587, pp. 484–489.

Singla, Adish et al. (2014). “Near-Optimally Teaching the Crowd to Classify.” In:
International Conference on Machine Learning (ICML).

Sjöbring, U., L. Björck, andW. Kastern (Jan. 1991). “Streptococcal protein G. Gene
structure and protein binding properties”. In: J. Biol. Chem. 266.1, pp. 399–405.

Song, Jialin, Yuxin Chen, and Yisong Yue (2019). “A general framework for multi-
fidelity bayesian optimization with gaussian processes”. In: The 22nd Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR, pp. 3158–
3167.

Song, Jialin, Ravi Lanka, Yisong Yue, and Bistra Dilkina (2020). “A General Large
Neighborhood Search Framework for Solving Integer Linear Programs”. In: Ad-
vances in Neural Information Processing Systems. Vol. 33. url: https://
proceedings.neurips.cc/paper/2020/hash/e769e03a9d329b2e864b4bf4ff54ff39-
Abstract.html.

Song, Jialin, Ravi Lanka, Yisong Yue, and Masahiro Ono (2020). “Co-training for
policy learning”. In:Uncertainty in Artificial Intelligence. PMLR, pp. 1191–1201.
url: http://proceedings.mlr.press/v115/song20b.html.

https://proceedings.neurips.cc/paper/2020/hash/e769e03a9d329b2e864b4bf4ff54ff39-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e769e03a9d329b2e864b4bf4ff54ff39-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e769e03a9d329b2e864b4bf4ff54ff39-Abstract.html
http://proceedings.mlr.press/v115/song20b.html

102

Song, Jialin, Ravi Lanka,Albert Zhao,AadyotBhatnagar, YisongYue, andMasahiro
Ono (2018). “Learning to search via retrospective imitation”. In: arXiv preprint.
url: https://arxiv.org/abs/1804.00846.

Sousa, Samuel de, Yll Haxhimusa, and Walter G Kropatsch (2013). “Estimation of
distribution algorithm for the max-cut problem”. In: International Workshop on
Graph-Based Representations in Pattern Recognition. Springer, pp. 244–253.

Stadie, Bradly C, Pieter Abbeel, and Ilya Sutskever (2017). “Third-person imitation
learning”. In: arXiv.

Sun, Bo et al. (2020). “Competitive Algorithms for the Online Multiple Knapsack
Problem with Application to Electric Vehicle Charging”. In: Proceedings of the
ACM on Measurement and Analysis of Computing Systems 4.3, pp. 1–32.

Sun, Wen et al. (2017). “Deeply aggrevated: Differentiable imitation learning for
sequential prediction”. In: International Conference on Machine Learning.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An intro-
duction. MIT press.

Sutton, Richard S, David A McAllester, et al. (2000). “Policy gradient methods
for reinforcement learning with function approximation”. In: Neural information
processing systems.

Syed, Arslan Ali et al. (2019). “Neural network based large neighborhood search
algorithm for ride hailing services”. In: EPIA.

Syed, Umar, Michael Bowling, and Robert E Schapire (2008). “Apprenticeship
learning using linear programming”. In: International Conference on Machine
Learning.

Syed, Umar and Robert E Schapire (2008). “A game-theoretic approach to appren-
ticeship learning”. In: Neural Information Processing Systems (NeurIPS).

Tang, Yunhao, ShipraAgrawal, andYuri Faenza (2020). “Reinforcement learning for
integer programming: Learning to cut”. In: International Conference on Machine
Learning. PMLR, pp. 9367–9376.

Todorov, Emanuel, Tom Erez, and Yuval Tassa (2012). “Mujoco: A physics engine
for model-based control”. In: International Conference on Intelligent Robots and
Systems.

Toupet, Olivier et al. (2020). “A ROS-based Simulator for Testing the Enhanced
Autonomous Navigation of the Mars 2020 Rover”. In: IEEE Aerospace.

Tsochantaridis, Ioannis et al. (2005). “Large margin methods for structured and
interdependent output variables.” In: Journal of machine learning research 6.9.

Vega, Wenceslas Fernandez de la and Claire Kenyon-Mathieu (2007). “Linear pro-
gramming relaxations of maxcut”. In: ACM-SIAM symposium on Discrete algo-
rithms.

https://arxiv.org/abs/1804.00846

103

Veličković, Petar et al. (2018). “Graph Attention Networks”. In: International
Conference on Learning Representations. accepted as poster. url: https://
openreview.net/forum?id=rJXMpikCZ.

Vlastelica, Marin et al. (2019). “Differentiation of blackbox combinatorial solvers”.
In: International Conference on Learning Representations.

Wainwright, Martin, Tommi Jaakkola, and Alan Willsky (2005). “MAP estimation
via agreement on trees: message-passing and linear programming”. In: IEEE
transactions on information theory.

Wan, Xiaojun (2009). “Co-training for cross-lingual sentiment classification”. In:
Joint conference of ACL and ĲCNLP. Association for Computational Linguistics.

Wang, C. Y. et al. (Mar. 2019). “ProtaBank: A repository for protein design and
engineering data”. In: Protein Sci. 28.3, p. 672.

Wang, Po-Wei et al. (2019). “Satnet: Bridging deep learning and logical reason-
ing using a differentiable satisfiability solver”. In: International Conference on
Machine Learning. PMLR, pp. 6545–6554.

Wilder, Bryan et al. (2019). “End to End Learning and Optimization on Graphs”.
In: Advances in Neural and Information Processing Systems.

Williams, Ryan, Carla P Gomes, and Bart Selman (2003). “Backdoors to typical
case complexity”. In: Proceedings of the 18th international joint conference on
Artificial intelligence, pp. 1173–1178.

Williford, Kenneth H et al. (2018). “The NASA Mars 2020 rover mission and the
search for extraterrestrial life”. In: From Habitability to Life on Mars. Elsevier,
pp. 275–308.

Xu, Lin et al. (2008). “SATzilla: portfolio-based algorithm selection for SAT”. In:
Journal of artificial intelligence research 32, pp. 565–606.

Zhang, Lintao andSharadMalik (2002). “The quest for efficient boolean satisfiability
solvers”. In: CAV.

Ziebart, Brian et al. (2008). “Maximum entropy inverse reinforcement learning”.
In: AAAI Conference on Artificial Intelligence.

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

104

A p p e n d i x A

APPENDIX TO CHAPTER 4

A.1 Proofs
Proof for Proposition 6:

Proof. We show that maxsDJS(πB(s)‖πA(s)) is well-defined for an MDPM with
two representationsMA andMB. From Theorem 4, we know the distribution π(s)

can be written with respect to its occupancy measure ρπ. It is sufficient to show that
we can map occupancy measures of πA and πB to a commonMDP. By the definition
of an occupancy measure,

ρπ(s, a) = P(π(s) = a)
∑∞

i=0
γiP(si = s|π)

= Eτ=(s0,a0,··· ,sn)∼π[
∑n

i=0
γi1((si, ai) = (s, a))].

that is to say, the occupancy measure is the expected discounted count of a state-
action pair to appear in all possible trajectories. Since we have trajectory mappings
betweenMA andMB, we can convert an occupancy measure inMA to one inMB

by mapping each trajectory and perform the count in the new MDP representation.
Formally, the occupancy measure ρBπB of πB inMB can be mapped to an occupancy
measure inMA by

ρAπB(s, a)

= E τB∼πB ,
fB→A(τB)=(s0,a0,··· ,sn)

[
∑n

i=0
γi1((si, ai) = (s, a))].

Following from this, we can compute DJS(πB(s)‖πA(s)) using any s inMA. And
the maximum is defined. In the definition, there is a choice whether to map πA’s
occupancy measure toMB or πB’s toMA. Though both approaches lead to a valid
definition, we use the definition that forDJS(·‖·), we always map the representation
in the first argument to that of the second argument. It is preferable to the other one
because in Theorem 5, we want to optimize

J(π′A) ≥ JπA(π′A)− 2γA(4βBD2
εBD2

+ αADε
A
D)

(1− γA)2
+ δ2

by optimizing
βBD2

= EM∼D2 [maxsDJS(πB(s)‖πA(s))].

105

usually via computing the gradient of βBD2
w.r.t. πA. If we use fA→B to map from

MA to MB, the gradient will involve a complex composition of fA→B and πA,
which is undesirable.

To prove Theorem 5, we need to use a policy improvement result for a single MDP
(a modified version of Theorem 1 in (Kang, Jie, and Feng, 2018)).

Theorem 10. Assume for an MDPM, an expert policy πE have a higer advantage
of over a policy π with a margin, i.e., η(πE,M)− η(π,M) ≥ δ Define

α = maxsDKL(π′(s)‖π(s))

β = maxsDJS(π′(s)‖πE(s))

επE = maxs,a |AπE(s, a)|
επ = maxs,a |Aπ(s, a)|

then η(π′,M) ≥ ηπ(π′,M)− 2γ(4βεπE+αεπ)

(1−γ)2
+ δ.

Proof. The only difference from the original theorem is that the original assumes
EaE∼πE(s),a∼π(s)[Aπ(s, aE) − Aπ(s, a)] ≥ δ′ > 0 for every state s. It is a stronger
assumption which is not needed in their analysis. Notice that the advantage of a
policy over itself is zero, i.e., Ea∼π(s)[Aπ(s, a)] = 0 for every s, so the margin
assumption simplifies to EaE∼πE(s)[Aπ(s, aE)] ≥ δ′.

By the policy advantage formula,

η(πE,M)− η(π,M) = Eτ∼πE [
∑∞

i=0
γiAπ(si, ai)]

= Esi∼ρπE Eai∼πE(si)[
∑∞

i=0
γiAπ(si, ai)]

≥ Esi∼ρπE [δ′
∑∞

i=0
γi]

=
δ′

1− γ .

So an assumption on per-state advantage translates to a overall advantage. Thus
we can make this weaker assumption which is also more intuitive and the original
statement still holds with a different δ term.

Proof of Theorem 5:

106

Proof. Theorem 5 is a distributional extension to the theorem above. ForM∼ D2,
let δM = η(πB,MB)− η(πA,MA).

J(π′A)

= EM∼D[η(π′A,MA)]

= EM∼D1 [η(π′A,MA)] + EM∼D2 [η(π′A,MA)]

≥ EM∼D1 [η(π′A,MA)]+

EM∼D2 [ηπA(π′A,MA)− 2γA(4βεπB + αεπA)

(1− γA)2
+ δM]

≥ EM∼D1 [ηπA((π
′A,MA)− 2γAαεπA

(1− γA)2
]+

EM∼D2 [ηπA(π′A,MA)− 2γA(4βεπB + αεπA)

(1− γA)2
+ δM]

= EM∼D[ηπA(π′A,MA)]− EM∼D[
2γAαεπA

(1− γA)2
]−

EM∼D2 [
2γA · 4βεπB
(1− γA)2

] + EM∼D2 [δM]

≥ JπA(π′A)− 2γA(4βBD2
εBD2

+ αADε
A
D)

(1− γA)2
+ δ2.

The derivation for J(π′B) is the same.

Finally, we provide the proof for Theorem 7. We first quantify the performance gap
between a policy π and an optimal policy π∗. For a policy that is able to achieve ε
0− 1 loss, `(s, π) = 1(π(s) 6= π∗(s)), measured against π∗’s action choices under
its own state distributions, then we can bound the performance gap. Let Qπ′

t (s, π)

denote the t-step cost of executing π in initial state s and then following policy π′

Theorem 11. (Theorem 2.2 from (Stéphane Ross, Gordon, and D. Bagnell, 2011),
adpated to our notations) Let π be such tahtEs∼ρπ [`(s, π)] = ε, andQπ∗

T−t+1(s, π∗)−
Qπ∗
T−t+1(s, a) ≤ u for all action a, t ∈ {1, 2, · · · , T}, then η(π,M) ≥ η(π∗,M)−

uTε.

Thus the important quantity to measure is ε, and by measuring the disagreements
between two policies in two views, we can upper bound ε. The result is originally
stated in the context of classification, and the above theorem justifies the learning
reduction approach of reducing policy learning to classification.

107

Figure A.1: Two views for Risk-Aware Path Planning. On the left, the obstacle is
enclosed by a polytope (MILP view) and on the right the obstacle is enclosed by an
ellipse (QCQP view).

Theorem 12. (Corollary 5 in (Dasgupta, Littman, and McAllester, 2002) applied
to full classifiers) Using the definitions in Theorem 7, with probability 1 − σ over
the choice of a sample set N , for all pairs of classifiers h1, h2 such that for all i we
have ζi(h1, h2, σ) > 0 and bi(h1, h2, σ) ≤ 1.

ε ≤ maxj∈{1,··· ,k} bj(h1, h2, σ)

Proof. The only change from the original proof is that instead of a partial classifier
which can output ⊥, we consider a full classifier. Then we could eliminate the
estimates for P(h1 6= ⊥) and the error introduced by converting a partial classifier
to a full classifier via random labelling when the output is ⊥.

Proof of Theorem 7:

Proof. For the bound for πA, we are measuring εA on its sampled paths. Then
directly apply Theorem 12 gives an upper bound on εA. Apply Theorem 11 gives
the result of Theorem 7.

A.2 Pictorial Representation of the Two-views in Risk-aware Path Planning
We present a pictorial representation of the two different views used in the experi-
ments in Fig A.1. In the MILP view, the constraint space is represented using addi-
tional auxiliary binary variables to choose the active side of the polytope, whereas
in the QCQP view, the constraint space can be encoded in a quadratic constraint.

A.3 Risk-aware Path Planning Dataset Generation
We generate 150 obstacle maps. Each map contains 10 rectangle obstacles, with the
center of each obstacle chosen from a uniform random distribution over the space
0 ≤ y ≤ 1, 0 ≤ x ≤ 1. The side length of each obstacle was chosen from a uniform
distribution in range [0.01, 0.02] and the orientation was chosen from a uniform

108

distribution between 0° and 360°. In order to avoid trivial infeasible maps, any
obstacles centered close to the destination are removed. For MILP view, we directly
use the randomly generated rectangles for defining the constraint space. However,
for the QCQP view, we enclose the rectangle obstacles with a circle for defining the
quadratic constraint.

A.4 Discrete/Continuous Control Results in Tabular Form
Acrobot Swimmer Hopper

A (CoPiEr) −86.44± 10.80 106.35± 23.11 217.83± 30.03

A (PG) −169.57± 10.48 109.09± 21.58 278.66± 32.87

A (All) −252.42± 8.73 100.36± 22.37 49.39± 10.35

B (CoPiEr) −88.48± 15.13 104.16± 19.32 168.88± 18.21

B (PG) −257.16± 10.93 103.48± 21.89 89.34± 4.89

B (All) −251.74± 9.65 96.74± 19.57 22.59± 5.55

A + B −86.42± 3.48 108.71± 5.03 346.53± 5.91

109

A p p e n d i x B

APPENDIX TO CHAPTER 5

B.1 Algorithm Configuration Results
In this section, we present the algorithm configuration results similar to the one in
Section 5.4.

k
t 1 2 3

2 13.61± 0.82 14.19± 0.89 14.42± 0.88

3 6.06± 0.47 6.17± 0.42 6.65± 0.45

4 3.09± 0.30 3.14± 0.27 3.61± 0.31

5 1.84± 0.18 2.13± 0.20 2.08± 0.23

Table B.1: Parameter sweep results for (k, t) of an MVC dataset for Erdős-Rényi
random graphs with 1000 vertices. Numbers represent improvement ratios ∆/t for
one decomposition, averaged over 5 random seeds.

k
t 1 2 3

2 69.05± 2.92 71.87± 2.98 74.14± 3.03

3 29.99± 2.07 28.59± 1.80 30.05± 1.81

4 14.28± 1.04 16.13± 1.13 15.33± 1.19

5 7.79± 0.77 7.57± 0.72 7.69± 0.69

Table B.2: Parameter sweep results for (k, t) of theMVC dataset for Barabási-Albert
random graphs with 1000 vertices.

k
t 1 2 3

2 2155.60± 22.79 1258.79± 13.65 925.05± 12.50

3 2700.33± 20.91 1767.37± 10.86 1310.96± 6.25

4 4454.65± 46.05 4489.60± 49.44 4466.36± 47.20

5 5414.01± 29,76 5325.95± 31.07 5404.87± 30.16

Table B.3: Parameter sweep results for (k, t) of the MAXCUT dataset for Erdős-
Rényi random graphs with 500 vertices.

B.2 Visualization
A natural question is what property a good decomposition has. Here we provide one
interpretation for the risk-aware path planning. We use a slightly smaller instance

110

k
t 1 2 3

2 1961.42± 24.54 1043.89± 12.28 1030.60± 2.41

3 2698.46± 36.44 1887.29± 51.40 1581.43± 55.98

4 6565.54± 47.36 6454.62± 46.80 6669.28± 47.91

5 6400.38± 23.94 6478.23± 19.33 6465.03± 22.54

Table B.4: Parameter sweep results for (k, t) of the MAXCUT dataset for Barabási-
Albert random graphs with 500 vertices.

k
t 1 2 3

2 65360.28± 799.26 37554.81± 263.48 27864.92± 179.93

3 61064.41± 519.66 36816.46± 236.11 26633.11± 178.71

4 56190.18± 530.23 34647.30± 233.18 25547.98± 176.94

5 54571.21± 344.89 33554.38± 224.77 24238.73± 165.66

Table B.5: Parameter sweep results for (k, t) of the CATS dataset for the regions
distribution with 2000 items and 4000 bids.

k
t 1 2 3

2 54358.95± 1268.30 31397.88± 364.19 21878.70± 234.63

3 50046.53± 586.72 29375.81± 336.84 20711.09± 242.39

4 46449.07± 555.02 27920.03± 315.03 20431.02± 226.95

5 42190.19± 480.57 27004.79± 315.24 19882.16± 211.44

Table B.6: Parameter sweep results for (k, t) of the CATS dataset for the arbitrary
distribution with 2000 items and 4000 bids.

k
t 1 2 3

2 0.37± 0.18 0.39± 0.07 0.36± 0.05

3 0.41± 0.07 0.43± 0.07 0.43± 0.07

4 0.37± 0.06 0.40± 0.06 0.33± 0.05

5 0.33± 0.04 0.32± 0.05 0.31± 0.05

Table B.7: Parameter sweep results for (k, t) of the risk-aware path planning for 30
obstacles.

with 20 obstacles for a clearer view. Binary variables in an ILP formulation of
this problem model relationships between obstacles and waypoints. Thus we can
interpret the neighborhood formed by a subset of binary variables as attention over
specific relationships among some obstacles and waypoints.

Figure B.1 captures 4 consecutive iterations of LNS with large solution improve-

111

(a) Iteration 2 (b) Iteration 3 (c) Iteration 4 (d) Iteration 5

Figure B.1: Visualizing predicted decompositions in a risk-aware path planning
problem, with 4 consecutive solutions after 3 iterations of LNS. Each blue square is
an obstacle and each cross is a waypoint. The obstacles in red and waypoints in dark
blue are the most frequent ones in the subsets that lead to high local improvement.

ments. Each sub-figure contains information about the locations of obstacles (light
blue squares) and the waypoint locations after the current iteration of LNS. We
highlight a subset of 5 obstalces (red circles) and 5 waypoints (dark blue squares)
that appear most frequently in the first neighborhood of the current decomposition.
Qualitatively, the top 5 obstacles define some important junctions for waypoint
updates. For waypoint updates, the highlighted ones tend to have large changes be-
tween iterations. Thus, a good decomposition focuses on important decision regions
and allows for large updates in these regions.

B.3 Model Architecture
We first apply PCA to reduce the adjacency matrix obtained in Section 5.3. Then a
fully-connected neural network is used to perform the classification task. Table B.8
lists the specifications. ForMVCproblems, for instance, wefirst apply PCA to reduce
the adjacency matrix to 99 dimensions. Then the current solution assignments for
each vertex is appended as described in Section 5.3, resulting in a 100-dimensional
feature representation for each vertex. Next, it is passed through a hidden layer of
300 units with ReLU activations followed by a 2-class Softmax activations (since
the model performs classifications). The number of classes is decided via the
hyperparameter search for k as described in Section 5.4 and B.1.

B.4 Domain Heuristics
MVC. We compare with a 2-OPT heuristic based on local-ratio approximation
(Bar-Yehuda and Even, 1983).

MAXCUT We compare with 3 heuristics. The first is the greedy algorithm that
iteratively moves vertices from one cut set to the other based on whether such a

112

PCA dimensions Neural Network Architecture Activation Functions
MVC 99 (100, 300, 2) (ReLU, Softmax)

MAXCUT 299 (300, 100, 5) (ReLU, Softmax)
CATS 2000 99 (100, 300, 100, 2) (ReLU, ReLU, Softmax)
CATS 4000 399 (400, 300, 2) (ReLU, Softmax)
Path Planning 499 (500, 100, 3) (ReLU, Softmax)

Table B.8: Model architectures for all the experiments.

movement can increase the total edge weights. The second, proposed in Burer,
Monteiro, and Y. Zhang, 2002, is based on a rank-two relaxation of an SDP. The
third is from Sousa, Haxhimusa, and Kropatsch, 2013.

CATS We consider 2 heuristics. The first is greedy: at each step, we accept the
highest bid among the remaining bids, remove its desired items and eliminate other
bids that desire any of the removed items. The second is based on LP rounding:
we first solve the LP relaxation of the ILP formulation of a combinatorial auction
problem, and then we move from the bid having the largest fractional value in the
LP solution down and remove items/bids in the same manner.

113

A p p e n d i x C

APPENDIX FOR CHAPTER 6

C.1 Proof for section 6.7
Proof of Theorem 9

Proof. The high-level idea is to first connect the total expected utility of the learned
policy π̂ with the expected utility of the expert policy πexp, following the analysis
in DAgger (Stéphane Ross, Gordon, and D. Bagnell, 2011). Then, we will use the
fact that πexp is greedy with respect to f , an approximation to the submodular utility
function u, to bound the one step gain of the πexp against the k step gain of running
the optimal policy, and subsequently bound the total utility of the expert policy
against the optimal policy. We would eventually obtain a similar result as Theorem
2, detailed as follows.

More concretely, following Theorem 3.4 in DAgger, we obtain that

E[u(Sπ̂,k)] ≥ E[u(Sπexp,k)]−∆maxkε̂N −O(1).

Here ∆max is the largest one-step deviation from πexp that π̂ can suffer. It is equiva-
lent to the term u in the DAgger paper. Since f is ε-close to a monotone submodular
function u, we know that ∆max ≤ maxA⊂V,|A|=k f(A) ≤ maxA⊂V,|A|=k u(A) + εE ,
which is a constant once u is given.

Next, since πexp is greedily optimizing an εE-approximation to a monotone sub-
modular function u, we know that

E[u(Sπexp,k)] ≥ (1− 1/e)E[u(Sπ∗,k)]− kεE

following the proof from Theorem 5 in (Y. Chen, Renders, et al., 2017).

Combining both steps, we have that

E[u(Sπ̂,k)] ≥ (1− 1/e)E[u(Sπ∗,k)]− k(εE + ∆maxε̂N)−O(1)

which completes the proof.

114

C.2 Supplemental Details for the Protein Engineering Experiments
Dataset Our datasets were identified in Protabank (C. Y. Wang et al., 2019) for
training of active learning policies and benchmarking of performance. In select-
ing datasets upon which to train our active learning models several factors were
considered. As the state space of possible protein variants for typical engineer-
ing application is very large, size is our foremost criteria. Additionally it will be
advantageous to use datasets which characterize mutations to all amino acids (as
opposed to Alanine scans), and those which include epistatic interactions. We also
desire to identify datasets which have a high quality, quantitative readout, such as
calorimetry, fluorescence, or SPR data.

Protein Engineering Methods Embeddings of protein sequences were created
using the TAPE repository (Rao et al., 2019) according to the UniRep system as
first proposed in Alley et al., 2019. UniRep produces protein embeddings as a
matrix of shape (length protein sequence, 1900), although we average together the
embeddings only of positions being engineered to produce a consistent embed-
ding of shape (1900,). We have implemented the active learning imitation learning
algorithm proposed in Liu, Buntine, and Haffari, 2018 to work with the protein em-
bedding representations described above. Pseudocode for this method is presented
in Algorithms 1 and 2 from the original work. As in Liu, Buntine, and Haffari, 2018,
our policy network consists of a single dense unit which acts sequentially on the pool
of samples being considered to produce a preference score. Our downstream protein
engineering network (which was used to compute the preference score of the expert
policy) acts on the protein embeddings prepared using TAPE. The network consists
of an attention layer, followed by a 1-dimensional convolution layer (128 filters,
kernel size 3), before being flattened and applying two fully connected layers of 128
units each. When predicting protein fitness, dropout is applied with a probability of
0.5 and an additional dense layer is applied with one unit and linear activation. Both
networks are trained using ADAMwith a learning rate of 1e-3. The implementation
of this part of the project is nearly identical to Liu, Buntine, and Haffari, 2018, only
changing the data representation, protein fitness network structure, and values of K
(30), B (100) and T (20) as listed in the appendix of our work. Beta is fixed at 0.5,
although the method was shown to be robust to a range of values. At training time,
100 labels are randomly selected for evaluating the effect of the greedy oracle, and
10 data are randomly selected to form the initial data set for learning. The superset
is appended at each step of training the policy to maintain a size of 2x the labeled

115

dataset. The training of a policy using these settings takes 36 hours on a modern
multiprocessor computer equipped with an NVIDIA Titan V GPU.

(a) Comparison of policy to greedy oracle
which it emulates

(b) Effect of scaling parameter lambda and
empirical evidence for selecting its value

Figure C.1: Supplemental results for the protein engineering experiments of Sec-
tion 6.8: (a)We observe that the policy learned byLeaSuRe preforms approximately
as well as the greedy oracle which it emulates. In this experiment the policy was
derived from the training set, but the greedy oracle is operating on the test set.
(b) Lambda linearly scales the value of the regularizer term. When lambda takes
value 0.01, the magnitude of the (scaled) regularizer term (represented by the blue
bar) aligns the best with the magnitude of the cross entropy loss (represented by
the orange bar). This is consistent with what we observed in Figure 6.3b where
λ = 0.01 leads to well-regularized model behavior.

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Motivation
	Challenges
	Thesis Organization

	Related Works
	Related Works on Learning to Optimize
	Policy Learning for Sequential Decision-Making

	Learning to Search with Retrospective Imitation
	Introduction
	Problem Setting & Preliminaries
	Retrospective Imitation Learning
	Theoretical Results
	Experimental Results

	Co-training for Policy Learning
	Introduction
	Background & Preliminaries
	A Theory of Policy Co-training
	The CoPiEr Algorithm
	Experiments

	Incorporating Existing Solvers as Sub-routines
	A General Large Neighborhood Search Framework for Solving Integer Linear Programs
	Background on LNS
	Learning a Decomposition
	Emprical Validation for Learning-based LNS
	Learning Pseudo-backdoors for Mixed Integer Programs
	Problem Statement for Learning Pseudo-backdoors
	Learning Pseudo-Backdoors
	Experiment Results for Learning Pseudo-backdoors

	Learning Surrogates for Optimization
	Learning Safety Surrogate for the Perseverance Rover
	Method for Learning Safety Surrogate
	Evaluations of the Learned Safety Surrogate
	Learning Surrogate with Submodular-Norm Regularization
	Background and Problem Statement
	Learning with Submodular Regularization
	Analysis for LeaSuRe
	Evaluations LeaSuRe on Protein Engineering

	Conclusion & Future Directions
	Bibliography
	Appendix to Chapter 4
	Proofs
	Pictorial Representation of the Two-views in Risk-aware Path Planning
	Risk-aware Path Planning Dataset Generation
	Discrete/Continuous Control Results in Tabular Form

	Appendix to Chapter 5
	Algorithm Configuration Results
	Visualization
	Model Architecture
	Domain Heuristics

	Appendix for Chapter 6
	Proof for section 6.7
	Supplemental Details for the Protein Engineering Experiments

