
 i 

Enhanced Noninvasive Imaging of Acoustic 

Biomolecules 

 

Thesis by 

Daniel Patrick Sawyer 
 

In Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy in Biological Engineering 

 

 

 

 

 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

Pasadena, California 

 

2021 

Defended December 11, 2020



 ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ã 2021 

Daniel Patrick Sawyer 
ORCID: 0000-0003-2926-191X 



 iii 
ACKNOWLEDGEMENTS 

My doctoral education at Caltech has been everything I could have hoped for and more, and I owe 

it all to the people around me. Throughout my education, I have had the annoying tendency to 

change the discipline of my career ambitions every few years, and so I owe a debt of gratitude to 

the mentors who believed in my potential and provided a path forward despite my haphazard 

record. First, I want to thank my PhD advisor, Mikhail Shapiro. You supported and believed in me 

every step of the way, starting with my first conversation with you as a waitlisted electrical 

engineering applicant. You supported my subsequent interest in machine learning, allowing me to 

explore orthogonal opportunities by taking classes and doing an internship. You were always 

generous with your time, giving me regular guidance and feedback to help me learn and grow in 

my research and communication. You provided the most creative, collaborative, and friendly 

interdisciplinary lab culture I could have asked for. Thank you for helping me live my dream of 

pursuing groundbreaking research and exploring exciting ideas with the smartest and kindest 

people I know. 

 I also want to thank my undergraduate advisor at Simon’s Rock, Ret. Col. Patty Dooley, for 

patiently teaching a naïve homeschooled student from Indiana the skills and discipline to succeed 

in the structured environment of higher education. 

 I would also like to thank my undergraduate advisor at Columbia, Ken Shepard, for 

welcoming an ex-pre-med transfer student from a liberal arts college into his electrical engineering 

lab to gain extensive research experience on projects that sounded like science fiction. 

 I would like to thank my committee members, Rob Phillips, Michael Roukes, and Lulu 

Qian for their guidance and enthusiastic interest throughout this project. 

 I am grateful for the happy and thoughtful mentorship that David Maresca provided in 

teaching me about ultrasound from the ground up and jump-starting my research by giving me a 

central a role on the project you had just started, which resulted in Chapter 1 of this thesis. 

 I cannot express enough gratitude for the friendships I have made at the Shapiro lab. Thank 

you, David Mittelstein and Di, for being my steadfast partners in crime, from fearless adventures in 

exciting classes that were over our heads, to whirlwind escapades all over Japan. Thank you, Arash 

and Anu, for being great officemates. I benefited from your advice and experience and already 

miss our conversations. Thank you, Avinoam, for being a fantastic friend as well as co-author. 



 iv 
Thank you, Bill and Lealia, for your friendship and support from the start of our Caltech 

PhD journeys together. I am also grateful to Audrey, Rob, Dan, Gabrielle, and all the other current 

and former Shapiro Lab members for making these last four years the happiest and most rewarding 

of my life. 

 I am honored to have received funding from the National Science Foundation Graduate 

Research Fellowship, which has bolstered my confidence and sense of independence in research 

and has opened doors to a number of opportunities. 

 I am also incredibly grateful for the people at the Caltech Y and IMPLiCIT, who provided 

opportunities to skillfully venture outside my comfort zone with outdoor adventures and improv 

comedy, and who provided a reliable source of happiness in times when good research results were 

few and far between. 

 I have profound loving gratitude for Betty Jin, whose quick wit, loving care, beautiful 

companionship, and uncanny intuition have both kept me motivated and moderated some of my 

less-wise ideas and tendencies.  

 Finally, I would like to thank my parents. I can never fully express my gratitude toward my 

mother, Nancy Sawyer, for having the courage to leave her job in elementary education and devote 

herself full-time to providing me and my siblings with the radically divergent education that she 

knew would best preserve our natural curiosity and love of learning. The same is true of my father, 

Patrick Sawyer, whom I still look to as a role model of diligence, honesty, playful curiosity, and 

healthy disregard for the status quo. Though I will never get to show you what I’ve accomplished, I 

could not have done it without you. 
 

 

 

 



 v 
ABSTRACT 

The extensive scientific interest in cellular and biomolecular processes is due in large part to the 

importance of such processes deep inside living organisms, in the context of both health and disease. 

However, most methods for imaging cellular processes such as gene expression have relied on 

fluorescent proteins and other optical reporters that, while providing a direct optical readout of the 

biomolecular environment in cells readily exposed to light, have greatly limited performance in large 

animals due to the poor penetration of visible light beyond 1 mm of biological tissue. In contrast, 

ultrasound is widely used to noninvasively image tissue deep inside living organisms but has rarely 

been used to investigate cellular function due a lack of acoustic reporters whose production and 

properties are coupled to biomolecular events. Recently, the first acoustic reporter genes (ARGs) 

were developed for ultrasound imaging of a unique class of air-filled protein nanostructures known 

as gas vesicles, or GVs, which scatter sound waves when expressed in bacterial and mammalian 

cells. ARGs allow gene expression to be visualized with ultrasound similar to how green fluorescent 

protein (GFP) allowed gene expression to be visualized with light. However, ARGs will have limited 

utility in practical applications involving living organisms without ultrasound imaging methods 

providing the specificity to reliably distinguish GVs from surrounding tissue and the sensitivity to 

detect GVs at low concentrations. 

In this thesis, we present two novel ultrasound imaging methods that exploit the unique nonlinear 

physical properties of gas vesicles to enhance image quality in situations that pose challenges for 

conventional imaging methods. In Chapter 1, we provide a brief background and introduction to 

methods for enhancement of ultrasound imaging of biological structure and function through contrast 

agents. In Chapter 2, we address the problem of distinguishing GVs from tissue with cross-

Amplitude Modulation (xAM), an ultrasound pulse sequence that uses X-waves to isolate the signal 

generated by reversible buckling of the GV shell while cancelling scattering and artifacts from tissue. 

In Chapter 3, we present an application of xAM to imaging of dynamic biomolecular processes. We 

show that, when GVs are engineered such that buckling is induced by enzyme activity, xAM can 

visualize enzymatic processes deep inside living animals. In Chapter 4, we address the problem of 

detecting very low concentrations of ARG-expressing cells with Burst Ultrasound Reconstructed 

with Signal Templates (BURST), an imaging method that exploits the strong, transient signals 



 vi 
generated during sudden GV collapse under acoustic pressure by unmixing the temporal 

dynamics of such signals from background scattering. BURST imaging improves cellular sensitivity 

by more than 1000-fold and, in dilute cell suspensions, enables the detection of gene expression in 

individual bacteria and mammalian cells. In Chapter 5, we present an application of an early 

formulation of BURST to imaging gene expression in mammalian cells. We use this imaging method 

to visualize vascularization patterns in tumors containing mammalian cells expressing acoustic 

reporter genes. 
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C h a p t e r  1  

METHODS FOR CONTRAST-ENHANCED ULTRASOUND IMAGING OF 

BIOLOGICAL STRUCTURE AND FUNCTION 

 

1.1 Introduction  

 
In this chapter, I provide an overview of the field of contrast-enhanced ultrasound, emphasizing the pulse 

sequences and image processing algorithms that exploit the unique properties of ultrasound contrast agents. I 

first provide a brief background on the principles of ultrasound imaging, including the relevant physical 

properties of sound waves, common pulse sequences used to generate echoes from the sample, and the data 

processing pipeline by which the echoes are used to reconstruct an image. Next, I introduce microbubbles, the 

most widely-used synthetic ultrasound contrast agent. I then describe how novel pulse sequences and 

algorithms designed to exploit the unique physical properties of these contrast agents have enhanced the 

capabilities of contrast-enhanced ultrasound. Finally, I introduce gas vesicles as the first genetically encodable 

ultrasound contrast agents, compare their properties with those of synthetic ultrasound contrast agents, discuss 

existing methods for imaging them, and present some remaining challenges for ultrasound imaging with gas 

vesicles. Throughout, I compare the development of microbubbles and gas vesicles in ultrasound imaging to 

the development of synthetic dyes and fluorescent proteins used in optical imaging to place these technologies 

in the broader context of imaging of biomolecular and cellular function. 

  

1.2 Principles of Biomedical Ultrasound Imaging  

 
Ultrasound has been widely used as a portable and low-cost imaging technique in the medical field since the 

1960s and is currently the most prescribed diagnostic modality1. However, while diagnostic medical 

ultrasound is generally considered a mature technology in some applications, recent advances in 

computational processing power and contrast agents have ushered in a large number of novel research 

directions2. Here, I provide a brief overview of acoustic waves in biological tissue and biomedical ultrasound 

imaging on programmable systems in sufficient detail to confer a conceptual understanding. 

 

1.2.1 Properties of acoustic waves and propagation media 
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Ultrasound is a form of energy manifested as a compressive wave consisting of periodic regions of 

compression and rarefaction, or peaks of high and low pressure, in a medium such as air or water (of course, 

this is also a description of audible sound: ultrasound is distinguished by having a frequency above the upper 

audible range in humans of roughly 20 kHz). The basic principle that makes ultrasound imaging possible is 

the reflection or scattering of acoustic waves at boundaries of media with different material properties. 

Specifically, the density and compressibility of a medium determine its acoustic impedance3, a property 

analogous to the index of refraction in optics. The greater the mismatch in acoustic impedance between two 

media, the greater the fraction of energy of an ultrasound wave that will be reflected when it encounters that 

boundary. The acoustic impedances of different types of soft biological tissue are relatively similar, resulting 

in a small fraction of an acoustic wave’s energy being backscattered at each interface4. For example, at a 

boundary between muscle and fat tissue, on the order of 1% of the acoustic energy is backscattered. This 

allows ultrasound to remain coherent and pass through multiple layers of tissue while sending backscattered 

echoes back toward the ultrasound probe, providing the information necessary to reconstruct an image. When 

a boundary consists of a particle on the order of ten times smaller than the wavelength of ultrasound 

propagating through it (such as a fiber, cell, or organelle), an omnidirectional scattering event occurs instead 

of a directional reflection5. Most soft biological tissues include many such scatterers, creating a pattern known 

as speckle between tissue interfaces4 whose intensity is mostly independent of the orientation of the transducer 

with respect to the tissue.  

Finally, an important acoustic property is nonlinearity. In a perfectly linear medium with linear 

scatterers, an acoustic wave and its backscattered echoes will have the same frequency components as the 

transmitted wave. However, in nonlinear media and scatterers, for instance those whose speed of sound and 

attenuation change in response to the amplitude of an acoustic wave, the shape of the acoustic wave becomes 

distorted6–8, creating new frequency components in the frequency spectrum of both the backscattered and 

propagating waves. As a rough rule of thumb, nonlinearity occurs when the properties of a medium or a 

scatterer change in response to the properties of an acoustic wave. In reality, all media, including water and 

biological tissue, have some degree of nonlinearity. However, the strongest commonly-encountered sources 

of nonlinearity are ultrasound contrast agents, discussed in the next section. While the effects of nonlinearity 

can be undesirable9, we will see later how they represent some of the most interesting opportunities for 

improving ultrasound imaging with novel pulse sequences and algorithms. 

 

1.2.2 Data processing pipeline 

A typical programmable ultrasound system consists of a probe connected to a scanner system communicating 

with a host computer. The probe contains a linear array of piezoelectric transducer elements (often 128 or 256 

of them) that can both transmit and receive analog ultrasound signals10, which is sent to the scanner system 
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for low-level signal processing operations such as amplification, analog-to-digital conversion, and filtering. 

In most clinical equipment, the scanner system also performs the higher-level image reconstruction and 

processing operations using dedicated digital signal processing chips to minimize latency for real-time 

imaging. The conventional sequence for these operations includes beamforming, envelope detection, 

interpolation, and dynamic range compression (often by conversion to dB scale). Beamforming is the process 

by which the times of flight of the received echoes and the positions of the receiving probe elements are used 

to compute the origin in the imaging plane of every echo. In recent decades, popular platforms for preclinical 

ultrasound research began implementing these higher-level processing functions in software on the host 

computer11, allowing users to access raw data and implement custom reconstruction algorithms. These 

systems, along with advances in computing power, have accelerated research on novel pulse sequences and 

image reconstruction algorithms12 due to their programmability, versatility, and general lack of proprietary 

processing steps. The following discussion on pulse sequences assumes such a programmable ultrasound 

system connected to a linear array probe. 

 

1.2.3 Pulse sequences 

A pulse sequence is, at a basic level, a pattern of voltage values applied to each probe element as a function 

of time and element position. A pulse sequence usually consists of several transmits, each of which represents 

a pattern of transmit waveforms applied to one or more of the probe elements. 

  Each transmit waveform is a function of pressure over time that is typically parameterized 

by frequency, number of cycles, amplitude, and phase. Frequency is an important property of the acoustic 

wave itself that determines its wavelength (𝜆 = 𝑐/𝑓, where 𝑐 is the speed of sound in the medium and 𝑓 is 

the frequency of the ultrasound wave), which determines a lower limit for the resolution of conventional 

imaging and ranges from 500 µm in clinical imaging to 50 µm in microscanning of small animals13. Because 

attenuation increases with frequency as mentioned above, there is an inherent trade-off between resolution 

and penetration depth. If the transmit waveform contains more than one cycle, the axial (depth-wise) 

resolution will be reduced in proportion to the number of cycles, though signal-to-noise ratio of the imaging 

(SNR) increases with number of cycles. The amplitude of a transmit waveform, determined primarily by the 

voltage applied to the probe, also affects the SNR, as well as the strength of nonlinear distortion. Moreover, 

as described in the next section, even small differences in amplitude can result in qualitatively different 

acoustic phenomena when imaging with contrast agents. The phase of a transmit waveform does not typically 

affect the image on its own because phase information in the received echoes is usually lost during envelope 

detection, but it can be useful for techniques such as phase inversion14 where RF echoes from transmits with 

opposite phases are combined to highlight nonlinear signal. Most commonly, a single set of waveform 

parameters is applied across all probe elements active during a transmit event. 
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  During a transmit event, a set of delays is applied to all active probe elements as they transmit 

the specified waveform, after which the probe elements all wait to receive echoes generated in the region to 

be imaged before initiating any other transmit events in the pulse sequence. The (usually contiguous) set of 

active elements is called the aperture and the set of delays applied to these elements is called the delay law. 

Together, the aperture and delay law determine the shape of the ultrasound beam, which is formed by 

constructive interference of the quasi-spherical waves generated by each element after the programmed delay.  

  Most pulse sequences utilize some variation of one of two types of ultrasound beam: focused 

(or parabolic) beams, and plane waves. Conventional brightness-mode (B-mode) images rely on focused 

beams, which involve a parabolic delay law that ensures the acoustic waves transmitted by each active element 

arrive simultaneously at a target focal depth at the center of the aperture. For a given aperture size and 

waveform amplitude, focused beams maximize the peak acoustic pressure experienced at the target location. 

During a beamforming process known as delay and sum, delays are applied to echoes received by all the 

active elements to account for different travel times from the aperture bisector. The delayed echoes are then 

summed together to generate a 1-dimensional signal known as a ray line. In pulse sequences relying on 

focused beams, a 2-dimensional image is generated by successively shifting the aperture by a single element 

prior to each transmit until the maximum number of ray lines is acquired. For instance, a focused beam pulse 

sequence with a 64-element aperture implemented on a 128-element array will generate an image from 128 −

64 + 1 = 	65 ray lines. In this example, an image with up to the full 128 ray lines could be formed by 

continuing to transmit with progressively truncated apertures at the edges of the array, but this would result 

in lower, nonuniform contrast in the rightmost and leftmost 32 ray lines. 

  Plane waves, formed using a flat or linear delay law, allow images encompassing the probe’s 

maximum lateral field of view to be reconstructed from the echoes of as few as one transmit, allowing for 

ultrafast imaging with frame rates improved by two orders of magnitude relative to focused beams (7,700 Hz 

compared to 59 Hz for a 10-cm-deep image with a 128-element probe)15. Plane wave image reconstruction is 

accomplished through a process called synthetic aperture beamforming, in which delay-and-sum 

beamforming is successively applied to the RF recordings of subsets of the probe elements in a convolution-

like process. Consequently, the computational intensity of reconstruction in plane wave imaging increases in 

proportion to the higher frame rate, which made recent improvements in computer hardware crucial for the 

advance of ultrafast imaging. While images acquired with single plane waves have low contrast compared to 

those acquired with focused beams, images from a small number of plane waves tilted at different angles can 

be combined to improve contrast while maintaining ultrafast framerates16. Ultrafast plane wave imaging has 

been the basis for several recent advances in ultrasound, including functional doppler imaging of blood flow 

in the brain, in which shifts in the scattering signal from red blood cells between frames is used to estimate 
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the blood flow velocity in the brain vasculature over time with high SNR17,18. Ultrafast imaging has also 

enabled advances when combined with contrast agents, as described below. 

  

1.3 Synthetic Contrast Agents 

 
While the relative homogeneity of acoustic impedance across soft biological tissues provides conventional 

ultrasound with its signature advantage of large penetration depth, it also results in relatively low contrast. 

This causes an inability to distinguish tissue features with scattering properties similar to those of their 

surroundings, such as tumors, or those with small size and low scattering levels relative to their surroundings, 

such as small blood vessels3.  

  In the field of microscopy, similar limitations, resulting from the small difference in optical 

properties between spatially co-localized tissues, cells, and organelles, were addressed with synthetic dyes 

that allowed distinct chemical and structural properties to be coupled to large changes in optical properties. 

For example, the Golgi stain allowed visualization of the axons and dendrites of individual neurons, which 

are small and whose weak levels of absorbance and scattering of visible light are similar to those of other 

neurons and glial cells. The stain accomplishes this by producing a large increase in absorbance confined to 

the cytoplasm of the target neuron19. 

  In both ultrasound and microscopy, then, there is often an overlap between the imaging 

target’s properties of interest and its hidden properties, namely those that are not detectable or distinguishable 

by the respective imaging modality. In this way, for a given biomedical imaging modality, we can view a 

good contrast agent as a substance or particle with one or more physical properties that are 1) detectable by 

the imaging modality, 2) distinguishable from the target’s background signal, and 3) dependent on one or 

more of the imaging target’s hidden properties of interest. In addition, the contrast agent should be robust in 

the sense that its presence should not change the target’s properties of interest to an extent that is confounding 

of the results of experiments or, for in vivo imaging, harmful to the subject. Of course, the utility of a contrast 

agent depends on other factors such as cost and ease of use, but a simplified framework of detectability, 

distinguishability, dependence, and robustness is a helpful way to conceptualize the differences among 

contrast agents between and within imaging modalities. 

 

1.3.1 Microbubbles 

 

To address the limitations of ultrasound imaging mentioned above, researchers and clinicians have for several 

decades used synthetic microscale bubbles, typically stabilized lipid membranes, a type of ultrasound contrast 
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agent known as microbubbles20–22. The Golgi stain had a spatial distribution of absorbance that was detectable 

by visible light, distinguishable from neural tissue, and dependent on the structure of neurons. Similarly, 

microbubbles have a spatial distribution of scattering that is detectable by ultrasound, distinguishable from 

most types of soft tissue, and dependent on the structure of blood vessels in the vascular system. In addition, 

the safety and robustness of microbubbles in clinical imaging has been long-established20,23. 

  The size and composition of microbubbles represent two characteristics that are virtually 

essential for any ultrasound contrast agent. Ultrasound contrast agents are designed to be no larger than red 

blood cells3, allowing them to pass through the smallest capillaries and scatter omnidirectionally even for the 

higher range of frequencies used in ultrasound imaging. Second, ultrasound contrast agents are almost always 

gas-filled inclusions. Because gas is dramatically more compressible and less dense than biological tissue, an 

inclusion filled with gas maximizes the acoustic impedance mismatch and thus also the amount of scattering 

for a scatterer of a given radius.  

 

1.3.2 Imaging methods for microbubbles 

 

While microbubbles were initially developed to exploit the linear acoustic properties mentioned above for use 

with existing imaging methods3, novel imaging methods continue to be developed that exploit these properties 

in new ways. The high linear scattering of microbubbles allows ultrafast plane wave imaging to maintain good 

contrast at high frame rates24, and their small size results in signals with high spatiotemporal frequency that 

can be unmixed from tissue background signal25. Together, these properties have enabled super-resolution 

methods that track the motion of individual microbubbles to produce images of the brain or tumors at the 

organ scale with resolutions of less than 10 µm16,26. 

  In addition to the linear acoustic properties, the size and composition of microbubbles also 

endows them with interesting nonlinear properties that became some of their most useful features as novel 

pulse sequences were developed to exploit them14,27,28. The sub-wavelength size of microbubbles allows them 

to be fully exposed to each cycle of compression and rarefaction in an acoustic wave, while their highly-

compressible gaseous composition allows their size to fluctuate in response to these rapid pressure changes. 

These changes in the radius of the scatterers in response to incident acoustic waves generate nonlinearity in 

the form of harmonic frequencies29. 

  Because biological tissue has weak nonlinearity, nonlinear contrast agents present an 

opportunity to improve imaging specificity by separating contrast agent signal from the tissue background. 

The method of pulse inversion does this by successively sending two transmits in which the phase of the 

waveforms are shifted by one half-cycle relative to each other14. The coherent sum of the echoes from these 

two pulses cancels the fundamental frequency component and preserves the second harmonic signal produced 
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by the contrast agent. Another method is amplitude modulation, in which echoes from two low-pressure 

transmits are coherently subtracted from the echoes of a high-pressure transmit whose beam is the sum of the 

first two30,31. This cancels the linear signals and preserves nonlinear signal present in both the fundamental 

and second harmonic frequencies. 

 

 

1.3.3 Current limitations of microbubbles 

 

Despite their many capabilities and remaining opportunities for improvement, there are a number of 

limitations intrinsic to all forms of synthetic microbubbles. The imaging methods for microbubbles we have 

discussed have all functioned to expand their detectability and distinguishability across spatial and temporal 

dimensions and across imaging contexts. However, none of these have expanded the dependence of 

microbubbles to biological phenomena other than blood flow and vascular structure.  

  While microbubbles have been functionalized to bind to specific molecular targets in the 

blood stream20,22,27, their microscale size and limited stability after injection create significant challenges for 

their use in molecular imaging of targets outside the bloodstream and of dynamic cellular processes. Enabling 

robust noninvasive imaging of biological processes at the cellular and biomolecular levels will require an 

ultrasound contrast agent whose physical properties are intrinsically dependent on such processes. 

 

1.4 Genetically Encodable Contrast Agents 
 

To provide context and tentative outlook for biomolecular ultrasound imaging, we return to our analogy with 

optical microscopy. In 1994, the gene encoding green fluorescent protein (GFP) was expressed in E. coli and 

C. elegans and shown to generate fluorescence in these non-native organism for the first time32,33, allowing a 

plethora of questions in the burgeoning field of molecular biology to be answered with the well-established 

tools of optical microscopy. As a fluorescent protein whose gene could be readily expressed in non-native 

prokaryotic and eukaryotic cells, GFP created a robust dependence between detectable and distinguishable 

optical signal and the processes that define the central dogma of molecular biology. Moreover, because GFP 

is built with the same well-characterized molecular machinery and building blocks common to all forms of 

life, the goals of creating dependence between optical signals and other biomolecular processes, such as Ca2+ 

signaling34, without exogenous agents were transformed from open scientific problems to engineering 

challenges. While GFP and an increasing number of engineered variants demonstrated the exciting potential 

of this class of tools with conventional microscopy techniques, innovations in optical imaging such as 

PALM35, STORM36, light-sheet microscopy37, and multiphoton microscopy38 were developed to exploit the 
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unique physical properties of these proteins. This resulted in the ever-increasing resolution, scope, information 

content, and robustness of fluorescent protein imaging technologies that made them the mainstays of scientific 

and industrial biotechnology they are today. 

  However, as fluorescent protein imaging has matured, so has recognition of its limitations. 

Because the physical nature of visible light limits ballistic penetration past approximately 1 mm of biological 

tissue39, it appears clear that biomolecular and cellular processes occurring deep inside the body are unlikely 

ever to be noninvasively imaged in situ using optical methods. This is an important problem because most of 

the cellular and biomolecular processes investigable by optical methods are interesting because of their roles 

deep inside the bodies of living animals. 

 

1.4.1 Gas vesicles and acoustic reporter genes 

 

In 2014, gas vesicles, a unique class of gas-filled protein nanostructures that scatter acoustic waves, were 

presented as the first biomolecular ultrasound contrast agents40. The native function of gas vesicles is to 

regulate buoyancy in photosynthetic microbes for optimal access to light41,42. In a process that remains to be 

fully understood, chaperones and other assembly factor proteins nucleate and assemble the hollow gas vesicle 

shell out of repeating subunits of a protein called GvpA, an amphiphilic protein whose hydrophobic residues 

face the inside of the shell and prevent the condensation of water while leaving the shell selectively permeable 

to gas. A second protein, GvpC, acts as an outer scaffold that increases the structural integrity of the shell. 

This structure allows water vapor and gas dissolved in the surrounding media to equilibrate with the gas in 

the gas vesicle on a microsecond timescale, leaving no pressure differential across the shell at equilibrium and 

providing long-term stability in contrast to microbubbles, which typically dissolve in under 6 minutes20. In 

recent years, the gene cluster encoding gas vesicles and the auxiliary proteins has been engineered to develop 

the first acoustic reporter genes for imaging gene expression of gut bacteria in mammalian hosts43. In this 

way, gas vesicles have shown the potential to do for ultrasound what GFP and its derivatives have done for 

optical imaging.  

  

1.4.2 Imaging methods for gas vesicles 

 

As sub-wavelength, gas-filled inclusions, gas vesicles share many of the advantageous linear acoustic 

properties of microbubbles. As with microbubbles, the size and composition of gas vesicles also create 

interesting nonlinear properties. However, the encasement in a gas-permeable protein shell and the consequent 

lack of surface tension give gas vesicles unique nonlinear properties distinct from those of microbubbles. The 

most important of these from the perspective of contrast-enhanced imaging are collapse and buckling, both of 
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which are genetically determined and can be modulated by the biomolecular environment40,44–47. Irreversible 

collapse of the gas vesicle shell occurs when it is exposed to positive acoustic pressures above a genetically 

determined threshold, liberating the gas inside as nanobubbles48 and erasing any ultrasound contrast. 

Reversible buckling of the gas vesicle shell occurs at acoustic pressures above a genetically determined 

buckling threshold (but below the collapse threshold) at ultrasound frequencies above 1 MHz47, where the 

time between ultrasound cycles is short enough that the internal pressure of the gas vesicle is maintained 

despite the free gas exchange across the shell, which occurs on the order of 10-5 seconds41.  

  Unlike the nonlinear behavior of microbubbles, which occurs even at low acoustic pressures7, 

the nonlinear phenomena of buckling and collapse in gas vesicles occur at sharply-defined acoustic pressure 

thresholds due to the rigid structure of the gas vesicle shell. For gas vesicle collapse, this property allows for 

multiplexed imaging of gas vesicle variants with different collapse profiles44. This method works by applying 

successively higher acoustic pressures to collapse one gas vesicle variant population at a time, followed by 

linear unmixing to isolate the total signal due to each variant for every image pixel. For gas vesicle buckling, 

the sharp threshold property allows signal from different engineered gas vesicle variants to be distinguished 

on the basis of nonlinear harmonic generation44,47, including with the use of the amplitude modulation method 

discussed above in the context of microbubbles. 

 

1.4.3 Limitations of gas vesicle imaging methods 

Despite the demonstrated potential of gas vesicles and acoustic reporter genes, a number of challenges remain 

that limit their practical utility. First, while amplitude modulation imaging of harmonic gas vesicles improves 

contrast relative to tissue, use of this technique to image targets in vivo showed the presence of strong 

nonlinear propagation artifacts in tissue downstream of gas vesicle inclusions47. Because the spatial 

distribution of gas vesicles will not be known a priori, such artifacts compromise the specificity of this 

technique. Second, while B-mode ultrasound imaging was shown to detect engineered bacteria expressing gas 

vesicles inside the mouse colon at 109 cells/ml, endogenous targets of interest such as immune cells and certain 

gut microbes are present at concentrations orders of magnitude smaller49,50. 

  As was the case with GFP and optical imaging methods, the full realization of the potential 

of acoustic reporter genes requires ultrasound imaging methods that exploit the unique physical properties of 

gas vesicles to address these outstanding limitations and augment advances in the engineering of these 

acoustic proteins. In this thesis, I present the development and application of two such methods. 
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C h a p t e r  2  

NONLINEAR X-WAVE ULTRASOUND IMAGING OF ACOUSTIC 
BIOMOLECULES 

This chapter is in large part a reformatted version of the manuscript entitled “Nonlinear X-Wave Ultrasound 

Imaging of Acoustic Biomolecules” published by Maresca, D., Sawyer, D. P., Renaud, G., Lee-Gosselin, 

A. & Shapiro, M. G. in Physical Review X. Under the supervision of Mikhail Shapiro, my contributions to 

this work were to conceive, design, and conduct the experiments, design and optimize the ultrasound pulse 

sequence and reconstruction algorithm, analyzed the data, and write the manuscript alongside David 

Maresca. Thanks to Guillaume Renaud for performing the ultrasound simulations and to Audrey Lee-

Gosselin for assistance with the animal experiments. 

 

2.1 Abstract 

The basic physics of sound waves enables ultrasound to visualize biological tissues with high spatial and 

temporal resolution. Recently, this capability was enhanced with the development of acoustic biomolecules – 

proteins with physical properties enabling them to scatter sound. The expression of these unique air-filled 

proteins, known as gas vesicles (GVs), in cells allows ultrasound to image cellular functions such as gene 

expression in vivo, providing ultrasound with its analog of optical fluorescent proteins. Acoustical methods 

for the in vivo detection of GVs are now required to maximize the impact of this technology in biology and 

medicine. We previously engineered GVs exhibiting a nonlinear scattering behavior in response to acoustic 

pressures above 300 kPa, and showed that amplitude-modulated (AM) ultrasound pulse sequences that both 

excite the linear and nonlinear GV scattering regimes were highly effective at distinguishing GVs from linear 

scatterers like soft biological tissues. Unfortunately, the in vivo specificity of AM ultrasound imaging is 

systematically compromised by the nonlinearity added by the GVs to propagating waves, resulting in strong 

image artifacts from linear scatterers downstream of GV inclusions. To address this issue, we present an 

imaging paradigm, cross-amplitude modulation (xAM), which relies on cross-propagating plane-wave 

transmissions of finite aperture X-waves to achieve quasi artifact-free in vivo imaging of GVs. The xAM 

method derives from counter-propagating wave interaction theory which predicts that, in media exhibiting 

quadratic elastic nonlinearity like biological tissue, the nonlinear interaction of counter-propagating acoustic 

waves is inefficient.  By transmitting cross-propagating plane-waves, we minimize cumulative nonlinear 

interaction effects due to collinear wave propagation, while generating a transient wave-amplitude modulation 
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at the two plane-waves’ intersection. We show in both simulations and experiments that residual xAM 

nonlinearity due to wave propagation decreases as the plane-wave cross-propagation angle increases. We 

demonstrate in tissue-mimicking phantoms that imaging artifacts distal to GV inclusions decrease as the 

plane-wave cross-propagation angle opens, nearing complete extinction at angles above 16.5 degrees. Finally, 

we demonstrate that xAM enables highly specific in vivo imaging of GVs located in the gastrointestinal tract, 

a target of prime interest for future cellular imaging. These results advance the physical facet of the emerging 

field of biomolecular ultrasound, and are also relevant to synthetic ultrasound contrast agents. 

2.2 Introduction 

Green fluorescent protein (GFP) and its analogs serve as irreplaceable tools allowing biologists to visualize 

gene expression and other cellular processes using optical microscopes1. However, the microstructure of 

biological tissues restricts a photon’s transport mean free path to about 1 mm2, limiting in vivo optical imaging 

applications. In contrast, the physics of ultrasonic waves allow them to propagate centimeters deep into 

biological tissues without losing their coherence, and enable tissue scanning at the organ scale. Very recently, 

the first acoustic biomolecules for ultrasound, analogous to GFP for optics, were developed3 based on a unique 

class of air-filled protein nanostructures called gas vesicles, or GVs4, making it possible to use ultrasound to 

visualize the function of cells deep inside tissues. 

To maximize the impact of acoustic biomolecules in biology and medicine, physical methods are needed to 

discriminate GV scattering from tissue scattering, analogous to previous developments in the imaging of 

synthetic microbubble contrast agents5–11. GVs are air-filled nanocompartments with dimensions on the order 

of 200 nm, enclosed by a rigid 2 nm-thick protein shell12,13. In 2014, it was reported that GVs could be imaged 

with ultrasound4, and it was recently shown that gene clusters encoding GVs could be expressed 

heterologously in engineered cells and serve as acoustic reporter genes3. While most natural GVs behave as 

linear ultrasound scatters, Lakshmanan et al.14 engineered harmonic GV variants (hGVs) that buckle and 

scatter higher harmonics at acoustic pressures above 320 kPa, corresponding to a mechanical index of 0.08, 

well below the FDA safety requirement of 1.915. Amplitude modulation (AM) ultrasound pulse sequences 

emerged as logical candidates to exploit dissimilar hGV responses below and above buckling and enabled 

nonlinear imaging of hGVs in vitro, in ovo, and in vivo15. In AM, backscattered echoes of two half-amplitude 

transmissions are digitally subtracted from echoes of a third, full-amplitude transmission. The full-amplitude 

transmission creates pressures above the hGV buckling threshold, triggering hGV harmonic scattering, while 

the half-amplitude transmissions create pressures below hGV buckling and trigger hGV linear scattering. This 

scattering response difference in hGV echoes persists after the subtraction, while linear echoes from 

surrounding tissue scale in amplitude and are cancelled. However, we observed that the in vivo specificity of 
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AM imaging of hGVs was systematically compromised by nonlinear wave propagation artifacts that lead to 

the misclassification of biological tissue as hGVs15. 

  In a highly nonlinear medium such as buckling hGVs or resonant microbubbles (nonlinearity parameter B/A 

two orders of magnitude higher than tissue)16, ultrasonic waves experience amplitude-dependent attenuation 

and amplitude-dependent speed of sound17,18. In consequence, the high amplitude pulse of the AM sequence 

gets distorted in proportions that to not scale linearly with the low amplitude pulse of the sequence. Ultrasonic 

waves carry that distortion as they travel forward in the medium. We hypothesized that this phenomenon, 

reported in microbubble inclusions19, is also the cause of nonlinear artifacts distal to GV inclusions. 

It is established that in a medium exhibiting quadratic elastic nonlinearity, the interaction of two ultrasonic 

waves propagating in the same direction exhibits a cumulative nonlinear interaction20. With a conventional 

AM pulse sequence, images are reconstructed line-by-line along the wave propagation direction. The high 

amplitude pulse of the sequence can be seen as the sum of two pulses of half amplitude that co-propagate and 

are subject to cumulative nonlinear interaction effects. It is less well known that the nonlinear interaction of 

ultrasonic waves propagating in opposite directions is inefficient21. In a pioneering proof-of-concept, Renaud 

et al.22 showed that a pair of subwavelength elements of an ultrasound transducer array could be used to 

transmit circular wave pulses that are quasi counter-propagative in the near field of the array, allowing them 

to minimize nonlinear distortion, while generating a 2-fold higher amplitude at the moment of their 

intersection. Here we show that propagation nonlinearity (Fig. 2.1a) can be efficiently minimized with a non-

collinear plane-wave transmission paradigm, which we call cross amplitude modulation, or xAM, while 

allowing depth-invariant, nonlinear imaging of acoustic biomolecules (Fig. 2.1b). We demonstrate in 

simulations and experiments that plane-wave cross-propagation prevents cumulative distortion of the AM 

wave code, suppresses nonlinear propagation artifacts distal to highly nonlinear hGV inclusions, and enables 

highly specific in vivo nonlinear ultrasound imaging of hGVs in mice.

 

Figure 2.1 | Nonlinear acoustic phenomena. Sketch of the two nonlinear phenomena that take place while imaging a 
biological medium containing acoustic biomolecules. (a) Propagation history of a single plane wave: nonlinear frequency 
components accumulate with depth as the wave propagates through tissue before being attenuated. This phenomenon, 
amplified during the near-collinear interaction of two wavefronts, leads to nonlinear propagation artifacts distal to GV 
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inclusions. (b) Nonlinear scattering behavior of GVs insonified above their buckling pressure, enabling their detection 
with an amplitude modulation (AM) code.

2.3 Nonlinear Interaction of Cross-Propagating Plane Waves 

2.3.1 The cross amplitude modulation sequence (xAM) 

Cross amplitude modulation is a biomolecular ultrasound imaging paradigm that aims at minimizing wave 

propagation-related harmonics23 using propagation symmetry considerations, while capturing local acoustic 

biomolecules’ harmonics to ensure their specific in vivo detection. Considering an N-element aperture of a 

linear array of ultrasonic transducers, the xAM sequence consists in (1) using the elements 1 to N/2 to transmit 

a tilted plane-wave at an angle θ with respect to the array (Fig. 2.2a),  (2) using the elements N/2+1 to N to 

transmit a symmetric plane-wave at an angle θ with the array (Fig. 2.2b), and (3) transmitting the previous 

two plane-waves simultaneously (Fig. 2.2 c). The two cross-propagating waves depicted in Fig. 2.2c interact 

along the virtual bisector that separates the two half-apertures. Particles of the insonified medium that are 

located along the bisector experience the same wave amplitude for steps (1) and (2), and a doubled wave-

amplitude for step (3) as seen in Fig. 2.1d. This axisymmetric pulse sequence creates an AM code along the 

bisector that separates the two N/2 sub-apertures. 

Our working hypothesis was that cumulative nonlinear plane-wave interaction arsing during wave 

propagation decreases as the cross-propagation angle θ increases.  We therefore started by determining 

whether minimal AM code distortion could be achieved with xAM in a weakly nonlinear 

homogeneous/isotropic medium. To do so, we first evaluated xAM signal cancellation during plane-wave 

propagation in water using two-dimensional time-domain numerical simulations (see Methods)24. Keeping 

the experimental realization of the xAM sequence in mind, we assessed the directivity of individual elements 

of our transducer array25 and set the maximal angle θ to 21° based on the array -3 dB directivity bandwidth 

(see Methods, Fig. 2.7). The simulation result displayed in Fig. 2.2d shows that, for a xAM sequence of angle 

θ = 18° at a depth of 3.6 mm, the residual peak wave amplitude is reduced by four orders of magnitude to 

0.02% of the cross-propagating plane-waves peak amplitude (0.13 kPa compared to 747 kPa, respectively). 

As a comparison, a high-end commercial scanner provides an AM residual of the order of 0.5%. 

Cross-propagating plane-waves, or X-waves, intersect with each other along a finite geometric distance which 

defines the depth of field 𝑍0 of the xAM sequence, 

                                                                                   	𝑍0 =
1
2
cot 𝜃,                

(1) 
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where A is the full aperture used for the X-wave transmission. For an angle θ = 18° and an aperture A = 6.5 

mm, 𝑍0 equals 10 mm, which would for example enable scanning of a full mouse brain. Note that beyond 𝑍0, 

images could be reconstructed further down thanks to the diffraction of the wavefronts edges using spherical 

delay laws analogous to Renaud et al. [22].  

 

Figure 2.2 | xAM simulation. Simulation of the xAM sequence for θ = 18° in a homogeneous/isotropic water medium. 
(a) Half-aperture plane-wave transmission at an 18° angle with respect to the transducer array. (b) Axisymmetric half-
aperture plane-wave transmission at an 18° angle with the other half of the array. (c) Cross-propagating plane-waves 
transmission at an 18° angle using both half-apertures. (d) Simulated waveforms at the bisector intersection for z = 3.6 
mm. The cross-propagating plane-waves peak positive pressure was 747 kPa (blue curve), while the residue peak positive 
pressure (green curve) was 0.13 kPa, or 0.02% of the cross-propagating plane-waves peak positive pressure. 

We further assessed the significance of nonlinear effects accumulating during plane-wave propagation as a 

function of θ (Figs. 3a- 3b). At low θ angles, which correspond to quasi co-propagation, residual AM 

nonlinearity clearly accumulated with depth (see Fig. 2.3a, θ = 0° and 5°). In particular, for plane-waves 

propagating in water with a peak amplitude of 400 kPa and at an angle θ = 0° (collinear propagation case), 

the residual AM peak amplitude reached 13.5 kPa at a distance z = 8 mm (Fig. 2.3a). As θ increased, the 

residual AM nonlinearity was significantly reduced, reaching a non-cumulative 0.3 kPa peak pressure at an 

angle θ = 20° (Fig. 2.3a). Fig. 2.3b reports the peak amplitude of the AM residue as a function of θ at the 

distances z = 4 mm and z = 6 mm from the array. Data reported in Figs 2.3a and 2.3b were obtained using a 

constant transmit peak pressure at 4 mm equal to 400 kPa. The simulations show that the amplitude of the 

xAM residue drops rapidly as θ increases, and converges below a threshold of 0.2 kPa for θ > 15°. These 

results support our hypothesis that nonlinear plane-wave interaction becomes less efficient as θ increases, and 

predict that in a weakly nonlinear homogeneous/isotropic medium as water (attenuation equal to 0.002 

dB/MHz2 cm), one can expect an AM code showing minimal wave distortion due to propagation at cross-

propagation angles above 15°. 
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While a complete analytical treatment of this phenomenon has not been developed, some intuition can be 

obtained from the work of Hamilton et al.26,27, who reported that the noncollinear nonlinear interaction of two 

plane wave fields results in an asynchronous interaction that generates a sum frequency wave whose amplitude 

oscillates with a spatial period of 2𝜋 2𝑘(1 − cos 𝜃)⁄ , k being the wave vector of the plane waves. As the 

angle between the two waves increases, the phase mismatch increases, the spatial period of the nonlinear 

pressure field decreases, and the nonlinear interaction becomes less efficient. The same phenomenon is 

observed in our simulations: as the angle increases, the spatial period of oscillation and the amplitude of the 

nonlinear pressure field decrease (see Fig 2.3a, 10, 15 and 20 degree lines). The nonlinear pressure field is 

also expected to increase or decrease with the nonlinearity of the medium, as characterized by its shock length. 

With these considerations supporting the plausibility of our simulation results, we proceeded to implement 

the xAM concept experimentally. A full analytical treatment of this problem will be described in future work. 

 

Figure 2.3 | Simulation of nonlinearity vs. angle. Simulation of nonlinear plane-wave interaction as a function of the 
cross-propagation angle θ. (a) Peak positive pressure of the xAM residual as a function of depth for five cross-propagation 
angles. (b) Peak positive pressure of the xAM residual as a function of θ at depths z equals 4 mm and 6 mm. 

2.3.2 Experimental reduction of residual xAM nonlinearity as a function of θ 

To assess experimentally the ability of higher-θ xAM pulses to minimize nonlinearity, we implemented the 

xAM imaging sequence and beamforming on a programmable ultrasound system with a 128-element linear 

array (see Methods) and measured the peak residual AM signal of a subwavelength linear scatterer immersed 

in water. This configuration enabled the assessment of the nonlinearity captured by the AM sequence that is 

solely due to wave propagation in a typical quasi-incompressible medium (water serves as a first-

approximation model for sound wave propagation in soft biological tissues). A 10 µm diameter nickel wire 

was placed perpendicular to the imaging plane in phosphate buffer saline (PBS) at a depth of 4 mm. The wire 
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was imaged using xAM at θ values ranging from 1.5° to 21° (Fig. 2.4a). We measured the AM residual for 

each angle as the peak value of the beamformed radio-frequency (RF) data. The data show the same trend 

predicted by the simulations, with residual nonlinearity decreasing sharply with wider angles (Fig. 2.4b). To 

compare these results with a conventional AM imaging sequence, we implemented a standard parabolic 

amplitude modulation (pAM) code, in which half-amplitude transmissions were achieved by silencing the 

even or odd transmitting elements of the array and imaging lines were reconstructed along the wave 

propagation direction15. As of θ = 3°, xAM significantly outperformed pAM in reducing the residual AM 

signal (Fig. 2.4b). We measured the axial and lateral resolution of xAM using the full-width half-maximum 

(FWHM) of the point-spread function (PSF) along the respective directions. The mean axial resolution was 

117 µm ± 16 µm, and the mean lateral resolution is 381 µm ± 42 µm, with values remaining constant across 

angles. The axial resolution of pAM was 103 µm and the lateral resolution was 250 µm. 

 

Figure 2.4 | xAM residual signal. xAM images of the cross section of a subwavelength nickel wire as a function of the 
cross-propagation angle θ. (a) Images reconstructed from the three component transmissions of the pAM code and xAM 
code at angles ranging from 1.5° to 21°. The wire was positioned at a depth of 4 mm. Each image depth ranges from 3.0 
mm to 4.5 mm and width from -1.5 mm to 1.5 mm. Scale bar: 1 mm. (b) Peak AM residual signal as a function of the 
xAM sequence angle θ. xAM signals are labelled in orange, the pAM signal is labelled with a gray square symbol. Values 
in dB represent the peak value of the residual signal relative to the peak value of the noise. 

2.4 Cross Amplitude Modulation Imaging of Acoustic Biomolecules 

2.4.1 Angle-dependent xAM reduction of nonlinear propagation artifacts distal to GV inclusions 

The xAM sequence was developed to detect hGVs with high specificity. The peak positive pressure of the 

single tilted plane-waves excites the hGVs in the linear scattering regime, while the doubled X-wave 

intersection amplitude excites the hGVs in the nonlinear scattering regime. By summing the echoes from the 

two plane-wave transmissions and then subtracting them from the echoes of the X-wave transmissions, we 



 

 
 

21  

solely retrieve non-zero differential GV signals while the echoes of surrounding linear scatterers cancel. To 

evaluate the effectiveness of xAM in reducing the nonlinear propagation artifact, we embedded a 2-mm wide 

cylindrical inclusion of hGVs in agar (at a concentration of 256 pM; see Section 2.6 for GV preparation) in a 

tissue-mimicking phantom consisting of agar and 3 µm aluminum oxide particles (a model linear scatterer). 

A second inclusion filled with a scatterer-free PBS/agar mixture was positioned 1 mm below the GVs (see 

schematic, Fig 2.5a). We imaged the phantom using the same sequence parameters used for the subwavelength 

scatterer measurements, with the top of the hGV inclusion positioned at 4 mm (Fig. 2.5], since X-waves 

provide extended depths of fields compared to parabolic beams28. 

With parabolic and low-θ xAM pulses, we observed significant nonlinear propagation artifact distal to hGV 

inclusions (Fig. 2.5a and 2.5b), confirming the high nonlinearity of hGV-filled media. The pAM and xAM 

images where quantified in terms of contrast-to-tissue ratios (CTR), contrast-to-artifact ratios (CAR), and 

artifact-to-tissue ratios (ATR) (Fig. 2.5b-d). For pAM and low θ angles, the artifact intensity was on par or 

above the hGV inclusion intensity (e.g. for θ = 1.5°, CAR = -1.6 dB at z = 4 mm), highlighting the specificity 

issue posed by collinear AM imaging. For angles above 15°, xAM produces images with a clear reduction in 

artifact signal while maintaining full contrast in the hGV inclusion. We also observed that, as in the simulation 

and subwavelength scatter results, the artifact reduction is a non-monotonic function of θ, with a local jump 

in xAM artifact at 10.5° (Fig. 2.5c). Overall, these results suggested that xAM provides the highest specificity 

for hGV signals at angles larger than 15º. 

 

Figure 2.5 | In vitro pAM and xAM. In vitro pAM and xAM images of an hGV inclusion in a tissue-mimicking phantom. 
(a) Left, schematic of the phantom configuration: linearly scattering tissue-mimicking medium in gray, hGV inclusion 
in blue, anechoic agar-filled inclusion in black, and ROIs for contrast (C), tissue (T) and artifact (A) quantification. Right, 
set of pAM and xAM images of a representative well positioned at z = 4 mm. Separate images spanning depths of 3 mm 
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to 9 mm are concatenated. Scale bar: 1 mm. White dotted line: 𝑍0 at θ = 21°. (b) Contrast-to-tissue ratio (CTR) as a 
function of θ. (c) Artifact-to-tissue ratio (ATR) as a function of θ. (d) Contrast-to-artifact ratio (CAR) as a function of θ. 
N = 6. Error bars: SEM. 

 

2.4.2 In vivo xAM ultrasound imaging of acoustic biomolecules 

Finally, to test the xAM imaging method in vivo, we injected into the gastrointestinal tract of a mouse a 

patterned agar-GV mixture that consisted of a core of wild-type linearly scattering GVs (wtGVs) surrounded 

by a circular layer of hGVs. We imaged the mouse abdomen using xAM at θ = 19.5°, which yielded the 

highest contrast-to-artifact ratio in the phantom experiments, and compared the results to imaging with pAM 

with the focus adjusted to 4 mm and an aperture of 20 elements (f-number = 2.0) to align the depth-of-field 

with that of the xAM sequence. The parabolic B-mode (pBMode) image, i.e. the conventional anatomical 

ultrasound image, was sharper than the cross-propagating B-mode (xBMode) image, which is expected, as X-

waves generate higher side lobes that reduce image contrast29. Only the top of the hGV inclusion was visible 

in the pAM image due to the narrow depth-of-field of parabolic beams (Fig. 2.6c). The pAM image also 

contained a large artifact below the inclusion (CTR = 2.8 dB, CAR = -2.6 dB), parts of which blended with 

the hGV signal, displaying a potentially misleading distribution of the contrast agent. In contrast, the annular 

hGV inclusion is almost entirely visible in the xAM image, with little-to-no artifact in the vicinity, and inner 

and outer contours more clearly delineated (Fig. 2.6e). The xAM CTR was 9.0 dB and the xAM CAR was 

9.6 dB, demonstrating the superior performance of xAM over pAM in terms of specificity (Fig. 2.6f).
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Figure 2.6 | In vivo pAM and xAM. In vivo pAM and xAM imaging of acoustic biomolecules. (a) Schematic of the 
experiment. A concentric mixture of nonlinearly scattering hGVs and linearly scattering wtGVs was injected in a mouse 
gastrointestinal (GI) tract and imaged with pAM and xAM. (b) pBMode image, focus = 4 mm, f-number = 2.0. (c) pAM 
image, arrows point at the artifact (A). (d) xBMode, θ = 19.5° (e) xAM image. pAM and xAM dynamic ranges are 
displayed relative to their respective BMode ranges. All images depth ranged from z = 2 mm to 𝑍0 = 9.2 mm. (f) 
Comparison of xAM and pAM in terms of mean contrast-to-tissue ratios (CTR) and contrast-to-artifact ratios (CAR). N 
= 3. ROIs for CTR and CAR measurements are reported in Fig. 2.8, Methods. 

 

2.5 Discussion 

Taken together, our results suggest that the xAM ultrasound pulse sequence, based on one X-wave and two 

tilted plane-wave transmissions, achieves highly specific nonlinear imaging of acoustic biomolecules through 

wave-amplitude modulation. Two non-collinear plane waves interact to generate a two-fold amplitude 

modulation at their intersection with minimal nonlinear distortion for angles θ above 15°. This allows retrieval 

of non-zero differential hGV signals, while the echoes of surrounding linear scatterers cancel and propagation 

artifacts are reduced to the noise floor level (-10 dB at 18°). With a 6.4 mm aperture, this technique offers a 

depth-of-field suitable for small-animal imaging (10 mm at 18°). The xAM sequence proved to be robust 

enough to suppress in vivo artifacts present in pAM while distinguishing engineered nonlinear hGVs from 

linearly scattering wild type GV variants in the gastrointestinal tract of a mouse. While this manuscript is 

focused on introducing and thoroughly characterizing the xAM pulse sequence for use with non-linear 

contrast agents, with purified GVs as the model agent, these results are relevant to parallel work being done 

to apply GVs as functionalized contrast agents and as reporter genes expressed inside cells3,13,30. The xAM 

imaging method introduced here thus paves the way for in vivo biomolecular ultrasound studies of molecular 

and cellular processes based on visualization of acoustic biomolecules13. Interestingly, theory and simulations 

predict that the peak of the cross-propagating plane-waves travels at a supersonic velocity, increasing as θ 

opens (see Supplementary Material, Fig. 2.9), an effect that may be linked to the decreasing nonlinear 

interaction of the planar wavefronts. Coherent compounding of xAM data acquired at four different angles θ 

(see Supplementary Material, Fig. 2.10) was also shown to be a way to increase CTR and CAR further. 

Potential limitations of this method include its reduced depth of field as the cross-propagating angle increases. 

The method appears therefore to be well suited for ultrasound biomicroscopy, small animal experiments and 

superficial examinations in humans. xAM image depth can be extended beyond the intersection distance of 

the X-wave by using spherical delay laws reported by Renaud et al.22, but the quality of nonlinear artifact 

reduction will decline with depth. Another potential limitation of the method is that it relies on propagation 

symmetry in a homogeneous/isotropic medium to generate an amplitude-modulated code, and will therefore 

be impacted by dissymmetric phase-aberrating media like biological tissues. This issue could be tackled using 
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adaptive wavefront-shaping techniques developed in optics and acoustics31,32. In the near future, xAM could 

be implemented at ultrafast frame rates33 by relying on 2D arrays of transducers34 to improve the sensitivity 

or the temporal resolution of xAM further. Finally, while this study focused on the use of xAM to image 

nonlinear acoustic biomolecules, we expect this technology to propagate across as a general solution to the 

long-standing problem of distal nonlinear propagation artifacts in the field of synthetic microbubble-based 

ultrasound contrast agents. 

2.6 Methods 

2.6.1 k-Wave simulations 

We investigated the influence of the transmit angle θ on the nonlinear interaction between two non-collinear 

plane waves emitted by two apertures using two-dimensional time-domain numerical simulations (k-Wave 

version 1.2,24). The transmit angle was varied from 1 to 21 degrees (Fig. 2.3). Transmit delays are calculated 

to generate a plane-waves with the proper angle θ. We simulated wave propagation in a 

homogeneous/isotropic medium (water) with a configuration corresponding to the setup reported 

experimentally in Fig. 2.4. Speed of sound in water was set to 1480 m/s, the attenuation to 0.002 dB/MHz2 

cm), and the nonlinear parameter B/A to 5. The size of the domain was 6.4 mm x 8 mm; it is discretized with 

a step size of 10 µm. Perfectly matched layers are used to absorb the waves at the edges of the domain. The 

source broadcasts a short pulse with a center frequency of 15 MHz. The acoustic pressure generated by the 

source is varied so that the peak acoustic pressure generated at 4 mm depth by a single aperture equals 400 

kPa for all tested angles. For a given transmit angle, three simulations are required: 1) transmission with the 

right aperture only, 2) transmission with the left aperture only and 3) transmission with both apertures. The 

pressure field is recorded along the segment bisector (between the two transmit apertures). For a given transmit 

angle, the amplitude modulation scheme is applied to the recorded signals, then the result is band-pass filtered 

to reproduce the effect of the limited frequency bandwidth of the transducer with a 100% relative frequency 

bandwidth (the cutoff frequencies of the filter are 7.5 MHz and 22.5 MHz). 

2.6.2 Engineering of harmonic acoustic protein nanostructures 

Anabaena GVs were cultured and transferred to sterile separating funnels and the buoyant cells were allowed 

to float to the top and separate from the spent media over a 48h period. GVs were harvested by hypertonic 

lysis. Purification was done by repeated centrifugally assisted floatation followed by resuspension. Wild type 

Ana GVs were stripped of their outer GvpC layer by treatment with 6 M urea solution to obtain hGVs. Two 
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rounds of centrifugally assisted floatation followed by removal of the subnatant layer to ensure complete 

removal of native GvpC. For detailed information, see Lakshmanan et al.30. 

 

2.6.3 Tissue-mimicking phantom 3D design & preparation 

Tissue-mimicking phantoms for imaging were prepared by melting 1% (w/v) agarose gel in PBS and with 

0.2% (w/v) AlO3. We used a custom 3D-printed mold to create a 2-by-2 grid of cylindrical wells with 2 mm 

diameter and 1 mm spacing between the outer radii in the bulk material. GVs were incubated at 42 °C for 1 

minute and then mixed in a 1:1 ratio with molten agarose (at 42 °C) for a final GV concentration corresponding 

to 2.25 OD500nm and immediately loaded into the phantom. Wells not containing GVs were filled with plain 

1% agar. The AlO3 concentration was chosen to match the scattering echogenicity of the GV well as measured 

by the contrast-to-noise ratio of the respective regions in a B-mode ultrasound image. The phantoms used for 

the angle ramp images contained stripped Ana GVs in the upper-left well. The phantom used for the voltage 

ramp images contained wild type Ana GVs in the upper-left well and stripped Ana GVs in the upper-right 

well. All phantoms were imaged on top of an acoustic absorber material while immersed in PBS. Based on 

the elevation f-number of the probe, the elevation resolution (i.e. the thickness of the imaging plane) is 512 

µm. The molarity of Ana GVs for a given OD value is 114 pM/OD30. Using these values and the dimensions 

of the hGV inclusion, we estimate that 2.47×105 GVs contribute to each image, or roughly 200 GVs for each 

pixel. 

 

2.6.4 Ultrasound acquisition sequence 

We used a Verasonics Vantage ultrasound system with a L22-14v probe (Verasonics Inc., Redmond, WA, 

USA) to implement the xAM and pAM imaging sequences. The probe is a linear array of 128 elements with 

a 0.10 mm pitch, an 8 mm elevation focus, a 1.5 mm elevation aperture, and a center frequency of 18.5 MHz 

with 67% -6 dB bandwidth. We applied a single-cycle transmit waveform at 15.625 MHz to each active array 

element to ensure our fundamental frequency divided four times with the 62.5 MHz sampling rate of the 

system. To provide a reasonable tradeoff between lateral field of view and axial depth of field, we used an 

aperture of 65 elements for the xAM sequence (with the center element silenced to allow for a symmetric AM 

code). This allowed for 64 ray lines per xAM image. The focus of the parabola used in the pAM sequence 

was set to 8 mm to match the probe’s elevation focus. We used an aperture of 38 elements for the pAM 

sequence to maintain a f-number of 2, but limited the number of ray lines to 64 to match the xAM frames. To 
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control for variation in pressure across different beam profiles, we selected probe voltages for each xAM angle 

and for pAM that generated to a CTR of 10 dB in the hGV inclusion of the phantoms. The voltage table is 

provided in Section 2.7 Supplementary Material. 

We collected raw RF data from our acquisitions and implemented a custom real-time image reconstruction 

pipeline, including a beamforming algorithm suited to the unique requirements of xAM. To reduce noise 

during live imaging while saving system memory, we applied a first-order infinite impulse response (IIR) 

filter to successive frames of RF data, according to the following difference equation  

𝑦[𝑛] = 𝛼𝑦[𝑛 − 1] + (1 − 𝛼)𝑥[𝑛], (1 − 𝐴1) 

where 𝑛 is the frame index, 𝛼 is the persistence coefficient, 𝑥 is the unfiltered RF data, and 𝑦 is the output of 

the filter. All RF data reported was acquired with 𝛼 = 0.9 except for the in vivo pAM image, which was 

acquired with 𝛼 = 0.7 to avoid blurring due to motion. 

2.6.5 xAM beamforming 

The novel cross-propagation paradigm necessitated adjustments to conventional beamforming for image 

reconstruction, as a particularity of this method is that xAM image lines are not formed along the propagation 

direction of the ultrasonic waves, but along the line along which the two cross-propagating plane-waves 

intersect. The linear array transmission configuration and directivity25 can be modeled as in Fig. 2.7. 

 

Figure 2.7 | Linear array aperture geometry and directivity. (a) Ultrasound imaging linear array configuration. θ is 
the cross-propagation angle, p the pitch of the linear transducer array, x1 the first element of the active aperture (blue 
elements), xb the element along the aperture, and xn an arbitrary element along the array. dtx is the distance from the planar 
wavefront to a point along the bisector, and drx is the return distance to the array. Silent elements are labelled in orange. 
(b) Directivity of an individual element of the linear transducer array (p = 0.1 mm, f = 15.6 MHz). The red dotted line 
indicates the – 3 dB acoustic pressure level. 
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The distance from either angled wavefront to the point (𝑥K, 𝑧) and the return trip distance of the echo received 

by array element 𝑥M are, respectively, 

𝑑O0(𝜃, 𝑥K, 𝑧) = (𝑥K − 𝑥P)𝑝 sin 𝜃 + 𝑧 cos 𝜃 , (1 − 𝐴2) 

𝑑T0(𝑥K, 𝑥M, 𝑧) = U(𝑥M − 𝑥K)2𝑝2 + 𝑧2. (1 − 𝐴3) 

Hence, the two-way travel time to element 𝑥M is  

𝜏X T⁄ →Z[ =
1
𝑐
[(𝑥K − 𝑥P)𝑝 sin𝜃 + 𝑧 cos 𝜃]

					+
1
𝑐
U(𝑥M − 𝑥K)2𝑝2 + 𝑧2, (1 − 𝐴4)

 

whereas the observed arrival time of this echo on the bisector element is  

𝜏X T⁄ →Z\ =
1
𝑐
[(𝑥K − 𝑥P)𝑝 sin 𝜃 + 𝑧 cos 𝜃 + 𝑧]. (1 − A5) 

We can then derive the depth of the echo signal from its arrival time on the bisector as 

𝑧 = 	
𝑐𝜏X T⁄ →Z\ − (𝑥K − 𝑥P)𝑝 sin𝜃

cos 𝜃 + 1
, (1 − 𝐴6) 

and, finally, obtain the time delay to apply to the received signal for dynamic focusing:  

𝛿(𝑥M, 𝑧) = 𝜏X T⁄ →Z[ − 𝜏X T⁄ →Z\

																																		=
1
𝑐
_U(𝑥M − 𝑥K)2𝑝2 + 𝑧2 − 𝑧` (1 − A7)

 

These beamforming equations are valid in the region over which the waves are cross-propagating. The depth 

of field (equation (1)) to which this region extends is given by (𝑥M − 𝑥K) cot 𝜃. 

 

2.6.6 In vivo ultrasound imaging 
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The in vivo experiment was performed on a C57BL/6J male mouse (Jackson Laboratory) under a protocol 

approved by the Institutional Animal Care and Use Committee of the California Institute of Technology. No 

randomization or blinding were necessary in this study. Ultrasound imaging was performed as follows: the 

mouse was anaesthetized with 2–3% isoflurane, depilated over the imaged region, and imaged using an L22-

14v transducer with the pulse sequence described above. For imaging of GVs in the gastrointestinal tract, the 

mouse was placed in a supine position, with the ultrasound transducer positioned on the lower abdomen, 

transverse to the colon. Prior to imaging, wild type and stripped Ana GVs were mixed in a 1:1 ratio with 42 °C 

4% agarose–PBS for a final GV OD500nm equal to 2.25. An 8-gauge needle was filled with the mixture of 

agarose and stripped Ana GVs. Before it solidified, a 14-gauge needle was placed inside the 8-gauge needle 

to form a hollow lumen within the gel. After the agarose–GV mixture solidified at room temperature for 

10 min, the 14-gauge needle was removed. The hollow lumen was then filled with the agarose mixture 

containing the wild type Ana GVs. After it solidified, the complete cylindrical agarose gel was injected into 

the colon of the mouse with a PBS back-filled syringe. Additional PBS was then injected into the colon to 

remove air bubbles in the vicinity of the gel. 

 

Figure 2.8 | In vivo regions of interest. Tissue (T), Contrast (C) and Artifact (A) regions of interest used for the ratios 
displayed in Fig. 2.6. 

 

2.7 Supplementary Material 

2.7.1 Supersonic cross-propagating plane-waves intersection 

Interestingly, as both plane-waves cross-propagate, local coordinates of each wave-front interact with their 

axisymmetric counterpart, but contrary to co-propagating plane waves, it is a transient interaction. The plane-

waves intersection velocity 𝑐0 is given by, 

𝑐0 = 𝑐a cos 𝜃⁄ , (1 − 𝐵1) 
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where 𝑐a is the speed of sound in the propagation medium. It can readily be seen from (2) that the plane-

waves intersection velocity 𝑐0 is supersonic for θ > 0 as reported by Lu and Greenleaf28, and seen in Fig. 2.9. 

The third transmission event of the xAM sequence (Fig. 2.2c) corresponds to a finite aperture forward 

propagating X-wave solution of the homogeneous/isotropic wave equation with the form 𝑓(𝑥, 𝑧 − 𝑐0𝑡), 

where 𝑓 represents a scalar function (e.g. the acoustic pressure pulse) of space and time28, although in our case 

X-wave pressure distribution is constant along its branches. 

 

 

 

Figure 2.9 | X-wave intersection velocity. Analytical and simulated cross-propagating plane-waves intersection velocity 
as a function of θ. 

2.7.2 Coherent compounding 

We tested the effect of coherent compounding35 of the RF data from multiple xAM acquisitions with different 

angles. Due to the difference in interaction velocity for different angles, the RF data from individual 

acquisitions was first aligned to the peak of the average autocorrelation function of the individual beamformed 

ray lines composing the images. The best results were achieved by compounding of four adjacent angles. This 

improved the average CTR by 1.7 dB and the peak CAR by 0.5 dB (Fig. 2.10). 
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Figure 2.10 | Coherently compounded xAM. Comparison of coherently compounded and to single-acquisition xAM 
images the in vitro data at 4 mm. (a) A set of xAM images from the experiment depicted in Fig. 2.5. (b) The same images 
with coherent compounding applied to successive sets of four acquisitions. (c) Contrast-to-tissue ratio of single-
acquisition xAM compared with coherently compounded data as a function of angle. (d) Artifact-to-tissue ratio. (e) 
Contrast-to-artifact ratio. n = 6. Error bars not shown for ease of comparison. 

 

2.7.3 Voltage-pressure table 

The phantom images reported in Fig. 2.5 were acquired using the following voltage table that ensured a 10 

dB CTR across images and therefore enable for the comparison of the artifact intensity across cross-

propagation angles. 

Table 2.1 pAM (orange) and xAM (white) input transducer voltages generating a 10 dB CTR at 4 mm. 
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θ (°) pAM 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5 18.0 19.5 21.0 

V4 

mm 
1.9 4.6 4.3 3.7 3.3 3.4 3.8 3.9 4.2 4.1 4.5 4.5 4.7 5.0 5.5 
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C h a p t e r  3  

ACOUSTIC BIOSENSORS FOR ULTRASOUND IMAGING OF ENZYME 

ACTIVITY 

This chapter is in large part a reformatted version of the manuscript entitled “Acoustic Biosensors for 

Ultrasound Imaging of Enzyme Activity” published by Lakshmanan, A., Jin, Z., Nety, S., Sawyer, D. P., 

Lee-Gosselin, A., Malounda, D., Swift, M., Maresca, D. and Shapiro, M. G. in Nature Chemical Biology. 

Under the supervision of Mikhail Shapiro, my contributions to the work was to help optimize the xAM 

pulse sequence for the experimental setups and engineered GVs used, as well as to provide guidance on its 

use during experiments. 

 Working as a collaborator on this project taught me valuable lessons about what it takes for a novel 

tool to be impactful: namely the practicalities of learning, optimizing, and extending the tool. After 

developing xAM, I had to ensure that those leading the biosensors project, particularly Zhiyang, not only 

knew how to use xAM, but understood the scripts well enough to modify and extend them. This is important 

because, while the utility of a method over other tools may be enough to drive adoption despite a difficult 

learning curve, it may not be enough to facilitate further optimizations, extensions, and innovations that 

require an in-depth understanding of how the method works. In this sense, making the xAM code well-

documented and the results reproducible ended up being just as important as the custom graphical user 

interface I implemented to allow easy plug-and-play use of xAM in live imaging experiments. 

However, another point I recognized was that secondary engineering considerations can have just 

as large an impact on the utility of a method as its fundamental capabilities. Because we implemented the 

xAM reconstruction in MATLAB rather than a compiled language like C/C++, the frame rate was quite 

low at only 1-3 frames per second, which made dealing with tissue motion during in vivo imaging 

experiments challenging. This gave me an appreciation for how engineering challenges can be just as 

important as research challenges in determining the utility and impact of a novel method. 

 

3.1 Abstract 
Visualizing biomolecular and cellular processes inside intact living organisms is a major goal of chemical 

biology. However, existing molecular biosensors, based primarily on fluorescent emission, have limited 

utility in this context due to the scattering of light by tissue. In contrast, ultrasound can easily image deep 

tissue with high spatiotemporal resolution, but lacks the biosensors needed to connect its contrast to the 

activity of specific biomolecules such as enzymes. To overcome this limitation, we introduce the first 
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genetically encodable acoustic biosensors – molecules that 'light up' in ultrasound imaging in response to 

protease activity. These biosensors are based on a unique class of air-filled protein nanostructures called 

gas vesicles, which we engineered to produce non-linear ultrasound signals in response to the activity of 

three different protease enzymes. We demonstrate the ability of these biosensors to be imaged in vitro, 

inside engineered probiotic bacteria, and in vivo in the mouse gastrointestinal tract. 

 

3.2 Introduction 
Virtually every biological process in living organisms involves dynamic changes in the concentration or 

activity of specific molecules. Visualizing these changes within the context of intact living tissues is critical 

to expanding our understanding of biological function and developing next-generation medicines. A large 

repertoire of genetically encoded fluorescent sensors has been developed to image specific molecular and 

cellular events1-4. However, deploying such biosensors in living organisms is challenging due to the limited 

penetration of light in tissue5. In contrast, non-invasive techniques such as ultrasound are capable of 

imaging deep tissues with high spatial and temporal resolution (below 100 µm and 1 ms, respectively)6. 

However, ultrasound currently lacks the sensors needed to observe dynamic molecular activity. 

Here, we introduce molecular biosensors for ultrasound based on gas vesicles (GVs), a unique class 

of air-filled protein nanostructures that were recently established as genetically encodable imaging agents 

for ultrasound7,8. GVs evolved in certain aquatic microbes as a means to regulate cellular buoyancy for 

optimal photosynthetic illumination9. GV nanostructures comprise a 2 nm-thick protein shell enclosing an 

air-filled compartment, with genetically determined widths between 45-250 nm and lengths of several 

hundred nm9,10. The low density and high compressibility of GVs relative to surrounding aqueous media 

allows these proteins to scatter sound waves and thereby produce ultrasound contrast when injected into 

the body or expressed heterologously in engineered cells7,8,11,12.  

We hypothesized that we could engineer GV-based biosensors that dynamically change their 

ultrasound contrast in response to the activity of specific biomolecules. This possibility arises from the 

recent discovery that GVs’ acoustic properties can be modified at the level of their constituent proteins12. 

In particular, the scaffolding protein GvpC, which sits on the GV surface (Fig. 3.1a) and provides structural 

reinforcement13, can be modified at the level of its amino acid sequence to change GV mechanics. For 

example, shortening or removing GvpC makes GVs less rigid, allowing them to buckle more easily under 

acoustic pressure12,14. This reversible buckling produces nonlinear ultrasound contrast, which appropriate 

ultrasound pulse sequences readily distinguish from the linear signals produced by non-buckling GVs and 

background tissue14,15. 

 As an initial target for acoustic biosensor development, we chose proteases – an important class of 

enzymes involved in many aspects of cellular signaling, homeostasis, disease, therapy and synthetic 
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biology16-22. While these enzymes were the targets of some of the first fluorescent biosensors23,24, and 

continue to be a major focus of sensor engineering25, no acoustic biosensors of protease activity have been 

developed. We postulated that by engineering variants of GvpC incorporating amino acid sequences that 

are recognized and acted upon by specific proteases, we could generate GVs whose nonlinear ultrasound 

contrast becomes activated by protease activity. As representative targets, we selected the constitutively 

active tobacco etch virus (TEV) endopeptidase, the calcium-dependent mammalian protease calpain, and 

the processive bacterial protease ClpXP. We set out to test the ability of acoustic biosensors engineered to 

respond to each of these enzymes to reveal their activity under ultrasound, and to demonstrate biosensor 

imaging in vitro, in living engineered cells, and in vivo in the mouse gastrointestinal (GI) tract. 

 
Figure 3.1: Acoustic biosensor of TEV endopeptidase. (a) Top: schematic of a gas vesicle (GV), including the 
primary shell protein GvpA (gray) and the reinforcing protein GvpC (blue). Bottom: schematic of GvpC structure, 
comprising five 33-amino acid repeats flanked by N-and C-terminal regions. (b) Schematic of GVSTEV. (c) Normalized 
OD500nm of GVSTEV as a function of hydrostatic pressure, after incubation with active TEV or heat-inactivated TEV 
(dTEV). The legend lists the midpoint collapse pressure for each condition (±95% confidence interval), determined 
from fitting a Boltzmann sigmoid function (N = 3 biological replicates for GVSTEV + TEV and 4 for GVSTEV  + dTEV). 
(d) Coomassie-stained SDS-PAGE gel of OD500nm-matched samples of GVSTEV incubated with dTEV or active TEV 
protease, before and after buoyancy purification (labeled pre b.p. and post b.p., respectively). This experiment was 
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repeated 3 times with similar results. (e) Representative TEM images of GVSTEV after incubation with dTEV or active 
TEV protease (N=3 biological replicates for GVSTEV + TEV and 2 for GVSTEV  + dTEV; at least 100 GV particles 
were imaged for each condition). (f) DLS measurements of the average hydrodynamic diameter of GVSTEV and GVWT 
samples after protease incubation (N = 3 biological replicates for GVSTEV and 4 for GVWT; individual dots represent 
each N, and thick horizontal line indicates the mean). (g) Representative ultrasound images of agarose phantoms 
containing GVSTEV incubated with TEV or dTEV protease at OD500nm 2.2. The linear (B-mode) image was acquired 
at 132 kPa and the nonlinear (x-AM) image was acquired at 438 kPa. (h) Average ratio of x-AM to B-mode ultrasound 
signal as a function of applied acoustic pressure for GVSTEV, after incubation with TEV or dTEV protease. N=3 
biological replicates, with each N consisting of 2-3 technical replicates for g and h. For ultrasound images in g, CNR 
stands for contrast-to-noise-ratio, and color bars represent relative ultrasound signal intensity on the dB scale. Solid 
curves represent the mean in c and h. Error bars in c, f and h indicate SEM and were calculated from independent 
biological replicates. Scale bars in e represent 100 nm. Scale bars in g represent 1 mm. Individual data points for 
panels c and h shown as scatter plots in Extended Data Figure 3.1. 
 

3.3 Results 
3.3.1 Engineering an acoustic sensor of TEV endopeptidase 

We selected the TEV endopeptidase as our first sensing target because of its well-characterized recognition 

sequence and widespread use in biochemistry and synthetic biology26,27. To sense TEV activity, we 

engineered a GvpC variant containing the TEV recognition motif ENLYFQ’G (Fig. 3.1b), hypothesizing 

that the cleavage of GvpC into two smaller segments would cause the GV shell to become less stiff, thereby 

allowing it to undergo buckling and produce enhanced nonlinear ultrasound contrast. We implemented this 

design in vitro using GVs from Anabaena flos-aque (Ana), whose native GvpC can be removed after GV 

isolation, and replaced with new versions expressed heterologously in Escherichia coli12,28. Ana GvpC 

comprises five repeats of a predicted alpha-helical polypeptide (Fig. 3.1a), and we tested insertions of the 

TEV recognition sequence, with and without flexible linkers of different lengths, at several locations within 

this protein. After incubating the engineered GVs with active TEV protease or a heat-inactivated “dead” 

control (dTEV), we measured their hydrostatic collapse using pressurized absorbance spectroscopy. This 

technique measures the optical density of GVs (which scatter 500 nm light when intact) under increasing 

hydrostatic pressure, providing a quick assessment of GV shell mechanics: GVs that collapse at lower 

pressures also produce more nonlinear contrast7,8,12,28. Using this approach, we identified an engineered GV 

variant that showed ~ 70 kPa reduction in its collapse pressure midpoint upon incubation with the active 

TEV protease (Fig. 3.1c and Extended Data Fig. 3.1), and selected it for further characterization. This GV 

sensor for TEV, hereafter referred to as GVSTEV, has the TEV cleavage site on the second repeat of GvpC, 

flanked by flexible GSGSGSG linkers on both sides.  
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Extended Data Figure 3.1 | Engineering an acoustic sensor of TEV endopeptidase activity. (a) Coomassie-stained 
SDS-PAGE gel of OD500nm-matched samples of GVWT incubated with dTEV and TEV protease, before and after 
buoyancy purification (labeled pre b.p. and post b.p., respectively). N = 3 biological replicates. (b) Scatter plots 
showing normalized OD500nm of GVSTEV as a function of hydrostatic pressure. (N = 3 biological replicates for GVSTEV 
+ TEV and N =4 for GVSTEV + dTEV.) (c) Scatter plots showing the ratio of nonlinear (x-AM) to linear (B-mode) 
ultrasound signal as a function of applied acoustic pressure for all the replicate samples used in the x-AM voltage 
ramp imaging experiments for GVSTEV. N = 3 biological replicates and total number of replicates is 8. (d) Scatter 
plots showing normalized OD500nm of GVWT as a function of hydrostatic pressure. (N = 3 biological replicates for 
GVWT +dTEV and N =4 for GVWT + TEV.) (e) Representative ultrasound images of agarose phantoms containing 
GVWT incubated with TEV or dTEV protease at OD500nm 2.2. The B-mode image was acquired at 132kPa and the x-
AM image at 569 kPa. Similar images acquired for N=3 biological replicates, with each N consisting of 3 technical 
replicates. CNR stands for contrast-to-noise-ratio, and color bars represent relative ultrasound signal intensity on the 
dB scale. Scale bars represent 1 mm (f) Scatter plots showing the ratio of nonlinear (x-AM) to linear (B-mode) 
ultrasound signal as a function of applied acoustic pressure for all the replicate samples used in the x-AM voltage 
ramp imaging experiments for GVWT. N=3 biological replicates, with each N consisting of 3 technical replicates. Solid 
curve represents the mean of all the replicates. 

TEV cleavage of the GvpC on GVSTEV is expected to produce N- and C-terminal fragments with 

molecular weights of approximately 9 and 14 kDa, respectively. Indeed, gel electrophoresis of GVSTEV 

after exposure to active TEV resulted in the appearance of the two cleaved GvpC fragments and a significant 

reduction in the intact GvpC band intensity (Fig. 3.1d). In addition, removal from solution of unbound 

fragments via buoyancy purification of the GVs resulted in a reduced band intensity for the N-terminal 

cleavage fragment, indicating its partial dissociation after cleavage (Fig. 3.1d). No significant changes in 

the GvpC band intensity were observed after incubation with dTEV. Transmission electron microscopy 
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(TEM) images showed intact GVs with similar appearance under both conditions, confirming that protease 

cleavage did not affect the structure of the underlying GV shell (Fig. 3.1e). Dynamic light scattering (DLS) 

showed no significant difference in the hydrodynamic diameter of the engineered GVs after incubation with 

dTEV and active TEV protease, confirming that the GVs remain dispersed in solution (Fig. 3.1f).  

After confirming the desired mechanical and biochemical properties of GVSTEV, we imaged it by 

ultrasound. Nonlinear imaging was performed in hydrogel samples containing the biosensor, using a 

recently developed cross-amplitude modulation (x-AM) pulse sequence15. x-AM uses pairs of cross-

propagating plane waves to elicit highly specific nonlinear scattering from buckling GVs at the wave 

intersection, while subtracting the linear signal generated by transmitting each wave on its own15. Linear 

images were acquired using a conventional B-mode sequence. As hypothesized, exposing the GVSTEV 

samples to TEV protease produced a strong nonlinear acoustic response, with a maximal contrast-to-noise 

ratio (CNR) enhancement of ~ 7 dB at an applied acoustic pressure of 438 kPa (Fig. 3.1g). Substantially 

less nonlinear contrast was observed in controls exposed to dTEV, while, as expected, both samples 

produced similar linear scattering. Consistent with the pressure-dependent mechanics of the GV shell, the 

differential nonlinear acoustic response of GVSTEV became evident at pressures above 295 kPa, and kept 

increasing until 556 kPa, at which point the GVs began to collapse (Fig. 3.1h and Extended Data Fig. 

3.1). As an additional control, we found that GVs with the wild-type GvpC sequence (GVWT) showed no 

difference in their hydrostatic collapse pressure or nonlinear acoustic contrast in response to TEV protease 

(Extended Data Fig. 3.1), and no wild-type GvpC cleavage was seen upon gel electrophoresis (Extended 

Data Fig. 3.1). These results established GVSTEV as an acoustic biosensor of the TEV protease enzyme, and 

additionally provided an experimental template to develop additional sensors. 

 

3.3.2 Engineering an acoustic sensor of calpain 

After validating our basic acoustic biosensor design using the model TEV protease, we examined its 

generalizability to other endopeptidases. As our second target, we selected the calcium-dependent cysteine 

protease calpain, a mammalian enzyme with critical roles in a wide range of cell types 29-31. The two most 

abundant isoforms of this protease, known as µ-calpain and m-calpain, are expressed in many tissues and 

involved in processes ranging from neuronal synaptic plasticity to cellular senescence29,30. We designed an 

acoustic biosensor of µ-calpain by inserting the α-spectrin-derived recognition sequence 

QQEVY’GMMPRD32 into Ana GvpC (Fig. 3.2a). We screened several versions of GvpC incorporating 

this cleavage sequence, flanked by GSG or GSGSG linkers, at different positions within the second helical 

repeat. Pressurized absorbance spectroscopy performed in buffers with and without calpain and Ca2+ 

allowed us to identify a GV sensor for calpain (GVScalp), showing an approximately 50 kPa decrease in 

hydrostatic collapse pressure in the presence of the enzyme and its ionic activator (Fig. 3.2b and Extended 
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Data Fig. 3.2). Electrophoretic analysis confirmed cleavage and partial dissociation of the cleaved 

fragments from the GV surface (Extended Data Fig. 3.2), while TEM showed no change in GV 

morphology (Extended Data Fig. 3.2).  

 
Figure 3.2 | Acoustic biosensor of calcium-activated calpain protease. (a) Schematic illustration GVScalp. (b) 
Hydrostatic collapse curves of GVScalp after incubations in the presence or absence of calpain and calcium. The legend 
lists the midpoint collapse pressure for each condition (±95% confidence interval) determined from fitting a 
Boltzmann sigmoid function N = 5 biological replicates for +Calp/+Ca2+, 6 for -Calp/+Ca2+ and +Calp/-Ca2+, and 7 
for -Calp/-Ca2+. (c, e, g) Representative ultrasound images of agarose phantoms containing GVScalp incubated with 
and without calpain and/or calcium at OD500nm 2.2. The B-mode images were taken at 132 kPa for c, e and g, and the 
x-AM images were taken at 438 kPa for c, e and at 425 kPa for g. CNR stands for contrast-to-noise-ratio, and color 
bars represent relative ultrasound signal intensity on the dB scale. Scale bars represent 1 mm. (d, f, h) Average ratio 
of x-AM to B-mode ultrasound signal as a function of applied acoustic pressure for GVScalp after incubation in the 
presence or absence of calpain and/or calcium. N=3 biological replicates, with each N consisting of 2 technical 
replicates for c-h. Solid curves represent the mean and error bars indicate SEM. Statistics were performed on 
independent biological replicates for b, d, f and h.(i) Calcium-response curve for GVScalp in the presence of µ-calpain, 
showing the ratio of x-AM to B-mode ultrasound signal at 425 kPa as a function of calcium concentration. The mean 
values are fitted to a Hill equation with a coefficient of 1, giving a half-maximum response concentration (EC50) of 
140 µm (N = 3 biological replicates, individual dots represent the mean values with the solid blue line showing the 
fitted curve). Error bars indicate SEM. Individual scatter plots for d, f, h and i are shown in Extended Data Figure 
3.2. 
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Extended Data Figure 3.2 | Engineering an acoustic sensor of calpain activity. (a) Individual scatter plots for Fig. 
3.2(b). N = 5 biological replicates for +Calp/+Ca2+, 6 for -Calp/+Ca2+ and +Calp/-Ca2+, 7 for -Calp/-Ca2+. (b) 
Coomassie-stained SDS-PAGE gel of OD500nm-matched samples of GVScalp incubated in the presence (+) or absence 
(-) of calpain (first +/-) and calcium (second +/-), before and after buoyancy purification (labeled pre b.p. and post b.p. 
respectively). N = 3 biological replicates. (c) Representative TEM images of GVScalp after incubations in the presence 
or absence of calpain and/or calcium. Scale bars represent 100 nm. At least 20 GV particles were imaged for each 
condition. (d) DLS measurements showing the average hydrodynamic diameter of GVScalp and GVWT samples after 
calpain/calcium incubations (N = 2 biological replicates for GVScalp +/-, +/+, GVWT +/+ and 3 for other conditions, 
individual dots represent each N and horizontal line indicates the mean). Error bars indicate SEM when N = 3. (e, f, 
g) Individual scatter plots for Fig. 3.2(d, f, h). N = 3 biological replicates with each N consisting of 2 technical 
replicates (total number of replicates is 18 for +/+ and 6 for each of the remaining conditions). Solid line represents 
the mean of all the replicates for (a, e-g). (h) Scatter plots for Fig. 3.2i; N = 3 biological replicates, individual dots 
represent each N and solid blue line showing the fitted curve (a Hill equation with a coefficient of 1, with a half-
maximum response concentration (EC50) of 140 µm). 
 

Ultrasound imaging of GVScalp revealed a robust nonlinear acoustic response when both calpain 

and calcium were present (Fig. 3.2, c, e, g), but not in negative controls lacking either or both of these 

analytes. A slight clustering tendency of GVScalp nanostructures, which was attenuated by incubation with 

activated calpain (Extended Data Fig. 3.2), resulted in a slightly higher B-mode signal for the negative 

controls. However, this did not significantly affect the maximal nonlinear sensor contrast of GVScalp of 

approximately 7dB (Fig. 3.2, c, e, g). This contrast increased steeply beyond an applied acoustic pressure 
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of 320 kPa (Fig. 3.2, d, f, h and Extended Data Fig. 3.2). Using this biosensor, ultrasound imaging could 

be used to visualize the dynamic response of calpain to Ca2+, with a half-maximal response concentration 

of 140 µM (Fig. 3.2i and Extended Data Fig. 3.2). Additional control experiments performed on GVs 

with wild-type GvpC showed no proteolytic cleavage, change in GV collapse pressure or ultrasound 

response, after incubation with calcium-activated calpain (Extended Data Fig. 3.3). These results show 

that acoustic biosensor designs based on GvpC cleavage can be generalized to a mammalian protease and 

used to sense the dynamics of a conditionally active enzyme. 

 
Extended Data Figure 3.3 | Characterization of GVWT sample with calpain protease. (a, b, c) Representative 
ultrasound images of agarose phantoms containing GVWT incubated in the presence (+) or absence (-) of calpain (first 
+/-) and calcium (second +/-), at OD500nm 2.2. The B-mode images were taken at 132 kPa for a, b and c and the x-AM 
images corresponding to the maximum difference in non-linear contrast between the +/+ sample and the negative 
controls were taken at 438 kPa for a and b and at 425 kPa for c. CNR stands for contrast-to-noise-ratio and color bars 
represent ultrasound signal intensity in the dB scale. Scale bars represent 1 mm. N = 2 biological replicates for a, b 
and c. (d, e, f) Scatter plots showing the ratio of x-AM to B-mode ultrasound signal as a function of increasing acoustic 
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pressure for GVWT after incubation in the presence or absence of calpain and/or calcium (N = 2 biological replicates). 
(g) Hydrostatic collapse curves of GVWT after incubations in the presence (+) or absence (-) of calpain and/or calcium. 
The legend lists the midpoint collapse pressure for each condition (±95% confidence interval) determined from fitting 
a Boltzmann sigmoid function (N = 5 biological replicates for -/+ and N = 6 for other conditions) (h) Coomassie-
stained SDS-PAGE gel of OD500nm-matched samples of GVWT incubated in the presence (+) or absence (-) of 
calpain/calcium, before and after buoyancy purification (labeled pre b.p. and post b.p., respectively, N=1). Individual 
dots in d, e, f and g represent each N and solid line represents the mean of all the replicates. 
 

3.3.3 Building an acoustic sensor of the protease ClpXP 

In addition to endopeptidases, another important class of enzymes involved in cellular protein signaling and 

homeostasis is processive proteases, which unfold and degrade full proteins starting from their termini33. 

To determine whether GV-based biosensors could be developed for this class of enzymes, we selected 

ClpXP, a processive proteolytic complex from E. coli comprising the unfoldase ClpX and the peptidase 

ClpP34. ClpX recognizes and unfolds protein substrates containing specific terminal peptide sequences 

called degrons. The unfolded proteins are then fed into ClpP, which degrades them into small peptide 

fragments34. We hypothesized that the addition of a degron to the C-terminus of GvpC would enable ClpXP 

to recognize and degrade this protein, while leaving the underlying GvpA shell intact, resulting in GVs with 

greater mechanical flexibility and nonlinear ultrasound contrast (Fig. 3.3a).  
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Figure 3.3: Acoustic biosensor of ClpXP protease. (a) Schematic of GVSClpXP. (b) Coomassie-stained SDS-PAGE 
gel of OD500nm-matched GVSClpXP samples, incubated in a reconstituted cell-free transcription-translation (TX-TL) 
system containing a protease inhibitor cocktail or ClpXP (N= 3 biological replicates). Additional bands in these gels 
arise from components of the TX-TL system (Extended Data Figure 3.4) (c) Representative TEM images of 
GVSClpXP after incubations in the presence of a protease inhibitor or ClpXP. Scale bars represent 100 nm. A minimum 
of 100 GV particles were imaged for the +ClpXP condition and 50 particles for the +inhibitor control. (d) Normalized 
optical density (OD500nm) measurements of GVSClpXP as a function of hydrostatic pressure after protease incubation 
(N=5 biological replicates). (e) Representative ultrasound images of agarose phantoms containing GVSClpXP incubated 
with the inhibitor cocktail or active ClpXP at OD500nm 2.2. (f) Average x-AM/B-mode ratio as a function of applied 
acoustic pressure for GVSClpXP, after incubation with the protease inhibitor or active ClpXP. (g) Hydrostatic collapse 
pressure measurements for engineered Ana GVs with WT-GvpC (GVWT) after protease incubation (N=5 biological 
replicates). For collapse pressure data in d and g, the legend lists the midpoint collapse pressure for each condition 
(±95% confidence interval), determined from fitting a Boltzmann sigmoid function.  (h) Representative ultrasound 
images of agarose phantoms containing GVWT incubated with the inhibitor cocktail or active ClpXP at OD500nm 2.2. 
Scale bars in e and h represent 1mm. CNR stands for contrast-to-noise-ratio, and color bars represent relative 
ultrasound signal intensity on the dB scale. The B-mode images were acquired at 132 kPa and the x-AM images were 
acquired at 477 kPa. (i) Average ratio of x-AM to B-mode acoustic signal as a function of applied acoustic pressure 
for GVWT after incubation with the inhibitor cocktail or ClpXP protease. For e, f, h and i, N=3 biological replicates, 
with each N having 3 technical replicates. For d, f, g and i, solid curves represent the mean and error bars indicate 
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SEM, which were calculated from independent biological replicates. Individual scatter plots for d, f, g and i are shown 
in Extended Data Figure 3.4. 
 

To test this hypothesis, we appended the ssrA degron, AANDENYALAA, via a short SG linker, to 

the C-terminus of Ana GvpC, resulting in a sensor that we named GVSClpXP (Fig. 3.3a). We tested the 

performance of this biosensor in vitro using a reconstituted cell-free transcription-translation system 

comprising E. coli extract, purified ClpX, and a ClpP-expressing plasmid. Gel electrophoresis performed 

after incubating GVSClpXP with this cell-free extract showed significant degradation of the engineered GvpC, 

compared to a negative control condition in which the extract was pre-treated with a protease inhibitor (Fig. 

3.3b).  TEM images showed intact GVs under both conditions, confirming that GvpC degradation left the 

underlying GV shell uncompromised (Fig. 3.3c). Pressurized absorbance spectroscopy indicated a 

substantial weakening of the GV shell upon ClpXP exposure, with the hydrostatic collapse midpoint 

shifting by nearly 250 kPa (Fig. 3.3d and Extended Data Fig. 3.4). Ultrasound imaging revealed a 17dB 

enhancement in the nonlinear contrast produced by GVSClpXP at an acoustic pressure of 477 kPa, in response 

to ClpXP activity (Fig. 3.3, e-f and Extended Data Fig. 3.4). Control GVs containing wild type GvpC 

showed no sensitivity to ClpXP (Fig. 3.3, g-i and Extended Data Fig. 3.4). These results establish the 

ability of GV-based acoustic biosensors to visualize the activity of a processive protease as turn-on sensors. 
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Extended Data Figure 3.4 | Engineering an acoustic sensor of ClpXP proteolytic activity. (a, b) Scatter plots for 
Figure. 3(d, g). N = 5 biological replicates. (c) Coomassie-stained SDS-PAGE gel of OD500nm-matched GVWT samples 
incubated in a reconstituted cell-free transcription-translation (TX-TL) system containing a protease inhibitor cocktail 
or ClpXP. N = 3 biological replicates. (d) Coomassie-stained SDS-PAGE gel of 30x diluted content of TX-TL system 
containing ClpXP. N = 2 biological replicates(e) DLS measurements showing the average hydrodynamic diameter of 
GVSClpXP and GVWT samples, after incubations with protease inhibitor or ClpXP (N = 2 biological replicates, 
individual dots represent each N and horizontal line indicates the mean). (f, g) Scatter plots showing the ratio of x-
AM to B-mode acoustic signal as a function of applied acoustic pressure for all the replicate samples used in the x-
AM voltage ramp experiments for GVSClpXP (f) and GVWT (g). N = 3 biological replicates, with each N consisting of 
3 technical replicates. Individual dots represent each N and solid line represents the mean of all the replicates for a, b, 
f and g. 
 

3.3.4 Constructing intracellular acoustic sensor genes 

After demonstrating the performance of acoustic biosensors in vitro, we endeavored to show that they could 

respond to enzymatic activity inside living cells. As the cellular host, we chose E. coli Nissle 1917. This 

probiotic strain of E. coli has the capacity to colonize the mammalian gastrointestinal tract, and is widely 

used as a chassis for the development of microbial therapeutics35-37, making it a valuable platform for 

intracellular biosensors.  Recently, an engineered operon comprising GV-encoding genes from Anabaena 

flos-aquae and Bacillus megaterium was expressed in Nissle cells as acoustic reporter genes (ARGs), 

allowing gene expression to be imaged with linear B-mode ultrasound8. To develop an intracellular acoustic 

sensor gene targeting ClpXP (ASGClpXP), we swapped the wild type gvpC in the ARG gene cluster (ARGWT) 

with the modified gvpC from GVSClpXP (dGvpC) (Fig. 3.4a). For a first test of this intracellular biosensor, 

we transformed it into wild-type (WT) Nissle cells, which natively express ClpXP protease, hypothesizing 

that it would show a reduced intracellular collapse pressure and enhanced nonlinear contrast compared to 

ARGWT. Indeed, pressurized absorbance spectroscopy on intact cells expressing ASGClpXP revealed a 

reduction in the hydrostatic collapse pressure midpoint of ~ 160 kPa relative to cells expressing ARGWT 

(Extended Data Fig. 3.5). In ultrasound imaging, live cells expressing ASGClpXP showed an enhancement 

in nonlinear contrast of approximately 13 dB (Extended Data Fig. 3.5), while linear B-mode signal was 

similar. The nonlinear response of ASGClpXP expressing cells was strongest beyond an acoustic pressure of 

784 kPa (Extended Data Fig. 3.5). 
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Figure 3.4: Monitoring intracellular protease activity and circuit-driven gene expression in engineered cells. 
(a) Schematic of E. coli Nissle cells expressing the acoustic sensor gene construct for ClpXP. In some cases, the Nissle 
cells are genomically modified to lack the clpX and clpP genes (DclpXP), and co-transformed with a plasmid encoding 
L-arabinose (L-ara) driven ClpXP. (b) Normalized pressure-sensitive optical density at 600 nm of DclpXP Nissle cells 
expressing ASGClpXP with or without L-ara induction of ClpXP protease expression. The legend lists the midpoint 
collapse pressure for each cell type (±95% confidence interval) determined from fitting a Boltzmann sigmoid function 
(N = 3 biological replicates). (c) Representative ultrasound images of DclpXP Nissle cells expressing ASGClpXP with 
or without L-ara induction of ClpXP protease at OD600nm 1.5. (d) Average x-AM/B-mode ratio as a function of applied 
acoustic pressure for DclpXP Nissle cells expressing ASGClpXP with or without L-ara induction of ClpXP expression 
at OD600nm 1.5. N=3 biological replicates, with each N having 3 technical replicates for c and d. (e) Schematic of pT5-
LacO driven ASGClpXP and pTet-TetO driven WT gvpC gene circuits co-transformed into Nissle cells for dynamic 
switching of non-linear acoustic signals from the intracellular GV sensors in response to circuit-driven gene 
expression. (f) Representative ultrasound images of Nissle cells (OD600nm 1) expressing ASGClpXP, with or without aTc 
induction to drive expression of WT GvpC. (g) Average x-AM/B-mode ratio as a function of applied acoustic pressure 
for Nissle cells expressing ASGClpXP, with or without aTc induction. N=5 biological replicates for f and g. CNR stands 
for contrast-to-noise-ratio, and color bars represent relative ultrasound signal intensity in the dB scale. The B-mode 
images were acquired at 309 kPa for (c) and 132 kPa for (f). The x-AM images were acquired at 1.61 MPa for (c), and 
1.34 MPa for (f). Scale bars in c and f represent 1 mm.For b, d and g, solid curves represent the mean and error bars 
indicate SEM. Statistics were performed on data from independent biological replicates. Individual scatter plots for 
b,d and g are shown in Extended Data Figure 3.5. 
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Next, to examine the ability of ASGClpXP to respond to intracellular enzymatic activity in a dynamic 

manner, we generated a ClpXP-deficient strain of Nissle cells (DclpXP) through genomic knock-out of the 

genes encoding ClpX and ClpP, and created a plasmid containing these two genes under the control of an 

arabinose-inducible promoter (Fig. 3.4a). This allowed us to externally control the activity of the ClpXP 

enzyme. DclpXP Nissle cells were co-transformed with an inducible clpX-clpP (clpXP) plasmid and 

ASGClpXP. ClpXP production in these cells after induction with L-arabinose resulted in an approximately 

160 kPa reduction in the hydrostatic collapse pressure midpoint (Fig. 3.4b and Extended Data Fig. 3.5). 

Under ultrasound imaging, cells with induced ClpXP activity showed substantially stronger nonlinear 

contrast (+6.7 dB)  compared to cells uninduced for this protease (Fig. 3.4c), while showing a similar B-

mode signal. This enhancement in nonlinear signal was detectable with acoustic pressures above 950 kPa 

(Fig. 3.4d and Extended Data Fig. 3.5). These experiments demonstrate the ability of ASGClpXP to function 

as an intracellular acoustic sensor to monitor variable enzyme activity.  

 
Extended Data Figure 3.5 | Constructing intracellular acoustic sensor genes for dynamic monitoring of protease 
activity and circuit-driven gene expression. (a) Normalized pressure-sensitive optical density at 600 nm of WT 
Nissle cells expressing either ARGWT or ASGClpXP. The legend lists the midpoint collapse pressure for each cell type 
(±95% confidence interval) determined from fitting a Boltzmann sigmoid function (N = 5 biological replicates and 8 
total replicates for ASGClpXP; N = 3 biological replicates for ARGWT and 6 total replicates). (b) Representative 
ultrasound images of WT Nissle cells expressing either ARGWT or ASGClpXP at OD600nm 1.5 (N = 4 biological replicates 
and the number of total replicates is 10). (c) Scatter plots showing x-AM/B-mode ratio as a function of applied acoustic 
pressure for WT Nissle cells expressing either ARGWT or ASGClpXP at OD600nm 1.5 (N = 4 biological replicates and the 
number of total replicates is 10). (d) Scatter plots for Figure 3.4b, N = 3 biological replicates. (e, f) Scatter plots 
showing the ratio of x-AM to B-mode acoustic signal as a function of acoustic pressure for all the replicate samples 
used in the x-AM voltage ramp experiments for DclpXP Nissle cells expressing ASGClpXP and araBAD driven clpXP, 
with or without L-arabinose induction (e) and WT Nissle cells expressing ASGClpXP and pTet-TetO driven WT gvpC, 
with or without aTc induction (f). N = 3 biological replicates, with each N having 3 technical replicates for (e) and N 
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= 5 biological replicates for (f). Individual dots represent each N and solid line represents the mean of all the replicates 
for a, c, d, e and f. 

A major application of dynamic sensors in cells is to monitor the activity of natural or synthetic 

gene circuits38-40. To test if our acoustic sensors could be used to track the output of a synthetic gene circuit 

in cells, we co-transformed WT Nissle cells with ASGClpXP, and a separate wild-type gvpC gene controlled 

by anhydrotetracycline (aTc) (Fig. 3.4e). Our hypothesis was that induction of this gene circuit only with 

IPTG would result in the production of GVs with ClpXP-degradable GvpC, resulting in nonlinear contrast, 

whereas the additional input of aTc would result in the co-production of non-degradable wild-type GvpC, 

which would take the place of any degraded engineered GvpC on the biosensor shell and lead to reduced 

nonlinear scattering (Fig. 3.4e). Indeed, when we induced cells with just IPTG we observed strong nonlinear 

contrast. However, when aTc was added to the cultures after IPTG induction, this contrast was reduced by 

approximately 10 dB (Fig. 3.4f-g and Extended Data Fig. 3.5). These results, together with our findings 

in DclpXP cells with inducible ClpXP, show that acoustic biosensors can be used to visualize the output of 

synthetic gene circuits. 

 

3.3.5 Ultrasound imaging of intracellular ClpXP activity in vivo 

Finally, after establishing the basic principles of acoustic biosensor engineering in vitro and demonstrating 

their performance in living cells, we assessed the ability of our sensor constructs to produce ultrasound 

contrast within a biologically relevant anatomical location in vivo. In particular, approaches to imaging 

microbes in the mammalian GI tract8,41-43 are needed to support the study of their increasingly appreciated 

roles in health and disease44,45 and the development of engineered probiotic agents46,47. The GI tract is also 

an excellent target for ultrasound imaging due to its relatively deep location inside the animal, and the use 

of ultrasound in clinical diagnosis and animal models of GI pathology, with appropriate measures taken to 

minimize potential interference from air bubbles and solid matter48,49.  

 
Extended Data Figure 3.6 | Schematic illustrating the in vivo ultrasound imaging experiment. Cells in cylindrical 
hydrogel with the indicated cross-sectional arrangements were injected into the GI tract of mice and imaged with 
ultrasound. 
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To demonstrate the ability of acoustic biosensors to produce nonlinear ultrasound contrast within 

the in vivo context of the mouse GI tract, we first co-injected WT Nissle cells expressing ASGClpXP and 

ARGWT into the mouse colon (schematic shown in Extended Data Fig. 3.6), distributing one cell population 

along the lumen wall and the other in the lumen center. In these proof-of-concept experiments, the cells are 

introduced into the colon in a rectally-injected agarose hydrogel to enable precise positioning and control 

over composition. Using nonlinear ultrasound imaging, we could clearly visualize the unique contrast 

generated by the protease-sensitive ASGs as a bright ring of contrast lining the colon periphery (Fig. 3.5a). 

When the spatial arrangement was reversed, the bright nonlinear contrast was concentrated in the middle 

of the lumen (Extended Data Fig. 3.7). A comparison of ultrasound images acquired before and after 

acoustic collapse of the GVs, using a high-pressure pulse from the transducer, confirmed that the bright 

ring of nonlinear contrast was emanating from ASGClpXP -expressing cells (Fig. 3.5a), and this result was 

consistent across independent experiments in 9 mice (Fig. 3.5b).  
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Figure 3.5: Ultrasound imaging of bacteria expressing acoustic sensor genes in the gastrointestinal tract of 
mice. (a) Transverse ultrasound image of a mouse whose colon contains WT Nissle cells expressing ARGWT at the 
center of the lumen and the same strain expressing ASGClpXP at the periphery of the lumen. These imaging experiments 
were independently repeated 9 times with similar results. (b) B-mode and xAM contrast-to-noise ratio (CNR) in vivo, 
for WT Nissle cells expressing ARGWT or ASGClpXP. N = 9 mice. P = 7.8E-5 for x-AM signal from cells expressing 
ASGClpXP versus the ARGWT control and P = 0.2890 for B-mode signal. (c) Transverse ultrasound image of a mouse 
whose colon contains DclpXP Nissle cells expressing ASGClpXP with L-ara induction of ClpXP protease expression at 
the center and without L-ara induction at the periphery of the lumen. These imaging experiments were independently 
repeated 7 times with similar results. Cells were injected in agarose gel at a final concentration of 1.5E9 cells ml-1 for 
a and c. Nonlinear (x-AM) images of the colon, acquired at 1.27 MPa for (a) and 1.56 MPa for (c) before and after 
acoustic collapse (hot color map), are superimposed on linear (B-mode) anatomical images (bone colormap). Color 
bars represent relative ultrasound signal intensity on the dB scale. Scale bars represent 2 mm for a and c. (d) B-mode 
and xAM CNR in vivo, for DclpXP Nissle cells expressing ASGClpXP with or without L-ara induction of ClpXP 
expression. N = 7 mice. P = 1.8E-5 for x-AM signal from cells expressing ASGClpXP with ClpXP protease expression 
induced versus non- induced and P = 0.8293 for B-mode signal. Individual dots represent each N, and the thick 
horizontal line indicates the mean. Error bars indicate SEM. P-values were calculated using a two-tailed paired t-test. 
 

To demonstrate in vivo imaging of enzyme activity, we introduced DclpXP Nissle cells expressing 

ASGClpXP into the mouse colon, with and without transcriptionally activating intracellular ClpXP (schematic 

shown in Extended Data Fig. 3.6) . As above, the cells were contained in an agarose hydrogel. Cells 

induced to express this enzyme showed enhanced nonlinear contrast compared to cells not expressing 

ClpXP (Fig. 3.5c). Acoustic collapse confirmed the acoustic biosensors as the primary source of nonlinear 

signal (Fig. 3.5c). This performance was consistent across 7 mice and 2 spatial arrangements of the cells 

(Fig. 3.5d). These results demonstrate the ability of acoustic biosensors to visualize enzyme activity within 

the context of in vivo imaging. 
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Extended Data Figure 3.7 | Ultrasound imaging of bacteria expressing acoustic sensor genes in the 
gastrointestinal tract of mice. (a) Schematic illustrating two orientations of the wild type (WT) E. coli Nissle cells 
expressing ARGWT or ASGClpXP introduced into the mouse colon as a hydrogel. (b, c) Representative transverse 
ultrasound images of the colon for two mice used in the in vivo imaging experiments, with orientation #1 (b) and 
with orientation #2. (c). Cells are injected at a final concentration of 1.5E9 cells ml-1. B-mode signal is displayed 
using the bone colormap and x-AM signal is shown using the hot colormap. Color bars represent B-mode and x-AM 
ultrasound signal intensity in the dB scale. Scale bars represent 2 mm. (d, e) B-mode and xAM contrast-to-noise 
ratio (CNR) in vivo, for WT Nissle cells expressing ARGWT or ASGClpXP in orientation #1 (d) and orientation #2. (e). 
N = 5 mice for orientation #1 (b, d) and N = 4 mice for orientation #2 (c, e). Error bars indicate SEM. P = 0.0014 for 
x-AM signal from cells expressing ASGClpXP versus the ARGWT control in orientation #1, and P = 0.0016 for that in 
orientation #2. P = 0.0570 for B-mode signal in orientation #1 and P = 0.3445 in orientation #2. P-values were 
calculated using a two-tailed paired t-test. Individual dots represent each N and horizontal line indicates the mean. 
 

Besides molecular sensing, one additional benefit of the nonlinear contrast generated by ASGClpXP 

-expressing cells is to make the cells easier to detect relative to background tissue compared to linear B-

mode imaging. Indeed, the nonlinear contrast of WT Nissle cells expressing ASGClpXP had a significantly 

higher contrast-to-tissue ratio than either the nonlinear contrast of ARGWT-expressing cells, or the B-mode 

contrast of either of these two species (Extended Data Fig. 3.8). 
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 Extended Data Figure 3.8 | ASGClpXP -expressing cells showed 
higher contrast to tissue with nonlinear imaging. B-mode and xAM 
contrast-to-tissue ratio (CTR) in vivo, for WT Nissle cells expressing 
ARGWT or ASGClpXP in both orientations. P = 7.8E-5 for the CTR from 
xAM imaging of cells expressing ASGClpXP versus CTR from xAM 
imaging of cells expressing ARGWT. P = 1.4E-6 for the CTR from 
xAM imaging of cells expressing ASGClpXP versus CTR from B-mode 
imaging of cells expressing ASGClpXP and P = 4.9E-7 for the CTR from 
xAM imaging of cells expressing ASGClpXP versus CTR from B-mode 
imaging of cells expressing ARGWT. Individual dots represent each N, 
and the thick horizontal line indicates the mean. Error bars indicate 
SEM. N = 9 mice. P-values were calculated using a two-tailed paired 

t-test for each comparison independently. Individual dots represent each N and horizontal line indicates the mean. 
 
3.4 Discussion 
Our results establish a paradigm for visualizing protease activity non-invasively with ultrasound imaging. 

This paradigm is enabled by the dependence of the buckling mechanics of GVs on the reinforcing protein 

GvpC, and the ability to turn this protein into a protease substrate by incorporating specific internal or 

terminal peptide sequences. Similar to the earliest work on fluorescent biosensors23,24, this initial study has 

focused on proteases due to the importance of this class of enzymes in biology, their relatively compact 

recognition motifs, and the large impact of their activity on protein structure. Based on our success in 

sensing the function of three distinct proteases, we anticipate that the basic design strategy presented here 

should be applicable to many enzymes of this type. 

Our study lends itself to numerous future investigations to extend the applications of acoustic 

protease sensors beyond the proof-of-concept demonstrations shown here. While our experiments in E. coli 

and within the mouse GI tract establish the critical ability of such biosensors to produce ultrasound contrast 

in relevant biological settings, additional application-centric optimizations would enable the use of these 

constructs to address specific problems in basic and synthetic biology. For example, purified acoustic 

biosensors could be designed to sense extracellular proteases, which play homeostatic and disease-causing 

roles in tissues ranging from extracellular matrix remodeling and blood clot formation to inter-cellular 

signaling. Meanwhile, the expression of acoustic biosensor genes in cells could be used to monitor natural 

cellular enzyme activity or serve as the output of synthetic signaling pathways. Intracellular use in bacteria 

could be particularly relevant in studying microbes in the mammalian GI tract, provided the successful 

adaptation of acoustic sensor genes to the relevant host species and ensuring successful delivery via oral 

gavage, colonization and metabolic viability. For potential applications in mammalian cells, acoustic 

protease sensor designs must be integrated into recently developed genetic programs enabling the 

expression of GVs in mammalian cells50. Successful use of acoustic sensors in this context will require 

increasing the level of mammalian GV expression to enable non-destructive nonlinear imaging. 
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In parallel, significant scope exists for further optimizing and generalizing the design of acoustic 

biosensors. While all three of our sensors produced detectable nonlinear contrast in response to protease 

activity, the changes exhibited by GVSClpXP were significantly larger than for the other two constructs. This 

is not surprising for an enzyme that processively degrades GvpC, and whose recognition motif can be 

incorporated outside the main GV-binding region of GvpC. Endopeptidase sensors could be optimized to 

reach similar performance by incorporating more than one cleavage site within the GvpC sequence and 

tuning the linkers connecting these sites to the rest of the protein. As with other protease biosensors, the 

irreversibility of proteolysis means that for repeated or continuous sensing, it is necessary for new sensor 

molecules to be synthesized or delivered. For genetically encoded biosensors, this occurs through gene 

expression, potentially posing a metabolic burden to the cell. For GVs, this burden could be reduced by re-

expressing only the engineered GvpC rather than the full GV, since this protein can be added onto the shell 

of existing GVs, as demonstrated in this study and previous work12. Going beyond proteolytic sensors, we 

anticipate that our biosensor design strategy could be modified to enable allosteric conformational changes 

in GvpC, rather than its cleavage, to alter ultrasound contrast, thereby creating acoustic biosensors that 

respond reversibly to non-cleaving enzymes, ions or other signals of interest. 

In addition to optimizing the biosensor constructs, it is also possible to improve the ultrasound 

techniques used for their visualization. In this study, we monitored the activation of our biosensors using a 

nonlinear x-AM pulse sequence, quantifying the resulting contrast relative to linear B-mode scattering. This 

ratiometric signal is advantageous for quantification in scenarios where the sensor concentration may vary. 

However, the dependence of the x-AM response on applied acoustic pressure introduces a variable that may 

differ across the ultrasonic field of view, and strategies involving dynamic pressure adjustment may be 

needed to obtain the optimal signal from each point in the imaged plane.  In addition, normalization to B-

mode signal in complex in vivo contexts may require methods to separate the linear scattering contributions 

of acoustic sensors from those of background tissue. With these improvements, acoustic biosensors promise 

to take dynamic imaging of molecular and cellular function to new depths. 

  



 
 

 
 

57 

 
References 

 

1. Lin, M.Z. & Schnitzer, M.J. Genetically encoded indicators of neuronal activity. Nature 

Neuroscience 19, 1142-1153 (2016). 

2. Palmer, A.E., Qin, Y., Park, J.G. & McCombs, J.E. Design and application of genetically encoded 

biosensors. Trends in Biotechnology 29, 144-152 (2011). 

3. Rodriguez, E.A. et al. The growing and glowing toolbox of fluorescent and photoactive proteins. 

Trends in Biochemical Sciences 42, 111-129 (2017). 

4. Miyawaki, A. & Niino, Y. Molecular spies for bioimaging—fluorescent protein-based probes. 

Molecular Cell 58, 632-643 (2015). 

5. Piraner, D.I. et al. Going Deeper: Biomolecular Tools for Acoustic and Magnetic Imaging and 

Control of Cellular Function. Biochemistry (2017). 

6. Maresca, D. et al. Biomolecular Ultrasound and Sonogenetics. Annual Review of Chemical and 

Biomolecular Engineering 9, 229-252 (2018). 

7. Shapiro, M.G. et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nature 

Nanotechnology 9, 311-316 (2014). 

8. Bourdeau, R.W. et al. Acoustic reporter genes for noninvasive imaging of microorganisms in 

mammalian hosts. Nature 553, 86-90 (2018). 

9. Walsby, A.E. Gas vesicles. Microbiological Reviews 58, 94-144 (1994). 

10. Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nature Reviews Microbiology 10, 

705-715 (2012). 

11. Farhadi, A. et al. Recombinantly Expressed Gas Vesicles as Nanoscale Contrast Agents for 

Ultrasound and Hyperpolarized MRI. AIChE Journal 64, 2927-2933 (2018). 

12. Lakshmanan, A. et al. Molecular Engineering of Acoustic Protein Nanostructures. ACS Nano 10, 

7314-7322 (2016). 

13. Hayes, P., Buchholz, B. & Walsby, A. Gas vesicles are strengthened by the outer-surface protein, 

GvpC. Archives of Microbiology 157, 229-234 (1992). 

14. Maresca, D. et al. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules. Applied 

Physics Letters 110, 073701-073705 (2017). 

15. Maresca, D., Sawyer, D.P., Renaud, G., Lee-Gosselin, A. & Shapiro, M.G. Nonlinear X-Wave 

Ultrasound Imaging of Acoustic Biomolecules. Physical Review X 8, 041001-0410012 (2018). 

16. Lopez-Otin, C. & Bond, J.S. Proteases: multifunctional enzymes in life and disease. Journal of 

Biological Chemistry 283, 30433-7 (2008). 



 
 

 
 

58 

17. Drag, M. & Salvesen, G.S. Emerging principles in protease-based drug discovery. Nature Reviews 

Drug Discovery 9, 690 (2010). 

18. Sauer, R.T. & Baker, T.A. AAA+ proteases: ATP-fueled machines of protein destruction. Annual 

Review of Biochemistry 80, 587-612 (2011). 

19. Turk, B., Turk, D. & Turk, V. Protease signalling: the cutting edge. The EMBO Journal 31, 1630-

1643 (2012). 

20. Stein, V. & Alexandrov, K. Protease-based synthetic sensing and signal amplification. Proceedings 

of the National Academy of Sciences 111, 15934-15939 (2014). 

21. Fernandez-Rodriguez, J. & Voigt, C.A. Post-translational control of genetic circuits using 

Potyvirus proteases. Nucleic Acids Research 44, 6493-6502 (2016). 

22. Gao, X.J., Chong, L.S., Kim, M.S. & Elowitz, M.B. Programmable protein circuits in living cells. 

Science 361, 1252-1258 (2018). 

23. Mitra, R.D., Silva, C.M. & Youvan, D.C. Fluorescence resonance energy transfer between blue-

emitting and red-shifted excitation derivatives of the green fluorescent protein. Gene 173, 13-17 

(1996). 

24. Heim, R. & Tsien, R.Y. Engineering green fluorescent protein for improved brightness, longer 

wavelengths and fluorescence resonance energy transfer. Current Biology 6, 178-182 (1996). 

25. Ong, I.L.H. & Yang, K.L. Recent developments in protease activity assays and sensors. Analyst 

142, 1867-1881 (2017). 

26. Phan, J. et al. Structural basis for the substrate specificity of tobacco etch virus protease. Journal 

of Biological Chemistry 277, 50564-50572 (2002). 

27. Parks, T.D., Leuther, K.K., Howard, E.D., Johnston, S.A. & Dougherty, W.G. Release of proteins 

and peptides from fusion proteins using a recombinant plant virus proteinase. Analytical 

Biochemistry 216, 413-417 (1994). 

28. Lakshmanan, A. et al. Preparation of biogenic gas vesicle nanostructures for use as contrast agents 

for ultrasound and MRI. Nature Protocols 12, 2050 (2017). 

29. Goll, D.E., Thompson, V.F., Li, H., Wei, W.E.I. & Cong, J. The calpain system. Physiological 

Reviews 83, 731-801 (2003). 

30. Ono, Y. & Sorimachi, H. Calpains—an elaborate proteolytic system. Biochimica et Biophysica 

Acta (BBA)-Proteins and Proteomics 1824, 224-236 (2012). 

31. Ono, Y., Saido, T.C. & Sorimachi, H. Calpain research for drug discovery: challenges and potential. 

Nature Reviews Drug Discovery 15, 854-876 (2016). 

32. Suzuki, S. et al. Development of an artificial calcium-dependent transcription factor to detect 

sustained intracellular calcium elevation. ACS Synthetic Biology 3, 717-722 (2014). 



 
 

 
 

59 

33. Sauer, R.T. et al. Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 

119, 9-18 (2004). 

34. Baker, T.A. & Sauer, R.T. ClpXP, an ATP-powered unfolding and protein-degradation machine. 

Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1823, 15-28 (2012). 

35. Sonnenborn, U. & Schulze, J. The non-pathogenic Escherichia coli strain Nissle 1917–features of 

a versatile probiotic. Microbial Ecology in Health and Disease 21, 122-158 (2009). 

36. Danino, T. et al. Programmable probiotics for detection of cancer in urine. Science Translational 

Medicine 7, 289ra84 (2015). 

37. Blum-Oehler, G. et al. Development of strain-specific PCR reactions for the detection of the 

probiotic Escherichia coli strain Nissle 1917 in fecal samples. Research in Microbiology 154, 59-

66 (2003). 

38. Elowitz, M.B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 

403, 335-338 (2000). 

39. Khalil, A.S. & Collins, J.J. Synthetic biology: applications come of age. Nature Reviews Genetics 

11, 367-379 (2010). 

40. Tigges, M., Marquez-Lago, T.T., Stelling, J. & Fussenegger, M. A tunable synthetic mammalian 

oscillator. Nature 457, 309-312 (2009). 

41. Mark Welch, J.L., Hasegawa, Y., McNulty, N.P., Gordon, J.I. & Borisy, G.G. Spatial organization 

of a model 15-member human gut microbiota established in gnotobiotic mice. Proceedings of the 

National Academy of Sciences 114, E9105-E9114 (2017). 

42. Geva-Zatorsky, N. et al. In vivo imaging and tracking of host-microbiota interactions via metabolic 

labeling of gut anaerobic bacteria. Nature Medicine 21, 1091-100 (2015). 

43. Foucault, M.L., Thomas, L., Goussard, S., Branchini, B.R. & Grillot-Courvalin, C. In vivo 

bioluminescence imaging for the study of intestinal colonization by Escherichia coli in mice. 

Applied and Environmental Microbiology 76, 264-74 (2010). 

44. Round, J.L. & Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during 

health and disease. Nature Reviews Immunology 9, 313-323 (2009). 

45. Derrien, M. & Vlieg, J.E.T.V. Fate, activity, and impact of ingested bacteria within the human gut 

microbiota. Trends in Microbiology 23, 354-366 (2015). 

46. Steidler, L. et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 

289, 1352-1355 (2000). 

47. Daniel, C., Roussel, Y., Kleerebezem, M. & Pot, B. Recombinant lactic acid bacteria as mucosal 

biotherapeutic agents. Trends in Biotechnology 29, 499-508 (2011). 



 
 

 
 

60 

48. Muradali, D. & Goldberg, D.R. US of gastrointestinal tract disease. Radiographics 35, 50-68 

(2015). 

49. Machtaler, S., Knieling, F., Luong, R., Tian, L. & Willmann, J.K. Assessment of inflammation in 

an acute on chronic model of inflammatory bowel disease with ultrasound molecular imaging. 

Theranostics 5, 1175 (2015). 

50. Farhadi, A., Ho, G.H., Sawyer, D.P., Bourdeau, R.W. & Shapiro, M.G. Ultrasound imaging of gene 

expression in mammalian cells. Science 365, 1469 (2019). 

 

  



 
 

 
 

61 

3.5 Methods 
3.5.1 Design and cloning of genetic constructs 

All gene sequences were codon optimized for E.Coli expression and inserted into their plasmid backbones 

via Gibson Assembly or KLD Mutagenesis using enzymes from New England Biolabs and custom primers 

from Integrated DNA Technologies. The protease recognition sequences for TEV protease and µ-calpain, 

flanked by flexible linkers, were introduced by substitution-insertion into the second repeat of the wild-

type Ana gvpC gene sequence in a pET28a expression vector (Novagen) driven by a T7 promoter and lac 

operator. The ssrA degradation tag for the ClpXP bacterial proteasome was appended to the C-terminus of 

Ana gvpC using a short flexible linker. The acoustic sensor gene for intracellular protease sensing of ClpXP 

was constructed by modifying of the acoustic reporter gene cluster ARG18, by addition of the ssrA 

degradation tag to the C-terminal of gvpC using a linker sequence. For expression in E.coli Nissle 1917 

cells, the pET28a T7 promoter was replaced by the T5 promoter. For inducible expression of clpX and clpP, 

the genes encoding those two proteins were cloned from the E. coli Nissle 1917 genome into a modified 

pTARA backbone under a PBAD promoter and araBAD operon. For dynamic regulation of intracellular 

sensing, the wild-type GvpC sequence was cloned into a modified pTARA backbone under a pTet promoter 

and tetracycline operator. The complete list and source of plasmids used in this study is given in 

Supplementary Table 1. Plasmid constructs were cloned using NEB Turbo E. Coli (New England Biolabs) 

and sequence-validated. 

 

3.5.2 Construction of clpX – clpP – strain of E.coli Nissle 1917 (DclpXP) 

The knockout of clpX and clpP in E.coli Nissle (ECN) was accomplished by Lambda Red recombineering 

using previously published methods51. A FRT-flanked cat gene was recombined into ECN genome to 

replace the clpX and clpP genes, and the integrated cat gene was then removed by the FLP recombinase 

from pE-FLP52 to yield the DclpXP strain. More information on the recombineering plasmids used in this 

study and their source is provided in Supplementary Table 1.  

 

3.5.3 GV expression, purification and quantification 

For in vitro assays, GVs were harvested and purified from confluent Ana cultures using previously 

published protocols12,28. Briefly, Ana cells were grown in Gorham’s media supplemented with BG-11 

solution (Sigma) and 10 mM sodium bicarbonate at 25°C, 1% CO2 and 100 rpm shaking, under a 14h light 

and 10h dark cycle. Confluent cultures were transferred to sterile separating funnels and left undisturbed 

for 2-3 days to allow buoyant Ana cells expressing GVs to float to the top and for their subnatant to be 

drained. Hypertonic lysis with 10% Solulyse (Genlantis) and 500 mM sorbitol was used to release and 

harvest the Ana GVs. Purified GVs were obtained through 3-4 rounds of centrifugally assisted floatation, 
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with removal of the subnatant and resuspension in phosphate buffered saline (PBS, Corning) after each 

round.  

For expression of acoustic reporter/sensor genes (ARG/ASG) in bacteria, wild-type E. Coli Nissle 

1917 cells (Ardeypharm GmbH) were made electrocompetent and transformed with the genetic constructs. 

After electroporation, cells were rescued in SOC media supplemented with 2% glucose for 1h at 37°C. 

Transformed cells were grown for 12-16 hours at 37°C in 5 mL of LB medium supplemented with 50 

µg/mL kanamycin and 2% glucose. Large-scale cultures for expression were prepared by a 1:100 dilution 

of the starter culture in LB medium containing 50 µg/mL kanamycin and 0.2% glucose. Cells were grown 

at 37°C to an OD600nm of 0.2-0.3, then induced with 3µM Isopropyl β-D-1-thiogalactopyranoside (IPTG) 

and allowed to grow for 22 hrs at 30°C.  Buoyant E.Coli Nissle cells expressing GVs were isolated from 

the rest of the culture by centrifugally assisted floatation in 50 mL conical tubes at 300g for 3-4 hrs, with a 

liquid column height less than 10 cm to prevent GV collapse by hydrostatic pressure.  

The concentration of Ana GVs was determined by measurement of their optical density (OD) at 

500 nm (OD500) using a Nanodrop spectrophotometer (Thermo Fisher Scientific), using the resuspension 

buffer or collapsed GVs as the blank. As established in previous work28,  the concentration of GVs at OD500 

= 1 is approximately 114 pM and the gas fraction is 0.0417%. The OD of buoyant cells expressing GVs 

were quantified at 600 nm using the Nanodrop. 

 

3.5.4 Bacterial expression and purification of GvpC variants 

For expression of Ana GvpC variants, plasmids were transformed into chemically competent BL21(DE3) 

cells (Invitrogen) and grown overnight for 14-16 h at 37°C in 5 mL starter cultures in LB medium with 50 

µg/mL kanamycin. Starter cultures were diluted 1:250 in Terrific Broth (Sigma) and allowed to grow at 

37°C (250 rpm shaking) to reach an OD600nm of 0.4-0.7. Protein expression was induced by addition of 1 

mM IPTG, and the cultures were transferred to 30°C. Cells were harvested by centrifugation at 5500g after 

6-8 hours. For the GvpC-ssrA variant, expression was carried out at 25°C for 8 hours to reduce the effect 

of protease degradation and obtain sufficient protein yield. 

GvpC was purified from inclusion bodies by lysing the cells at room temperature using Solulyse 

(Genlantis), supplemented with lysozyme (400 µg/mL) and DNase I (10 µg/mL). Inclusion body pellets 

were isolated by centrifugation at 27,000g for 15 mins and then resuspended in a solubilization buffer 

comprising 20 mM Tris-HCl buffer with 500 mM NaCl and 6 M urea (pH: 8.0), before incubation with Ni-

NTA resin (Qiagen) for 2 h at 4°C. The wash and elution buffers were of the same composition as the 

solubilization buffer, but with 20mM and 250 mM imidazole respectively. The concentration of the purified 
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protein was assayed using the Bradford Reagent (Sigma). Purified GvpC variants were verified to be >95% 

pure by SDS-PAGE analysis. 

 

3.5.5 Preparation of gas vesicles for in vitro protease assays 

Engineered GVs having protease-sensitive or wild-type GvpC were prepared using urea stripping and GvpC 

re-addition12,28. Briefly, Ana GVs were stripped of their native outer layer of GvpC by treatment with 6M 

urea solution buffered with 100 mM Tris- HCl (pH:8-8.5). Two rounds of centrifugally assisted floatation 

with removal of the subnatant liquid after each round were performed to ensure complete removal of native 

GvpC. Recombinant Ana GvpC variants purified from inclusion bodies were then added to the stripped 

Ana GVs in 6 M urea a 2-3x molar excess concentration determined after accounting for 1:25 binding ratio 

of GvpC: GvpA. For a twofold stoichiometric excess of GvpC relative to binding sites on an average Ana 

GV, the quantity of recombinant GvpC (in nmol) to be added to stripped GVs was calculated according to 

the formula:  2 * OD * 198 nM * volume of GVs (in liters). The mixture of stripped GVs (OD500nm = 1-2) 

and recombinant GvpC in 6 M urea buffer was loaded into dialysis pouches made of regenerated cellulose 

membrane with a 6-8 kDa M.W. cutoff (Spectrum Labs). The GvpC was allowed to slowly refold onto the 

surface of the stripped GVs by dialysis in 4 L PBS for at least 12 h at 4 °C. Dialyzed GV samples were 

subjected to two or more rounds of centrifugally assisted floatation at 300 g for 3-4 h to remove any excess 

unbound GvpC. Engineered GVs were resuspended in PBS after subnatant removal and quantified using 

pressure-sensitive OD measurements at 500 nm using a Nanodrop. 

 
3.5.6 Pressurized absorbance spectroscopy  

Purified, engineered Ana GVs were diluted in experimental buffers to an OD500nm ~ 0.2-0.4, and 400 µL of 

the diluted sample was loaded into a flow-through quartz cuvette with a pathlength of 1 cm (Hellma 

Analytics). Buoyant E.Coli Nissle cells expressing GVs were diluted to an OD600nm of ~ 1 in PBS for 

measurements.  A 1.5 MPa nitrogen gas source was used to apply hydrostatic pressure in the cuvette through 

a single valve pressure controller (PC series, Alicat Scientific), while a microspectrometer (STS-VIS, 

Ocean Optics) measured the OD of the sample at 500 nm (for Ana GVs) or 600 nm (for Nissle cells). The 

hydrostatic pressure was increased from 0 to 1 MPa in 20 kPa increments with a 7 second equilibration 

period at each pressure before OD measurement. Each set of measurements was normalized by scaling to 

the Min-Max measurement value, and the data was fitted using the Boltzmann sigmoid function 𝑓(𝑃) =

1 + 𝑒(ghgi)/∆ghP, with the midpoint of normalized OD change (Pl) and the 95% confidence intervals, 

rounded to the nearest integer, reported in the figures.  
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3.5.7 TEM sample preparation and imaging 

Freshly diluted samples of engineered Ana GVs (OD500nm ~ 0.3) in 10 mM HEPES buffer containing 150 

mM NaCl (pH 8) were used for TEM. 2 µL of the sample was added to Formvar/carbon 200 mesh grids 

(Ted Pella) that were rendered hydrophilic by glow discharging (Emitek K100X). 2% uranyl acetate was 

added for negative staining. Images were acquired using the FEI Tecnai T12 LaB6 120kV TEM equipped 

with a Gatan Ultrascan 2k X 2k CCD and ‘Leginon’ automated data collection software suite. 

 

3.5.8 Dynamic light scattering (DLS) measurements 

Engineered Ana GVs were diluted to an OD500nm ~ 0.2 in experimental buffers.  150-200 µL of the sample 

was loaded into a disposable cuvette (Eppendorf UVette®) and the particle size was measured using the 

ZetaPALS particle sizing software (Brookhaven instruments) with an angle of 90 ° and refractive index of 

1.33. 

 
3.5.9 Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) 

GV samples were OD500nm matched and mixed 1:1 with 2x Laemmli buffer (Bio-Rad), containing SDS and 

2-mercaptoethanol. The samples were then boiled at 95°C for 5 minutes and loaded into a pre-made 

polyacrylamide gel (Bio-Rad) immersed in 1x Tris-Glycine-SDS Buffer. 10 uL of Precision Plus ProteinTM 

Dual Color Standards (Bio-Rad) was loaded as the ladder. Electrophoresis was performed at 120V for 55 

minutes, after which the gel was washed in DI water for 15 minutes to remove excess SDS and commassie-

stained for 1 hour in a rocker-shaker using the SimplyBlue SafeStain (Invitrogen). The gel was allowed to 

de-stain overnight in DI water before imaging using a Bio-Rad ChemiDocTM imaging system. 

 

3.5.10 In vitro protease assays 

For in vitro assays with the TEV endopeptidase, recombinant TEV protease (R&D Systems, Cat. No. 4469-

TP-200) was incubated (25% v/v fraction) with engineered Ana GVs resuspended in PBS (final OD500nm in 

reaction mixture = 5-6) at 30°C for 14-16 h. This corresponds to a TEV concentration of 0.1~0.125 mg/mL 

(depending on the lot), within the range used in previous studies with this enzyme53,54. Engineered GVs 

with wild-type GvpC and TEV protease heat-inactivated at 80°C for 20-30 mins were used as the controls. 

For in vitro assays with calpain, calpain-1 from porcine erythrocytes (Millipore Sigma, Cat. No. 

208712) was incubated in a 10% v/v fraction with engineered Ana GVs in a reaction mixture containing 50 

mM Tris-HCl, 50 mM NaCl, 5 mM 2-mercaptoethanol, 1 mM EDTA and 1 mM EGTA and 5 mM Ca2+ 

(pH: 7.5) This corresponds to a calpain concentration of ≥  0.168 units per µl, with 1 unit defined by the 

manufacturer as sufficient to cleave 1 pmol of a control fluorogenic substrate in 1 min at 25˚C.. The final 

concentration of engineered GVs in the reaction mixture was OD500nm ~ 6 and the protease assay was carried 
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out at 25°C for 14-16h.  Negative controls included the same reaction mixture without calpain, without 

calcium, or without calpain and calcium. Engineered GVs with WT-GvpC were used as additional negative 

controls. 

For in vitro assays with ClpXP, a reconstituted cell-free transcription-translation (TX-TL) system 

adapted for ClpXP degradation assays55 (gift from Zachary Sun and Richard Murray) was used. Briefly, 

cell-free extract was prepared by lysis of ExpressIQ E.coli cells (New England Biolabs), and mixed in a 

44% v/v ratio with an energy source buffer, resulting in a master mix of extract and buffer comprising: 9.9 

mg/mL protein, 1.5 mM each amino acid except leucine, 1.25 mM leucine, 9.5 mM Mg-glutamate, 95 mM 

K-glutamate, 0.33 mM DTT, 50 mM HEPES, 1.5 mM ATP and GTP, 0.9 mM CTP and UTP, 0.2 mg/mL 

tRNA, 0.26 mM CoA, 0.33 mM NAD, 0.75 mM cAMP, 0.068 mM folinic acid, 1 mM spermidine, 30 mM 

3-PGA and 2% PEG-8000. For purified ClpX protein, a monomeric N-terminal deletion variant Flag-

ClpXdeltaNLinkedHexamer-His656 (Addgene ID: 22143) was used. Post Ni-NTA purification, active 

fractions of ClpX hexamers with sizes above 250 kDa were isolated using a Supradex 2010/300 column, 

flash frozen at a concentration of 1.95 µM and stored at -80°C in a storage buffer consisting of: 50 mM 

Tris-Cl (pH 7.5), 100 mM NaCl, 1mM DTT, 1 mM EDTA and 2% DMSO.  The final reaction mixture was 

prepared as follows: 75% v/v fraction of the master mix, 10% v/v of purified ClpX, 1nm of the purified 

pBEST-ClpP plasmid and engineered Ana GVs (concentration of OD500nm = 2.5-2.7 in the reaction mixture). 

The mixture was made up to the final volume using ultrapure H2O. The reaction was allowed to proceed at 

30°C for 14-16 h. As a negative control, a protease inhibitor cocktail mixture (SIGMAFASTTM, Millipore 

Sigma) was added to the reaction mixture at 1.65x the manufacturer-recommended concentration and pre-

incubated at room temperature for 30 mins.  

 

3.5.11 Dynamic sensing of ClpXP activity in DclpXP E.Coli Nissle 1917 cells 

ClpXP E. Coli Nissle 1917 cells were made electrocompetent and co-transformed with the pET expression 

plasmid (Lac-driven) containing the ASG for ClpXP and a modified pTARA plasmid (pBAD-driven) 

containing the clpX and clpP genes. Electroporated cells were rescued in SOC media supplemented with 

2% glucose for 2h at 37°C. Transformed cells were grown overnight at 37ºC in 5 mL LB medium 

supplemented with 50 µg/mL kanamycin, 25 µg/mL chloramphenicol and 2% glucose. Starter cultures were 

diluted 1:100 in LB medium with 50 µg/mL kanamycin, 25 µg/mL chloramphenicol and 0.2% glucose and 

allowed to grow at 37 °C to reach an OD600nm of 0.2-0.3. ASG expression was induced with 3µM IPTG and 

the bacterial culture was transferred to the 30 °C incubator with 250 rpm shaking for 30 minutes. The culture 

was then split into two halves of equal volume, and one half was induced with 0.5% (weight fraction) L-

arabinose for expression of ClpXP protease. Cultures with and without L-arabinose induction were allowed 

to grow for an additional 22 h at 30°C. Cultures were then spun down at 300 g in a refrigerated centrifuge 
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at 4 °C for 3-4 h in 50 mL conical tubes to isolate buoyant cells expressing GVs from the rest of the culture. 

The liquid column height was maintained at less than 10 cm to prevent GV collapse by hydrostatic pressure.   

 

3.5.12 Dynamic sensing of circuit-driven gene expression in E.Coli Nissle 1917 cells 

Electrocompetent E. coli Nissle cells were co-transformed with the pET expression plasmid (Lac-driven) 

containing the ASG for ClpXP and a modified pTARA plasmid57 (Tet-driven) containing the WT Ana GvpC 

gene. Electroporated cells were rescued in SOC media supplemented with 2% glucose for 2h at 37°C. 

Transformed cells were grown overnight at 37ºC in 5 mL LB medium supplemented with 50 µg/mL 

kanamycin, 50 µg/mL chloramphenicol and 2% glucose. Starter cultures were diluted 1:100 in LB medium 

with 50 µg/mL kanamycin, 50 µg/mL chloramphenicol and 0.2% glucose and allowed to grow at 37 °C to 

reach an OD600nm of 0.2-0.3. ASG expression was induced with 3 µM IPTG and the bacterial culture was 

transferred to 30 °C incubator with 250 rpm shaking for 1.5-2 h. The culture was then split into two halves 

of equal volume, and one half was induced with 50 ng/mL aTc for expression of WT GvpC. Cultures with 

and without aTc induction were allowed to grow for an additional 20 h at 30°C. Cultures were then spun 

down at 300 g in a refrigerated centrifuge at 4 °C for 3-4 h in 50 mL conical tubes to isolate buoyant cells 

expressing GVs from the rest of the culture. The liquid column height was maintained at less than 10 cm to 

prevent GV collapse by hydrostatic pressure.   

 

3.5.13 In vitro ultrasound imaging 

Imaging phantoms were prepared by melting 1% agarose (w/v) in PBS and casting wells using a custom 3-

D-printed template mold containing a 2-by-2 grid of cylindrical wells with 2 mm diameter and 1 mm 

spacing between the outer radii in the bulk material. Ana GV samples from in vitro assays or buoyant Nissle 

cells expressing GVs were mixed 1:1 with 1% molten agarose solution at 42°C and quickly loaded before 

solidification into the phantom wells. All samples and their controls were OD-matched using the Nanodrop 

prior to phantom loading, with the final concentration being OD500nm = 2.2 for Ana GVs and OD600nm= 1.0-

1.5 for buoyant Nissle cells. Wells not containing sample were filled with plain 1% agarose. Hydrostatic 

collapse at 1.4 MPa was used to determine that the contribution to light scattering from GVs inside the cells 

was similar for those expressing the acoustic sensor gene and its wild-type ARG counterpart. The phantom 

was placed in a custom holder on top of an acoustic absorber material and immersed in PBS to acoustically 

couple the phantom to the ultrasound imaging transducer.  

 Imaging was performed using a Verasonics Vantage programmable ultrasound scanning system 

and a L22-14v 128-element linear array Verasonics transducer, with a specified pitch of 0.1 mm, an 

elevation focus of 8 mm, an elevation aperture of 1.5mm and a center frequency of 18.5 MHz with 67% -6 

dB bandwidth. Linear imaging was performed using a conventional B-mode sequence with a 128-ray-lines 
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protocol. For each ray line, a single pulse was transmitted with an aperture of 40 elements. For nonlinear 

image acquisition, a custom cross-amplitude modulation (x-AM) sequence detailed in an earlier study15, 

with an x-AM angle (q) of 19.5° and an aperture of 65 elements, was used. Both B-mode and x-AM 

sequences were programmed to operate close to the center frequency of the transducer (15.625 MHz) and 

the center of the sample wells were aligned to the set transmit focus of 5 mm. Transmitted pressure at the 

focus was calibrated using a Precision Acoustics fiber-optic hydrophone system. Each image was an 

average of 50 accumulations. B-mode images were acquired at a transmit voltage of 1.6V (132 kPa), and 

an automated voltage ramp imaging script (programmed in MATLAB) was used to sequentially toggle 

between B-mode and x-AM acquisitions. The script acquired x-AM signals at each specified voltage step, 

immediately followed by a B-mode acquisition at 1.6V (132 kPa), before another x-AM acquisition at the 

next voltage step. For engineered Ana GVs subjected to in vitro protease assays, an x-AM voltage ramp 

sequence from 4V (230 kPa) to 10V (621 kPa) in 0.2V increments was used. For wild-type Nissle cells 

expressing GVs, an x-AM voltage ramp sequence from 7.5V (458 kPa) to 25V (1.6 MPa) in 0.5V 

increments was used. Samples were subjected to complete collapse at 25V with the B-mode sequence for 

10 seconds, and the subsequent B-mode image acquired at 1.6V and x-AM image acquired at the highest 

voltage of the voltage ramp sequence was used as the blank for data processing. There was no significant 

difference between the signals acquired at specific acoustic pressures during a voltage ramp or after directly 

stepping to the same pressure (Extended Data Fig. 3.9). 
 Extended Data Figure 3.9 | Absence of memory effect 
from imaging at sequentially increasing acoustic 
pressure. Ratio of sensor-specific signal (xAM/B-mode) 
acquired at the indicated acoustic pressures in the process of 
voltage ramping (comprising 36 points from 458 kPa to 1.6 
MPa) or stepping the transducer output directly to 
corresponding pressure in a single step, for WT Nissle cells 
expressing either ARGWT or ASGClpXP. N =3 biological 
replicates, with each N having 3 technical replicates. 
Individual dots represent each replicate, and the thick 
horizontal line indicates the mean. Error bars indicate SEM 

derived from biological replicates (see Online Methods). 
 

Due to transducer failure, a replacement Verasonics transducer (L22-14vX) with similar 

specifications was used in experiments with DclpXP cells. The transmitted pressure at the focus was 

calibrated in the same way as the L22-14v. B-mode images were acquired at a transmit voltage of 1.6V 

(309 kPa), and an x-AM voltage ramp sequence from 6V (502 kPa) to 25V (2.52 MPa) was used. The 

imaging protocol was otherwise unchanged.  

 

 

3.5.14 In vivo ultrasound imaging  
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All in vivo experiments were performed on C57BL/6J male mice, aged 14–34 weeks, under a protocol 

approved by the Institutional Animal Care and Use Committee of the California Institute of Technology. 

No randomization or blinding were necessary in this study. Mice were anesthetized with 1–2% isoflurane, 

maintained at 37 °C on a heating pad, depilated over the imaged region, and enema was performed by 

injecting PBS to expel gas and solid contents in mice colon. For imaging of E. coli in the gastrointestinal 

tract, mice were placed in a supine position, with the ultrasound transducer positioned on the lower 

abdomen, transverse to the colon such that the transmit focus of 5 mm was close to the center of the colon 

lumen. Prior to imaging, two variants of buoyancy-enriched E. coli Nissle 1917  were mixed in a 1:1 ratio 

with 4% agarose in PBS at 42 °C, for a final bacterial concentration of 1.5E9 cells ml−1. An 8-gauge gavage 

needle was filled with the mixture of agarose and bacteria of one cell population. Before it solidified, a 14-

gauge needle was placed inside the 8-gauge needle to form a hollow lumen within the gel. After the 

agarose–bacteria mixture solidified at room temperature for 10 min, the 14-gauge needle was removed. The 

hollow lumen was then filled with the agarose–bacteria of the other cell population. After it solidified, the 

complete cylindrical agarose gel was injected into the colon of the mouse with a PBS back-filled syringe. 

For the colon imaging, imaging planes were selected to avoid gas bubbles in the field of view. In all in vivo 

experiments, three transducers were used, including two L22-14v and one L22-14vX, due to transducer 

failures unrelated to this study. B-mode images were acquired at 1.9V (corresponding to 162 kPa in water) 

for L22-14v, and 1.6V (309 kPa in water) for L22-14vX. x-AM images were acquired at 20V (1.27 MPa in 

water) for L22-14v and 15V (1.56 MPa in water) for L22-14vX, with other parameters being the same as 

those used for in vitro imaging. B-mode anatomical imaging was performed at 7.4V using the ‘L22-14v 

WideBeamSC’ script provided by Verasonics.  

 

3.5.15 Image processing and data analysis  

All in vitro and in vivo ultrasound images were processed using MATLAB. Regions of interest (ROIs) were 

manually defined so as to adequately capture the signals from each sample well or region of the colon. The 

sample ROI dimensions (1.2 mm × 1.2 mm square) were the same for all in vitro phantom experiments. 

The noise ROI was manually selected from the background for each pair of sample wells. For the in vivo 

experiments, circular ROIs were manually defined to avoid edge effects from the skin or colon wall, and 

the tissue ROIs were defined as the rest of the region within the same depth range of the signal ROIs. For 

each ROI, the mean pixel intensity was calculated, and the pressure-sensitive ultrasound intensity (Δ𝐼 =

𝐼qrstls − 𝐼luvvtwxyz)  was calculated by subtracting the mean pixel intensity of the collapsed image from the 

mean pixel intensity of the intact image. The contrast-to-noise ratio (CNR) was calculated for each sample 

well by taking the mean intensity of the sample ROI over the mean intensity of the noise ROI. The x-AM 
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by B-mode ratio at a specific voltage (or applied acoustic pressure) was calculated with the following 

formula:  
{|}~��(�)
{|�~����(�)

  

where ΔI�h��(V) is the pressure-sensitive nonlinear ultrasound intensity acquired by the x-AM sequence 

at a certain voltage V, and ΔI�h�uzy(V)	is the pressure-sensitive linear ultrasound intensity of the B-mode 

acquisitions at 1.6V (132 kPa) following the x-AM acquisitions at the voltage V. All images were pseudo-

colored (bone colormap for B-mode images, hot colormap for x-AM images), with the maximum and 

minimum levels indicated in the accompanying color bars.  

 

3.5.16 Statistical analysis 
Data is plotted as the mean ± standard error of the mean (SEM). Sample size is N=3 biological replicates 

in all in vitro experiments unless otherwise stated. For each biological replicate, there were technical 

replicates to accommodate for variability in experimental procedures such as sample loading and pipetting. 

SEM was calculated by taking the values for the biological replicates, each of which was the mean of its 

technical replicates. The numbers of biological and technical replicates were chosen based on preliminary 

experiments such that they would be sufficient to report significant differences in mean values. Individual 

data for each replicate is given in Extended Data Figures 1-9 in the form of scatter plots. P values, for 

determining the statistical significance for the in vivo data, were calculated using a two-tailed paired t-test. 
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3.6 Supplementary Material 
 

Plasmid 
Name 

Description and 
Purpose 

Transcri
ptional 

regulator
s 

Output gene 
product(s) 

Insertions/Tags 
(including 

linkers) 

Reference 
Infor-
mation 

 
WT C-His 

Ana GvpC in 
pET28a 

Ana gvpC used as 
wild-type control 

for TEV and 
calpain sensor 

pT7, 
LacO 

WT C-His Ana 
GvpC 

SLE-His6 at 
C-terminus 

Addgene 
ID# 85732 

 
WT N-His 

Ana GvpC in 
pET28a 

Ana gvpC used as 
wild-type control 
for ClpXP sensor 

pT7, 
LacO 

WT N-His-Ana-
GvpC 

G-His6-SG at 
N-terminus 

Addgene 
ID# 

153294 

 
 

C-His-
GvpC-TEV 

Ana gvpC with 
TEV cleavage site 

pT7, 
LacO 

C-His Ana GvpC 
with TEV 

cleavage site 

SLE-His6 at C-
terminus,                                    

GSGSGSG-
ENLYFQG-
SGSGSG in 

GvpC repeat 2 

Addgene 
ID# 

153296 

 
 

C-His-
GvpC-
Calpain 

Ana gvpC with 
calpain cleavage 

site 

pT7, 
LacO 

C-His Ana GvpC 
with calpain 
cleavage site 

SLE-His6 at C-
terminus,                                    
GSGSG-

QQEVYGMMP
RD-GSGSG in 
GvpC repeat 2 

Addgene 
ID# 

153295 

 
 

N-His-
GvpC-ssrA 

Ana gvpC with 
ssrA degradation 

tag 

pT7, 
LacO 

N-His Ana GvpC 
with ssrA 

degradation tag 

G-His6-SG at 
N-terminus,                                            

SG-
AANDENYAL

AA at C-
terminus 

Addgene 
ID# 

153297 

pBEST_OR2
_OR1-Pr-

UTR1_ClpP-
T500 

clpP plasmid for 
use in the cell-free 

TX-TL system 

OR2-
OR1-Pr ClpP  

Addgene 
ID# 

153302 

 
pACYC-

FLAG-dN6-
His 

clpX plasmid for 
use in the cell-free 

TX-TL system 

pT7, 
LacO 

Flag-
ClpXdeltaNLinke
dHexamer-His6 

Flag tag at N-
terminus 

His6 at C-
terminus 

Addgene 
ID# 22143 
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Supplementary Table 3.1: List and features of genetic constructs used in this study.  

pKD31 was a gift from Barry L. Wanner (Addgene plasmid # 45604 ; http://n2t.net/addgene:45604 ; 

RRID:Addgene_45604). pKD461 was obtained from the Coli Genetic Stock Center  

(CGSC, https://cgsc.biology.yale.edu/Site.php?ID=64672).  

pE-FLP2 was a gift from Drew Endy & Keith Shearwin 

(Addgene plasmid # 45978;http://n2t.net/addgene:45978 ; RRID:Addgene_45978). 

The pBEST_OR2-OR1-Pr-UTR1_ClpP-T500 was a gift from Zachary Sun and Richard Murray3. 

pACYC-FLAG-dN6-His4 was a gift from Robert Sauer (Addgene plasmid # 22143 ; 

http://n2t.net/addgene:22143 ; RRID:Addgene_22143) 

 L20 linkers 

 
pET28a_T5-

ARG1 

Original acoustic 
reporter gene 

construct (ARGWT) 

pT5, 
LacO 

Ana GvpA, WT 
Ana GvpC, Mega 

GvpR-U 
 

 
Addgene 

ID # 
106476 

 
pET28a-T5-
ASG_ClpXP 

Acoustic sensor 
gene for ClpXP 

(ASGClpXP) 

pT5, 
LacO 

Ana GvpA, 
dGvpC, Mega 

GvpR-U 

SG-
AANDENYAL

AA at C-
terminus 

Addgene 
ID# 

153299 

 
pKD3 

Frt-flanked cat 
cassette for 

recombineering 
 

 CAT  Addgene 
ID # 45604 

 
 

pKD46 

Plasmid that 
carries the 

Lambda Red 
recombineering 

system 

pBAD, 
araBAD 
operon 

Gam, Beta, Exo  

Coli 
Genetic 
Stock 
Center 

 
pE-FLP 

FLP recombinase 
to remove the 

integration module 
in reombineering 

pE FLP  
 

Addgene 
ID # 45978 

araBAD-
BCD20-

ClpP-
BCD17-

ClpX 

Expression of 
clpX and clpP 
under araBAD 

promoter 

pBAD, 
araBAD 
operon 

ClpX, ClpP  
Addgene 

ID # 
153301 

 
pTetR-

BCD2-Ana 
GvpC 

Wild-type Ana 
gvpC under Tet 

promoter 

pTet, 
TetO WT Ana GvpC  

Addgene 
ID # 

153298 
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The pTARA backbone was modified to make the araBAD-BCD20-ClpP-BCD17-ClpX and pTEtR-

BCD2-Ana GvpC constructs. pTARA5 was a gift from Kathleen Matthews (Addgene plasmid # 31491; 

http://n2t.net/addgene:31491 ; RRID:Addgene_31491). 
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C h a p t e r  4  

 

ULTRASENSITIVE ULTRASOUND IMAGING OF GENE EXPRESSION 

WITH SIGNAL UNMIXING 

 

This chapter is in large part a reformatted version of the manuscript entitled “Ultrasensitive Ultrasound 

Imaging of Gene Expression with Signal Unmixing” submitted by Sawyer, D. P., Bar-Zion, A., Farhadi, 

A., Lee-Gosselin, A., Shrivaei, S. and Shapiro, M. G. to Nature Methods and currently under peer review. 

Under the supervision of Mikhail Shapiro, my contributions to this work were to conceive, design, and 

conduct the experiments, design and optimize the ultrasound pulse sequence and reconstruction 

algorithm, analyzed the data, and write the manuscript. Thanks to Avinoam Bar-Zion for assisting with 

the preparation of engineered bacterial cells, Arash Farhadi for preparation of the engineered mammalian 

cells, Audrey Lee-Gosselin for assistance with the animal experiments, and Shirin Shrivaei for 

performing the flow cytometry experiments. 

 Additionally, section 4.3.6 includes previously-unpublished data demonstrating the ability of 

BURST+ to detect single GVs in free suspension. 

 

4.1 Abstract 
  

Acoustic reporter genes (ARGs) enable biomedical ultrasound to image gene expression in genetically 

modified cells, facilitating the study of cellular function in deep tissues inaccessible with conventional 

optical techniques. ARGs encode air-filled protein nanostructures known as gas vesicles, which scatter 

sound waves, enabling the bacterial or mammalian cells expressing them to be visualized with ultrasound. 

Despite the promise of this technology for biological research and potential clinical applications, the 

sensitivity with which ARG-expressing cells can be visualized is currently limited, with a published 

detection limit for bacteria on the order of 108 cells/ml. Overcoming this limit is critical to enabling the use 

of ARGs in the broadest range of potential applications. Here, we present BURST – an ARG imaging 

paradigm that improves cellular sensitivity by more than 1000-fold. BURST takes advantage of the unique 

temporal signal pattern produced by gas vesicles as they collapse under acoustic pressure above a 

genetically defined threshold. By extracting the unique pattern of this signal from total scattering using 

template-based unmixing, BURST dramatically boosts the sensitivity of ultrasound to image ARG-
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expressing cells, as demonstrated in vitro and in vivo in the mouse gastrointestinal tract. Furthermore, in 

dilute cell suspensions, BURST imaging enables the detection of gene expression in individual bacteria and 

mammalian cells. The resulting capabilities for ultrasensitive and single-cell imaging greatly expand the 

potential utility of ultrasound for non-invasive imaging of cellular function. 

 

4.2 Introduction 

The green fluorescent protein and its analogs allow biologists to visualize gene expression and other cellular 

processes under an optical microscope1. However, the scattering of light by tissue limits the use of such 

optical reporter genes in intact animals2. In contrast, ultrasound can propagate centimeters deep into 

biological tissues without losing coherence, enabling the noninvasive imaging of whole organs and 

organisms with excellent spatial and temporal resolution (~100 µm and ~1 ms, respectively)3,4. Recently 

the first acoustic reporter genes (ARGs) were developed for ultrasound imaging based on air-filled protein 

nanostructures called gas vesicles, or GVs5. When expressed in bacteria6 or mammalian cells7, ARGs allow 

the location and function of these cells to be visualized with ultrasound deep inside host organisms. 

 One of the main factors determining the utility of reporter genes is the sensitivity with which they 

can be detected. In previous work, ARG expression was detectable in bacteria using conventional 

ultrasound imaging at a concentration of 108 cells/ml6. While this density is relevant for certain in 

vivo scenarios, many applications would benefit from the ability to detect smaller numbers of cells. For 

example, many natural and engineered gastrointestinal (GI) microbes, which play critical roles in health 

and disease, must be studied within the context of the intact mammalian GI tract, which they populate at 

local concentrations spanning several orders of magnitude 8,9,10,11,12,13. Visualizing the spatial dynamics of 

such microbes in vivo requires extending the sensitivity of ARG-based cellular imaging by a factor of 100–

1000 while dealing with background scattering from anatomical structures. Furthermore, in some 

applications, it may be necessary to detect individual genetically labeled cells. Developing such capabilities 

requires large improvements in sensitivity and specificity compared to existing ARG imaging 

techniques14,15,6,7. 

To address this need, we introduce BURST (Burst Ultrasound Reconstructed with Signal Templates) – 

an ultrasensitive imaging paradigm tailored to ARGs, which improves cellular imaging sensitivity by more 

than 1000-fold. BURST imaging exploits the strong, transient signals generated during sudden GV collapse 

under acoustic pressure by unmixing the temporal dynamics of such signals from background scattering. 

Applied to imaging engineered commensal bacteria, BURST detects cells at concentrations below 105 

cells/ml in tissue-mimicking phantoms and visualizes cells during their passage through the mouse GI tract. 

Furthermore, BURST can detect ultrasound signals from individual bacteria and mammalian cells, enabling 
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quantitative single-cell imaging. Just as the broad application of fluorescent imaging required major 

advances in both fluorescent proteins and optical detection methods (such as multiphoton microscopy), the 

development of BURST imaging complements recent advances in ARGs to greatly broaden the potential 

applications of biomolecular ultrasound.  

 

4.3 Results 

4.3.1 The BURST paradigm for selective imaging of ARG-expressing cells 

BURST creates GV-specific ultrasound images by exploiting the phenomenon of GV collapse. GVs 

comprise a 2 nm-thick protein shell enclosing a hollow, air-filled compartment with dimensions on the 

order of 200 nm16,17 (Fig. 4.1a, top). GVs self-assemble inside cells from the constituent proteins encoded 

in ARGs6,7. When these nanostructures are exposed to pressures above their genetically defined collapse 

threshold, their shell breaks (Fig. 4.1a, bottom) and their air contents are rapidly dissolved into the 

surrounding media. The collapse of GVs under acoustic pressure generates a strong transient ultrasound 

signal7,18. In BURST imaging, we rapidly acquire a series of ultrasound images during which the transmit 

pressure undergoes a step-change from a value below the GV collapse threshold to above it (Fig. 4.1b). 

This step-change generates a transient collapse-based signal increase in voxels containing GVs, while the 

signal from non-GV linear scatterers steps up and persists with the higher applied pressure (Fig. 4.1b). The 

images acquired during this pulse train combine to form a time-series vector for each voxel in the field of 

view (Fig. 4.1, c-d). In BURST signal processing, we decompose these vectors into weighted sums of 

template vectors representing the expected signal patterns of GVs, linear scatterers and background 

noise/offset, allowing us to generate images specific to each source of signal (Fig. 4.1e). We hypothesized 

that by effectively isolating the strong signal impulse generated by GVs at the moment of their collapse, 

while subtracting background linear contrast, BURST imaging would significantly improve the detection 

sensitivity of GV-expressing cells. Importantly, GV collapse is well-tolerated by both bacterial and 

mammalian cells, which can subsequently re-express new GVs to allow additional imaging6,7.  
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Figure 4.1 | BURST paradigm. (a) TEM images of intact (top) and collapsed (bottom) GVs from Anabaena flos-
aquae. Scale bars: 100 nm. (b) Illustration of the BURST pulse sequence, showing the step change in applied acoustic 
pressure (top), the resulting transient increase in GV signal (middle) and the persistent increase in linear scatterer 
signal (bottom). (c) Illustration of an image time series generated by the high-pressure segment of the BURST 
sequence applied to a hypothetical target, which consists of scattering tissue with ARG-expressing cells located at the 
center. (d) Illustration of intensity time course for a pixel location in the region containing GVs. (e) Illustration of the 
result of the signal template unmixing algorithm applied to the image timeseries, generating separate images 
representing the contribution of GV signal (left) and linear signal (right) to the recorded image timeseries. 

 

Temporal modulation of contrast agent signals has been used to enhance the detection of synthetic 

ultrasound contrast agents such as microbubbles19 and nanodroplets20, and has formed the basis for 

improved sensitivity and resolution in photoacoustic imaging21,22 and fluorescence microscopy23. However, 

each class of reporters requires a unique approach based on their physical properties. A method like 

BURST, tailored to ARGs, has not been established, and is uniquely enabled by the monodisperse, highly 

nonlinear pressure response of GVs.  

To test the BURST protocol, we prepared gel phantoms containing pairs of rectangular wells filled 

with either ARG-expressing E. coli Nissle cells or red fluorescent protein (RFP)-expressing controls (Fig. 

4.2a). The cells were embedded in an agarose-based tissue-mimicking material (TMM)24 with strong 

linear scatterers providing background contrast. For initial experiments, we used bacteria at a 

concentrations of 107 cells/ml, which is 10-fold lower than the previously published in vitro detection 

limit6. The phantoms were imaged at 6 MHz, using a single-cycle transmit waveform to maximize axial 

resolution. Parabolically focused B-mode pulses were used to achieve the peak positive pressure (PPP) 
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needed for GV collapse. Frames were acquired every 9 ms to minimize any impact from motion. In the 

initial low-pressure frame (0.27 MPa PPP), little signal was observed in either well (Fig. 4.2b). In the 

second frame, acquired at the stepped-up pressure of 4.3 MPa, both samples showed significant signal, 

with the ARG-expressing cells enhanced by 9 dB relative to RFP controls. By the next frame, this signal 

difference disappeared, as expected with GV collapse, leaving behind the linear scattering from the 

TMM. 

The temporal pattern of signal in the ARG-expressing well is clearly distinguishable from the RFP 

control (Fig. 4.2c). The former shows a spike in signal in the first high-pressure frame, followed by decay 

to a stable plateau, while the latter shows a simple step-function jump. Using the BURST algorithm, we 

decomposed the signal vector in each well into its contributions from GVs, linear scatterers and noise 

(Fig. 4.2d).  Performing this operation for each pixel in our field of view, we obtained images 

corresponding to each signal type (Fig. 4.2, e-f). The image corresponding to GV-specific signal shows 

very clear contrast between the well containing ARG-expressing cells and the control well, with a 

contrast-to-tissue ratio (CTR) of 32 dB (Fig. 4.2e). Meanwhile, the image corresponding to the linear 

scattering component showed a similar level of signal in each well, consistent with both wells having the 

same cell density and TMM composition (Fig. 4.2f).  

 

Figure 4.2 | BURST imaging of ARG-expressing cells. (a) Illustration of the agarose gel phantom containing cells 
engineered to express RFP or ARG, mixed with tissue-mimicking material (TMM). (b) Representative images from 
frames 1-5 of a BURST sequence applied to a 1% agarose phantom with wells containing TMM mixed with 107 
cells/ml RFP-expressing (left) or ARG-expressing E. coli Nissle cells (right). The acoustic pressure is ramped from 
0.27 MPa in the first frame to 4.3 MPa for the remaining 4 frames, as shown in the illustrated plot below the images. 
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Scale bars: 2 mm. (c) Mean pixel intensity vs. frame number in ROIs containing RFP or ARG1-expressing cells, 
outlined in (b). (d) Decomposition of the time traces in (c) using the template unmixing algorithm. (e) Output of the 
template unmixing algorithm applied pixel-wise to the full field of view, showing the estimated contribution of GV 
signal to every pixel. (f) Estimated contribution of linear tissue signal to every pixel. (g) Fiberoptic hydrophone 
measurement of the acoustic waveform used in the BURST high-pressure transmit, and the resulting BURST image 
of a phantom identical to the one described in (a). (h) Acoustic waveform for BURST+ and the corresponding image. 
All scale bars: 2 mm. 

 

In addition to our basic BURST paradigm, which uses a single-cycle transmit waveform (Fig. 4.2g), 

we hypothesized that we could further boost detection sensitivity by extending the transmit waveform to 

multiple cycles. This hypothesis is based on the fact that following GV collapse, the air contained inside 

GVs is liberated as free nanobubbles, which can be cavitated with extended pulses18. Such nanobubbles 

normally dissolve on the millisecond timescale, as evidenced by the disappearance of GV contrast by the 

second frame following acoustic collapse (Fig. 4.2b). However, a pulse containing multiple cycles can 

stably cavitate the released nanobubbles, producing additional signal. To test this possibility, we extended 

the transmitted waveform to 3 cycles, naming the resulting imaging mode BURST+ (Fig. 4.2h). The 

measured output of the transducer is slightly extended due to ringdown. The number of cycles was set to 

3 to enable nanobubble cavitation while preserving axial resolution. As hypothesized, ARG-expressing 

Nissle cells (at 107 cells/ml) imaged with BURST+ showed a signal enhancement of 6 dB relative to 

BURST. Detailed acoustic measurements confirmed that the BURST+ signal is predominantly generated 

by sustained stable cavitation of liberated nanobubbles, while BURST signal is generated by more 

transient dynamics (Supplementary Fig. 4.1). 

 

4.3.2 In vitro detection limit for BURST imaging 

To determine the cellular detection limits for BURST and BURST+, we used these techniques to image 

tissue-mimicking agarose phantoms containing ARG-expressing and RFP-expressing E. coli Nissle cells 

at concentrations ranging from 103 cells/ml to 108 cells/ml. In conventional B-mode images, it was 

challenging to make out clear GV contrast at any cell concentration (Fig. 4.3a). However, BURST images 

showed clear GV contrast down to 105 cells/ml (Fig. 4.3b), while BURST+ images showed clear GV 

contrast down to 104 cells/ml (Fig. 4.3c). This represents improvements of 1000-fold and 10,000-fold, 

respectively, over the previously reported detection limit6. Quantification across multiple replicates (Fig. 

4.3d) confirms these detection thresholds with a mean CTR greater than 6 dB.  

BURST and BURST+ signals increased with cell concentration up to approximately 106 cells/ml and 

thereafter plateaued. This plateauing is most likely due to acoustic shielding, in which collapsing GVs 

absorb energy from the acoustic waveform, preventing downstream GV collapse. Due to this effect, 

which increases with cell concentration, full collapse does not occur in the first high-pressure frame at 

concentrations of 107 cells/ml and above, resulting in pixel vectors that are assigned lower GV signal 
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weights in template unmixing (Supplementary Fig. 4.2). On the lower end of the concentration range, 

we noted that BURST+ images at 104 cells/ml appeared to show punctate clusters (Fig. 4.3c, second-to-

bottom row). Since, at this dilution, we expect the imaged field of view to contain on the order of 100 

cells, this suggested that BURST+ imaging may be capable of detecting signal from individual cells – a 

possibility examined further below. 

While these experiments used TMM phantoms to identify detection limits relevant for in vivo 

imaging, in certain locations such as major blood vessels or other fluid compartments, the cells may be 

surrounded by a low-scattering medium. In agarose phantoms mimicking such conditions, the unmixed 

signals from ARG-expressing cells were reliably detectable at cell concentrations down to 103 cells/ml 

(Supplementary Fig. 4.3). 

 

Figure 4.3 | Detection sensitivity of BURST imaging. (a-c) Ultrasound images of rectangular wells containing E. 
coli Nissle cells embedded with tissue-mimicking material (TMM) in an agarose phantom. The left well contains cells 
expressing RFP, and the right well contains cells expressing ARG. Rows correspond to cell concentrations ranging 
over six orders of magnitude. (a) B-mode images. (b) BURST images. (c) BURST+ images. The top edge of each 
image corresponds to a depth of 17.5 mm, the bottom to a depth of 23 mm. Scalebars: 2 mm. (d) Mean contrast-to-
tissue ratio (CTR) vs log cell concentration for BURST and BURST+ on TMM-embedded cells. N = 12 wells (4 from 
each of 3 biological replicates). CTR represents the mean intensity of the ARG well relative to the mean intensity of 
the RFP well. Error bars represent SEM. 

 

4.3.3 In vivo BURST imaging of bacterial passage through the small intestine 

Having demonstrated the ability of BURST imaging to provide sensitive imaging of bacterial gene 

expression in vitro, we set out to test the ability of this method to visualize cells in a living animal. Bacteria 

play major roles in the mammalian microbiome, influencing everything from metabolism and immunity to 

neurological function8,9,10,11,12,13. In addition, many synthetic biology efforts are focused on engineering 

bacterial cells to act as diagnostic or therapeutic agents in the GI tract after oral administration13. Previously, 

ARG-expressing E. coli were imaged in the mouse colon after direct rectal injection in clean agarose 

phantoms containing 109 cells/ml6. However, imaging living cells in the much more complex environment 
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of the small intestine during their passage through this GI segment following oral administration was 

impossible. 

To evaluate the ability of BURST to image cells in vivo following oral administration, we gavaged 

wild-type mice with an attenuated strain of Salmonella typhimurium engineered to express ARGs, or with 

control cells expressing the luminescent LUX operon6 (Fig. 4.4a). No fasting, bicarbonate administration, 

or other pretreatments were used. Two hours later, we acquired BURST images at multiple transverse 

planes covering the abdominal cavity of each mouse. Display images were generated by overlaying 

grayscale B-mode images with heatmaps representing the GV-specific BURST signal (Fig. 4.4, b-e). 

In all but one mouse gavaged with ARG-expressing cells, we observed contiguous patches of supra-

threshold BURST signal with dimensions of approximately 2 mm × 1 mm, located 1 mm below the 

abdominal wall and spanning several contiguous frames in the abdomen (Fig. 4.4b). The anatomical region 

containing this signal corresponds to the expected location of the small intestine25. No significant BURST 

signal was observed in the abdominal cavities of control mice gavaged with LUX-expressing cells (Fig. 

4.4c). Aggregating the mean BURST CTR in the upper abdominal cavity in each image plane across mice 

shows a consistent signal in the ARG-expressing group for all image planes spanning 16 mm to 22 mm 

below the rib cage (Fig. 4.4f). These results validate the ability of BURST imaging to reliably visualize 

ARG expression in live cells passing through the mouse GI tract. 

 
Figure 4.4 | BURST imaging of orally gavaged cells. (a) Illustration of the oral gavage experiment and the expected 
distribution of ARG-expressing cells as viewed in a cross section of the mouse abdomen. (b-c) Coronal BURST 
images (heat colormap) of the abdomen overlaid on the corresponding anatomical B-mode images (grayscale), 
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acquired 2 hours after oral gavage of 2 x 108 ARG-expressing (b) or LUX-expressing (c) S. typhimurium cells. The 
four images correspond to coronal planes 18 mm to 21 mm caudal to the rib cage. (d-e) Magnified images of coronal 
planes directly preceding those in (b-c) (17 mm). (f) BURST CTR as a function of image plane location in mice 
gavaged with ARG-expressing or LUX-expressing cells. The CTR is calculated based the mean intensity of ROIs 
manually drawn to encompass the ventral half of the abdominal cavity. Tissue ROIs encompassed a rectangular region 
in the dorsal half of the abdominal cavity. Error bars represent SEM. N = 4 mice. Asterisks indicate 𝑝 < 0.05. Exact 
permutation test. 

 

4.3.4 BURST+ imaging enables single-cell detection 

The observation of punctate signals in BURST+ images at cell densities of 103 – 104 cells/ml (Fig. 4.3d 

and Supplementary Fig. 4.1) suggested that this imaging method may be capable of detecting signals from 

individual ARG-expressing cells. To test this hypothesis, we used BURST+ to image dilute samples of 

ARG-expressing and RFP-expressing Nissle cells, suspending them in degassed phosphate-buffered saline 

(PBS) at concentrations below 500 cells/ml (Fig. 4.5a). Suspending the cells in liquid buffer allowed us to 

thoroughly degas the medium to eliminate most microscopic air bubbles, which could otherwise act as 

confounding sources of signal. Based on hydrophone measurements of the beam profile of BURST+ 

transmit pulses, we estimated that cells in a 1 mm × 19.5 mm × 2 mm field of view (FOV) would experience 

sufficient pressure to generate collapse-dependent signal. Combining this volume with optical cell counts 

under fluorescence microscopy (for which cells were labeled with a synthetic dye), we could estimate the 

expected ground truth number of cells per image for each cell concentration.  

BURST+ images of ARG-expressing cells showed clear punctate signals, the number of which 

increased with the cell concentration (Fig. 4.5b). In contrast, RFP-expressing controls rarely showed any 

such signals (Fig. 4.5c). To quantify the number of signal sources in our field of view, we counted all 

contiguous signals distinct from background noise, regardless of their size. In suspensions of ARG-

expressing cells, the number of distinct sources increased linearly with cell concentration (R=0.86) and 

closely matched the number of cells expected from optical counting (Fig. 4.5d). In contrast, RFP-expressing 

controls had few signals and no significant dependence on cell concentration (R=0.08). 

Following the successful single-cell imaging of bacterial cells, we tested the ability of BURST 

imaging to detect GV expression in individual mammalian cells, which are larger than bacteria but have 

lower GV expression levels7. We imaged suspensions of HEK cells genetically engineered to express 

either mammalian acoustic reporter genes (mARGs), or the control fluorophore mCherry. Cell 

concentrations were measured with optical cytometry. Punctate signal sources could clearly be seen in 

BURST+ images of suspended mARG-expressing cells, with the number of such sources increasing 

linearly with cell concentration (R=0.79) (Fig. 4.5e). Similar sources were rarely seen with mCherry 

control cells, and their number did not correlate with cell concentration (R=0.07) (Fig. 4.5f). The number 

of ultrasound sources counted for mARG-expressing cells constituted only about half the number of cells 
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expected based on optical counting. We suspect that this discrepancy arose due to the heterogeneity of 

gene expression in this cell line (in which, unlike the bacterial samples, we have no way to pre-select cells 

for imaging based on ascertained GV expression). Nevertheless, the fact that the number of punctate 

signals was of the expected order of magnitude and scaled linearly with concentration demonstrates that 

BURST+ detects single-cell signals from both ARG expressing bacteria and mammalian cells. 

 
Figure 4.5 | Single cell imaging using BURST. (a) Illustration of the experimental setup, in which bacterial or 
mammalian cells are suspended in liquid at dilute concentrations while being imaged in the focal zone of the 
transducer. (b) Representative BURST+ images showing single sources in liquid buffer suspension of ARG-
expressing E. coli Nissle cells at the indicated concentrations. (c) Representative BURST+ images of RFP-expressing 
E. coli Nissle cells. (d) Average number of single sources counted in images acquired with BURST+ vs. cell 
concentration for ARG- and RFP-expressing E. coli Nissle cells. Error bars represent SEM. N = 3 biological replicates. 
Mean counts from 5 frames were used for each biological replicate. A independent estimate of the expected number 
of cells in the transducer’s field of view, based on cell counting by fluorescence microscopy, is also plotted for 
comparison. (e) Representative BURST+ images of suspended mARG-expressing HEK cells at the indicated 
concentrations. (f) Representative BURST+ images of mCherry-expressing HEK cells. (g) Average number of single 
sources counted in images acquired with BURST+ vs. cell concentration for mARG and mCherry-expressing HEK 
cells. Error bars represent SEM for N = 4 biological replicates. Mean counts from 5 frames were used for each 
biological replicate. 

  

4.3.5 BURST imaging preserves cell viability 

For BURST imaging of ARG-expressing cells to enable long-term studies with multiple imaging time 

points, it is important for this imaging mode to preserve the viability of imaged cells. To assess the 

cytocompatibility of BURST imaging, we quantified the viability of bacterial and mammalian cells after 

exposure to this imaging mode. First, to assay the effects of BURST and BURST+ imaging on bacterial 
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population growth and confirm ARG re-expression after imaging, we cultured ARG Nissle as colonies 

embedded in soft hydrogel media and applied BURST+ to half the sample (Fig. 4.6a). After 23 hours, 

colony growth was indistinguishable on the ultrasound-treated and untreated halves of the sample, as 

visualized with optical microscopy (Fig. 4.6, b-e). Moreover, strong GV-specific BURST+ signal was 

observed from the colonies with BURST+ imaging at this time point, confirming GV re-expression 

(Supplementary Fig. 4.4). Similar results were obtained with two additional plates. 

 
Figure 4.6 | Effects of BURST imaging on cell viability. (a) Darkfield optical image of ARG-expressing E. coli 
Nissle colonies on an agar plate 15 h after seeding. Width of 1 square is 12.7 mm. (b) Image of the same plate 23 h 
after application of BURST+ to the bottom half. (c) Representative magnified images of colonies from the top half of 
the plate in (a) (left) and (b) (right). (d) Representative magnified images of colonies from the bottom half of the plate 
in (a) (left) and (b) (right). (e) Area of colonies exposed or not exposed to BURST+ at the 38 hour time point. (f) 
Illustration of the experimental setup for single-cell viability. An acoustic cuvette with mylar windows is filled with 
1% agarose and submerged in a water tank. A 2 mm diameter cylindrical inclusion in the agarose is filled with a 
suspension of GV-expressing cells (1×105 ARG Nissle cells/ml or 2.5×105 mARG HEK cells/ml) and imaged with 
BURST, BURST+, or 0.3 MPa B-mode as a control. (g) Representative BURST and BURST+ images of ARG Nissle 
samples overlaid on a grayscale B-mode image. The edges of the cylindrical inclusion are indicated with dashed white 
lines. Scale bars: 2 mm. (h) Colony forming units of ARG-expressing E. coli Nissle cells for the samples exposed to 
BURST and BURST+ relative to B-mode controls. Error bars represent SEM. N = 12 samples from 6 biological 
replicates. Approximate permutation test with 107 permutations. (i) Viable mARG-expressing HEK cells, as measured 
by flow cytometry, after exposure to BURST and BURST+, relative to B-mode controls. Error bars: SEM. N = 3 
biological replicates. Exact permutation test. 

 

 To assess the impact of BURST and BURST+ imaging on bacterial cells in liquid suspension, we 

loaded ARG-expressing Nissle cells into a 2 mm cylindrical well within an agarose phantom (Fig. 4.6f) 

and applied BURST, BURST+, or 0.3 MPa linear imaging pulses (Fig. 4.6g). After imaging, we plated the 
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bacteria on selective solid media and counting the number of colonies formed after 20 hours. Both BURST 

and BURST+ produced a measurable decrease in the number of bacterial colonies relative to low-pressure 

controls, with an average reduction of 21% for BURST and 44% for BURST+ (Fig. 4.6h). This reduction 

may be indicative of the different acoustic or mechanical conditions experienced by individual cells in 

liquid compared to solid bacterial colonies, where no viability effects were observed. The colony results 

are arguably more relevant to most envisioned applications involving BURST imaging of bacteria inside 

mammalian hosts, where these cells typically inhabit crowded solid or gel-like environments40,4212. In 

addition, even in the liquid scenario, the exponential proliferation and saturating growth of bacteria would 

quickly make up for a modest reduction in the number of viable cells upon imaging. 
 To test the effects of BURST and BURST+ on the viability of mARG-expressing mammalian cells, 

we exposed liquid suspensions of mARG-expressing HEK cells to these imaging modes in the same 

apparatus as described above for bacteria. Following ultrasound exposure, we counted the number of live 

(metabolically active) and dead cells using flow cytometry. We observed no significant difference in the 

viability of cells exposed to either BURST or BURST+ relative to the low-pressure controls (Fig. 4.6i). 

The robustness of mammalian cells to these imaging modes may be due to the relatively small fraction of 

their cytosol being occupied by GVs7 (<0.003%, compared to up to 10% for bacteria). Altogether, these 

results demonstrate that BURST and BURST+ preserve cellular viability to a level acceptable for most 

biological imaging applications. 

4.3.6 BURST+ imaging enables detection of single gas vesicles 

The successful detection of single ARG-expressing cells in BURST+ images (Fig. 4.5) demonstrated that 

this imaging method is capable of detecting signals from small numbers of GVs closely packed inside 

cells, but did not establish the minimum number of GVs per voxel required to generate detectable signal. 

To investigate this question, we used an experimental setup similar to that described in Section 4.3.4 to 

acquire BURST+ images of GVs purified from Anabaena flos-aquae cyanobacteria (Ana GVs)26 at 

varying concentrations in the range of 102-103 GVs/ml, using pre-collapsed Ana GVs as controls. Because 

the gas inside free Ana GVs is known to equilibrate with the gas concentration in the surrounding 

medium in as little as 46 µs16, exposing the GVs to degassed buffer would result in the pressure inside the 

GVs dropping below atmospheric pressure, potentially causing pre-mature collapse or loss of some 

acoustic properties. Based on these considerations, we chose not to degas the liquid buffer used in this 

experiment. To estimate the expected number of gas vesicles in the FOV for each concentration, we 

measured the optical density (OD) of our sample and used a previously-published conversion factor 

between OD and molarity for Ana GVs based on electron microscopy26. 
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BURST+ images of intact GVs showed clear punctate signals, the number of which increased with the 

GV concentration (Fig. 4.7a). In contrast, collapsed GV controls showed a consistently small number of 

such signals that did not increase with GV concentration (Fig. 4.7b). The larger number of punctate signals 

observed in the control condition of this experiment (1.3 ± 1.2 signals/frame) compared with the single-cell 

detection experiment (0.3 ± 0.6) signals/frame) is expected based on our use of non-degassed buffer. In 

suspensions of intact Ana GVs, the number of distinct sources increased linearly with cell concentration (R 

= 0.83) and closely matched the number of GVs expected from electron microscopy counting (Fig. 4.7c). 

In contrast, collapsed controls had few signals and no significant dependence on cell concentration (R = -

0.16). These results demonstrate that BURST+ detects signals from single Ana GVs. 

 

 Figure 4.7 | Single gas vesicle 
imaging using BURST. (a) 
Representative BURST+ images 
showing single sources in liquid 
buffer suspension of intact gas 
vesicles purified from Anabaena 
flos-aquae cyanobacteria (Ana 
GVs) at the indicated 
concentrations. (b) 
Representative BURST+ images 
of pre-collapsed Ana GVs. (c) 
Average number of single 
sources counted in images 
acquired with BURST+ vs. GV 
concentration for intact and 
collapsed Ana GVs. Error bars 
represent SEM. N = 5 replicates. 
An independent estimate of the 
expected number of GVs in the 
transducer’s field of view, based 
on GV counting under electron 
microscopy, is also plotted for 
comparison. 

 

 

 

4.4 Discussion 

Taken together, the results of this study demonstrate the ability of the BURST imaging paradigm to provide 

ultrasensitive ultrasound imaging of gene expression with an improvement of more than 1000-fold 

compared to the state of the art. BURST achieves this unprecedented sensitivity by taking advantage of the 

unique temporal signal generated by monodisperse populations of collapsing GVs, unmixed from both 
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surrounding and co-localized scatterers using a simple linear algorithm. This advance complements rapidly 

progressing efforts to develop and apply ARGs and GVs to a broad range of biological applications4,6,7,18, 

27,28,29 and will immediately enable the imaging of these acoustic biomolecules with dramatically increased 

sensitivity and specificity without changes to their composition. Moreover, we expect the sensitivity of 

BURST to lower the barrier for initial applications of ARG-based imaging in challenging settings by 

facilitating the detection of low ARG expression levels or small ARG-labeled cell densities.  

Several future improvements would help BURST imaging achieve widespread use. First, to enable 

rapid BURST imaging over a large field of view, it would be useful to develop ultrasound imaging 

transducers capable of higher transmit pressures. In the present study, transmitted beams had to be focused 

to a relatively small section of the available field of view to achieve the pressure needed to generate BURST 

signals. With stronger transducers, less focusing would be required, allowing more efficient scanning. At 

the same time, the pressure requirement could be reduced by engineering ARGs to encode GVs with lower 

critical collapse pressures. For example, the acoustic collapse mid-point of the ARGs used in this study is 

2.7 MPa6, whereas certain engineered GVs collapse at pressures below 0.6 MPa27. Lower pressure would 

also be expected to mitigate the already-minor effects of BURST imaging on cell viability, which itself 

should be extended to investigate other potential cellular side-effects in specific application scenarios. 

More broadly, the BURST paradigm presented in this work demonstrates the potential of novel imaging 

techniques, developed in parallel with biological reagents, to expand the scope of GV and ARG capabilities. 

The engineering of fluorescent proteins with improved and novel properties, such as selective 

photoactivation1,30, went hand-in-hand with complementary innovations in microscopy and image 

processing, such as PALM31, STORM32, and light sheet microscopy33, resulting in ever-improving 

resolution, scale, and information content. We envision a similar synergy in the evolution of acoustic 

proteins and ultrasound imaging techniques. 

 

4.5 Methods 

4.5.1 Bacterial expression 

Plasmids encoding ARGs were transformed into chemically competent E. coli Nissle 1917 (Ardeypharm 

GmbH) and grown in 5 ml starter cultures in LB medium with 50 µg/ml kanamycin, 2% glucose for 16 h 

at 37 °C. Large-scale cultures in LB medium containing 50 µg/ml kanamycin and 0.2% glucose were 

inoculated at a ratio of 1:100 with the starter culture. Cells were grown at 37 °C to OD600nm = 0.3, then 

induced with 3 µM IPTG. Cells were cultured for 22 h at 30 °C, then centrifugated for 4 hours at 150 x g 

and 4 °C to enrich for buoyant cells. Cells in the buoyant fraction were used for experiments involving 
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agarose phantoms. Neutrally buoyant cells in the supernatant below the buoyant fraction were used for all 

other experiments involving ARG-expressing Nissle cells. The same expression protocol was followed to 

produce mRFP-expressing Nissle cells, except that cells were resuspended from the pellet in PBS following 

centrifugation. 

GV-expressing Salmonella typhimurium of the attenuated, tumor-homing strain ELH130134 were 

produced by transforming cells with a plasmid encoding an engineered genetic construct comprising either 

a GV operon or, as a control, a NanoLuc luciferase. Constructs were assembled using Gibson cloning. The 

genetic constructs were cloned into the pTD103 plasmid (gift from J. Hasty), with expression driven by a 

luxI promoter upon induction with 3nM N-(β-ketocaproyl)-l- homoserine lactone (AHL). The cells were 

cultured for 24 hours at 30 °C after induction, then centrifugated for 4 hours at 150 x g and 4 °C to enrich 

for buoyant cells. Cells in the buoyant fraction were used for in vivo experiments. 

In experiments employing multiple bacterial biological replicates, replicates correspond to cells 

cultured from separate colonies from the same transformation. 

4.5.2 Mammalian cell expression 

mARG-expressing and mCherry-expressing HEK cells were previously described7. Briefly, HEK293tetON 

cells were genetically engineered with mARG gene cassettes (Addgene 134343, 134344 and 134345) using 

the piggyBac transposase system and a monoclonal culture was created by flow cytometry (BD FACSAria 

III). Similarly, mCherry-expressing cells were created by genetically engineering HEK293tetON cells with 

mCherry using the piggyBac transposase system. Cell cultures were maintained in DMEM supplemented 

with 10% tetracycline-free FBS (Clontech) and penicillin/streptomycin. For BURST imaging, both cells 

were seeded in 10 cm plates, and once they reached 70-80% confluency treated with 1 µg/mL doxycycline 

and 5 mM sodium butyrate for 72 hours. Cells were then trypsinized and resuspended in media before being 

stained 1:1 with Trypan blue dye and counted using a disposable hemocytometer (C-chip DHC S02, Incyto) 

under a brightfield microscope.  

4.5.3 Ultrasound pulse sequence and data acquisition 

Ultrasound imaging for all experiments was performed using a Verasonics Vantage programmable 

ultrasound scanning system. In vitro experiments were done using an L10-4v 128-element linear array 

transducer (Verasonics). Image acquisition was performed using a custom imaging script with a 64-ray-

lines protocol with a synthetic aperture of 65 elements to form a focused excitation beam. The 

programmable transmit focus was set to 20 mm to be aligned with the fixed elevation focus of the 

transducer. The transmit waveform was set to a frequency of 6 MHz, 67% intra-pulse duty cycle resulting 

in sinusoidal pulses. BURST pulse sequences consisted of a single low-pressure frame (transducer voltage 
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= 1.6 V, peak positive pressure = 0.27 MPa) followed by five high-pressure frames (transducer voltage = 

50 V, peak positive pressure = 4.3 MPa). The frame rate was 111 Hz. A similar imaging sequence was used 

for the in vivo experiments, with some modifications detailed below in the relevant section.  

4.5.4 BURST processing algorithm 

BURST images are generated by applying a temporal template unmixing algorithm across individual 

pixel locations in the frame stack. The input to the algorithm at the single pixel level consists of a 6-

element vector, corresponding to pixel values in each frame. The parameters of the algorithm are the 

following template vectors for GVs (𝒖𝒈 = [0	1	0	0	0	0]O), linear scatterers (𝒖𝒔 = [0	1	1	1	1	1]O) and 

offset (𝒖𝒐 = [1	1	1	1	1	1]O).  

The template unmixing model is represented by the linear equation 𝑼𝒘 = 𝒑, where the template 

vectors are concatenated into the template matrix 𝑼 = [𝒖𝒔	𝒖𝒐	𝒖𝒈], and 𝒘 contains the weights for each 

template. For each pixel vector 𝒑, least squares solution for the template weights is obtained by the 

pseudoinverse: 

𝒘 = (𝑼O𝑼)h𝟏𝑼O𝒑 

 The 𝑤� component of 𝒘 = �𝑤�	𝑤�	𝑤�� was selected as the output of the algorithm. More generally, 

𝑼 can be an 𝑛 ×𝑚 matrix, where 𝑛 is the length of 𝒑 and the number of image frames and 𝑚 is the length 

of 𝒘 and the number of signal templates. 

In theory, because negative weights have no meaning in this model, a proper estimation of the template 

weights would require the appropriate constrained linear least squares solution, which is typically two 

orders of magnitude slower to compute. However, it was found empirically that setting all negative values 

of the unconstrained solution to zero results in a final image that is not appreciably different from that 

obtained using the constrained solution. The template unmixing algorithm was applied offline to acquired 

BURST data. All image processing was implemented in MATLAB. 

4.5.5 In vitro phantom imaging 

Phantoms for imaging were prepared by melting 1% (w/v) agarose in PBS and casting wells using a custom 

3D-printed template with 48 wells with dimensions of 6 mm × 5 mm × 2 mm. ARG- and RFP-expressing 

Nissle cells (at 2× the final concentration and at 25 °C) were mixed in a 1:1 ratio with molten agarose or 

molten TMM (at 2× the final concentration and at 56 °C) and immediately loaded into the phantom. The 

concentration of cells was determined before diluting and loading by measuring their OD600nm. TMM 

consisted of 1% (w/v) agarose, 0.53% (w/v) 37 µm silicon carbide, 0.94% (w/v) 3 µm aluminum oxide, 

0.88% (w/v) 0.3 µm aluminum oxide, and 96.65% (w/v) PBS, similar to the TMM described by Ramnarine 



 
 

 
 

89 

et al. (2001)24 but with lower agarose content and no glycerol or antibiotic. Special care was taken to 

thoroughly degas the molten agarose to reduce the number of microbubbles present in the gel. 

4.5.6 In vivo imaging 

All in vivo experiments were performed on female BALB/cJ mice under a protocol approved by the 

Institutional Animal Care and Use Committee of the California Institute of Technology. No randomization 

or blinding were necessary in this study. Mice were anesthetized with 1–2% isoflurane, maintained at 37 °C 

on a heating pad, depilated over the imaged region, and imaged using an L11-4v transducer attached to a 

manipulator. For imaging of gavaged Salmonella typhimurium in the gastrointestinal tract, mice were 

placed in a supine position, with the ultrasound transducer positioned over the upper abdomen such that the 

transmit focus of 12 mm was close to the top of the abdominal wall. Two hours prior to imaging, mice were 

gavaged with 200 µl of buoyancy-enriched Salmonella typhimurium at a concentration of 109 cells/ml. 

To mitigate tissue motion during in vivo imaging, a rapid BURST script was implemented that transmits 

and acquires three 32-element aperture focused beams at a time, improving the frame rate by a factor of 3 

to 333 Hz. To maximize spatial resolution, the transmit waveform was set to a frequency of 11.4 MHz. The 

transmit focus was set at 12 mm to match the expected location of the small intestine relative to the 

transducer, which had to be positioned in relatively close proximity to maintain acoustic coupling. 

Prior to processing with template unmixing, a 2 × 2 median filter followed by a gaussian blur filter with 

σ = 1 was applied to each 2D image frame of each image plane of each mouse. The images output from 

template unmixing were then concatenated into a 3D array to which a 1 × 1 × 3 median filter was applied 

to remove isolated motion artifacts. The resulting 2D BURST images were then dB-scaled and overlaid on 

the square-root-scaled B-mode image representing frame 1 in the corresponding timeseries. The BURST 

images were overlaid in locations where the BURST image pixel values exceeded a threshold of 105 dB, 

which was chosen as the minimum threshold at which no residual motion artifacts were visible in the dorsal 

half of the abdominal cavity, where no BURST signal was expected. BURST images were pseudo-colored 

with the hot colormap and B-mode images with the gray colormap. Quantification was performed by 

manually drawing an ROI covering the ventral half of the abdominal cavity in each image plane for each 

mouse. 

4.5.7 Single-source counting 

Hydrophone measurements of the ultrasound transducer’s acoustic field were used to estimate the out-of-

plane dimension of the 3D field-of-view (FOV) in which ARG-expressing cells are expected to experience 

collapse dependent signal (2 mm). The out-of-plane FOV boundaries were defined as the displacement at 

which the peak positive acoustic pressure is equal to the acoustic collapse mid-point of the E. coli-expressed 
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ARGs used in this study6. These measurements were performed using a fiber-optic hydrophone system with 

a tapered sensor tip (Precision Acoustics) immersed in a tank filled with water that had been conditioned 

overnight using an AQUAS-10 water conditioner (Onda). The lateral dimension of the FOV (19.5 mm) was 

determined by the number of ray lines used to form the ultrasound image. The axial dimension (1 mm) was 

set by restricting the axial region of the BURST images displayed for counting to this size, which was 

chosen to cover the region around the transducer focus over which the mean BURST signal intensity was 

relatively constant. 

Prior to counting, cells were diluted to an estimated 106 cells/ml and were then incubated at 25 °C for 

30 min with BacLight Green fluorescent dye (Invitrogen). 10 µl of the cell suspension was loaded onto a 

C-Chip hemocytometer (SKC, Inc.) and cells were counted at 10x magnification with an Observer.A1 

microscope (Zeiss). 

For validation of single-cell detection, the L10-4v transducer was mounted on a BiSlide computer-

controlled 3D translatable stage (Velmex) above a 4 L container containing 3.8 L water that had been 

circulated through the water conditioner for 1 hour. 200 ml of 20x PBS was then gently added to the water, 

with the mouth of the PBS-containing bottle at the level of the surface of the water to avoid creating bubbles. 

A piece of acoustic absorber material was placed at the bottom of the bucket to reduce reflections. A 

MATLAB script was written to control the Verasonics system in tandem with the BiSlide stage, which was 

programmed to move 1 cm after each BURST+ acquisition. After each set of BURST+ acquisitions (starting 

with plain PBS), 30 µl of 106 cells/ml ARG-expressing Nissle cell suspension was added to the bucket, 

which was gently stirred with a glass rod. A separate bucket with freshly conditioned water and buffer was 

used for the RFP control cells. 

 We wrote a MATLAB script to display a 1 mm × 19.5 mm segment, centered at the point of highest 

average intensity, of all BURST images (all replicates, all concentrations, and RFP vs. ARG cells) in a 

random order, blinding the experimenter to the condition when performing source counting. 

4.5.8 Collapse signal characterization 

Collapse signal characterization experiments were performed with the same liquid buffer suspension setup 

and protocol used for single-source validation, apart from the variations in sequence parameters described 

in Supplementary Fig. 4.1. 

To capture the sub-millisecond dissolution times of the nanobubbles, an ultrafast version of the 

BURST+ pulse sequence was implemented in which the full timeseries of low- and high-pressure 

acquisitions is done for each ray line, rather than for each frame. This results in a significantly shorter delay 
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between frames for any given location in the image at the expense of significantly longer delays between 

separate ray lines.  

4.5.9 Bacterial colony growth assay 

ARG Nissle cells were transformed as described above. The transformation mix after recovery was plated 

on a 4-layer LB-Agar plate. In addition to LB and 50 µg/ml kanamycin, the first (bottom) layer contained 

1% agarose and 7.5 µM IPTG; the second layer 1% agarose and 1% glucose; and the third layer 0.25% 

agarose, 1% glucose, and 10 cells/ml of the transformed Nissle. The fourth (top) layer contained 0.25% 

agarose in PBS with 1% glucose and 50 µg/ml kanamycin. The first and second layers were 4 mm thick 

and the third and fourth layers were 1 mm thick. 

 After culturing for 15 h at 30 °C, a darkfield optical image of the plate was acquired using a gel 

imager (BioRad). The plate was then immersed in PBS to allow acoustic coupling to the L10-4v transducer. 

The transducer was connected to the BiSlide motor stage and aligned perpendicular to the plane of the plate 

at a distance of 20 mm from the LB-Agar layer containing the ARG-expressing colonies. One half of the 

plate was exposed to BURST+ by applying the sequence to planes spaced by 1 mm across the plate. The 

plate was incubated for an additional 23 h at 30 °C. 

 A second darkfield optical image of the plate was acquired following the second round of 

incubation. The BURST+ plate scan was then repeated to obtain images confirming GV re-expression. 

4.5.10 Bacterial colony-forming assay 

Neutrally buoyant ARG Nissle cells were exposed to ultrasound inside cylindrical inclusions in agarose gel 

in 3D-printed acoustic cuvettes with windows covered by mylar. Each cuvette was filled with molten 1% 

agarose gel and a 3D-printed cylindrical plug was used to cast a cylindrical inclusion with 40 mm length 

and 2 mm diameter. Each ARG Nissle sample was diluted to 105 cells/ml in PBS. 50 µL of the resulting 

suspension was loaded into the inclusion in the acoustic cuvette, which was placed in a water tank. The 

L10-4v transducer was attached to an XSlide translatable motor stage (Velmex), submerged in a water tank, 

and aligned such that the 20 mm transducer focus was positioned at the center of the inclusion. A single 

pulse sequence was applied to each sample, using either BURST+, BURST, or, in the control case, B-mode 

with 3 cycles and a PPP of 0.3 MPa. 20 µL of sample was then extracted from the inclusion and diluted 

with PBS to 104 cells/ml. 100 µL of this dilution was plated on Lennox LB agar with 50 µg/ml kanamycin 

and 2% glucose. Plates were incubated for 20 hours at 30 °C. 

Cell viability was measured by counting the number of colonies formed from samples exposed to 

BURST or BURST+ and dividing by the number of colonies formed from the same biological replicate 

exposed to the control condition.  
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4.5.11 Mammalian cell viability assay 

HEK cells from an mARG-expressing cell line were trypsinized and pelleted by centrifugation at 400 

g for 4 min at 4 °C. The pelleted cells were then resuspended in PBS and diluted to a concentration of 

2.5×105 cells/ml. These samples were then exposed to ultrasound and collected with the same protocol used 

for ARG-expressing bacteria described above. 

After ultrasound exposure, cells were stained with Zombie NIR viability dye (BioLegend Inc.) 

following the manufacturer’s protocol. Relative cell death was measured using the Beckman Coutler 

Cytoflex Flow Cytometer (Beckman Coutler Inc.) based on Zombie NIR fluorescence. This assay was 

validated with a positive control condition in which HEK cells were incubated at 80 °C for 1 minute, 

resulting in 100% measured cell death. 
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4.6 Supplementary Material 
 

 
Supplementary Figure 4.1 | Collapse signal generation mechanism. The imaging target for all panels is ARG E. 
coli Nissle at 103 cells/ml in suspension. All images are displayed in dB scale with the same colormap shown in the 
bottom right of panel (g) (min: 0 dB, max: 80 dB). All scalebars are 2 mm. (a) Distribution of BURST ray line peak 
intensities (i.e. maxima over columns of pixels) for PPP = 4.3 MPa. N = 650. (b) Distribution of BURST+ ray line 
peak intensities for PPP = 4.3 MPa. N = 650. (c) BURST pressure ramp images with PPP ranging from 3.4 MPa to 
4.3 MPa. (d) BURST+ pressure ramp with the same pressures as in (c). (e) Peak image intensity vs PPP for BURST 
and BURST+. Error bars: SEM. N = 10 BURST acquisitions. (f) Image time series acquired with an ultrafast 
implementation of BURST+, with 1 frame/100 µsec, at 4.3 MPa. (g) Cycle ramp images with the number of transmit 
waveform cycles ranging from 0.5 cycles to 10.5 cycles and PPP held constant at 4.0 MPa. (h) Mean intensity of cycle 
ramp images vs. depth. Traces are averaged over 10 replicates. Error bars not shown for clarity. (i) Proposed 
mechanism to account for the presence of dim signals, but not bright signals, in BURST. (j)  Proposed mechanism to 
account for the presence of both dim and bright sources in BURST+ and pulse sequences with more than one cycle. 
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Supplementary Figure 4.2 | Acoustic shielding in BURST sequence at high ARG-expressing cell concentration. 
(a) Images from the high-pressure frames (frames 2-5) of a BURST+ sequence applied to a 1% agarose phantom with 
wells containing tissue-mimicking scatterers mixed with 108 cells/ml RFP-expressing E. coli Nissle (left) and ARG-
expressing E. coli Nissle (right). Scale bars: 2 mm. (b) Mean pixel intensity vs. frame number for the ARG well, 
corresponding to the ROI of the same color in Frame 5 of the previous panel. 

 

 

 

Supplementary Figure 4.3 | In vitro BURST imaging of ARG-expressing bacteria in plain agarose gel. (a-c) 
Array of ultrasound images of a cross section of rectangular wells containing Nissle E. coli embedded in 1% agarose 
wells within an agarose phantom. Each image contains a pair of wells, the left well containing RFP-expressing Nissle, 
the right well containing ARG-expressing Nissle. Rows correspond to cell concentrations, which range over six orders 
of magnitude. (a) B-mode images. (b) BURST images. (c) BURST+ images. The top edge of each image corresponds 
to a depth of 17.5 mm, the bottom to a depth of 23 mm. The left edge of each image corresponds to a lateral coordinate 
of -7 mm, the right to +7 mm. Scalebars: 2 mm. (d) Mean CTR vs log cell concentration for BURST and BURST+ 
on agarose-embedded cells. N = 12 wells, 4 from each of 3 biological replicates. CTR values represent the mean 
intensity of the ARG well relative to the mean intensity of the RFP well. 
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Supplementary Figure 4.4 | ARG Nissle colonies continue to grow and re-express GVs after exposure to 
BURST+. (a) Darkfield optical images of the half of the plate exposed to BURST+ after incubation at 30 °C for a 
total of 15 h (top) and 38 h (bottom). (b) BURST+ composite ultrasound images of the plate after 15 h (top) and 38 h 
(bottom), with the first collapse frame removed prior to template unmixing to reduce BURST signal area and allow 
easy comparison of signal spatial distribution with the optical image. The composite image was formed by taking the 
maximum of each BURST image plane along the axial dimension and concatenating the resulting rows of pixels to 
form 2D composite image. Prior to dB scaling, a 3×3 median filter was applied to the composite image, followed by 
a Gaussian filter with σ = 1. (c) The same BURST+ ultrasound images with all frames included in template unmixing. 
Due to the extremely high concentration of GV-expressing cells in the colonies, the BURST signal generated in the 
first collapse frame has an area significantly larger than the colony itself. This spatial broadening could be caused by 
the increased probability of a sufficient number of GVs stochastically collapsing at a lower pressure, thereby 
expanding the effective point spread function of the ultrasound beam. Scale bars: 10 mm. 
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Supplementary Figure 4.5 | Gating strategy for quantifying cell death in mArg-HEK cells. (a) SSC-FSC gating 
for cell populations exposed to BURST+, BURST, and low-pressure control. (b) The corresponding Zombie NIR 
fluorescence histograms for each population. Cell death was quantified by gating the fraction of cells that emitted 
Zombie NIR fluorescence. The cutoff was the same for all samples. 

 

Supplementary Note 1: Collapse signal generation mechanism  

In performing the single cell detection experiments, we observed that the BURST signals from single cells 

tended to fall into two distinct categories: small, point-like “dim” signals of moderate intensity between 20 

dB and 60 dB, and larger, elongated “bright” signals with intensities of 60 dB to 80 dB (Fig 4.5, b, e). 

Analysis of the signal intensity distributions for BURST and BURST+ applied to cells in liquid suspension 

revealed that BURST generated predominantly dim signals (Supplementary Fig. 4.1a) and that BURST+ 

generated predominantly bright signals, though dim signals were also present (Supplementary Fig. 4.1b). 

An understanding of the mechanisms behind these acoustic phenomena would allow us to better predict the 

performance of BURST and BURST+ in novel settings.  

As a starting point for investigation, we hypothesized three mechanisms by which acoustic collapse of 

GVs might result in strong, transient ultrasound signal: 1) the same linear scattering that creates contrast 

when imaging below the collapse threshold of the GV, 2) an acoustic wave generated by the rapid volume 

change that occurs during GV collapse, or 3) cavitation of nanobubbles liberated from the GVs following 



 
 

 
 

99 

collapse. In the case of (1), the signal strength is due to an increase in scattering amplitude in proportion to 

the higher pressures applied, while the signal transience is explained by collapse of the GVs after the initial 

scattering event. For (3), signal transience would result from the sub-millisecond dissolution times of the 

nanobubbles. 

 To test these hypotheses, we imaged ARG Nissle in liquid buffer suspension at 103 cells/ml with a 

range of pulse sequences differing in pressure level, number of waveform cycles, and frame rate. We used 

the same setup and sample preparation protocol used for the single cell detection experiments. We first 

applied a pressure ramp with BURST and BURST+ to determine the pressure threshold at which different 

signal intensities are generated for each pulse sequence. Dim signals appeared in the BURST images at 3.7 

MPa, but remained very sparse up to 3.9 MPa (Supplementary Fig. 4.1c). Bright signals did not appear in 

any BURST images. Both dim signals and bright signals appeared in BURST+ images at 3.4 MPa, although 

bright signals were very sparse, with less than one per frame at this pressure. Bright signals appeared 

consistently in BURST+ frames at 3.9 MPa and gradually increased in number at higher pressures 

(Supplementary Fig. 4.1d). Since BURST and BURST+ have identical pressure maxima and minima, 

these results suggest the larger number of cycles in BURST+ is necessary for the generation of bright signals 

and increases the generation of dim signals. Interestingly, although the 50% acoustic collapse pressure 

threshold of GVs expressed in ARG Nissle is 2.5 MPa, neither pulse sequence generated observable signal 

at 2.8 MPa. One explanation for this is that GV collapse is a stochastic event that occurs with probability 

proportional to both PPP and duration of insonation. However, both bright and dim signals are only 

observed in the first collapse frame for all pressure levels, which suggests that all GVs in the field of view 

collapse after the first pulse but, depending on the pulse parameters and GV characteristics, may not 

generate signal. This suggests that mechanism (2) is unlikely for bright or dim signals since it predicts that 

GV collapse is a sufficient condition for signal generation. 

Although both bright and dim signals increased in number at higher pressures (Supplementary Fig. 

4.1c-d), the peak intensity of the bright signals increased in direct proportion to the increase in pressure 

(Supplementary Fig. 4.1e). The number of dim signals, in contrast, increased with pressure while their 

intensity remained relatively constant up to 4.1 MPa. If the dim signals were generated by mechanism (1), 

we would expect to observe the opposite: there should be scattering from all cells in the field of view at an 

intensity that increases proportionally with incident pressure. Instead, our observations are consistent with 

a stochastic collapse model in which GVs in a given cell generate collapse signal with a probability 

proportional to the peak positive acoustic pressure. The stochasticity may be intrinsic to the physical process 

of collapse or may result from variability in shape, size, and number of expressed GVs. In either case, we 

may rule out mechanism (1) for both bright and dim signals. The evidence thus far suggests that both the 
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bright and dim signals are generated from mechanism (3): the interaction of liberated nanobubbles with the 

high-pressure acoustic waveform. However, this does not explain their markedly different characteristics.   

 To investigate the temporal properties of the bright and dim signals, we designed an ultrafast 

implementation of BURST+ with an inter-frame delay of 100 µsec. Although both bright and dim signals 

appear transient in the standard BURST+ pulse sequence with an inter-frame delay on the order of 10 msec, 

the ultrafast sequence showed that many bright signals persist after several high-pressure transmits 

(Supplementary Fig. 4.1f). In contrast, the band of dim signals always vanishes after the first high-pressure 

frame. Because mechanisms (1) and (2) depend on an irreversible collapse of the GV shell, this provides 

further evidence against their involvement in generation of the bright signals. 

To obtain a tighter upper bound on the persistence time of the dim signals, we applied a cycle ramp 

with numbers of cycles ranging from 1 to 12. We held PPP constant at 4.0 MPa for each pulse sequence 

since this pressure level maximized visibility of individual bright and dim sources in the same frame. Both 

the intensity and size of the bright signals increased in proportion to the number of cycles (Supplementary 

Fig. 4.1g-h) Interestingly, after 2 cycles, more cycles did not obviously increase the number of either bright 

or dim signals (Supplementary Fig. 4.1g), suggesting a regime change in the signal generation mechanism 

caused by the presence of more than one cycle. The size of the dim signals, in contrast, did not change with 

the number of cycles, remaining at approximately the size of 1 wavelength (250 µm in this case). This 

implies that if the dim sources are generated by microbubbles, their dissolution times must be less than 500 

nsec.  

Physical modeling of GV collapse and nanobubble nucleation, dissolution, and cavitation will likely be 

required to elucidate the differences between the bright and dim signal generation mechanisms. While such 

modeling is beyond the scope of this work, we propose here a qualitative model that may account for our 

observations. It has been shown that, when insonated at 5 MHz with PPP > 4 MPa, microbubbles below a 

threshold radius of 800 nm decay as 1/𝑅  while larger bubbles undergo resonance enhancement35, 

increasing in size through rectified diffusion. Under this proposed mechanism, all nanobubbles liberated by 

the first positive half-cycle initially have radii below the 800 nm decay threshold, as predicted by typical 

GV volume26. During the first negative half-cycle, rarefaction of these nanobubbles generates the dim 

signals and also generates bubbles with radii above the decay threshold due to rectified diffusion or 

coalescence of the nanobubbles. In the case of multi-cycle waveforms, subsequent cycles result in cavitation 

of the larger bubbles, which generates the bright signals (Supplementary Fig. 4.1i). In contrast, single-

cycle waveforms do not generate bright signals because there are no subsequent cycles to cavitate the larger 

bubbles that form following the first negative half-cycle (Supplementary Fig. 4.1j). In this case, the dim 

signals generated by multi-cycle waveforms would be due to nanobubbles that remain below the decay 

threshold following the first negative half cycle. 
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C h a p t e r  5  

ULTRASOUND IMAGING OF GENE EXPRESSION IN MAMMALIAN 

CELLS 

This chapter is in large part a reformatted version of the manuscript entitled “Ultrasound Imaging of Gene 

Expression in Mammalian Cells” published by Farhadi, A., Ho, G. H., Sawyer, D. P., Bourdeau, R. W. and 

Shapiro, M. G. in Science. Under the supervision of Mikhail Shapiro, my contributions to the work were to 

help design and optimize the ultrasound pulse sequence and assist with writing the manuscript. 

 Working as a collaborator on this project taught me valuable lessons about the impact of imaging 

capabilities on the development of novel tools in synthetic biology. The expression of gas vesicles (GVs) in 

mammalian cells was a tremendous achievement, but it was made especially difficult by the low expression 

levels. This challenge necessitated the development of an early destructive imaging protocol that extracted 

more signal from the GVs during collapse. However, it was only after developing this protocol further and 

experimenting with different pulse sequence parameters and reconstruction methods that I was able to 

develop this protocol into BURST and improve its specificity and sensitivity by multiple orders of 

magnitude. And yet, without the unmet need of improved imaging sensitivity, BURST likely would never 

have been developed. This is in contrast to how, in the case of xAM, the imaging technique created an 

opportunity for novel acoustic biosensors. In this way, I now appreciate how the innovation feedback loop 

works from both directions. 

 

5.1 Abstract 
The study of cellular processes occurring inside intact organisms requires methods to visualize cellular 

functions such as gene expression in deep tissues. Ultrasound is a widely used biomedical technology 

enabling non-invasive imaging with high spatial and temporal resolution. However, no genetically encoded 

molecular reporters are available to connect ultrasound contrast to gene expression in mammalian cells. To 

address this limitation, we introduce mammalian acoustic reporter genes. Starting with a gene cluster 

derived from bacteria, we engineered a eukaryotic genetic program whose introduction into mammalian 

cells results in the expression of intracellular air-filled protein nanostructures called gas vesicles, which 

produce ultrasound contrast. Mammalian acoustic reporter genes allow cells to be visualized at volumetric 

densities below 0.5% and permit high-resolution imaging of gene expression in living animals.  

 

5.2 Introduction 
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The study of cellular function within the context of intact living organisms is a grand challenge in biological 

research and synthetic biology1. Addressing this challenge requires imaging tools to visualize specific cells 

in tissues ranging from the developing brain to tumors, and to monitor gene- and cell-based therapeutic 

agents in vivo2. However, most common methods for imaging cellular processes such as gene expression 

rely on fluorescent or luminescent proteins, which have limited performance in intact animals due to the 

poor penetration of light in biological tissue3,4. On the other hand, ultrasound easily penetrates most tissues, 

enabling deep non-invasive imaging with excellent spatial and temporal resolution (~100 µm and ~1 ms, 

respectively)2,5. These capabilities, along with its safety, portability and low cost, have made ultrasound a 

widely used technology in biomedicine. Despite these advantages, to date ultrasound has played a relatively 

small role in cellular imaging due to the lack of appropriate genetically encoded reporters.  

Recently, biomolecular contrast agents for ultrasound were introduced based on gas vesicles, air-

filled protein nanostructures which evolved in certain waterborne bacteria and archaea to provide cellular 

buoyancy6,7. Gas vesicles comprise a 2 nm-thick protein shell enclosing a gas compartment with dimensions 

on the order of 100 nm. The acoustic impedance mismatch between their gas interior and surrounding 

aqueous media allows gas vesicles to strongly scatter sound waves and thereby serve as ultrasound contrast 

agents8–12. In their native organisms, gas vesicles are encoded by clusters of 8-14 genes, including one or 

two primary structural proteins, and several other essential genes encoding putative assembly factors or 

minor shell constituents.  

The use of gas vesicles as reporter genes requires the heterologous expression of their cognate 

multi-gene operon in a new cellular host, ensuring proper transcription and translation of each gene, 

functional folding of each corresponding protein and appropriate stoichiometry and co-localization of the 

constituents for gas vesicle assembly. Recently, a genetic engineering effort succeeded in expressing gas 

vesicles as acoustic reporter genes (ARGs) in commensal bacteria, allowing their imaging in the mouse 

gastrointestinal tract13. If ARGs could be developed for mammalian cells, this would enable the study of 

how such cells develop, function and malfunction within the context of model organisms and enable the in 

vivo imaging of mammalian cells engineered to perform diagnostic or therapeutic functions14–16. However, 

developing ARGs for mammalian cells represents an even greater synthetic biology challenge due to the 

differences in transcription, translation, co-localization and protein folding between prokaryotes and 

eukaryotes17–19. To our knowledge, no genetic operon larger than 6 genes has been moved between these 

domains of life20.  

 

5.3 Results 
Here, we describe the expression of ARGs in mammalian cells to enable ultrasound imaging of mammalian 

gene expression. To identify a set of genes capable of encoding gas vesicle assembly in mammalian cells, 
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we synthesized individual gas vesicle genes from three different microbial species using codons optimized 

for human expression, cloned each gene into a separate monocistronic plasmid and transiently co-

transfected mixtures of the genes from each species into HEK293T cells (Fig. 5.1A). After allowing 72 

hours for protein expression, we gently lysed the cells (~2x106 cells per sample), and centrifugated the 

lysate to enrich for buoyant particles, which would include any gas vesicles. The top fraction of the 

centrifugated lysate was then screened for gas vesicles using transmission electron microscopy (TEM). 

These experiments took advantage of the intrinsic stochasticity of transient co-transfection, in terms of the 

ratios of genes and the overall DNA quantity delivered to each cell, to simultaneously sample a broad range 

of gene stoichiometries and expression levels without prior knowledge of parameters leading to gas vesicle 

formation.  

 
Figure 5.1 | Engineering of mammalian acoustic reporter genes. (A) Schematic of the transient co-transfection 
assay used to identify combinations of genes capable of producing gas vesicles in mammalian cells. (B) Schematic of 
nine genes from B. megaterium capable of encoding gas vesicle expression in mammalian cells. Thin arrow denotes 
CMV promoter. polyA denotes SV40 polyadenylation element. (C) Representative TEM image of purified gas 
vesicles expressed in HEK293T cells. (D) Gene cassettes comprising the mammalian acoustic reporter gene construct, 
mARG. (E) Representative TEM image of gas vesicles purified from HEK293T cells transiently transfected with 
mARGs for 72 hours. All scale bars represent 500 nm. 

The co-transfection of the gas vesicle genes from Halobacterium salinarum and Anabaena flos-

aquae did not lead to the formation of detectable gas vesicles. However, the co-transfection of 9 gas vesicle-
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forming genes from Bacillus megaterium (Fig. 5.1B) resulted in the production of unmistakable gas vesicles 

as evidenced by their appearance in TEM images (Fig. 5.1C). The 9 genes originate from an eleven-gene 

B. megaterium gene cluster previously used to express gas vesicles in E. coli13,21, with the exception of 

GvpR and GvpT, which were found to be unnecessary for gas vesicle formation (Supplementary Fig. 5.1). 

 Using the 9 genes identified in our stochastic screen, we set out to construct a polycistronic 

mammalian operon for consistent gas vesicle expression by joining these genes using the viral co-

translational self-cleavage peptide P2A22. Having determined that all genes except GvpB could tolerate P2A 

peptide additions (Supplementary Fig. 5.2 and Supplementary Table 5.1), we constructed a polycistronic 

plasmid containing the 8 P2A-tolerant gas vesicle genes connected by P2A sequences, and co-transfected 

it into HEK293T cells together with a plasmid encoding GvpB. Unfortunately, this did not result in the 

production of gas vesicles. We hypothesized that one or more of the genes in our polycistronic plasmid was 

expressed at an insufficient level, and used a complementation assay to identify GvpJ, GvpF, GvpG, GvpL 

and GvpK as bottleneck genes (Supplementary Fig. 5.3). This led us to construct a polycistronic “booster” 

plasmid containing these five genes, ordered to minimize P2A modifications to GvpJ and GvpK, which 

were found to be most limiting. The co-transfection of the booster plasmid together with the two plasmids 

above (Fig. 5.1D) enabled robust expression of gas vesicles in cells (Fig. 5.1E). We named this set of three 

genetic constructs mammalian acoustic reporter genes, or mARGs. 

After establishing polycistronic constructs for mammalian gas vesicle assembly, we used an 

integrase23,24 to incorporate them into the cellular genome for stable expression under a doxycycline-

inducible TRE3G promoter, with fluorescent proteins added to each construct as transfection indicators 

(Fig. 5.2A). We transfected these plasmids into HEK293-tetON cells and used flow cytometry to sort cells 

according to their expression level of each fluorescent reporter. We found that the cell population 

combining the strongest expression of each construct produced the largest quantity of gas vesicles (Fig. 

5.2B, Supplementary Fig. 5.4, A-D). To ensure that mARG expression was not limited to HEK293 cells, 

we also transfected Chinese hamster ovary cells (CHO-K1), and obtained similar results (Supplementary 

Fig. 5.4, E-G).  
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Figure 5.2 | Formation, properties and non-toxicity of gas vesicles in cells with genome-integrated mammalian 
acoustic reporter genes. (A) Schematic of mARG constructs used for genomic integration into cells with the 
piggyBac transposase system. ITR, inverted terminal repeat; ChbGI, Chicken beta-globin insulator; GFP, Emerald 
green fluorescent protein; BFP, enhanced blue fluorescent protein 2. (B) Representative TEM image of buoyancy-
enriched lysate from HEK293-tetON cells transfected with the constructs in (A) and sorted for high expression of all 
three operons. (C) Fluorescence-activated cell sorting of HEK293-tetON cells transfected with the constructs in (A). 
Red circles denote individual cells selected by sorting to form monoclonal cell lines. (D) Selection process for 
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monoclonal cell lines, including assays for viability, fluorescence intensity and gas vesicle yield. (E) Number of gas 
vesicles expressed by monoclonal HEK293-tetON cells after 72 hours of induced expression, as counted in lysates 
using TEM. Bar represents the mean and the shaded area represents SEM (n=3, each from two technical replicates). 
(F) Representative TEM image of a 60-nm section through an mARG-HEK cell showing an angled slice through two 
bundles of gas vesicles in the cytosol. (G) Representative TEM image of gas vesicles purified from mARG-HEK cells. 
(H) Size distribution of gas vesicles expressed in mARG-HEK cells. The mean and standard deviation of both 
distributions is illustrated as a circle and with error bars. (n=1828) (I) Phase contrast images of mARG-HEK and 
mCherry-HEK cells 72 hours after induction with 1 µg/mL doxycycline and 5 mM sodium butyrate. (J) Cell viability 
of mARG-HEK cells relative to mCherry-HEK cells after 72 hours of gene expression. Error bars indicate SEM. (K) 
Fraction of mARG-HEK cells in co-culture with mARG-mCherry cells seeded in equal numbers over 6 days of gene 
expression (n=3 biological replicates, each from 4 technical replicates, with darker symbols showing the mean). Scale 
bars in B, F, G represent 500 nm. Scale bar in I represents 20 µm.  

To generate a stable monoclonal cell line expressing mARGs for detailed analysis, we sorted 

individual high-expression HEK293-tetON cells for monoclonal growth (Fig. 5.2C), producing 30 cell 

lines, which we screened for viability, fluorescence and gas vesicle formation (Fig. 5.2D, Supplementary 

Table 5.2). The number of gas vesicles per cell was then estimated from TEM images, and a cell line 

yielding the largest quantity of gas vesicles was selected and named mARG-HEK. When induced for 72 

hours with 1 µg/mL of doxycycline and 5 mM sodium butyrate (to reduce epigenetic silencing), this cell 

line produced on average 45 gas vesicles per cell (Fig. 5.2E). Using thin-section TEM, gas vesicles could 

clearly be seen in the cytosol of individual mARG-HEK cells (Fig. 5.2F). From TEM images of cell lysates, 

we measured the average dimensions of gas vesicles produced in this cell line to be 64 ± 12 nm wide 

(standard deviation, n=1828) and 274 ± 212 nm long (standard deviation, n=1828), with some reaching 

lengths greater than 1 micron (aspect ratios greater than 30) (Fig. 5.2, G-H). This corresponds to an average 

gas vesicle volume of 0.605 attoliters. Together, the 45 gas vesicles expressed in an average mARG-HEK 

cell are expected to occupy just 0.0027% of the cell’s cytosolic volume.  

The expression of gas vesicles did not change the gross morphology of mARG-HEK cells (Fig. 

5.2I), and was non-toxic as determined by three different assays (Fig. 5.2J), as compared to a similarly 

prepared control cell line (mCherry-HEK) (Supplementary Fig. 5.5 A-B). During a 6-day co-culture, 

mARG-HEK cells showed only a minor growth disadvantage compared to mCherry-HEK cells (Fig. 5.2K). 

As expected, both engineered cell lines grew more slowly than wild-type HEK293T cells (Supplementary 

Fig. 5.6). 

Having engineered mARG-HEK cells, we sought to image their expression of acoustic reporters 

with ultrasound. Gas vesicles encoded by the B. megaterium gene cluster are expected to produce linear 

ultrasound scattering21. However, since mammalian cells themselves also produce significant linear 

contrast, detecting gas vesicles expressed in such cells using linear methods is challenging. To enable more 

selective imaging of mARG-expression, we took advantage of the ability of gas vesicles to collapse 

irreversibly above specific ultrasound pressure thresholds8,9,13,21. A switch in the incident ultrasound 

pressure from below to above such a threshold results in a strong transient signal from the gas vesicles, 
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which decays to a lower level in the next ultrasound frame due to immediate dissolution of their gas contents 

and the elimination of ultrasound scattering (Fig. 5.3, A-B). Meanwhile, background tissue scattering rises 

with the increase in incident pressure and remains constant at the new level. Thus, images formed by taking 

the difference in signal between the collapsing and post-collapse frames reveal specifically the presence of 

gas vesicles.  

 

We implemented this collapse-based imaging approach using an amplitude modulation pulse 

sequence10, which we found to provide the best cancellation of non-gas vesicle signals. When hydrogels 

containing mARG-HEK cells were imaged using this technique at 18 MHz, they were easily distinguishable 

from mCherry-HEK controls based on their contrast dynamics (Fig. 5.3C). Critically, while this imaging 

paradigm requires the collapse of gas vesicles inside cells, this does not affect cell viability (Fig. 5.3D). 

To test if mARGs can faithfully monitor circuit-driven gene expression25,26, we measured the 

dynamic ultrasound response of mARG-HEK cells under the control of a doxycycline-inducible promoter 

(Fig. 5.3E). After induction with 1 µg/mL doxycycline, the cells showed a gradual buildup of ultrasound 

signal, with clear contrast appearing on day two and increasing over the next 4 days (Fig. 5.3F). These 

kinetics are similar to those observed with fluorescent indicators (Supplementary Fig. 5.7A).  When the 

gene circuit was driven using a range of inducer concentrations, the ultrasound contrast followed the 

expected transfer function of the promoter (Fig. 5.3G, Supplementary Fig. 5.7B).  

To determine how sensitively mARG-expressing cells could be detected in a mixed cell population, 

we combined mARG-HEK cells with mCherry-HEK cells at varying ratios. We were able to detect the 

presence of mARG-expressing cells in these mixtures down to 2.5% of total cells (Fig. 5.3H), 

corresponding to less than 0.5% volumetric density, or approximately 3 cells or 135 gas vesicles per voxel 

with dimensions of 100 µm. A similar voxel-averaged concentration of gas vesicles was detectable in a 

monoculture of mARG-HEK cells induced to express 1.4 ± 0.6 gas vesicles per cell (Supplementary Fig. 

5.8).  

In many imaging experiments, the output of a gene circuit is read out only once. However, in some 

cases it may be desirable to track gene expression over time. We therefore tested whether mARG-

expressing cells in which the gas vesicles have been collapsed during imaging could re-express these 

reporters to allow additional imaging. mARG-HEK cells cultured a nutrient-supported hydrogel produced 

clear ultrasound contrast 3 days after induction, and were able to re-express their acoustic reporters over 3 

additional days (Fig. 5.3, I-J).  

Having engineered mammalian cells to stably express gas vesicles and characterized their ability 

to produce ultrasound contrast in vitro, we next tested the ability of mARG expression to be visualized in 

vivo with high spatial resolution. We formed model tumor xenografts in immunocompromised mice by 
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inoculating mARG-HEK cells in Matrigel subcutaneously in their left flanks (Fig. 5.4A). In the same mice, 

the right flanks were inoculated with mCherry-HEK control cells. We induced reporter gene expression in 

both tumors for 4 days through systemic injections of doxycycline and sodium butyrate (Fig. 5.4B). We 

expected these nascent tumors to be mostly vascularized at their perimeter, resulting in the strongest 

inducible gene expression at the tumor periphery (Fig. 5.4A). Ultrasound, with its sub-100-µm spatial 

resolution (at 18 MHz), should be able to discern this gene expression pattern, whereas attaining such 

resolution would be challenging with optical techniques. 



 
 

 
 

112 

 
Figure 5.3 | Ultrasound imaging of mammalian gene expression in vitro. (A) Illustration of the collapse-based 
ultrasound imaging paradigm used to generate gas vesicle-specific ultrasound contrast from mARG-expressing cells. 
(B) Representative non-linear signal recorded during a step change in the incident acoustic pressure, from 0.27 MPa 
in the white-shaded region to 1.57 MPa in the grey-shaded region. (C) Representative collapse and post-collapse 
ultrasound images of mARG-HEK and mCherry-HEK cells acquired during this ultrasound imaging paradigm and 
their difference, indicating gas vesicle-specific contrast. (D) Cellular viability after being insonated under 3.2 MPa 
acoustic pressures, as measured using the MTT assay. (E) Schematic of a chemically inducible gene circuit with 
mARG expression as its output. All three mARG cassettes in mARG-HEK cells are under the control of the 
doxycycline-inducible TRE3G promoter (TRE), with expression triggered by incubation with doxycycline. (F) 
Representative ultrasound images and contrast measurements in mARG-HEK cells as a function of time following 
induction with 1 µg/mL of doxycycline and 5 mM sodium butyrate (n=6, with the darker dots showing the mean). (G) 
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Representative ultrasound images and contrast measurements in mARG-HEK cells as a function of doxycycline 
induction concentrations. Cells were allowed to express gas vesicles for 72 hours in the presence of 5 mM sodium 
butyrate. (n=6, with the darker dots showing the mean). A sigmoidal function is fitted as a visual guide. (H) 
Representative ultrasound images and contrast measurements in mARG-HEK cells mixed with mCherry-HEK cells 
in varying proportions. Cells were induced with 1 µg/mL of doxycycline and 5 mM sodium butyrate for 72 hours prior 
to imaging. (n=4, with the darker dots showing the mean) (I) Schematic and representative ultrasound images from 
mARG-HEK cells in Matrigel re-expressing gas vesicles after acoustic collapse. Cells were induced with 1 µg/mL of 
doxycycline and 5 mM sodium butyrate for 72 hours before and after 3.2 MPa acoustic insonation. Ultrasound images 
were acquired after an additional 72 hours in culture following collapse. (J) Ultrasound contrast in mARG-HEK and 
mCherry-HEK cells after initial expression, after collapse, after re-expression and after second collapse. (n=7, with 
the darker dots showing the mean). GV, gas vesicles. All scale bars represent 1 mm. 

After 4 days of induction, we observed clear ultrasound contrast in the flank inoculated with 

mARG-HEK cells, which was absent from the contralateral side (Fig. 5.4, C-D). As expected, the pattern 

observed with ultrasound revealed mARG expression at the perimeter of the tumor, while the core remained 

dark, and the imaging of adjacent ultrasound planes revealed this pattern of gene expression to persist across 

the tumor mass (Fig. 5.4E, Supplementary Fig. 5.9). 

The ultrasound-observed spatial distribution of gene expression was consistent with the low 

vascularity in the tumor core, as observed with Doppler ultrasound (Supplementary Fig. 5.10). The 

peripheral gene expression pattern was confirmed with subsequent histological examination of the tissue 

(Fig. 5.4F, Supplementary Fig. 5.11). In comparison, our in vivo fluorescence images just showed the 

presence of signal somewhere in the tissue and not its precise distribution (Fig. 5.4G). These results, which 

were consistent across 5 animals (Supplementary Fig. 5.12A), demonstrate that mARGs enable gene 

expression imaging in vivo and highlight the ability of ultrasound to visualize intricate patterns of gene 

expression non-invasively. We imaged 3 of the animals again after an additional 4 days to look for re-

expression of the collapsed gas vesicles, and observed ultrasound contrast in each case (Supplementary 

Fig. 5.12B).  
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Figure 5.4 | Ultrasound imaging 
of mammalian gene expression 
in vivo. (A) Diagram of a mouse 
implanted with a subcutaneous 
tumor model, and the expected 
spatial pattern of vascularization 
and doxycycline-induced reporter 
gene expression. (B) Experimental 
timeline. (C) Representative 
ultrasound image of tumors 
containing mARG-HEK cells after 
4 days of doxycycline 
administration. mARG-specific 
contrast shown in the hot colormap 
is overlaid on an anatomical B-
mode image showing the 
background anatomy. (D) 
Representative ultrasound image 
of tumors containing mCherry-
HEK cells after 4 days of 
doxycycline administration. (E) 
Ultrasound images of adjacent 
planes in the mARG-HEK tumor 
acquired at 1 mm intervals. The 
minimum and maximum values of 
color bars in C-E are 4000 and 
40000 au, respectively. (F) 
Representative fluorescence image 
of a histological tissue section of 
an mARG-HEK tumor. Blue color 
shows the TO-PRO3 nucleus stain, 
green color shows GFP 
fluorescence and red color shows 
mCherry fluorescence. (G) 
Fluorescence image of a mouse 
implanted with mARG-HEK and 
mCherry-HEK tumors on the left 
and right flanks, respectively, after 
4 days of expression. Scale bars for 
are 1 mm for C-F and 1 cm for G.  

 

5.4 Discussion 
Our results establish the ability of an engineered genetic construct encoding prokaryote-derived gas vesicles 

to serve as a mammalian reporter gene for ultrasound, providing the ability to monitor cellular location and 

function inside living organisms. mARGs provide many of the capabilities associated with established 

genetically encoded optical reporters, including imaging cellular dynamics via promoter-driven expression 

and mapping cellular populations in complex samples. While optical reporter genes mainly provide these 
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capabilities in culture and surgically accessed tissues, mARGs enable gene expression to be resolved non-

invasively in vivo. 

While the genetic constructs described in this work should be immediately useful in a variety of 

contexts, significant scope exists for further optimization to make acoustic reporter genes as widely useful 

as GFP5,11. For example, accelerating mARG expression beyond the day-scale kinetics shown in this study 

and developing sensitive imaging paradigms that do not require gas vesicle collapse would enable the 

imaging of more dynamic cellular processes. In addition, while this study demonstrated essential mARG 

functionality with clonally selected cell lines, the expression of mARGs in primary cells, their delivery to 

endogenous cells via viral vectors, and their expression in transgenic animals would greatly expand the 

utility of this technology. To facilitate such uses, it would be helpful to further condense the mARG 

constructs. For example, genes could be consolidated into fewer clusters, and preliminary experiments show 

that gvpB can be combined with the 8-gene polycistron encoding gvpN-gvpU via an internal ribosome entry 

sequence (IRES) (Supplementary Fig. 5.13). In addition, the total length of the coding sequence contained 

in mARG could be reduced from 7.6 kb to 4.8 kb by eliminating the need for redundant booster genes, 

relying instead on non-coding elements such as different-strength promoters to tune expression 

stoichiometry. Further optimization of mARG genetic constructs is also needed to reduce epigenetic 

silencing and metabolic burden27–29. Just as the engineering of GFP over many years yielded brighter and 

more colorful reporters enabling new uses of fluorescence microscopy, further engineering of the genetic 

constructs comprising mARGs would help cellular ultrasound penetrate and enable new areas of 

mammalian biology and biomedicine. 

 

5.5 Methods 

5.5.1 Chemicals, cell lines and synthesized DNA 

All chemicals were purchased from Sigma Aldrich unless otherwise noted. HEK293T and CHO-K1 

cell lines were ordered from American Type Culture Collection (ATCC) and HEK293-tetON cells and 

CHO-tetON cells were purchased from Clontech (Takara Bio). Synthetic DNA was ordered from Twist 

Bioscience.  

 

5.5.2 Cloning 

Monocistronic plasmids used for transient transfection of HEK293T cells of gas vesicle genes used 

the pCMVSport backbone. Codon optimized gas vesicle genes were assembled in each plasmid using 

Gibson assembly. To test the effect of N- and C-terminal P2A modification each B. megaterium gas vesicle 

gene on the pNL29 plasmid (addgene 91696) was individually cloned using standard mutagenesis 
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techniques. To test the N-terminal modification, the CCT codon was inserted following the start codon. To 

test the C-terminal modification, a linker-P2A sequence (GGAGCGCCAGGTTCCGGG-

GCTACTAACTTCAGCCTCCTTAAACAGGCCGGCGA CGTGGAAGAGAATCCTGGC) was 

inserted upstream of the stop codon for each gene.  

The polycistronic plasmid containing GvpN, GvpF, GvpG, GvpL, GvpS, GvpK, GvpJ, GvpU and 

Emerald GFP (EmGFP) were codon optimized, and synthesized in three fragments. The three fragments 

were Gibson assembled in the pCMVSport plasmid. The booster plasmid was assembled by multi-fragment 

Gibson assembly from PCR amplified fragments of the above plasmid.  

The piggyBac transposon system (System Biosciences) was used to genomically integrate the mARG 

cassettes. To clone the mARG cassettes to the piggyBac transposon backbone, the plasmid was first 

digested using the SpeI and HpaI restriction enzymes and the mARG cassettes were Gibson assembled in 

the backbone. For doxycycline-inducible expression, the CMV promoter upstream of the gas vesicle genes 

was replaced with the TRE3G promoter. Internal ribosome entry site (IRES) and mCherry were cloned 

downstream GvpB as a marker for genomic integration. For the booster plasmid, CMVmin followed by 

enhanced BFP2 (eBFP2) and a polyadenylation element were cloned in the reverse direction upstream of 

the TRE3G promoter (creating a bi-directional doxycycline-inducible promoter) and used as a marker for 

genomic integration. A piggyBac transposon plasmid containing TRE3G and mCherry was Gibson 

assembled similarly to above.  

 

5.5.3 Cell culture, transient transfection and TEM analysis 

HEK293T and CHO-K1 cells were cultured in DMEM with 10% FBS and penicillin/streptomycin 

and seeded in a 6-well plate for transfection experiments. When the cells reached 70-80% confluency, 2 µg 

of total DNA (comprising the indicated mixtures of plasmids) was complexed with 2.58 µg 

polyethyleneimine (PEI-MAX; Polysciences Inc.) per µg of DNA, added to the cell culture, and incubated 

for 12-18 hours. The transfection of monocistronic plasmids encoding Halobacterium salinarum, Anabaena 

flos-aquae and Bacillus megaterium were all at equal molar ratios. Thereafter, the media containing the 

PEI-DNA complex was changed with fresh media. Cells were allowed to express the recombinant proteins 

for 72 hours.  

To look for gas vesicles, fully confluent cells cultured in 6-well plates were lysed with 400 µL of 

Solulyse-M (Genlantis Inc) per well for one hour at 4 °C. The lysate was then transferred to 2 mL tubes, 

diluted with 800 µL of 10 mM HEPES buffer at pH 8.0 and centrifugated overnight at 300 g and 8 °C. 

Then, 60 µL of the supernatant was transferred to a fresh tube to be analyzed using transmission electron 

microscopy (TEM).  
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From this top fraction, 2 µL of sample was added to Formvar/carbon 200 mesh grids (Ted Pella) that 

were rendered hydrophilic by glow discharging (Emitek K100X). The samples were then stained with 2% 

uranyl acetate. The samples were imaged on a FEI Tecnai T12 transmission electron microscope equipped 

with a Gatan Ultrascan CCD. 

To estimate gas vesicle yield and analyze size distribution, the cells were seeded in 6-well plates and 

gas vesicle expression was induced with 1 µg/mL of doxycycline and 5 mM sodium butyrate for 72 hours. 

The cells were lysed using Solulyse-M and buoyancy enriched at 300 g at 8 ˚C overnight. The top fraction 

of the supernatant was mixed with 2M urea and spotted on Formvar/carbon grids. The TEM grids were 

washed with water before staining with 2% uranyl acetate. To calculate gas vesicle yield per cell, the total 

number of gas vesicles per sub-grid on the TEM grid was manually counted and related via lysate volume 

to the number of source cells. Gas vesicle size distribution was quantified using FIJI30.   

To visualize gas vesicles inside cells, mARG-HEK cells were seeded in 6-well plates and allowed to 

express gas vesicles for 72 hours. The cells were fixed in 1.25% glutaraldehyde in PBS, post-fixed in 1% 

aqueous osmium tetroxide, reduced with ferrocyanide and block-stained in 1% uranyl acetate (all reagents 

from Electron Microscopy Sciences). The material was then dehydrated through a graded ethanol series 

and embedded in Eponate12 (Ted Pella). Sections were cut 60 nm thin onto formvar-filmed copper grids, 

stained with 2% uranyl acetate and Reynolds lead citrate, and imaged at 80 kV in a Zeiss EM10C 

(Oberkochen) equipped with an ES1000W Erlangshen CCD camera (Gatan). 

 

5.5.4 Genomic integration and FACS  

 HEK293-tetON and CHO-tetON cells were used for genomic integration of the mARGs. The cells 

were cultured in a 6-well plate containing 2 mL DMEM with 10% tetracycline-free FBS (Clontech) and 

penicillin/streptomycin. Cells were transfected with the piggyBac transposon backbone containing the 

mARGs and the piggyBac transposase plasmid at a transposon:transposase molar ration of 2.5:1. 

Transfection was conducted using parameters mentioned above and the cells were allowed to incubate for 

72 hours. Cells were induced with 1 µg/mL of doxycycline 24 hours prior to FACS (BD FACSAria III). 

Polyclonal subpopulations of mARG-expressing HEK293-tetON cells were sorted into the following four 

bins: (subtype 1) cells with eBFP2 fluorescence greater than 104 and EmGFP fluorescence greater than 104 

and mCherry fluorescence greater than 2x104 au, (subtype 2) cells with eBFP2 fluorescence between 3x103 

and 2x104 and EmGFP fluorescence between 2x103 and 2x104 and mCherry fluorescence between 2x103 

and 2x104 au, (subtype 3) cells with eBFP2 fluorescence between 103 and 6x103 and EmGFP fluorescence 

between 2x102 and 103 and mCherry fluorescence greater than 2x104 au, (subtype 4) cells with eBFP2 

fluorescence greater than 104 and EmGFP fluorescence greater than 2x104 and mCherry fluorescence 

between 2x103 and 2x104 au. CHO-tetON cells were transfected with mARGs and the piggyBac transposase 
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plasmid similar to above. mARG-expressing CHO-tetON cells with eBFP2 fluorescence greater than 104, 

EmGFP fluorescence greater than 104 and mCherry fluorescence greater than 2x104 au were sorted.  

For monoclonal cell lines, naïve HEK293-tetON cells were transfected with mARGs and the piggyBac 

transposase similar to above. mARG-expressing cells with eBFP2 fluorescence greater than 104, EmGFP 

fluorescence greater than 104 and mCherry fluorescence greater than 2x104 au were sorted. 576 cells were 

sorted in individual wells of 96-well plate and the surviving 30 cells were analyzed for gas vesicle 

expression as described above.  

To generate mCherry-HEK cells, HEK293-tetON cells were transfected with piggyBac transposon 

plasmid containing TRE3G promoter driving mCherry and the transposase plasmid similar to above. 

mCherry-HEK cells were sorted from cells with mCherry fluorescence between 1.5x104 and 105 au.   

Monoclonal cell lines (mARG-HEK and mCherry-HEK cells) were maintained in tetracycline-free 

media without butyrate and all imaging and toxicity experiments were conducted with cells that were less 

than 16 generations.  

 

5.5.5 In vitro toxicity assays  

The viability of the mARG-expressing cells was determined using three different assays involving 

cellular metabolic activity (resazurin reduction, MTT assay), quantification of cellular ATP content 

(CellTiter-Glo, Promega Corp.), and dye exclusion (Trypan Blue, Caisson Labs). The measurements were 

all quantified as percent viability compared to control cells that expressed mCherry only (mCherry-HEK). 

For the MTT and CellTiter-Glo assays, cells were grown in 96-well plates and induced with 1 µg/mL 

doxycycline and 5 mM sodium butyrate for 72 hours. They were then treated with reagents according the 

manufacturers’ protocols. Luminescence (CellTiter-Glo) and absorbance at 540 nm (MTT) was measured 

using a SpectraMax M5 spectrophotometer (Molecular Devices). For the Trypan Blue assay, the cells were 

first grown in 6-well plates and treated with 1 µg/mL doxycycline and 5 mM sodium butyrate for 72 hours. 

They were then trypsinized and resuspended in media before being stained 1:1 with Trypan Blue dye. Ten 

µL of the solution was loaded in a disposable hemocytometer (C-chip DHC S02, Incyto) and total cell count 

and blue-stained dead cells were quantified by bright field microscopy. Cellular morphology was imaged 

from mARG-HEK and mCherry-HEK cells after 3 days of expression with 1 µg/mL doxycycline and 5 

mM sodium butyrate. Phase images were acquired using a Zeiss Axio Observer with a 20x objective. For 

the co-culture cell competition assay, cells were counted and 2x105 cells from each type were mixed 

together and seeded in 6-well plates. One day after seeding, cells were induced with 1 µg/mL doxycycline 

and 5 mM sodium butyrate and the media was exchanged daily. At each time point, cells were trypsinized 

and sorted using the MACSQuant VYB Flow Cytometer (Miltenyi Biotech) to quantify relative cell ratios. 

At one day and three days post induction, cells were passaged to ensure continuous exponential growth.  
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5.5.6 In vitro ultrasound imaging 

To create phantoms for in vitro ultrasound imaging, wells were casted with molten 1% w/v agarose in 

PBS using a custom 3D-printed template. mARG-HEK and mCherry-HEK cells were allowed to express 

their transgenes using the specified inducer concentrations and expression duration. They were then 

trypsinized and counted via disposable hemocytometers in bright field microscopy. Next, cells were mixed 

at a 1:1 ratio with 50 °C agarose and loaded into the wells before solidification. The volume of each well 

was 60 µl and contained 6x106 cells. The phantoms were submerged in PBS, and ultrasound images were 

acquired using a Verasonics Vantage programmable ultrasound scanning system and L22-14v 128-element 

linear array transducer with a 0.10-mm pitch, an 8-mm elevation focus, a 1.5-mm elevation aperture, and a 

center frequency of 18.5 MHz with 67% −6 dB bandwidth (Verasonics, Kirkland, WA). Each frame was 

formed from 89 focused beam ray lines, each with a 40-element aperture and 8 mm focus. A 3-half-cycle 

transmit waveform at 17.9 MHz was applied to each active array element. For each ray line, the amplitude 

modulation (AM) code was implemented using one transmit with all elements in the active aperture 

followed by 2 transmits in which first the odd- and then the even-numbered elements are silenced (10). 

Each image captured a circular cross-section of a well with a 4-mm diameter and center positioned at a 

depth of 8 mm. In AM mode, the signal was acquired at 0.27 MPa (2V) for 10 frames and the acoustic 

pressure was increased to 1.57 MPa (10V) to collect 46 additional frames. Ultrasound images were 

constructed by subtracting the collapsing frame by frame 4 post-collapse.  

For Fig. 5.3, F-H, the high gas vesicle content of some samples resulted in acoustic shielding and a 

residual amount of gas vesicles remained intact after 46 frames of insonation at 1.57 MPa.  To fully collapse 

all the gas vesicles and collect the background signal, the acoustic pressure was increased to 3.2 MPa (25V), 

then a second set of images was acquired with 10 frames at 0.27 MPa and 46 frames at 1.57 MPa. Gas 

vesicle-specific signal was determined by subtracting the total ultrasound signal from the 46 frames 

acquired before 3.2 MPa ultrasound by the total ultrasound signal from the 46 frames post collapse. 

 

5.5.7 Cytotoxicity assay on cells exposed to ultrasound 

mARG-HEK and mCherry-HEK cells were cultured on custom made Mylar-bottom 24-well plates. 

Cells were cultured on fibronectin-coated Mylar films until they reached 80% confluency and induced for 

gas vesicle expression (1 µg/mL doxycycline and 5 mM sodium butyrate) for 3 days. The cells were then 

insonated from the bottom using an L22-14v 128-element linear array transducer (Verasonics). The 

transducer was mounted on a computer-controlled 3D translatable stage (Velmex). The bottom of the plates 

was acoustically coupled to the transducer with water and positioned 8 mm away from the transducer face. 

The cells were exposed to 3.2 MPa of pressure and the transducer was translated at a rate of 3.8 mm/s. The 
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plates were returned to the incubator for 24 hours. Cytotoxicity was then assayed using resazurin reduction 

(MTT) on cells exposed to ultrasound and compared to non-insonated control cells. 

 

5.5.8 3D cell culture and in vitro acoustic recovery after collapse  

mARG-HEK and mCherry-HEK cells were mixed in Matrigel (Corning) containing 1 µg/mL of 

doxycycline and 5 mM sodium butyrate. The cell-laden hydrogels were placed in a 1% w/v agarose base to 

prevent cell migration out of the hydrogel and to separate the cells away from the bottom of the plates 

during imaging. Cells were cultured for total of 6 days and imaged every 3 days from the top using an L22-

14v 128-element linear array transducer (Verasonics). The transducer was wiped with 70% ethanol, and 

imaging was conducted in a laminar flow biosafety cabinet to preserve sterility. After imaging, to ensure 

complete collapse of all gas vesicles in the cells, the entire hydrogel was exposed to 3.2 MPa ultrasound 

and the transducer was translated three times across the gel at a rate of 1-2 mm/s. The culture media was 

changed daily and contained 1 µg/mL of doxycycline and 5 mM sodium butyrate. 

 

5.5.9 In vivo expression of gas vesicles and ultrasound imaging 

All in vivo experiments were performed on NOD SCID mice (NOD.CD17 Prkdcscid/NCrCrl; Charles 

River), aged 10-15 weeks, under a protocol approved by the Institutional Animal Care and Use of 

Committee of the California Institute of Technology. mARG-HEK and mCherry-HEK cells were cultured 

in tetracycline-free media in T225 flasks. 1-1.2x107 cells were trypsinized and the 200 µl cell-pellet was 

mixed with 200 µl Matrigel (Corning) containing 5 mM sodium butyrate. The mixture of mARG-HEK cells 

and Matrigel was injected subcutaneously in the left flank of mice and the mixture of mCherry-HEK cells 

and Matrigel was injected subcutaneously in the right flank of mice. Starting from the day of tumor 

inoculation, mice we interperitoneally injected with 200 µl of saline containing 75 µg doxycycline and 25 

mg of sodium butyrate daily. The lower half of mice were depilated to allow for fluorescence imaging and 

ultrasound coupling. 

For ultrasound imaging, the mice were anesthetized with 2% isoflurane and maintained at 37˚C using 

a heating pad. Ultrasound imaging was carried out using the pulse sequence described above with an L22-

14v transducer attached to a custom-made manual translation stage. Using B-mode ultrasound imaging, the 

center of the tumor was positioned approximately 8 mm from the surface of the transducer, and gas vesicle-

specific ultrasound images were acquired. The transducer was translated laterally with 1 mm steps to collect 

ultrasound images of most of the tumor.  

High framerate ultrasound datasets for Doppler imaging were acquired with the same ultrasound 

transducer and scanner. The Doppler pulse sequence consisted of 11 tilted plane wave transmissions 

(varying from -10 to 10 degrees) at a 5.5 kHz framerate, leading to a 500 Hz framerate after coherent 
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compounding. Plane wave transmissions lasted 0.5 s (or 250 frames). A power Doppler image representing 

blood flow was computed from each ensemble of 250 frames using a singular value decomposition filter 

that separates clutter from red blood cell echoes31. 

To obtain tissue samples after the mice were euthanized, tumors were resected and placed in 3.7% 

formaldehyde solution (4˚C) for 24 hours and transferred to sterile 30% sucrose for an additional 24 hours. 

Tumors were embedded in OCT compound (Tissue-Tek), flash frozen and sectioned to 60 µm slices using 

a Cryostat (Leica CM3050). Sections were stained with TO-PRO3 nucleus stain, mounted (Fluoromount 

Aqueous Mounting Medium) and imaged using a Zeiss LSM 800 confocal microscope. 

  



 
 

 
 

122 

References 

1. Tsien, R. Y. Imagining imaging’s future. Nat Rev Mol Cell Biol Suppl, SS16-21 (2003). 

2. Piraner, D. I. et al. Going Deeper: Biomolecular Tools for Acoustic and Magnetic Imaging and Control 

of Cellular Function. Biochemistry 56, 5202–5209 (2017). 

3. Chu, J. et al. A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy 

and enhances bioluminescence imaging in vivo. Nature biotechnology 34, 760–767 (2016). 

4. Santos, E. B. et al. Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps 

luciferase. Nature Medicine 15, 338–344 (2009). 

5. Maresca, D. et al. Biomolecular Ultrasound and Sonogenetics. Annu. Rev. Chem. Biomol. Eng. (2018) 

doi:10.1146/annurev-chembioeng-060817-084034. 

6. Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nature Reviews Microbiology 10, 

705–715 (2012). 

7. Walsby, A. E. Gas vesicles. Microbiology and Molecular Biology Reviews 58, 94–144 (1994). 

8. Shapiro, M. G. et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nature 

Nanotechnology 9, 311–316 (2014). 

9. Lakshmanan, A. et al. Molecular Engineering of Acoustic Protein Nanostructures. ACS Nano 10, 7314–

7322 (2016). 

10. Maresca, D. et al. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules. Appl. Phys. Lett. 

110, 073704 (2017). 

11. Maresca, D., Sawyer, D. P., Renaud, G., Lee-Gosselin, A. & Shapiro, M. G. Nonlinear X-Wave 

Ultrasound Imaging of Acoustic Biomolecules. Phys. Rev. X 8, 041002 (2018). 

12. Lu, G. J., Farhadi, A., Mukherjee, A. & Shapiro, M. G. Proteins, air and water: reporter genes for 

ultrasound and magnetic resonance imaging. Current Opinion in Chemical Biology 45, 57–63 (2018). 

13. Bourdeau, R. W. et al. Acoustic reporter genes for noninvasive imaging of microorganisms in 

mammalian hosts. Nature 553, 86–90 (2018). 



 
 

 
 

123 

14. Davis, M. M., Tato, C. M. & Furman, D. Systems immunology: just getting started. Nature immunology 

18, 725 (2017). 

15. Maguire, Y. G. et al. Physical principles for scalable neural recording. Frontiers in computational 

neuroscience 7, 137 (2013). 

16. Schroeder, T. Imaging stem-cell-driven regeneration in mammals. Nature 453, 345–351 (2008). 

17. Gradinaru, V. et al. Molecular and Cellular Approaches for Diversifying and Extending Optogenetics. 

Cell 141, 154–165 (2010). 

18. Shieh, Y.-W. et al. Operon structure and cotranslational subunit association direct protein assembly in 

bacteria. Science 350, 678–680 (2015). 

19. Natan, E., Wells, J. N., Teichmann, S. A. & Marsh, J. A. Regulation, evolution and consequences of 

cotranslational protein complex assembly. Current Opinion in Structural Biology 42, 90–97 (2017). 

20. Close, D. M. et al. Autonomous Bioluminescent Expression of the Bacterial Luciferase Gene Cassette 

(lux) in a Mammalian Cell Line. PLOS ONE 5, e12441 (2010). 

21. Farhadi, A. et al. Recombinantly expressed gas vesicles as nanoscale contrast agents for ultrasound and 

hyperpolarized MRI. AIChE Journal 0,. 

22. Szymczak, A. L. & Vignali, D. A. Development of 2A peptide-based strategies in the design of 

multicistronic vectors. Expert Opinion on Biological Therapy 5, 627–638 (2005). 

23. Ding, S. et al. Efficient Transposition of the piggyBac (PB) Transposon in Mammalian Cells and Mice. 

Cell 122, 473–483 (2005). 

24. Wilson, M. H., Coates, C. J. & George, A. L. PiggyBac Transposon-mediated Gene Transfer in Human 

Cells. Molecular Therapy 15, 139–145 (2007). 

25. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 

335–338 (2000). 

26. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia 

coli. Nature 403, 339–342 (2000). 



 
 

 
 

124 

27. Gaidukov, L. et al. A multi-landing pad DNA integration platform for mammalian cell engineering. 

Nucleic Acids Res 46, 4072–4086 (2018). 

28. Jusiak, B. et al. Comparison of Integrases Identifies Bxb1-GA Mutant as the Most Efficient Site-

Specific Integrase System in Mammalian Cells. ACS Synth. Biol. 8, 16–24 (2019). 

29. Neville, J. J., Orlando, J., Mann, K., McCloskey, B. & Antoniou, M. N. Ubiquitous Chromatin-opening 

Elements (UCOEs): Applications in biomanufacturing and gene therapy. Biotechnology Advances 35, 

557–564 (2017). 

30. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 

676–682 (2012). 

31. Demené, C. et al. Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases 

Doppler and fUltrasound Sensitivity. IEEE Transactions on Medical Imaging 34, 2271–2285 (2015). 

 

 

 

  



 
 

 
 

125 

5.6 Supplementary Material 

 
Supplementary Figure 5.1 – GvpR and GvpT genes in the B. megaterium gene cluster are not necessary for gas 
vesicle formation. Schematic of bacterial gas vesicle gene clusters used for heterologous expression of gas vesicles 
in E. coli (top). Representative whole cell TEM images of E. coli Rosetta 2(DE3)pLysS cells after expression of gas 
vesicles genes for 22 hours (bottom). Scale bars represent 500 nm. Expression performed as in Farhadi et al. (21) and 
TEM imaging as in Bourdeau et al. (13). 
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Supplementary Figure 5.2 – Assay for tolerability of P2A peptide additions. Illustration of gas vesicle gene cluster 
with N- or C-terminal modifications of each gene to test tolerability of P2A peptides, tested one-by-one in E. coli.  
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Supplementary Figure 5.3 – Identification of bottleneck genes on the polycistronic gas vesicle gene plasmid. (A) 
Schematic of the experiment. To test the efficiency with which gas vesicles could be formed when a given gene was 
supplied only on the polycistronic plasmid, and thereby identify “bottleneck” genes, cells were co-transfected with a 
monocistronic plasmid containing GvpB, 7 other monocistronic plasmids including all but the gene being assayed, 
and the polycistronic plasmid. (B) Qualitative estimate of the relative number of gas vesicles produced when each 
indicated gene was supplied solely by the polycistronic plasmid. (C) Representative TEM images of gas vesicles in 
the lysate of HEK293T cells for all 8 assays. Scale bars represent 500 nm. These results suggest that GvpN, GvpS and 
GvpU supplied in either monocistronic or polycistronic form supported abundant gas vesicle assembly. However, the 
production of gas vesicles was significantly reduced when GvpJ, GvpF, GvpG, GvpL or GvpK was supplied from the 
polycistronic vector. We therefore suspected that these genes represented a bottleneck in gas vesicle formation. 
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Supplementary Figure 5.4 – Fluorescence activated cell sorting of HEK293-tetON and CHO-tetON cells 
transfected with integrating mARG constructs. (A) Diagram of the integrating constructs used to generate 
polyclonal cell lines. (B) FACS of mARG-expressing HEK293-tetON cells. Colored data indicate cells sorted for each 
group and gray dots are unsorted population. (C) Illustration of the four polyclonal subtypes sorted to study the impact 
of polycistron stoichiometry on gas vesicle expression. Red bars indicate mCherry expression; cyan bars indicate 
EmGFP and eBFP2 expression. (D) Approximate gas vesicle yield from polyclonal cells in each subtype. (E) FACS 
of mARG-expressing CHO-tetON cells. Colored data indicate cells sorted in subtype 1 and gray dots are unsorted 
cells. (F) Representative TEM image of buoyancy-enriched lysate from CHO-tetON cells sorted as indicated in (E). 
Scale bar represents 500 nm. (G) Approximate gas vesicle yield for the sorted mARG-expressing CHO-tetON cells.   
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Supplementary Figure 5.5 – Genetic construct and sorting of mCherry-HEK cell line. (A) Genetic construct for 
stable genomic integration of mCherry containing a TRE3G promoter upstream and SV40 polyadenylation element 
downstream of mCherry. (B) FACS of mCherry cells, with selected cells indicated with blue dots. 
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Supplementary Figure 5.6 – Co-culture of reporter gene expressing cells with HEK293T cells. Fraction of 
mARG-HEK cells in co-culture with HEK293T cells (blue) or mARG-mCherry cells in co-culture with HEK293T 
cells (red) seeded in equal numbers over 6 days of gene expression (n=3 biological replicates, each from 4 technical 
replicates, with darker dots showing the mean). 
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Supplementary Figure 5.7 – Fluorescence measurements of gene expression as a function of time and inducer 
concentration in mARG-HEK cells. (A) mCherry fluorescence of mARG-HEK cells induced with 1 µg/mL 
doxycycline and 5 mM sodium butyrate at the indicated times after induction (n=4, with the darker dots showing the 
mean). (B) mCherry fluorescence of mARG-HEK cells with the indicated inducer concentration and 5 mM sodium 
butyrate after 72 hours of induction (n=7, with the darker dots showing the mean).  
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Supplementary Figure 5.8 – Dependence of ultrasound contrast on gas vesicle density. Relative ultrasound 
contrast produced by mARG-HEK cells in hydrogel as a function of the estimated average number of gas vesicles 
(GV) per nanoliter present after a monoculture of mARG-HEK cells was induced with different concentrations of 
doxycycline, or after  fully-induced mARG-HEK cells were mixed with mCherry-HEK cells at different ratios. Blue 
symbols represent results from mARG-HEK cells induced with 1 µg/mL doxycycline for 3 days (producing on average 
45 gas vesicles per cell) mixed with mCherry-HEK cells (expressing no gas vesicles) in varying proportions, as 
presented in Fig. 5.3H. Red symbols represent results from mARG-HEK cells induced with 0.01, 0.05, 0.1 and 1 
µg/mL doxycycline for 3 days; expressing on average 0.01 ± 0.004, 1.4 ± 0.4, 3.5 ± 0.3, 45 ± 5.1 (mean ± SEM) gas 
vesicles per cell, respectively, as quantified by TEM. All cells were cultured with 5 mM sodium butyrate during 
expression. The number of gas vesicles was quantified after 72 hours of induced expression, as counted in lysates 
using TEM. Ultrasound contrast was normalized to the maximum in each type of titration. Dark symbols show the 
mean of ultrasound contrast for 4 replicates. Error bars represent SEM of 4 biological replicates for 0.01, 0.05, 0.1 
µg/mL induction and n=3 biological replicates (each from two technical replicates) for 1 µg/mL samples.  
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Supplementary Figure 5.9 – Additional examples of in vivo ultrasound images of adjacent planes in mARG-
HEK tumors acquired at 1 mm intervals. For each imaging slice the difference heatmap of nonlinear signal between 
frame 1 and frame 4 is overlaid on grayscale anatomical scale. Minimum and maximum values of color bar are 4000 
and 40000, respectively. Scale bars are 1 mm. 
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Supplementary Figure 5.10 – Representative Doppler ultrasound images of tumors containing mARG-HEK 
cells. Doppler ultrasound images were acquired using 250 frames of ultrafast planewaves at 25V and used to 
reconstruct vascular maps plotted as normalized power doppler signal overlaid on anatomical images in grayscale. 
Scale bars represent 1 mm. 
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Supplementary Figure 5.11 – Representative histology sections of tumors containing mARG-HEK cells. For 
each mouse, two neighboring sections are presented. Blue color indicates cell nuclear staining using TO-PRO-3, green 
color represents GFP fluorescence and red color represents mCherry fluorescence. All scale bars are 1 mm. 
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Supplementary Figure 5.12 – Biological replicates of in vivo ultrasound imaging of gene expression. (A) The left 
column shows ultrasound images of tumors containing mARG-HEK cells after 4 days of doxycycline administration. 
The right column shows ultrasound images of tumors containing mCherry-HEK cells after 4 days of doxycycline 
administration. After imaging the tumors were insonated with 3.2 MPa of ultrasound to collapse the expressed gas 
vesicles. (B) The left column shows ultrasound images of tumors containing mARG-HEK cells re-expressing gas 
vesicles after an additional 4 days of doxycycline administration. The right column shows ultrasound images of tumors 
containing mCherry-HEK cells after an additional 4 days of doxycycline administration. Difference heatmap of 
nonlinear signal between frame 1 and frame 4 is overlaid on a grayscale anatomical ultrasound image. Min and max 
on color bar represent 4000 and 40000, respectively. Scale bars represent 1 mm. 
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Supplementary Figure 5.13 – Consolidated mARG construct comprising 2 gene cassettes enables mammalian 
gas vesicle expression. (A) Schematic of two gene cassettes integrated to the genome of HEK293-tetON cells. In the 
top construct GvpB is separated from GvpN by an internal ribosome entry sequence (shown in purple). (B) 
Representative TEM image of GVs in the lysate of HEK293-tetON cells transfected with the constructs in (A) and 
induced with 1 µg/mL doxycycline.  
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Gene GVs after N-term 
addition? GVs after C-term addition? 

GvpB -- No 
GvpR Yes Yes 
GvpN Yes Yes 
GvpF Yes Yes 
GvpG Yes Yes 
GvpL Yes Yes 
GvpS Yes Yes 
GvpK Yes Yes 
GvpJ Yes Yes 
GvpT Yes Yes 
GvpU Yes Yes 

 

Supplementary Table 5.1 – Tolerability of P2A peptide additions to B. megaterium gas vesicle genes. Each gene 
of the B. megaterium gene cluster was modified with an N-terminal proline after the start codon or with a linker and 
P2A peptide at the C-terminus, resulting in a total of 21 unique GV gene clusters as illustrated in Supplementary Fig. 
5.2. E. coli were transformed with each plasmid and gas vesicles were induced for expression for a total of 22 hours 
and assayed for the presence of gas vesicles using TEM. The table indicates whether gas vesicles were observed by 
TEM. Expression and TEM imaging performed as in Farhadi et al. (21). 
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Collected 
from FACS 

Formed 
colonies 

Triple 
positive 

fluorescence 

Formed 
GVs (TEM) 

>1 
GVs/cell 

576 30 21 12 6 
 

Supplementary Table 5.2 – Selection funnel for monoclonal mARG-HEK cells. The numbers indicate the number 
of cells or cell lines selected at each stage. 
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C h a p t e r  6  

CONCLUSIONS AND FUTURE DIRECTIONS 

This thesis describes some of the initial work on the design of pulse sequences and algorithms for enhancing 

the capabilities of noninvasive ultrasound imaging of gas vesicles and acoustic reporter genes. Chapter 2 

introduced xAM, a pulse sequence that achieves high specificity imaging of harmonic gas vesicles by using 

the transient interaction of axisymmetric, cross-propagating plane waves to eliminate artifacts caused by 

nonlinear wave propagation. Chapter 3 presented an application of xAM to the visualization of the dynamic 

biomolecular process of proteolytic enzyme activity deep inside living animals. Chapter 4 introduced 

BURST, an imaging paradigm that improves the sensitivity of gas vesicle imaging by a factor of at least 

1000 and enables the detection of single ARG-expressing cells as well as single gas vesicles in liquid 

suspension by inducing and capturing transient cavitation events following gas vesicle collapse and 

unmixing their temporal dynamics from background signal. Chapter 5 described the application of an early 

implementation of BURST to visualize the dynamics of expression of the first mammalian acoustic reporter 

genes and to image vascularization patterns in tumors expressing mammalian acoustic reporter genes. 

Currently, out of all known methods for ultrasound imaging of gas vesicles, xAM and BURST provide the 

best specificity and sensitivity, two metrics fundamental to the quality of all forms of measurement. As 

such, the number of applications of these methods can be expected to increase in proportion to the number 

of research directions utilizing gas vesicles and acoustic reporter genes. 

Nevertheless, a number of limitations remain for both xAM and BURST, some of which can be 

obviated with improvements in hardware, others of which may be overcome with advances in gas vesicle 

and acoustic reporter gene engineering, and still others that will require entirely novel imaging approaches 

to surpass. Several of these limitations, along with possible future directions for addressing them, are 

discussed below. 

 

6.1 Future Directions for xAM  

The most pressing limitation of xAM is the low framerate of live imaging in its current implementation, 

which is typically 1 to 5 Hz. While this framerate is sufficient for stationary targets, it makes in vivo imaging 

difficult in the presence of tissue motion. This limitation arises because xAM image lines are not formed 

along the propagation direction of the ultrasonic waves, but along the line at which the two cross-

propagating plane-waves intersect. This makes xAM incompatible with the proprietary pixel-oriented 
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software beamforming algorithm implemented on Verasonics ultrasound systems1 that normally enables 

reconstruction at high frame rates. Without the bottleneck of software beamforming, xAM could in 

principle be used to acquire a 10-mm-deep image with 64 ray lines at 400 Hz. Consequently, addressing 

this limitation is largely an engineering challenge, albeit one that requires some effort at algorithmic 

optimization in a compiled programming language and knowledge of parallel computing.  

Increasing the framerate of xAM by two orders of magnitude in this way would make in vivo 

imaging more robust and also create opportunities for experimenting with in-software compounding 

methods to improve CNR and artifact cancellation. One interesting idea would be to use non-axisymmetric 

plane waves that cross-propagate at different angles and combine the resulting echoes similar to 

compounding with tilted plane waves. Of course, this would necessitate a new beamforming strategy 

because the ray lines would no longer be perpendicular to the axis of the transducer array. 

Once the beamforming bottleneck is addressed, the framerate of xAM will be limited by the fact 

that it forms images on the basis of ray lines from separates sets of transmits. To match the frame rates used 

in ultrafast doppler2 and super-localization3 applications, the xAM framerate would need to be improved 

by a further two orders of magnitude. One way to do this would be to use a planar ultrasound array and 

transmit an X-wave on each row of the array simultaneously.  

Another limitation of xAM is its non-adjustable depth of field for a given aperture and cross-

propagation angle, given by the following equation, 
𝐷
2
cot 𝜃 

where 𝐷 is the aperture size. At the empirically optimal angle of 19.5° and a 6.5 mm aperture, this translates 

to a maximum depth of 9.1 mm, though intensity of the beam begins to fade around 7 mm. This is 50% to 

90% of the maximum attenuation-limited depth for in vivo imaging with 18 MHz ultrasound, which is 

typically 10 to 15 mm. Because both probe element spacing and the attenuation-limited depth increase with 

ultrasound frequency, the portion of the potential depth of field compromised by this limitation should be 

roughly constant for different probes. The only way to increase the maximum depth for a given angle is to 

increase the programmed aperture, which reduces the lateral field of view. To circumvent this trade-off, a 

linear array with a larger number of elements could be used. 

 

6.3 Future Directions for BURST 

A notable limitation of BURST is its sensitivity to motion of the imaging target, which required a modified 

pulse sequence and additional post-processing steps to remove motion artifacts for in vivo experiments, as 

described in Section 4.5.6. While the BURST frames are acquired at a reasonable rate of 111 Hz, the pixel-
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based template unmixing algorithm assumes that no tissue displacement larger than 300 µm occurs over 

the full series of frames, which requires a much higher framerate than simply matching the Nyquist 

frequency of tissue motion. One strategy to address this would be to apply tissue motion corrections 

methods developed for ultrasound super-localization, which also relies on a stack of frames and is 

susceptible to motion artifacts4,5. Another interesting approach would be to use multi-pixel signal templates 

capable of unmixing signals based on spatial characteristics, allowing templates to correspond to patterns 

of tissue motion as well other spurious signal sources such as bubbles. However, this would increase 

complexity and would likely require learning templates from in vivo data, which may not be available in 

sufficient quantities to prevent overfitting. Alternatively, the framerate could be increased by two orders of 

magnitude by applying the sequence of voltages to each ray line at a time, rather than transmitting every 

ray line at each voltage value. Of course, this would also increase the time between ray line acquisitions by 

two orders of magnitude, which could lead to visible discontinuities in BURST signal between ray lines, 

but the threshold for tolerable motion levels would be much higher for this effect, and it would likely be 

preferable to the false positive BURST signal caused by motion artifacts in the original sequence. However, 

this method could reduce total BURST signal by collapsing gas vesicles adjacent to the current ray line and 

allowing the liberated nanobubbles to dissolve before being insonified. 

 Another potential limitation of BURST could be specific frequency requirements, though more 

experiments are needed to determine the effects of frequency on BURST signal. Using our L10-4v probe, 

we found that BURST was significantly more effective at transmit waveform frequencies in the range of 5 

MHz to 7 MHz (unpublished data), but this may simply be due to the probe’s center frequency of 6 MHz 

as these experiments did not control for pressure. More research is needed to determine both the effect of 

transmitted waveform frequency on BURST signal intensity as well as the full frequency spectrum of 

received BURST signal. 

A third limitation of BURST is its narrow axial field of view, which is restricted to 2 mm, less than 

10% of the available field of view, due to the need for highly focused beams to achieve the required pressure 

levels. The axial field of view is also limited to half the width of the probe due to the need for a large 

aperture to produced sharply focused beams, though this is comparable to the lateral field of view of xAM. 

All three of these limitations could be overcome by developing a custom transducer capable of 

achieving peak positive pressures in the range of 3.4 MPa to 4.3 MPa throughout the image plane using 

only plane waves. This would allow each BURST frame to be acquired in a single transmit, obviating the 

need for focused beams and allowing for ultrafast frame rates. This could also allow the receive function to 

be performed with a separate probe, whose specifications would no longer be constrained by the frequency 

and peak pressure requirements of the transmit waveform. Moreover, 100% of the receiving probe’s axial 

and lateral fields of view could be utilized. 
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Of course, the primary limitation of BURST is the irreversible collapse of gas vesicles required to 

generate the strong signal responsible for this method’s dramatically increased sensitivity. This limits the 

potential of BURST to image targets over time. Unfortunately, this is a fundamental limitation of BURST, 

which generates signal through the transient cavitation of nanobubbles liberated from collapsed gas 

vesicles. However, it may still be possible to apply BURST to enable high sensitivity in multiplexed gas 

vesicle imaging6 and in the acoustic biosensor imaging described in Chapter 3 through the development of 

gas vesicles with higher collapse pressure. As shown in Supplementary Figure 4.1, BURST+ requires a 

peak positive pressure of at least 3.4 MPa to generate detectable collapse signal. Because the gas vesicles 

used in that experiment have an acoustic collapse midpoint of 2.6 MPa7, this result suggests that, at least at 

a frequency of 6 MHz, a peak positive pressure greater than 3.4 MPa may be required to initiate the transient 

cavitation events responsible for strong BURST+ signal and that the gas vesicle collapse threshold may not 

be the limiting factor.  

If this is the case, new gas vesicle variants with acoustic collapse thresholds above 3.4 MPa could 

enable BURST to be used for ultrasensitive multiplexed collapse imaging. Though no gas vesicle variants 

with acoustic collapse thresholds in this range are currently known, the wide spread of collapse thresholds 

for currently-characterized gas vesicles over an order of magnitude8 suggests that such variants could be 

produced through directed evolution. Noting that a given reporter gene variant typically produces gas 

vesicles with a distribution of sizes and collapse pressures, variants with narrow distributions would be 

advantageous for multiplexed imaging. 

A more ambitious direction would be to engineer or evolve gas vesicles whose high collapse 

threshold is conditional on the binding of GvpC. In Ana gas vesicles, removal of GvpC reduces the acoustic 

collapse midpoint by 300 kPa, which, considering the distribution of collapse thresholds for Ana gas 

vesicles with intact GvpC, is a shift of two standard deviations6. The prospects for developing a high-

threshold variant with this property are less certain because the gas vesicles with the highest known collapse 

thresholds are small in size and do not bind with GvpC, but there is no reason to believe evolving such a 

variant would not be possible. If such a high-threshold, GvpC-strengthened gas vesicle were developed and 

engineered to have biomolecular sensing capabilities similar to those described in Chapter 3, it could enable 

ultrasensitive imaging of not only gene expression, but other biomolecular processes as well. 

Finally, while BURST will always be a destructive imaging method, it may be possible to design a 

novel, non-destructive pulse sequence that still improves sensitivity by multiple orders of magnitude, as 

will be explored in the final section below. 

 

6.3 Challenges and Opportunities for Novel Imaging Methods 
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As described above, there are several opportunities for extending the capabilities of xAM and BURST, but 

some limitations will require novel imaging methods to overcome. The destructive nature of BURST is one 

such limitation, making the development of a non-destructive method with similar sensitivity a high-impact 

objective. BURST is capable of detecting single gas vesicles, a surprising capability made possible by 

transient cavitation of nanobubbles liberated from collapsed gas vesicles. In contrast, echoes from the 

scattering of a sub-collapse-threshold acoustic wave on a single gas vesicle would be below the noise floor 

of an ultrasound probe.  

One method often used to detect very weak signals buried in noise is lock-in detection9, in which 

the amplitude of a sinusoidal signal confounded by noise is measured by comparison to a reference signal 

with the same phase and frequency. This process efficiently cancels noise by integrating only those 

components of the input signal with the same phase as the reference signal, such that the measurement SNR 

increases in direct proportion to the integration time. For comparison, SNR increases in proportion to the 

square root of the integration time for detection methods that are not phase-sensitive. However, lock-in 

detection is rarely used in contrast-enhanced ultrasound imaging because clutter signal from tissue, which 

does have the same phase as contrast agent signal, is a much stronger source of confounding than noise, 

even in AM and other contrast imaging modes. 

Dual-frequency transducers have recently been used to generate echoes from contrast agents at low 

frequencies while recording their nonlinear echoes at frequencies several times higher10. Nonlinear contrast 

agent signal remains detectable while tissue signal is strongly attenuated at the higher-order harmonics. In 

a study with microbubbles, a CTR of 25.5 was achieved by transmitting at 1.5 MHz center frequency with 

a peak acoustic pressure of 1600 kPa and receiving at 10 MHz center frequency11. Because tissue 

nonlinearity increases with pressure, we could expect to achieve significantly higher CTR by using 350 kPa 

to induce buckling in stripped Ana gas vesicles. Because dual-frequency imaging experiments have only 

been performed with receive-to-transmit center frequency ratios at which contrast agent signal remains 

above the noise floor, it may be possible to reduce tissue signal further relative to contrast agent signal by 

using even higher center frequency ratios. Combining dual-frequency transducers with gas vesicles and 

lock-in detection could therefore be a promising direction for achieving non-destructive ultrasensitive 

imaging, especially in areas of the body with low scattering, such as the brain and blood vessels. 

Ultimately, as innovations in imaging methods are iteratively developed alongside innovations in 

gas vesicle and acoustic reporter gene engineering, I anticipate that many of the remaining barriers to robust 

noninvasive imaging of cellular function will buckle and collapse. 
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