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ABSTRACT

Controlling bipedal robotic walking is a challenging task. The dynamics is hy-
brid, nonlinear, high-dimensional, and typically underactuated. Complex physical
constraints have to be satisfied in the walking generation. The stability in terms of
not-falling is also hard to be encoded in thewalking synthesis. Canonical approaches
for enabling robotic walking typically rely on large-scale trajectory optimizations for
generating optimal periodic behaviors on the full-dimensional model of the system;
then the stabilities of the controlled behaviors are analyzed through the numerically
derived Poincaré maps. This full-dimensional periodic behavior based synthesis,
despite being theoretically rigorous, suffers from several disadvantages. The tra-
jectory optimization problem is computationally challenging to solve. Non-trivial
expert-tuning is required on the cost, constraints, and initial conditions to avoid
infeasibilities and local optimality. It is cumbersome for realizing non-periodical
behaviors, and the synthesized walking can be sensitive to model uncertainties.

In this thesis, we propose an alternative approach of walking synthesis that is based
on reduced order modeling and dynamics approximation. We formulate a discrete
step-to-step (S2S) dynamics of walking, where the step size is treated as the control
input to stabilize the pre-impact horizontal center of mass (COM) state of the robot.
Stepping planning thus is converted into a feedback control problem. To effectively
and efficiently solve this feedback stepping planning problem, an underactuated
Hybrid Linear Inverted Pendulum (H-LIP) model is proposed to approximate the
dynamics of underactuated bipedal walking; the linear S2S dynamics of the H-LIP
then approximates the robot S2S dynamics. The H-LIP based stepping controller
is hence utilized to plan the desired step sizes on the robot to control its pre-
impact horizontal COM state. Stable walking behaviors are consequently generating
by realizing the desired step size in the output construction and stabilizing the
output via optimization-based controllers. We evaluate this approach successfully
on several bipedal walking systems with an increase in the system complexity:
a planar five-linkage walker AMBER, an actuated version of the Spring Loaded
Inverted Pendulum (aSLIP) in both 2D and 3D, and finally the 3D underactuated
robot Cassie. The generated dynamic walking behaviors on these systems are
shown to be highly versatile and robust. Furthermore, we show that this approach
can be effectively extended to realizing more complex walking tasks such as global
trajectory tracking and walking on rough terrain.
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�g (@) Actuation matrix in the EOM.
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� (@) Gravitational vector in the EOM.

ℎ(@) Holonomic constraints.

� (@) Jacobain matrix.

! Leg length.

" (@) Mass matrix in the EOM.
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dynamics. y is added to denote the state in H − I plane for 3D
walking.
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C h a p t e r 1

INTRODUCTION

Bipedal robots have existed in the long history of robotics research. The development
of bipedal robots is spread over multiple disciplines such as mechanical, electrical,
and computer engineering. The overall picture of the research in bipedal robots can
be learned in several books such as [47, 101, 120]. The scope of this thesis is on
the model-based motion synthesis for bipedal robotic walking. Thus, in this chapter
of the introduction, we will briefly introduce bipedal robots with an emphasis on
the characteristics that are important for motion synthesis. Then, we will briefly
describe the state-of-the-art approaches for solving the motion synthesis problem
on bipedal robots. Last, we outline the structure of the following chapters.

1.1 Bipedal Robots
Bipedal robots are built to move under the alternation of two feet that make
contact with the ground. The feet are extended by internal actuation via link-
ages/mechanisms, which are called legs. The two legs are connected by a pelvis
or an upper body that may contain a pair of arms. The most commonly seen
bipedal robots are humanoids, which are designed to mimic the morphology of a
human. Other types of bipedal robots can be simply designed to have two legs.
Fig. 1.1 shows some representative examples of the bipedal robots up to date. Their
morphology in the design is very diverse.

The robots are designed to move in a general 3D environment. For simplification,
some of the early studies had been focused on planarized robots that are constrained
on a circular boom so that it moves approximately in a plane. For instance, the
two-legged hopper in MIT legged lab [101], MABEL [51], and AMBER [148]
are planar (2D) bipedal robots with a fewer number of degrees of freedom (DoFs)
compared to 3D bipedal robots. The control approaches that are developed on 2D
robots can be extended to general 3D robots. The development of the 2D robots
sometimes started at an early stage of design evaluation to facilitate the design of
3D robots.

Another important characteristic is on the foot design. Both the point feet and planar
feet are common. The planar feet can be mostly seen on humanoid robots such as
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Raibert Hopper MABEL Cassie

Schaft AtlasASIMO Valkyrie

AMBER

DURUS

ATRIAS

Figure 1.1: Representative examples of bipedal robots.

ASIMO [111], DURUS [104], and ATLAS [49]. Although in some literature [50]
humanoids are typically referred to as fully-actuated robots, they are underactuated
when the feet are not flatly contacting the ground. For instance, the robot ATLAS is
underactuated when it is performing a backflip; the centroidal angular momentum
[93] in the flight phase conserves, and the changing rate of the angular momentum
is not affected by the internal actuation of the robot. For walking with flat feet (i.e.
the feet remain flatly on the contact surface), theoretically speaking, the robots are
fully-actuated. However, the robot cannot be effectively controlled like amanipulator
since the reaction moment and force at the ground contact are bounded. In other
words, controlling the ankle angle to follow certain arbitrary trajectories can break
the contact between the foot surface and the ground, which makes the robot no
longer a pinned manipulator.

The point (trivial) feet can be seen on the robots such asAMBERandMABEL,which
have point contact with the ground during walking and thus have underactuation
at contact. The creation of point feet may be confusing as underactuation always
challenges the control synthesis. The consideration of using point-foot can be on
several folds. Without physical feet, the robot no longer needs to have actuation
located at the ankle since there is no ankle, which can significantly decrease the leg
inertia and thus easily generate dynamic behaviors. The point-foot nature can also
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simplify the contact descriptions for walking on rough and uncertain terrain. Last,
realizing walking does not require ankle actuation from the perspective of dynamic
balancing. It is also important to note that some 3D robots such as ATRIAS have
passive nontrivial feet that are used to create contact yaw moment to prevent passive
tuning. Robots with point feet cannot stand statically. Thus, some robots such as
Cassie have partially actuated feet so that standing behavior can be realized.

Besides the obvious differences in the morphology and structure of the bipedal
robots, the components of the internal actuation are also important but beyond the
scope of this thesis. By and large, the bipedal robots are electricity-powered, and
the individual actuation is realized by an electrical motor with a gear reduction
mechanism. A few exceptions are the hydraulic or pneumatic actuated robots such
Raibert hopper [101], Petman and Atlas [2] by Boston Dynamics. With design
optimization and advanced manufacturing, Atlas has a significant improvement
in its power density, range of motion, and inertia distribution compared to the
initial version that was deployed in the 2015 DARPA robotics challenge. As in
the year 2021, Atlas has been able to perform jumping, backflip, and versatile
dancing maneuvers. This level of agility greatly results from the powerful hydraulic
actuation. A simple analogy is that a control problem becomes hard as the control
input becomes bounded. For electrically actuated robots, the available torques at
individual joints are more limited compared to hydraulic actuators. With these being
said, the motion synthesis problem remains the same mathematically regardless of
the type of actuation on the robot.

Scope of this thesis: The research in bipedal robots is very broad. In this thesis,
we will mainly focus on the motion synthesis problem for realizing walking on
underactuated bipedal robots. The motion synthesis in canonical terminologies
includes motion/trajectory planning on the internal DoFs and feedback control for
trajectory tracking. Unlike the planning and control problems on robotic arms or
vehicles, the planning on bipedal robotics has to be cognitive about the problem
of balancing. In other words, assuming the feedback controller can provide good
tracking performance, the motion planning should make sure that the robot does
not fall over. This thesis develops an approximation-based stepping stabilization to
solve the step planning problem to achieve desired walking behaviors. Moreover,
the proposed approach is realized on various walking systems and extended to
challenging walking tasks such as global trajectory tracking and walking on rough
terrains.
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1.2 State-of-the-art Approaches
In this section, we will briefly present some of the state-of-the-art approaches to
motion synthesis of bipedal robots. The literature on this topic is very rich, and the
development of individual approaches is either mathematically or heuristically deep.
Here, we summarize the commonly seen approaches in the following categories.
However, it is important to note that lots of approaches sit in the middle or are
combinations of some. In-depth explanations should be found in the references
themselves.

Zero Moment Point
The Zero Moment Point (ZMP) [64] based approaches [63, 111, 124] develops
motion synthesis for humanoid robots with the Linear Inverted Pendulum (LIP)
model for planning the desired center of mass (COM) dynamics so that the ZMP
remains inside the support convex region of the contact foot or feet in case of double
support. The desired COM dynamics are typically realized by inverse kinematics;
later developments in [35, 36] apply inverse dynamics based optimization controllers
for realization. The condition that the ZMP remains inside the support region is
to prevent the foot rotation on the ground so that the humanoid is effectively like a
fully actuated robotic manipulation. In other words, the ZMP based approach cares
about "foot stability" [64, 127, 145]. There are other conditions in the motion to
make sure the ZMP dynamics of the robot is close to the LIP model: the vertical
COM position is typically constrained parallel to the ground surface with a constant
distance, and the swing foot velocity at impact is designed to be small.

These conditions simplify the motion synthesis problem as the ZMP-LIP model
has a linear dynamics, and thus continuous planning can be realized online via
Model Predictive Control [29, 136]. The realized walking behaviors however are
often times very conservative due to the enforced conditions of the vertical COM
and swing foot dynamics. The later development of the ZMP-based approach has
heavily focused on the mitigation of the conservative behaviors by the integration
of angular momentum based control [65, 89, 114, 122, 136] and foot-placement
integration [37]. Despite being widely developed and applied, by and large, the
ZMP-based approaches lack a strong mathematical description of the condition that
renders the desired walking behaviors on the complex bipedal robots. Additionally,
it can not be rigorously applied on underactuated bipedal robots with point feet
where the COP and the horizontal COM cannot be continuously controlled.
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Reduced Order Models
The LIPmodel is a reduced order model (ROM) [41, 84]. One important application
is to use the passive LIP (no ankle actuation) to calculate the capture point [70, 73,
99, 100, 121] for humanoid robots. The ankle actuation is still required in this
framework so that the horizontal COM state of the robot behaves close to that of the
LIP in the continuous domain. There are other ROMs developed in the literature to
understand and realize locomotion behaviors on high dimensional bipedal robots.
The ROM-based approaches attempt to either provide a template dynamics behavior
[76, 140] for dynamics embedding or an approximation to the robot dynamics
[98, 138] for motion synthesis. The original intention behind using ROM in the
literature can be obscure but typically falls into these two categories or inherently is
a combination of the two.

One popular ROM is the spring-loaded inverted pendulum (SLIP) [17, 39, 95,
101, 149] model and its variants. In the pioneering studies in [101], the SLIP
was proposed and used to approximate and control the dynamics of several legged
robots that could hop and run. It almost simultaneously raised attention in the
bio-mechanics research community as it was found to be able to approximate the
dynamic walking and running behaviors of animals and humans [44, 116]. The
latter research on the SLIP focused on designing and building robots [4, 6, 58] that
are like the SLIP, controlling the SLIP and its variants [94, 97, 112, 117, 126], and
dynamics embedding of the SLIP (with its controllers) on bipedal robots [42, 76,
106, 118, 131].

The ROM-based approaches are also widely applied as one of the main streams
for realizing dynamic behaviors on legged robots. One main evident promise of
the ROM is to facilitate fast online planning or reactive/feedback planning on the
low-dimensional dynamics model, which can be used on the high dimensional
robots. Additionally, the ROMs can provide fundamental understandings about
the treatment of underactuation. The thesis builds upon the ideas of ROMs for
dynamics approximation. In the latter chapters, details about the principles of the
approximation will be revealed in a more rigorous fashion.

Hybrid Zero Dynamics
The hybrid zero dynamics (HZD) [9, 50, 134] based approach builds on a hybrid
dynamical model of robotic walking. The hybrid model is a general mathematical
description of robotic locomotion behaviors. This thesis also uses this description;
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see more details in the Chapter 2. The HZD approach seeks a stable periodic
solution to this hybrid dynamicmodel of the behavior, e.g., walking, and the periodic
solution then denotes a periodic motion on the robot. The early development of the
HZD [134] focuses on underactuated planar walking, for which a monotonically
increasing phase variable (e.g. the stance leg angle) is defined as the internal clock.
The desired trajectories of the controllable states (outputs) are parameterized based
on the phase variable. The parameters of the desired trajectories thus determine a
low-dimensional manifold, and the periodic solution (i.e. gait) can be found as long
as it is hybrid-invariant. For planar walking, the stability condition of the gait can
be derived; an optimization problem is thus formulated to solve for the parameters
to get a stable periodic solution of walking.

The later development of HZD extends beyond underactuated planar bipedal walk-
ing. In cases where the robot has non-trivial foot and ankle actuation, partial hybrid
zero dynamics (PHZD) [9] is developed to incorporate the ankle actuation for for-
ward velocity tracking. Multi-domain walking [104] has also been realized. For
3D bipedal walking, the monotonically increasing phase variable cannot be de-
fined easily, and stability constraints cannot be derived explicitly. Thus, time-based
trajectory parameterization [56, 68] becomes popular in the implementation. The
stability of an orbit is checked afterward in simulation by examining the eigenvalues
of the linearized Poincaré return map [113, 134]. Modern numerical optimization
techniques such as direct collocation [54] and other numerical methods [108] are
also developed to efficiently solve the trajectory optimization problem of the HZD.

Another development that is rooted in HZD is on the trajectory tracking, which
solves the problem of enforcing the system to evolve on the optimized zero dynamics
manifold. The tracking is originally realized via partial feedback linearization [134],
which cannot deal with torque bounds and ground contact constraints. To address
this issue, control Lyapunov function based quadratic programs (CLF-QP) [10, 138]
have been formulated and realized for trajectory tracking. This optimization-based
feedback control is very useful for solving the tracking problem subject to practical
constraints. More details can be seen in Chapter 2.

The practical implementation of theHZD approaches however challenges its theoret-
ical soundness. The drawbacks include the lack of robustness, intuitive perception of
underactuation, and exhaustive processes of numerical optimization. The approach
relies on a perfect model of robotic walking, which in real life does not exist. The
physical parameters and foot-ground contact cannot bemodeled precisely. Although
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there exist arguments such as input- or parameter-to-state stability [68] around the
optimized orbit, such robustness typically is hard to be included in the synthesis pro-
cess. Additionally, since the stabilization of the underactuation is implicitly checked
post-planning (after the trajectory optimization), the underactuation is not directly
addressed in terms of active stabilization via re-planning. The numerical trajectory
optimization process is also difficult to solve since it is a large non-convex optimiza-
tion problem. Iterative tuning on the cost function and constraints is required to
obtain reasonable solutions. Those drawbacks are exactly the motivation of the work
in this thesis. Instead of building upon the HZD framework, we investigate directly
on the underactuation, which will be explained in the latter chapters of Approach.

1.3 Thesis Outline
This thesis addresses the problem of motion synthesis for realizing bipedal walking.
The developed approach builds on the concept of ROM-based approximations and
hybrid dynamics model of robotic bipedal walking. The core component is a
formulation of stepping controllers in the trajectory planning. Thewalking behaviors
based on the stepping controllers are generated with high versatility and robustness.
Furthermore, the approach is extended for realizing various walking tasks.

The thesis is outlined as follows. Chapter 2 presents the preliminaries on robotic
bipedal walking. The latter of the thesis is then followed by three major compo-
nents: the proposed approach, the applications to several walking systems, and the
extensions to various walking tasks. For the proposed approach, Chapter 3 presents
the walking generation that is based on the approximation of the step-to-step (S2S)
dynamics via the Hybrid Linear Inverted Pendulum (H-LIP), and Chapter 4 then de-
rives the orbit characterization and stabilization on the H-LIP. The approach is then
applied to the walking of AMBER in Chapter 5, actuated Spring Loaded Inverted
Pendulum (aSLIP) in Chapter 6, and finally the 3D underactuated bipedal robot
Cassie in simulation in Chapter 7 and on the hardware in Chapter 8. Moreover, for
the extensions, we show that the approach is extended to the global position control
in Chapter 9, walking on rough terrain in Chapter 10, and dynamics embedding on
fully-actuated humanoids in Chapter 11.
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C h a p t e r 2

PRELIMINARIES

In this chapter, we briefly introduce the mathematical modeling of robotic walking
and the motion synthesis problem for realizing dynamic walking behaviors on
the robot. In the modeling part, we will also introduce the underactuation on
bipedal walking and the step-to-step (S2S) dynamics of walking, both of which are
important concepts for realizing robotic bipedal walking. The motion synthesis
problem includes the description of walking behaviors via output trajectories and
the feedback controllers that stabilize the output trajectories.

2.1 Hybrid Dynamic Model of Walking
To describe a mathematical model of the walking of a bipedal robot, we first need
a model of the robot. The bipedal robots are typically designed with rigid linkages
connected by rotational or prismatic joints. Thus, similar to the model of robotic
manipulators [80, 88, 120], a rigid-body multi-linkage system is used to describe the
dynamics of the robot. Each rigid body represents each linkage on the robot. Each
joint constrains the motion between two linkages and yields one DoF. In general, we
use @ to describe the configuration of a bipedal robot, then @ ∈ (� (3) × R=, where
= is the number of the robot joints.

The robot is actuated by forces/torques from the actuation placed at the joints. Then,
a second order dynamics is derived to describe the evolution of the robot:

" (@) ¥@ + � (@, ¤@) + � (@) = �gg + �ℎ (@))�ℎ, (2.1)

where" (@) is the mass matrix,� (@, ¤@) contains the Coriolis and centrifugal forces,
� (@) is the gravitational vector, �g is the actuation matrix, g is the actuation vector,
�ℎ (@) represents the Jacobian of the holonomic constraints, and �ℎ contains the
holonomic forces. For conciseness, the dependencies on @, ¤@ may be dropped in the
latter.

For robotic walking, the holonomic constraints ℎ(@) = 0 are typically on the foot-
ground contact, which yields a second order dynamic constraint on the system:

�ℎ ¥@ + ¤�ℎ ¤@ = 0, (2.2)
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where �ℎ = mℎ(@)
m@

. Solving ¥@ from Eq. (2.1) and plugging it into Eq. (2.2) yields

�ℎ = �ℎg + 1ℎ, (2.3)

�ℎ := −�−1
" �
−1
ℎ �g, (2.4)

1ℎ := �−1
" (�ℎ"−1(� + �) − ¤�ℎ ¤@), (2.5)

where �" = �ℎ"−1�)
ℎ
. Plugging Eq. (2.3) into Eq. (2.1) yields

¥@ = "−1(�g + �)ℎ �ℎ)g + "
−1(�)ℎ 1ℎ − � − �). (2.6)

Taking G = [@) , ¤@) ]) as the state of the robot, its dynamics becomes

¤G = 5 (G) + 6(G)g, (2.7)

where

5 (G) =
[

¤@
"−1(�)

ℎ
1ℎ − � − �)

]
, 6(G) =

[
0

"−1(�g + �)ℎ �ℎ)

]
. (2.8)

Eq. (2.7) represents the continuous dynamics of the robot. Based on the number
of feet that contact the ground and how they contact the ground, the number of the
holonomic constraints and thus the continuous dynamics change. In this thesis, we
mainly deal with flat foot-ground contact and point foot-ground contact. When two
feet both contact the ground, the robot is in a double support phase (DSP). When
only one foot contacts the ground, the robot is in a single support phase (SSP). The
transition from the SSP to the DSP happens when the swing foot strikes the ground.
The impact between the foot and the ground is assumed to be plastic [50, 134],
where the velocity of the foot instantaneously becomes zero. The discrete event on
the system velocity is denoted by

¤@+ = (� − "−1�)ℎ (�ℎ"�
)
ℎ )
−1�ℎ) ¤@−, (2.9)

where � is the identity matrix, and the superscripts − and + represent the instants
before and after the transition, respectively. The transition from the DSP to the SSP
happens when one of the stance feet lifts off, for which the state does not have any
jumps. In general, we denote the transitions between domains (phases) as

G+ = Δ:→:+1(G−), (2.10)

where : is the index of the domain. As a result, the walking of the robot is modeled
by a hybrid dynamical system [9, 50]. The hybrid system is composed of continuous
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Figure 2.1: The hybrid graphs of one-domain walking and two-domain walking.

dynamics in different domains and discrete transitions between the domains. The
typical structure of the hybrid model of bipedal walking is shown in Fig. 2.1.
For walking without the DSP, which typically happens on robots without evident
compliance in the leg, the system directly goes into another SSP after the impact. We
refer to this walking as one-domain walking. The walking with the DSP is referred
to as two-domain walking. The one-domain walking can be viewed as a special case
of a two-domain walking with an instantaneous DSP. Thus, the two-domain walking
will be chosen as the general model that is studied for walking in Chapter 3. The
developed approach then can be applied to both the one-domain walking such as the
walking of AMBER in Chapter 5 and the two-domain walking such as the walking
of Cassie in Chapter 7.

Foot Underactuation
Underactuation [123] on bipedal robots can happen in the internal DoFs of the
robot or its global DoFs (SE(3)) in different locomotion behaviors. The internal
underactuation typically happens when the robot has compliance elements. For
instance, the robot Cassie has springs in its legs. By using a DoF to approximately
model each spring deflection, the leg becomes underactuated at the spring joint.
Details can be seen in Chapter 7. The SLIP model also has internal underactuation,
since the spring creates additional DoF that cannot be directly controlled.

The most commonly seen underactuation on the bipedal robots is on the global
DoFs. For instance, during running when the robot is in the flight phase having no
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Figure 2.2: The foot-underactuation of bipedal walking with the illustration by an
inverted pendulum.

contact with the ground, the centroidal dynamics [93] are underactuated, i.e., the
centroidal dynamics is not affected by the internal joint actuation. The centroidal
dynamics include the translational COM dynamics and centroidal angular momen-
tum dynamics. For bipedal walking behaviors, the global underactuation typically
happens at the foot-ground contact. As being discussed in Chapter 1, the foot may
be designed without actuation to rotate (for reducing the leg inertia), or the foot
contacts the ground with its edges. Both can be viewed as the actuation is missing at
the contact location. This is in contrast to fully-actuated humanoid walking, where
the foot rotation typically remains actuated from the control synthesis, e.g., the ZMP
based approach [64].

The foot underactuation prevents the direct and continuous control on the under-
actuated DoFs at the contact, which in practice is effectively the center of mass
(COM) of the robot in the horizontal plane. A simple illustration is that an inverted
pendulum would roll passively without any actuation at the contact with the ground
(see Fig. 2.2). Theoretically speaking, the robot has rotational linkages, which can
generate rotational momentum and thus indirectly affect the COM [65, 100, 144],
e.g., the angle of a flywheel-inverted pendulum can be controlled via the continuous
rotation of the flywheel [92]. However, the joints on robots typically have limited
ranges of motion, limited control bandwidth, and limited torques in practice. Thus,
it is not possible to purely depend on the angular momentum to continuously control
the COM. Therefore, the horizontal COM state of the underactuated bipedal robot
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is equivalently the underactuated ("weakly actuated" [25]) states in practice. The
underactuation creates challenges in stabilizing the horizontal COM dynamics in
the continuous domain, especially in the SSP. As a consequence, to create stable
walking behaviors with this underactuation, the hybrid dynamics structure has to be
utilized, which yields the following step-to-step dynamics formulation for motion
synthesis.

Step-to-step Dynamics
The hybrid dynamical system is a comprehensive mathematical description of
bipedal walking behaviors. It is however complex and unintuitive to work with
for motion synthesis to address the underactuation. As we discussed in Chapter
1, HZD based framework utilizes trajectory optimization to synthesize individual
periodic orbit on the complex hybrid dynamical system, and the orbit stability is
typically checked via the Poincaré return map numerically. This is an indirect ap-
proach to passively stabilize the underactuation when generating the desired walking
behaviors. In this thesis, we formulate a discrete step-to-step (S2S) dynamics of
walking, equivalently the Poincaré return map at the pre-impact instant. The tra-
jectory will be directly synthesized based on the S2S dynamics to directly stabilize
the underactuation on the horizontal COM state. Here, we first introduce the S2S
dynamics mathematically.

Assuming the robot is controlled to periodically lift-off and touch-down the foot,
the hybrid dynamics of the robot repeats a walking cycle. This can be realized
by creating a periodic trajectory of the swing foot and then realizing the trajectory
tracking via feedback control. The motion does not need to be strictly periodical
w.r.t. time. Let {@−, ¤@−} be the pre-impact state of the robot. The evolution of
the pre-impact state at the step level, i.e., the S2S dynamics of the robot, can be
represented by

{@−:+1, ¤@
−
:+1} = P(@

−
: , ¤@
−
: , g(C)), (2.11)

where : is the index of the step, and g(C) represents the torques that are applied
during the step : . Each step starts with a DSP (if exists) and a following SSP.

Let x' = [?', E']) be the horizontal COM state of the pre-impact state of the robot
in the sagittal plane. ?', E' are the horizontal position and velocity of the COM
of the robot, which are functions of the pre-impact state {@−, ¤@−}. Thus, the S2S
dynamics of the horizontal COM state can be represented by

x':+1 = Px(@−: , ¤@
−
: , g(C)). (2.12)
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In the latter part of this thesis, Eq. (2.12) will be directly referred to as the S2S
dynamics of the bipedal walking robot. It is important to note that due to the
nonlinear and hybrid dynamics of the robot, the exact expression of the S2S dynamics
can not be computed in closed-form. Thus, synthesizing the controller based on the
S2S dynamics is difficult in general. As a consequence, we propose a S2S dynamics
approximation that is based on a simple model in this thesis to facilitate online and
robust planning, which will be elaborated in the next chapter.

Remark. The notation of the S2S dynamics in legged locomotion is an adaptation of
the Poincaré return map [66] in nonlinear dynamics, which has been widely used to
check the stability of a periodic solution [50]. The S2S dynamics [15] has appeared
frequently in controlling SLIP running [16, 43]. By investigating the evolution of
the apex states, the S2S dynamics/return map of running can be easily obtained on
the SLIP. Feedback controllers thus can be synthesized based on the S2S dynamics
to stabilize the running of the SLIP. However, the S2S dynamics of the walking of
the bipedal robotic systems has not been shown to be obtained easily, which is one
of the motivations of the proposed approach for approximating the S2S dynamics.

2.2 Optimization-based Feedback Controller
To realize walking behaviors, one typically considers the problem of motion syn-
thesis as two components: motion planning described by the desired trajectories
and trajectory tracking via feedback control. As being discussed previously, the
underactuation has to be addressed at the planning layer, which is the main focus of
this thesis. In this section, we will present the optimized-based feedback controllers
which can solve the trajectory tracking problem on bipedal walking robots. Before
jumping into that, we first elaborate on the motion planning part.

Assuming the walking is defined by trajectories of its DoFs, one has to define the
desired trajectories for all the DoFs with actuation in each domain, which are defined
as the outputs in nonlinear control terminology [66, 113]. Taking the five-linkage
walker [134] as an example, the robot has four actuators and five DoFs when one
of the feet contacts the ground. Thus, we need to define four trajectories on the
four actuated DoFs or four independent functions of the actuated DoFs. In the HZD
approach [134], the desired trajectories of the four actuated DoFs are defined via
Bézier polynomial functions with the underactuated DoF being the phase variable.
One can also select a combination of features that are functions of the actuated
DoFs. A straight-forward kinematic combination is on the vertical height of the
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COM, torso angle, and the vertical and horizontal position of the swing foot. Here,
the generation of the desired trajectories of the outputs is called motion planning
(trajectory generation). Then, the problem of feedback control (trajectory tracking)
is to drive the actual outputs to follow the desired output trajectories. The trajectory
tracking is a canonical nonlinear control problem. The challenges on bipedalwalking
are on the satisfaction of the stringent physical constraints, which can be solved via
the following optimization-based controllers.

Control Lyapunov Function based Quadratic Programs (CLF-QP)
We first present the control Lyapunov function based quadratic programs (CLF-QP)
[10, 86] approach for output stabilization. For general purposes, we assume that
the selected outputs include outputs with both relative degree 1 (RD1) and degree
2 (RD2) [66]. Let RD1 outputs be represented by Y1 ∈ R>1 and RD2 outputs
represented by Y2 ∈ R>2 with >1 and >2 being their dimensions. Without loss of
generality, we assume that the desired motion is of time-based trajectories; thus the
outputs can be defined as follows [7] [66]:

Y1(@, ¤@, C) = ¤Y01 (@, ¤@) − Y
3

1 (C), (2.13)

Y2(@, C) = Y02 (@) − Y
3

2 (C), (2.14)

where the superscript 0 denotes the actual and 3 denotes the desired. The objective
of the control is to driveY1 → 0 andY2 → 0. DifferentiatingY1 once andY2 twice
yields the affine control system on the output dynamics:[

¤Y1
¥Y2

]
=

[
L 5Y1(@, ¤@) − ¤Y3

1
L2
5
Y2(@, ¤@) − ¥Y3

2

]
︸                    ︷︷                    ︸

Lf

+
[
L6Y1(@, ¤@)
L6L 5Y2(@, ¤@)

]
︸               ︷︷               ︸

A

g, (2.15)

where A is the decoupling matrix, L denotes the Lie derivative and g ∈ R< is the
control input in the EOM in Eq. (2.1). The dependency on C is dropped from here to
simplify the notation. In case when g can be found to satisfy the following equality:

Ag = −Lf + `, (2.16)

the output dynamics becomes this linear control system:

¤[ =

0 0 0
0 0 �2

0 0 0

︸       ︷︷       ︸
�

[ +

�1 0
0 0
0 �2

︸   ︷︷   ︸
�

`, (2.17)
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where [ =
[
Y)1 ,Y

)
2 ,
¤Y)2

]) , �1 and �2 are identity matrices with dimension >1 and
>2 respectively, and ` is the auxiliary control input [66]. One can choose ` to
exponentially stabilize the linear system. For example, choosing [8]

` =

[
−nY1

−2n ¤Y2 − n2Y2

]
, (2.18)

results in the linear output dynamics:
¤Y1
¤Y2
¥Y2

 =

−n �1 0 0

0 0 �2

0 −n2�2 −2n �2



Y1

Y2
¤Y2

 , (2.19)

which is exponentially stable when n > 0. However, such ` does not utilize the
natural dynamics of the system and oftentimes may not be realizable on the robotic
system if there are stringent physical constraints (e.g., torque bounds) that must be
enforced.

The above construction motivates constructing rapidly exponentially stabilizing
control Lyapunov functions (RES-CLF) [10] from continuous time algebraic Riccati
equations (CARE)1 or continuous time Lyapunov equations (CTLE)2 to stabilize
the output dynamics exponentially at a chosen rate Y. Given a solution % = %) > 0
to CTLE or CARE with & = &) > 0, the Lyapunov function is constructed as:

+Y ([) = [) �Y%�Y︸︷︷︸
%Y

[, (2.20)

where �Y = diag(�1, 1
Y
�2, �2). The goal of exponential stabilizing [ → 0 is encoded

by the condition:
¤+Y ([) ≤ −

W

Y
+Y ([), (2.21)

with some W > 0, where

¤+Y ([) = L�+Y ([) + L�+Y ([)`, (2.22)

L�+Y ([) = [) (�)%Y + %Y�)[, (2.23)

L�+Y ([) = 2[)%Y�. (2.24)

Eq. (2.21) and (2.22) indicate an inequality constraint on ` to achieve exponential
stability. This naturally leads to the formulation of quadratic program (QP) to find

1�) % + %� − %��) % +& = 0.
2�) % + %� +& = 0.
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` to minimize the quadratic cost `)`. With (2.16), the cost and constraint of the
QP can be transformed back onto the original control input g by noting that:

`)` = g)A)Ag + 2Lf
)Ag + Lf

)Lf , (2.25)

and the inequality from Eq. (2.21) and (2.22) becomes

L�+Y ([) + L�+Y ([)Lf + L�+Y ([)Ag ≤ −
W

Y
+Y ([). (2.26)

Now the QP can be formulated in terms of solving for g at a current state (@, ¤@) as
follows:

g∗ = argmin
g∈R<

g)A)Ag + 2Lf
)Ag (2.27)

s.t. �CLF(@, ¤@)g ≤ 1CLF(@, ¤@), (CLF)

where

�CLF(@, ¤@) :=L�+Y (@, ¤@)A(@, ¤@), (2.28)

1CLF(@, ¤@) := − W
Y
+Y (@, ¤@) − L�+Y (@, ¤@) − L�+Y (@, ¤@)Lf (@, ¤@). (2.29)

The result of solving the CLF-QP is a feedback optimal control law to drive the out-
puts [ ¤Y01 (@, ¤@);Y

0
2 (@)] to follow the desired time based trajectories [Y3

1 (C);Y
3

2 (C)]
with exponentially convergence. This formulation also applies when there are only
relative degree 2 outputs to be tracked [55, 139].

For applications of using CLF-QP on robotic systems, torque bounds and additional
nontrivial constraints can must be included in the QP [8]. When the feet contact the
ground, the ground reaction forces (GRFs) have to satisfy the physics constraints
such as nonnegative normal forces and non-slipping, formulated by '�GRF ≤ 0,
where ' is a constant matrix. As GRF is affine w.r.t. the input torque in Eq. (2.3),
the GRF constraint can be directly enforced on the input:

�GRFg ≤ 1GRF, (2.30)

where �GRF = '�ℎ, 1GRF = −'1ℎ. Additionally, the motor torque must be within
the feasible limits of the robot hardware. For electrical motors, the available motor
torque depends on the rotational speed. Then, the torque limit is denoted by

g;1 ( ¤@) ≤ g ≤ gD1 ( ¤@). (2.31)
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Therefore, with the additional physical constraints, the resulting QP controller for
each domain is given as follows:

g∗ = argmin
g∈R<,X∈R

g)A)Ag + 2Lf
)Ag + ?X2, (2.32)

s.t. �CLF(@, ¤@)g ≤ 1CLF(@, ¤@) + X, (CLF)

�GRFg ≤ 1GRF, (GRF)

g;1 ( ¤@) ≤ g ≤ gD1 ( ¤@). (Torque Limit)

To increase the feasibility of theQP, the CLF constraint is relaxed [10] by introducing
X and penalizing the relaxation by adding ?X2 in the cost with some large positive
constant ?. In practice, the relaxation avoids instantaneous infeasibility of the QP
and can still stabilize the output as long as the desired motion is well-defined.

The CLF-QP is a clever formulation that treats the Lyapunov stability condition as
an inequality condition and solves for the control input via a QP. There are several
arising issues beyond the focus of this thesis. Theoretically, this QP should be
solved continuously for stabilizing the outputs. The real-world implementation can
only be a discrete approximation of the QP controller, depending on the control
frequency of the hardware, which can cause discontinuity issues [87] that fail the
implementation on the hardware. Alternative formulations [87, 105] of the CLF-QP
have been proposed to mitigate this problem and increase the robustness. From our
experiences of numerical implementations in [138–141], the performance heavily
depends on the feasibility of the QP and appropriate scaling of the outputs. This
is because the defined outputs are typically different physical quantities of different
units, and using the same CLF condition for all outputs can easily create conflicts
with the GRF constraints and torque limits. Additionally, in the case of infeasibility,
one also needs to check if the desired trajectories are fundamentally feasible to track
at the chosen convergence rate.

Task Space Controller based Quadratic Program (TSC-QP)
One can also apply task space controller [12, 33, 110, 130, 143, 144] based QP for
trajectory tracking. There are some variations in the literature [130] with different
terminologies: whole-body control [115] and operational space control [12]. Here,
for simplicity, we present a minimalistic formulation with only the motor torques
as the optimization variables. We consider the outputs include both Y2 and Y1 for



18

generality. First, from Eq. (2.6), we have an affine relation ¥@ = �̄g + 1̄ with

�̄ = "−1(�g + �)ℎ �ℎ), (2.33)

1̄ = "−1(�)ℎ 1ℎ − � − �). (2.34)

As the derivatives of outputs are affine w.r.t. ¥@, they are also affine w.r.t. to g:

¤Y1 = �1 ¥@ + 11 = A1g + B1, (2.35)
¥Y2 = �2 ¥@ + 12 = A2g + B2, (2.36)

where the explicit expression of each term is omitted. Compactly,

¤Y = Ag + B, (2.37)

with Y = [Y1; ¤Y2] . The desired derivatives (accelerations) for stabilization are
¤Ydes
1 = − ?1Y1, (2.38)
¥Ydes
2 = − ?2Y2 −  32 ¤Y2, (2.39)

where  ?1 > 0,  ?2 > 0,  32 > 0 are the feedback gain matrices. This moti-
vates a quadratic cost to minimize the difference between the actual and desired
accelerations:

�TSC(g) = |Ag + B − ¤Y34B |2, (2.40)

with ¤Y34B = [ ¤Ydes
1 ; ¥Ydes

2 ]. Additionally, two physical constraints, the GRF con-
straint and the torque limit, are included to formulate the quadratic program based
controller:

g∗ = argmin
g∈R<

�TSC(g), (2.41)

s.t. �GRFg ≤ 1GRF, (GRF)

g;1 ( ¤@) ≤ g ≤ gD1 ( ¤@). (Torque Limit)

Therefore, we can see the TSC controller is formulated in a straightforward way.
Despite the loss of theoretical soundness, the TSC controller has been shown to work
in practice. In our previous publication, [138–140] used CLF-QP for stabilization,
and [143, 144] used the TSC-QP. Based on our experience, both controllers can
yield equivalent tracking performance on high dimensional systems with proper
gain-tuning and setup. In this thesis, the in-depth comparisons and evaluations
between the two or their variations will not be investigated or compared. They
will be used merely as low-level feedback controllers to stabilize the outputs for
evaluating the proposed approach on the walking synthesis. The optimization-
based controllers will be formulated and solved at 1kHz for several systems using
qpOASES [38] in this thesis.
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C h a p t e r 3

APPROACH ⊃ MODEL APPROXIMATION

This chapter and the next chapter present our main approach to solving the motion
synthesis problem. The following chapters will be on the applications and extensions
of the proposed approach. In this chapter, we propose a low-dimensional model
of walking, based on which we develop a walking synthesis approach. The low-
dimensional walking model is an underactuated version of the canonical LIP [64]
model with a hybrid domain structure. Thus, we name it as Hybrid-Linear Inverted
Pendulum (H-LIP). The H-LIP will be used to approximate underactuated robotic
bipedal walking. The robot will be simultaneously enforced to behave like the
H-LIP.

We first present the dynamics model of the H-LIP in Section 3.1, and then derive the
step-to-step (S2S) dynamics of the walking of the H-LIP in Section 3.2, which takes
the step size as the input to control the pre-impact state discretely. Lastly, we present
the H-LIP based walking synthesis in Section 3.3 and its stepping stabilization for
underactuated walking generation in Section 3.4.

3.1 Hybrid Dynamics of Walking
The canonical Linear Inverted Pendulum (LIP) model is composed of a constant-
height point mass attached on telescopic legs with actuated support pivots [64].
Recall that it has been widely used for fully-actuated humanoids in ZMP based
approach [35, 64], as being discussed previously. It has been used as a target
walking system to provide the desired COM dynamics of walking for the full robot
to embed. The passive version of LIP (without actuation at the pivots) has also
appeared in the literature [34, 37, 71, 100] for footstep planning to mitigate the
overuse of ankle torques on humanoid robots.

With the aim to approximate the hybrid walking nature of underactuated bipedal
walking, we formally present a hybrid walking model that extends the LIP model.
The actuation at the feet is removed to resemble the underactuation on bipedal robots
with point feet. We add Double Support Phase (DSP) in walking to generalize the
walking. It then has both Single Support Phase (SSP) and DSP in its walking (see
Fig. 3.1). Therefore, we name the model the Hybrid Linear Inverted Pendulum
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Figure 3.1: The walking of the Hybrid-LIP model in the SSP (a), at the pre-impact
state (b), and during the DSP (c).

(H-LIP). For the SSP, it is a passive LIP; for the DSP, we assume that its velocity is
constant. The hybrid dynamics can be written as

¥? = _2?, (SSP)

¥? = 0, (DSP)

where _ =
√

g
I0
, I0 is the nominal height of the point mass, ? is the forward position

of the mass relative to the stance foot, and E = ¤? is the forward velocity of the
mass. The stance foot is defined as the foot contacting the ground in the SSP, and
the stance foot remains unchanged when the H-LIP transits from the SSP into the
DSP. The stance foot alters when the H-LIP transits from the DSP into the next SSP.
The transitions between the domains are assumed to be smooth, and thus the impact
maps are defined as

ΔSSP→DSP :

{
E+ = E−

?+ = ?−
(3.1)

ΔDSP→SSP :

{
E+ = E−

?+ = ?− − D
(3.2)

where D is the step size from the stance foot position to the landing foot. The second
map of the position is to alternate the support leg. The transitions are assumed to
be time-based; in other words, the durations of the two domains, {)SSP, )DSP}, are
fixed. The closed-form solution can be derived:

SSP :

{
?(C) = 214

_C + 224
−_C

E(C) = _(214
_C − 224

−_C)
(3.3)

DSP :

{
?(C) = ?−SSP + E

−
SSPC

E(C) = E−SSP
(3.4)
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where
21 =

1
2
(?+SSP +

1
_
E+SSP), (3.5)

22 =
1
2
(?+SSP −

1
_
E+SSP), (3.6)

and [?+SSP, E
+
SSP], [?

−
SSP, E

−
SSP] are the states in the beginning and at the end of the

SSP, respectively.

3D H-LIP: The H-LIP is a planar model. Similar to the LIP, the H-LIP can be
presented in the 3-dimensional space. Since its dynamics are completely decoupled
in each plane, a H-LIP in 3D is equivalent to two orthogonally coupled planar
H-LIPs. The dynamics in each plane will be identical. We omit the description
here.

Equivalence to a One-Domain System: The hybrid dynamics of the H-LIP with two
domains can be equivalently simplified to a one-domain hybrid system. This will
simplify the descriptions of periodic orbits. Since the closed-form solution of the
DSP is known, we virtually treat the DSP and its associated transitions as a single
transition from the final state of the SSP to the initial state of the next SSP. Thus,
the transition is defined as

ΔSSP−→SSP+ :

{
E+ = E−,

?+ = ?− + E−)DSP − D.
(3.7)

As a result, we have a hybrid dynamics consisted of a continuous SSP dynamics
and a virtual discrete transition. When )DSP = 0, the dynamics becomes an actual
one-domain system with only SSP, which is the passive LIP (LIP with point foot)
model in the literature [45, 70, 79, 103].

Correspondence to robotic walking: The assumptions on the H-LIP are designed to
approximate the horizontal COM dynamics on the underactuated bipedal robot. The
contact is unactuated to match the foot underactuation. We include the DSP in the
model to make it general to represent both one-domain walking and two-domain
walking on the robot. The assumption of the constant COM height is to simplify
the dynamics, which will be enforced on the robot.

3.2 Step-to-step Dynamics
In this section, we derive the step-to-step (S2S) dynamics of the H-LIP. As being
discussed in the previous chapter, the S2S dynamics maps the hybrid dynamical
system into a discrete dynamical system at the step level. Unlike the S2S dynamics
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Figure 3.2: Illustration of the S2S dynamics of the H-LIP

of the robot, the S2S dynamics of the H-LIP can be derived in closed-form. Note
that the dynamics of the H-LIP are piecewise linear. As the durations are fixed, the
states at the discrete events of touch-down (before the transition from the SSP to the
DSP) can be related from the closed-form solution.

The dynamics in the SSP in the state-space representation is

3

3C

[
?

E

]
︸ ︷︷ ︸
¤xH-LIP

=

[
0 1
_2 0

]
︸   ︷︷   ︸
�SSP

[
?

E

]
︸︷︷︸
xH-LIP

. (3.8)

Thus the final state of the SSP is calculated from the initial state of the SSP:

x−SSPH-LIP = 4
�SSP)SSPx+SSPH-LIP . (3.9)

The transition in Eq. (3.7) can be written as

x+SSP:+1 =

[
1 )DSP

0 1

]
x−SSP: +

[
−1
0

]
D: . (3.10)

Plugging Eq. (3.10) into Eq. (3.9) yields

x−SSP:+1 = 4
�SSP)SSP

[
1 )DSP

0 1

]
︸                  ︷︷                  ︸

�

x−SSP: + 4
�LIP)SSP

[
−1
0

]
︸           ︷︷           ︸

�

D: , (3.11)

where

� =

[
cosh()SSP_) )DSPcosh()SSP_) + 1

_
sinh()SSP_)

_sinh()SSP_) cosh()SSP_) + )DSPsinh()SSP_)

]
� =

[
−cosh()SSP_)
−_sinh()SSP_)

]
.
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From now on, we treat the final state of the SSP as the discrete state of the hybrid dy-
namics of the H-LIP. We then drop some subscripts and superscripts and compactly
rewrite the above equation as

x:+1 = �x: + �D, (3.12)

which is referred as the step-to-step (S2S) dynamics of the H-LIP. The S2S is a
discrete linear time-invariant system with the step size being the input.

3.3 Walking Synthesis
Now we present the H-LIP based walking synthesis for 3D underactuated bipedal
walking (Fig. 3.3). The H-LIP is set to approximate the underactuated walking,
and the walking itself should be specified to best match the H-LIP to reduce the
approximation error. Although the bipedal robot may have different morphology,
the outputs can be chosen as a combination of swing foot configuration, vertical
COM, and upper body orientation. The desired output trajectories thus can be
specified as follows.

Vertical COM Height: The vertical height of the COM ICOM of the walking should
remain approximately constant during walking. When it is possible, one can strictly
enforce ICOM to be constant. For instance, we will constrain the robot AMBER to
have a constant ICOM. For underactuated robots with passive compliance in the leg
(e.g., Cassie), strictly enforcing this condition will be challenging; hence, we will
only make sure that ICOM is approximately constant on the robot.

Vertical Swing Foot Trajectory: The second component is on the vertical trajectory
of the swing foot Isw. As the step frequency on the H-LIP is assumed to be constant,
the swing foot on the robot is expected to periodically lift-off and strike the ground
with the same frequency. This creates continuing hybrid execution on the dynamical
system and makes sure that the S2S dynamics of the robot exists. The duration of
the foot in the swing phase (i.e., SSP) should match the duration of the SSP of the
H-LIP. As a result, the vertical swing foot trajectory should evolve on a desired
time-based trajectory Idessw (C), which creates the lift-off and touch-down behaviors
based on time. The construction of the time-based trajectory is not unique, and thus
we will show several different constructions in the latter chapters of application.

Horizontal Swing Foot Trajectory: As the step size is the control input on the H-LIP,
the horizontal trajectory of the swing foot should be constructed to achieve certain
desired step sizes on the robot. Since the impact is time-based, the horizontal
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Figure 3.3: Illustration of the H-LIP based walking synthesis on the robot.

trajectory of the swing foot is constructed to swing to the desired step location at the
time of impact. The desired step size is continuously calculated by the H-LIP based
stepping controller, and the desired horizontal trajectory is continuously constructed
to achieve the desired step size, which will be explained in Section 3.4.

3DWalkingDecomposition: For 3Dwalking, the horizontal trajectory of the swing
foot is two-dimensional, and the 3D motion requires an orthogonal composition of
two H-LIPs. We select the sagittal plane and coronal plane of the robot as the
decomposition of the robotic walking. The horizontal COM state, swing foot
position, and step sizes of the robot are decoupled into those in the sagittal and
coronal plane, respectively. Consequently, the desired step sizes are individually
calculated in each plane from the H-LIP based stepping controller to stabilize the
robotic walking in each plane.
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3.4 S2S Dynamics based Stepping Stabilization
We next present the H-LIP based stepping controller to generate the desired step size
on the robot for achieving the desired walking. The stepping in the sagittal plane
is used as an example; it is applied similarly to the coronal plane. As the robot is
controlled to periodically lift-off and touch-down the foot, the hybrid dynamics of
walking repeats a walking cycle. Recall the definitions in Chapter 2: @ is the robot
configuration, the superscript − represents the pre-impact instant, g represents the
motor torques, x' = [?', E']) is the horizontal COM at the pre-impact instant, and
the S2S dynamics of the horizontal COM state is:

x':+1 = Px(@−: , ¤@
−
: , g(C)). (3.13)

As we have elaborated, the exact expression of the S2S dynamics can not be com-
puted in closed-form. Since we design the gait of the robot based on the H-LIP,
the S2S dynamics of the robot should be close to the S2S dynamics of the H-LIP.
Therefore, we use the S2S dynamics of the H-LIP in Eq. (3.12) to approximate the
S2S dynamics of the robot. Eq. (3.13) can be rewritten as

x':+1 = �x': + �D
'
: + F, (3.14)

F := Px(@−: , ¤@
−
: , g(C)) − �x': − �D

'
: , (3.15)

where D'
:
is the step size of the robot, � and � come from the S2S dynamics of the

H-LIP in Eq. (3.12), and F is the difference of the S2S dynamics between the robot
and the H-LIP. F is also the integration of the difference of the continuous dynamics
between the two systems over one step. As the gait of the robot is designed to
match the walking of the H-LIP, the dynamics error should be small. Each step also
happens in a finite time (determined by the vertical trajectory of the swing foot),
thus the realizable walking velocity is bounded. Another way to look at this fact is
that the robot has bounded step size (D ≤ Dmax) and can only realize one step in a
non-trivial time period () ≥ )min); hence, the walking velocity equals to D

)
≤ Dmax

)min
,

which is clearly bounded. As one can imagine, F is state and input dependent and
may not be bounded generally. In practice, since the robot has bounded states and
step sizes, F then can be bounded over the set of walking behaviors of interest.
Thus, we treat F as a bounded disturbance to the discrete S2S dynamics; F belongs
to a bounded set: F ∈ , . In the latter chapters of applications, we will evaluate this
assumption numerically.

The S2S approximation in Eq. (3.14) provides a convenient way to design a S2S
dynamics based stepping controllers for D to control the pre-impact horizontal COM
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state x'. Assume that the desired walking behavior of the H-LIP is described by
xH-LIP and DH-LIP, which will be synthesized in the next chapter. Let D' = DH-LIP+De,
and let e = x' − xH-LIP be the error state. The error dynamics becomes

e':+1 = �e': + �D
e
: + F. (3.16)

Thus, we need to design a S2S dynamics based stepping controller to stabilize the
error dynamics subject to the bounded disturbance. In our previous publications
[141–143], we apply the H-LIP based stepping:

Ddes = DH-LIP +  (x': − xH-LIP: ), (3.17)

where  is the feedback gain to make � + � stable, i.e., eig(� + � ) < 1.
Applying the H-LIP based stepping yields the error dynamics:

e:+1 = (� + � )e: + F. (3.18)

Since � + � is stable, the error dynamics has a minimum disturbance invariant set
� . By definition,

(� + � )� ⊕, ∈ �, (3.19)

where ⊕ is the Minkowski sum. We call � the error invariant set, i.e., if e: ∈ � then
e:+1 ∈ � . If , is small, then � is small. Thus the desired walking behavior (of
the horizontal COM state) can be first realized on the H-LIP, and then applying the
H-LIP based stepping yields the behavior to be approximately realized on the robot,
with the error being bounded by � . Note that the feasible step size on the robot
is bounded, i.e., D' ∈ *. Thus, the desired behavior of the H-LIP should satisfy
DH-LIP ∈ * 	  � . In the latter when it is possible, the superscripts ' and H-LIP are
be omitted for conciseness. The gain  can be simply selected from the following
two controllers.

Deadbeat Controller: The deadbeat controller [137] is calculated to stabilize the
error dynamics within minimum steps. Since there is one input and two states, the
deadbeat gain satisfies

(� + � deadbeat)2 = 0, (3.20)

solving which yields the deadbeat gain that can be used in the H-LIP based stepping
in Eq. (3.17).

Linear Quadratic Regulator: We can apply the linear quadratic regulator (LQR) in
the context that it minimizes a custom-tuned cost function:

�LQR =

∞∑
:=1
(e):&e: + D):'D: + 2e):#D: ). (3.21)
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where &, ', # are cost parameters. The resultant optimal state feedback gain is

 LQR = −(' + �)%�)−1(�)%� + #) ), (3.22)

where % is solved from the discrete-time algebraic Riccati equation (DARE) [19].
The LQR gain thus can be used in Eq. (3.17) for stepping stabilization.

Remark. The H-LIP based stepping is a S2S dynamics based stepping controller
with a closed-form solution, which is convenient to implement in practice. There
are other linear controllers [19] one can synthesize to stabilize the error dynamics
in Eq. (3.16). Additionally, different gains  can be applied as long as � + � 
is stable. In this thesis, we do not explore all the possible formulations of the S2S
based stepping controllers or different gain  . Instead, for consistency, we apply the
deadbeat gain  deadbeat to evaluate the approach on different robots in the chapters
of applications, which also demonstrates that gain tuning is not necessary.

Implementation and Evaluation
To summarize, the H-LIP model and the S2S based stepping controller are presented
to propose a walking/gait synthesis approach for underactuated bipedal robots. The
walking synthesis includes the construction of the vertical COM trajectory, the
vertical swing foot trajectory, and the horizontal swing foot trajectory to realize the
H-LIP based stepping controller. The desired walking behavior will be described on
the H-LIP. Then, a S2S based stepping controller such as the H-LIP based stepping
in Eq. (3.17) calculates the desired step size Ddes for the robot in the SSP to stabilize
its walking closely to the H-LIP walking.

The desired step size Ddes is a function of the horizontal COM state of the robot
at pre-impact as shown in Eq. (3.17). However, the pre-impact COM state cannot
be known in the continuous SSP. We thus use the current COM state to replace the
pre-impact COM in Eq. (3.17), which creates the same desired step size Ddes at
the pre-impact instant. Thus, Ddes is continuously changing w.r.t. the horizontal
COM state in the SSP. Ddes is then continuously used for constructing the desired
horizontal swing foot position in the output synthesis. Specifically, the desired
horizontal trajectories of the swing foot Gdessw (w.r.t. the stance foot) can be designed
to be

Gdessw = (1 − Bℎ (C))G+sw + Bℎ (C)Ddes, (3.23)

where G+sw is the horizontal position of the swing foot in the beginning of the current
SSP w.r.t. the stance foot. Bℎ (C) is a smooth curve that transits from 0 (C = 0) to
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1 (C = )SSP). We use Bézier polynomials for the construction; see Appendix D for
details. Note that C is the clock of the gait, which resets to 0 after each step. After
constructing the desired output trajectories, we then apply the optimization-based
controllers for trajectory tracking as been described in Chapter 2. We sketch the
process in the following Algorithm. In the latter chapters, we will first present
the generation of the desired behaviors on the H-LIP, and then validate and extend
the proposed walking synthesis in detail on various bipedal walking systems for
realizing different walking behaviors in simulation and experiment.

Algorithm 1 H-LIP based Walking Synthesis
Initialization: Desired Walking Behavior
1: while Every Control loop do
2: Generate Desired H-LIP Walking
3: Get Desired Step Size← H-LIP based Stepping Controller
4: Construct Desired Output Trajectories
5: Output Stabilization via Optimization-based Controllers
6: end while

After the implementation, we numerically evaluate the error state and the disturbance
invariant set. Since F cannot be calculated analytically, we numerically calculated
the data of F at each step during walking and then identify a polytope that contains
all F, which is used as an approximation of , . When  deadbeat is used, � + � 
is nilpotent (∃=, s.t. (� + � )= = 0). Thus � = �= := ⊕=−1

8=0 (� + � )
8, can be

calculated exactly [102]. When  LQR is used, � can be inner-approximated with
�=∈N (i.e. �= ⊂ �) or outer-approximated using the techniques in [69, 102] and the
reference therein. The set operations will be calculated using MPT [53].

Comparison

The H-LIP is used as a model to provide an approximation to the bipedal robotic
walking behaviors so that the S2S dynamics based stepping controllers can be
synthesized for walking realization. It is important and necessary to compare this
approach with existing approaches at a high level.

Comparison with ZMP-LIP: The H-LIP is a variant of the canonical LIP model
[61] with foot underactuation and hybrid dynamics structure. As been discussed
in Chapter 1, the LIP model has been extensively applied in the ZMP approaches
[37, 64] for realizing humanoid walking. The LIP is continuously actuated, and the
center of pressure (COP) is the output of the continuous linear control system of the



29

LIP; the H-LIP is only discretely actuated by swapping support legs, and the COP is
not continuously controllable. One can also view the ZMP-LIP approaches as using
the ZMP of the LIP to approximate the ZMP of the robot, and the LIP dynamics is
embedded on the humanoid; the ZMP condition thus is approximately realized on
the humanoid. In this thesis, we use the dynamics of the H-LIP to approximate the
horizontal COM dynamics of the underactuated bipedal robots, which do not have
foot actuation and thus can not strictly embed the pendulum dynamics. Additionally,
compared to the passive LIP in [100] [24], the H-LIP has the DSP and fixed domain
durations. The addition of the DSP allows its application to walking with non-trivial
DSP.

Comparison with HZD: Compared to the HZD [46, 50] approaches, the complete
walkingmotion of the full-dimensional state is not pre-optimized or pre-determined.
The desired walking behavior will be specified by the H-LIPmodel in terms of COM
height, domain period, and the desired pre-impact horizontal COM state. The S2S
dynamics based stepping controller then stabilizes the walking of the robot closely
to the desired behaviors. Thus, the resultant walking behavior on the robot is
directly stabilized during walking. Moreover, there is no need to check Poincaré
return map for stability; the S2S dynamics based stepping controller directly deals
with the underactuation stabilization by continuously changing the step sizes in the
planning loop. From the computation perspective, the HZD approaches require
offline optimizations for motion planning while our approach solves the planning
online with trivial computation (e.g., the H-LIP based stepping is in closed-form).

Comparison with existing S2S based approach: As been discussed in Chapter 2,
the S2S based approach has been appeared in controlling SLIP running behaviors
[16, 43] since its S2S dynamics can be obtained easily. As for bipedal walking
systems, by and large, the S2S dynamics based control has been focused on the
linearization at the fix-point [13, 14, 75, 131] of a periodic solution on the returnmap
(very few exceptions [16, 85] learned the S2S). This thesis, instead, approximates
the S2S dynamics of the robotic walking over a large region of the state-space at
the Poincaré section. Additionally, the S2S approximation is linear and readily
facilitates feedback controllers to be synthesized.
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C h a p t e r 4

APPROACH ⊃ ORBIT CHARACTERIZATION AND
STABILIZATION

In this chapter, we present the identifications of the periodic walking orbits of the
H-LIP, which will provide the desired walking behavior for the S2S based stepping
controller. The linear dynamics of the H-LIP promote the periodic orbits to be
geometrically characterized in the phase space. Based on the number of steps that
one orbit contains, we classify the orbits into Period-N orbits, where N is the number
of steps. As the time duration (period) of one step is fixed, a Period-N orbit has a
duration of period×N. Here we only study Period-1 (P1) and Period-2 (P2) orbits of
the H-LIP. P1 orbits are the one-step orbits, and P2 orbits are the two-step orbits.

We begin by introducing the phase portraits of the H-LIP, and then in Section 4.1
and 4.2 we present the characterizations of P1 orbits and P2 orbits, respectively.
In Section 4.3 we show the equivalent characterizations of the orbits. Lastly, in
Section 4.4, we derive the stepping stabilization to control the walking of the H-
LIP to generate desired walking behaviors, which are used as the nominal walking
behaviors in the H-LIP based stepping in Eq. (3.17).

Phase Portraits: The state space of the H-LIP is a two-dimensional, thus we can
present the periodic orbits explicitly in its phase portraits. For the H-LIP in the SSP,
its phase portrait is identical to that of the passive LIP (see Fig. 4.1 (a)); the phase
portrait in the DSP is simple, as shown in Fig. 4.1 (b). The phase portrait in the

Figure 4.1: Phase portraits of the H-LIP walking in its (a) SSP and (b) DSP.
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Figure 4.2: Illustration of the P1 orbits of the H-LIP (left) and the corresponding
time-lapse figures of the orbits (right). The red, blue, and grey lines are the orbits,
the yellow lines are the orbital lines of characteristics, and the black lines are the
asymptotes where E> = 0. One the orbit, the solid lines represent the states in the
SSP and the dashed lines represent the transitions between the SSP.

SSP can be divided into four regions by the asymptotes (the cross lines defined by
E = ±_?), based on the orbital energy:

E> (?, E) = E2 − _2?2. (4.1)

On the asymptotes, E> = 0. The orbital energy is either positive or negative in each
region. More importantly, the orbital energy is conserved in the SSP. The physical
meaning of E> > 0 is that the H-LIP rotates over the stance foot, i.e., the system
passes through the states where ? = 0.

For conciseness, we use the equivalent one-domain system in Section 3.1 of Chapter
3. Thus, the orbits can be represented by a continuous trajectory in the SSP with a
discrete transition. In the following, we present the geometric characterization of
P1 and P2 orbits in the phase portrait of the SSP. The subscripts of SSP on the states
are omitted. Additionally, the pre-impact states and the step sizes of the orbits are
presented explicitly from the desired net (average) velocity of walking.

4.1 Period-1 Orbit
For ease of understanding, we first characterize the P1 orbits.

Theorem 4.1.1. For all the Period-1 orbits, the initial states [?+, E+] and the final
states [?−, E−] of the SSP are on the line E = −f1? and the line E = f1?, respectively,
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where the orbital slope is defined as

f1 := _coth
(
)SSP

2
_

)
. (4.2)

The lines E = ±f1? are called the orbital lines. Each state on the orbital line
E = −f1? is the initial state of the SSP of a unique Period-1 orbit with the step
length being

D1 = 2?− + E−)DSP. (4.3)

Here, we define the orbital lines with the orbital slopes to identify the boundary
states of the SSP of the P1 orbits. The proof is as follows.

Proof. Since E+ = E− and E+> = E−> , we have ?+ = −?−. Substituting these
conditions into Eq. (3.3) with simple algebra manipulations yields

E+

?+
= −_coth

(
)SSP

2
_

)
, (4.4)

which indicates that the initial states are on the line E = −f1?. The rest of the
theorem follows immediately. �

Fig. 4.2 illustrates different P1 orbits of the system with )SSP = 0.5s, each of which
has a different net velocity. A different duration of )SSP would produce a different
set of orbital lines (the cross yellow lines). As)SSP →∞, the orbital lines converges
to the black lines. Thus, it is easy to verify that all the P1 orbits only exist in the
E> > 0 regions as f1 ≥ _.

Without further illustrations, one can find that there exist infinite P1 orbits, and they
are all connected. Given a desired net velocity E3 , there is a unique P1 orbit for
realization. It is obvious that the step size of the P1 orbit is

D∗1 = E
3 ()DSP + )SSP). (4.5)

The final states of SSP of the P1 orbit can then be calculated from Eq. (4.2) and Eq.
(4.3), which yields

[?∗, E∗] = [1, f1]
D∗1

2 + )DSPf1
. (4.6)

Note that we use the superscript ∗ to represent the states and inputs on the periodic
solution given by E3 .



33

4.2 Period-2 Orbit
P2 orbits take two steps to complete a periodic walking. We differentiate the
consecutive two steps by its stance foot, indexed by L/R. Similar to the P1 orbits,
we identify the orbital slope and orbital lines of P2 orbits, and therefore the P2 orbits
are geometrically characterized:

Theorem 4.2.1. For all the Period-2 orbits, the orbital lines are E = ±f2? + 32,
where the orbital slope f2 is defined as

f2 := _tanh
(
)SSP

2
_

)
, (4.7)

and 32 is a constant determined by the desired net velocity. Each state on the line
E = −f2? + 32 represents an initial state of a Period-2 orbit, with the step size being

DL/R = 2?−L/R + )DSPE
−
L/R. (4.8)

Proof. We can first show that any initial states on the line of E = −f2? + 32 flow to
the line E = f2? + 32 after C = )SSP. This is evident by applying the closed-form
solution from Eq. (3.3) with C = )SSP. Given E+ = −f2?

+ + 32, one can verify that
E− − f2?

− − 32 ≡ 0. Thus, the orbital lines of characteristics are E = ±f2? + 32.

Then we select a state on the line E = −f2? + 32 as the initial state of the SSP with
the left leg being the support leg of the H-LIP, i.e. E+L = −f2?

+
L + 32. The final state

satisfies E−L = f2G
−
L + 32. Applying the impact map in Eq. (3.7) with the step size in

Eq. (4.8) yields

E+R = E
−
L, ?

+
R = −

E−L − 32

f2
= −

E+R − 32

f2
, (4.9)

which indicates that the initial state of SSP with right leg as the support is on the line
E = −f2? + 32 again. Taking another step, the system goes back to its original state
when left leg becomes the support. Therefore, the initial state on the line creates a
P2 orbit with the step length in Eq. (4.8). �

Unlike the P1 orbits, for which only one orbit can be found to achieve a certain
desired velocity, there are infinite P2 orbits to achieve a certain desired velocity.
The result is stated in the following proposition.

Proposition 4.2.2. There exist infinite Period-2 orbits to achieve a desired net
velocity E3 . The initial states of the SSP of all the periodic orbits for E3 lie on the
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Figure 4.3: Illustration of the P2 orbits of the H-LIP (left) and the corresponding
time-lapse figures of the orbits (right). Individual color indications are the same to
the case for P1 orbits.

line E = −f2? + 32 with 32 being

32 =
_2sech2( _2)SSP) ()SSP + )DSP)E

3

_2)DSP + 2f2
. (4.10)

Proof. Based on Theorem 4.2.1, selecting any initial state [?+L, E
+
L] on the line

E = −f2? + 32 yields a P2 orbit. The traveled distance over the P2 orbit is
2(?−L − ?

+
L) + )DSP(E

+
L + E

−
L). It equals 2()SSP + )DSP)E3 . �

Geometrically, 32 shifts the set of cross orbital lines up or down. The magnitude
of 32 determines the net velocity of the P2 orbit. The infinite number of realization
for one desired velocity can also be seen through the fact that the step sizes are
determined by E3:

D∗L + D
∗
R = 2()DSP + )SSP)E3 . (4.11)

There are infinite combination of D∗L, D
∗
R to satisfy Eq. (4.11) and therefore infinite

P2 orbits to realize the desired net velocity. Selecting one step size determines the
other one and thus determines the P2 orbit. The final states [?∗L/R, E

∗
L/R] are on the

orbital lines:
E∗L/R = f2?

∗
L/R + 32. (4.12)

The selected step size thus determines the boundary positions from Eq. (4.8):

?∗L/R =
D∗L/R − )DSP32

2 + )DSPf2
. (4.13)
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Figure 4.4: Equivalent characterization of the periodic orbits. The dashed cross
lines are the equivalent orbital lines.

4.3 Equivalent Characterization
The P1 and P2 orbits are characterized by their orbital lines, respectively. We also
find that under certain conditions, the orbital lines of P1 orbits can also characterize
P2 orbits and vice versa. It is clear that when DL = DR, a P2 orbit becomes an
equivalent P1 orbit, which can be stated as the following proposition.

Proposition 1.3 The orbital lines E = ±f2? + 32 characterize the P1 orbits when
DL = DR, which yields the final state of the SSP as

?∗ =
32sinh()SSP_)

2_
, E∗ = f2?

∗ + 32. (4.14)

Similarly, P1 orbital lines can characterize P2 orbits:

Proposition 1.4 The extended P1 orbital lines E = ±f1(? ± 31) characterize the
P2 orbits: the initial states are on E = −f1(? ± 31) and the final states are on
E = f1(? ± 31). The corresponding step sizes are as stated in Eq. (4.8).

The non-uniqueness of P2 orbits to realize the desired velocity comes from the
non-uniqueness of 31. Given a 31, the final states of the P2 orbits can thus be
determined. Fig. 4.4 illustrates the equivalent characterizations of the orbits in Fig.
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4.2 and 4.3. In the latter, we only use the results from Theorem 4.1.1 and 4.2.1 to
find the desired walking orbits.

4.4 Orbit Stabilization
The characterized obits are used as a description of the desired walking behaviors.
Given a desired walking velocity and a step frequency, we can use the characteriza-
tion to identify the corresponding pre-impact states. In this section, we derive the
stabilization on the H-LIP to its desired walking behaviors. In particular, we first
present a heuristic synthesis that is based on velocity feedback, the gain of which
can be derived from the hybrid dynamics based on the contraction principle [141].
Then, we show canonical linear control stabilizations that are based on the S2S
dynamics of walking. Finally, in the last part, we show the application of H-LIP
based stepping for stabilization, which then renders a wide class of linear controllers
to function. For the practical purposes of implementation, one can directly refer to
the last subsection.

A Heuristic Stabilization
In this part, we present the stabilization of the orbits of the H-LIP via heuristically
synthesized controllers in [139, 141]. Since the dynamics of theH-LIP are piecewise
linear, we can formally prove this controller and find the valid range of the feedback
gain. We present the following two theorems for stabilization.

Theorem 4.4.1. Given a desired Period-1 orbit with f1 in Eq. (4.2) and E∗ in Eq.
(4.6), the following step size

D2;1 = ?− + E−)DSP +
E−

f1
+  E (E− − E∗), (4.15)

can globally stabilize the H-LIP with the  E in

0 <  E <
2
_
csch()SSP_), (4.16)

and the optimal gain

 ∗E =
1
_
csch()SSP_), (4.17)

globally stabilizes the velocity by one step and the position by two steps.

Proof. The desired pre-impact state of the SSP of the H-LIP is [?∗ = E∗

f1
, E∗]. To

prove this stabilization, we first show that the step-to-step velocity is contracting to
the desired velocity E∗; in other words,��E−:+1 − E∗�� = 2 ��E−: − E∗�� , (4.18)
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Figure 4.5: Illustration of the stabilization on P1 orbit: (a) optimal stabilization
from random initial states (the black is the desired orbit, and the blue and red are the
simulated trajectories from the states marked by the circles), and (b,c) the simulated
trajectory using the same controller from the same initial state but with different
gains.

with 0 < 2 < 1, where : and : + 1 index the current step and the next step,
respectively. Suppose that we have an arbitrary pre-impact state [?−

:
, E−
:
]. By the

impact maps in Eq. (3.1) and (3.2) with D2;1 and closed-form solutions in Eq. (3.3)
and (3.4), the pre-impact velocity of next step satisfies

E−:+1 − E
∗ = (1 −  E_sinh()SSP_)) (E−: − E

∗). (4.19)

Obviously,  E must be in the range in Eq. (4.16) so that the contracting mapping
in Eq. (4.18) is satisfied. Otherwise, the velocity error stays the same or increases.
Additionally, for the position,

?−:+1 − ?
∗ = ( 1

f1
−  Ecosh()SSP_)) (E−: − E

∗). (4.20)

Thus ?− → ?∗ as E− → E∗, which proves the stabilization of the position subse-
quently after the velocity.

Lastly, plugging the optimal gain of Eq. (4.17) into Eq. (4.19) and (4.20) indicates
that E−

:+1 = E
∗ and ?−

:+2 = ?∗ for arbitrary states [?−
:
, E−
:
], which means that, the

velocity is stabilized by one step and the position is stabilized by two steps. �

Theorem 4.4.2. Given a desired Period-2 orbit with f2 in Eq. (4.7) and desired
boundary velocities E∗L, E

∗
R in Eq. (4.12), the following step size

D2;2 = ?− + )DSPE− +
E− − 32
f2

−  E (E− − E∗L/R), (4.21)
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Figure 4.6: Illustration of the stabilization on P2 orbits.

can stabilize the H-LIP globally with the  E in Eq. (4.16). And the optimal gain in
Eq. (4.17) stabilizes the velocity by one step and the position by two steps globally.

The proof is similar to the previous one and thus is omitted. In [139], the feedback
stepping control law was used to stabilize the lateral balance of the underactuated
walking of Cassie with zero lateral velocity, i.e. 32 = 0. Here the stabilization law
in Eq. (4.21) is stated for the general case for all P2 orbits.

Fig. 4.5 (a) and Fig. 4.6 (a) illustrate the stabilization of this stepping with
the optimal gain to a P1 and a P2 orbit from random initial states, respectively.
Additionally, different gains are compared for the stabilization in Fig. 4.5 (b, c) and
Fig. 4.6 (b, c), which numerically validate the theorems in simulation.

Remark. One may think that this stepping controller is a variant of the Raibert
style stepping controller [101] [106]. However, the Raibert style controllers are
oftentimes implemented as PID/PD terms. Heuristic tuning is required. Here
the optimal gain eliminates the tuning process completely. Moreover, we present
rigorous derivations on the stabilizations. In fact, we will see from the next two
parts that the optimal stepping controllers are actually deadbeat controllers.

Stabilization via S2S Dynamics
In this section, we show the stabilizations that are based on the S2S dynamics. The
orbit stabilization can be viewed as generating a controller on D such that the state
of the linear S2S dynamics is controlled to the desired final state of the orbit. It then
becomes a canonical linear control problem. The following presents this approach.
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Stabilization for P1 Orbits: The desired final state of the SSP fully determines the
P1 orbits. Suppose the desired state is x∗ = [?∗, E∗]) . The error state is defined as
e = x − x∗, and the error dynamics is

e:+1 = �e: + �D: + (� − �)x∗. (4.22)

The goal is to stabilize e: → 0 as : → ∞. As there is only one input, (� − �)x∗

must be in the column space of � for x∗ to be stabilized, i.e.,

(� − �)x∗ = 2�, (4.23)

where 2 ∈ R is a constant. Then the selection of x∗ must satisfy the condition that
x∗ = 2(� − �)−1�, which exactly represents the orbital line of the P1 orbits of the
H-LIP (E∗ = f1?

∗). Thus the following conclusion can be made:

Proposition 4.4.3. The error state in Eq. (4.22) can be stabilized to 0 if and only if
x∗ are selected on the orbital line of characteristics of P1 orbits.

Therefore, for P1 orbit stabilization, we can rewrite the error dynamics as

e:+1 = �e: + �(D: + 2)︸   ︷︷   ︸
D̄:

, (4.24)

where
2 = −)DSPE∗ −

2E∗

_
tanh(_

2
)SSP). (4.25)

It is easy to design a state feedback controller with D̄: =  e: , and the closed-loop
system then is

e:+1 = (� + � )e: , (4.26)

which becomes the error dynamics in Eq. (3.16) with F = 0. Recall that for this
systemwith a single input and two states, two steps is required to stabilize the system
to 0 from any initial stable globally. It is easy to find the deadbeat gain  such that
(� + � )2 = 0, which is

 = [1, )DSP +
1
_
coth()SSP_)] . (4.27)

This deadbeat controller yields the step size:

D: =  e: − 2 = ? + ?∗ + )DSPE +
1
_
coth()SSP_) (E − E∗), (4.28)

which is verified to be equal to the optimal stepping controller in Theorem 4.4.1.
The deadbeat controller globally stabilizes the system to the P1 orbit with two steps.
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Stabilization for P2 Orbits: The P2 orbits have two alternating final states of the
SSP. Let ?∗L, ?

∗
R, E
∗
L, E
∗
R, 3

∗
2 be the elements of the desired orbit. To represent the

P2 orbits as a control objective, we augment the state dimension, and the linear
dynamics becomes

?:+1

E:+1

1
−1

︸ ︷︷ ︸
x̄:+1

=


�1,1 �1,2 0 0
�2,1 �2,2 0 0

0 0 1 0
0 0 0 −1

︸                     ︷︷                     ︸
�̄4


?:

E:

1
1

︸︷︷︸
x̄:

+


�1

�2

0
0

︸︷︷︸
�̄4

D: ,

with the output being

Ȳ: =
[
1 0 −01 −02

0 1 −11 −12

]
︸                  ︷︷                  ︸

�̄4

x̄: , (4.29)

where 01 =
?∗L+?

∗
R

2 , 02 =
?∗L−?

∗
R

2 , 11 =
E∗L+E

∗
R

2 , 12 =
E∗L−E

∗
R

2 , and the subscripts of �, �
indicate the individual element in the matrix �, �. The alternating of the left and
right leg is represented by the alternating of signs of the last element in x̄: . The
stabilization of the P2 orbit is represented by stabilizing

Ȳ: → 0. (4.30)

Similar to the deadbeat controller for P1 orbit, we can design a state feedback
controller:

D: =  4x̄: . (4.31)

Then the deadbeat controller yields Ȳ:+2 = �̄4( �̄4 + �̄4 ̄4)2x̄: → 0 for all x̄. To
make all the elements in the matrix �̄4( �̄4 + �̄4 ̄4)2 zero, the feedback gain is

 4 = [1, )DSP +
coth()SSP_)

_
,−
3∗2
2_

coth(_
2
)SSP),

32sinh()SSP_) − 2?∗L_
2_ + 2_cosh()SSP_)

] . (4.32)

Similarly, this deadbeat controller is also verified to be equal to the optimal controller
in Theorem 4.4.2.

The Simplest Formulation via H-LIP based Stepping
The control via the S2S dynamics has provided more than the deadbeat controller
for orbit stabilization. Here we present the simplest derivation that uses the H-LIP
based stepping in Eq. (3.17), which renders a wide class of controllers to stabilize
the desired orbits of the H-LIP.
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Note that on the P1 or P2 orbit, the nominal system is

P1: x∗ = �x∗ + �D∗, (4.33)

P2: x∗L/R = �x∗R/L + �D
∗
R/L. (4.34)

Let the step controllers be the H-LIP based stepping controller:

P1: DP1 =  (x − x∗) + D∗, (4.35)

P2: DP2 =  (x − x∗R/L) + D
∗
R/L. (4.36)

The closed-loop systems are thus

P1: x:+1 = �x: + �( (x − x∗) + D∗), (4.37)

P2: x:+1 = �x: + �( (x − x∗R/L) + D
∗
R/L). (4.38)

Subtracting the nominal systems from the closed-loop systems yields the error dy-
namics with

P1: eP1:+1 = �x: + �DP1 − (�x∗ + �D∗) = (� + � )eP1: , (4.39)

P2: eP2L/R:+1 = �xR/L: + �DP2 − (�x∗R/L + �D
∗
R/L) = (� + � )e

P2
R/L: , (4.40)

with the error being defined as

P1: eP1: = x: − x∗, (4.41)

P2: eP2R/L: = xR/L: − x∗R/L. (4.42)

Thus same error dynamics means that: as long as the closed-loop matrix � + � 
is stable, the system will be stabilized to the desired orbit. One can view the orbit
stabilization of the H-LIP as stabilizing the H-LIP that is not on the orbit yet to
another H-LIP that is evolving on the desired orbit. Since the dynamics difference
F is zero, the error will be driven to zero.

Remark. When is the deadbeat gain, the step controllers are deadbeat controllers.
So far, we have described three ways to derive the deadbeat controller. The last one
is the most elegant one. Additionally, the feedback controllers in Eq. (4.35) and
(4.36) also render various linear control methods as follows to function for orbit
stabilization besides the LQR controller.

Lyapunov-based Controller: One can also design a Lyapunov function on the error
dynamics e:+1 = �e: + �De

:
as

+: = e):&e: , (4.43)
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with & being a positive definite matrix. The condition of making sure + decreases
can be

+:+1 < W+: , (4.44)

where 0 < W < 1 is a free chosen parameter for convergence. The closed-form
solution can be derived:

De
: =

1
�)�
(−e): �

)&� +
√
(e)
:
�)&�)2 − �)�(e)

:
�)&�e: − We)

:
e: )), (4.45)

which yields the step size controller to be D = De
:
+ D∗.

Model Predictive Controller: The linear error dynamics also allows the Model Pre-
dictive Controller (MPC) [21, 78] to function for orbit stabilization. The use of
MPC to stabilize the system to a specific point is a relatively standard technique.
We thus omit the details here. A similar but more complex version of the MPC can
be in Chapter 9 for global position tracking.

Comparison to Capture Point: The deadbeat stepping controller on the H-LIP is
similar to the capture point controller [70, 100]. In the capture point controller, the
step location is determined by the passive LIP model so that the robot can come to
a stop, i.e., E → 0 as C → ∞. The walking with zero velocity on the H-LIP is the
P1 orbit with E∗ = 0. Additionally, if we assume )SSP →∞ and )DSP → 0, the step
size controller in Eq. (4.28) becomes identical to the instantaneous capture point
controller:

D = ? +���
0

?∗ +��
�*0

)DSPE +
1
_�
���

���:1
coth()SSP_) (E −���

0
E∗) = ? + E

_
.

Thus, the capture point controller on the H-LIP is a special case of the deadbeat
stepping controller on this model. More importantly, the capture point controller
based on the LIPmodel is typically directly applied to the robot, whereas the stepping
controller on the H-LIP is not directly applied on the robot but is used at the nominal
step size DH-LIP in Eq. (3.17). The desired step size is then continuously calculated
by Eq. (3.17) to construct the desired horizontal trajectory of the swing foot.
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C h a p t e r 5

APPLICATION ⊃ FIVE-LINKAGE WALKER AMBER

Starting from this chapter, we begin to present the application of the proposedmotion
synthesis approach on various bipedal walking systems. We start by applying it on a
canonical bipedal robotmodel: the five linkagewalker [134, 135]. To be specific, the
model of the custom-built robot AMBER is used. Despite its simplicity, it has been
treated as the fundamental rigid robot model for underactuated bipedal walking. It
should be emphasized that the walking of AMBER has non-trivial impact between
the swing foot and the ground. Despite the fact that the H-LIP has trivial impact,
we show that the H-LIP based stepping can still be applied to generate walking on
AMBER.

5.1 Robot Model
The robot AMBER has a torso, two thighs, and two shins. It is actuated by two
hip joints and two knee joints. The contact with the ground is point-contact, and
thus the walking is underactuated. The specifications of AMBER is shown in
Fig. 5.1. The walking is described by a single SSP; in other words, the DSP is
instantaneous. As we described in Chapter 2, the continuous dynamics is described

Figure 5.1: The five linkage walker AMBER and its output definition for walking
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by the Euler-Lagrange equation with the floating-base coordinates:

" ¥@ + � + � = �Eg + �)ℎ �ℎ, (5.1)

�ℎ ¥@ + ¤�ℎ ¤@ = 0, (5.2)

where @ ∈ (� (2) × R4, g ∈ R4, �ℎ ∈ R2, and �ℎ ∈ R2×7. Eq. (5.2) describes the
holonomic constraints that fix the stance toe position.

Impact Model:Recall that the impact happenswhen the swing toe strikes the ground.
We assume that the impact is plastic: the swing toe stays on the ground, and the
previous stance toe lifts off the ground. Thus, the stance toe and the swing toe swap
at the impact. The post-impact velocity can be calculated from Eq. (2.9).

Both AMBER and another five linkage walker Rabbit [134] have been well-studied
in the HZD [50, 134] framework. Recall that in the HZD, walking is described by
periodic orbits, where the actuated trajectories are parameterized by the underactu-
ated phase coordinate and then optimized via non-convex parameter optimization.
The stability of individual periodic orbit is encoded via inequality constraints. Here,
we show the first application of the proposed H-LIP based synthesis in Chapter 3 to
generate walking on the five linkage walker AMBER.

5.2 Walking Synthesis
As there are four motors on AMBER, we construct four outputs to describe the
walking. Based on the H-LIP based walking synthesis, we first consider the height
of the center of mass (COM) ICOM as one output. Additionally, the swing toe
trajectory psw should be constructed to create the periodicity of the walking; the
swing toe periodically lifts off and strikes the ground with a fixed frequency, and
it should point towards achieving the desired step size. The last output is the torso
pitch angle qtorso. Compactly, the outputs are constructed as

YSSP(@, C) =

ICOM(@)
qtorso(@)
psw(@)

 −

IdesCOM
qdestorso

pdes
sw (@, C)

 . (5.3)

Here we set the desired COM height IdesCOM and the desired torso angle qdestorso as
constants. The desired horizontal trajectory of the swing toe is composed by two
orthogonal components: pdes

sw (@, C) = [Gdessw (@, C), Idessw (C)]) , which are constructed as
follows.

Vertical Trajectory of the Swing Toe: The desired vertical trajectory is constructed
to achieve a certain apex height (foot clearance) and a certain impact velocity at a
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certain instant. The non-trivial apex height is for preventing scuffing duringwalking.
The non-trivial impact velocity ensures the executing of the impact event. This can
be constructed via polynomial functions such as Bézier polynomials; see Chapter 7
for an example. Here we show a simple construction via sinusoidal and piece-wise
linear functions. Let Idessw (C) = I1(C)+I2(C)+I3(C). The apex height and non-scuffing
is realized by I1(C) = 1

2 (1− cos(
C

2c))) (I
max
sw + )4 Eimp), where Imax

sw is the apex height
and ) is the fixed duration. ) = )SSP since the DSP is instantaneous. Note that
¤I1(C = )) = 0. I2(C) is shown in Fig. 5.2 to realize the impact velocity Eimp < 0.
Lastly, I3(C) = C

)
I
neg
sw with Inegsw < 0 being a small value to ensure the actual toe

strikes the ground under the feedback control.

Forward Trajectory of the Swing Toe: The construction of the desired forward po-
sition of the swing toe is to realize the H-LIP based stepping controller, which
calculates the desired step size Ddes given the current horizontal COM state in the
SSP. Recall that the desired forward trajectory of the swing toe (w.r.t. the stance
toe) is constructed from the initial lift-off position to the final position to have the
desired step size:

Gdessw (@, C) = (1 − Bℎ (C))G+sw + Bℎ (C)Ddes, (5.4)

where G+sw is the initial position of the swing toe at the current step. Recall that
Bℎ (C) is a Bézier polynomial function increasing from 0 to 1 within the period ) .

Output Stabilization: Given the output construction, we apply the feedback con-
troller in Chapter 2 for stabilizing the outputs Y → 0.

Figure 5.2: Trajectory construction on the swing toe of AMBER.
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Figure 5.3: An example of a P1 realization to E3 = 0.5 (m/s): (a) the stick figures
of the simulated walking, (b) the convergence of the orbits (blue) in terms of the
forward COM state compared with the orbit (black) of the H-LIP, (c, d) the forward
COM state trajectories vs time, and (e) the output tracking with the red indicating
the desired trajectories and the blue indicating the actual trajectories.

5.3 Results and Conclusion
Based on the output construction, the parameters which determine the walking
behavior are the height of the COM IdesCOM, the torso angle qdestorso, the duration
of walking ) , the apex height of the swing toe Imax

sw , and the impact velocity of
the swing toe Eimp. We evaluate the approach in simulation. The dynamics is
integrated via MATLAB ODE 45 function with event-based triggering for contact
detection. The optimization-based controller here is formulated via TSC-QP and
solved via QPOASES [38] at 1kHZ. The robot starts from a static configuration at
the beginning of a SSP where GCOM = 0. The simulation results can be seen in
https://youtu.be/Dwz5iGDrO_w.

The walking task is considered as achieving a certain periodic walking behavior
on the horizontal COM states of the walker, which is realized by the H-LIP based
stepping controller. We first specify the desired walking speed E3 and select the
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types of orbits of the H-LIP for realization. The H-LIP is first stabilized to the
desired behavior via its stabilization. Then the H-LIP based stepping controller is
applied to determine the desired step size. The output of the forward position of the
swing toe is then constructed in Eq. (5.4). The rest of the outputs are constructed
identically regardless of the desired behaviors.

P1 Orbit Realization: We first evaluate the H-LIP based walking synthesis to gen-
erate P1 walking on the walker to achieve different desired walking velocities E3

from -1 (m/s) to 1 (m/s) with a 0.2 (m/s) increment. The free chosen parameters
are ) = 0.4s, IdesCOM = 0.65m, Eimp = −0.1 (m/s), and qtorso = 0◦. The maximum
walking speed is limited by the maximum step size (size of the walker and the
chosen COM height) and the step frequency 1

)
. All walking behaviors with different

desired velocities are realized and stabilized from the static configuration. Fig. 5.3
shows an example of the realization. The walking converges to a periodic orbit.
The shape of the converged orbit does not align exactly with the orbit of the H-LIP
since the actual dynamics between the two are not the same, which is expected. The
converged walking velocity is close to the desired one, shown in Fig. 5.4.

P2 Orbit Realization: The realization of P2 orbit is also evaluated. We select the
desired velocity to change from -0.5 (m/s) to 0.5 (m/s) with a 0.2 (m/s) increment.
The free chosen parameters are the same as those in the P1 realization. One step
size is chosen as 0.1 m to determine the desired P2 orbit. The obvious characteristic
of the P2 orbit is that it has two different alternating step sizes. Fig. 5.5 shows one
simulated walking. The walking also converges to an orbit quickly. Even though
the shape of the orbit is still not identical to the orbit of the H-LIP, it converged to
its own P2 orbit. Various walking behaviors are thus realized.

Conclusion: In this chapter, we demonstrated the H-LIP based walking synthesis

Figure 5.4: (a) The converged boundary velocities (red) of AMBER compared
with that of the H-LIP (blue). (b) The convergence of the state error between the
translational state of AMBER and that of the H-LIP.
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Figure 5.5: An example of a P2 realization to E3 = 0.5 (m/s): (a) the stick figures
of the simulated walking, (b) the convergence of the orbits (blue) in terms of the
forward COM state comparing with the orbit (black) of the H-LIP, and (c, d) the
forward COM state trajectories vs time.

on the five linkage walker AMBER, where the underactuation is on the point foot
contact. The horizontal dynamics of the COM in the continuous phase obviously is
not the same as that of the H-LIP. Additionally, the impact is not trivial, which does
not match the smooth transition assumption on the H-LIP. Thus the horizontal S2S
dynamics of the walker is not the same as the S2S dynamics of H-LIP. Since the
steppingmakes sure that the state error is bounded in the disturbance invariant set, the
walking on the walker can be realized to approximately follow the desired walking of
the H-LIP. Even though the realized orbit is not the same, the walking is stabilized to
the desired walking velocity approximately. No trajectory optimization is performed
and all the walking behaviors are generated continuously. More importantly, the
walking parameters such as the vertical COM and the step frequency can be changed
without any modifications of the approach. In the latter chapters, we will evaluate
this approach on more complex systems in more depth.
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C h a p t e r 6

APPLICATION ⊃ ACTUATED SLIP

In this chapter, we present the application of theH-LIP based synthesis for generating
walking on an Spring Loaded Inverted Pendulum (SLIP) model. Recall in Chapter
1 that the SLIP model has been widely studied in the biomechanics community for
understanding the dynamics of human locomotion [44]. In robotic locomotion, it
has also inspired robot designs [4, 58], [101] and control methodologies [42], [101],
[55] for generating dynamic behaviors on bipedal robots.

Here, we add actuation and damping on the canonical SLIP model [44, 109] so
that energy conservation can be avoided in order to easily create versatile walking
behaviors. Our motivation of this modification comes from controlling jumping on
the robot Cassie [138, 144]. It has also been shown to effectively approximate this
class of SLIP-like robots such as ATRIAS [106] and Cassie [138] in the literature
[26, 107, 125]. Similar modifications of the SLIP by adding leg length actuation
can also be found in [48, 77, 94, 106, 119]. For the spring, we can let the stiffness
and damping be constants or be nonlinear functions of the length of the leg, which
comes from the specific leg spring on Cassie; see Appendix B. We name this SLIP
in this thesis as the actuated Spring Loaded Inverted Pendulum (aSLIP) and the
robots that it approximate as the aSLIP-like robots. Both the planar and 3D versions
of aSLIP are studied.

We start by describing the mechanics model of the aSLIP and its hybrid dynamics
model of walking in Section 6.1. Then, we apply the H-LIP based walking synthesis
to generate walking on the aSLIP model. Unlike the robot AMBER where the
vertical COM can be directly controlled, the vertical position of the mass of the
aSLIP cannot be easily controlled as an output via the optimization-based controllers
in Chapter 1. To solve this problem, we present an indirect approach in Section 6.2
and a direct approach in Section 6.2 to realize the H-LIP based synthesis on the
aSLIP.

6.1 Model
The canonical SLIP model [39] is consisted by a point mass and two spring-loaded
legs. The spring has no damping, and hence the system is energy-conservative. The
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Figure 6.1: (a, b) The aSLIP model in 2D and in 3D, and (c) the aSLIP-like robots
ATRIAS, Cassie, and Digit (Photo by Dan Saelinger).

aSLIP [138, 139] is an actuated SLIP with leg length actuation and damping. The
dynamics of its point mass is

< ¥P =
∑

F + <g, (6.1)

where< is the mass of the aSLIP, P is the position vector of the point mass, F = FL/R

are the leg forces on the left and right legs, and g is the gravitational vector. The
leg force is assumed to be zero when the leg is not in contact with the ground. The
magnitude of the leg force is

|FL/R | = KB + D ¤B, (6.2)

where B is the spring deformation, and K and D are the stiffness and damping of the
leg spring, respectively. The dynamics of the whole system can also be written in
polar coordinates. For instance, the dynamics of the aSLIP in 2D in the SSP are

¥A = �
<
− 6cos(V) + A ¤V2, (6.3)

¥V = 1
A
(−2 ¤V ¤A + 6sin(V)), (6.4)

¥B = ¥! − ¥A, (6.5)

where V is the leg angle, ! is the (uncompressed) leg length, and A is the distance
between the point mass and the point of contact, i.e. the real leg length. Eq. (6.5)
comes from the holonomic constraint that B = ! − A. Fig. 6.1 shows the aSLIP
model with its leg parameters. The complete expressions of the dynamics in the
polar coordinates can be found in the Appendix A.

Actuation: There are a wide variety of actuated versions of the SLIP [76, 77, 94, 97]
proposed in the literature for controlling robotic hopping, running, andwalking. The
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forms of actuation are added in the leg to make better correspondences to the robotic
systems. For this aSLIP, the actuation on the leg is in the form of changing the leg
length. This comes from the physical design of the bipedal robot Cassie [139], which
will be carefully explained in Chapter 7 and Appendix B. Mathematically, as a result
of simplification on the aSLIP, we define the actuation as g = ¥!. Additionally, the
step size D = [DG , DH]) is another input of the system. Since the legs have no inertia,
the step size can be set directly. In the literature, this has also been equivalently
referred to touch-down angle of the swing leg [101, 126]. Lastly, it is obvious that
the number of control inputs is much less than the DoFs of the model, which means
that the aSLIP is highly underactuated.

Comparison to Canonical SLIP: Themain differences of the aSLIP compared to the
canonical SLIP are two folds. First, the aSLIP has damping for energy dissipation.
Second, the actuation is enabled via the change of the leg length ¥!. The aSLIP that
comes from Cassie has nonlinear leg springs, where the stiffness and damping are
functions of the leg length !, i.e., K(!),D(!); we can also set K,D to be constants
for generality.

Hybrid Model of Walking: The aSLIP model can generate both hopping/running or
walking behaviors. In terms of walking, the behavior can be modeled as a hybrid
dynamical system with two domains, i.e. the SSP and the DSP, depending on the
number of legs contacting the ground. The transition from the DSP to the SSP
happens when the ground reaction force on one leg reaches 0; the transition from
the SSP to the DSP happens when the swing foot strikes the ground, i.e., the state
of the system transverses the switching surface, which is defined by

S = {G@ ∈ R= |Isw(G@) = 0, ¤Isw(G@) < 0}, (6.6)

where G@ describes all the states of the aSLIP, and Isw(G@), ¤Isw(G@) are the verti-
cal position and velocity of the swing toe, respectively. The impact map and its
assumptions can be found in the Appendix A.

6.2 Indirect Approach via Trajectory Optimization
In this section, we present the indirect approach via trajectory optimization to assist
the realization of the H-LIP based walking synthesis on the aSLIP model. This
indirect approach is primarily inspired by [106], where a hand-designed periodic leg
length actuation is used to realize 3D walking with Raibert style stepping controller
[101]. Here, we demonstrate that by optimizing a stepping-in-place motion and
perturbing it by changing the step size based on the H-LIP based stepping, desired
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walking motion can be continuously generated. Compared to the application in
Chapter 5 on AMBER, this indirect approach does not directly control the vertical
COM or the vertical swing foot position. The realization of the H-LIP based
synthesis is indirectly implemented by the repetition of the periodic leg length
actuation.

Trajectory Optimization for Stepping-in-place
The trajectory optimization problem is formulated using direct collocation [56, 59]
to find an optimal periodic solution for the aSLIP walking. The method is similar
for 2D and 3D-aSLIP. In general, the trajectory optimization problem can be written
as

0∗ = argmin
0

#∑
8=1

ΔC

2
�walking (6.7)

s.t. 0min ≤ 0 ≤ 0max, (6.8)

cmin ≤ c(0) ≤ cmax, (6.9)

where � is the cost function, 8 is the indexing for the discretized optimization
variables, # is the number of nodes, ΔC is the time discretization, 0 represents all
the optimization variables, and c includes all the constraints. The discretization and
integration methods are identical to these in [59, 138]: an even nodal spacing is used
for discretizing the trajectory in time for each domain, and the defect constraints
are described algebraically by implicit trapezoidal method. As we are interested
in generating a periodic stepping-in-place motion (walking with zero velocity),
continuity of states between the consecutive domains are enforced. As for the cost
function, we find that it is desirable to minimize the virtually consumed energy on
the aSLIP by defining the cost as

�walking = ¥!8
2

L + ¥!
82

R , (6.10)

where 8 is the index of the nodes, and the subscript L and R again stand for the left
and right leg, respectively. Additionally, the following constraints are included in
Eq. (6.9).

Dynamic Constraints: The dynamics of the aSLIP are enforced via equality con-
straints via the trapezoidal integration method.

Task Constraints: The walking velocity is specified via the step size D by

D = E3), (6.11)
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where E3 is the desired net velocity and ) = )SSP +)DSP is the domain duration. For
stepping-in-place motion, E3 = 0. The domain durations are also be constrained by

)max ≥ )DSP/SSP ≥ )min. (6.12)

Physical Constraints: The leg length should be in a physically feasible range:

!max ≥ !8 ≥ !min. (6.13)

The spring deformations are positive and limited by the maximum deformation, thus

Bmax ≥ B8 ≥ 0. (6.14)

Additionally, the leg forces at contact should be non-negative:

�8 ≥ 0. (6.15)

Domain Constraints: The aSLIP transits from the DSP to the SSPwhen the previous
stance foot is about to lift off. This is encoded by

�#DSP = 0, (6.16)

where #DSP is the last index on the optimization variables in the DSP. It transits
from the SSP to the DSP when the swing foot strikes the ground:

I
#SSP
sw = 0, ¤I#SSP

sw < 0, (6.17)

where #SSP is the last index on the optimization variables in the SSP. Additionally,
to ensure the motion is periodic, the continuity of the states between the domains
should be enforced:

<#DSP = <1SSP , <1DSP = Δ(<#SSP), (6.18)

where 1SSP/DSP refers to the first index on the optimization variables in the DSP/SSP,
and Δ represents the impact map from the SSP to the DSP; again see details in
Appendix A.

The optimization problem is solved using IPOPT [128]. Fig. 6.2 shows an opti-
mization result for a walking gait with )SSP = 0.5B, )DSP = 0.15B. Note that the
optimization for generating a periodic walking is performed only once.



54

Figure 6.2: An example of the optimized walking on the 2D aSLIP in terms of the
trajectories of the leg length (a), system energy (b), leg forces (c) and mass height
(d).

Walking Generation via H-LIP based Stepping
The optimized trajectory can be viewed as a nominal walking behavior. Due to the
high degrees of underactuation, it is not possible to control all states of the aSLIP to
completely follow the nominal ones. To realize the optimized walking behavior and
also consider the application of the H-LIP based walking synthesis, we choose the
leg length as the output and control the step location to make sure that the horizontal
state of the aSLIP evolves to the desired behavior. As the leg length is controlled to
extend and contract periodically, the periodic lift-off and touch-down of the aSLIP
can be preserved as long as the step location is reasonably selected.

Leg Length: The optimized trajectory of the leg length ! (C)des is used as the desired
output trajectory. As we assume the ¥! are the inputs, trajectory tracking of the leg
length is realized via the linear feedback controller:

¥! = ¥!des(C) −  !? (! − !des(C)) −  !3 ( ¤! − ¤!
des(C)), (6.19)

where  !? ,  !3 are the PD feedback gains on the leg length controller.

Step Location: Since the swing leg of the aSLIP in the SSP has no dynamics, the
step size can be directly set to the desired value. Similar to Eq. (5.4) in Chapter 5,
the following smoothing is used to transit the swing leg to the desired step size so
that the swing leg angle changes smoothly:

Gdessw (C) = (1 − Bℎ (C))G+sw + Bℎ (C)Ddes, (6.20)

where Gdessw (C) is the desired swing foot position relative to the stance foot in the SSP,
Ddes is the desired step size from the H-LIP based stepping controller in Eq. (3.17),
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Bℎ (C) again is the Bézier polynomial from 0 to 1 with appropriate timing, and G+sw
is the initial swing toe position at the current step.

Realization: Before realizing the proposed approach, we outline the procedures
here. The aSLIP is simulated from the initial state of the optimized stepping-
in-place motion. The leg length is controlled to follow the optimized periodic
trajectory. Given a desired walking behavior, the desired pre-impact state of the
H-LIP is calculated. Then, the H-LIP based stepping is continuously calculated to
provide the desired step size in the SSP. The leg angle is set to realize the step size.

Nowwe apply the proposed approach for continuously generatingwalkingmotion on
the aSLIP model. We first present the results on the 2D-aSLIP model with both P1
and P2 orbits as the target orbits. The performance of the H-LIP stepping controller
is also evaluated. We then compare the H-LIP based stepping with the canonical
Raibert style stepping controller [101, 106]. Lastly, we realize the approach to
generate walking on the 3D-aSLIP via two decoupled H-LIP stepping controllers in
the G − I and H − I planes.

Figure 6.3: P1 orbit stabilization: (left) the time-lapse figures of walking from
stepping-in-place to various speeds, and (right) the phase plots of the mass state
[?, E] of the walking. The black orbits indicate the desired orbits of the H-LIP for
the same velocities, and the blue curves are the state trajectories of the aSLIP.
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Figure 6.4: P2 orbit stabilization: (left) the time-lapse figures of walking from
stepping-in-place to various speeds, and (right) the phase plots of the mass state
[?, E] of the walking. The black orbits indicate the desired orbits of the H-LIP for
the same velocities, and the blue curves are the state trajectories of the aSLIP.

Results on 2D-aSLIP Walking Generation
Here, we demonstrate that both P1 and P2 orbits can be stabilized with negligible
velocity errors. The stepping-in-place motion represents the origin of the H-LIP in
its state space. The H-LIP based stepping stabilizes the aSLIP walking smoothly
from the origin to different orbits with different speeds. Fig. 6.3 and 6.4 show the
stabilization of the aSLIP walking from 0 m/s to P1 and P2 orbits with different
velocities. The aSLIP walks to the desired orbit of the H-LIP closely. Fig. 6.5
illustrates the convergence of the stabilization for two walking simulations in terms
of the leg forces, velocities, domain durations, and step sizes.

Since the leg length repeats the same trajectory from the stepping-in-place motion,
the sum of the durations of the SSP and the DSP is guaranteed to be consistent
across any orbits that are generated from the stepping controller. It is expected that
the leg internal behavior varies smoothly w.r.t. the variation of the forward velocity,
so is the whole system behavior. Fig. 6.6 shows the stabilization to P1 orbits with
velocities from 0.1 − 0.9 m/s. The converged )SSP ↘ smoothly and the step size
D ↗, as E3 ↗ smoothly. All converged velocity errors are within 10%, indicating
the success of gait generation and stabilization via H-LIP base approach.
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Figure 6.5: (a) The leg forces � v.s. time of the P1 walking in Fig. 6.3 with
E3 = 0.3m/s. (b) The duration of the SSP )SSP, (c) the mass velocity ¤G, and (c) the
step size D v.s. time of the walking of the aSLIP; the red indicates the walking of
P1 orbit with E3 = 0.5 (m/s), and the blue indicates the walking of P2 orbit with
E3 = 0.2 (m/s).

Comparison with Raibert controller: We also compare the H-LIP stepping stabi-
lization with canonical Raibert style stepping controller [97, 101], in the form of
D3 = D0 +  ? (E: − E3) +  3 (E: − E:−1), where D0 is the nominal optimized step
size,  ?,  3 are the tunable proportional and derivative gains and :, : − 1 index the
current step and previous step. The optimal  ∗? = 0.1832 is chosen from the H-LIP
stepping in Eq. (4.15), (4.21); the  3 is set within [−0.04, 0.04]. The applied step
size is used as the criterion on the stabilization. As the results in the figure indicate,
it is not evident if the derivative term can improve the stabilization. The observation

Figure 6.6: (a) The time-lapse figures of walking from stepping-in-place to various
speeds. (b) The phase plots of the mass state [G, ¤G] of the walking. The black orbits
indicate the desired orbits of the H-LIP for the same velocities.
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Figure 6.7: The step size D under the Raibert controller with different gains.

is that: the H-LIP can already stabilize the system; secondly, inappropriate selection
of  3 can destabilize the system. Thus, the additional derivative term may be a
placebo that has existed in previous literature. It may be useful in practice to deal
with the imperfection of the noises on the hardware; however, in our realization of
the approach on the hardware of Cassie in Chapter 8, we do not see the necessity of
adding the derivative term.

Results on 3D-aSLIP Walking Generation
To realize 3D walking on aSLIP, we first select and compose P1 and P2 orbits of
the H-LIP into 3D. Two types of orbits in two planes (G − I and H − I) provide three
possible combinations, i.e., two P1 orbits in 3D (P1-P1), two P2 orbits (P2-P2), and
one P1 and one P2 orbit (P1-P2). In order to avoid kinematic collisions between
the feet, the nominal step size should be non-trivial. Thus P1-P1 is not possible to
realize; step sizes are 0 for zero speed walking, which creates violations. P2-P2 and
P1-P2 can be realized. More about the orbit composition can be seen in Chapter 7
for the application on the 3D robot Cassie.

To illustrate the process, we use the P1-P2 composition as an example. Suppose
the desired 3D walking behavior is to walk forward with 0.3m/s speed. A P1 orbit
is selected in the G − I plane with E3 = 0.3m/s. A P2 orbit is selected in the H − I
plane with E3 = 0m/s. One of the nominal step sizes for the P2 orbit is selected to
determine the P2 orbit. Given the desired behaviors of the H-LIPs, we apply the
stepping controller in Eq. (3.17) to generate desired step sizes in G − I and H − I
planes separately for the aSLIP.

Similarly, we let the 3D-aSLIP start from the stepping-in-place walking, which is
obtained via another trajectory optimization problemon the 3D-aSLIP. The actuation
of the leg length remains periodically without modification. Executing the step sizes
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Figure 6.8: An example of the generated 3D periodic walking: (a-b) horizontal
trajectories of the mass vs time (the red indicates the velocities in the DSP), (c) the
vertical trajectory of the mas, (d) the leg length tracking (the red and blue are the
desired and actual !, respectively), and (e) the phase portraits of the mass (blue) in
the G − I plane (e-x) and H − I plane (e-y) comparing to the desired orbits of the
H-LIP (black).

from the stepping controller perturbs the stepping-in-place walking into desired 3D
walking. Fig. 6.8 shows the simulation result. The aSLIP starts to execute the
forward walking at C = 3s. As indicated in the phase plot in Fig. 6.8 (d1-d2), the
translational states of the aSLIP converge closely to the desired P1 and P2 orbits of
the H-LIP in each plane. 3D walking is thus generated on the aSLIP.

6.3 Direct Approach via Backstepping Barrier Functions
The indirect approach was first realized in our previous publication [141, 143].
Later, we developed a direct approach to directly control the vertical COM of the
aSLIP so that the H-LIP based walking synthesis can be easily realized on the
highly underactuated system of the aSLIP. Moreover, in Chapter 10, we will show
that the direct approach can be applied with the H-LIP to realize walking of the
aSLIP on rough terrain. In the following, we will present the Backstepping Barrier
function based Quadratic Program (BBF-QP) for directly controlling the vertical
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COM state of the aSLIP, and then present the results to realize the aSLIP walking
via the H-LIP based synthesis. The periodic vertical trajectory of the swing foot
Isw = I − !swcos(Vsw) is controlled via a feedback linearizing controller. Similar
to that on AMBER in Chapter 5, its desired trajectory is simply constructed to be
Idessw = Imax

sw cos( C
)SSP

c − 1
2c), where I

max
sw > 0 is chosen to avoid scuffing.

Backstepping-Control Lyapunov Function for Vertical Stabilization
In this part, we present the dynamics structure of the vertical mass state in each
domain. Then, we show the canonical Lyapunov backstepping that guarantees to
stabilize this class of control problem. Lastly, we formulate a control Lyapunov
backstepping, which yields an inequality condition for the control and opens oppor-
tunities to include extra constraints on the input in an optimization.

Strict-feedback Form of the Vertical State: The objective is to drive the vertical
position of the mass to follow a desired trajectory. We define the output as

[ :=

[
I − Ides(C)
¤I − ¤Ides(C)

]
, (6.21)

where [Ides(C), ¤Ides(C)] is the desired vertical trajectory for the point mass of the
aSLIP to follow. For walking on flat ground, Ides is a constant. Differentiating the
output yields the output dynamics:

¤[ = 5[ + 6[�SSP/DSP
I , (6.22)

5[ :=

[
¤I − ¤Ides

−g − ¥Ides

]
, 6[ :=

[
0
1
<

]
. (6.23)

�SSP/DSP
I is the net vertical force in each domain:

SSP: �SSP
I = �Bcos(VB), (6.24)

DSP: �DSP
I = �B1cos(VB1) + �B2cos(VB2), (6.25)

where the stance leg is denoted by the subscript B. Recall V is the leg angle. We
view �SSP/DSP

I as the fictitious input to this system in Eq. (6.22). Differentiating
�SSP/DSP
I yields the affine dynamics with the actual actuation of the leg length as the

input. The dynamics are different in the SSP and DSP:

¤�SSP
I = 5 SSPI + 6IgSSPI , (6.26)
¤�DSP
I = 5 DSPI + 6IgDSPI , (6.27)
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where 6I = D ≠ 0, and,

gSSPI := cos(VB)gB, (6.28)

gDSPI := cos(VB1)gB1 + cos(VB2)gB2 . (6.29)

The expressions of 5 SSPI and 5 DSPI are omitted. gSSP/DSPI represents the vertical
component of the leg length actuation. The leg angles V ∈ (− c2 ,

c
2 ), thus given a

desired gSSP/DSPI , there always exists leg length actuation for realization. Note that
the desired gDSPI is not uniquely realized by the leg length actuation gB1 and gB2 . Note
that here we use gB represent the leg length actuation on the stance leg in the SSP,
and thus gB1 and gB2 represent the leg length actuation on the two stance legs in the
DSP.

As a result, for walking in both domains, we can synthesize gI ∈ R to stabilize the
vertical trajectory of the mass based on the dynamics in the strict-feedback form
[66]:

¤[ = 5[ + 6[�I,
¤�I = 5I + 6IgI .

(6.30)

(6.31)

Lyapunov Backstepping: Lyapunov Backstepping [67] can be applied to stabilize
the dynamics in Eq. (6.30) and (6.31). For the dynamics in Eq. (6.30) with �I
being the input, a feedback linearization controller can be synthesized:

�̄I =
1
6[2
(− 5[2 +  IO[), (6.32)

where  IO = [ ?,  3] is the linear feedback gain and the subscript 2 indicates the
second element of the vector. This yields the linear closed-loop dynamics:

¤[ = 5[ + 6[�̄I =
[

0 1
 ?  3

]
[ := �2;[. (6.33)

Thus  IO is chosen with  ? < 0,  3 < 0 so that �2; is stable (with negative
eigenvalues). On the closed-loop dynamics, a Lyapunov function can be found:
+[ = [

)%[, with % > 0 (being positive definite). % satisfies the continuous-time
Lyapunov function %�2; + �)2;% = −&, where & > 0 is selected. It is easy to verify
that:

¤+[ = −[)&[ ≤ −_min(&) | |[ | |2, (6.34)

where _min(&) is the smallest eigenvalue of the matrix &.
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To synthesize the actual control from gI to stabilize [→ 0, we define

�X := �I − �̄I, (6.35)

and the Lyapunov function to be

+ ([, �I) = +[ +
1
2
�2
X . (6.36)

Differentiating this yields

¤+ ([, �I) =
m+[

m[
( 5[ + 6[�I) + �X ¤�X

=
m+[

m[
( 5[ + 6[�̄I) +

m+[

m[
6[�X + �X ¤�X

= ¤+[ +
m+[

m[
6[�X + �X ¤�X (6.37)

≤ −_min(&) | |[ | |2 +
m+[

m[
6[�X + �X ¤�X . (6.38)

If we choose

¤�X = −
m+[

m[
6[ − :�X, (6.39)

with : > 0, then

¤+ ([, �I) ≤ −_min(&) | |[ | |2 − :�2
X

≤ −min(_min(&), :) | | [[) , �X]) | |2. (6.40)

By Lyapunov’s method, the system with ([, �X) as states is exponentially stable to
the origin ([, �X) = (0, 0). This provides a closed-form Backstepping controller on
gI from Eq. (6.39). Since ¤�X = 5I + 6IgI − ¤̄�I, the controller is

gI =
1
6I
(−
m+[

m[
6[ − :�X + ¤̄�I − 5I). (6.41)

Backstepping-CLF: The closed-form controller in Eq. (6.41) appears to be able
to stabilize [ → 0. However, the resultant leg force �I can be negative, which is
not valid for walking. Here we develop the control Lyapunov function (CLF) of
the backstepping to provide an inequality condition on the input gI for stabilizing [.
The inequality motivates an optimization-based controller, in which the condition of
non-negative leg forcing can be enforced via additional constraints, e.g., the control
barrier function (CBF) in the next part.
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Note that ¤+ is an affine function w.r.t. the input gI:

¤+ ([, �I) = ¤+[ +
m+[

m[
6[�X + �X ( 5I + 6IgI − ¤̄�I)

= ¤+[ +
m+[

m[
6[�X + �X ( 5I − ¤̄�I) + �X6IgI .

The exponential stability can be established via enforcing

¤+ ([, �I) ≤ −W+ ([, �I), (6.42)

with some chosen W > 0. This yields a Backstepping-CLF inequality:

�
Backstepping
CLF gI ≤ 1BacksteppingCLF , (6.43)

where �BacksteppingCLF := �X6I, 1BacksteppingCLF := − ¤+[−
m+[
m[
6[�X−�X ( 5I− ¤̄�I) −W+.When

�X ≠ 0, Eq. (6.43) is a constraint on gI. When �X = 0, the inequality becomes
¤+[ ≤ −W+ = −W+[, which is automatically satisfied as long as 0 ≤ W ≤ _min (&)

_max (%) .
As a result, as long as gI satisfies the backstepping-CLF inequality, [ exponentially
converges to 0. Note that this inequality is an affine condition on gB in SSP or gB1
and gB2 in DSP as indicated by Eq. (6.28). Thus, in the next part, we will formulate
quadratic program (QP) based controllers that include the inequality in Eq. (6.43)
with the incorporation of the control barrier functions.

Control Barrier Functions for Walking
In the application of walking, the leg forces should be positive during contact.
Moreover, in the DSP, one leg force should gracefully cross 0 to initiate lift-off.
These conditions can be described via sets and thus be enforced via control barrier
function (CBF) with an inequality condition that guarantees set invariance on the
dynamics. We start by introducing the CBF, show the application for the walking
of the aSLIP, and finally integrate it with the Backstepping-CLF to formulate the
final backstepping-barrier function based quadratic program (BBF-QP) controllers
for walking.

Control Barrier Functions: The control barrier function [11] describes a condition
for control input that guarantees for set invariance. We consider a super level set
C of a continuously differentiable scalar function ℎ : R= → R. By definition:
C = {G ∈ R= |ℎ(G) ≥ 0}. Here we use G for a general state representation, instead
of the horizontal position of the aSLIP. ℎ is a control barrier function for the affine
control system ¤G = 5 (G) + 6(G)D if

sup
D∈*
[L 5 ℎ(G) + L6ℎ(G)D + U(ℎ(G))] ≥ 0, (6.44)
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where L 5 ℎ(G) = mℎ
mG
5 (G) and L6ℎ(G) = mℎ

mG
6(G) are the Lie derivatives; L 5 ℎ(G) +

L6ℎ(G) = ¤ℎ(G). * is the set where the input D is in, and U(·) is an extended class
K∞ function1. This condition indicates that there exists an input to stabilize the set
C, i.e., making sure ℎ(G) ≥ 0. If the state is in C, it will stay in the set forever if the
CBF inequality is satisfied:

L 5 ℎ(G) + L6ℎ(G)D ≥ −U(ℎ(G)). (6.45)

This makes sure that the lower bound of the derivative ¤ℎ is increasing with the
decrease of ℎ. It can be proven that the set C is exponentially stable under this
condition [11].

CBF for aSLIP Walking: Eq. (6.45) represents an inequality constraint on the
input to make sure that ℎ ≥ 0, for which ℎ is defined differently for the walking in
the SSP and the DSP.

SSP: The stance leg force �B should be non-negative, so is its vertical component
�SSP
I . Thus, we let

ℎB = �
SSP
I , ¤ℎB ≥ −U(ℎB), (6.46)

which provides an inequality on the input gB:

�BCBFgB ≤ 1
B
CBF, (6.47)

�BCBF := −6Icos(VB), (6.48)

1BCBF := 5 SSPI + U(ℎB), (6.49)

where we simply select U(·) to be a linear function, i.e., U(ℎB) = UℎB This inequality
naturally fits with the Backstepping-CLF inequality in Eq. (6.43) to formulate a
backstepping-barrier function based quadratic program (BBF-QP) controller:

(gB, X) = argmin
(gB ,X)∈R2

g2
B + X2

s.t. �
Backstepping
CLF gSSPI ≤ 1BacksteppingCLF + X,
�BCBFgB ≤ 1

B
CBF,

(6.50)

where X is a relaxation variable to avoid infeasibility, similar to that in the CLF-QP
in Chapter 2. In the case when the CBF constraint violates the Backstepping-CLF
constraint, the Backstepping-CLF constraint is relaxed and the CBF constraint is
still enforced.

1U : R→ R, U(0) = 0 and U is strictly monotonically increasing.
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DSP:Both leg forces should remain non-negative. The leg force on B2 should remain
non-negative through out the DSP. Thus ℎB2 = �B2 and the CBF inequality is

�
B2
CBFgB2 ≤ 1

B2
CBF. (6.51)

The leg force on B1 should gradually decrease and reach to zero to trigger the
transition into the next SSP. Let �0

B1 be the leg force on B1 in the beginning of the
DSP. A desired leg force trajectory can be designed: �3B1 (C) = �

0
B1 (1 −

C
)DSP
). One

may consider to design a feedback controller to drive �B1 → �3B1 . However, this
creates high restriction on gB1 and can lead to conflict between the Backstepping-CLF
inequality in Eq. (6.43) and the CBF inequality in Eq. (6.51).

To decrease �B1 in a relaxed fashion, we create the inequality condition: (1−2)�3B1 ≤
�B1 ≤ (1 + 2)�3B1 , where 2 ∈ (0, 1) is a relaxation coefficient. As shown in Fig.
6.9, this generates an admissible force region (indicated by the blue region), which
decreases as the desired force �3B1 decreases with time. This two inequalities can
be converted into a single inequality: ℎB1 = (2�3B1)

2 − (�B1 − �3B1)
2 ≥ 0. Note that

this barrier function is ill-defined as �3B1 approaches to 0 (the set C becomes trivial).
Thus we increase the relaxation by adding a positive value Δ� in the inequality:

(1 − 2)�3B1 − Δ� ≤ �B1 ≤ (1 + 2)�3B1 + Δ�, (6.52)

which generates the red admissible region. By defining

ℎB1 = (2�3B1 + Δ�)
2 − (�B1 − �3B1)

2 ≥ 0, (6.53)

the set C is always non-trivial before lift-off. Thus we have another CBF inequality:
�
B1
CBFgB1 ≤ 1

B1
CBF.

Similarly, the two CBF inequalities are incorporated with the Backstepping-CLF
inequality to formulate the final BBF-QP controller for the walking in DSP:

(gB1 , gB2 , X) = argmin
(gB1 ,gB2 ,X)∈R3

g2
B1 + g

2
B2 + X

2

s.t. �
Backstepping
CLF gDSPI ≤ 1BacksteppingCLF + X
�
B1
CBFgB1 ≤ 1

B1
CBF, �

B2
CBFgB2 ≤ 1

B2
CBF.

(6.54)

Despite the complexity in the derivation, the BBF-QPs are designed simply to
stabilize the vertical position of themass to the desired trajectory and simultaneously
satisfy the conditions on the leg forces during walking.
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Figure 6.9: Contact force condition for lift-off in the DSP (the red region represents
the admissible region for the leg force).

Results
The control procedure with the chosen parameters is presented in Algorithm 2. The
stepping gain  in Eq. (3.17) is chosen to be the deadbeat gain. The BBF-QP
controller is solved at 1kHz. The aSLIP starts from an initial static configuration
and walks to a desired pre-impact velocity E∗, which is chosen based on the orbits
of the H-LIP. The aSLIP parameters are chosen to match with the robot Cassie1. A
video of the results can be seen in https://youtu.be/fUZu6y-Gu4g.

Algorithm 2 BBF-QP with H-LIP based Walking Synthesis
Initialization: Behavior: I0 = 1m, )SSP = 0.4s, )DSP = 0.1s. Control: U = 500,
W = 10, : = 10, 2 = 0.5, Δ� = 20.
while Simulation/Control loop do
if SSP then
Desired step size← H-LIP stepping in Eq. (3.17).
Desired swing foot position← Eq. (6.20).
g ← BBF-QP in Eq. (6.50)

else
g ← BBF-QP in Eq. (6.54)

end if
end while

We evaluate the approach for walking on flat ground to different desired velocities.
Fig. 6.10 shows the results. The aSLIP converges closely to the desired walking of
the H-LIP. The leg forces behave as expected. Fig. 6.10 (c) shows the trajectories
of the horizontal velocity, which are not constant in the DSP. This contributes to
the error F. We numerically calculate all F for different walking simulations and

1< = 33kg, and K = 8000N/m, D = 100Ns/m, which are the nonlinear leg spring parameters of
Cassie at ! ≈ 1m; see Appendix B. The spring is chosen to be linear for generality.
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Figure 6.10: Walking using direct synthesis via BBF-QP: (a) the phase portrait of
the horizontal state trajectory (blue) in the SSP for walking with E∗ = 0.5m/s, and
the black is the corresponding orbit of the H-LIP (green lines are the orbital lines,
(b) the leg forces during walking with the gray region being the admissible region in
the DSP; (c) the walking velocity and (d) the trajectories of the discrete error state
e: = [4?, 4E]) of walking with different E∗ = 0.2, 0.5, 0.8m/s (indicated by dashed
lines in (c)).

inner approximate, by a square. Since (� + � )2 = 0, � = , ⊕ (� + � ), ; we
get an inner approximation of � (shown in Fig. 6.10 (d)), and all the error states e
are inside � , which validates the proposed approach of the H-LIP based stepping
in Chapter 3. It is also important to note that, similar to the indirect synthesis on
3D-aSLIP, the direct synthesis via BBF-QP can be readily applied to 3D-aSLIP with
two orthogonal planar stepping stabilizations via the H-LIP.

6.4 Conclusion
In this chapter, we demonstrate the application of the H-LIP based walking synthesis
on the aSLIP model. Unlike the five-linkage walker AMBER, the realization on
the aSLIP involves a higher level of complexity that comes from the underactuation
of the springs in the leg. Both an indirect and a direct approach are proposed to
address this spring underactuation. In the next chapter, we will see a similar but
increasing complexity on the robot Cassie, and the proposed approaches here then
become useful.
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C h a p t e r 7

APPLICATION ⊃ 3D UNDERACTUATED BIPEDAL ROBOT
CASSIE

In this chapter, we present the application of the H-LIP based walking synthesis
on the 3D underactuated bipedal robot Cassie (see Fig. 7.1). We first present the
robot, its dynamics model, and the hybrid model of walking. Then, we describe
an indirect walking synthesis that utilizes the aSLIP model to generate a desired
periodic leg length trajectory to realize the H-LIP based approach. This indirect
approach was originally proposed in our previous publication [141]. Lastly, we
show another direct walking synthesis for realization, which was then proposed in
our paper [142].

7.1 Robot Model
The Cassie robot is designed and built by Agility Robotics [1] as a full-scale 3D
bipedal robot. It and its predecessor ATRIAS [58, 106] are designed to resemble
the SLIP [109] with concentrated mass at its pelvis and lightweight legs [4], which
are composed of closed kinematic chains with large leaf springs. The leg design

Figure 7.1: The underactuated bipedal robot Cassie.
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is thus simple in philosophy but complex in details. The controllers that plan and
render walking have been either on the rigid models [46, 55] or on the SLIP model
[58, 106]. Here we present a full-dimensional model that best captures the dynamics
of the robot including the complaint springs.

Robot Model: As shown in Fig. 7.1, Cassie has five motor joints (with the axis of
rotation shown in red) on each leg, three of which locate at the hip and the other
two are the knee and toe pitch. Fig. 7.2 (a) and (b) provide a close look at the leg
kinematics and the abstract model, respectively. We model the shin and heel springs
as torsion springs at the corresponding deflection axes. Therefore the spring torques
are

gshin = kshin@shin + dshin ¤@shin, gheel = kheel@heel + dheel ¤@heel,

where kshin/heel, dshin/heel are the stiffness and damping, the parameters of which
are provided by the manufacturer [1]. Since the achilles rod is very lightweight,
we ignore the achilles rod and replace it by setting a holonomic constraint ℎrod
on the distance between the connectors (one locates on the inner side of the hip
joint, the other locates at the end of the heel spring). The plantar rod is also
removed and the actuation is applied to the toe pitch directly thanks to the paral-
lel linkage design. These two simplifications remove unnecessary passive joints
and associated configuration variables. As a consequence, the configuration of
the leg can be described only by five motor joints, two spring joints and a pas-
sive tarsus joint. The total number of DoFs of the floating base model is then

hip link
knee link

shin link

shin spring

tarsus link

achilles rod

toe link

heel spring

plantar rod

toe motor

(a)

(a) (b)
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Figure 7.2: (a,b) Cassie’s leg and its model.
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= = 8 × 2 + 6 = 22. The configuration of the robot thus is @ = [@pelvis, @Lleg, @
R
leg]

) ,
where @pelvis = [@G,H,Ipelvis, qroll, qpitch, qyaw] ∈ (� (3) is the pelvis configuration,
and @Lleg, @

R
leg are the configuration of the left and right leg, respectively. @L/Rleg =

[@rollhip , @
yaw
hip , @

pitch
hip , @knee, @shin, @tarsus, @heel, @toe], where the individual element is the

joint angle. The motor joints are @motor = [@rollhip , @
yaw
hip , @

pitch
hip , @knee, @toe]) , and the

spring joints are @spring = [@shin, @heel]) . Recall that the Euler-Lagrange equation
with holonomic constraints is

" (@) ¥@ + � (@, ¤@) + � (@) = �gg + �)ℎ �ℎ, (7.1)

�ℎ ¥@ + ¤�ℎ ¤@ = 0, (7.2)

where the meaning of individual element can be found in Chapter 2. Note that
g = [g)<, g)B ]) is the actuation vector; g< represents the motor torque vector, and gB
is the vector of the torsional forces of the spring joints. Thus, �g = [�<, �B]. �ℎ =
[�)rod, �

)
Foot]

) and �ℎ = [�)rod, �
)
GRF]

) , which represent the honolomic constraints on
the push-rods and foot-ground contact.

Hybrid Model of Walking: The walking behavior of Cassie is modeled as a hybrid
dynamical system with two domains: the SSP and the DSP, which depends on the
number of feet contacting the ground. For simplification, we assume that the toe
link (foot) in Fig. 7.1 always contacts the ground flatly. The compliance in the leg
renders the DSP to be non-trivial. Similar to the hybrid walking model of the aSLIP,
the walking goes from the SSP to the DSP when the swing toe strikes the ground,
and it transits into the SSP from the DSP when one of the toes lifts off.

7.2 Indirect Walking Synthesis
In this section, we present the indirect walking synthesis via the H-LIP based
stepping on the robot Cassie. We select the outputs and perturb the step sizes based
on the H-LIP stepping to generate different desired walking behaviors. Although
the philosophy is similar to the stepping on aSLIP in Chapter 6, the details require
additional specifications on the full-dimensional robot. We first present output
definitions that can deal with the compliant elements in the leg.

Leg Length: Similarly to the indirect synthesis on the aSLIP, we control the leg
length to extend and retract periodically to create the basic periodic touch-down and
lift-off behavior of the walking. It is important to make sure that the leg length can
be controlled directly. Thus we select the virtual leg length as one of the outputs
as being inspired by the jumping on Cassie [138]; see Appendix C. This eliminates
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the springs in the outputs and makes the springs underactuated under the control of
the leg length. We select the parameters of the aSLIP to match the robot Cassie,
and thus the aSLIP has a nonlinear leg spring. The desired periodic trajectory of
the leg length !des(C) is the optimized leg length trajectory on the aSLIP from the
trajectory optimization in Chapter 6. The springs on the full robot are expected to
behave similarly to that of the aSLIP when leg length is actuated accordingly from
the aSLIP model.

Step Size: Similar to previous applications, the H-LIP stepping is realized in the SSP
by the continuous construction of the desired step length in the sagittal plane and
the desired step width in the coronal plane. Recall that, in the SSP, we control the
swing toe position to land to the desired location to achieve the desired step sizes.
For 3D walking, we apply the 3D decomposition as been described in Chapter 3
that the stepping controller is realized individually in each plane. Recall that the
desired step length DdesG in the sagittal and step width DdesH in the coronal plane are
respectively calculated via the H-LIP based stepping:

DdesG = DH-LIPG +  (x − xH-LIP), (7.3)

DdesH = DH-LIPH +  (y − yH-LIP), (7.4)

where x and y are the horizontal COM states of the robot in its sagittal place and
lateral plane, respectively. Similarly, the desired swing toe position relative to
the stance foot in the horizontal plane is smoothly constructed to the desired step
location:

Gdessw = (1 − Bℎ (C))G+sw + Bℎ (C)DdesG , (7.5)

Hdessw = (1 − Bℎ (C))H+sw + Bℎ (C)DdesH , (7.6)

where [G+sw, H+sw] is the initial swing foot horizontal location relative to the stance
foot. Due to the fact that the compliant springs oscillate on the swing leg, we can
only control the rigid representation of G̃dessw (@), H̃dessw (@) by setting @swspring = 0, where
the deflections of the shin and heel spring on the swing leg are set to zero; see
Appendix C for the rigid representations.

Toe Actuation: It is interesting to notice that Cassie has toe-pitch actuation, which
was designed to enable static standing. Without the toe-roll actuation, Cassie is
still underactuated at the foot. To generalize the underactuation, we remove the
toe-pitch actuation on the stance foot, which equivalently makes Cassie walk with
point-feet underactuation. One can certainly use the toe actuation to contribute to
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the control of the horizontal dynamics. We will show this kind of application on the
fully-actuated bipedal robots in Chapter 11.

Outputs Definition and Stabilization

DSP: We now mathematically define the outputs in the DSP. There are 8 motor
joints excluding the toe-pitch joints. With two feet contacting the ground which
adds 3 holonomic constraints on the distance between two feet, we define 5 outputs
on the robot. As been noted above, the left and right leg length are used. It is also
desirable to control the roll, pitch, and yaw angles of the pelvis so that the upper
body does not oscillate during walking. As a result, we define the outputs for DSP
as

YDSP(@, C) =



!L(@)
!R(@)
qroll(@)
qpitch(@)
qyaw(@)


−



!desL (C)
!desR (C)
qdesroll
qdespitch
qdesyaw


, (7.7)

where !desL/R(C) is the desired leg length trajectory from the trajectory optimization
on the aSLIP, and qdesroll/pitch/yaw is the desired roll/pitch/yaw angle of the pelvis. The

Figure 7.3: Output definition of the indirect synthesis for walking on Cassie.
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desired pelvis angles are set to 0, and the desired yaw angle changes when turning
is enabled (e.g. in Chapter 9 for tracking a global path).

SSP: In the SSP, we define 9 outputs since the robot has 9 actuators without the
toe-pitch actuation on the stance foot. The 5 outputs defined in DSP are continually
selected. Additional 4 outputs are on the swing leg, which are the swing toe pitch and
yaw angles and the swing foot position in its sagittal and lateral planes. Therefore,
the outputs for SSP are defined as

YSSP(@, C) =



!L(@)
!R(@)
G̃sw(@)
H̃sw(@)
qroll(@)
qpitch(@)
qyaw(@)
kpitch(@)
kyaw(@)



−



!desL (C)
!desR (C)
Gdessw

Hdessw

qdesroll
qdespitch
qdesyaw

kdes
pitch
kdes
yaw



, (7.8)

where kdes
pitch,yaw are the desired pitch and yaw angles on the swing toe linkage. The

desired pitch angle is 0 so that the robot can produce flat contact with the ground.
Similar to that in the DSP, the desired yaw angles are zeros unless turning is enabled.

Output Stabilization: To stabilize the outputs, i.e., driving YDSP/SSP → 0, we again
apply the optimization-based controllers as been described in Chapter 2.

Simulation Results
In this part, we evaluate the indirect approachwithH-LIP based synthesis to generate
walking on Cassie. Similar to the walking on aSLIP, the robot Cassie should start
from a periodic behavior. Differently, the robot is not a 3D point-mass model, thus
purely repeating the leg length actuation is not going to produce a stepping-in-place
behavior. Instead, the H-LIP based stepping is needed to stabilize a stepping-in-
place behavior first, and then different walking is generated via the H-LIP based
stepping for achieving different desired behaviors.

In [141] and this thesis, to generate the stepping-in-place motion from a static
standing configuration, we first optimize the aSLIP with a torso model to generate
a motion from a static standing configuration to the periodic stepping-in-place
trajectory. This trajectory optimization in essence is similar to that for generating
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Figure 7.4: Walking via the indirect synthesis to realize different desired net ve-
locities E3G , E3H with P1 orbit in its sagittal plane and P2 orbit in its lateral plane:
[E3G , E3H ] = [0.5, 0]m/s (red boxed plots), [E3G , E3H ] = [0, 0.5]m/s (yellow boxed
plots), and [E3G , E3H ] = [−0.5, 0.5]m/s (blue boxed plots). (p-x, p-y) The phase plots
of Cassie’s translational states (red) in its sagittal and lateral planes comparing with
the H-LIP orbits (black) with same desired velocities. (g-x, g-y) The global posi-
tions of the pelvis v.s. time C. (v-x, v-y) The forward and lateral velocities EG , EH
v.s. time. (t) The convergence of the domain durations )DSP (blue), )SSP (red) over
steps. (u) The convergence of the step length (red) in the sagittal plane and step
width (blue) in the lateral plane over steps, where step width for achieving the P2
orbit is plotted separately based on the stance leg.
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the stepping-in-place in Chapter 6. In other words, a segment of the leg length
trajectory is added before the periodic leg length trajectory of the stepping-in-place
motion so that the robot can start walking from standing.

We realize the method in Matlab simulation. The procedure is briefly explained
in Algorithm 3. The dynamics is integrated using Matlab ODE 113 function with
event-based triggering for contact and domain switching. The optimization-based
feedback control is solved at 1 kHz.

Algorithm 3 Indirect Synthesis on Cassie
!desL (C), !

des
R (C), )SSP, )DSP, I0 ← Stepping-in-place optimization on the aSLIP

@0: Initial static standing configuration← IK.
Standing to stepping-in-place optimization on the aSLIP
while Simulation/Control loop do
if SSP then
Desired step sizes DdesG and DdesH from Eq. (7.3) and (7.4).
Desired horizontal swing foot position {G, H}dessw from Eq. (7.5).

end if
Update Outputs YSSP/DSP(@, C) on Eq. (7.7) and (7.8)
g ← Optimization-based Controller

end while

We select P1 orbits in the sagittal plane and P2 orbits in the lateral plane for realizing
different periodic walking with the desired forward velocity E3G and lateral velocity
E3H . The robot is first stabilized to the stepping-in-place motion with zero velocities.
After 3s, the desired velocities are set to different values for achieving directional
walking. Fig. 7.4 show three different directional walking. From the phase plots
of all the walking, we can see that the horizontal states of Cassie converge to the
final orbits of the H-LIP with reasonable errors. The desired walking behaviors are
realized and stabilized. The durations of the domains change slightly and converge
as the periodic behaviors converge. The step sizes also converge. We conclude that
the desired walking behaviors with different directional velocities are realized on
Cassie via the H-LIP based indirect synthesis successfully. A video of the simulation
results can be seen in https://youtu.be/7Ix7yA5c19U.

7.3 Direct Walking Synthesis
Now we present a direct approach to realize the H-LIP based walking synthesis
on Cassie. Unlike the direct approach via BBF-QP on the aSLIP model, we find
a set of output definitions that can approximately direct-control the vertical height
of the COM and the swing foot. Since the S2S dynamics of the H-LIP is used to

https://youtu.be/7Ix7yA5c19U
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Figure 7.5: Illustrations of the definition and desired trajectories of the output.

approximate the S2S dynamics of the robot walking, the condition of the constant
vertical height can be relaxed. In this section, we will also evaluate the stepping
controller by numerically calculating the robust invariant set � in Chapter 1.

We consider the output in the SSP is defined to contain the vertical COM, swing
foot position, and the orientation of the pelvis and the swing foot:

Y =



ĨCOM(@)
G̃sw(@)
H̃sw(@)
Ĩsw(@)
qroll(@)
qpitch(@)
qyaw(@)
kpitch(@)
kyaw(@)



−



IdesCOM
Gdessw

Hdessw

Idessw

qdesroll
qdespitch
qdesyaw

kdes
pitch
kdes
yaw



. (7.9)

Due to the existence of the compliant springs in the legs, we select the rigid rep-
resentations of the vertical COM ĨCOM and the swing foot position {G̃, H̃, Ĩ}sw in
the output; again, see Appendix C for details of the rigid output definitions. The
desired orientations of the pelvis and the swing foot are chosen to be constant. The
desired step sizes and thus the desired horizontal swing foot trajectories are designed
identically to these in the indirect synthesis. The vertical COM position should be
controlled to I0, which is also the constant height of the H-LIP. At swapping support
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legs, ĨCOM has a small discrete jump. The desired trajectory of the vertical COM
position is then constructed as

IdesCOM = (1 − Bℎ (C)) Ĩ+COM + Bℎ (C)I0, (7.10)

where Ĩ+COM is the uncompressed COM height in the beginning of the SSP. Lastly,
the vertical position of the swing foot Idesswing(C) is constructed as

Idessw (C) = BE (C, Imax
sw , I

neg
sw ), (7.11)

where BE is another Bézier polynomial to create lift-off and touch-down behaviors.
It is designed to transit from 0 (C = 0) to Imax

sw (e.g., C = )SSP
2 ) and back to Inegsw

(C = )). Imax
sw is a constant to determine the foot-ground clearance, and Inegsw is a

small negative value to ensure foot-strike at the end. Table 7.1 lists the coefficients
used in the Bézier polynomials.

Table 7.1: Bézier Coefficients
On Notation Bézier Coefficients U

Vertical swing foot BE [0, Imax
sw 14, 0, Inegsw ]

Vertical COM height Bℎ [0, 0, 13]

In the DSP, instead of re-formulating a different set of DSP outputs, we directly
use the SSP outputs and set the desired values of the outputs on the swing foot
to be the actual ones (including the horizontal positions and orientation), which
preserves the holonomic constraints in the DSP and also simplifies the gait design.
The uncompressed swing foot position continues to virtually intrude the ground. In
this gait synthesis, the walking period is directly specified but individual domain
duration is not. The swing foot intrusion indirectly determines the DSP duration.

This direct output construction provides the COM height I0, step frequency (inverse
of the walking period 1

)
), and the swing foot clearance Imax

sw to be individually
chosen. The different combinations of the parameters render different walking
behaviors. The desired walking velocity in each plane is individually stabilized via
the H-LIP stepping, which works independently from the chosen gait parameters.
Additionally, for P2 orbits on the robot, there are infinite orbits for realizing the
same desired walking velocity. The combination of the gait parameters and orbit
selections renders versatile walking behaviors on the robot.

Simulation Results
We now present the evaluation of the approach on Cassie in simulation. Assume
the target final velocities ECG and ECH are given, and the goal is to control the robot to
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Figure 7.6: Simulation results on a forward walking with ECG = 1 m/s, ECH = 0 m/s,
D
H

L
∗
= −0.2m: the horizontal velocities of the COM (red and blue lines) in the

sagittal plane (v-x) and the coronal plane (v-y) compared with the desired velocities
E3G,H (C) (black lines) and the corresponding velocities of the H-LIP (green circles);
the phase plots of the horizontal COM states in the sagittal plane (p-x) and the
coronal plane (p-y) compared with the H-LIP orbits (black) at the target velocities;
comparisons of the step sizes (u-x, u-y) between the robot (red circles in the sagittal
plane and blue circles in the coronal plane) and the H-LIP (green circles). (o) Output
tracking with the red dashed lines indicating the desired trajectories and the blue
continuous lines indicating the actual ones: (o-z) ĨCOM (the black line is the actual
vertical COM position of the robot ICOM); (o-s) the vertical swing foot trajectory
Ĩsw (the black lines are Isw); the horizontal swing foot trajectories in the sagittal
plane (o-x) and the coronal plane (o-y).
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Figure 7.7: Comparison on forward walking with different target velocities ECG: (a)
forward velocity of the COM (continuous lines) compared with the desired velocity
profiles E3G (C) (dashed lines); (b) the converged orbits (red and blue lines) of the
sagittal COM states compared with the desired target orbits of the H-LIP (black
lines). (c) the converged orbits (the red is with ECG = 1.5m/s and the blue is with
ECG = −1.5m/s) of the coronal COM states compared with the target orbit of the
H-LIP (black); (d) the error state trajectories (the blue and red circles) and the error
invariant set �G (the blue transparent square) in the sagittal plane.

realize the target velocities. We first select an orbit composition with one periodic
orbit in each plane. Then continuous desired velocity profiles E3

G/H (C) are constructed
to reach the target velocities. For simplicity, we use piecewise linear trajectories to
design E3

G/H (C). For P2 orbits, the orbit-determining step size should be specified.
The desired output trajectories are then constructed using the presented direct H-
LIP based synthesis. The gait parameters such as the swing foot clearance and
step frequency are specified in the beginning. In the following results, I0 = 1m,
) = 0.4s, Imax

sw = 0.16m, and Inegsw = −0.03m. The video of the simulation results
can be seen in https://youtu.be/-_QmNNBPfdg.

Directional Walking: We first present a forward walking on Cassie as the basic

https://youtu.be/-_QmNNBPfdg
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Figure 7.8: Lateral walking (ECG,H = [0, 0.5]m/s, DHL
∗
= −0.08m) and diagonal

walking (ECG,H = [0.5, 0.5]m/s, DHL
∗
= −0.3m) and their converged orbits in the

sagittal plane (l-x, d-x) and the coronal plane (l-y, d-y).

realization of the proposed H-LIP based direct synthesis. The orbit composition
is chosen as having a P1 orbit in its sagittal plane and a P2 orbit in its coronal
plane. ECG = 1m/s, and ECH = 0m/s, thus the robot only progresses in its sagittal plane.
The orbit-determining step width of the P2 orbit is chosen to be DH∗L = −0.2m.
The desired walking velocity E3G (C) is chosen from 0 to ramp up to 1m/s within
3s. The velocity of the robot is controlled successfully to the target velocity via
the H-LIP based approach. Fig. 7.6 shows the plots of the forward walking. The
output trajectories are well-tracked via the optimized-based controller. The actual
velocities converge to the desired ones with negligible errors, and the horizontal
states of the robot converge closely to the desired orbits of the H-LIP with the target
velocities in each plane.

Then we change the target velocity in the sagittal plane from -1.5m/s to 1.5m/s with
a 0.5m/s increment. Fig. 7.7 shows the results. For clarity, in the phase portraits, we
only plot the steady walking behaviors where the desired walking velocities become
constant. We also demonstrate that the evolution of the error states is inside the
error invariant set. The error states in each plane can be directly calculated from
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Figure 7.9: Simulated walking via different orbit compositions with the same target
velocity (ECG,H = [0, 0.5]m/s). The trajectories of the swing foot are indicated by the
red (left foot) and the blue (right foot) lines. The red and blue rectangles on the
ground indicate the contact locations of the left and right feet, respectively.

the pre-impact states of the robot and the desired state of the H-LIPs. To calculate
the error invariant set, we first numerically calculate the dynamics error F from the
evolution of the error states in each realized walking behavior. Again we use all F
to construct a polytope to numerically approximate, in each plane. As  is chosen
from the deadbeat controller, the invariant set � = (� + � ), ⊕, . Fig. 7.7 (d)
shows that the error states are indeed inside the error invariant set.

The approach can also realize walking in different directions by selecting different
desired velocities in each plane of the robot. Here we present walking in the lateral
and diagonal direction. Fig. 7.8 illustrates the converged walking behaviors with
different choices of the target velocities. The gait parameters are identical to the
previous examples. By tracking the desired velocity in each plane, the robot walks
in the desired direction. The converged orbits of the horizontal COM states are
also relatively close to the desired orbits of the H-LIP in both cases. Moreover,
by selecting different step width DH∗

!
, different P2 orbits are realized in the coronal

plane with the same desired velocity E3H (Fig. 7.8 (l-y) and (d-y)).

Variable Orbit Compositions: The two types of orbits of the H-LIP provide four
kinds of orbit compositions in 3D. If the kinematic constraints are neglected, all
four types of orbit compositions can be realized to achieve the same desired walking
velocity. Fig. 7.9 illustrate the four realizations to achieve the lateral walking with
ECH = 0.5m/s. Each realization is abbreviated by the type of orbit in each plane, e.g.,
sP1-cP1 indicates both P1 orbits are selected in the sagittal and coronal plane. For
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certain compositions, kinematic collisions can happen between the legs. E.g., the
sP1-cP1 gait with ECG,H = 0 clearly creates foot overlaps. The complex leg design on
Cassie further increases the possibilities of kinematic collisions between the legs.
Since the kinematic constraints can be neglected in the simulation, we demonstrate
all four types of orbit compositions that realize the same desired walking velocity.

7.4 Conclusion
Both the indirect and the direct approaches can be used to continuously generate
walking behaviors with different velocities and orbit compositions. The direct
approach has several advantages over the indirect one. Trajectory optimization on
the aSLIP model is no longer needed. The walking behaviors are also stabilized
to the desired ones with a few steps. For walking with dramatically changing
desired velocities, the indirect approach may also produce temporary unplanned
flight phases. Thus, we will realize the direct approach on the hardware of Cassie
in the next chapter.
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C h a p t e r 8

APPLICATION ⊃ HARDWARE REALIZATION ON CASSIE

In this chapter, we realize the H-LIP based synthesis on the physical hardware
of Cassie. Unlike that in simulation, the robot state is no longer completely and
exactly known on the hardware. Some states can be measured, and the rest has
to be estimated. Moreover, the computation capacity of the on-board computer
has to be taken into consideration for realization. Therefore, we first present the
control realization for practical considerations on the hardware, and then present
the results of the experiment. In the experiment, we realize the directional walking,
which is similar to what has been evaluated in the simulation. More importantly,
we show that the gait parameters such as the step frequency, vertical COM height,
swing foot clearance, and step width can be changed on the fly in the hardware
realization, which demonstrates the walking versatility. Additionally, the robustness
of the walking synthesis is evaluated by realizing stable walking behaviors under
external pushes and on uncertain grassy terrain.

8.1 Hardware Implementation
The robot has joint encoders and IMU on the hardware to sense the configuration
of the robot itself. We have not yet added any sensors such as Lidar or cameras
on the robot to sense the external environment. Additionally, some of the joints in
the closed-loop kinematic chains do not have encoders to measure the joint rotation
angles. Thus, the challenges are on utilizing the partial information to extract the
states that are needed to realize the H-LIP based synthesis. We elaborate the process
in the following subsections.

Heel Spring Deflection
The shin spring is directly connected at the shin joint, and thus the encoder on the
shin joint directly measures the deflection of the shin spring. There is no encoder
to directly measure the deflection of the heel spring @heel. We calculate @heel based
on the kinematics of the closed-loop chain:

@heel = Root(ℎrod(@knee, @shin, @heel, @tarsus) = 0), (8.1)

where @knee, @tarsus are directly measured by their joint encoders. Similarly, this is
solved via Newton-Raphson method. For further simplifications on the calculation
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on the hardware, we used a parametric regression to approximate the solution.

Contact Detection
The robot Cassie is not equipped with contact sensors to detect foot-ground contact.
It is possible to measure the deflection of the spring joints and set a threshold for
contact detection. However, the springs can still have non-trivial deflections in the
swing phase due to the inertia forces in the leg. Therefore, the threshold has to
be set large enough to avoid false detection of contact. However, this can cause
significant late-detection of impacts and early-detection of lift-offs. Instead, we use
the measured torque from the input current (similar to the proprioceptive sensing
[129]) alongwith the spring deflections to approximately calculate the contact forces
at the feet. A threshold is then set on the magnitude of the forces to detect contact.

Since the vertical COM of the robot will be controlled approximately constant, we
neglect the dynamics contribution to the contact forces. The EOM in Eq. (7.1)
becomes

� (@) = �gg + �)ℎ �ℎ, (8.2)

where �ℎ = [�)rod, �
L)
GRF, �

R)
GRF]

) and g = [g)<, g)B ]) . g< is measured from the motor
current and gB is calculated from the spring deflections. This equation is invariant
w.r.t. the pelvis position @G,H,Ipelvis, which is not known. Thus, we set @G,H,Ipelvis to 0. The
rest of @ are measured via the IMU, joint encoders and leg kinematics. �ℎ can be
directly solved via the pseudo-inverse of �)

ℎ
: �ℎ = pinv(�)ℎ ) (� (@) − �gg). The

calculated �L/R
GRF are then low-pass filtered with a cutoff frequency of 100Hz. A

Figure 8.1: Contact detection via the GRF calculation: The transparent red and blue
lines are the norm of the actual GRF on the robot in simulation, and the dashed red
and blue lines are the calculated GRF for contact detection. The detected DSP is
close to the actual DSP in simulation.
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threshold is then set on the norm of �L/R
GRF to determine if the foot is in contact with

the ground. Fig. 8.1 shows the contact detection via the GRF compared with the
actual GRF in a simulated walking. The threshold is set to 100N, which provides
precise contact detections.

COM Velocity Approximation
The transitional position and velocity of the floating-base @G,H,Ipelvis and ¤@

G,H,I

pelvis cannot be
directly measured. ¤@G,H,Ipelvis is required for calculating the COM velocity for realizing
the walking. We implemented the extended Kalman filter in [18] for state estimation
by utilizing the IMU. This state estimation required significant computation, e.g., a
similar estimation scheme in [52] has to be implemented on a secondary computer
on the robot. Additionally, the magnetometer drift inside the IMU also creates errors
on the estimated velocities under certain circumstances. Due to those concerns, we
instead approximate the COM velocity based on the H-LIP dynamics in the SSP.

We use the walking in the sagittal plane to illustrate the approximation. Let ?0 and
E0 be the horizontal position and velocity of the COM in the beginning of the SSP.
The dynamics of the horizontal COM in the SSP can be approximated by the SSP
dynamics of the H-LIP. Thus the current COM state of the robot [?C , EC] in the SSP
can be approximated by [

?C

EC

]
≈ 4�SSPC

[
?0

E0

]
, (8.3)

where �SSP is defined in Eq. (3.8). Let �C := 4�SSPC . Given the measured positions
?0 and ?C and the current time C from the beginning of the SSP, the velocity
approximations are[

Ẽ0

ẼC

]
=

[
−�(1,1)C /�(1,2)C

1/�(1,2)C

�
(2,1)
C − �

(1,1)
C �

(2,2)
C /�(1,2)C

�
(2,2)
C /�(1,2)C

] [
?0

?C

]
, (8.4)

where the superscripts indicate the elements of the matrix �C . Thus the continuous
velocity approximation ẼC is obtained. The prediction of the pre-impact velocity
ẼC=)SSP can also be continuously approximated by the H-LIP dynamics in the SSP
based on the current state [?C , ẼC]) and the time-to-impact )SSP − C. The velocity
approximation is solely based on the position of the COM w.r.t. the stance foot,
which only uses joint encoders and orientation readings of the IMU and thus is
robust to sensor noises. Moreover, we show that this approximation is valid for
applying the H-LIP based stepping, only with generating a different error invariant
set.
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Let Ẽ− be the approximated velocity of the COM of the robot at the pre-impact. Ẽ− =
ẼC=)SSP is calculated from Eq. (8.4). Let x̃ = [?−, Ẽ−]) represent the approximated
COM state at the pre-impact. Assuming the COM position of the robot is measured
with a negligible error, x̃ − x = [0, Ẽ− − E−]) := Xx, where E− is the actual COM
velocity of the robot at pre-impact event. Note that Xx is bounded: the velocity error
Ẽ− − E− is the integration of the dynamics difference between the H-LIP and the
robot in the SSP. The approximated state is used in the H-LIP based stepping, i.e.,
D = DH-LIP +  (x̃ − xH-LIP). Therefore, the error dynamics becomes

e:+1 = �x: + �D: + F − �xH-LIP: − �DH-LIP:

= (� + � )e: + F + � Xx:︸        ︷︷        ︸
F̃

.

(v-y)(v-x)

(e-x) (e-y)
𝐸௫

𝐸෨௫

𝐸௬

𝐸෨௬
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𝑣௬ሺ𝑡ሻ 𝑣෤௬ሺ𝑡ሻ

Figure 8.2: Validation on the H-LIP based velocity approximation on a simulated
walking with ECG = 1, ECH = 0m/s, DHL

∗
= −0.2m: (v-x, v-y) the approximated

horizontal velocities of the COM ẼG (C) (red line) and ẼH (C) (blue line) in the SSP
compared with the actual velocities (dashed black lines); (e-x, e-y) the error state
trajectories ex,y and the new error invariant sets �̃G,H (blue transparent polytopes) in
each plane compared with the error invariant sets �G,H (white polytopes) from the
controller using the true COM velocity (Fig. 7.6).
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F̃ ∈ ,̃ is bounded since F and Xx are both bounded. This consequently creates a
new error invariant set �̃ .

To validate this, we use theH-LIP based velocity approximations to replace the actual
horizontal velocities of the COM in the controller in simulation. The performance is
comparable with the implementation that uses the true COM velocity in the previous
chapter. Fig. 8.2 shows the results on a simulated forward walking as a proof. As the
horizontal COM dynamics of the robot is close to the H-LIP dynamics, the velocity
approximation works well (Fig. 8.2 (v-x) and (v-y)). Although the new disturbance
F̃ is F plus another term, it does not necessarily mean that the size of ,̃ and the
resultant �̃ are larger. Here we get a smaller set in the sagittal plane (Fig. 8.2 (e-x)),
and the sets in the coronal plane are of similar sizes (Fig. 8.2 (e-y)).

Joint-level Controller
The optimization-based controller in Chapter 2 can be potentially implemented on
the hardware by utilizing the secondary computer on the robot. Here we apply
a PD + Gravitation Compensation (PD+G) controller, which in practice provides
an equivalent tracking performance and a much-lower computational effort. The
PD+G controller is directly implemented on the main computer on the robot, which
iswritten as g< = gPD+gG, where gPD represents the PD component and gG represents
the gravitation compensation part.

For the PD component, we directly map the desired acceleration of the output to
the joint torques. The desired accelerations ¥Y3 is identically chosen as that in
Eq. (2.39). Y and ¤Y are measured on the hardware. Note that the selection of
the outputs (e.g., Eq. (7.9)) are mainly functions of the motor joints. The actual
acceleration of the output is assumed to be: ¥Y = �Y ¥@< + ¤�Y ¤@<, where �Y = mY

m@<
.

The desired accelerations of the motor joints are applied as the motor torques:

gPD = ¥@3< = �−1
Y ( ¥Y

3 − ¤�Y ¤@). (8.5)

For the gravity compensation, we need to find joint torques to cancel the gravitational
terms in Eq. (8.2) based on the current configuration and contact. The problem is
inverse to the contact detection. Given @, we find gG to minimize

‖�<gG + �BgB + �)ℎ �ℎ − � (@)‖
2. (8.6)

Note that the foot contact of the robot is underactuated and thus there does not exist
any set of joint torques completely cancel out the gravitational term, unless the foot



88

Desired Walking
• DesirStep Frequency: 1/𝑇
• Desired Velocities: 𝑣௫

ௗ, 𝑣௬
ௗ

• Lateral Step Width (P2): 𝑢୐
∗

• Nominal Height 𝑧଴
• Swing foot clearance 𝑧ୱ୵

୫ୟ୶

H‐LIP based Gait Synthesis 
and Stepping Stabilization
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Controller
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Encoders
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Remote 
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Contact 
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Figure 8.3: Illustration of the hardware realization of the controller on Cassie.

is fully-actuated. This yields a least square problem of

min : ‖AX − b‖2, (8.7)

where A = [�<, �)ℎ ], X = [g)
�
, �)

ℎ
]) , b = � (@) − �BgB. Similarly, this problem can

be solved via the pseudo-inverse of A, i.e., X = pinv(A)b, which yields the gravity
compensation term gG.

Hardware Implementation Scheme
The robot is controlled via a remote controller that sends radio commands to
the robot. The remote has two joysticks, four potentiometers, and several tog-
gle switches. The on-board computer is programmed to interpret the radio signals,
read all the sensors on the robot, and send torque commands to the robot. The
implementation is illustrated in Fig. 8.3. The remote commands are processed to
get the desired walking behaviors. The H-LIP based gait synthesis and stepping
stabilization calculate the output based on the gait parameters, contact, and COM
states. The joint-level controller then calculates the motor torques and sends them
to the motor modules to stabilize the outputs. Based on the computation capacity of
the main on-board computer, the control loop is set at 1kHz.
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(a) (b)

(c) (d)

(e)

DSP

Figure 8.4: Illustrations of the output tracking and contact detection on the hard-
ware: the desired output trajectories (the blue dashed lines) and the actual output
trajectories (the red lines) of (a) the vertical COM position, and (b,c,d) the vertical,
forward and lateral positions of the swing foot; (e) the contact detection via the
GRF, where the boxed regions indicate the DSP.

8.2 Experiment Results
On the hardware, we not only focus on the realization of directional walking on
Cassie, but also demonstrate the versatility and robustness of the walking that come
from the H-LIP based direct synthesis. A video of the experiment results can be
seen in https://youtu.be/qEp1RUf6X-U.

Directional Walking
We demonstrate directional walking behaviors on the robot by using the joysticks
on the remote to steer the robot to its forward, backward, and lateral directions.
Instead of driving the robot to periodic walking orbits with different velocities in
the simulation, the desired walking velocity is continuously changing. The joystick
values on the remote are used as the desired walking velocities E3G,H. We use low-pass
filters to smooth the readings of the joysticks. Thus, the desired velocities between
consecutive steps do not vary significantly. Additionally, the kinematic constraints

https://youtu.be/qEp1RUf6X-U
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(v-x)

(v-y)

(p-x)

(s-x)

(p-y)

(s-y)
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Figure 8.5: Trajectories of a forward walking with varying target velocities. (v-x,
v-y) plot the horizontal COM velocities including the target velocity ECG,H (C) (the
black dashed lines), the velocity in the SSP from the H-LIP based approximation
(the red lines), the predicted pre-impact velocity (the blue lines), and the estimated
velocities (the gray lines). (p-x, p-y) plot the horizontal states in the sagittal plane
(in different time segments) and the coronal plane, respectively. The black orbits
are the desired orbits of the H-LIP. (s-x, s-y) plot the error state trajectories (red and
blue circles) inside the calculated error invariant sets (transparent blue polytopes)
in each plane.

on the robot provide a range of available step sizes at a certain stance height. If
the step frequency is fixed, the step size limits produce limits on the achievable
velocities. Thus the maximum command velocities in each plane are limited for
safety. Fig. 8.6 demonstrates the snapshots of the robot walking in its sagittal and
coronal plane.

In order to analyze the generated walking behaviors on the hardware, we use the
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Figure 8.6: Walking tiles of the robot: the walking in the sagittal plane demonstrated
P1 orbits and that in the coronal plane illustrated a P2 orbit.

extended Kalman filter offline to get a continuous estimation of the horizontal
velocity of the COM on the robot. The estimated velocities are used as references
but rather than the ground truth. This is because the estimation has non-neglectable
errors that in nature come from the imperfection of the dynamicsmodels and sensors.

Fig. 8.5 shows the horizontal COM states of a forward walking. The estimated
velocities are compared with the approximated velocities from the H-LIP and the
desired velocities. The desired walking velocities are tracked within reasonable
errors. The error invariant sets are approximated in the same way (in Chapter 7),
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and the error states are all inside the invariant sets. Note that the error invariant
sets are larger than those in Fig. 8.2. This is because the dynamics difference F is
calculated using the estimated velocities; the estimation errors directly yield larger
sets,G,H and thus larger sets �G,H.

Additionally, the translational dynamics and transversal dynamics can be controlled
separately. Therefore, we implement a turning controller that only changes the hip
yaw angles and keeps the stepping controller intact. With turning, the robot can be
joystick-controlled easily in confined environments.

Versatile Walking
To demonstrate the versatility in the gait design, we utilize the potentiometers on
the remote to vary the gait parameters in real-time. As indicated previously, we
select the step duration, swing foot clearance, step width in the P2 orbit, and the
COM height. There are four potentiometers on the remote controller, and each
potentiometer corresponds to one parameter. The reading on the potentiometers
can oscillate, and we do not low-pass filter the values to show the robustness of the
control implementation. Fig. 8.7 demonstrates a stepping-in-place walking with
varying the four parameters. The ranges of the parameters are listed in Table 8.1.
All the parameters can be varied continuously, and the H-LIP based stepping still
can stabilize the walking. Fig. 8.8 demonstrates the changes of the values in the
experiment. Additionally, forward walking behaviors with different COM heights
are realized.

Table 8.1: Versatile Walking Parameters

Variables Definition Range
Step Duration ) 0.3 − 0.5s

Desired Swing Foot Clearance Imax
sw 0.04 − 0.25m

Desired Step Width D∗L 0.08 − 0.45m
Desired COM Height I0 0.5 − 1m

For parameters outside of the range, the walking can be infeasible or destabilized.
For instance, if the step width is too small or too larger, the walking becomes
kinematically infeasible. If the COM is too tall or too low, each leg can extend or
retract outside of its kinematic range of motion. If the foot clearance is extremely
low, the robot then has a trivial SSP and cannot stabilize its walking via stepping; if
it is too high, the vertical swing trajectory then requires large accelerations to lift-off
and touch-down and thus exceeds the joint actuation limits. Similarly, the actuation
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Figure 8.7: Illustration of the versatility of the realized walking: varying step
frequency (v1), step clearance (v2), step width (v3), and COM height (v4).

limits also prevent the walking duration from being too small to track the swing
trajectories. If the duration is too long, the robot can fall over before the swing leg
strikes the ground to stabilize it.

The changes of the COM height and the step duration change the S2S approximation
of the H-LIP (e.g., Eq. (3.12)). The implementation of the H-LIP stepping directly
responds to the new S2S dynamics. Note that the vertical COM height is assumed
constant on the H-LIP and that on the robot is controlled approximately constant.
The height, however, can change between steps, as long as the vertical dynamics
is not causing significant disturbance to the horizontal dynamics. The change of
the swing foot clearance can change the impact velocity and potentially change F.
Similarly, the variation on the step frequency also changes the integration of the
dynamics error in the continuous domains, which then change F. In the experiment,
the qualitative and quantitative effects of these parameters on F and then � are
not analyzed due to the existence of the horizontal velocity error (from the H-LIP
based velocity approximation in the control or the state estimation in the analysis).
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(a)

(b)

(c)
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Figure 8.8: The trajectories of the (a) COM height and (b) vertical height of the
swing foot in terms of the actual outputs, (c) the desired step width compared with
the target step size D∗L/R (black lines), and (d) the duration of the walking.

Instead, the experiment shows that versatile walking behaviors are stably generated
with variations in the parameters.

Disturbance Rejection
Lastly, we demonstrate the robustness of the walking with disturbance rejection on
the hardware. Since the H-LIP stepping provides COM state-dependent step size
planning, the robot instantaneously reacts to external disturbances. We consider two
types of disturbances: external pushes and ground variations. The external pushes
directly disturb the S2S dynamics of the robot; the ground variations change the
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(v)

(p) (e)

nominal

disturbed

Figure 8.9: Illustration of the disturbance rejection on Cassie: (v) the estimated
horizontal velocity in the coronal plane, (p) the horizontal state trajectory (the blue)
in the coronal plane compared with the desired orbit of the H-LIP (the black),
and (e) the error state trajectory (blue dots) compared with the error invariant set
(transparent blue polytope).

domain durations, impact, and vertical COM behaviors, which indirectly disturb the
S2S dynamics. We demonstrate walking with lateral pushes from a human operator
(Fig. 8.9) and walking on grassy and uncertain terrain (Fig. 8.10).

With the push disturbances, the error state eH can temporarily go outside of the
invariant set �H. The stepping controller then brings eH back in �H. In terms of
the horizontal velocity, the robot is pushed to have large velocities and then the
stepping controller drives the robot back to its nominal walking behavior. Since the
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(v)

(p) (e)

Figure 8.10: Walking on grassy and uncertain terrain: (v) the estimated forward
velocity (gray line) and the desired velocity (black dashed line), (p) the horizontal
state trajectory (the red) in the sagittal plane compared with the desired orbit of
the H-LIP (the black) for a walking segment with an approximately constant E3G of
0.3m/s, and (e) the error state trajectory compared with the error invariant set.

kinematically feasible step width is very limited, the robot may take several steps to
recover. If the push is excessive, the robot can fall over due to infeasible DdesH .

When walking on grassy terrain, the horizontal dynamics of the robot are disturbed
as the soil deforms and the height of the terrain varies. The continuous horizontal
velocities thus have large variations as shown in Fig. 8.10; the error states, however,
still lie inside the invariant sets.
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C h a p t e r 9

EXTENSION ⊃ GLOBAL POSITION CONTROL

The H-LIP based walking synthesis can be used not only for controlling local
walking behaviors on bipedal robots, but also for controlling the global position
of the robot. In this chapter, we demonstrate one of the extensions of the H-LIP
based approach for global position control (GPC) [5, 147]. We start in Section 9.1
by including the global position in the H-LIP model to get a S2S dynamics with
the global position. Following the similar formulation of the H-LIP based stepping
controller, we demonstrate the GPC on the 3D-aSLIP walking in Section 9.2 and
on Cassie in Section 9.3. We show that with the aid of MPC [53], the robot can
follow various global trajectories with different shapes. Moreover, the robot can
avoid obstacles and reject external disturbances during walking.

9.1 S2S Dynamics with Global Position Control
Besides the periodic orbits of theH-LIP,we are also interested in global/non-periodic
behaviors, where the H-LIP can follow some custom specified global trajectories.
To realize this kind of behavior, we first present the S2S dynamics that includes the
global position in the formulation and then present the optimal control formulation
to realize the desired walking behaviors on the H-LIP and finally on the robot via
H-LIP based stepping.

S2S Dynamics with Global Position
We use the planner H-LIP as an example. Let 2G denote the global position of the
point mass in the G − I plane. The global position between steps at the end of the
SSP is related by

2G:+1 = 2
G
: − ?

G
: + ?

G
:+1 + D

G
: , (9.1)

where the superscript − is omitted since we only deal with the states at the end of
the SSP in this section. The superscript G is used to indicate the element in the G − I
plane; we will use it as a subscript when it is convenient. The global position can
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be put into the S2S formulation, which yields
2G
:+1
?G
:+1
EG
:+1

︸ ︷︷ ︸
x̃:+1

=


1 �1,1 − 1 �1,2

0 �1,1 �1,2

0 �2,1 �2,2

︸                   ︷︷                   ︸
�̃


2G
:

?G
:

EG
:

︸︷︷︸
x̃:

+

�1 + 1
�1

�2

︸    ︷︷    ︸
�̃

DG: , (9.2)

where the subscripts indicate the elements of the matrices � and � in Eq. (3.12) and
Eq. (3.12). We use the overhead tilde to denote the elements in the S2S dynamics
that includes the global position. In the latter, we call x̃ the extended pre-impact
state in the G − I plane. For 3D walking, ỹ = [2H, ?H, EH]) is used to denote the
extended pre-impact state in the H − I plane.

Global Position Control
We consider the bipedal robot walks on flat ground in a 3D environment. The robot
is given a walking path with a terminal location that it should reach. We assume
the path is planned via a high-level planner from all the sensors on the robot. The
path is supposed to be relatively smooth and obstacle-free. Additionally, the path is
also generated with a speed profile, which is assumed to be feasible for the robot to
realize. We parameterize the desired path by r(C) as

r(C) = [A3G (C), A3H (C), A3\ (C)]
) , (9.3)

where A3G (C), A3H (C) are the positions in the global frame and A3
\
(C) be the angle of the

tangent line to the path. The task for the walking is to drive the robot (depicted by
its COM) to follow the path with a given time.

For underactuated robotic walking, it is not possible to exactly track the given path.
To address the GPC problem on bipedal robots, we consider applying the H-LIP
based synthesis: the GPC problem is first solved on the H-LIP, the motion of which
is then realized on the bipedal robot approximately via the H-LIP based stepping
controller. Note that since the extend state in the S2S dynamics has three elements,
the deadbeat gain  ̃ is solved from ( �̃ + �̃ ̃)3 = 0, and the H-LIP based stepping
for generating the desired step size on the robot becomes

Ddes = DH-LIP +  ̃ (G̃ − G̃H-LIP). (9.4)

Similarly, the application of the H-LIP based stepping makes sure that the robot
stays closely to the H-LIP and thus follows the path.
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MPC on H-LIP
We solve the GPC on the H-LIP by formulating a Model Predictive Control (MPC)
problem to online generate optimal step location for best-tracking the desired path.
The superscript H-LIP is omitted in this part.

Optimization Variables: At each step, the next # steps are planned. Thus, all the
states x̃: , ỹ: and all the inputs DG,H: are selected as the optimization variables, where
: = 1, . . . , # . The current step is indexed as 1.

Cost Function:The cost function of theMPC includes two parts: one is encoding the
tracking performance as the distance between the mass states and the desired global
trajectory, and the other past is penalizing the step sizes. Again let ) = )SSP + )DSP
be the period of the walking. Then the look-ahead time horizon is #) . Recall
that, inside each step, the trajectory of the mass at a specific time instant C can be
expressed by a linear function of the states:[

2G (C), EG (C)
])
= �C (C)x̃: + �C (C)DG: , (9.5)[

2H (C), EH (C)
])
= �C (C)ỹ: + �C (C)DH: , (9.6)

where C ∈ [:), (: + 1))], and �C (C), �C (C) are derived from the piecewise linear dy-
namics of theH-LIP. Supposing = points are sampled in the time horizon [C0, C0+#)]
to represent the trajectory of the states, the cost function on tracking performance is

�C =
∑=
:=1(2G (C: )−A3G (C: ))2+(EG (C: )−E3G (C: ))2+(2H (C: )−A3H (C: ))2+(EH (C: )−E3H (C: ))2,

where C: = C0 + : #)= . Additionally, we add cost on the input to penalize large step
sizes:

�D =

#∑
:=1

DG
2

: + D
H2

:
. (9.7)

The final cost function is a combination of the two:

�MPC = �C + U�D, (9.8)

which is a quadratic function of all the variables. U ∈ R is an coefficient to leverage
the tracking and planned step sizes.

Constraint Encoding:TheMPCon theH-LIP should be cognitive about the potential
constraints that the robot has such as limited step sizes. Theoretically, this can be
set by DH-LIP ∈ * 	  � . The easiest way is to let the robot face the direction of
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walking since the step size in the sagittal plane is much less limited than that in the
lateral plane. As the point mass model of the H-LIP has no definition of orientation,
we add a trivial torso with no inertia on the H-LIP (Fig. 9.1 (a)) to indicate the
orientation of the model. The transversal dynamics of the torso is trivial and does
not affect the horizontal dynamics of the COM. Suppose the horizontal dynamics
is always expressed in the inertial frame for the consistency of global path tracking,
the turning motion affects available step size in the G − I plane and H − I plane.
Assuming the torso is controlled to be A3

\
(C), the sagittal plane is aligned with the

tangent line. The step length in the sagittal plane and the step width in the lateral
plane can be expressed as

BL = D
Gcos(A3\ ) + D

Hsin(A3\ (C)), (9.9)

BW = −DGsin(A3\ ) + D
Hcos(A3\ ), (9.10)

where DG , DH are the step sizes projected to the G − I and H − I planes, and BL, BW are
the step length and step width in its sagittal and lateral planes, respectively. Then
the step size constraints in the MPC are modified by the following two inequality
constraints:

Bmin
L ≤ DG:cos(A3\ ) + D

H

:
sin(A3\ ) ≤ B

max
L , (9.11)

Bmin
W ≤ −DG:sin(A3\ ) + D

H

:
cos(A3\ ) ≤ B

max
W , (9.12)

where Bmin/max
L , Bmin/max

W are the available step sizes in each plane, which are linear
functions of the states. Additionally, the robot should avoid kinematic conflicts for
foot stepping. It can be easily specified through enforcing a finite minimum step
width in the lateral plane, which can be added into the above constraint by changing
Bmin/max
W .

The dynamics in each step are encoded via linear equality constraints. Additional
constraints include the initial state constraint, step size limits (input limits), and the
step size difference constraint, which are constraints considered for the application
of the robots. The step size limits come from the physical kinematic feasibility of
the robot. The step size difference is that, |D:+1 − D: | ≤ Δ* where Δ* is a constant.
This constraint avoids the system to dramatically change step sizes consecutively,
which may lead to undesirable behaviors on the robot.

MPC: We compactly present the MPC formulation for the H-LIP. At each step, a
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Figure 9.1: (a) The H-LIP with a trivial torso walking in 3D. (b) An example of
path tracking of the H-LIP in 3D (blue dashed line is the desired path)

constrained quadratic program (QP) is formulated and solved. The QP is as follows:

D
G,H

1,...,# , x̃1,...,# , ỹ1,...,# = argmin
{DG,H1,...,# ,G̃1,...,# ,H̃1,...,# ∈R8×#

�MPC (9.13)

s.t. x̃:+1 = �̃x̃: + �̃DG: , : ∈ K
ỹ:+1 = �̃ỹ: + �̃DH: , : ∈ K
|DG:+1 − D

G
: | ≤ Δ*, : ∈ K

Eq. (9.11), (9.12), : ∈ K
x̃1 = x̃now, ỹ1 = ỹnow,

where K = {1, . . . , # − 1}, x̃now, ỹnow are the states of current step of the H-LIP.
The first solution of the step sizes [DG1, D

H

1] is applied at current optimization, which
are used as the nominal step sizes in the H-LIP based stepping in Eq. (3.17).

Fig. 9.1 (b) shows an example of the optimized walking of the H-LIP with a
torso in 3D for GPC. Here we assume that the torso orientation is aligned with
the path direction but it can be freely decided. The feasibility of the MPC is not
guaranteed in general, which should be cognitive by the high-level planer on the
global trajectory. Additionally, we should note that the H-LIP based approximation
reduces the available step sizes in the MPC. Robust MPC [83] can also be directly
applied to the robot to directly generate the step size on the robot. We do not present
these modifications in this chapter. Instead, we show that the proposed MPC with
the H-LIP based stepping can be realized on the bipedal walking systems to track
global trajectories in the following two sections.
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Figure 9.2: (a) Results of the fixed location tracking in terms of the forward positions
G, forward velocities E and step sizes DG . (b) Results of the path tracking with the
velocities and step sizes in each plane. The black and blue indicate the results of the
H-LIP and the aSLIP, respectively.

9.2 Global Position Control on 3D-aSLIP
We use the indirect approach in Chapter 6 to realize the GPC on the 3D-aSLIP.
Similarly, a periodic stepping-in-place trajectory is first optimized and then the
leg length is controlled to track the optimized leg length trajectory. The MPC is
formulated and solved usingYALMIP [78] at the step-level to determine the nominal
step, and the H-LIP based stepping in Eq. (9.4) is applied to determine the current
desired step size in the SSP. Here we demonstrate the approach via the following
scenarios of walking.

Fixed Location Control: Suppose the task is to walk to a fixed location. Using the
MPC approach, the task can be encoded as equality constraints: x̃# = x̃3 , ỹ# = ỹ3

or as a part of the cost:

�C =
∑#
:=1(x̃: − x̃3))&(x̃: − x̃3) + (ỹ: − ỹ3))&(ỹ: − ỹ3), (9.14)

where & is the parameter matrix. Here we illustrate this by using one example of
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(a)

(b1) (b2)

(c1) (c2)

(a) (b)

Figure 9.3: The disturbance invariant set � in blue transparent polytopes and the
state difference e in black dots in the G − I plane (a) and the H − I plane (b).

controlling the aSLIP to a forward location in the G − I plane where x̃3 = [1, 0, 0]) .
The optimized result on the H-LIP and the generated walking on the aSLIP are
shown in Fig. 9.2. Behaving like the H-LIP, the aSLIP walks to the desired location
and stays there.

Trajectory Tracking: Now we consider the task is to track a trajectory on the
ground. We use an example of tracking a sinusoidal path on the ground. Fig. 9.2
shows the results, where the aSLIP behaves closely to the H-LIP and tracks the
desired trajectory closely.

The simulation results on the aSLIP indicate the success of applying the H-LIP
based walking synthesis for GPC. One thing to note is that the initial H-LIP state
should be close to that of the horizontal state of the aSLIP. In the examples, we
select the H-LIP state to be identical to that of the aSLIP in the beginning, which
indicates e0 = x̃ − x̃H-LIP = 0 ∈ � . Then e: ∈ � for all : ∈ # . To verify this, we
first numerically calculate F in the simulated walking, and then approximate, via
a polytope. Note that since the indirect approach in Section 6.2 is applied,, is not
small. Fig. 9.3 shows the approximation of � and the error e for the example of
trajectory tracking. e ∈ � , which verifies the application of the stepping controller
that keeps the error small.

9.3 Global Position Control on Cassie
In this section, we present the application of the H-LIP based synthesis to control the
global position of Cassie. Similar to the application on the aSLIP, we apply theMPC
with H-LIP based stepping for GPC. Since Cassie is a complex 3D underactuated
robot, practical considerations are needed on generating the behavior on Cassie. We
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illustrate the modification on the output construction for GPC, and finally present
the results and the analysis of this approach.

GPC on Cassie
The walking synthesis frame is identical to that in Chapter 7 with some exceptions:
the nominal step sizes are calculated from the MPC, the desired step sizes are
calculated via Eq. (9.4), and turning should be enabled to let the robot walk to the
direction of the desired global trajectory. With turning, the robot can ‘face’ towards
the direction of walking for observing and planning the path using its sensors if
necessary. Moreover, the robot typically has different ranges of motion in its sagittal
and lateral planes. With turning, the robot can flexibly align its plane with a larger
range of motion to the direction of walking. Thus we want the pelvis angle to
be qyaw → A3

\
(C) by defining the desired yaw angle of the pelvis in the output

construction as
qdesyaw = A

3
\ (C). (9.15)

The desired pitch and roll angles of the pelvis are still set to 0. The desired yaw
angle of the swing foot is constructed as

kdes
yaw(C) = (1 − Bℎ (C))k+yaw + Bℎ (C)A3\ (C), (9.16)

where k+yaw is the yaw angle of the swing foot in the beginning of the SSP. The rest
of the output construction is identical to those in Chapter 7. Both direct and indirect
approaches can be applied.

Results
To evaluate the GPC on Cassie, we designed various shapes of paths, including
a circle, a cardioid, a square, and a sinusoid. Trapezoidal speed profiles are de-
signed for tracking the cardioid, the circle, and the sinusoid path. A triangle
speed profile is used on the square path. For the experimental results, we con-
sider the square path. This will be further discussed after describing the simu-
lation results. A video of the simulation and experiment results can be seen in
https://youtu.be/06efo-U1mrw.

Tracking Results: Using the proposed approach, the robot can track all global tra-
jectories well in terms of the position and velocity profiles (Fig. 9.4). The circle
and cardioid can be tracked easily even with relatively large speeds. The sinusoid
and square paths are designed as challenging examples. On the sinusoid, the robot
walks and turns significantly. While on the square, the path is not smooth, and
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Figure 9.4: Simulation results (Red lines are the desired, blue lines are the planned
trajectories of the H-LIP, and green lines are the actual trajectories of Cassie): Track-
ing a circle path (a) and a sinusoidal path (b) in terms of the global position/velocity
trajectories (2,3) and the step sizes in the different planes (4, 5).

thus the robot has to come to a stop and turn. More dynamical maneuvers, such as
sharp turning with high speeds, are challenging to realize on the robot considering
the existence of the kinematic limits, torque bounds, and spring underactuation.
Undoubtedly, the tracking can fail when the required walking and turning speeds
are too large simultaneously, e.g., over 1m/s and 45deg/s. The failure often happens
when the step sizes are too large for the robot to track due to limited motor torques.
This can be easily avoided by setting limits on the allowed forward and turning
velocities.

Obstacle Avoidance: The given path should be obstacle-free. In the case of existing
obstacles on the path, we can avoid obstacles by adding constraints in the MPC
formulation, e.g., in the form of | [2G (C), 2H (C)]) − cobstacle | > 3, with cobstacle being
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(e1) (e2)

(e3) (e4)

Figure 9.5: The simulated walking with (a) avoiding an obstacle on the path and
(b) disturbance rejection. Cassie follows the square path in simulation (e1) and in
experiment (e2). The pelvis global positions (e3) and heading velocities (e4) from
simulation (dashed) and the experiment (solid).
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the position of the obstacle and 3 being a minimum distance between the robot and
the obstacle. This changes the MPC from a QP into a quadratic constrained QP,
which is also fast to solve on the low dimensional dynamics of the H-LIP. Fig. 9.5
shows an example of avoiding an obstacle while tracking a sinusoidal path.

Disturbance Rejection: The step planning approach can also handle unknown exter-
nal disturbances on the robot during walking. Fig. 9.5 (b) shows an example where
an external lateral force of 200N is added on the pelvis at C = 10s for 0.1s duration.
The robot was pushed away from the path but then walked back to its original path.

Experiment: The tracking for a square path was implemented on Cassie as a prelim-
inary experiment to demonstrate that the generated motion from simulation using
this approach is dynamically achievable on hardware. Due to the missing of sensors
to detect the robot location globally, we have not yet implemented the closed-loop
controller as being presented here on the hardware. Instead, as a proof-of-concept,
we use the simulated walking velocities and turning rates of the robot as targets,
which were tracked on the robot with another controller in [105]. The robot ulti-
mately followed the desired walking profiles on hardware, with a comparison of the
positions and velocities of the experiment and simulation shown in Fig. 9.5. As the
robot is tracking the commanded velocities, there is a slight drift in the position and
heading as it executes the later segments of the shape. Note that this experiment was
conducted before the implementation of the controller in Chapter 8. In the future,
we will faithfully realize the proposed GPC on the hardware using the H-LIP based
direct synthesis by incorporating global sensing.
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C h a p t e r 10

EXTENSION ⊃WALKING ON ROUGH TERRAIN

In this chapter, we show another extension of the H-LIP based synthesis for gen-
erating walking on rough terrains, which is an important behavior to realize on
bipedal robots. Since the terrain height changes during walking, the vertical COM
trajectory has to be planned accordingly. We first present the dynamics model of the
H-LIP for walking on rough terrains in Section 10.1. With appropriate assumptions
and choice of the coordinates, the S2S dynamics of the walking is also a linear
controlled system. As a result, the stepping stabilization can be applied for a sim-
ilar bipedal walking system on rough terrain. In Section 10.2, we use the aSLIP
model as an example to show the direct synthesis with the aid from BBF-QP in
Chapter 6. Lastly, we show the simulation results of enabling aSLIP to walk on
slopes, stairs, sinusoidal terrains, and general rough terrains with uncertainties on
the terrain height.

10.1 S2S Dynamics of H-LIP on Rough Terrain
To extend the H-LIP stepping to rough terrains, we first consider the walking of the
H-LIP on a slope, as shown in Fig. 10.1 (b). Let I0 denote the vertical distance
between the mass and the slope, \B be the degree of the slope, and \G be the angle
between the leg and the slope. Let ?G be the forward position of the mass along
the direction of the slope, and ? be that in the inertial frame. We assume I0 is
constant, and thus the point mass moves on the line which is parallel to the slope.
The dynamics of the point mass are derived as follows.

SSP dynamics: The dynamics of the H-LIP in the SSP is identical to that of the LIP
in [61] with zero ankle torque. One can directly apply the results of Eq. (12) in [61]
to get the dynamics. The motion is caused by the leg force � and the gravitational
force <6, and thus the Newton-Euler equations are

< ¥?G = �cos(\G) − <6sin(\B),
�sin(\G) = <6cos(\B).

Solving for ¥?G yields
¥?G = _2?G − 6sin(\B).
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Figure 10.1: (a) Illustration of the walking on the H-LIP model on a slope in the
SSP. (b) H-LIP walking on rough terrain, where the dashed lines indicate the leg
that is about to lift off or strike the ground.

Since ? = ?Gcos(\B) − IGsin(\B), we have

¥? = ¥?Gcos(\B) = _2?, (10.1)

which is identical to the dynamics of walking in the SSP on flat ground.

DSP dynamics: Similarly, in the DSP, two leg forces act on the point mass. Since
the mass is assumed to move in parallel to the slope, the net acceleration should
point to the direction which is parallel to the slope. Unlike the case in the SSP, the
Newton-Euler equations cannot yield deterministic leg forces in the DSP. In other
words, the magnitude of the net acceleration is controllable from the leg forces. For
simplicity, we assume that the acceleration is zero.

S2S dynamics: As a result, by describing the state and input in the inertial frame,
the dynamics of the H-LIP walking on the slope is identical to the dynamics on flat
ground, so is the S2S dynamics and the resulting stepping controller.

On rough terrain: The walking model of the H-LIP on general non-flat terrains is
based on the walking on slopes. Given a sequence of steps of the H-LIP walking
on rough terrain, the walking is equivalent to walking on piecewise continuous
slopes, as illustrated in Fig. 10.1 (c). Since the slope changes with each step, the
assumption has to be made to enable the change of the slope. For instance, in [62],
an impulse of the leg force is assumed to change the slope rate when the leg is
strictly vertical in the SSP. Here we assume the slope changes in the DSP, where
the leg forces can simultaneously create zero horizontal acceleration and change the
vertical trajectory. Therefore, the dynamics in both domains remain the same, and
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Figure 10.2: (a) The control specifications and (b) the step-to-step dynamics.

so does the S2S dynamics. The assumptions on the H-LIP walking are designed
to have a linear S2S dynamics to approximate and control the actual walking of a
bipedal walking system. Thus, the H-LIP based stepping in Eq. 3.17 can still be
applied to generate the desired step size for realizing desired walking behaviors.

10.2 aSLIP Walking on Rough Terrain
In this section, we extend the H-LIP based synthesis for realizing aSLIP walking
on rough terrain using the direct approach in Chapter 6. We consider that the
walking requires three specifications as shown in Fig. 10.2 (a): it keeps a vertical
distance from the ground, the swing foot periodically lifts off and strikes the ground
to switch support legs, and the swing foot steps to certain locations to produce a
desired horizontal behavior. The corresponding controls are briefly explained as
follows.

Vertical Mass Control via BBF-QP: The vertical state I is expected to follow
the desired trajectory Ides which has an approximately constant distance from the
ground (see Fig. 10.2). The vertical tracking and the leg force conditions are solved
via the BBF-QPs, which has been explained in Chapter 6.

Vertical Swing Foot Control: The vertical position of the swing foot is controlled
to lift off, avoid scuffing, and strike on the ground to finish the SSP at appropriate
timing. The desired vertical swing foot position is constructed as

Idessw = Itime
sw (C) + Iterrain(Gsw), (10.2)

where Itime
sw (C) is the time-dependent component and Iterrain(Gsw) is the terrain profile.

Itime
sw (C) is constructed so that the swing foot lifts off from the ground, reaches to
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a maximum height Imax
sw and then strikes the ground at C = )SSP. An example

of the time-dependent component is Itime
sw (C) = Imax

sw cos( C
)SSP

c − 1
2c). The spring

compression is assumed to go to zero on the swing leg, thus we select Isw =

I − !swcos(Vsw) and apply a feedback linearizing controller to drive Isw → Idessw .
Note that the terrain profile may not be exactly known in practice, for which we
assume an estimated version is available. The uncertainty on the terrain height
creates an uncertainty on the duration of the SSP: early strike causes a shorter
duration and late strike produces a longer duration. The result section will show
that the proposed approach is robust to the terrain uncertainty.

Horizontal Mass Control via H-LIP Stepping: The horizontal state x should be
controlled for walking. Again, due to the point-foot underactuation, the horizontal
state cannot be continuously controlled. We apply theH-LIP based stepping by using
the S2S dynamics of the H-LIP on rough terrain to approximate the S2S of the aSLIP
model (see Fig. 10.2 (b)). Then, the desired step size is continuously determined
in the SSP. Again, we simply construct a smooth trajectory of the horizontal swing
foot position to transit from the previous step location to the desired location.

10.3 Results and Discussion
The control parameters and system parameters are chosen identically to those in
Chapter 6. The stepping gain  is chosen to be the deadbeat gain for all the walking
for consistency. The BBF-QP based controller is solved at 1kHz. The aSLIP starts
from an initial static configuration and walks to a desired pre-impact velocity E∗. A
video of the results can be seen in https://youtu.be/fUZu6y-Gu4g.

Slopes
We first evaluate the approach for walking on slopes, for which, the desired vertical
trajectory is parallel to the terrain; then it is similar to walking on flat ground. Under
this circumstance, the aSLIP best matches the original assumption of the H-LIP
walking. Fig. 10.3 shows the walking on slopes up to ±30◦: (b) the converged
velocities are still close to the desired one, (c) the vertical trajectories are controlled
closely to the desired ones, and (d) the error states are inside � . The walking
performance does not vary significantly on different slopes due to the trivial foot-
ground impact.

https://youtu.be/fUZu6y-Gu4g
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Figure 10.3: Walking on slopes with E∗ = 0.5m/s: (a) an illustration of the walking
on an incline; (b) the velocity trajectories, (c) the vertical trajectories, and (d) the
error state trajectories for walking on different slopes (the red plots indicate the
inclines, the blue plots indicates the declines and the black plots represent the flat
ground).

Sin Waves, Stairs, and Rough Terrains
We then evaluate the walking on sin waves, stairs, and general rough terrains, as
shown in Fig. 10.4. The desired vertical trajectories Ides are not necessarily piece-
wise linear and do not directly match the local slope assumption of the H-LIP,
which presumably creates a larger F and thus a looser tracking performance on the
horizontal state.

On sinewaves, Ides = I0+Iterrain. For walking on stairs, we apply amoving averaging
filter on Iterrain to generate a smooth Ides. For walking on general rough terrains,
we assume the terrain height is not exactly known. The terrain is generated with
a combination of slopes, stairs, and sine waves plus a uniformly distributed noise
with a maximum magnitude XI. We apply the moving averaging on the noise-free
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Figure 10.4: Walking with E∗ = 0.5m/s on (a) sinusoidal terrain, (b) stairs, (c,d)
rough terrains; (e) the velocity trajectories and (f) the error state trajectories.

profile to get Ides. The noise can be viewed as the measurement error from sensors
on a physical robot. We tested the cases with XI = 0, 5, 10cm. For even larger
(unrealistic) noises, kinematic violation starts to happen, i.e., leg collides on the
edges of the terrains during walking.

The results are shown in Fig. 10.4: the vertical trajectories are well-tracked, and
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the horizontal velocities (compared with the walking on flat ground) are tracked
approximately. As expected, the walking on the rough terrains generated larger
oscillations (larger XI → larger oscillations). This is in part because the noise
creates variations on )SSP, which contributes to F. Despite the velocity oscillations,
the error states (blue dots in Fig. 10.4(f)) are all inside � .

Discussion
There are existing approaches in the literature [27, 60, 77, 81, 91] which can enable
bipedal robot walking on rough terrains. Compared to those, the proposed approach
is highly efficient in computation and easy to implement. The continuous controls
via BBF-QPs are convex optimizations. The discrete control via H-LIP stepping
is in closed form. Additionally, compared to [60, 77, 81], our controller tolerates
significantly larger height variations of the terrain. Moreover, the terrain does not
need to be exactly known, thus robustness is promoted. The application of this
approach on other robots besides the aSLIP model is also promising. Based on the
evaluation on AMBER in Chapter 5, the vertical COM can be directly controlled,
which should facilitate the realization of this H-LIP based synthesis for walking on
rough terrain.

Similar to previous applications, the H-LIP stepping relies on the condition that
the aSLIP dynamics is close to that of the H-LIP. This is mainly ensured by three
components of the control synthesis. The first is the direct control of the vertical
state of the mass, so the vertical trajectory is not distant from that of the H-LIP.
The second is the time-based component of the vertical swing foot trajectory, which
makes sure that the duration of the SSP does not vary unless the terrain noise XI is
too large. The third is the control barrier function in DSP that guides one leg force
to cross 0 at an appropriate timing, thus the DSP duration does not significantly
vary.
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C h a p t e r 11

EXTENSION ⊃ TEMPLATE EMBEDDING ON HUMANOIDS

In previous chapters, we have evaluated the proposed H-LIP based walking syn-
thesis on underactuated bipedal systems. Without doubts, they also can be used
for generating walking on fully-actuated humanoid robots, since the fully-actuated
humanoids become underactuated by deactivating the ankle actuation. Given ankle
actuation, we seek frameworks that methodically use ankle actuation on humanoid
robots. Therefore, in this chapter, we present two approaches of applying the H-LIP
based stepping controller and the aSLIPs on the humanoid robots. The first approach
focuses on the 3D motion decoupling and composition from different planar ROMs,
which separately creates periodic motion and non-periodic/transitional motion in
the sagittal and lateral plane. The composed 3D ROM motion is then embedded
on a humanoid robot. The second approach directly embeds the walking on the
3D-aSLIP model on a humanoid robot. Since point-footed ROMs are embedded on
the humanoids, overuses of the ankle actuation can be avoided.

Recall that we model the walking of the humanoid as a hybrid dynamical system
with two domains. The description of the hybrid model is similar to that of the robot
Cassie. We omit the detailed description here. We also assume that the humanoid
has 6 DoFs in each leg. The extra DoFs on the arms are neglected for simplification.
Thus there are 18 internal DoFs (including 6 floating-base coordinates) on the
humanoid robot.

We first present in Section 11.1 the general output definition for humanoid walking
and the contact force embedding within the optimization-based controllers. Then
we illustrate the motion decoupling and composition method via ROMs in Section
11.2. The approach of 3D-aSLIP embedding is described in Section 11.3. Finally,
we conclude this section in Section 11.4.

11.1 Dynamics Embedding with Contact Forces
We envision that the dynamics embedding of the ROMs on the fully-actuated hu-
manoid is through constraining the COM and feet of the humanoid to follow the
behavior of the ROMs. Thus we think about controlling the COM of the humanoid
to the desired COM trajectory of the walking of the ROM. The swing foot is con-
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trolled to the step location of the ROM as well. Thus we first define the output for
the walking of the humanoid.

Output Definition
In the DSP, foot contacts introduce 12 holonomic constraints. There are 6 outputs
required for the robot with 18 DoFs. Except for the COM position, we also control
the pelvis orientation. Thus the outputs for the DSP are defined as

YDSP(@, C) =



GCOM(@)
HCOM(@)
ICOM(@)
qroll(@)
qpitch(@)
qyaw(@)


−



GdesCOM(C)
HdesCOM(C)
IdesCOM(C)
qdesroll(C)
qdespitch(C)
qdesyaw(C)


, (11.1)

where the meaning of individual element is self-explanatory. Similar to the walking
on Cassie, the desired roll, pitch, and yaw angles of the pelvis are zeros except that
the desired yaw angle changes for the application of turning.

In the SSP, only one foot contacts the ground. Thus we define 12 outputs with
additional 6 being on the swing foot position and orientation:

YSSP(@, C) =



GCOM(@)
HCOM(@)
ICOM(@)
qroll(@)
qpitch(@)
qyaw(@)
Gsw(@)
Hsw(@)
Isw(@)
kroll(@)
kpitch(@)
kyaw(@)



−



GdesCOM(C)
HdesCOM(C)
IdesCOM(C)
qdesroll(C)
qdespitch(C)
qdesyaw(C)
Gdessw (C)
Hdessw (C)
Idessw (C)
kdes
roll(C)

kdes
pitch(C)
kdes
yaw(C)



, (11.2)

where kroll/pitch/yaw is the RPY angle of the swing foot. The desired roll and pitch
angles of the swing foot are designed to be zeros. Similar to the pelvis yaw angle,
the desired yaw angle of the swing foot is designed to change if turning is required.
The swing foot position is constructed smoothly from the initial to the final position
of the swing foot in the SSP.
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Optimization-based Controller with Contact Force Embedding
Recall in Chapter 2, both the TSC-QP and the CLF-QP can be applied for zeroing the
outputs. As for the fully-actuated humanoid, it is possible to regulate the magnitude
of the contact forces. With an eye on embedding the walking forces of the aSLIP on
the humanoid, we think about constraining the contact forces of the humanoid to be
similar to these of the aSLIP.

Recall Eq. (2.2) in Chapter 2 that the ground contact forces are affine functions
w.r.t. the motor torques g:

�ℎ = �ℎg + 1ℎ, (11.3)

where �ℎ represents the contact force vector. �ℎ ∈ R12 in the DSP, and �ℎ ∈ R6 in
the SSP. Suppose we would like the realized walking to exhibit the aSLIP walking
behavior in terms of ground reaction forces. For instance, if the contact forces
behave identically to those of the aSLIP walking, the transitions from the DSP to
the SSP can happen naturally as the normal force goes to zero. The transition from
the SSP to the DSP also behaves smoothly when the normal force increases as that
on the aSLIP. Thus the force control can be realized via enforcing

(ℎ�ℎ = �
aSLIP
I , (11.4)

where (ℎ is the selection matrix to select the vertical force in the vector; e.g., in the
SSP, (ℎ = [0, 0, 1, 0, 0, 0] and �ℎ is the reaction force vector with first three being
the linear forces in the G, H, I direction. �aSLIP

I is the vertical GRF on the stance leg
of the aSLIP during walking. With Eq. (11.3), the equality becomes

(ℎ�ℎg = �
aSLIP
I − (ℎ1ℎ. (11.5)

Figure 11.1: Illustration of the relaxation on contact force embedding with different
different relaxation coefficient 2.
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In case when we control the vertical COMoscillation of the humanoid to be identical
to that of the aSLIP simultaneously, the vertical GRF embedding needs to be relaxed.
Otherwise, strictly matching the GRF can destabilize the tracking. Thus, we relax
the equality in Eq.(11.5) by the inequality:��(ℎ�ℎ − �aSLIP

I

�� ≤ 2�aSLIP
I , (11.6)

resulting in

(1 − 2)�aSLIP
I − (ℎ1ℎ︸                     ︷︷                     ︸
2;1

≤ (ℎ�ℎg ≤ (1 + 2)�aSLIP
I − (ℎ1ℎ︸                     ︷︷                     ︸
2D1

, (11.7)

where 2 ∈ (0, 1) is a coefficient of the relaxation. Fig. 11.1 shows the valid range
of the �I with different 2 for the GRF embedding. It is important to note that
this relaxation shrinks as the force decreases, which enforces the smooth transitions
between the DSP and the SSP with the vertical GRF decreasing to 0 or increasing
from 0.

QP-based Controller: Since the force embedding is realized via an inequality con-
straint, it is easy to include it in the QP-based controllers in Chapter 2. Here we
show an example including the force embedding into the CLF-QP:

g∗ = argmin
g∈R12, X∈R

g)g)A)Ag + 2Lf
)Ag + ?X2, (11.8)

s.t. �CLF(@, ¤@)g ≤ 1CLF(@, ¤@) + X, (CLF)

�GRFg ≤ 1GRF, (GRF)

g;1 ( ¤@) ≤ g ≤ gD1 ( ¤@), (Torque Limit)

2;1 ≤ (ℎ�ℎg ≤ 2D1 . (Force Embedding)

Solving this QP yields the control input that can not only stablize the output but also
perform the contact force embedding to create smooth domain transitions.

11.2 Motion Decoupling and Composition via ROMs
In this section, we present the template dynamics generation via motion decoupling
and composition on ROMs. We first describe the walking motion via a sequential
composition of periodic walking and transitional walking. Both are further decou-
pled into walking in the sagittal and lateral planes, each of which is characterized by
a ROM. Each ROM is modified from the canonical ROMs to best match the type of
motion (Fig. 11.2). Specifically, we use the aSLIP and the H-LIP model for sagittal
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Figure 11.2: Illustration of the Motion Decoupling & Composition approach.

and lateral walking, respectively. Point-footed models of them, i.e., the original
models presented in previous chapters, are used for synthesizing periodic walking,
and the footed models (with ankle actuation) are applied for generating transitional
motion. The 3D coupling between planar models comes from the ground normal
forces.

To generate optimal walking behaviors, we formulate the trajectory optimization
problems on the aSLIPmodels for the periodic and transitional motion. The periodic
orbits of the point-footed H-LIP can be directly identified. The transitional motion
of the footed H-LIP is synthesized via a QP. ZMP constraint and ankle actuation
limit are included in the transitional optimizations.

The composition of ROMs naturally combines the benefit of using each ROM. The
aSLIP model enables the walking to be dynamic, and the H-LIP model facilitates
solvable QP for fast online planning. The optimization of the aSLIP model is also
fast to solve due to its low dimensionality. Moreover, the optimization for each
transition is only required to be solved once, which potentially can be implemented
online with the recent progresses [31] [30] on the online optimization.

Periodic Walking Generation via Point-Footed ROMs
The periodic motion on the aSLIP is first optimized given desired walking behaviors
such as velocities and step frequency. Note that the canonical SLIP model can also
be used for finding different walking motions [42]. However, the system energy of
canonical SLIP is conserved, which is not preferred for generating versatile motions.
Thus we use the aSLIP model. After performing the optimization, the durations
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Figure 11.3: 3D composition of planar periodic walking: (S1) the aSLIP model in
Sagittal plane, (S2) the vertical trajectory of a periodic walking on the aSLIP, (S3)
the forward velocity of the aSLIP; (L1) the H-LIP in the Lateral place, (L2) periodic
orbits of the H-LIP, (L3) global positions of the mass in different orbits. (C) An
example of the composed trajectory of the point mass in 3D.

of each domain, i.e. )SSP and )DSP, are thus fixed. Then we apply the H-LIP for
generating periodic lateral motion given the domain durations. The periodic orbit
for the lateral motion can be identified in closed-form as described in Chapter 4. We
limit the choice to the P2 orbits to make sure the step width is not smaller than the
foot size to avoid kinematic violation on the humanoid. Fig. 11.3 (L2) illustrates
different P2 orbits in the phase portrait.

Orbit Composition to 3D: Composition of the mass trajectory of the aSLIP in the
sagittal plane and that of the H-LIP in the lateral plane yields the desired COM
trajectory in 3D. The point foot nature of the two ROMs locates the center of
pressure at the center of the foot, which is expected to provide a large margin of foot
stability for embedding the COM on the humanoid. Fig. 11.3 (C) shows an example
of the composed trajectory in 3D.
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Transitional Motion Generation via Footed Reduced Order Models
Now we describe footed ROMs for fast and dynamic motion transition to enable
versatile walking behaviors. The foot actuation is directly applied on the ROMs
with the torque limits and the constraint that the center of pressure (COP) lies within
the feet.

The transitional behavior is defined as the motion that transits the robot states
between standing configurations to periodic motions or between periodic motions
themselves. Optimization of the transition motion of the full-dimensional robot
dynamics is still a difficult problem to solve due to complex specifications on
the dynamics constraints, contact sequences, and actuation limits. The transition
optimization on the footed ROMs can simplify the optimization while providing the
desired transition COM dynamics. The application of ankle actuation also provides
fast and smooth transitions.

We assume that the transition motion is specifically realized within two domains,
one DSP and one SSP. In other words, we pre-specify the contact sequence and
number of domains for the transition motion. One should note that it is possible
to formulate the optimization into a contact implicit optimization using the linear
complementarity problem formulation [82, 96] or using potential smooth techniques
[132, 133] for the hybrid dynamics.

Footed aSLIP for Transition in Sagittal Plane: The footed aSLIP model is the
aSLIP with actuated foot (Fig. 11.4 (S1)). The foot actuation resembles the ankle
pitch on the humanoid. The foot length is equal to that of the humanoid. The
closed-form dynamics can be found in the Appendix A. The transitional trajectory
optimization is similar to the aSLIP optimization described in Chapter 6. The
differences are as follows.

Cost Function: With the foot actuation, the cost for the transitional optimization
includes both the leg length actuation and the ankle torques:

� =

#∑
8=1

ΔC

2
( ¥!82L + ¥!

82

R + g
82

LH + g
82

RH ), (11.9)

where g8LH , g
8
RH are the ankle pitch torques.

ZMP and Actuation Constraints: To ensure the optimized COM trajectories are re-
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alistic, the ZMP and physical actuation constraints must be included:

− dheel�8L/R < g
8
L/RH < dtoe�8L/R, (11.10)���g8L/RH ��� < gHmax , (11.11)

where dhee/toel are the distance between the projected ankle pitch axis to the heel and
to the toe, �8L/R is the normal reaction force of foot contact, and gHmax is the maximum
ankle pitch torque of the humanoid. The interpretation of the ZMP constraint is
simply that the COPmust be in the foot so that the foot does not rotate on the ground.

Initial/Final States: The initial and final states must be identical to the ones in the
beginning and at the end of the motion transition. The specification of the states
comes from the humanoid. The real leg length A, leg angle V, and their velocities
can directly mapped from the COM states of the robot. The leg length state can be
solved by force balancing on the point mass with its acceleration. For instance, the
states of the aSLIP for the humanoid with static standing on its left foot statically
are

AL = ICOM(@), (11.12)

VL = tan−1( GCOM(@)
ICOM(@)

), (11.13)

!L = {! ∈ R : K(!) (! − A) = <6}, (11.14)

BL = !L − AL, (11.15)

where K(!) is the stiffness function of the aSLIP.

Footed LIP for Transition via Quadratic Programs: The durations of each domain
in the transitional motion are determined by the footed aSLIP optimization. For
generating the corresponding motion in the lateral plane, we use the footed H-LIP
model, which is the H-LIP with foot actuation (Fig. 11.4 (L1)). The ankle actuation
on the foot becomes the input to the system. Its continuous dynamics can be written
compactly in each domain as

¥HSSP = _2H + 1
<I0

gL/RG , (SSP)

¥HDSP =
1
<I0
(gLG + gRG ), (DSP)

where gLG and gRG are the ankle roll actuations. gL/RG = 0 if the foot is not in
contact with the ground. I0 is the averaged height of the mass on the footed aSLIP
in transition motion.
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Figure 11.4: Transitional composition from planar footed ROMs: (S1, L1) illus-
tration of the footed aSLIP and footed H-LIP. (S2-4) and (L2-3) are the results of
optimizations of the footed ROMs transiting from standing to periodic walking. The
blue lines indicate those in DSP, and the red indicates those in SSP. The yellow and
black indicate the lower and upper bounds respectively on the ZMP constraint in the
H-LIP optimization.

The linear dynamics motivates a quadratic program (QP) formulation for optimizing
the transition from an initial state [H0; ¤H0] to a final state [H 5 ; ¤H 5 ]. We discrete the
trajectory over time with the discretized linear dynamics being[

H:+1

¤H:+1

]
︸ ︷︷ ︸
. :+1

= �DSP/SSP

[
H:

¤H:

]
︸︷︷︸
. :

+
[
X2
)

2<I0
X)
<I0

]
︸ ︷︷ ︸

�

gDSP/SSPG , (11.16)

where X) is the time period in the discretization, : is the index in the discretization,
and

�SSP =

[
1 X)

_X) 1

]
, �DSP =

[
1 X)

0 1

]
, (11.17)

gSSP = gL/RG , g
DSP = gLG + gRG . (11.18)

ZMP and Actuation Constraints: With an eye towards the embedding on the hu-
manoid, we also enforce the ZMP and actuation constraints in the lateral transition
as

− d1�
:
L/R ≤ g

:
L/RG ≤ d2�

:
L/R, (11.19)���g:L/RG ��� < gGmax , (11.20)
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where d1, d2 are the distances between the projected ankle roll axis to each edge of
the foot, and gGmax is the maximum ankle roll torque.

Coupling with Footed aSLIP: The footed ROMs in each plane are coupled by the
ground normal forces. The vertical reaction forces in Eq. (11.19) are from �L/R(C)
of the footed aSLIP, which makes sure the lateral ZMP is satisfied more realistically.
One should note that the sum of the vertical reaction forces on the H-LIP, i.e.
�L(C) + �R(C), does not equal to <6, since the COM height varies from the footed
aSLIP.

Quadratic Program: The final QP formulation with minimizing g for efficiency is as
follows:

gLG , gRG , . = argmin
{gLG ,gRG ,. }∈R#×#×2#

∑#

:=1
g:

2

LG + g
:2

RG (11.21)

s.t. . :+1 = �SSP/DSP. : + �gSSP/DSPG , (H-LIP)���g:L/RG ��� < gGmax, (Torque Limit)

− d1�
:
L/R ≤ g

:
L/RG ≤ d2�

:
L/R, (ZMP)

[H# ; ¤H# ] = [H 5 ; ¤H 5 ], (Final State)

[H1; ¤H1] = [H0; ¤H0] . (Initial State)

Comparison with ZMP Approaches:Quadratic programs [64] [20] have beenwidely
used on the LIP dynamics for controlling humanoid walking. In our approach,
planning on the ZMP trajectory is not required and the QP is only required to be
solved once instead of online recursively.

Remark. The optimizations on the footed ROMs are connected by the ground reac-
tion force. Therefore the footed aSLIP optimization and the footed H-LIP QP can be
combined into a single nonlinear optimization. The procedures are straightforward
by combining the variables, constraints, and cost functions.

Results
With the constructed COM dynamics from ROMs, one can embed the dynamics
on the fully actuated humanoid robot by tracking the desired COM trajectory in
Section 11.1. Here we evaluate the approach on a lower-body exoskeleton (Exo)
[3] in simulation. The implementation steps are summarized in Algorithm 4. The
stiffness and damping functions are scaled from Cassie’s leg parameter based on the
weight ratio of the Exo’s over Cassie’s. This eliminates the trial-and-error process
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Figure 11.5: Simulation results of the walking from standing. (a) The tracking on
the desired COM position. (b) The evolution of COM velocity. (c) Snopshots of the
walking of the Exo. (d) Ground normal reaction forces are with in the relaxation
under the CLF-QP control.

for identifying appropriate spring parameters. The trajectory optimization problems
on the aSLIPs are solved by IPOPT [128]. The QP for the footed H-LIP is solved
by qpOASES [38] with active set method. We mainly evaluate the method for
two walking scenarios, i.e. periodic walking from standing and transition between
two periodic walking behaviors. A video of the simulation results can be seen in
https://youtu.be/L3XW-dRE3E0.

For both cases, periodic walking is first composed of the periodic orbits of the aSLIP
and the H-LIP. Then the nonlinear program on the footed aSLIP and the QP for the
footed H-LIP are solved for generating the transition in each plane. The ground
normal forces of the aSLIP are used as references in Eq. (11.7). The composed
trajectories of the COM are set to the desired outputs for the CLF-QP to generate
desired torques in the control loop. Fig. 11.5 shows one of the simulation results.

https://youtu.be/L3XW-dRE3E0
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Algorithm 4Motion Decoupling and Composition for Humanoids
Input: Desired behavior: step length and width, durations
GdesCOM(C), I

des
COM(C), �I (C), )SSP, )DSP ← aSLIP periodic optimization

HdesCOM(C) ← LIP periodic planning
aSLIP transition optimization
LIP transition planning← Eq. (11.21)
while Simulation/Control loop do
Ydes
SSP/DSP(C) ← Eq. (11.1), (11.2)

Force Embedding← Eq. (11.7)
g ← Eq. (11.8)

end while

The COM of the Exo follows the desired COM trajectory well. The ground normal
forces are within the range of the relaxation. Note that the impact of the foot-ground
contact still exists in the walking since we do not necessarily require the foot to strike
the ground with zero velocity. It does not destabilize the system due to contact force
embedding. The simulated walking thus verified the proposed walking generation
via motion decoupling and composition.

11.3 3D-aSLIP Walking Embedding on the Humanoid
In this section, we propose a different approach of embedding where the H-LIP
based stepping is applied. Recall that in Chapter 6 and 9, the H-LIP based stepping
is applied on the 3D-aSLIP using an indirect approach to perturb a stepping-in-place
walking into versatile walking behaviors. Therefore, we consider a direct embedding

Figure 11.6: The dynamics embedding scheme on Atlas.
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Figure 11.7: Simulation results of the fixed location control: (a-xyz) the tracking
of the mass trajectory (red are that of Atlas, and blue are that of the aSLIP), (b) the
ground normal force during walking inside the relaxation, and (c) the snapshots of
the generate walking.

of the 3D-aSLIP model on the humanoid with certain practical considerations. On
the humanoid, the COM height cannot exceed certain ranges. For instance, the
maximum height of the COM is fixed and becomes lower during walking. The
maximum and minimum step sizes are also bounded. These are specified when
generating the walking on the 3D-aSLIP. The advantage of the approach is mainly
on the highly efficient walking generation. Trajectory optimization is only required
to perform once on the 3D-aSLIP to generate a periodic walking motion. The
stepping controller is solved in closed-form for periodic walking or via fast solvable
MPC on the H-LIP for GPC. Computation request is minimum at the planning level.

The embedding of the aSLIP walking on the humanoid is the same as the previous
section (see Fig. 11.6). We use the robot model of Atlas [74] (without arms) to
evaluate this approach. The embedding is realized in simulation. A video of the
simulated results can be seen in https://youtu.be/Xt6XEkxz1_I.

Fig. 11.7 shows one simulatedwalking of fixed location control. The force relaxation
is selected as 2 = 0.2. Additional walking behaviors including the periodic walking

https://youtu.be/Xt6XEkxz1_I
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Figure 11.8: Simulation snapshots of the generate walking: (a) forward periodic
walking, (b) lateral periodic walking, and (c) global trajectory tracking.

in forward and lateral direction and trajectory tracking are demonstrated in Fig.
11.8. Note that for global trajectory tracking, we also enable turning on the robot
by letting the pelvis turn towards the direction of walking, so is the swing foot
orientation. The method that enables turning is identical to the method in Section
9.3 of Chapter 9. By driving the outputs to zero via Eq. (11.8), the walking on Atlas
can be generated. The simulated versatile walking verifies the proposed walking
generation via embedding the aSLIP walking with H-LIP based stepping.

11.4 Comparison
In this chapter, we proposed and evaluated two approaches that embed walking of
ROMs on fully-actuated humanoids. The first approach, motion decoupling and
composition (MDC) of planar ROMs, leverages the benefits of low-dimensional
(planar) models and trajectory optimization to generate and compose desired 3D
template COM dynamics for the humanoid. The second approach, 3D-aSLIP em-
bedding, directly embeds on the humanoid the COM of the aSLIP walking, which
is efficiently generated via the H-LIP based stepping. Both approaches gener-
ate non-constant COM height walking and embed the ground reaction forces of
aSLIP walking, which makes the transition between domains to be smooth. The
optimization-based controllers inChapter 2 are applied to further embed the template
dynamics with the desired contact forces. Both methods are evaluated on humanoid
robots on which different walking motions have been generated successfully.
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The two approaches also differ from each other. The MDC still relies on trajectory
optimization on the ROMs to generate different periodic walking and transitional
walking motion. It is not highly efficient compared to the 3D-aSLIP embedding but
can generate walking with different step frequencies. Additionally, the trajectory
optimization is not daunting as it is on the planar ROMs. The 3D-aSLIP embedding
is highly efficient for generating a variety of walking motions. The generated
walking is perturbed from a periodic walking, thus it always has the same frequency
of stepping. This can be avoided by generating different periodic walking with
different frequencies or changing the step frequency during walking. As the walking
is generated via H-LIP based stepping, the generated behavior is not going to be
100% accurate, whichmight not be desirable for certain applications where accuracy
is important. The comparison is summarized as follows with existing representative
approaches of template dynamics embedding on humanoids.

Table 11.1: Comparison of Dynamics Embedding Approaches on Humanoids

MDC 3D-aSLIP ZMP-LIP Canonical SLIP
Reference [140] [143] [64] [77]

COM height variation X X X X
Versatile behaviors X X X X

Nonconvex optimization X(>1) X(1) X X(>1)
Performance accuracy Medium Medium High Medium
Computational cost Medium Low Low Medium
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C h a p t e r 12

CONCLUSION

In this thesis, we propose a S2S dynamics based approximation via the H-LIP model
to plan step sizes for realizing dynamic walking behaviors on bipedal robots with
both versatility and robustness. By describing walking as a motion planning and
feedback control problem, we innovate a walking synthesis that converts planning
of step sizes into a feedback control problem on the S2S dynamics. The walking
of the H-LIP is applied to approximate the S2S dynamics of the walking of the
robot, and thus feedback step planning can be realized online for generating desired
walking behaviors on the robot. The realization is extremely simple in computation.
There are no non-convex optimizations to be solved offline or online. The periodic
orbits of the H-LIP and its stepping are all in closed-form. After demonstrating the
applications and extensions of the approach, we conclude with the contributions,
implications, and future directions.

12.1 Contributions
We designed a low-dimensional model (H-LIP) with its comprehensive orbit char-
acterizations to approximate underactuated bipedal walking. We took the underac-
tuated version of the canonical LIP and apply it to approximate the underactuated
bipedal walking. We provably and geometrically characterized all the P1 and P2
orbits of the H-LIP in its state space and proposed 3Dwalking via orbit composition.

We showed a versatile walking synthesis with stepping stabilization based on the H-
LIP for realizing 3D underactuated bipedal walking. The walking synthesis method
directly maps the features of the H-LIP walking to the robotic walking. We also
derived stepping stabilization of the robotic walking to the desired walking of the
H-LIP; the stepping stabilization is based on the approximation of the S2S dynamics
of the robot via the S2S dynamics of the H-LIP.

We realized the walking synthesis on various robotic bipedal walking systems and
experimentally implemented it on the physical hardware of the complex 3D un-
deractuated bipedal robot Cassie with passive compliance. Moreover, we showed
extensions of the approach to global position control and walking on rough terrain.
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12.2 Implications
Gait Library: The orbit characterization of the H-LIP can be viewed as providing an
approximated analytical "gait library" for the horizontal COM states of the bipedal
robot. The "gait library" of the H-LIP is continuous, i.e., fully occupying the state-
space of the horizontal COM. Although the horizontal COM of the robot does not
necessarily evolve identically to the orbit, it converges closely to the orbit under the
H-LIP based stepping controller. More importantly, transitions between "gaits" or
non-periodic walking behaviors can be easily realized via the H-LIP stepping (e.g.
the case of tracking a varying desired velocity).

Gait Characterization: The 3D composition of planar orbits offers a way of syn-
thesizing and characterizing 3D bipedal walking gaits. The gait synthesis and
characterization via composition of planar orbits can potentially be extended to
other multi-legged systems, e.g., the bounding behavior on quadrupedal locomotion
[32, 40] can be viewed as producing a P2 orbit in its sagittal plane. The extension
appears to be non-trivial but possible.

Model-free Planning: The H-LIP based approach can be viewed as a "model-free"
approach, where the robot model is not used in the planning. The walking of the
H-LIP is shown to approximate the general hybrid nature of alternating support
legs in bipedal walking. The planning on the hybrid dynamics of all the DoFs is
encapsulated into the control on the horizontal dynamics of the COM; the individual
dynamics of each DoF is not specifically described. As a result, the approach can
tolerate the imperfections of the robot modeling in the planning of walking.

Stability of Balancing: The stability of underactuated bipedal walking is typically
understood and analyzed on the periodic orbit of the robotic walking [50]. The S2S
dynamics formulation provides a different perspective towards understanding the
stability of walking. Assuming that the strongly actuated dynamics (the outputs)
can be stabilized, the underactuated/weakly-actuated dynamics (the horizontal COM
states) are shown to be directly controlled by the step sizes in the S2S dynamics
at the step level. Stabilization of the underactuated dynamics can thus be directly
synthesized. The stability of the walking is no longer on the periodic orbits but on
the discrete horizontal COM states.

Trajectory Tracking: In this thesis, we mainly focused on the planning problem
and simply applied optimization-based controllers to solve the trajectory tracking
problem. One should note that trajectory tracking (output stabilization) is not a
trivial problem in practice, but it is still a traditional feedback control problem. As
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has been shown before, the key component of balancing in terms of not-falling is
on the realization of the desired step sizes during walking. In the presence of large
tracking errors, the robot will not fall over as long as the realized step sizes drive
the horizontal COM state to its desired set.

12.3 Future Work
We also identify future directions with an eye on addressing some limitations of the
proposed approach.

Vertical COM Behavior: The vertical COM height is controlled approximately
constant in each step. As we have shown, it permits gradual variations of the COM
height between steps. It is not yet known if it is possible to dramatically change
the COM height within a step. One possible solution to enable this is to employ a
model (e.g. a height-varying pendulum model [22, 23, 72]) that captures both the
vertical and horizontal COM behaviors.

Non-unique Trajectory Synthesis: In our approach, the pelvis/upper-body trajecto-
ries are fixed, and the swing foot trajectory is designed in the simplest way possible.
Both are not optimized in terms of any criteria, e.g., energy consumption. It is
possible to apply data-driven approaches to find a low-dimensional representation
of the energy consumption in terms of parameterized trajectories of the swing foot
or the pelvis. Optimal trajectories can then be constructed on the swing foot and the
pelvis.

Performance Improvement: The error state e directly describes the performance of
the stepping controller which drives the robot to a desired walking of the H-LIP.
The error is not controlled to zero but in the error invariant set � . There are two
ways to further improve the performance in terms of reducing e. The first is to
develop a better approximation of the S2S dynamics so that the model difference
F is smaller. Different dynamics quantities such as the angular momentum [45]
can also be explored for improvement. In our recent work [146], we applied a
data-driven approach to learn the S2S dynamics of the robot, which provided better
approximations and thus improved the performances on the stepping stabilization.
Similar approaches also appeared in [16, 85]. The second is to employ a controller
that can directly reduce the error e; e.g., integral control is potentially able tomitigate
the error.

Feasibility: The robot joints are designed with limited ranges of motion. Thus, the
ranges of the available step sizes are also bounded, which then limits the behaviors
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(i.e. the walking speeds and orbit compositions) on the robot. Additionally, the legs
can internally collide with each other within their ranges of motion. This is more
evident on Cassie due to its complex design. The stepping controller presented in
this thesis does not systematically take this into consideration. Instead, the kinematic
feasibility is reflected on the choices of the desired walking of the H-LIP. In practice,
this is sufficient to produce safe (despite conservative) walking on the robot. A more
theoretically sound approach involves a systematic identification of the kinematic
feasibility. In our recent work [146], we applied the System Level Synthesis (SLS)
approach to address this kinematic feasibility under push disturbances. Advanced
controllers such as robust MPC [83] can be also explored to include the disturbance
and input bounds.

The realized walking behavior is also assumed to be dynamically feasible. In other
words, the desired trajectories of the outputs are assumed to be trackable given the
limitation of the motor design. In the optimization-based controllers, the torque
bounds are included. However, theoretically, it does not guarantee the trajectories
(especially the swing foot trajectories) to be well-tracked, e.g., when the walking
duration is chosen too small, the motor joints may not be able to move fast enough
to drive the swing foot to the desired location. In practice, this can be identified
empirically on the hardware despite the loss of theoretical soundness.

Walking over Irregular Terrain: The H-LIP model is assumed to walk on flat terrain
and has been extended for walking on non-flat terrain. However, we assumed the
step locations are not constrained. In the cases of walking on discontinuous terrains
such as the stepping stone problem [28, 90], fast online planning via dynamics
approximation is still an open problem.

On Fully-actuated Humanoid Walking: For the walking of a humanoid, the foot is
then actuated but with limited controls, which comes from the ankle actuation and
ZMP constraint on the support polygon. The foot actuation provides a continuous
control input to the horizontal COM state; in comparison, the step sizes are discrete
control inputs. The addition of an upper-body with arms also provides continuous
control inputs to the horizontal COM state via momentum-based approaches [57, 65,
71]. In Chapter 11, we explored the idea of dynamics embedding via point-footed
ROMs. Variations of the integration with step planning and continuous control
via ankle actuation and momentum-based approaches can potentially open a large
design space of the control synthesis for dynamic humanoidwalking in a challenging
environment. Future work should explore in this direction.
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A p p e n d i x A

EOM OF ASLIP

In this appendix, we present the closed-form dynamics of the aSLIP model. Gener-
ally, the dynamics of the aSLIP with actuated foot during walking in each domain
are

SSP :


¥A1 =

�1
<
− 6cos(V1) + A ¤V2

1
¥V1 =

1
A1
(−2 ¤V1 ¤A1 + 6sin(V1) + g1

<A1
)

¥B1 = ¥!1 − ¥A1

,

DSP :



¥A1 =
�1+�2cos(X@)

<
− 6cos(V1) + A1 ¤V2

1 +
g2
<A2

sin(X@)
¥V1 =

−2 ¤V1 ¤A1+6sin(V1)−
�2
<
sin(X@)

A1
+ cos(X@)

<A1A2
g2 + g1

<A2
1

¥A2 =
�2+�1cos(X@)

<
− 6cos(V2) + A2 ¤V2

2 −
g1
<A1

sin(X@)
¥V2 =

−2 ¤V2 ¤A2+6sin(V2)+
�1
<
sin(X@)

A2
+ cos(X@)

<A1A2
g1 + g2

<A2
2

¥B1 = ¥!1 − ¥A1

¥B2 = ¥!2 − ¥A2

,

where X@ = V1 − V2, ¥!1, ¥!2 are assumed to be the virtual input [139], and g1, g2 are
the ankle actuation. The spring forces �1, �2 come from the leg spring [138]. Note
that here we use the subscripts 1,2 to denote the legs. The dynamics of point-footed
aSLIP are these of the footed aSLIP with zero ankle actuation (g1 = 0, g2 = 0).

Impact Map Assumption: We assume there is an impact event happening when
the swing leg strikes the ground. Since the leg is massless, the velocity on the
mass is assumed to be continuous. The velocity of the swing foot becomes zero
at touchdown. Let 2 index the swing leg. ¤A2 and ¤V2 are discontinuous at impact.
Additionally, the holonomic constraint on the swing leg enforces ¤!+2 = ¤B

+
2 + ¤A

+
2 . It is

assumed that the leg length velocity is continuous, i.e. ¤!+2 = ¤!
−
2 . This matches with

the intuition that, when the leg is rigidly controlled, the impact instantaneously acts
on the compliant spring. The impact map is

ΔSSP→DSP :


¤@+2 =

1
A2
( ¤@1 ¤A1cos(X@) + ¤A1sin(X@))

¤A+2 = ¤A1cos(X@) − ¤@1A1sin(X@)
¤B+2 = ¤!

−
2 − ¤A

+
2

where we only specify the discontinuous states to save space. The transition map
ΔDSP→SSP is smooth.
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A p p e n d i x B

LEG SPRING ON CASSIE

In this appendix, we derive the leg spring model from the kinematics of the leg,
which yields the aSLIP model [138, 139] in Chapter 6. Since the leg is designed
with low inertia and mass, it is rational to approximate the full leg dynamics on
the upper body through a much lower dimensional model. By inspection on the
compliant components in the leg, we propose the approximation via a leg spring
model, which is a telescopic leg with a prismatic spring in serial connection. It
is expected on the robot that the stiffness of the leg spring changes with different
robot configurations. For instance, the leg is presumably more compliant when
the leg is in a configuration with a shorter length. Therefore, we explicitly derive
the leg stiffness and damping as functions of leg configurations, i.e., joint angles.
The analogy of the leg stiffness/damping is the end-effector stiffness/damping for
robotic manipulators [120], thinking about fixing the pelvis and treat the toe and
the end-effector. Then we approximate the axial component of the leg stiffness and
damping by polynomial functions of leg length !, which finally provide the leg
spring model.

Leg Stiffness and Damping: The leg stiffness Kleg is the resistance of the leg to
external forces. The complementary concept is called leg compliance Cleg = K−1

leg.
When the leg is under external load at the foot, the leg deforms due to compliant
elements in the leg. Assuming that we only consider the transitional deformations,
the external force can be calculated by

�ext = KlegX, (B.1)

where �ext ∈ R3,Kleg ∈ R3×3 and X ∈ R3. Under the assumption that the deformation
is small and only happens at the joints, the leg deformation X can be mapped from
joint deformations Δ@ by the foot Jacobian as X = �Δ@, where � ∈ R3×= and
Δ@ ∈ R=. Let g denotes the moments at the joints caused by the external load, thus
g = �)�ext. If the stiffness at each joint is k8 with 8 = 1, ..., =, then the joint stiffness
matrix is defined as K� = diag(k1, ..., k=), and g = K�Δ@. The joint stiffness matrix
K� and leg stiffness Kleg are hence related by the joint moments:

K�Δ@ = g = �
)�ext = �

)KlegX = �
)Kleg�Δ@. (B.2)
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Then the leg stiffness can be calculated from the joint stiffness matrix by

Kleg(@) = (� (@)K−1
� � (@)) )−1. (B.3)

This indicates the leg stiffness is a function of the Jacobian and thus a function of the
configuration @. The leg damping Dleg(@) is derived in the same way by dropping
the assumption on small deformation at joints, which yields

Dleg(@) = (� (@)D−1
� � (@)) )−1. (B.4)

We now apply the calculation of leg stiffness and damping on Cassie. Note that
the main difference is the closed kinematic chain inside the leg with pure passive
joints and compliant joints. The pure passive joints have no contribution towards
leg stiffness, so we need to derive the forward kinematics from active joints, i.e. the
spring joints and motor joints. As there are two chains towards the toe, the velocity
of the toe relative to the hip can be calculated as

EToe←Hip = �1(@1) ¤@1 = �2(@2) ¤@2, (B.5)

where @1 = [@hip; @knee; @shin; @tarsus; @toe] and @2 = [@r2; @r1; @heel; @toe]. Eq. (B.5)
can be rewritten as [

�1(@1) −�2(@2)
]

︸                  ︷︷                  ︸
�

[
¤@1

¤@2

]
= 0. (B.6)

Then we can rearrange the matrix � and group @1, @2 into active joints @� =

{@spring, @motor} and pure passive joints @%. Eq. (B.5) becomes[
�� (@) �% (@)

] [
¤@�
¤@%

]
= 0. (B.7)

Then the passive joint velocity ¤@% = −�−1
%
�� ¤@�. As there is only one passive joint,

the tarsus, on the main kinematic chain, we can find ¤@tarsus = −�−1
%
�� ¤@�, where

@� = {@knee, @shin, @heel, @toe}. Then the forward kinematics and the leg stiffness can
be expressed in terms of @�:

EToe←Hip = �� (@�) ¤@�, (B.8)

Kleg(@�) = (�� (@�)K−1
� �� (@�)

) )−1, (B.9)

where K� = diag(∞, kshin, kheel,∞) as we assume the motor joints being rigidly
controlled to fixed positions. Assuming the spring joints have small deflections under
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Figure B.1: (a) Illustration of the leg spring from the compliant joints. (b) The
vertical leg stiffness v.s virtual leg length for different stance width.

normal load, Kleg(@�) can be approximated as Kleg(@knee, @shin = 0, @heel = 0, @toe).
@toe has trivial contribution in terms of �� and Kleg. Thus Kleg(@�) ≈ Kleg(@knee).

This naturally inspires a definition of virtual leg length (uncompressed leg length)
! (@knee) to approximate Kleg(@knee) by Kleg(!). !A (@knee, @shin, @tarsus, @heel), i.e.
the compressed leg length, is defined as the distance between the hip pitch joint and
the toe joint, whereas the virtual leg length is the real leg length with zero spring
deflections as being illustrated in Fig. B.1 (a); see Appendix C for details. Due to
Cassie’s specific leg design, the compliance mainly appears in the direction of the
leg. As we are interested in the axial behavior, the last element in Kleg, denoted by
KI
leg, is taken as the stiffness of the leg. Fig. B.1 (b) shows how KI

leg changes with
! at different static stance configurations. We apply a polynomial regression in the
form of

KI
leg(!) = 00 + 01! + 02!

2 + 04!
4 (B.10)

to approximate the function KI
leg(!). The leg damping is approximated in the same

way. The coefficients of the regressed functions can be found in Table B.1.

Leg Spring: Given the leg stiffness and damping calculation, we have a nonlinear
spring in the leg. More importantly, the leg spring model is actuated. The spring
also changes with the change of the virtual leg length. Since the internal dynamics
of the leg is ignored, we view the actuation of the leg length at the input to the leg
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Table B.1: Coefficients of the Parametric Regression

00 01 02 04

On KI
leg -9451 48657 -55230 23309

On DI
leg -141 726 -824 348

spring model and thus also the input to the aSLIP in Chapter 6 with the same leg
spring model. On the robot, one can approximately view the leg as a serial-elastic
actuator, where the springs compose the elastic element at the output of the leg, and
the actuation is to change the uncompressed/virtual leg length !.
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A p p e n d i x C

UNCOMPRESSED OUTPUT ON CASSIE

The compliance springs create challenges to preciously control the vertical COM
and swing foot positions. If the output contains the compliant DoFs, the spring
can create undesired resonance, which then destabilizes the output, especially in the
vertical direction. Note that the DoFs of the spring joints are also underactuated.
Therefore, accommodations have to bemade for the compliance in the output design.
In Chapter 7 and 8, the rigid representations of the vertical COM, the leg length, the
swing foot positions are used. Here, we define these outputs rigorously.

By definition, the vertical position of the COM w.r.t. the stance foot is a function
of {qroll, qpitch, qyaw, @motor, @tarsus, @spring}. The COM height with uncompressed
springs is defined as

ĨCOM = ICOM(qroll, qpitch, qyaw, @motor, @tarsus → @
rigid
tarsus, @spring → 0).

@
rigid
tarsus is the uncompressed tarsus angle under the holonomic constraint of the push-

rod:

@
rigid
tarsus(@knee) = Root(ℎrod(@knee, @shin → 0, @heel → 0, @tarsus) = 0),

which is solved via Newton-Raphson method. Thus ICOM in Eq. (7.9) is approx-
imated by ĨCOM. Similarly, the position of the swing foot w.r.t. the stance foot
are approximated in the same way by {G̃, H̃, Ĩ}sw. Since the springs on the stance
leg are expected to oscillate less, we only set the springs on the swing legs to 0 in
{G̃, H̃, Ĩ}sw for better approximations. For the leg length of each leg, it is a function
of {@knee, @shin, @tarsus, @heel}. The rigid representation of the leg length is thus

! (@knee) = !A (@knee, @shin → 0, @tarsus → @
rigid
tarsus, @heel → 0).
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A p p e n d i x D

BÉZIER POLYNOMIALS

The Bézier polynomials are used to design the desired output trajectories. The
Bézier polynomials are defined as

1(C̄) :=
"∑
:=0

U:
"!

:!(" − :)! C̄
: (1 − C̄)"−: , (D.1)

where C̄ ∈ [0, 1] and U: are the coefficients of the Bézier polynomial. " is the
degree. In the application of walking, we define C̄ = C

)
with ) being the duration of

a walking cycle, and C is the time, which is reset to 0 when C = ) . The Bℎ used in
the thesis has coefficients of [0, 0, 1, 1, 1].
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