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ABSTRACT 

Three-dimensional (3D) nuclear architecture plays key roles in many cellular processes such 
as gene regulation and genome replication. Recent sequencing-based and imaging-based 
single-cell studies have characterized a high variability of nuclear features in individual cells 
from a wide-range of measurement modalities, such as chromosome structures, subnuclear 
structures, chromatin states, and nascent transcription. However, the lack of technologies that 
allow us to interrelate those nuclear features simultaneously in the same single cells limits 
our understanding of nuclear architecture. To overcome this limitation, a technology that can 
examine 3D nuclear features across modalities from the same single cells is required. Here, 
we demonstrate integrated spatial genomics approaches, which enable genome-wide 
investigation of chromosome structures, subnuclear structures, chromatin states, and 
transcriptional states in individual cells. In Chapter 2, we introduce the “track first and 
identify later” approach, which enables multiplexed tracking of genomic loci in live cells by 
combining CRISPR/Cas9 live imaging and DNA sequential fluorescence in situ 
hybridization (DNA seqFISH) technologies. We demonstrate our approach by resolving the 
dynamics of 12 unique subtelomeric loci in mouse embryonic stem (ES) cells. In Chapter 3, 
we present the intron seqFISH technology, which enables transcriptome-scale gene 
expression profiling at their nascent transcription active sites in individual nuclei in mouse 
ES cells and fibroblasts, along with mRNA and lncRNA seqFISH and immunofluorescence. 
We show the transcription active sites position at the surfaces of chromosome territories with 
variable inter-chromosomal organization in individual nuclei. By building upon those 
technologies, in Chapter 4, we demonstrate integrated spatial genomics in mouse ES cells, 
which enables to image thousands of genomic loci by DNA seqFISH+, along with sequential 
immunofluorescence and RNA seqFISH in individual cells. We show “fixed loci” that are 
invariably associated with specific subnuclear structures across hundreds of single cells that 
can constrain nuclear architecture in individual nuclei. In addition, we find individual 
genomic loci appear to be pre-positioned to specific nuclear compartments with different 
frequencies, which are independent from nascent transcriptional states of single cells. Lastly, 
in Chapter 5, we demonstrate the integrated spatial genomics technology in the mouse brain 
cortex, enabling the investigation of single-cell nuclear architecture in a cell-type specific 
fashion as well as the exploration of common organizational principles of nuclear 
architecture across cell types. We reveal that inter-chromosomal organization and radial 
positioning of chromosomes are arranged with cell-type specific chromatin fixed loci and 
subnuclear structure organization in diverse cell types. We also uncover the variable 
organization of chromosome domain structures at the sub-megabase scale in individual cells, 
which can be obscured with bulk measurements. Together, these results demonstrate the 
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ability of integrated spatial genomics to advance our overall understanding of single-cell 
nuclear architecture in various biological systems. 
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Chapter 1 

INTRODUCTION 

1.1 OVERVIEW OF NUCLEAR ARCHITECTURE STUDIES 
 
Three-dimensional (3D) nuclear architecture plays key roles in many biological processes 
such as gene regulation, genome replication, and normal development (Misteli, 2020; Parmar 
et al., 2019; Rowley and Corces, 2018; van Steensel and Furlong, 2019; Takizawa and 
Meshorer, 2008; Yu and Ren, 2017). The dysregulation of proper 3D nuclear architecture 
leads to abnormal development and diseases. Thus, it is critical to understand how 3D nuclear 
architecture is shaped in many biological contexts. The nuclear architecture can arise from 
compartmentalization and arrangement of different nuclear features at different length scales, 
such as chromosome structures, chromatin states, and nuclear bodies. In addition, the nuclear 
architecture can distinguish different cell types, and dynamically change during 
developmental processes. In the past two decades, due to the great advances of the 
technologies to examine nuclear architecture, it has become clearer how nucleus is organized 
in 3D in diverse biological systems. Those advances have been mainly driven by sequencing-
based genomics and imaging-based microscopy (Dekker et al., 2017; Kempfer and Pombo, 
2020).  
 
The sequencing-based methods allow genome-wide investigation to capture a global picture 
of nuclear organization, and typically performed as bulk measurements from a large number 
of cells. Although those ensemble-averaged measurements can capture conserved nuclear 
features across many cells, it can obscure the variability and heterogeneity of nuclear 
organization in individual cells. To overcome this limitation, in recent years, the sequencing-
based genomics can be scaled down to single cells (Armand et al., 2021), and starts to 
investigate the nuclear organization at the single-cell level across different measurement 
modalities, such as chromosome structures and chromatin modifications.  
 
On the other hand, imaging-based approaches are naively performed at the single-cell level 
and contain direct 3D information of the nucleus. In addition, by performing time-lapse 
microscopy with fluorescently tagged nuclear components, imaging-based approaches can 
elucidate temporal organization of the nucleus. Furthermore, imaging tissues allow direct 
observation of the nuclei from many cell types in their naive context. Thus, although 
imaging-based approaches are limited in their ability for the throughput of the targets 
(typically up to several targets due to the limit of orthogonal fluorophores that can be used at 
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one time), the imaging technologies have been powerful as complementary approaches from 
sequencing-based genomics. More recently, highly multiplexed imaging-based approaches 
are developed (Boettiger and Murphy, 2020) and have started to enable genome-scale 
measurements by preserving naive 3D nuclear organization in individual cells. 
 
Furthermore, in more recent years, both sequencing-based genomics and imaging-based 
microscopy technologies have enabled multimodal measurements of nuclear components 
such as chromosome structures, chromatin states, and transcriptional states within single 
cells (Kelsey et al., 2017; Zhu et al., 2020). Those multimodal measurements allow us to 
interrelate the organization of different nuclear components and advance our overall 
understanding of nuclear architecture, which has been difficult to obtain with measurements 
of one modality at one time. The investigation of nuclear architecture across multimodalities 
in single cells has just begun to emerge. We anticipate applying those approaches to diverse 
samples and biological contexts to facilitate the discovery and understanding in the nuclear 
architecture and its associated biological phenomena. 
 
Here, I highlight the major advances of the sequencing-based and imaging-based 
technologies to study 3D nuclear architecture. I also discuss the major features of 3D nuclear 
architecture obtained by these technologies. 
 
 
1.2 SEQUENCING-BASED TECHNOLOGIES TO STUDY NUCLEAR 
ARCHITECTURE 
 
One of the main methods in sequencing-based technologies is chromosome conformation 
capture (3C)-based technologies (Dekker et al., 2017; Denker and de Laat, 2016; Kempfer 
and Pombo, 2020). The 3C-based technologies measure ligation frequencies of pairs of DNA 
loci relying on proximity ligation of crosslinked chromatin fragments. The ligated chromatin 
fragments are then processed for different measurements such as 3C (Dekker et al., 2002), 
circular chromosome conformation capture (4C) (Simonis et al., 2006; Zhao et al., 2006), 
and chromosome conformation capture carbon copy (5C) (Dostie et al., 2006), which capture 
ligation frequencies for pre-selected DNA loci. On the other hand, high-throughput 
chromosome conformation capture (Hi-C) (Lieberman-Aiden et al., 2009) can capture 
genome-wide ligation frequencies to build chromosome structures from populations of cells 
and have been used as a gold standard sequencing-based method in the field. In the original 
Hi-C study, Lieberman-Aiden et al. (2009) revealed spatial proximity maps of the human 
genome at 1-Mb resolution. These maps confirmed the chromosome territories and revealed 
the genome-wide compartments, called A/B compartments. Later, Hi-C and other 3C-based 
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technologies with sub-megabase resolustion (Dixon et al., 2012; Nora et al., 2012; Sexton et 
al., 2012) revealed the chromosome feature called topologically associating domains 
(TADs), within which chromatin regions interact more frequently than the others, in diverse 
organisms. Those TAD boundaries are enriched at insulator binding protein CTCF and 
housekeeping genes (Dixon et al., 2012). With an additional optimization of the Hi-C 
protocol, Rao et al. (2014) revealed the folding principles of the human genome at kilobase 
resolution. In particular, genome-wide A/B compartments are segregated into 
subcompartments, and loop anchors occur at domain boundaries, which are enriched with a 
specific orientation of CTCF motifs. Together, those 3C-based technologies revolutionized 
our views of the genome organization at different length scales, such as the observations of 
chromosome territories, A/B compartment, and TADs. 
 
Complementary to 3C-based approaches, chromatin immunoprecipitation (ChIP) assays 
with sequencing, ChIP-seq (Johnson et al., 2007), is a powerful technology to characterize 
genome-wide DNA binding sites for transcription factors, histone modifications and other 
proteins using primary antibodies specific to those targets. The ChIP-based approaches can 
be combined with 3C-based assays to capture chromatin contacts mediated by specific 
factors such as histone modifications, architectural proteins, and transcription factors. One 
of the methods developed for this purpose is chromatin interaction analysis by paired-end 
tag sequencing (ChIA-PET) (Fullwood et al., 2009), which enables to study genome-wide 
long-range chromatin interactions mediated by specific factors. By using ChIA-PET, 
Fullwood et al. (2009) revealed long-range chromatin interactions at gene promoters 
mediated by oestrogen receptor α in the human genome. 
 
The 3C-based approaches need to rely on the ligation of the ends of DNA fragments, which 
biases toward pairwise interactions and misses high-order interactions in a complex 
chromatin cluster. To overcome these limitations, two major ligation-free approaches have 
been developed recently for mapping genome-wide chromosome organization: GAM and 
SPRITE. Beagrie et al. (2017) developed genome architecture mapping (GAM) 
measurements to capture chromatin interactions and other features of 3D chromatin topology 
by performing DNA sequencing from a large collection of thin nuclear sections from 
individual cells. GAM technology revealed three-way contacts across the genome, especially 
at highly transcribed regions and super-enhancer regions. Quinodo et al. (2018) developed 
split-pool recognition of interactions by tag extension (SPRITE) to capture higher-order 
interactions across the genome within the nucleus. SPRITE revealed chromosomes are 
organized around two hubs of inter-chromosomal interactions around the nucleolus and 
nuclear speckles. Together, those technologies that do not rely on proximity ligation enable 
us to gain insights into higher-order chromosome organization. 
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The sequencing-based assays described above are typically performed from populations of 
cells, which can obscure the variability of nuclear organization in single cells (Rowley and 
Corces, 2018). More and more recent studies support the importance of variability of 
individual cells in gene regulation (Finn and Misteli, 2019), and thus, it is crucial to map 
single-cell nuclear organization in a genome-wide fashion. For this purpose, genomics 
approaches have been scaled down to the single-cell level with various biological samples 
(Dekker et al., 2017; Kempfer and Pombo, 2020). In particular, Nagano et al. (2013) 
originally performed single-cell Hi-C to characterize cell-to-cell variability in chromosome 
structure, revealing relatively conserved domain organization at the megabase scale but 
variable inter-domain structures at larger scales. Tan et al. (2018) developed diploid 
chromatin conformation capture (Dip-C) to reveal chromosome organization from single 
diploid cells across cell types with high spatial resolution. These single-cell genomics 
approaches can add significant insights into nuclear organization that can be missed with 
population-averaged genomics technologies.  
  
 
1.3 IMAGING-BASED TECHNOLOGIES TO STUDY NUCLEAR ARCHITECTURE 
 
The direct visualization of nuclear structures and genomic sequences allows us to put nuclear 
architecture in the native 3D chromatin context. The imaging-based approaches enable direct 
visualization of chromosomes and other nuclear components in live and fixed cells (Dekker 
et al., 2017; Kempfer and Pombo, 2020).  
 
The live cell approaches allow the investigation of spatiotemporal dynamics of chromatin 
organization in the nucleus (Chen et al., 2016). Traditionally, the live cell techniques to 
visualize specific genomic sequences relied on fluorescently labeled DNA-binding proteins 
and artificial repetitive sequences inserted in the genome. More recently, CRISPR/Cas9 
systems, consisting of fluorescently tagged endonuclease deficient Cas9 protein and a 
structurally optimized small guide (sg) RNA, were repurposed for live cell imaging of 
genomic loci (Chen et al., 2013). This allowed versatile visualization of endogenous 
repetitive and non-repetitive sequences. Those live cell approaches can characterize the 
dynamic information of genomic loci during cell cycle progression, genome editing, and 
transcriptional activities (Chen et al., 2013; Wang et al., 2019).  
 
Imaging approaches can also be performed with fixed cells. One of the gold standard 
approaches used in the field is DNA fluorescence in situ hybridization (DNA FISH) (Cremer 
et al., 2008). This method utilizes fluorescently labeled DNA probes, which can be 
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hybridized to specific genomic sequences in the nucleus. By performing multicolor DNA 
FISH, the organization of specific genomic loci can be investigated from single cells. This 
allows direct visualization of chromosome organization in 3D at the single-cell level. More 
recently, versatile design and synthesis platform for visualizing genomes by DNA FISH can 
be achieved with Oligopaint technologies (Beliveau et al., 2012). DNA FISH has been used 
as an approach orthogonal to bulk sequencing-based technologies. However, the throughput 
of DNA loci that can be investigated with imaging-based approaches was limited due to the 
number of orthogonal fluorophores that can be used at one time. 
 
Increasing the throughput of the number of genomic loci that can be imaged at one time could 
reveal new insights into nuclear organization. Our lab has previously developed an imaging-
based approach, sequential fluorescence in situ hybridization (seqFISH) (Lubeck et al., 
2014), to construct a temporal barcode on RNA species through multiple rounds of sequential 
hybridization, allowing the multiplexed detection of RNA molecules in single cells in 
following years (Chen et al., 2015; Shah et al., 2016). We then extended this approach to 
DNA seqFISH for chromosomal imaging and demonstrated multiplexed detection of 12 
subtelomeric loci in single cells (Takei et al., 2017). To obtain genomic-level coverage, 
thousands of loci must be multiplexed in single cells, but this level of multiplexing is often 
associated with optical crowding issues. To overcome this limitation, we recently showed 
that over 10,000 genes can be multiplexed at the transcription active sites in single cells with 
intron seqFISH (Shah et al., 2018) using a pseudocolor barcoding scheme (Eng et al., 2017). 
In addition, we demonstrated RNA seqFISH+ (Eng et al., 2019) can profile mRNAs at the 
transcriptome scale in single cells using deterministic rounds of labeling with fluorescent 
probes to achieve super-resolved localization. 
 
Building upon these previous works, multiplexed imaging-based approaches to study 
chromosome organization have been recently developed (Boettiger and Murphy, 2020). In 
particular, Wang et al. (2016) performed sequential DNA FISH to resolve tens of genomic 
loci in one chromosome in single cells. This imaging-based method confirmed chromatin 
features such as TADs and A/B compartments originally found by bulk sequencing 
measurements and showed that A/B compartments have preferential spatial segregation in 
individual cells. Bintu et al. (2018) performed sequential DNA FISH to resolve tens of 
genomic loci with 30 kb resolution. This study characterized variability of chromosome 
domain structures at the single-cell level and found the domain boundaries are preferentially 
formed at the CCCTC-binding factor (CTCF)- and cohesin-binding sites. More recently, 
sequential DNA FISH can be performed together with transcriptional measurements within 
the same single cells by technologies such as Hi-M (Cardozo Gizzi et al., 2019), optical 
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reconstruction of chromatin architecture (ORCA) (Mateo et al., 2019), and multiplexed 
imaging of nucleome architectures (MINA) (Liu et al., 2020).  
 
Lastly, there are recent technologies that can bridge the gaps between sequencing-based and 
imaging-based technologies by combining both approaches. In particular, Nguyen et al. 
(2020) developed OligoFISSEQ, which hybridizes barcoded Oligopaint probes to the sample 
and reads out those barcodes by fluorescence in situ sequencing (FISSEQ) (Lee et al., 2014), 
to trace chromosome structures in single cells. Payne et al. (2021) developed in situ genome 
sequencing (IGS), which performs sequencing and imaging of the genome simultaneously 
from the same single cells, to capture genomic sequences and map back obtained sequences 
in 3D space in the nucleus. Those technologies can potentially serve as alternative 
approaches to study nuclear organization. 
 
 
1.4 SUMMARY 
 
The advances of technologies have provided new insights into the organizational principles 
of 3D nuclear architecture. My works are motivated by the development of new imaging-
based technologies to study 3D nuclear architecture in a genome-wide fashion. In Chapter 2, 
we developed a new approach, “track first and identify later,” for highly multiplexed 
dynamic imaging of genomic loci by combining two technologies: CRISPR/Cas9 live cell 
imaging and DNA seqFISH. In Chapter 3, we developed nascent transcriptome profiling 
technology, intron seqFISH, allowing us to map 3D nuclear organization at transcription 
active sites in single nuclei. In Chapter 4, we developed a new approach integrated spatial 
genomics, which can interrelate chromosome structures, transcriptional states, and chromatin 
states in the same single cells to characterize 3D nuclear architecture across measurement 
modalities and applied to mouse embryonic stem cells. In Chapter 5, we applied integrated 
spatial genomics to the mouse brain cortex to investigate cell-type specific nuclear features 
and common organizational principles of single-cell 3D nuclear architecture across cell 
types. 
 
 
 
 
 
 
 
 



7 
 

 

1.5 REFERENCES 
 
Armand, E.J., Li, J., Xie, F., Luo, C., and Mukamel, E.A. (2021). Single-cell sequencing of 
brain cell transcriptomes and epigenomes. Neuron 109, 11–26. 
 
Beagrie, R.A., Scialdone, A., Schueler, M., Kraemer, D.C.A., Chotalia, M., Xie, S.Q., 
Barbieri, M., de Santiago, I., Lavitas, L.-M., Branco, M.R., et al. (2017). Complex multi-
enhancer contacts captured by genome architecture mapping. Nature 543, 519–524. 
 
Beliveau, B.J., Joyce, E.F., Apostolopoulos, N., Yilmaz, F., Fonseka, C.Y., McCole, R.B., 
Chang, Y., Li, J.B., Senaratne, T.N., Williams, B.R., et al. (2012). Versatile design and 
synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl. Acad. 
Sci. U. S. A. 109, 21301–21306. 
 
Bintu, B., Mateo, L.J., Su, J.-H., Sinnott-Armstrong, N.A., Parker, M., Kinrot, S., Yamaya, 
K., Boettiger, A.N., and Zhuang, X. (2018). Super-resolution chromatin tracing reveals 
domains and cooperative interactions in single cells. Science 362, eaau1783. 
 
Boettiger, A., and Murphy, S. (2020). Advances in chromatin imaging at kilobase-scale 
resolution. Trends Genet. 36, 273–287. 
 
Cardozo Gizzi, A.M., Cattoni, D.I., Fiche, J.-B., Espinola, S.M., Gurgo, J., Messina, O., 
Houbron, C., Ogiyama, Y., Papadopoulos, G.L., Cavalli, G., et al. (2019). microscopy-based 
chromosome conformation capture enables simultaneous visualization of genome 
organization and transcription in intact organisms. Mol. Cell 74, 212–222.e5. 
 
Chen, B., Gilbert, L.A., Cimini, B.A., Schnitzbauer, J., Zhang, W., Li, G.-W., Park, J., 
Blackburn, E.H., Weissman, J.S., Qi, L.S., et al. (2013). Dynamic imaging of genomic loci 
in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491. 
 
Chen, B., Guan, J., and Huang, B. (2016). Imaging specific genomic DNA in living cells. 
Annu. Rev. Biophys. 45, 1–23. 
 
Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S., and Zhuang, X. (2015). RNA imaging. 
Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090. 
 



8 
 

 

Cremer, M., Grasser, F., Lanctôt, C., Müller, S., Neusser, M., Zinner, R., Solovei, I., and 
Cremer, T. (2008). Multicolor 3D fluorescence in situ hybridization for imaging interphase 
chromosomes. Methods Mol. Biol. 463, 205–239. 
 
Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome 
conformation. Science 295, 1306–1311. 
 
Dekker, J., Belmont, A.S., Guttman, M., Leshyk, V.O., Lis, J.T., Lomvardas, S., Mirny, L.A., 
O’Shea, C.C., Park, P.J., Ren, B., et al. (2017). The 4D nucleome project. Nature 549, 219–
226. 
 
Denker, A., and de Laat, W. (2016). The second decade of 3C technologies: Detailed insights 
into nuclear organization. Genes Dev. 30, 1357–1382. 
 
Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., and Ren, B. 
(2012). Topological domains in mammalian genomes identified by analysis of chromatin 
interactions. Nature 485, 376–380. 
 
Dostie, J., Richmond, T.A., Arnaout, R.A., Selzer, R.R., Lee, W.L., Honan, T.A., Rubio, 
E.D., Krumm, A., Lamb, J., Nusbaum, C., et al. (2006). Chromosome Conformation Capture 
Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic 
elements. Genome Res. 16, 1299–1309. 
 
Eng, C.-H.L., Shah, S., Thomassie, J., and Cai, L. (2017). Profiling the transcriptome with 
RNA SPOTs. Nat. Methods 14, 1153–1155. 
 
Eng, C.-H.L., Lawson, M., Zhu, Q., Dries, R., Koulena, N., Takei, Y., Yun, J., Cronin, C., 
Karp, C., Yuan, G.-C., et al. (2019). Transcriptome-scale super-resolved imaging in tissues 
by RNA seqFISH+. Nature 568, 235–239. 
 
Finn, E.H., and Misteli, T. (2019). Molecular basis and biological function of variability in 
spatial genome organization. Science 365, eaaw9498. 
 
Fullwood, M.J., Liu, M.H., Pan, Y.F., Liu, J., Xu, H., Mohamed, Y.B., Orlov, Y.L., Velkov, 
S., Ho, A., Mei, P.H., et al. (2009). An oestrogen-receptor-alpha-bound human chromatin 
interactome. Nature 462, 58–64. 
 



9 
 

 

Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. (2007). Genome-wide mapping of 
in vivo protein-DNA interactions. Science 316, 1497–1502. 
 
Kelsey, G., Stegle, O., and Reik, W. (2017). Single-cell epigenomics: Recording the past and 
predicting the future. Science 358, 69–75. 
 
Kempfer, R., and Pombo, A. (2020). Methods for mapping 3D chromosome architecture. 
Nat. Rev. Genet. 21, 207–226. 
 
Lee, J.H., Daugharthy, E.R., Scheiman, J., Kalhor, R., Yang, J.L., Ferrante, T.C., Terry, R., 
Jeanty, S.S.F., Li, C., Amamoto, R., et al. (2014). Highly multiplexed subcellular RNA 
sequencing in situ. Science 343, 1360–1363. 
 
Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, 
A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009). Comprehensive 
mapping of long-range interactions reveals folding principles of the human genome. Science 
326, 289–293. 
 
Liu, M., Lu, Y., Yang, B., Chen, Y., Radda, J.S.D., Hu, M., Katz, S.G., and Wang, S. (2020). 
Multiplexed imaging of nucleome architectures in single cells of mammalian tissue. Nat. 
Commun. 11, 2907. 
 
Lubeck, E., Coskun, A.F., Zhiyentayev, T., Ahmad, M., and Cai, L. (2014). Single-cell in 
situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361. 
 
Mateo, L.J., Murphy, S.E., Hafner, A., Cinquini, I.S., Walker, C.A., and Boettiger, A.N. 
(2019). Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 
49–54. 
 
Misteli, T. (2020). The self-organizing genome: principles of genome architecture and 
function. Cell 183, 28–45. 
 
Nagano, T., Lubling, Y., Stevens, T.J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E.D., 
Tanay, A., and Fraser, P. (2013). Single-cell Hi-C reveals cell-to-cell variability in 
chromosome structure. Nature 502, 59–64. 
 
Nguyen, H.Q., Chattoraj, S., Castillo, D., Nguyen, S.C., Nir, G., Lioutas, A., Hershberg, 
E.A., Martins, N.M.C., Reginato, P.L., Hannan, M., et al. (2020). 3D mapping and 



10 
 

 

accelerated super-resolution imaging of the human genome using in situ sequencing. Nat. 
Methods 17, 822–832. 
 
Nora, E.P., Lajoie, B.R., Schulz, E.G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van 
Berkum, N.L., Meisig, J., Sedat, J., et al. (2012). Spatial partitioning of the regulatory 
landscape of the X-inactivation centre. Nature 485, 381–385. 
 
Parmar, J.J., Woringer, M., and Zimmer, C. (2019). How the genome folds: the biophysics 
of four-dimensional chromatin organization. Annu. Rev. Biophys. 48, 231–253. 
 
Payne, A.C., Chiang, Z.D., Reginato, P.L., Mangiameli, S.M., Murray, E.M., Yao, C.-C., 
Markoulaki, S., Earl, A.S., Labade, A.S., Jaenisch, R., et al. (2021). In situ genome 
sequencing resolves DNA sequence and structure in intact biological samples. Science 371, 
eaay3446. 
 
Quinodoz, S.A., Ollikainen, N., Tabak, B., Palla, A., Schmidt, J.M., Detmar, E., Lai, M.M., 
Shishkin, A.A., Bhat, P., Takei, Y., et al. (2018). Higher-order inter-chromosomal hubs shape 
3D genome organization in the nucleus. Cell 174, 744–757.e24. 
 
Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., 
Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al. (2014). A 3D map of the human 
genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680. 
 
Rowley, M.J., and Corces, V.G. (2018). Organizational principles of 3D genome 
architecture. Nat. Rev. Genet. 19, 789–800. 
 
Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, 
H., Tanay, A., and Cavalli, G. (2012). Three-dimensional folding and functional organization 
principles of the Drosophila genome. Cell 148, 458–472. 
 
Shah, S., Lubeck, E., Zhou, W., and Cai, L. (2016). In situ transcription profiling of single 
cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342–357. 
 
Shah, S., Takei, Y., Zhou, W., Lubeck, E., Yun, J., Eng, C.-H.L., Koulena, N., Cronin, C., 
Karp, C., Liaw, E.J., et al. (2018). Dynamics and spatial genomics of the nascent 
transcriptome by intron seqFISH. Cell 174, 363–376.e16. 
 



11 
 

 

Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., de Wit, E., van Steensel, 
B., and de Laat, W. (2006). Nuclear organization of active and inactive chromatin domains 
uncovered by chromosome conformation capture–on-chip (4C). Nat. Genet. 38, 1348–1354. 
 
van Steensel, B., and Furlong, E.E.M. (2019). The role of transcription in shaping the spatial 
organization of the genome. Nat. Rev. Mol. Cell Biol. 20, 327–337. 
 
Takei, Y., Shah, S., Harvey, S., Qi, L.S., and Cai, L. (2017). Multiplexed dynamic imaging 
of genomic loci by combined CRISPR imaging and DNA sequential FISH. Biophys. J. 112, 
1773–1776. 
 
Takizawa, T., and Meshorer, E. (2008). Chromatin and nuclear architecture in the nervous 
system. Trends Neurosci. 31, 343–352. 
 
Tan, L., Xing, D., Chang, C.-H., Li, H., and Xie, X.S. (2018). Three-dimensional genome 
structures of single diploid human cells. Science 361, 924–928. 
 
Wang, H., Nakamura, M., Abbott, T.R., Zhao, D., Luo, K., Yu, C., Nguyen, C.M., Lo, A., 
Daley, T.P., La Russa, M., et al. (2019). CRISPR-mediated live imaging of genome editing 
and transcription. Science 365, 1301–1305. 
 
Wang, S., Su, J.-H., Beliveau, B.J., Bintu, B., Moffitt, J.R., Wu, C.-T., and Zhuang, X. 
(2016). Spatial organization of chromatin domains and compartments in single 
chromosomes. Science 353, 598–602. 
 
Yu, M., and Ren, B. (2017). The three-dimensional organization of mammalian genomes. 
Annu. Rev. Cell Dev. Biol. 33, 265–289. 
 
Zhao, Z., Tavoosidana, G., Sjölinder, M., Göndör, A., Mariano, P., Wang, S., Kanduri, C., 
Lezcano, M., Sandhu, K.S., Singh, U., et al. (2006). Circular chromosome conformation 
capture (4C) uncovers extensive networks of epigenetically regulated intra- and 
interchromosomal interactions. Nat. Genet. 38, 1341–1347. 
 
Zhu, C., Preissl, S., and Ren, B. (2020). Single-cell multimodal omics: The power of many. 
Nat. Methods 17, 11–14. 

  



12 
 

 

Chapter 2 

MULTIPLEXED DYNAMIC IMAGING OF GENOMIC LOCI BY COMBINED CRISPR 
IMAGING AND DNA seqFISH 

A modified version of this chapter was published as: 

Takei, Y., Shah, S., Harvey, S., Qi, L. S., Cai, L., Multiplexed dynamic imaging of 
genomic loci by combined CRISPR imaging and DNA sequential FISH. Biophys. J. 112, 
1773-1776 (2017), doi: 10.1016/j.bpj.2017.03.024. 
 
 
2.1 ABSTRACT 
 
Visualization of chromosome dynamics allows the investigation of spatiotemporal chromatin 
organization and its role in gene regulation and other cellular processes. However, current 
approaches to label multiple genomic loci in live cells have a fundamental limitation in the 
number of loci that can be labelled and uniquely identified. Here we describe an approach 
we call “track first and identify later” for multiplexed visualization of chromosome dynamics 
by combining two techniques: CRISPR imaging and DNA sequential fluorescence in situ 
hybridization (DNA seqFISH). Our approach first labels and tracks chromosomal loci in live 
cells with the CRISPR-Cas9 system, then barcodes those loci by DNA seqFISH in fixed cells 
and resolves their identities. We demonstrate our approach by tracking telomere dynamics, 
identifying 12 unique subtelomeric regions with variable detection efficiencies, and tracking 
back the telomere dynamics of respective chromosomes in mouse embryonic stem cells. 
 
2.2 INTRODUCTION 
 
The three-dimensional chromatin organization in the nucleus plays an important role in gene 
regulation and other cellular processes (1,2). Visualizing spatiotemporal chromatin 
organization helps to interrogate its relationship with biological functions. Recently 
developed CRISPR imaging techniques can be a powerful and versatile tool to label and 
track genomic loci in live mammalian cells (3,4), supplementing dynamics to the static 
information from fluorescence in situ hybridization (FISH) in fixed cells. One of the 
challenges of live cell imaging of genomic loci is imaging multiple loci simultaneously in 
individual cells. To overcome this issue and enable multicolor CRISPR imaging, several 
methods have been developed by using orthogonal CRISPR-Cas9 systems (5,6) or 
engineered single guide RNA (sgRNA) scaffolds (7-9). However, even these methods only 
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allow the simultaneous imaging of two or three loci. More recently, the color barcoding 
approach, using engineered sgRNA scaffolds recruiting different combinations of spectrally 
distinct fluorescent proteins, has demonstrated simultaneous imaging of six chromosomal 
loci in single cells (10). Although these multicolor approaches have expanded the potential 
of CRISPR imaging, they have a fundamental bottleneck in multiplexing due to the limited 
number of available orthogonal CRISPR-Cas9 systems, sgRNA scaffolds, or fluorescent 
proteins with spectrally distinct fluorophores. 
 
2.3 RESULTS 
 
Here we propose a new approach to label and distinguish multiple genomic loci using the 
combination of CRISPR imaging and DNA sequential FISH (DNA seqFISH), which 
provides large multiplexing capabilities. The principle of our approach is illustrated in Fig. 
1. Multiple genomic loci are labeled with the CRISPR-Cas9 system all in a single color, and 
tracked in individual live cells. At the end of the live recording, cells are fixed and the identity 
of each locus is resolved by the color barcodes from DNA seqFISH. In this manner, even if 
the identities of labeled loci are indistinguishable during the live recording, as long as their 
positions are distinctly tracked in live imaging, these chromosomal loci can be subsequently 
identified with DNA seqFISH.  
 
This “track first and identify later” approach can circumvent the multiplexing limitations of 
live cell imaging. As a proof-of-principle, we applied our technique to track telomeric loci 
in live mouse embryonic stem (mES) cells, and uniquely assigned 12 telomeric loci to 
particular chromosomes by performing DNA seqFISH of distal subtelomeric regions after 
the live tracking (Fig. 2 A). 
 
To observe the dynamics of telomeric loci in live mES cells, we generated a mES cell line 
stably expressing Streptococcus pyogenes nuclease-deactivated Cas9 (dCas9) fused to EGFP 
(dCas9-EGFP) and sgRNA targeting telomeric loci by following a previous study (3). The 
dCas9-EGFP protein carried two nuclear localization signals for proper nuclear import. The 
mouse telomeric loci are approximately 20-30 kb with 6 bp repeat sequence TTAGGG (4), 
which potentially allows the recruitment of hundreds of dCas9-EGFP proteins per locus with 
a single 22 nt sgRNA sequence (3). Using the clonal line, we performed live imaging over 6 
min (Fig. 2 B, S1, Movie S1), and tracked the dynamics of telomeric loci in three-
dimensional space. 
 
Immediately after the live tracking, cells were fixed and processed for DNA seqFISH (Fig. 
2 B-E). We quantified the number of telomeric dots (Fig. 2 F) and observed that on average, 
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73.0% of telomeric dots at the last frame of the live tracking were uniquely assigned to 
telomeric dots after the fixation (Fig. 2 G), indicating that the majority of the dCas9-EGFP 
labeled loci do not move significantly before and during fixing. Subtelomeric regions in 
respective chromosomes were barcoded based on a sequential barcoding method we 
demonstrated previously with RNA FISH (11,12). With this method, the number of loci that 
can be distinguished scales as FN, where F is the number of distinct fluorophores and N is 
the number of hybridization rounds. Each subtelomeric region was targeted with a set of 
FISH probes labeled with a single fluorophore during each round of hybridization. 
Specifically, the primary probes targeting the genomic loci also contain overhang sequences 
that are unique to each locus. A set of adapter probes that are dye labeled are hybridized to 
the overhang sequences (Fig. S2 A). We imaged cells, and then treated them with 70% 
formamide solution to displace the adapter probes (Fig. S2). We imaged cells again to 
confirm the probe displacement, and subsequent rounds of hybridizations were performed 
(Fig. S2 B,C). To cover 12 subtelomeric regions (Table S1), we used three dyes and three 
rounds of hybridizations (Fig. 2 D). We also used a fourth round of hybridization to image 
telomeres with DNA FISH (Fig. 2 E), and three different subtelomeric regions independently 
in a single channel as a control to quantify barcoding efficiency (Fig. S3, S4 A). 
 
We quantified 12 regions that were detected robustly in most cells with a mean of 1.9 ± 0.5 
dots (± standard deviation) per cell (Fig. S5, Supporting Text). Consistent with our targeting 
of 12 distal subtelomeric regions out of a total of 40 distal and proximal subtelomeric regions, 
we observed that 22.9% of the dCas9-EGFP labeled telomere spots corresponded to 
subtelomeric regions barcoded by DNA seqFISH (Fig. 2 G). Similarly, we observed 20.0% 
of telomere DNA FISH spots corresponded to subtelomere DNA seqFISH spots (Fig. S4 B). 
We note that we do not expect the telomeres and subtelomeres to colocalize perfectly since 
they can be genomically distant (Table S1, Fig. S4 A). We quantified the distribution of the 
distance between aligned telomeric and subtelomeric spots (Fig. S4 C). 
 
From the barcode uniquely assigned to each subtelomeric region, we assigned a unique 
identity to each tracked region in the live recording. To document the differences of telomeric 
dynamics from each chromosome, we then analyzed the movements of telomeres assigned 
to each chromosome (Fig. 2 H) and quantified their cumulative square displacements of 
adjacent time frames as a function of time (Fig. 2 I). We also provided multiple quantified 
traces from additional single cells (Fig. S6).  
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2.4 DISCUSSION 
 
Based on a calculation of the optical space available in a mammalian nucleus, the single color 
method could in principle track and identify a larger number of loci (Supporting Text) to 
provide a valuable global view of the chromosomes in single cells. 
 
However, there are a few key technological bottlenecks preventing large numbers of loci to 
be imaged in this fashion. Firstly, targeting non-repetitive regions requires the delivery of a 
substantial number of distinct sgRNAs to cells. Future work will be focused on ameliorating 
this limitation as recently demonstrated with a single chromosome painting in live cells by 
targeting non-repetitive regions (13). As an alternative to reduce the number of sgRNAs, sets 
of sgRNAs targeting region-specific repetitive DNAs (10) can be used, while adjacent non-
repetitive unique regions or repeat regions themselves can be targeted by DNA seqFISH. In 
addition, engineering cell lines, which contain multiple target sites randomly integrated in 
the genome (14), can be an alternative approach to label a large number of genomic regions 
with a small number of sgRNAs in live cells. The integrated regions can be sequenced (14), 
targeted and distinguished by DNA seqFISH. This approach is also applicable to other 
labeling methods such as LacI-lacO system. Secondly, physical interactions of distinct loci 
during the live tracking can prevent accurate position tracking and thus reduce the number 
of uniquely tracked loci per cell, which can be minimized by using multicolor CRISPR 
imaging (5-10). However, long-term tracking (i.e. beyond a cell-cycle) can be difficult due 
to the large scale rearrangement and crossovers of chromosomes during mitosis. Lastly, 
DNA FISH signals can be improved with a robust signal amplification method such as single 
molecule hybridization chain reaction (smHCR) (12,15) or alternative DNA FISH methods 
such as CASFISH (16) to increase the detection efficiency. 
 
The key idea in our work is separating the tasks of dynamic tracking of chromosomal loci 
and the unique identification of these loci. Previous works in multiplexed CRISPR imaging 
tried to accomplish both goals at the same time, which requires orthogonal Cas9 systems and 
multiple fluorophores for live imaging. In our approach, we use a single color channel to first 
track the motion of the chromosomal loci and then use highly multiplexed DNA seqFISH to 
identify the loci. In addition to the original seqFISH implementation (11), this strategy is 
another manifestation of the “noncommutative” approach (17,18) to experimental design that 
breaks experimental goals into distinct tasks and combines them to accomplish what cannot 
be easily achieved in a single experimental step. Our method combines advantages of 
CRISPR labeling and seqFISH for multiplexed live cell detection of genomic loci. During 
preparation of this manuscript, a similar strategy was described by Guan et al. (19). Finally, 
we note that our method can also be combined with sequential RNA FISH (11,12,18,20) and 
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immunofluorescence to correlate transcriptional and epigenetic states of individual cells with 
spatiotemporal chromosomal organization in a highly multiplexed manner. 
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2.6 MAIN FIGURES 

 
 
Figure 1. Schematic of the “track first and identify later” approach with the 
combination of the CRISPR labeling and DNA seqFISH techniques.  
 
Nine regions in one chromosome are illustrated in this schematic. Each chromosomal 
position can be identified from the DNA seqFISH step and its motion can be backtracked 
from the live imaging.  
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Figure 2. Multiplexed telomere tracking and identification of chromosomes with the 
“track first and identify later” approach in mES cells. 
 
(A) Schematic of the approach applied to telomere in a mouse chromosome. Proximal and 
distal telomere were labeled by the CRISPR-Cas9 system whereas only the distal 
subtelomeric region was labeled by DNA seqFISH. In total, 12 distal subtelomeric regions 
in 12 chromosomes were robustly read out by DNA seqFISH. (B and C) One-color telomere 
imaging in live cells at different time points (B) and after fixing cells (C), using the 
constructed mES cell line. (D and E) Composite digitized three-color (Alexa 647: red, Alexa 
594: green and Cy3B: yellow) DNA seqFISH data for three rounds of hybridizations 
targeting subtelomeric regions (D), and one-color (Cy7) data for the fourth hybridization 
targeting telomeres (E). Based on the barcode identities, chromosome numbers are assigned 
to each of the subtelomeric spots (D). Note that DNA seqFISH spots do not perfectly 
colocalize with CRISPR imaging spots because they target adjacent regions in the genome. 
Dots without colocalization between hybridizations are due to nonspecific binding of probes 
or mis-hybridization in the cells. Images are maximum intensity projections of a z-stack of 
fluorescence images and the boxed region of the cell is magnified (B-E). (F) Comparing the 
number of telomeric or subtelomeric spots detected per cell with the CRISPR labeling and 
DNA seqFISH methods. In total, 938 CRISPR spots in live cells (last frame of the movie), 
1138 CRISPR spots in fixed cells, 909 telomeric spots by DNA FISH and 628 subtelomeric 
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spots by DNA seqFISH in 28 cells were analyzed. (G) Comparing colocalization percentage 
of spots detected per cell. Red dashed lines represent expected colocalization percentage per 
cell. (H) Trajectories of telomeric loci in the magnified cell. In this cell, 30 telomeric 
trajectories were detected from CRISPR imaging and 10 of these trajectories were uniquely 
assigned to particular chromosomes based on the subtelomere color barcodes. Trajectories 
of three loci in the magnified images (B-E) were also highlighted as xy projections (inset). 
Projected trajectories start from (0.0, 0.0). (I) Cumulative square displacement traces (n = 
30) calculated with two adjacent frames as a function of time from the magnified cell. Traces 
of three loci in the magnified images (B-E) were shown as colored traces. 
 
2.7 SUPPLEMENTAL FIGURES 
 

 
 
Figure S1. Number of telomeric spots detected per cell during the movie and their 
photon counts. 
 
(A) Decrease of number of telomeric spots detected per cell during tracking due to 
photobleaching. The threshold used for ‘CRISPR live cells’ in Figure 2F was used in all time 
points. The data are displayed as mean ± sem with 28 cells. (B) Distribution of photon counts 
of detected dCas9-EGFP spots and background spots at the last frame of the movie. The 
intensity of dCas9-EGFP spots were detected as a maximum intensity within 3x3 pixels, 
whereas the intensity of background spots were collected after eliminating those 3x3 pixels, 
and then those intensities were converted to photon counts. 
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Figure S2. Probe displacement and re-hybridization.  
 
(A) Schematic of probe displacement and re-hybridization with two loci. (B, C) From left to 
right: first round of adapter probe set hybridization, stripped cells after probe displacement 
with the formamide stripping method, and second round of hybridization containing different 
adapter probe combinations from the first hybridization in mES cells. All images are 
maximum intensity projections of a z-stack with Cy3B adapter probe sets, and displayed at 
two contrast levels (B and C) to show the completeness of stripping. 
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Figure S3. Comparison between single color DNA FISH readouts and DNA seqFISH 
decoding.  
 
Images are maximum projections of a z-stack. Boxed regions in the left figure are magnified 
and corresponding regions in hybridizations 1-4 are displayed. Each color represents Alexa 
647 (red), Alexa 594 (green), Cy3B (yellow) and DAPI (blue), respectively. Images with 
hybridizations 1-3 are digitized based on the barcode calling results.  Dots appearing in 
hybridizations 1-3 images other than the dots colocalized to the hybridization 4 are dots 
corresponding to other barcodes or nonspecific binding. We observed that with the 
chromosome 9 subtelomeric region, 78.7% of the single color labeled loci in the fourth 
hybridization (53 spots analyzed) colocalized with the barcoded loci (53 spots analyzed), 
whereas with the chromosome 18 subtelomeric region, 73.7% of the single color labeled loci 
in the fourth hybridization (92 spots analyzed) colocalized with the barcoded loci (75 spots), 
indicating barcodes decoded efficiently in our experiments. Note that the chromosome 12 
subtelomeric region was excluded from this analysis due to the insufficient signal from the 
Cy7 dye in DNA seqFISH. 
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Figure S4. Colocalization between telomeric and subtelomeric spots and their 
distribution in mES cells.  
 
(A) Images are maximum intensity projections of a z-stack of fluorescence images 
corresponding to the fourth hybridization of the DNA seqFISH. The boxed regions are 
magnified, and telomeric (red) and subtelomeric (green) regions are merged. Note that 
telomeric and subtelomeric regions do not colocalize perfectly because targeted telomeric 
regions are non-unique repetitive regions whereas targeted subtelomeric regions are adjacent 
unique regions over a range of 100 kb. Note that sequence spaces between telomeric and 
subtelomeric regions are provided in Table S1. (B) Comparing colocalization percentage of 
spots detected per cell. Red dashed lines represent expected colocalization percentage per 
cell. (C) Distribution of xy-distance between aligned telomere CRISPR spots, subtelomere 
DNA seqFISH spots and telomere DNA FISH spots. Mean and standard deviation of the 
distance under each condition were provided. 
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Figure S5. Number of subtelomeric spots per cell resolved by the color barcoding with 
three rounds of hybridizations.  
 
In total, 678 subtelomeric spots in 28 cells were analyzed. Black circles represent mean 
number of spots per cell. Due to the low detection efficiencies, 6 subtelomeric regions (chr14, 
chr11, chr4, chr12, chr8 and chr10) were excluded from the analysis. This could be caused 
by inefficient binding of primary probe sets or insufficient signal from Cy7 fluorophores as 
5 out of those 6 subtelomeric regions contained Cy7 in their code. On average, the number 
of subtelomeric spots per cell was 1.9 ± 0.5 (mean ± standard deviation). 
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Figure S6. Quantified trajectories of telomeric loci from three additional single cells.  
 
(A) In those cells, 26, 23, and 20 trajectories were detected from CRISPR imaging, and 13, 
9, and 9 of these trajectories (from left to right) were uniquely assigned to particular 
chromosomes based on the subtelomere color barcodes. Trajectories of three loci per cell 
were also highlighted as xy projections (inset). Projected trajectories start from (0.0, 0.0). (B) 
Cumulative square displacement traces as a function of time. Those traces were obtained 
from the three single cells shown above. Three projected loci per cell (A inset) were shown 
as colored traces. 
 
2.8 METHODS 
 
Probe design and synthesis 
Telomere 59-nucleotide (nt) probe from Integrated DNA Technology (IDT) was designed 
with a 35-nt targeting sequence at the 3’ end, a 20-nt adapter sequence for binding of a dye-
coupled adapter probe, and a 4-nt spacer in between. Subtelomere probes were designed and 
generated based on array-based oligopool synthesis with enzymatic amplifications (1,2) 
explained below.  
 
The mm10 mouse genomic sequence (UCSC Genome Bioinformatics) was used to design 
subtelomere oligonucleotide probe pools in this study. To selectively label subtelomeric 
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genomic regions, 100 kb regions at the end of each chromosome were selected (Table S1). 
Across those regions, a set of non-overlapping 35-nt probes were designed which suffice 
several constraints including 40-60% GC content, no more than 5 contiguous identical 
nucleotides, no “CCCTAA” or “TTAGGG” sequences to exclude the potential binding to 
telomeres, and at least 2-nt spaces between adjacent probes. Off targets against the mm10 
mouse genome were then evaluated using BLAST+. Sequences with 18 or more contiguous 
bases homologous to other regions in the genome were defined as an off target here, and 
probes that contained 6 or more of these off targets were initially eliminated. Probes targeting 
identical subtelomeric regions were then evaluated together, and if the probe sets contained 
more than 5 off-targets within 1 Mb blocks of the genome, probes were dropped to lower the 
threshold. If the probe number in one probe set exceeded 400, probes were reduced up to 400 
based on GC content. Note that probe sets targeting sex chromosomes were failed to be 
designed. In addition, proximal telomeres in each chromosome is located adjacent to satellite 
regions in the mouse genome, so these regions were not used for probe designing. As a result, 
19 subtelomere probe sets targeting all mouse autosomes were pooled together in this study 
(Table S1).  
 
At the 5’ end of the 35-nt probe sets, 20-nt adapter sequences, which are identical in each 
subtelomere probe set but orthogonal among different probe sets, are attached with a 4-nt 
spacer in-between. For the array-based oligo library synthesis, universal sequences were 
attached at either 5’ or 3’ ends. Those sequences included KpnI and EcoRI restriction enzyme 
sites, 3-nt spacers, and 20-nt forward and reverse primer binding sequences. In total, this 
subtelomere oligonucleotide probe pool (CustomArray) contained 4709 probes with 117 
nucleotides each. Single-stranded DNA probes were generated from this array-based 
oligonucleotide pool with limited cycle PCR, in vitro transcription, reverse transcription, and 
restriction enzyme digestion of primer binding sites.  
 
Cell culture and cell line construction 
E14 cells (E14Tg2a.4) from Mutant Mouse Regional Resource Centers were maintained on 
gelatin-coated dishes at 37°C with 5% CO2 in Glasgow Minimum Essential Medium 
(GMEM), 10% FBS (HyClone, Thermo Scientific), 2 mM L-glutamine, 100 units/ml 
penicillin, 100 μg/ml streptomycin, 1 mM sodium pyruvate, 1000 units/ml Leukemia 
Inhibitory Factor (LIF, Millipore), 1x Minimum Essential Medium Non-Essential Amino 
Acids (MEM NEAA, Invitrogen) and 50 μM β-Mercaptoethanol as described previously (3). 
All constructs used in this study were cloned into PiggyBac vectors. The expression vector 
for dCas9-EGFP from Streptococcus pyogenes was constructed by inserting dCas9-EGFP 
(pSLQ1658 from Addgene) right after the elongation factor 1 alpha (EF1α) promoter. For 
the guide RNA expression vector, a mouse U6 promoter and sgRNA targeting telomeres 
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were obtained from pSLQ1651 (Addgene). The vector, which contained EF1α-NLS-HA-
NLS-hmKO2 (hmKO2 from Amalgaam), was also constructed and used for cell 
identification before the live tracking. Transfections were performed with FuGENE HD 
Transfection Reagent (Promega), and the cells were selected with G418 (Thermo Scientific) 
and puromycin (Thermo Scientific) sequentially. After the selection, single clones were 
isolated manually, and stable labeling of telomeres was verified by imaging.  
 
Live cell imaging 
Cells were plated on fibronectin-coated 24-well glass bottom plates (MatTek) for 2 h, prior 
to the live imaging. The microscope (Nikon Eclipse Ti-E) was equipped with a CCD camera 
(Andor iKon-M 934), a 60x oil objective lens (Nikon NA 1.40) and a stage-top incubator 
held at 37°C. Snapshots of dCas9-EGFP were acquired with 10 μm z-stacks stepping every 
0.5 μm at 15 time points over 6 min. Note that each time point shown in the figure and movie 
was the starting time of the z-stacks. The Perfect Focus system of the microscope was used 
to automatically correct focus drift during imaging. Image acquisition was controlled with 
Micro-Manager software. 
 
DNA FISH hybridization and imaging 
Immediately after the live cell imaging, cells were fixed in 4% formaldehyde for 10 min at 
room temperature, washed three times with 1x PBS, and imaged in an anti-bleaching buffer 
consisting of 20 mM Tris-HCl, 50 mM NaCl, 0.8% glucose, saturated trolox, 0.5 mg/ml 
glucose oxidase, and catalase at a dilution of 1/1000 (Sigma C3155). Cells were then 
permeabilized with 70% ethanol at -20 °C overnight. The following day, cells were treated 
with a prechilled solution of methanol and acetic acid at a 4:1 ratio at room temperature, and 
then with 0.1 mg/ml RNaseA (Thermo Scientific) for 1 h at 37°C. Samples were then washed 
and dried with 1x PBS, 70% ethanol and 100% ethanol. The samples were then heated for 
10 min at 95°C in 70% formamide and 2x SSC. Cells were hybridized with the telomere and 
the subtelomere probe pool for 2 days at 37°C, where the final concentration of each probe 
was estimated as 10 nM in nuclease free water with 50% formamide, 2x SSC and 0.1 g/ml 
dextran sulfate. After incubation with the probes, cells were washed three times in 50% 
formamide, 0.1% Triton-X 100 and 2x SSC at room temperature, and hybridized with 20-nt 
adapter probe sets coupled to Alexa 594, 647 (Lifetech), Cy3B or Cy7 (GE Healthcare) at 
10 nM final concentration for at least 1 h at room temperature in nuclease free water with 
30% formamide, 2x SSC and 0.1 g/ml dextran sulfate. Cells were washed three times in 30% 
formamide, 0.1% Triton-X 100 and 2x SSC at room temperature, stained with DAPI and 
imaged in anti-bleaching buffer. 
 
Probe displacement and re-hybridization 
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Following the imaging, cells were washed with 2x SSC, incubated in 70% formamide and 
2x SSC for 30 min at room temperature for probe displacement, and then washed three times 
with 2x SSC. To check the probe displacement, cells were then imaged with all imaging 
channels in anti-bleaching buffer. Samples were re-hybridized with another set of adapter 
probes according to the conditions described above, stained with DAPI again and imaged in 
anti-bleaching buffer. 
 
Four rounds of hybridizations were carried out in this study. The first three rounds of 
hybridizations were used to barcode 18 subtelomeric regions, and the final round was used 
to label telomeres and also to verify the identities of 3 subtelomere barcodes by reading out 
3 subtelomeric regions with each region assigned to a single imaging channel. 
 
Data analysis 
Data analysis was carried out using ImageJ, MATLAB, and Python. Each analysis is detailed 
below. 
 
Point tracking 
Cells were segmented manually using the ImageJ ROI tool. The background was subtracted 
from the time-lapse images using ImageJ’s rolling ball background subtraction algorithm 
with a radius of 3 pixels. This processing was also used for Movie S1. The points for linking 
in each time point were found in 3D using a LOG filter with subsequent local maxima 
finding. The threshold for local maxima finding was set using Otsu’s method for the first 
frame and adjusted slightly for subsequent frames such that the number of dots detected only 
varied by less than 5%. These points were linked into trajectories using the SimpleTracker 
function available on the MATLAB file exchange with 'MaxLinkingDistance' set to 5 and 
'MaxGapClosing' set to 0. Any trajectory that did not have a point in all frames was discarded. 
Every point in every remaining trajectory was then fit with a 2D gaussian function using the 
autoGuassianSurf function available on the MATLAB file exchange to obtain the subpixel 
location of the point. Each track was then assigned to a segmented cell. The calculated 
trajectories were then corrected to remove the motion of the cells and the microscope by 
subtracting the mean displacement of all points in a cell from each point in the cell for each 
time point. 
 
For each trajectory, the cumulative square displacement of adjacent frames (CSD) as a 
function of time was calculated as 
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where n is the number of frames, δt is the time interval between two adjacent frames (25 s), 
and x(t), y(t), and z(t) are the coordinates at time t.     
 
Image processing for barcoding 
Basic flow of the image processing for barcoding followed our recent study (2). To remove 
the effects of chromatic and spherical aberrations in xy, multispectral beads were first used 
to create geometric transforms to align all fluorescence channels using MATLAB’s 
fitgeotrans function. Next, the background illumination profile of every fluorescence channel 
was mapped using a morphological image opening with a large structuring element on a set 
of images of an empty coverslip. The median value of every pixel for every channel of 
opened images was divided by the maximum value to find the division factor of every pixel 
in every channel. The images were corrected using the resulting intensity map and finally the 
images were transformed to remove chromatic aberrations. The background signal was then 
subtracted using the ImageJ rolling ball background subtraction algorithm with a radius of 3 
pixels. 
 
Image registration 
The processed images were registered by first taking a maximum intensity projection along 
the z direction in each channel. All of the maximum projections of the channels in a single 
hybridization were then collapsed, resulting in 3 composite images containing all the points 
in a particular round of hybridization. Each of these composite images of hybridizations 2-3 
were then registered to hybridization 1 using a normalized cross-correlation algorithm with 
the position of the maxima of the cross-correlation signifying the translation factor to align 
hybridizations 2-3 to hybridization 1. MATLAB’s normxcorr2 function was used to 
accomplish this task. Cross-correlation between the DAPI images was used to register the 
final control hybridization to the barcoding hybridizations.  
 
Barcode calling 
The potential DNA FISH signals were then found by LOG filtering the registered images 
and finding points of local maximum pixels above a specified threshold value found by 
inspection of the accuracy of dots found at a particular threshold value. Once all potential 
points in all channels in all hybridizations were obtained, dots were matched to potential 
barcode partners in 3D with all other hybridizations using a √6 pixel search radius (1 or 2 
pixel per one direction) to find symmetric nearest neighbors within the given radius. Barcode 
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words were created by seeding the search with points from each hybridization. Point 
combinations that constructed only a single barcode with a given seed were immediately 
matched to the on-target barcode set. For points that matched to construct multiple barcodes, 
first the point sets were filtered by calculating the residual spatial distance of each potential 
barcode point set and only the point sets giving the minimum residuals were used to match 
to a barcode. If multiple barcodes were still possible, the point was matched to its closest on-
target barcode with a hamming distance of 1. If multiple on-target barcodes were still 
possible, then the point was dropped from the analysis as an ambiguous barcode. This 
procedure was repeated using each hybridization as a seed for barcode finding and barcode 
words that were called uniquely in all hybridizations were used in the analysis. The location 
of these points then signified the corresponding chromosome locations. For the barcode 
identification analysis in this case, fitting was not performed as the spots were fairly sparse 
in any given channel and therefore were singly detected and matched. 
 
Dot matching 
CRISPR labeled dots at the last frame of the movie and after the fixation, subtelomeric dots 
by DNA seqFISH and telomeric dots by DNA FISH were matched by using the same 
matching algorithm described in the barcode calling section, with a small difference of using 
6 pixels in xy. In addition, subtelomeric dots by DNA seqFISH and subtelomeric dots by 
single color DNA FISH readouts in hybridization 4 were matched by using the same 
algorithm with more stringent matching condition of within 3 pixels. Note that cells detected 
with more than 10 CRISPR labeled spots at the last frame of the movie were further analyzed 
due to the heterogeneity of CRISPR labeling efficiency in single cells, and only cells within 
center fields of view were analyzed to minimize the effect of uneven illumination. 
 
2.9 SUPPLEMENTAL ITEMS 
 
Supporting Text 
 
Number of telomeric and subtelomeric spots 
Based on the cell cycle distribution in a mES cell population, we estimated the detection 
efficiency of telomeric and subtelomeric spots. Typical cell cycle distribution of mES cells 
is 20% cells in G1, 50% cells in S and 30% cells in G2/M phase (4). Given the number of 
chromosomal loci is 2 in G1, 3 in S and 4 in M/S2 phase, the number of spots expected per 
each region is 3.1 per cell. We observed 33.5 ± 13.8 and 40.6 ± 13.8 (mean ± standard 
deviation) CRISPR labeled dots per cell in live (last frame of the movie) and fixed cells, 
which can be estimated as 27.0 ± 11.1% and 32.7 ± 11.1% detection efficiency of telomeric 
spots. This indicates a relatively low efficiency of labeling in our experiment, which can be 
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improved with further cell line engineering as shown in previous publications. Note that we 
detected more CRISPR labeled spots in fixed cells compared to those in live cells because of 
longer imaging exposure time for fixed cells. We also note that we used exposure times that 
allowed us to track CRISPR labeled loci over time without significant photobleaching. 
However, we still observed that the number of spots detected above the threshold decreased 
during the time-lapse movie, because of photobleaching (Fig. S1 A). Similarly, DNA FISH 
of the telomeres showed 32.5 ± 7.6 dots per nuclei and 26.2 ± 6.1% detection efficiency of 
telomeric spots. The relatively low colocalization efficiency (49.1%) of telomeric spots by 
CRISPR labeling and DNA FISH (Fig. S4 B) can be caused by the low labeling efficiencies 
estimated above. 
On the other hand, from our barcoding results, the average number of subtelomeric spots per 
cell was 1.9 ± 0.5, and the DNA seqFISH efficiency of subtelomeric regions can be estimated 
as 61.3 ± 16.1%.   
 
Optical space estimation in nucleus 
Optical space for single-color CRISPR labeling in a single nucleus can be estimated based 
on our recent study (2). The estimation is calculated as  
 

𝑁 =	
𝐹𝑉

(3𝑝)!𝑍 

 
where N is the maximum number of unambiguous CRISPR labeled spots in a single nucleus, 
F is the number of channel used for CRISPR imaging, V is the volume of a single nucleus in 
microns, p μm is the physical size of a pixel and Z μm is the resolution in the z direction. In 
our experimental condition, a single nucleus can accommodate at least 1,000 CRISPR 
labeled spots by applying a single fluorescent channel, the physical pixel size 0.3 μm, z 
resolution 0.5 μm and the volume of mES cell nucleus as 10 μm x 10 μm x 5 μm. 
 
The number of CRISPR labeled spots, which can be uniquely identified by DNA seqFISH 
in a single nucleus, are reduced with the optical space constraint arising from the incomplete 
colocalization between two labeling methods. Under such conditions, the estimation is 
updated as 
 

𝑁& =	
𝐹𝑉
(𝑟𝑝)³

 

 
where Nb is the maximum number of unambiguous CRISPR labeled spots identified by 
DNA seqFISH in a single nucleus and r is the maximum searching pixel size per single 
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direction for dot matching. Given the same assumption above with 5 pixel diameter search, 
a single nucleus can accommodate around 150 CRISPR labeled spots that can be uniquely 
identified by DNA seqFISH. Note that the number of uniquely identified loci can be linearly 
scaled up with the increase of fluorescent channels available for the CRISPR imaging. 
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Movie S1. Live imaging of telomeres in mES cells using the CRISPR labeling.  
 
Cells shown in Fig. 2B are presented. Images are maximum intensity projections of a z-stack 
of fluorescence images in each frame. Note that cell and stage movements are not calibrated 
in this movie. Scale bar represents 10 μm. 
 
Table S1. Subtelomeric region coordinates in mm10 mouse genome, number of 
primary probes, sequence gap between telomere and targeted subtelomeric region, and 
barcoding color combinations used in this study. 
 
Sequence gap was calculated as the length between distal telomere coordinate annotated and 
the most adjacent subtelomeric probe in each chromosome. Due to the off targets, 
chromosome 2 probe set was not included in the DNA seqFISH. Cy3B, Alexa 594, 647 and 
Cy7 dye coupled adapter probes correspond to the numbers 1, 2, 3, and 4 in the last 4 
columns. Finally, 12 subtelomeric regions (chr1, 3, 5, 6, 7, 9, 13, 15, 16, 17, 18, and 19) were 
read out robustly.  
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Chapter 3 

DYNAMICS AND SPATIAL GENOMICS OF THE NASCENT TRANSCRIPTOME BY 
INTRON seqFISH 

A modified version of this chapter was published as: 

*Shah, S., *Takei, Y., *Zhou, W., Lubeck, E., Yun, J., Eng, C.-H. L., Koulena, N., Cronin, 
C., Karp, C., Liaw, E. J., Amin, M., Cai, L., Dynamics and spatial genomics of the nascent 
transcriptome by intron seqFISH. Cell. 174, 363–376.e16 (2018), doi: 
10.1016/j.cell.2018.05.035. *These authors contributed equally. 
 
3.1 ABSTRACT 
 
Visualization of the transcriptome and the nuclear organization in situ in individual cell is 
the holy grail of single-cell analysis. Here, we demonstrate a multiplexed single molecule in 
situ method, intron seqFISH, that allows imaging of 10,421 genes at their nascent 
transcription active sites in single cells, followed by mRNA and lncRNA seqFISH and 
immunofluorescence. This nascent transcriptome profiling method can identify different cell 
types and states with mouse embryonic stem cells and fibroblasts. The nascent sites of RNA 
synthesis tend to be localized on the surfaces of chromosome territories and their 
organization in individual cells is highly variable. Surprisingly, the global nascent 
transcription oscillated asynchronously in individual cells with a period of 2 hours in mouse 
embryonic stem cells as well as in fibroblasts. Together, spatial genomics of the nascent 
transcriptome by intron seqFISH reveals nuclear organizational principles and fast dynamics 
in single cells that are otherwise obscured. 
 
3.2 INTRODUCTION 
 
The recent explosion of single-cell sequencing technologies is leading to unprecedented 
insight into the structure of the nucleus and the transcriptome with Hi-C (Lieberman-Aiden 
et al., 2011; Nagano et al., 2013; Rao et al., 2014; Stevens et al., 2017) and single-cell RNA-
seq (Darmanis et al., 2015, Klein et al., 2015, Lee et al., 2014, Macosko et al., 2015, Zeisel 
et al., 2015), respectively. However, there exist few methods which allow direct imaging of 
both chromosome structure and transcriptomics information in the same cells. Furthermore, 
sequencing based approaches require inefficient biochemical steps to generate sequencing 
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libraries which lower sensitivity, and are costly. Therefore, a method is needed that allows 
the imaging of chromosome structure and transcriptome in the same single cells in situ 
without sequencing. 
 
Pioneering work on single molecule Fluorescence in situ Hybridization (smFISH) (Femino 
et al., 1998; Raj et al., 2006) observed that nascent mRNAs are produced in bursts at 
transcription active sites (TAS) in individual nuclei. In particular, these nascent sites of 
transcription near the genomic loci can be selectively labeled over mature transcripts, by 
targeting introns, which are co-transcriptionally processed out (Levesque and Raj, 2013). 
This intron chromosomal expression FISH (iceFISH) assay (Levesque and Raj, 2013) 
showed that at least 20 TAS from a single chromosome can be detected to measure their 
spatial positions and expression levels in individual single human cells.   
 
We had previously developed sequential FISH (seqFISH) (Lubeck et al., 2014) to multiplex 
a large number of mRNA molecules in cells by single molecule imaging and sequential 
barcoded rounds of hybridization. seqFISH has successfully profiled hundreds of mRNAs in 
tissues and revealed distinct spatial structures in the mouse brain (Shah et al., 2016b) and the 
chick embryo (Lignell et al., 2017).  
 
Here, we demonstrate transcriptome-scale intron seqFISH by labeling the TAS of 10,421 
genes in single cells to capture the nascent transcriptome and its spatial organization with 
single molecule sensitivity. We also apply seqFISH in the same cells to profile mRNAs and 
long noncoding (lnc)RNAs along with immunofluorescence to detect pluripotency factors, 
cell cycle markers, and nuclear bodies. Thus, intron seqFISH provides a direct image of all 
the active sites within a nucleus and is complementary to ligation based sequencing methods.  
 
Furthermore, the relatively short lifetimes of TAS compared to the longer lifetime of mRNAs 
(Sharova et al., 2009) mean that intron seqFISH can capture fast dynamics in the nascent 
transcriptome that would otherwise be obscured in mRNA measurements.  Many pathways, 
such as NFkB, NFAT, Erk, and calcium signaling can pulse on a timescale of minutes to 
hours (Hoffman et al., 2002; Yissachar et al., 2013; Shankaran et al., 2009; Dolmetsch et al., 
1998). Indeed, a recent work showed that intron to exon ratios in single cells can provide 
“velocity” trajectories of cellular differentiation processes (La Manno et al., 2017).  
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3.3 RESULTS 
 
Intron seqFISH targets transcription active sites in single cells 
To multiplex TAS detection for 10,421 genes, we use sequential rounds of hybridization to 
generate a unique temporal barcode sequence on each gene, which we then decode by 
aligning images from multiple round of barcoding hybridization. Specifically, we targeted 
the introns at the 5’ regions of genes by a set of 25 probes. A total of 260,525 primary probes 
were synthesized for all 10,421 genes. Each primary probe contained multiple overhang 
sequences that could be hybridized by fluorophore labeled readout probes in sequential round 
of hybridizations to impart a temporal barcode on each target (Figure 1A and S1A-B). After 
the primary probes were hybridized to the cells, readout probes were introduced with 
automated fluidics, and cells were imaged on a spinning disk confocal microscope with z-
sections. After imaging, the readout probes were removed by denaturation in 55% 
formamide, while the primary probes remain bound on the intronic RNA due to longer probe 
length and higher DNA-RNA affinity. A different set of readout probes were then hybridized 
to the primary probes and imaged until all 60 readout probes and 20 rounds of hybridization 
were complete (Figure 1A-B and S1A-B).  There was little decrease in signal over 20 rounds 
of hybridization (Figure S1C). 
 
We use a coding scheme (Eng et al., 2017) with 12 pseudocolors and 5 barcoding rounds to 
generate 12^5=248,832 barcodes, which allows us to uniquely identify 12^4=20,736 genes 
with tolerance for drops in any one round of barcoding (Figure 1A-B). The 12 pseudocolors 
for each barcoding round are generated with 4 serial hybridizations each with 3 readout 
probes labeled with three different fluorophores (Figure 1A-B and S1A-B).  The advantage 
of using a large number of pseudocolors and a smaller number of barcoding rounds is that 
fewer mistakes occur in alignment and readout of barcodes when there are fewer barcoding 
rounds over which to accumulate errors. Furthermore, spreading out dots across many 
pseudocolors reduces spot density. We recently implemented this 12 color pseudocolor 
scheme in RNA SPOTs (Eng et al., 2017) to profile the transcriptome of 10,212 mRNAs in 
vitro, which showed high precision and concordance with RNA-seq measurements. 
 
We followed the intron seqFISH experiment with additional rounds of mRNA and lncRNA 
seqFISH as well as antibody staining to label pluripotency, differentiation and cell cycle 
markers in addition to nuclear bodies in the same single cells (Figure 1B).  
 
Intron seqFISH accurately measures nascent transcriptome in single cells 
The intron seqFISH measurements are highly reproducible between biological replicates (R 
= 0.93, Figure 1C, Table S1) using mESCs cultured in serum/LIF conditions, indicating that 
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there is little technical noise in the data.  We compared the seqFISH data to 34 introns 
measured by single molecule FISH (smFISH), the gold standard quantification method. The 
average frequencies of observing TAS (burst frequency) for these 34 genes were correlated 
with Pearson correlation coefficient of 0.73 (Figure 1D) and a slope of 0.44, indicating a 
relative detection efficiency of 44%. This efficiency compares favorably with the 5-20% 
efficiency of single-cell RNA-seq . In addition, the false positive rate is low (Figure 1E), as 
determined by the number of off target barcodes (6.98 ± 1.62 per cell (mean ± s.d.)) found 
in cells versus the number on target barcodes (1,266 ± 288 per cell (mean ± s.d.)). Across the 
data set, on target barcodes were on average hit with greater than 1,000 times higher 
frequency than off target barcodes (Figure 1F), suggesting a very low false positive rate. 
 
We also compared intron seqFISH and smFISH results with GRO-seq (Jonkers et al., 2014) 
and found that they were correlated with Pearson correlation coefficient of 0.57 and 0.67, 
respectively (Figure 1G). As GRO-seq measures the amount of productively elongating RNA 
polymerase II, this correlation indicates an overall agreement between the burst frequency of 
active loci measured directly by intron seqFISH and the density of polymerases on gene loci 
measured by GRO-seq. On the other hand, the intron seqFISH for 10,421 genes and smFISH 
had lower correlation with bulk RNA-seq (R = 0.40 and R=0.63, respectively, Figure S1D-
E) as expected, because of the difference in the lifetimes of mRNAs (on average 4-5 hours, 
Sharova et al., 2009) versus TAS (<30 minutes) (Femino et al., 1998; Levesque and Raj 
2013).  Consistent with a model of bursty and stochastic gene transcription, we find that the 
burst frequency of many genes are close to Poisson distributed (Figure S1F).  
 
We further performed 10,421 gene intron seqFISH experiments on mESCs cultured under 2i 
condition (inhibition of MEK and GSK3β; Marks et al., 2012), as well as on NIH3T3 mouse 
fibroblast cells (Table S1). While biological replicates of mESCs in serum/LIF condition 
showed high Pearson correlation (R= 0.93) (Figure 1C), we obtained lower Pearson 
correlation coefficients of 0.73 (mESCs in serum/LIF vs. in 2i) and 0.33 (mESCs in 
serum/LIF vs. NIH3T3) (Figure 1H), consistent with previous studies showing differential 
gene expression in these samples (Marks et al., 2012; Kolodziejczyk et al., 2015; Eng et al., 
2017). Together, these results demonstrate that intron seqFISH accurately and robustly 
measures nascent transcriptome in single cells. 
 
Active transcription occurs at the surface of chromosomes territories 
The spatial organization of the chromosomes and the TAS in single cells can be reconstructed 
from the intron seqFISH data (Figure 2A). Overall, TAS appear uniformly across the 
nucleus, and are excluded from the DAPI dense heterochromatic regions as well as from the 
interior of nucleoli (Figure 2A; Supplemental Movie S1-3). There do not appear to be major 
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factories of active transcription in the nucleus, although smaller local foci cannot be ruled 
out. TAS are also not strongly colocalized with nuclear bodies (Figure S2A-C), such as the 
paraspeckle marked by Neat1, nuclear speckle marked by Malat1 and SC35, and lncRNA 
Firre. On the other hand, Locked Nucleic Acid (LNA) probes targeting polyA sequences to 
detect mature mRNAs colocalized with SC35 speckles (Figure S2B-C).  
 
Two distinct sets of TAS from a given chromosome and one set from chromosome X in male 
mESCs (Figure 2A, lower panels) are typically observed in each cell, corresponding to the 
individual chromosomes.  Most of the TAS from the same chromosome appear to occupy a 
compact region and span discrete core chromosome territories (CTs) as observed in 
chromosome paint studies (Bolzer et al., 2005). However, some TAS from the same 
chromosome do appear to be positioned away from the core CTs (Figure 2A).   
 
To determine the relative positioning of the TAS and the core CTs, we combined intron FISH 
targeting the TAS in one chromosome and chromosome paint of the same chromosome to 
directly visualize the individual CTs. We observed that TAS are located on the surfaces of 
CTs with some genes positioned significantly away from the core territories (Figure 2B and 
S3A). On average, TAS are located 0.82 ± 1.08 μm (mean ± standard deviation) exterior 
relative to their CT edge (Figure 2C and S3B). We found this result to be consistent across 
all 6 chromosomes examined (Figure 2C and S3B). For chromosome 11, we also imaged the 
coding regions of the chromosome by DNA FISH in addition to intron FISH and 
chromosome paint (Figure S3A). We showed that the coding genomic regions, as measured 
by DNA FISH, are colocalized with the intron FISH signals (Figure S3A) and are also on the 
surface of the core CTs (Figure 2D).  
 
These observations systematically show that actively transcribed genes are present at the 
exterior of core CTs, regardless of chromosome genomic size (Figure 2D). This is consistent 
with DNA FISH results that regions containing coding sequences are separated from the rest 
of the chromosome (Mahy et al., 2002b; Boyle et al., 2011).  
 
As observed from the reconstruction from the 10,421 gene intron seqFISH (Figure 2A), we 
further confirmed that many TAS are indeed positioned significantly away from the core CTs 
(Figure 2C).  Intron and DNA FISH against individual genes showed that those coding loci 
themselves were looped out from their chromosome territories (Figure 2E and S3C). We 
further investigated 8 genes that have a wide range of burst frequencies with intron FISH, 
DNA FISH and chromosome paint (Figure 2F). Notably, the relative spatial positions 
between those loci and their CTs were not influenced by their instantaneous transcriptional 
activities (Figure 2G and S3D), inferring that the loci positioning is not dynamically 
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regulated according to the instantaneous transcriptional activity of the site. These results 
suggest that transcriptionally active regions are structurally looped out from the core 
domains, which likely reside inside the CTs, and are positioned at the CT surface. 
 
Nascent transcription sites from different chromosomes are intermingled in single cells 
The reconstruction of TAS in single cells shows that TAS from different chromosomes are 
often intertwined (Figure 3A and Supp Movie S1-3), reflecting underlying chromosome 
organization as well as the observation that TAS are present on the surface of CTs. To 
validate this observation from the intron seqFISH reconstruction, we labeled chromosomes 
1, 2, 7, 11, 19 and X individually with probes targeting introns in the 10,421 gene list on each 
of the chromosomes with serial hybridization (Figure 3A and S3E). We observed significant 
overlaps between TAS of different chromosomes, suggesting the prevalence of intermingling 
of TAS from individual chromosomes.   
 
Consistent with this observation, the pairwise contact map between loci (the frequency of 
two loci being within 0.5 μm with one another) showed that 82.4% of the contacts are 
between different chromosomes, despite the enrichment of many intrachromosomal contacts 
shown as blocks along the diagonal (Figure 3B and S3F). The observation that the most 
frequent contacts measured are interchromosomal further supports the notion that, while 
chromosomes mostly occupy discrete territories in the nucleus, active transcription occurs 
on the surfaces of these territories and likely near other chromosomes.  
 
The contact map from seqFISH (upper right Figure 3C-D and S3G) matches the pairwise 
contact frequency of coding genes from Hi-C experiments (Dixon et al., 2012; lower left 
Figure 3C-D and S3G) for individual chromosomes. While a large number of contacts are 
between loci that are genomically close, representing contacts within topologically 
associated domains (TADs; Dixon et al., 2012), there are significant inter-TAD contacts 
(Figure S3F), indicating spatial proximity between loci that are genomically far apart. The 
total number of pairwise contacts consistently increased when the contact search radius for 
spatial proximity of pairwise loci was increased from 0.1 μm to 2 μm. However, the number 
of intra-TAD contacts saturate at 0.5 μm (Figure S3F), indicating the characteristic physical 
dimension of the domains and chromosomes in the cells.  
 
At the boundaries of TAD, the burst frequencies of genes were on average 21.1% higher than 
those of genes in the interior of TADs as well as 17.8% higher than those of genes with 
randomized TAD assignments (Figure 3E), consistent with observations with smFISH 
(Arjun Raj, personal communication). At the same time, the burst sizes of genes do not 
change across different distances from TAD boundaries (Figure 3E). These results suggest a 
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potential link between local chromosome structures as defined by TADs and nascent 
transcriptional activity. 
 
Single-cell chromosome conformations are heterogeneous 
At the single-cell level, contacts appear to be mostly interchromosomal and stochastic, and 
vary significantly from cell-to-cell (Figure 3F). A histogram of the ratio of intrachromosomal 
contacts to the total contacts in single cell shows a distribution of values, indicating that 
different cells have differing amounts of interchromosomal vs intrachromosomal contacts 
(Figure S3H). Recent single-cell Hi-C measurements (Nagano et al., 2013; Stevens et al., 
2017) showed similar high interchromosomal interactions in single cells. Together, these 
data indicate that while TAS are patterned on the surface of CTs, the CTs themselves are 
randomly distributed in individual nuclei and spatially overlap with other chromosomes 
stochastically. These random spatial organizations are averaged out in ensemble 
experiments.  
 
Taken together, intron seqFISH directly images transcriptionally active genes in single cells, 
and provides complementary information about the spatial organization of the nucleus 
compared to ensemble Hi-C (Lieberman-Aiden et al., 2009; Dixon et al., 2012; Rao et al., 
2014), which captures highly consistent features amongst cells such as CTCF mediated loops 
and TADs.  
 
Intron seqFISH profiles can identify cell types and cell states 
To investigate the similarities and differences of the nascent transcriptome, we clustered cells 
based on their 10,421 gene intron profiles obtained by intron seqFISH. Principal component 
analysis (PCA) showed that the mESCs grown in serum/LIF conditions clustered separately 
from mESCs grown in 2i conditions and NIH3T3 fibroblasts (Figure 4A). At the same time, 
the two biological replicates of mESCs under serum/LIF condition overlapped in PCA space. 
To determine the robustness of the clustering analysis, we downsampled the number of genes 
used and measured the cell type assignment accuracy (i.e., serum mESCs vs. 2i mESCs vs. 
NIH3T3 cells) as a function of the number of genes sampled. The two replicates of mESCs 
in serum were found to be indistinguishable across all range of downsampling of genes, 
suggesting minimal experimental variability (Figure 4B), while the mESCs grown in serum 
and NIH3T3 cells were distinguishable with high accuracy with just 700-1,000 genes (Figure 
4B). mESCs grown in serum/LIF and 2i conditions are more subtly different and require 
between 2,500-3,000 genes to be clearly separated (Figure 4B). Thus, the nascent 
transcriptome can differentiate cells in different states as well as cell types. 
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We further examined the nascent transcripts that are differentially expressed in different cell 
types and states (Figure 4C and S4A-C). Using hierarchical clustering (Figure S4A), we 
found distinct sets of genes are differentially expressed in the three conditions that can be 
visualized in PCA space (Figure 4C and Table S2). The nascent transcripts upregulated in 
mESCs grown in serum/LIF include pluripotency associated stem cell markers such as Zfp42 
(Rex1), Tet1 and Pou5f1 and genes involved in embryogenesis such as Rbpj and Dppa4, and 
the genes upregulated in 2i condition contain Wdr5 and Ash2l, regulators of ESC self-
renewal via maintenance of H3K4me3 (Ang et al., 2011), and Tfcp2l1, a naïve pluripotency 
marker. On the other hand, the genes upregulated in NIH3T3 cells correspond to factors 
related to cytoskeleton (Myh9, Acta2) and extracellular matrix (Emp1,Grasp), reflecting the 
signature of the differences of the different cell types. Most differentially expressed genes 
are regulated by both burst frequency and size, with the changes correlated between the two 
parameters (Figure S4D).   
 
Furthermore, the intron profiles are informative of differences in cellular states, such as cell 
cycle phases and metastable pluripotent states of mESCs grown in serum/LIF (Marks et al., 
2012). For example, in G2/M cells identified using Aurka and Plk1 mRNA and phospho-
Histone H3 (Ser10) antibody as markers, we observed upregulation of a panel of cell cycle 
related introns (i.e. Cks2, Arl6ip1, Cenpa, Mis18bp1) (Figure 4D and Table S3).  Similarly, 
using pluripotency gene Zfp42 mRNA as a marker, we observed a panel of significantly 
upregulated introns in the Zfp42 high cells, including known pluripotency related genes (i.e. 
Zfp42, Fbxo15, Smarcad1, Tet1, Tdh; Figure 4D and Table S3). On the other hand, another 
set of introns (i.e. Rap1gds1, Esd, Podxl, Mfap3l) are upregulated in the Zfp42 low cells 
similar to the more differentiated states (Figure 4D and Table S3). These results demonstrate 
that intron seqFISH can identify differentially regulated genes in different dynamic states of 
cells. 
 
Heterogeneity is present in the global instantaneous transcriptional activity 
Surprisingly, there is large variability in the global nascent transcriptional states of cells, as 
observed from the total number of active transcription sites in each nucleus in the 10,421 
gene intron experiments (Figure 5A) even after considering differences in cell cycle phase 
and cell size (Figure S4E-I). In G1/S cells of a given size, there are on average 1,361 ± 169 
TAS per cell (mean ± s.d.), indicating that some cells are globally transcriptionally active 
while other cells are globally quiescent. In contrast, simulation assuming that each gene fires 
randomly and independently produce a much narrower distribution of TAS (1,264 ± 32 TAS 
per cell (mean ± standard deviation)) (Figure 5A).  
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Therefore, the large variability in global transcriptional states raises the question of whether 
these global states are static in time or interconvert dynamically. The correlation (R = 0.28) 
between the total TAS number in the nucleus and the amount of mature mRNA in the 
cytoplasm measured by LNA probes targeting polyA (Figure 5B and S5A) is lower than 
expected if global nascent transcriptional activities are static in time. However, as the 
dynamics are unlikely to be synchronized amongst cells, we cannot measure the 
interconversion rate between active and inactive global transcriptional states by population 
averaged experiments. At the same time, it is also difficult to perform direct live cell 
experiments with reporter based assays to measure the transcriptional activities across 
thousands of genes.  
 
Global oscillations are seen in transcriptional activities 
To measure the dynamics of TAS globally, we developed a single-cell pulse chase 
experiment that records the nascent transcriptional activities at two time points in a cell’s 
history (Figure 5C). We first fed cells with a modified Uridine (5-EU) (Jao and Salic, 2008) 
to record the global transcriptional activity during a short 30-minute pulse. Then we washed 
out the 5-EU and let the cells grow in the original medium for different amounts of time from 
0 to 3 hours. We fixed the cells, measured the 5-EU incorporation levels with a clickable 
fluorescent dye and counted the total number of TAS seen from 1,000 gene intron probes in 
the same cells. Probes for 1,000 intronic genes were used because they could be quantified 
accurately in a single fluorescence channel without optical crowding. The variability in the 
5-EU signal in individual cells (Figure S5B) is similar to the intron variability observed 
(Figure 5A), confirming nascent transcriptional heterogeneity in single cells. 
 
We then determined whether transcriptional activities change over time or are static by 
comparing the global instantaneous transcriptional activity at defined time points in the past, 
as labeled by 5-EU incorporation, with the nascent activity at the time of fixation, as 
measured by intron levels in the same cells (Figure 5C-D). At early time points, the 5-EU 
and intron levels are correlated in single cells (Figure 5C, bottom left panel), confirming that 
the heterogeneities observed in both measurements are consistent. The correlation coefficient 
decayed within 1 hour, with little correspondence between the 5-EU signal and intron levels 
in single cells (Figure 5C, bottom middle panel). Surprisingly, the correlation is restored at 
around 2 hours (Figure 5C and D, left blue lines). This result suggests that mESCs oscillate 
between low and high transcriptional states with a roughly 2-hour time period. Our data at 
each time point consist of hundreds of cells and the 2-hour oscillation is observed with the 
biological replicate of mESCs (Figure S5C), as well as with a different mESC cell line 
(Figure 5D middle). The same oscillation is observed with a different method of analyzing 
the pulse-chase data by binning the 5-EU levels at each time point (Figure S5D-E). 
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The observation of 2-hour oscillations from single-cell pulse chase experiments implies that 
oscillation periods are relatively consistent in different cells. The oscillation amplitude in 
single cells may indeed even be higher, but are dampened in the population based pulse chase 
experiments due to slight differences in the period of oscillations. If the global transcriptional 
activities were fluctuating stochastically without a defined period, or if different cells had 
completely different oscillation periods, then the correlation coefficients would simply decay 
without re-cohering at 2 hours.  
 
Interestingly, the 2-hour fast dynamics in global nascent transcription can be abolished in 2i 
condition where Wnt and Mek pathways are perturbed (Figure 5D, red lines in left and 
middle panels; Figure S5D-E). Furthermore, the 2-hour global transcription oscillation is also 
observed in NIH3T3 fibroblast cells using the single-cell pulse chase experiment (Figure 5D, 
right). We found similar heterogeneity of the nascent transcription states with NIH3T3 cells 
(Figure S5F) as observed in mESCs (Figure 5C). These results suggest that global nascent 
transcriptional oscillations may be present in many cell types and are not limited to the 
pluripotent state of mESCs.  
 
Global nascent transcriptional oscillations are linked to Hes1 oscillations 
The 2i results suggest that perturbation of signaling pathways can change the dynamics of 
the global transcriptional states. To further investigate the molecular origins of this 2-hour 
oscillation, we measured the mRNA expression levels of 48 genes, including transcription 
factors and signaling pathway components, along with the total intron levels for 1,000 genes. 
This data helped determine whether any mRNAs are correlated with global transcriptional 
activities in the same cells (Figure 6A and S6A-C).  
 
We found that total intron number clustered most closely with Hes1, Stat3, Socs3, and Fgf4 
(Figure 6A), suggesting that global transcription activity closely follows the pattern of the 
aforementioned genes. Hes1 mRNA and protein have been shown to have short lifetimes and 
oscillate with 2-4 hour periods in many mouse cell lines, including mESCs and fibroblasts 
(Kobayashi et al., 2009, Yoshiura et al., 2007), as well as in vivo (Zhang et al., 2014).  It has 
also been shown that Socs3 mRNAs and proteins, and phosphorylated Stat3 protein, oscillate 
with Hes1 transcripts with a periodicity of ~2 hours in mouse fibroblast cells (Yoshiura et 
al., 2007).  This gene cluster (consisting of 1,000 gene total introns, Hes1, Stat3, and Socs3) 
is observed even after taking into account the cell cycle effect (Figure S6D-E). Furthermore, 
Hes1 has been shown to negatively regulate Delta 1 (Dll1) (Shimojo et al., 2008) and 
Gadd45g (Kobayashi et al., 2009). Indeed, Dll1 and Gadd45g  form a distinct cluster that are 
negatively correlated with the Hes1-intron cluster (Figure 6A). Our results also recapitulate 
the metastable pluripotent mESC subpopulations (Figure S6F-G), consistent with single-cell 
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RNA-seq measurement (Kolodziejczyk et al., 2015). Interestingly, gene-to-gene hierarchical 
clustering results showed differences between serum/LIF and 2i conditions of mESCs, 
showing more distinct clusters in serum/LIF condition (Figure S6H).  
 
To understand differences between mESCs in serum/LIF versus 2i conditions that may affect 
their distinct oscillation behaviors, we compared their mRNA expressions profiles, and found 
that Hes1, Dll1, Gadd45g, and Dnmt3a/b are strongly differentially expressed (Figure S6I). 
These results are consistent with the intron profile differences between 2i and serum showing 
certain signaling pathway genes are differentially expressed (Table S2).   
 
Using the 10,421 intron seqFISH data, we further found that most genes are oscillating in 
synchrony with the global dynamics (Figure S6J).  TAS for most genes occur at a linearly 
higher frequency in cells with high total number of introns than cells with lower total number 
of introns, suggesting that there is a global mechanism that upregulate the nascent production 
of most genes in the TAS high state and vice versa in the low states.   
 
To further investigate the relationship between the known Hes1 oscillation and the nascent 
transcription oscillations, we performed single-cell pulse chase experiments with the 5-EU 
labeling and Hes1 antibody staining using mESCs grown in the serum/LIF condition (Figure 
6B-C). Hes1 protein oscillation is time delayed about 20 minutes compared to Hes1 mRNA 
oscillation but both have the same period (Hirata et al., 2002). We observed the similar 2-
hour oscillation period, showing that Hes1 protein oscillations and global transcriptional 
oscillations follow a similar period (Figure 6C). Together, our results provide multiple lines 
of evidence suggesting that the global nascent transcription states oscillate with a 2-hour 
period, which is potentially related to the known 2-hour oscillation of Hes1 and other 
components of signaling pathways.   
 
3.4 DISCUSSION 
 
In this study, we showed that the “spatial genomics” approach with intron seqFISH can scale 
to the transcriptome level and capture both the nascent transcriptome and the spatial 
architecture in the nucleus of single cells. The sensitivity and spatial imaging nature of the 
single molecule based seqFISH methods allow us to obtain insights that are unavailable with 
existing methods.  First, we are able to explore the nascent transcriptome of single cells, 
which is highly informative of cell types and cell states, with specific introns upregulated 
dynamically in different cell cycle phases and metastable pluripotent states in mESCs.  
Second, by imaging the spatial organization of the nucleus in situ, we showed systematically 
that transcription active regions occur at the surface of chromosome territories, and are not 
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dynamically positioned according to the instantaneous transcriptional activity, providing an 
actual picture of the nuclei beyond the pairwise interactions measured by Hi-C experiments.  
We further showed that gene burst frequencies, but not burst size, measurements uniquely 
possible with FISH, is higher in genes near TAD boundaries.  Lastly, we observed 
surprisingly fast dynamics with 2-hour oscillations in mESCs and fibroblasts with single-cell 
pulse chase measurements using intron FISH.  Such global oscillations would otherwise be 
lost in population average measurements because cells are not synchronized, and would also 
be missed in single gene live cell experiments which are dominated by stochastic bursting at 
each active site.  
 
The high dimensional spatial genomics data allow us to generate new models of chromosome 
organization combining insights from Hi-C data and multi-color imaging data.  Specifically, 
our systematic observation that active genes are positioned away from the core chromosome 
territories explains the high interchromosomal contacts observed in the single-cell Hi-C data 
(Nagano et al., 2013; Stevens et al., 2017) and the enrichment of transcriptionally active 
phosphorylated RNAPII at the inter-chromosome contact regions by immunofluorescence 
(Maharana et al., 2016). Combined with observations that burst frequencies of genes are 
higher near TAD boundaries and that many domain boundaries are invariant across cell types 
and species (Dixon et al., 2012; Rao et al., 2014), it is possible that there are structural 
elements in the genome that loop out potential active genes while the inactive domains 
remain in the interior of chromosome territories. Further investigation of dynamics can take 
advantage of intron seqFISH together with multiplexed live cell imaging of genomic loci 
(Takei et al., 2017). 
 
The measurement of the nascent transcriptome combined with many mRNAs in the same 
cells by seqFISH allowed us to link the fast 2-hour global nascent dynamics with other 
molecular pathways. We found that global intron levels varied with Hes1, Stat3, Socs3 
transcripts, and were anticorrelated with Delta1 and Gadd45g transcripts, which were 
downregulated by Hes1. Hes1 has been shown to oscillate in many cell lines including 
mESCs and fibroblasts (Kobayashi et al., 2009, Yoshiura et al., 2007). Many of these genes 
were studied previously in the context of a somitogenesis clock in embryos, which also 
oscillates in 2-hour periods in mouse (Dequéant et al., 2006). 
 
Thus, it is possible that a common 2-hour oscillation gates global transcriptional activity in 
many cell types, but is unsynchronized amongst cells and therefore previously unrecognized. 
This 2-hour global nascent transcription dynamics could be also be related to a 2-hour 
methylation oscillation observed in mESCs released from 2i to serum/LIF conditions 
(personal communications, Reik and Simon).  
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Using pulsatile and oscillatory dynamics, cells can achieve states not accessible with 
amplitude based regulation schemes (Letsou and Cai, 2016). For example, cells can use 
fluctuations in global transcriptional activity to coordinate the stoichiometry of many 
transcripts in mechanisms akin to the frequency modulated signaling observed in yeast and 
mammalian pathways (Cai et al., 2008; Yissachar et al., 2013). 
 
Finally, an exciting recent work showed that intron-to-exon ratios across the transcriptome 
can be used to determine the direction of of cells on the developmental trajectory (La Manno 
et al., 2017). As we showed, the nascent transcriptome profiles can not only distinguish cell 
types and cell states, but also detect fast dynamics in single cells. Applications of intron 
seqFISH with signal amplification (Shah et al., 2016a) along with mRNA seqFISH (Shah et 
al., 2016b, Lignell et al., 2017), can enable simultaneous profiling of nascent and mature 
RNAs in tissues, with spatial information preserved. It will be fascinating to explore the 
nascent transcriptome in single cells in many tissue settings and developmental contexts.   
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3.6 MAIN FIGURES 
 

 
Figure 1. Intron seqFISH enables transcriptome profiling of nascent active sites.  
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(A) Schematics of intron seqFISH. Nascent RNA molecules are produced in bursts at the 
transcription active site at the genomic locus. Each gene is targeted by 25 primary probes. 
Barcodes are read out by secondary fluorescent readout probes that are complementary to 
the 15-nt barcode region. Detail of the primary probe design is shown in Figure S1. Each of 
the five barcoding rounds (I, II, III, IV and V) is based on 12 pseudocolors constructed by 
four serial hybridizations. In each serial hybridization, three readout probes conjugated to 
Alexa 647, Cy3B or Alexa 488 are hybridized to the primary probes, imaged and then 
stripped. Images from four serial hybridizations are collapsed into a single composite 12 
pseudocolor image, which corresponds to one barcoding round. In total, five barcoding 
rounds were performed with 20 serial hybridizations to cover 12^4 = 20,736 barcodes with 
an extra round for error correction. (B) Combined seqFISH and immunofluorescence images 
with multiple mESCs. Barcoding round I image of 10,421 gene intron seqFISH from three 
z-sections (top left), and zoomed-in view of the yellow boxed region through five rounds of 
barcoding (top right panels). White boxes indicate identified barcodes, yellow boxes are 
recovered signal from error corrected barcodes, red boxes indicate false positives from 
mishybridizations. Bottom panels are maximum intensity projections of a z-stack of mRNA 
seqFISH, first internal transcribed spacer of rRNA (ITS1) probes staining nucleoli (Shishova 
et al., 2011), and H3S10Ph antibody staining G2/M phase cells. Dashed white lines in intron 
seqFISH image display nucleus boundaries (determined by z-projecting DAPI signal) while 
in mRNA seqFISH images display cytoplasmic boundaries of cells. Scale bars represent 5 
μm in images with multiple single cells, and 0.5 μm in the zoomed-in images. (C) Two intron 
seqFISH replicates are highly reproducible (n1 = 314 cells; n2 = 382 cells). E14 cells were 
cultured under serum/LIF condition. (D) Comparison of intron seqFISH and intron smFISH 
with 34 genes verifies the accuracy of intron seqFISH. Error bars represent s.e.m. of intron 
seqFISH replicates. (E) Frequencies of on and off target barcodes in each cell. On average, 
1266 ± 288 on target barcodes are typically detected per cell, while few off target barcodes 
(6.98 ± 1.62) are detected in any cell. (F) Frequencies of individual on target and off target 
barcodes detected. Introns display a wide range of expression levels. False positives are 
rarely detected, demonstrating the accuracy of the intron seqFISH. (G) Comparison of intron 
seqFISH (left) and smFISH (right) with GRO-seq. (H) Comparison of burst frequencies 
between E14 cells grown in serum/LIF vs. 2i conditions (left) and E14 cells grown in 
serum/LIF vs. NIH3T3 cells (right). GRO-seq data are from Jonkers et al. (2014).  
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Figure 2. Intron seqFISH reveals nascent transcription active sites are on the surface 
of chromosome territories.  
 
(A) 3D reconstruction of TAS in a single mESC nucleus, with individual chromosomes 
occupying distinct spatial territories (bottom). In total, 982 nascent sites were present in this 
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cell. Nucleoli were labeled by ITS1 FISH and the nucleus was stained by DAPI. (B) 
Sequential intron paint (956 and 736 genes probed in chromosome 1 and 11, respectively) in 
a particular chromosome (red) followed by chromosome paint of the same chromosome 
(yellow) in mESC nuclei (blue) shows that TAS are on the surface of CTs and can loop away 
from the core CTs. (C) Violin plots showing the distance distributions of TAS relative to the 
edge of their CT in mESC nuclei for chromosome 1, 7, 11, 19 and X. In total, 913-8550 spots 
from 49-234 cells were analyzed per one chromosome. (D) The mean (± SEM) distance of 
intron FISH spots, DNA FISH spots and chromosome paints from the center of CTs,as a 
function of chromosome size. 49-234 cells were analyzed per chromosome (chromosome 1, 
7, 11, 19 and X). (E) Representative confocal images from a single z-section showing loci 
looped away from their core CTs, imaged by DNA FISH (cyan) and intron FISH (red) 
targeting Pten along with chromosome paint (yellow) in mESC nuclei (blue). The DNA FISH 
spot confirms that coding genomic regions are looped away from the core CTs and are 
colocalized with the intron FISH spot. (F) Transcriptional statuses of loci do not affect their 
spatial positioning with respect to the CT boundary. DNA FISH (cyan) and intron FISH (red) 
targeted both allele of a gene (Adora1, as an example) along with chromosome 1 paint 
(yellow) in a mESC nucleus (blue). Signals outside nuclei (dashed white lines) are not shown 
for visual clarity (E, F). (G) Violin plots showing the distance distribution relative to their 
CT edge for loci with either “on” or “off” intron signals. NS, not significant with Wilcoxon’s 
rank sum test (P > 0.05). Results from 8 genes in chromosome 1, spanning a range of 
expression values (Figure S3D), are shown (n = 8-396 and 231-842 spots for “on” and “off” 
status introns, respectively, in 404-563 cells were analyzed per gene). Scale bars (B, E, F), 5 
μm. 
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Figure 3. Chromosomes intermingle and are heterogeneously organized in single cells. 
 
(A)  Representative confocal images of a single z-section showing introns in 6 chromosomes 
(Chr 1, 2, 7, 11, 19, and X). Regions where introns from different chromosomes intermingled 
are shown with white arrows labeled with their corresponding chromosome numbers. In 
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total, 956, 795, 624, 736, 313, and 347 genes in chromosome 1, 2, 7, 11, 19, and X were 
targeted, respectively, using the 10,421 intron seqFISH primary probe sequences. Signals 
outside nuclei (dashed white lines) are not shown for visual clarity. Scale bars, 5 μm. (B) 
Heatmap of normalized contact frequencies between pairs of loci (number of contacts within 
0.5 μm normalized by burst frequencies) averaged over 420 single cells. Genes are sorted 
based on chromosome coordinates, and gray boxes represent individual chromosomes from 
chromosome 1 to X. (C-D) Concordance between the heatmaps of normalized contacts from 
intron seqFISH (upper right) and Hi-C (lower left) are shown for (C) 349 genes in the X 
chromosome and (D) a zoomed-in of 41 genes boxed in (C). Cyan boxes represent individual 
TADs. Mean burst frequency of each gene is visualized above the contact heatmaps and 
reflects the sampling of individual loci. More long range contacts are observed in the intron 
seqFISH contact maps compared to ligation based Hi-C maps. (E) Comparisons of mean 
burst frequency and burst size of genes as a function of the distance between their 
transcription start site and the closest TAD boundary. TAD assignments were shuffled in the 
randomized control. Shading shows 95% interval for bootstrapped data. On average, genes 
within 60 kb from the TAD boundary showed 17.8% higher burst frequency than expected, 
while burst size was minimally affected (1.7%). (F) Heatmaps showing normalized contact 
frequency between pairs of chromosomes, representing intra- and inter-chromosomal 
contacts. Hi-C and TAD data are from Dixon et al. (2012). 
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Figure 4. The nascent transcriptomes can distinguish cell types and cell states. 
 
(A) Principal Component Analysis (PCA) of the nascent transcriptome separates NIH3T3 
cells and mESCs grown in different conditions (serum/LIF and 2i). All cells obtained from 
four intron seqFISH experiments (n = 1158 in total; n = 314 in E14 serum rep. 1; n = 382 in 
E14 serum rep. 2; n = 347 in E14 2i; n = 115 in NIH3T3) are projected onto the first two 
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principal components. PCA analysis was performed on the correlation matrix of all cells after 
normalizing individual intron counts in each cell by total number of introns of the cell. Note 
that biological replicates of mESCs grown in serum/LIF are clustered together indicating 
little batch effect. (B) Cells from the serum replicates clustered together even when the 
number of genes used is downsampled (left). Serum vs. NIH3T3 cells (right panel, yellow) 
and serum vs. 2i cells (right panel, red) are well separated when 700 and 2,000 genes are 
used, respectively. Separation index is the overlap between the cluster assignments between 
the cell types subtracted from unity. Shaded regions shows the 95% confidence interval of 
the separation index with 100 trials of downsampling. (C) PCA of the genes differentially 
expressed in each cell line. Nascent transcriptomes for NIH3T3 and, mESCs in serum and 2i 
were clustered and the genes differentially expressed were further analyzed by PCA. (D) 
Heatmaps of differentially expressed genes for cell cycle (left) and pluripotency (right) with 
mESCs in serum replicate 1 (n = 314 cells). In the left panel, cells were sorted by G2/M 
marker gene mRNA levels (Aurka and Plk1) with cell cycle phases assigned by H3S10Ph 
immunofluorescence. Introns differentially expressed in the G2/M phase are shown in the 
heatmap and found by Pearson correlation analysis with Aurka mRNA levels. In the right 
panel, cells were sorted by pluripotency associated gene Zfp42 mRNA levels. Other 
pluripotency associated marker mRNAs are shown as well as the differentially expressed 
introns in the Zfp42 high and low states. 
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Figure 5. Single-cell pulse chase experiments reveal 2-hour oscillations in global nascent 
transcription.  
 
(A) Histograms showing wide distributions of TAS per cell from the decoded 10,421 gene 
intron seqFISH (n = 188 cells). Cells in G1/S cell cycle phase and a small cell size window 
were used. In comparison, simulations assuming Poisson bursting of each gene (bottom, n = 
188 simulated cells) yield a narrower distribution of TAS per cell, showing that the global 
nascent transcription states are more heterogeneous than expected in individual cell. (B) 
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Cytoplasmic polyA intensity per cell by poly-dT FISH probes shows lower correlation with 
the 1,000 gene intron seqFISH total counts (n = 763 cells) than expected if global intron 
levels were static. Intensity and counts are normalized by nuclear volume (pL, picoliter). (C) 
Schematic of the pulse-chase experiment (top). 5-EU was pulsed for 30 min to globally label 
nascent transcripts, then chased for different periods of time in growth medium lacking 5-
EU, followed by fixation and intron hybridization. Confocal images with maximum intensity 
z projection of 5-EU signals detected by click linkage to an azide-dye and 1,000 gene introns 
in single cells shown for three time points (middle). The correlations between 5-EU levels 
and intron numbers examined after different chase time are shown as scatterplots (bottom) 
(n = 747, 570 and 901 cells). Dashed yellow lines in the images display nuclear boundaries 
determined by DAPI. Scale bars, 10 μm. (D) Pulse-chase correlation measurements show 
oscillatory dynamics on the time scale of two hours. Oscillations are observed in two 
different mESCs (E14 and wild-type mESCs from Hu et al., 2014) and mouse fibroblast cell 
line (left and right panels). Additional replicates are shown in Figure S5C. In contrast to 
mESCs in serum+LIF condition (blue), mESCs in 2i condition do not show oscillations (red). 
At each time point, 329-901, 435-1725, 311-658, 1035-1556, and 444-618 cells were 
analyzed with E14 cells in serum/LIF and 2i, wild-type mESCs in serum/LIF and 2i, and 
NIH3T3 cells, respectively. Shaded regions represent 95% confidence intervals. R, Pearson 
correlation coefficient. 
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Figure 6. Global nascent transcription links to Hes1 dynamics in mESCs.  
 
(A) Heatmap showing Pearson gene-to-gene correlation coefficients between total introns 
counts for 1,000 genes and 47 mRNAs involved in pluripotency, signaling pathway and other 
processes by non-barcoded seqFISH (n = 605 cells cultured under serum/LIF condition). Red 
and black boxes show the correlated clusters, and blue boxes show clusters of genes that are 
anticorrelated. (B) Confocal images of mESCs (serum/LIF condition) with Hes1 
immunofluorescence (magenta) and 5-EU staining (green) used in the Hes1 protein pulse 
chase experiment for the initial time point (top) and 30-minute chase time point (bottom). 
Images are shown as a maximum intensity projection of z stacks of the fluorescence images. 
Scale bars, 10 μm. (C) Pulse-chase correlation measurements between detected 5-EU signals 
and Hes1 immunofluorescence signals. Similar 2-hour oscillatory dynamics are observed as 
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intron pulse chase experiments. The data at each time point consist of 328-510, or 272-1305 
cells in biological replicates 1 and 2, respectively. Shaded regions represent 95% confidence 
intervals. 
 
 
 
 
3.7 SUPPLEMENTAL FIGURES 
 

 
 
Figure S1. Schematic and validation of the intron seqFISH. 
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(A) Detailed primary probe design schematics for intron seqFISH experiments. Each gene is 
targeted by 25 primary probes with 35-nt gene specific sequence complementary to the intron 
region, four 15-nt barcode sites (a, b, c, d), 20-nt PCR primer binding sites and nucleotide 
spacers. Each barcode site (a, b, c, d) corresponds to one of the five barcoding rounds (I, II, 
III, IV, and V). The 5 rounds of barcodes are distributed over 25 primary probes for each 
gene, such that each probe contains 4 barcode sites. (B) Schematic illustration of 
hybridization, stripping and re-hybridization of readout probes per one gene over 5 rounds 
of barcoding rounds. In each barcoding round, barcode sites (a, b, c, d) of the barcoding 
round (I, II, III, IV or V), are read out by a readout probe conjugated with one of the 
fluorophores (Alexa 647, Cy3B or Alexa 488). After imaging, readout probes are stripped 
off by 55% formamide solution, while primary probes remain bound to intron sequences due 
to longer probe length and higher DNA-RNA affinity. (C) Representative image of one of 
the channels (hyb1 channel 1; left) and its repeat after 20 rounds of hybridizations (hyb21 
channel 1; middle) using the same readout probes as hyb1 channel 1. Merged image (right) 
shows many colocalized spots (white) between those two images (green and magenta), 
showing the robustness of the intron seqFISH protocol over 20 rounds of hybridizations 
without significant decrease of the signals. (D) Comparison of 10,421 gene intron seqFISH 
(n = 314 cells) and RNA-seq FPKM values with Pearson correlation coefficient of 0.40. (E) 
Comparison of 34 gene intron smFISH (n = 446-480 cells) and RNA-seq FPKM values with 
Pearson correlation coefficient of 0.63. Following 34 genes were used for this validation 
(Akt1s1, Fam120c, Pou5f1, Igf1r, Ap1s2, Lmx1a, Dlg2, Dock11, Scamp1, Wnt11, Mbtps2, 
Dnmt3b, Pdha1, Acsl4, Pgk1, Echdc3, Chm, Mras, Esrrb, Prrg1, Ric3, Sall4, Zfp42, Sox6, 
Src, Fgf1, Dusp8, Il6st, Dennd4c, 4933407K13Rik, Tet1, Zfp516, Eef2). Note that Dlg2 
intron spots were not detected in our mESC population measured. (F) Fano factors as a 
function of mean burst frequency plotted for each gene in the 10,421 gene intron seqFISH 
using G1/S phase E14 cells grown in serum/LIF (n = 257 cells). Most genes have Fano 
factors close to unity.  RNA-seq data from Antebi et al. (2017).  
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Figure S2. Intron localization relative to nuclear bodies. 
 
(A) Representative images showing intron spots from the Alexa 647 channel in the first 
hybridization of the 10,421 gene intron seqFISH (green), lncRNAs by lncRNA seqFISH 
(magenta), and nuclear stain by DAPI (blue) in mESCs. Images are a single confocal section. 
Introns are not necessarily colocalized with lncRNAs investigated here. (B) Representative 
images showing intron spots, polyA FISH, SC35 immunofluorescence, and nuclear stain by 
DAPI. Scale bars (A, B), 5 μm. (C) Distributions of localization correlation scores (Pearson 
correlation coefficient) in single cells (n = 437 nuclei). Solid lines display density plots and 
dashed lines indicate median correlation scores from our data. Note that Rex1 (mRNA FISH) 
& SC35 correlation score represents baseline correlation. 
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Figure S3. Spatial organization of TAS and chromosome territories. 
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(A) Representative confocal images of a single z-section showing intron FISH targeting 
genes from individual chromosomes, DNA FISH targeting corresponding coding regions, 
and chromosome paints in mESC nuclei stained by DAPI. Intron FISH probes targeting 736 
genes, and DNA FISH probes targeting 380 genes in chromosome 11 are used. White arrow 
represents introns looped away from their core CT boundaries. Panel on the right displays 
quantified fluorescence intensity of the intron FISH, DNA FISH, and chromosome paint 
along the yellow line within a single z section. Solid black arrow shows overlapped pattern 
between intron and DNA FISH peaks while dashed black arrow shows chromosome paint 
peak. (B) Violin plots showing the distance distribution of TAS relative to their chromosomal 
territory (CT) edge in mESC nuclei (n = 2880, 4609, 7372, and 1296 spots from 312, 301, 
330, and 217 cells respectively) for chromosome 1, 2, 11, and 19 (intron probes targeting 77, 
86, 79, and 30 genes on their chromosomes, respectively). Much larger displacements are 
observed if the introns and chromosome territories are scrambled (i.e. calculating distance 
from chromosome 1 introns to chromosome 19 CT).  ****, significant with Wilcoxon’s rank 
sum test (P < 0.0001). (C) Representative confocal images from a single z-section showing 
loci looped away from their core CTs, imaged by DNA FISH (cyan) and intron FISH (red) 
targeting Ppp3r1 along with chromosome paint (yellow) in mESC nuclei (blue). DNA FISH 
spot confirms that coding genomic regions are looped away from the core CTs and is 
colocalized with intron FISH spot. Signals outside nuclei (dashed white lines) are not shown 
for visual clarity (A, C). (D) For the 8 genes measured individually by DNA FISH (Phlpp1, 
Nck2, Irs1, Hdac4, Adora1, Parp1, Gli2 and Abl2 from left to right) shown in Figure 2G, the 
distance distributions from the CT surface are shown as a function of mean burst frequency 
for each gene measured. The mean and standard deviation are shown in the plot. In total, 
480-1016 DNA FISH spots were analyzed in 406-563 cells per gene. (E) Chromosome paints 
of 4 chromosomes (green: chromosome 1, yellow: chromosome 2, red: chromosome 11 and 
purple: chromosome 19) in mESC nuclei (blue). The image is shown as a maximum 
projection of z stacks. Regions with pairs of chromosomes are intermingled are shown with 
white arrows.  Scale bars (A, C, E), 5 μm. (F) Comparison of mean number of TAS contacts 
(all, intra-chromosomal and intra-TAD contacts) per cell as a function of searching radius, 
reflecting the spatial proximity of those contacts. Inter-chromosome contacts account for 
greater than 80% of the contacts for all search radius examined (n = 420 cells). (G) 
Concordance between the heatmaps of normalized contacts from intron seqFISH (upper 
right) and Hi-C (lower left) are shown for 624 genes (left) and 29 genes (right) as a zoomed-
in view of the gray box in chromosome 7. Cyan boxes represent individual TADs assigned 
to each gene. Mean burst frequency of each gene is visualized above the contact heatmaps. 
(H) Histogram showing the fraction of intrachromosomal contacts relative to total number 
of contacts in single cells (n = 420 cells). 
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Figure S4. Intron seqFISH enables nascent transcriptome profiling across different 
conditions and cell cycle phases. 
 
(A) Hierarchical clustering of G1/S phase cells in the 10,421 intron seqFISH experiment 
(E14 cells grown in serum/LIF and 2i, and NIH3T3 cells) with heatmap for the number of 
TAS for each gene normalized by z-score and clustering dendrogram of genes shown next 
to the heatmap. Different cells grown in different conditions are clustered together, and each 
condition has enrichment of a set of genes. Detailed lists of the differentially expressed genes 
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are in Table S2. (B, C) Differential expression of genes between two different conditions (B, 
E14 cells grown in serum/LIF vs. 2i; C, E14 cells grown in serum/LIF vs. NIH3T3 cells). p 
values were computed using single-cell data set of each condition with Wilcoxon’s rank sum 
test. Top candidate genes for differential expression are labeled with gene names. (D) 
Comparison of changes in mean burst frequency and size between E14 cells grown in 
serum/LIF and NIH3T3 cells. Linear regression line with 95% confidence interval is 
overlaid. Changes in both mean burst frequency and size are generally correlated. (E) 
Representative images of cells at different cell cycle phases (G1/S, G2, and M) as determined 
by H3S10 phosphorylation immunofluorescence (green). The images are shown as a 
maximum projection of z stacks. Scale bars, 5 μm. (F) Cell cycle phases in mESCs (replicate 
1, n = 314 cells; replicate 2, n = 382 cells), defined by H3S10 phosphorylation 
immunofluorescence. (G) Comparison between nuclear volume and total intron counts per 
cell decoded by the 10,421 gene intron seqFISH. Cells at different cell cycle phases are 
displayed with different colors. (H) Violin plots showing the distribution of nuclear volume 
(left), total number of introns per cell (middle) and Aurka counts per cell (right) across 
different cell cycle phases. We calculated nuclear volume by raising nuclear area, which were 
measured by DAPI signal, to the 3/2 power. Known G2/M phase marker gene, Aurka, is used 
as a positive control, showing the increase of expression levels at G2 and M phases compared 
to G1/S phases. (I) Coefficient of variation (CV) of the intron numbers per cell in each cell 
cycle phase in mESCs. Error bars represent s.e.m. between replicates.  
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Figure S5. Intron seqFISH and single cell pulse experiments show dynamic 
heterogeneity of nascent transcription activity. 
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(A) Distribution of the cytoplasmic polyA densities per cell detected by LNA dT probes. (B) 
Violin plots of 5-EU click fluorescence intensity show heterogeneity amongst cells across 
different time points in the pulse chase experiment with E14 cells under serum/LIF. (C) 
Biological replicate of intron pulse chase experiments with E14 cells grown in serum/LIF 
condition. At each time point, 533-1081 cells were analyzed. (D) An alternative method for 
analyzing the pulse chase data. Cells are binned according to the 5-EU intensity and the 
intron density distribution is plotted for each bin. The mean and standard deviation for the 
intron (vertical bar) and 5-EU intensity (horizontal bar) are shown in each plot. Different 
plots represent different time points in the pulse chase experiments. Data from E14 cells 
grown in serum/LIF, in 2i, and NIH3T3 cells are shown in blue, red, and yellow, respectively. 
(E) The slopes of each plot (D) are extracted and shown as a function of time. Shaded regions 
represent standard error. (F) Confocal images with maximum intensity z projection of 5-EU 
signals detected by click linkage to an azide-dye, and 1,000 gene introns in single NIH3T3 
cells shown for three time points. Both methods reflect the heterogeneity of nascent 
transcription states at different time points. 
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Figure S6. mRNA seqFISH and intron FISH measurements reveal correlation between 
global nascent transcription and Hes1 dynamics. 
 
(A-B) Distributions of raw counts per cell (A) and z-scores (B) for 1,000 gene introns and 
48 mRNAs involved in pluripotency, signaling pathway and other processes detected by non-
barcoded seqFISH (n = 605 cells). (C) Comparison of Bulk RNA-seq (Antebi et al., 2017) 
and non-barcoded mRNA seqFISH with 48 genes. Pearson correlation coefficient R = 0.92. 
(D) Histogram of G2/M marker Aurka mRNA counts per cell. Cell cycle phases were 
determined by Aurka mRNA counts based on Figure S4 results. (E) Heat maps showing 
Pearson gene-to-gene correlation coefficients between 1,000 gene total introns and 47 
mRNAs with G1/S and G2/M phase cells determined by Aurka mRNA counts per cell. 
Correlation coefficients were computed after FISH count normalization with Eef2 counts per 
cell. The gene cluster (Red boxes; 1,000 gene total introns, Hes1, Stat3 and Socs3) is 
observed even after separating the cell cycle phases showing the gene-to-gene clusters are 
robust. Color bars represent Pearson correlation coefficient values. (F) Heatmap showing 
hierarchical clustering of cells using z-scores of the 1,000 gene total introns and mRNAs. 
Cells were divided into five subpopulations (cell cluster 1-5) based on the clustering of cells. 
Cluster 1-5 consist of 42, 128, 66, 133 and 236 cells, respectively. (G) Kernel density 
estimation plots showing gene expression distributions. Cells were divided into five 
subpopulations (cell cluster 1-5) based on hierarchical clustering (F). (H) Heat maps showing 
Pearson gene-to-gene correlation coefficients between total introns from 10,421 genes with 
mRNAs in E14 cells grown in serum/LIF (top) and 2i (bottom) conditions. Correlation 
coefficients were computed after mRNA FISH count normalization with Eef2 counts per 
cell. (I) Comparison of the mean copy number of the mRNAs of mESCs in serum/LIF vs 2i.  
Differentially expressed genes are labeled.  Hes1 is 2-fold upregulated in 2i compared serum 
cells, while Dll1 and Gadd45g are almost 10-fold repressed, suggesting that up-regulation of 
Hes1, a repressor, can be linked to the suppression of oscillations in 2i conditions.  (J) 
Comparison of the mean burst frequencies for 10,421 genes in G1/S phase E14 serum/LIF 
cells with high total number of introns (y-axis) vs the cells with low total number of introns 
(x-axis).  On average, all genes are upregulated in the high total intron cells compared to the 
low intron total cells, suggesting that nascent transcriptome is modulated global. (K) Single-
cell Hes1 pulse chase experiment of the biological replicate 1 (Figure 6C) subdivided into 
two cell cycle phases still show 2-hour oscillations. Dashed black lines show traces from all 
cells. Cell cycle phases were determined by H3S10 phosphorylation immunofluorescence 
intensity. Shaded regions represent 95% confidence intervals. 
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3.8 METHODS 
 
Cell Lines 
E14 mESCs (E14Tg2a.4) from Mutant Mouse Regional Resource Centers were maintained 
under serum/LIF or serum/LIF/2i conditions as described previously (Singer et al., 2014; 
Takei et al., 2017). Wild-type mESCs (Hu et al., 2014) were kindly provided by Wolf Reik 
and maintained on gelatin-coated dishes at 37°C with 5% CO2 in DMEM (Thermo Fisher 
Scientific), 15% FBS (Hyclone serum SH30070.02), 2 mM L-glutamine, 100 units/ml 
penicillin, 100 μg/ml streptomycin (Thermo Fisher Scientific), 1000 units/ml Leukemia 
Inhibitory Factor (LIF, Millipore), 1x Minimum Essential Medium Non-Essential Amino 
Acids (Thermo Fisher Scientific) and 100 μM β-Mercaptoethanol (Thermo Fisher 
Scientific). NIH/3T3 cells (ATCC) were cultured at 37°C with 5% CO2 in DMEM (Thermo 
Fisher Scientific) supplemented with 10% FBS (Atlanta biologicals S11150) and 100 
units/ml penicillin, 100 μg/ml streptomycin (Thermo Fisher Scientific). 
 
Intron FISH Probe Design 
Oligoarray 2.1 (Rouillard et al., 2003) was run on all constitutive introns present in the 
masked mm10 mouse genome with parameters min/max length 35-nucleotide (nt), max TM 
100°C, min TM 74°C, secondary structure temp 76°C, cross hyb temp 72°C, max distance 
1,000-nt and max oligos 100.  Genes with more than 48 probes designed were used for 
secondary filtering.  All probes were blasted against the mouse transcriptome and expected 
copy numbers of off-target probe hits were calculated using predicted RNA counts in the 
ENCODE database for 11.5 day old murine embryos.  
 
Probe optimization was initially run to minimize expected off target hits for any given probe.  
An outer loop was run until at least 25 probes were designed per gene initially permitting a 
predicted 2,000 off-target hits for any probe, increasing every round of optimization by 2,000 
off-target hits until a maximum of 10,000 predicted off-target hits were permitted or the 
target number of probes was designed.  For every cycle of probe optimization an inner loop 
was run iteratively choosing probes until no off-target RNA was hit more than 7 times for 
any genes probeset.  If more than 25 probes were found for any given intron, the 25 probes 
with the predicted GC range closest to 55% was chosen.    
 
A second round of optimization was performed on the entire probeset to minimize the 
combined off-target hits.  If any RNA was predicted to be hit more than 7 times by all of the 
combined probesets, probes were iteratively dropped from the probe sets with the largest 
number of genes until no more than 7 off-target hits existed for any predicted off-target RNA.  
If less than 25 probes could be designed for any gene it was dropped from the probeset.  
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Probe pools were assigned with a validated primer and assembled according to the following 
template with 60 readout sequences used in RNA SPOTs (Eng et al., 2017): 
 
Primary probes: 5’ -[Primer 1] - [readout 1] - [readout 2] -  [probe] - [readout 3] - [readout 
4] - [Primer 2] - 3’ 
 
Intron Probes Generation 
The intron probes for 10,421 gene experiment were generated through oligoarray pools. The 
oligoarray pools of probes were purchased from Twist Biosciences. Probes were amplified 
from array-synthesized oligopool as previously described (Beliveau et al., 2012; Shah et al., 
2016; Takei et al., 2017; Eng et al., 2017) with the following modifications:  
 
The template oligo for each encoding primary probe contains: (i) a 35-nt intron-targeting 
sequence for in situ hybridization, (ii) Four 18-nt gene specific readout sequence 
combinations (readout+spacer), (iii) two hybridization specific flanking primer sequences to 
allow PCR amplification of the probe set.  
 
Intron seqFISH, mRNA seqFISH, lncRNA seqFISH, and Immunofluorescence 
E14 mESCs were plated on poly-D-lysine (Sigma P6407) and human laminin (BioLamina 
LN511) coated coverslips (3421; Thermo Scientific), and incubated for 2-3 hours. Then cells 
were fixed using 4% formaldehyde (Thermo Scientific 28908) in 1× PBS (Invitrogen 
AM9624; diluted in Ultrapure water (Invitrogen 10977-015)) for 15 minutes at 20°C, washed 
with 1× PBS for a few times, and stored in 70% ethanol for more than overnight at -20°C or 
for a few hours at room temperature. NIH/3T3 cells were prepared similarly using poly-D-
lysine coated coverslips. The coverslips were air dried, attached with flow cell (Grace Bio-
Labs RD478685- M), and incubated with 0.2 μm blue fluorescent (365/415) beads (Thermo 
Scientific F8805) with 2000-fold dilution in 2× SSC (Invitrogen 15557-044 diluted in 
Ultrapure water (Invitrogen 10977-015)) at room temperature for 5 minutes for the alignment 
of images. The coverslips were then washed twice with 2× SSC. 
 
For hybridization of the probes, samples were 1) hybridized for 30 hours at 37°C with 
primary intron probes and mRNA/lncRNA probes at 1 nM each oligo concentration in 50% 
Hybridization Buffer (50% HB: 2× SSC, 50% Formamide (v/v) (Invitrogen AM9344), 10% 
Dextran Sulfate (Sigma D8906) in Ultrapure water), then 2) washed in 55% Wash Buffer 
(55% WB: 2× SSC, 55% Formamide (v/v), 0.1% Triton-X 100 (Sigma 93443)) for 30 
minutes at room temperature, followed by 2× SSC wash. The fluorophore-coupled 15-nt 
readout probes (Alexa 488, 647 (Thermo Fisher Scientific) and Cy3B (GE Healthcare)) for 
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first round of hybridization were incubated for 20 minutes at 50 nM each at room temperature 
in 10% EC buffer (10% Ethylene carbonate (Sigma E26258), 2× SSC, 0.1 g/ml Dextran 
sulfate (Sigma D4911) and 0.02 U/μL SUPERase In RNase Inhibitor (Invitrogen AM2694)), 
which is optimized for 15-nt readout probe hybridization from the EC buffer (Matthiesen et 
al., 2012), and washed for 5 minutes at room temperature in 10% Wash Buffer (10% WB: 
2× SSC, 10% Formamide (v/v), 0.1% Triton-X 100) followed by 1 minute wash in 2× SSC. 
3) Once the first hybridization was complete, the flow cell was connected to an automated 
fluidics delivery system made from three multichannel fluidics valves (EZ1213-820-4; IDEX 
Health & Science) and a Hamilton syringe pump (63133-01, Hamilton Company). The 
integration of the fluidics valves, peristaltic pump through homemade connectors, and 
microscope imaging were controlled through a custom script written in Micromanager 
software. 4) Imaging positions were then registered using nuclei signals stained by 5 μg/mL 
DAPI (Sigma D8417). Then the sample was 5) proceed to imaging as described below. After 
image acquisition, 6) the samples were incubated with 55% WB at room temperature for 5 
minutes to strip off readout probes, followed by 2× SSC wash for 1 minute each round. 7) 
Then, the fluorophore-coupled readout probes were incubated at 50 nM each concentration 
at room temperature for 20 minutes in 10% EC buffer followed by 8) 5 minutes wash in 10% 
WB, 1 minute wash in 2× SSC and DAPI staining. The procedures 5)-8) were repeated with 
the next round of readout hybridization until the completion of all rounds of seqFISH. 
 
Following intron seqFISH, the mRNA seqFISH was performed. The mRNA seqFISH 
primary probes were hybridized at the same time as the intron seqFISH primary probes, and 
then read out without barcoding using addition readout probes, with the same procedures as 
described above 5)-8). After mRNA seqFISH, nucleolus and lncRNA probes (ITS1, Malat1, 
Neat1, Firre) and a 25-nt polyT LNA probe (Exiqon: 300510-04) were imaged similar to 
non-barcoded mRNA seqFISH.  
 
Following the lncRNA seqFISH, one round of immunofluorescence was carried out. The 
samples were blocked with blocking buffer (1× PBS, 1% UltraPure BSA (Thermo Scientific 
AM2616), 0.3% Triton-X 100) at room temperature for 30 minutes. The samples were then 
incubated with 100-fold diluted primary antibody (anti-Phospho-Histone H3 (Ser10) 
(Thermo Fisher Scientific PA5-17869)) in blocking buffer at room temperature for 1 hour, 
followed by washes with 1× PBS for a few times, incubation with 500-fold diluted secondary 
antibody (Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, 
Alexa Fluor 647 (Thermo Scientific A-31573)) in blocking buffer at room temperature for 1 
hour, and washes with 1× PBS for a few times, and imaged as described below. 
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Samples were imaged in an anti-bleaching buffer (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 
2× SSC, 3 mM Trolox (Sigma 238813), 0.8% D-glucose (Sigma G7528), 100-fold diluted 
Catalase (Sigma C3155), 0.5 mg/mL Glucose oxidase (Sigma G2133) and 0.02 U/μL 
SUPERase In RNase Inhibitor (Invitrogen AM2694)) with the microscope (Leica, DMi8) 
equipped with a confocal scanner unit (Yokogawa CSU-W1), a sCMOS camera (Andor Zyla 
4.2 Plus), 63× oil objective lens (Leica 1.40 NA ), and a motorized stage (ASI MS2000). 
Lasers from CNI and filter sets from Semrock were used. Snapshots were acquired with 0.35 
μm z steps for more than 10 positions per sample.  
 
DNA FISH Probe Design and Synthesis 
DNA FISH probes were designed and synthesized by following the previous protocol (Takei 
et al., 2017) with minor modifications. For DNA FISH paint of chromosome 11, 380 genes 
were selected from the 10,421 intron seqFISH gene list. To label genomic regions of selected 
genes, regions from transcription start sites to 20 kb downstream of each gene were selected 
according to mm10 RefGene database (UCSC Genome Bioinformatics). Across those 
regions, a set of non-overlapping 35-nt probes were designed using the masked mm10 mouse 
genome with several constraints including 40-60% GC content, no more than 5 contiguous 
identical nucleotides, at least 2-nt spaces between adjacent probes and the same off target 
evaluation as previously done. At the 5’ end of the 35-nt probe sets, 20-nt adapter sequences, 
which are identical in each gene probe set but orthogonal among different probe sets, are 
attached with a 4-nt spacer in between. For the array-based oligo library synthesis, universal 
primer binding sequences were attached at 5’ and 3’ ends. The oligonucleotide probe pools 
were purchased from Twist Bioscience (141-398 probes per gene). DNA FISH probes were 
generated in the same way as intron probe generation, without restriction enzyme digestion 
at the final step. 
 
Intron FISH, DNA FISH, and Chromosome Paint 
Intron paint experiments using 10,421 gene probe sets were carried out using oligoarray pool 
(Twist Bioscience) based probes, generated without cutting the primer binding sites. Probe 
sequences of the genes in the same chromosome were amplified from one primer pairs, and 
those primer binding sequences (5’ and 3’ end) were targeted with 20-nt dye-conjugated 
readout probes to paint introns in particular chromosomes. Images were taken with the 
microscope (Leica DMi8 automated) equipped with a confocal scanner unit (Yokogawa 
CSU-W1), a sCMOS camera (Andor Zyla 4.2 PLUS), 63x oil objective lens (Leica NA 1.40), 
and a motorized stage (ASI MS2000). Lasers from CNI and filter sets from Semrock were 
used. Snapshots were acquired with 0.35 μm z steps. 
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Following the intron FISH, DNA FISH experiments were performed as described (Takei et 
al., 2017). Briefly, after intron FISH imaging, cells were incubated in 55% formamide and 
2x SSC at room temperature for 30 minutes, and then washed three times with 2x SSC to 
strip off fluorophore-coupled readout probes. Samples were treated with a prechilled solution 
of methanol and acetic acid at a 4:1 ratio at room temperature for 1 hour, and then with 0.1 
mg/ml RNase A (Thermo Fisher Scientific EN0531) at 37°C for 1 hour. Then samples were 
washed and dried with 1x PBS, 70% ethanol and 100% ethanol. The samples were then 
heated at 95°C for 10 minutes in 70% formamide and 2x SSC. Cells were hybridized with 
DNA FISH probe pool at 37°C overnight, where the final concentration of each probe was 
estimated as 10 nM in nuclease free water with 50% formamide, 2x SSC and 0.1 g/ml dextran 
sulfate (Sigma D8906). After incubation with the probes, samples were washed three times 
in 50% formamide, 0.1% Triton-X 100 and 2x SSC at room temperature, and hybridized 
with 20-nt readout probes coupled to Alexa 488, 647 or Cy3B at 10 nM final concentration 
at room temperature for at least 1 hour in nuclease free water with 30% formamide, 2x SSC 
and 0.1 g/ml dextran sulfate (Sigma D8906). Samples were then washed three times in 30% 
formamide, 0.1% Triton-X 100 and 2x SSC at room temperature, stained with DAPI and 
imaged under the same condition as intron FISH. 
 
Following the DNA FISH, chromosome paint experiments were performed. Samples were 
heated at 95°C for 10 minutes in 70% formamide and 2x SSC, and then washed three times 
with 2x SSC for DNA FISH probe stripping. Chromosome paint probes (MetaSystems, XMP 
X Green or Orange) for chromosome 1, 2, 7, 11 19 or X were incubated with samples at 95°C 
for 10 minutes followed by incubation at 37°C overnight. Afterwards, samples were washed 
with 30% formamide, 0.1% Triton-X 100 and 2x SSC at room temperature for 15 minutes. 
Then samples were stained with DAPI and imaged under the same condition as intron FISH. 
In case multiple chromosomes were painted, sequential rounds of chromosome paint were 
performed. 
 
Intron FISH and Non-Barcoded mRNA seqFISH 
For the 1,000 gene intron imaging without decoding, 1,000 intron seqFISH probe sets were 
generated for 48 probes per intron as described above. Both primer binding sequences (5’ 
and 3’ end) were targeted with 20-nt Alexa 488-conjugated readout probes. For the non-
barcoded mRNA seqFISH, probes with primary probe sequences and readout sequences 
were used, which were either generated by oligoarray pool (Twist Bioscience) synthesis 
described above or purchased by IDT. 
 
E14 samples were prepared as described above, and 18 rounds of sequential imaging were 
performed to cover 50 genes mRNAs and introns of 1,000 gene. For the first 12 rounds, after 
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imaging, fluorophores (Alexa 647, Alexa 594 or Cy3B) in dye-conjugated readout probes 
were removed by TCEP cleavage (Sigma-Aldrich 646547; Eng et al., 2017). For the next 6 
rounds, readout probes were stripped off using 70% formamide as described above. After 
cleaving or stripping off the probes at each round, one position was imaged to confirm the 
loss of signals. Two genes (Sfrp2 and Dnmt3l) were excluded from the analysis due to the 
poor signal.  
 
Samples were imaged in the anti-bleaching buffer with the microscope (Leica DMi8 
automated) equipped with a confocal scanner unit (Yokogawa CSU-W1), a sCMOS camera 
(Andor Zyla 4.2 PLUS), 40x oil objective lens (Leica NA 1.30), and a motorized stage (ASI 
MS2000). Lasers from CNI and filter sets from Semrock were used. Snapshots were acquired 
with 0.5 μm z steps. 
 
Single-Cell Pulse Chase 
Cells were plated on coated coverslips at about 50% confluency, and incubated for two hours 
before any treatment. Then cells were treated with 100 ng/ml Actinomycin D (Thermo Fisher 
Scientific 11805017) at 37°C for 30 minutes, followed by 30 minutes incubation for the 
“pulse” with final concentration of 2mM 5-ethynyl uridine (5-EU) (Thermo Fisher Scientific 
E10345) and 100 ng/ml Actinomycin D to prevent the 5-EU incorporation into transcripts 
from RNA polymerase I. The cells were then incubated with fresh culture medium, and 
incubated for the “chase” for the following time: 0, 0.5, 1, 1.5, 2, 3, and 4 hours. Note that 
samples for the 0 time point chase were immediately proceeded to the cell fixation step. After 
the particular chase time, the cells were fixed with 4% formaldehyde in 1x PBS at room 
temperature for 10 minutes, and permeabilized in 70% ethanol at -20°C more than overnight 
or at room temperature for several hours. 
 
Intron FISH experiments were firstly performed with the 1000 gene intron probes by 
targeting 5’ and 3’ end of the primer binding sites with fluorophore-coupled (Alexa 488) 
readout oligos to image 1000 gene introns in a single channel. Note that intron probes were 
not cut by the restriction enzymes for these experiments to preserve the common PCR primer 
sequences, which were targeted by readout oligos for imaging. The sample preparation 
conditions are described in the intron seqFISH section. 
 
Following the intron FISH, 5-EU labeling was performed to the same samples in order to 
visualize global transcripts during the pulse time by using click chemistry (Jao and Salic, 
2008). The Click iT RNA Alexa 594 Imaging Kit (Thermo Fisher Scientific C10330) was 
used according to the manufacturer’s instruction, and the samples were incubated with the 
reaction mixture for one hour at room temperature in dark. The reaction mixture was then 
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removed and the samples were washed once with a reaction rinse buffer, followed by 1x PBS 
wash for a few times. Afterwards, the samples were stained with DAPI and imaged under 
the condition below. 
 
The Hes1 immunofluorescence and 5-EU single-cell pulse chase experiments were 
performed similarly. Immunofluorescence preparation and imaging were firstly performed 
with the immunofluorescence method described above. Primary antibodies and the dilution 
used were anti-HES1 (E-5) (Santa Cruz sc-166410) (1:100) and anti-Phospho-Histone H3 
(Ser10) (Thermo Fisher Scientific PA5-17869) (1:100). Secondary antibodies and the 
dilution used were Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary 
Antibody, Alexa Fluor 488 (Thermo Fisher Scientific A-21206) (1:500), and Donkey anti-
Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 647 (Thermo 
Fisher Scientific A-31571) (1:500). After immunofluorescence labeling, samples were post-
fixed with 4% formaldehyde in 1x PBS at room temperature for 5 minutes, and washed 
several times with 1xPBS. Following this step, 5-EU labeling and imaging were performed 
as described above. 
 
Samples were imaged in the same setup as described in Intron FISH and non-barcoded 
mRNA seqFISH section. Snapshots were acquired with 0.5 μm z steps for more than 10 
positions per sample of each time point. Samples from multiple time points were imaged on 
the same day and those samples were imaged with random orders. 
 
Image Processing   
To remove the effects of chromatic aberration, 0.1 μm TetraSpeck beads’ (Thermo Scientific 
T7279) images were first used to create geometric transforms to align all fluorescence 
channels. Next, the background illumination profile of every fluorescence channel was 
mapped using a morphological image opening with a large structuring element. These 
illumination profile maps were used to flatten the illumination in post-processing resulting 
in relatively uniform background intensity and preservation of the intensity profile of 
fluorescent points. The background signal was then subtracted using the imagej rolling ball 
background subtraction algorithm with a radius of 3 pixels. Finally, the calculated geometric 
transforms were applied to each channel, respectively.  
 
Image Registration 
Each round of imaging included imaging with the 405 channel which included the DAPI 
stain of the cell along with 200 nm blue fluorescent (365/415) beads (Thermo Scientific 
F8805). Rounds of hybridization that belonged to a single barcoding round were first aligned 
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by 3D phase correlation. Once all 5 barcoding rounds were all internally aligned, each 
barcoding round was aligned to round 1 using the same method.  
 
Cell Segmentation 
For nuclear segmentation, the DAPI image was first blurred using a 2D gaussian blur with a 
sigma of 1 pixel. The ImageJ built in Li thresholding algorithm was then used to separate out 
nuclear regions from background. Finally, to demarcate individual nuclei, the thresholded 
image was run through a watershed algorithm. The subsequent segmentation results were 
manually curated and corrected to obtain a final accurate segmentation of images. For 
cytoplasmic segmentation, the segmentation was performed manually using ImageJ’s ROI 
tool. 
 
Barcode Calling 
The potential intron signals were then found by finding local maxima in the image above a 
predetermined pixel threshold in the registered images. Once all potential points in all 
channels of all hybridizations were obtained, dots were matched to potential barcode partners 
in all other channels of all other hybridizations using a 2.45 pixel search radius to find 
symmetric nearest neighbors in 3D. Point combinations that constructed only a single 
barcode were immediately matched to the on-target barcode set. For points that matched to 
construct multiple barcodes, first the point sets were filtered by calculating the residual 
spatial distance of each potential barcode point set and only the point sets giving the 
minimum residuals were used to match to a barcode. If multiple barcodes were still possible, 
the point was matched to its closest on-target barcode with a hamming distance of 1. If 
multiple on target barcodes were still possible, then the point was dropped from the analysis 
as an ambiguous barcode. This procedure was repeated using each hybridization as a seed 
for barcode finding and only barcodes that were called similarly in at least 4 out of 5 rounds 
were used in the analysis. The number of each barcode was then counted in each of the 
assigned cell volumes and transcript numbers were assigned based on the number of on-
target barcodes present in the cell volume.  All image processing and image analysis code 
can be obtained upon request. 
 
Image Analysis for Distance from Chromosome Surface 
The images were initially processed similarly to the intron barcoding images. Multiple 
rounds of imaging were aligned by cross-correlation of the DAPI counterstain image of the 
cells taken with each round of imaging. The edges of the chromosome were found by 
thresholding the chromosome paint signal to remove all background signal. The perimeter 
pixel of each thresholded object was then determined. Next the intron dots were identified 
by LOG filtering and picking local maxima in the LOG filtered image above a specified 
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threshold as a true positive point. The distance between these putative intron points and the 
perimeter points of the chromosome were determined first in pixels and then converted to 
micron distance values based on pixel size calibration. Intron points from chromosome 1, 2 
and 11 were also assigned to the nearest chromosome 19 surface in the same single cells, 
shown as shuffle controls (Figure S3B).   
 
Image Analysis for Single Cell Pulse Chase 
The images were initially processed similarly to the intron barcoding images. Once the 
corrected images were obtained, the background intensity in the pulse (click signal) 
experiments was removed to isolate click dye specific signal. The click images were then 
maximum intensity projected in the Z axis to remove the effects of 3 dimensional variation 
in nuclear shape. The mean intensity per voxel was then calculated to obtain a representative 
numerical value for instantaneous transcription as measured by the pulse phase of the 
experiment. The intron number per nuclei was determined by finding dots using the same 
algorithm outlined in the “Image Analysis for Distance from Chromosome Surface” and then 
counting the number of true positives found. This number was then normalized by the 
volume of the nuclei of the cell. Immunofluorescence analysis was performed the same as 
the click signal analysis above. The Pearson correlation value and 95% confidence intervals 
were calculated for each time point using these two normalized values per cell. Two time 
points (t = 90 min in replicate 1 and t = 30 min in replicate 2) were dropped due to the 
misalignment of the Hes1 and 5-EU images. For the binning analysis of the pulse chase 
experiments, cells were divided into quarters based on nuclear volume normalized 5-EU 
signals, and then normalized intron counts in individual subpopulations were compared at 
each time point.  
 
Image Analysis for Colocalization Quantification 
Image correlation analysis was performed using custom ImageJ macros using Matlab codes 
with Miji function. Nuclei were segmented using the ImageJ Auto Threshold and ROI tool. 
The background of each channel image except DAPI channel was subtracted using ImageJ’s 
rolling ball background subtraction algorithm with a radius of 3 pixels. Images were then z 
projected with maximum intensities. Intensities in each channel and nucleus were converted 
to 1D array of sum intensities of 2x2 pixels with removal of nucleolus pixels. Then Pearson 
correlation coefficient per nucleus between two images was computed based on the arrays.  
 
Chromosome contact frequency analysis 
First, distances between all pairs of the TAS in single cells were calculated.  The pairwise 
contact frequency is determined by the number of times two active loci are found within 0.1, 
0.25, 0.5, 1, and 2 μm  of each other.  Each pixel in xy corresponded to 103 nm in the 10,421 
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gene experiment, as it was performed with a 63x objective and a camera with pixel size of 
6.5 μm.  Each pixel in Z corresponded to 350 nm steps in the z-sectioning on a confocal 
microscope.  To calculate the interchromosomal contact frequency (Figure 3F), for a given 
pair of chromosomes, interactions between all gene pairs belonging to the two chromosomes 
were summed and then normalized by the expected frequency of appearance of the gene 
pairs, and summed over all gene pairs for each pair of chromosome interactions, shown in 
(Figure 3B).  For the heatmap of pairwise gene interaction (Figure 3B), normalized contact 
frequencies were shown for all cells in G1/S phase.  
 
Hi-C data was taken from Dixon et al., 2012 at 40 kb resolution and selecting only the 
positions that corresponded to the first intron probe.  To compute the burst size and burst 
frequency distribution as a function of distance to TAD boundary, we take the nearest 
distance from the first intron probe of a gene to a TAD boundary (defined from Dixon et al., 
2012), and averaged the burst size and frequency over all the genes for a particular distance 
bin.  For the randomize data, we reshuffled the distance to TAD boundary and the burst 
statistics for all genes for 100 trials.  
 
Simulations 
Using the experimentally determined burst frequencies in the 10,421 seqFISH experiment, 
we simulated the intron expression profiles of 188 cells assuming that each gene was bursting 
independently and randomly.  We sampled from Poisson distribution for each gene for all 
the cells.  The total intron per cell distribution obtained from this simulation is plotted in 
Figure 5A, as a comparison to the experimentally determined distribution for 188 cells in 
G1/S phase and within a cell size window (12,000-16,000 pixel^2).  
 
Principal component analysis (PCA) 
For Figure 4A, we first calculated the cell-to-cell correlation matrix using the 10,421 gene 
intron seqFISH data. Each cell’s intron levels were normalized by the total intron numbers 
per cell.  The PCA analysis was performed on the cell-to-cell correlation matrix.  All cells 
from 4 datasets were used in this analysis regardless of cell cycle phases. 
For Figure 4B, we use bootstrap to downsample the number of genes from the 10,421 intron 
experiment for mESC serum replicates, mESC 2i, and NIH3T3 cells.  We draw a given 
number of genes (100, 200, to 10,000 genes) randomly for 100 trials in each datapoint for all 
the cells.  We then computed the cell-to-cell correlation matrices at each datapoint as above 
and hierarchically clustered the correlation matrices into 8 clusters (twice the number of 
datasets).  The number of cells that falls into the 8 clusters from each of the 4 datasets was 
tabulated.  To determine how much cells in different datasets fall into the same 8 clusters, 
we calculated the correlation coefficient of the cell clustering vector between pairs of 



83 
 

 

datasets.  The separation index is 1 minus this correlation coefficient.  The separation indices 
are then computed for all bootstrap datasets for Figure 4B. 
 
For Figure 4C, we first combined the mESC serum (replicate 1), mESC 2i, and NIH3T3 
dataset, and Z-score normalized the combined dataset.  We selected G1/S cells and within a 
FOV window to minimize variation due to cell cycle or illumination differences.  We then 
clustered the genes with hierarchical clustering (Figure S4A) and selected the clusters 
showing introns upregulated in one of the three cell types/states, but downregulated in the 
other 2 cell types.  PCA is performed on the gene-to-gene correlation matrix of these 
differentially expressed genes. 
 
 
3.9 SUPPLEMENTAL ITEMS 
 
Table S1. 10,421 gene intron seqFISH and mRNA seqFISH data for 4 conditions (E14 cells 
grown in serum/LIF with replicate 1, 2, grown in 2i and NIH3T3 cells). Rows are cells and 
columns are genes. Values correspond to the number of TAS or mRNAs detected for each 
of the gene in the given cell.   
 
Table S2. Lists of differentially expressed genes enriched in one of the conditions of 10,421 
gene intron seqFISH (E14 cells grown in serum/LIF, 2i and NIH3T3 cells). 
 
Table S3. Lists of gene pairs (introns and mRNAs), showing statistically significant Pearson 
correlation coefficient (p value < 0.01) in E14 cells grown in serum/LIF across two biological 
replicates. 
 
Movie S1-S3. Reconstruction of all introns detected in individual mESCs grown in 
serum/LIF. Introns on individual chromosomes are shown. Introns are colored with respect 
to the chromosome to which it belongs. The color legend for each chromosome is shown in 
Figure 2A. 
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Chapter 4 

INTEGRATED SPATIAL GENOMICS REVEALS GLOBAL ARCHITECTURE OF 
SINGLE NUCLEI 

A modified version of this chapter was published as: 

Takei, Y., Yun, J., Zheng, S., Ollikainen, N., Pierson, N., White, J., Shah, S., Thomassie, J., 
Suo, S., Eng, C.-H. L., Guttman, M., Yuan, G.-C., Cai, L., Integrated spatial genomics 
reveals global architecture of single nuclei. Nature (2021), doi:10.1038/s41586-020-03126-
2. 
 
4.1 ABSTRACT 
 
Identifying the relationships between chromosome structures, nuclear bodies, chromatin 
states, and gene expression is an overarching goal of nuclear organization studies1–4. Because 
individual cells appear to be highly variable at all these levels5, it is essential to map different 
modalities in the same cells. Here, we report the imaging of 3,660 chromosomal loci in single 
mouse embryonic stem cells (mESCs) by DNA seqFISH+, along with 17 chromatin marks 
and subnuclear structures by sequential immunofluorescence (IF) and the expression profile 
of 70 RNAs. We found many loci were invariantly associated with IF marks in single 
mESCs. These loci form “fixed points” in the nuclear organizations in single cells and often 
appear on the surfaces of nuclear bodies and zones defined by combinatorial chromatin 
marks. Furthermore, highly expressed genes appear to be pre-positioned to active nuclear 
zones, independent of bursting dynamics in single cells. Our analysis also uncovered several 
distinct mESCs subpopulations with characteristic combinatorial chromatin states. Using 
clonal analysis, we show that the global levels of some chromatin marks, such as H3K27me3 
and macroH2A1 (mH2A1), are heritable over at least 3-4 generations, whereas other marks 
fluctuate on a faster time scale. This seqFISH+ based spatial multimodal approach can be 
used to explore nuclear organization and cell states in diverse biological systems. 

 
4.2 INTRODUCTION 
 
The main approaches to examine nuclear organization have been sequencing based genomics 
and microscopy1,3. Genomics approaches, such as Hi-C6 and SPRITE7, have been powerful 
in mapping interactions between chromosomes genome-wide and have been scaled down to 
the single-cell level1,3. However, reconstructing 3D structures from the measured interactions 
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relies on computational models, and it is difficult to integrate multiple modalities of 
measurements2,4 including chromosome structures in the same cells. On the other hand, 
microscopy-based methods can directly image chromosomes and nuclear bodies1,3. Recent 
methods8–15 using Oligopaint16 and sequential DNA fluorescence in situ hybridization (DNA 
FISH) have imaged many DNA loci in single cells. These studies have shown that 
chromosome organization is highly heterogeneous at the single-cell level8–15, such as the 
variability of chromosome folding even between two alleles in single cells8–10,12,15. To further 
discover organizational principles at the single-cell level, we need integrated tools to image 
chromosomes as well as nuclear bodies and chromatin marks that are aligned precisely in the 
same cells. 

 
4.3 RESULTS 
 
DNA seqFISH+ imaging in single cells  
Building upon seqFISH17–21 and other multiplexed FISH methods8–11,13,16,22, we now 
developed DNA seqFISH+ to target 3,660 loci in single mouse embryonic stem cells 
(mESCs) (Fig. 1, Extended Data Fig. 1, 2, Supplementary Table 1, 2). In two of the 
fluorescent channels, we used the seqFISH+ coding scheme (see Methods) to target 1,267 
loci approximately 2 megabases (Mb) apart (Fig. 1b, c) and 1,193 loci at 5’ end of genes, 
respectively. Together, these two channels labeled 2,460 loci spaced approximately 1 Mb 
apart across the whole genome. At the same time, the third fluorescent channel targeted 60 
consecutive loci at 25 kb resolution on each of the 20 chromosomes for an additional 1,200 
loci (Fig. 1b, d). These approaches allowed us to examine nuclei at both 1 Mb resolution for 
the entire genome, and 25 kb resolution for 20 distinct regions that are at least 1.5 Mb in size 
(Fig. 1e).  
 
DNA seqFISH+ detected 5,616.5 ± 1,551.4 (median ± standard deviation) dots per cell in 
total with 1 Mb and 25 kb resolution data (Extended Data Fig. 2h-k) in 446 cells from two 
biological replicates. This corresponds to an estimated detection efficiency of at least 50% 
in the diploid genome considering the cell cycle phases (see Methods). The false positive 
dots, as determined by the barcodes unused in the codebook, were detected at 14.0 ± 7.4 per 
cell (median ± standard deviation). 
 
Imaged chromosomes in single cells showed clear physical territories for individual 
chromosomes and have variable structures amongst cells and chromosomes (Fig. 1e, 
Extended Data Fig. 3, 4). The DNA seqFISH+ measurements were highly reproducible 
between biological replicates (Extended Data Fig. 2l, m), and agreed with population Hi-C23 
and SPRITE data7 (Fig. 1f, g, Extended Data Fig. 3a-g). The genomic versus physical 



86 
 

 

distance scaling relationships for each chromosome differ amongst the chromosomes at 1 
Mb resolution as well as at 25 kb resolution (Fig. 1h, i, Extended Data Fig. 4c, d), showing 
regions with low H3K27ac marks24 tend to have more compact spatial organization (Fig. 1i) 
possibly due to different underlying epigenetic states25. 
 
Integrated measurements in single cells 
We integrated our analysis of the genome (DNA seqFISH+) with the transcripts (RNA 
seqFISH) as well as histone modifications and subnuclear structures (immunofluorescence 
(IF)) (Fig. 1a and Extended Data Fig. 1a). 17 primary antibodies targeting nuclear lamina26, 
nuclear speckle27, nucleolus28 and active and repressive histone modification markers29 were 
conjugated with DNA oligonucleotides (oligos)30,31, allowing the selective readout of 
individual primary antibodies with fluorescently labeled readout probes (Fig. 2a and 
Extended Data Fig. 1a, 2f, g, 5). These antibodies and RNA FISH probes for 70 mRNA and 
intron species were hybridized in the same cells as the DNA seqFISH+ probes. Additionally, 
4 repetitive regions that relate to nuclear organization32,33 were sequentially imaged with 
DNA FISH (Extended Data Fig. 5a).  
 
We extensively optimized the combined protocols (see Methods and Extended Data Fig. 1a, 
2a-g) to profile these different modalities and accurately align between IF and DNA FISH 
images for over 130 rounds of hybridizations on an automated confocal microscope. 
 
Repressive histone marks (e.g. H3K9me3, H4K20me3) colocalized with DAPI rich regions 
and minor satellite DNA (MinSat) corresponded to pericentromeric and centromeric 
heterochromatin32,33 (Fig. 2b left, Extended Data Fig. 5d). Immunofluorescence of RNA 
polymerase II (RNAPIISer5-P) and active marks (H3K9ac, H3K27ac) localized to the 
periphery of nuclear speckles (SF3a66) (Fig. 2b middle, Extended Data Fig. 5d) and were 
excluded from both heterochromatic regions and the nuclear lamina (Extended Data Fig. 5d), 
consistent with the localization patterns reported in the literature27,34. We also note that 
chromosomes 12, 16, 18 and 19, which contain rDNA arrays7, showed significant association 
with the nucleoli (Fig. 2b right, Extended Data Fig. 5d). 
 
Fixed loci are consistent in single cells 
From the integrated multiplexed IF and DNA seqFISH+ data, we systematically calculated 
the physical distances between each DNA locus and the nearest “hot” IF voxel, defined by 
two standard deviations above the mean value for each IF marker (Extended Data Fig. 5b, 
c). Because many IF markers form discrete globules in the nucleus, we also calculated the 
distance of each DNA loci to the exterior of IF nuclear bodies (see Methods), and confirmed 
both metrics are highly correlated (Extended Data Fig. 5e, f). 
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We can generate a “chromatin profile” by counting the fraction of time each DNA loci is 
within 300 nm of the surface of an IF mark (Fig. 2c, d, Extended Data Fig. 5g, 6, 7), the 
resolution of the diffraction-limited immunofluorescence images. Notably, these chromatin 
profiles were strongly correlated with ChIP-seq24, DamID35, and SPRITE7 datasets 
(Extended Data Fig. 6a, b) with Pearson correlation coefficient of 0.90 (H3K9ac), 0.82 
(H3K27ac), 0.49 (Lamin B1), 0.75 (SF3a66) and 0.77 (Fibrillarin). The good agreement at 
1 Mb resolution between the imaging data and the ChIP-seq data suggests that proximity to 
nuclear bodies may play an extensive role in regulating the chromatin states of DNA loci. 
 
At the single cell level, many DNA loci appear consistently close to particular IF marks in a 
large percentage of cells (Fig. 2c, Extended Data Fig. 6f). For example, Pou5f1 (Oct4), a 
master regulator of pluripotency, locus appeared to be close to the exterior of H3K9ac 
globules in 77.2% of the cells, and Eef2, a housekeeping gene, close to nuclear speckles in 
85.2% of the cells (Supplementary Table 3). We set a threshold of two standard deviations 
above the mean to highlight the loci with the most consistent interactions. Those fixed loci 
for each IF marker, either active nuclear marks (e.g. SF3a66 and H3K9ac) or repressive 
marks (e.g. H3K9me3 and H3K27me3) (Fig. 2e-g, Extended Data Fig. 6g-i), consistently 
appear on the exterior of the respective markers.   
 
The presence of fixed loci for different IF markers on the same chromosome (Fig. 2f-h, 
Extended Data Fig. 6h, i) further constrains the organization of the chromosomes. 
Chromosome 4, as an example, contained fixed loci associated with heterochromatic marker 
H3K9me3 and fixed loci for nuclear speckle protein SF3a66 (Fig. 2g, h, Extended Data Fig. 
6i). Correspondingly, in 96.2% of cells, we observe chromosome 4 spanning 
heterochromatic globules and nuclear speckles (Supplementary Table 3). Each chromosome 
contains a unique combination of IF mark fixed loci (Fig. 2h), and corresponds to the 
association between the chromosome and nuclear bodies consistently in single cells (Fig. 2g, 
Extended Data Fig. 6i). Previous works7,36,37 explored nuclear lamina, speckle and nucleolus 
as deterministic scaffolds for chromosome organization. Our results extend these findings in 
single cells. Taken together, despite the variability in appearance in the single-cell 
chromosome structures and nuclear body positioning5, there are invariant features across 
multiple DNA-nuclear body associations that give rise to the organization of the nucleus in 
single cells. 
 
Combinatorial IF marks define nuclear zones 
We clustered individual binned voxels38 based on their combinatorial chromatin profiles and 
obtained 12 major clusters (Fig. 3a, Extended Data Fig. 8a-e). Some of these clusters, or 
nuclear “zones” (Fig. 3a, b), corresponded to known nuclear bodies such as the nuclear 
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speckles27 (zone 1) enriched with the splicing factor SF3a66,  the nucleolus28 (zone 8 and 9) 
enriched with Fibrillarin, a key nucleolar protein. In addition, zone 2 enriched in active marks 
(RNAPIISer5-P and histone acetylation marks) formed contiguous regions in the nucleus 
that often surrounded the nuclear speckles27 (Fig. 3a, b). The three heterochromatin zones 
(zone 5, 6, and 7) had distinct combinatorial marks (Fig. 3a). In addition, several zones 
showed a mixture of marks, such as zone 3 and 4 with mixed repressive and active marks 
(Fig. 3a). These zones form physically distinct regions in single nuclei (Fig. 3b and Extended 
Data Fig. 8f-h), rather than well mixed in the nucleus, suggesting that zones may form due 
to phase separation or other mechanisms39.  
For each DNA locus, we assigned a zone or an interface if more than one zone were present 
(see Methods). Some loci had characteristic zone associations, such as Pou5f1 (Oct4) 
associated with active zone 2 and interfaces 1/2 and 2/3 (Fig. 3b, Extended Data Fig. 8i, j 
and Supplementary Table 4). Many loci were enriched at interfaces between zones (Fig. 3b, 
c, Extended Data Fig. 8f, k and Supplementary Table 5), consistent with the observation of 
loci near the exterior of nuclear bodies and chromatin marks (Fig. 2e, g). For example, DNA 
loci are 46.3% more likely to be detected at interfaces 2/3 than random chance (Fig. 3c). 
Furthermore, pairs of interchromosomal loci were enriched at the active interfaces 2/3 while 
pairs of intrachromosomal loci were enriched at the heterochromatic interfaces 5/7 and 
nucleolus interfaces 8/9 (Figure 3c). We note that IF images and zone assignments were 
limited by diffraction and background, and that even finer granularity would be observed 
with super-resolution imaging of the IF markers (see Methods).  
 
Active loci are pre-positioned 
Simultaneous imaging of nascent transcription active sites (TAS) by intronic FISH against 
1,000 genes20, 14 IF markers and DAPI in the same cells showed that transcription active 
sites appear at the surface, rather than the center, of RNAPII dense regions in the nuclei (Fig. 
3d, eand Extended Data Fig. 8h). They also appeared in the interfaces between active, and 
mixed zones (2/3) twice as frequently as compared to by random chance, 16.8% vs 8.0% 
(Fig. 3c, Extended Data Fig. 8k, Supplementary Table 5). Average expression level across 1 
Mb correlated with the association with active and nuclear speckle zones, and interfaces (Fig. 
3f, Extended Data Fig. 8l, m), consistent with previous findings37.  
 
However, in single cells, we observed little correlation between mRNA and intron expression 
and proximity with active and speckle zones amongst the genes we examined (27 genes for 
mRNA spanning a large range of expression levels and 14 genes for intron) (Fig. 3g-j, 
Extended Data Fig. 8n, o). Given the typically shorter lifetime of introns and mRNAs 
(minutes to hours, respectively) compared to the possibly longer timescale of chromosomal 
positioning, it is likely that most genes are not dynamically positioned to the active zones 
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(zone 1, 2) for transcription. Rather, it is likely that most genes are pre-positioned to those 
zones/interfaces, and their positioning may be determined by underlying epigenetic states as 
well as other factors such as neighboring gene density7.   
 
Global chromatin states are heterogeneous 
mESCs have been shown to exist as metastable transcriptional states40–42 with subpopulations 
of differential gene expression profiles characterized both by scRNA-seq42 and mRNA 
seqFISH (Extended Data Fig. 9a-c, Supplementary Table 6). We observed that the overall 
intensities of IF signals in the nucleus also showed substantial heterogeneities among single 
cells (Fig. 4a). Clustering analysis of the IF data (Fig. 4b and Extended Data Fig. 9d, e) 
showed at least 7 distinct states based on global chromatin modification levels, with most 
marker levels independent from cell-cycle phases (Extended Data Fig. 9f). Interestingly, IF 
states only partially overlapped with the transcriptional states. For example, Zfp42, Nanog 
and Esrrb expressing “ground” pluripotent state cells as well as Otx2 expressing orthogonal 
“primed” state cells are present in most IF clusters (Fig. 4b and Extended Data Fig. 9e). In 
addition, the global levels of H3K27me3 and mH2A1 were associated with naive or ground 
pluripotent states whereas H3K9me3 was associated with primed pluripotent states 
(Extended Data Fig. 9g-j). These observations at the single-cell level extend the previous 
bulk studies43,44 showing increased total H3K27me3 levels and decreased H3K9me3 
heterochromatin clusters in 2i-grown naive mESCs compared to serum-grown mESCs. 
 
Chromatin states persist across generations 
To examine whether the heterogeneity in chromatin states, mRNA expression and 
chromosome organization are stable or are dynamic over generations, we performed clonal 
analysis experiments. If clonally related cells have similar molecular states, then those states 
are likely to have slow dynamics, and vice versa (Fig. 4c). We seeded unlabeled mESCs 
among GFP-positive mESCs at a 1:10 ratio and cultured them for 24 and 48 hours, which 
are approximately 2 and 4 generations respectively, such that each unlabeled mESC colony 
likely arises from a single cell (Fig. 4c, d and Extended Data Fig. 10a). 
 
Overall mRNA and chromatin profiles were highly correlated amongst most cells within a 
colony at the 24 hr time point (Fig. 4e, Extended Data Fig. 10b), and maintained some 
correlation even at the 48 hr time point. In contrast, chromosome proximities are preserved 
across one cell cycle between sisters, but are then rapidly lost after 2 generations (Fig. 4e, 
Extended Data Fig. 10c-e), consistent with previous studies with targeted chromosomes or 
regions45–48. Interestingly, the dynamics of individual IF markers such as mH2A1 and 
H3K27me3, were highly correlated within colonies but not between colonies, suggesting that 
these chromatin features are heritable across at least 3-4 generations (Fig. 4f). On the other 
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hand, many IF marks, such as H3K9ac, did not correlate within a colony nor between 
colonies, suggesting that these features are rapidly fluctuating. 
 
4.4 DISCUSSION 
 
Our spatial multimodal approach with DNA seqFISH+ along with multiplexed IF and RNA 
seqFISH enables profiling of chromosome structures, nuclear bodies, chromatin states, and 
gene expression within the same single cells. The precisely aligned images over multiple 
modalities allowed us to observe invariant features across nuclei despite the heterogeneity in 
chromosome structures in single cells. Interestingly, many DNA loci, especially active gene 
loci, reside at the surface of nuclear bodies and zone interfaces. Functionally, if target loci 
reside on surfaces, do regulatory factors diffuse in 2D to search for their target genes? Lastly, 
the observation of heterogeneous and long-lived global chromatin states raises the question 
of whether these states have distinct pluripotency and differentiation potentials and could 
represent “hidden variables” in differentiation experiments, which warrants further 
investigation. We anticipate that the spatial multi-omics approaches will enable further 
exploration of those questions in many biological contexts. 
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4.6 MAIN FIGURES 
 

 
 
Figure 1. DNA seqFISH+ imaging of chromosomes. 
 
a, Schematic for DNA seqFISH+ combined with RNA seqFISH and sequential 
immunofluorescence (IF) (see Methods). b, Example images for DNA seqFISH+ in a mESC. 
Top, DNA seqFISH+ image from one round of hybridization at a single z section. Bottom, 
DAPI image from the same z section of the cell. c, Zoomed-in view of the boxed region in b 
through five rounds of barcoding. Images from 16 serial hybridizations are collapsed into a 
single composite image, corresponding to one barcoding round. White boxes on pseudocolor 
spots indicate identified barcodes. d, Zoomed-in view of the boxed region in b through 60 
rounds targeting adjacent regions at 25 kb resolution followed by 20 rounds of chromosome 
painting in channel 3. Scalebars represent 250 nm in zoomed-in images. e, 3D image of a 
single mESC nucleus. Top, individual chromosomes labeled in different colors. Middle, two 
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alleles of chromosome 5 colored based on chromosome coordinates. Bottom, two alleles of 
1.5 Mb regions in chromosome 5 with 25 kb resolution. f, Comparison of median spatial 
distance between pairs of intra-chromosomal loci by DNA seqFISH+ and Hi-C23 
frequencies. Spearman correlation coefficient of -0.84 computed from n = 146,741 unique 
intra-chromosomal pairs in autosomes. g, Concordance between DNA seqFISH+ (upper 
right) and Hi-C23 maps (lower left) at different length scales. h, i, Physical distance as a 
function of genomic distance Mb resolution in h and 25 kb resolution in i. Median spatial 
distances per genomic bin are shown. H3K27ac enrichments of the entire region are obtained 
from ChIP-seq24 in i. n = 446 cells in two biological replicates in f-i. 
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Figure 2. DNA seqFISH+ combined with sequential IF reveals invariant features.  
 
a, Images for DAPI and immuno- staining in a mESC nucleus. Scale bars, 5 μm. b, 3D 
images for sequential IF and DNA seqFISH+ in the same cell in a. IF pixels with intensity 
Z-score values above 2 are shown (for other markers and cells, see Extended Data Fig. 5c, 
d). c, Comparison of “chromatin profiles,” the fraction of loci found within 300 nm of 
H3K9ac and SF3a66 exteriors with corresponding reference profiles7,24 (top) and the single-
cell spatial proximity profiles of 446 single cells sorted by enrichment (bottom). Fixed loci 
were determined by Z-score above 2 from loci in all chromosomes. d, Heatmap showing 
fraction of DNA loci within 300 nm from interiors of IF markers and repetitive elements at 
1 Mb resolution (see Extended Data Fig. 5g for 25 kb resolution data). e, Comparison of 
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median distance of fixed loci to IF interior and exterior voxels (see Methods). p values were 
calculated with a two-sided Wilcoxon’s signed-rank sum test. The boxplots represent the 
median, interquartile ranges, whiskers within 1.5 times the interquartile range, and outliers. 
f, Illustration showing chromosome 4 with fixed loci for SF3a66 and H3K9me3, while 
chromosome 19 contains fixed loci for SF3a66 and Fibrillarin. g, Representative 3D images 
for fixed loci and IF markers. For IF marks, pixels with intensity Z-score values above 2 for 
each IF mark were shown. Bottom panels show zoomed-in views of individual chromosomes 
(chr4, 17 or 19) and contain all 3 markers (SF3a66, H3K9me3 and Fibrillarin; for other 
chromosomes, markers and cells, see Extended Data Fig. 6h, i). h, Fixed loci distribution 
along the chromosome coordinates for all chromosomes. Each bin represents an imaging 
locus by 1 Mb resolution DNA seqFISH+ (n = 2,460 loci). n = 446 cells from 2 biological 
replicates for c-h. 
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Figure 3. Combinatorial chromatin patterns reveal nuclear zones. 
 
a, Heatmap for differential enrichment of individual chromatin markers in each zone. b, 
Reconstructions for nuclear zones and DNA loci at a single z plane. Zoomed-in views (right) 
show gene loci such as Pou5f1 in zone 1 or interfaces 1/2 (top) and loci around nucleolus 
and heterochromatin zones (bottom). c, Frequency of DNA loci or transcription active sites 
(TAS) association with zones/interfaces in single cells. Mean values from 20 bootstrap trials 
are shown with error bars corresponding to standard errors.  d, TAS targeted by 1,000 gene 
intron FISH and nuclear zones. Zoomed-in views show the enrichment of TAS at the 
interfaces of nuclear zones (top right panels) and at the exterior of the RNAPIISer5-P staining 
(background-subtracted, bottom right panels). e, Spatial distance from TAS to RNAPIISer5-
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P staining interior and exterior voxels. The boxplots represent the median, interquartile 
ranges, whiskers within 1.5 times the interquartile range, and outliers. f, Pearson correlation 
of bulk RNA-seq49 and zone assignment for all 1 Mb resolution loci (n = 2,460 loci). Right 
panels show density plots for individual loci. n=201 cells for all DNA loci (a-f) and n=172 
cells for TAS (c-e) in two independent experiments. g, Representative maximum intensity z-
projected RNA seqFISH images. White lines show segmented nucleus (left and right) and 
cytoplasm (left). h, Zoomed-in views of g represent the zones around Tfcp2l1 (left) and Bdnf 
DNA loci (right) with black arrows. Tfcp2l1 is shown with 1 Mb resolution and Bdnf is 
shown with 25 kb resolution DNA seqFISH+ data. i, Correlation between mRNA counts of 
the profiled genes and their association to active zones (zone 1, 2) in single cells. Each dot 
represents a gene (22 genes, n = 125 cells). j, Comparison between intron state and active 
zone (zone 1, 2) association of the corresponding alleles (13 genes, n = 125 cells). p values 
were calculated with a two-sided Wilcoxon’s signed-rank sum test, and cells in the center 
field of views were used in i, j. 
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Figure 4. Global chromatin states are highly variable and dynamic in single cells. 
   
a, The intensities of IF markers show heterogeneities in single cells. Images are from the 
same z section. Scalebars, 10 μm. b, Heatmap of cell clusters with distinct IF profiles. 
Bimodally expressed Nanog, Esrrb and Zfp4241 are distributed over several IF clusters. n = 
326 cells in the center field of views from two biological replicates. c, Schematic of colony 
tracing experiments. Intensity of markers with fast dynamics are expected to be 
heterogeneous within a colony. d, Representative maximum intensity z-projected images for 
one 48-hour colony, showing heterogeneities in mRNA (left) and IF markers (right). 
Scalebars, 20 μm. e, Mean Pearson correlation between cells within colonies decays slowly 
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for mRNA and chromatin states, and quickly for chromosome proximities. Control measures 
correlation between colonies for both 24- and 48-hour datasets. f, Standard deviation of 
individual IF marker intensities in 48-hour colonies compared to those between colonies. 
H3K27me3 and mH2A1 have less variance in cells within a colony, which can be seen in d. 
Mean values from 20 bootstrap trials are shown with error bars corresponding to standard 
errors (e, f). n = 117 unlabeled cells within colonies in 48-hour dataset. n=53 cells in 24-hour 
dataset. 
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4.7 SUPPLEMENTAL FIGURES 
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Extended Data Fig. 1  | Detailed schematics of the integrated spatial genomics approach 
with DNA seqFISH+, RNA, and intron seqFISH and multiplexed immunofluorescence. 
 
a, Flow chart of the experimental procedures. Samples are fixed with PFA, followed by 
oligo-conjugated primary antibody incubation, post-fixation with PFA and BS(PEG)5, and 
RNA seqFISH. Then samples are prepared for DNA seqFISH+. This optimized protocol 
ensures good alignment between DNA seqFISH+ data with RNA seqFISH and the 
multiplexed IF data on a voxel-by-voxel level (see Extended Data Fig. 2). Bottom right 
cartoon shows imaging routine for RNA FISH and DNA seqFISH+ with primary probes and 
sequential immunofluorescence with oligo conjugated primary antibodies. b, Schematics of 
DNA seqFISH+ for the 1 Mb resolution dataset. 5 round of barcoding allows 2,048 barcodes 
to be detected with 2 rounds of dropout error correction in each fluorescent channel. Two 
fluorescent channels are used to cover a total of 2,460 loci, spaced approximately 1 Mb apart 
in the genome. In each round of barcoding, 16 rounds of hybridization are performed to 
generate 16 pseudocolors. DNA dots detected in each pseudocolor channel are fitted in 3D 
to determine their super-resolved centroid location and compiled across all 16 pseudocolors 
to generate a super-resolved localization image. With 5 rounds of barcoding (overall 80 
rounds of serial hybridizations), the identity of all DNA loci are decoded. Every DNA loci 
should appear once in every barcoding round in a single pseudocolor. The barcoding table 
(Supplementary Table 2) is shown on the right. DNA seqFISH+ probes contain all 5 rounds 
of barcode readout sequences. Each sequence, for a given barcoding round, has a possible 
choice of 16 sequences, corresponding to one of the pseudocolors. For each gene, 5 out of 
the 80 hybridizations will result in hybridization events and fluorescent readout probes bound 
on the primary DNA hybridizing probes. To preserve the DNA primary probe on the 
chromosome over all 80 rounds of hybridizations, the primary probes are padlocked62,63 onto 
the chromosomes by T4 DNA ligase at the primer binding sites after the initial hybridization 
(see Methods). c, Barcode scheme for the 25 kb resolution DNA seqFISH+. 60 adjacent 25 
kb regions are sequentially readout and imaged in 60 rounds of hybridization. This is carried 
out in parallel on 20 chromosomes. In other words, each round of hybridization images 20 
different loci on different chromosomes. An additional 20 rounds of hybridization are carried 
out to label each chromosome one at a time to assign chromosomal identity to each locus 
imaged during the first 60 rounds individually. The 1 Mb resolution data were collected in 
the 643-nm (channel 1) and 561-nm (channel 2) channels in b, while the 25 kb resolution 
data were collected in the 488-nm channel (channel 3) in c. 
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Extended Data Fig. 2 | Optimization and validation for DNA seqFISH+.  
 
a, Ligation and post-fixation of primary probes prevent their dissociation at the readout probe 
stripping step, validated by telomere DNA FISH. 55% formamide wash buffer (WB) solution 
at 37°C was added to the cells for 16 hours with and without the primary probes 
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padlocked62,63 onto the chromosomal DNA. Probes were retained in the ligated sample, and 
not retained in the unligated sample. Note that 55% WB was used at room temperature for 2 
minutes in each stripping step during the seqFISH routine, which is less stringent than the 
condition used here. b, Quantification of the signal retention after the harsh wash in a, with 
telomere DNA FISH across multiple conditions. Total intensities in individual nuclei from a 
single z section were compared before and after the harsh wash. In the DNA seqFISH+ 
experiments, the condition with ligation and post-fixation was used. The number of cells 
from two independent measurements is written in the plot. For the boxplots in b and g, the 
center line in the boxes marks median, the upper and lower limits of the boxes mark the 
interquartile range, the whiskers extend to the farthest data points within 1.5 times the 
interquartile range, and the gray points mark outliers. c, Primary probes are still bound after 
more than 81 rounds of hybridization, and the specific signals return in the DNA seqFISH+ 
experiments. Initial hyb0 for DNA seqFISH+ was performed with hyb80 readout probes for 
comparison. Fiducial markers targeting a repetitive region of the genome with a single 
primary probe were also imaged initially and included in all 80 imaging rounds for 
alignment. d, Quantification of the fiducial marker intensities for 80 hybridization rounds in 
the DNA seqFISH+ experiments, relative to that from hyb0 fiducial markers. Fiducial 
markers (n = 506-1117 dots per hybridization round) from 446 cells in DNA seqFISH+ 
experiments were used for quantification. Shaded regions represent the mean (center) with 
standard deviation (SD). e, Localization errors of fiducial markers across hyb 1 to 80 in the 
DNA seqFISH+ experiments, n = 71,981 aligned spots for x, y and n = 87,879 aligned spots 
for z from 446 cells in DNA seqFISH+ experiments. For x and y alignments, we filtered out 
aligned dots that were more than 2 standard deviations away from the mean displacement at 
each hybridization, and new alignments were computed. f, Preservation of the nuclear 
structure through the double fixation procedure. Good colocalization (yellow in the right 
panel) of the nuclear speckles (SF3a66) before and after heating. g, Quantification of the 
SF3a66 IF signal retention in the nuclei (left) and localization precision (right) measured by 
Pearson correlation of pixel intensities in the nuclei with a single z section between hyb0 
(pre-DNA seqFISH+ steps) image and hyb40 (pre-DNA seqFISH+ steps) or hyb130 (post-
DNA seqFISH+ steps). n = 326 cells in the center field of views from two DNA seqFISH+ 
biological replicate in g-k. h, Frequencies of on- and off-target barcodes in channel 1 and 2 
per cell. On average, 3,636.0 ± 1,052.6 (median ± standard deviation) on-target barcodes and 
14.0 ± 7.4 off-target barcodes are detected per cell (n = 326 cells from the center field of 
views of the two biological replicates). i, Average frequencies of individual on-target and 
off-target barcodes (n = 4,096 barcodes in channels 1 and 2), demonstrating the accuracy of 
the DNA seqFISH+. j, The total number of dots detected in each of the fluorescent channels 
in single cells. Channels 1 and 2 contain the 1 Mb data and channel 3 contains the 25 kb data. 
k, The average number of dots detected per each locus per cell across all 20 chromosomes. 
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Note that 2 dots per cell are not 100% detection efficiency because some cells are in the G2 
phase of the cell cycle (4 alleles in total). X chromosome has half the number of dots detected 
per locus (0.84 ± 0.21 (median ± standard deviation)) compared to the other autosomes (1.57 
± 0.27), because E14 mESC is a male diploid cell line (see Methods). l, Pearson correlation 
of probabilities for the pairs of loci within a search radius of 500 nm (1 Mb data) and 150 nm 
(25 kb data) between two biological replicates of DNA seqFISH+ experiments. All unique 
intra-chromosomal pairs of loci were calculated for the 1 Mb (n = 2,460 loci) and 25 kb data 
(n = 1,200 loci) with n = 201, 245 cells in each biological replicate. m, Pearson correlation 
coefficient of the proximity probability between loci-pairs as a function of search radii in 
comparison to 500 nm search radius (1 Mb data) and 150 nm search radius (25 kb data) used 
in l. n = 446 cells from the two DNA seqFISH+ biological replicates.  
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Extended Data Fig. 3 | Additional validation for DNA seqFISH+. 
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a, b, Spearman correlation between probabilities of pairs of loci within a search radius of 
100 nm-2 μm by DNA seqFISH+ and frequencies by Hi-C23 in mESCs with a certain bin 
size. All unique intra-chromosomal pairs of loci were calculated for the 1 Mb (n = 2,340 
autosomal loci) and 25 kb data (n = 60 loci per chromosome), and overlapping regions within 
the bin in a were excluded from this analysis. At 1.5 Mb chromosomal regions with 25 kb 
resolution in b, median Hi-C reads vary depending on the 1.5 Mb regions targeted, ranging 
from 0.9 to 203.2. We used 5 autosomal regions with Hi-C reads greater than 40 per 25 kb 
bin for comparison. c, Comparison of probabilities within 500 nm search radius for intra-
chromosomal locus pairs in autosomes in DNA seqFISH+ (1 Mb resolution data) and the 
frequencies in Hi-C23 data in mESCs. Spearman correlation coefficient of 0.89 computed 
from n = 84,707 unique intra-chromosomal pairwise combinations. Hi-C data were binned 
with 1 Mb, and overlapping regions within 1 Mb were excluded from this analysis. d, 
Comparison of probabilities within 500 nm search radius for the intra-chromosomal locus 
pairs in autosomes by DNA seqFISH+ (1 Mb resolution data) and frequencies by SPRITE7 
in mESCs. Spearman correlation coefficient of 0.83. The same binning and filtering were 
used as the Hi-C analysis in c. e, Comparison of probabilities within 150 nm search radius 
for the locus pairs in the selected autosomes by DNA seqFISH+ (25 kb resolution data) and 
frequences by Hi-C23 in mESCs. Spearman correlation coefficients ranged from 0.82 to 0.94 
computed from n = 948-1,776 unique pairwise combinations, using the same selection and 
filtering criteria as b. f, g, Relationships between median spatial distance of pairs of loci for 
1 Mb resolution data in f and 25 kb resolution data in g by DNA seqFISH+ and Hi-C 
frequencies. The red lines are power-law fits with fitting parameters S shown with Spearman 
correlation coefficient R. h, i, Heatmaps showing probabilities of pairs of loci within a search 
radius of 500 nm in h and 150 nm in i (top right triangles), and median spatial distances of 
pairs of loci (bottom left triangles) in each chromosome for 1 Mb resolution data in h and 25 
kb resolution data in i by DNA seqFISH+. n = 446 cells from two biological replicates for 
DNA seqFISH+ data in a-i. 
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Extended Data Fig. 4 | Single cell organization and physical scaling of chromosomes by 
DNA seqFISH+. 
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a, DAPI staining image of mESCs (top) and 3D image of corresponding nuclei with 
individual chromosomes labeled with different colors (bottom). b, 3D image of individual 
chromosomes, colored based on chromosome coordinates (light to dark colors). 
Chromosomes are from cells in a. The images are representative of n = 446 cells profiled 
with DNA seqFISH+. c, d, Scaling of median spatial distance as a function of genomic 
distance for 20 chromosomes with 1 Mb resolution data in c and 25 kb resolution data in d. 
Gray dots represent the median distance of the given pairs of loci. Blue dashed lines are the 
median spatial distance at each genomic distance bin, while red lines are power-law function 
fits with the fitting parameters in the plots. n = 446 cells. e, The full spatial proximity map 
between all loci from the 1Mb DNA seqFISH+ data with a search radius of 1 μm (bottom 
left triangle panel). The zoomed in view of the map for chr6 and chr7 (top right panel), 
showing the non-repetitive regions near pericentromeric repetitive regions from different 
chromosomes are more likely to be spatially close to each other. Colorbar is shown in log-
scale. f, Mean spatial proximity map for 20 chromosomes, considering only the first 5 Mb 
non-repetitive regions in each chromosome with a search radius of 1 μm. g, Distribution of 
CV for spatial proximity from inter-chromosomal pairs in f. h, Single cell version of spatial 
proximity maps in f show heterogeneity in the spatial proximity between the proximal 5 Mb 
non-repetitive regions of the chromosomes. i, Single nuclei image shows that proximal 5 Mb 
non-repetitive regions from only a subset of chromosomes appear near the DAPI-rich 
pericentromeric heterochromatin regions in individual nuclei. The images are representative 
of n = 446 cells and the analysis are quantified from 2 biological replicates in e-h.  
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Extended Data Fig. 5 | Visualization and validation for sequential immunofluorescence 
and repetitive element DNA FISH. 
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a, 17 antibodies and 4 repetitive elements, including gene-poor long interspersed nuclear 
elements (LINE1), gene-rich short interspersed nuclear elements (SINEB1), centromeric 
minor satellite DNA (MinSat), and telomeres, are imaged along with DAPI. Individual cells 
have different patterns of IF staining. Note the DAPI patterns are not identical between cells. 
Similarly, marks that are colocalized with DAPI-rich pericentromeric heterochromatin 
regions are different between cells and even between different pericentromeric regions in a 
single cell. b, Representative H3K9ac image and edge-transformed image that detects the 
voxels on the exterior of H3K9ac globules (see Methods). c, Representative H3K9ac images 
from a single z section or maximum intensity z projection with the intensity Z-score threshold 
above 2. 3D visualization (right) was performed for the pixels with the intensity Z-score 
above 2 (see Methods). d, Additional single-cell 3D images of IF markers for the pixels with 
the intensity Z-score above 2. Heterochromatin components (H3K9me3, DAPI, MinSat) 
were clustered together, while RNAPIISer5-P, active marks (H3K9ac, H3K27ac), SINEB1 
and nuclear speckles (SF3a66) were physically proximal. High intensity pixels of LINE1 by 
DNA FISH localized mainly to the LINE1-rich X chromosome88. e, Correlation of chromatin 
profiles for all 2,460 loci at 1 Mb resolution generated from distance to the interior and 
exterior voxels of different IF marks (n = 446 cells). f, Scatter plots of the distances from 
each locus to interior voxels versus exterior voxels that are 2 standard deviations above the 
mean for 2,460 loci at 1 Mb resolution (n = 446 cells). Pearson correlation coefficients are 
shown. g, Heatmap showing fraction of loci within 300 nm from IF marks and repetitive 
elements by DNA seqFISH+ at 25 kb resolution (n = 1,200 loci and 446 cells).  
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Extended Data Fig. 6 | Additional visualization and validation for fixed loci and 
chromatin profiles.   
 
a, Correlation matrix comparing the chromatin profiles by DNA seqFISH+ and IF with other 
methods7,24,35. 1 Mb DNA seqFISH+ data were used and the reference data were binned with 
1 Mb. Chromatin profiles were computed as the fraction of loci within 300 nm from IF 
marker exterior for the 2,460 loci (n = 446 cells). b, 2D density plots of individual marker 
comparison shown in a. n = 2,460 loci. c, Comparison of fraction of loci within 300 nm from 
Lamin B1 exterior with different thresholding values (Z-score above 2 or 3), or from nuclear 
periphery computed from convex hull of nuclear pixels (see Methods), showing the good 
agreement of the profiles in different quantification criteria (n = 2,460 loci from 446 cells). 
d, Validation of Lamin B1 enrichment with loci categorized as cell-type invariant 
constitutive lamina-associated domains (cLADs), cell-type dependent facultative LADs 
(fLADs), and constitutive inter-LADs (ciLADs) assigned from previous DamID studies35,89. 
Loci categorized as both cLADs and fLADs show enrichment of proximities to Lamin B1 
compared to those from ciLADs, representing a good agreement of our measurement (n = 
351, 405, 1,023 loci in each category averaged from 446 cells) with the DamID studies. n is 
the number of loci. For the boxplots in d and g, the center line in the boxes marks median, 
the upper and lower limits of the boxes mark the interquartile range, the whiskers extend to 
the farthest data points within 1.5 times the interquartile range, and the gray points mark 
outliers. e, Additional visualization for chromatin profiles of Lamin B1 with different criteria 
in c (n = 446 cells) in comparison with Lamin B1 DamID profile35. To take into account only 
Lamin B1 staining at the nuclear periphery, we calculated the distances between the DNA 
loci and the Lamin B1 signal near the convex hull of the nucleus as well as with different 
intensity thresholds. f, Additional examples for single-cell chromatin profiles in comparison 
with ChIP-seq24 for H3K27me3 (top) and SPRITE7. The profiles were computed and are 
displayed in the same way as Fig. 2c. n = 446 cells. g, The fraction of loci in single cells that 
are associated with exteriors of IF markers for the fixed loci defined based on the chromatin 
profiles (n = 446 cells). Note that different IF markers have different thresholds for calling 
fixed loci. Thus, fixed loci for some IF markers are more consistently associated with the IF 
marks in single cells. h, Additional 3D images of IF markers and their associated fixed loci. 
In each cell, 6 IF marks (2 per panel) are shown for visual clarity. i, 5 chromosomes are 
highlighted in the 3 cells shown in h. The fixed loci for a pair of IF markers are shown for 
each chromosome in the corresponding image visualization. Fixed loci are shown in colored 
dots and the remaining loci on the chromosomes are shown as gray dots. The same color 
codes are used in h. 
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Extended Data Fig. 7 | Comparison between population level and single cell level 
chromosome organization in association with chromatin markers.  
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a, Clustering of the ensemble-averaged IF spatial proximity profile of individual loci. n = 
2,460 loci (n = 805, 278, 877, 500 loci in each cluster, respectively). b, In individual cells, 
loci associated with each cluster are mapped onto their spatial location. Note that cluster 
definitions for DNA loci were obtained from population-averaged data, and those cluster-
assigned loci distribution may not necessarily reflect IF marker localization in single cells. c, 
Boxplot of IF marks for the loci in each of the clusters. Cluster 1 is enriched in repressive 
markers such as H3K9me3, mH2A1, DAPI. Cluster 2 is enriched in interactions with 
Fibrillarin. Cluster 3 is enriched in active marks such as RNAPII Ser5-P, H3K27ac and 
SF3a66 (nuclear speckle marker). Cluster 4 is enriched in Lamin B1. For the boxplots in c, 
d, h, i, the center line in the boxes marks median, the upper and lower limits of the boxes 
mark the interquartile range, the whiskers extend to the farthest data points within 1.5 times 
the interquartile range, and the gray points mark outliers. d, The probability of loci of certain 
cluster pairs within 1 μm search radius in individual cells. Cluster definitions follow those in 
a-c. Randomized data were generated by scrambling the cluster identities of individual loci 
in cells while keeping the total number of loci within each cluster the same within that cell. 
The probability for observed and randomized data for each cell are shown as boxplots. e, The 
probability that pairs of loci with cluster assignments are found within a given search radius, 
as a function of search radius. Error bars represent standard error over 20 bootstrap trials. f, 
Mapping of the A/B compartment definitions23 onto the tSNE plot based on the ensemble-
averaged loci-IF mark spatial proximity map. Note that regions that are not assigned to one 
of the compartments were excluded from the analysis. (n = 1,188 and 960 loci in A and B 
compartment). g, Reconstructions of individual cells with loci assigned as A or B 
compartment mapped onto their spatial location. Observed compared to randomized data for 
2 cells shown in b. h, Boxplot of the IF marks for the loci assigned to A or B compartments. 
i, The probability that loci in A/B compartments are within 1 μm search radius in individual 
cells, similar to d. j, The probability that pairs of loci with A/B assignments are found within 
a given search radius, as a function of search radius for spatial proximity, similar to e. n = 
446 cells from two biological replicates in a-j. 
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Extended Data Fig. 8 | Further characterization of nuclear zones and interfaces.  
 
a, Analysis workflow for the pixel-based combinatorial chromatin profiling. Individual 
voxels with the 15 chromatin markers are clustered with hierarchical clustering and visually 
represented by a nonlinear dimensionality reduction technique, Uniform manifold 
approximation and projection (UMAP)70. Voxels from individual clusters or “zones” are 
mapped back to individual nuclei, and overlaid with DNA seqFISH+ dots. b, UMAP 
representation for 44,000 pixels sampled from 201 cells, labeled with 12 zones. UMAP 
projection is used for visual clarity. c, Pearson correlation matrix between zones and 
interfaces based on the DNA loci association with zones and interfaces shown in f (n = 2,460 
loci). Loci appearing in zone 1 are also more likely to be found in zone 2 as well as in 
interface 1/2. d, Comparison of zone appearance with and without DNA seqFISH+ treatment 
shows an overall agreement between the measurements. Mean values from 20 bootstrap trials 
are shown with error bars corresponding to standard errors. e, Assignment of zones as a 
function of downsampling of IF markers. 20 random subsets of IF markers are selected at 
each downsample size. The center of the curve reflects the mean and the width reflects the 
standard deviation of the correct zone assignments at each downsample size (see Methods). 
f, Reconstructions of zones and DNA loci in additional cells. g, Reconstructions of zones in 
the cell 31 with different z-planes. h, Reconstruction of zones and 1,000 gene intron dots as 
well as RNAPIISer5-P staining (background-subtracted) and edge of RNAPIISer5-P 
staining. i, Heatmap for probability of association between DNA loci, nuclear zones and 
interfaces for the 1 Mb data. Zones and interfaces are ordered according to the overall 
probability of association with DNA loci. Right panel shows the loci around Pou5f1 (Oct4) 
visualized in Fig. 3b (panel 1). Each locus in single cells is assigned to one zone or interface. 
The distribution shown in the heatmap reflects the single-cell variability in zone association 
for each locus. For example, Ehmt2 and Pou5f1 (Oct4) loci were primarily associated with 
active zone 2 and interfaces 1/2 and 2/3, while Opn5 and Dazl loci were more uniformly 
distributed across many zones. j, Heatmap for probability of association between DNA loci, 
nuclear zones and interfaces for the 25 kb data. Loci within the same Mb region have similar 
nuclear zone and interface association probability. k, Frequency of association between DNA 
loci and zones/interfaces in single cells, calculated for all loci, loci with intra-chromosomal 
and interchromosomal pairs, transcription active sites measured by intron FISH, and random 
loci (randomized control). Mean values from 20 bootstrap trials are shown with error bars 
corresponding to standard errors. l, Correlation between zone association and gene 
expression levels (RNA-seq)49, density of RNA polymerases on the loci (GRO-seq)75 and 
early replication domains (Repli-seq)76 for all loci at 1 Mb resolution (n = 2,460 loci). m, 
Expression levels of fixed loci for each IF marker from n = 446 cells. Population level 
expressions are taken from bulk RNAseq studies49 and integrated for 1 Mb region. For the 
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boxplots, the center line in the boxes marks median, the upper and lower limits of the boxes 
mark the interquartile range, the whiskers extend to the farthest data points within 1.5 times 
the interquartile range, and the gray points mark outliers. n, Correlation of mRNA levels and 
fraction of voxels within 300 nm of a given locus in single cells being in active zones for 
individual mRNAs. Mean values from 20 bootstrap trials are shown with error bars 
corresponding to standard errors for each mRNA. Randomized samples correspond to 
scrambling of mRNA and zone assignment values for each cell. o, Comparison of fraction 
of voxels within 300 nm of DNA loci to be in active zones (zone 1 and 2) for loci with an 
active intron signal (ON) versus loci with no intron signal (OFF) for individual introns. Mean 
values from 20 bootstrap trials are shown with error bars corresponding to standard errors. 
for each intronic RNA. n = 201 and 172 cells for DNA seqFISH+ and intron FISH 
measurements in b-l, n, o, respectively.  
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Extended Data Fig. 9 | Heterogeneity of transcriptional and chromatin states and their 
relationships in single cells.  
 
a, Pearson correlation of mean mRNA counts by RNA seqFISH and bulk RNA-seq. Error 
bars for RNA seqFISH represent the standard error of the mean from two measurements (n= 
151 and 175 cells from the center field of views). b, UMAP representation of individual cells 
in two different cell clusters identified based on scRNA-seq42 and mapped onto RNA 
seqFISH data (cluster a for cells with more pluripotent states and cluster b for cells on the 
differentiation path) (left), and in different datasets (right) (n = 326 and 250 cells for RNA 
seqFISH and scRNA-seq42 dataset, respectively). c, Boxplots showing a good agreement of 
differentially expressed genes in scRNA-seq and seqFISH datasets. p values were from a 
two-sided Wilcoxon’s rank sum test with cells in cluster a and b (n = 298 and 209 cells in 
cluster a and n = 28 and 41 cells in cluster b with RNA seqFISH and scRNA-seq42 dataset, 
respectively). For the boxplots, the center line in the boxes marks median, the upper and 
lower limits of the boxes mark the interquartile range, the whiskers extend to the farthest data 
points within 1.5 times the interquartile range, and the gray points mark outliers. d, UMAP 
representations of the cell clusters defined by IF intensity profiles. e, Heatmap of cell clusters 
with distinct IF profiles shown with cell cycle associated IF markers and all mRNA markers, 
similar to Fig. 4b. f, Pseudotime course analysis for cell cycle progression, cell cycle markers 
(H4K16ac, H4K20me1, H3pSer10) show clear enrichments while other markers do not show 
specific enrichments upon cell cycle pseudotime course, suggesting majority of the IF 
markers profiled are not primarily affected by cell cycle phases. g, Pseudotime course 
analysis for pluripotency states in mESCs based on scaled mRNA expression levels, showing 
the enrichment from markers associated with naive pluripotency such as Tfcp2l1 and Nanog 
to markers associated with primed pluripotency such as Dnmt3a, Lin28b and Otx2 as well 
as the enrichment of certain chromatin marks upon the pluripotency pseudotime course. h, 
Scaled marker gene expression (top panels) or intensity (bottom panels) along the 
pluripotency pseudotime ordering of cells. Raw data in g are overlaid with fitting curves (see 
Methods). i, Network analysis for the mRNA and immunofluorescence markers represents 
positive and negative Pearson correlation relationships among markers. j, Joint Pearson 
correlation matrix between mRNA and IF markers based on the scaled expression or intensity 
profiles in single cells (n = 41 mRNA and 25 IF markers). n = 326 cells in the center field of 
views for RNA seqFISH and IF data in a-j.  
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Extended Data Fig. 10 | Additional analysis for colony level cell state heterogeneity.  
 
a, mRNA and IF images in a colony in the 48-hour clonal tracing experiment. H3K27me3 
and mH2A1 overall intensities are similar in WT cells (GFP/Neo negative) in the colony. b, 
Standard deviation of normalized mRNA levels within colonies (red) and between colonies 
(grey). Error bars are standard errors for 20 bootstrap trials. Tbx3 and Nanog are more 
homogeneous within colonies, consistent with previous findings of the long-lived 
transcriptional states of these genes across several generations by single-cell live imaging 
experiments41,49. n = 117 unlabeled cells within colonies from a 48-hour dataset. c, Histogram 
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of cell-to-cell correlations of chromosome-to-chromosome proximity maps for cells within 
colonies (red) and between colonies (grey). Cells with similar chromosome structures (red 
dots with high correlation values) are likely to be sister cells. Y-axis represents Pearson 
correlation coefficient, computed by 20 x 20 chromosome proximity matrices from pairs of 
cells. p values were from a two-sided Wilcoxon’s rank sum test with pairs of cells of 180, 
1,198, 966 and 5,820 (from left to right). d, Correlation of chromosome proximities between 
cells in colonies in the 48-hour clonal tracing experiment. Strong correlations are seen 
between putative sister cells suggesting that gross chromosome proximities are preserved for 
1 generation. Color bars represent Pearson correlation coefficient computed in c. e, 
Chromosome images for unlabeled cells from a 24-hour colony shows similarities between 
two sets of neighboring cells (maximum z projection). Chromosome organizations in single 
cells are highly correlated between pairs of cells that were physically close, possibly sister 
cells, and are mostly uncorrelated with other cells in the colonies. 6 chromosomes are shown 
for visual clarity. r represents Pearson correlation coefficient computed in c. 
 
4.8 METHODS 
 
Data reporting 
No statistical methods were used to predetermine sample size. The experiments were not 
randomized and the investigators were not blinded to allocation during experiments and 
outcome assessment. 
 
DNA seqFISH+ encoding strategy 
A 16-base coding scheme with 5 rounds of barcoding is used in DNA seqFISH+ for the 1 
Mb resolution data in fluorescent channel 1 (643-nm) and 2 (561-nm) (Extended Data Fig. 
1b, Supplementary Table 2). The first 3 rounds of barcoding codes for 16^3=4,096 unique 
barcodes. Two additional rounds of parity check (linear combinations of the first three 
rounds) are included. 2,048 barcodes are selected to correct for dropouts in any 2 out of 5 
rounds of barcoding and used in both channels 1 and 2. The 16-pseudocolor base is generated 
by hybridizing the sample with 16 different readout oligos sequentially.  
 
To image 20 distinct regions (1.5-2.4 Mb in size) with 25 kb resolution, a combined strategy 
of diffraction limited spot imaging and chromosome painting is used in channel 3 (488-nm) 
(Extended Data Fig. 1c, Supplementary Table 2), by extending previously demonstrated 
“track first and identify later” approach19. For the initial 60 rounds, 25 kb regions are readout 
one at a time on all 20 chromosomes in each round of hybridization. These 60 rounds can 
resolve the 25 kb loci within each distinct region but cannot distinguish which chromosome 
the loci belong to. The next 20 rounds are used to resolve the identities of the 20 distinct 
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regions or chromosomes by painting the entire region (1.5-2.4 Mb) one at a time. With this 
strategy, identities for 1,200 loci are decoded. 

 
To implement these strategies, 80 unique readouts are used in each fluorescent channel for a 
total of 240 readouts for 3 channels. 
 
Primary probe design 
RNA seqFISH probes were designed as described previously20,21. In brief, 35-nt RNA target 
binding sequences, 15-nt unique readout probe binding sites for each RNA target, and a pair 
of 20-nt primer binding sites at 5’ and 3’ end of the probe for probe generation (see ‘primary 
probe synthesis’) are concatenated. Marker genes (Supplementary Table 6) were selected 
based on previous single-cell imaging and RNA-seq studies in mESCs20,41,42,49. 
 
For DNA seqFISH+ target region selection (Supplementary Table 1), the unmasked and 
repeat-masked GRCm38/mm10 mouse genome FASTA files were downloaded from 
Ensembl release 9350. To select target regions for channel 1, the entire mouse genome was 
split into candidate target regions of 25 kb. Masking coverage was evaluated for each region 
using the repeat-masked genome. Regions with a high percentage of masked bases were 
removed from consideration. Then target regions were further selected to space out 
approximately 2 Mb in the genome coordinates. To select target regions for channel 2, 
candidate genes related to mESCs pluripotency and differentiation were selected from 
previous studies35,42,51, and then 25 kb regions were selected by centering the transcription 
starting sites of the genes. To select target regions for channel 3, gene loci with various 
expression levels in mESCs as well as gene poor regions were initially selected as a 2.5 Mb 
block, and splitted into 25 kb blocks. Only a single 2.5 Mb region was selected per 
chromosome. 
 
Region-specific primary probes were designed as previously described for single-stranded 
RNA21 with some modifications. The target region was extracted from the unmasked 
genome. Probe sequences were produced by taking the reverse complement of 35-nt sections 
of the target region. Starting from the 5’ end of the forward strand, candidate probes were 
tested for viability, shifting one base at a time. Probes that contained five or more consecutive 
bases of the same kind, or had a GC content outside of 45-65%, were considered non-viable. 
Each time a viable probe was discovered, evaluation was switched to the opposite strand, 
starting 19-nt downstream from the start of the viable probe to mitigate cross-hybridization 
between neighboring probes. This procedure was repeated until the end of the target region 
was reached. 
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Next, the probes were aligned to the unmasked mouse genome for off-target evaluation using 
Bowtie252. Any alignment containing at least 19 matched bases that fell outside the genomic 
coordinates of the target region was considered off-target. Probes with more than 10 total 
off-target hits were dropped. Off-target hits were grouped into 100 kb bins and stored for use 
in the final probe selection. Bins were overlapped by 50 kb so that closely grouped hits could 
not evade the filter by splitting into two bins. Additionally, probes were checked for matches 
with a BLAST53 database constructed from common repeating sequences in mammals. The 
FASTA file for “Simple Repeat” sequences for “Mammalia only” was downloaded from 
Repbase54. All probes with at least 19 matched bases with the repeats index were dropped. 
After filtering the probes, all remaining probes were evaluated for potential cross-
hybridization using BLAST53. Any probe pairs with at least 19 matched bases were dropped 
in the final probe selection. 
 
Final probe sets were selected to maintain probe specificity, and to achieve a relatively 
uniform spacing of probes on the target sequence. Final probes were selected one by one, 
starting with the target region with the fewest remaining probes. The probe that minimized 
the sum of the squares of distances between adjacent selected probes and the start and end 
coordinates of the target region was selected. After selecting a probe, any probes that were 
found to cross-hybridize with at least 19-nt to the selected probe were dropped. As probes 
were added, their off-target hits were summed by bin. If the addition of a probe resulted in 
any bin having 10 total hits, all remaining unselected probes that had an off-target hit in that 
bin were dropped. For channels 1 and 2 probes, once 200 probes were selected for a target 
region, all remaining probes for that region were dropped. These two channels labeled 2,460 
loci spaced approximately 1 Mb apart (1.04 ± 0.78 Mb as mean ± standard deviation) across 
the whole genome. For the channel 3 probes, regions containing up to 150 probes were kept 
and other regions were dropped, and as a result, 1.5-2.4 Mb of 20 distinct regions containing 
60 of 25 kb regions were finally selected as the 1,200 loci. 
 
Primary probes were then assembled similar to previous seqFISH studies18–21,55. At each 
locus targeted, we used up to 200 primary probes within the 25 kb genomic region as 
described above to image individual loci as diffraction limited spots based on DNA FISH56–

59 and Oligopaint16 technologies. For Mb resolution DNA seqFISH+ in channels 1 and 2, 
primary probes consist of the genomic region specific 35-nt sequences, flanked by the five 
unique 15-nt readout probe binding sequences, which correspond to pseudo-channel in each 
barcoding round, and a pair of 20-nt primer binding sites at the 5’ and 3’ end of the probe. 
For 25 kb resolution DNA seqFISH+ in channel 3, primary probes consist of the genomic 
region specific 35-nt sequences, flanked by three identical binding sites of a 15-nt readout 
probe, which corresponds to one of the 60 sequential rounds for the diffraction limited spot 
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imaging, and two identical binding sites for a 15-nt readout probe, which corresponds to one 
of the 20 distinct regions for the chromosome painting, and 20-nt primer binding sites at the 
5’ and 3’ end of the probes. 
 
Primary probe synthesis 
Primary probes were generated from oligoarray pools (Twist Bioscience) as previously 
described18–21,55 with some modifications. In brief, probe sequences were amplified from the 
oligo pools with limited two-step PCR cycles (first step PCR primers, 4-fwd: 5’-
ATGCGCTGCAACTGAGACCG; 4-rev: 5’-CTCGACCAAGGCTGGCACAA; second 
step PCR primers, 4-fwd: 5’-ATGCGCTGCAACTGAGACCG; 4-T7rev: 5’-
TAATACGACTCACTATAGCTCGACCAAGGCTGGCACAA), and PCR products were 
purified using QIAquick PCR Purification Kit (Qiagen 28104). Then in vitro transcription 
(NEB E2040S) followed by reverse transcription (Thermo Fisher EP0751) were performed. 
For the DNA seqFISH+ primary probes, the forward primer (4-fwd) with 5’ phosphorylation 
was used at the reverse transcription step to allow ligation of the primary probes as described 
below (see ‘Cell culture experiment’). After reverse transcription, the single-stranded DNA 
(ssDNA) probes were alkaline hydrolysed with 1 M NaOH at 65°C for 15 min to degrade 
the RNA templates, and then neutralized with 1 M acetic acid. Then, probes were ethanol 
precipitated, and eluted in nuclease-free water. 
 
For the repetitive element DNA FISH probes, LINE1 and SINEB1 probes were similarly 
generated except using mouse genomic DNA template extracted from E14 mESCs with 
DNeasy Blood & Tissue Kits (Qiagen 69504) for PCR, followed by in vitro transcription and 
reverse transcription steps. Primers for LINE1 and SINEB133 contain readout probe binding 
sites as overhangs to allow readout probe hybridization and stripping with seqFISH routines. 
Genome targeting sequences of the primary probes were 113-nt and 117-nt for LINE1 and 
SINEB1, respectively. In contrast, the centromeric minor satellite DNA (MinSat) and 
telomere probes were generated as dye-conjugated 15-nt probes in the same way as readout 
probes (see ‘Readout probe design and synthesis’) using the following sequences (MinSat: 
5’-CACTGTTCTACAATG; telomere: 5’-AACCCTAACCCTAAC), which directly target 
genomic DNA. 
 
Readout probe design and synthesis 
Readout probes of 12-15-nt in length were designed for seqFISH as previously described20,21. 
In brief, a set of probe sequences was randomly generated with combinations of A, T, G or 
C nucleotides with a GC-content range of 40-60%. To minimize cross-hybridization between 
the readout probes, any probes with ten or more contiguously matching sequences between 
the readout probes were removed. The readout probes for sequential immunofluorescence 
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were similarly designed except ‘C’ nucleotide is omitted60. The 5’ amine-modified DNA 
oligonucleotides (Integrated DNA Technologies) with the readout probe sequences were 
conjugated in-house to Alexa Fluor 647-NHS ester (Invitrogen A20006) or Cy3B-NHS ester 
(GE Healthcare PA63101) or Alexa Fluor 488-NHS (Invitrogen A20000) as described 
before20,21, or fluorophore conjugated DNA oligonucleotides were purchased from Integrated 
DNA Technologies. In total, 240 unique readout probes21 were designed and synthesized for 
DNA seqFISH+ experiments, and subsets of those readout probes were used for RNA 
seqFISH experiments. The cost for 240 readout probes for DNA seqFISH+ were 
approximately $15,000 with 5’ amine-modified DNA oligonucleotides and dye conjugation 
in-house, and $50,000 with fully labeled purchase, which can be used over hundreds or 
thousands of experiments. 
 
DNA-antibody conjugation 
Preparation of oligo DNA conjugated primary antibodies was performed as described 
before31 with modifications. In brief, to crosslink thiol-modified oligonucleotides to lysine 
residues on antibodies, BSA-free antibodies were purchased from commercial vendors 
whenever possible. Antibodies (90-100 μg) were buffer-exchanged to 1× PBS using 7K 
MWCO Zeba Spin Desalting Columns (Thermo Scientific 89882), and reacted with 10 
equivalent of PEGylated SMCC cross-linker (SM(PEG)2) (Thermo Scientific 22102) diluted 
in anhydrous DMF (Vector Laboratories S4001005). The solution was incubated at 4°C for 
3 hours, and then purified using 7K MWCO Zeba Spin Desalting Columns. In parallel, 300 
μM 5’ thiol-modified 18-nt DNA oligonucleotides (IDT) were reduced by 50 mM 
dithiothreitol in 1× PBS at room temperature for 2 hours, and purified using NAP5 columns 
(GE Healthcare 17-0853-01). Then maleimide activated antibodies were mixed with 6-15 
equivalent of the reduced form of the thiol-modified DNA oligonucleotides in 1× PBS at 4°C 
overnight. DNA-primary antibody conjugates were washed with 1× PBS four times and 
concentrated using 50 KDa Amicon Ultra Centrifugal Filters (Millipore, UFC505096). The 
concentration of conjugated oligo DNA and antibody with BCA Protein Assay Kit (Thermo 
Scientific 23225) were quantified using Nanodrop.  
 
For the BSA containing primary antibodies, SiteClick R-PE Antibody Labeling Kit (Life 
Technologies S10467) was used to conjugate the antibodies with 10-20 equivalent of 5’ 
DBCO-modified 18-nt DNA oligonucleotides (IDT). The oligo conjugated antibodies were 
validated by SDS-PAGE gel and immunofluorescence, and stored in 1x PBS at -80°C as 
small aliquots. 
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Cell culture and preparation 
E14 mESCs (E14Tg2a.4) from Mutant Mouse Regional Resource Centers were maintained 
under serum/LIF condition as previously described20,41. A stable E14 line that targets 
endogenous repetitive regions with the CRISPR/Cas system61 was generated similarly to the 
previous study19. In brief, PiggyBac vectors, PGK-NLS-dCas9-NLS-3xEGFP, carrying a 
separate puromycin resistance cassette under an EF1 promoter, and mU6-
sg3632454L22Rik(F+E), carrying a separate neomycin resistance cassette under a SV40 
promoter, were constructed. A single-guide RNA (sgRNA) sequence (5’-
GGAAGCCAGCTGT) was used to target repetitive regions at the 3632454L22Rik gene 
locus in X chromosome. To create the stable E14 line (GFP/Neo E14) with those vectors, 
transfection was performed with FuGENE HD Transfection Reagent (Promega E2311), and 
cells were selected with puromycin (Gibco A1113803) at 1 μg/mL. After the selection, single 
clones were isolated manually, and stable labeling of the locus was verified by imaging. The 
cell lines were authenticated by DNA seqFISH+ (Extended Data Fig. 3a-g), multiplexed 
immunofluorescence (Extended Data Fig. 6a-f), and RNA seqFISH (Extended Data Fig. 9a-
c), all of which gave results consistent with the embryonic stem cell identity. The cells were 
not tested for mycoplasma contamination. 
 
E14 cells were plated on poly-D-lysine (Sigma P6407) and human laminin (BioLamina 
LN511) coated coverslips (25 mm x 60 mm)20, and incubated for 24 or 48 hours. Then cells 
were fixed with freshly made 4% formaldehyde (Thermo Scientific 28908) in 1× PBS 
(Invitrogen AM9624) at room temperature for 10 minutes. The fixed cells were washed with 
1× PBS a few times, and stored in 70% ethanol at -20°C12. In the case of co-culture 
experiments with unlabeled E14 cells and the GFP/Neo E14 cells (monoclonal line), cell 
densities were counted and cell lines were mixed with a 1:10 ratio. 
  
Cell culture experiment 
The fixed and stored cell samples were dried, and permeabilized with 0.5% Triton-X (Sigma-
Aldrich 93443) in 1× PBS at room temperature for 15 minutes after attaching a sterilized 
silicon plate (McMASTER-CARR 86915K16) with a punched hole to the coverslip to use it 
as a chamber. The samples were washed three times with 1× PBS and blocked at room 
temperature for 15 minutes with blocking solution consisted of 1× PBS, 10 mg/mL UltraPure 
BSA (Invitrogen AM2616), 0.3% Triton-X, 0.1% dextran sulfate (Sigma D4911) and 0.5 
mg/mL sheared Salmon Sperm DNA (Invitrogen AM9680). Then DNA oligo-conjugated 
primary antibodies listed below were incubated in the blocking solution with 100-fold diluted 
SUPERase In RNase Inhibitor (Invitrogen AM2694) at 4°C overnight. The typical final 
concentration of DNA conjugated primary antibodies used were estimated as 1-5 ng/μL. The 
samples were washed with 1× PBS three times and incubated at room temperature for 15 
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minutes, before post-fixing with freshly made 4% formaldehyde in 1× PBS at room 
temperature for 5 minutes. Next, the samples were washed with 1× PBS six times and 
incubated at room temperature for 15 minutes. The samples were then further post-fixed with 
1.5 mM BS(PEG)5 (PEGylated bis(sulfosuccinimidyl)suberate) (Thermo Scientific 
A35396) in 1× PBS at room temperature for 20 minutes, followed by quenching with 100 
mM Tris-HCl pH7.4 (Alfa Aesar J62848) at room temperature for 5 minutes. After the post-
fixation, the samples were washed with 1xPBS and air dried after removing the custom 
silicon chamber. 
 
The oligo DNA conjugated primary antibodies used were as follows: mH2A1 (Abcam 
ab232602), E-Cadherin (R&D AF748), Fibrillarin (Cell Signaling 2639BF), Geminin 
(Abcam ab238988), GFP (Invitrogen G10362), H3 (Active Motif 39763), H3K27ac (Active 
Motif 39133), H3K27me2 (Cell Signaling 9728BF), H3K27me3 (Cell Signaling 9733BF), 
H3K4me1 (Cell Signaling 5326S), H3K4me2 (Cell Signaling 9725BF), H3K4me3 (Active 
Motif 39915), H3K9ac (Active Motif 91103), H3K9me2 (Abcam ab1220), H3K9me3 
(Diagenode MAb-146-050), H3pSer10 (Millipore 05-806), H4K16ac (EMD Millipore 07-
329), H4K20me1 (Abcam ab9051), H4K20me2 (Abcam ab9052), H4K20me3 (Active Motif 
39671), Lamin B1 (Abcam ab220797), RNAPII Ser5-P (Abcam ab5408), SF3a66 (Abcam 
ab77800). Two antibodies (E-Cadherin and GFP) were only included in the clonal tracing 
experiments. Several antibodies (H3, H3K4me1, H3K4me2 and H3K4me3) were excluded 
from the downstream analysis due to the quality of antibody staining with oligo-conjugation. 
 
After the immunofluorescence preparation above, custom-made flow cells (fluidic volume 
~30 μl), which were made from glass slide (25 x 75 mm) with 1 mm thickness and 1 mm 
diameter holes and a PET film coated on both sides with an acrylic adhesive with total 
thickness 0.25 mm (Grace Bio-Labs RD481902), were attached to the coverslips. The 
samples were rinsed with 2× SSC, and RNA seqFISH primary probe pools (1-10 nM per 
probe) and 10 nM polyT LNA oligo with a readout probe binding DNA sequence (Qiagen) 
were hybridized in 50% hybridization buffer consisted of 50% formamide (Invitrogen 
AM9342), 2× SSC and 10% (w/v) dextran sulfate (Millipore 3710-OP). The hybridization 
was performed at 37°C for 24-72 hours in a humid chamber. After hybridization, the samples 
were washed with a 55% wash buffer consisting of 55% formamide, 2× SSC and 0.1% Triton 
X-100 at room temperature for 30 minutes, followed by three rinses with 4× SSC. Then 
samples were imaged for RNA seqFISH as described below (see ‘seqFISH imaging’). Note 
that immunofluorescence signals were imaged at this step for validation in Extended Data 
Fig. 2f, g. 
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After RNA seqFISH imaging, the samples were processed for DNA seqFISH+ primary probe 
hybridization. The samples were rinsed with 1× PBS, and incubated with 100-fold diluted 
RNase A/T1 Mix (Thermo Fisher EN0551) in 1× PBS at 37°C for 1 hour. Then samples 
were rinsed three times with 1× PBS, followed by three rinses with a 50% denaturation buffer 
consisting of 50% formamide and 2× SSC and incubation at room temperature for 15 
minutes. Then the samples were heated on the heat block at 90°C for 4.5 minutes in the 50% 
denaturation buffer, by sealing the inlet and outlet of the custom chamber with aluminum 
sealing tapes (Thermo Scientific 232698). After heating, the samples were rinsed with 2× 
SSC, and DNA seqFISH+ primary hybridization buffer consisting of ~1 nM per probe, ~1 
μM LINE1 probe, ~1 μM SINEB1 probe, 100 nM 3632454L22Rik fiducial marker probe 
(IDT), 40% formamide, 2× SSC and 10% (w/v) dextran sulfate (Millipore 3710-OP) was 
hybridized at 37°C for 48-96 hours in a humid chamber. After hybridization, the samples 
were washed with a 40% wash buffer consisting of 40% formamide, 2× SSC and 0.1% Triton 
X-100 at room temperature for 15 minutes, followed by three rinses with 4× SSC.  
 
Then samples were further processed to “padlock”62,63 primary probes to prevent the loss of 
signals during 80 rounds of DNA seqFISH+ imaging routines (see ‘seqFISH imaging’). A 
global ligation bridge oligo (IDT) was hybridized in a 20% hybridization buffer consisting 
of 20% formamide, dextran sulfate (Sigma D4911) and 4xSSC at 37°C for 2 hours. The 31-
nt global ligation bridge (5’-TCAGTTGCAGCGCATGCTCGACCAAGGCTGG) was 
designed to hybridize to 15-nt of the DNA seqFISH+ primary probes at 5’ end and 16-nt at 
the 3’ end. Then, samples were washed with 10% WB for three times and incubated at room 
temperature for 5 minutes. After three rinses with 1× PBS, the samples were then incubated 
with 20-fold diluted Quick Ligase in 1× Quick Ligase Reaction Buffer from Quick Ligation 
Kit (NEB M2200) supplemented with additional 1 mM ATP (NEB P0756) at room 
temperature for 1 hour to allow ligation reaction between 5’- and 3’-end of the DNA 
seqFISH+ primary probes. We note that unlike the conventional padlock primary probe 
design62,63, our primary probe ligation sites were on the 31-nt global ligation bridge at the 
primer binding sites (Extended Data Fig. 1a, b), and not on the genomic DNA. Then the 
samples were washed with a 12.5% wash buffer consisting of 12.5% formamide, 2× SSC 
and 0.1% Triton X-100, followed by three rinses with 1× PBS.  
 
The samples were then processed for amine modification and post-fixation to further stabilize 
the primary probes. The samples were rinsed with 1× Labeling Buffer A, followed by 
incubation with 10-fold diluted Label IT Amine Modifying Reagent in 1× Labeling Buffer 
A from Label IT Nucleic Acid Modifying Reagent (Mirus Bio MIR 3900) at room 
temperature for 45 minutes. After three rinses with 1× PBS, the samples were fixed with 1.5 
mM BS(PEG)5 in 1× PBS at room temperature for 30 minutes, followed by quenching with 



133 
 

 

100 mM Tris-HCl pH7.4 at room temperature for 5 minutes. The samples were washed with 
a 55% wash buffer at room temperature for 5 minutes, and rinsed with 4× SSC for three 
times. Then samples were imaged for DNA seqFISH+ and sequential immunofluorescence 
as described below (see ‘seqFISH imaging’). 
 
The 1,000 gene intron experiments in Fig. 3c-e and Extended Data Fig. 8h, k were performed 
similarly with minor modifications. E14 coverslips were prepared and processed by 
following the sequential immunofluorescence steps above. After the sequential 
immunofluorescence preparation, 1,000 gene intron FISH probes20 were hybridized in the 
50% hybridization buffer at 37°C for 24 hours in a humid chamber. Then samples were 
washed with the 55% wash buffer at 37°C for 30 minutes, followed by three rinses with 4× 
SSC. Then samples were imaged for intron FISH and sequential immunofluorescence as 
described below (see ‘seqFISH imaging’). 
 
The telomere validation experiments in Extended Data Fig. 2a, b were performed similarly 
with minor modifications. Samples were prepared as described above and hybridized with a 
telomere primary probe, consisting of 20-nt telomere targeting sequence, five 15-nt readout 
probe binding sites and 20-nt primer binding sites with 5’ phosphorylation, in the 20% 
hybridization buffer at 37°C overnight in a humidity chamber. Then samples were prepared 
with or without ligation and post-fixation steps as described above. After samples were 
imaged with the imaging procedure (see ‘seqFISH imaging’), samples were incubated in the 
55% WB at 37°C for 16 hours. Then the original positions were imaged again under the same 
imaging procedure (see ‘seqFISH imaging’) to evaluate the “padlocking” efficiency across 
different conditions. 
 
Microscope setup 
All imaging experiments were performed with the imaging platform and fluidics delivery 
system similar to those previously described20,21. The microscope (Leica DMi8) was 
equipped with a confocal scanner unit (Yokogawa CSU-W1), a sCMOS camera (Andor Zyla 
4.2 Plus), 63× oil objective lens (Leica 1.40 NA), and a motorized stage (ASI MS2000). 
Fiber coupled lasers (643, 561, 488 and 405 nm) from CNI and Shanghai Dream Lasers 
Technology and filter sets from Semrock were used. The custom-made automated sampler 
was used to move designated readout probes in hybridization buffer from a 2.0 mL 96-well 
plate through a multichannel fluidic valve (IDEX Health & Science EZ1213-820-4) to the 
custom-made flow cell using a syringe pump (Hamilton Company 63133-01). Other buffers 
were also moved through the multichannel fluidic valve to the custom-made flow cell using 
the syringe pump. The integration of imaging and the automated fluidics delivery system was 
controlled by custom written scripts in μManager64. 
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seqFISH imaging 
The sequential hybridization and imaging routines were performed similarly to those 
previously described20,21 with some modifications. In brief, the sample with the custom-made 
flow cell was first connected to the automated fluidics system on the motorized stage on the 
microscope. Then the regions of interest (ROIs) were registered using nuclei signals stained 
with 5 μg/mL DAPI (Sigma D8417) in 4× SSC. RNA seqFISH imaging was performed with 
the sequential hybridization and imaging routines described below first. After the completion 
of RNA seqFISH imaging, the samples were disconnected from the microscope, and 
proceeded to the DNA seqFISH+ procedures (see ‘Cell culture experiment’). For the DNA 
seqFISH+ and sequential IF imaging, the registered ROIs for RNA seqFISH were loaded 
and manually corrected to ensure to image the same ROIs as RNA seqFISH imaging, and 
following routines were performed.  
 
All the sequential hybridization and imaging routines below were performed at room 
temperature. The serial hybridization buffer contained two or three unique readout probes 
(10-50 nM) with different fluorophores (Alexa Fluor 647, Cy3B or Alexa Fluor 488) in 10% 
EC buffer (10% ethylene carbonate (Sigma E26258), 10% dextran sulfate (Sigma D4911) 
and 4× SSC), and was picked up from a 96-well plate and flow into the flow cell for 20 
minutes incubation. For DNA seqFISH+ experiments, readout probes (Alexa Fluor 647, 
Cy3B or Alexa Fluor 488) for sequences designated as fiducial markers were also included 
in the serial hybridization buffer to allow image registration at the subpixel resolution. After 
the serial hybridization, the samples were washed with 1 mL of 4× SSCT (4× SSC and 0.1% 
Triton-X), followed by a wash with 330 uL of the 12.5% wash buffer. Then, the samples 
were rinsed with ~200 μl of 4× SSC, and stained with ~200 uL of the DAPI solution for 30 
seconds. Next, anti-bleaching buffer was flown through the sample for imaging. The anti-
bleaching buffer was made of 50 mM Tris-HCl pH 8.0 (Invitrogen 15568025), 300 mM NaCl 
(Invitrogen AM9759), 2× SSC, 3 mM trolox (Sigma 238813), 0.8% D-glucose (Sigma 
G7528), 1,000-fold diluted catalase (Sigma C3155), 0.5 mg/mL glucose oxidase (Sigma 
G2133)20 for E14 experiments, and made of 50 mM Tris-HCl pH 8.0, 4× SSC, 3 mM trolox, 
10% D-glucose, 100-fold diluted catalase, 1 mg/mL glucose oxidase (Sigma G2133)21 for 
unlabeled E14 and GFP/Neo E14 line clonal experiments.  
 
Snapshots were acquired with 0.25 μm z-steps over 6 μm z-slices with 643-nm, 561-nm, 
488-nm and 405-nm fluorescent channels per field of view, except for RNA seqFISH in the 
clonal experiments acquired with 0.75 μm z-steps with 643-nm, 561-nm, 488-nm fluorescent 
channels. After image acquisition, 1 mL of the 55% wash buffer was flown for 1 minute to 
strip off readout probes, followed by an incubation for 1 minute before rinsing with 4× SSC. 
The serial hybridization, imaging and signal extinguishing steps were repeated until the 
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completion of all rounds. During the RNA seqFISH and DNA seqFISH+ imaging routines, 
blank images containing only autofluorescence of the cells were imaged at the beginning and 
end of the routines. During the DNA seqFISH+ imaging, images containing only fiducial 
markers were also imaged at the beginning and at the end of the routines for the image 
alignment (see ‘Image Analysis’). Images were manually checked at the end of all imaging 
routines and in case problematic hybridization rounds such as off-focus appeared, those 
hybridization rounds were repeated. 
 
The each readout probe hybridization and stripping routine took approximately 30 minutes. 
Imaging time per position took around 2.5-6 minutes at each hybridization round with our 
microscope setup and imaging conditions described above, and we typically imaged for 30 
minutes per hybridization round with 5-10 positions. In total, it took approximately 80 hours 
to complete the 80 rounds of the hybridization and imaging routine for the DNA seqFISH+ 
experiments. 

 
Image Analysis 
To correct for the non-uniform background, a flat field correction was applied by dividing 
the normalized background illumination with each of the fluorescence images while 
preserving the intensity profile of the fluorescent points. The background signal was then 
subtracted using the ImageJ rolling ball background subtraction algorithm with a radius of 3 
pixels.  
 
FISH spot locations were obtained by using a laplacian of gaussians filter, semi-manual 
thresholding as described below, and a 3D local maxima finder. Subsequently the locations 
were super resolved using a 3D radial center algorithm65,66. Briefly, a 3x3x3 cube of pixels 
around a local maxima found above the specified threshold was taken from the aligned and 
background subtracted image. This sub-image was then used to calculate the sub-pixel 
location of the RNA molecule or DNA locus and the mean standard deviation (average of 
the standard deviation in each dimension) of the intensity cloud using a 3D radial center 
algorithm. A MATLAB implementation of the algorithm can be found on the Parthasarathy 
lab website. The resulting RNA or DNA spot locations were further filtered based on the size 
of the sigma values.  
 
To find the optimal threshold values for the spot detection, threshold values for RNA 
seqFISH were updated manually. In contrast, for DNA seqFISH+, 29 incremental threshold 
values, were initially applied to the images in the first position. The number of spots and 
median spot intensity in the nuclei were computed for each of the 29 thresholds across 80 
hybridizations. Then the threshold value for the first hybridization round was manually 
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chosen, and threshold for the other hybridizations were selected such that the number of dots 
detected matches most closely to those expected from the codebook. For example, if hyb 1 
targets 30 loci and hyb 2 targets 60 loci, then hyb 2 should have twice as many dots as hyb 
1. In this process, we assumed all loci can be detected with the same detection efficiency on 
average. In addition, the median intensities from the adjacent threshold values were 
compared, and whenever intensity differences are more than 15%, a more stringent threshold 
value was taken to fulfill this criteria to minimize non-specific spot detection. These 
processes were performed in individual fluorescent channels independently. Similarly, we 
corrected the threshold values across positions by computing the ratio of the median 
intensities relative to those from the first position per hybridization in order to minimize 
detection bias across different positions. 
 
To align spots or images in different channels to those in the reference channel (643-nm), 
chromatic aberration shifts were corrected using the fiducial markers to calculate the offsets. 
To align RNA seqFISH and sequential immunofluorescence images in different 
hybridization rounds, reference channels (either DAPI or polyA staining) were aligned using 
2D phase correlations along every axis iteratively to find a consensus transformation for 
alignment as described before20. The 2D phase correlation algorithm is implemented in 
MATLAB with the function imregcorr. To align DNA seqFISH+ spots in different 
hybridization rounds, fiducial markers were identified in each image by searching for the 
known ‘constellation’ seen in images containing only the fiducial markers. To identify a first 
pair of distant fiducial markers, the vector describing the relative position of the known 
markers was compared with those separating similarly oriented pairs of FISH spots in each 
image. Most, if not all, of the fiducial marker ‘constellation’ can then be recovered by 
searching for each fiducial marker at its known location relative to that of previously 
identified fiducial markers in the image. Further alignment to correct any rotation between 
RNA and DNA FISH images was done as follows. First, both image stacks to be aligned 
(DAPI or immuno- staining) were converted to 2D images using a maximum intensity 
projection in the z-dimension. The resulting 2D images were aligned using a one plus one 
evolutionary optimization method to maximize the Mattes Mutual Information between the 
images with the transformation constrained to only rigid transforms with a maximum of 500 
iterations. This algorithm is implemented in MATLAB with the function imregtform. Once 
2D alignment with both translation and rotation was obtained, one stack was transformed 
using the found transformation. The image stacks were then projected along the x axis and 
aligned using a normalized cross-correlation to determine the first estimate of the z-
dimension offset. The image was then projected along the y axis to find a second estimate of 
the z-dimension offset using the same method. The two offsets were averaged. 
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To assign mRNA spots to individual cells, the processed spots were collected within 
individual cytoplasmic ROIs, which were segmented manually from polyA or E-Cadherin 
images. Similarly, to assign intron and DNA spots to individual cells, the spots within 
individual nuclear ROIs from DAPI images20 were collected. By comparing the centroids 
between cytoplasmic ROIs and nuclear ROIs, numbers from both ROIs were matched. Only 
cells at the center of the fields of view were preserved for the RNA analysis to avoid biasing 
the RNA distribution. 
 
For channels 1 and 2 barcode decoding in DNA seqFISH+, once all potential points in all 
hybridizations were obtained, points were matched to potential barcode partners in all other 
barcoding rounds of all other hybridizations using a 1.73 (square root of 3) pixel search radius 
to find symmetric nearest neighbors in 3D. This process was performed in each nuclear ROIs. 
Point combinations that constructed only a single barcode were immediately matched to the 
on-target barcode set. 2 rounds of error corrections were implemented out of 5 total barcoding 
rounds. For points that matched to multiple barcodes, the point sets were filtered by 
calculating the residual spatial distance of each potential barcode point set and only the point 
sets giving the minimum residuals were used to match to a barcode. If multiple barcodes 
were still possible, the point was matched to its closest on-target barcode with a hamming 
distance of 1. If multiple on target barcodes were still possible, then the point was dropped 
from the analysis as an ambiguous barcode. This procedure was repeated using each 
barcoding round as a seed for barcode finding and only barcodes that were called similarly 
in at least 4 out of 5 seeds were used in the analysis. This criteria on average dropped 19.8 ± 
2.8% (mean ± standard deviation) of identified barcode spots compared to the less stringent 
criteria using at least 3 out of 5 seeds, while minimizing the detection of false positive 
barcode dots. The false negatives can be caused by this dropout of barcode dots as well as 
by incomplete denaturation of chromosomal DNA or hybridization of primary probes. For 
the false positive estimates, both blank barcodes and on-target barcodes were run 
simultaneously. Those blank barcodes consisted of all the remaining barcodes out of 2,048 
barcodes that allow 2 rounds of error corrections in 5 total barcoding rounds. 
 
For channel 3 decoding in DNA seqFISH+, once all potential points in the first 60 
hybridizations (hyb 1-60) were obtained, intensities of all the potential chromosome paint 
partners in the other 20 hybridizations (hyb 61-80) were computed on the rounded pixels 
where points were found. At this step, each point has 20 intensity values, corresponding to 
those from individual chromosome paints. Those chromosome paint intensities found on the 
points in nuclei from all positions and all hybridization rounds (hyb 1-60) were grouped by 
chromosome, and then z score was calculated. The z score values were thresholded with 1, 
and each point was assigned with unique chromosome identity, whose value was above the 
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threshold. Only a minimum fraction of points (<3%) were assigned to multiple chromosomes 
and dropped as ambiguous points. In addition, points without any chromosome assignment 
were dropped as ambiguous points. 
 
Exterior and interior voxels of IF markers 
For the sequential immunofluorescence image processing, in contrast to spot detection 
processing as described above, background subtraction was not applied to the images, except 
for marker edge detection described below and RNAP II Ser5-P visualization shown in Fig. 
3d and Extended Data Fig. 8h. The alignment and correction for chromatic aberration shifts 
between different fluorescent channels were performed as described above. Then intensity 
values for all the voxels within individual nuclear ROIs were obtained for all IF channels as 
well as repetitive elements (telomere, MinSat, LINE1 and SINEB1) and DAPI. The edge 
detection for chromatin marker exterior quantification was performed using Find Edges 
function in ImageJ with background subtracted images (rolling ball radius 3 pixels), and then 
the intensity values were obtained in the same way as the aligned images above. 
 
After image processing steps above, pixel information was converted to physical distance 
based on the microscope setup and imaging condition with 103 nm for x and y pixels and 
250 nm for z pixel for the subsequent downstream analysis. 

 
Analysis of sequencing-based data 
Hi-C data from NCBI GEO (accession GSE96107) was processed using Juicer tools67 and 
contact maps containing Knight-Ruiz normalized counts68 were obtained. SPRITE data were 
obtained from the 4D Nucleome data portal (data.4dnucleome.org, accession 
4DNESOJRTZZR). ChIP-seq data for H3K27me3, H3K9ac, H3K27ac were obtained from 
ENCODE (encodeproject.org, accession ENCSR000CFN, ENCSR000CGP, 
ENCSR000CGQ) as bigWig tracks and the average relative signal in each genomic bin was 
calculated using the UCSC Genome Browser program bigWigAverageOverBed. DamID 
data were obtained from NCBI GEO (accession GSE17051) and the genomic coordinates of 
DamID microarray probes were converted from mm9 to mm10 using the UCSC Genome 
Browser program liftover. DamID values were calculated as the mean DamID score within 
each genomic bin. Repli-seq data were obtained from NCBI GEO (accession GSE102076) 
and the replication timing at each genomic bin was calculated as the log2 ratio of early and 
late S fractions. GRO-seq data were obtained from NCBI GEO (GSE48895) and aligned to 
mm10 using Bowtie252 to create bam files. Read counts at each genomic bin were obtained 
from bam files using bedtools multicov. Hi-C data was binned at the 25, 50, 100, 250, 500 
kb and 1 Mb resolution, and all the other data were binned at the 1 Mb resolution. For Hi-C 
analysis, overlapping regions within a given bin size were excluded from the analysis (Fig. 
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1f with 100 kb bin resolution, Fig. 1g with 25 kb bin resolution, and Extended Data Fig. 3 
with described bin resolution). 
 
Visualization of seqFISH data 
DNA seqFISH+ data were visualized using  PyMOL (Molecular Graphics System, Version 
2.0 Schrödinger, LLC.) by generating a .xyz file containing the x,y,z coordinates of each 
FISH probe coordinate. Each coordinate was displayed as a sphere, and sticks were drawn 
between coordinates that were consecutive in the genome. Immunofluorescence and 
repetitive element DNA FISH signals were visualized by displaying a surface around x,y,z 
coordinates with intensity Z-score values above 2. 
 
Estimation for DNA seqFISH+ detection efficiency 
We estimated the detection efficiency of DNA seqFISH+ considering the cell cycle 
distribution as described before19. Briefly, typical cell cycle phases distribute as 20% in G1, 
50% in S and 30% in G2/M phase in mESCs. Given the number of DNA loci is 2 in G1, 3 
in S and 4 in G2/M phase, the average number of spots expected per each locus is 3.1 in a 
single cell, which can be half for chromosome X (n = 180 loci in DNA seqFISH+) in male 
diploid E14 cells. In our DNA seqFISH+ experiments, we observed 5,616.5 ± 1,551.4 
(median ± standard deviation) for 3,660 loci in single cells, and the detection efficiency can 
be estimated as 50.7 ± 14.0% (median ± standard deviation). 
 
DNA proximity map analysis 
To generate a pairwise proximity map from the DNA seqFISH+ dataset, for each locus in a 
single cell, the identities of other loci within a search radius of 500 nm for channels 1 and 2 
and 150 nm for channel 3 were tabulated. The total occurrence of any pairwise interaction 
was normalized by the product of the occurrence frequency of each of the loci. The proximity 
map was compared with the Hi-C map23 in Fig. 1g. The proximity maps for all chromosomes 
for both 1 Mb and 25 kb data are shown in Extended Data Fig. 3 and 4.  
 
Physical distance vs genomic distance 
In each cell, two homologous chromosomes were separated by finding the consensus 
between two clustering algorithms: Spectral method in the FindClusters function in 
Mathematica and Ward method. For most chromosomes in single cells, the two copies of 
homologous chromosomes occupied distinct regions in the nucleus, while in some cells, they 
were fused together. In a small percentage of cells, 3 or more alleles of the same chromosome 
could be observed. However, in a vast majority of cells, only 2 chromosomal territories were 
observed indicating that replicated chromosomes mostly stay together69 until segregation. 
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For the 25 kb data, the alleles were separated by the DBSCAN clustering algorithm in scikit-
learn library in python.   
 
Along each allele of a given chromosome in single cells, we calculated the physical distances 
between all pairs of detected loci and paired them with their genomic distances. For a fixed 
genomic distance, the median physical separation values are shown in Fig. 1h for the 1 Mb 
data for all the chromosomes, and Fig. 1i for the 25 kb resolution data. 

 
IF normalization and clustering analysis 
For the voxel-based multiplexed IF analysis, we first aligned the sequential 
immunofluorescence data across all rounds of hybridization (see ‘Image Analysis’). Then 
voxels in each channel were binned 2x2x1 (200 nm x 200 nm x 250 nm), because the 
diffraction limit is approximately 200-250 nm in the fluorescence channels imaged. All 
subsequent data analyses were performed on the binned data. Because tens of millions of 
voxels from all of the cells were too numerous for clustering analysis, representative subsets 
of voxels were selected, clustered and used as a training set to train a model which then 
propagated the cluster identification to all voxels in the data. To do so, voxels from a single 
Z plane (plane 13, approximately midpoint in the cell) out of 25 z-slices for all cells were 
selected. In each cell, individual channels were z-score normalized. The voxels with total z-
score values more than 0 summed over 16 IF channels were selected and normalized by the 
total z-score to account for voxel to voxel intensity variations. All pixels of the cells within 
the first experiment (n = 201 cells) were then combined and one out of every 200 pixels are 
selected and clustered by hierarchical clustering using the Mathematica Agglomerate 
function and Ward distance option. 10 clusters or nuclear zones were assigned to all 60,482 
pixels as the training set. These classified zone definitions were then propagated to the rest 
of the pixels in each cell normalized by the above procedure using the GradientBoostedTree 
option in the Classify function in Mathematica. Separately, pixels with Lamin B1 and 
Fibrillarin marker z-score >1 were assigned to the nuclear lamina and nucleolus zones. The 
44,000 pixels, which are assigned to one of the 12 nuclear zones and contain 16 intensity 
values from individual IF markers, were then visualized in Extended Data Fig. 8b with 
Uniform Manifold Approximation and Projection (UMAP)70 using a umap-learn library in 
python.  
 
To compare the IF zone assignments with and without DNA FISH, we use the IF data from 
the intron experiments. We used the same training set from the DNA seqFISH+ dataset and 
propagated the classifiers to the IF data in the intron experiment. We found similar 
composition of zones in the intron experiments, indicating that IF data are not affected 
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significantly with the denaturing conditions in DNA FISH. Results are shown in Extended 
Data Fig. 8d.  
 
Similarly, we downsampled the number of IF marks used to assign the zones. We reduced 
the number of IF marks systematically and used 80% of the pixels as the new training set to 
determine what fraction of the pixels are assigned correctly. Results are shown in Extended 
Data Fig. 8e. 20 random subsets of IF marks are drawn for each downsample IF number. 
Band shows the standard deviation of the correct zone assignment. 
 
We note that the zone assignments are based on the combinatorial chromatin marks at each 
diffraction limited pixel. So the resolution and the boundary of the zones are also diffraction 
limited, which could contribute to some of the mixed zones detected. For example, we 
cautiously note that previous super-resolution imaging71 showed that Lamin B1 meshwork 
is around 100 nm thick at the nuclear periphery, while our zone analysis showed Lamin B1 
enriched zone 11 and mixed zone 12 were typically found at the pixels further than 100 nm 
from the nuclear periphery (Fig. 3b, Extended Data Fig. 8f-h), possibly due to the limitation 
of the resolution. In addition, we note that background signals of the multiplexed IF could 
also affect the nuclear zone distribution patterns. Future works with super-resolution 
microscopy may resolve the mixed regions at finer resolution.    
 
DNA loci to IF marker interactions 
We calculated the spatial distances between each DNA locus and the nearest “hot” IF voxel, 
defined by two standard deviations above the mean value for each IF marker. We also 
calculated the distance of each DNA loci to the exterior of IF nuclear bodies, also two 
standard deviations above the mean for the edge processed image described under ‘Image 
Analysis’ (Extended Data Fig. 5b)  for each IF marker. Both metrics, defined as interior and 
exterior distances, are highly correlated (Extended Data Fig. 5e, f). From this distance metric, 
we generated a “chromatin profile” by counting the percentage of cells in which each DNA 
loci is within 300 nm of the surface of an IF mark, the resolution of the diffraction-limited 
immunofluorescence images. These chromatin profiles were correlated with ChIP-seq24, 
DamID35, and SPRITE7 datasets (Extended Data Fig. 6a, b).   
 
For Lamin B1, we calculated the distances from DNA loci to Lamin B1 signals with two and 
three standard deviations away from the mean intensity, as well as using only Lamin B1 
signals at the nuclear periphery (as determined from the convex hull of the nuclear pixels) 
and the nuclear periphery pixels. Similar Lamin B1 or nuclear periphery association profiles 
were observed for all analysis in correlation plots (Extended Data Fig. 6c) across DNA loci 
(Extended Data Fig. 6e).   
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Fixed loci were determined as loci that appear 2 standard deviations above the mean 
percentage score for each IF mark. The distance between fixed loci and the exterior and 
interior of nuclear bodies, pixels 2 standard deviation above the mean in the edge processed 
and raw images for each IF mark, are shown in Fig. 2e. The average expression level for 
fixed loci associated with different IF marks are calculated from bulk RNAseq and shown in 
Extended Data Fig. 8m.   
 
Chromosome configuration (Supplementary Table 3) of the fixed points calculates the 
fraction of cells (n = 446 cells) for each chromosome that contains at least one fixed loci 
from a given pair of the IF markers. This metric measures how likely fixed points from 
different IF markers span nuclear bodies in single cells.   
 
Previous literature reported the approximate locations of ribosomal DNA repeat sequences 
(rDNA) on a subset of chromosomes with non-sequencing methods. In mouse, rDNA arrays 
are encoded on the centromere-proximal regions of chromosomes 12, 15, 16, 18, and 19, and 
the patterns of distribution differ in a mouse strain-specific manner72–74. We found all fixed 
loci for the nucleolar marker, Fibrillarin in those chromosomes (n = 39, 1, 22, 30, and 41 loci 
for chromosome 12, 15, 16, 18, and 19) with less enrichment on chromosome 15 (Fig. 2d, 
h). Importantly, previous studies using the allele of the 129 mouse strain reported the loss of 
rDNA or nucleolar enrichments on chromosome 157,73,74, consistent with our observation 
with E14 cells derived from 129/Ola mouse strain.  
 
The chromatin profiles for all loci were clustered by hierarchical clustering using the 
Agglomerate function in Mathematica with the Ward distance option and plotted in tSNE 
(Extended Data Fig. 7a) with scikit-learn library in python. 15 chromatin marks along with 
DAPI were used, and 4 clusters were selected. Cluster 1 is enriched in repressive markers 
such as H3K9me3, mH2A1 and DAPI. Cluster 2 was enriched in interactions with Fibrillarin 
and associated with nucleolus. Cluster 3 was enriched in active marks such as RNAPII Ser5-
P, H3k27ac and SF3a66 (speckle marker). Cluster 4 was enriched in Lamin B1. In individual 
cells, loci associated with each cluster were mapped onto the chromosome structure images 
shown in Extended Data Fig. 7b. To calculate the spatial proximity spatial proximity of loci 
within and between clusters, we computed the frequency of finding a loci from a given cluster 
within a 1 μm radius with another loci of the same or different cluster identity. The total 
number of intra-cluster and inter-cluster interactions were tabulated and normalized to unity. 
Randomized data was generated by scrambling the cluster identities of individual loci in cells 
while keeping the total number of loci within each cluster the same within that cell. The 
proximity frequency for observed and randomized data for each cell are shown as boxplots 
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in Extended Data Fig. 7d and for different search radii in Extended Data Fig. 7e. Similar 
analysis is performed for A/B compartment assignments23, and shown in Extended Data Fig. 
7f-j. The loci without A/B compartment assignments in the study were excluded from the 
analysis. 
 
Association of loci with zones 
For each DNA loci decoded from the DNA seqFISH+ experiment, the nearest pixels within 
300 nm and the zone assignments for those pixels were collected in each cell. It is possible 
to have a locus be in association with multiple zones. If a locus interacts with more than two 
zones, for example Pou5f1 (Oct4) in cell 38 is interacting with zone 1, 2, and 8, then its zone 
interactions were divided into pairs of zones, or “interfaces”. In other words, that locus was 
counted 1/3 toward each of the interfaces (1, 2), (2, 8), and (1, 8). For individual loci, the 
frequencies of appearing in all zones and interfaces were normalized to unity and shown in 
Extended Data Fig. 8i, j. For the analysis shown in Fig. 3c and Extended Data Fig. 8k, the 
total number of DNA loci detected each zone and interfaces are tabulated and normalized to 
unity for each zone or interfaces between pairs of zones. The same analysis for zone 
proximity was performed on the set of loci that are interacting with other loci on the same 
chromosomes (intrachromosomal) and with loci on the other chromosomes 
(interchromosomal) within 300 nm. Similarly, the introns from the 1,000 gene experiments 
were tabulated for their zone and interface assignments. Randomized DNA loci were 
generated by selecting a random set of voxels in the nucleus while keeping the total number 
of DNA loci the same in a given cell. Then the voxels were offset by a random xyz value 
with a 100 nm radius. To bootstrap all of the data sets, we randomly sampled 150 cells out 
of n = 201 cells with 20 trials and calculated the mean and standard errors. 
 
Correlation of zone with gene expression 
To calculate the correlation between expression and zone assignment, we took each channel 
1 and 2 locus and computed the total RNAseq FPKM values49 within 50 kb upstream and 
downstream of that locus. We normalized the total frequency of appearing in one of the zones 
or interfaces to unity for each loci. We then correlated the Log (1+expression value) of all 
2,460 regions with the frequency of finding them in each of the zones/interfaces. Similar 
analysis was performed for GRO-seq75 using Log (1+GRO-seq value) and Replication 
timing76 datasets with mESCs.  
 
To determine whether we can predict the mean expression values for each locus based on its 
zone association profiles, we estimated the expression level for a given loci as a sum of the 
product between the normalized frequency of being in each zone/interface for that loci and 
the Pearson correlation coefficient between the zone/interface with the mean expression 
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value across all the loci.  The estimated expression values for all 2,460 loci were correlated 
with the actual expression values with a Pearson’s coefficient of 0.54. 
 
For calculating the correlation between mRNA expression levels with zone assignments in 
single cells, we first z-scored the single-cell mRNA seqFISH measurements for 22 genes 
after normalizing by Eef2 expression levels to account for cell size differences and selecting 
cells in the center field of view (n = 125 in replicate 1). The genes with mean copy numbers 
of > 10 per cell were used. Lack of correlation was observed with both biological replicates, 
but only the cells in replicate 1 were shown to eliminate potential contributions from batch 
to batch variations. We counted the frequency of each of the measured loci within 300 nm of 
a voxel with an active or speckle zone assignment (zone 1 and 2), normalized by the total 
number of voxels that were within 300 nm of the DNA locus. The Pearson coefficient was 
computed between the z-scored expression value and the active/speckle zone association 
frequency. To randomize the sample, we shuffled the z-score normalized expression values 
with active/speckle zone occupancy from different cells over 20 randomized trials. The 
correlation coefficient for each gene was calculated and plotted in Fig. 3i and Extended Data 
Fig. 8n.  
 
For calculating the correlation between intron expression levels with zone assignments in 
single cells, we classified the corresponding DNA loci as “ON” or “OFF” based on whether 
introns were bursting at that loci or not for 13 introns measured. The genes with mean burst 
frequencies of > 0.1 per cell were used. Then the active and speckle zone occupancy for loci 
in each category was calculated and shown in Fig. 3j and Extended Data Fig. 8o with each 
point representing one intron.  

 
Colony analysis 
For cells within the unlabeled E14 colonies, we compute the correlation of the IF states, RNA 
states and chromosome structures between pairs of cells. Individual RNA levels were 
normalized by Eef2 expression level and then z-scored across all cells in the experiment. The 
chromosome proximity correlations between cells are computed as follows. First, a 20x20 
chromosome to chromosome proximity matrix is generated for each cell with a search radius 
of 2.5 μm. Then the correlations between cells were computed as the Pearson correlation 
coefficient of the entries of the two matrices. The intensity of individual IF marks was first 
normalized by the total intensity of all IF marks and then z-scored within each field of view. 
The averages of the cell pair correlation values for IF, RNA and chromosomes are shown in 
Fig. 4e for 24-hour and 48-hour clonal tracing as well as controls (correlation of pairs of cells 
between colonies in the 24-hour and 48-hour data). In addition, we computed the variance of 
individual IF marks within single colonies in the 48-hour experiment compared to the 



145 
 

 

variance between cells of different colonies. IF marks that have longer time scale correlation 
showed lower variance within colonies compared to the variance between colonies in Fig. 
4f. 
 
Normalization of global chromatin levels in single cells 
To remove the contributions from cell size, background signals, the affinity of antibody used, 
as well as differences between biological replicates, we constructed a generalized linear 
model (GLM) for the sequential immunofluorescence data using the glm() function in R, 
which had been used to adjust for systematic bias in single-cell RNA sequencing data77–79, 
for each chromatin mark 𝑖, using a Gaussian error distribution:   
 

log 𝑌# 	~	𝛽' +*𝛽(𝑋(
(

	

 
𝑌# represents the vector of total fluorescence intensity of chromatin mark 𝑖 across all cells, 
and 𝑋( is a vector of latent variables contributing to the systematic bias in global chromatin 
states quantification. We included cell size, total fluorescence intensity over all chromatin 
marks per cell, experimental replicate ID and field of view (FOV) ID as latent variables in 
the GLM, and used the Pearson residuals of each fitting as the corrected standardized values 
of single-cell chromatin state. 
 
Characterizing the heterogeneity of global chromatin states in single cells 
We next described the global chromatin heterogeneity between single cells using the adjusted 
total fluorescence intensities derived from above. Our single-cell global chromatin data has 
less profiled features, and without the sparsity commonly seen in many of the single cell 
RNA-seq datasets, we were able to directly calculate pairwise similarity of single cells from 
the adjusted data matrix. A K-nearest neighbor (KNN) graph was computed from the cell-
cell Euclidean distance with K = 10 without the four cell cycle markers (Geminin, 
H4K20me1, H3pSer10, and H4K16ac). The KNN graph was used as the input for Uniform 
Manifold Approximation and Projection (UMAP)70 for two-dimensional visualization 
(Extended Data Fig. 9d), and was also subsequently transformed into a shared nearest 
neighbor (SNN) graph for Leiden clustering80, with the resolution parameter set to 0.8. The 
Seurat81 function FindNeighbors() and FindClusters() were used.  
 
We have then included four markers of cell cycle processes in the analysis: Geminin, 
H4K20me1, H3pSer10, and H4K16ac20,82. We constructed a principal curve83 which worked 
as a non-linear summary of multi-dimensional data, using the function principal_curve() 
from the R package princurve. Using the projected values onto the principal curve as ordered 
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cell cycle states, we found that H4K20me1 and H4K16ac displayed opposite continuum 
across single cells (Extended Data Fig. 9f), suggesting that the principal curve depicted a 
progression from G2/M to S phase.  
 
Characterizing transcriptional heterogeneity of single cells 
Similar to global chromatin states quantification, we constructed a GLM for individual gene 
expression vector in RNA data, with cell size, total profiled transcripts per cell, experimental 
replicate ID, and FOV ID as latent variables. Pearson residuals were taken as the corrected 
and standardized expression values.  
 
Given that the majority of mRNA species in this dataset are pluripotency and differentiation 
genes (e.g. Nanog, Pou5f1, Dnmt3a), we were interested in whether cells could be ordered 
pseudo-temporally in transcriptional states. We used a diffusion map84,85 to infer a low-
dimensional manifold of RNA seqFISH data with the package destiny86, and the first 
diffusion component in rank was taken as a measurement of pseudotime. All the profiled 
genes were used to construct pseudotime, except for Cx3cr1, Npy, S100b and Zfp352 
(maximum transcript count less than 10 in a cell). To visualize the continuum transcriptional 
and global chromatin data with respect to pseudotime progression, for every transcript and 
chromatin mark, we performed a local polynomial regression fitting with span = 0.75 and 
degree = 2 and generated the fitted values (Extended Data Fig. 9h). 
 
Mapping RNA seqFISH data to single-cell RNA sequencing results 
To evaluate whether transcriptional states of mESCs from seqFISH were comparable to those 
measured by single-cell RNA-seq, we constructed a support vector machine (svm) model for 
mapping seqFISH data to existing scRNA-seq results. Specifically, scRNA-seq data42 was 
downloaded from ArrayExpress, and we retrieved quantifications for cells cultured in 
serum/LIF condition for analysis. The top 2,000 most variable genes were identified based 
on dispersion, based on which we ran a principal component analysis (PCA) and used the 
top 30 components as input for Leiden clustering80, with the resolution parameter set to 0.8 
in the Seurat81 function FindClusters(). For data alignment between mESCs quantified by the 
two technologies, we performed canonical correlation analysis (CCA) to project the two 
datasets onto a shared space, followed by L2 normalization, using genes detected by both 
scRNA-seq and seqFISH (40 mRNA markers in total). The aligned data was for svm training 
and prediction, where the classifier was trained on cells captured by scRNA-seq with 10-fold 
cross validation, and cluster labels were subsequently transferred to aligned seqFISH data. 
For joint visualization, we performed UMAP on the L2-normalized CCA embeddings for all 
cells (Extended Data Fig. 9b). 
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Network analysis 
To investigate the relationship of gene and chromatin markers, we first calculated the 
pairwise Pearson correlation coefficient (PCC) of different genes and chromatin markers 
using scaled mRNA/antibody by cell matrix (Extended Data Fig. 9e). Then, the results were 
represented as a network, where a pair of gene-gene, chromatin mark-chromain mark or 
gene-chromatin mark were connected if the PCC is greater than 0.4. The network was 
visualized by Cytoscape87, and the width of edges in network were weighted by 100|PCC| to 
highlight the edges with high correlation (Extended Data Fig. 9i). 
 
Statistics and Reproducibility 
Cells shown in Figure 1b-d, Figure 2a, and Figure 4a, Extended Data Figure 4a, and 5a,b are 
representative of the 446 cells imaged in 2 biological replicates. Cells shown in Figure 3 are 
representative of 201 cells and 172 cells in two independent experiments. Cells shown in 
Figure 4d and Extended Data Figure 10a are representative of n=117 cells in the 48 hr dataset. 
 
4.9 SUPPLEMENTAL ITEMS 
 
Supplementary Table 1 
List for genomic coordinates of the 3,660 DNA loci used in DNA seqFISH+. 
 
Supplementary Table 2 
Codebook for the 3,660 DNA loci in the three fluorescent channels. Base 16 pseudocolor 
coding scheme for each of the loci in the channels 1 and 2, include control regions for off 
target evaluation. Region and chromosome paint imaging scheme for each of the loci in the 
channel 3. 
 
Supplementary Table 3 
Chromosome configuration probability of finding fixed points for a pair of IF markers on a 
given chromosome simultaneously in single cells. Fraction of loci associated within 300 nm 
of interior and exterior voxels of each IF marker in single cells. Median spatial distance from 
each of the 3,660 DNA loci to interior and exterior voxels of individual immunofluorescence 
markers. 
 
Supplementary Table 4 
Normalized association frequencies of individual zones and interfaces on each of the 3,660 
DNA loci. 
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Supplementary Table 5 
List for fraction of DNA loci associated with zones/interfaces in single cells, for all loci, 
intra-chromosomal and inter-chromosomal pairs of loci, transcriptional active sites measured 
by intron FISH, and randomly positioned spots. p-values for pairs of categories were 
computed from 20 bootstrap trials with a two-sided Wilcoxon’s rank sum test. 
 
Supplementary Table 6 
List for target RNAs in E14 replicates and clonal experiments.  
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Chapter 5 

INTEGRATED SPATIAL GENOMICS IN TISSUES REVEALS INVARIANT AND 
CELL TYPE DEPENDENT NUCLEAR ARCHITECTURE 

A modified version of this chapter was published as: 

Takei, Y., Zheng, S., Yun, J., Shah, S., Pierson, N., White, J., Schindler, S., Tischbirek, C., 
Yuan, G.-C., Cai, L., Integrated spatial genomics in tissues reveals invariant and cell type 
dependent nuclear architecture. bioRxiv (2021), doi: 
https://doi.org/10.1101/2021.04.26.441547. 
 
 
5.1 ABSTRACT 
 
Nuclear architecture in tissues can arise from cell-type specific organization of nuclear 
bodies, chromatin states, and chromosome structures. However, the lack of genome-wide 
measurements to interrelate such modalities within single cells limits our overall 
understanding of nuclear architecture. Here, we demonstrate integrated spatial genomics in 
the mouse brain cortex, imaging thousands of genomic loci along with RNAs and subnuclear 
markers simultaneously in individual cells. We revealed chromatin fixed points, combined 
with cell-type specific organization of nuclear bodies, arrange the interchromosomal 
organization and radial positioning of chromosomes in diverse cell types. At the sub-
megabase level, we uncovered a collection of single-cell chromosome domain structures, 
including those for the active and inactive X chromosomes. These results advance our 
understanding of single-cell nuclear architecture in complex tissues. 
 
5.2 INTRODUCTION 
 
The three-dimensional (3D) organization of the genome is critical for many cellular 
processes, from regulating gene expression to establishing cellular identity (1–3). Genome 
organization has been extensively examined using sequencing-based genomics and 
microscopy approaches (4, 5). In particular, chromosome architectures, such as topologically 
associating domains (TADs) (6–8) and high-order chromosomal interactions (9, 10), have 
been revealed by high-throughput genomics approaches such as Hi-C (11), genome 
architecture mapping (GAM) (9), and split-pool recognition of interactions by tag extension 
(SPRITE) (10). Moreover, recent progress in chromosome capture methods has enabled the 
exploration of chromosome structures at the single-cell level (12–19). These studies have 
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characterized the variabilities of chromosome structures in single cells derived from various 
biological samples. Complementary to the genomics approaches, imaging-based approaches 
such as DNA fluorescence in situ hybridization (FISH) (20) can directly obtain 3D 
chromosome structures from measured loci in single cells without computational 
reconstructions. Recent multiplexed imaging-based methods (21–32), such as sequential 
DNA FISH (22) and in situ genome sequencing (IGS) (31), have directly characterized the 
variabilities of chromosome structures in 3D, even between homologous chromosomes in a 
cell, and reported TAD-like domain structures in single cells (23), which when averaged over 
populations of cells are consistent with sequencing-based bulk measurements. Furthermore, 
super-resolution imaging studies (23, 33, 34) have shown that architectural proteins such as 
CTCF and cohesin can play important roles in the single-cell domain structures. 
 
To better understand the principles underlying chromosome organization, it is crucial to 
integrate chromosome structures with other measurements that capture transcriptional states 
(35), chromatin states (36), nuclear bodies (37, 38) and radial organization of the nucleus 
(39) in single cells. Single-cell multimodal genomics technologies (40) can evaluate 
chromosome structures together with, for instance, DNA methylome profiling (41, 42). 
However, sequencing-based single-cell multimodal measurements of chromosome structure 
and the transcriptome in the same cell remain challenging. On the other hand, imaging-based 
approaches allow direct integration of multimodal measurements including chromosome 
structures (22, 23, 25, 27–32).  
 
We recently established an imaging-based integrated spatial genomics approach that enables 
the analysis of nuclear organization beyond chromosome structures (32). Briefly, we imaged 
thousands of genomic loci by DNA seqFISH+ along with transcriptional states by RNA 
seqFISH and subnuclear localization of histone modifications and nuclear bodies by 
sequential immunofluorescence (IF) in single mouse embryonic stem (ES) cells. We 
discovered that chromosomes consistently associate with specific nuclear bodies, such as 
nuclear speckles (43) and nucleolus (44), across many single cells. We found that individual 
chromosomes contain unique combinations of fixed loci that are consistently associated with 
different nuclear bodies and chromatin modifications, suggesting a scaffolding of 
chromosomes across multiple nuclear bodies and protein globules. Nevertheless, to what 
extent these principles for nuclear organization extend to diverse cell types, and in a complex 
and physiologically relevant context such as mammalian tissues, is largely unknown. 
Imaging-based multimodal measurements of multiple cell types in tissues will give us a great 
opportunity to dissect cell-type specific features and invariant principles in nuclear 
organization in the native context. 
 



151 
 

 

5.3 RESULTS 
 
Integrated spatial genomics in the brain 
To comprehensively investigate the principles of nuclear organization among single cells in 
a tissue, we analyzed sections of the adult mouse cerebral cortex. Specifically, we applied 
our integrated spatial genomics approach (32) to evaluate 3,660 DNA loci, 76 cellular RNAs, 
and 8 chromatin marks and nuclear bodies (45) (Fig. 1 and fig. S1 and table S1 to S4). This 
technology provides a powerful multimodal tool to integrate the transcriptional states, 
chromosome and subnuclear structures, radial nuclear organization, and chromatin and 
morphological features simultaneously in the same cells in tissues. We chose the mouse brain 
as a model as it comprises many distinct cell types and has been extensively studied by 
single-cell RNA sequencing (46–48) as well as by spatial transcriptomics methods (49–54). 
 
We examined chromosome structures of the entire genome by using DNA seqFISH+ to 
image 2,460 loci, at approximately 1-Mb resolution, in 20 chromosomes. These data were 
collected using a 16 pseudocolor seqFISH+ coding scheme (32, 53) in two independent 
fluorescent channels (Fig. 1C and table S1). In addition, for each of the 20 chromosomes, we 
examined a local region of at least 1.5 Mb by imaging an additional 1,200 loci at 25-kb 
resolution (32). We collected these data in one fluorescent channel by imaging 60 
consecutive loci on each of the 20 chromosomes (Fig. 1D and table S1). In single cells, 
individual chromosomes formed distinct chromosome territories that have highly variable 
structures (Fig. 1E). We detected 2,813.0 ± 1,334.0 (median ± standard deviation) spots per 
cell in total across three fluorescent channels in 2,762 cells from three biological replicates 
(Fig. 1F, 1G and fig. S1A, S1G and S1H (55)). This corresponds to an estimated detection 
efficiency of at least 38.4 ± 18.2% (median ± standard deviation) in post-mitotic cells with 
the diploid genome. On the other hand, the false positive spots, as determined by the barcodes 
unused in the codebook (table S1), were detected at 32.0 ± 27.8 (median ± standard 
deviation) per cell (Fig. 1F and 1G).  
 
We validated our DNA seqFISH+ data by comparing it with bulk Hi-C data from mouse 
cortex (6, 56) (Fig. 1H and fig. S2A to D). The Hi-C normalized read counts correlated with 
the mean spatial proximity probability, with a Pearson correlation coefficient of 0.89 and 
0.76 at the 1-Mb and 25-kb resolution, respectively (fig. S2A to D). Similarly, Hi-C 
normalized read counts showed high concordance with DNA seqFISH+ spatial distance at 
1-Mb and 25-kb resolution (fig. S2A to D). Furthermore, the DNA seqFISH+ data from the 
three biological replicates were highly reproducible, with a Pearson correlation coefficient 
of 0.95-0.97 for 1-Mb and 25-kb resolution data (fig. S2E and S2F). These results 
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demonstrate the robustness of DNA seqFISH+ to map 3D chromosome structures in tissue 
samples.  
 
We clustered the RNA seqFISH data and obtained 9 major cell type clusters within the 
cerebral cortex, based on the gene expression of known markers (fig. S1C and S1D), shown 
in the UMAP representation (Fig. 1I). These 9 clusters matched well with cell types identified 
from single-cell RNA sequencing (47) (fig. S1E). The majority of the cells were excitatory 
neurons in cluster 9 expressing Slc17a7 (Fig. 1I and fig. S1D). We also observed four 
subclasses of inhibitory neurons expressing Pvalb, Vip, Ndnf, or Sst, three types of glial cells 
(astrocytes expressing Mfge8, microglia expressing Csf1r and oligodendrocyte precursor 
cells and oligodendrocytes expressing Olig1), and endothelial cells expressing Cldn5 (fig. 
S1D). We observed a similar localization accuracy of the FISH spots (fig. S1F) and number 
of decoded DNA loci (fig. S1H) across different cell type clusters. 
 
In addition to the genome and RNA imaging, we used sequential IF to detect 6 histone 
modifications or variants (H3K4me2, H3K27me2, H3K27me3, H3K9me3, H4K20me3, 
mH2A1), nuclear speckles (SF3a66) and the methyl CpG binding protein MeCP2 (Fig. 2A 
and fig. S1K, S1L and S3A and table S3). We incubated tissue sections with oligonucleotide-
conjugated primary antibodies (57, 58) prior to the RNA seqFISH steps and sequentially read 
out the antibody signals with fluorescently labeled probes (32), allowing the multiplexed 
detection of primary antibodies from the same single cells in tissues. The protocol previously 
used for cell culture experiments (32) was optimized for tissue sections to preserve the 
nuclear structure and accurately align the IF, RNA seqFISH and DNA seqFISH+ data over 
a total of 125 rounds of hybridizations and imaging on an automated confocal microscope 
(45) (fig. S1I and S1J). Additionally, we performed sequential RNA and DNA FISH to detect 
3 non-coding RNA that mark the inactive X chromosome (Xi, Xist), the nucleolus (ITS1), 
nuclear speckles (Malat1) (43, 44, 59) as well as 5 repetitive regions (LINE1, SINEB1, 
MajSat, MinSat, Telomere) that relate to nuclear organization (60–62) (fig. S1K, S1L and 
S3A).  
 
The spatial overlap between individual antibody, RNA and DNA markers of nuclear bodies 
or subnuclear compartments was consistent with previously observed subnuclear localization 
patterns (37, 43, 44, 59–64). For example, individual cells displayed colocalization of nuclear 
speckle components (Malat1 and SF3a66), inactive X chromosome (Xi) components (Xist, 
mH2A1, H3K27me3, LINE1) and heterochromatin components (DAPI, MajSat, H3K9me3, 
H4K20me3, MeCP2) (fig. S1K and S1L). We also observed minimum spatial overlap 
between different nuclear bodies such as nuclear speckles (Malat1 and SF3a66) and the 
nucleolus (ITS1), as well as between euchromatin- (SINEB1) and heterochromatin- (LINE1) 
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enriched chromosomal regions, as expected (61) (fig. S1K and S1L). Taken together, these 
results demonstrate that our integrated spatial genomics approach allows us to explore 
nuclear organization with unprecedented detail at the RNA, DNA, and protein level across 
diverse cell types in intact tissues. 
 
Distinct nuclear features across cell types in the brain 
We first examined the differences in global histone modifications and variants across cell 
types in the mouse cortex to understand cell-type specific global chromatin states. The 
overall intensities of IF markers were highly variable across single cells (Fig. 2A and fig. 
S3A). The 9 major cell types displayed clear differences in the global levels of both 
repressive marks (MeCP2, H3K27me3 and mH2A1) and an active mark (H3K4me2) (Fig. 
2B). Clustering of single cells using the multiplexed IF data was able to distinguish the same 
9 cell types as identified by RNA seqFISH (Fig. 2C), supporting a strong correlation between 
global chromatin states and transcriptional states. In particular, we observed a relative 
enrichment of mH2A1 in inhibitory neurons and astrocytes, H3K4me2 in inhibitory neurons, 
oligodendrocyte precursor cells and oligodendrocytes, and H3K27me3 in excitatory neurons 
(Fig. 2A and 2B and fig. S3A and S3B). In addition, MeCP2 was enriched in inhibitory and 
excitatory neurons while lower and almost undetectable levels of intensities were observed 
in astrocytes and microglia, respectively (Fig. 2A and 2B and fig. S3A). This observation 
agrees with the previously reported MeCP2 immunostaining intensity in neurons, astrocytes 
and microglia in the mouse cortex (65).  
 
Interestingly, even the DAPI features alone were sufficient to separate the major cell types 
in the cortical areas of the mouse brain using both UMAP and hierarchical clustering (Fig. 
2A and 2D to F). We used a subset of 701 cells for nuclei that were fully covered in the brain 
section. Compared to glial cells, neurons typically had larger nuclear volumes (Fig. 2D and 
2F) and lower DAPI intensities per voxel (e.g. mean and median) (Fig. 2F), consistent with 
the same DNA content in both cell types. In addition, among neuronal cell types, we also 
observed a larger nuclear volume in excitatory neurons compared to those in inhibitory 
neuron subtypes (Fig. 2D and 2F). These results are consistent with the observation that 
nuclear morphological features are often sufficiently distinct in mammalian tissues (66) to 
determine major cell types by visual inspection of the images.  
 
Lastly, we examined the spatial distance between pairs of intra-chromosomal loci to 
understand cell-type specific chromosomal scaling in the nucleus. Although previous 
imaging studies in cell culture and embryos showed differences in the chromosomal scaling 
of spatial distance as a function of genomic distance (22, 31, 32), it remains unclear how the 
scaling principles operate across different cell types within the same tissues. We found that 
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the relationship between spatial versus genomic distance scaling was distinct in different cell 
types, in both 1-Mb and 25-kb resolution data (Fig. 2G and 2H and fig. S3C to G). For 
example, loci tens of megabases apart typically displayed a larger spatial separation in 
inhibitory neurons compared to excitatory neurons and glial cells (Fig. 2G and fig. S3C), 
which cannot be simply explained by nuclear size differences as inhibitory neurons typically 
had smaller nuclear sizes than excitatory neurons (Fig. 2D). In contrast, in the 25-kb 
resolution data at the targeted Mb regions, the scaling relationship differed depending on the 
chromosomal regions and cell types (Fig. 2G and fig. S3D). For example, the targeted regions 
in chromosome 7 and chromosome 17 are more dispersed in neurons compared to glial cells, 
whereas other targeted regions in chromosome 5 and chromosome 18 have almost identical 
scaling relationships among neurons and glial cells. Overall, regions with higher gene density 
tend to have less compact spatial organization (fig. S3E), possibly owing to different 
underlying epigenetic states (32, 67). To gain a more integrative picture of nuclear 
organization, we need to examine the interactions between DNA and nuclear bodies beyond 
characterizing individual components.  
 
DNA loci display unique and shared chromatin profiles across different cell types 
To characterize the spatial association between DNA loci, chromatin marks and nuclear 
bodies, we calculated the fraction of time that each DNA locus is associated with each 
chromatin mark. Because many chromatin marks form discrete regions within the nucleus 
and IF images are diffraction limited, we determine the fraction of time each DNA locus is 
within 300 nm from the exterior of each mark (32, 55) (Fig. 3A and 3B and fig. S4A). This 
imaging-based approach of computing “chromatin profiles” demonstrated a high correlation 
with sequencing-based bulk measurements such as ChIP-seq and SPRITE at 1-Mb resolution 
in mouse ES cells (32). 
 
Whereas some chromatin profiles were highly concordant across cell types, others showed 
specific patterns that varied between cell types (Fig. 3A and 3B and fig. S4A). The DNA loci 
associated with nuclear speckle markers (SF3a66 and Malat1) were highly correlated among 
different cell types at 1-Mb resolution, with a Pearson correlation coefficient of >=0.83 even 
including mouse ES cells (Fig. 3B). This highly conserved DNA-nuclear speckle spatial 
association has been reported recently with various cell lines using TSA-seq (68). 
Interestingly, the chromatin profiles for nuclear speckles were highly correlated with gene 
densities at 1-Mb resolution (Fig. 3A and 3B and fig. S4A), suggesting a robust relationship 
between spatial genome organization around nuclear speckles and underlying genomic 
sequences.  
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On the other hand, the associations between DNA loci and DAPI-rich constitutive 
heterochromatin showed lower correlation between neurons and astrocytes (Fig. 3A and 3B), 
even though the associations were typically enriched in the centromere proximal genomic 
loci in all cell types (Fig. 3A and fig. S4A and S4B). Furthermore, the relationships between 
DNA loci and H3K27me3 were more distinct across cell types (Fig. 3A) and showed lower 
correlation across cell types in the brain as well as with mouse ES cells (Fig. 3B), reflecting 
the underlying differences in DNA loci-histone modification globule associations across cell 
types.  
 
We observed similar cell-type-dependent association of chromosomes with the nucleolus in 
the mouse brain cortex (Fig. 3A). The spatial proximities between ITS1 non-coding RNA 
and DNA loci in Pvalb inhibitory neurons and astrocytes displayed a relatively low 
correlation, with a Pearson correlation coefficient of 0.37 (Fig. 3B). We observed some cells 
in which the 45S ribosomal DNA (rDNA)-containing chromosomes 15 and 19 (69) were not 
in physical proximity to the nucleoli, but were close to DAPI-rich heterochromatin regions 
(fig. S4C), possibly due to rDNA silencing (70). This rDNA silencing could lead to the cell-
type specific nucleolar association of genomic loci (Fig. 3A and 3B and fig. S4A). To 
confirm this, we performed imaging of rDNA loci by DNA FISH and found that different 
fractions of rDNA loci were associated with the nucleolus and DAPI-rich heterochromatin 
regions among neurons, astrocytes, mouse ES cells and cultured fibroblasts (fig. S4D to F), 
lending support to the notion that nucleolar organizer regions can be stably silenced (70) in 
a tissue-specific fashion.  
 
Cell-type specific fixed loci anchor chromosomes to nuclear bodies in single cells 
To further gain insight of single-cell nuclear architecture across cell types, we defined DNA 
loci that were consistently associated with a particular chromatin mark or nuclear body in 
each cell type to be “fixed loci” (45) (Fig. 3C). We previously observed that these fixed loci 
for each IF marker consistently appear on the exterior of the respective marker in single 
mouse ES cells (32). In the mouse brain, we observed similar associations of the fixed loci 
with the exterior of nuclear bodies and chromatin marks in single cells (Fig. 3C), despite the 
differences in the morphological features and arrangement of nuclear bodies in individual 
neuronal and glial cells. As examples, fixed loci for SF3a66, DAPI, and H3K27me3 are 
consistently observed on the exterior of nuclear speckles, heterochromatin bodies and 
H3K27me3 globules in single neurons and glial cells (Fig. 3C). 
 
Fixed loci for different chromatin marks are distributed across the genome such that each of 
the chromosomes has distinct patterns of fixed loci in each cell type (Fig. 4A to D and fig. 
S5A). These fixed loci can constrain the nuclear organization of chromosomes by their 
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association to the nuclear bodies or chromatin marks in individual nuclei (Fig. 4C and 4D 
and fig. S5A). For example, chromosomes 7 and 17 have fixed loci for nuclear speckles 
(SF3a66) and heterochromatic bodies (DAPI) in excitatory neurons, inhibitory neurons and 
astrocytes (Fig. 4D), and both chromosomes straddled these nuclear bodies in single cells of 
all three cell types. Similarly, chromosome 8 has nuclear speckles and H3K27me3 fixed 
points in all three cell types, and spanned those nuclear globules in single cells. A small 
number of loci were associated with two nuclear bodies (orange dots) and were observed 
near both nuclear bodies in single cells (Fig. 4C and 4D). These features were observed 
across different cell types for other chromosomes (fig. S5A). Thus, despite the differences in 
the arrangement of nuclear bodies in individual cells and the different fixed point patterns on 
the chromosomes in each cell type (Fig. 4D and fig. S5A), the association between DNA loci 
and nuclear bodies are consistent across single cells of each cell type. These findings in the 
mouse brain extend our previous work in mouse ES cells (32) to show that chromatin fixed 
loci serve as organizational invariants in the nuclei of single cells across cell types, despite 
the highly variable appearance of individual chromosomes and nuclear bodies in individual 
cells.  
 
Cell-type specific nuclear bodies determine inter-chromosomal proximity and radial 
positioning 
The cell-type specific inter-chromosomal interaction and radial positioning of chromosomes 
in the nucleus were previously characterized by chromosome paint (71–73) and single-cell 
chromosome conformation capture (18, 19). However, it remains unclear what determines 
the distinct chromosomal features across cell types. Similarly, although the arrangement of 
nuclear bodies, such as heterochromatin bodies and nucleoli, has been shown to be cell-type 
specific as well as dynamic even within a cell type during development (61, 74), it remains 
unclear how those differences in nuclear body arrangements relate to 3D chromosome 
organization at the single-cell resolution. Thus, we examined our integrated spatial multi-
modal datasets to test the hypothesis that nuclear body organization and the fixed point 
association in different cell types accounts for the cell-type specific inter-chromosomal 
interaction and radial chromosomal positioning.  
 
We first characterized the nuclear bodies in each cell type (Fig. 5A to C and fig. S5B). 
Compared to excitatory neurons and astrocytes, Pvalb inhibitory neurons had fewer but 
larger heterochromatic bodies and nucleoli (Fig. 5B and fig. S5B). Heterochromatic bodies 
were often localized close to the center of the nucleus in Pvalb inhibitory neurons, but more 
distributed in other cell types (Fig. 5C). Nuclear speckles appeared to be more dispersed in 
cells with preferred localization in the nuclear interior (Fig. 5A and 5C). Furthermore, 
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H3K27me3 globules tend to localize more at the nuclear interior in astrocytes as compared 
to neurons (Fig. 5A and 5C). 
 
Next, we characterized radial positioning of individual chromosomes and individual loci 
from nuclear interior to exterior, and we observed their changes across cell types (Fig. 5D 
and fig. S5C and S5D). Consistent with previous reports (71–73), we observed the correlation 
between radial positioning and gene density as well as chromosome size across cell types 
(fig. S5E and S5F). Interestingly, gene-dense chromosomes (e.g. Chr7, 11, 17, and 19) tend 
to have different radial positions across different cell types (Fig. 5D and fig. S5C and S5F), 
which was also observed during post-natal brain development (19). For example, gene dense 
chromosome 7 tends to localize close to the nuclear center in excitatory neurons, but not in 
glial cells (Fig. 5D and fig. S5C). At the same time, we observed a cell-type dependence in 
the average inter-chromosome spatial distances (Fig. 5E, top). Notably, those pairwise inter-
chromosome distance maps agree with averaged radial positioning of pairs of chromosomes, 
such that chromosomes in the nuclear interior tend to be spatially close to each other (Fig. 
5E bottom, and 5F and fig. S5G). These features were observed across cell types, suggesting 
a common principle in chromosome organization. 
 
We further investigated how the cell-type dependent changes in nuclear bodies, chromosome 
radial positioning and inter-chromosome arrangement are connected in single cells. We 
observed that pairs of inter-chromosomal loci assigned as fixed points at nuclear bodies tend 
to be spatially closer to each other than the other non-fixed point pairs in neurons and 
astrocytes (Fig. 5G). These fixed points can influence the cell type-specific arrangement of 
the chromosomes. For example, chromosomes 11 and 19 have many H3K27me3 fixed points 
in astrocytes (fig. S5A) and H3K27me3 globules tend to be in the interior of the astrocyte 
nuclei (Fig. 5C). Thus, chromosomes 11 and 19 tend to be observed near the interior and 
interact with other chromosomes in astrocytes (Fig. 5E and F), but less in neurons. Similarly, 
chromosome 17 contains many heterochromatin fixed points in neurons (Fig. 4D) and 
heterochromatic bodies tend to be in the nuclear interior in Pvalb inhibitory neurons (Fig. 
5C). Consequently, chromosome 17 tends to be radially positioned near the nuclear interior 
(Fig. 5D). In addition, because chromosomes 7 and 17 are gene dense and contain many 
fixed points to nuclear speckles which tends to be positioned in the nuclear interior, both 
chromosomes are observed in the nuclear interior of neurons in bulk and single cells (Fig. 
5D to F and 5H). Thus, the complexity in the global organization of chromosomes in diverse 
single cells in the brain, such as the cell type-dependence in radial positioning and inter-
chromosomal distances, can be dimensionally reduced and captured in the different nuclear 
body arrangements and fixed point chromatin profiles. 
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Lastly, we compared the population-averaged and single-cell picture of radial organization 
of chromosomes and nuclear bodies. At the population-averaged level, the radial positioning 
of chromosomes and genomic loci to nuclear interior appear to be correlated with nuclear 
speckle association (Fig. 3D), consistent with other bulk analysis (75). However, 
visualization of the genomic loci as a function of gene density or expression levels in single 
cells shows that the radial positioning effect is highly variable in each nucleus (Fig. 3E). 
Thus, while speckle associations for gene dense regions are highly consistent across cells 
(Fig. 3A and 3B), because the arrangement of nuclear speckles is heterogeneous in single 
cells with a weak propensity for nuclear center (Fig. 5C), the positioning of the gene-dense 
speckle associated loci do not show strong radial gradient from nuclear interior to nuclear 
exterior in single cells, which directly supports the refined model of radial nuclear 
organization (75).  
 
Domain boundaries are variable in single cells  
The high-resolution DNA seqFISH+ data covering the genomic regions at 25-kb resolution 
enables us to further examine the domain organization of chromosomes in single cells at sub-
megabase scales. Analyses based on bulk-averaged chromosome conformation capture data 
at the sub-megabase resolution suggest that chromosomes are organized into topologically 
associating domains (TADs) with clear insulation boundaries (6–8). The TADs appear 
largely unchanged across species (6, 76) and their boundaries preferentially reside at 
CCCTC-binding factor (CTCF)- and cohesin-binding sites (6, 23). Single-cell chromosome 
conformation capture measurements confirmed preferential contacts within TADs in single 
cells (12). In addition, imaging experiments confirmed that TAD-like domain structures exist 
in single cells and depletion of cohesin resulted in shifting boundaries of the examined TADs 
stochastically across single cells (23). However, it is unexplored how single chromosome 
domain structures are organized across genomic regions with different bulk TAD 
characteristics. 
 
To systematically investigate single chromosome domain structures, we first determined 
whether there are subpopulations of chromosomes with distinct configurations that differ 
from the bulk averaged configurations in excitatory neurons. We clustered the single 
chromosome pairwise spatial distance data with 25-kb resolution using principal component 
analysis (PCA) and visualized by UMAP (Fig. 6A to C). The chromosome 3 region (7.7-9.3 
Mb) displayed three domains in the bulk data (Fig. 6D, top). However, analysis of 
subpopulation of chromosomes that were clustered together (Fig. 6C) showed multiple 
configurations with different pairwise spatial associations and domain boundaries (Fig. 6D, 
bottom, and 6E, top, and fig. S6A). We further examined single chromosome structures in 
each structural cluster, and found that instead of all three major domains being present in 
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single cells, in many cells, only a subset of the domains appeared (Fig. 6E, bottom). In the 
bulk measurements, domain boundaries corresponded to CTCF and cohesin (RAD21, 
cohesin subunit) binding sites (77) (Fig. 6D), but chromosomes in single cells appeared to 
stochastically form domains from a subset of these sites (Fig. 6E, bottom). These structures 
can be observed in single chromosome pairwise spatial distance maps of genomic loci as 
well as direct visualization of the chromosomal regions (Fig. 6E, bottom). In addition, even 
regions that did not show clear domain structures in the bulk averaged data contained 
domain-like structures at the single-cell level. For example, chromosome 7 (44.6-46.1 Mb) 
and chromosome 11 (97.4-98.9 Mb) regions contained several domains in single cells even 
when no clear domains were visible in the bulk level at the examined spatial scale (fig. S6B 
to E). Furthermore, there were chromosomal regions that exhibited more deterministic 
boundaries, such as chromosome 6 (49.4-50.9 Mb) region (fig. S7A and S7B). However, 
single chromosome subpopulations showed heterogeneity in the spatial proximity of inter-
domain organization, as seen by the off-diagonal elements (fig. S7B, top and middle) and the 
3D reconstruction of the chromosome structures (fig. S7B, bottom). Similarly, the histone 
gene cluster in chromosome 13 (21.5-23.8 Mb), known to form a higher-order chromosome 
structure in a population of cells (10), showed heterogeneous higher-order chromosome 
organization in individual cells (fig. S7C and S7D). 
 
These results demonstrate that even in cells expressing CTCF and cohesin, there are highly 
variable domain boundaries and inter- and intra-domain interactions that can be obscured 
with ensemble-averaged measurements. Recent super-resolution imaging studies (33, 34) 
have shown that CTCF and cohesin have differential effects on chromosomal domain 
formation in single cells, where CTCF preferentially promotes intra-domain interactions 
whereas cohesin promotes stochastic intermingling of inter-domains. In addition, cohesin 
appears to alter the instantaneous transcription activities of boundary-proximal genes (33). It 
is possible that the variabilities of single-cell domains we observed (Fig. 6 and fig. S6 and 
S7) are mediated by stochastic combinatorial binding of the architectural proteins (78) such 
as CTCF and cohesin at individual chromosomes and may lead to instantaneous 
transcriptional differences at those domain boundaries in single cells.  
 
Active and inactive X chromosome organization in single cells 
Lastly, we examined the differences of chromatin states and chromosome conformations 
between the active X chromosome (Xa) and the inactive X chromosome (Xi) from the female 
mouse brain cortex. X-chromosome inactivation in female mammalian cells has been 
extensively studied as a model system for chromosome organization (59). The imaging-
based genomics data can straightforwardly distinguish the Xa and Xi based on their mutually 
exclusive associations with Xist RNA, a long noncoding RNA that is specifically expressed 
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from and associates with the Xi (59) (fig. S8A and S8B). As expected, the Xi showed 
enrichment of repressive mH2A1 and H3K27me3 marks (79, 80), high nucleolar association 
(80), depletion of active chromatin mark (81) H3K4me2, and condensed LINE1 DNA 
elements (82) (fig. S8A and S8B).  
 
To gain insight into the structural differences between the Xa and Xi, we calculated the 
median spatial distance and spatial proximity maps for the whole X chromosome at 1-Mb 
resolution as well as for a targeted region (75.3-77.0 Mb) at 25-kb resolution in a cell-type-
specific fashion (fig. S8C to F). We observed that the Xa and Xi have distinct median 
distances between pairs of loci at different genomics length scales and in different cell types 
(fig. S8G and S8H). In particular, we observed that the Xi is organized into two mega-
domains separated at the macrosatellite DXZ4 locus at the whole chromosome scale, 
consistent with the literature (83). Interestingly, although the Xi is more compact than the Xa 
globally at the larger scale of tens of megabases (fig. S8C and S8G) (22, 84), we found the 
Xa appears to be more structured and compact at the Mb or below length scales based on the 
population-averaged spatial distance quantification (fig. S8C, D, G and H).  
 
To further resolve the observed bulk structural differences between the Xa and Xi, we 
examined the Xa and Xi conformation systematically at the single-cell level by applying the 
PCA-based approach used for the autosomal regions (Fig. 6A to E and fig. S6 and S7). 
Interestingly, both the Xa and Xi have heterogeneous domain structures in individual cells 
(Fig. 6F and 6G and fig. S9). Even the region of the Xi that appears unstructured in the bulk 
data from both DNA seqFISH+ (Fig. 6F and fig. S8D) and allele-specific Hi-C studies (83, 
85) appeared to adopt discrete domains in subsets of cells (Fig. 6G). We found that similar 
domain subclusters can be used in both the Xa and Xi, but with different relative frequencies 
for specific chromosome conformation (Fig. 6H), which leads to different average 
conformations for the Xa and Xi (Fig. 6F and fig. S8D). Taken together, although the Xa and 
Xi show very different chromatin states and ensemble-averaged chromosome conformation, 
they can share similar underlying single-cell domain structures with different relative 
conformational preferences at the finer scale, which has been obscured with ensemble-
averaged bulk measurements. 
 
5.4 DISCUSSION 
 
Our work demonstrates cell-type-dependent and -independent features in nuclear 
organization across thousands of single cells in the mouse cerebral cortex, derived by 
integrated spatial genomics tools to measure RNA, DNA, and chromatin marks. In particular, 
we examined nuclear morphologies, global chromatin states, DNA-nuclear body 
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associations, radial nuclear organization, as well as chromosome and domain structures in 
transcriptionally defined cell types. Existing microscopy and sequencing-based datasets 
showed high concordance with our results at each modality, supporting the robustness and 
accuracy of our approach and allowing the exploration of multimodal nuclear features in 
tissue sections. 
 
At the global level, our observations indicate that the chromosome organization in a cell 
reflects cell-type specific nuclear body arrangements. We observed that each chromosome 
contains a unique pattern of fixed points associated with each nuclear body and chromatin 
mark such that the DNA loci are reliably located on the exterior of the nuclear bodies in 
single cells at the scale of 1 Mb. Some of the fixed points are cell type-dependent, whereas 
others, such as nuclear speckle-associated loci (68), are largely cell type-independent. 
Because nuclear body morphologies are different in different cell types, these fixed points 
lead to distinct organizations of the nucleus in each cell type. For example, because most 
Pvalb inhibitory neurons have a large central heterochromatic globule, chromosomes 7 and 
17 with fixed points to heterochromatin are organized around this central hub. These 
chromosomes are often found in the nuclear interior and interact with many other 
chromosomes. We had observed both nuclear bodies and fixed points in mouse ES cells (32), 
and now show that this principle operates in tissues to drive cell type-specific genome 
organization. Similar observations of radial chromosome and nuclear body reorganization 
during brain and retinal development (18, 19, 61, 74) suggest the same principle could also 
be applied to the developmental processes. 
 
At the 25-kb scale organization of chromosomes, the single-cell resolution of the DNA 
seqFISH+ data explains that nested structures and regions with ambiguous boundaries that 
are often observed in bulk Hi-C contact maps (86) are due to different domains appearing in 
individual cells, possibly because subsets of CTCF and cohesin sites are stochastically used 
to insulate individual chromosomes. In line with this observation, single-cell domain 
structures were previously observed even in cohesin depleted cells where domain structures 
were abolished at the population-averaged level, suggesting the population level domains are 
formed due to preferential domain boundary positions (23). Our systematic single-cell 
analysis further showed the prevalence of clear single-cell domains even in regions which 
lack ensemble domain boundaries such as the Xi region (83, 85), demonstrating the 
importance of studying chromosome structures in individual cells to better interpret the 
organizational principles of 3D genome architecture.  
 
The robust demonstration of integrated spatial genomics in tissues indicates the same 
approach can be applied to a diverse range of biological systems to further explore the 
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diversity and invariant nuclear architectures in single cells. At the global scale of nuclear 
organization, it is still unclear how the distinct nuclear body and chromosome arrangements 
as well as their associations arise in the first place in different cell types. In addition, given 
the prevalence of the diverse single-cell domain structures that can differ from ensemble-
averaged TADs, it would be critical to study both single-cell domain structures and 
instantaneous transcriptional activity in each domain from the same single cells and 
understand their relationships at a fine spatiotemporal resolution. We anticipate addressing 
these questions in future studies by genome-scale chromosome imaging together with 
transcriptome-scale profiling (53, 87) and protein imaging as well as by “track first and 
identify later” live-cell approaches (88, 89) with multiplexed chromosome labeling (90, 91). 
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5.6 MAIN FIGURES 

Fig. 1. Integrated spatial genomics in the mouse brain.  
 
(A) Schematic of integrated RNA seqFISH, DNA seqFISH+ and sequential 
immunofluorescence (IF) measurements in the mouse brain cortex. 76 RNA species targeting 
introns, mRNAs and noncoding RNAs were imaged first by RNA seqFISH, followed by 
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2,460 genomic loci imaged at 1-Mb resolution and 1,200 genomics loci at 25-kb resolution 
by DNA seqFISH+. Finally, 8 antibodies targeting chromatin marks and nuclear bodies were 
imaged by sequential IF, as well as 5 repetitive elements in the genome by DNA FISH. (B) 
Example RNA seqFISH, DNA seqFISH+ and sequential IF images in a brain slice. Cell type 
specific RNA expression labels distinct neuronal and glial cell types (e.g. Slc17a7 in 
excitatory neurons, Mfge8 for astrocytes, Pvalb for inhibitory neurons), along with nuclear 
body markers, DNA seqFISH+ from 1 round of hybridization, and immunofluorescence 
signals in the same cells. The images are the maximum intensity z-projected from 1.5 μm z-
slices. Scale bars represent 20 μm (left) and 10 μm (right panels). (C) Example DNA 
seqFISH+ images for the 1 zoomed-in view of Cell 1135 through five rounds of barcoding 
in fluorescent channel 1 decoded with megabase resolution from a single z-section. Images 
from 16 serial hybridizations are collapsed into a single composite 16-pseudocolor image, 
which corresponds to one barcoding round. (D) The zoomed-in view of Cell 1135 through 
60 hybridization rounds targeting adjacent regions at 25-kb resolution followed by 20 
hybridization rounds of chromosome painting in fluorescent channel 3. The images are 
shown with pseudocolors with spots from all z-slices from the nucleus. White boxes on 
pseudocolor spots indicate identified barcodes in (C) and (D), and the red box indicates a 
rejected non-specific binding spot in (D). Scale bars represent 250 nm in top and bottom 
zoomed-in images in (C) and (D). (E) 3D reconstruction of a single nucleus. Top, individual 
chromosomes labeled in different colors. Lower left, reconstruction of chromosome 14 
colored based on chromosome coordinates. Lower right, reconstruction of chromosome 14 
at from 65.4-66.9 Mb with 25-kb resolution. (F) Frequencies of on- and off-target barcodes 
in fluorescent channels 1 and 2 per cell. On average, 1,617.5 ± 817.1 (median ± standard 
deviation) on-target barcodes and 32.0 ± 27.8 off-target barcodes are detected per cell (n = 
2,762 cells from three biological replicates). (G) Average frequencies of individual on-target 
and off-target barcodes (n = 2,460 barcodes in fluorescent channels 1 and 2) calculated from 
n = 2,762 cells in (F), demonstrating the accuracy of the DNA seqFISH+. (H) Agreement 
between the normalized spatial proximity maps (probability of pairs of loci within 500 nm 
in cells for 1-Mb resolution data and within 150 nm in alleles for 25-kb resolution data) from 
DNA seqFISH+ (upper right) and Hi-C (lower left) (6, 56) at different genomic scales with 
whole chromosomes (left), whole chromosome 7 at 1-Mb resolution (middle), and 
chromosome 9 region at 25-kb resolution (right) (n = 2,762 cells from three biological 
replicates). Hi-C data is displayed with 1-Mb and 25-kb bin sizes to compare with 1-Mb and 
25-kb resolution DNA seqFISH+ data, respectively. Similar results were obtained for other 
chromosomes and regions (fig. S2). (I) UMAP representation of the cell type clusters 
determined based on mRNA seqFISH profiles with 2,762 cells from three biological 
replicates. n = 155, 58, 41, 53, 152, 90, 240, 78, 1,895 cells in each cluster. The 
transcriptionally defined cell types match with scRNA-seq data (47) in fig. S1E. 
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Fig. 2. Nuclear morphology, global chromatin states and chromosome scaling are cell 
type dependent.  
 
(A) DAPI, H3K27me3, and mH2A1 staining from a single z-section super-imposed on the 
transcriptionally defined cell clusters. Color bars represent fluorescence intensity (a.u.). 
Scale bars, 10 μm. (B) Kernel density estimations of normalized IF intensities show distinct 



175 
 

 

cell type dependent distributions of histone modification and chromatin marker levels. 
Additional antibody intensities are shown in fig. S3B. (C) UMAP representation shows 
separation of excitatory, inhibitory and glial cells based on the overall intensities for 8 IF 
markers in single cells. Cells are colored by their transcriptional cell types in (A). 2,762 cells 
from three biological replicates were used in (B) and (C). (D) Characterization of the nuclear 
volume across the 9 major cell types. The red dots represent median, and whiskers represent 
the interquartile range. (E) UMAP representation of cells based on DAPI meta features used 
in (F). Cells are colored by their transcriptional cell types in (A). (F) Hierarchical clustering 
of the DAPI meta features compared to the RNA seqFISH clusters shown on top. 701 cells 
in the center z-sections from three biological replicates were used in (D)-(F). (G) Physical 
distance as a function of genomic distance across transcriptional defined cell types at the 1-
Mb resolution for Chr5 (top) and at 25-kb resolution for Chr7 (bottom). Inset shows Pvalb 
inhibitory neurons, astrocytes and excitatory neurons. Additional scaling relationships are 
shown in fig. S3C to E. (H) Spatial distance between pairs of intra-chromosomal loci within 
cells by DNA seqFISH+ in different cell types at 1-Mb resolution (top row, quartile spatial 
distance within cells) and at 25-kb resolution (bottom row, median spatial distance within 
alleles). 2,762 cells were used for (G) and 155 cells for Pvalb, 152 cells for astrocytes, and 
1,895 cells for excitatory neurons were used in (H) from three biological replicates.  
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Fig. 3. Chromatin profiles and fixed points across cell types.  
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(A) Cell type specific chromatin profiles, the fraction of loci found within 300 nm of SF3a66, 
DAPI, H3K27me3, and ITS1 exteriors. Gene density within 1-Mb bin size is shown for 
comparison. (B) Pearson correlation between chromatin profiles of different cell types and 
gene density for autosomes (n = 2,340 loci). Correlation with the chromatin profiles from 
E14 mouse ES cells (32) are shown for comparison. (C) Representative 3D images for fixed 
loci and IF markers. For IF marks, pixels with intensity z-score values above 2 for each IF 
mark were shown. Fixed loci were determined by z-score above 2 from loci in autosomes. 
(D) Nuclear speckle association scores are correlated with radial nuclear positioning for 20 
chromosomes (top panels) and 2,460 individual loci (bottom) such that nuclear speckle 
associated chromosomes or loci position at more nuclear interior. The red dots represent 
median for individual chromosomes and error bars represent interquartile ranges (top). The 
coefficient of determination for linear regression (top) and Spearman correlation coefficients 
(top and bottom) are shown. (E) In single cells, loci with higher gene density (top) and higher 
1-Mb resolution transcription levels obtained from cell-type-specific expression profiles by 
scRNA-seq (47) (bottom) appear around nuclear speckles, and are not necessarily radially 
distributed from nuclear interior to exterior. The same cells are shown as in (C) with 2 μm 
cross sections. n = 1,895, 155, 152 cells for excitatory neurons, Pvalb inhibitory neurons, and 
astrocytes from three biological replicates in (A), (B), and (D).  
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Fig. 4. Fixed points straddle across nuclear bodies.  

(A) Heterochromatin stained by DAPI, nuclear speckles marked by SF3a66 and H3K27me3 
globules are minimally overlapping in individual nuclei (white dashed lines) in the mouse 
cortex section. (B) Joint profiles for the three markers for each genomic locus in autosomes 
(n = 2,340 loci) in excitatory neurons (left), Pvalb inhibitory neurons (middle), and astrocytes 
(right) computed from the population of cells. Loci with high association scores in each of 
the marks are highlighted in the respective color (green for DAPI, magenta for SF3a66, and 
blue for H3K27me3). Loci with high association scores for two markers are labeled in 



179 
 

 

orange. Bottom panel shows pairwise association scores for all the loci. n = 1,895, 155, and 
152 cells for excitatory neurons, Pvalb inhibitory neurons, and astrocytes from three 
biological replicates. (C) Illustration showing chromosome 7 and 17 with fixed loci for 
SF3a66 and DAPI and chromosome 8 with fixed loci for SF3a66 and H3K27me3 across cell 
types (Exc, excitatory neurons; Pvalb, Pvalb inhibitory neurons; Astro, astrocytes). Fixed 
loci associated with two markers (both SF3a66 and DAPI in Chr7 and Chr17, and both 
SF3a66 and H3K27me3 in Chr8) are shown with orange color. (D) Representative 3D 
images of individual chromosomes (Chr7, 8, or 17) and markers (SF3a66, H3K9me3 or 
H3K27me3) showing each chromosome has cell-type specific fixed points and span the 
corresponding nuclear bodies in single cells. The same coloring as (C). For other 
chromosomes and cells, see fig. S5A.  
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Fig. 5. Fixed points and nuclear bodies organize nuclear architecture.  

(A) DAPI, SF3a66 and H3K27me3 staining from a single z-section with transcriptionally 
defined cell type annotation. Scale bars, 5 μm. Cross-section intensity profiles for DAPI and 
H3K27me3 for the astrocyte (line 1) and excitatory neuron (line 2) are shown (right), 
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representing the depletion of H3K27me3 signals from the nuclear periphery in astrocytes. 
(B) Characterization of DAPI foci features across 3 major cell types. The boxplots represent 
the median, interquartile ranges, whiskers within 1.5 times the interquartile range, and 
outliers. (C) Kernel density estimation for the radial positioning of identified nuclear foci 
centers (DAPI and SF3a66) or Xist-independent H3K27me3 globules calculated by intensity 
z-score above 2 in each cell for different cell types. n = 460, 33, and 48 cells for excitatory 
neurons, Pvalb inhibitory neurons, and astrocytes in the center fields of view from three 
biological replicates in (B) and (C). (D) Median radial positioning from the nuclear center 
for all 2,460 loci imaged at 1-Mb resolution for three major cell types. Gene density (top 
panel) and the top 15% variable loci in terms of radial positioning among the three cell types 
(middle panel) are shown. (E) Comparison of mean pairwise distance between chromosomes 
(top panels) and the radial position scores for pairs of chromosomes (bottom panels) for the 
three major cell types. Chromosomes near the nuclear interior also tend to be spatially closer 
to other chromosomes. (F) Scatter plot of mean pairwise distance between chromosomes and 
the sum of radial position scores for pairs of chromosomes shown in (E). (G) Normalized 
inter-chromosomal distance between pairs of fixed loci enriched in association with specific 
nuclear bodies and chromatin marks. Inter-chromosomal pairs of fixed loci for the same 
marker are generally spatially proximal compared to the other inter-chromosome pairs. In 
particular, DAPI enriched loci are spatially proximal in Pvalb inhibitory neurons while 
H3K27me3 enriched loci are closer to each other in astrocytes. The distances are normalized 
by subtracting an averaged inter-chromosomal spatial distance from all inter-chromosomal 
pairs of loci in each cell type. The boxplots represent the median, interquartile ranges, 
whiskers within 1.5 times the interquartile range, and outliers. n = 1,895, 155, and 152 cells 
for excitatory neurons, Pvalb inhibitory neurons, and astrocytes from three biological 
replicates in (D)-(G). (H) Chromosomes 7 and 17 are closer to the nuclear interior in neurons, 
shown with the fixed points on nuclear speckles (excitatory neuron, left) and heterochromatin 
(Pvalb inhibitory neuron, middle). Chromosomes 11 and 19 are closer to the nuclear interior 
in the astrocyte with the fixed points on H3K27me3 globules (right). 2 μm cross sections are 
shown for the excitatory and Pvalb inhibitory neuron and a 1 μm cross section is shown for 
the astrocyte for visual clarity. 
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Fig. 6. Heterogeneous domain structures in single chromosomes.  
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(A and B) Principal component analysis (PCA) on the chromosome 3 region (7.7-9.3 Mb) 
that was targeted at 25-kb resolution. The variance of the pairwise spatial proximity map is 
shown in (A) with the corresponding PCA loading shown in (B). (C) UMAP visualization of 
individual chromosomes in 11 structural subclusters for the 25-kb resolution chromosome 3 
data (n = 1,524 chromosomes) from excitatory neurons. (D) Bulk averaged pairwise distance 
map from excitatory neurons (top) shows distinct domains in the chromosome 3 region with 
boundaries and high median boundary score regions matching CTCF and cohesin binding 
sites obtained by high-throughput sequencing (ChIP-seq) with the mouse brain (77). Single 
chromosomes were clustered into different domain structures with distinct median boundary 
score profiles. (E) Examples for three of the structural subclusters are shown with different 
pairwise distance map structures. Single chromosome distance maps and chromosome 
structures from individual cells are shown below for each subcluster. Chromosomes with 
>20% loci detected in n = 1,895 excitatory neurons from three biological replicates were 
used in (A)-(E). (F) Pairwise median distance maps for Xa (top, upper triangle) and Xi (top, 
lower triangle) in excitatory neurons from the 25-kb DNA seqFISH+ data. Clustering of the 
domain structures for individual Xa and Xi shown with the median boundary scores for Xa 
and Xi (middle) and for each subcluster containing Xa and Xi (bottom) in excitatory neurons 
from the 25-kb DNA seqFISH+ data. The location for the macrosatellite DXZ4 locus at the 
boundary of two mega-domains in Xi (83) is shown (top and middle). (G) Examples for 
subclusters 2, 5 and 9 with corresponding single-cell pairwise distance maps and single-cell 
3D chromosome structures for Xa and Xi in excitatory neurons. Individual Xa and Xi can 
have similar domain structures. (H) The frequency of each subcluster occurring in single 
cells for Xa and Xi from 805 excitatory neurons. n = 805 cells with >20% loci detected for 
both Xa and Xi regions (75.3-77.0 Mb) from three biological replicates in (F)-(H). 
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5.7 SUPPLEMENTAL FIGURES 
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Fig. S1. Validation for the integrated spatial genomics approach in mouse brain cortex. 
 
(A) DAPI images of the mouse brain section with three biological replicates. Yellow boxes 
represent the imaged fields of view in each replicate. (B) Representative images for DAPI 
and concanavalin A staining for nuclear segmentation, and segmented nuclei in the mouse 
cortex. (C) The hierarchical clustering of z-scored mRNA expression profiles by RNA 
seqFISH. The gene expression profiles for each RNA seqFISH cluster are distinct. (D) Box 
plots showing z-scored mRNA expression levels for cells in each RNA seqFISH cluster. The 
box plots represent the median, interquartile ranges, whiskers within 1.5 times the 
interquartile range, and outliers. (E) The transcriptionally defined cell clusters by RNA 
seqFISH correlate well with previously reported cell types by scRNA-seq in mouse 
cortex(47). Based on the matches between RNA seqFISH cluster and scRNA-seq cell type 
represented by the highest Pearson’s correlation coefficient, RNA seqFISH clusters were 
annotated. (F) Quantification of the fiducial marker localization precision in RNA seqFISH 
cluster for 80 hybridization rounds in the DNA seqFISH+ experiments, relative to the 
reference fiducial marker image. Shaded regions represent standard deviation. (G) The total 
number of DNA seqFISH+ spots detected in each of the fluorescent channels in single cells 
from all cell types. Fluorescent channels 1 and 2 contain the 1-Mb resolution data and 
channel 3 contains the 25-kb resolution data. (H) The total number of DNA seqFISH+ spots 
detected in each cell type. (I) Preservation of the nuclear structure with the integrated spatial 
genomics protocol for tissue sections. Good colocalization (white in the right panel) of 
H4K20me3 immunofluorescence signals before and after DNA seqFISH+ preparation 
including a heating denaturation step. (J) Quantification of the H4K20me3 
immunofluorescence signal retention in the nuclei before and after DNA seqFISH+ 
preparation (left) and localization precision measured by Pearson correlation of pixel 
intensities with a single z-section (right). (K) Quantification of spatial overlap of voxels with 
intensity z-score above 2 between pairs of nuclear marker images stained by sequential 
immunofluorescence, RNA FISH, or DNA FISH. (L) Representative images of nuclear 
markers in (K), showing either colocalization with white color (Malat1 and SF3a66; 
H3K27me3 and Xist; H4K20me3 and Mecp2) or mutually exclusive localization pattern 
(LINE1 and SINEB1). n = 2,762 cells from three biological replicates were used for 
quantification in (C)-(K). 
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Fig. S2. Validation for DNA seqFISH+ in mouse brain cortex.  
 
(A) Heat maps of 1-Mb resolution chromosome 4 showing quartile spatial distances of pairs 
of loci within cells, median spatial distances of pairs of loci within homologous 
chromosomes, probabilities of pairs of loci within a search radius of 500 nm within cells by 
DNA seqFISH+, and the corresponding Hi-C map(6, 56) with 1-Mb resolution binning, 
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respectively (left to right). (B) Comparison between spatial distances (left), between spatial 
distances and Hi-C dataset (middle panels), and between spatial proximity probabilities and 
Hi-C dataset (right) with pairs of intra-chromosomal loci in all autosomes with 1-Mb 
resolution. (C) Heat maps of 25-kb resolution chromosome 16, showing median spatial 
distances of pairs of loci within homologous chromosomes (left), probabilities of pairs of 
loci within a search radius of 150 nm within cells by DNA seqFISH+, and the corresponding 
Hi-C map(6, 56) with 25-kb resolution binning. (D) Comparison between spatial distances 
and Hi-C dataset (left), and between spatial proximity probabilities and Hi-C dataset (right) 
with pairs of intra-chromosomal loci in all autosomes with 25-kb resolution. n = 2,762 cells 
from three biological replicates were used for DNA seqFISH+ quantification in (A)-(D). (E 
and F) Pearson’s correlation of probabilities for the pairs of loci within a search radius of 500 
nm (1-Mb resolution data) and 150 nm (25-kb resolution data) among three biological 
replicates of DNA seqFISH+ experiments. All unique intra-chromosomal pairs of loci were 
calculated for the 1-Mb (n = 2,460 loci) and 25-kb (n = 1,200 loci) resolution data with n = 
754, 820, and 1,158 cells for biological replicates 1, 2, and 3, respectively. r and ρ represent 
Pearson’s correlation coefficient and Spearman’s correlation coefficient in (B), (D), (E), (F).  
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Fig. S3. Cell-type-specific global chromatin states and chromosome scaling analysis.  
 
(A) Sequential immunofluorescence staining (top) and DNA FISH (bottom) images from a 
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single z-section of the mouse cortex. Corresponding cell types of the images are shown in 
Fig. 2A. Color bars represent fluorescence intensity (a.u.). Scale bars, 10 μm. (B) Kernel 
density estimations of normalized IF intensities show cell type dependent distributions of 
marker levels. (C and D) Physical distance as a function of genomic distance across 
transcriptionally defined cell types at the 1-Mb resolution in (C) and at 25-kb resolution in 
(D) for each autosome. Similar plots for the active and inactive X chromosome are shown in 
fig. S8G. (E) Physical distance as a function of genomic distance comparing different 25-kb 
resolution chromosomal regions in each cell type, colored by the total number of genes in 
each chromosomal region. n = 2,762 cells from three biological replicates for quantification 
in (B)-(E). (F and G) Spatial distance between pairs of intra-chromosomal loci within cells 
by DNA seqFISH+ in different cell types at 1-Mb resolution (quartile spatial distance within 
cells for chromosome 15) in (F) and at 25-kb resolution (median spatial distance within 
homologous chromosomes for chromosome 5) in (G). n = 1,895, 155, and 152 cells for 
excitatory neurons, Pvalb inhibitory neurons, and astrocytes from three biological replicates 
in (F), (G). 
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Fig. S4. Cell-type-specific chromatin profiles and rDNA association with nucleoli.  
 
(A) Cell type specific chromatin profiles for 1-Mb resolution DNA seqFISH+ loci (n = 2,460 
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loci), calculated by the fraction of loci found within 300 nm of each subnuclear marker 
exterior. Gene density in each 1-Mb resolution loci is shown at the top. (B) Cell type specific 
fraction of loci from DAPI exterior for 1-Mb resolution DNA seqFISH+ loci from 20 
chromosomes. The genomic loci were grouped based on their genomic coordinates in each 
chromosome. The loci that are genomically close to the pericentromeric repetitive region, a 
component of constitutive heterochromatin, showed higher spatial association with DAPI-
enriched constitutive heterochromatic bodies, consistent with the observation in mouse ES 
cells (10, 32). n = 1,895, 155, and 152 cells for excitatory neurons, Pvalb inhibitory neurons, 
and astrocytes from three biological replicates for quantification in (A) and (B). (C) 
Representative 3D images of nucleoli by ITS1 RNA FISH, heterochromatic bodies stained 
by DAPI, and chromosomes 15 and 19 by DNA seqFISH+ in the excitatory neuron (left) and 
astrocyte (right). Despite containing rDNA regions (69), those chromosomes did not 
necessarily associate with the nucleolus in some of the cells (Cell 1689, 2463 are shown as 
examples). (D) rDNA staining by DNA FISH with nucleolar imaging by ITS1 RNA FISH 
and DAPI staining in E14 mouse ES cells (left) and NIH3T3 fibroblast cells (right) from a 
single z-section. Scale bars represent 10 μm. (E) Unlike the cultured cells in (D), rDNA 
staining confirms that some of the ribosomal repeat regions appear outside of the nucleolus 
and locate at DAPI-enriched heterochromatin in post-mitotic cells in the brain. The images 
are from a single z-section and scale bars represent 5 μm. (F) The fraction of rDNA loci 
present in the nucleolus or close to heterochromatic regions is cell type dependent with 
significant off-nucleolus association in the brain compared to cultured mouse ES cells or 
fibroblasts. The boxplots represent the median, interquartile ranges, whiskers within 1.5 
times the interquartile range, and outliers. n = 365, 18, 32 for excitatory neurons, Pvalb 
inhibitory neurons, and astrocytes from 5 fields of view in one mouse brain section, and n = 
305, 334 cells for E14 mouse ES cells and NIH3T3 cells from 7 and 8 fields of view in each 
sample. 
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Fig. S5. Cell-type-specific nuclear foci and radial chromosome organization, and 
common nuclear organization.  
 
(A) Images of individual chromosomes (Chr11 or Chr19) and markers (SF3a66 and 
H3K27me3), showing each chromosome has cell-type specific fixed points and span the 
corresponding nuclear bodies in single cells. (B) Characterization of subnuclear marker foci 
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features across 3 major cell types, representing cell-type specific nuclear foci number and 
volume distributions. The boxplots represent the median, interquartile ranges, whiskers 
within 1.5 times the interquartile range, and outliers, and the black diamond dots represent 
mean. Some outliers were omitted at the display range for visual clarity (6 outliers in the 
middle panel of the SF3a66 foci characterization). n = 460, 33, and 48 cells for excitatory 
neurons, Pvalb inhibitory neurons, and astrocytes in the center z-sections from three 
biological replicates. (C) Median radial positioning from the nuclear center for all 2,460 loci 
imaged at 1-Mb resolution for all cell types. (D) Hierarchical clustering of radial positioning 
profiles from (C) between pairs of cell types, showing neuronal and glial cell clusters. n = 
2,762 cells from three biological replicates for quantification in (C) and (D). (E) Examples 
of the comparison among gene density, radial positioning of loci, and spatial distance of pairs 
of loci in excitatory neurons (top) and astrocytes (bottom). Gene dense large-scale domains 
with tens of megabases in size tend to localize in the nuclear interior in both cell types. 
Similar observation about consistency between large-scale domain radial positioning and 
large-scale chromosome conformation capture patterns was made by the single-cell 
chromosome conformation capture study (18). (F) Radial nuclear positioning for 20 
chromosomes showed cell-type-specific dependency on chromosome length (top) and 
chromosome-wide gene density (bottom). The red dots represent median for individual 
chromosomes and error bars represent interquartile ranges. The coefficient of determination 
for linear regression is shown in each plot. (G) Cell-type-specific quartile spatial distance 
between pairs of inter-chromosomal loci (n = 2,460 loci for 20 chromosomes) in three major 
cell types. n = 1,895, 155, and 152 cells for excitatory neurons, Pvalb inhibitory neurons, and 
astrocytes from three biological replicates for quantification in (E)-(G). 
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Fig. S6. Heterogeneous domain structures in single chromosomes without clear 
ensemble domain structures.  
 
(A) Pairwise spatial distance maps from all 11 structural subclusters of the 25-kb resolution 
data in chromosome 3 (n = 1,524 chromosomes) from excitatory neurons. Bulk averaged 
domain structure for the chromosome 3 region is shown in Fig. 6D. (B) Bulk averaged 
pairwise spatial distance map from excitatory neurons (top) with CTCF and cohesin binding 
sites (77). Single chromosomes were clustered into different domain structures with distinct 
median boundary score profiles (bottom) for the chromosome 7 region (44.6-46.1 Mb; n = 
1,386 chromosomes). Despite the lack of clear domains at the bulk level, there are several 
domain subclusters with different configurations in single chromosomes. (C) Examples for 
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three of the structural subclusters are shown with different pairwise spatial distance map 
structures (top). Corresponding single chromosome distance maps (middle) and 3D 
chromosome structures (bottom) are shown. (D and E) Similar to (B and C) for the 
chromosome 11 region (97.4-96.9 Mb) (n = 1,514 chromosomes). Chromosomes with >20% 
loci detected in n = 1,895 excitatory neurons from three biological replicates were used for 
analysis in (A)-(E). 
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Fig. S7. Heterogeneous higher-order domain structures in single chromosomes.  
 
(A) Bulk averaged pairwise spatial distance map from excitatory neurons (top) with CTCF 
and cohesin binding sites (77). Single chromosomes were clustered into different domain 
structures with distinct median boundary score profiles (bottom) for the chromosome 6 
region (49.4-50.9 Mb; n = 1,550 chromosomes). (B) Examples for three of the structural 
subclusters are shown with different pairwise spatial distance map structures and higher-
order domain structures (top). Corresponding single chromosome distance maps (middle) 
and 3D chromosome structures (bottom) are shown. (C and D) Similar to (A and B) for the 
chromosome 13 region (21.5-23.8 Mb; n = 1,414 chromosomes). Chromosomes with >20% 
loci detected in n = 1,895 excitatory neurons from three biological replicates were used for 
analysis in (A)-(D). 
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Fig. S8. Active and inactive X chromosome organization across cell types.  
 
(A) DAPI, Xist RNA and IF staining distinguishes the active X chromosome (Xa) and 
inactive X chromosome (Xi) in single cells in the mouse brain cortex. The images for DAPI, 
Xist RNA and IF staining are the maximum intensity z-projected from 1.5 μm z-slices, and 
the image for Xa and Xi is decoded 25-kb resolution DNA seqFISH+ data from all z-slices. 
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The scale bars represent 5 μm. (B) Chromatin profiles of the Xa and Xi with respect to the 
H3K4me2, Xist, DAPI, mH2A1, ITS1 and H3K27me3 across 120 loci at 1-Mb resolution in 
excitatory neurons. (C) Pairwise median distance maps for Xa (left) and Xi (middle) in 
excitatory neurons from the 1-Mb DNA seqFISH+ data, and differential distance map 
between Xa and Xi (right). Xi is more compact at long genomic distances, but locally is less 
structured than Xa at the finer scale. The spatial distance maps were computed from n = 
1,895 excitatory neurons with spatially separated Xa or Xi detected from three biological 
replicates. (D) Pairwise median distance maps for Xa (left) and Xi (middle) in excitatory 
neurons from the 25-kb DNA seqFISH+ data. Differential distance map (right) shows more 
compact averaged structure at the finer resolution for Xa. The spatial distance maps were 
computed from n = 1,895 excitatory neurons with at least one Xa or Xi region (75.3-77.0 
Mb) detected in a cell from three biological replicates. (E) Heat maps for probabilities of 
pairs of loci within a search radius of 500 nm in Xa (top) and Xi (bottom) by 1-Mb resolution 
DNA seqFISH+ in three major cell types. (F) Heat maps for probabilities of pairs of loci 
within a search radius of 150 nm in Xa (top) and Xi (bottom) by 25-kb resolution DNA 
seqFISH+ in three major cell types. (G) Physical distance as a function of genomic distance 
for Xa (red) and Xi (blue) in three major cell types by 1-Mb resolution DNA seqFISH+. 
Color dots represent each pair of genomic loci, and colored lines represent median spatial 
distance of pairs of genomic loci within genomic distance bins. (H) Box plots with spatial 
distance for pairs of genomic loci within 1-Mb genomic distance in 1-Mb resolution data in 
the Xa and Xi in three major cell types, overlaid with individual pairs of genomic loci. 
Contrary to the larger-scale genomic distance in (G), at the finer scale below 1 Mb, Xa had 
smaller spatial distances between pairs of genomic loci compared to Xi. The boxplots 
represent the median, interquartile ranges, whiskers within 1.5 times the interquartile range, 
and p values were calculated by two-sided Wilcoxon’s signed rank-sum test. The 
quantification was performed from n = 1,895, 155, and 152 cells for excitatory neurons, 
Pvalb inhibitory neurons, astrocytes using a subset of spatially separated Xa or Xi in (B), 
(C), (E), (G), (H) and using a subset of at least one of the Xa or Xi regions (75.3-77.0 Mb) 
detected in a cell in (D and F) from three biological replicates.  
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Fig. S9. Active and inactive X chromosome organization in subpopulations of excitatory 
neurons.  

(A) UMAP of conformation of the 25-kb resolution data for Xa and Xi colored by structural 
subclusters (top) and Xa and Xi identities (bottom). (B) Pairwise spatial distance maps from 
all 12 structural clusters of the 25-kb resolution data in chromosome X. n = 805 excitatory 
neurons with >20% loci detected for both Xa and Xi regions (75.3-77.0 Mb) from three 
biological replicates in (A) and (B). 

 
5.8 METHODS 
 
Materials and Methods 
 
Primary and readout probe design and synthesis 
 
RNA seqFISH primary probes for marker genes were designed similarly to our previous 
studies (32, 53, 87). In brief, individual RNA species were encoded in fluorescent channel 1 
(635 nm) and 2 (561 nm) at each hybridization round and sequentially called. To implement 
this, 35-nt RNA target binding sequences, four 15-nt unique readout probe binding sites 
encoded for each RNA target, and a pair of 20-nt primer binding sites at the 5′ and 3′ ends of 
the probe for probe generation were concatenated. Marker genes were selected based on 
previous studies with mouse brain samples (46–50, 52, 53, 92). 
 
DNA seqFISH+ encoding strategy and primary probe design with GRCm38/mm10 mouse 
genome are described in detail in our previous study (32). In brief, a total of 80 serial rounds 
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as a 16-base coding scheme with 5 rounds of barcoding was encoded in fluorescent channel 
1 (635 nm) and 2 (561 nm) for the 1-Mb resolution data using a subset of barcodes in the 
codebook (table S1). In addition, a combined strategy of diffraction limited spot imaging (60 
serial rounds) and chromosome painting (20 serial rounds) was encoded in fluorescent 
channel 3 (488 nm) to resolve 20 distinct regions (1.5-2.4-Mb in size) with 25-kb resolution. 
In total, 3,660 loci were targeted including 2,460 loci at 1-Mb resolution for 20 chromosomes 
and 1,200 loci at 25-kb resolution for the specific 20 distinct regions. To implement this, 35-
nt genomic DNA target binding sequences, five 15-nt unique readout probe binding sites 
encoded for each barcoding round, and a pair of 20-nt primer binding sites at 5′ and 3′ end 
of the probe for probe generation were concatenated. 
 
The repetitive element DNA FISH probes (LINE1, SINEB1, Telomere, MinSat) were 
designed as described before (32). Similarly to Telomere and MinSat probes, the MajSat 
probe (Integrated DNA Technologies) was designed as a dye-conjugated 15-nt probe using 
the following sequence (5′-TGTCCACTGTAGGAC), which directly targeted genomic 
DNA. In addition, rDNA primary probes (a total of 101 probes) targeting 45S pre rRNA gene 
(GenBank: X82564.1) were designed similarly to DNA seqFISH+ probes except for 
containing four of 15-nt unique readout probe binding sites specific to rDNA primary probes. 
 
RNA seqFISH and DNA seqFISH+ primary probes were generated from oligoarray pools 
(Twist Bioscience) with enzymatic amplifications as previously described (32) based on 
Oligopaint technologies (21). 
 
RNA seqFISH, DNA seqFISH+ and sequential immunofluorescence readout probes (5’ 
amine-modified DNA oligonucleotides, Integrated DNA Technologies) of 12-15-nt in length 
were designed and conjugated to Alexa Fluor 647-NHS ester (Invitrogen A20006) or Cy3B-
NHS ester (GE Healthcare PA63101) or Alexa Fluor 488-NHS ester (Invitrogen A20000) 
in-house as described previously (32). 
 
DNA-antibody conjugation 
 
Preparation of the oligonucleotide-conjugated antibodies was performed, as described 
previously (32, 58). The BSA-free primary antibodies were purchased from commercial 
vendors as listed below. As a conjugation strategy, the crosslinking of 5’ thiol-modified 18-
nt DNA oligonucleotides (Integrated DNA Technologies) to lysine residues on antibodies 
was performed via PEGylated SMCC cross-linker (SM(PEG)2) (Thermo Scientific Thermo 
Scientific 22102). As an alternative conjugation strategy, SiteClick R-PE Antibody Labeling 
Kit (Life Technologies S10467) was also used to crosslink 5’ DBCO-modified 18-nt DNA 
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oligonucleotides (Integrated DNA Technologies) to the specific sites on primary antibodies. 
The oligonucleotide-conjugated primary antibodies were individually validated by SDS-
PAGE gel and immunofluorescence, and stored in 1× PBS at −80 °C as small aliquots. 
 
The oligonucleotide DNA-conjugated primary antibodies used were as follows: mH2A1 
(Abcam ab232602), H3K27ac (Active Motif 39133), H3K27me2 (Cell Signaling 9728BF), 
H3K27me3 (Cell Signaling 9733BF), H3K4me2 (Cell Signaling 9725BF), H3K9me3 
(Diagenode MAb-146-050), H4K20me3 (Active Motif 39671), MeCP2 (Cell Signaling 
3456BF), RNA polymerase II (phospho S5) (Abcam ab5408), SF3a66 (Abcam ab77800). 
Two antibodies (H3K27ac, RNA polymerase II (phospho S5)) were excluded from the 
downstream analysis owing to the signal dimness (H3K27ac) and incomplete penetration of 
the antibody (RNA polymerase II (phospho S5)). 
 
Tissue slice preparation 
 
All animal care and experiments were carried out in accordance with Caltech Institutional 
Animal Care and Use Committee (IACUC) and NIH guidelines. 6-7-week-old C57BL/6J 
female mice were obtained from The Jackson Laboratory. 
 
To attach tissue sections, the 24 × 60 mm coverslips (VWR 16004-312) were cleaned by 
sonication in 1 M sodium hydroxide and 100% ethanol in Ultrasonic Cleaner (Fisher 
Scientific FS20) three times for 10 minutes each, followed by a 15-minute sonication in 
100% acetone. The coverslips were then immersed in 2% (v/v) (3-Aminopropyl) 
triethoxysilane (Sigma A3648) prepared in acetone for 2 minutes at room temperature. Then 
the coverslips were rinsed twice in water and heat treated at 90°C for 20 minutes. Next the 
coverslips were treated with 90 µg/ml of Poly-D-lysine (Sigma P7280) in 1× PBS (Invitrogen 
AM9625) for 16 hours at room temperature, followed by 3 times rinsing in nuclease-free 
water. The coverslips were then air-dried and attached to a microscope slide (VWR 48312-
004) to facilitate the collection of cryo-sections. The coverslips were freshly prepared as 
required for sectioning below.  
 
Mice were perfused for 4 minutes with perfusion buffer (10 U/ml Heparin (Sigma-Aldrich 
H3149), 0.5% Sodium nitrite (w/v) (Sigma-Aldrich 237213) in 1xPBS) upon isoflurane 
anesthesia, followed by fresh 4% PFA (EMS 15714) in 1× PBS buffer for 4 minutes with a 
flow rate of 5 mL/min through the peristaltic pump (Masterflex MP-07557-00). The mouse 
brains were dissected out of the skull and immediately placed in 4% PFA in 1× PBS for 16 
hours at 4°C. The brains were then immersed in 10% (w/v) RNAse-free Sucrose (Amresco 
0335–2.5KG) in 1x PBS for 1 hour at room temperature, then 20% (w/v) RNAse-free 
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Sucrose in 1xPBS, until the brains sank. Next the samples were incubated for 16 hours in 
30% (w/v) RNase-free Sucrose in 1× PBS at 4°C. After the brains sank, they were embedded 
in OCT (Sakura 4583) individually and frozen in a bath of dry ice and ethanol. The samples 
were stored at −80°C until 10-15 μm coronal sections were cut using a cryostat (Leica 
CM3050). The sections were immediately placed on the functionalized coverslips described 
above. The tissue slices were stored at −80°C until the tissue slice experiment. 
 
Tissue slice experiment 
 
The combined sequential immunofluorescence, RNA seqFISH and DNA seqFISH+ sample 
preparation was performed similarly to our previous study (32) with some modifications for 
tissue slice experiments. The tissue slice samples were dried, and permeabilized with 70% 
ethanol pre-chilled to −20°C at room temperature for 15 minutes. The samples were then 
dried and further permeabilized with 8% Triton-X (Sigma-Aldrich 93443) in 1× PBS at room 
temperature for 30 minutes after attaching a sterilized silicon plate (McMASTER-CARR 
86915K16) with a punched hole to the coverslip to use it as a chamber. The samples were 
washed three times with 1× PBS and blocked at room temperature for 15 minutes with 
blocking solution consisting of 1× PBS, 10 mg/mL UltraPure BSA (Invitrogen AM2616), 
0.3% Triton-X, 0.1% dextran sulfate (Sigma D4911) and 0.5 mg/mL sheared Salmon Sperm 
DNA (Invitrogen AM9680). Then oligonucleotide DNA-conjugated primary antibodies (see 
‘DNA-antibody conjugation’) with an estimated each concentration of 1-5 ng/μl were 
incubated in the blocking solution with 100-fold diluted SUPERase In RNase Inhibitor 
(Invitrogen AM2694) at room temperature for 18-24 hours. The samples were washed with 
1× PBS three times and incubated at room temperature for 15 minutes, fixed with freshly 
made 4% formaldehyde in 1× PBS at room temperature for 5 minutes, and washed with 1× 
PBS six times and incubated at room temperature for 15 minutes. The samples were then 
further fixed with 1.5 mM BS(PEG)5 (PEGylated bis(sulfosuccinimidyl)suberate) (Thermo 
Scientific A35396) in 1× PBS at room temperature for 30 minutes, followed by quenching 
with 100 mM Tris-HCl pH7.4 (Alfa Aesar J62848) at room temperature for 5 minutes. Then 
the samples were washed with 1xPBS and 70% ethanol three times, and air dried by 
removing the custom silicon chamber. 
 
After the immunofluorescence preparation steps, custom-made flow cells (fluidic volume 
about 40 μl), which were made from glass slide (25 × 75 mm) with 1-mm thickness and 1-
mm diameter holes and a PET film coated on both sides with an acrylic adhesive with total 
thickness 0.25 mm (Grace Bio-Labs RD481902), were attached to the coverslips. The 
samples were rinsed three times with a 50% denaturation buffer consisting of 50% 
formamide (Invitrogen AM9342) and 2× SSC, and incubated at room temperature for 15 
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minutes. Then the samples were optionally heated at 80°C for 3 minutes (this step was 
performed for replicate 1 and 2, and omitted for replicate 3), and washed with 2× SSC twice. 
Then RNA seqFISH primary probe pools (1-10 nM per probe) including mRNA, intron and 
non-coding RNA targets were hybridized in a 50% hybridization buffer consisting of 50% 
formamide, 2× SSC and 10% (w/v) dextran sulfate (Millipore 3710-OP). The hybridization 
was performed at 37°C for 3 days in a humid chamber. After the hybridization step, the 
samples were washed with a 40% wash buffer consisting of 40% formamide, 2× SSC and 
0.1% Triton X-100 at 37°C for 15 minutes, followed by three rinses with 4× SSC, and stored 
at 4°C until imaging. Then the samples were imaged as described below (see ‘seqFISH 
imaging’). Note that H4K20me3 immunofluorescence imaging was also performed at this 
step for validation and alignment. 
 
After the completion of RNA seqFISH imaging, the samples were prepared for DNA 
seqFISH+ imaging. The samples were rinsed with 1× PBS, and incubated with 100-fold 
diluted RNase A/T1 Mix (Thermo Fisher EN0551) in 1× PBS at 37°C for 1 hour. Then 
samples were rinsed three times with 1× PBS, followed by three rinses with the 50% 
denaturation buffer and an incubation at room temperature for 15 minutes. Then the samples 
were heated on the heat block at 90°C for 7 minutes in the 50% denaturation buffer, by 
sealing the holes of the custom chamber with aluminum sealing tapes (Thermo Scientific 
232698). After the heating, the samples were rinsed with 2× SSC and hybridized with a 
powder of DNA seqFISH+ primary probe pools, which were dried by speed-vac and 
consisted of about 1 nM each DNA seqFISH+ probe, 1 μM LINE1, 1 μM SINEB1 and 100 
nM 3632454L22Rik locus fiducial marker probes(32), resuspended in a 40% hybridization 
buffer consisting of 40% formamide, 2× SSC and 10% (w/v) dextran sulfate. For the rDNA 
FISH experiment, about 20 nM each rDNA probe and 100 nM 3632454L22Rik locus fiducial 
marker probe were resuspended in the 40% hybridization buffer. The DNA seqFISH+ 
primary probe hybridization was performed at 37°C for 3-5 days in a humid chamber. After 
hybridization, the samples were washed with a 30% wash buffer consisting of 30% 
formamide, 2× SSC and 0.1% Triton X-100 at room temperature for 15 minutes, followed 
by three rinses with 4× SSC. 
 
Then samples were further processed to ‘padlock’ DNA seqFISH+ primary probes on the 
genomic DNA in order to increase the stability of primary probes and prevent the loss of 
signals during 80 rounds of DNA seqFISH+ imaging routines (see ‘seqFISH imaging’). A 
31-nt global ligation bridge oligonucleotide (Integrated DNA Technologies, 5′-
TCAGTTGCAGCGCATGCTCGACCAAGGCTGG) was hybridized in a 20% 
hybridization buffer consisting of 20% formamide, 10% dextran sulfate (Sigma D4911) and 
4× SSC at 37°C for 2 hours. The global ligation bridge was designed to hybridize to the 15-



204 
 

 

nt sequence of the DNA seqFISH+ primary probes at the 5′ end and the 16-nt sequence at 
the 3′ end. Then, samples were washed with a 12.5% wash buffer consisting of 12.5% 
formamide, 2× SSC and 0.1% Triton X-100 three times and incubated at room temperature 
for 5 minutes, followed by three rinses with 1× PBS. The samples were then incubated with 
20-fold diluted Quick Ligase in 1× Quick Ligase Reaction Buffer from Quick Ligation Kit 
(NEB M2200) supplemented with an additional 1 mM ATP (NEB P0756) at room 
temperature for 1 hour to allow ligation reaction between the 5′- and 3′-ends of the DNA 
seqFISH+ primary probes. Then the samples were washed with the 12.5% wash buffer, 
followed by three rinses with 1× PBS. 
 
The samples were further processed for amine modification and post-fixation to increase the 
stability of the primary probes across imaging rounds along with the ligation (32). First, the 
samples were rinsed with 1× labelling buffer A, followed by incubation with tenfold diluted 
Label IT amine modifying reagent in 1× labelling buffer A from Label IT nucleic acid 
modifying reagent (Mirus Bio MIR 3900) at room temperature for 45 minutes. Second, after 
three rinses with 1× PBS, the samples were fixed with 1.5 mM BS(PEG)5 in 1× PBS at room 
temperature for 30 minutes, followed by quenching with 100 mM Tris-HCl pH7.4 at room 
temperature for 5 minutes. Then the samples were washed with the 55% wash buffer at room 
temperature for 5-15 minutes, followed by three rinses with 4× SSC, and stored at 4°C until 
imaging. Then the samples were imaged for DNA seqFISH+ and sequential 
immunofluorescence as described below (see ‘seqFISH imaging’).  
 
After the completion of DNA seqFISH+ and sequential immunofluorescence imaging, 
Concanavalin A (ConA) staining and imaging (63) were performed for nuclear segmentation. 
The samples were incubated with a ConA solution consisting of 20-100 μg/mL Alexa Fluor 
488 conjugate of ConA (Invitrogen C11252), 1× PBS and 0.3% Triton X-100 at room 
temperature for 2 hours, and washed with the 55% wash buffer at room temperature for 2 
minutes, followed by a rinse with 4× SSC. Then the samples were imaged as described below 
(see ‘seqFISH imaging’). 
 
Cell culture experiment 
 
E14 mouse ES cells (E14Tg2a.4) from Mutant Mouse Regional Resource Centers were 
maintained under serum/LIF condition as previously described (32, 87). NIH/3T3 cells 
(ATCC CRL-1658) were cultured as previously described (53, 93). 
 
The combined sequential immunofluorescence, RNA seqFISH and DNA seqFISH+ protocol 
was performed as previously described (32) for E14 mouse embryonic stem cells and 
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NIH/3T3 mouse fibroblast cell line with ITS1 RNA FISH probe and rDNA FISH probes 
used in the tissue slice experiments. 
 
Image acquisition 
 
Microscope setup 
All imaging experiments were performed with the confocal fluorescence imaging platform 
and fluidics delivery system similar to previous studies (32, 53, 87). The microscope (Leica 
DMi8) was equipped with a confocal scanner unit (Yokogawa CSU-W1), a sCMOS camera 
(Andor Zyla 4.2 Plus), a 63× oil objective (NA = 1.40, Leica 11506349), and a motorized 
stage (ASI MS2000). Fiber coupled lasers (635, 561, 488, and 405 nm) from CNI and 
Shanghai Dream Lasers Technology and filter sets from Semrock were used. The custom-
made automated sampler was used to move to the well of the designated hybridization buffer 
corresponding to each hybridization round from a 2.0-mL 96-well plate (Corning 3960) and 
hybridization buffers were moved through a multichannel fluidic valve (IDEX Health & 
Science EZ1213-820-4) to the custom-made flow cell using a syringe pump (Hamilton 
Company 63133-01). Other buffers used for the imaging routine were also moved through 
the multichannel fluidic valve to the custom-made flow cell using the syringe pump. The 
control of imaging and the automated fluidics delivery system was achieved by a custom-
written script in μManager (94). 
 
seqFISH imaging 
The sequential hybridization and imaging routines were performed similarly to those 
previously described (32, 53, 87) with some modifications. Briefly, the sample with the 
custom-made flow cell was first connected to the automated fluidics system on the motorized 
stage on the microscope. Fields of view (FOVs) (4 FOVs in replicate 1, 5 FOVs in replicate 
2, and 8 FOVs in replicate 3 of the mouse cortex) were registered using nuclei signals stained 
with DAPI solution consisting of 5 μg/mL DAPI (Sigma D8417) and 4× SSC. First, RNA 
seqFISH and H4K20me3 immunofluorescence imaging was performed with the sequential 
hybridization and imaging routines described below. After the completion of the imaging, 
the samples were disconnected from the microscope, and proceeded to the DNA seqFISH+ 
procedures (see ‘Tissue slice experiment’). For the DNA seqFISH+ and sequential 
immunofluorescence imaging, the registered FOVs for RNA seqFISH were loaded and 
manually shifted to image the same FOVs as RNA seqFISH imaging. The DNA seqFISH+ 
and sequential immunofluorescence imaging was performed with the sequential 
hybridization and imaging routines described below, followed by ConA staining and 
imaging. 
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All the following sequential hybridization and imaging routines were performed at room 
temperature on the microscope. For the sequential hybridization routine, the serial 
hybridization buffer consisting of two or three unique readout probes (10-50 nM) with 
different fluorophores (Alexa Fluor 647, Cy3B or Alexa Fluor 488) and 10% EC buffer (10% 
ethylene carbonate (Sigma E26258), 10% dextran sulfate (Sigma D4911) and 4× SSC) was 
picked up from a 96-well plate and incubated with the sample for 20 minutes. After the serial 
hybridization buffer incubation, the samples were washed with 1 mL of a 4× SSCT buffer 
consisting of 4× SSC and 0.1% Triton-X, followed by a wash with 330 μL of the 12.5% wash 
buffer. Then, the samples were rinsed with about 200 μL of 4× SSC, followed by a staining 
with about 200 μL of the DAPI solution for 30 seconds. Next, an anti-bleaching buffer 
consisting of 50 mM Tris-HCl pH 8.0 (Invitrogen 15568025), 4× SSC, 3 mM Trolox (Sigma 
238813), 10% D-glucose (Sigma G7528), 100-fold diluted catalase (Sigma C3155), 1 
mg/mL glucose oxidase (Sigma G2133) was flowed through the sample for imaging. The 
anti-bleaching buffer was covered by a mineral oil (Sigma-Aldrich M5904) to prevent the 
progress of the enzymatic reaction in the tube. After image acquisition described below, 1 
mL of the 55% wash buffer was flowed for 1 minute to strip off readout probes, followed by 
an incubation for 1 minute and rinsing with 4× SSC. The above serial hybridization, imaging 
and signal extinguishing steps were repeated until the completion of all rounds. For the RNA 
seqFISH and DNA seqFISH+ experiments, blank images containing only autofluorescence 
of the tissue section were imaged at the beginning and end of the routines. For the DNA 
seqFISH+ experiments, fiducial marker images containing only fiducial markers were 
obtained at the beginning and end of the routines for image registration. 
 
For the imaging routine, snapshots were acquired per fluorescent channel per field of view 
with 0.75 μm z-steps over 10 μm z-slices for RNA seqFISH for mRNA and intron targets, 
and with 0.25 μm z-steps for RNA seqFISH for non-coding RNA targets (ITS1, Malat1, 
Xist), DNA seqFISH+, sequential immunofluorescence and ConA staining. RNA seqFISH 
imaging was performed with 635 nm, 561 nm, 488 nm fluorescent channels except for a 
DAPI alignment hybridization round in the end with 635 nm, 561 nm, 488 nm and 405 nm 
fluorescent channels. During RNA seqFISH, 635 nm and 561 nm fluorescent channels 
contained RNA seqFISH targets while a 488 nm fluorescent channel contained polyA 
staining for an alignment. Importantly, we omitted the DAPI imaging during RNA seqFISH 
imaging routines to prevent the nuclear damage with 405 nm laser exposure prior to DNA 
seqFISH+ preparation in the tissue sections. DNA seqFISH+ imaging was performed with 
635 nm, 561 nm, 488 nm and 405 nm fluorescent channels, containing DNA seqFISH+ 
targets in the first 3 fluorescent channels and DAPI staining in the last 405 nm fluorescent 
channel. The fiducial markers were also included in the 3 fluorescent channels to allow image 
registration at the subpixel resolution. Sequential immunofluorescence imaging was 
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performed with 635 nm, 561 nm, 488 nm, and 405 nm fluorescent channels, containing 
primary antibody targets in the first 2 fluorescent channels and DAPI staining in the last 405 
nm fluorescent channel. At the end of all imaging routines, images were manually checked 
to repeat problematic hybridization rounds such as off-focus and intensity saturation. In total, 
it took approximately 3-4 days to complete the 80 rounds of the hybridization and imaging 
routine under our DNA seqFISH+ conditions. 
 
Image analysis 
 
The image analysis was performed using ImageJ (v1.51s), Python (v3.7.4), MATLAB 
R2019a and ilastik (v1.3.3) (95) as described previously (32) with modifications and 
implementation of 3D nuclear segmentation. 
 
3D nuclear segmentation 
DAPI images from the first round of DNA seqFISH+ imaging and ConA images from the 
last round of imaging were aligned and chromatic shifts were corrected. The images were 
preprocessed for training by binning the image down by a factor of 4 in the x and y dimension 
with the sum intensity. The preprocessed images were imported into the pixel classification 
module in ilastik (95), an interactive supervised machine learning software, and trained using 
all possible features. For the DAPI images, the interior, edge and exterior of the DAPI signal 
were used as classifiers. For the ConA images, the ConA signal, ConA signal edge, and 
ConA signal holes (location of nuclei) were trained as classifiers. The probability maps for 
each position were output as hdf5 files, which were then read into MATLAB. The nuclear 
edge probability was defined as the probability of ConA edge times the probability of DAPI 
signal edge time 1 minus the probability of DAPI interior time 1 minus the probability of 
ConA exterior. Seeds for the seeded watershed algorithm were created by multiplying the 
DAPI interior probability with 1 minus the probability of ConA edge and setting an 
appropriate probability threshold. Finally, background pixels were identified as DAPI 
exterior probability above an appropriate threshold. The array for watershed was then formed 
by taking the edge probability array and creating global minima at the seed and background 
pixels. A watershed algorithm was then performed on the resulting array. Objects smaller 
than an appropriate area and objects greater than an appropriate area were removed from the 
resulting segmentation to achieve a final nuclear segmentation. 
 
Preprocessing of images 
A flat field correction was applied by dividing the normalized background illumination with 
each of the fluorescence images to correct the non-uniform background intensities while 
preserving the intensity profile of the fluorescent points whenever necessary. The 
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background signal was subtracted using the ImageJ rolling ball background subtraction 
algorithm with a radius of 3 pixels for RNA seqFISH (mRNA and intron targets) and DNA 
seqFISH+ images. The background subtraction was not performed for non-coding RNA and 
immunofluorescence images except for the foci detection analysis described below. 
 
FISH spot detection and fitting 
RNA seqFISH and DNA seqFISH+ spot locations were obtained as described previously(32) 
by using a Laplacian of Gaussians filter, semi-manual thresholding and a 3D local maxima 
finder. Subsequently the DNA seqFISH+ spot locations were super resolved using a 3D 
radial center algorithm (96, 97) found on the Parthasarathy lab website 
(https://pages.uoregon.edu/raghu/particle_tracking.html). 
 
Correction of chromatic effects and alignment 
Chromatic aberration shifts between different fluorescent channels were corrected by 
applying the calculated offsets using the fiducial markers or 0.2 μm TetraSpeck 
Microspheres (Thermo Scientific T7280) appeared in each fluorescent channel.  
 
All images were aligned to the initial hybridization (hyb1) image in DNA seqFISH+. To 
align RNA seqFISH images in different hybridization rounds, reference channels (polyA 
staining in 488 nm fluorescent channel) were first aligned to RNA seqFISH hyb1 image 
using 3D phase correlations along every axis iteratively to find a consensus transformation 
for alignment as previously described (87). The aligned DAPI image taken at the last round 
of RNA seqFISH imaging was further aligned to DNA seqFISH+ hyb1 image and the 
obtained transformation was propagated to all the other RNA seqFISH images, considering 
the differences of z-sampling (0.75 μm z-steps for RNA seqFISH and 0.25 μm z-steps for 
DNA seqFISH+). Then further alignment to correct any rotation between RNA seqFISH and 
DNA seqFISH+ images was done as previously described (32) using DAPI and H4K20me3 
staining taken at both RNA seqFISH and DNA seqFISH+ imaging routines. Similarly, to 
align sequential immunofluorescence images in different hybridization rounds, reference 
channels (DAPI staining in 405 nm fluorescent channel) were aligned to DNA seqFISH+ 
hyb1 image using 3D phase correlations. To align DNA seqFISH+ spots in different 
hybridization rounds at subpixel resolution, identified fiducial markers in each fluorescent 
channel (635 nm, 561 nm, and 488 nm) were used in Python as described previously (32) 
with modified parameters. 
 
Decoding for RNA seqFISH 
The identified spots within individual 3D nuclear ROIs obtained by the 3D nuclear 
segmentation step were collected, and RNA identities were resolved by checking the identity 
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of the hybridization round and fluorescent channel. 
 
Decoding for DNA seqFISH+ 
Both 1-Mb resolution (635 nm and 561 nm fluorescent channels) and 25-kb resolution (488 
nm fluorescent channel) DNA seqFISH+ decoding were performed as described previously 
(32). Decoding was performed at each entire field of view, and then the identified spots 
within individual 3D nuclear ROIs were collected. 
 
Nuclear marker image analysis 
Raw intensity values for all the voxels within individual 3D nuclear ROIs were obtained for 
all immunofluorescence raw images as well as repetitive element DNA (LINE1, SINEB1, 
Telomere, MajSat, MinSat, and rDNA), non-coding RNA (ITS1, Malat1, and Xist) and 
DAPI raw images, and exported as csv files. 
 
The edge detection for chromatin marker exterior quantification was performed as described 
previously (32). In brief, find edges function in ImageJ was performed on background 
subtracted images (rolling ball radius 3 pixels), and then the intensity values were obtained 
similarly to the raw images. 
 
The foci detection for chromatin markers was performed with Yen’s auto threshold method 
in ImageJ on background subtracted images (rolling ball radius 9 pixels) for each slice in the 
z-stack to binarize the images, followed by filling and opening of the binary images to 
remove internal voids and shot noise. After objects smaller than a voxel of 20 or greater than 
a voxel of 100,000 were removed, the remaining objects were labeled with unique numbers, 
which correspond to individual nuclear marker foci. The labeled foci within individual 3D 
nuclear ROIs were exported as csv files. 
 
Conversion of voxel information to physical distance 
After image analysis steps above, voxel information was converted to physical distance 
based on our microscope setup and imaging condition with 0.103 μm for x and y and 0.250 
μm (or 0.750 μm in mRNA and intron seqFISH) for z voxels for the subsequent downstream 
data analysis. 
 
Hi-C data analysis 
 
Hi-C data for mouse cortex (6, 56) was obtained from NCBI GEO (accession GSE35156) 
and was processed using Juicer tools (98). Contact maps containing Knight–Ruiz normalized 
counts (99) were obtained. Hi-C data were binned at 25-kb and 1-Mb resolution, and 
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overlapping regions within a given bin size for 1-Mb resolution were excluded from the 
analysis. Note that while the Hi-C data was originally used with 40-kb binning (6, 56), we 
used it with higher resolution of 25-kb binning to directly compare to our 25-kb resolution 
DNA seqFISH+ data. 
 
CTCF and Rad21 ChIP-seq data analysis 
 
Processed CTCF and Rad21 ChIP-seq data in mouse brain (77) were kindly provided by 
Rebecca J. Oakey. Peaks were identified using peak shifts and window sizes of 138 bp and 
144 bp for CTCF and Rad21, respectively with a False Discovery Rate below 10% (77). The 
mm10 genomic coordinates for the DNA seqFISH+ loci were converted to mm9 using the 
UCSC Genome Browser LiftOver tool and were compared to the ChIP-seq peaks. 
 
RNA seqFISH data analysis 
 
The mRNA counts in each nuclear segmentation were normalized within each cell by the 
total Eef2 mRNA counts. Then each gene is z-score normalized across all the cells. 
Hierarchical clustering was then performed on the normalized cell by gene matrix using 
Mathematica function “Agglomerate” with Ward distance. The clustering results obtained 
above were visualized with uniform manifold approximation and projection (UMAP) (100) 
using a UMAP-learn library in Python. The cell type annotation is based on the top 
differentially expressed genes. Two excitatory neuron clusters were obtained and merged 
into a single cluster for the remaining analysis. In addition, clusters for oligodendrocyte 
precursor cells and oligodendrocytes were merged due to the low number of cells.  
  
scRNA-seq data analysis 
 
Adult mouse primary visual cortex scRNA-seq data (47) were obtained from NCBI GEO 
(accession GSE71585) with the annotation and processed TPM files. We used the cell-type 
annotations from the original study, representing 10 major cell types. For the excitatory 
neuron expression profile, we used layer 2/3 excitatory neurons. We compared the z-score 
normalized gene expression profiles of 56 genes that were commonly profiled by scRNA-
seq and RNA seqFISH. The degree of similarity was evaluated by using the Pearson 
correlation. 
 
3D visualization of the data 
 
DNA seqFISH+ data and immunofluorescence signals were visualized in 3D using PyMOL 
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(Molecular Graphics System, v.2.0 Schrödinger) as described previously (32). DNA 
seqFISH+ data were visualized by generating a .xyz file containing the x, y and z coordinates 
of each FISH probe coordinate. Each FISH probe coordinate was displayed as a sphere, and 
sticks were drawn between genomically adjacent coordinates for some of the visualization. 
Immunofluorescence signals were visualized by displaying a surface around x, y and z 
coordinates with intensity z-score values above 2 from raw images or with the binarized 
images from the foci detection. 
 
Estimation for DNA seqFISH+ detection efficiency 
 
The detection efficiency of DNA seqFISH+ for the post-mitotic diploid cells in the female 
mouse brain cortex was estimated as follows. The total number of expected FISH spots for 
3,660 loci in the autosomal or X chromosomes is 7,320 in the female diploid cells. In our 
DNA seqFISH+ experiments, we observed 2,813.0 ± 1,334.0 (median ± s.d.) and 3,884.0 ± 
1,252.9 (median ± s.d.) spots per cell for all 2,762 cells and a subset of 701 cells found at the 
center z sections, respectively, and their detection efficiencies can be estimated as 38.4 ± 
18.2% (median ± s.d.) and 53.1 ± 17.1% (median ± s.d.), showing the similar detection 
efficiency with DNA seqFISH+ experiments in mouse ES cells (32). 
 
Spatial separation of homologous chromosomes 
 
Both for the 1-Mb and 25-kb resolution DNA seqFISH+ data, the whole homologous 
chromosomes or chromosomal regions were separated by the DBSCAN clustering algorithm 
in scikit-learn library in Python as performed previously (32). In the further downstream 
analysis that required homologous chromosome separation, only chromosomes with two 
homologous chromosomes detected in a cell were used for the 1-Mb data while 
chromosomes with at least one chromosomal region detected in a cell were used for the 25-
kb data. The lack of two homologous chromosome detection could be due to the spatial 
intermingling of homologous chromosomes, which typically happened with the 1-Mb 
resolution data, or incomplete coverage of the nucleus in the z sections of the images.  
 
To separate the Xa and Xi, z-score normalized mean Xist intensities per separated 
homologous chromosomes across detected loci were first calculated. Then the z-score 
normalized mean Xist intensities were thresholded with z-score equal or below 1 for Xa and 
z-score above 1 for Xi. This gave 980 Xa and 936 Xi (51.1% vs. 48.9%) in the 1-Mb 
resolution data and 2,019 Xa and 1,956 Xi (50.8% vs. 49.2%) in the 25-kb resolution data 
from 2,762 cells in the three biological replicates. 
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Spatial distance versus genomic distance analysis 
 
The 3D coordinates with μm units (x: 0.103, y: 0.103, z: 0.250 μm per voxel) were used to 
compute the spatial distance of pairs of loci from DNA seqFISH+ data. To calculate the 
median spatial distance from given pairs of loci within a given homologous chromosome or 
chromosomal region across all cells or cells in each cell type for the 1-Mb and 25-kb 
resolution data, we calculated the Euclidean distances between all pairs of detected loci 
within only homologous chromosomes that were spatially separated in each cell, and 
tabulated them with their genomic distances. Similarly, to calculate the quartile spatial 
distance from given pairs of loci within chromosomes across all cells or cells in each cell 
type for the 1-Mb resolution data, we calculated the Euclidean distances between all pairs of 
detected loci within individual chromosomes without separating homologous chromosomes 
in each cell, and tabulated them with their genomic distances. For the 1-Mb resolution data, 
both median spatial distances within homologous chromosomes and quartile spatial distances 
within chromosomes in each cell were highly correlated. Those spatial distance maps in each 
chromosome were compared with the Hi-C maps using Spearman correlation. The spatial 
distance of inter-chromosomal loci was similarly computed by calculating the quartile spatial 
distance from given pairs of inter-chromosomal loci across cells in each cell type for the 1-
Mb resolution data. 
 
To compute the relationships between spatial distances between pairs of loci versus genomic 
distances, the pairs of genomic loci were grouped at given genomic bins, and median 
distances from each genomic bin were computed using quartile spatial distance within 
chromosomes for the 1-Mb resolution data and median spatial distance within homologous 
chromosomal regions for the 25-kb resolution data. 
 
DNA spatial proximity map analysis 
 
To generate pairwise spatial proximity maps from the DNA seqFISH+ dataset, the spatial 
distance of pairs of loci were first computed as described above. Then the fractions of pairs 
of loci within a certain radius were computed. For the 1-Mb resolution data, we used all 
detected pairs of loci within individual cells, while for the 25-kb resolution data, we used 
detected pairs of loci within individual chromosomal regions in each homologous 
chromosome. We used a search radius of 500 nm for the 1-Mb resolution data and 150 nm 
for the 25-kb data based on the previous studies (22, 27, 30, 32). The pairwise spatial 
proximity maps were compared with the Hi-C maps using Pearson correlation.  
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Radial positioning analysis 
 
The segmented nuclei were first individually normalized using Euclidean distance 
transformation from their centroids using bwdist function in MATLAB, and then radial 
distances were scaled from 0 (nuclear center) to 1 (nuclear periphery), similarly to those 
previously described (101, 102). To investigate the radial positioning of the genomic loci, 
the radial scores at the rounded DNA seqFISH+ spot voxels were obtained from individual 
nuclei. The median radial positioning of loci in each cell type was then compared with the 
chromosome size, chromosome-wide gene density (73) and SF3a66 chromatin profiles. 
 
DAPI meta feature analysis 
 
Meta feature extraction from DAPI images was performed based on the previous studies for 
cell optical phenotype extraction in the fluorescence images (103, 104) with modifications. 
In brief, the following 16 imaging features were extracted from the DAPI images for each 
segmented nucleus using regionprops3 function in MATLAB, including volume, convex 
volume, surface area, three principal axis lengths, extent, solidity, total intensity, mean 
intensity, median intensity, standard deviation of intensity, lower quartile intensity, upper 
quartile intensity, skewness of intensity, kurtosis of intensity. Then each feature was 
normalized by computing z-score per each biological replicate. After combining cells from 
three biological replicates, cells were clustered based on the DAPI meta features with 
hierarchical clustering, visualized with UMAP (100) using a UMAP-learn library in Python, 
and compared to transcriptionally defined cell types. For this analysis, we used a subset of 
701 cells from three biological replicates at the center z sections in each image to eliminate 
the volume differences due to the incomplete coverage of nuclei in z sections. 
 
Global chromatin state analysis 
 
The averaged intensity for individual immunofluorescence markers in each segmented 
nucleus was first normalized by mean intensity of the marker from nuclei in each field of 
view to correct the intensity bias among fields of view and different replicates. After 
combining all the nuclei (n = 2,762 cells) from three biological replicates, the normalized 
intensity for each marker was further normalized by computing z-score. The normalized 
intensity profiles from 8 immunofluorescence markers for each cell were used to compare 
cell-type-specific global chromatin states as histograms and visualize individual cells in a 
reduced dimension with UMAP (100) using a UMAP-learn library in Python. 
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Nuclear foci analysis 
 
The processed foci from DAPI, MajSat, SF3a66, ITS1 and Xist images, corresponding to 
fluorescence intensity enriched voxels for each marker described under ‘Nuclear marker 
image analysis,’ were quantified to measure foci number per cell, individual foci volume 
(μm), total foci volume per cell (μm3), and radial position distribution at their centroids for 
each cell type. To obtain the radial positioning of H3K27me3 globules that do not correspond 
to the Xist foci, voxels with raw intensity z-score above 2 and Xist raw intensity z-score 2 or 
below were used for each cell type. Similar to the DAPI meta feature analysis above, we 
used a subset of 701 cells from three biological replicates at the center z sections in each 
image to eliminate the foci property differences originating from the incomplete coverage of 
nuclei in z sections. 
 
Chromatin profile and fixed point analysis 
 
The imaging-based chromatin profile analysis was performed using sequential 
immunofluorescence and 1-Mb resolution DNA seqFISH+ data as described previously (32). 
In brief, we calculated the spatial distances between each DNA locus and the nearest exterior 
of “hot” immunofluorescence voxel, defined by two standard deviations above the mean 
value for the edge processed each immunofluorescence intensity (described under ‘Nuclear 
marker image analysis’) in each nucleus. From this distance metric, we generated a 
“chromatin profile” by counting the percentage of cells in which each DNA locus is within 
300 nm of the exterior of each immunofluorescence mark, the resolution of the diffraction-
limited immunofluorescence images. The chromatin profiles among brain cell types and 
mouse ES cells (32) were compared with Pearson correlation. The chromatin profiles in each 
cell type were further compared to 1-Mb resolution gene density and radial positioning of 
loci with Pearson correlation and Spearman correlation. Using the chromatin profiles, fixed 
points were determined as loci that appear 2 standard deviations above the mean percentage 
score for each immunofluorescence mark in autosomes. 
 
Single chromosome domain analysis 
 
Normalization of pairwise spatial distance 
For each assigned allele ID (Xist state ID for X chromosome), we independently computed 
the Euclidean distance (in μm) between pairs of DNA loci, which were mapped to the 
reference locus IDs. Euclidean distances were set as NA for pairs of loci with at least one 
being undetected. Under rare occasions, in the same single-cell allele when more than one 
imaged loci were mapped to the same locus ID, we took the median of all available pairwise 
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Euclidean distances. Chromatin contacts within each single-cell allele  were represented as a 
separate  distance matrix.  
 
The raw Euclidean distances were normalized by expected values from genomic distances, 
to adjust for the basal level of interactions between adjacent loci in the linear genome (30). 
Briefly, between every pair of regions, we computed the genomic distance in kilobases for 
25-kb resolution data and the median spatial Euclidean distances over all detected single-cell 
alleles. We then constructed a local polynomial regression (loess) model between genomic 
and ensemble spatial distances, using the stats::loess() function with default parameters in R. 
For every pair of genomic loci i and j, the estimated spatial distance was predicted from the 
local polynomial model, and the normalized distances were calculated by: 
 

                                                       
 
Here Disti,j represents the raw spatial distance between loci i, j, and Expectedi,j is the 
expected distance predicted using the loess model as mentioned above. 
 
 
Proximity measurements between genomic loci 
Given that we were interested in loci with close proximities, we implemented a Gaussian 
kernel to convert spatial distances into a fixed range between 0 and 1, where loci with high 
spatial distances received proximity scores of zero and would not contribute to the variance 
characterization steps. The transformation into proximity score Ki,j is specified by the 
formula below, with Dist'i,j being the normalized distance from linear genome: 
 

                                                   
 
The band width parameter σ was chosen such that the proximity between genomic loci 
decreased exponentially and approached zero with large spatial distances. From the imaging 
results, we found that 0.4 𝜇m served as a cutoff distance for loci interaction, which we would 
like to use as the criteria for choosing 𝝈. By performing a grid search and comparing the 
resulting proximity scores versus raw spatial distance, we found that at 𝝈 = 0.4, 0.4 𝜇m 
corresponded to an average proximity score of 0.5, and at 1.5 𝜇m for all loci the proximity 
scores reached zero.  
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We also noticed that the presence of missing data could interfere with the quantitative 
characterization of heterogeneity between single-cell alleles. Therefore, we implemented a 
simple smoothing approach to the proximity matrices, where missing values were substituted 
by the mean of neighboring entries (pooling from entries within 1 unit of row/column 
indices). If missing data still existed after smoothing, they were assigned zeroes in the 
proximity matrix. 
 
Characterization of major variations 
Since single chromosomes in the 25-kb resolution data were represented as symmetric two-
dimensional proximity matrices, we vectorized each matrix by ‘rolling-out’ the upper 
triangle, and concatenated the vectorized proximity scores. In the new concatenated data, 
each row was the pairwise proximity score and each column represented one allele in a cell. 
Furthermore, for each chromosome we selected only cells with two identifiable copies 
available, and with both alleles below a predefined threshold of missing data frequencies 
(80%) in raw distance matrices. To adjust for bias resulting from overall packing level and 
missing data frequencies, the concatenated matrices were standardized and scaled using the 
Seurat::ScaleData() function (105), with average raw pairwise distances and total number of 
detected regions as latent variables to regress out. 
 
We then used principal component analysis (PCA) to characterize the variations of 
proximities in single-cell alleles, using a set of most variable features (pairwise proximities) 
based on standardized variances implemented in Seurat::FindVariableFeatures() (106). We 
selected interactions with the top 70% highest variance as the most variable features. 
Additionally, we also filtered input features by the frequency of being undetected across 
single-cell alleles, with a threshold of < 70% for 25kb data. PCA was performed using the 
Seurat::RunPCA() function on the concatenated variable features by alleles matrix for 
individual chromosomes. 
 
Heterogeneity of pairwise spatial proximities 
We projected PCA results onto all features by computing the dot product between scaled 
proximities and allele embeddings (rotated allele coordinates in PC space). The signs and 
absolute values of projected feature loadings indicated the dimensions of variations identified 
by each PC. By examining projected feature loadings and the approximate singular values of 
PCs for each chromosome in elbow plots, we chose to use the top 10 or 20 PCs to construct 
a shared nearest neighbor graph for Leiden clustering, using the function 
Seurat::FindNeighbors() and Seurat::FindClusters() (107, 108). The resolution setting was 
0.8, so as to return 10-20 structural clusters. To examine cluster distribution and pairwise 
spatial proximity patterns, we used UMAP (100) for visualization, and further computed the 
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median of pairwise spatial distance for every cluster to summarize cluster profiles. 
 
Boundary score analysis 
We also calculated boundary scores to characterize possible domain boundaries of different 
clusters. Similar to the previous study (23), we took the 4 (or 8 for ChrX) loci upstream and 
downstream of every target genomic locus (including itself) as two neighboring ‘domains’, 
forming two domains of sizes 5 (or 9 for ChrX) including the target locus. We then calculated 
and calculated the inter- and intra-domain distances between all detected loci, using 
genomically normalized distances. The raw boundary score was defined as the division of 
the median of inter-domain distances by the median of intra-domain distances. Accordingly, 
we computed boundary scores for single-cell alleles, and further normalize the boundary 
scores for all loci in single allele (x) to values between 0 and 1: 
 

                                                           
 
We then computed the median of each genomic locus for alleles from the same cluster, in 
order to derive a cluster-level boundary score matrix for every chromosome. 
 

 
5.9 SUPPLEMENTAL ITEMS 
 
Table S1 (provided as an Excel file): A list of genomic coordinates for the 3,660 DNA loci 
in DNA seqFISH+ with a corresponding codebook including unused barcodes. 

Table S2 (provided as an Excel file): A list of target RNAs with corresponding imaging 
rounds and fluorescent channels used in this study. 

Table S3 (provided as an Excel file): A list of target antibodies and repetitive DNA elements 
with corresponding imaging rounds and fluorescent channels for each biological replicate. 

Table S4 (provided as a CSV file): A summary of 2,762 cells profiled in this study. 
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Chapter 6 

CONCLUSION 

6.1 FUTURE DIRECTIONS  
 
It has become clearer how chromatin is organized in the nucleus with the advances of 
sequencing-based and imaging-based technologies. Here, by using integrated spatial 
genomic approaches, we revealed an organization of nascent transcriptome and genomic 
loci at 1-Mb and 25-kb resolution across cell types at the single-cell levels. These results 
provide the insights into organization of nascent transcripts, which tend to appear at the 
surface of core chromosome territories, and organization of chromosomes at the fixed 
points with specific nuclear bodies and subnuclear structures, which can shape cell-type 
specific nuclear organization together with cell-type specific subnuclear structural 
arrangements. At the finer scale of genome organization below megabases, we uncovered 
a collection of single-cell chromosome domain structures that are obscured with 
sequencing-based bulk measurements. However, there are still many questions that need 
to be answered to better understand the global picture of nuclear architecture and its roles 
in gene regulation. Answering those questions requires a further advancement of 
technologies both for measurements and analyses. In particular, there are three major 
conceptual and technical challenges associated with the integrated spatial genomics 
approaches demonstrated here, including 1) understanding of temporal organization of 
nuclear architecture, 2) understanding of single-cell domain structures in the context of 
transcriptional regulation, and 3) improving the throughput of single cells in integrated 
spatial genomics measurements. 
 
First, to understand the temporal dynamics of chromatin organization in a highly 
multiplexed fashion, we have demonstrated a proof of concept of the “track first and 
identify later” approach. This approach bridges the gap between live cell imaging, which 
is typically difficult to be multiplexed, and fixed cell imaging, which can be highly 
multiplexed with seqFISH-based approaches, allowing us to extract spatiotemporal 
information of chromatin organization. Live cell imaging requires the versatile tools to 
label a large number of specific genomic loci. CRISPR/Cas9-based genome labeling 
technologies enabled the multiplexed labeling of repetitive and non-repetitive regions by 
utilizing optimized sgRNA backbones (Chen et al., 2013; Ma et al., 2016; Qin et al., 2017). 
Moreover, Zhou et al. (2017) delivered hundreds of orthogonal sgRNAs to individual cells 
and imaged single chromosomes across cell cycle phases. These technologies, in 
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combination with “track first and identify later” approach (Guan et al., 2017; Takei et al., 
2017), promise a highly multiplexed labeling and tracking of individual chromosomes in 
live cells at the individual locus resolution to capture the temporal chromatin organization. 
At the end point of the live cell imaging, the original implementation of the “track first and 
identify later” approach can be improved by performing the integrated spatial genomic 
technology (Takei et al., 2021a, 2021b), including RNA seqFISH, DNA seqFISH+, and 
sequential immunofluorescence. This allows to connect the temporal information of 
genome organization during live cell imaging to the multimodal information of the nucleus 
obtained from the fixed cells, and facilitates the understanding of the temporal nature of 
the chromatin organization. Similarly, the live cell imaging can also be performed with 
multicolor imaging to obtain different modality information such as transcription factor 
dynamics (Singer et al., 2014), cell cycle progression (Guan et al., 2017), and nuclear body 
organization (Mao et al., 2011). Together, those improved approaches will greatly advance 
our understanding of temporal organization of nuclear architecture at the single-cell level. 
 
Next, we uncovered a prevalence of single-cell domain structures across regions with 
different bulk domain organization patterns. Although previous studies (Lupiáñez et al., 
2015; Nora et al., 2012) showed the coordination between gene expression and TAD 
organization, another study observed uncoupling between gene expression and TAD 
organization (Ghavi-Helm et al., 2019). Given the prevalence of diverse single-cell domain 
structures that can differ from ensemble-averaged TADs, it would be critical to study both 
gene expression and chromosome structures from the same single cells as well as the 
consistency of domain formation across single cells. This requires the integration of 
transcriptome-scale measurements such as intron seqFISH (Shah et al., 2018) and RNA 
seqFISH+ (Eng et al., 2019) with DNA seqFISH+ measurements (Takei et al., 2021a, 
2021b). In the future, such spatial multi-omics measurements will elucidate the relationship 
between chromosome organization and transcription at the individual chromosomal 
domain resolution in single cells. 
 
Lastly, we performed our integrated spatial genomics approaches on thousands of single 
cells in total in the cell culture system and tissue sections. The throughput of number of 
cells should be improved in future studies to capture transient cell states and minor cell 
types as well as to apply the integrated spatial genomics approaches to diverse samples. In 
order to realize this improvement, amplification of FISH spot signals need to be required. 
There are a number of amplification methods such as hybridization chain reaction (HCR) 
(Choi et al., 2014; Dirks and Pierce, 2004; Shah et al., 2016), rolling circle amplification 
(RCA) (Lizardi et al., 1998; Söderberg et al., 2006; Wang et al., 2018), branched DNA-
based signal amplification (Battich et al., 2013; Kishi et al., 2019; Xia et al., 2019), and 
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click-amplifying FISH (clampFISH) (Rouhanifard et al., 2018), however it has been 
difficult to apply those amplification approaches to the highly multiplexed imaging 
methods such as seqFISH owing to the availability of a large number of orthogonal 
amplifiers. In future studies, the new amplification methods, which can provide a large 
number of orthogonal amplifiers, should be developed. In addition, the localization 
accuracy of the amplified FISH spots should be carefully examined to prevent potential 
artifacts in physical shifts of FISH spot location during the amplification steps.  
 
Together, while much work needs to be done to implement the technical improvements 
described above, it is clear that integrated spatial genomics approaches can further 
elucidate spatiotemporal organization of the nuclear architecture at the single-cell level 
across diverse biological systems in future studies. 
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