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ABSTRACT

We study the deformation of the thermofield-double (TFD) under evolution by a double-traced operator by
computing its entanglement entropy. After saturation, the entanglement change leads to the temperature
change. In Jackiw-Teitelboim gravity, the new temperature can be computed independently from two-
point function by considering the Schwarzian modes. We will also derive the entanglement entropy from
the Casimir associated with the SL(2,R) symmetry. From AdS/CFT correspondence, where TFD is dual
to a two-sided black hole, such deformations correspond to the coherent shrinking or expansion of the
black hole.
Next, we compute the entanglement entropy after coupling a system to the bath perturbatively as a function
of ^, the system-bath coupling. At very early times where the entanglement entropy is a logarithmic
function of time, the leading contribution is due to the terms of order 2s in the coupling where s is the
number of replicas. In the middle time, the entanglement goes linear as a function of time. Assuming
saturation at a later time, we will study the effect of an external perturbation to the entropy at an early
time where it is related to the OTOCs. A major simplification appears when the system saturates the
chaos bound.
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C h a p t e r 1

INTRODUCTION

Soon after Albert Einstein developed the general theory of relativity, an exact solution to Einstein’s
equation was found by Karl Schwarzschild, known as the Schwarzschild metric [41, 15]. The metric
describes a vacuum solution in asymptotically flat spacetime with spherical symmetry. However, it
exhibits a peculiar behavior at the Schwarzschild radius, where somemetric components become singular.
This hypersurface is called the event horizon and the inside region is called the black hole. The event
horizon has the unusual property that, according to an outside observer, it will take an infinite time for
an arbitrary object to reach the horizon, while the particle itself only experiences a finite amount of
time. In addition, an event horizon is like a one-way membrane; namely, an object which has already
passed the horizon is never able to reach out to the outside, and ultimately ends up hitting the physical
singularity located at the black hole’s center. Nevertheless, the singularity on the black hole’s event
horizon is not physical and can be removed by choosing an appropriate coordinate system, e.g. the
Eddington-Finkelstein (EF) coordinate system.
A somewhat surprising fact about the Schwarzschild and EF coordinate systems is that they only describe
a portion of the spacetime. In other words, it is possible to opt for a coordinate system, for example, the
Kruskal-Szekeres coordinate, that covers the whole spacetime where the geodesics parametrized by the
affine parameter either extend to infinity or terminate by hitting a physical singularity. It turns out that
the maximally extended spacetime, in addition to the black hole region, also has a white hole region (its
time reversal), and they indeed have two sides which are connected by a non-traversable wormhole called
the Einstein-Rosen (ER) bridge. Such extended horizons are called the bifurcate horizons.
There are also other solutions to the Einstein’s equation corresponding to the rotating and charged black
holes. Such solutions, although more complicated, capture many features of the Schwarzschild black
hole. For example, the maximally extended spacetime contains a bifurcate horizon. Indeed, as is pointed
out by Racz and Wald [36, 37], any stationary spacetime which has a “one sided black hole” but no white
hole with its Killing vector’s orbits to be diffeomorphic toR can always be locally extended to a spacetime
with a bifurcate horizon provided that the horizon’s surface gravity is a nonzero constant, see Appendix
C. Such horizons are usually identified by their mass, electric charge, and angular momentum [19, 18,
7]. Further developments by Hawking, Carter, and Bardeen [5] showed that assuming the spacetime is a
solution to the Einstein’s equation and the matter satisfies the dominant energy condition, it is possible
to associate a well-defined temperature to the black hole’s horizon. Moreover, the black hole satisfies the
laws of thermodynamics with the energy of the system being equal to the black hole’s mass and entropy
proportional to the horizon’s area.
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A powerful tool to understand the nature of bifurcate horizons is the AdS/CFT correspondence [31, 42]
which conjectures that, roughly speaking, a gravity theory in the bulk of Anti de Sitter (AdS) spacetime,
which may include black holes as well, is equivalent to a specific conformal field theory living on the
boundary. As a part of the dictionary between the bulk and the boundary [32], the existence of a two-sided
black hole in the bulk is dual to the case where two copies of the boundary theory act on each side of the
thermofield-double state (TFD) prepared as the initial state 1 :

|TFD〉 = 1
Z1/2

∑
=

4−
V�=

2 |�∗=〉! |�=〉', (1.1)

where |�=〉's are the energy eigenstates 2 of the right Hamiltonian, |�∗=〉! are the eigenstates of �∗', and
V is the black hole’s inverse temperature. Note that TFD is invariant under the symmetry generated by
1 ⊗ �' − �∗' ⊗ 1 ≡ �' − �! . A direct computation shows that for “large” AdS-Schwarzschild black
holes in d+1 dimensions (A� � ℓ�3(), the dependence of black hole’s entropy on temperature is:

(� ()) ∝ ) 3−1. (1.2)

The AdS/CFT duality implies that the black hole’s partition function is equal to that of the boundary
theory and, consequently, the entanglement entropy associated with one side equals the black hole’s
entropy in the bulk. Entanglement, in general, has a non-local quantum nature; the action of a unitary
operator on one side of an entangled state does not change the amount of entanglement between the two
sides of the state.
However, it is possible to change the states’ entanglement entropy by coupling their two sides. The
simplest example capturing this idea is the Bell pair:

| ↑↑〉 + | ↓↓〉
√

2
(1.3)

with entanglement entropy equal to ln 2. While the entanglement entropy remains unchanged under a
local unitary operator, it is easy to construct a unitary operator which transforms the state to a pure state
| ↑↑〉.
Similarly, one expects the entanglement entropy of the TFD to change under the unitary evolution
* (C) = 4−8�C where the Hamiltonian is3:

� = �0 + �8=C , �8=C =
6

#

#∑
8=1

∫
33−1G q8! (®G)q

8
' (®G), (1.4)

1The correspondence between thermofield-double state and a two-sided black hole was first observed by Israel in
asymptotically flat spacetime [17].

2For rotating black holes the states are labeled by energy and angular momentum eigenvalues.
3This Hamiltonian was used in [12] as a model for traversable wormholes; see also [29, 25]
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where q! (') acts on the left (right) side of the black hole in the bulk. To compute the amount of
entanglement change, we will prepare the TFD at C = 0 and evolve it with U(t):

|T̃FD(C)〉 = * (C) |TFD〉. (1.5)

The entanglement entropy can be computed using the replica trick:

( = −mB ln Tr dB
���
B=1
. (1.6)

Direct computation showing Δ(�� to leading order in 6 is:

Δ(�� (C) = 86S3−1

∫ C

0
3D

3

3B

(
�BV

(
28D + V

2

)
− �BV

(
− 28D + V

2

))����
B=1
, (1.7)

where �BV

(
28D + V

2

)
=

〈
q8 (D, ®G)q8 (−D + 8 V2 , ®G)

〉
BV

is the two-point function at inverse temperature BV.

Notice that the two point function in 1.7 is space independent, and so the integral over the spacial part
gives the volume of the transverse direction, denoted by S3−1. As a result, since the entropy of TFD is
a function of its temperature, i.e. relation 1.2, one expects the temperature to change, and so does the
black hole’s size 4. On the other hand, when the system reaches the equilibrium, the new temperature
associated with T̃FD can be read from the two- point function whose computation needs information
about the theory’s higher point functions.
This observation motivated us to study the dynamics of T̃FD explicitly for a simple model, the Jackiw-
Teitelboim (JT) gravity [40, 20] (see chapter 4). The JT gravity appears as the near horizon limit of
the four dimensional charged black holes. The bulk is fixed to be AdS2, and the dynamical degrees of
freedom correspond to the reparametrization of the boundary whose dynamics is given by the Schwarzian
action (see Chapter 2). The action initially appeared as the low energy limit of the SYK model [23, 27,
38]. Computing the quantity 1.7 in this model yields 4.14:

Δ(�� (C) =
c16

2�

( c
V�

)2Δ−1
(
1 − 1(

cosh( 2cC
V
)
)2Δ

)
, (1.8)

which, after C ∼ 2c
V
, implies the new temperature (4.16):

Ṽ = V

(
1 − c16

2�(

( c
V�

)2Δ−1
)
. (1.9)

On the other hand, the temperature of T̃FD can be read from the two-point function after reaching
the equilibrium. In computing the two-point function to leading order in the coupling, the four-point
function of the theory is needed. However, since 1.8 and 1.9 are general and independent of the fields,

4For simplicity, we assume the black hole is parametrized by one parameter, its mass.
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the contributing modes must be generic and couple to all the fields, which in our case are the Schwarzian
modes. Such modes are, indeed, the Goldeston modes assocaited with spontanuous breaking of the
reparametrization symmetry. In fact, the computation of the two-point function in section 4 confirms
this.
Our microscopic computation of the entanglement change 1.8 can be rederived from a coarse-grained
quantity, the Casimir associated with the (! (2,R) generators 2.37. More precisely, the entanglement
entropy, 4.44, to leading order in the coupling can also be computed 5 from [22]

((D) = 2c
√
&' (D), (1.10)

which is computed over the solution to the equation of motion 4.37. The exact match between the
two quantities to the second order in the coupling 4.23 and 4.44 may confirm that 1.10 renders the
entanglement entropy dynamics after the quench by the interaction Hamiltonian 1.4. Assuming so, we
can get the following physical picture: In general, one expects the coarse grained entropy to be bigger
than or equal to the entanglement entropy for typical states. In our case, for example, perturbing the
TFD with a local positive Hamiltonian will increase the black hole’s entropy, while its entanglement
entropy remains unchanged. Our results show that 1.4 acts coherently. While our computation is for a
two-dimensional model, 1.7 is true at any dimension leading us to conjecture that there are soft modes in
higher dimensions, similar to the Schwarzian modes which are responsible for temperature change and
also entanglement change at higher orders. Understanding such modes may be significant in developing
a constructive holographic theory.

Another problem that we will study in this thesis is the evolution of the entanglement entropy when we
couple two “many-body” pure states, which represents generic features of information transfer between
a system coupled to the bath. While not an observable, entropy is useful as an abstract measure of
active degrees of freedom and correlations between the system and bath. The general form of such
correlations was predicted by Don Page [34]. Relevant quantities that play an important role in the
process of information transfer are OTOCs [39]. However, their physics is relevant on short time scales
and explains correlations present not in the radiation itself but relative to a purifying system [16]. The
recent breakthrough in understanding the correlations developing over the Page time [3, 35] required a
careful formulation of the problem, which we will now summarize.

We consider the entanglement entropy between the system and the emitted radiation at a particular time C.
So let d = d(C) be the system’s density matrix; we will compute the von Neumann entropy using 1.6. For
integer B, the expression Tr dB may be interpreted as the partition functions of B replicas of the system.

Now, it turns out that the transition from the early phase (when the radiation is uncorrelated as the naive
theory predicts) to the later phase (when the entanglement entropy equals the system’s coarse-grained

5I am grateful to Alexei Kitaev for pointing this out to me.
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entropy) is first order. The later phase corresponds to a new type of spacetime geometry, the replica
wormhole [3, 35]. Although choosing the correct solution of the two is a global problem, each of them
can be examined locally. We will study some properties of both solutions for general many-body systems.

The von Neumann and Renyi entropies are nonlinear functions of the quantum state, which is why they
are not observables. However, the logarithmic nonlinearity is mild, such that in the thermodynamic limit,
((d) is determined by typical microstates that contribute to the mixed state d. In contrast, Renyi entropies
are often dominated by a fraction of microstates of tiny overall weight. This distinction is also evident
from the replica wormhole picture. The B-Renyi entropy is related to an B-fold cover of spacetime, whose
metric is different from the physical one. But when we analytically continue the solution in B and take B
to 1, we get the standard metric with an additional piece of data, the branching surface. Thus, the B→ 1
limit is essential for compatibility with the usual (non-entropic) physics. Our main technical advance is
how to take this limit in some specific cases.

To study the early phase of the entanglement growth, we adopt a simple variant of the problem, where
instead of radiating energy, the system comes into contact with a heat bath at the same temperature.
Turning the system-bath interaction on represents a slight change in the Hamiltonian and results in a brief
period of non-equilibrium dynamics. Then a steady state is achieved such that all simple correlation
functions are thermal. However, if the system’s initial state was pure (though mimicking the thermal
state), its von Neumann entropy will grow at a constant rate. We focus on this regime as well as
the very beginning of quantum evolution. The entropy growth eventually saturates at the thermal (i.e.
coarse-grained) entropy, but that is not captured by our method.

Our calculation is perturbative in the system-bath coupling strength ^. Note that the von Neumann
entropy has a logarithmic singularity at the unperturbed state, which is pure. This is reflected by the
fact that in addition to terms of order ^2 (or any constant power of ^), terms of order ^2B (where B is the
number of replicas) play an important role.

More precisely, we consider two copies of thermofield-double |TFD〉�⊗ |TFD〉1 with inverse temperature
V associated with the system, denoted by B, and the bath, denoted by b and model the interaction by:

��1 = ^

#∑
8=1

$8�$
8
1 . (1.11)

Then the initial growth of the entanglement entropy will be described by 5.15:

ln
(
Tr (dB∗B(C))B

)
= #

(
B^2 Tr

(
�̂B ◦ �̂

ᵀ
b
)
+ ^2B Tr

( (
−�̂B ◦ �̂

ᵀ
b
) B))

. (1.12)

At very early time, the above function behaves as:

(
(
dB∗B(C)

)
≈ 2^2C2

(
− ln(2^2C2) + 1

)
. (1.13)
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In the intermediate time, for systemswith continuous excitation spectrum such as conformal field theories,
the entanglement entropy will take the following form:

(

(
dB∗B(C)

)
≈ −#�′(1) C,

�′(1) = ^2
∫

�̃B(l)�̃b(−l)
(
− ln

(
− ^2�̃B(l)�̃b(−l)

)
+ 1

)
3l

2c
.

(1.14)

Next, we will consider the system at the saturated phase. We would like to study how the system’s
radiation to the bath will be affected by a small perturbation. For that, we will model the perturbation by
a unitary operator acting on the system’s density matrix d0

d1 = +d0+
†. (1.15)

We also model the system’s radiation by a superoperator R, so that the final density matrix is:

d = '(d1). (1.16)

Our interest is computing the entanglement entropy ((d) from the Renyi entropy. It turns out that at early
time, the computation of entanglement entropy is dominated by OTOCs through the following quantity:

〈B, � 9 (V + 8C), - (V), - (0), �†: (8C)〉, (1.17)

where the operator X is the generator of the unitary + , and the operator �8s are the constituents of the
superoperator '; see section 5.1. We will compute this quantity and discuss its possible relation to
holography.
The thesis is organized as follows: In Chapter 2, we will study the near horizon limit of a charged black
hole in four dimensions and derive the JT theory. Then we study the Schwarzian action, its properties,
and its contribution to the four-point function. In Chapter 3, we will give an overview of the SYK model.
especially, We study how the Schwarzian action can be derived as its low energy effective action. In
Chapter 4, we will compute the entanglement entropy after deforming the TFD with the double traced
operator and study various aspects, and finally, in Chapter 5, we study the entanglement dynamics when
we couple a system to the bath. In Appendix A, we will briefly mention AdS2 in different coordinates.
Appendix B is devoted to the construction of TFD and its properties. Finally, in Appendix C, we will
review the Racz-Wald construction of bifurcate horizon.
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C h a p t e r 2

GEOMETRY OF THE CHARGED BLACK HOLES IN FOUR DIMENSIONS

2.1 The charged black holes

The Reissner-Nordstrom (RN) black holes are the static solutions to the Einstein-Maxwell theory

S = 1
16c�

∫
34G
√−6

[
R − F`aF `a

]
, FCA =

Q
A2 (2.1)

with the following metric:

3B2 = − 5 (A)3C2 + 1
5 (A) 3A

2 + A2(3\2 + sin2 \3i2)

5 (A) =
(
1 − A+

A

) (
1 − A−

A

)
, A± = " ±

√
"2 −&2.

(2.2)

The metric 2.2 has two types of singularities, one located at A = A±, known as inner and outer horizon,
and the other at A = 0. While the second is physical, i.e. observer-independent, the singularities at A± are
coordinate dependent and can be removed by changing the coordinate system. For example, if we take

+ = exp( 5
′(A+) (C + A)

2
) ( A
A+
− 1) 1

2 ( A
A−
− 1)− U2

* = − exp( 5
′(A+) (−C + A)

2
) ( A
A+
− 1) 1

2 ( A
A−
− 1)− U2

U =

(
A−
A+

)2
,

(2.3)

we can remove the singularity at A = A+. The Hawking temperature associated to the outer horizon is
equal to

) =
5 ′(A+)

4c
=

Δ

4cA2
+
, Δ = A+ − A−. (2.4)

To proceed, it is suitable to define A� so that A± = A� ± Δ
2 . In particular, we are interested in the near

extremal limit where Δ
A�
� 1 and can be regarded as the perturbation parameter. Perturbation around A�

leads to:
3B2 = −

(
1 − A�

A

)2
3C2 + 3A2(

1 − A�
A

)2 + A
2 3Ω +$

(
( Δ
A�
)2

)
. (2.5)

For A−A�
A�
� 1, the near horizon limit, the metric will take the form :

3B2 ≈ − 1
A2
�

3C2

I2 +
A2
�
3I2

I2 + A23Ω. (2.6)
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(a) (b)

Figure 2.1: Penrose diagram of a near extremal charged black hole. (a) The near horizon limit A+−A−
A+
� 1

is colored red.(b) This region has an approximate constant negative curvature and can be mapped global
AdS2 spacetime

Therefore, the above has the geometry of �3(2 × (2. The Bekenstein-Hawking entropy associated to the
black hole is proportional to the area of the black hole’s horizon. In the near extremal limit it will take
the form

( =
cA2
+

�#

=
cA2

�

�#

+
4c2A3

�

�#

) + · · · , (2.7)

where the first term is the zero temperature entropy associated with the extremal black hole and the
second term is due to the $

(
Δ
A�

)
correction to the horizon’s area. On the other hand, for A � A� the

spacetime becomes flat.Therefore, as we move from the outer horizon to infinity, one can think that the
geometry will change from �3(2 × (2 to the flat spacetime '1,3.

2.2 The spherical reduction and the JT gravity
To study the near horizon limit of the black hole1 we will take the metric to be

3B2 = 6<=3G
<3G= + 42q3Ω, <, = = 0, 1. (2.8)

The four dimensional scalar curvature will take the form:

R = ' − 6
(
∇q

)2
− 4∇2q + 24−2q. (2.9)

Plug it into 2.1 with
F<= = & 4−2q n<= (2.10)

1Here we follow [11].
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Figure 2.2: Here we assume that there is a sharp cutoff that separates the AdS region from the rest of the
spacetime. This boundary can have arbitrary fluctuations

gives :

( =
1

4�

∫
32G
√−6 42q

[
' + 2

(
∇q

)2
+ 24−2q − 2&24−4q

]
. (2.11)

The near extremal limit corresponds to expanding the terms around 4qB = A� ≈ &. Dropping the higher
order terms in q, and rescaling 6<= → &26<=:

( =
qB

16c�

[ ∫
32G
√−6 ' + 2

∫
K3ℓ

]
+ 1

16c�

[ ∫
32G
√−6

(
' + 2

)
q + 2

∫
q1K3ℓ

]
.

qB = 4c&2.

(2.12)

where qB is the zero temperature entropy. We also added the Hawking-Gibbons term to have a consistent
variation. This action is called the Jackiw-Teitelboim (JT) theory [40, 20, 2]. The first term is completely
topological and contributes to the zero temperature entropy. The second term renders the dynamics.The
dynamical action in the Euclidean time is given by:

( = − 1
16c�

[ ∫
32G
√
6

(
' + 2

)
q + 2

∫
q1K3ℓ

]
+ I" . (2.13)

We also added the matter field. Variation with respect to the dilaton field yields:

' + 2 = 0, (2.14)

while the variation with respect to the metric gives the equation of motion for the dilaton field:

∇`∇aq − 6`a∇2q + q6`a = 8c� )`a . (2.15)
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Suppose there is no matter field. Intergating out the dilaton, only the Hawking-Gibbons term remains.

− 1
8c�

∫
q1 K3ℓ (2.16)

For the case of the zero temperature which corresponds to the Poincare half plane,

3B2 =
3C2 + 3I2

I2 . (2.17)

The boundary of this space is located at I = 0, and as we approach it, the affine length will grow as 1
I
.

Therefore, it is convenient to define the regularization parameter Y and define the “physical boundary” to
be parametrized by the affine parameter D so that

C′2 + I′2
I2 =

1
Y2 , (2.18)

where derivative is with respect to D. To leading order in Y, 2.18 implies that the equation for the physical
boundary will take the form: (

C (D), I(D)
)
=

(
C (D), YC′(D)

)
. (2.19)

Now, to compute the extrinsic curvature, we take ®= = I(I′,−C ′)
(C ′2+I′2)

1
2
. From the definition of the extrinsic

curvature  = 〈W′(D),DD=〉
〈W′(D),W′(D)〉 , and then we have:

∇D=C =
C′2I′2 + C′4 + II′′C′2 − II′C′C′′

(C′2 + I′2) 3
2

∇D=I =
I′3C′ + I′C′3 − IC′′I′2 + IC′I′I′′

(I′2 + C′2) 3
2

⇒ K =

C′
(
C′2 + I′2 + II′′ − II′C′′/C′

)
(
C′2 + I′2

) 3
2

= 1 + Y2 Sch(C, D).

(2.20)

On the other hand, q is field with dimension two, and close to the boundary, it behaves as q1 = qA (D)
Y

. We
also have 3ℓ = 3D

n
. We define the boundary as a curve on which the value of the dilaton is the constant

qA . Plugging into 2.16, dropping the constant term in 2.21, we will get the regularized action for the
Poincare patch [28]:

( =
−qA
8c�

∫
3D Sch(C (D), D), (2.21)

where the integrand is the Schwarzian derivative Sch(C (D), D) =
(
C ′′

C ′

)′
− 1

2

(
C ′′

C ′

)2
. The equation of motion

together with 2.19 determines the location of the boundary. One can think of the variable D as the physical
time and C as its arbitrary reparametrization. In the absence of the matter field in the bulk one can solve
2.22:

q(C, I) = U(I
2 + C2) + VC + W

I
. (2.22)
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Figure 2.3

On the boundary, it will take the form:

qA =
UC2(D) + VC (D) + W

C′(D) . (2.23)

The solution associated to zero temperature is C (D) = D, q(C, I) = qA
I
. The wick rotated action 2.21 is

invariant under the (! (2, ') symmetry:

Sch( 0C (D) + 1
2C (D) + 3 , D) = Sch(C (D), D). (2.24)

The Noether procedure can be used to find out the conserved charges:

& =
2C′′

C′2
XC′ −

( C′′
C′2

)′
XC − C

′′2

C′3
XC − XC

′′

C′
. (2.25)

The charges associated with the (! (2, ') generators XC = 1, C, C2 are [28]

&−1 =
C′′2

C′3
− C
′′′

C′2

&0 = C
( C′′2
C′3
− C
′′′

C′2

)
+ C
′′

C′

&1 = C
2
( C′′2
C′3
− C
′′′

C′2

)
+ C 2C

′′

C′
− 2C′.

(2.26)

Clearly, the solutions 2.22 and 2.23 break this symmetry. Therefore, we should take quotient with respect
to such solutions, or equivalently, we can solve for the solution that satisfies & = 0.

The finite temperature solution is associated with compactifying the time coordinate,

C = 48i. (2.27)

Under this transformation, the action 2.21 becomes:

( =
−qA
8c�

∫
3D

(
Sch(i(D), D) + 1

2
i′2

)
. (2.28)



12

We are interested in the solution
i(D) = 2cD

V
(2.29)

with the free energy given by:
� = −cqA

4�
)2 (2.30)

and other thermodynamic quantities equal to

( = (0 +
cqA

2�
), � =

cqA

4�
)2. (2.31)

Here, (0 comes from the topological term in 2.12. The SL(2,R) charges in this coordinate will take the
form:

&−1 = 4
−i

(
− i

′′

i′
− i

′′′

i′2
+ i
′′2

i′3

)
&0 = i

′ + i
′′2

i′3
− i

′′′

i′2

&1 = 4
i

(
i′′

i′
− i

′′′

i′2
+ i
′′2

i′3

)
.

(2.32)

Note that the black hole has two sides. Therefore, the conserved charge is the sum of the above charges
for the left and right sides. This is the thermofield-double solution TFD. To understand the geometry of
such a configuration, we will go to the global coordinate. The boundary coordinate times are related by:

C = tanh
cD

V
= tan

['

2
, − c

2
≤ [' ≤

c

2
. (2.33)

In global coordinates, the thermofield-double will be represented by(
[ , fA

)
=

(
2 arctan tanh

cD

V
,
c

2
− 2cn

V

1
cosh 2cD

V

)
. (2.34)

Defining [′ = 4q with the lagrange multiplier %[ the action will transform to

−
∫

(2ℎ

(
tan

[

2
, D̃

)
3D̃ = ( =

∫
3D̃

(
1
2
(q′2 − 42q) + %[ ([′ − 4q)

)
=

∫
3D

[
%[[

′ + %qq′ − �
]

� =
%2
q

2
+ 1

2
42q + %[4q, D̃ ≡ 8c� D

qA
.

(2.35)
Here derivative is with respect to D̃. Also (q, %q) and ([, %[) are conjugate variables, and H is the
Hamiltonian. The equation of motion is given by:

%′q = −(42q + %[4q), q′ = %q,

[′ = 4q, %′[ = 0.
(2.36)



13

R

Figure 2.4: The embedding of the two-dimensional black hole in global AdS2

The Schwarzian action also has the (! (2, ') symmetry. The conserved charges are:

&1 = cos [(%[ + 4q) − sin [%q
&2 = sin [(%[ + 4q) + cos [%q
&3 = %[ .

(2.37)

They satisfy {&, �} = 0, where the Poisson bracket is defined with respect to the conjugate variables
(q, %q) and ([, %[).

Contribution of the Schwarzian modes to the four- point function
In this section, we assume that we have a large N field theory, bosonic or fermionic, whose low energy
limit is described by the Schwarzian action. More precisely, we assume that the action has the form:

( = (0 − #U
∫ 2c

0
3\ (2ℎ

(
48i(\) , \

)
U =

qA

4#V�
, (2.38)

where (0 is conformal and has the reparametrization symmetry2 which fixes the two-point function of
operators of dimension Δ:

�̃ (\1, \2) =
〈
q8 (\1)q8 (\2)

〉
= 1

i′Δ(\1)i′Δ(\2)(
sin i(\1)−i(\2)

2

)2Δ = � (\1, \2)
(
1 + X�

�

)
� (\1, \2) = 1

(
sin

\1 − \2
2

)−2Δ
,

X�

�
= Δ

(
Xi′(\1) + Xi′(\2) −

Xi(\1) − Xi(\2)
tan \1−\2

2

)
.

(2.39)

2In the next chapter, we will introduce the SYK model as an example with such a theory.
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Xi can be expanded in terms of the Fourier modes Xi =
∑
< Xi< 4

8<\ , and so one gets:

X<�

�
= 2 8 Δ 48<

\1+\2
2

( sin <(\1−\2)
2

tan \1−\2
2
−< cos

<(\1 − \2)
2

)
= 28Δ<(<2 − 1)

∫ \1

\2

3\
sin \1−\

2 sin \−\2
2

sin \1−\2
2

48<\ .

(2.40)
In the rest of the section we compute the leading contribution of the Schwarzian action to the four point
function. Consider the fields q1 with dimension Δ1 and q2 with dimension Δ2. Their four-point function
has the following form:

1
#2

∑
8, 9

〈
q81(\1)q81(\2)q 92(\3)q 92(\4)

〉
=

�1(\1 − \2) �2(\3 − \4)

(
1 + F )$ (\1, \2, \3, \4)

)
0 ≤ \1 ≤ \2 ≤ \3 ≤ \4 < 2c

±
(
1 + F$)$ (\1, \2, \3, \4)

)
0 ≤ \1 ≤ \3 ≤ \2 ≤ \4 < 2c

,

(2.41)

where ± is for bosons and fermions, respectively, and F denotes the connected part of the four-point
function and is equal to:

F (\1, \2, \3, \4) =
〈X�1(\1, \2)

�1

X�2(\3, \4)
�2

〉
2
=

∑
<,=

X<�1(\1, \2)
�1

X=�2(\3, \4)
�2

〈
Xi<Xi=

〉
. (2.42)

We can read the two-point function
〈
Xi<Xi=

〉
from the quadratic terms in the Schwarzian action:

( = −#U
∫ 2c

0
3\

(
1
2
− 1

2

(
Xi′′2 − Xi′2

))
⇒

〈
Xi<Xi=

〉
=
X<+=

2#cU
1

<2(<2 − 1)
, < ≠ 0,±1. (2.43)

Plugging 2.40 into 2.42 and using 2.43, the expression for four point function will take the following
form:

2Δ1Δ2
#cU

∫ \1

\2

3\

∫ \3

\4

3\′
∑
<≠0
(<2 − 1)

sin \1−\
2 sin \−\2

2

sin \1−\2
2

48<(\−\
′) sin \3−\ ′

2 sin \ ′−\4
2

sin \3−\4
2

. (2.44)

We can also take the sum to get∑
<≠0
(<2 − 1) 48<(\−\ ′) = −2c

(
X′′(\ − \′) + X(\ − \′)

)
+ 1. (2.45)

In the time ordered case, i.e. \1 > \2 > \3 > \4, the delta functions will not contribute and we simply
have:

F )$
(
\1, \2, \3, \4

)
=

2Δ1Δ2
#cU

( ∫ \1

\2

3\
sin \1−\

2 sin \−\2
2

sin \1−\2
2

) ( ∫ \3

\4

3\′
sin \3−\ ′

2 sin \ ′−\4
2

sin \3−\4
2

)
=

2Δ1Δ2
#cU

(
1 − \1 − \2

2 tan \1−\2
2

) (
1 − \3 − \4

2 tan \3−\4
2

)
.

(2.46)
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On the other hand, in the case where \1 > \3 > \2 > \4, the delta functions in 2.45 contribute when
\, \′ ∈ [\2, \3]:

2Δ1Δ2
#cU

∫ \3

\2

3\ 3\′
sin \1−\

2 sin \−\2
2

sin \1−\2
2

(
− 2c(X′′(\ − \′) + X(\ − \′))

) sin \3−\ ′
2 sin \ ′−\4

2

sin \3−\4
2

=
−4Δ1Δ2
#U

∫ \3

\2

3\ 3\′
[
sin \1−\

2 sin \−\2
2

sin \1−\2
2

sin \3−\
2 sin \−\4

2

sin \3−\4
2

−
(

sin \1−\
2 sin \−\2

2

sin \1−\2
2

)′( sin \3−\
2 sin \−\4

2

sin \3−\4
2

)′]
=
−Δ1Δ2
#U

\3 − \2

tan \1−\2
2 tan \3−\4

2
− 2Δ1Δ2

#U

cos \1−\4
2 cos \2−\3

2

sin \1−\2
2 sin \3−\4

2
.

(2.47)
Defining:

\ = \1 − \2, \′ = \3 − \4, Δ\+ =
\1 + \2

2
− \3 + \4

2
. (2.48)

The contribution of the Schwarzian modes to the four point function takes the following form [23]:

F
(
\1, \2, \3, \4

)
=

4Δ1Δ2
(



(
1 − \

2 tan \
2

) (
1 − \ ′

2 tan \ ′
2

)
()$)

−c sinΔ\+
2 sin \

2 sin \ ′
2
− c(c−2Δ\+)

4 tan \
2 tan \ ′

2
+

(
1 + c−\

2 tan \
2

) (
1 + c−\ ′

2 tan \ ′
2

)
($)$)

.

(2.49)
Now, the important feature of F$)$ is that in the Lorentzian time where \ = 2c8C

V
, it has the exponential

growth due to the sinΔ\+ term at early time, C � V ln ( :

F$)$ (\1, \2, \3, \4) ∼
4^C

2( sin2 n
2
+$ (1), ^ =

2c
V
, C � V

2c
ln ( (2.50)

where,
\1 =

2c8C
V
+ n, \2 =

2c8C
V
, \3 = n, \4 = 0. (2.51)

The exponential growth in out-of-time-ordered correlators corresponds to scattering amplitude of particles
close to the event horizon where the gravitational force becomes dominant [39]. Note that ^, called the
Lyapunov exponent, saturates the chaos bound [26].
Note also that from the form of the exponentially growing term in F$)$ , we will take the following
ansatz for the general case at early time [23]:

F$)$ (\1, \2, \3, \4) ≈ �−1 48 ˜̂(c−\1−\2+\3+\4)/2 Υq1,q3 (\1 − \2) Υq2,q4 (\3 − \4), 0 < ˜̂ ≤ 1. (2.52)

We will use this ansatz in Chapter 5.
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C h a p t e r 3

THE SACHDEV-YE-KITAEV MODEL

The SYK model1 [23, 27, 38] is a model of Majorana fermions with all-to-all interaction through a
random coupling. The model has dimensionless parameters N, the number of Majorana fermions, and
V�, where V is the inverse temperature and � is the coupling. As we will see at large N the model can be
solved. However, the holographic behavior appears at # � V� � 1. In this limit the effective action is
the Schwarzian theory. The Hamiltonian is given by

� =
1
@!

∑
81···8@

�81,···8@ j81 · · · j8@ 〈�2
81···8@〉 =

(@ − 1)!�2

#@−1 . (3.1)

where @ is a multiple of 4. The Majorana operators satisfy {j8, j 9 } = X8 9 . The operators 0†8 =
j8+8j8+1√

2
and

08 =
j8−8j8+1√

2
are the creation and annihilation operators and therefore, the dimension of the associated

Hilbert space is 2 #
2 . The bare Green’s function is :

�0(g) =
1
2

sgn(g), �0(l) =
−1
8l
. (3.2)

To write the Schwinger-Dyson equation one can observe the diagrams that contribute to the self energy
to the leading order in 1

#
, are of the form,

= + +...

where the dashed line corresponds to taking the expectation value over �s. For such diagrams the
Schwinger-Dyson equation has the following form:

1
� (l) = −8l − Σ(l), Σ(g) = �2�@−1(g). (3.3)

One can also derive 3.3 directly from the partition function:

Z =

∫
D{�} D {j8} 4−( ( =

∫
3g

(
−

∑
8

j8
3

3g
j8 + �(. 

)
. (3.4)

The measure D{�} is defined by:

D{�} = exp
(
− 1

2@!

∑
81,··· ,8@

�2
81···8@

) ∏
81<···<8@

3�81,··· ,8@√
2c

. (3.5)

1Here we closely follow [23].
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+

= ++ + =

Figure 3.1: The graphical representation of the Schwinger-Dyson equation. The green filled circle is the
self energy Σ, and the black filled circle is the two-point function �.

The quantity of interest is the free energy after taking the integral over �81···8@ ,

V�̄ = −lnZ = − lim
"→0

Z"

"
. (3.6)

For a fixed integer value of " one can define M copies of the Majorana fermions{
jU8 , U = 1, · · · , #

}
, (3.7)

compute the partition function, and at the end send " to zero.

/" =

∫
D{�}

∫
�j8U exp

(∑
U

∫
3g

(
− 1

2

∑
8

j8U
3

3g
j8U +

√
�2(@ − 1)!
#@−1

∑
�81···8@ j

81
U j

82
U · · · j

8@
U

))
(3.8)

Now, defining �UV (g, g′) = 1
#

∑
8 j

8
U (g)j8V (g

′) and the associated lagrange multiplier ΣUV, they satisfy
the following normalization:∫

D�DΣ exp
(
− #

2

∑
UV

∫
3g3g′ΣUV (g, g′)�UV (g, g′)

)
= 1. (3.9)

Inserting∫
D�DΣ exp

(
− #

2

∑
UV

∫
3g3g′ΣUV (g, g′)

(
�UV (g, g′) −

1
#
j8U (g)j8V (g

′)
) )
= 1 (3.10)

in to the path integral, we will get :

/" =

∫
D�DΣ exp

(
− #

2

∑
UV

∫
3g3g′ΣUV (g, g′)

(
�UV (g, g′) −

1
#
j8U (g)j8V (g

′)
) )

×
∫
D{�81···8@ }

∫
�j8 exp

(∑
U

∫
3g

(
− 1

2

∑
8

j8U
3

3g
j8U +

√
�2(@ − 1)!
#@−1

1
@!

∑
�81···8@ j

81
U j

82
U · · · j

8@
U

))
=

∫
DΣD�Dj exp

(∑
UV

∫
3g 3g′

(
− 1

2
j8U

(
XUVmg − ΣUV (g, g′)

)
j8V −

#

2
ΣUV (g, g′)�UV (g, g′)

))
∫
D{�81···8@ } exp

(∑
U

∫
3g

(√�2(@ − 1)!
#@−1

1
@!

∑
�81···8@ j

81
U j

82
U · · · j

8@
U

))
.

(3.11)
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The last integral can be written as :∫
D{�81···8@ }

∑
=

1
(2=)!

(∑
U

∫
3g

√
�2(@ − 1)!
#@−1

1
@!

∑
�81···8@ j

81
U j

82
U · · · j

8@
U

)2=
. (3.12)

The number of ways to pair up the terms in above is (
2=
2 ) (2=−2

2 ) ···(22)
=! =

(2=)!
=! 2= , and the number of ways to

match the indices is @!. Taking the integral over � , we will get:∑
=

(
�2#
@

)=
=!

( ∫
3g 3g′

∑
U,V

�UV (g, g′)
)=
= exp

(
�2#

@

∫
3g 3g′

∑
UV

�UV (g, g′)
)

(3.13)

The partition function will become :

− V�
#
= ln Pf (XUVmg − ΣUV (g, g′)) −

1
2

∫
3g3g′

(
�UV (g, g′)ΣUV (g, g′) −

�2

@
�
@

UV
(g, g′)

)
. (3.14)

Due to the fact that the bare Green’s function is between the Majoranas with the same replica index,
the first diagram that contributes to the partition function of Majoranas with different replica index is
$ (#2−@), which is diagrammatically represented as:

...
...

Since we are interested in leading order, from now on we consider only the replica diagonal partition
function:

ΣUV = Σ XUV, �UV = � XUV, (3.15)

with the free energy given by:

− V�
#
= ln Pf (−X′ − Σ) − 1

2

∫
3g3g′

(
� (g, g′)Σ(g, g′) − �

2

@
�@ (g, g′)

)
. (3.16)

The solution to the equation of motion is given by:

mg� (g, g′) −
∫

3g′′� (g, g′′)Σ(g′′, g′) = X(g, g′), Σ(g, g′) = �2�@−1(g, g′). (3.17)

At low energy limit, we can ignore the fist term. The rest will have the reparametrization symmetry:

� (g, g′) → � ( 5 (g), 5 (g′)) 5 ′Δ(g) 5 ′Δ(g′),

Σ(g, g′) → Σ( 5 (g), 5 (g′)) 5 ′(@−1)Δ(g) 5 ′(@−1)Δ(g′), Δ =
1
@
.

(3.18)
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The conformal solution for � is

�2 (g) = 1
(

1
V� sin cg

V

)2Δ
B6=(g), 1

(�g)2Δ
B6=(g), 1@ =

c

�2

(1
2
− Δ

)
tan cΔ. (3.19)

From now on, we assume that we are in finite temperature and define� (g1, g2) = � (\1, \2)
(

2c
V�

)2Δ
where,

\ =
2cg
V
. (3.20)

We also take i(\) = i( 2cg
V
) a monotonic reparametrization of \, i(g + V) = i + 2c. Under this, we can

rewrite 3.16 as:

− V�
#
= − ln Pf (−Σ) + 1

2

∫ 2c

0
3i3i′

(
� (i, i′)Σ(i, i′) − 1

@
�@ (i, i′) − f(i, i′)� (i, i′)

)
,

(3.21)
where

f(g1, g2) = �2f(i1, i2)
(2c
V�

)2−2Δ
i′1−Δ1 i′1−Δ2 , i′ =

3i

3\
. (3.22)

Note that when f = 0, the theory is conformal. We are interested in studying the response of the
theory to turning on the perturbation f. Therefore, we expand the fields around the conformal value i.e.
� = �2 + X�, Σ = Σ2 + XΣ and expand the action to second order:

− V�
#
=

1
4

tr (�2XΣ)2 +
1
2

∫ 2c

0
3i3i′

(
X� (i, i′)XΣ(i, i′) − @ − 1

2
�
@−2
2 (i, i′)X� (i, i′)

− f(i, i′)
(
�2 (i, i′) + X�2(i, i′)

))
= −1

4
〈X 5 | 2 |X 5 〉 +

1
2
〈X6 |X 5 〉 − 1

4
〈X6 |X6〉 − 1

2
〈B |62 + X6〉,

(3.23)
where :

6(i1, i2) = '2 (i1, i2)� (i1, i2), B(i1, i2) = '−1
2 (i1, i2), f̃(i1, i2)

'2 (i1, i2) = −
√
@ − 1 |�2 (i1, i2) |

@−2
2 .

(3.24)

Taking saddle point with respect to X 5 yields:

 2 |X 5 〉 = |X6〉, (3.25)

where the operator  2 is defined by:

〈i3, i4 | 2 |i1, i2〉 = (@ − 1) |�̃ (i1, i2) |
@−2

2 �̃ (i1, i3)�̃ (i2, i4) |�̃ (i3, i4) |
@−2

2 . (3.26)

Plugging back, we will get:

− V�
#
=

1
4
〈X6 | −1

2 − 1|X6〉 − 1
2
〈B |62 + X6.〉 (3.27)
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Further saddle point with respect to X6 yields:

|X6〉 =  2
(
1 −  2

)−1
|B〉, (3.28)

and so the final answer for the free energy will take the form:

− V�
#
=
−1
4
〈B | 2

(
1 −  2

)−1
|B〉 − 1

2
〈B |62〉. (3.29)

Equation 3.28 gives the response X6 to the perturbation B. We are interested in the sources that act in the
intermediate time �−1 � g � V. A set of eigenfunctions for this equation is B(i1, i2) ∝ sgn(i1−i2)

|i1−i2 |ℎ
with

eigenvalue :2 (ℎ)
1−:2 (ℎ) where

:2 (ℎ) =
D(Δ − 1−ℎ

2 )D(Δ −
ℎ
2 )

D(Δ + 1
2 )D(Δ − 1)

, D(G) = Γ(2G) sin(cG). (3.30)

In particular, the source |B〉 corresponding to the responseswith eigenvalue :2 (ℎ) = 1 produces resonances
that reach the IR physics. However, the power law eigenfunction does not seem to come from RG. A
more careful treatment yields

B(\1, \2) = −0� Yℎ�−1 sgn(\1 − \2)
|\1 − \2 |ℎ�

D(Z) (3.31)

where Z = ln |\12 |
n

is the renormalization parameter, and D(Z) is a normalized window function,∫
3Z D(Z) = 1. Transforming back B to f, we will get:

f� (g1, g2) = −0�
√
@ − 1 11/2−Δ �2 |� (g1 − g2) |2Δ−1−ℎ� sgn(g1 − g2) D(ln |� (g1 − g2) |). (3.32)

This clearly implies that
∫
3g1

(
f� (g1 − g2) (g1 − g2)

)
is � independent, as is supposed to be. In fact, one

can regard it as the widened analog of X′(g1 − g2). This will justify the coefficient Yℎ�−1 in 3.31. Now,
the leading value is ℎ0 = 2 which corresponds to:

f0(g1, g2) = −00
√
@ − 1 1

1
2−Δ �2 |� (g1 − g2) |2Δ−3 sgn(g1 − g2) D(ln |� (g1 − g2) |)

f(\1, \2) = −00
√
@ − 1 1

1
2−Δ Y |\1 − \2 |2Δ−3 sgn(\1 − \2) D(ln

|\1 − \2 |
Y

).
(3.33)

Plugging back into 3.16 yields,

( =
#

2

∫
3\13\2 f̃0(\1, \2) �̃2 (\1, \2). (3.34)

On the other hand,�2 (\1, \2) = �2 (i1, i2) i′1
Δi′2

Δ. Taking \+ = \1+\2
2 , and assuming that |\1−\2 | � 1,

we have:

i′(\1)Δi′(\2)Δ = i′2Δ(\+)
(
1 + Δ

4
(−i

′′2

i′2
+ i
′′′

i′
) (\1 − \2)2

)
(
2 sin

(i(\1) − i(\2))
2

)−2Δ
= i′−2Δ(\+) (\1 − \2)−2Δ

(
1 − Δ

12

(i′′′
i′
− i′2

)
(\1 − \2)2

)
.

(3.35)
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Therefore, we will get:

� (\1, \2) ≈ �V=∞(\1 − \2)
(
1 + Δ

6
Sch

(
48i(\+) , \+

)
(\1 − \2)2

)
,

�V=∞(\1 − \2) = 1Δ |\1 − \2 |−2Δ sgn(\1 − \2).
(3.36)

Hence, 3.34 yields:

− 00
√
@ − 1 1

1
2
#ΔY

12

∫
3\

|\ | 3\+ Sch
(
48i(\+)

)
D(ln |\ |

Y
) = −U(#Y

∫ 2c

0
3\ Sch

(
48i(\) , \

)
U( =

00
√
(@ − 1)1 Δ

6
.

(3.37)

Next, : (ℎ�) = 1 modes will also contribute to the action with a coefficient with higher power of 1
V�
. In

the limit # � 1, V� � 1 where we also have #
V�
� 1, the Schwarzian action 3.37 dominates. Thus, one

can consider the Majorana fermions in 3.1 as the UV degrees of freedom describing the gravitational
theory, the Schwarzian action.
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C h a p t e r 4

DISENTANGLING THE THERMOFIELD-DOUBLE STATE

In this section, we will study the states that are produced by evolving the thermofield-double state
|TFD〉 ∈ H ∗ ⊗H ≡ H! ⊗H' by double-traced operators coupling both sides of the thermofield-double:

|T̃FD(C)〉 = *̃ (C) |TFD〉 (4.1)

where the unitary operator* (C) has the form

*̃ (C) = T exp
(
− 8

∫ C

0
3D �̃ (D)

)
�̃ (D) = �! + �' + �8=C (D), �8=C (D) =

6(D)
#

#∑
8=1

q8!q
8
', # � 1

(4.2)

and �! = �∗ ⊗ 1 and �' = 1 ⊗ �. Note also that the time dependence of �̃ (D) is only through 6(D).
Here we assume that the fields q8s are bosonic with dimension Δ1. Note that the time direction in the
left side is the opposite to the one in the right side. In other words, the generator of time evolution is
� = �' − �! 2 (see appendix B). This means the Hamiltonian � = �! + �', while it takes the right
fields forward in time, it takes the left fields backward in time. Therefore, in the interaction picture, we
will get:

*� (C) = T exp
(
− 8

∫ C

0
3D �� (D)

)
, �� (D) =

1
#

#∑
8=1

6(D)q8! (−D)q
8
' (D). (4.3)

We further assume that the unperturbed theory, (�8=C = 0), at low temperature has an approximate
conformal symmetry, i.e. the two point function is conformal and in Euclidean time it is: 3

〈q8' (g)q
9

'
(g′)〉 =

1X8 9(
V�

c
sin c(g−g′)

V

)2Δ (4.4)

while higher point functions are described by the Schwarzian modes. To construct the density matrix
associated with the right side, we start with the thermofield-double which can be diagrammatically
represented as:

|TFD〉 ↔
L R

(4.5)

1One can also take fermionic fields. In this case, the terms q 9
!
q
9

'
in the Hamiltonian should be modified to 8q 9

!
q
9

'
for the

Hamiltonian to be Hermitian. However, the results remain unchanged.
2q' (C) = 48�'Cq'4

−8�'C , while q! (C) = 4−8�! Cq!4
8�! C .

3Here, � has dimension of energy, and we extracted it from numerator to make both numerator and denominator manifestly
dimensionless.
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Then for 0 ≤ C1, C2 ≤ C, we have the following diagrammatic representations:

〈TFD|q! (−C2)q' (C1) = L  R
q' (C1)q! (−C2) |TFD〉 =

L  R

(4.6)

Now, consider two copies of the thermofield-double with the insertions from the unitary operator 4.3

*̃� (C) |TFD〉〈TFD|*̃−1
� (C) ↔ (4.7)

Then we can use the identity 4

q! (−C) |TFD〉 = q' (−C + 8
V

2
) |TFD〉 (4.8)

to transform all the left fields to the right ones and trace out the left side. This corresponds to gluing the
left end points of the contour,

d' (C) = Tr!
(
*̃ (C) |TFD〉〈TFD|*̃−1(C)

)
↔ (4.9)

An explicit expression for d' (C) will take the following form:

d' (C) =
∑
=,<

(8)< (−8)=
#=+<=!<!

∫ D

0
(3D1 · · · 3D=) (3D′1 · · · 3D

′
<)6(D1) · · · 6(D=)6(D′1) · · · 6(D

′
<)

=

#∑
81 91,...,8= 9==1

4−V�'

/ (V)

[
q81 (D1 − 8V) · · · q8= (D= − 8V)q8= (−D= − 8

V

2
) · · · q81 (−D1 − 8

V

2
)

q 91 (−D′1 − 8
V

2
) · · · q 9< (−D′< − 8

V

2
)q 9< (D′<) · · · q 91 (D′1)

]
,

(D1 ≥ · · · ≥ D= ≥ 0, D′1 ≥ · · · ≥ D
′
= ≥ 0).

(4.10)

4This is indeed a Euclidean rotation with angle c with the modular operator; see Appendix B. For fermionic fields, we
have q! (−C) |TFD〉 = 8q' (−C + 8 V2 ) |TFD〉.
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Figure 4.1: The time contour for the second(left) and the third(right) Renyi entropy. The contours can
be constructed by gluing two and three contours of 4.9. The insertions are represented by filled circles
and the Wick’s contractions are represented by solid lines. In the left figure, I = 4

c (8g−C)
V , and in the right

figure, I = 4
2c (8g−C)

3V .

One can construct the Renyi entropy by gluing B copies of d' and compute the entanglement entropy:

(�� = lim
B→1

1
1 − B log Tr dB' . (4.11)

The leading contribution to Tr(dB) comes from breaking each replica into a product of two-point function
fields with the same index at temperature BV. After some manipulation, one will get:

ln Tr
(
dB' (C)

)
= ln

/0(BV)
/ B0 (V)

− 8B
∫ C

0
6(D)3D

(
�BV (28D +

V

2
) − �BV (−28D + V

2
)
)
. (4.12)

In the limit B→ 1, the first term in the right hand side is the entanglement entropy of |TFD〉. Therefore,
Δ( is:

Δ( = 8

( c
V�

)2Δ ∫ D

0
6(D)3D 3

3B

[(
1

sin( 2c8D
BV
+ c

2B )

)2Δ
−

(
1

sin( −2c8D
BV
+ c

2B )

)2Δ]
B=1

= 2cΔ 1
( c
V�

)2Δ ∫ D

0
6(D)3D

sinh 2cD
V(

cosh( 2cD
V
)
)2Δ+1 .

(4.13)

Considering a quantum quench, 6(D) = 6 X(D), we can evaluate the integral:

Δ(�� (C) =
c16

2�

( c
V�

)2Δ−1
(
1 − 1(

cosh( 2cC
V
)
)2Δ

)
. (4.14)

As is clear, Δ(�� will saturate at C ∼ 2c
V
with the value:

Δ(∗�� =
c16

2�

( c
V�

)2Δ−1
. (4.15)
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Figure 4.2: The contribution of four-point functions in the second configuration that contributes to the
entanglement entropy (I = 4

c (8g−C)
V ). There are two types: the first depicted by the pink and red dotted

lines where the insertions are disjoint. The second type corresponds to the nested correlator.

One expects at this time the system to thermalize. Since ( ∝ ) , the thermalization happens with the new
temperature

Ṽ = V

(
1 − Δ(

(

)
= V

(
1 − c16

2�(

( c
V�

)2Δ−1
+$ ( 1

(2 )
)
. (4.16)

Second order correction to the entanglement entropy
The second order correction comes from the connected part of the four-point functions in the OPE limit.
There are two configurations of the fields. The first configuration corresponds to the pairs of fields with
the same index that belong to different replicas:

B(B − 1)
2

62
∫

3D3D′ � (28D + V
2
) � (28D′ + V

2
)
[
F )$ (28D + V

2
,−28D′ + V

2
) + F )$ (28D′ + V

2
,−28D + V

2
)

− F )$ (28D′ + V
2
, 28D + V

2
) − F )$ (−28D′ + V

2
,−28D + V

2
)
]

=
c21262

2(

( V
2c

)2 ( c
V�

)4Δ (
1 − 1

cosh 2cC
V

)2
(B − 1).

(4.17)
The second configuration consists of the pairs that belong to the same replica, but are located on different
branches of the Keldysh contour and the pairs which are located on the same branch of the Keldysh
contour, which are nested pairs. The expression associated with the second configuration is equal to:

B62
∫ C

0
3D3D′ � (−28D + V

2
) � (+28D′ + V

2
) F (−28D + V

2
, 28D′ + V

2
)

− B
2
62

∫ C

0
3D

∫ C

0
3D′

[
� (−28D − V

2
+ BV)� (28D′ + V

2
)FT(−28D − V

2
+ BV, 28D′ + V

2
) + 2.2.

]
,

(4.18)
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where the second line corresponds to
〈
T

{
q8 (8D + V

2 )q
9 (8D′ + V

2 )q
9 (−8D′)q8 (−8D)

}〉
+

〈
T̃
{
q8 (−8D +

V

2 )q
9 (−8D′ + V

2 )q
9 (8D′)q8 (8D)

}〉
. Both expressions are with respect to the inverse temperature BV. Note

that in the limit B→ 1, both 4.17 and 4.18 vanish, which means we can compute their contribution to the
entanglement entropy separately. Let us define - = 8D

B
+ c

2B and . =
−8D
B
+ c

2B , and assume V = 2c. We
have

〈
T

{
q8 (8D + V

2 )q
9 (8D′ + V

2 )q
9 (−8D′)q8 (−8D)

}〉
=

( c
V�

)4Δ 4Δ212

(


(
1 − -

tan - +
c

tan -

) (
1 − - ′

tan - ′

)
1

sin2Δ - sin2Δ - ′
D > D′(

1 − -
tan -

) (
1 − - ′

tan - ′ +
c

tan - ′

)
1

sin2Δ - sin2Δ - ′
D′ > D,

(4.19)

and the anti-time-ordered four-point function is simply the complex conjugate of the above expression.
So the expression for 4.18 will take the following form:

− B6
2

2
412Δ2

(

( c
V�

)4Δ
[ [ ∫ C

0
3D

(
1

sin2Δ -

(
1 − -

tan -

)
− 1

sin2Δ.

(
1 − .

tan.

))]2

+
[ ∫ C

0
3D

1
sin2Δ -

c

tan -

∫ D

0
3D′

1
sin2Δ -′

(
1 − -′

tan -′
)

+
∫ C

0
3D

1
sin2Δ -

(
1 − -

tan -

) ∫ C

D

3D′
1

sin2Δ -′
c

tan -′
+ 2.2.

] ]
.

(4.20)

We can use by-parts and some manipulations to further simplify the second and the third line:

− B6
2

2
412Δ2

(

( c
V�

)4Δ
[ [ ∫ C

0
3D

(
1

sin2Δ -

(
1 − -

tan -

)
− 1

sin2Δ.

(
1 − .

tan.

))]2

+
[

c2B

8Δ2 sin4Δ c
2B
− c2B

4Δ2 sin2Δ c
2B

sin−2Δ - + cB
2

4Δ2 - sin−4Δ - + 2.2.
]

− 8cB
2Δ
(2 − 1

2Δ
)
( ∫ C

0

1
sin4Δ -

− 2.2.
)
+ 8cB
Δ

(
1 − 1

2Δ

) ( 1
sin2Δ -

∫ C

0

1
sin2Δ -

− 2.2.
]
.

(4.21)
Expanding around B = 1 yields:

−c21262

2(

( V
2c

)2 ( c
V�

)4Δ
[
4Δ

C tanh C
cosh2Δ C

− 4Δ
1

cosh2Δ C
+ 4Δ

cosh4Δ C
+ 4Δ(2Δ − 1) sinh C

cosh1+2Δ C

∫ C

0

3D

cosh2Δ D

]
.

(4.22)
Therefore, retrieving the V dependence, the second order correction to the entanglement entropy, including
4.17, is

Δ(�� =
c21262

2(

( V
2c

)2 ( c
V�

)4Δ
[
−

(
1 − 1

cosh2Δ 2cC
V

)2
+ 4Δ

cosh2Δ 2cC
V

[
2cC
V

tanh
2cC
V
− 1 + 1

cosh2Δ 2cC
V

+ (2Δ − 1) tanh
2cC
V

∫ 2cC
V

0

3D

cosh2Δ D

] ]
.

(4.23)
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Figure 4.3: The time contour for the four-point function using 4.6. Here, we have − V2 ≤ g ≤
V

2 . The
figure displays different configurations in the computation of the two-point function. The probing fields
are depicted by the black filled circles. The blue/red filled circles represent the field insertions from the
unitary evolution. The red insertions make the out-of-time-ordered correlator with the probing fields.

Thermalization
In this section, we will compute the temperature of the deformed thermofield-double state directly by
studying the two point function of two probing fields inserted in the right side. In general, for a system out
of equilibrium, the two-point function � (C1, C2) also depends on C1+C2

2 . In our case, the correction to the
two-point function is of two types. The first type is the case where the interaction Hamiltonian makes a
time-ordered correlation function with the two probing fields in the two point function, while the second
type is the case where they make an out-of-time-ordered correlator; see Figure 4.3. We expect the C1+C2

2
dependence of the two-point function to come from the second type, from the exponentially growing term
in the OTOC configuration [39]. However, as we will see the non-equilibrium part will be suppressed at
the time of order C ∼ V

2Δ due to exponential decay in the strength of the interaction Hamiltonian, and the
system will equilibrate with the new temperature much earlier than the scrambling time. We insert the
two probing fields of dimension Δ1 at time C1 and C2:

1
#

#∑
8=1

〈
)��

����*� (C0, C2) q8 (C2)*� (C2, C1) q8 (C1)*� (C1, C0)����)��〉
, (4.24)

Here, C0 = 0 is the time TFD is prepared. We expand the three evolution operators inserted in the
two-point function which to leading order in g yields:

�V (C2 − C1)
(
1 − 8

[ ∫ C1

C0

3D 6(D) F )$
(
8(C2 − C1), 28D +

V

2

)
� (28D + V

2
)

−
∫ C2

C0

3D 6(D) F )$
(
− 28D + V

2
, 8(C2 − C1)

)
� (28D + V

2
)

+
∫ C2

C1

3D 6(D) F$)$
(
8C2, 8C1, 8D,−8D −

V

2

)
� (28D + V

2
)
])
.

(4.25)
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For C1, C2 > C0 after manipulation, we get:

� ((C2 − C1))
[
1 + V16Δ1

2(( V�
c
)2Δ

((
2 − 1

cosh2Δ 2cC1
V

− 1
cosh2Δ 2cC2

V

) (
1 −

c(C2−C1)
V

tanh c(C2−C1)
V

)
+

∫ C2

C1

3D

[ c
4 cosh c(C1+C2)

V

sinh c(C2−C1)
V

1
cosh2Δ+1 2cD

V

]
− c

2
coth

c(C2 − C1)
V

∫ C2

C1

3D
1

(cosh 2cD
V
)2Δ

(
1 −

2cD
V

coth 2cD
V

)
+

[ c(C1+C2)
8Δ

tanh c(C2−C1)
2

( 1
cosh2Δ( 2cC2

V
)
− 1

cosh2Δ( 2cC1
V
)

))]
.

(4.26)

At C1, C2 ∼ V, one can approximate cosh 2cC
V
∼ 4

2cC
V

2 and see that all these terms are negligible. Therefore,
the terms that survive are:

� (C2 − C1)
[
1 + V16Δ1

(( V�
c
)2Δ

(
1 −

c(C2−C1)
V

tanh c(C2−C1)
V

)]
= � Ṽ (C2 − C1). (4.27)

where
Ṽ = V

(
1 − c16

2�(
( c
V�
)2Δ−1

)
. (4.28)

This matches the temperature that was predicted from computing the entanglement entropy, i.e. 4.16.

The entanglement entropy from the equation of motion
In this section, we will derive the entanglement entropy from the equation of motion for the boundary.
For that, we will use the global AdS coordinate. The relation between coordinate times in Poincare,
Schwarzschild, and global time coordinates is:

C = tanh
cg

V
= tan

[

2
, (4.29)

and so the two-point function between the left and the right boundary in terms the global AdS coordinate
is given by: 〈

q8' (D1)q 9! (−D2)
〉
= 1

(
[′(D1)[′(D2)

4�2 cos2 [' (D1)−[! (D2)
2

)Δ
X8 9 . (4.30)

Here, [! and [' are the restriction of AdS2 global time [ to the left and right boundaries. At low energy
limit, we expect the effective action for the boundary to take the following form:

( = −
[ ∫

3D̃ (2ℎ(tan
[!

2
, D̃) +

∫
3D̃ (2ℎ(tan

['

2
, D̃)

]
− 2^

∫
3D̃

(
[′
!
(D̃) [′

'
(D̃)

cos2 ['−[!
2

)Δ
^ =

6

2
( 1

(2�)2Δ
) ( qA

8c�
)1−2Δ, D̃ =

8c�D
qA

,

(4.31)
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where we approximated the interaction term by (8=C ≈
∫
3D 6(D)

〈
q8
!
(D)q8

'
(D)

〉
. We can rewrite the

above action as:

( =

∫
3D̃

(
%['[

′
' + %[![′! + %q'q′' + %q!q′! − �

)
� =

1
2

(
%2
q!
+ 42q! + 2%[!4

q!

)
+ 1

2

(
%2
q'
+ 42q' + 2%['4

q'

)
+ 2^

(
4(q'+q!)

cos2 ['−[!
2

)Δ
.

(4.32)

The equation of motion is given by:

q′' = %q' , [′' = 4
q' ,

%′q' = −
(
42q' + %['4q' + 2^Δ

(
4(q'+q!)

cos2 ['−[!
2

)Δ)
%′[' = −2^Δ tan

[' − [!
2

(
4(q'+q!)

cos2 ['−[!
2

)Δ
.

(4.33)

Note that 4.31 still has SL(2,R) symmetry. The corresponding conserved charges are:

&3 = &
'
3 +&

!
3 , &2 = &

'
2 −&

!
2 , &1 = &

'
1 −&

!
1 . (4.34)

where &'(!)
8

s are the charges 2.37. Here, the Poisson bracket is with respect to (q', %q' ), (q! , %q! ),
([! , %[! ), and ([', %[' ). Since we are interested in solving 4.33 with initial condition set by B.14 for
both sides, and both are symmetric with respect to left and right, [! (D) = [' (D) is always guaranteed, so
we can reduce the equation of motion to:

q′' = %q' , [′' = 4
q' , %[ = 0,

q′′' =


−(42q' + 2^Δ 42Δq' ) D ≥ 0

−42q' D < 0.

(4.35)

One can solve the above equation for D ≥ 0 perturbatively assuming that ^ � 1 with the initial condition

q(0) = ln
(

2c
, q′(0) = 0. (4.36)

In particular, we are interested in computing the Casimir function &' = q
′2
'
+ 42q' = &0 + ^&1 + ^2&2 +

$ (^3). Equation 4.35 implies:

q′'
2 + 42q' + 2^42Δq' =

( (
2c

)2
+ 2^

( (
2c

)2Δ
. (4.37)

Taking q = q0 + ^q1 + ^2q2 +$ (^3) and plugging into 4.35, at leading order we have:

q0(D̃) = − ln
2c
(

cosh
( (
2c
D̃

)
, &0 =

( (
2c

)2
, (4.38)
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while in the next order one gets:

q′1 −
(

c

1
sinh (D̃

c

q1 =
( (
2c

)2Δ−1 (
1 − 1

cosh2Δ (D̃
2c

)
coth

(D̃

2c
. (4.39)

One can rewrite the above as follows:(
coth

(D̃

2c
q1

)′
=

( (
2c

)2Δ−1 (
1 − 1

cosh2Δ (D
2c

)
coth2 (D̃

2c
, (4.40)

with the answer:

q1 =
( (
2c

)2Δ−2
(
− (D̃

2c
tanh

(D̃

2c
+ 1 − 1

cosh2Δ D
+ (1 − 2Δ) tanh

(D̃

2c

∫ (D̃
2c

0

1
cosh2Δ G

)
. (4.41)

The leading correction to the Casimir is given by:

&1 = 2
(( (

2c

)2Δ
− 42Δq0

))
= 2

( (
2c

)2Δ
(
1 − 1

cosh2Δ ( D̃
2c

)
,

&2 = −4Δ 42Δq0 q1.

(4.42)

Then the value of the entropy can be rederived from

((D) = 2c
√
&' = 2c

√
&0

(
1 + ^

2
&1
&0
+ ^

2

2

(&2
&0
− 1

4

(&1
&0

)2)
+$ (^3)

)
. (4.43)

Considering the expansion ((D) = (0 + ^(1(D) + ^2(2(D), we have:

(1(D) = 2c
( (
2c

)2Δ−1
(
1 − 1

cosh2Δ ( D̃
2c

)
,

(D̃

2c
=

2cD
V
.

(2(D) =
(

2

( (
2c

)4Δ−4
(
−

(
1 − 1

cosh2Δ ( D̃
2c

)2
+ 4Δ

cosh2Δ ( D̃
2c

(
(D̃

2c
tanh

(D̃

2c
− 1 + 1

cosh2Δ (D̃
2c

− (1 − 2Δ) tanh
(D̃

2c

∫ (D̃
2c

0

1
cosh2Δ G

))
.

(4.44)
Note that ^(1(D) and ^2(2(D) are exactly equal to 4.14 and 4.23. Notice that the relation of entanglement
entropy to the coarsed-grained quantity 4.43, is more than the equality of final answers. In fact, in the

second order, the term c^2√&0
&2
&0

is equal to the second configuration in section 4, and − c^2

4
√
&0

(
&1
&0

)2

equals the first configuration.

4.1 The explicit solution for Δ = 1
2

We can find an exact solution to 4.35 for Δ = 1
2 :

tan
[

2
=
(

(̃
tanh

cD

Ṽ
, Ṽ = V

(
1 + 4c^

(

) −1
2
, (4.45)
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(a) (b) (c)

Figure 4.4: The effect of the double trace operator on the black hole in the bulk. (a) represents the case
where the interaction is on for C > 0. For g<0, the operator will decrease the entropy of the black hole, the
black hole’s size gets smaller, and so part of the region behind the horizon is now revealed to the outside
observer. (b) displays the case where the interaction is on while we go backward in time which shrinks
the white hole region. (c) We can repeat (a) but with g>0. This leads to expanding the black hole. The
entanglement entropy will increase, the black hole will expand, so the red region will become smaller.

and (̃ is the thermal entropy associated with the new inverse temperature Ṽ,
(
(

(̃
=

Ṽ

V

)
. Plugging 4.45 into

the formula for the Casimir yields:

(̃(D) = 2c
√
&' = (

(1 + ( (̃
(
)2 tanh2 cD

Ṽ

1 + ( (
(̃
)2 tanh2 cD

Ṽ

) 1
2

. (4.46)

Indeed, when Δ = 1
2 , the effect of the interaction Hamiltonian is to change the black hole’s temperature.

One can argue that the effect of the double traced operator for 6 < 0 is to shrink the black hole, the
Einstein-Rosen bridge, so part of the region that was behind the horizon is now revealed to the outside
observer. Therefore, for the black hole interior to be revealed to the outside observer, the observer has
to decrease the entanglement entropy of TFD and reach the states |T̃FD〉 in the Hilbert space. As a
consequence, the wormhole between the two sides will shrink and part of the interior can be probed from
outside; see Figure 4.4. To quantify this, we define the length of the wormhole at time C as the length
of the geodesic that connects the two points at A = 1

(
. Shrinking a given wormhole corresponds to a

configuration where the upper bifurcation point will be placed on the wormhole which happens when we
decrease the entanglement entropy. For example, for Δ = 1

2 , the location of the upper bifurcation point
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Figure 4.5: The two-sided black hole embedded in the global AdS. The blue segment is the wormhole
that connects the two sides whose end points are located on A = 1

(
( A is the Schwarzschild coordinate).

We can shrink such a wormhole by spending the entanglement that exists in the thermofield-double state.

as a function of ^ is: (
[1, f1

)
=

(
2 arctan

1√
1 − 4c^

(

− c
2
, 0

)
. (4.47)

Now, to the leading order in 1
(
, the length of the wormhole satisfies:

cosh 3F = 1 + 2 tan2 [1, (4.48)

or equivalently:

3F

2
= − log

√
1 + 4c^

(
≈ 2c |^ |

(
+$ ( ^

2

(2 ) (4.49)

where 3F is the length of the wormhole. 4.49 implies that in order to shrink a wormhole of length 3F, one
needs to decrease the entanglement entropy to ( − 2c |^ |. This may be a manifestation of ER=EPR [30].
To send a message from one side to the other side, we also need to take into account the back reaction of
the message on the black hole which leads to the expansion of the wormhole. Such back reactions are
due to the shock wave effects [9, 39]. Therefore, to send a message between two parties with a black hole
in between, in general, there are two barriers: the wormhole that already exists and the back reaction of
the message which leads to its expansion. However, one can use the entanglement as a resource to shrink
the wormhole and send the message to the other side.
We can also interpret 4.37 as the conservation of the energy for a particle whose trajectory is the boundary
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of AdS:
q′'

2 + 42q' + 2^42Δq' = � =
( (
2c

)2
+ 2^

( (
2c

)2Δ
. (4.50)

This implies that at late, time we have:

((D →∞) = 2c
√
� = (

√
1 + 2^

( (
2c

)2Δ−2
. (4.51)

This implies a critical value for the coupling ^ where the energy of the particle (the entanglement entropy)
vanishes:

^∗ =
−1
2

( (
2c

)2−2Δ
(4.52)

Naively, ^∗ is the value for which the state T̃FD becomes pure. However, close to this value, our classical
computation becomes invalid ( qA

V�
∼ 1), and one should consider the quantum Schwarzian [22, 4, 33, 24].
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C h a p t e r 5

PERTURBATIVE CALCULATIONS OF THE ENTANGLEMENT ENTROPY

The model and general formulas
Let us consider a quantum systemwith someHilbert spaceHB and Hamiltonian�B. For an exact analogy
with the evaporation problem, we would have to pick a pure state that looks like thermal to all simple
measurements. Instead, we double the system and postulate that its initial state is the thermofield-double,
|TFDB〉 ∈ H ∗B ⊗ HB. Only the right part is coupled to the heat bath, but we are interested in the von
Neumann entropy of the double system as its density matrix dB∗B evolves in time. Likewise, the bath is
also doubled, so that the initial state of the world is

|Ψ0〉 = |TFDB〉 ⊗ |TFDb〉 ∈ H ∗B ⊗ HB ⊗ Hb ⊗ H ∗b . (5.1)

A similar, but not identical,1 setting was used in [13, 8], where the B-Renyi entropy for integer B > 1 was
calculated.

The full Hamiltonian � = �B + �b + �Bb acts only on the two objects in the middle, i.e. on HB ⊗ Hb.
We assume that the interaction term has the form

�Bb = ^
#∑
9=1
$
9

B$
9

b (5.2)

with some bosonic operators $ 9

B and $ 9

b. In the case of fermionic systems like the SYK model [38, 21,
27, 23], we should multiply the coupling parameter ^ by 8. For simplicity, we will do the computation
for a bosonic system, but the final answer will equally be applicable to fermionic systems.

Thus, the evolution of the world in the interaction picture takes the form

dB∗Bbb∗ (C) = * (C) |Ψ0〉〈Ψ0 |*−1(C), * (C) = T
(
4−8

∫ C
0 �Bb (D)3D

)
, (5.3)

where T stands for time ordering. We also assume that 〈$ 9

B〉 = 〈$
9

b〉 = 0.2 In the rest of the section, we
will compute the B-Renyi entropy of the system’s density matrix dB∗B(C) after tracing out the bath. It is

1In Refs. [13, 8], the initial state is taken to be the thermofield-double of two interacting subsystems rather than the
product of two thermofield-doubles.

2In case that 〈$ 9〉 ≠ 0, one can work with $ 9 − 〈$ 9〉.
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given by the perturbative expansion

dB∗B(C) =
∑
=,<

(8^)= (−8^)<
=!<!

∫ C

0

[
T{$ 9=

B (D=) · · ·$
91
B (D1)}

��TFDB
〉〈

TFDB
�� T̃{$ 9 ′1

B (D
′
1) · · ·$

9 ′<
B (D

′
<)}

×
〈
T̃{$ 9 ′1

b (D
′
1) · · ·$

9 ′<
b (D

′
<)}T{$

9=
b (D=) · · ·$

91
b (D1)}

〉]
3D 3D′,

(5.4)
where the expectation value 〈· · · 〉 is with respect to the bath’s thermal state and T̃ denotes reverse time
ordering. (If D1 < · · · < D= and D′1 < · · · < D′<, then the operators are already ordered.) There is also
an implicit sum over repeated indices, with each index going from 1 to # . Note that operators with the
same indices have the same time argument.

Since the combinatorics might soon get complicated, let us introduce some simplifying graphic notation:

|TFDB〉 = , 〈TFDB | = . (5.5)

Then each term in the expansion (5.4) will look like this (where T, T̃, and the indices are omitted):

$ (D2)$ (D1)
��TFDB

〉 〈
$ (D′1)$ (D2)$ (D1)

〉
b
〈
TFDB

��$ (D′1) = for D1 < D2. (5.6)

The diagram element in the middle is the Keldysh contour for the heat bath. It consists of a circle at
the bottom representing imaginary-time evolution and a stem corresponding to the real-time evolution;
the time goes up. For integer B, Tr (dB∗B(C))B can be represented by gluing such B diagrams (describing
different replicas of the density matrix) in the cyclic order — see Figure 5.1, where the replicas are
depicted with different colors. The expectation values should be independently computed for each closed
contour, whether it corresponds to the system or the bath.

Let us further assume that the system-bath coupling is sufficiently weak. Then the “radiation quanta”
emanating from the system are sparse, which means that dominant diagrams have at most two operators
with close times per contour. Therefore, the calculation can be done using Wick contraction. Of course,
if the fields $ 9

B, $
9

b are Gaussian, then no sparseness condition is necessary.

An example of a (subleading) Wick pairing contributing to Tr (dB∗B(C))B is as follows:〈
$ (E′1)$ (E

′
2)

〉
b
〈
$ (E′1)$ (E

′
2)$ (D2)$ (D1)

〉
B
〈
$ (D2)$ (D1)

〉
b, for D1 < D2, E′1 < E

′
2. (5.7)

It corresponds to the black loop at the bottom of Figure 5.1 (a). In general, a Wick contraction diagram
is a disjoint union of loops that consists of alternating solid and dotted lines. Solid lines represent
contractions of fields on the same contour, whereas dotted lines correspond to interaction terms such as
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(a) (b)

Figure 5.1: The time contour for the system-bath coupling. (a) A diagram for Tr (dB∗B(C))B, where
dB∗B(C) is given by (5.4) and B = 4. The thick solid lines make up 2B Keldysh contours for the system
and the bath in alternating order. Each half of a contour represents a thermofield-double. Lorentzian
time is directed toward the center of the diagram. Different replicas are depicted in different colors.
Wick contractions of fields are depicted by thin solid lines, while the dotted lines represent system-bath
coupling. The leading contributions are due to purple loops; the shorter and the longer loops correspond
to equations (5.11) and (5.12), respectively. (b) The simplified diagram obtained by omitting the bath’s
replicas.

$
9

B(D)$
9

b(D). Each contraction comes with a Kronecker delta identifying the indices of the contracted
fields. The result is nonzero if all the indices on each loop are the same. Therefore, each loop with 3
solid line segments evaluates to #^3 multiplied by the product of two-point functions.

The diagrams for ln
(
Tr (dB∗B(C))B

)
are connected, i.e. contain a single loop. The factor of # that appears

here is usual for extensive thermodynamic quantities; thus, the intensive parameter is ^3 . If ^ is small,
we should only keep loops with 3 = 2 contractions (in one replica) and 3 = 2B contractions (traversing
all the replicas). Both types of loops are shown in purple in figure 5.1.

There are three types of two-point functions for the system,〈
T{$ 9

B(D)$
;
B(E)}

〉
= 8�T B(D − E)X 9 ; ,

〈
T̃{$ 9

B(D)$
;
B(E)}

〉
= 8�T̃ B(D − E)X 9 ; , (5.8)〈

$
9 ′

B (D
′)$ 9

B(D)
〉
= 8�B(D′ − D)X 9 ′ 9 , (5.9)

and similarly for the bath. The expressions for closed paths will be simplified if we think of a two-point
function as the matrix element of a bilocal operator �̂,

〈D′|�̂ |D〉 = 5C (D′)� (D′ − D) 5C (D), 5C (D) ≡ \ (D) − \ (D − C), (5.10)

where 5C (D) is a time window function that vanishes outside the interval (0, C). This way, we can extend
the time domain to (−∞,∞) and avoid putting limits on the integrals. We also define the transpose of
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the operator �̂, denoted by �̂ᵀ, with the matrix element 〈C1 |�̂ᵀ |C2〉 = � (C2 − C1). Note that �̂T and �̂T̃
for bosons are symmetric, i.e. equal to their transpose. To illustrate this notation, the expression (??)
involves a loop with four Wick contractions, E′1

b←− E′2
B←− D2

b←− D1
B←− E′1; hence, the result takes the form

Tr
(
�̂T̃ b ◦ �̂B ◦ �̂T b ◦ �̂ᵀB

)
.

As already mentioned, there are two types of loops that contribute to ln
(
Tr (dB∗B(C))B

)
to leading order.

The loops of length 3 = 2 can themselves be of two forms, one of which appears in figure 5.1. They give
the following contributions:

%2,T(C) = #^2 Tr
(
�̂T B ◦ �̂

ᵀ
T b

)
, %2,T̃(C) = #^

2 Tr
(
�̂T̃ B ◦ �̂

ᵀ

T̃ b

)
. (5.11)

Here we have used the fact that (±8)2 from (5.4) cancels 82 from (5.8). (The extra factors present in the
fermionic case also cancel each other.) There are also loops of length 3 = 2B, which we say to have
winding number 1 because they traverse all replicas. The expression for such a loop takes the following
form:

%2B (C) = #^2B Tr
(
−�̂B ◦ �̂

ᵀ
b
) B
. (5.12)

Since in the end we are interested in the limit B → 1, the quantities (5.12) and (5.11) are of the same
order in the coupling.

As an exercise, let us sum up the leading diagrams in Tr (dB∗B(C))B — we should get the exponential of
a sum of single loops with certain coefficients. It is sufficient to only keep track of the system’s replica,
leaving the bath implicit as in figure 5.1 (b). Let <1, . . . , <B and =1, . . . , =B be the numbers of fields in
the time ordered and anti-time ordered branches of the Keldysh contours. The number of ways to break
them into : loops of length 2B with winding number 1 and some loops of length 2 (with winding number
0) is given by

(:!)2B−1
B∏
A=1

(
<A

:

) (
=A

:

)
(<A − :)!(
<A−:

2

)
! 2

<A−:
2

(=A − :)!(
=A−:

2

)
! 2

=A−:
2

. (5.13)

Defining <A − : = 2?A and =A − : = 2@A , after manipulation we will get

Tr (dB∗B(C))B =
∞∑
:=0

∑
?1,...,?B

∑
@1,...,@B

1
:!

B∏
A=1

1
(?A)!(@A)! 2?A2@A

(
%2B (C)

) : (
%2,T(C)

) ?A (%2,T̃(C)
)@A

= exp
(
1
2

(
%2,T(C) + %2,T̃(C)

)
+ %2B (C)

)
.

(5.14)

Using the fact that Tr
(
�̂T B ◦ �̂ᵀT b

)
+ Tr

(
�̂T̃ B ◦ �̂

ᵀ

T̃ b

)
= 2 Tr

(
�̂B ◦ �̂ᵀb

)
, the final answer is as follows:

ln
(
Tr (dB∗B(C))B

)
= #

(
B^2 Tr

(
�̂B ◦ �̂

ᵀ
b
)
+ ^2B Tr

( (
−�̂B ◦ �̂

ᵀ
b
) B))

. (5.15)

While the above equation was derived for bosonic systems, it is the same for fermionic systems like the
SYK model.
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Short initial period vs. linear growth
Equation (5.15) allows one to compute the von Neumann entropy ((dB∗B(C)) for C < CPage. Although
the exact answer is model-dependent, there are two universal regimes: very early times, just after the
system-bath coupling is turned on, and intermediate times, when the entropy grows linearly.

Very early times: Let C � CUV such that the effect of the Hamiltonians �B and �b is negligible. For
example, CUV = �−1 for the SYK model. More exactly, we assume that the Green functions �B(C) and
�b(C) may be approximated by some constants. Then the expression (5.15) and the von Neumann entropy
take this form:

ln
(
Tr (dB∗B(C))B

)
≈ #

(
−B 2^2C2+

(
2^2C2

) B)
, (5.16)

(
(
dB∗B(C)

)
≈ 2^2C2

(
− ln(2^2C2) + 1

)
, where 2 = −�B(0)�b(0). (5.17)

Intermediate times: For systems with continuous excitation spectrum, connected correlators decay in
time. Exponential decay is typical; for example, in a conformal system at finite temperature, the correlator
of fields with scaling dimension Δ decays as exp

(
−2cΔ

V
C
)
if C � V

Δ
. Let us assume that both �B(C) and

�b(C) decay exponentially at C � C∗.

If C � C∗, then Tr
(
�̂B ◦ �̂ᵀb

)
can be approximated as follows. This expression is an integral over

D, D′ ∈ (0, C), but the integrand is negligible unless |D′ − D | . C∗. Therefore, we may remove the limits on
D′, and then use the Fourier transform:

Tr
(
�̂B ◦ �̂

ᵀ
b
)
≈

∫ C

0
3D

∫ ∞

−∞
3D′�B(D′, D)�b(D′, D) = C

∫
�̃B(l)�̃b(−l)

3l

2c
, (5.18)

where �̃ (l) =
∫ ∞
−∞� (C)4

8lC 3C. The second term in (5.15) can also be approximated in such a way. Thus,

ln
(

Tr(d(C)B∗B)B
)
≈ #�(B) C, (5.19)

where
�(B) = B^2

∫
�̃B(l)�̃b(−l)

3l

2c
+ ^2B

∫ (
−�̃B(l)�̃b(−l)

) B 3l
2c
. (5.20)

After analytically continuing to B = 1, the von Neumann entropy will be given by

(
(
dB∗B(C)

)
≈ −#�′(1) C,

�′(1) = ^2
∫

�̃B(l)�̃b(−l)
(
− ln

(
−^2�̃B(l)�̃b(−l)

)
+ 1

)
3l

2c
.

(5.21)

(5.22)

The integrals in �(B) and �′(1) converge because a possible peak at l = 0 is broadened to have a width
lmin = C

−1
∗ . There is also a natural UV cutoff at lmax = C

−1
UV. An interesting case is where both the
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system and the bath are conformal at l � lmax. Let us first assume that the temperature is zero; then
�̃B(l) ∝ l2ΔB−1 and �̃b(l) ∝ l2Δb−1 for l > 0, but both �̃B and �̃b vanish at l < 0. (Recall that
these are Wightman functions.) Hence, �̃B(l)�̃b(−l) is zero for all l ≠ 0. At finite temperature,
the integral in (5.22) is dominated by the region l ∼ V−1, where 8�̃B(l) ∼ CUV(CUV/V)2ΔB−1 and
8�̃b(l) ∼ CUV(CUV/V)2Δb−1. It follows that

3((dB∗B(C))
# 3C

= −�′(1) ∼ −G ln G
V

, where G = (V^)2
(
V

CUV

)−2(ΔB+Δb)
. (5.23)

A good example is two SYK models at large V�. (A bath with Δb =
1
2 can also be realized by a critical

Majorana chain.) The Renyi entropies in this case were studied in [8] using the effective action method,
which is generally more powerful than perturbation theory. However, the analytic continuation to B = 1
was not obtained. The computed growth rate of the B-Renyi entropy for integer B > 1 is consistent with
our estimate,

3(B (dB∗B(C))
# 3C

=
�(B)
1 − B ∼ V^

2(V�)−2(ΔB+Δb) . (5.24)

5.1 Perturbations to the saturated phase
We now consider the system at later times, such that its von Neumann entropy has reached the coarse-
grained (thermodynamic) entropy. The entanglement entropy in this phase shows interesting behavior
under perturbations. For example, a short impulse increasing the system’s energy (similar to throwing
a rock into a black hole) will cause a resurgence of entropy growth. Indeed, such an action can be
described by some unitary operator + . It increases the coarse-grained entropy and effective temperature,
though the true microscopic entropy does not change. Letting the system interact with the bath, we
should see a behavior similar to the cusp in the Page curve. Specifically, we expect the von Neumann
entropy to grow until it becomes equal to the coarse-grained entropy. Since the growth rate is constant
while the perturbation can be arbitrarily weak, the resurgence can be short — just slightly longer than the
scrambling time. It will be followed by a thermal equilibration period, when both the coarse-grained and
microscopic entropies decrease, see Figure 5.2. Thus, the Page curve cusp is accessible in this setting.
However, to actually produce a cusp, the perturbation should be sufficiently strong, likely beyond the
Taylor expansion. We will study a simpler problem, calculating the effect in the lowest order.

While our formal goal is to compute the von Neumann entropy in a rather general setting, the key result
pertains to systems that saturate the chaos bound [26]. The expression obtained in this case admits a
holographic interpretation, which will be discussed at the end.

Statement of the problem
For the study of the saturated phase, it is sufficient to consider one copy of the system and the bath
rather than the thermofield-double. The bath can be integrated out, giving rise to the interaction function
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Figure 5.2: Qualitative plot of the system’s coarse-grained entropy (dashed line) and the entanglement
entropy (solid line) in the presence of an instantaneous perturbation.

f(g1, g2) = ^2�b(g1, g2) on the Keldysh contour. Let us simplify the model a bit and replace the
interaction f, which is constantly on, with a superoperator ' acting at a specific time. (The results we
will obtain in this setting can be easily generalized to the original model.) So, the exact problem involves
a quantum system at thermal equilibrium subjected to a sequence of two instantaneous perturbations, +
and '.

Let + = 4−8G- , where - is a Hermitian operator and G is a small parameter. We consider the action of +
on the thermal state d0 and expand the resulting density matrix d1(G) to the second order in G:

d1(G) = +d0+
† ≈ d0 − 8G [-, d0] + G2

(
-d0- −

1
2
(
-2d0 + d0-

2) ) . (5.25)

In fact, a nontrivial effect will be seen in the second order, and only when combined with a subsequent
interaction with the environment. The latter is described by a physically realizable (i.e. completely
positive, trace-preserving) superoperator '. Suppose that ' is close to the identity such that it can be
expanded to the first order in some parameter n :

' ≈ 1 · 1 + n!, ! = −8(� · 1 − 1 · �) +
∑
9

(
� 9 · �†9 −

1
2
(
�
†
9
� 9 · 1 + 1 · � 9 �†9

) )
, (5.26)

where � · � stands for the superoperator that takes d to �d�. The first term in ! (which involves a
Hermitian operator � and acts as d ↦→ −8[�, d]) may be neglected because it represents an infinitesimal
unitary transformation, and thus, does not change the entropy. The sum over 9 (known as Lindbladian)
corresponds to tracing out the environment. As will be justified later, we may replace ! with

∑
9 � 9 · �†9

so that the final density matrix becomes

d(G, n) = '(d1(G)) = (1 − 8G-)d0(1 + 8G-) + n
∑
9

� 9 (1 − 8G-)d0(1 + 8G-)�†9

+ unimportant terms.
(5.27)

Our goal is to compute m2

mG2
m
mn
((d(G, n)), where ((d) = −Tr(d ln d).

We assume that + acts at time 0, whereas ' acts at a later time C. Thus, � 9 is understood as � 9 (C) =
48�0C� 9 (0)4−8�0C , where � 9 (0) is some simple (e.g. one- or two-body) operator. The calculation will
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be done by the replica method for a general large # system in the early time regime, i.e. before the
scrambling time. However C is taken to be sufficiently large such that OTOCs are parametrically greater
than correlators with non-alternating times. Note that d(G, n) involves only non-alternating operators
such as � 9-d0-�

†
9
. However, OTOCs appear due to the use of replicas. The “unimportant terms” in

(5.27) are exactly those that do not generate any OTOCs.

In the next section, we study partial derivatives of ((d), assuming that d depends on parameters in some
particular way. This setting does not directly include the function d(G, n) given by equation (5.27). To
cover this case, we will use a trick called “locking two operators in the same replica”, see Section 5.1.

Thermodynamic response theory for the replicated system
Let us recall the standard definition of connected correlators. We begin with the partition function
/ = Tr, , where, is the imaginary-time evolution operator:

, = T exp
(
−

∫ V

0
� (g) 3g

)
. (5.28)

Without perturbation, we have � (g) = �0. The insertion of operators -1, . . . , -= at times g1, . . . , g= is
described by perturbing the Hamiltonian:

� (g) = �0 −
=∑
9=1
G 9X(g − g9 ) - 9 , V ≥ g= ≥ · · · ≥ g1 ≥ 0, (5.29)

where G 9 are infinitesimal numbers. We generally assume that the operators - 9 are bosonic. (If any of
them is fermionic, the corresponding variable G 9 should be anti-commuting.) Thus,

, (V, G=, . . . G1) = 4−(V−g=)�0 (1 + G=-=)4−(g=−g=−1)�0 · · · (1 + G1-1)4−g1�0 (5.30)

and / (V, G=, . . . G1) = Tr, (V, G=, . . . G1). The full correlator is simply

〈-= (g=) · · · -1(g1)〉 = /−1 m=/

mG1 · · · mG=

����
G1=···=G==0

. (5.31)

The corresponding connected correlator is defined as follows:3

〈-= (g=), . . . , -1(g1)〉 =
m= ln /

mG1 · · · mG=

����
G1=···=G==0

. (5.32)

For example, 〈-,.〉 = 〈-.〉 − 〈-〉〈.〉 and

〈-,., /〉 = 〈-./〉 − 〈-.〉〈/〉 − 〈-/〉〈.〉 − 〈./〉〈-〉 + 2〈-〉〈.〉〈/〉. (5.33)
3We use commas instead of double brackets because the usual notation (without commas) has some ambiguity.



42

Now, let us introduce B replicas of the system, such that the partition function becomes

/ (B, V, G=, . . . , G1) = Tr
(
, (V, G=, . . . , G1)

) B
. (5.34)

We may think of the parameter B as being associated with a branching operator B, which commutes with
everything. It is not defined by itself but only through its connected correlators:

〈B, -= (g=), · · · , -1(g1)〉 =
m=

mG1 · · · mG=

����
G1=···=G==0

m ln /
mB

����
B=1
. (5.35)

The branched correlator (5.35) is related to the entropy ( = ((d) of the density matrix d = /−1, at
B = 1 because (

mB (ln /)
) ��
B=1 = ln / − (. (5.36)

Thus, the entropy derivative with respect to G1, . . . , G= is given by−〈B, -= (g=), · · · , -1(g1)〉+〈-= (g=), · · ·
, -1(g1)〉. It is usually the easiest to compute the derivative of the relative entropy, ((d | |d0) = Tr(d(ln d−
ln d0)):

m=((d | |d0)
mG1 · · · mG=

����
G1=···=G==0

=
〈
(B+V�0), -= (g=), · · · , -1(g1)

〉
−

〈
-= (g=), · · · , -1(g1)

〉
=

m=

mG1 · · · mG=

����
G1=···=G==0

(
mB

(
B−1 ln Tr (, (V/B, . . .))B

) )���
B=1
.

(5.37)

For integer B, the expression Tr (, (V/B, . . .))B may be interpreted in terms of gluing B intervals of length
V/B to make a circle of length V. The operators -= (g=), . . . , -1(g1) are distributed along that circle.
Thus, the number in question is, essentially, a correlation function at the given V.

An important caveat is that there is no natural definition of the full correlator 〈B �〉 as a function
of � such that one could compute 〈B./〉 by substituting ./ for �. If such a function (with the
usual relation to the connected correlator) existed, we would have this corollary of equation (5.33):
〈B, . , /〉 = 〈B, . /〉 − 〈B, .〉〈/〉 − 〈.〉〈B, /〉. But this last identity is false because in the expression for
〈B, . , /〉, the operators . and / can occur in different replicas, but in 〈B, . /〉, they cannot.

Branched two-point correlator
Suppose that the ordinary correlation function 〈. (g), - (0)〉 is known on the imaginary axis, g = 8C, and
let us use its Fourier transform in C. In these terms,

〈. (g), - (0)〉 =
∫ ∞

−∞
�.,- (l)4−lg

3l

2c
. (5.38)

The corresponding branched correlator is expected to have a similar form,〈
B+V�0, . (g), - (0)

〉
−

〈
. (g), - (0)

〉
=

∫ ∞

−∞
ℎ.,- (l)4−lg

3l

2c
. (5.39)
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The goal of this section is to find the function ℎ.,- .

Let us consider the Fourier modes of the operators . and - , for example, .l =
∫
. (8C)48lC 3C. Their

connected correlator is
〈.l, -l′〉 = �.,- (l) · 2cX(l + l′), (5.40)

and we also have
. (g) =

∫
.l4

−lg︸  ︷︷  ︸
.l (g)

3l

2c
, - (0) =

∫
-l︸︷︷︸
-l (0)

3l

2c
. (5.41)

We now calculate the branched correlator of .l and -l′, equal to ℎ.,- (l) · 2cX(l + l′). When the
number of replicas B is a positive integer, each of the operators in question can be inserted in any replica,
so the calculation involves a double sum. Since each replica’s length is V/B, putting.l in the :-th replica
is described by .l (:V/B) = .l4−:Vl/B. With this in mind, we get:〈

B+V�0, .l, -l′
〉
−

〈
.l, -l′

〉
(5.42)

=

(
mB

(
B−1

B−1∑
:=0

B−1∑
;=0

T
〈
.l

(
:V

B

)
, -−l′

(
;V

B

)〉))�����
B=1

(5.43)

=

(
mB

B−1∑
:=0

〈
.l

(
:V

B

)
, -−l′ (0)

〉)�����
B=1

(5.44)

=
〈
.l, -l′

〉 (
mB

B−1∑
:=0

4−:Vl/B︸       ︷︷       ︸
1−D

1−D1/B for D=4−Vl

)����
B=1

= 2cX(l + l′) · �.,- (l)
Vl

4Vl − 1
. (5.45)

Thus,

ℎ.,- (l) = �.,- (l)
Vl

4Vl − 1
. (5.46)

Branched correlator related to early-time OTOCs
Let us recall the original problem of computing ((d(G, n)) with d(G, n) given by equation (5.27). In this
section, we calculate an analogous branched correlator 〈B, � 9 (V + 8C), - (V), - (0), �†: (8C)〉 and, more
generally, 〈

B, -4(V + 8C4), -3(V + 8C3), -2(8C2), -1(8C1)
〉

for C1, C4 ≈ C, C2, C3 ≈ 0. (5.47)

One can eliminate V from the time arguments by cyclically permuting -4, . . . , -1. As already mentioned,
the replica calculation involves OTOCs, which are dominant for sufficiently large C. Neglecting all terms
with non-alternating times, we get:

B :=
〈
B, -4(V + 8C4), -3(V + 8C3), -2(8C2), -1(8C1)

〉
=

〈
B, -2(8C2), -1(8C1), -4(8C4), -3(8C3)

〉
≈

(
mB

(
B+(B) + B−(B)

) )���
B=1
,

(5.48)
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Figure 5.3: Graphic representation of a single term in equation (5.49). In this example, B = 4 (with the
replicas labeled 0, 1, 2, 3), : = 1, 9 = 0, ; = 2, and C2 = C3 = 0.

where

B+(B) =
B−1∑
:=0

:∑
9=0

B−1∑
;=:+1

〈
-1

(
8C1 +

;V

B

)
, -2

(
8C2 +

:V

B

)
, -4

(
8C4 +

9 V

B

)
, -3(8C3)

〉
, (5.49)

B−(B) =
B−1∑
:=0

:∑
9=0

B−1∑
;=:+1

〈
-2(8C2), -1

(
8C1 −

9 V

B

)
, -3

(
8C3 −

:V

B

)
, -4

(
8C4 −

;V

B

)〉
. (5.50)

(Equation (5.49) is illustrated by figure 5.3.) In order to make further progress, we will use the
single-mode ansatz for early-time OTOCs,〈
-1(g1), -2(g2), -4(g4), -3(g3)

〉
≈ −�−14−8p(g1+g4−g2−g3−V/2)/2ΥR

-1,-4
(g1 − g4)ΥA

-2,-3
(g2 − g3), (5.51)

combined with the Fourier representation

ΥR
-1,-4
(g) =

∫
Υ̃R
-1,-4
(l)4−lg 3l

2c
, ΥA

-2,-3
(g) =

∫
Υ̃A
-2,-3
(l)4−lg 3l

2c
. (5.52)

The result has this general form:

B = −�−14p(C1+C4−C2−C3)/2
∫
B̃(l14, l23) 4−8l14 (C1−C4)4−8l23 (C2−C3) 3l23

2c
3l14
2c

,

B̃(l14, l23) = Υ̃R
-1,-4
(l14)Υ̃A

-2,-3
(l23) 5 (l14, l23).

(5.53)

(5.54)

Hence, the task is to compute 5 (l14, l23).

First, we find the similar function 5+(B;l14, l23) related to B+(B). Let

D = 4−Vl23 , E = 4−Vl14 , F = 4−8Vp/2. (5.55)

Then

5+(B;l14, l23) =
B−1∑
:=0

:∑
9=0

B−1∑
;=:+1

D:/BE (;− 9)/BF ( 9+;−:)/B−1/2 (5.56)

=
F−1/2

(1 − (F/E)1/B) (1 − (FE)1/B)

(
(EF)1/B 1 − D/E

1 − (D/E)1/B
− EF 1 − D/F

1 − (D/F)1/B

− F2/B 1 − DF
1 − (DF)1/B

+ E1−1/BF1+1/B 1 − D/E
1 − (D/E)1/B

)
,

(5.57)
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and hence,(
mB 5+(B;l14, l23)

) ��
B=1 = −

1
(1 − DF) (1 − DF−1)

(
F−1/2

1 − E−1D−1 +
F1/2

E−1 − D−1

)
ln D

+ 1
(1 − E−1F) (1 − E−1F−1)

(
F−1/2

1 − DE +
F1/2

D − E

)
ln E

+ F−1/2(1 + DE−1) − F1/2(D + E−1)
(1 − DF) (1 − DF−1) (1 − E−1F) (1 − E−1F−1)

lnF.

(5.58)

The function 5− is obtained from 5+ by replacing F with F−1. Adding both terms together, we get:

5 (l14, l23) =
(F−1/2 + F1/2) (D−1 − 1) (1 + E−1)

(1 − DF) (1 − DF−1) (1 − D−1E−1) (E−1 − D−1)
ln D

+ (F−1/2 + F1/2) (1 + D) (1 − E)
(1 − E−1F) (1 − E−1F−1) (1 − DE) (D − E)

ln E

+ (F−1/2 − F1/2) (1 + D) (1 + E−1)
(1 − DF) (1 − DF−1) (1 − E−1F) (1 − E−1F−1)

lnF,

(5.59)

where D = 4−Vl23 , E = 4−Vl14 , and F = 4−8Vp/2.

A great simplification occurs in the maximal chaos case:

5 (l14, l23) =
2c

(1 + 4−Vl23) (1 + 4Vl14)
if p =

2c
V
. (5.60)

Importantly, the function 5 (l14, l23) splits into two factors. They may be interpreted in terms of
interaction of the fluctuating horizon (which corresponds to B) with incoming and outgoing radiation.

Locking two operators in the same replica
We now adapt the obtained result to express the entropy of the density matrix d(G, n). The latter is a
normalized version of the operator

, (V, G, n) = (1 − 8G-)4−V�0 (1 + 8G-) + n
∑
9

� 9 (C) (1 − 8G-)4−V�0 (1 + 8G-) �†
9
(C). (5.61)

Note that we have made the time explicit and will follow the convention that � 9 = � 9 (0). To proceed,
we replace the set of operators � 9 with a single operator . . This is achieved by extending the physical
system with an auxiliary one, comprising a ground state |0〉 with zero energy and a set of excited states
| 9〉 with energy Ω. We denote the Hamiltonian of the extended system by � (Ω) and set

. =
∑
9

� 9 ⊗ |0〉〈 9 |, .† =
∑
9

�
†
9
⊗ | 9〉〈0|. (5.62)
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Although the transformation just described alters the operator, (V, G, n) in a nontrivial way, we will find
an agreement in the Ω → ∞ limit. For the time being, let us construct some operators acting on the
extended system that correspond to the two terms in (5.61) as closely as possible:

(1 − 8G-)4−V� (Ω) (1 + 8G-) = (1 − 8G-)4−V�0 (1 + 8G-) ⊗
(
|0〉〈0| + 4−VΩ

∑
9

| 9〉〈 9 |
)
, (5.63)

4VΩ. (C) (1 − 8G-)4−V� (Ω) (1 + 8G-).†(C)

=

(∑
9

� 9 (C) (1 − 8G-)4−V�0 (1 + 8G-) �†
9
(C)

)
⊗ |0〉〈0|.

(5.64)

Now let

, (Ω, V, G, H) = (1 + 4VΩ/2H. (C)) (1 − 8G-)4−V� (Ω) (1 + 8G-) (1 + 4VΩ/2H.†(C)). (5.65)

Then
lim
Ω→∞

, (Ω, V, G, H) = , (V, G, H2) ⊗ |0〉〈0|, (5.66)

and hence,
lim
Ω→∞

Tr
(
, (Ω, V, G, H)

) B
= Tr

(
, (V, G, H2)

) B (5.67)

for any B. The last equation can be interpreted as the operators . (C) and .†(C) in the expansion of Tr, B

being locked in the same replica. We now take the B derivative of both sides at B = 1 and consider the
G2H2 term in the Taylor expansion. Thus, equation (5.67) becomes

lim
Ω→∞

(
4VΩ

(
−
〈
B, . (V + 8C), - (V), - (0), .†(8C)

〉
Ω
+

〈
. (V + 8C), - (V), - (0), .†(8C)

〉
Ω

))
=

1
2

(
m2

mG2
m

mn
((d(G, n))

)����
G=n=0

.

(5.68)

Finally, let us use the results of the previous section. Part of the correspondence is obvious: -1 = .
†,

-2 = -3 = - , and -4 = . . In the OTOC-based approximation, the branched correlator

B =
〈
B, . (V + 8C), - (V), - (0), .†(8C)

〉
Ω
=

〈
B, - (0), .†(8C), . (8C), - (0)

〉
Ω

(5.69)

dominates the left-hand side of equation (5.68) and is given by (5.53), (5.54) with C1 = C4 = C and
C2 = C3 = 0. Note that if Ω is large, then

ΥR
.†,.
(g) ≈ 4−Ω(V−g)

∑
9

ΥR
�
†
9
,� 9
(g) (5.70)

by analogy with the rather obvious equation 〈.†(g). (0)〉 ≈ 4−Ω(V−g) ∑ 9 〈�†9 (g)� 9 (0)〉. Hence,

Υ̃R
.†,.
(l) ≈ 4−VΩ

∑
9

Υ̃R
�
†
9
,� 9
(l +Ω). (5.71)
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On the other hand, the function B̃(l14, l23) in equation (5.53) may be replaced with B̃(l14 − Ω, l23)
without affecting the result.4 Combining (5.54) with (5.71), we get

4VΩB̃(l14 −Ω, l23) =
∑
9

Υ̃R
�
†
9
,� 9
(l14)Υ̃A

-,- (l23) 5 (l14 −Ω, l23), (5.72)

where the prefactor 4VΩ is used to match the left-hand side of (5.68).

Thus, we have arrived at the conclusion that the replica locking amounts to replacing the function
5 (l14, l23) in (5.54) with 5 (−∞, l23). Using the explicit formulas (5.59), (5.60), we get:

5 (−∞, l23) =
cos Vp

4 · 2Vl23(1 − 4−Vl23) + sin Vp

4 · Vp(1 + 4
−Vl23)

(1 − 4−V(l23+8p/2)) (1 − 4−V(l23−8p/2))
(5.73)

=
2c

1 + 4−Vl23
if p =

2c
V
. (5.74)

For comparison, consider a Euclidean black hole in a hyperbolic space (say, in two dimensions). The
replica geometry involves an B-fold cover of both the circle and the disk it bounds, with a branching point
at the center. Inserting boundary fields slightly deforms the space. In the B → 1 limit, the geometry is
given by a smooth metric on the disk and the position of the branching point. The branching point is a
special case of a quantum extremal surface [10] (where “surface” means a codimension 2 submanifold).
Its position is determined by an extremum of entropy. Instead of the entropy (, we may consider ln / − (.
Indeed, the partition function / depends only on the space-time metric, which should be fixed before
finding the extremal surface.

In the Lorentzian case, the branching point is described by null coordinates (D+, D−). (We set aside the
ambiguity in the choice of origin due to the deformation of space-time relative to AdS2.) The entropy
can be expanded to the second order in D+, D−:

((D+, D−) = (0 + ?+D+ + ?−D− − �D+D−, (5.75)

where ?+ and ?− depend on the inserted field.5 Solving the extremum problem, we get

(ext = (0 + �−1?+?−. (5.76)

Now, let us forget about geometry. The only property we need is that if there is large time separation, then
?+ and ?− depend only on the fields inserted in the past and the future, respectively. Thus, the change
in the entropy should factor into two quantities dependent on the corresponding fields. This is exactly
what we observed in the maximal chaos case; see equation (5.60). We leave the interpretation of these
quantities to future research.

4This is because C1 = C4. Note, however, that the same condition was implicitly used in (5.64). A more general model of
system-bath coupling involves � 9 (C4) and �†9 (C1) so that the additional factor 4−8Ω(C1−C4) has to be added on the left-hand side
of (5.64). To reproduce this factor, one should replace B̃(l14, l23) with B̃(l14 −Ω, l23) in (5.53).

5This expression is similar to ’t Hooft’s effective action [1] for the fluctuating horizon, where ?+ and ?− are null energies.
In our case, they are just abstract coefficients.
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A p p e n d i x A

THE ADS2 SPACE IN DIFFERENT COORDINATES

The AdS2 space is the maximally symmetric space with constant curvature ' = −2 which is defined by:

.2
−1 + .

2
0 − .

2
1 = 1, 3B2 = −3.2

−1 − 3.
2
0 + 3.

2
1 (A.1)

with the symmetry ($ (1, 2). The global coordinate is defined by

.−1 =
cos [
cos \

, .0 =
sin [
cos \

, .1 = tan \, 3B2 =
−3[2 + 3\2

cos2 \
, − c

2
< \ <

c

2
, −∞ < [ < ∞

(A.2)
which has the topology of a strip with the boundaries located at \ = − c2 ,

c
2 . The Poincare patch is

defined by

I =
1

.−1 + .1
, C =

.0
.−1 + .1

, 3B2 =
−3C2 + 3I2

I2 , 0 < I < ∞ (A.3)

with the boundary located at I = 0 (\ = c
2 ). The Schwarzschild coordinate is defined as

.−1 = A, .0 = (A2 − 1) 1
2 sinh C, .1 = (A2 − 1) 1

2 cosh C

3B2 = −(A2 − 1)3C2 + 3A2

A2 − 1
.

(A.4)

Note that the event horizon is located at A = 1. One can also define the Kruskal-Szekeres coordinate as
the maximal extension of the black hole as follows :

.−1 =
1 − DE
1 + DE , .0 =

D + E
1 + DE , .1 =

E − D
1 + DE , 3B2 =

−43D 3E
(1 + DE)2

. (A.5)

The dilaton profile in the bulk
As was derived in the first chapter the dilaton field in the bulk with no matter satisfies:

∇`∇aq − 6`a∇2q + 6`aq = 0. (A.6)

In global coordinate, the equation implies:

q = U
sin [
cos \

+ Vcos [
cos \

+ W tan \ = �.. (A.7)

where the last expression is in the embedding coordinate for an arbitrary vector �. The value of the
parameters is fixed by the boundary condition q1 = qA

n
. For the Poincare patch where the boundary is

located at I = n , q(I, C) = qA
I

. It is clear that at I = ∞, the Poincare horizon, the dilaton vanishes. The
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profile of dilaton in Schwarzschild coordinate is q(A, C) = q0 A = q0
cos [
cos \ . To compute q0, the location of

the boundary is at A = ¤g
n
where g is the Euclidean times. The solution is g = 2cD

V
. Therefore,

q0 =
2c
V
qA = 4� (. (A.8)
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A p p e n d i x B

A BRIEF REVIEW OF THE THERMOFIELD-DOUBLE STATE AND ITS
PROPERTIES

By definition, |TFD〉 is the purification of the canonical ensemble d = 4−V�

Z , where the Hamiltonian is a
Hermitian operator. Given a separable Hilbert space, if we assume that the eigenstates of the Hamiltonian
are {|�=〉, = ∈ N}, then the |)��〉 can be represented as

|TFD〉 = 1
Z 1

2

∑
=

4−
V�=

2 |�∗=〉! ⊗ |�=〉' . (B.1)

However, to understand the relation between the left and right kets, it is more illuminating to start with an
operator algebra, and then construct the associated Hilbert space 1. Therefore, assume that we start with
some Hilbert space H and consider the algebra of the bounded operators, denoted by B(H), as the set
of operators which is a vector space over the complex field and also closed under multiplication where

‖�‖ = sup
k∈H

‖�k‖
‖k‖ < ∞. (B.2)

Throughout this article, we assume that B(H) is in fact a von Nuemann Algebra, meaning it is an
∗−algebra that includes unit which is closed w.r.t. the weak operator topology.
The GNS construction: Given a ∗− algebra as above, associated to each positive bilinear form
l : B(H) ⊗ B(H) → C, there is a Hilbert spaceHl.
Now, associated to each operator � ∈ B(H), we define a vector |�〉?.

�↔ |�〉? . (B.3)

This way, we can naturally define the action operators on the vectors:

� |�〉 = |��〉, (B.4)

where |��〉 ↔ ��. The inner product on the vectors is defined by l, namely,〈
�|�

〉
= l(�∗�). (B.5)

Such a construction defines a pre-Hilbert space. In our construction, vectors of zero norm may be
produced. Using the Cauchy-Schwarz inequality〈

�|�
〉2 ≤ ‖�‖ ‖�‖ . (B.6)

1some of the standard references for this section are [14, 43, 6].
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It is clear that such states are in fact orthogonal to all other states of the pre-Hilbert space. CS inequality
also implies that if |�〉? has a zero norm, |��〉? also has a zero norm. This means, J the set of zero
norm states, is a left ideal. Therefore, we can take the quotient of our pre-Hilbert space w.r.t. J , or
equivalently, define the state |�〉 as follows:

|�〉 ≡ {|�〉? + |-〉?, B.C. |-〉? ∈ J}. (B.7)

The last part of our construction is to consider the completion of the above space. The result will be
denoted byHl. Here the vacuum state |Ω〉 is associated to the unit operator 1. We have:

l(�) = 〈Ω|�|Ω〉. (B.8)

Associated to any other vector |k〉 ∈ H , one can define the state lk:

lk (�) = 〈k |�|k〉. (B.9)

We will extend our states to include the density matrices d so that:

ld (�) = Tr(d�), )A (d) = 1, (B.10)

where d ∈ B(H) is a positive trace class operator. These are called the normal states.
We call the state ld has a one parameter symmetry group UC , C ∈ R, generated by the operator � if

ld (UC (�)) = ld (�). (B.11)

The state ld is KMS if it satisfies:

ld (�UC (�)) = ld (UC+8V (�)�). (B.12)

It is easy to prove that if the state ld satisfies the KMS condition, then 2

d ∝ 4−V� . (B.13)

Now, consider the operator d 1
2 . The claim is:

d
1
2 ↔ |d 1

2 〉 ≡ |TFD〉. (B.14)

From our definition:
ld (�) = 〈TFD|�|TFD〉, (B.15)

where, in the r.h.s, the inner product is with respect to the trace.

2Consider d4V� . Using the KMS condition, one can prove that [d4V� , �] = 0 ∀� ∈ B(Hl). Since our representation
is irreducible, this means that d4V� ∝ 1.
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Before studying the representation of the operators on this state, we provide some definitions: we
call a state to be cyclic for an operator algebra A, if the action of the operators on this state will give a
dense subset of the Hilbert space. The state |Ψ〉 is called separating if

�|Ψ〉 = 0⇒ � = 0. (B.16)

The operator algebra A′ is called the commutant of A if:

[�, �] = 0, � ∈ A, � ∈ A′. (B.17)

Assume that the state |Ω〉 is cyclic and separating for A and A′.3 We define the Tomita operator:

(Ω �|Ω〉 = �† |Ω〉, � ∈ A (B.18)

From the definition, it follows that (2
Ω
= 1, and so (Ω is invertible and unbounded. One can check that

the Tomita operator for A′ is (′
Ω
= (
†
Ω
. Since (Ω is invertible, it has a unique polar decomposition:

(Ω = � Δ
1
2 , (B.19)

where Δ 1
2 is a positive operator and � is anti-unitary with the following properties:

�2 = 1, �′ = �, Δ′ = Δ−1, � Δ
1
2 � = Δ

−1
2 , � Δ8B� = Δ8B, B ∈ R (B.20)

Where the polar decomposition of (′
Ω
is given by (′

Ω
= �′ Δ′

1
2 . The above properties can be proven easily.

The rather nontrivial consequence of the above definitions is the following:

� A � = A′. (Tomita-Takesaki) (B.21)

Therefore, from the definition, we have:

Δ
1
2 �|Ω〉 = ��† |Ω〉. (B.22)

Note that the r.h.s and so the l.h.s belong to A′.

Now, consider the thermofield-double |d 1
2 〉 defined in B.14. We define the two representations of

the operator algebra on this state as follows:

c' (�) |d
1
2 〉 ≡ |�d 1

2 〉 = �' |d
1
2 〉 =, c! (�) |d

1
2 〉 ≡ |d 1

2 �†〉 = �∗! |d
1
2 〉. (B.23)

where in the last equation ∗ is the complex conjugate. It is clear that the operator algebra [A',A!] = 0
and they are in fact each other’s commutant. The Hamiltonian is defined by:

� |TFD〉 = 0. (B.24)
3The state |Ω〉 is cyclic for A iff it is separating for A ′.
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X

T

CRT

Figure B.1: Representation of the Tomita operator in the two-sided black hole.

The associated unitary operator is:

4−8�C ≡ c' (4−8�C)c! (4−8�C) = 4−8(1⊗�'−�!⊗1)C ⇒ � = �' − �! , (B.25)

where in the last equation, we dropped the tensor product notation for simplicity. Therefore, under the
evolution with *, the time directions in the left and right sides are opposite. Now, one can define the
operators Δ, � and study their action on this state.

InAdS/CFTcorrespondence, itwas proposed byMaldacena that given a holographicCFT, the thermofield-
double state represents a two-sided black hole in the bulk. To construct the Tomita operator, it should be
noted that such black holes have a time-like Killing vector which is mC in the Schwarzschild coordinate
with the generator H. Close to the horizon, the geometry of the black hole to the first order is similar
to the geometry of the Rindler space and H is the boost generator. On the boundary, the generator H
will coincide with the modular Hamiltonian B.13. To construct the Tomita operator we consider * (8c)
generated by the modular hamiltonian which is the Euclidean rotation in the (), -) plane, and use the
CRT4 operator to bring it back to the same point, B.1. Defining

� = CRT, Δ
1
2 = 4−

V

2 � , � = �' − �! (B.26)

, for real scalar fields we have:

q! (C, A, ®G) |TFD〉 = Δ 1
2 q' (C, A, ®G) |TFD〉 = q' (C + 8

V

2
, A, ®G) |TFD〉 (B.27)

, while for fermions:

k! (C, A, ®G) |TFD〉 = Δ 1
2 k' (C, A, ®G) |TFD〉 = 8k' (C + 8

V

2
, A, ®G) |TFD〉 (B.28)

where (C, A, ®G) is the Schwarzschild coordinate, (®G) is the transverse coordinate.

In AdS2, the generator of rotation in the Euclidean (), -) plane is given by Λ0 =
1
2

(
8 0
0 −8

)
.

4C, R, T are the charge conjugation operator, reflection operator, and time reversal, respectively.
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A p p e n d i x C

THE MAXIMAL EXTENSION OF THE BLACK HOLE FINAL STATES

In this section, we will review the Racz-Wald [36, 37] construction of a bifurcate horizon1. We first fix
our conventions: the Killing vectors are the symmetry generators of the spacetime. Their components
satisfy:

∇`Za + ∇aZ` = 0, ∇`∇aZd = −'f`da Zf . (C.1)

A Killing hypersurface is a null hypersurface whose normal vector is Killing. This implies the definition
of the surface gravity ^ as

Z `∇`Za = ^Za . (C.2)

Note that the definition satisfies that ^ remains constant on the orbits of the Killing vector i.e. Z `∇`^ = 0
which can be derived by acting with Z d∇d on both sides of C.2. This implies that we can easily normalize
the Killing vector and get ℓ` = 4−^3Z ` which is affine (Z `∇`3 = 1):

ℓ`∇`ℓa = 0. (C.3)

Note that ^ can be the function of the transverse coordinate. We can choose a basis onN as follows. We
assume that the cross sections of N admit a basis 4�` , where � = 1, · · · , 3 − 2. We also define the null
vector =` which is orthonormal to 4�` and satisfies =.ℓ = 1. Then the vectors {ℓ`, =`, 4`

�
} are a basis for

the spacetime.
Theorem: Consider a stationary spacetimeM which admits a one-sided black hole but no white hole.
Assuming that the event horizonN of the black hole is also a Killing horizon with a compact cross section
whose Killing orbits are diffeomorphic to R, it is possible to embed the spacetime into a bigger spacetime
M′ whereN will become a proper subset of a bifurcate horizon iff the surface gravity ^ associated toN
is a nonzero constant.

Proof: We first prove if ∇`^ does not vanish along the orbits of the Killing vector, W, then at least
one of the components of the curvature tensor will blow up along W. Note that 4`

�
∇`^ is constant along

W :

ZU∇U
(
4
V

�
^,V

)
= ZU∇U4V�∇V^ + 4

V

�
ZU∇U∇V^ = ZU∇U4V�∇V^ + 4

V

�
∇V (ZU∇U^) − 4V�∇VZ

U∇U^

=

[
ZU∇U, 4V�∇V

]
^ = 0.

(C.4)

1Here, we will mostly review the idea and refer the reader to the original papers for the technical details and the
mathematical accuracy of the construction.
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On the other hand, using C.1 we have:

4
`

�
∇`^ = 4^3 'fW`a ℓf 4f� ℓ

` =a . (C.5)

Now, the l.h.s is constant as 3→ −∞, 4^3 → 0. Therefore,

'fW`a ℓ
f 4

W

�
ℓ` =a →∞, (C.6)

which, in general, prevents us from further extending the spacetimeM.
On the other hand, assume that ^ ≠ 0 is a constant on N . We pick the basis {Z `, A`, 4`

�
} where

A. Z = 1 (A` = 4−^3=`) and Z ` belongs to N . Therefore, {Z `, 4`
�
} defines the coordinate system (3, G�)

on the horizon. Then, in a small neighborhood ofN , denoted by O, we can parallel transport the vectors
along A` and so it will be coordinatized by (3, A, G�), called the Eddington-Finkelstein (EF) coordinate,
and N is described by A = 0. In O, the metric will take the following form:

3B2 = 33
(
− � 33 + 2 3A

)
+ 263�33 3G� + 6��3G�3G� (C.7)

where 6�� = 6(4`
�
m`, 4

a
�
ma), 63� = 6(Z `m`, 4a�ma), and Z

`Z` = −�. From our construction of the
coordinate system, the metric components are not a function of 3, since on the horizon by going along
E geometry does not change, and the u component of the coordinate system does not change as we go
along the r direction. Moreover, since �

���
A=0

= 63�

���
A=0

= 0, in a small neighbourhood in O, namely O′,
one can write:

� = A 5 (A, G�), 63� = A6̃3�. (C.8)

Now, from the fact that A`∇` (Z .Z) = −2^ on the Killing horizon, we have:

1
2
m�

mA

���
A=0

= ^ ⇒ 5 (A = 0, G�) = 2^ ≠ 0. (C.9)

Therefore, in a small neighborhood in O′ denoted by P, we can define ℎ(A, 3, G�) so that:
1
5
− 1

2^
= Aℎ(A, G�). (C.10)

Therefore, we can write the term inside the parenthesis in C.7 as:

− �33 + 23A = −�
(
33 − 2ℎ3A − 1

^

3A

A

)
. (C.11)

Now, define the 3 coordinate as follows:

D = 3 − 1
^

ln A − 2
∫ A

0
3A′ ℎ(A′, G�). (C.12)

Following the Kruskal-Szekeres maximal extension of the Schwarzschild black hole, we define:

* = −4−^D = −4−^3 A 42^
∫ A

0 3A ′ℎ, + = 4^3,

*+ = A 42^
∫ A

0 3A ′ℎ.
(C.13)
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Then C.7 will take the following form:

3B2 = − �

^2*+
3*3+ +

(
26+� +

2�
^+

∫ A

0
3A′

mℎ

mG�

)
3+3G� + 6�� 3G�3G�, + > 0. (C.14)

Note that from C.13, we can easily see that �
*+
, �
+
are analytic near*+ = 0. Moreover, since m*+

mA

���
A=0

≠ 0,
in a local neighborhood of*+=0 we can write:

A = A (*+) = *+q(*+, G�). (C.15)

Plugging back into the metric, the final form of the metric will be:

3B2 = −q 5
^2 3*3+ + 2*

(
+q6̃+� +

q 5

^

∫ A

0
3A′

mℎ

mG�

)
3+3G� + 6�� 3G�3G�

≡ −2�3*3+ + 2�+� 3+ 3G� + 6�� 3G�3G� + > 0.
(C.16)

To summarize, we have so far proven that there is a neighborhood |*+ | < n (G�) of the Killing horizon
N where the metric will take the form C.16 with the restriction that + > 0. We can define our manifold
in a straightforward way: since we assume that the cross sections ofN are compact, we know that every
covering by open sets of the cross section can be reduced to a finite one. For i-th open set, we define the
extension as above and call itM8. Now, we can identify points inM8 andM 9 if (*8, +8, G�8 ) = (* 9 , + 9 , G

�
9
).

It is straightforward to check that Z = +m+ −*m* is a Killing vector on * = 0 and + = 0 hypersurfaces.
This will prove the local construction of the bifurcate horizon. Now, we can also drop the restriction on
+ which renders the left wedge.
In the static case, we can say more. We will define the new time coordinate C (E, A, G�) that the Killing
vector is orthogonal to the constant time surfaces. First, we must have:

LZ C = 1, (C.17)

which implies that :
3 = C + ! (A, G�), (C.18)

for some function !. We can take differential of the above relation and plug it into C.7. Since for A > 0,
6CA = 6C� = 0, we have

mA! =
1
�
, m�! = −63�. (C.19)

As a consequence of the first relation we have:

C = 3 − 1
2^

ln A −
∫ A

0
ℎ + � (G�) = 3 + D

2
+ � (G�). (C.20)

In terms of the Kruskal-Szekeres coordinate it becomes:

C =
1

2^
ln

(
− +
*
42^� (G�)

)
. (C.21)

The stationary case is similar and we refer the reader to the references. It is important to note that nowhere
Einstein’s equation was used. In fact, the role of Einstein equation and matter condition is to confirm the
surface gravity is constant on the horizon.
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