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ABSTRACT 

This thesis is a collection of investigations concerning the interplay between Cyanobacteria and the 

inorganic/physical world. Chapters II-VI focus on manganese, an element Cyanobacteria have been 

intimately entangled with for billions of years. Chapter II is a review/perspective paper on the dynamics of 

manganese in the environment through time and the many ways manganese interfaces with dioxygen. 

Chapter III deciphers environmental and biological signatures recorded in ancient rocks from the pivotal 

moment in Earth history when oxygenic photosynthesis first evolved. Chapter IV explores the ecology of 

desert varnish, and provides an adaptive physiological mechanism underpinning manganese enrichment. 

Chapter V examines the ability of modern Cyanobacteria to catalyze manganese oxidation. Chapter VI 

explains as kindly as possible that the field of manganese aquatic chemistry has fundamentally 

misunderstood the chemistry of Mn(III) and highlights how the current methods being used are 

problematic because of this misunderstanding. Chapters VII and VIII are not about manganese and instead 

concern other aspects of the physical world and their interface with Cyanobacteria. Chapter VII is about the 

impact of Hurricane Irma on a cyanobacterial mat ecosystem. Chapter VIII is about the use of ooids as an 

environmentally friendly replacement for plastic microbeads in facial scrubs, in which Cyanobacteria 

make a cameo as endoliths that facilitate ooid dissolution. 
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CHAPTER I 

Introduction 

Cyanobacteria are really important. Around 2.4 billion years ago, their ancestors evolved 

oxygenic photosynthesis—the ability to use light and water and carbon dioxide to make oxygen and 

organic matter—and with it they changed the world. This metabolic revolution caused the biggest impact 

life has ever had on the environment and completely redirected life’s evolution, unleashing the biosphere 

to previously inconceivable limits and enabling the development of large, complex creatures like us.  

This thesis is a collection of investigations concerning these extraordinary microbes and their 

relationship with the Earth. We begin with the origin of oxygenic photosynthesis because it is such a 

quintessential example of the reciprocal interplay between life and the world around it. Life is shaped by 

its surroundings; it evolves to thrive in whatever habitats are available. In turn, life impacts its 

surroundings. Over time, even the smallest creatures can remodel their environment. The environmental 

context of ancient Cyanobacteria gave rise to the evolution of oxygenic photosynthesis; with oxygenic 

photosynthesis, Cyanobacteria transformed the planet.  

Evolving this ability required overcoming some immense challenges. Chemically speaking, 

pulling electrons off of water and then using them to fix carbon is spectacularly difficult. On top of that, 

producing oxygen is dangerous—oxygen causes oxidative stress, which can wreak havoc on biological 

systems. Life as we know it today has sophisticated mechanisms for combating this havoc (nonetheless it 

remains a threat; too much oxidative stress, like that induced by exposure to ionizing radiation or even 

just elevated partial pressures of oxygen, and you’re toast), but since most such defenses did not exist 

when oxygenic photosynthesis first evolved, its inception probably precipitated a devastating mass 

extinction event. That life 1) developed this ability at all and 2) actually survived it, is incredible.  
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Much of the work in the first half of this thesis was motivated by trying to understand that pivotal 

moment in the history of life on Earth.  

The connate roles of manganese in the natural history of Cyanobacteria 

Oxygenic photosynthesis is not the only version of phototrophy—a metabolism that harnesses 

energy from light—that exists, and it wasn’t the first. Phototrophy using electron sources other than 

water, such as hydrogen and iron, preceded oxygenic photosynthesis by up to a billion years. Oxygenic 

photosynthesis evolved from those earlier forms. However, the leap between them is big, for two reasons. 

First, oxidizing water requires much higher reduction potentials than oxidizing hydrogen, iron, or any of 

the other electron sources used by known forms of phototrophy. Because of that, the existing biochemical 

machinery used to access those other electron sources was not strong enough to access electrons from 

water. Second, phototrophy is fundamentally a single-electron process but oxidizing water is a four-

electron process. This means that using water as an electron source for phototrophy not only requires 

reaching extremely high potentials, but also requires the ability to store up four electrons worth of 

oxidizing power. Manganese was the stepping stone for overcoming both of those hurdles.  

The ancient waters in which oxygenic photosynthesis evolved contained high concentrations of 

dissolved manganese. For early phototrophs severely limited by their reliance on geochemical trickles of 

hydrogen and iron as electron sources, this dissolved manganese presented an enticing electron reservoir. 

Manganese has similarly high reduction potentials to water but is amenable to single-electron reactions. 

Therefore, the ecological niche offered by unlocking the ability to access electrons from manganese 

necessitated the development of high potential phototrophy but not the four-electron bridge—a halfway 

point between the earlier forms of low potential phototrophy and oxygenic photosynthesis. Put another 

way, manganese characterized the environmental context that incentivized the evolutionary trajectory 

which ultimately led to oxygenic photosynthesis. Along the way, a version of phototrophy based on 

manganese oxidation was a key intermediate. To complete the transition, the four-electron hurdle was 

overcome by the stabilization of four manganese atoms as a cofactor that cycles through oxidation states 
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to store up oxidizing power. To this day, all oxygenic photosynthesis requires this tetra-manganese 

cofactor.  

Manganese was likely also the reason the ancestors of Cyanobacteria survived the sudden and 

severe levels of oxidative stress they inflicted upon themselves by producing the first oxygen. Manganese 

can be a potent antioxidant; many organisms that are particularly resistant to oxidative stress—such as 

Deinococcus radiodurans, which can survive over 1000x the radiation dose that would kill a human—

hoard it to exploit this chemistry. The fact that manganese provided a critical stepping stone for the 

evolution of oxygenic photosynthesis meant that the organisms involved were already expressly interested 

in manganese. As a result, they had a built-in antioxidant system. To this day, cyanobacterial cells take in 

extraordinary amounts of manganese and appear to utilize its antioxidant properties.  

The manganese oxidation mechanism that was the precursor to oxygenic photosynthesis did not 

disappear afterward. Today, no known phototrophs solely use manganese as their electron source, but 

Cyanobacteria seem to have retained the ability to use manganese in addition to water. Furthermore, 

Cyanobacteria can catalyze manganese oxidation by at least two other separate mechanisms. By any or all 

of these pathways, they generate reactive oxidized manganese products. Such products are dynamic 

players in the biogeochemical manganese cycle and connect to many other important ecosystem processes 

notably including the degradation of recalcitrant organic matter. The understanding that Cyanobacteria 

began oxidizing manganese over two billion years ago, and continue to do so today, implicates them as 

deeply entwined with these processes.  

Exposed rock surfaces in the desert often develop a dark coating known as rock varnish*, which is 

characterized by high concentrations of manganese and provides a neat ecological case study further 

* Varnish has been remarked upon in the scientific literature for over 200 years (featured in the writings of
Humboldt, Darwin, Lucas, and others) and engaged with by indigenous peoples for much longer than that—an 
interaction demonstrated by prehistoric petroglyphs carved into varnished surfaces. I wish I had knowledge of their 
understanding of varnish; I suspect it was profound. I have contacted dozens of tribal representatives, cultural 
preservation organizations, museums, and archivists, to try to find out how indigenous peoples have thought about 
this material, but have not yet been successful in finding this information. Western scientists, though, were stumped. 
Varnish was a long-standing geological mystery.  
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highlighting how the enduring connections between Cyanobacteria and manganese remain relevant today. 

Although such desert surfaces are extremely harsh environments subject to high levels of oxidative stress, 

certain Cyanobacteria have adapted to thrive there. Their use of manganese as an antioxidant system both 

enables their survival in this harsh setting and also explains how varnish ends up with such high 

manganese content—varnish development can be understood as the slow buildup of a residue left by 

Cyanobacteria stockpiling manganese as a survival strategy. Thus, varnish encapsulates the interplay of 

life shaped by the demands of environmental conditions in turn remodeling the environment itself. 

Chapters II-VI tell this manganese story (Fig. 1A-E). Chapter II is a review/perspective paper that 

explains the aspects of manganese chemistry that made it so uniquely important in the evolution of 

photosynthesis, and describes the intimately entwined histories of manganese and oxygen. Chapter III 

deciphers the history recorded in a package of ancient rocks in South Africa known as the Transvaal 

Supergroup—truly one of the great wonders of the world—that captures the origin of oxygenic 

photosynthesis and accompanying changes in paleoenvironment. Chapter IV comes back to the modern 

world to examine varnish. Chapter V investigates the ability of modern Cyanobacteria to oxidize 

manganese. Chapter VI exposes problems with current methods and understandings applied to 

manganese chemistry in the environment.   

The other stories 

Beyond manganese, this thesis contains two other glimpses into the interplay between 

Cyanobacteria and the world around them (Fig. 1F-G). 

Chapter VII concerns a cyanobacterial mat ecosystem reminiscent of those that ruled the Earth for 

over a billion years between the origin of oxygenic photosynthesis and the rise of animals and plants. In 

2017, this ecosystem was hit by the eyewall of Hurricane Irma, one of the strongest hurricanes in 

recorded history. Although severely disrupted by the storm, the mat communities bounced back with 

remarkable resilience, an expression of how such ecosystems and the Cyanobacteria that build them have 

time and time again outlasted the environments they evolved to thrive in and adapted to new conditions. 
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Chapter VIII is an exploration of the material properties characterizing an ideal exfoliating 

microbead for cosmetic products (long story) but also offers a small window into the intriguing 

relationship between Cyanobacteria and carbonate minerals. Oxygenic photosynthesis as a bulk process 

tends to drive carbonate precipitation; however, certain Cyanobacteria are also able catalyze carbonate 

dissolution and use this ability to bore into carbonate mineral substrates, contributing to ocean-

atmosphere-lithosphere carbon dynamics in unexpected ways.  

Finally, the appendix provides an overview of oxygenic photosynthesis.

� 

Taken together, I hope this thesis paints a picture of the myriad and intricately beautiful ways the 

constant interactions between life and the environment play out. The studies presented here examine this 

relationship from numerous different perspectives: the geological record of Earth history, microbial 

physiology, microbial ecology, inorganic chemistry, and Earth surface processes. In that regard, there is 

something in this thesis for everyone: geologists, biologists, chemists, all or none of the above. Whoever 

you are, dear reader, having found your way here, I leave you with this wish: I hope that you find 

something in these pages that interests you, something that you never thought of before but that changes, 

in some small but meaningful way, how you see the natural world.  

History does not end with us and the models that we understand the world through will inevitably 

be replaced as new ways of knowing enable better ones. For now, I have done my best, with the data and 

understandings available to me, to do justice to these stories. I feel deeply honored to have been a part of 

discovering and telling them. 

Usha Farey Lingappa 
February 2021 



Figure 

Figure 1. Thesis overview as a watercolor collage. A. The histories of manganese and O2 are intimately 
entwined (Chapter II). B. Manganese oxidizing phototrophic communities evolved oxygenic 
photosynthesis (Chapter III). C. Desert varnish is a product of the relationship between Cyanobacteria and 
manganese (Chapter IV). D. Cyanobacteria oxidize manganese (Chapter V). E. Soluble Mn(III) 
complexes are important but elusive players in manganese biogeochemistry (Chapter VI). F. Hurricane 
Irma over Little Ambergris Cay (Chapter VII). G. Wash your face with ooids not plastic (Chapter VIII).  
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CHAPTER II 

How manganese empowered life with dioxygen (and vice versa) 

Usha F. Lingappa1, Danielle R. Monteverde1, John S. Magyar1, Joan Selverstone Valentine1,2, Woodward 
W. Fischer1 

1. Div. of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 USA

2. Dept. of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA 90095 USA
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Abstract 

Throughout the history of life on Earth, abiotic components of the environment have shaped the evolution 

of life, and in turn life has shaped the environment. The element manganese embodies a special aspect of 

this collaboration; its history is closely entwined with those of photosynthesis and O2—two reigning 

features that characterize the biosphere today. Manganese chemistry was central to the environmental 

context and evolutionary innovations that enabled the origin of oxygenic photosynthesis and the ensuing 

rise of O2. It was also manganese chemistry that provided an early, fortuitous antioxidant system that was 

instrumental in how life came to cope with oxidative stress and ultimately thrive in an aerobic world. 

Subsequently, the presence of O2 transformed the biogeochemical dynamics of the manganese cycle, 

enabling a rich suite of environmental and biological processes involving high-valent manganese and 

manganese redox cycling. Here, we described insights from chemistry, biology, and geology, to examine 

manganese dynamics in the environment, and its unique role in the history of life.  

Introduction 

The rise of dioxygen, O2, ~2.35 billion years ago (Ga) registers as the single biggest influence of 

life on the environment (1). This defining moment in Earth history, widely attributed to the invention of 

oxygenic photosynthesis in the ancestors of modern Cyanobacteria, transformed the environmental redox 

landscape dramatically and irreversibly, impacted all global biogeochemical cycles, and was fundamental 

to the course of evolution to life as we know it today (2). Harnessing the ability to pull electrons from 

water released early autotrophs from the limitations of available geochemical electron donors, e.g., Fe(II), 

H2, and H2S, allowing for a huge increase in primary production (3). The buildup of significant amounts 

of O2 in the atmosphere led to the evolution of aerobic biochemistries, and opened the door to new 

degrees of oxidative stress (4–6).  

The element manganese is central to the production of O2 because it plays a critical role at the 

active site of photosystem II (PSII) (7), which is comprised of a Mn4CaO5 cluster, sometimes referred to 

as the water-oxidizing complex (WOC) (8, 9). The WOC is one of the key features that set PSII apart 
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from all other anoxygenic phototrophic reaction centers and is the catalyst that enables PSII to use water 

as an electron donor for oxygenic photosynthesis. The manganese atoms in the WOC cycle through 

multiple oxidation states, allowing it to couple the one-electron process of photochemical charge 

separation with the four-electron process of splitting water to make O2. Emerging geological, 

biochemical, and comparative biological data support the hypothesis that, prior to the origin of oxygenic 

photosynthesis, Mn2+, rather than water, served as an electron donor to the ancestor of PSII in a 

manganese-based version of anoxygenic phototrophy, which led to the evolution of the WOC (10–13); 

this evidence is summarized further below. 

Manganese also plays an important role in cellular protections against oxidative stress. 

Manganese ions are found as cofactors in some of the key enzymes involved in the detoxification of the 

reactive oxygen species (ROS) superoxide and hydrogen peroxide, i.e., manganese superoxide dismutase 

(MnSOD) and manganese catalase. Low molecular weight coordination complexes of manganese ions 

can also react catalytically with superoxide and hydrogen peroxide, and such species represent an 

important non-enzymatic antioxidant system in many organisms (14–18). Furthermore, manganese can 

replace iron in metalloenzymes, retaining catalytic activity, while conferring resistance to oxidative 

damage (19). Taken together, these antioxidant properties along with the importance of manganese in the 

evolution of photosynthesis reveal that manganese played a central role in both the production of O2 and 

the strategies by which the first life to encounter O2 survived the severe oxidative stress induced by its 

presence (4).  

In Earth surface environments today, O2 enables a diverse suite of processes that involve 

manganese redox chemistry. The standard reduction potentials of manganese redox couples are higher 

than those of most other common environmental species, which means that the oxidized forms of 

manganese are among the strongest oxidants found in the environment (20). O2 and species derived from 

it, such as peroxides and hydroxyl radicals, are the only oxidants able to oxidize Mn2+ under 

environmentally relevant conditions. Accordingly, the biogeochemistry of manganese is uniquely 

sensitive to the presence or absence of these species. The introduction of O2 provided a way to unlock the 
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rich redox chemistry of manganese, allowing it to participate in numerous important biochemical and 

ecological processes as a powerful oxidant.  

Biology and geology provide two different yet complementary perspectives on the long cross talk 

between the evolution of life and its environment. Examining extant organisms can provide detailed 

mechanistic insight into biological processes as well as a way to develop hypotheses about the 

evolutionary relationships between different taxa and what traits can be considered ancestral (21–23). 

However, inferences gleaned from comparative biology can only place evolutionary processes in the 

framework of relative time, and using extant life to understand the ancient biosphere is hampered by the 

omnipresent effects of extinction—even for microbes (24). On the other hand, observations of physical 

and chemical fingerprints preserved in sedimentary rocks can provide a direct, albeit coarse, record of the 

life and environments that at one time existed. In this work, we incorporated both of these approaches to 

examine the intimately connected histories of manganese and O2 and their interactions with the evolving 

biosphere.  

Manganese speciation and reactivity in the modern environment 

The biogeochemical dynamics of manganese are defined by its unique redox chemistry. 

Elemental Mn is a first row transition metal with the outer shell electronic configuration 3d54s2. There are 

seven valence electrons, two electrons completely filling the 4s orbital and one each in the five 3d 

orbitals, half filling the 3d level. This electron configuration makes it possible for manganese to have 

formal oxidation states ranging from -3 to +7, providing the largest number of accessible oxidation states 

of any 3d transition metal (25). In biological and environmental systems, however, the main oxidation 

states are limited to Mn(II), Mn(III), and Mn(IV) (26). Other oxidation states may exist transiently as 

reactive intermediates, e.g., Mn(V) just prior to O-O bond formation during photosynthetic water splitting 

(27), but they never accumulate in natural systems. The fate of manganese in the environment, from its 

sources in weathering rocks to its sinks in sedimentation and subduction, is characterized by redox 

transformations. 
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Mn(II) is abundant in the Earth’s crust (0.1 wt% MnO (28)) as a common minor constituent 

substituting for Fe(II) in igneous minerals (29). In sedimentary and supergene (ore produced from 

oxidative weathering of Mn(II)-bearing rocks) deposits, manganese can be found in much higher 

concentrations, largely as Mn(II) in carbonate salts and Mn(III)/Mn(IV) in oxides (30). These geological 

sources are mobilized by various processes of erosion or weathering (hydrolysis and dissolution) and 

transported as windborne dust particles and suspended or dissolved species in rivers (26). In natural 

waters, soils, and sediments, both abiotic and biologically mediated processes can contribute to 

manganese redox cycling. Table 1 contains an overview of manganese species found in the environment, 

and Figure 1 summarizes the major sources, sinks and conversions in the modern manganese cycle.  

The geochemistry of manganese is often compared and contrasted with that of iron (31). Both are 

redox active in Earth surface environments today. Both of their reduced cations, i.e., Mn2+ and Fe2+, are 

divalent and soluble in water; and both form insoluble oxide and oxyhydroxide minerals under redox 

conditions that favor their oxidation. Unlike manganese, Fe(II) and Fe(III) are the only biologically and 

environmentally stable oxidation states of iron, whereas Fe(IV) may exist transiently but does not 

accumulate in the environment. The dramatic difference in the relative stabilities of the trivalent and 

tetravalent oxidation states of manganese and iron, respectively, is a consequence of the differences in 

their outer shell d-electron configurations and the extra degree of stabilization that is predicted by 

quantum mechanics and observed experimentally for electronic configurations in which each of the five 

3d orbitals contains one electron, i.e., 3d5. While elemental manganese has the outer shell electron 

configuration 3d54s2, elemental iron has an additional d-electron, i.e., 3d64s2. Thus the divalent ions have 

the outer shell configurations 3d5 for Mn(II) and 3d6 for Fe(II). The result is that it is relatively easy to 

oxidize Fe(II), 3d6, to Fe(III), 3d5, but relatively difficult to oxidize Mn(II), 3d5, to Mn(III), 3d4. Indeed, 

unless Mn(III) is stabilized by its ligand environment in a coordination complex or in an ionic solid, it 

takes less energy to remove two electrons from a single Mn(II) species to form a Mn(IV) species than to 

remove two electrons from two Mn(II) species to form two Mn(III) species (Figure 2A). Consequently, 

Mn(III) species generated in an environment lacking sufficient ligand stabilization will react rapidly with 
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themselves in a bimolecular reaction by disproportionation, i.e., 2Mn(III) ® Mn(II) + Mn(IV) (32, 33). 

Due to this relative instability of Mn(III), for many years the classical paradigm for manganese speciation 

in the environment was a dichotomy of soluble Mn(II) species and insoluble Mn(III)- and Mn(IV)-

containing oxide minerals.  

Breaking with this classical view, we now know that Mn(III) species can persist in solution when 

coordinated by suitable stabilizing ligands. Mn3+ and Fe3+ show similar ligand preferences due to their 

high positive charge and small ionic radii. Anions are preferred over neutral ligands (e.g., HO- versus 

H2O), and chelating anionic ligands with oxygen donor atoms are particularly favored. In the case of 

Mn3+, the large degree of stabilization provided by chelating ligands can stabilize that relatively unstable 

oxidation state with respect to its disproportionation reaction, allowing Mn(III) species to persist in 

solution and participate in other reactions. Ligand stabilization can also significantly change the standard 

reduction potential of manganese redox couples, thereby changing the energetics of electron transfer 

reactions (Figure 2B). 

The exact identities of the ligands that stabilize Mn(III) in natural systems are often unknown. 

Nevertheless, the properties of these species can be predicted, to an extent, based on studies of known 

Mn(III) complexes that have been chemically characterized in aqueous solution. Some particularly 

instructive examples of such Mn(III) complexes were described by Klewicki and Morgan for the Mn(III) 

complexes of pyrophosphate, EDTA, and citrate (34). When these Mn(III) complexes decompose, it is not 

solely due to Mn(III) disproportionation, but also due to instabilities of the metal-bound ligands. In the 

case of pyrophosphate, complexation to Mn(III) is expected to enhance the reactivity of the bound 

pyrophosphate ligand with water resulting in the disappearance of the pyrophosphate by hydrolysis to 

give two phosphate ions (34, 35). In the case of EDTA and citrate, the Mn(III) complexes decompose due 

to internal (i.e., intramolecular) electron transfer from the ligands to Mn(III), thus producing Mn(II) and 

products that result from ligand oxidation. Another instructive example is the Mn(III) complex of 

desferrioxamine B (DFOB), studied by Duckworth and Sposito (36). At pH < 7, Mn(III)DFOB+ 

decomposes slowly by internal electron transfer to give Mn(II) and the oxidized ligand, similar to the 
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Mn(III) complexes of EDTA and citrate. The reactivity of Mn(III) complexes is an important branch of 

manganese biogeochemistry, participating in major ecosystem processes including the oxidative 

breakdown of recalcitrant organic matter like lignocellulose—the most abundant organic compound on 

Earth (37).  

The occurrence of significant amounts of high-valent manganese has been documented in the 

soluble fractions in many environmental systems and attributed to the presence of soluble, ligand-bound 

Mn(III) complexes (38–41). However, it is important to note here that environmental studies typically 

define “dissolved species” operationally based on filtration (e.g., anything that passes through a 0.2 µm or 

0.45 µm filter). Colloidal or nanoparticulate matter can include insoluble manganese oxide minerals, and 

will typically be present in the environmental fractions classified as operationally soluble. The abundance 

of colloidal or nanoparticulate manganese in the environment is largely unknown, however the few 

studies that have measured it revealed that it can be substantial. For instance, one study found that in parts 

of the San Francisco Bay, up to 20% of operationally dissolved manganese fell within a colloidal fraction 

(defined as any particles > 10 kDa and < 0.2 µm) (42). Another study on the Loire River Watershed found 

80% of operationally dissolved manganese to be colloidal (defined as particles > 0.01 µm and < 0.45 µm) 

(43). A better understanding of the distribution, diversity, and reactivity of both Mn(III)-ligand complexes 

and oxide mineral nanoparticles is required to improve our understanding of manganese redox dynamics 

in natural waters, soils, and sediments.  

In minerals, the coordination of the higher oxidation states Mn3+, Mn4+, and Fe3+ is dominated by 

oxide ligands. Water molecules become extremely acidic when coordinated to these highly charged 

cations and dissociation of protons to give HO- and/or O2- can be suppressed only at very low pH. These 

hydroxo and oxo ligands are excellent bridging ligands and polymerization via M-O(H)-M or M-O-M 

bridging leads to the precipitation of insoluble metal oxides, which can take on a wide array of crystalline 

forms (44). The relative stabilities of the higher oxidation states of the metal ions in either manganese- or 

iron-containing minerals are hugely variable, depending on crystal form, degree of crystallinity, and 

particle size, in addition to pH and total metal concentration (45).  
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Oxidations of either Fe2+ or Mn2+ by O2 to give oxides of Fe3+ or Mn4+ are thermodynamically 

favorable for either metal (26), but the reactions of Fe2+ with O2 tend to be fast in most cases whereas the 

reactions of Mn2+ with O2 can be prohibitively slow in the absence of a suitable catalyst (typically more 

than four orders of magnitude slower than Fe for homogeneous oxidation by O2) (46). The kinetic barrier 

for the oxidation of aqueous Mn2+ with O2 arises from the instability of the Mn(III) oxidation state in a 

homogeneous environment where water molecules are the only ligands. However, this kinetic barrier can 

be overcome with the presence of Mn(III) stabilizing ligands such as hydroxide, pyrophosphate, or citrate, 

or with the presence of a variety of metal oxides surfaces like iron, manganese, or aluminum oxides (47–

49). The binding of the Mn2+ ion to the metal oxide surface also allows stabilization of the Mn(III) 

oxidation state, similar to the coordination of chelating ligands. The ability of manganese oxides to 

catalyze the oxidation of Mn2+ to manganese oxides means that, upon generating sufficient product, the 

reaction becomes autocatalytic.  

In natural waters at circumneutral pH, the abiotic oxidation of Mn2+ with O2 has been considered 

of relatively minor importance, due to the kinetic limitations of the homogeneous reaction. However, the 

presence of colloidal or nanoparticulate metal oxides in the water column may significantly promote 

heterogeneous oxidation. Furthermore, nanoparticles have also been shown to exhibit different surface 

atomic structures than their larger-scale bulk counterparts—this leads to exotic chemistries with important 

implications, including the ability to catalyze Mn2+ oxidation at much faster rates (50). Thus, in certain 

settings, abiotic oxidations of Mn2+ with O2 may hold a more significant role in environmental manganese 

cycling than previously appreciated.  

The reaction of Mn2+ with superoxide, O2
–, has been given considerable attention, and once again 

the outcome is dependent upon the presence or absence of stabilizing ligands (16, 20, 51). Superoxide 

reacts with Mn2+ to form a transient MnO2
+ intermediate, which can dissociate to give Mn3+ and H2O2. 

This reaction is readily reversible, and the transient MnO2
+ intermediate can also be observed in the 

reaction of Mn3+ with H2O2, which results in manganese reduction back to Mn2+ (16). This equilibrium 

(Reaction 1) can be pulled to the right toward accumulation of the Mn(III) product by removal of the 
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H2O2 product, thus preventing its back-reaction with Mn3+. For example, the enzyme catalase, which 

catalyzes the degradation of H2O2, has been implicated in Mn2+ oxidation by superoxide, a phenomenon 

discussed further below (52, 53). The presence of chelating anionic ligands that significantly stabilize 

Mn(III), for example pyrophosphate or citrate, can also limit the extent of the back-reaction with H2O2, 

resulting in the accumulation of Mn(III)-ligand complexes. However, in the presence of monodentate 

anionic ligands like carbonate or phosphate, the MnO2
+ intermediate is sufficiently stabilized to enable a 

new bimolecular reaction that ultimately results in the catalysis of the disproportionation of two O2
– to 

give H2O2 and O2, regenerating Mn2+ in the process (Reaction 2) (16, 51). This catalytic removal of O2
–, 

with no net Mn2+ oxidation, has been proposed to be the basis for the antioxidant activity of the Mn(II)-

small molecule complexes (4). 

Reaction 1. Mn2+ + O2
- + 2H+   ⇄   MnO2

+ + 2H+   ⇄   Mn3+ + H2O2 

Reaction 2. MnO2
+ + MnO2

+ + 2H+  →   2Mn2+ + H2O2 + O2 

Hydrogen peroxide, H2O2, can serve as both an oxidant for Mn(II), and a reductant for Mn(III) or 

Mn(IV). The rates of these reactions are also ligand dependent. Similar to the phenomenon discussed 

above for O2
-, the disproportionation of H2O2 can also be effectively catalyzed by Mn2+ (54). For this 

reason, the enzymes MnSOD and manganese catalase are unusual relative to other metalloenzymes in that 

the metal ion alone, in this case Mn2+, in the absence of any protein, is an effective catalyst of the same 

reactions catalyzed by the metalloenzymes (16, 55).  

Manganese and modern biology 

In modern environments, manganese redox chemistry interfaces with biology in a myriad of 

ways. Manganese is an essential trace element with numerous biochemical roles within cells (26), and 

geochemical redox cycling affects the bioavailability of manganese, thereby controlling the biological 

processes dependent upon it—including photosynthesis (56). Conversely, manganese redox 

transformations in the environment, both oxidation and reduction, are often microbially mediated (20). 

These microbial manganese transformations can be either direct enzymatic reactions or indirect reactions 
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occurring via the biological production of a chemical species that reacts with manganese, and/or impact 

on local solution chemistry in a way that accelerates abiotic oxidation (like autotrophs taking up CO2 and 

thereby raising pH). Biological catalysis can greatly increase the fluxes and decrease the timescales that 

are relevant for these reactions, adding to their ecological significance (56). In the case of manganese 

oxidation, the kinetic limitations of the abiotic reaction have led to the widely held premise that the 

dominant processes of manganese oxidation in the environment are biological (57). While this assumption 

may not accurately account for the extent of oxide nanoparticles and their role in heterogeneous abiotic 

manganese oxidation, there are many known bacteria and fungi (although no known archaea) that do 

oxidize Mn(II), and account for significant fluxes of oxidized manganese species in the environment. 

Notably, no organisms have been discovered to date with a metabolism based solely on manganese 

oxidation, although such chemolithotrophic or photolithotrophic metabolisms are thermodynamically 

plausible based on the redox potentials of certain high-valent manganese species (Figures 2B and 4A).  

Among the bacteria, two enzyme families have been identified with members that carry out direct 

Mn(II) oxidation coupled to O2 reduction: the multicopper oxidases, and the peroxidase cyclooxygenases. 

These enzymes are typically extracellular or outer membrane proteins, and the manganese oxidation 

reactions they catalyze are not thought to be involved directly in energy conservation. The multicopper 

oxidases have been identified in a diverse set of manganese oxidizing bacteria, including Bacillus sp. SG-

1 (58–61), Pseudomonas putida GB-1 (62, 63), Leptothrix discophora SS-1 (64, 65), and Pedomicrobium 

sp. ACM 3067 (66). The peroxidase cyclooxygenases (formerly animal heme peroxidases (67)) have been 

identified in Erythrobacter sp SD21 (68), Aurantimonas manganoxydans SI85-9A1 (69), and 

Pseudomonas putida GB-1 (70). Both of these enzymes oxidize Mn2+ via single electron transfer steps to 

form a Mn(III) intermediate, which is then further oxidized or disproportionates to form Mn(IV) (60, 71, 

72). 

A third flavor of bacterial manganese oxidation was described in Roseobacter sp. AxwK-3b. In 

this system, an NADH oxidoreductase has been hypothesized to produce superoxide. The superoxide then 

oxidizes Mn(II), while another enzyme with sequence similarity to MopA, the peroxidase cyclooxygenase 
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in Erythrobacter, acts as a catalase to disproportionate the hydrogen peroxide produced by superoxide 

reduction (52, 53). The catalase activity draws down the concentration of hydrogen peroxide, thereby 

pulling the equilibrium discussed earlier (Reaction 1) towards the accumulation of oxidized manganese 

product, minimizing the back reaction of manganese reduction by hydrogen peroxide. Like the other 

modes of bacterial manganese oxidation discussed here, manganese oxidation by Roseobacter is an 

extracellular phenomenon, with no role in energy conservation.  

Fungi are also known to oxidize manganese by both direct and indirect mechanisms. Similar to 

the Roseobacter system, fungi have been shown to oxidize manganese indirectly using superoxide that is 

produced by NADPH oxidoreductase (e.g. Nox family) enzymes as a signaling molecule during cell 

differentiation (73). Fungi also have mechanisms of direct enzymatic manganese oxidation—conducted 

by manganese peroxidase, a heme peroxidase found in a wide range of fungi involved in plant litter 

decomposition (74). Manganese peroxidase catalyzes successive single-electron oxidations of two Mn(II) 

to produce two Mn(III), coupled to the reduction of hydrogen peroxide or an organic peroxide. The 

Mn(III) product is stabilized by ligands—predominantly oxalate—to create a diffusible oxidant which 

plays a critical ecological role in environmental lignin degradation (37). 

The only known mode of manganese oxidation where the electrons definitively go into the 

electron transport chain involved in an organism’s energy metabolism is during the assembly of the WOC 

of PSII in Cyanobacteria and the plastids of algae and plants. The WOC is synthesized biologically via a 

process known as photoassembly, which involves the direct photochemical oxidation of Mn2+ by PSII 

(75). During photoassembly, four Mn(II) atoms are oxidized over five light-induced charge separation 

events to Mn(III)3Mn(IV) to generate the S0 baseline oxidation state of the WOC. During the catalytic 

cycle, the cluster is further oxidized over four more light induced charge separation events to a 

hypothesized Mn(IV)3Mn(V) state, and then regenerated to the S0 state with the four-electron oxidation of 

H2O to O2. Notably, this is the only known mechanism of biological manganese oxidation that does not 

use O2 or other reactive oxygen species as an oxidant.  
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Unlike manganese oxidation, manganese reduction has been well documented as a form of 

microbial metabolism that conserves energy—namely as the final electron acceptor for anaerobic 

respiration. In extant organisms, manganese reduction is not known to be an obligate metabolism; 

generally organisms capable of respiring manganese are also capable of using other electron acceptors 

such as other metal oxides, dioxygen, nitrate, organic compounds, or sulfur compounds (76). In anaerobic 

environments with abundant manganese oxides, manganese reduction can theoretically yield more energy 

than other forms of respiration and represents an important pathway of organic carbon remineralization 

(20). The best studied organisms that respire manganese oxides are Shewanella oneidensis MR-1 (77), 

and Geobacter sulfurreducens (78), both of which employ extensive networks of multiheme cytochromes 

that transport electrons from the periplasmic membrane to extracellular electron acceptors, via either 

direct outer membrane electron transfer enzymes or small molecule electron shuttles like humics, flavins, 

or phenazines (79). Incubations done with environmental samples also suggest that manganese reduction 

may be syntrophically coupled to other microbial metabolisms such as the anaerobic oxidation of methane 

(80).  

Intracellularly, manganese is found as both high molecular weight species bound to proteins and 

low molecular weight species bound to small molecules, including ortho- and polyphosphates, carbonates, 

and organics (14). In proteins, manganese is used both as a structural element and catalytically, both as a 

Lewis acid and as a redox cofactor (32, 81). Beyond O2 production (PSII) and reactive oxygen species 

detoxification (MnSOD and manganese catalase), enzymes that contain manganese perform a diverse 

suite of functions, ranging from DNA synthesis to carbohydrate metabolism. In addition to magnesium, 

manganese exhibits the highest diversity of enzyme functional requirements spanning all six enzyme 

commission class designations and representing over 125 unique manganese enzymes (as listed in the 

protein database ExPASy) (82). These enzymes utilize manganese at mono-, bi-, and tetranuclear sites 

(83). No known trinuclear manganese proteins exist, although the tetramanganese cluster of the WOC is 

comprised of a trimanganese distorted cubane structure bound to the fourth, so called ‘dangler’ 



19 

manganese by an oxo bridge (8, 11, 84). Table 2 presents a representative list of known manganese 

enzymes, with a focus on those that are redox active (for a more complete list see reference (85)).  

Some enzymes have absolute requirements for manganese (e.g., PSII), while others are 

cambialistic and allow Mn2+ to substitute for other divalent cations like Zn2+, Cu2+, Fe2+, Ni2+, Co2+, Mg2+, 

and Ca2+ and yield a functioning enzyme (e.g., cytochrome c oxidase, xylose isomerase) (86). The most 

common of these substitutions is between Mn2+ and Mg2+ due to similarities in ionic radii and ionization 

potential, despite the fact that manganese typically has four orders of magnitude lower cellular 

concentration (10-7 M manganese versus 10-3 M magnesium (81), though manganese concentrations can 

vary significantly between organisms, and reach as high as 10-3 M (17, 87)). For example, cytochrome c 

oxidase (i.e. complex IV, heme-copper O2 reductase), which pumps protons across the mitochondrial 

membrane and catalyzes the reduction of dioxygen to water, contains a number of redox active iron-

copper centers as well as two non-redox active divalent metal centers typically composed of Zn2+ and 

Mg2+ (85). However, in some bacteria (e.g., the alphaproteobacterium Paracoccus denitrificans) up to 

20% of the Mg2+ is replaced by Mn2+ (85, 88). It is currently unknown if this substitution plays a catalytic 

role or if the divalent metal only serves a structural role, although some evidence shows that the Mg/Mn 

site may be responsible for transport of the product waters and advected protons (89). Another intriguing 

example of a metal site sometimes occupied by Mg2+ and sometimes by Mn2+ is found in ribulose-1,5-

biphosphate carboxylase/oxygenase (or RuBisCO)—the premier carbon fixation enzyme in the Calvin 

Cycle and most abundant protein on Earth. While the role of this substitution is also currently unknown, 

hypotheses have been proposed that it could regulate the notorious oxygenase activity of RuBisCO (90).  

All of the known enzymes that use manganese in a redox capacity touch O2 in some way, either 

as a direct product of the reactions they catalyze (e.g., PSII, catalase) or as an oxidant used to generate a 

catalytic Mn(III) or Mn(IV) center or product (e.g., oxalate decarboxylase, manganese peroxidase, 

multicopper oxidase MnxG). Thus O2 enables manganese redox activity, greatly expanding the diversity 

of uses for manganese by biology. While the evolutionary history of specific proteins can be difficult to 

assess when they are subject to horizontal gene transfer and rapid evolutionary rates, we infer that all of 
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these proteins that interface with manganese redox chemistry postdate the rise of O2—with the single, 

salient exception of PSII (discussed further below).  

Manganese in the history of Earth and life 

O2 was not present on the early Earth in any meaningful amounts prior to the Great Oxygenation 

Event that occurred at ~2.35 Ga, following the origin of oxygenic photosynthesis. Multiple proxies in the 

geological record constrain earlier O2 levels to exceedingly low. For example, the presence of weathered 

detrital grains of redox-sensitive minerals like pyrite and uraninite deposited in river sediments constrains 

O2 levels to < 10-5 atm (4, 91), and a mass-independent fractionation signal in the sulfur isotopic 

composition of sedimentary rocks caused by SO2 photochemistry (enhanced by absence of an ozone 

layer) constrains O2 levels to < 10-10 atm (92–94). Both of these proxies are widespread in strata deposited 

prior to the rise of O2, and completely absent in younger strata. Thus, both the advantages and 

disadvantages provided by O2 were not available to ancient biochemistry.  

Manganese was abundant in natural waters on the early Earth. Mn(II) hosted in igneous rocks was 

easily released by silicate weathering, which, combined with hydrothermal sources of Mn(II), led to an 

accumulation of Mn2+ in the oceans (Figure 3A). Because Mn(II) does not readily form sulfide or 

disulfide minerals as Fe(II) does, the only significant manganese-bearing phases that formed were 

carbonate salts. Thus, before the rise of O2, the primary sink of Mn2+ was as a minor constituent of 

carbonate salts (aragonite, calcite, and dolomite) precipitated from seawater, where Mn2+ can substitute 

for Ca2+ (4, 95). Archean age (> 2.5 Ga) marine calcite cements contain substantial amounts of Mn(II), in 

contrast to their modern equivalents, which reflects the high abundance of dissolved Mn2+ prior to the 

onset of manganese redox cycling and oxidative removal of manganese from the water column (95–101). 

An equilibrium partition coefficient provides a means of estimating the amount of Mn2+ that was present 

in the ancient ocean from observations of the Mn:Ca ratio in well-preserved marine herringbone calcite 

cements—a rock type/texture that grew slowly and provides a meaningful proxy for aspects of ancient 

seawater chemistry (102) (Figure 3C). The Mn:Ca ratio in these rocks is many orders of magnitude 
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greater than occurs in younger rocks (Figure 3D), and suggests Mn2+ concentrations of up to 120 µM 

characterized seawater prior to the rise of O2 (4, 103); this is in stark contrast to the nanomolar 

concentrations typical of modern open oceans (26). This Mn2+ was a prospective resource for the early 

anaerobic biosphere—the biochemical challenge was figuring out how to access it.  

In spite of the high manganese concentrations in natural waters, all available evidence suggests 

that if Archean biology used manganese at all it was as a divalent cation with no redox activity. From a 

geological perspective, no Archean age rocks display robust evidence of the presence of oxidized 

manganese mineral phases. Evidence for meaningful manganese redox cycling first appears in the 

geologic record in Paleoproterozoic strata (~2.4 Ga) shortly before the rise of O2 (10). And from a 

biological perspective, enzymes that use manganese that could have been present in Archean organisms 

employ Mn(II) in roles that do not solicit its redox chemistry. Without the high potential oxidants 

supplied by O2 or PSII, none of the known biological mechanisms for manganese redox chemistry would 

have been accessible.  

The onset of manganese redox cycling was accompanied by a tremendous change in the style of 

sedimentary manganese deposition, as the precipitation of insoluble manganese oxides is the only 

mechanism that can generate highly concentrated manganese ores (95, 104). Primary minerals deposited 

in poorly consolidated sediments commonly undergo a suite of post-depositional alteration processes as 

the sediment is lithified into rock; this means that the primary mineral phases are often lost, and instead a 

complex mixture of secondary and tertiary mineral products end up preserved in the geologic record. 

Accordingly, understanding the diagenetic history and petrogenesis of manganese deposits has been a 

valuable source of data to reconstruct past processes of manganese redox cycling at different times in 

Earth history. The manganese-bearing minerals preserved in sedimentary deposits appear to follow a 

similar pattern, where primary Mn(IV) oxide minerals like birnessite accumulate in shallow sediments, 

but then during burial these are reduced by organic carbon in sedimentary porewaters—a process likely 

catalyzed by manganese-reducing microbes (105), to form secondary phases of mixed valence Mn(III)-

bearing minerals like braunite or Mn(II)-bearing carbonates like kutnohorite (Table 1), which can be 
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further recrystallized and metamorphosed to form tertiary phases like rhodochrosite and rhodonite (95). 

Therefore, high concentrations of Mn(II)-bearing minerals in sedimentary rocks can provide evidence for 

the initial deposition of insoluble Mn(IV) resulting from oxidative processes in the overlying water 

column or locally at the seabed.  

For most of geologic time, the history of manganese oxide deposition reflects the history of O2, as 

O2 and other species derived from it are the only meaningful oxidants for Mn2+. However, the earliest 

authigenic manganese deposit is found in the Koegas Formation, a package of sedimentary rocks in the 

Transvaal Supergroup in South Africa, which was deposited at ~2.4 Ga (106). Careful comparison of the 

onset of manganese deposition with independent proxies that constrain the amount of O2 demonstrated 

that these manganese deposits predate the rise of O2 (10). Evidence from other coeval Paleoproterozoic 

sedimentary basins preserved in Australia and Canada support a similar history of manganese deposition 

(11, 95, 107, 108). These observations suggest a novel mechanism of manganese oxidation occurring just 

before the invention of oxygenic photosynthesis and fluxes of dioxygen in surface environments.  

Oxygenic photosynthesis evolved from anoxygenic phototrophy, simpler versions of light-driven 

metabolism that use electron donors other than water. Both geological observations and constraints from 

comparative biochemistry indicate that anoxygenic phototrophy evolved very early in Earth history—

likely sometime prior to 3.4 Ga, predating oxygenic photosynthesis substantially (13, 109). To convert 

light energy to chemical energy that fuels electron transport chains, modern anoxygenic phototrophs use 

biochemical machinery (reaction centers) that share distant homology to the photosystems of oxygenic 

photosynthesis, indicating a common evolutionary history (13, 110, 111). Today, organisms conducting 

these metabolisms exist in niche environments where high concentrations of their electron donors are 

available; these environments are often anaerobic, and the microorganisms that live there are adapted to 

extreme temperature or chemical conditions where they have less ecological competition. However, prior 

to the origin of oxygenic phototrophy, anoxygenic phototrophs were likely more prevalent in ancient 

surface environments (109, 112–114).  
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All known forms of anoxygenic phototrophy use electron donors that are accessible to reaction 

center electron acceptors with moderately high reduction potentials, ~250-500 mV; this is much lower 

than the reduction potential needed to access the H2O/O2 couple, which is accomplished by PSII with 

substantial overpotentials estimated at ~1250 mV. The extremely high potential of PSII must have 

evolved prior to the origin of oxygenic photosynthesis, as it is required to oxidize water. This implies an 

evolutionary missing link: a high-potential version of anoxygenic phototrophy bridging the canonical 

versions of lower-potential anoxygenic phototrophy with oxygenic phototrophy. Indeed, comparative 

biology of the D1 and D2 proteins of PSII with the analogous L and M subunits of the closest related 

anoxygenic reaction centers indicated that an ancestral version of PSII used a high potential electron 

donor (which must have been a small molecule, and not the single electron protein carriers employed by 

typical reaction center donors of cytochrome c, cupredoxin, or high-potential iron-sulfur protein) for 

anoxygenic phototrophy before the evolution of the WOC (13). Mn2+ is the only plausible electron donor 

to this ancestral version of PSII (13).  

The hypothesis that Mn2+ served as an electron donor to ancestral PSII leading up to the evolution 

of oxygenic photosynthesis provides a natural explanation for the onset of manganese oxidation observed 

in the geologic record shortly before the rise of O2 (10). Capturing light energy to generate a strong 

biochemical electron acceptor is the only known mechanism for manganese oxidation in the absence of a 

chemical electron acceptor, i.e., O2, and therefore the most conceivable mechanism for that earliest 

manganese oxidation. Furthermore, using Mn2+ as an electron donor is exactly what modern PSII does 

during the assembly of the WOC (75). Thus, all biological water oxidation first requires phototrophic 

manganese oxidation, and as such, phototrophic manganese oxidation must have preceded the ability to 

oxidize water (11).  

The high concentrations of dissolved Mn2+ in the ancient oceans provided an enticing ecological 

opportunity. Prior to gaining the ability to use the abundant resource of water as an electron donor, rates 

of primary productivity by the biosphere were not nutrient limited as they are today, but rather they were 

electron limited, with the most abundant sources of electrons coming from a geological trickle of rock-
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weathering derived electron donors like H2, sulfur compounds, and Fe(II) (3, 11). While Fe(II) represents 

the largest available geochemical electron source, iron appears to have had already developed a redox 

cycle and empirical observations show that Fe2+ was largely depleted from Late Archean surface waters 

(98, 113). At the same time, surface waters were rich in Mn2+, water, and light. Therefore, Mn2+ 

represented a valuable untapped electron reservoir, providing a tangible incentive to evolve a much 

higher-potential reaction center capable of manganese oxidation—an evolutionary trajectory that would 

ultimately pave the way to oxygenic photosynthesis. 

With the origin of oxygenic photosynthesis came the first appearance of meaningful sources of 

O2. For biology, O2 is a double-edged sword—it enabled the development of aerobic respiration, the most 

energy-rich form of metabolism, but it also brought the risk of devastating oxidative stress. Thus the 

appearance of O2 in the environment imparted strong new selection pressures on life. Today, effective 

systems for combating oxidative stress are thoroughly integrated in biochemistry, but prior to the 

introduction of O2 there would have been little use for such systems, and therefore little reason for them 

to have already evolved. As such, the first organisms to encounter oxidative stress had to rely on the 

antioxidant properties of molecules that served other functions intracellularly or pre-existed in the 

environment. The ability of Mn2+ complexes to catalytically quench reactive oxygen species (16, 54), 

along with the ability of Mn2+ to confer resistance to oxidative damage by replacing Fe2+ in 

metalloenzymes (19), makes manganese a key example of such a fortuitous antioxidant system. The 

concentrations of Mn2+ in ancient seawater were sufficiently high that manganese antioxidant chemistry 

could be considered naturally built-in to the environment. That O2 production evolved in organisms that 

were already conducting a manganese-based version of phototrophy, and therefore already inclined to 

accumulate manganese intracellularly, means that those cells were readily poised to co-opt this 

manganese-based antioxidant system. Genomic analyses demonstrate that aerobic respiration evolved 

subsequent to oxygenic photosynthesis in the ancestors of Cyanobacteria (115). Early antioxidant systems 

would have been a critical ingredient that allowed these cells that had just learned how to produce O2 to 
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survive, and eventually evolve more complex strategies of coping with, and ultimately exploiting the 

energy available in O2.  

 

Manganese and humans  

The manganese chemistry unlocked by O2 enabled a suite of novel processes that have proven 

valuable in the uses of manganese materials by humans. Humans have been present for only a tiny 

fraction (< 0.5 Ma) of the ~4 Ga history of life on this planet, but we are another species that left a 

disproportionate impact on the environment (116–118), like the Cyanobacteria that changed the 

atmosphere forever with the introduction of O2—albeit in our case through societal and technological 

innovations rather than biochemical ones. As such, it seems appropriate to briefly discuss the role of 

manganese in human society in this history of manganese in the co-evolution of life and the environment.  

Hominids have interacted with manganese for at least tens of millennia, as archaeological 

evidence for the use of manganese oxides has been found at numerous Middle Paleolithic sites. A 

common interpretation is that these materials were used as pigments, for both cave art and body 

decoration. However, the unique redox chemistry of high-valent manganese minerals may have provided 

another, more specific, use. Heyes et al. showed that manganese oxides can promote fire ignition under 

conditions where it otherwise would not ignite; gases derived from wood pyrolysis are oxidized by MnO2, 

causing the reductive decomposition of the MnO2, which releases O2, lowering the ignition temperature of 

the wood. Taken together with archeological evidence of MnO2 associated with fire pits, this data 

suggests that Neanderthals used MnO2 to ease fire making, an innovation that may have been critical 

during the glacial periods of the Paleolithic (119).  

Today, human activities contribute substantially to the redistribution of manganese in the 

environment, with 50,000,000 metric tons of manganese ore produced every year (120), and 

anthropogenic emissions accounting for a significant flux of manganese to natural waters and the 

atmosphere (121, 122).  The biggest industrial use of manganese is in steel production (44). Manganese is 

requisite in modern steel making, both as a refining additive and also as an essential alloy. It lends unique 
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properties to the steel, such as a considerable increase in tensile strength. There is no known satisfactory 

substitute for manganese in metallurgy, and as such it is considered a critical mineral commodity (123). 

Beyond steel, manganese is used in a staggeringly diverse array of other applications (124, 125). It is used 

as a pigment in glass, ceramics and paints. It is used as an oxidizing agent in the chemical synthesis of a 

wide range of products, from dyes and fragrances to yellow-cake uranium. It is used as a scavenger in 

water treatment, and as an octane booster/anti-knock agent in unleaded gasoline. Manganese was used as 

an electron acceptor in the earliest Leclanché type primary cell batteries, and continues to be used to this 

day in zinc/manganese primary and secondary cell batteries (126). Thus, this strange and wonderful 

element* has been repurposed by the biosphere once again—this time via the evolution of human 

creativity. 

 

Conclusion 

In the ancient, anaerobic world, manganese redox chemistry was not accessible until after the 

evolution of a phototrophic reaction center with a high enough reduction potential to oxidize 

manganese—this was the direct ancestor to PSII. Unlocking manganese redox chemistry shattered the 

previous ceiling of redox space available to biology and was a crucial evolutionary bridge that led to the 

origin of oxygenic photosynthesis and the rise of environmental O2 (Figure 4). The fact that the 

production of O2 evolved in organisms with a keen interest in manganese meant that the first organisms to 

encounter significant fluxes of O2 had a built-in fortuitous antioxidant system, thanks to the ability of 

manganese complexes to catalytically quench dangerous reactive oxygen species like superoxide and 

hydrogen peroxide (Figure 4F). The antioxidant properties of Mn2+ along with its high concentrations in 

ancient oceans may have been the key to life surviving and ultimately thriving in an aerobic world.  

As life discovered O2 through manganese—and manganese continues to be the requisite catalyst 

for O2 production—by reciprocity O2 opened a doorway into a world of rich redox chemistry, enabling a 

                                                             
* The etymology of manganese comes from the Greek root mangania, or magic (127) 
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diverse suite of processes that use high-valent manganese. O2 provided chemical species with even higher 

reduction potentials than manganese, further raising the ceiling of redox space available to biology and 

enabling energetically-favorable manganese oxidation without the input of light energy. Manganese redox 

chemistry was harnessed by enzymes with a wide range of functions (Table 2); some of these allow cells 

to cope with reactive oxygen species (e.g. catalase), while others enable important ecological processes 

like lignin degradation (Mn peroxidase). All manganese redox-active proteins interact with O2 or species 

derived thereby, and appear to have only evolved in the wake of the rise of O2. With its redox cycle, 

manganese would come to play an essential role in the function of biogeochemical cycles and participate 

in numerous redox and sorption processes affecting the availability and distribution of other key elements. 

Diverse components of the modern biosphere, from niche microbes to human industry, still exploit these 

relationships between O2 and the biogeochemical dynamics of manganese. 
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Figures 

 

 
 
 
Figure 1. Manganese cycling in modern environments. Geological sources of manganese include 
manganese as a minor constituent of igneous rocks, and sedimentary deposits of Mn(II) in carbonates and 
Mn(III)/(IV) in oxides. These geological sources are liberated by processes of weathering and erosion, 
including by rivers and wind. In natural waters, manganese cycles between the Mn(II), Mn(III), and 
Mn(IV) oxidation states—biology plays a range of important roles in this cycling.  
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Figure 2. The breadth of manganese redox chemistry. A. Frost diagram of manganese in acidic solution 
(128). The slope of the line connecting two points represents the reduction potential for that redox couple. 
A state that is offset from the line connecting the states above and below it, i.e., Mn(III), is unstable with 
respect to disproportionation. B. Redox tower showing reduction potentials for different manganese 
species. The standard electrode potentials (E0) vs. SHE for the Mn(III)/Mn(II) and Mn(IV)/Mn(II) 
couples are very high (129–131). However, pH, concentration, and coordination environment can affect 
the reduction potentials considerably, and therefore these are critical factors in determining the energetics 
of manganese redox transformations in the environment. For instance, the MnO2/Mn2+ redox couple 
decreases by 0.82 V when adjusted to pH 7 and increases by 0.18 V when adjusted to 1 µM Mn2+. E0 was 
converted to redox potentials under environmentally relevant conditions using the Nernst equation: 
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Figure 3: A simple manganese cycle on the early Earth—prior to the rise of O2. A. Manganese is present 
in the crust exclusively as Mn(II) where it substitutes for Fe(II) in a range of igneous minerals. Both low 
temperature and high temperature (hydrothermal) silicate weathering sources dissolved Mn2+ to surface 
waters where it ultimately accumulates to substantial levels in the oceans, with the only meaningful sink 
as a minor constituent of marine calcium carbonate salts. B. Geological strata of a 2.5 Ga carbonate 
platform, deposited at a time prior to the appearance of any dioxygen in the atmosphere or oceans (96, 
113, 132). These strata contain abundant marine calcite (CaCO3) cements—including a specific texture 
termed ‘herringbone calcite’ that precipitated from subtidal seawater (133). C. Close up view of 
herringbone calcite (white arrow) deposited on ancient microbialites. These CaCO3 cements contain 
substantial concentrations of Mn(II) (4). D. Kernel density estimate of 90 measurements of the Mn:Ca 
ratio in Archean carbonates show very high Mn(II) contents. These are many orders of magnitude higher 
than seen in carbonates after the rise of oxygen (typical modern value shown by the black arrow) and 
reflect very high concentrations of Mn2+ in seawater at this time—levels that would have naturally 
provided some oxidative stress resistance in marine environments (14, 16, 96). 
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Figure 4. The breadth of redox chemistry exploited by the biosphere through time A. Redox tower 
showing midpoint reduction potentials at pH 7 (E0’) for a selection of biologically and geochemically 
relevant species (26, 129–131, 134–137). Manganese redox couples occupy a range of redox space that is 
typically higher on the tower than most other environmentally and biologically relevant species—a range 
that overlaps with O2 and other reactive oxygen species. B. Geologic timeline, illustrating how 
manganese expanded the high-potential limit of accessible redox chemistry. The earliest redox chemistry 
exploited by life depended on pre-existing thermodynamic disequilibria in the environment, allowing 
microbial metabolisms like H2-CO2 methanogenesis and acetogenesis (3). C. Phototrophy, the ability to 
capture and transduce the energy in visible light to create strong biochemical oxidants and reductants, 
enabled redox chemistry that was previously inaccessible; anoxygenic phototrophy was one of the most 
important early developments in high-potential metabolism (e.g., energy conservation around complex 
III). D. The evolution of a version of phototrophy with a high enough potential to oxidize Mn(II) 
introduced a source of high-valent manganese to the environment, and provided a stepping stone for the 
evolution of oxygenic photosynthesis (10, 11). E. The evolution of the WOC endowed the biosphere with 
the ability for photosynthetic water-splitting, and the rise of O2 ensued. F. The introduction of O2 and 
ROS further raised the ceiling of accessible redox space, defining the redox landscape in aerobic cells and 
environments today. Today the antioxidant properties of manganese are a critical feature of cellular 
protections against oxidative stress; the high Mn(II) concentrations in early environments and within cells 
would have been available as fortuitous (non-enzymatic) antioxidant systems that allowed life to cope and 
thrive with the rise of O2. G. In the modern, aerobic world, manganese redox chemistry is involved in 
numerous biogeochemical processes. Enzymes with diverse functions incorporate redox-active 
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manganese cofactors, and manganese redox cycling plays a key role in ecological processes, such as the 
oxidative degradation of recalcitrant organic matter.  
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Tables 

Mn(II) Mn(III) Mn(IV) 
Aqueous 

 species 
Mn2+(H2O)6 

Mn2+(OH)+ 

Mn(II)-La 

Mn(III)-La 

Mn(III) oxide nanoparticles 

Mn(IV) oxide nanoparticles 

Mineral 
species 

Mn2+ as a trace constituent in 
igneous minerals 

kutnohorite/ 
manganoan calcite  
   (Mn2+,Ca2+)CO3 

rhodochrosite 
  Mn2+CO3

rhodonite 
   Mn2+SiO3 

bixbyite 
   (Mn3+,Fe3+)2O3 

braunite 
   Mn2+Mn3+

6(SiO4)O8 

hausmanite 
   Mn2+Mn3+

2O4 

Mn(IV) oxide  
   Mn4+O2

Common polymorphs include 
pyrolusite, todorokite, 
hollandite, cryptomelane and 
birnessite b 

a Known ligands that form aqueous manganese complexes include pyrophosphate, (bi)carbonate, citrate, 
tartrate, and humic acids. In general, the diversity and distribution of Mn-L species in the environment 
remains poorly constrained.  
b Can include some Mn(III). 

Table 1. Major manganese species and minerals found in the environment. 
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Enzyme 
No. of 

Mn 

Redox 
active 

Mn 
Mn 

valence EC no. Enzyme class/function Overall reaction Distribution 

PSII 4 Y II/III/IV/
(V) 1.10.3.9 

Oxidoreductase; Catalyzes 
oxidation of water to release 

dioxygen 

2 H2O + 2 
plastoquinone + 4 

light → O2 + 
2 plastoquinol 

Cyanobacteria, 
chloroplasts 

Mn catalase 2 Y II/III 1.11.1.6 

Oxidoreductase; Catalyzes the 
disproportionation of 

hydrogen peroxide to water 
and dioxygen 

2H2O2 → 2H2O + O2 Bacteria 

Mn Superoxide 
Dismutase 
(MnSOD) 

1 Y III 1.15.1.1 
Oxidoreductase; Redox 

enzyme; acts on superoxide 
radical 

2O2
- + 2H+ → H2O2 

+ O2 

Mitochondria, 
chloroplasts, 

bacteria 

Oxalate 
Oxidase 1 Y II/III 1.2.3.4 

Oxidoreductase; Aides in 
carbohydrate metabolism by 

catalyzing conversion of 
oxalate and dioxygen to 

hydrogen peroxide and carbon 
dioxide 

(COOH)2 + O2 → 
H2O2 + 2CO2 

Plants, bacteria 

Oxalate 
Decarboxylase 1 Y II/III 4.1.1.2 

Lyase; Aides in carbohydrate 
metabolism by catalyzing 
cleavage of oxalate into 

formate and carbon dioxide 

(COOH)2 + H+ → 
HCOO− + CO2 Bacteria 

Arginase 2 N II 3.5.3.1 Hydrolase; Catalyzes the final 
step in the Urea Cycle 

L-arginine + H2O → 
L-ornithine + urea 

Yeast, bacteria, 
mammals 

Xylose 
Isomerase 1 or 2 N II 5.3.1.5 

Isomerase: Catalyzes the 
interconversion of aldose and 

ketose sugars with broad 
substrate specificity 

D-xylopyranose → 
D-xylulose Bacteria 

Mn 
Dioxygenase 1 or 2 Y/Na 

II/ 
possibly 
III(139) 

1.13.11.39 
Oxidoreductase; Catalyzes the 

degradation of catechol 
through incorporation of O2 

Biphenyl-2,3-diol + 
O2 → 2-hydroxy-6-
oxo-6-phenylhexa-

2,4-dienoate 

Bacteria 

Type Ib 
Ribonucleotide 

reductase 
(RNR) 

2 Nb III 1.17.4.1 

Oxidoreductase; Catalyzes the 
reduction of ribonucleotide 

diphosphates to 
corresponding 

deoxyribonucleotides via 
reductive elimination of 2-

hydroxyl 

2'-
deoxyribonucleoside 

diphosphate + 
thioredoxin disulfide 

+ H2O → 
ribonucleoside 
diphosphate + 

thioredoxin 

Bacteria 

Mn Peroxidase 
(MnP)c - Y II/III 1.11.1.13 Peroxidase; Redox enzyme, 

degrades lignin 
2Mn2+ + 2H+ + H2O2 
→ 2Mn3+ + 2 H2O Fungi 

Manganese -
Oxidizing 

Multicopper 
Oxidase 
(MnxG)c 

- Y II/III 1.16.3.3 

Oxidoreductase; Oxidizes 
soluble Mn2+ to insoluble 

manganese oxides; typically 
located on the outer surface of 

the cell resulting in 
encrustation of the cells by 

the oxides. 

4 Mn2+ + 2 O2 + 4 
H2O → 4 MnO2

+ + 8 
H+ 

Bacteria 

Mn-Oxidizing 
Protein 

(MopA)c 
- Y II/III Unknown 

Oxidoreductase; 
Extracellularly oxidizes 
soluble Mn2+ to Mn3+ via 

single electron transfer, which 
then accumulates as a soluble 
species (ligand unknown) or 

disproportionates to form 
Mn4+ 

Exact reaction 
currently pathway 

unknownd 
Bacteria 

a Some studies have shown that extradiol dioxygenases that require Mn2+ or Fe2+ may not go through a redox change while undergoing oxygen 
activation (139) 
b While the Mn in Type Ib RNR is not known to be redox active in the reduction of RNA to DNA, the biosynthesis of the protein does require 
oxidation of the 2Mn2+ into the final active cofactor MnIIIMnIII-tyrosyl radical. Two proposed protein assembly schemes for the active 
cofactor are: (1) 2Mn2+ + Tyrosine + 2H2O2 + e- + H+ → MnIIIMnIII + Tyrosyl radical + 2H2O / (2) 2Mn2+ + Tyrosine + O2

– + H+ → 
MnIIIMnIII + Tyrosyl radical (140) 
c MnP, MnxG and MopA are proteins that perform manganese oxidation and do not require or use Mn as a cofactor in the enzyme.  
d Based on sequence similarity the protein is known to fall in the peroxicin subfamily of the peroxidase cyclooxygenase superfamily (68). O2 
is required for the reaction to proceed and therefore is postulated to be the likely terminal electron acceptor to form Mn(III) as the product. 
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Table 2. Selection of known manganese-bearing metalloproteins, including redox-active and nonredox-
active enzymes that require manganese for catalytic functioning, and also enzymes known to perform 
manganese oxidation but that do not use manganese as a cofactor. No. of Mn shows the number of 
manganese atoms required for protein function; Redox-active Mn defines whether or not the manganese 
cofactor (or substrate in the case of MnxG and MopA) undergoes a redox state change during the course 
of the reaction; Mn valence indicates the valence state manganese will exist or transition through during 
the reaction cycle; EC no. indicates the enzyme commission number. One can infer that the redox-active 
proteins that oxidize or reduce manganese either as innate metal center(s) or a substrate all evolved after 
the rise of O2, and that manganese-bearing metalloproteins prior to the rise of oxygen were likely limited 
to performing simpler chemistry, e.g. laboring as hydrolases or isomerases.  
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Abstract 

The origin of oxygenic photosynthesis was a critical turning point in the evolution of life and dramatically 

altered Earth surface environments by introducing O2. This metabolic innovation is hypothesized to have 

evolved from an anoxygenic version of photosynthesis based on manganese oxidation. Here we examined 

new drill cores through Paleoproterozoic sediments of the Transvaal Supergroup, South Africa, using 

detrital pyrite grains and manganese oxidation as two independent proxies for constraining the history of 

photosynthesis and accompanying onset of oxidative processes. We observed detrital pyrite grains in the 

Makganyene Formation, suggesting that if the Makganyene glaciation was triggered by O2, this climatic 

consequence manifested extremely rapidly—before signatures of oxidative weathering were expressed in 

sediments. Systematic searches for such grains in the Duitschland Formation were unsuccessful, 

consistent with previous interpretations that deposition of the Duitschland Formation coincided with the 

Great Oxygenation Event. Examining the manganese record further refined this understanding—we 

observed no evidence of oxidative manganese deposition during a major weathering interval at the base of 

the Duitschland Formation; slightly higher up in the Duitschland Formation, we described a stromatolitic 

unit characterized by substantial oxidative manganese deposition. These stromatolites provide the first 

physical evidence of the hypothesized manganese oxidizing organisms responsible for evolving oxygenic 

photosynthesis. Taken together, this work sheds new light on the timing and tempo of how O2 

transformed the Earth and demonstrates the existence of manganese cycling communities during this 

pivotal transition.   

Introduction 

The rise of O2—attributed to the evolution of oxygenic photosynthesis—was a singularly 

transformative turning point in Earth history that forever changed the face of the planet and with it the 

course of life’s evolution (1). This marked transition is recorded in Paleoproterozoic sedimentary rocks by 

the Great Oxygenation Event (GOE), a shift expressed by numerous proxies demonstrating the oxidation 

of Earth surface environments and accompanying changes to biogeochemical cycles (2–19). Changes in 
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the sulfur and iron cycles are exhibited by the loss of mass independent fractionation of sulfur isotopes 

(S-MIF), the disappearance of detrital pyrite grains, the appearance of bedded sulfate deposits, and the 

retention of iron in paleosols. Each of these signals reflects a specific consequence of O2-derived 

chemistry; therefore, their histories are closely tied to the history of O2.  

 The manganese record tells a story concerning the evolution of oxygenic photosynthesis that is 

subtly distinct from the rise of O2 itself (20). Manganese species have unusually high redox potentials and 

therefore require exceptionally high potential oxidants for their oxidation. Chemically, this is limited to 

O2 and O2-derived reactive oxygen species. However, a biological mode of manganese oxidation driven 

by light energy rather than a chemical oxidant—manganese oxidizing phototrophy (MOP)—is thought to 

have been the immediate evolutionary precursor to oxygenic photosynthesis. MOP prior to oxygenic 

photosynthesis explains evidence for oxidative manganese deposition in sediments that predate the GOE 

(21, 22).  

Deciphering the events, timing, and environmental context leading up to the evolution of 

oxygenic photosynthesis and through the GOE remains an ongoing effort. The initial accumulation of O2 

in the atmosphere, climatic consequences such as global cooling due to the collapse of a methane 

greenhouse, and impacts on Earth surface processes such as weathering may each have manifested on 

different timescales. While S-MIF has been our premier record for pinpointing the GOE, each of the 

myriad other proxies that demonstrate Earth’s oxygenation offers a different lens into the impacts of O2 

on the environment. Here we present data from the Transvaal Supergroup that augments the existing S-

MIF record by providing new glimpses into the sedimentary archives of manganese biogeochemistry and 

the onset of oxidative weathering.  

 

Geologic setting 

The Transvaal Supergroup is a Neoarchean to Paleoproterozoic succession of sedimentary and 

volcanic rocks deposited on the Kaapvaal Craton (Fig. 1). It is preserved in two major subbasins in South 

Africa—the Griqualand West subbasin (GWS) to the southwest and the Transvaal subbasin (TS) to the 
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northeast. The base of this succession forms a mixed siliciclastic-carbonate ramp that grades upward into 

the extensive Campbellrand-Malmani carbonate platform, with margin to slope facies preserved in GWS 

and more proximal environments preserved in TS (23). A major marine transgression ~2.5 Ga triggered 

by platform subsidence resulted in platform drowning followed by the deposition of banded iron 

formation (BIF) (24). In GWS, the Koegas Subgroup records the onset of manganese oxidation prior to 

the GOE, interpreted as evidence for MOP before oxygenic photosynthesis (22). An erosional hiatus 

separates the Ghaap and Postmasburg Groups/Chuniespoort and Pretoria Groups in GWS/TS, 

respectively (25).  

In GWS, the lower Postmasburg Group is characterized by glaciomarine deposits of the 

Makganyene Formation, which is conformably overlain by volcanics of the Ongeluk Formation dated to 

2426 ± 3 Ma (26). Above the Ongleuk Formation sits BIF of the Hotazel Formation—which hosts the 

world’s largest manganese deposits (27)—followed by the Mooidraai carbonate platform. Paleomagnetic 

data that the Makganyene glaciation reached low latitudes indicates a snowball Earth interval (28). This 

has been interpreted as a climatic consequence of atmospheric oxygenation, with the subsequent BIF and 

manganese deposits of the Hotazel Formation reflecting a post-melting bloom of biological productivity 

and O2 production resulting in rapid oxidative deposition of iron and manganese (29, 30). That the 

Hotazel Formation postdates the rise of O2 is undisputed; however, the relative timing of the GOE and 

deposition of the Makganyene and Ongeluk formations is less clear. Trace metal weathering signatures 

inherited from the upper continental crust have suggested that the Makganyene glaciation may in fact 

predate the GOE (31, 32).  

In TS, the rise of O2 is thought to have occurred during deposition of the Duitschland Formation, 

which hosts a wide variety of lithologies including glacial diamictites, conglomerates, coarsening upward 

cycles of shales to sandstones, and carbonates. A conglomerate member known as Bevetts, derived from 

karstic weathering of the underlying Malmani platform, sits at the base of the Duitschland Formation 

(33). An unconformity defines the mid-Duitschland sequence boundary, across which the loss of S-MIF 

indicates the GOE (4, 5, 34). The Duitschland Formation is overlain by the Timeball Hill Formation. In 
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the Carltonville area (southwest TS), the Rooihoogte Formation sits between the Malmani platform and 

the Timeball Hill Formation and also records the loss of S-MIF (5). Whether the Duitschland and 

Rooihoogte formations are stratigraphically correlative or the Rooihoogte Formation overlies the 

Duitschland Formation has been disputed (34, 35).  

 

Results 

Manganese stromatolites of the Duitschland Formation 

 New scientific drill cores from the Agouron Transvaal Drilling Campaign revealed authigenic 

manganese deposits in the Duitschland Formation just above the mid-Duitschland sequence boundary. 

Whole core X-ray fluorescence (XRF) scans illustrated the extremely high manganese enrichment of 

these deposits (Fig. 2). These deposits are comprised of microdigitate columnar stromatolites (Figs. 3A-B, 

S2) and are sufficiently unique that they were designated as the primary marker unit for correlation 

between the AGP-1 and AGP-2 cores. Indeed, stromatolites mineralized in manganese are not a common 

lithotype (36); to our knowledge, nothing similar to these deposits has been described elsewhere.  

 To understand better the origin of these manganese stromatolites, we examined them in 

petrographic thin section using scanning electron microscopy (SEM). Although diagenetic 

recrystallization textures overprint original depositional textures (diagenetic fabrics shown in Figs. 3D-M 

and S3C-F), some key features remain clear that support the interpretation of these stromatolites as the 

remains of microbial mat structures (36, 37). Laminae that thicken over the stromatolite apex reflects the 

growth of microbial mat layers (Figs. 3D, S3C), as opposed to abiotic crystal growth that would produce 

isopachous layers or the deposition of allochthonous organic material that would preferentially settle in 

topographic lows. Detrital grains sitting at higher angles than ~30°, the angle of repose for loose 

sediment, are indicative of microbial trapping and binding (Figs. 3F, S3D).  

Energy dispersive spectroscopy (EDS) revealed that these stromatolites are comprised of 

carbonate minerals with variable mixtures of Mn2+ and Ca2+, and to a lesser extent Fe2+, as the dominant 

cation, along with chert, muscovite, and rare grains of Ti/Fe oxides, apatite, and zircon. The laminae are 
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broadly defined by composition, alternating between manganese carbonate (cation content up to 90% 

Mn2+), carbonate with subequal cation mixtures (individual crystals exhibit Ca2+ or Fe2+ content up to 

70%), and chert (Fig. 3C). Diagenetic textures suggested that this cation segregation is related to 

recrystallization, and samples from further down core were distinguished by larger domains of Mn2+ vs. 

Ca2+ cation segregation (Fig. S2, Fig. 3 vs. Fig S3). Nonetheless, carbonate material associated with 

exogenous textures such as detrital grains or later veins often exhibited the lowest manganese content (up 

to 95% Ca2+). Synchrotron X-ray absorption near-edge structure (XANES) spectroscopy and mapping at 

the manganese K-edge confirmed that the manganese content of these stromatolites is present entirely as 

Mn2+ in carbonates (Fig. 4, Fig. S3G-I). Slight differences in the XANES spectra observed are consistent 

with manganese carbonates differing in other cation constituents and degree of self-absorption (38).  

Carbonate δ13C values in these samples are remarkably low (-16.4 to -19.2‰ VPDB), strongly 

depleted relative to seawater dissolved inorganic carbon (DIC) (~0‰ (39, 40)) (Fig. 5). Taken together 

with diagenetic textures, this isotopic signature suggests that these carbonate phases are secondary rather 

than primary and their carbon derives from the remineralization of organic matter in sedimentary 

porewater rather than from seawater DIC. Deposits with similar mineralogy, manganese content, and 

isotopic signatures in the Koegas Subgroup and Hotazel Formation have been interpreted to reflect the 

respiration of organic matter coupled to the reduction of manganese oxides (22, 41). Therefore, we 

propose that these stromatolites were likely originally mineralized with manganese oxides.  

 

Detrital pyrite of the Makganyene Formation 

The disappearance of redox-sensitive detrital grains from sediments has long been recognized as 

one of the clearest signatures of the GOE (19). Minerals such as pyrite and uraninite are highly sensitive 

to O2—in the absence of O2 they behave like sand grains, weathering slowly during sediment transport; in 

the presence of O2 rapid oxidative degradation precludes their transport and deposition. Therefore, the 

sedimentary presence of rounded detrital grains of such minerals provides a simple and reliable proxy for 

the absence of O2 in paleoenvironments.  
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We observed detrital pyrite grains in samples of the Makganyene Formation from two different 

GWS drill cores (Erin-3 (42) and GTF01 (22)) (Figs. 6, S5), implicating Makganyene sediments as 

predating the GOE. To further characterize these pyrites we measured multiple sulfur isotope ratios using 

in situ secondary ion mass spectrometry (SIMS), which allowed us to make isotopic measurements 

mapped onto petrographic textures, i.e., to distinguish detrital grains from later diagenetic pyrite (Fig. 

6G). The pyrite grains we observed were not uniform in their isotopic compositions, suggesting multiple 

different provenances. Grains without any substantial fractionation signal were consistent with an igneous 

pyrite source (Fig. 6 grains A & C), while grains exhibiting a Δ33S MIF signal indicated a sedimentary 

pyrite source predating the GOE (Fig. 6 grain B). Additionally, some of the grains examined featured 

post-depositional euhedral overgrowths that were isotopically distinct from the primary grain (Fig. 6 

grains C & D). The overgrowths expressed slight Δ33S signals that could be consistent with predating the 

GOE; however, this signal could also be inherited from remobilized older sulfur.  

In seven thin sections of sandstones and shales taken from throughout the Duitschland Formation, 

including samples with heavy mineral laminae, we did not observe detrital pyrite (Fig. S6). This 

observation contrasts strongly with similar facies in underlying units that exhibit abundant detrital pyrite 

(19), supporting the interpretation that the Duitschland Formation postdates the GOE. However, the 

detrital pyrite proxy is diagnostic in its presence, not its absence, and therefore we refrain from drawing 

definitive conclusions based on this observation.   

Manganese mobility as an oxidative weathering proxy 

Archaean marine carbonates, such as those comprising the Campbellrand-Malmani platform, 

contain trace manganese content reflecting the manganese concentrations of Archean oceans—up to ~100 

µM, much higher than the nM concentrations of modern oceans (20, 43). Therefore, although the 

manganese content of the Campbellrand-Malmani platform is negligible relative to the extreme 

manganese content of subsequent deposits reflecting the deposition of manganese oxides (such as those 

seen in the Koegas, Hotazel, and now Duitschland), it is not insubstantial. This manganese is mobilized 
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through carbonate dissolution during weathering, and soluble as long as it stays reduced. In the modern, 

oxic environment it is readily oxidized and precipitates as oxide minerals leading to supergene 

enrichment. This weathering signature is so dramatic that livestock on farms where these carbonates 

outcrop are susceptible to Vryburg hepatosis, a unique form of geophagic disease caused by manganese 

toxicity from supergene manganese nodules in the soil—a disease that does not occur anywhere else in 

the world (44). Therefore, an additional proxy for oxidative weathering can be inferred from the behavior 

of manganese mobilized by weathering of the Campbellrand-Malmani platform.  

The Bevetts conglomerate member of the Duitschland Formation represents a major interval of 

weathering during Paleoproterozoic time of those same carbonate platform rocks. Bevetts is a chert 

pebble conglomerate, reflecting silicification of the original carbonate. Unlike the modern soil nodules, 

which are comprised of manganese oxides and therefore highly enriched in manganese, Bevetts retained 

almost no manganese; what little there is is present as a trace constituent of silicate minerals (Fig. 7). This 

suggests that the manganese mobilized during this weathering interval remained reduced and therefore 

soluble, carried away by fluids. The lack of any evidence for manganese enrichment reflects a lack of 

oxidative manganese deposition.  

 

Discussion 

Manganese played a fundamental role in the evolution of oxygenic photosynthesis. Not only is 

MOP thought to represent a critical evolutionary intermediate on the way to a photosystem capable of 

oxidizing water (20–22), the antioxidant activity of manganese small molecules provides an explanation 

for how the first organisms to generate O2 survived the sudden and acute degree of oxidative stress it must 

have engendered, long before the evolution of sophisticated biochemical antioxidant systems (20, 43). 

Therefore, the microbial communities that evolved and sustained oxygenic photosynthesis must have 

been expressly interested in manganese. Our analyses described the Duitschland manganese stromatolites 

as the vestiges of a phototrophic microbial community that was mineralized in manganese oxides and 

suggested that the ecology of this community was strongly characterized by manganese cycling—with 
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primary production fueled by MOP, and heterotrophic carbon remineralization fueled by manganese 

reduction. This unit, from right around the time of the rise of O2, provides the first example of what the 

hypothesized communities that evolved oxygenic photosynthesis might have looked like.  

The oxidative weathering proxies presented here provided new insights that refine our 

understanding of how the GOE fits into the Transvaal Supergroup stratigraphy. On the GWS side, the 

2426 ± 3 Ma age for the Ongeluk magmatism was previously interpreted as post-GOE and therefore 

constraining the GOE as older than that (26). However, if the Makganyene Formation actually predates 

the GOE, as our detrital pyrite data suggests, then that date for the Ongeluk can be interpreted as 

predating the GOE—a scenario which is much more congruent with the ~2.33 Ga estimate for the 

disappearance of S-MIF from TS (5). Therefore, we place the GOE between the Ongeluk and Hotazel 

Formations in GWS (Fig. 1B). In TS, the stark contrast between the behavior of manganese during 

modern weathering of the Campbellrand-Malmani platform and the weathering interval represented by 

Bevetts suggests that Bevetts predates the GOE; therefore, we place the GOE above Bevetts but relatively 

low in the Duitschland Formation, consistent with the S-MIF record (5) and absence of detrital pyrite.  

The understanding that the Makganyene Formation predates the GOE raises important questions 

regarding the implications of the Makganyene glaciation. Based on the current data, two scenarios are 

plausible—the glacial interval predated the evolution of oxygenic photosynthesis and was therefore 

unrelated to O2; alternatively, the glacial interval was precipitated by O2 as previously proposed (29, 30), 

but the presence of O2 was so incipient that surface processes did not yet reflect its influence. In the latter 

case, our data have profound implications for the relative tempos with which different consequences of 

introducing O2 to the environment were expressed. If the Makganyene glaciation was related to O2, the 

climatic consequence of global cooling manifested much more quickly than the impact of O2 on 

sediments.  

The history of manganese recorded in the Duitschland Formation provides an interesting contrast 

to the deeper water environments preserved in GWS. The Koegas Subgroup exhibits a clear signal of 

oxidative manganese deposition attributed to MOP (22). This biogenic MOP signature is distinct from 
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oxidative weathering; in the Koegas, that distinction is demonstrated by the co-occurrence of detrital 

pyrite grains demonstrating the absence of O2. Assuming stratigraphic correlation of the erosional hiatus 

between the lower and middle Transvaal sequences in GWS and TS, our Bevetts data further strengthens 

this interpretation of the Koegas by demonstrating that oxidative manganese deposition did not occur 

during a weathering interval that postdates the Koegas deposition. Further up in the Duitschland 

Formation, the first instance of oxidative manganese deposition is the manganese stromatolite unit. While 

not demonstrably pre-GOE, the stromatolites instead provide textural evidence for MOP communities, 

unlike the deeper water facies of the Koegas which record only the product of such communities, not their 

physical form.  

 

Methods 

Whole core XRF  

Whole core XRF scans at cm-scale resolution were taken at the European Institute for Marine 

Studies using an Avaatech XRF corescanner in two separate passes with excitation energies of 10 and 30 

kV, respectively.  

 

Sampling & thin sections 

 Cores were sampled at the University of Johannesburg. Thin sections were prepared by David 

Mann at High Mesa Petrographics (Los Alamos, NM). 

 

Optical microscopy 

Thin sections were examined on a Leica polarizing light microscope in both reflected and 

transmitted light.  

 

SEM/EDS 
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SEM and EDS analyses were conducted in the Caltech Geological and Planetary Sciences 

Division Analytical Facility on a ZEISS 1550VP Field Emission SEM, with both secondary electron and 

Robinson-type backscatter electron detectors and an Oxford X-Max SDD X-ray EDS system. 

Petrographic thin sections were coated with 20 nm graphite using a Turbo carbon evaporator and imaged 

with accelerating voltages of 10 to 20 kV and working distances of 5 to 15 mm. 

 

Synchrotron X-ray spectroscopy 

 Synchrotron analyses were conducted at the Stanford Synchrotron Radiation Lightsource on 

mesoprobe beamline 10-2 for full thin section maps and microprobe beamline 2-3 for high resolution 

maps and point spectra at the manganese K-edge. The beam was energy calibrated using the pre-edge 

feature of KMnO4 at 6543.34 eV. XRF maps of manganese distribution were collected at 11000 eV; 

multiple energy maps for mapping manganese speciation were collected at 6551, 6552, 6553, and 6554 

eV to capture subtle differences between the carbonate phases, along with 6558 and 6562 to capture 

spectral features diagnostic of higher valent oxides. Analyses at the sulfur K-edge were conducted on 

microprobe beamline 14-3, energy calibrated using the pre-edge feature of Na2S2O3 at 2472.02 eV. Maps 

of sulfur distribution were collected at 2499 eV. Spectra and maps were reduced using the SIXPACK (45) 

and SMAK (46) software packages respectively (https://www.sams-xrays.com/). Colormaps were 

converted to viridis using fixthejet (https://fixthejet.ecrlife.org/). 

 

Isotope analyses 

 Sulfur isotope ratios were determined by SIMS in the Caltech Microanalysis Center using a 

Cameca 7f-GEO. Petrographic thin sections were coated with 40 nm gold using a Cressington HR metal 

sputtering coater and interrogated with a primary beam current of ~ 3 nA and raster size was 5 x 5 µm. 

32S, 33S, and 34S were measured using Faraday cup detectors; 36S was measured using an electron 

multiplier detector with deadtime correction. Instrument mass fractionation was corrected using an in-

house pyrite standard calibrated to VCDT. 



56 

For carbonate δ13C and δ18O analyses, approximately 100 µg of microdrilled carbonate textures 

were sealed into 12 mL round-bottom borosilicate vials and flushed with helium gas. CO2 was generated 

by reaction with 100 µL > 100% H3PO4 at 72°C for 1 hour in a Thermo Fisher Scientific Gasbench II CO2 

prepatory system. Isotopic compositions were determined on a Delta V Plus continuous flow mass 

spectrometer by standardization relative to NBS-18, NBS-19, and three in-house reference standards. 

Oxygen isotopic compositions are reported using the dolomite-CO2 acid fractionation factor (47); this 

may result in a 1-2‰ δ18O accuracy bias for extremely high manganese samples. 
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Figures 

Figure 1. The Transvaal Supergroup. A. Geologic map showing exposures of the Griqualand West and 
Transvaal subbasins in South Africa, annotated with drill core and sample sites featured in this study. B. 
Stratigraphic cross section from the southwest to northeast of the Transvaal supergroup. Stratigraphy 
based on Sumner & Beukes, 2006; Cairncross & Beukes, 2013; Johnson et al, 2014. Age dates from 1. 
Bau et al, 1999 (Pb/Pb); 2. Gumsley et al, 2016 (U/Pb); 3. Pickard, 2003 (U/Pb); 4. Sumner & Bowring, 
1996 (U/Pb); 5. Barton et al, 1994 (U/Pb); 6. Rasmussen et al, 2013 (Pb/Pb); 7. Nelson et al, 1999 
(U/Pb); 8. Walraven et al, 1999 (U/Pb). Detrital pyrite from England et al, 2002; Hoffman et al, 2009; 
Johnson et al, 2013. S-MIF from Guo et al, 2009; Luo et al, 2016. Manganese depositis from Tsikos et 
al., 2003; Johnson et al, 2013; this study. We place the GOE between the Ongeluk and Hotazel 
Formations in GWS, and within the Duitschland Formation in TS.  
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Figure 2. Stratigraphic columns of Agouron drill cores though the Duitchland Formation, annotated to 
indicate the samples featured in this study. Whole core XRF scans show substantial manganese spikes in 
a unit of stromatolitic dolomite in cores AGP-1 and AGP-2. 
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Figure 3. Manganese stromatolites of the Duitschland Formation. A. Sample from core AGP-2, 125.67 m 
depth. B. Synchrotron XRF map of manganese distribution. C-D. Backscatter SEM images (D) and EDS 
maps (C), showing laminae defined by chemical composition (C) that thicken towards the apex of the 
stromatolite column (D). E-M. Backscatter SEM images showing grains trapped and bound above the 
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angle of repose (E), EDS points identifying mineral phases (F, I-M; representative spectra shown in Fig. 
S4), and fabrics characterized by diagenetic textures and low-grade metamorphism.  



64 

Figure 4. Synchrotron characterization of manganese stromatolites. A. Microprobe XRF map of 
manganese distribution, region shown in Fig. 3D. B. Manganese speciation map, fit with endmember 
spectra shown in C. C. Manganese K-edge XANES spectra, showing four endmembers from the 
manganese stromatolites, along with standard spectra for rhodochrosite (MnCO3), kutnohorite 
([CaMn]CO3), and birnessite (MnO2) for comparison. 
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Figure 5. Carbonate isotopic composition of manganese stromatolites, presented as isotope ratios relative 
to Vienna Pee Dee Belemnite (VPDB). Inset error bars in the upper right corner show average standard 
deviation, which ranges from 0.03 to 0.09‰ for δ13C and 0.05 to 0.16‰ for δ18O. Average isotopic 
compositions of the Campbellrand and Mooidraai platforms (reported by Fischer et al, 2009 and Bau et 
al, 1999, respectively) included to represent contemporaneous seawater DIC, along with measurements of 
other, non-manganiferous stromatolitic carbonates from the Upper Duitschland Formation from core 
ADL-1 for contrast.  
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Figure 6. Detrital pyrite grains in the Makganyene Formation from core Erin-3. A-D. Reflected light 
images. E-F. Backscatter SEM images annotated with phases identified by EDS; a representative pyrite 
EDS spectrum is shown in Fig. S5. G. Multiple sulfur isotopes measured by SIMS and presented as 
isotope ratios relative to Vienna Cañon Diablo Troilite (VCDT). Inset error bars in the upper right corner 
show average 2σ uncertainty, which ranges from 0.27 to 0.36‰ for Δ33S and 0.34 to 0.69‰ for δ34S. 
Datapoints are colored by grain, and in the case of the grains in C and D, further separated into the 
primary grain and post-depositional overgrowth.  
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Figure 7. The behavior of manganese during weathering. A. Modern supergene manganese soil nodule 
collected near outcrop of the Campbellrand platform. The tube in the picture contains leucoberbelin blue, 
a colorimetric dye used to detect high valent manganese; the strong blue color demonstrates the 
substantial manganese oxide content of the sample. B. Bevetts conglomerate sample from core AGP-1. C. 
Bevetts conglomerate sample from core ANW-1 in thin section, featuring a silicified stromatolite. D. 
Synchrotron XRF map of the thin section in C showing undetectably low manganese content. E. 
Manganese K-edge XANES spectra showing manganese oxides from the modern soil nodule and trace 
manganese in silicate minerals from Bevetts.  
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Figure S1. Manganese K-edge XANES standard spectra. A. Silicates. B. Carbonates and oxides.  
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Figure S2. More manganese stromatolites of the Duitschland Formation. Shown here are petrographic 
thin sections alongside synchrotron XRF maps of manganese and calcium distributions. In both cores, the 
stromatolites further down core are more segregated into larger domains of Mn2+-dominated vs. Ca2+-
dominated carbonate.  
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Figure S3. Manganese stromatolites, down core version. A. Sample from core AGP-2, 125.87 m depth. 
B. Synchrotron XRF map of manganese distribution. C-F. Backscatter SEM images showing laminae that 
thicken towards the apex of the stromatolite column (C), grains trapped and bound above the angle of 
repose (D), EDS points identifying mineral phases (E-F; representative spectra shown in Fig. S4), and 
fabrics characterized by diagenetic textures. G-H. Synchrotron microprobe XRF maps showing 
manganese distribution (G) and speciation (H). I. Manganese K-edge XANES spectra, showing a similar 
set of endmembers to the up core sample.  
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Figure S4. Representative EDS spectra identifying the phases found in the Duitschland Formation 
manganese stromatolites, shown in Figures 3 & S3.  
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Figure S5. Detrital pyrite in the Makganyene Formation continued. A-F. Additional images of detrital 
pyrite grains from core Erin-3. G-L. Detrital pyrite in the Makganyene Formation from core GTF01. M-
O. Synchrotron XRF maps of the grains in J-L showing sulfur distribution. P. A representative EDS 
spectrum identifying the grains from Erin-3 as pyrite. Q. A representative sulfur K-edge XANES 
spectrum identifying the grains from GTF01 as pyrite. 
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Figure S6. Representative backscatter (A, C, E) and secondary electron (B, D, F) SEM images of 
Duitschland Formation sandstones/shales. A-B. AGP-1 88.0 m. C-D. ANW-1 46.95 m. E-F. AGP-1 
137.2 m. While some samples exhibited late, post-depositional pyrites (e.g., A), detrital pyrite and/or 
uraninite grains were not observed in any of the sandstone and siltstone samples examined, including 
along heavy mineral laminae. 
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Abstract 

Desert varnish is a dark rock coating that forms in arid environments worldwide. It is highly and 

selectively enriched in manganese, the mechanism for which has been a long-standing geological 

mystery. We collected varnish samples from diverse sites across the western United States, examined 

them in petrographic thin section using microscale chemical imaging techniques, and investigated the 

associated microbial communities using 16S amplicon and shotgun metagenomic DNA sequencing. Our 

analyses described a material governed by sunlight, water, and manganese redox cycling that hosts an 

unusually aerobic microbial ecosystem characterized by a remarkable abundance of photosynthetic 

Cyanobacteria in the genus Chroococcidiopsis as the major autotrophic constituent. We then showed that 

diverse Cyanobacteria, including the relevant Chroococcidiopsis taxon, accumulate extraordinary 

amounts of intracellular manganese—over two orders of magnitude higher manganese content than other 

cells. The speciation of this manganese determined by advanced paramagnetic resonance techniques 

suggested that the Cyanobacteria use it as a catalytic antioxidant—a valuable adaptation for coping with 

the substantial oxidative stress present in this environment. Taken together, these results indicated that the 

manganese enrichment in varnish is related to its specific uptake and use by likely founding members of 

varnish microbial communities.  

 

Significance statement 

Rock varnish is a prominent feature of desert landscapes and the canvas for many prehistoric petroglyphs. 

How it forms—and in particular, the basis for its extremely high manganese content—has been an 

enduring mystery. The work presented here establishes a biological mechanism for this manganese 

enrichment, underpinned by an apparent antioxidant strategy that enables microbes to survive in the harsh 

environments where varnish forms. The understanding that varnish is the residue of life using manganese 

to thrive in the desert illustrates that even in extremely stark environments, the imprint of life is 

omnipresent on the landscape. 
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Introduction 

Rock varnish (also called desert varnish) is a thin, dark coating found on exposed surfaces of 

rocks in arid environments, comprised primarily of clay minerals and manganese and iron oxides (1–3). It 

has long been recognized as a geochemical puzzle (4–6) and has received considerable scientific and 

popular interest due to its widespread occurrence (7), association with archaeological petroglyphs (8–10), 

use in age dating (11–17), potential as a paleoclimate proxy (16, 18–20), and comparisons to rock 

coatings on Mars (21–24). However, many interpretations and applications of varnish hinge on 

understanding the mechanism of its formation, which remains unknown.  

The most perplexing aspect of varnish is its extremely high enrichment in manganese. Varnish 

characteristically contains 10 to 30 wt% MnO—two to three orders of magnitude higher manganese 

content than typical underlying rocks or the surrounding dust from which much of the mass comprising 

varnish originates (2, 3, 25). Other major elements including iron, silicon, aluminum, magnesium, 

sodium, and titanium, though abundant, are not enriched.  

Diverse microorganisms are known to be associated with varnish, but whether or not they play a 

role in its origin has been fiercely debated (26). Numerous processes, both abiotic (e.g., dust deposition, 

water leaching, photochemical manganese oxidation) and biological (e.g., microbial mediation of binding 

and cementation, microbial manganese oxidation), have been proposed to contribute (summarized in SI 

text), but since varnish grows very slowly—at most tens of microns over a thousand years (27)—

empirical demonstration has not been attainable. While many of these processes may be relevant to 

varnish formation, none of them satisfactorily explains the highly and selectively enriched manganese 

content in varnish.  

In this paper, we stepped back from the various paradigms that have been previously proposed 

and considered varnish formation from a new perspective. Synthesizing results from physical, chemical, 

and biological analyses, we reevaluated the relationship between varnish microflora and their 

environment and developed a hypothesis linking specific manganese accumulation to environmental 

adaptations of major members of the varnish microbial community.  
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Results 

Varnish is governed by sunlight, water, and manganese redox cycling 

We collected varnish on a range of rock types from seven field areas across the western United 

States (Fig. S1). Varnish occurs on diverse lithologies in different settings, yet there are some common 

developmental patterns. A close relationship between varnish and sunlight has been established—varnish 

develops preferentially on lit rather than shaded surfaces (28–30). Although found in arid environments, 

therein varnish develops preferentially with the availability of water, such as in shallow depressions on 

rock surfaces where dew accumulates (31) and along runoff streaks down cliff faces (32). These 

observations provided circumstantial evidence that light and water play important roles in varnish 

formation.  

To understand better the physical processes controlling varnish development, we examined 

depositional textures in petrographic thin sections using backscatter scanning electron microscopy (SEM). 

Varnish cross sections revealed micron-scale, sub-horizontal laminations that reflect its accretionary 

mode of growth (Fig. 1B, Fig. S2) (3). In all varnish samples examined, we observed laminae with crinkly 

to columnar or domal textures that mark an emergent topography similar to that of stromatolites—

macroscopic sedimentary structures commonly understood as mineralized residue of ancient microbial 

mats (33). In certain stromatolites, these textures have been interpreted in terms of light-dependent 

growth, models of which come from studies of coral growth (34). On a topographically irregular surface, 

relative highs receive more light while relative lows get shaded, thus the highs grow higher forming 

columnar features. In varnish, these microtextures supported the relationship with sunlight that has been 

documented with macroscale field observations and strengthened the evidence for a role for light in 

varnish genesis. 

Textural data also supported the previously documented relationship with water by suggesting 

that varnish formation involves manganese redox cycling through a soluble phase. Desert dust samples 

that we collected at varnish sites contained manganese as both trace Mn2+ in igneous minerals and 
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manganese oxide particles (Fig. S2E). We observed detrital particles embedded in varnish, but high-

resolution chemical imaging by energy dispersive spectroscopy (EDS) and nanoscale secondary ion mass 

spectrometry (NanoSIMS) showed that these particles are largely silicate minerals, while the manganese-

rich oxide material that characterizes varnish is in the laminated cement itself (Figs. S3-4). Since 

manganese is water soluble in its divalent form but not as higher-valent oxides, redox cycling is required 

to mobilize and reprecipitate the manganese oxide in dust to form the accreting oxide cements.  

The manganese oxide mineral phase in varnish has been described as poorly crystalline birnessite 

(2)—a phase comprised of manganese octahedra organized in layers (35); it is formally Mn4+O2, but can 

incorporate a substantial fraction of Mn3+ instead of Mn4+ when accompanied by charge balance with 

heteroatoms (Na+, K+, Ba2+, etc.) between the layers (36). Using synchrotron X-ray absorption near-edge 

structure (XANES) spectroscopy and multiple-energy ‘redox’ mapping at the manganese K-edge, we 

found that varnish birnessite is not homogenous in its redox properties. Although predominantly Mn4+, it 

contains common discrete microscale domains with variable and considerable mixtures of Mn3+ (Fig. 1C-

E, Fig. S2). This heterogeneity is consistent with the view that manganese redox cycling occurs within 

varnish, and the distribution of these domains indicates that such cycling is not restricted to surficial 

processes contributing to the ongoing accretion of varnish, but rather also characterizes the ecosystem that 

exists within well-developed varnish.  

Numerous manganese redox cycling processes occur in Earth surface environments. Manganese 

oxidation with atmospheric O2 is thermodynamically favorable and can be catalyzed by metal oxide 

surfaces or bacterial and fungal enzymes (37–40). Manganese reduction can also be catalyzed by 

microbial processes, notably anaerobic respiration (41), and with an appropriate electron donor present 

(e.g., organic carbon) photochemical reduction of manganese oxides occurs readily even in aerobic 

settings (42–44). While any of these processes might contribute to varnish development and the 

manganese redox heterogeneity we observed, the relationship between varnish and sunlight raised the 

hypothesis that photochemistry—and perhaps photobiology—might play particularly important roles.  
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To visualize organic matter in varnish, we used NanoSIMS imaging of sulfur. 32S appeared 

throughout varnish, notably concentrated in micron-scale particles that sit along varnish laminations and 

are distinct from detrital grains observed in the 28Si and 57Fe mass channels (Fig. S4A). To confirm that 

this sulfur reflects organics rather than just sulfur-bearing mineral phases, we used XANES spectroscopy 

to assess electronic structure at the sulfur K-edge. The sulfur in varnish displayed complex speciation; 

sulfur is present in organic forms observed in biological material (variable mixtures of thiols with 

disulfides, sulfoxides, and sulfonates) as well as sulfate salts (Fig. S4B). The fact that varnish is rich in 

organics and exposed to light—conditions that promote manganese photoreduction—and yet the 

manganese is maintained largely as Mn4+ oxides supports the view that dynamic redox cycling occurs 

within varnish.   

The varnish microbial community is characterized by Cyanobacteria 

To investigate the microbial diversity in varnish, we extracted DNA from varnish samples along 

with samples of surrounding surface soils for comparison. 16S rRNA gene amplicon sequencing revealed 

a varnish-specific microbial community that is distinct from surrounding soils, but common among 

varnishes from different rock types and locations (Figs. S5-7). The taxa we recovered are consistent with 

previous studies of varnish microbiology (45–48), with the bacterial families Xenococcaceae, 

Rubrobacteraceae, Acetobacteraceae, Sporichthyaceae, and Gemmatimonadaceae distinguishing the 

varnish community.  

The most striking observation from our community analyses was the high abundance of 

Cyanobacteria associated with varnish, specifically members of Chroococcidiopsis—a genus of the 

family Xenococcaceae noted for its ability to live in extreme environments, with high tolerance for 

radiation and desiccation (49–52) (Fig. 2). 16S sequences assigned to the Xenococcaceae (either 

Chroococcidiopsis or unassigned below the family level) were recovered from 48 out of 49 varnish 

samples and accounted for 25.9% of all sequence reads and 98.7% of cyanobacterial reads recovered from 

varnish. In contrast, the Xenococcaceae represented only 0.06% of all reads and 1.4% of cyanobacterial 
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reads from soil. The single most abundant unique Chroococcidiopsis sequence variant accounted for 8% 

of all reads from varnish and was completely absent from soil samples. Top BLAST hits for this sequence 

in the NCBI nr database included a remarkable representation of hits from previous varnish studies, and 

99.6% identity with isolate Ryu 1-3 from the University of the Ryukyus in Okinawa (53), which we 

obtained for further study. Additionally, epifluorescence microscopy on varnish flakes revealed sarcinoid 

clusters of cells that are morphologically characteristic of baeocystous Chroococcidiopsis cells (Fig. 2D).  

Shotgun metagenomic sequencing of select samples further emphasized the importance of these 

Cyanobacteria in the varnish community. 21.9% of raw metagenome reads were assigned to 

Cyanobacteria, corroborating their high abundances in the 16S amplicon data (Fig. S6C). We recovered 

six high-quality cyanobacterial metagenome-assembled genomes (MAGs), all belonging to members of 

the Chroococcidiopsidaceae (Fig. S8). These Cyanobacteria appeared to be the main primary producers of 

the varnish community—of nine MAGs containing genes for the Calvin-Benson-Bassham cycle, six were 

Cyanobacteria, with three others representing considerably less abundant taxa (of Armatimonadota, 

Rhodobacteraceae, and Beijerinckiaceae). No MAGs appeared to encode alternative carbon fixation 

pathways. Furthermore, we only recovered one additional MAG with phototrophic reaction center genes 

(an aerobic photoheterotroph of the Acetobacteraceae), indicating that the Cyanobacteria are the only taxa 

in varnish capable of using light as an energy source for autotrophic growth. Sulfur K-edge spectra of 

Chroococcidiopsis cells were similar to the organic content we observed within varnish (Fig. S4), 

supporting the interpretation that these taxa are the main primary producers of the ecosystem. 

By both abundance and function, we concluded that Chroococcidiopsis are extremely important 

taxa in varnish and are likely founding autotrophic members of the community. When considered in this 

context, the physical evidence that sunlight and water play important roles in varnish development can be 

interpreted to suggest that these Cyanobacteria, which grow with light and water, might be involved in the 

formation of varnish itself. 

Metagenomic data also revealed that the varnish microbial communities mark a highly aerobic 

ecosystem, far more so than typical sediments or soils. No obligate anaerobic metabolisms were 
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represented by the gene content of our MAGs—consistent with the known physiologies of the major taxa 

identified in our 16S analysis. Indeed, nearly all MAGs contained high-potential bioenergetic systems 

utilized in aerobic respiration as well as reactive oxygen species detoxification systems. Of the 38 MAGs 

we recovered from varnish samples, we observed heme-copper O2 reductase and/or bd O2 reductase 

complexes in 37 of them, a superoxide dismutase in 34 of them, and a catalase in 24 of them. These 

aerobic adaptations are perhaps unsurprising considering the proximity of this community to atmospheric 

O2 and exposure to solar irradiation; they are biochemical attestations to the high degrees of oxidative 

stress encountered in this harsh environment.  

Cyanobacteria accumulate manganese likely as a non-enzymatic antioxidant system  

 The significance of cyanobacterial taxa as abundant keystone members of the varnish ecosystem 

suggested to us a previously unexplored connection between the microbial community and the 

manganese content of varnish. The model freshwater cyanobacterium Synechocystis sp. PCC 6803 has 

been shown to accumulate a massive pool of intracellular Mn2+, up to 108 atoms per cell, which when 

averaged over cell volume is the equivalent concentration of 100 mM manganese—four orders of 

magnitude higher than their growth medium (54). We hypothesized that if this hyper-accumulation of 

manganese occurs broadly in the Cyanobacteria—particularly those taxa that are dominant members of 

the varnish community—then this physiological peculiarity might underpin varnish development.  

We examined two strains of Chroococcidiopsis (PCC 7433 and Ryu 1-3, the closest cultured 

relative to the varnish sequences), Synechocystis sp. PCC 6803, and Gloeobacter violaceous PCC 7421, a 

very deep branching member of the photosynthetic Cyanobacteria (Fig. S9), along with non-

cyanobacterial model organisms Escherichia coli K12 and Shewanella oneidensis MR-1 for comparison. 

Using inductively coupled plasma mass spectrometry (ICP-MS) to measure total cellular manganese, we 

observed dramatic manganese accumulation in all cyanobacterial strains; the highest values were seen in 

Ryu 1-3, with over two orders of magnitude greater manganese content than that seen in E. coli or S. 

oneidensis (Fig. 3A).  
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To probe the speciation of this copious intracellular manganese, we combined electron 

paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and electron spin echo 

envelope modulation (ESEEM) spectroscopies. The EPR spectra of all Cyanobacteria examined showed 

that the majority of the Mn2+ pool exists in soluble high symmetry complexes with low molecular weight 

ligands (denoted H-Mn2+) and not in low symmetry complexes with strongly chelating ligands or bound 

to proteins (denoted L-Mn2+) (Fig. 3B, Fig. S10A-B). 31P, 1H ENDOR and 14N ESEEM measurements 

along with 13C ENDOR on labeled cells further revealed that this manganese binds undetectably low 

amounts of phosphate and nitrogenous ligands, and is instead predominantly bound to carboxylato ligands 

(Fig. 3C, Fig. S10C-D and SI text). Notably, previously studied organisms with abundant cellular H-Mn2+ 

exhibited significant contributions from phosphate and nitrogenous ligands (55, 56); this difference makes 

the Mn2+ pool in Cyanobacteria unique.  

This speciation data implied the functional role for Mn2+ in cyanobacterial physiology as a small 

molecule antioxidant system. Certain H-Mn2+ complexes are known to act as effective catalytic 

antioxidants of superoxide and peroxide (57, 58), and accumulation of H-Mn2+ has been shown to predict 

oxidative stress resistance (55, 59). This physiology is well documented in radiation-resistant taxa such as 

Deinococcus radiodurans (60, 61), but was not previously known in Cyanobacteria. The H-Mn2+ 

accumulation shown here helps explain how the Cyanobacteria in varnish cope with the extremely 

aerobic, arid, and irradiated environments where varnish is found. Taken together with the high 

abundance of cyanobacterial taxa associated with varnish, the establishment of this cyanobacterial 

manganese-based antioxidant system provides an adaptive biological mechanism behind the enrichment 

of manganese in rock varnish.  

Discussion 

Varnish develops in environments that are extremely harsh, where protective strategies against 

irradiation and oxidative stress are essential for life to survive. The presence of the varnish microbial 

community has been noted in such terms; for example, varnish provides a habitat for microbial life 
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shielded by oxide minerals that absorb UV radiation (62). However, up until now, how and why the 

varnish—with its high and specific enrichment in manganese—got there in the first place was a mystery. 

Based on the data presented here, we propose that varnish itself is a hallmark of life prevailing in these 

extreme environments.  

We showed that Cyanobacteria of the genus Chroococcidiopsis are intimately and abundantly 

associated with varnish. Moreover, being the main primary producers of the ecosystem, these organisms 

must establish prior to heterotrophic taxa that depend upon them for organic substrates, implicating them 

as likely founding members of the microbial community. Evidence tying sunlight and water to varnish 

development provided further, albeit circumstantial, evidence that photosynthetic Cyanobacteria play a 

fundamental role. We then demonstrated that diverse Cyanobacteria, including Chroococcidiopsis, 

accumulate substantial quantities of H-Mn2+. This phenomenon is well established as an antioxidant 

strategy that enables tremendous oxidative stress resistance (58, 59, 63); indeed, there is no other known 

physiological purpose for such elevated manganese concentrations. The cyanobacterial H-Mn2+ pool that 

we observed is comparable in magnitude to the most radiation resistant organisms known (60).  

Many previous studies have focused on a mechanism of manganese oxidation as the key to 

varnish formation. However, in such aerobic environments, manganese oxidation may proceed through 

numerous pathways with both biological (SI text and Fig. S8) and abiotic (including photochemical and 

autocatalytic) mechanisms. Rather than oxidation, it is the selective enrichment of manganese that 

represents a process of singular importance to the development of varnish. The manganese hyper-

accumulation that we observed in Chroococcidiopsis provides a simple and effective, ecologically 

relevant, physiological explanation for this manganese enrichment. 

Thus, we propose a new hypothesis for varnish formation (Fig. 4). These Cyanobacteria grow on 

sunlit rock surfaces with intermittent access to water, sequestering high concentrations of manganese in 

their cells and exploiting the unique redox chemistry of manganese complexes as a catalytic antioxidant 

system that enables their survival in such a harsh environment. When they die, the residue from their 

biomass provides an enriched manganese source that is ultimately oxidized to form the oxide mineral 
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cements that comprise varnish. Since varnish forms over timescales of millennia, a well-developed 

varnish sample represents the time integrated manganese accumulation of many, many generations of 

cells, which are sparsely distributed at any given time. This was demonstrated in our analyses of varnish 

samples in petrographic thin section—the Mn2+ content of any living cells is negligible next to thousands 

of years of accumulated Mn3+/Mn4+ mineral. In addition to solving the mystery of manganese enrichment, 

cyanobacterial exudates and necromass also supply fresh organic carbon to the varnish ecosystem. This 

provides a growth substrate for the heterotrophic microbes that inhabit varnish, as well as an effective 

electron donor for photochemical manganese reduction. Taken together, our results place the activity of 

extremophilic Cyanobacteria as a key driver of both the physical and biological development of varnish 

ecosystems. 

Methods 

Study locations & sampling 

Samples were taken from seven field locations across the southwestern United States, ranging 

from arid to semiarid climates, corresponding to rock varnish Type I and Type II designated by Macholdt 

et al. (64) (Fig. S1). Underlying lithologies including mafic, felsic, and sedimentary rocks. Varnished 

rocks were collected with ethanol-sterilized gloves into Whirl-Pak sample bags, and surface soil samples 

were collected using sterile spatulas into falcon tubes. Ultrathin sections cut orthogonal to the varnished 

surface were prepared by David Mann at High Mesa Petrographics (Los Alamos, NM). The thin sections 

revealed varnishes ranging in thickness from ~5 µm to ~100 µm, likely representing hundreds to 

thousands of years of development (27). For DNA sampling, varnished rocks were returned to the lab, 

gently rinsed with sterile nanopure water using a 50 mL syringe and 16-gauge needle, and allowed to dry. 

For DNA extraction, varnish was removed from rock surfaces by scraping with flame-sterilized steel 

brushes, spatulas, and dental picks, and collected in a weigh boat. Each varnish sample was obtained from 

a separate rock. Dust analysis was conducted on a fine grained (clay-silt sized) fraction of surface soil 

from the Barstow field location. 
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SEM/EDS/NanoSIMS 

SEM and EDS analyses were conducted in the Caltech Geological and Planetary Sciences 

Division Analytical Facility on a ZEISS 1550VP Field Emission SEM, with a Robinson-type backscatter 

electron detector and an Oxford X-Max SDD X-ray EDS system. Varnish was imaged at 10 to 20 kV with 

working distances of 7 to 10 mm and magnifications of 500 to 4500 x. NanoSIMS analyses were 

conducted in the Caltech Microanalysis Center, on a Cameca NanoSIMS 50L using a Cs+ primary ion 

beam with 50 nm resolution, primary ion current of 1 pA, and dwell time of 3.5 ms/pixel. The masses of 

12C, 12C14N, 32S, 31P, 18O, 28Si, 55Mn16O, and 57Fe16O were collected. Petrographic thin sections were 

coated with 20 nm graphite using a Turbo carbon evaporator for SEM/EDS, and with 40 nm gold using a 

Cressington HR metal sputtering coater for NanoSIMS. EDS and NanoSIMS images were examined 

using ImageJ.  

Synchrotron X-ray spectroscopy 

Synchrotron analyses were conducted at the Stanford Synchrotron Radiation Lightsource, on X-

ray microprobes at beamlines 2-3 for the manganese K-edge and 14-3 for the sulfur K-edge. The 2-3 

beam was energy calibrated using the pre-edge feature of KMnO4 at 6543.34 eV, and 14-3 was calibrated 

using the pre-edge feature of Na2S2O3 at 2472.02 eV. Multiple energy maps for producing images of 

manganese redox state were collected at 6553, 6557, 6559, 6562, and 6570 eV, with 3 µm resolution. For 

both spectra and maps, least squares fitting was done using a spessartine standard spectrum (65) 

representative of igneous Mn2+, manganic oxide (65) and feitknechtite (66) standard spectra as two 

different Mn3+-bearing phases, and an internal endmember spectrum for Mn4+O2. Spectra and maps were 

reduced and fit using the SIXPACK (67) and SMAK (68) software packages respectively 

(https://www.sams-xrays.com/). Colormaps were converted to viridis using fixthejet 

(https://fixthejet.ecrlife.org/).  
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DNA extraction & sequencing 

Genomic DNA was extracted from 10-50 mg varnish scrapings or soil using the FastDNA™ 

SPIN kit for soil (MP Biomedicals). DNA yields were quantified using a Qubit 2.0 fluorometer with the 

HS dsDNA assay kit (ThermoFisher Scientific).  

To generate 16S rRNA gene libraries, the V3-V4 hypervariable region of the 16S gene was 

amplified using degenerate primers (341-806 pair) from ~12.5 ng genomic DNA with KAPA HiFi 

HotStart ReadyMix (denaturation at 95 °C for 3 minutes, 20 cycles of 95 °C for 30 seconds, 55 °C for 30 

seconds, and 72 °C for 30 seconds, and a final extension of 72 °C for 5 minutes before holding at 4 °C). A 

second round of PCR added Nextera XT v2 indexes (Illumina) (denaturation at 95 °C for 3 minutes, 8 

cycles of 95 °C for 30 seconds, 55 °C for 30 seconds, and 72 °C for 30 seconds and a final extension of 

72 °C for 5 minutes before holding at 4 °C). The amplicons were cleaned up using AMPure XP beads 

(Beckman Coulter). A no template control was processed, and did not show a band in the amplicon 

region. The amplicons were pooled and sequenced on the Illumina MiSeq platform generating paired end 

301 bp reads using the MiSeq reagent kit v3 (600 cycles) (Illumina). 

Two representative varnish DNA samples (sample 24, sandstone from Babbitt Ranch, AZ and 

sample 41, basalt from Mesa Prieta, NM) were selected for metagenomic sequencing. These samples 

were selected based on 16S amplicon data as likely candidates to recover high quality genomes for the 

major taxa in the varnish community. No aspects of the communities in these two samples were outliers, 

and together they represent samples from two different locations and very different rock types.  

Illumina shotgun libraries were prepared using the Next Ultra DNA II library preparation kit 

(New England Biolabs). DNA was fragmented using a Covaris E220; the ends were made blunt and 

adapters and indexes added onto the fragments to generate Illumina libraries, which were eluted in DNA 

elution buffer (Zymo). Libraries were quantified using the KAPA Illumina/Universal library 

quantification kit, normalized based on qPCR results, and sequenced on the Illumina NextSeq platform 

generating paired end 151 bp reads using the NextSeq 500/550 high output kit v2.5 (300 cycles) 

(Illumina). 
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16S data processing 

16S amplicon sequence reads from 61 varnish samples and 19 soil samples were processed using 

QIIME2 (69) to generate feature tables containing the frequencies of each unique sequence variant per 

sample. Quality filtering, denoising, merging of paired end reads, and chimera removal were done using 

DADA2 (70). The QIIME2 q2-feature-classifier plugin was used to align the sequences against the 

Greengenes 13.8 database (71) and assign taxonomy. 1 sample which returned < 2000 total reads was 

omitted from downstream analyses. NMDS & ANOSIM analyses were done by calculating a Bray 

dissimilarity matrix using the vegan ecology package in R (72). LEfSe analysis was done using the 

Microbiome Analyst tool (73) with default settings. For the phylogenetic tree presented in this paper, 

sequences were aligned with the SINA aligner (74) and converted from fasta format to phylip format with 

SEAVIEW (75). The phylogenetic tree was constructed using PhyML (76) implemented on the website 

http://www.atgc-montpellier.fr/phyml/ with default settings, and the resulting tree was visualized using 

FigTree.  

Metagenomic data processing 

Taxonomic assignments of raw metagenome reads were done using the MG-RAST analysis 

platform(77). Metagenome sequence read quality control, de novo assembly, and binning of metagenome 

assembled genomes (MAGs) was performed largely on the KBase platform(78). Combinations of read 

pre-processing, assembly, and binning methods were tested and evaluated based on the quality and 

quantity of final MAGs. Read pre-processing included no processing (raw reads), Bloom Filter Read 

Error Correction (79) v. r181 (drop_unique_kmer_reads = 1, kmer_size = 33), Trimmomatic (80) v. 0.38  

(LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:125), BBMap (81) v37.93 (bbduk.sh -

Xmx1g, k=15, mink=10, ktrim=r, tbo). Processed reads were assembled with MEGAHIT (82) v2.4.2 

(meta-large), MetaSPAdes (83) v1.2.4 (K-mer sizes 33, 55, 77, 99, and 127), or IDBA-UD (84) v1.0.4. 

Assemblies were performed with minimum contig size of 2000 bp. MAGs were constructed with two 
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automated binning tools, MaxBin2 (85) v2.2.4 and MetaBAT2 (86) v1.7 with default settings except for 

minimum contig lengths of 2500 bp. All MAGs from combinations of the above setting were evaluated 

for quality using the CheckM software v1.0.18 on KBase with default settings. Sufficiently high-quality 

bins were defined using the Parks et al. cutoff of completeness – 5*contamination > 50 (87). Bin 

taxonomy was assigned using GTDB-Tk v0.3.2 using gtdbtk release 89 (88). The number of bins passing 

this cutoff and their phylogenetic affiliations were used to compare between the different parameters 

described above. The greatest number of quality bins was achieved with Trimmomatic, MetaSPAdes and 

MetaBAT2 for sample 41 and Trimmomatic + BBmap mink, MetaSPAdes and MetaBAT2 for sample 24. 

Other combinations of parameters produced a subset of less complete versions of the final bins, not 

completely different MAGs. Genome annotation was conducted using the RASTtk algorithm (89) v.0.1.1 

in KBase, as well as a local implementation of the KOfamScan (90) software for the KEGG database. The 

canonical metabolic pathways encoded by these genomes were parsed using KEGG-decoder (91), and 

additional analyses of genes of interest, including MCOs and pili, were done using local BLAST searches 

for known systems (see supplementary material). Cytochromes c were identified by counting heme-

binding domains (CxxCH motifs), and beta barrels were predicted using the PRED-TMBB tool (92). 

Fluorescence microscopy 

Fluorescence microscopy was performed at the Center of Integrated Nanotechnologies at Los 

Alamos National Laboratory. Cavity well microscope slides (Globe Scientific) were used to mount 

varnish flakes and fitted with #1.5 coverslips. Imaging was conducted on a Zeiss Axio Observer D1 

inverted microscope equipped with a 100x, 1.3 NA oil immersion objective and a BP 640/30 excitation 

and BP 690/50 emission filter set to observe chlorophyll autofluorescence. 

Culture conditions 

Synechocystis sp. PCC 6803 (obtained from Richard Debus, University of California Riverside), 

Gloeobacter violaceous PCC 7421 (obtained from ATCC), Chroococcidiopsis cubana PCC 7433 
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(obtained from ATCC), and Ryu 1-3 (obtained from Shoichiro Suda, University of the Ryukyus), were 

grown in liquid BG11 medium (93) which contains 9 µM MnCl2. 6803 and Ryu 1-3 were kept in a 30°C 

shaking incubator under white fluorescent lights, 7421 and 7433 were kept at room temperature with 

natural light on a windowsill. Escherichia coli and Shewanella oneidensis were grown in liquid LB 

medium, in a 30°C shaking incubator. Cells were harvested after 24 hours growth for E. coli and S. 

oneidensis, ~1 week for 6803, and ~1 month for 7421 and 7433. Ryu 1-3 was sufficiently slow growing 

that once a month all biomass in the culture was transferred to fresh medium.  

ICP-MS 

Harvested cells were washed in sterile nanopure water to remove residual media and any 

extracellular material, and then frozen at -80°C. Frozen cells were lyophilized in a SpeedVac vacuum 

concentrator, and the dried cell pellet was transferred to a 50 mL DigiTUBE (SCP Science). The dry cell 

pellet was digested for two hours at 95 °C in 3 mL concentrated (70%) nitric acid purified by distillation 

at Caltech. The digested cell pellet was then diluted to 50 mL with nanopure water. ICP-MS analysis was 

conducted in the Caltech Environmental Analysis Center on an Agilent 8800 ICP-MS Triple Quad using a 

collision/reaction cell with O2 as the reaction gas. Sulfur was analyzed as 32S16O (mass 48). 

Measurements were calibrated using a multielement standard (Inorganic Ventures, IV-ICPMS-71A, Lot 

M2-MEB658498). Due to the extremely clumpy phenotype of the Chroococcidiopsis cells hindering 

accurate cell counts, manganese content was reported as a ratio to sulfur content as a proxy for 

normalizing to biomass. Cell-specific manganese abundance was determined for Synechocystis by cell 

counts in a Petroff Hausser counting chamber (Hausser Scientific).  

EPR/ENDOR/ESEEM spectroscopy 

Concentrated cell suspensions in 40% glycerol were loaded into custom-made quartz EPR tubes, 

and then flash frozen in liquid N2. Paramagnetic resonance spectroscopy was conducted in the Hoffman 

Laboratory at Northwestern University. 35 GHz continuous-wave (CW) EPR spectra were recorded using 
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a lab-built EPR spectrometer (94). Absorption-display EPR spectra of frozen cells and manganese 

standards were collected in the “rapid passage” mode at 2 K as previously described (56, 59) (MW 

frequency 34.9 GHz, MW power 1 mW, temperature 2 K, modulation amplitude 1 G, time constant 64 

ms, scan rate 1 kG/min). 

Pulsed ENDOR/ESEEM spectra were recorded using a lab-built 35 GHz pulsed EPR 

spectrometer (95). All spectra were recorded at 2 K using an immersion helium cryostat. 31P, 1H Davies 

ENDOR spectra were recorded using the pulse sequence p − Trf − p/2 − t − p − t − echo, where Trf is the 

time interval for the radio-frequency (RF) pulse, which is randomly hopped (96) (MW frequency 34.8 

GHz, temperature 2 K, magnetic field ~ 12.5 kG, tp/2 = 60 ns, t = 400 ns, Trf = 160 µs, repetition time 10 

ms). The ENDOR response is enhanced by broadening the frequency-bandwidth of the RF pulse using a 

100 kHz white noise source (97). 13C Mims ENDOR spectra were recorded using the pulse sequence p/2 

− t − p/2 – Trf − p/2 − t − echo (MW frequency 34.8 GHz, temperature 2 K, magnetic field ~ 12.5 kG, tp/2 

= 50 ns, t = 400 ns, Trf = 20 µs, repetition time 10 ms). 3-Pulse ESEEM spectra were recorded using the 

pulse sequence, p/2 - t - p/2 - T - p/2 - t – echo where T is the time varied between second and third 

microwave pulses, with four-step phase cycling to suppress unwanted Hahn and refocused echoes (96) 

(MW frequency 34.8 GHz, temperature 2 K, magnetic field ~ 12.5 kG, tp/2 = 30 ns, t = 400 ns, T = 1 µs 

with 20 ns step size, repetition time 10 ms). 
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Supplemental text 

Building on previous hypotheses of varnish formation 

Varnish genesis is the topic of a substantial body of previous work, which has shed important 

light on a wide range of sedimentary, geochemical, and biological factors. Analyses of accretionary 

microtextures (1–3) and trace element and isotopic compositions (4–7) demonstrated that the material 

comprising varnish originates from dust external to the host rock, mediated by atmospheric precipitation. 

Other studies examined the importance of silica in the varnish material, proposing processes of silica 

dissolution, gelling, condensing, and hardening as controlling the development of such rock coatings (8, 

9). The presence of biology in varnish has been documented by various techniques including culturing 

(10, 11), DNA analyses (10, 12–16), and SEM imaging of filamentous and coccoidal forms (2, 10, 17); 

and a role for microbes in binding together the oxides and clay minerals that comprise varnish has been 

suggested (18). 

Several different mechanisms for the enrichment and oxidation of manganese have been 

proposed; this includes both biological and abiotic processes. Hypotheses attributing the manganese in 

varnish to biological activity generally invoke microbial manganese oxidation (10, 11, 19–22). Model 

organisms like Bacillus sp. SG-1 and Pseudomonas putida MnB-1 strains are known to oxidize Mn2+ 

extracellularly (Fig. S8E)—generating manganese oxides that accumulate on their exosporia or 

glycocalyx, respectively (23). Previous studies have isolated similar bacteria from varnish (10, 11), and 

suggested that manganese oxide encrusted microbes could provide the manganese source for the varnish 

cement (18). Fungi are also known to oxidize manganese (24, 25), and have similarly been implicated in 

varnish (20, 26). In contrast, abiotic models of varnish formation have advocated thermodynamic 

arguments for the preferential mobility of manganese at certain pH regimes, enabling the enrichment of 

manganese from dust deposited on the rock surface through water leaching (7). The abiotic oxidation of 

manganese can be catalyzed by either mineral surface coordination (27) or photochemistry (28), both of 

which have been invoked in varnish hypotheses. Many of these processes could contribute to varnish 
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accretion and manganese oxidation, however, none of them entirely explain the high concentrations and 

specific enrichment of manganese in this material. 

It has been argued that the very slow rate of varnish formation rules out mechanisms based on 

biological processes that are known from laboratory experiments to proceed at more rapid rates (7, 18, 

29). However, it is important to note that rates of microbial activities under idealized laboratory 

conditions are not necessarily representative of the natural environment (30). Most cells in the 

environment are not actively growing exponentially most of the time. Especially in harsh environments, 

such as those relevant to varnish formation. In this context microbial growth can be very slow, and 

limited by water availability or nutrient availability, or inhibited by excessive heat or radiation. The 

relatively rapid growth rates we can sometimes achieve in the laboratory enable us to study processes that 

might otherwise happen too slowly to capture on experimental timescales—but this has very little bearing 

on how quickly such processes might be occurring in the environment.  

 

Genomic insights into manganese cycling in the varnish ecosystem 

Our synchrotron data indicated that manganese redox cycling (both oxidation and reduction) not 

only contributes to the formation of varnish, it continues in well-developed varnish—hinting that the 

varnish is characterized by unique opportunities biology to interface with manganese redox cycling. 

Biological processes can catalyze both reductions and oxidations of manganese. In order to better 

understand which manganese redox reactions might be mediated by varnish community members, we 

searched for genomic hallmarks of known biological metal cycling processes in our varnish metagenomic 

datasets. This included both reactions that could be directly coupled to cellular energy conservation, and 

reactions catalyzed by enzymes but not directly involved in energy metabolism.  

Coupling metabolic processes to redox reactions of insoluble, extracellular metal oxides requires 

the ability to transport electrons into or out of cells. This process has been best studied in the model 

systems for dissimilatory metal oxide reduction—Shewanella and Geobacter, that use large multiheme 

cytochromes (MHC) embedded in outer membrane beta barrel porins as conduits between their electron 



100 

transport chains and extracellular electron acceptors (Fig. S8B) (31). A similar biochemical strategy for 

extracellular electron transfer (EET) has been identified in organisms with metabolisms based on both 

iron and manganese oxidation (32, 33). None of our varnish MAGs were phylogenetically associated with 

known EET capable organisms, however this trait is broadly distributed throughout many bacterial phyla. 

Therefore, we used a gene-centric method to assess EET capability—an approach similar to the strategy 

employed in a recent survey of neutrophilic iron oxidizer genomes (32). We specifically screened for the 

porin proteins from known MHC-porin complexes MtrB (Shewanella oneidensis) (34), MtoB 

(Sideroxydans lithotrophicus) (35), and PioB (Rhodopseudomonas palustrus) (36), along with PCC3 and 

PCC4, hypothetical porin-cytochrome complex gene clusters from other known iron oxidizers (32). We 

also screened more generally for any MHCs by counting the occurrence of heme binding domains 

(CxxCH motifs), and determined whether or not these fell within gene clusters that also contained 

predicted beta barrel porins. Notably, we did not detect any MHCs with greater than 10 hemes—a 

characteristic of many organisms capable of EET—and none of our predicted MHCs resided in porin-

MHC gene clusters. This suggested that microbial metabolisms based on EET via large MHCs are 

uncommon in varnish—far rarer than in soils and sediments. 

The dearth of organisms exploiting the oxides in varnish for dissimilatory metal reduction is 

understandable given that varnish appears to be a thoroughly aerobic environment—O2 will always be a 

better electron acceptor for respiration. Unlike the anaerobic sediment environments wherein 

dissimilatory metal reduction is an important biogeochemical process, varnish may present a habitat with 

different opportunities for metal cycling. In this setting, biological manganese reduction might be more 

likely to occur via processes aimed at mobilizing and assimilating manganese rather than for core energy 

metabolism. 

Pili have been implicated in metal reduction in Geobacter (Fig. S8D), and a pilin system in 

Cyanobacteria—homologous to the one from Geobacter—has been proposed to allow Synechocystis sp. 

PCC 6803 to grow on manganese oxides as their sole manganese source, presumably via reductive 

dissolution (37). While the role of pili in metal reduction has been the topic of some controversy (38), it is 
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worth noting the presence of these pilin proteins (COG2165) in several of our varnish MAGs, including 5 

of the 6 Chroococcidiopsiaceae MAGs.   

Not all known iron oxidizing organisms use large MHCs—another strategy for EET involves an 

outer membrane cytochrome with a single heme bound in the center of a beta barrel porin that transfers 

electrons from iron to other small periplasmic cytochromes (Fig. S8C). In principle, an analogous system 

can be imagined for manganese, though one has not as yet been identified. We used BLAST to search for 

the outer membrane cytochromes Cyc2 (Acidothiobacillus ferrooxidans) (39), Cyt572 (Leptospirillum 

spp.) (40), and Cyc2PV-1 (Mariprofundus ferrooxydans PV-1) (41), all distant homologs broadly found 

in iron oxidizers. No significant hits for these proteins were identified in any of our MAGs.  

We also counted total putative c-type cytochrome encoding genes in each MAG, because it has 

been observed that organisms involved in metal redox cycling tend to have an abundance of these genes 

(e.g. 111 in Geobacter sulfurreducens and 42 in Shewanella oneidensis) (42, 43). Some of our MAGs 

were comparably rich in c-type cytochromes, including some MHCs with up to 7 CxxCH motifs. One 

MAG of the Chitinophagaceae had 52 cytochromes, the largest with 7 heme binding domains; and one 

MAG of the Armatimonadota had 48 cytochromes, the largest with 5 heme binding domains. Our 

Chroococcidiopsiaceae MAGs were fairly rich in cytochromes as well—the 4 Chroococcidiopsiaceae 

MAGs with > 93% completeness had 32, 32, 41, and 44 cytochrome genes, respectively.  

Other known modes of microbial manganese oxidation use extracellular or outer membrane 

multicopper oxidase (MCO) enzymes to catalyze manganese oxidation (Fig. S8E) (44). This reaction is 

not coupled to metabolic energy conservation, and therefore does not require a mechanism of EET. A 

hypothetical porin-MCO complex has been proposed, suggested to function similarly to the porin-MHC 

complexes known to engage in EET, but currently lacks experimental support (Fig. S8F) (32). This 

hypothetical system is homologous to PcoAB, a periplasmic copper detoxification system. We 

specifically screened for MnxG (Pseudomonas putida GB-1) (45), CotA (Bacillus pumilus WH4) (46), 

MoxA (Pedomicrobium sp. ACM 3067) (47), McoA (Pseudomonas putida GB-1) (45), and MofA 

(Leptothrix discophora, with high homology to OmpB from Geobacter sulfurreducens), as MCOs 
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implicated in manganese oxidation, along with PcoAB; we also screened for MCOs more generally, as 

determined by cupredoxin domains annotated in KBase. We identified MoxA, a protein known to exhibit 

manganese oxidation and laccase activity, in 5 of our MAGs, and PcoAB in two of them. Other MCOs 

are present in many of our MAGs (including 5 of the 6 Chroococcidiopsiaceae MAGs), but given the 

catalytic breadth of this diverse family of enzymes, we hesitated to draw definitive conclusions about 

their specific functions based on genomic data alone.  

The Cyanobacteria provide an additional mechanism for manganese oxidation that has not 

previously been discussed in the context of varnish—photosystem II oxidizes manganese (Fig. S8G), as 

exemplified by the photoassembly of the Mn4CaO5 cluster that enables water oxidation (48). There are 

several lines of evidence that oxygenic photosynthesis evolved in the ancestors of the Cyanobacteria from 

a version of anoxygenic photosynthesis based on manganese oxidation (49, 50), and it is possible this 

metabolism still exists in their modern decedents. Oxygenic phototrophs are often thought of as having an 

unlimited electron donor for photosynthesis, but under arid conditions water is scarce, and maintaining 

the ability to use manganese as an alternative electron donor might be useful. Thus, we propose an 

additional potential function for cyanobacterial manganese accumulation, particularly in the 

extremophilic, desiccation-resistant Chroococcidiopsis: these taxa might stockpile an electron reservoir to 

enable photosynthetic electron transport without using up water. This, along with the observations of a H-

Mn2+ antioxidant system, suggests two potential physiological reasons that extreme manganese 

accumulation could be a useful ecological strategy for cyanobacterial survival in the arid, oxidizing 

environments where varnish forms.  

Mn2+ speciation probed by paramagnetic resonance techniques 

The EPR spectra of H-Mn2+ complexes discussed here are characteristic of an S = 5/2 ion with 

small zero-field splitting (ZFS), with the principal ZFS parameter, D, much less than the microwave 

quantum (hν) (51). Such spectra show a central 55Mn (I = 5/2) sextet arising from hyperfine interactions, 

A ∼ 90 G, that is associated with transitions between the ms = +1/2 and −1/2 electron-spin substates. 
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These features ride on, and are flanked by, significantly broader wings—signals from the four satellite 

transitions involving the other electron-spin substates (ms ±5/2 ⇔ ±3/2; ±3/2 ⇔ ±1/2). The net absorption 

spectrum is the sum of the five envelopes of these five transitions among substates. The cellular Mn2+ 

EPR spectra of all Cyanobacteria showed a resolved six-line 55Mn hyperfine pattern centered at g-2 (~12 

kG) riding on relatively narrow wings extending to both high and low magnetic field with a total field 

span of 4 kG, features which are suppressed in the derivative-mode CW EPR spectra (Fig. 3B). Frozen 

standard solutions of Mn2+ complexed with orthophosphate, polyphosphate, and bicarbonate show similar 

high-symmetry EPR spectra with relatively narrow wings (Fig. S10A). Much broader wings are seen in 

low-symmetry complexes with chelating ligands (such as EDTA) and proteins (such as MnSOD) (Fig. 

S10A-B).  

The frozen solution ENDOR spectrum of an I = 1/2 nucleus, such as 31P, 13C, 1H, coupled to S = 

5/2 Mn2+ comprises a set of doublets centered at the nuclear Larmor frequency, each split by a multiple of 

the electron-nuclear hyperfine coupling (A). The primary doublet is associated with the ms = ±1/2 

electron spin sublevels of Mn2+ and is split by A; weaker satellite doublets associated with the ms = ±3/2 

and ±5/2 sublevels are split by 3A and 5A. All spectra in this study displayed 1H signals that could be 

assigned to the protons of bound water (Fig. 3C). For a phosphate moiety bound to a Mn2+ center we 

focused on the sharp ms = ±1/2 31P doublet. The relative intensities of 31P and 1H signals provided a 

means of assessing Mn2+ speciation (52). 

A 14N nucleus (I = 1) directly coordinated with Mn2+ creates modulation in the electron spin echo decay, 

which is dominated by 14N hyperfine interaction (53). To quantitate 14N ESEEM responses from cellular 

Mn2+, we chose as a standard the 14N response from the Mn-imidazole complex, which binds one 

imidazole and (presumably) five waters. Mn-imidazole showed a strong time dependent modulation 

signal; no such signal was observed in any of the cyanobacterial samples (Fig. S10C). The absence of 

such a signal indicated that manganese resides in locations without a significant pool of nitrogenous 

ligands. 



104 

Cell biological insights suggest the cyanobacterial Mn2+ pool is periplasmic 

The massive pool of manganese that we observed to accumulate in cyanobacterial cells is 

unlikely to be either cytoplasmic or extracellular. In the cytoplasm, where the cyanobacterial carbon 

concentrating mechanism accumulates substantial HCO3
- (54), such a high abundance of Mn2+ would 

precipitate MnCO3 minerals. Furthermore, the cytoplasm contains polyphosphate granules, which have a 

high affinity for Mn2+ (55–58). We did not observe such minerals, nor any manganese complexed by 

phosphates, in any of the cyanobacterial strains we examined. The manganese speciation that we did see

—manganese complexed by small organic acids—is unlikely to be extracellular. Thus, we concluded 

that this manganese pool is most likely periplasmic.  

Building on this is another line of evidence; this manganese pool cannot be disrupted by a 

vigorous water wash, supporting the interpretation that it is intra rather than extracellular. However, 

~80% of it can be extracted with an EDTA wash, which is consistent with a periplasmic pool but not a 

cytoplasmic pool (59). Furthermore, a transporter that keeps manganese in the periplasm rather than the 

cytoplasm is known to be an essential aspect of manganese homeostasis in Cyanobacteria (60). 

Relevance to Mars and astrobiological implications 

Many previous studies have highlighted the resemblance of varnish to phenomena observed on 

Mars (9, 17). However, while many dark, shiny rocks have been observed on Mars, these are largely 

ventifacted rather than coated. Varnish itself (defined as a mixture of manganese and iron oxides and clay 

minerals) has not been definitively identified on Mars, and indeed only one instance of a potentially high- 

manganese surface coating has been found (61). The definitive manganese oxide phases that have been 

discovered on Mars do not appear to be associated with surface exposures, rather they precipitated in the 

subsurface (62). Therefore, we hesitate to assert any strong astrobiological interpretations for biological 

processes underpinning terrestrial varnish.  
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Figures 

 

 
 
Figure 1: Stromatolitic microtextures and manganese redox states in varnish developed on a basalt flow 
at Babbitt Ranch, AZ. (A) Photograph of varnished surface with a freshly broken face revealing 
underlying rock. (B) SEM image of a cross section through the varnish-rock interface showing 
accretionary laminations that establish stromatolitic columns and domes. (C) Synchrotron X-ray 
microprobe map showing manganese distribution. Varnish is massively enriched in manganese relative to 
underlying rock. (D) Manganese redox map. Manganese in basalt is entirely Mn2+, while varnish is 
predominantly Mn4+ with spatially varying domains richer in Mn3+. (E) Point spectra taken across a 
manganese redox gradient. Inset table shows least squares fits quantifying the components of each 
spectrum. 
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Figure 2: Cyanobacteria of the family Xenococcaceae are a major and specific constituent of the varnish 
microbial community. (A) Average taxonomic composition of varnish communities by 16S rRNA gene 
amplicon sequencing. (B-C) Box and whisker plots showing the abundance of Cyanobacteria (B) and 
family Xenococcaceae within the Cyanobacteria (C) in 16S reads from varnish vs. neighboring soil 
samples. Filled circles indicate fraction of all reads, asterisks indicate average relative abundance of all 
samples, other shapes indicate average relative abundance of each varnished rock type. (D) Fluorescence 
microscopy highlighting cells with the characteristic sarcinoid morphology of Chroococcidiopsis in 
varnish. 
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Figure 3: Cyanobacteria accumulate substantial intracellular Mn2+, predominantly coordinated by small 
molecule carboxylato ligands. (A) Cellular manganese abundance measured by ICP-MS, reported as a 
ratio to sulfur as a proxy for normalizing to biomass, and to iron—a metric commonly associated with 
oxidative stress tolerance. Results are means of measurements from three independent cultures; error bars 
reflect standard error. (B) Absorption-display 35 GHz 2 K CW EPR spectra showing that > 95% of 
cyanobacterial Mn2+ exists as H-Mn2+ complexes. (C) 35 GHz 2 K 31P/1H Davies pulsed ENDOR spectra 
of Cyanobacteria and Mn2+ standards. Braces represent spans of 31P and 1H ENDOR responses; 31P% and 
1H% represent absolute ENDOR responses (gray highlight). The negligible 31P% ENDOR signals and 
diminished 1H% ENDOR responses of Cyanobacteria versus hexaquo Mn2+ indicate that > 90% of the 
cyanobacterial Mn2+ is bound to ENDOR-silent carboxylato ligands (represented by Mn-HCO3 standard), 
which was confirmed by ENDOR measurements of 13C-labelled cells (Fig. S10D).  
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Figure 4: Natural history of varnish. (A) Manganese is delivered largely as oxide particles in windborne 
dust, reduced by either photochemical or biological processes, and taken up by Chroococcidiopsis cells 
for use as a catalytic antioxidant. (B) Chroococcidiopsis grows with light and water, fixing carbon and 
trapping accumulated manganese. (C) Dust material not adhered to the rock surface is removed by wind 
or precipitation. (D) When Chroococcidiopsis cells die, the manganese-rich residue left behind by their 
biomass is oxidized to generate the manganese oxides that comprise varnish. This oxidation could be 
biologically catalyzed and/or abiotic. (E) Products from cyanobacterial photosynthesis serve as substrates 
for heterotrophic community members. (F-G), manganese redox cycling continues in developed varnish, 
with abundant O2 as an electron acceptor (F) and organic matter as an electron donor (G). 
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Supplemental figures 
 
 

 
 
Figure S1: Field areas in this study. (A) Map of the western United States, with varnish sampling 
locations indicated. (B) Field area metadata. Average temperature and rainfall from nearest weather 
station on US Climate Data. (C-I) Context photos showing varnish from Barstow (C), Babbitt Ranch (D), 
Black Canyon (E), Mesa Prieta (F), White Rock (G), Green River (H), and Basin (I) sampling locations.  
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Figure S2: Extended SEM and synchrotron data. (A-D) Additional examples of SEM images showing 
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accretionary laminations with stromatolitic textures and manganese K-edge maps showing manganese 
distribution and redox heterogeneity in varnish thin sections. (A) Rhyolite from Black Canyon, NM. (B) 
Sandstone from Babbitt Ranch, AZ. (C) Rhyolite from Black Canyon, NM. (D) Basalt from Mesa Prieta, 
NM. (E) Manganese K-edge XANES spectra. For standards we employed spectra from spessartine for 
Mn2+, both feitknechtite (β-MnOOH) and Mn2O3 as options for Mn3+, and an internal endmember for 
Mn4+. The two varnish spectra shown here plotted on top of each other represent the first and third 
quartile of our varnish dataset, with average oxidation states of 3.6 and 3.8 respectively. The desert dust 
spectra demonstrate the presence of manganese oxides in addition to trace igneous Mn2+ in surrounding 
dust that supplies the source of the material for varnish formation. (F) Histogram showing distribution of 
manganese redox states of all varnish spectra collected, including basalt, rhyolite, and sandstone samples.  
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Figure S3: Backscatter SEM images with EDS chemical maps showing the distribution of major 
elements in varnish and underlying rock. (A) A mafic example, basalt from Babbit Ranch, AZ; the sample 
shown in Fig. 1. (B) A felsic example, rhyolite from Black Canyon, NM; the sample shown in Fig. S2A. 
Varnish is comprised primarily of manganese and iron oxides (reflected in the Mn and Fe channels, 
respectively) and clay minerals (reflected in the Si, Al, and Mg channels). Detrital grains are embedded in 
the laminated cement. The high manganese content occurs in the cement itself, not the detrital grains.  
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Figure S4: Sulfur distribution and speciation as a biosignature in varnish. (A) NanoSIMS images of the 
sample shown in Figs. S2A and S3B, to visualize the distribution of lighter elements indicative of 
biomass. Of the major biological elements, carbon and nitrogen signals are overwhelmed by background 
resin, but the resin is extremely poor in sulfur content; that, plus the high ion-yield of organic matter 
enables 32S ion images to provide a measure of organic matter native to the varnish. (B) Sulfur K-edge 
XANES spectra from two varnish thin sections. These spectra demonstrate complex sulfur speciation in 
varnish, with both oxidized and reduced organic species that are consistent with biological material, in 
addition to sulfate salts. (C) Sulfur K-edge spectra taken on Chroococcidiopsis cells, representing the 
dominant source of biomass in varnish, exhibit the same organic sulfur moieties we observed in varnish. 
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Figure S5: Nonmetric multidimentional scaling (NMDS) ordination analyses of 16S rRNA gene 
amplicon data to visualize variance. Each point represents the microbial community recovered from a 
sample; relative proximity between points indicates their similarity. (A) The varnish microbial community 
is distinct from that in surrounding soils, regardless of sample location or rock type. Rinsing the varnished 
rocks with sterile water to remove surficial dust further increased NMDS separation between varnish and 
soils. Thus, the remainder of our DNA analyses focused on washed varnish samples, to more accurately 
target taxa endemic to varnish. The analysis of similarities (ANOSIM) statistic R for soil vs. unwashed 
varnish = 0.4265, p = 0.001; and soil vs. washed varnish = 0.5442, p = 0.001. (B) Washed varnish and 
surrounding soil samples colored by sample location. (C) Washed varnish samples alone, colored by rock 
type. Among varnish samples, we observed some higher order clustering based on rock type and location.  
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Figure S6: Phylum level community composition of (A) varnish 16S rRNA gene amplicon reads, (B) 
surrounding desert soil 16S rRNA gene amplicon reads, and (C) varnish shotgun metagenome reads. The 
varnish community is dominated by bacteria, with eukaryotes comprising 2.4% and 30.5%, and archaea 
comprising <0.5% of metagenome reads.  
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Figure S7: Major families characterizing the varnish microbial community. (A-B) The most abundant 
families (average relative abundance > 0.5%) identified in 16S rRNA gene amplicon reads from varnish 
(A) and surrounding desert soils (B). (C) Linear discriminant analysis effect size (LEfSe) identifying 
families that contributed most strongly to the distinction between the microbial communities of varnish 
vs. soil. The family Xenococcaceae was a major constituent of the varnish microbial community across 
all rock types and locations examined, and was the strongest contributor identified by LEfSe as 
characterizing varnish relative to soil.  
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Figure S8: Metagenomic insights into varnish ecology. (A) We recovered 38 high quality MAGs from 
varnish shotgun metagenomes, 6 of which belonged to the Chroococcidiopsidaceae. Genes indicative of 
autotrophy are highlighted in green, showing that the Chroococcidiopsidaceae are the main primary 
producers and therefore keystone members of the ecosystem. Genes indicative of interactions with O2 and 
reactive oxygen species (heme-copper O2 reductase and/or bd O2 reductases, catalase, and superoxide 
dismutase) are highlighted in yellow, demonstrating the strikingly aerobic nature of this ecosystem. Genes 
implicated in metal cycling processes, including MHC-porin complexes (B), Cyc2 homologs (C), high-
potential MCOs (D), putative MCO-porin complexes (E), the COG2165 pilin system (F), and 
photosystem II (G), were also catalogued, along with counts of total cytochromes, largest MHC, and total 
MCOs in each genome bin. Dashed red arrows indicate electron flow.  
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Figure S9: Phylogenetic tree showing relationships between the Cyanobacteria examined in this study. 
Tree includes cultured strains we used to investigate intracellular manganese accumulation and speciation 
(model organism Synechocystis sp. PCC 6803, Chroococcidiopsis strains Ryu 1-3 and PCC 7433, and the 
deep branching Gloeobacter violaceous PCC 7421), along with the most abundant 16S sequences 
recovered from varnish and soil (Xenococcaceae and Phormidium, respectively). 
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Figure S10: Additional paramagnetic resonance data. (A-B) Absorption display CW EPR spectra. The 
frozen solution EPR spectra of Mn-(H2O)6, Mn-HCO3, Mn-Pi, and Mn-polyP are representative 
exemplars for H-Mn2+ complexes with six sharp Mn2+ hyperfine lines riding on a ~4 kG ‘skirt’. Both 
Deinococcus radiodurans and all of our cyanobacterial strains (Synechocystis included as representative 
example) displayed cellular Mn EPR spectra indicative of this type of manganese speciation. In contrast, 
L-Mn2+, including strongly chelated (e.g. Mn-EDTA) and protein-bound (e.g. MnSOD) Mn2+ display 
spectra which go well beyond the “H” 4 kG skirt, both at low and high magnetic fields. In Escherichia 
coli, the much broader skirt around the Mn2+ hyperfine lines relative to Deinococcus and Synechocystis 
indicates significantly more manganese bound to strongly chelating ligands or proteins. (C) 3-pulse 
ESEEM timewaves, which show modulations arising from 14N hyperfine coupling, as observed in a 
frozen solution of Mn-imidazole. None of the cyanobacterial strains examined here displayed 14N 
modulaton, indicating a negligible population of nitrogenous ligands in the manganese environment. (D) 
13C Mims ENDOR, characterizing Mn-13C coupling in 13C-labelled Synechocystis. The region centered 
around the 13C Larmor frequency shown with two gray stripes (denoted as “13C bound”) is similar to that 
observed for standard Mn2+ complexes with 13C-labelled bicarbonates and organic molecules, and is 
indicative of manganese bound to carboxylate ligands. The high central peak at the 13C Larmor frequency 
(denoted “13C nearby, not bound”) arises from the nearby 13C nuclei that are not coordinated to 
manganese, suggesting that these ligands might be multi-C molecules such as small organic acids.  
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Abstract 

Oxygenic photosynthesis is thought to have evolved from a version of anoxygenic phototrophy based on 

manganese oxidation in the ancestors of the Cyanobacteria. Here we investigated whether their modern 

descendants remain capable of this metabolism. We demonstrated that manganese oxidation catalyzed by 

Cyanobacteria is a robust, bulk phenomenon. To constrain mechanism, we examined this phenomenon 

under a suite of different inhibition conditions, at different levels of biochemical complexity, and with 

PSII mutants. We resolved three distinct pathways of manganese oxidation: a primary mechanism directly 

catalyzed by PSII, a secondary mechanism that was O2 dependent and PSII independent, and a third 

indirect mechanism driven by pH. The manganese oxidation product that we observed was a transient 

Mn(III) complex (putatively Mn(III)-citrate), suggesting a role for Cyanobacteria in producing soluble 

Mn(III) in the environment. While all three mechanisms could contribute to such fluxes, the PSII 

mechanism is especially notable—it represents the only known mechanism of biological manganese 

oxidation that does not require O2 or other reactive oxygen species, and the first demonstration of bulk 

manganese oxidation with live cells possibly coupled to phototrophic energy conservation.  

 

Introduction 

The element manganese is geologically most abundant in its reduced form, Mn(II). However, 

oxidized manganese species—both insoluble Mn(III)/(IV) oxide minerals and soluble Mn(III)-ligand 

complexes—play unique and valuable roles in the environment (1, 2). As exceptionally strong and 

reactive oxidants, oxidized manganese species drive redox processes central to the biogeochemical cycles 

of many other major elements (carbon, sulfur, iron, etc.). Given this notability, understanding the 

processes that generate oxidized manganese is important.  

The uncommonly high reduction potentials of manganese redox couples necessitate even higher 

potential oxidants for their oxidation; chemically, this is limited to dioxygen (O2) and other reactive 

oxygen species such as superoxide (O2
-) and hydrogen peroxide (H2O2). Although abiotic manganese 

oxidation with these oxidants does occur, biological catalysis is thought to contribute much more 
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substantial manganese oxidation fluxes (3). Many different bacteria and fungi that oxidize manganese 

have been identified (4–16), all of which do so via mechanisms that exploit the thermodynamically 

favorable reactions between Mn2+ and O2/O2
-/H2O2. With the single exception of a recently discovered 

chemolithoautotrophic metabolism (14), all other recognized modes of microbial manganese oxidation are 

not coupled to cellular energy conservation. A microbial metabolism based on phototrophic manganese 

oxidation has been hypothesized and searched for but never identified (17).  

Phototrophic manganese oxidation is the use of manganese as the electron source for a reaction 

center that harnesses light energy to power an electron transport chain. Many different phototrophic 

metabolisms exist, exploiting a wide range of different electron sources (H2O, Fe2+, H2, S0, HS-, S2O3
2-, 

NO2
-, AsO3

3-, various organics) (17, 18). However, aside from photosystem II (PSII)—the reaction center 

that oxidizes H2O to O2 in Cyanobacteria, algae, and plants—all known reaction centers have lower 

reduction potentials than most manganese species, making manganese oxidation inaccessible.  

The ability of PSII to obtain electrons from manganese has been well documented. The active site 

of PSII hosts a Mn4CaO5 cofactor known as the water oxidizing complex (WOC) (19, 20). The biogenesis 

of this cofactor occurs in situ via a process known as photoassembly (21), wherein Mn2+ ions are directly 

oxidized by PSII to generate the Mn(III)3Mn(IV) baseline state of the cluster, which is subsequently 

further oxidized and then regenerated during the catalytic cycle. A vast body of work aimed at elucidating 

the mechanics of photoassembly has demonstrated the robustness of PSII as a manganese oxidase; 

perturbations ranging from mutagenesis of the residues coordinating the WOC, incomplete post-

translational cleavage of the C-terminus, removal of calcium, and removal of extrinsic subunits all 

eliminate the ability to assemble and stabilize the cluster, but do not eliminate manganese oxidation 

activity (21–32). Furthermore, purified PSII protein from spinach has recently been shown to catalyze 

manganese oxidation beyond the four atoms required to assemble the WOC (33). The reduction potentials 

required for manganese oxidation are generated through photochemical charge separation; thus, PSII 

catalyzes the only known mode of manganese oxidation that does not involve O2 or reactive oxygen 

species.  
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The understanding that PSII can oxidize manganese has been invoked in support of the 

hypothesis that phototrophic manganese oxidation was an evolutionary precursor to oxygenic 

photosynthesis in the ancestors of the Cyanobacteria (2, 17, 34–37), which provides an explanation for 

evidence of manganese oxide deposition observed in the geological record from prior to the rise of O2 

(34). However, the idea that phototrophic manganese oxidation by modern Cyanobacteria might still be 

ecologically important today has not been explored. Here we present experimental data demonstrating 

cyanobacterial manganese oxidation across several different levels of complexity. This work suggests that 

manganese oxidation by PSII is an important aspect of both manganese biogeochemistry and 

cyanobacterial ecophysiology in modern environments.  

 

Results 

Cyanobacteria oxidize manganese using PSII 

 We began investigating the ability of Cyanobacteria to oxidize manganese using cultures of the 

model organism Synechocystis sp. PCC 6803, a genetically tractable cyanobacterium that is capable of 

growing heterotrophically on glucose. This metabolic flexability enables inhibition and/or mutagenesis of 

PSII that would be fatal in an obligate autotroph. We incubated Synechocystis cells with reduced 

manganese (aqueous Mn2+ as a manganese chloride solution) and assayed for the production of oxidized 

manganese along an experimental timecourse using the colorimetric indicator leucoberbelin blue (LBB) 

(38). Parallel reactions without cells were run as abiotic controls.  

We did not observe any manganese oxidation, either abiotic or biologically catalyzed, in 

experiments provided with only manganese chloride. However, with the addition of sodium citrate—

citrate is known to chelate Mn2+ and Mn3+ ions and stimulate biological manganese oxidation (39)—we 

observed robust biological manganese oxidation under conditions in which abiotic manganese oxidation 

was minimal (Fig. 1A). This phenomenon was unique to citrate; other ligands that we tried under various 

conditions (including tartrate, succinate, fumarate, acetate, malate, lactate, oxalate, formate, pyruvate, 

histidine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, bicarbonate, phosphate, pyrophosphate, 
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hexametaphosphate, and undefined humic acids) stimulated little to no manganese oxidation. The citrate 

dependence along with the fact that we did not observe oxide precipitation suggested that the product in 

these experiments was a Mn(III)-citrate complex.  

Having established a phenomenon, we conducted manganese oxidation experiments under a suite 

of conditions designed to constrain different possible mechanisms—with and without light; with and 

without 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a specific inhibitor of PSII; and with and 

without superoxide dismutase (SOD) or catalase, enzymes that quench O2
- and H2O2, respectively (Fig. 

1A). Manganese oxidation did not occur in the dark or with the addition of DCMU, which suggested a 

light dependent, PSII dependent mechanism. Furthermore, this manganese oxidation was only slightly 

diminished by the addition of SOD or catalase, which suggested a mechanism not involving O2
- or 

H2O2—implicating PSII itself as the most likely oxidant.  

Mutant studies provided an additional line of evidence for this interpretation. D1 is the core 

subunit of PSII that hosts the active site. We utilized two D1 mutants—D1-Δ (40) and D1-D170A (25). In 

the D1-Δ mutant, the D1 protein is knocked out, resulting in no functional PSII. In the D1-D170A mutant, 

a single amino acid change in the D1 protein prevents it from assembling the WOC; it is therefore 

incapable of oxygenic photosynthesis, but otherwise contains a complete PSII. In our experiments, the 

D1-Δ mutant did not oxidize manganese, while the D1-D170A mutant did, as would be expected from a 

PSII dependent mechanism distinct from O2 production (Fig. 1B).  

Definitive demonstration of photosynthetic energy conservation coupled to manganese oxidation 

by PSII is unattainable with wildtype (WT) cells, as electrons derived from manganese oxidation are 

indistinguishable from electrons derived from water oxidation and manganese oxidation did not appear to 

inhibit water oxidation. However, the D1-D170A mutant provided a system where manganese oxidation 

could be observed in the absence of water oxidation. This mimics the hypothesized ancestral PSII that 

oxidized manganese prior to the evolution of oxygenic photosynthesis, and potentially enables the 

demonstration of energy conservation. Unfortunately, confounding variables including toxicity 
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engendered by high manganese concentrations have hindered these efforts (Fig. S1). Therefore, it remains 

unclear whether the manganese oxidation we observed formally provides electrons for photosynthesis. 

To further pinpoint the mechanism of manganese oxidation to PSII, we conducted experiments in 

increasingly reductionist systems—first isolated photosynthetic membranes and then pure PSII protein—

to methodically separate PSII activity from the complexity of live cells. Membrane preparations provided 

an intermediate system with the photosynthetic electron transport chain in a more physiologically faithful 

context than purified protein. In the membrane system, we observed a similar manganese oxidation 

phenomenon to our whole cell experiments (Fig. 2A-C). D1-Δ membranes did not oxidize manganese 

while both WT and D1-D170A membranes did, in a manner that was light dependent and largely 

inhibited by DCMU but only slightly inhibited by SOD. The addition of catalase mildly enhanced this 

manganese oxidation, suggesting a role for H2O2 as a manganese reductant instead of or in addition to an 

oxidant. Manganese oxidation in the membrane system exhibited Michaelis-Menten kinetic behavior, 

consistent with catalytic enzyme activity rather than a stoichiometric chemical reaction (Fig. 2D-E).  

PSII protein purified from a WT strain with a hexahistidine tag fused to the C-terminus of CP47 

(41) also exhibited light dependent manganese oxidation activity that was not inhibited by SOD or 

catalase (Fig. 2F). While DCMU inhibition was incomplete, a dose dependent titration effect indicated 

that this was likely due to insufficient DCMU concentrations relative to the much higher PSII 

concentrations in the membrane and pure protein systems than whole cell experiments. The pure protein 

system also exhibited a decrease in O2 production under manganese oxidizing conditions accompanied by 

an increase in the reduction of 2,6-dichlorophenolindophenol (DCIP), an artificial electron acceptor used 

to measure photosynthetic activity, consistent with the interpretation that manganese is serving as an 

alternative to water as the electron donor for PSII (Fig. 2G).  

 

Additional pathways of manganese oxidation 

 During the course of our whole cell experiments, cells would settle out of solution onto the 

bottom of the tube. At each timepoint, we shook them up in order to remove a homogenous aliquot for 
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our assay. After several years of conducting these experiments, we realized that the frequency with which 

timepoints were sampled—and therefore shaken—was impacting the results. To eliminate this variability, 

we switched the format of our experiments from culture tubes to Erlenmeyer flasks that were shaken 

continuously throughout the duration of the experiment. In the flask format, DCMU no longer inhibited 

manganese oxidation, suggesting a PSII independent mechanism under these conditions (Fig. 3A-B).  

Aside from PSII, the only plausible oxidants for manganese are O2 and other reactive oxygen 

species derived from O2 such as O2
-. This suggested that the key difference in the DCMU condition 

between the tube and flask formats could be O2 availability—in the presence of DCMU, cells are unable 

to produce O2, but still consume it; therefore, unless aerated by shaking, O2 availability is limited by 

diffusion. Conductivity measurements of O2 saturation confirmed that the DCMU conditions went 

anaerobic in the tube format and remained saturated with O2 in the flask format (Fig. 3C). In striking 

contrast to our original tube format experiments, the manganese oxidation observed in the flask format 

with DCMU was almost entirely inhibited by the addition of SOD, suggesting that O2
- played a key role 

in the oxidation occurring under these conditions (Fig. 3D). Therefore, we suspect distinct mechanisms of 

manganese oxidation—a PSII dependent, O2 independent pathway seen in the absence of DCMU, and a 

PSII independent, O2 dependent pathway seen in the presence of DCMU when aerated. Importantly, the 

membrane system did not exhibit a difference between the tube and flask formats (Figs. 2A vs. 3E). This 

further strengthened evidence that this O2 dependent manganese oxidation was a separate phenomenon 

from the PSII dependent mechanism by suggesting that when we fractionated the cells to isolate 

photosynthetic membranes, the biochemical factors required for this O2 dependent mechanism were lost 

with the soluble fraction. 

 A third mechanism of manganese oxidation that we investigated was the possibility of 

photosynthetic activity increasing the solution pH (42)—a consequence of cyanobacterial autotrophy 

effectively consuming protons (43)—and thereby driving abiotic manganese oxidation (42). We showed 

that unbuffered Synechocystis WT cultures increased the pH of their medium dramatically during growth 

(Fig. 4A) and medium in which cells were grown and then removed by centrifugation catalyzed 
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substantially more abiotic manganese oxidation than starting medium (Fig. 4B). Thus, this indirect 

mechanism is a valid pathway by which Cyanobacteria can catalyze manganese oxidation.  

To tease out the threshold of pH dependence in our experimental system, we conducted carefully 

buffered experiments that were continuously mixed to minimize the buildup of local pH or O2 gradients 

around cells. Both the biological and abiotic reactions proceeded more readily with increasing pH (Fig. 

4C); this suggested that slight variations in pH might contribute to inconsistencies in the magnitude of our 

phenomenon between different experiments. Nonetheless, the biological reaction was clearly separable 

from any abiotic artifact due to pH—in reaction solutions between pH 7.4 and 7.8, the biological reaction 

proceeded while the abiotic reaction did not. Therefore, this indirect pathway cannot explain the majority 

of the manganese oxidation observed in our experiments.  

 

Manganese oxidation product is transient  

In addition to the confounding effects of multiple different manganese oxidation pathways, a 

further complication was presented by the nature of the manganese oxidation product itself. The oxidized 

manganese product observed in our experiments was highly unstable and short lived; in reactions from 

which the cells were removed via centrifugation or moved to the dark—in either case ceasing the flux of 

product being generated—the accumulated product disappeared rapidly (Fig. 5). This suggested that 

substantial invisible manganese cycling could be occurring in our experiments and the product 

concentrations captured by our assay represented momentary snapshots of a dynamic, transient product, 

accumulated in a steady-state pool only through high fluxes of formation. Taken together with a growing 

appreciation for the importance of transient Mn(III)-ligand complexes (44), this understanding has 

profound implications for the role of cyanobacterial manganese oxidation in the environment.  

 

Chroococcidiopsis provides a different window into cyanobacterial manganese oxidation 

Since it is known that electrons derived from manganese during photoassembly enter the 

cyanobacterial electron transport chain, it is likely that bulk manganese oxidation by PSII provides useful 
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metabolic energy. While our efforts to demonstrate energy conservation with Synechocystis were 

inconclusive, it occurred to us that this phenomenon might be more valuable—and therefore possibly 

more readily apparent—in organisms adapted to extremely arid environments, where water scarcity could 

promote the use of an alternative electron donor. Accordingly, we examined Chroococcidiopsis sp. PCC 

7433, a highly desiccation tolerant cyanobacterium (45–47) isolated from a dried up pond (48).  

We grew Chroccoccidiposis cultures in two different settings—at room temperature under natural 

light on a windowsill, and in a 30°C shaking incubator under constant illumination (the same growth 

conditions as Synechocystis). The windowsill cultures grew slowly and were extremely clumpy, a 

consequence of baeocystous reproduction (Fig. 6B), while the incubator cultures grew faster and reached 

a high-density growth stage dominated by free floating vegetative cells (Fig. 6C).  

Using synchrotron X-ray absorption near edge structure (XANES) spectroscopy at the manganese 

K-edge, we examined the redox state of manganese associated with biomass from Synechocystis, 

windowsill Chroococcidiopsis, and incubator Chroococcidiopsis cultures (Fig. 6D). In addition to 

cultures grown in standard BG11 (9 µM MnCl2), we examined cultures supplemented with 100 µM 

MnCl2 to amplify the total manganese signal. The manganese content of Synechocystis has been 

previously described as predominantly Mn(II) (49). Our data corroborated this earlier work, however, we 

note that spectral fits suggested a minor component (~25%) of Mn(III) (Fig. S2). Incubator grown 

Chroococcidiopsis exhibited a similar XANES profile. For both Synechocystis and incubator 

Chroococcidiopsis, the manganese content appeared homogeneous and supplemental manganese 

increased signal strength but did not appear to change the speciation. In contrast, windowsill 

Chroococcidiopsis exhibited variable XANES spectra with considerable oxidized content in standard 

BG11 (~40-60% Mn(III)) that increased with supplemental manganese (~60% Mn(III) and ~5-15% 

Mn(IV)). Since all manganese supplied to these cultures is Mn(II), the presence of oxidized species can 

be interpreted as a signal of manganese oxidation.  

To test the hypothesis that manganese oxidation could be an important strategy for desiccation 

survival, we grew windowsill cultures of Chroococcidiposis under manganese starved (BG11 without any 
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MnCl2), standard (9 µM MnCl2), and manganese replete (100 µM MnCl2) conditions, and examined 

whether manganese availability impacted their tolerance for desiccation. Using chlorophyll fluorescence 

quenching as a measure of function, we found that the manganese replete cultures were able to maintain 

some degree of activity following a period of desiccation that abrogated both the manganese starved and 

normal BG11 cultures (Fig. 7).  

 

Discussion 

 Different aspects of the link between PSII and manganese oxidation have been previously 

recognized by different scientific communities. In the biogeochemistry literature, connections between 

oxygenic phototrophs (largely algae) and manganese oxidation have been documented, but previous 

interpretations were limited to indirect mechanisms such as pH increase and extracellular enzymatic O2
- 

production (42, 50). In the photosynthesis protein biochemistry literature, manganese oxidation by PSII 

has been understood through the lens of WOC photoassembly (21–32). In the historical geobiology 

literature, phototrophic manganese oxidation has been considered an evolutionary precursor to oxygenic 

photosynthesis that left its mark in the geological record through the deposition of manganese oxides 

prior to the rise of O2 (33–35, 37). Here we bridged the gap between these existing bodies of knowledge 

by experimentally interrogating cyanobacterial manganese oxidation at multiple different levels of 

complexity and mechanistic detail to build a holistic understanding of this phenomenon.  

Our data demonstrated that manganese oxidation by PSII is an important bulk process occurring 

with live cyanobacterial cells, not limited to WOC photoassembly or isolated protein removed from 

physiological context. While the PSII pathway was the dominant route of manganese oxidation in our 

experiments, we also observed pathways driven by pH and O2
-. The co-occurrence of these multiple 

mechanisms suggested a complicated relationship between Cyanobacteria and manganese oxidation; 

future work is required to further tease apart its nuances. However, the possibility of contributions from 

multiple separate pathways suggests that cyanobacterial manganese oxidation in the environment may 

contribute disproportionately large fluxes relative to its physiological role(s). Since Cyanobacteria are 
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essentially ubiquitous in any photic environment—they are found in marine, freshwater, and terrestrial 

settings, from the poles to the tropics (51)—the phenomenon presented here likely represents a major 

branch of environmental manganese cycling.  

The nature of the labile Mn(III)-citrate product generated in our experiments raised further 

environmental implications for this manganese oxidation phenomenon. Soluble Mn(III)-ligand complexes 

have received growing recognition as important and dynamic players in biogeochemistry (44, 52–61) and 

likely remain underappreciated due to their lability hindering their detection and quantification (44). As 

extremely reactive oxidants they can degrade otherwise refractory molecules ranging from recalcitrant 

plant matter such as lignin (16) to steroids derived from anthropogenic pollution (59). Indeed, manganese 

content has been implicated as the strongest correlate to leaf litter decomposition rate in forest ecosystems 

(56). While previous studies have largely focused on manganese oxidation by fungi as the source of 

reactive Mn(III) complexes, our data suggested that Cyanobacteria may also supply such complexes. This 

implies that the involvement of Cyanobacteria in carbon cycling may extend beyond their role as primary 

producers by contributing to manganese oxidation that mediates carbon breakdown. 

 While all of the manganese oxidation pathways we observed could contribute to such 

biogeochemical processes, the PSII pathway has unique evolutionary and physiological implications. The 

understanding that this phenomenon can operate on a bulk level with live cultures strengthens existing 

evidence (33, 37) for the viability of the hypothesized manganese oxidizing phototrophy that led to the 

evolution of oxygenic photosynthesis. It also fills in an important hole in the landscape of modern 

microbial metabolic diversity—the absence of known manganese oxidizing phototrophs. In searches for 

such organisms, DCMU is typically added to intentionally exclude oxygenic phototrophs (17); the 

possibility that the oxygenic phototrophs are the manganese oxidizing phototrophs has not been 

previously explored. The apparent lack of other organisms adapted to carry out phototrophic manganese 

oxidation may be due to Cyanobacteria catalyzing bulk manganese oxidation through a variety of 

pathways while also outcompeting other organisms thanks to their ability to perform oxygenic 
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photosynthesis, effectively eliminating the ecological niche once occupied by their evolutionary 

progenitors. 

Unlocking the ability to use water as the electron donor for photosynthesis was one of the most 

transformative evolutionary innovations of all time, not only because it produced O2, but also because it 

enabled levels of primary productivity that would not have been attainable with other, less abundant 

electron sources. Even today, oxygenic phototrophs are generally considered to be fundamentally electron 

unlimited; their growth is limited due to lack of nutrients, not electrons. This raised an interesting 

ecological perspective—retaining the ability to use manganese as an electron donor for photosynthesis 

might be uniquely important for Cyanobacteria adapted to extremely arid environments, the one 

ecological context where water might not be the most advantageous electron source. During periods of 

desiccation, the ability to maintain photosynthetic electron transport without consuming what little water 

you have could be fundamental to survival. Consistent with this hypothesis, we observed that replete 

manganese improved the ability of Chroococcidiopsis to survive desiccation. The manganese 

concentrations required to observe this benefit greatly exceed the manganese concentrations required for 

growth.  

 Synechocystis and Chroococcidiopsis each provided different windows into cyanobacterial 

manganese oxidation. Synechocystis was amenable to carefully controlled timecourse experiments and 

genetic manipulation, allowing us to tease apart some of the mechanistic details underpinning this 

phenomenon. However, as a non-extremophilic freshwater organism, Synechocystis did not offer much 

insight into desiccation resistance. In contrast, Chroococcidiopsis was less amenable to laboratory growth 

and manipulation, but has been recognized for its remarkable desiccation tolerance (45–47) and 

association with manganese biogeochemistry in the context of desert varnish (62). By XANES 

spectroscopy, we observed clear signatures of manganese oxidation in Chroococcidiopsis biomass, while 

such signatures with Synechocystis were much subtler. The difference between windowsill and incubator 

grown Chroococcidiopsis cultures suggested that this manganese oxidation occurs preferentially under 

slower growth regimes.  
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Taken together, the work presented here sheds new light on the intimate connections between 

Cyanobacteria and manganese biogeochemistry. Phototrophic manganese oxidation by ancestral PSII led 

to the origin of the WOC and oxygenic photosynthesis, a critical evolutionary innovation that is 

continuously played back, not only through photoassembly, but also through bulk manganese oxidation. 

This interaction between Cyanobacteria and manganese—which transformed the face of the Earth with 

the Great Oxygenation Event ~2.4 billion years ago—continues to play a crucial role in our biosphere 

through its control on manganese redox cycling. 

 

Methods 

Culture conditions 

Synechocystis sp. PCC 6803 strains (WT, CP47-his, D1-Δ, and D1-D170A) were obtained from 

Richard Debus, University of California Riverside. Cultures were grown in liquid BG11 medium (63) 

supplemented with 5 mM glucose along with 25 µg/mL erythromycin for the D1-Δ mutant and 

kanamycin for the D1-D170A mutant. Cultures were kept in a 30°C shaking incubator under constant 

illumination with white fluorescent lights. Growth was measured by optical density at 730 nm. 

Experiments were conducted with cultures at mid to late exponential growth stage.  

Chroococcidiopsis sp. PCC 7433 was obtained from the ATCC and grown in liquid BG11 

without glucose, with normal 9 µM MnCl2, no MnCl2, or 100 µM MnCl2. Cultures were kept either in a 

30°C shaking incubator under white fluorescent lights or at room temperature with natural light on an 

east-facing, southern California windowsill. For desiccation experiments, cells were grown in either 

regular BG11 medium, BG11 medium with no MnCl2, and BG11 supplemented with 100 µM MnCl2. 

Cultures were imaged by light microscopy using a B120 LED microscope equipped with an 

MD500 eyepiece camera (Amscope).  

 

Manganese oxidation experiments 
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Manganese oxidation experiments were conducted in either culture tube or Erlenmeyer flask 

formats. The tube formats contained 1-2 mL volume and were kept stationary, while the flask formats 

contained 4-5 mL volume and were kept shaking at ~120 rpm. In either format, experiments were 

conducted with and without 1 mM MnCl2, 20 mM Na citrate, 10 µM DCMU, 400 µg/mL SOD, 100 

µg/mL catalase, and 50 mM HEPES buffer. Unless otherwise specified, experiments were buffered at pH 

7.6 or 7.8. Experiments were incubated at 30°C under constant illumination with white fluorescent lights. 

Dark conditions were wrapped in aluminum foil.  

For the LBB assay we used a 0.04% LBB solution in 0.2% acetic acid. At each timepoint, 50 µL 

aliquots were taken from manganese oxidation experiments and added to 250 µL of LBB solution. After 

allowing 15 minutes for the reaction to proceed to completion, cells were removed by centrifugation at 

16,000 g for 1 minute. 250 µL of supernatant was transferred to a 96-well plate and quantified by 

absorbance at 620 nm with a Cytation 5 plate reader (BioTek). KMnO4 standard curves were used to 

translate LBB absorbance into concentrations, under the assumption that the product measured is Mn(III)-

citrate and not MnO2. 

Membrane and pure protein preparations 

Photosynthetic membranes were isolated following the protocol described by Norling et al (64). 

Liter-scale cultures were harvested by centrifugation at 5,000 g for 5 minutes. Pellets were resuspended in 

20 mM KxHxPO4 buffer, pH 7.8. Cells were lysed with 0.17-0.18 mm glass beads by 3 sets of vortexing 

for 2 minutes followed by 1 minute of resting on ice. The resulting lysate was centrifuged at 3,300 g for 1 

minute, and the supernatant was collected. To salvage any unlysed cells, an additional buffer aliquot was 

added to the pelleted material/beads, and vortexed and centrifuged again. Pooled supernatants were 

centrifuged at 3,300 g for 10 minutes to remove any remaining debris and beads. The resulting 

supernatant was ultracentrifuged at 103,000 g for 30 minutes in a TLA-120.2 fixed angle rotor (Beckman 

Coulter). Pelleted membranes were resuspended in 25 M sucrose, 5 mM potassium phosphate, pH 7.8. 
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His-tagged PSII protein was purified following the protocol described by Vavilin (65). Harvested 

cell pellets were resuspended in 50 mM 2-(4-morpholino)ethanesulfonic acid (MES)-NaOH buffer, pH 

6.0, with 10 mM MgCl2, 5 mM CaCl2, 20% glycerol, and 1 mM phenylmethylsulfonyl fluoride. Cells 

were lysed with glass beads in a BeadBeater chamber (Biospec Products) by 15 sets of 15 seconds of bead 

beating followed by 2 minutes of cool down. To solubilize membrane bound PSII, 100 µL/mL of 10% 

dodecyl ß-D-maltoside (DoDM) detergent was added to the lysate and mixed by gently pipetting up and 

down for 20 minutes. The lysate was then ultracentrifuged at 40,000 g for 20 minutes in a 50 Ti fixed 

angle rotor (Beckman Coulter). Supernatants were collected for PSII purification by nickel affinity 

chromatography. 5 mL gravity flow columns were loaded with 2 mL of 50% nickel nitrilotriacetic acid 

agarose beads and briefly allowed to settle. Beads were washed with 5 column volumes of milli-Q water 

and then equilibrated with 5 mL 50 mM MES-NaOH buffer, pH 6.0, with 10 mM MgCl2, 5 mM CaCl2, 

20% glycerol, and 0.04% DoDM. The PSII-containing supernatant was applied to the column, washed 

with the same buffer, and then eluted with the same buffer supplemented with 50 mM histidine. Purity of 

eluted PSII was confirmed by UV-vis spectroscopy. To exchange the histidine elution buffer, an equal 

volume of 50 mM MES-NaOH, pH 6.0, with 15% glycerol, 15 mM CaCl2, 5 mM MgCl2, 0.03% DoDM, 

and 20% polyethylene glycol (PEG)-8000 was added for PEG precipitation of PSII. The mixtures were 

incubated on ice for 30 minutes and then centrifuged at 40,000 g for 30 minutes. Pelleted protein was 

resuspended in 50 mM MES-NaOH, pH 6.0, with 15% glycerol, 15 mM CaCl2, 5 mM MgCl2, 0.03% 

DoDM.  

 

Synchrotron X-ray spectroscopy 

 Synchrotron analyses were conducted at the Stanford Synchrotron Radiation Lightsource on X-

ray microprobe beamline 2-3. Live cells were pelleted by centrifugation and washed with sterile milli-Q 

water. Dense cell slurries were spotted onto glass slides. XANES spectra at the manganese K-edge were 

collected from 6300 to 7100 eV. The beam was energy calibrated using the pre-edge feature of KMnO4 at 

6543.34 eV. Spectra were reduced and fit using SIXPACK (66) (https://www.sams-xrays.com/). Fits were 
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calculated on the region from 6530 to 6590 eV using standard spectra of MnCl2, feitknechtite, and 

birnessite as Mn(II), Mn(III), and Mn(IV) components, respectively.  

 

Other measurements 

Chlorophyll fluorescence measurements were conducted in a cuvette format with an AquaPen-C 

AP-C 100 (Photon Systems Instruments) using the 620 nm excitation light and predefined NPQ1 

protocol. Photochemical quenching (qP) was calculated as Fm’-Ft’/Fm’-F0’, where Fm’ is the maximum 

fluorescence upon a saturating flash in the light adapted state, Ft’ is the transient fluorescence in the light 

adapted state, and F0’ is the minimal fluorescence in the light adapted state.  

Measurements of culture O2 saturation were made at room temperature using a microsensor 

monometer system with an OX-500 oxygen microsensor (Unisense). Conductivity was translated to O2 

saturation using a standard curve generated from deionized water bubbled for 30 minutes with air or N2 

for 100% or 0% saturation, respectively.  

For labelled carbon fixation experiments, 166 µM H13CO3
- was added to manganese oxidation 

incubations. At the 48 hour timepoint, cells were pelleted by centrifugation, washed, and lyophilized. The 

bulk carbon isotope composition of dry biomass was measured with an elemental analyzer isotope ratio 

mass spectrometer (ThermoFischer Scientific). Instrument precision on standards was ± 0.2‰. 

For Synechocystis survivability experiments, cells were pelleted by centrifugation and 

resuspended in fresh BG11 medium +/- glucose, MnCl2, and Na citrate. Experiments were conducted in 

both tube and flask formats and incubated at 30°C under constant illumination with white fluorescent 

lights. At each timepoint, 1 µL was spotted onto BG11 agar plates with glucose.  

For Chroococcidiopsis desiccation experiments cells were pelleted by centrifugation to remove 

medium and avoid salt crystallization during drying. Cell pellets were resuspended in a small amount of 

sterile milli-Q water and transferred to a 24-well plate where they were left to dry. Plates were stored at 

room temperature with natural light on a windowsill. After four days, cells were rehydrated in the same 
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medium they were originally grown in. After allowing 1 hour for rehydration, survival was assessed by 

chlorophyll fluorescence induction and quenching.    

 
 
Acknowledgements  
This research was supported by NSF grant IOS-1833247 (HAJ and WWF) and the NSF GRFP (UFL). 
Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, was 
supported by the DOE Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515, and 
the SSRL Structural Molecular Biology Program supported by the DOE Office of Biological and 
Environmental Research and the NIH, NIGMS (P41GM103393). We thank Rick Debus for providing 
Synechocystis strains, Sam Webb, Sharon Bone, and Nick Edwards for support at SSRL, and Kat Dawson 
for help with isotope ratio measurements. We also thank Jared Leadbetter, Hank Yu, John Magyar, Danie 
Monteverde, Brian Hoffman, Rick Debus, Rob Burnap, Kevin Redding, Jeff Cameron, and Patrick Shih 
for helpful discussions and insight.  
 
Author contributions 
UFL, HAJ, JH, JSV, and WWF designed research. UFL, HAJ, YD, and LB generated data. UFL wrote 
the manuscript with input from HAJ, JSV, and WWF.  
 
 
 
References 
 
1.  J. J. Morgan, Manganese in natural waters and earth’s crust: its availability to organisms. Met. 

Ions Biol. Syst. 37, 1–34 (2000). 

2.  U. F. Lingappa, D. R. Monteverde, J. S. Magyar, J. S. Valentine, W. W. Fischer, How manganese 
empowered life with dioxygen (and vice versa). Free Radic. Biol. Med., 113–125 (2019). 

3.  B. M. Tebo, et al., Biogenic Manganese Oxides: Properties and Mechanisms of Formation. Annu. 
Rev. Earth Planet. Sci. 32, 287–328 (2004). 

4.  C. N. Butterfield, A. V. Soldatova, S.-W. Lee, T. G. Spiro, B. M. Tebo, Mn(II,III) oxidation and 
MnO2 mineralization by an expressed bacterial multicopper oxidase. Proc. Natl. Acad. Sci. 110, 
11731–11735 (2013). 

5.  L. Tao, et al., Mn(II) Binding and Subsequent Oxidation by the Multicopper Oxidase MnxG 
Investigated by Electron Paramagnetic Resonance Spectroscopy. J. Am. Chem. Soc., 
150813153632003 (2015). 

6.  A. V. Soldatova, C. Butterfield, O. F. Oyerinde, B. M. Tebo, T. G. Spiro, Multicopper oxidase 
involvement in both Mn(II) and Mn(III) oxidation during bacterial formation of MnO(2). J. Biol. 
Inorg. Chem. JBIC Publ. Soc. Biol. Inorg. Chem. 17, 1151–1158 (2012). 

7.  K. Geszvain, J. K. McCarthy, B. M. Tebo, Elimination of Manganese(II,III) Oxidation in 
Pseudomonas putida GB-1 by a Double Knockout of Two Putative Multicopper Oxidase Genes. 
Appl. Environ. Microbiol. 79, 357–366 (2013). 



142 

8. P. L. A. M. Corstjens, J. P. M. de Vrind, T. Goosen, E. W. de V. Jong, Identification and
molecular analysis of the Leptothrix discophora SS-1 mofA gene, a gene putatively encoding a
manganese-oxidizing protein with copper domains. Geomicrobiol. J. 14, 91–108 (1997).

9. J. P. Ridge, et al., A multicopper oxidase is essential for manganese oxidation and laccase-like
activity in Pedomicrobium sp. ACM 3067. Environ. Microbiol. 9, 944–953 (2007).

10. K. Nakama, et al., Heterologous Expression and Characterization of the Manganese-Oxidizing
Protein from Erythrobacter sp. Strain SD21. Appl. Environ. Microbiol. 80, 6837–6842 (2014).

11. C. R. Anderson, et al., Mn(II) oxidation is catalyzed by heme peroxidases in “Aurantimonas
manganoxydans” strain SI85-9A1 and Erythrobacter sp. strain SD-21. Appl. Environ. Microbiol.
75, 4130–4138 (2009).

12. D. R. Learman, B. M. Voelker, A. I. Vazquez-Rodriguez, C. M. Hansel, Formation of manganese
oxides by bacterially generated superoxide. Nat. Geosci. 4, 95–98 (2011).

13. P. F. Andeer, D. R. Learman, M. McIlvin, J. A. Dunn, C. M. Hansel, Extracellular haem
peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide
production. Environ. Microbiol. 17, 3925–3936 (2015).

14. H. Yu, J. R. Leadbetter, Bacterial chemolithoautotrophy via manganese oxidation. Nature 583,
453–458 (2020).

15. C. M. Hansel, C. A. Zeiner, C. M. Santelli, S. M. Webb, Mn(II) oxidation by an ascomycete
fungus is linked to superoxide production during asexual reproduction. Proc. Natl. Acad. Sci. U.
S. A. 109, 12621–12625 (2012).

16. M. Hofrichter, Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb.
Technol. 30, 454–466 (2002).

17. W. W. Fischer, J. Hemp, J. E. Johnson, Evolution of Oxygenic Photosynthesis. Annu. Rev. Earth
Planet. Sci. 44, 647–683 (2016).

18. R. E. Blankenship, Molecular Mechanisms of Photosynthesis, 2nd Ed. (Wiley-Blackwell, 2014).

19. J. P. McEvoy, G. W. Brudvig, Water-splitting chemistry of photosystem II. Chem. Rev. 106,
4455–4483 (2006).

20. Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Crystal structure of oxygen-evolving
photosystem II at a resolution of 1.9 \AA. Nature 473, 55–60 (2011).

21. H. Bao, R. L. Burnap, Photoactivation: The Light-Driven Assembly of the Water Oxidation
Complex of Photosystem II. Front. Plant Sci. 7 (2016).

22. P. J. Nixon, J. T. Trost, B. A. Diner, Role of the carboxy terminus of polypeptide D1 in the
assembly of a functional water-oxidizing manganese cluster in photosystem II of the
cyanobacterium Synechocystis sp. PCC 6803: assembly requires a free carboxyl group at C-
terminal position 344. Biochemistry 31, 10859–10871 (1992).



143 

23. C. Chen, J. Kazimir, G. M. Cheniae, Calcium modulates the photoassembly of photosystem II
(Mn)4-clusters by preventing ligation of nonfunctional high-valency states of manganese.
Biochemistry 34, 13511–13526 (1995).

24. P. J. Nixon, B. A. Diner, Aspartate 170 of the photosystem II reaction center polypeptide D1 is
involved in the assembly of the oxygen-evolving manganese cluster. Biochemistry 31, 942–948
(1992).

25. H. A. Chu, A. P. Nguyen, R. J. Debus, Site-directed photosystem II mutants with perturbed
oxygen-evolving properties. 1. Instability or inefficient assembly of the manganese cluster in
vivo. Biochemistry 33, 6137–6149 (1994).

26. B. K. Semin, et al., The extrinsic PsbO protein modulates the oxidation/reduction rate of the
exogenous Mn cation at the high-affinity Mn-binding site of Mn-depleted PSII membranes. J.
Bioenerg. Biomembr. 47, 361–367 (2015).

27. R. J. Boerner, A. P. Nguyen, B. A. Barry, R. J. Debus, Evidence from directed mutagenesis that
aspartate 170 of the D1 polypeptide influences the assembly and/or stability of the manganese
cluster in the photosynthetic water-splitting complex. Biochemistry 31, 6660–6672 (1992).

28. R. O. Cohen, P. J. Nixon, B. A. Diner, Participation of the C-terminal region of the D1-
polypeptide in the first steps in the assembly of the Mn4Ca cluster of photosystem II. J. Biol.
Chem. 282, 7209–7218 (2007).

29. K. A. Campbell, et al., Dual-Mode EPR Detects the Initial Intermediate in Photoassembly of the
Photosystem II Mn Cluster: The Influence of Amino Acid Residue 170 of the D1 Polypeptide on
Mn Coordination. J. Am. Chem. Soc. 122, 3754–3761 (2000).

30. N. Tamura, G. Cheniae, Photoactivation of the water-oxidizing complex in Photosystem II
membranes depleted of Mn and extrinsic proteins. I. Biochemical and kinetic characterization.
Biochim. Biophys. Acta 890, 179–194 (1987).

31. M. Seibert, N. Tamura, Y. Inoue, Lack of photoactivation capacity in Scenedesmus obliquus LF-
1 results from loss of half the high-affinity manganese-binding site. Biochim. Biophys. Acta BBA
- Bioenerg. 974, 185–191 (1989).

32. J. L. Roose, H. B. Pakrasi, The Psb27 Protein Facilitates Manganese Cluster Assembly in
Photosystem II. J. Biol. Chem. 283, 4044–4050 (2008).

33. P. Chernev, et al., Light-driven formation of manganese oxide by today’s photosystem II
supports evolutionarily ancient manganese-oxidizing photosynthesis. Nat. Commun. 11, 6110
(2020).

34. J. E. Johnson, et al., Manganese-oxidizing photosynthesis before the rise of cyanobacteria. 110,
11238–11243 (2013).

35. W. W. Fischer, J. Hemp, J. E. Johnson, Manganese and the Evolution of Photosynthesis. Orig.
Life Evol. Biosphere J. Int. Soc. Study Orig. Life 45, 351–357 (2015).

36. U. F. Lingappa, et al., Manganese cycling communities at the dawn of the Great Oxidation Event
(in prep).



144 
 

37.  J. Hemp, et al., Mn-oxidizing Phototrophy Was Likely a Direct Precursor to Oxygenic 
Photosynthesis (in prep). 

38.  W. E. Krumbein, H. J. Altmann, A new method for the detection and enumeration of manganese 
oxidizing and reducing microorganisms. Helgoländer Wiss. Meeresunters. 25, 347–356 (1973). 

39.  M. H. Wright, K. Geszvain, V. E. Oldham, G. W. Luther, B. M. Tebo, Oxidative Formation and 
Removal of Complexed Mn(III) by Pseudomonas Species. Front. Microbiol. 9, 560 (2018). 

40.  R. J. Debus, A. P. Nguyen, A. B. Conway, “Identification of Ligands to Manganese and Calcium 
in Photosystem II by Site-Directed Mutagenesis” in Current Research in Photosynthesis, M. 
Baltscheffsky, Ed. (Springer Netherlands, 1990), pp. 829–832. 

41.  R. J. Debus, et al., Does Histidine 332 of the D1 Polypeptide Ligate the Manganese Cluster in 
Photosystem II? An Electron Spin Echo Envelope Modulation Study †. Biochemistry 40, 3690–
3699 (2001). 

42.  L. L. Richardson, C. Aguilar, K. H. Nealson, Manganese oxidation in pH and O 2 
microenvironments produced by phytoplankton1,2: Mn oxidation by phytoplankton. Limnol. 
Oceanogr. 33, 352–363 (1988). 

43.  F. Garcia-Pichel, Plausible mechanisms for the boring on carbonates by microbial phototrophs. 
Sediment. Geol. 185, 205–213 (2006). 

44.  B. Kim, et al., High reactivity confounds measurements of soluble Mn(III) in natural samples (in 
review). 

45.  M. G. Caiola, R. Ocampo-Friedmann, E. I. Friedmann, Cytology of long-term desiccation in the 
desert cyanobacterium Chroococcidiopsis (Chroococcales). Phycologia 32, 315–322 (1993). 

46.  D. Billi, E. I. Friedmann, K. G. Hofer, M. G. Caiola, R. Ocampo-Friedmann, Ionizing-Radiation 
Resistance in the Desiccation-Tolerant Cyanobacterium Chroococcidiopsis. Appl. Environ. 
Microbiol. 66, 1489–1492 (2000). 

47.  M. Potts, Mechanisms of desiccation tolerance in cyanobacteria. Eur. J. Phycol. 34, 319–328 
(1999). 

48.  J. B. Waterbury, R. Y. Stanier, Patterns of growth and development in pleurocapsalean 
cyanobacteria. Microbiol. Rev. 42, 2–44 (1978). 

49.  N. Keren, M. J. Kidd, J. E. Penner-Hahn, H. B. Pakrasi, A light-dependent mechanism for 
massive accumulation of manganese in the photosynthetic bacterium Synechocystis sp. PCC 
6803. Biochemistry 41, 15085–15092 (2002). 

50.  D. L. Chaput, et al., Mn oxide formation by phototrophs: Spatial and temporal patterns, with 
evidence of an enzymatic superoxide-mediated pathway. Sci. Rep. 9, 18244 (2019). 

51.  P. Dvořák, et al., “Diversity of the Cyanobacteria” in Modern Topics in the Phototrophic 
Prokaryotes, P. C. Hallenbeck, Ed. (Springer International Publishing, 2017), pp. 3–46. 

52.  R. E. Trouwborst, Soluble Mn(III) in Suboxic Zones. Science 313, 1955–1957 (2006). 



145 
 

53.  A. S. Madison, B. M. Tebo, A. Mucci, B. Sundby, G. W. Luther, Abundant Porewater Mn(III) Is 
a Major Component of the Sedimentary Redox System. Science 341, 875–878 (2013). 

54.  V. E. Oldham, A. Mucci, B. M. Tebo, G. W. Luther, Soluble Mn(III)–L complexes are abundant 
in oxygenated waters and stabilized by humic ligands. Geochim. Cosmochim. Acta 199, 238–246 
(2017). 

55.  A. Qian, et al., Geochemical Stability of Dissolved Mn(III) in the Presence of Pyrophosphate as a 
Model Ligand: Complexation and Disproportionation. Environ. Sci. Technol. 53, 5768–5777 
(2019). 

56.  M. Keiluweit, et al., Long-term litter decomposition controlled by manganese redox cycling. 
Proc. Natl. Acad. Sci. 112, E5253–E5260 (2015). 

57.  V. E. Oldham, M. R. Jones, B. M. Tebo, G. W. Luther, Oxidative and reductive processes 
contributing to manganese cycling at oxic-anoxic interfaces. Mar. Chem. 195, 122–128 (2017). 

58.  E. Hu, et al., Role of dissolved Mn(III) in transformation of organic contaminants: Non-oxidative 
versus oxidative mechanisms. Water Res. 111, 234–243 (2017). 

59.  X. Wang, et al., Phototransformation of estrogens mediated by Mn(III), not by reactive oxygen 
species, in the presence of humic acids. Chemosphere 201, 224–233 (2018). 

60.  K. L. Johnson, et al., Dissolved Mn(III) in water treatment works: Prevalence and significance. 
Water Res. 140, 181–190 (2018). 

61.  M. E. Jones, et al., Manganese-Driven Carbon Oxidation at Oxic–Anoxic Interfaces. Environ. 
Sci. Technol. 52, 12349–12357 (2018). 

62.  U. F. Lingappa, et al., An ecophysiological explanation for manganese enrichment in rock 
varnish (in review). 

63.  J. J. Eaton-Rye, “Construction of Gene Interruptions and Gene Deletions in the Cyanobacterium 
Synechocystis sp. Strain PCC 6803” in Photosynthesis Research Protocols, Methods in 
Molecular Biology., R. Carpentier, Ed. (Humana Press, 2011), pp. 295–312. 

64.  B. Norling, E. Zak, B. Andersson, H. Pakrasi, 2D-isolation of pure plasma and thylakoid 
membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 436, 189–192 
(1998). 

65.  D. V. Vavilin, “Methods for the Isolation of Functional Photosystem II Core Particles from the 
Cyanobacterium Synechocystis sp. PCC 6803” in Photosynthesis Research Protocols, Methods 
in Molecular Biology., R. Carpentier, Ed. (Humana Press, 2011), pp. 29–40. 

66.  S. M. Webb, SIXPack a Graphical User Interface for XAS Analysis Using IFEFFIT. Phys. Scr., 
1011 (2005). 

 
 
 
  



146 

Figures 

Figure 1. Manganese oxidation by Synechocystis. Cells were incubated in culture tubes with manganese 
chloride, sodium citrate, and HEPES buffer, +/- DCMU, SOD, catalase. At each timepoint, aliquots were 
removed and assayed for the presence of oxidized manganese by LBB. This experiment has been repeated 
many times. While it usually follows the pattern shown here, there has been some inconsistency, largely 
attributable to the confounding pathways illustrated in Figs. 3-5. Therefore, the data presented is a 
representative example of the phenomenon rather than an average of separate experiments with error bars. 
A. Manganese oxidation by WT cells. Manganese oxidation was inhibited in the dark or by addition of 
DCMU but not inhibited by SOD or catalase, indicative of a mechanism involving PSII and not O2

- or 
H2O2. B. Manganese oxidation by D1 mutants. The D1-Δ mutant did not oxidize manganese, while the 
D1-D170A mutant did, consistent with a PSII dependent mechanism.  
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Figure 2. Manganese oxidation by isolated photosynthetic membranes and PSII protein. A. WT 
membranes. B. D1-Δ mutant membranes. C. D1-D170A mutant membranes. The WT and D1-D170A 
membranes oxidized manganese and were inhibited in the dark or by addition of DCMU but not by SOD 
or catalase, while the D1-Δ membranes did not oxidize manganese. D-E. The rate of manganese oxidation 
by WT membranes increased linearly with increasing membrane concentration (D) but appeared to 
approach a saturated maximum rate with increasing substrate concentration (E), consistent with 
Michaelis-Menten enzyme kinetics. F. Purified PSII protein oxidized manganese and was inhibited in the 
dark but not by SOD or catalase. DCMU inhibition was incomplete but exhibited a dose titration when 
doubled, suggesting that the incomplete inhibition could be due to insufficient DCMU. G. Purified PSII 
exhibited a decrease in O2 production under manganese oxidizing conditions accompanied by an increase 
in DCIP reduction, consistent with the manganese serving as an alternative electron donor for PSII. 
However, we note that the DCIP signal could be confounded by reactivity with the manganese oxidation 
product.  
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Figure 3. An O2 dependent pathway of manganese oxidation. A. Whole cell manganese oxidation 
experiment conducted in flasks and shaking, in contrast to the experiment shown in Figure 1 which was in 
tubes and not shaking. In the flask format, DCMU did not inhibit manganese oxidation. B. Chlorophyll 
fluorescence data showing DCMU inhibition of PSII photochemical quenching (qP), demonstrating no 
diminution in DCMU efficacy during this timecourse, confirming that the manganese oxidation seen in 
the presence of DCMU is PSII independent. C. Conductivity measurements to determine O2 saturation. 
Under normal conditions Synechocystis cells produce more O2 than they consume so cultures are 
supersaturated. In the presence of DCMU, they are unable to produce O2 but still consume it. In the tube 
format, external O2 input was diffusion limited so experimental conditions with DCMU went anaerobic. 
In the flask format, shaking kept them aerated. D. Comparison of the manganese oxidation phenomena 
observed in the tube vs. flask formats. The PSII independent manganese oxidation seen in flasks with 
DCMU was substantially inhibited by the addition of SOD, while the original manganese oxidation 
phenomenon in tubes was not, suggesting distinct pathways of biological manganese oxidation—a PSII 
dependent, O2 independent pathway and a separate PSII independent, O2 dependent pathway. E. 
Manganese oxidation by WT membranes remained inhibited by DCMU in the flask format, suggesting 
that this PSII independent pathway was not expressed in the membrane system.  
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Figure 4. Indirect manganese oxidation driven by pH. A. WT Synechocystis growth curve demonstrating 
that cyanobacterial autotrophy increases the solution pH. B. Unbuffered BG11 medium altered by growth 
(from which cells were removed by centrifugation) catalyzed substantially more abiotic manganese 
oxidation than starting medium. We attributed this largely to pH, although the presence of biogenic 
ligands and/or extracellular enzymes may also contribute. C. Manganese oxidation is pH sensitive—both 
the biological and abiotic reactions proceeded more rapidly with increasing pH. However, in carefully 
buffered experiments that were continually mixed to minimize the buildup of local pH or O2 gradients 
around cells, the biological reaction was clearly distinguishable from the abiotic one. This suggested that 
although Cyanobacteria raising their local pH and thereby driving the abiotic reaction could be an 
important and relevant pathway of manganese oxidation, it cannot explain the full phenomenon observed 
here. 
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Figure 5. The manganese oxidation product (putatively Mn(III)-citrate) is transient. Manganese oxidation 
experiments were run normally to build up product, and then stopped (indicated by arrow) by either 
removing the cells via centrifugation or moving the reactions to the dark. In both cases, the product pool 
rapidly diminished. This is consistent with the known chemistry of Mn(III) species, which are highly 
labile and rapidly disproportionate or engage in other redox reactions, making them notoriously short-
lived species.  
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Figure 6. Manganese oxidation signatures in cyanobacterial biomass. A. Synechocystis. B. Clumpy, 
baeocystous Chroococcidiopsis from windowsill cultures. C. Non-clumpy vegetative Chroococcidiopsis 
from incubator cultures. D. Synchrotron XANES spectra at the manganese K-edge showing variable 
amounts of oxidized manganese associated with Chroococcidiopsis cells, increasing with clumpiness and 
total manganese content. For Synechocystis and incubator Chroococcidiopsis, the spectra shown are 
representative examples from cultures supplemented with 100 µM MnCl2 to improve total manganese 
signal. For windowsill Chroococcidiopsis the spectra shown are endmembers demonstrating the range of 
spectra observed under each MnCl2 concentration. Least squares fits quantifying the components of these 
spectra can be found in Fig. S2. Standard spectra of MnCl2, feitknechtite, and birnessite are shown as 
references for Mn(II), Mn(III), and Mn(IV) species, respectively.  
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Figure 7. Plentiful manganese improves Chroococcidiopsis desiccation tolerance, assayed by chlorophyll 
fluorescence induction and quenching. Chroococcidiopsis cells grown under manganese starved 
conditions (A-B), regular BG11 medium with 9 µM manganese (C-D), and manganese replete conditions 
with 100 µM manganese (E-F), were dried for four days, then rehydrated. The chlorophyll fluorescence 
induction protocol used as a measure of function is illustrated along the x axis of panel A; dark bar 
indicates dark background, yellow bar indicates actinic light background, yellow tick marks indicate 
saturating pulses. Starting cultures under all three conditions exhibited normal fluorescence quenching 
patterns (A, C, E). By the end of the experiment, the manganese replete condition was the only one that 
maintained any fluorescence quenching capability (B, D, F).  
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Figure S1. Attempts at demonstrating energy conservation coupled to manganese oxidation by PSII. A. 
To investigate carbon fixation coupled to manganese oxidation, we used stable isotope probing with 
H13CO3

-. Under normal conditions, WT cultures capable of autotrophic growth exhibited robust label 
uptake, while the D1 mutants exhibited minor amounts due to exchange rather than autotrophy. Under 
manganese oxidizing conditions, none of the strains exhibited label uptake. B. The high concentrations of 
manganese and citrate used in our experiments are incompatible with growth (shown here with WT), 
explaining the inhibition of carbon fixation seen in A. C. To investigate energy conservation in the 
absence of growth, we conducted survivability experiments with and without glucose. However, in the 
flask format, the manganese toxicity signal was a bigger obstacle to survival than lack of glucose. In the 
tube format, the presence of glucose was the biggest obstacle to survival, presumably related to going 
anaerobic. D-E. Attempt at demonstrating photochemical chlorophyll fluorescence quenching coupled to 
manganese oxidation with the D1-D170A mutant. The chlorophyll fluorescence induction protocol used 
is illustrated along the x axis of panel D; dark bar indicates dark background, yellow bar indicates actinic 
light background, and yellow tick marks indicate saturating pulses. With (E) or without (D) added 
manganese, no photochemical quenching was observed.  
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Figure S2. Least squares fits quantifying the components of the cyanobacterial biomass XANES spectra 
shown in Fig. 6. Fits were calculated using the MnCl2, feitknechtite, and birnessite standards shown in 
Fig. 6 as Mn(II), Mn(III), and Mn(IV) components, respectively.  
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Abstract  

Soluble Mn(III)-L complexes appear to constitute a substantial portion of manganese in natural 

environments and serve as critical high potential species for biogeochemical processes. However, the 

inherent reactivity and lability of these complexes—the same chemical characteristics that make them 

uniquely important in biogeochemistry—also make them incredibly difficult to measure. Here we present 

experimental results demonstrating the limits of common analytical methods that have been used to detect 

and quantify these complexes. Results showed that the leucoberbelin blue (LBB) method was 

incompatible with a subset of Mn(III) complexes due to their rapid decomposition under low pH 

conditions—a methodological requirement for the LBB assay—and that the Cd-porphyrin method is not 

sufficiently accurate for measuring Mn(III) species because additional chemistry occurs that is 

inconsistent with the proposed reaction mechanism. In both cases, the behavior of Mn(III) species in these 

methods ultimately stems from inter- and intramolecular redox chemistry that curtails the use of these 

approaches as a reflection of ligand binding strength. With growing appreciation for the importance of 

high-valent Mn species and their cycling in the environment, these results underscore the need for 

additional method development to be able to quantify such species rapidly and accurately in nature. 

 

Introduction 

The chemistry of manganese associated with biomass, Earth surface environments, and 

geological materials is characterized by redox conversions among three common oxidation states (1). The 

reduced form, Mn(II), is highly soluble in water, but when oxidized it tends to form insoluble Mn(III) and 

(IV) oxide minerals. In the absence of stabilizing ligand coordination, any Mn(III) in solution will rapidly 

disproportionate to form Mn(II) and Mn(IV) oxide (2). However, with the coordination of appropriate 

ligands, this disproportionation reaction can be slowed, allowing Mn(III) to persist in solution long 

enough to participate in other reactions. Recent years have seen a growing body of work demonstrating 

that such Mn(III) species constitute a significant proportion of the soluble manganese pool in natural 
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environments (3–6) and uncovering a broad suite of implications for this element’s role in aquatic 

chemistry and biogeochemistry (7–13).  

Mn(III) complexes can be highly reactive, making them important and dynamic players in a 

myriad of biogeochemical processes. As uniquely high potential, single-electron oxidants, such species 

contribute to the breakdown of otherwise recalcitrant molecules. For example, Mn(III)-oxalate generated 

by fungal Mn peroxidases controls lignin decomposition in the leaf litter of forest ecosystems—a critical 

process in carbon cycling (7, 14). Similarly, Mn(III)-humic acid complexes are likely responsible for the 

degradation of anthropogenic pollutants including estrogens in natural waters (10). These processes are 

based on dynamic Mn redox cycling in which the Mn(III) complexes themselves are reactive and 

transient. They may exist in substantial steady-state concentrations, but only through constant fluxes of 

formation. 

It is important to recognize that Mn(III) complexes behave very differently from similar ligand 

complexes with ferric iron. Due to the relative energies of their respective di, tri, and tetravalent redox 

states, Mn(III) is reactive and unstable in ways that Fe(III) is not (13). Mn(III) complexes are susceptible 

to both inter and intramolecular electron transfer and ligand decomposition and therefore tend to be very 

short-lived chemical species. The different modes by which Mn(III) complexes decompose were nicely 

illustrated in a study by Klewicki and Morgan that examined the behavior of the Mn(III) complexes of 

pyrophosphate (PP), ethylenediaminetetraacetic acid (EDTA), and citrate (15). The Mn(III) complex of 

PP—a ligand that does not undergo intramolecular redox reactions (6)—displayed the most stability, 

decomposing slowly by PP hydrolysis and Mn(III) disproportionation on a timescale of months. By 

contrast, the Mn(III) complexes of EDTA and citrate decomposed readily by internal electron transfer to 

generate Mn(II) and products of ligand oxidation, on timescales ranging from minutes to days (15, 16). 

The Mn(III) complex of desferrioxamine B (DFOB) was shown by Duckworth and Sposito to decompose 

similarly by internal electron transfer to give Mn(II) and an oxidized derivative of DFOB, at rates that 

rapidly increased with decreasing pH (half-life of ~24 hours at pH 6, but less than one hour at pH 5.7) 

(17). These studies demonstrated that in addition to bimolecular disproportionation, intramolecular 
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electron transfer processes are an important aspect of the reactivity of Mn(III) species, particularly when 

complexed to organic ligands. When conceptualizing fluxes and roles for such complexes in the 

environment, this chemistry must be taken into account. 

Due to this innate reactivity and lability, measuring soluble Mn(III) species in environmental or 

experimental samples presents a major challenge (18). Transient species can be lost in the time required 

to transport samples collected in the field back to the laboratory for analysis. Therefore, 

spectrophotometric methods that are adaptable to rapid, field-based measurements have considerable 

appeal. Two such methods have been particularly important: one using the dye leucoberbelin blue (LBB), 

and the other using a Cd(II)-porphyrin, α,β,γ,δ-tetrakis(4-carboxyphenyl)porphyrin (TCPP), complex 

(Figure 1). It is therefore necessary to understand the degree to which both of these methods have material 

limitations in their application to quantifying Mn(III) complexes in environmental samples. 

The LBB method (Figure 1a and 1c) has been used to detect Mn of any redox state higher than 

(II), i.e., Mn(III) to Mn(VII) (19–22). With this approach, LBB is oxidized by high valent Mn to form a 

product with a strong characteristic absorbance at 624 nm. Since the magnitude of this response is 

stoichiometric with electrons transferred, LBB can be considered a redox titration method. It cannot be 

used to determine absolute concentrations of Mn species of unknown redox state, but it can provide a 

measurement of average Mn redox state when combined with other measurements for total Mn 

concentration (23). In natural environments, the LBB-reactive Mn pool is largely comprised of particulate 

Mn oxides and soluble Mn(III)-L complexes. Therefore, in samples that are filtered to separate a soluble 

fraction from a particulate fraction, LBB reactivity has been interpreted to reflect soluble Mn(III) 

complexes (24). (However, it is important to note that filtration leads to an operational definition of 

solubility that does not necessarily exclude colloidal or nanoparticulate Mn phases, which may also be 

biologically and geochemically important, reactive Mn species (25–27).) 

The TCPP method (Figure 1b and 1d) has been employed to determine concentrations of both 

Mn(II) and Mn(III). This method was originally designed to detect Mn(II) (28), and was more recently 

adapted to simultaneously measure Mn(II) and Mn(III) in the same samples (29). In the case of Mn(II), 
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Mn(II) reacts with Cd(II)-TCPP by a metal substitution reaction to yield Mn(II)-TCPP. Once complexed 

by the TCPP, the Mn(II) is rapidly oxidized by ambient O2 to generate Mn(III)-TCPP, which has a strong 

characteristic absorbance at 468 nm. In the case of Mn(III), Mn(III) has been proposed to react with the 

Cd(II)-TCPP by a ligand exchange reaction, also to yield Mn(III)-TCPP. Both of these reactions were 

considered as (pseudo)first order reactions, but with different rate constants—rapid for Mn(II), and slower 

for Mn(III), i.e., 𝑘ST(VV) > 𝑘ST(VVV): 

𝑑[𝑀𝑛(𝐼𝐼𝐼)𝑇𝐶𝑃𝑃]^?8_	ST(VV)

𝑑𝑡
= 	−

𝑑[𝑀𝑛(𝐼𝐼)]
𝑑𝑡

= 𝑘ST(VV)[𝑀𝑛(𝐼𝐼)] 

𝑑[𝑀𝑛(𝐼𝐼𝐼)𝑇𝐶𝑃𝑃]^?8_	ST(VVV)

𝑑𝑡
= 	−

𝑑[𝑀𝑛(𝐼𝐼𝐼)]
𝑑𝑡

= 𝑘ST(VVV)[𝑀𝑛(𝐼𝐼𝐼)] 

Integrating on time yielded: 

[𝑀𝑛(𝐼𝐼𝐼)𝑇𝐶𝑃𝑃]^?8_	ST(VV) = [𝑀𝑛(𝐼𝐼)]cTcdcef(1 − 𝑒ijkl(mm)d) 

[𝑀𝑛(𝐼𝐼𝐼)𝑇𝐶𝑃𝑃]^?8_	ST(VVV) = [𝑀𝑛(𝐼𝐼𝐼)]cTcdcef(1 − 𝑒ijkl(mmm)d) 

Which when solved and summed for the total ingrowth of Mn(III)-TCPP over time gave: 

[𝑀𝑛(𝐼𝐼𝐼)𝑇𝐶𝑃𝑃] = [𝑀𝑛(𝐼𝐼)]cTcdcefn1 − 𝑒ijkl(mm)do + [𝑀𝑛(𝐼𝐼𝐼)]cTcdcef(1 − 𝑒ijkl(mmm)d) 

The different kinetics of these two different reactions were invoked to justify using this method to 

quantify simultaneously Mn(III)-TCPP generated from Mn(II) substitution and oxidation and Mn(III)-

TCPP generated from Mn(III) exchange (29). In this approach the kinetic profiles are fit and 

deconvolved, considering them as the weighted sums of two independent exponentials (29). However, 

this yields a classically ill-posed problem in applied mathematics for which accurate numerical schemes 

have been challenging to achieve—particularly with experimental data wherein small variations in the 

data can lead to substantial differences in the parameters achieved by fitting (30, 31). This problem 

becomes even more acute in samples containing more than one Mn-bearing species if the number of 

species, their reaction rates, or their concentrations are unknown a priori: 

[𝑀𝑛(𝐼𝐼𝐼)𝑇𝐶𝑃𝑃] = [𝑀𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠5)]cTcdcefn1 − 𝑒ijtdo 

	+[𝑀𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠B)]cTcdcefn1 − 𝑒ijudo 
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																																																																											+[𝑀𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠v)]cTcdcefn1 − 𝑒ijwdo + . . . 

[𝑀𝑛(𝐼𝐼𝐼)𝑇𝐶𝑃𝑃] =x[𝑀𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠T)]cTcdcef

T

5

n1 − 𝑒ijldo 

This method is predicated on the assumption that the only Mn(III) chemistry occurring in these reactions 

is the proposed mechanism of a simple ligand exchange reaction—and even under that assumption, the 

challenge of deconvolving reactions from multiple unknown Mn complexes is formidable.  

Using both the LBB and TCPP methods, differences in the responses from standard solutions of 

different Mn(III) complexes have been observed (24, 32). With the TCPP method, it was suggested that 

the reaction kinetics could be further resolved to distinguish the strength of ligand binding in different 

Mn(III) complexes based on their rate of exchange (32). With the LBB method, a similar argument based 

on strong vs. weak ligand binding was suggested to explain the observation that some Mn(III) complexes 

react readily with LBB, while others do not react at all (24). Building on these interpretations, DFOB has 

been described as a prototypical “strong ligand”, and used for ligand exchange extractions to identify the 

fraction of soluble Mn(III) that is complexed to a weaker ligand (33).  

This “strong ligand” paradigm likely has roots in the use of siderophore complexation reactions 

(including with DFOB) to determine the concentrations of Fe(III) in natural waters. In such cases, 

forward and reverse complexation reaction rates can be used to infer conditional equilibrium constants. 

This relationship has been empirically validated and works well for cases of simple, single step, reversible 

substitution reactions, which Fe(III) complexations frequently are. However, with multistep complexation 

reactions, directly relating kinetics to thermodynamics is not possible. For example, the presence of Ca 

slows down Cu chelation in seawater (34); therefore, inferring the thermodynamics of Cu coordination 

based on reaction rate in the presence of Ca would not be appropriate. Ca does not affect the equilibrium 

constant for Cu coordination, it changes the rate by introducing additional steps to the reaction. The 

fundamental differences in reactivity between Fe(III) and Mn(III) allow such approximations to be 

accessible for the relatively inert Fe(III) but not for the relatively labile Mn(III). Mn(III) complexation 

reactions are not the simple, single step reactions that their Fe(III) counterparts would participate in. 
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Therefore, Mn(III)-L reaction kinetics cannot be used as a reliable indication of ligand binding strength. 

More broadly, methods, assumptions, and interpretations that are based on the dynamics of Fe(III) should 

be reevaluated prior to their application to Mn(III). 

Here we present the results of a suite of experiments designed to probe the accuracy of these 

approaches for measuring Mn(III) complexes. Our results indicated important issues with each of these 

methods and interpretations of the data generated using them. In the case of LBB, we observed that the 

assay—which requires a low pH solution—is incompatible with Mn(III) complexes that degrade at low 

pH faster than they can react with LBB; this was illustrated in our experiments by Mn(III)-DFOB. In the 

case of the TCPP method, we found that the reactivity of Mn(III) species confounded the proposed 

reaction mechanism, such that fitting different kinetic profiles cannot reliably be used to quantify or draw 

robust conclusions about the nature of Mn speciation in unknown samples. In the case of ligand exchange 

extractions, we caution that since DFOB is not a redox stable ligand and its reactivity exhibits a strong pH 

dependence, this compound (and others like it) should not be used as reference species to examine 

thermodynamic binding strength of unknown molecules in environmental samples. In all cases, these 

issues stemmed from the inherent reactivity and lability of Mn(III)-L complexes.  

 

Materials & Methods 

Reagents 

All chemicals were obtained from Sigma-Aldrich at the best available purity. All solutions were 

prepared with ultrapure water (UW) obtained from a Merck Millipore MQ Direct 8 water purification 

system. MnCl2, KMnO4, and Mn(III)-acetylacetonate (acac) solutions were prepared by dissolution in 

UW. The Mn(III)-PP and Mn(III)-DFOB complexes were synthesized following the protocols from 

Madison et al (29). For electron paramagnetic resonance (EPR) measurements, all Mn solutions were 

prepared as 1 mM in UW. 

 

LBB method 
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A 0.04% LBB solution was prepared in UW with 1% glacial acetic acid, equivalent to the 

primary reagent described in Jones et al (24). pH of this solution was ~3. We report LBB concentration as 

a weight percent rather than molarity as the low purity of commercially available LBB makes precise 

concentrations of dye content unreliable. Therefore, standard curves with KMnO4 must be employed with 

each batch of LBB reagent to calibrate quantitation for sample unknowns.  

Reactions were performed in a 1 cm UV cuvette to monitor UV-vis spectral changes of reaction 

solutions. For the cuvette-based assay, similar to that described in Jones et al. (24), 40 µL of LBB 

solution was added to 2 mL of sample solution. For the reaction with Mn(III)-DFOB, we used a 6 µM 

Mn(III)-DFOB solution and monitored changes in absorbance at 310 nm for [Mn(III)-DFOB] and 624 nm 

for LBB oxidation. Final pH remained ~3 for reactions with KMnO4 and increased slightly to ~3.5 with 

Mn(III)-DFOB. To assess the role of the low pH reaction solution in Mn(III)-DFOB decomposition, a 

similar experiment was conducted with 2 µL of glacial acetic acid added to 2 mL of 6 µM Mn(III)-DFOB 

(final pH ~3.3).  

For a higher throughput (albeit lower sensitivity) LBB assay, reactions can be performed in a 96-

well plate. For the plate-based assay, we follow a protocol similar to that described in numerous previous 

studies (20–22). For samples including biomass, sediment, or other particulate matter, we react 250 µL of 

LBB solution with 50 µL of sample in a microcentrifuge tube for 15 minutes to allow the reaction to 

proceed to completion, centrifuge to remove particulate matter, and then transfer 250 µL of supernatant to 

a plate for quantification. In this study, the plate-based assay was only used with a KMnO4 standard 

solution and therefore did not require a centrifugation step, so 208.3 µL of LBB solution and 41.6 µL of 

sample were reacted directly in the plate.  

To determine the pH threshold of LBB activity, the LBB reagent solution was diluted 10x and 

adjusted to pHs ranging from 3 to 8.2, and then reacted with 50 µM KMnO4 in the plate-based assay.  

 

TCPP method 
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The TCPP method was performed using the protocol from Madison et al. (29). A 0.2 mM TCPP 

solution was prepared in UW with 0.1 M NaOH. To guard against potential photochemistry, the bottle 

was wrapped in aluminum foil. A 12 mM CdCl2 solution was prepared in UW. The buffer solution was 

prepared with 0.025 M sodium tetraborate, 0.1 M HCl, and 0.6 M imidazole; the pH was adjusted to 8.0 

with 3 M HCl. Reactions were performed in a 1 cm UV cuvette. The precursor, Cd(II)-TCPP, was 

prepared by addition of 360 µL of TCPP solution, 6 µL of CdCl2 solution, and 120 µL of buffer solution; 

and then brought up to 3 mL with UW to yield 24 µM Cd(II)-TCPP. 10 µL of 0.54 mM Mn solution was 

added into the precursor solution for the reaction, for a final concentration of 1.8 µM Mn solution. 

Changes in absorbance were monitored at 468 nm for [Mn(III)-TCPP]. Reactions were run in triplicate; 

the data reported are a representative example. For reactions under argon, each solution was purged with 

stirring for 15 minutes, which scrubs most but not all dissolved O2 from solution, and reactions were 

conducted under an argon atmosphere in a two neck UV cell.  

 

Spectroscopy 

Cuvette-based UV-vis spectra were recorded on a Hewlett Packard 8454 diode array 

spectrophotometer. 96-well plates were read with a BioTek Cytation 5 plate reader. EPR spectra were 

obtained on a JEOL JES-FA200 spectrometer at 113 K. Frequency = 9.155 GHz, microwave power = 

0.998 mW, modulation frequency = 100 kHz, and modulation amplitude = 0.6 mT. 

 

Results & Discussion  

Limitations of the LBB method 

 It has been reported that some Mn(III)-L complexes, most notably Mn(III)-DFOB, do not react 

with LBB (24). This observation was interpreted in thermodynamic terms as a reflection of the binding 

strength of Mn(III)-L complexes—that weakly bound complexes react readily, while strongly bound 

complexes react slowly or not at all (24, 29, 32). However, LBB reacts readily with a wide range of solid 
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Mn oxide phases (23), which are much more stable than any Mn(III)-L complex. Therefore, we 

investigated an alternative explanation for the reported data.  

 The LBB method is typically carried out in an acetic acid solution, at pH ~3 (20–22, 24). 

However, the Mn(III)-DFOB complex is known to only persist in solution within the pH range of ~7-11 

(17). We attempted to measure Mn(III)-DFOB using LBB and did not observe the spectral change at 624 

nm characteristic of LBB oxidation (Figure 2a), consistent with previous reports that Mn(III)-DFOB does 

not react with LBB (24). However, by also monitoring the absorbance spectrum at 310 nm for the 

characteristic absorbance of Mn(III)-DFOB, we found that the Mn(III)-DFOB disappeared on a timescale 

of seconds upon introduction to the reaction solution of the LBB assay. The same phenomenon occurred 

when acetic acid without LBB was introduced to the Mn(III)-DFOB solution (Figure 2b). These results 

demonstrated that the lack of reaction with LBB occurred not because the Mn was so strongly bound that 

the LBB could not access it, but rather because the complex disintegrated in the low pH reaction solution 

before it had opportunity to react with LBB. Since the mechanism of decomposition reduces Mn(III) to 

Mn(II) (17), which does not react with LBB, this explained why the LBB assay does not detect Mn(III)-

DFOB.  

 We further studied the pH dependence of the LBB method using standard solutions of KMnO4 

and showed that above pH 5 there is substantial loss of LBB signal (Figure 2c). Therefore, we concluded 

that since a low pH reaction solution is a methodological requirement, the LBB method is incompatible 

with Mn(III) complexes that decompose rapidly at low pH. This may include not only Mn(III)-DFOB, but 

a variety of other Mn(III)-L complexes that could exist the environment. As an example, at the mean pH 

of Black Sea surface waters (8.38) (35), Mn(III)-DFOB would be stable for weeks. Since complexation to 

DFOB and other siderophores is thought to increase Mn bioavailability (36), such complexes are likely 

important players in Mn biogeochemistry. However, any such complexes are undetectable by the LBB 

method if, like Mn(III)-DFOB, they decompose in the assay faster than the assay can report their 

presence.  
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 In spite of this limitation, the LBB method remains a very valuable assay, particularly in contexts 

such as the study of Mn oxidation processes (20–22) or the detection of Mn oxides in unknown materials 

(23, 33, 37). When using LBB to detect soluble species, it must be understood that since LBB can only 

access a subset of Mn(III)-L complexes an additional, LBB-invisible pool of Mn(III) may exist. This is 

not a reflection of ligand binding strength, rather it arises from redox-driven chemical reactions occurring 

during the assay. Because of this limitation, data quantifying soluble Mn(III) species via the LBB method 

likely systematically underestimate the true abundance of these species in natural samples. 

 

Behavior of the TCPP method 

 Use of the TCPP method to measure and distinguish between Mn species was originally shown 

with standard solutions of MnCl2 as a source of hexaaqua-Mn(II), Mn(III)-PP as a fast-reacting Mn(III) 

complex, and Mn(III)-DFOB as a slow-reacting Mn(III) complex (29). In the case of hexaaqua-Mn(II), 

the Mn(III)-TCPP absorption signal fully developed within 1 minute; with the Mn(III) complexes, the 

signal from Mn(III)-PP developed over several minutes, while the signal from Mn(III)-DFOB developed 

even more slowly, not reaching the absorbance maximum during the 15 minute time course examined. 

We reproduced these phenomena and additionally examined the Mn(III)-acac complex, which showed 

kinetic behavior similar to that of Mn(III)-PP (Figures 1b and 3a).  

The reactive nature of Mn(III)-L complexes, in particular the known redox instability of Mn(III) 

complexed to organic ligands such as DFOB (17), caused us to question the proposed mechanism of this 

method for detecting Mn(III). If the reaction between Mn(III) complexes and TCPP is well described as a 

simple ligand exchange, not involving any redox chemistry, it should not be affected by the availability of 

O2. Therefore, we performed the same reactions under argon rather than in air. The reaction with Mn(III)-

PP behaved consistently with the proposed mechanism, showing no meaningful difference under argon. 

However, with both Mn(III)-acac and Mn(III)-DFOB, the reaction behaved strangely under argon (Figure 

3b). The absorbance fluctuated irregularly with time, and with Mn(III)-DFOB—which in air does not 

reach its stoichiometric absorbance maximum during the time course examined—the reaction appeared to 
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proceed at a much higher rate, surpassing the maximum expected absorbance in minutes. These 

observations appear inconsistent with the idea that the chemistry taking place in these reactions is just a 

simple substitution reaction.  

Use of the TCPP method as a quantitative assay for soluble Mn(III) depends on understanding the 

reactions taking place in the solution. If additional reactions are occurring here, either instead of or in 

addition to the proposed mechanism, then caution should be taken when interpreting results based on 

either the magnitude or rate of Mn(III)-TCPP production. The absorbance changes we observed in the 

Mn(III)-acac and Mn(III)-DFOB reactions suggest changes in the coordination environment of the Mn in 

the porphyrin, possibly attributable to ternary complex formation or coordination of exogenous ligands or 

oxidized ligand fragments. Whatever the mechanism, the chemical complexity implied by these 

observations undermines this method as an assay for environmental Mn(III). Our data suggested that this 

method may only be appropriate for Mn(III) complexes with redox stable ligands, such as Mn(III)-PP. 

Since the identity and distribution of ligands for soluble Mn(III) in natural samples remains largely 

unknown, this method may not accurately characterize such samples.  

Even in the absence of sample unknown materials and with a well behaved Mn(III)-L complex, 

interactions between Mn(III) and other reagents may complicate the solution chemistry and thereby 

confound this method. For example, imidazole is used in the method as a buffer to facilitate metal 

complex substitution. It has been shown that varying the concentration of the imidazole changes the 

reaction kinetics (38). The fact that the kinetics can be modulated by an additional species demonstrates 

that the reaction between Mn(III)-L and TCPP cannot be a simple single-step substitution, and therefore 

inferring thermodynamic properties from kinetic behavior is not appropriate. With both Mn(III)-PP and 

Mn(III)-acac, we observed absorption changes upon introduction of the Mn species to the imidazole 

buffer without TCPP, indicating that these Mn(III) complexes reacted in the presence of this reagent.  

The TCPP method is predicated on the assumption that the only reaction product is Mn(III)-

TCPP. Interactions between Mn materials and additional species—including but not limited to the 

imidazole buffer—confound interpretation of the data generated by this measurement. With known 
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materials at least one can constrain the suite of possible reactions occurring during the assay. With natural 

samples of unknown composition, however, constraining all possible reactions and their products 

becomes a much bigger challenge.  

 

Reliability of common Mn(III) standards 

The inherent lability of Mn(III) complexes not only complicates efforts to understand Mn 

speciation in natural environments, it also complicates the problem of obtaining reliable Mn(III) standard 

solutions for method calibration. Even small concentrations of Mn(II) mixed in to Mn(III) solutions could 

catalyze the reaction between Mn(II) and TCPP, creating a false impression of the Mn speciation in a 

sample. Mn(II) enters the porphyrin much more readily than Mn(III), where the former is rapidly 

oxidized; Mn(III) can act as that oxidant, oxidizing the Mn(II)-TCPP to Mn(III)-TCPP and thereby 

generating more Mn(II) in solution, which can then react with another TCPP. By this mechanism, 

mixtures of Mn(II) and Mn(III) species could display rapid TCPP reactions, skewing interpretations that 

are made based on the kinetics of this reaction. Our experimental results illustrated that this chemistry is a 

concern even in the case of standard solutions of presumptively known Mn(III) complexes, let alone with 

natural samples of unknown speciation.  

To observe and quantify the amount of Mn(II) occurring in our Mn(III) standards, we used EPR 

spectroscopy. Solutions of our synthesized Mn(III)-PP and Mn(III)-DFOB complexes and commercial 

Mn(III)-acac all showed a Mn(II) EPR signal at 300 mT. To estimate the abundance of Mn(II) in these 

materials, we compared the EPR integral value to the integral value from a MnCl2 standard solution 

(Table 1). We found that these values were slightly higher under argon than under air. We also observed 

that the Mn(II) EPR signal from dissolved Mn(III)-acac increased over time (41% immediately after 

dissolution; 49% 1 hour after dissolution; data shown in Table 1 is from experimental solutions, dissolved 

on a previous day), indicating that this Mn(III) species also reduces to Mn(II) over time in solution. 

These results demonstrated that potential interference from Mn(II) is a concern with both 

commercial and in-house synthesized Mn(III) complex standards. Thus, the presumptively known 
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concentrations of Mn(III) standard solutions may not reflect the actual concentration of Mn(III) in 

solution; this constitutes a challenge for the calibration of all existing methods.  

 

Ligand exchange extractions using DFOB 

Based on its slow exchange in the TCPP method and lack of reaction with LBB, Mn(III)-DFOB 

has received attention as a prototypical “strongly binding, non-reactive” Mn(III) complex. However, this 

interpretive framework does not differentiate between kinetics and thermodynamics—the binding strength 

is a thermodynamic issue, the rate of exchange or reaction is a kinetic issue. While the Mn(III)-DFOB 

complex does have a high stability constant, reactivity or perceived lack thereof from unknown 

complexes in the TCPP or LBB methods does not necessarily indicate ligand binding strength; and known 

binding strengths do not necessarily predict reaction rates or mechanisms.  

As the prototypical strong ligand, DFOB has been used for ligand exchange extractions of soluble 

Mn(III)-L complexes from natural samples (33). However, we caution that ligand exchange extractions 

with a ligand that is not redox stable—such as DFOB (17)—may produce misleading results. 

Furthermore, the products of Mn(III)-DFOB degradation can include chromophores with similar 

absorption features to Mn(III)-DFOB itself (17); these can additionally confound the measurement.  

 

Implications 

 Results from these methods for detecting and characterizing soluble Mn(III)-L complexes, the 

TCPP method in particular, have underpinned the field of Mn aquatic chemistry for the last decade. 

Although our data raise concerns about the validity of this method, we stress that the work using it to 

demonstrate the widespread presence of soluble Mn(III) was groundbreaking and instrumental in shifting 

the field away from the previous paradigm that environmental Mn speciation was a simple dichotomy of 

soluble Mn(II) and insoluble Mn oxides (3–5). Now that we recognize the potential significance of 

soluble Mn(III) complexes as reactive intermediates in critical biogeochemical processes, we as a 
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community have our work cut out for us to understand better their diversity, fluxes, and precise roles in 

environmental chemistry. In pursuing this better understanding, we must appreciate the highly reactive 

nature of these complexes, which at once makes them fascinating, important, and so difficult to study. We 

need to appreciate the limitations of what our current tools can and cannot constrain in order to apply 

them most effectively, while working to develop better approaches.  
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Figures 

Fig. 1 The leucoberbelin blue (LBB) and Cd-porphyrin (TCPP) spectrophotometric methods for detecting 
manganese species. (a-b) Chemical structures of the LBB (a) and Cd(II)-TCPP (b) reagents. (c-d) UV-vis 
absorbance spectra illustrating the application of these methods. (c) The LBB method on a standard curve 
of KMnO4 solutions, with the inset showing the linear absorbance change at 624 nm with KMnO4 
concentration due to oxidation of LBB. (d) The TCPP method on a standard solution of MnCl2 showing 
the change in absorbance at 468 nm from Mn(II) substitution and oxidation to generate Mn(III)-TCPP. 
Inset shows the kinetic profile of this reaction along with the Mn(III)-PP ligand exchange reaction to 
generate Mn(III)-TCPP. 
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Fig. 2 Mn(III)-DFOB is incompatible with the LBB method due to its rapid decomposition at low pH, a 
methodological requirement for the LBB assay. (a) LBB solution added to 6 µM Mn(III)-DFOB solution. 
The characteristic Mn(III)-DFOB band at 310 nm disappeared on a timescale of seconds, and the oxidized 
LBB band at 624 nm did not appear. (b) Acetic acid without LBB added to 6 µM Mn(III)-DFOB solution. 
The Mn(III)-DFOB band still disappeared, indicating that the Mn(III)-DFOB decomposition was caused 
by the change in pH rather than any reaction with LBB. (c) LBB signal with KMnO4 drops off in reaction 
solutions above pH 5, demonstrating that a low pH reaction solution is required for this method. Percent 
LBB signal reports the absorbance at 624 nm relative to the reaction at pH 3, the baseline solution pH for 
this method.  
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Fig. 3 Reactions of Cd(II)-TCPP with Mn(III) complexes, under air (a) and under argon (b), raise 
concerns about the proposed mechanism of this method. Dashed lines indicate maximum absorbance 
expected from 1.8 µM Mn(III)-TCPP. (a) Under air, all three reactions display absorbance increasing with 
time monotonically. Mn(III)-DFOB reacts much more slowly than Mn(III)-PP, as previously reported. (b) 
Under argon, the Mn(III)-PP reaction behaves the same as under air. However, the Mn(III)-acac and 
Mn(III)-DFOB reactions display very different kinetic profiles, casting doubt on the proposed 
mechanism. With Mn(III)-acac, increase in absorbance is no longer monotonic. With Mn(III)-DFOB, the 
reaction proceeds far more rapidly, and exceeds the maximum expected absorbance. 
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Tables 
 
 

 Air (%) Ar (%) 
Mn(III)-PP 7 11 

Mn(III)-DFOB 24 27 

Mn(III)-acac 62 69 
 
Table 1. The percent EPR integral value of Mn(II) signal in Mn(III) solutions, calculated as the EPR 
integral value of Mn(III) solution / EPR integral value of MnCl2 solution x 100. 
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Abstract  

Among the earliest consequences of climate change are increasingly extreme weather and rising sea 

levels—two challenges to which coastal environments are particularly vulnerable. Often found in coastal 

settings are microbial mats—complex, microbially dominated ecosystems that drive massive nutrient 

fluxes through biogeochemical cycles and have been important components of the biosphere for eons. 

Little Ambergris Cay, Turks and Caicos Islands supports extensive mats that vary sharply with relative 

water level. We began this study by characterizing a baseline condition of the mat microbial communities 

across this variation. In September 2017, the eyewall of Category 5 Hurricane Irma transited the island. 

We continued this study to monitor ecosystem recovery from such a catastrophic disturbance. While 

initial impacts from the storm were severe, new growth of primary mat communities proceeded rapidly 

and suggested that storm perturbation may facilitate adaptation of these communities to changing sea 

levels. In contrast, microbial sulfur cycling displayed hysteresis, stalling for > 10 months after the 

hurricane, with important implications for carbon storage potential through organic matter sulfurization. 

Full ecosystem recovery was observed in < 2 years, demonstrating considerable ecological resilience in 

the face of such a dramatic perturbation.  

Introduction 

Understanding the global implications of climate change requires that we study its consequences 

for a wide range of ecosystems. Coastal environments are uniquely vulnerable; lying at the interface of 

land, ocean, and atmosphere, they are directly impacted by sea level rise, extreme weather, and changes in 

both air and ocean temperature and chemistry. Some coastal ecosystems, e.g. coral reefs and salt marshes, 

are already suffering devastating losses (1–3), while others, e.g. mangrove forests, appear to be 

expanding, and even mitigating impacts by providing land stabilization and carbon storage (4–7). Here we 

examined a predominantly microbial ecosystem facing these challenges: photosynthetic microbial mats, 

which are often found in close association with mangroves and thought to play major roles in shallow 

sediment nutrient availability (8).  
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Photosynthetic microbial mats are assemblies of microbes that form layered, macroscopic 

structures. Their fabric is commonly built by filamentous Cyanobacteria (9) and the communities that 

inhabit them rank among the most diverse microbial ecosystems known (10–12). Within a mat, steep 

physicochemical gradients partition a complex network of niche spaces (13, 14)—sunlight drives 

phototrophy in the surface layers (15–17); in the subsurface, redox stratification and other chemical 

gradients support a wide range of anaerobic metabolisms (18–23)—and tightly coupled metabolic 

interactions fuel rapid and dynamic biogeochemical cycling with a daily diurnal cadence (13, 24). Such 

ecosystems have been important components of the biosphere since long before the rise of plants and 

animals (25–27), a history recorded by their mineralized vestiges preserved in ancient sedimentary rocks 

(28–30). 

Little Ambergris Cay is an uninhabited island in the Turks and Caicos with a broad, shallow 

interior basin widely paved by benthic microbial mats (Fig. 1A-B). This remote environment is an ideal 

natural laboratory—both for better understanding modern mat ecosystems and as an analog for the ancient 

mat ecosystems that dominated the Earth early in its history (31–35). The mats on Little Ambergris 

exhibit a variety of macroscopic textures (Fig. 1), ranging in thickness from millimeters to decimeters; in 

consistency from leathery to gelatinous; and in surface character from botryoidal or tufted to smooth. In 

previous studies, these mats have been categorized into three endmember types (32), termed blister mats, 

polygonal (or biscuit (31)) mats, and smooth (or flat (31, 33)) mats (Fig. 1C-H). The basis for this 

morphological diversity has been of interest to the geobiological community, as mat textures preserved in 

the geological record provide clues about ancient microbial ecosystems (31, 32). 

Previously we conducted a comprehensive mapping effort of these different mat types across 

Little Ambergris Cay and showed that the primary factors determining their distribution are water depth 

and tidal exposure time above water (32). The mats exist only within a narrow elevation range; areas 

higher than 30 cm above mean water level host scrubland rather than mat, lower than 20 cm below mean 

water level and strong hydrodynamic forces inhibit mat development. Within this range, blister mats 

occur in the highest, driest areas (subaerial exposure times of 22 to 24 hours per day), polygonal mats in 



179 

intermediate areas (subaerial exposure times of 12 to 23 hours per day), and smooth mats in lower, wetter 

areas (subaerial exposure times of 0 to 12 hours per day). Since small (cm-scale) differences in water 

level exert such a strong control on mat habitat ranges, this is a system that is acutely sensitive to one of 

the earliest consequences of global climate change—sea level rise (36). However, observations of ancient 

mat ecosystems from the geological record demonstrate that mats have persisted across numerous 

intervals of sea levels rising and falling, with textural changes following changes in water depth (37). This 

history suggests the hypothesis that while mat ecosystems are finely tuned to water level, they may also 

be robustly adaptable.  

The present study of Little Ambergris Cay microbial mat communities was initiated to better 

understand the ecological differences between mat types. Our approach combined 16S rRNA gene 

amplicon sequencing and extensive community analysis with physical, geochemical, and biological field 

observations. Initial field campaigns were conducted in July 2016 and August 2017, surveying the 

diversity of microbial mats across the island in 2016, and focusing on the ecosystem structure with depth 

in 2017.  

In September 2017, Little Ambergris Cay experienced a direct hit by the eyewall of Category 5 

Hurricane Irma (Fig. 1I)—one of the strongest hurricanes ever recorded in the Atlantic—with 920 mb 

average atmospheric pressure and sustained 170 mph winds accompanied by an estimated 3.2 m storm 

surge (38, 39). Tropical cyclones of increasing intensity are another impending consequence of climate 

change (40). While sea level rise, warming, and acidification manifest over timescales of decades, 

extreme weather events cause dramatic environmental changes over timescales of hours to minutes and 

therefore can be much more immediately devastating to vulnerable ecosystems (1, 41). In contrast to the 

adaptability of mat ecosystems to changes in sea level, the geological record demonstrates that sudden 

blanketing with a sediment layer can terminate mat growth (28). Having characterized the baseline 

ecosystem just prior to Hurricane Irma, we were uniquely well poised to investigate how the mat 

communities responded to such a catastrophic disturbance. Follow up studies were conducted in March 

2018, July 2018, and June 2019, to document the impact and subsequent recovery.  
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Results 

Profile of a microbial mat ecosystem 

To characterize the Little Ambergris mat ecosystems we sampled a depth profile through a 

polygonal mat in the area designated CC, chosen for being among the lushest (~10 cm thick, well 

protected by mangroves) mat sites on the island (Fig. 2). The mat communities contained a diverse 

assemblage of organisms with abundant Cyanobacteria, Chloroflexi, alpha-, gamma-, and delta- 

Proteobacteria, Planctomycetes, Bacteroidetes, along with forty additional phyla (Fig. 2B). Non-metric 

multidimensional scaling (NMDS) ordination analysis to visualize dissimilarity showed that the surface 

community is notably distinct, while the subsurface layers displayed a gradual trend of variance with 

depth (Fig. 2C). The strong shift between surface (top cm) and subsurface (> 1.5 cm) communities 

coincides with the transition from oxic to sulfidic conditions (Fig. 2F).  

To understand community stratigraphy on a functional level, we examined select groups of 

organisms whose metabolisms can reasonably be inferred from taxonomy (Fig. 2D-E). Among the 

phototrophs (Fig. 2D), sequences associated with oxygenic photosynthetic Cyanobacteria (including 

abundant members of the genera Halomicronema, Calothrix, and other unassigned Cyanobacteria) were 

recovered only in the uppermost horizon. Genera that likely represent facultatively aerobic anoxygenic 

photoheterotrophs (Chlorothrix of the Chloroflexales and an uncultured member of the Rhodospirillales) 

were also present at the surface but extended deeper in the mat than the Cyanobacteria. Sulfide-oxidizing 

anoxygenic phototrophs (Thioflavicoccus of the Chromatiales) were absent from the surface layer but 

found in a near subsurface horizon, co-occurring with the sulfidic chemocline. This distribution of 

phototrophs demonstrated the presence of both oxic and sulfidic regions within the photic zone of the mat 

and reflects the ability of different groups to utilize both different wavelengths of light that penetrate the 

mat to different extents and electron donors that vary with depth (15), consistent with observations from 

previously characterized mat ecosystems (13).  
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Different heterotrophic guilds were illustrated by major deltaproteobacterial taxa, which included 

three genera of sulfate reducers (Desulfovibrio, Desulfomonile, and Desulfobacteraceae group Sva0081), 

the genus Syntrophobacter (likely fermentative or syntrophic), and an uncultured member of the 

Myxococcales (aerobic) (42). The Myxococcales were most abundant in the oxic surface layer, while all 

four anaerobic genera were absent at the surface (Fig. 2E). This is notably different from other mat 

ecosystems wherein sulfate reducers are closely associated with oxygenic Cyanobacteria in the surface 

layer (43). Desulfovibrio and Syntrophobacter appeared in the near subsurface, co-occurring with the 

sulfidic chemocline. ~3 cm below the surface, they were replaced by Desulfomonile and 

Desulfobacteraceae group Sva0081. Desulfomonile was only present in a narrow horizon, while Sva0081 

persisted throughout the depth of the mat. Desulfovibro and Syntrophobacter are known to oxidize 

organic substrates incompletely to acetate, while Desulfomonile and most members of the family 

Desulfobacteraceae can perform complete oxidation of organic substrates, including acetate, to CO2 (42). 

Thus, the community stratigraphy reflected a progressive, systematic shift in carbon fixation and 

remineralization potential along a depth profile through the mat. Microbial diversity was lowest at the 

surface but increased with depth to a maximum ~4 cm—just below the transition between groups of 

sulfate reducers (Fig. 2G-H). This could reflect the availability of small organic substrates used by a 

greater diversity of heterotrophs. 

Fluorescence microscopy on a mat slice embedded in Steedsman’s wax to preserve spatial 

relationships illustrated its characteristic palisade texture defined by upward radiating sheathes of large 

filamentous Cyanobacteria with a heterogeneous distribution of other bacteria  (Fig. 2I).  Despite this 

microscopic heterogeneity, our depth profile resolved clear patterns in mm- to cm-scale ecosystem 

structure, and replicate samples showed similar trends (Fig. 2C). Therefore, while microenvironments 

undoubtedly control microbial ecology from the perspective of individual cells, many aspects of overall 

community function can be appreciated from a much coarser picture. 

This characterization of microbial community composition with depth provided us a framework 

for understanding the Little Ambergris Cay mat ecosystem, with niches partitioned along gradients of 
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light and chemistry. Although we do not have functional insight into much of the extraordinary diversity 

in these communities, the taxa highlighted here served as windows into processes of carbon, oxygen, and 

sulfur cycling, providing us with indicators to gauge ecosystem function and recovery in the aftermath of 

Hurricane Irma. 

Community variance across space and time 

To understand the biological differences between the range of mats on Little Ambergris Cay, we 

surveyed the bulk mat communities across different mat morphologies and locations. Two areas featured 

in this survey, LB and F, included transects across all three mat types (Fig. S1). Broadly, the mat 

communities across the island were all similar, but NMDS and analysis of similarities (ANOSIM) 

resolved patterns within the variance observed (Fig. 3). While there was no correlation between 

community composition and location on the island (R = 0.0558, p = 0.094) (Fig. S2B), there was a clear 

trend between the different mat types (R = 0.3772, p = 0.001), corresponding to their relative elevations 

with polygonal mats sitting between smooth and blister mats (Fig. 3A). We repeated this survey ten 

months (2018) and twenty-one months (2019) following Hurricane Irma, and saw a shift in the mat 

communities between the pre-hurricane (2016) and 2018 datasets that largely recovered by 2019. The 

variance between mat types and the variance between years are expressed along different vectors in the 

NMDS plot, suggesting that different aspects of the community contribute to the between-mat-type 

differences and the between-year differences.  

At the phylum level, the microbial communities of the different mat types are indistinguishable, 

demonstrating that community differences between mat types occurred only on finer taxonomic scales 

(Fig. 3B-C). In contrast, the perturbation in 2018 is quite clear—the Cyanobacteria, Alphaproteobacteria, 

and Chloroflexi remained abundant, while other major phylum level groups were considerably 

diminished. 

To explore how the variance in this dataset was expressed within major groups, we conducted 

NMDS and ANOSIM analyses on each phylum level group individually, with a corresponding dataset of 
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the remainder of the community excluding each group (Fig. S4). By comparing the ANOSIM statistic R 

values calculated with these subsets to those calculated with the full communities, we obtained a measure 

of which groups contributed most strongly to the differences between mat types and years. The 

Cyanobacteria were the only group to contribute substantially higher than average to the differences 

between mat types, with the Cyanobacteria alone exhibiting clear variance between mat types (R = 

0.4824, p = 0.001) and the remaining dataset excluding Cyanobacteria exhibiting considerably less 

variance between mat types (R = 0.2815, p = 0.001) (Fig. 3D). The Chloroflexi and Alphaproteobacteria 

exhibited variance between mat types comparable to the full communities, and all the other groups 

exhibited considerably less variance between mat types. In contrast, the groups that exhibited differences 

between years—reflecting the hurricane impact—were almost the inverse of those that exhibited 

differences between mat types. Cyanobacteria exhibited the least variance between years (R = 0.1514, p = 

0.002), the Chloroflexi and Alphaproteobacteria were roughly average again, and the other groups 

exhibited much higher variance between years, with the highest from the Deltaproteobacteria (R = 0.4709, 

p = 0.001) (Fig. 3E).  

Since the distribution of mat types is controlled by exposure time above water, we hypothesized 

that the aspects of the communities that differed most strongly between the mat types (the Cyanobacteria) 

reflected those most sensitive to sea level. To investigate the response of these taxa to a change in relative 

water level, we transplanted a slice of polygonal mat such that its surface sat several cm higher—into the 

elevation range that tends to host blister mats. One year later, the transplanted mat had developed a hard, 

darkly pigmented surface, resembling a blister mat (Fig. 4A). However, the cyanobacterial communities 

remained comparable to those found in polygonal mats (Fig. 4B). This experiment suggested that 

although the cyanobacterial populations between blister and polygonal mats are generally distinct, the 

physical expression of mat morphology primarily reflects environmental context, not microbial 

community differences. Despite demonstrating clear environmental preference in their naturally occurring 

distributions, these populations persisted outside of their preferred range over the course of this one year 

experiment. 
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Rapid post-hurricane new mat growth 

Through both scour and sediment deposition, Hurricane Irma decimated large areas of mat. 

However, new mat growth developed rapidly over the surfaces exposed or deposited by the hurricane 

(Fig. 5). We categorized this new growth into three types based on the degree of perturbation—new 

growth on intact mat surfaces with minimal hurricane sediment (Fig. 5A-B); new growth on new mat 

surfaces such as where the old mat surface had been scoured out (Fig. 5B) or on intraclasts of ripped up 

mat that had been redeposited upside down (Fig. 5C, I); and incipient growth on/in hurricane sediment 

deposits (Fig. 5D), sometimes stabilizing sedimentary bedforms like ripples (Fig. 5E). We monitored the 

development of these post-hurricane growth types six months (March 2018), ten months (July 2018), and 

twenty-one months (June 2019) after the hurricane.  

NMDS analysis showed that the community variance among the post-hurricane growth samples 

was neatly grouped by the intact/new/incipient types (R = 0.8189, p = 0.001) (Fig. 5G). However, it did 

not show a trend through time (R = 0.0898, p = 0.081), which would reflect ecological succession. This 

suggested that if there was any succession in the establishment of this new growth, it occurred on a 

timescale not resolved by our field sampling campaigns—within six months after the hurricane. 

Furthermore, a short-term growth experiment (a biofilm developed on a sheet of plexiglass deployed in 

the field for one week in 2018 (Fig. 5F)) yielded a microbial community very similar to the other new 

growth samples, demonstrating that this complex community was able to colonize a fresh surface 

extremely rapidly. However, this experiment did not repeat in 2019 (no visible biofilm developed), 

suggesting that growth conditions during the aftermath of the hurricane were different from steady state. 

Similar to what we observed between the original mat types, we found that the Cyanobacteria 

exhibited the strongest contribution to the community variance between new growth types (R = 0.8411, p 

= 0.001) (Fig. 5H). The rapid development of these communities in colonizing new surfaces suggested 

that they are very robust and dynamic in their ability to respond to environmental disruption. Taken 

together with their persistence in our transplant experiment, this suggested that the community is highly 
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resistant to perturbation. Perturbation tolerance is thought to correlate with high biodiversity (44), 

something these Cyanobacteria exhibited in spades; we recovered over 6000 cyanobacterial OTUs, with 

abundant representatives from four of the five cyanobacterial subsections documented by both DNA 

sequence and morphology (Fig. S6).  

Slower recovery of the sulfur cycle 

Although robust new mat growth was evident as early as six months after the hurricane, it was 

also clear from field observations that even where the mats remained intact, the hurricane had 

dramatically impacted their biogeochemistry. Most notably, there was no perceptible odor of sulfide 

(which can be detected by smell as low as 0.008 ppm (45)), which had been a ubiquitous characteristic of 

the mats prior to the hurricane. Silver strips inserted into the mats to capture sulfide profiles (22) 

confirmed the absence of sulfidic porewater (Fig. 6B). A sulfide profile similar to the pre-hurricane 

baseline only returned by our 2019 field campaign (Fig. 6C). These observations suggested that the 

hurricane impact disrupted the sulfur cycle severely, if temporarily.  

Using specific taxonomic groups as indicators of ecosystem processes provided another line of 

evidence for a disrupted sulfur cycle in 2018. Within the Deltaproteobacteria—a group which exhibited 

particularly high variance between years (Fig. 3D)—all three major genera of sulfate reducers were 

diminished in 2018, while the aerobic Myxococcales remained abundant throughout (Fig. 6D). Similarly, 

among the major phototrophs, the Cyanobacteria and photoheterotrophs (uncultured member of the 

Rhodospirillales and Chlorothrix of the Chloroflexales) remained abundant throughout, while the sulfide 

oxidizing Chromatiales (Thioflavicoccus) were diminished in 2018 (Fig. 6E). All of these taxa recovered 

by 2019, along with the sulfide profile. Taken together, the lack of sulfide and absence of both sulfate 

reducers and sulfide oxidizers in 2018 demonstrates by both function and community composition that 

mat sulfur cycling stalled during the year following Hurricane Irma.  

Discussion 
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In ecological theory, perturbations are classified as pulses—discrete, relatively instantaneous 

alterations—or presses—sustained, gradual alterations(46, 47). Global climate change is, by definition, a 

press; but it also increases the frequency and severity of pulses, including but not limited to extreme storm 

events like Hurricane Irma (40, 48). These different types of perturbation tend to carry different patterns 

of community response, and the impacts of multiple perturbations may interact with each other in 

complex ways (49). Therefore, understanding the ecological implications of climate change requires 

understanding how each type of perturbation affects communities, the extent to which communities can 

recover from them, and how they might influence each other. The dataset presented here has implications 

for both pulse (Hurricane Irma) and press (sea level rise) perturbations on a coastal microbial mat 

ecosystem.  

Our depth profile characterization described an ecosystem governed by carbon cycling through 

primary producers and decomposers (and secondary and tertiary decomposers) and sulfur cycling through 

both producers and consumers of sulfide. In many ways, this nutrient cycling is the microbial equivalent 

of the trophic levels that comprise classical macrofaunal ecosystems; rather than predator/prey 

relationships, species interactions are based primarily on the production and consumption of chemical 

substrates. The hurricane severely disrupted the chemical gradients that enabled many of those 

interactions. The rapid development of new growth in the wake of the hurricane reflected the populations 

not dependent upon those gradients or the buildup of certain substrates—phototrophs, aerobic 

heterotrophs, metabolically flexible mixotrophs—but lacked many of the niche spaces available in the 

climax community, exemplified by the absence of sulfur cycling. By analogy to classical ecology, the 

populations dependent upon an intricate food web (or higher trophic levels) lagged behind the initial 

community. The subsequent return of sulfur cyclers and a sulfidic chemocline illustrated the recovery of 

biogeochemical cycling characteristic of a mature mat ecosystem.  

 The sulfur cycle has important connections to the carbon storage potential of mangrove and mat 

ecosystems. Reactions between dissolved sulfides and organic matter have been implicated in decreasing 

organic matter lability and thereby increasing its preservation potential. This phenomenon is known to 
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occur in the Little Ambergris mats (50) and has been suggested to account for as much as half of the 

organic matter preservation associated with mangrove forests (51)—ecosystems noted for their 

disproportionately important contributions to global carbon storage and therefore targeted by restoration 

and conservation efforts aimed at ameliorating anthropogenic carbon emissions (52). In the absence of 

sulfides generated by microbial sulfur cycling, such sulfurization reactions are unlikely to occur. 

Therefore, although mat sulfur cycling ultimately recovered from the hurricane impact, the substantial 

interruption that we observed likely carries consequences in the form of lost carbon storage potential. This 

means that the expected increase in extreme storm events due to climate change may have adverse 

implications for the carbon sequestration capacities of mangrove and mat ecosystems.  

Since the sulfur cycle disruption was seen even in mats that remained fully intact, this aspect of 

the hurricane impact was likely due to the extreme degree of fluid inundation flushing away soluble 

substrates and overwhelming anaerobic communities with oxic waters rather than physical disruption of 

mat integrity or burial. That being said, the sediment underlying the Little Ambergris mats is comprised 

primarily of ooid sand grains, which approximate close packed spheres and therefore accommodate 

substantial pore space that promotes fluid permeability. This means that significant flushing likely 

accompanies normal tidal cycles, introducing oxic seawater and moving soluble nutrients (34), and the 

gradients powering mat biogeochemical function are robust enough to weather that degree of flushing. 

Therefore, the flushing induced by Hurricane Irma must have exceeded some critical threshold in their 

buffering capacity. Irma was the strongest hurricane ever to hit Little Ambergris Cay in recorded history, 

although the island experiences hurricane force winds on average once every 5.5 years, and tropical 

storms more frequently than that. A better understanding of where this threshold sits on the continuum 

from normal daily tidal flushing to Hurricane Irma is required to appreciate the severity of these 

implications for changes going forward.  

In contrast to the post-hurricane rapid colonization of fresh surfaces and reestablishment of 

gradients in surviving mats, adaptation to changing sea level requires mats in a given location to shift 

from one type to another, as relative water level shifts around them. For the community differences 
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between mat types to persist, taxa that are specific to a given mat type—and therefore likely well adapted 

to the narrow habitat ranges that distinguish them—will have to migrate into areas that previously hosted 

a different mat type. However, our transplant experiment demonstrated impressive persistence of a 

polygonal mat community in the environmental context of a blister mat. This suggests that although mat 

morphologies will shift with changing sea level, established mat communities that can tolerate the change 

may exhibit priority effects, inhibiting the immigration of exogenous taxa that would otherwise be better 

adapted to that specific environment (47, 53). That being said, we observed post-hurricane new growth 

analogous to the full range of mat types—with analogous community differences—after the hurricane had 

scoured out or buried much of the mat area. This new growth occurred at a much higher rate than steady 

state mat growth, suggesting that the hurricane perturbation enabled the new growth, perhaps by resetting 

whatever factors limit growth, creating fresh surfaces for colonization, or aiding in dispersal. It is possible 

that by disrupting the invasion-resistant established mat communities and promoting the redistribution of 

taxa, such perturbations could facilitate the development of mat communities most optimized to a given 

habitat range. Therefore, the occurrence of pulse disturbances like a hurricane may enable adjustment to 

the press disturbance of sea level change for this ecosystem, exemplifying the complex effects of multiple 

simultaneous forcing factors.  

Taken together, this study demonstrates the substantial resilience of Little Ambergris Cay 

microbial mats in the face of both pulse and press disturbances induced by climate change. The mat 

communities and putative biogeochemical functions largely recovered from Hurricane Irma—a 

dramatically destructive perturbation—within two years. In contrast, catastrophic hurricanes threaten 

extinction for island macrofauna with limited reproduction rates and dispersal abilities (54). While this 

robustness in the face of environmental perturbation is consistent with the geological record of microbial 

mat ecosystems persisting through past intervals of climate change, this study resolved a granularity that 

can only be observed in the modern and rates of both perturbation and recovery that likely exceed most 

historical examples.   
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Methods 

Fieldwork 

We conducted five field campaigns, in July 2016, August 2017, March 2018, July 2018, and June 

2019, with an additional campaign limited to drone imaging immediately following the hurricane in 

September 2017. We conducted an initial bulk mat survey to understand the diversity of microbial mats 

across the island in July 2016, and focused on the depth profile at a single mat site in August 2017. 

Following Hurricane Irma, we surveyed new growth types in the March 2018, July 2018, and June 2019 

field seasons and repeated the 2016 bulk mat survey in July 2018 and June 2019.  

Drone photography 

Aerial imaging was done with a DJI Phantom 4 Pro uncrewed aerial vehicle equipped with an 

inbuilt 12 megapixel CMOS camera. Full island orthomosaics were generated with Agisoft Photoscan 

software from overlapping nadir images as described by Stein et al (32). 

Mat sampling 

Mat samples were collected using ethanol sterilized razor blades or spatulas into BashingBead 

lysis tubes containing a DNA preservation buffer (Zymo). Due to manufacturer changes over the course 

of this study, two different preservation buffers were used. 2016 samples were preserved in Xpedition 

lysis/stabilization solution, 2017 and 2018 samples were preserved in DNA/RNA Shield. In 2019, we 

collected a set of samples with replicates in each buffer to constrain artifacts introduced by changing the 

buffer. See supplemental Figure S7 for a more detailed discussion of this buffer discrepancy.  

DNA extraction, amplification, & sequencing 

DNA was extracted at Caltech using the Zymo Quick-DNA™ Fecal/Soil Microbe MiniPrep kit. 

A segment of the V4 to V5 hypervariable region of the 16s rRNA gene was amplified by PCR using the 

515f and 926r primer pair (55). PCR reactions were set up in 15 µL volumes with Q5 Hot Start High-
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Fidelity 2x Master Mix (New England Biolabs), with annealing at 54 °C and 30 cycles. Amplified 

products were barcoded with Illumina NexteraXT index 2 primers, and barcoded samples were submitted 

to Laragen for 2 x 250 bp paired end sequencing on Illumina’s MiSeq platform.  

Amplicon sequence data processing 

Sequence data was processed using QIIME version 1.8.0 (56). Raw sequence pairs were joined 

and quality trimmed. Sequences were then clustered into operational taxonomic units (OTUs) with 99% 

similarity using the UCLUST open reference clustering protocol, and the most abundant sequence was 

chosen as representative for each OTU. Taxonomic identification for each representative sequence was 

assigned using the Silva-119 database (57), and community composition tables at the OTU, genus, order, 

and phylum level, with both absolute and relative abundance were generated. Unless otherwise specified, 

analyses were conducted on the OTU level. OTUs that were taxonomically unassigned, singletons, 

assigned to the Eukaryota, or likely contaminants indicated by abundance in a negative control were 

removed. Samples which returned fewer than 1000 sequence reads were not included in analyses. NMDS 

& ANOSIM analyses were done by calculating a Bray dissimilarity matrix using the vegan ecology 

package in R (58). Diversity indices were calculated on datasets rarefied to 3000 reads. 

Sulfide profiles 

Sulfide profiles were captured on clean, polished silver strips inserted into the mats similar to the 

method described by Fike, et al (22). The strips were left to react for 1 hour, and then gently rinsed off 

and wrapped in kimwipes to avoid disrupting the silver sulfide precipitated on the surface. Upon return to 

Caltech, the strips were imaged with a flatbed scanner and the profile of captured silver sulfide was 

quantified by gray value in ImageJ, along a straight vertical path chosen to minimize encounters with 

bubbles or other anomalies.  

Microscopy 
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 Light microscopy was conducted during fieldwork on wet mounts using an Amscope B120 LED 

microscope equipped with an Amscope MD500 eyepiece camera.  

For fluorescence microscopy, slices of mat were fixed in 4% paraformaldehyde in phosphate 

buffered saline (PBS) for 1 hour, washed in PBS, dehydrated with 15 minute incubations in a series of 

increasing ethanol:PBS solutions (50:50, 70:30, 90:10), and stored in 100% ethanol. Upon return to the 

lab at Caltech, the fixed mats were embedded in Steedman’s wax, and sliced with a microtome into 5-10 

µm sections which were deposited onto Suprafrost Plus microscope slides (Fisher). The wax was 

dissolved with three 5 minute incubations in 100% ethanol. The remaining biomass was fluorescently 

labeled with the universal bacterial probe combination EUB338mix (EUB338, -II, and -III) with the FITC 

fluorophore (Integrated DNA Technologies). FISH hybridization was carried out at 35% formamide 

concentration as described by McGlynn, et al (59). Biomass was also counterstained with DAPI 

(4.5ng/ul) in Citiflour AF1 Mounting Medium. Tiled fluorescent images were produced on a Zeiss Elyra 

PS.1 using a Plan-APOCHROMAT 100X/1.46 Oil DIC M27 objective. DAPI, FITC, and cyanobacterial 

autofluorescence were illuminated 405 nm, 488 nm, and 561 nm laser lines and viewed through BP420-

480+LP750, BP495-550+LP750, and BP570-620+LP750 filter sets, respectively. 

 

Transplant experiment 

During summer 2018 fieldwork, a several cm thick slice of CC mat (excised to take the evolving 

depth profile photograph shown in Figure 5) was left sitting on top of the polygonal mat surface, such that 

the surface of the excised slice was several cm higher than before. When we returned in 2019, this 

transplanted mat remained undisturbed. We sampled it to explore any changes in the microbial 

community.  

 

Plexiglass biofilm experiment 

During summer 2018 fieldwork, a sheet of plexiglass was deployed at the CC site, secured by zip 

tie to mangroves and tent stakes. After one week, a biofilm that had developed on the surface was 
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sampled with an ethanol-sterilized paintbrush. Attempts to repeat this experiment in 2019 failed—no 

visible biofilm developed.  
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Figures 

 

 

Figure 1. Maps and context images. A, Satellite image of the Caicos carbonate platform, white arrow 
pointing out Little Ambergris Cay. B, Drone orthomosaic of Little Ambergris Cay with study areas 
indicated. Aerial images of these regions documenting changes over time and sample details can be found 
in Figure S1. D-I, Surface (C-E) and cross section (F-H) photographs of endmember mat types—blister 
mats, of mm-scale thickness characterized by rough, black or grey surfaces (C, F); polygonal mats, of 
cm- to dm-scale thickness with highly cohesive, often fibrous mat fabric and dark green tufted surfaces 
characterized by desiccation cracks that delineate polygons (D, G); and smooth mats, of generally cm-
scale thickness and ranging in consistency from moderately cohesive to loose and goopy, often covered in 
beige exopolysaccharide material (E, H). I, NOAA GOES network infrared image of Hurricane Irma with 
the eye directly over Little Ambergris Cay on September 7th, 2017, 22:45 UTC. Black traces indicate land 
masses, white box indicates the area shown in panel A. 
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Figure 2. Microbial mat stratigraphy. A, Photograph of CC mat cross section. Each visually 
distinguishable layer was sampled in replicate for microbial community analysis; the numbers to the right 
of the photograph indicate the horizons sampled. B, Phylum level community composition of each layer, 
data shown are the averages of replicates. C, NMDS plot showing variance in the microbial communities 
with depth. Each point represents a sample; relative proximity between points indicates similarity. 
Replicate samples are plotted separately, illustrating the minor amount of heterogeneity between 
replicates. D-E, Normalized relative abundance showing the distribution of major groups of phototrophs 
(D), and Deltaproteobacteria (E) with depth, demonstrating the presence of an oxic photic zone, a sulfidic 
photic zone, and at least four distinct zones of organic carbon breakdown. Percentages indicate the 
maximum relative abundance of each taxon. F, Sulfide profile captured on a silver strip, illustrating the 
porefluid chemocline from oxic to sulfidic ~1.3 cm below the mat surface. G, Alpha diversity (observed 
OTUs) and H, Shannon diversity (𝐻 = −∑ (𝑝cz

c{5 𝑙𝑜𝑔B𝑝c)) of each sample with depth. I, Fluorescence 
microscopy showing the complexity of spatial relationships and microenvironments in a mat slice. Red is 
FISH labelling of 16S rRNA with a universal bacterial probe; blue is DAPI, a general DNA stain; green is 
cyanobacterial autofluorescence.  
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Figure 3. Differences in bulk mat communities across space and time. A, NMDS plot visualizing 
variance, showing a clear trend between mat types along with a perturbation following the hurricane that 
largely recovered by 2019. Additional metadata variables can be found in Figures S2 and S7. B, NMDS 
plot of phylum level rather than OTU level data. At the phylum level, the trend between mat types is lost, 
but the perturbation in 2018 remains clear. C, Average phylum level community composition of all bulk 
mat samples from each year, and of each mat type within each year. The individual samples included in 
these averages can be found in Figure S3. D-E, The contribution of each major group of organisms to the 
community variance seen between mat types (D) and year (E), quantified as the difference in ANOSIM 
statistic R between the full dataset and the dataset filtered to include only a specific group of organisms 
(shaded bars), and also the dataset filtered to exclude that specific group (open bars). NMDS plots 
accompanying these calculations can be found in Figure S4. The aspects of the community that varied 
most strongly between mat types and those most strongly perturbed by the hurricane are notably 
distinct—almost inverse.  
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Figure 4. Transplant experiment. A, Photograph of a transplanted slice of polygonal mat, turned dark and 
hard—reminiscent of blister mat—one year after transplantation. B, NMDS plot of only cyanobacterial 
OTUs, illustrating their clear pattern of variance between mat types. Transplant samples are more similar 
to polygonal mats than blister mats, indicating that mat texture reflects environmental factors more than 
community composition, and demonstrating remarkable tolerance for environmental change from these 
taxa.  
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Figure 5. Post-hurricane growth. A, Photographs of the CC mat depth profile through time, beginning one 
month before the hurricane in August 2017. This area was well protected by mangroves, and therefore 
impacted minimally. A thin layer of sediment deposited by the storm is visible in all subsequent 
photographs, with increasing new mat growth above it. Sediment lags several cm below the mat surface 
could represent previous storm events, possibly Hurricanes Ike in 2008 and Frances in 2004. B, Scoured 
polygons adjacent to intact polygons in the CC area. New growth is visible on both intact and scoured 
surfaces. C, Intraclasts of ripped up mat that were rounded during transport and redeposited upside down 
at MCW. D, Incipient mat on top of hurricane sediment at FM. E, Microbially stabilized ripples at BB. F, 
Plexiglass biofilm experiment at CC. G, NMDS plot of post-hurricane growth samples. H, ANOSIM 
analysis showing the contribution of different groups to the variance between new growth types. I, 
Histogram showing thicknesses of new growth from 86 measurements of upside down mat intraclasts 
observed in March 2018, 6 months after the hurricane.  
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Figure 6. The sulfur cycle recovered on a slower timescale than new mat growth. A-C, Sulfide profiles 
captured on silver strips at CC depth profile site in A, 2017, B, 2018, and C, 2019, shown as both raw 
scanned images (left) and quantified by gray value (right). In 2017 and 2019, there was a clear sulfidic 
zone in the subsurface mat. In 2018, the year following Hurricane Irma, the mats did not appear 
meaningfully sulfidic at any depth. D-E, Box and whisker plots showing the relative abundances of major 
Deltaproteobacteria (D) and phototrophs (E) in bulk mat samples from each year. Boxes denote first and 
third quartiles, horizontal lines indicate medians, x’s indicate averages, whiskers indicate minimum and 
maximum data points. Taxa implicated in sulfate reduction or sulfide oxidation were substantially 
diminished in 2018, consistent with an impacted sulfur cycle.  
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Supplemental figures 
 

 

Figure S1. Drone images of mat study areas showing aerially visible changes over time. Specific sample 
locations from each field season are marked; some markers represent multiple samples of the same type 
taken in close proximity. The LB and F areas featured all three endmember mat types along transects of 
varying water depth across channels. The CC area contained thick, lush polygonal mats largely protected 
by mangrove thickets. The FM area hosted extensive mats prior to Hurricane Irma, most of which were 
scoured out or buried under a large lobe of sediment deposited during the storm, the surface of which 
subsequently developed incipient growth. The BB area also experienced massive changes in 
sedimentation from the hurricane, and transiently featured microbially-stabilized ripples. MCW was one 
of many areas that accumulated deposits of mat intraclasts after the hurricane.  
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Figure S2. Additional NMDS plots of variance in bulk mat dataset. A, Bulk samples plotted with the 
depth profile dataset. The variance between bulk mats plotted along a different vector than the variance 
with depth, indicating that the variance between bulk mats was not merely a reflection of how much of 
the subsurface community was sampled. B, NMDS plot from Figure 3A colored by sample location, 
which did not exhibit a meaningful trend.  
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Figure S3. Phylum level community composition of the individual bulk mat samples from A, 2016, B, 
2018, and C, 2019 that contributed to the averages shown in Figure 3C.  
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Figure S4. NMDS plots visualizing variance within major groups of organisms from the subsetted 
datasets used to calculate the ANOSIM values in Figure 3D-E. The plot for each group is shown twice 
with the points colored by mat type or year, to highlight how different groups express patterns in 
dissimilarity for each variable. ANOSIM statistic R values are displayed for the variable in question.  

 



207 
 

 

Figure S5. Phylum level community composition of post-hurricane growth samples. 
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Figure S6. Diversity of Cyanobacteria in the Little Ambergris Cay mats. A, Heat map showing relative 
abundance of the top cyanobacterial taxa (OTUs with average > 0.5% of cyanobacterial reads in a 
sample), together accounting for 36% of all cyanobacterial reads. B-E, Photomicrographs illustrating the 
morphological diversity of Cyanobacteria in the Little Ambergris Cay mats, including unicellular (B), 
colonial/baeocystous (C), filamentous (D), and heterocystous (E) representatives.  
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Figure S7. Deconvolving the buffer artifact from the hurricane impact. A-B, NMDS plots from Figure 3 
at the OTU (A) and phylum (B) levels, showing which DNA preservation buffer was used. Letters 
indicate 2019 replicates. The buffer discrepancy complicated interpretation of the variance between years 
at the OTU level, but phylum level data showed a clear pattern of hurricane impact and recovery 
regardless of buffer. C-D, Box and whisker plots of the taxa shown in Figure 6, comparing samples 
collected in 2019 with the Xpedition (X) buffer used in 2016 and the Shield (S) buffer used in 2018. 
There was a possible buffer artifact in the Desulfovibrionales, but the remainder of these taxa seemed 
unaffected by buffer, strengthening our interpretation that the perturbation illustrated with these taxa 
represented real ecological change. E-F, We also examined major orders within the Alphaproteobacteria 
and Chloroflexi, two of the most dominant groups across all samples. E, Within the Alphaproteobacteria, 
some orders were clearly diminished (Rhodobacterales, Parvularculales) while others were enriched 
(Rhodospirillales, Rhizobiales) in 2018; these taxa did not seem affected by buffer, suggesting that their 
perturbation also reflected the hurricane impact. However, they are sufficiently functionally diverse that it 
is inadvisable to draw specific biogeochemical conclusions from their presence or absence. Other groups 
(E6aD10 and ss1_B_07_44) did exhibit buffer effects. F, Within the Chloroflexi, both the phototrophic 
Chloroflexales and anaerobic, fermentative Anaerolineae were abundant throughout our timeseries, but 
their relative dominance was switched in 2018. These taxa did not exhibit a buffer effect.  
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Abstract 

The pollution caused by plastic microbeads used as exfoliants in facial scrubs and body washes is 

ecologically devastating. Commonly used natural alternatives such as fragments of walnut shells and 

stonefruit pits are prone to damaging skin—a serious liability in a skincare product. Here we propose that 

ooid sand grains present an excellent alternative. We discuss how recent advances in our understanding of 

ooid formation processes redefined them as a renewable resource. We present size, shape, texture, 

efficacy, and stability data demonstrating the properties that make ooids an ideal microbead material—

both gentle on skin and effective as an exfoliant. Finally, we discuss the fate of ooids after being washed 

down the drain—dissolution in wastewater or groundwater—which introduces the added benefit of being 

a CO2 sink. This dissolution can be catalyzed by endolithic Cyanobacteria, at much faster rates than 

previously appreciated. 

 

Introduction 

Microplastics—plastic particles < 1mm in diameter—are a major and devastating component of 

plastic pollution. These materials have become the most abundant form of plastic debris in the oceans, 

found throughout the water column and accumulating in sediment systems around the world (1). Their 

small size makes them easily ingested, impacting organisms across trophic levels—from filter-feeding 

zooplankton to top predators (2–6); and the ecological consequences of ingesting these particles are 

exacerbated by their tendency for toxin sorption (7). Given their persistence in the environment and the 

impracticality of removing them, the continued release of microplastics represents a lasting ecological 

threat (5, 8).  

Over the past several decades, a major source of microplastic pollution has been the use of plastic 

microbeads as exfoliants in skincare products (2, 9). The presence of these particles in products designed 

to be washed down the drain is particularly egregious because wastewater treatment strategies are 

ineffective at preventing their release into the environment (10). Rising public awareness of the ecological 

ramifications of microplastics has led to a recent movement away from plastic microbeads; many 
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countries have adopted legislation banning their use in cosmetic products (11) and corporations have tried 

to replace the plastics with natural alternatives such as walnut shell or stonefruit pit fragments and jojoba 

wax beads. Unfortunately, these alternative materials are either more expensive and less effective—i.e. 

jojoba wax—or have serious liabilities as exfoliants—i.e. walnut shells and stonefruit pits, fragments of 

which are too jagged and can damage skin (12). Thus, there remains a need for an effective, inexpensive, 

and environmentally benign microbead material.  

Ooids are a type of spherical, concentrically coated carbonate sand grain typically made of the 

mineral aragonite that form in certain shallow marine and lacustrine environments. Their formation is 

controlled by dynamic physical and chemical processes of abrasion and precipitation, which operate at 

near equilibrium with the environment (13). Based on radiocarbon ages, they were previously considered 

geological products that formed over timescales of millennia. However, recent work documented 

instantaneous rates of both abrasion and precipitation on the order of 104 µm3/ooid/hour (13)—four orders 

of magnitude higher than the net growth rates suggested by radiocarbon age (14). These results suggested 

that the appearance of slow growth is an artifact of natural systems in equilibrium—where abrasion and 

precipitation are operating at subequal rates—not an inherent property of ooid formation. By extension, if 

ooid forming environments from which a subset of ooids have been removed are seeded with appropriate 

nuclei, they can be expected to regenerate sand sized grains on timescales of a few years. This 

understanding redefined ooids as a renewable resource—a natural product that can be replenished 

relatively quickly.  

 Here we propose the use of ooids as a natural alternative to plastic microbeads. Ooid size, shape, 

and surface texture characteristics along with experimentally demonstrated abrasion efficacy reflect the 

qualities of an ideal exfoliating material. Furthermore, while they are shelf-stable in facial scrub and body 

wash matrices, they will dissolve in municipal wastewater systems, and in so doing constitute a net CO2 

sink.  

 

Results & Discussion 
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Ooids exhibit material properties of an ideal exfoliating microbead 

We harvested microbeads from several commercially available facial scrubs and body washes 

(Table 1, products A-H) and compared them to natural ooid samples from both lacustrine (Great Salt 

Lake (GSL), USA) and marine (Little Ambergris Cay (LAC), Turks and Caicos Islands, along with 

commercial aquarium sand composed primarily of ooids sourced from the Bahamas) environments. The 

microbeads exhibited a wide range of grain sizes, with median diameters ranging from 116 to 791 µm 

(Fig. 1A). Natural ooids can be sieve sorted to generate populations across the same size ranges (Fig. 1B), 

demonstrating their versatility as replacements for many different types of microbeads.  

To avoid the dermatological damage caused by jagged materials like walnut shells, an ideal 

microbead glides or rolls across the skin rather than snagging or scraping. This behavior is determined by 

shape characteristics such as sphericity and roundness, two different measures of how much particle 

shape deviates from that of a perfect sphere (mathematically defined in Fig. 2 legend). By both of these 

parameters, natural ooids scored as high or higher than any of the commercial microbeads examined, 

while walnut shell fragments scored the lowest (Fig. 2).  

Scanning electron microscopy (SEM) imaging revealed a wide range of microbead surface 

textures (Fig. 3). As expected, plastic and wax beads exhibited smoother surfaces, while walnut shell 

fragments displayed much rougher surfaces (Fig. 3F). The jagged edges that make them prone to tearing 

skin are defined by plant cell walls and therefore inherent to these and other such plant-derived materials. 

In contrast, the surfaces of natural ooids are exceptionally smooth, polished by the abrasive forces that 

contribute to their formation (Fig. 3I).  

Their extreme smoothness and roundness demonstrated by both SEM and shape index data made 

it clear that ooids do not share the liabilities of walnut shells, but raised the concern that perhaps they are 

too gentle, and therefore insufficiently abrasive to act as effective exfoliants. To test the efficacy of ooids 

as microabrasive particles, we conducted abrasion experiments comparing ooids to plastic microbeads 

harvested from a commercial facial scrub (product B) using a low tensile strength polyurethane foam 
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substrate as a skin simulant. Both sets of particles demonstrated comparable abrasion rates, indicating 

comparable utility as an exfoliant (Fig. 4).  

Taken together, this dataset illustrates the ideal material qualities of ooids for use as an 

exfoliating microabrasive in cosmetic products. Ooids exist in the same size ranges as commercially used 

microbeads, their grain shape and surface texture indicates that they will be gentle on skin, and their 

efficacy as microabrasive particles suggests that they will be effective exfoliants.  

 

Washing ooids down the drain constitutes a net CO2 sink 

Considering the fate of ooids washed down the drain revealed further benefits of using them in 

cosmetic products. All municipal wastewaters and nearly all non-marine surface, soil, and groundwaters 

tend to be undersaturated with respect to CaCO3 minerals such as aragonite (Ω < 1) and therefore drive 

net dissolution of such materials. This means that ooids in products that are ultimately washed down the 

drain require no special remediation; they will dissolve on their own, at rates determined by grain size and 

carbonate saturation state (Fig. 5). Furthermore, carbonate can serve as a pH buffer, preventing corrosion 

and leaching of toxic heavy metals in plumbing systems. If any ooids escape to marine systems, they will 

contribute to existing natural carbonate sediment that helps buffer against ocean acidification—a 

challenge for marine fisheries and biodiversity in its own right (15). 

Water activity in the detergent matrices of typical microbead-containing products is sufficiently 

low that ooid dissolution within such products should be minimal. To confirm this, we conducted stability 

incubations in several facial scrub and body wash products (Table 1, products I-M). After 13 months, 

ooids did not exhibit any signs of even incipient decomposition (Fig. 6), indicating that dissolution will 

occur after products containing ooids are used and washed away, but not before.  

Ooid dissolution has important environmental implications well beyond mitigating microplastic 

pollution. Conversions between atmospheric CO2, dissolved inorganic carbon (DIC), and solid carbonate 

minerals are central to the Earth’s carbon cycle and therefore climate system. CO2 is a greenhouse gas and 

major contributor to the increase in Earth’s radiative forcing due to anthropogenic emissions. The 
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equilibrium between atmospheric and dissolved carbon species mitigates this situation; much of our 

emitted CO2 is taken up by the oceans as DIC (16). CaCO3 dissolution represents a carbon sink that ties 

into this equilibrium—the balanced dissolution reaction generates two molar equivalents of dissolved 

bicarbonate alkalinity for each mole of CaCO3 by pulling one mole of CO2 out of the atmosphere 

(equation 1) (17). 

 

1. CaCO3 + H2O + CO2 → Ca2+ + 2 HCO3
- 

 

In other words, widespread replacement of plastic microbeads with natural ooids and their subsequent 

dissolution could constitute a net CO2 sink. Thus, ooids used as exfoliants are “green” not only in being 

an alternative to microplastics and a renewable natural resource—they could have a negative carbon 

footprint.  

 

Boring Cyanobacteria provide a rapid, light-driven mechanism of ooid dissolution 

 The thermodynamic driving force determined by saturation state is not the only factor controlling 

ooid dissolution. In certain environments, endolithic Cyanobacteria are known to bore into ooids (18). 

This occurs even under conditions that are supersaturated with respect to aragonite (Ω > 1), where 

dissolution is thermodynamically unfavorable. The mechanism by which Cyanobacteria dissolve 

carbonate was long considered a paradox—as photosynthetic organisms, their primary metabolic activity 

increases the local pH, thereby facilitating the precipitation rather than dissolution of carbonate minerals. 

Therefore, in order for Cyanobacteria to bore, their photosynthetic and boring activities must be separated 

either temporally (such as across the diel cycle), or spatially (such as in different areas of a cyanobacterial 

cell or filament), or their boring must occur via a mechanism independent of pH (19).  

The model organism Mastigocoleus testarum strain BC008 has been shown to dissolve carbonate 

by a mechanism based on active Ca2+ transport using a P-type ATPase (20). By pumping Ca2+ ions away 

from the mineral surface these organisms create a steep Ca2+ concentration gradient, favoring the 
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dissolution of the carbonate mineral by a mechanism that is pH independent and therefore not interfered 

with by photosynthetic activity. There is also evidence that they can obtain the majority of their carbon 

for autotrophic growth directly from the carbonate mineral (21). This means that these organisms not only 

facilitate carbonate dissolution and the accompanying CO2 sink described above, they amplify it—

sequestering the carbon liberated from the mineral as biomass, and drawing down two molar equivalents 

of CO2 from the atmosphere to balance the alkalinity generated by dissolution (equation 2).  

  

2. CaCO3 + 2H2O + 2CO2 → CH2O + Ca2+ + 2 HCO3
- + O2 

 

Marine ooids, such as those at LAC, often exhibit substantial evidence of boring (Fig. 7A). Like 

the processes involved in ooid formation, boring was previously thought to occur too slowly to readily 

study in situ. We tested this assumption by deploying polished aragonite stubs in the environment as clean 

substrates to get colonized and bored, and then collected them and examined them for boring traces by 

SEM. Even the shortest incubation that we conducted—five days—exhibited boring (Fig. 7B). This 

remarkably rapid rate suggested that boring controls meaningful fluxes of carbon cycling in shallow 

marine environments like LAC.  

Boring Cyanobacteria exhibit a wide range of both genetic and morphological diversity, and the 

universality of the M. testarum Ca2+ pumping mechanism across this diversity remains an open question. 

While M. testarum is sensitive to Ca-ATPase inhibitors, at least one other group of boring Cyanobacteria 

(of the Pleurocapsales) appear not to be, suggesting the possibility of other boring mechanisms (22). 

Furthermore, M. testarum is unable to bore into dolomite or apatite, although rich endolithic communities 

exist in dolomitic and phosphatic rocks—another possible indication of mechanistic diversity. Notably, 

cyanobacterial community members exhibit preferences between mineral substrates only at very high 

phylogenetic resolution, suggesting very fine niche specialization between closely related organisms (23). 

16S rRNA gene amplicon sequencing revealed diverse Cyanobacteria associated with LAC ooids 

and deployed aragonite stubs (Fig. 8A-B). The stubs represent a much shorter-term colonization window 
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than the ooids themselves and exhibited much higher dominance of Cyanobacteria relative to other taxa. 

This observation is consistent with previous work suggesting that cyanobacterial borings are ultimately 

colonized by a diverse community of other endolithic organisms (24). The identities of the Cyanobacteria 

that we recovered from the stubs were different from those endemic to the natural ooids, possibly 

indicating a successional dynamic among the borers themselves. Ongoing work is aimed at elucidating 

the physiological mechanism, or mechanistic diversity, associated with these boring populations to better 

understand the role of biological ooid dissolution in the carbon cycle.  

 

Conclusions 

This work introduced ooids a replacement for plastic microbeads in cosmetic products that would 

not only mitigate microplastic pollution but also contribute to CO2 drawdown via carbonate dissolution. 

Furthermore, to better understand the landscape of carbonate dissolution processes, we established an 

experimental system for studying cyanobacterial boring in situ and demonstrated that boring occurs 

incredibly rapidly—on timescales of days—suggesting that photosynthetically-driven carbonate 

dissolution can control meaningful fluxes of carbon cycling. Many open questions remain concerning the 

ecology and physiology of boring miocroorganisms. From the basic science perspective, future work on 

this topic may contribute important insights, not only to our understanding of modern endolithic 

microbiology, but also to the geological record of endoliths and what their presence or absence from 

ooids at different periods in Earth history can tell us about paleoenvironment. From the microbead 

replacement perspective, better understanding ooid microbiology may shed light on important 

considerations for the material quality of ooids, strategies for sustainably harvesting them from the 

environment, and implications for their dissolution and CO2 drawdown capacity following use.  

 

Methods 

Ooid and commercial microbead samples 
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Natural ooids were collected at Little Ambergris Cay, Turks and Caicos Islands and the Great Salt 

Lake, USA, rinsed with water to remove surficial salts, and allowed to dry. Bahamian ooids sold as 

aquarium sand were purchased (CaribSea Arag-Alive). For grain size analyses, ooids were sieved to 

separate different size fractions.  

Commercial facial scrub and body wash products containing microbeads were purchased 

(Walgreens) (Table 1, products A-H). Microbeads were harvested by filtration through nylon mesh cell 

strainers (VWR), rinsed with water, and allowed to dry.  

 

Size and shape analyses 

Grain size and shape characteristics of large populations of grains were determined by dynamic 

image analysis using a Retsch Camsizer P4.  

 

SEM imaging 

Secondary electron SEM imaging of grain surfaces was conducted in the Caltech Geological and 

Planetary Sciences Division Analytical Facility on a ZEISS 1550VP Field Emission SEM. Samples were 

mounted on aluminum holders with carbon tape, coated with Pd using a Cressington HR metal sputtering 

coater, and imaged with accelerating voltages of 10 to 20 kV and working distances of 15 to 25 mm.  

 

Abrasion experiments 

To obtain measurable abrasion rates, we used low tensile strength (σT = 0.32 MPa) polyurethane 

foam as a highly abradable skin simulant. Abrasion chambers were constructed by securing a 3.5 cm thick 

foam disc to the base of a 200 mL beaker, 6.5 cm in diameter. The microabrasive materials being tested 

were immobilized as a monolayer across a flat surface 4 cm in diameter. The abrasive surfaces were 

weighted to 80 g, placed in the abrasion chambers, and submerged in water. To insure that any measured 

abrasion was not merely due to weight, a control was conducted using an identical weighted surface but 
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without any abrasive material. The chambers were sealed with parafilm and shaken at 230 rmp for 1 – 3 

hours. Abrasion was measured as depth scoured in the foam discs by the weighted surfaces.  

 

Stability incubations 

 Ooids were added to glass vials with commercial facial scrub and body wash products without 

microbeads but analogous to the types of products that tend to contain them (Walgreens) (Table 1, 

products I-M). Incubations were kept at room temperature. After 6 months and 13 months, the ooids were 

filtered out through nylon mesh cell strainers, rinsed, dried, and examined by SEM.  

 

Endolithic microbial community analysis 

 Aragonite crystals (Jewel Tunnel Imports) were sliced into stubs, polished, and glued to 

plexiglass sheets that were strapped to cinderblocks and deployed in the environment at LAC to allow 

colonization by natural microbial communities. After one week, the stubs were collected and either 

sterilized by submergence in ethanol or sampled for DNA analyses. Upon return to the lab, the sterilized 

stubs were examined for borings by SEM.  

 To access endolithic communities for DNA analyses, the surface of a stub was scratched with a 

sterile dental pick. The scrapings were collected with a sterile paintbrush and deposited in a BashingBead 

lysis tube containing DNA/RNA Shield (Zymo) for preservation. The endolithic communities of natural 

ooids were sampled similarly, accessed by grinding ooid grains in a sterile mortal and pestle.  

DNA was extracted at Caltech using the Zymo Quick-DNA™ Fecal/Soil Microbe MiniPrep kit. 

A segment of the V4 to V5 hypervariable region of the 16s rRNA gene was amplified by PCR using the 

515f and 926r primer pair (25). PCR reactions were set up in 15 µL volumes with Q5 Hot Start High-

Fidelity 2x Master Mix (New England Biolabs), with annealing at 54 °C and 30 cycles. Amplified 

products were barcoded with Illumina NexteraXT index 2 primers, and barcoded samples were submitted 

to Laragen for 2 x 250 bp paired end sequencing on Illumina’s MiSeq platform. Sequence data was 

processed using QIIME version 1.8.0 (26). Raw sequence pairs were joined and quality trimmed. 
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Sequences were then clustered into operational taxonomic units (OTUs) with 99% similarity using the 

UCLUST open reference clustering protocol, and the most abundant sequence was chosen as 

representative for each OTU. Taxonomic identification for each representative sequence was assigned 

using the Silva-119 database (27). 

Candidate borer Cyanobacteria were enriched from an LAC ooid sample in PES30 artificial 

seawater medium (20) and imaged by light microscopy using an Amscope B120 LED microscope 

equipped with an Amscope MD500 eyepiece camera.   
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Figures 

 

 
Figure 1. Size distributions of commercial microbeads (A) and natural ooids (B), illustrating that they 
exist in the same size ranges.  
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Figure 2. Mean shape indices of commercial microbeads and natural ooids. Sphericity is calculated as 
4πA/p2, where A is the projected area of the particle and p is the perimeter; roundness is calculated with 
the Wadell roundness index Σri/(nR), where ri are the radii of curvature of particle corners, n is the 
number of corners measured, and R is the radius of the largest inscribed circle. A perfect sphere has both 
roundness and sphericity indices of 1. By both of these parameters, ooids scored higher than most of the 
commercial microbeads examined, while walnut shell and apricot pit fragments scored the lowest.  
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Figure 3. SEM images showing surface textures of commercial microbeads (A-H, products described in 
Table 1) along with an LAC ooid grain for comparison (I). Note the contrast between the jagged edges of 
apricot pit fragments (F) and the smooth, well-polished ooid surface (I).  
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Figure 4. Efficacy of LAC ooids and plastic microbeads as microabrasive particles, determined 
experimentally on a polyurethane foam substrate. Rates reported here are averages of triplicates, error 
bars represent standard error. Ooids demonstrated similar abrasion efficacy to plastic microbeads, 
suggesting they would make an effective exfoliant in skincare products. 
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Figure 5. Modelled ooid dissolution rates, calculated based on Morse et al, 1979 and Walter and Morse, 
1984. Ω is defined as [Ca2+][CO3

2-]/Ks. In undersaturated waters, ooids will dissolve, at rates that increase 
with decreasing saturation state and increasing surface area. 
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Figure 6. Shelf stability of ooids in a body wash matrix. SEM images of representative ooids incubated in 
product I and harvested after 6 months (B) and 13 months (C) are indistinguishable from representative 
starting material (A) and do not display any signs of decomposition. Analogous incubations with products 
J-M gave similar results.  
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Figure 7. Boring Cyanobacteria facilitate ooid dissolution. A. SEM image showing a heavily bored ooid 
from LAC. B. SEM image of a hexagonal tunnel rapidly bored into a polished aragonite stub during 
deployment in the environment for < 1 week.  
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Figure 8. Diverse Cyanobacteira are associated with ooids. A. Phylum-level microbial diversity of 
communities recovered from LAC ooids and a bored aragonite stub, illustrating the presence of abundant 
Cyanobacteria. B. Heatmap showing the normalized relative abundances of major cyanobacterial taxa. C. 
Putative boring cyanobacterium enriched from LAC ooids.  
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Tables 

 

 
product ID brand description beads 

A Johnson & Johnson morning burst facial cleanser plastic 
B Neutrogena oil-free acne wash pink grapefruit 

foaming scrub 
plastic 

C St. Ives nourished & smooth oatmeal scrub silica and walnut 
shell 

D Johnson & Johnson morning burst skin brightening facial 
scrub 

plastic 

E Beauty 360 moisturizing shea butter & almond oil 
body wash 

plastic 

F Beauty 360 exfoliating coconut body wash apricot pit  
G Beauty 360 radiant sea mineral body wash plastic 
H Shea Moisture African black soap body wash jojoba wax 
I Beauty 360 moisturizing antibacterial body wash - 
J Dove sensitive skin nourishing body wash - 
K Shea Moisture coconut & hibiscus body wash - 
L Neutrogena oil-free acne wash pink grapefruit 

facial cleanser 
- 

M Burt’s Bees sensitive facial cleanser - 
 
Table 1. Commercial cosmetic products used in this study. Products A-H contain exfoliating particles 
which were harvested and examined; products I-M do not contain particles and were used for ooid 
stability incubations.  
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Definition 

Photosynthesis is the biological process of converting the energy in visible light into chemical energy 

available for the cell to fix CO2 into biomass for growth. Oxygenic photosynthesis is a unique version of 

photosynthesis that uses water as the electron donor, producing dioxygen as a product.  

 

Chemical Formula 

H2O + CO2 + light → O2 + CH2O 

 

Overview  

Oxygenic photosynthesis is fundamental to life as we know it today. This metabolism accounts 

for the vast majority of primary productivity on Earth, and maintains our atmosphere rich in O2 and far 

from chemical equilibrium with the solid Earth, thus representing a presumptive biosignature on a 

planetary scale. It is carried out by members of the bacterial phylum Cyanobacteria and the constitutively 

related chloroplasts of algae and plants, with major global contributions from both terrestrial and marine 

ecosystems.  

Oxygenic photosynthesis evolved once, roughly 2.4 billion years ago, in the Cyanobacteria and 

was a key turning point in the history of life on Earth. Unlocking the ability to use the abundant resource 

of H2O as an electron donor for photosynthesis allowed for a massive increase in primary productivity 

and expansion of the biosphere, while the production of O2 transformed Earth surface environments and 

led to the evolution of aerobic biochemistries—the latter, by extension, enabled complex multicellular 

life.  

 

Mechanics 

To capture sunlight, photosynthetic organisms use pigment molecules like the tetrapyrrole 

chlorophyll to absorb light energy, generating an excited state of the pigment molecule. This excited state 

migrates from pigments in light-harvesting antenna systems to the reaction center—a protein complex 
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with a pair of pigments that utilizes the excitation energy of the chlorophyll to engender charge separation 

and electron transfer. When the chlorophyll pair (P) is promoted to the excited state (P*), it moves an 

electron to an acceptor molecule, simultaneously generating a strong oxidant (P+) and a strong reductant 

(A-) in different parts of the reaction center. The oxidizing power of P+ is used to pull electrons from an 

electron donor, and the reducing power of A- is sent down the electron transport chain—along its path 

contributing to the transmembrane potential and thereby ATP synthesis, and eventually the generation of 

low potential reducing power for CO2 fixation in the form of NADPH.  

To span the vast amount of redox space between H2O and NADPH, oxygenic photosynthesis uses 

two distinct reaction centers coupled in series—photosystem II (PSII), which oxidizes H2O to O2 and 

donates electrons to the quinol pool, and photosystem I (PSI), which takes electrons that have run through 

complex III from plastocyanin and donates them to a ferredoxin—which can be used at the start of the 

process to fix carbon. Part of what makes oxygenic photosynthesis special is the ability derive electrons 

from water. The key catalyst that enables this is a Mn4CaO5 cluster known as the water-oxidizing 

complex (WOC) or oxygen-evolving complex (OEC), ligated by the PSII complex. The Mn atoms in this 

cluster cycle through a range of oxidation states, acting as a redox capacitor to bridge the single-electron 

process of photochemical electron transfer with the four-electron process of oxidizing H2O to O2. 

The carbon fixation pathway used in oxygenic photosynthesis to convert CO2 to sugars for 

various cellular processes is the Calvin cycle, also known as the Calvin-Benson-Bassham cycle or the 

reductive pentose phosphate cycle. This cycle consumes the reducing power and ATP generated as a part 

of the photochemical reactions involving the electron transport chain that begins at PSII. The Calvin cycle 

involves numerous biochemical reactions, but can be summarized as three phases—carboxylation, 

reduction, and regeneration. In carboxylation, the enzyme RuBisCO—the most abundant protein on the 

planet—adds a CO2 molecule to ribulose 1,5-bisphosphate (RuBP), a 5-carbon sugar, to generate two 

molecules of 3-phosophoglycerate (PGA), a 3-carbon sugar. In reduction, PGA is phosphorylated and 

reduced to produce glyceraldehyde-3-phosphate (GAP), consuming ATP and NADH. Finally, in 

regeneration, five molecules of GAP are used to regenerate 3 molecules of RuBP. Thus, for every three 
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molecules of CO2 that get fixed, six molecules of GAP are produced, five of which are used to regenerate 

RuBP, with one remaining GAP exported to other metabolic pathways.  

 

Evolution 

Anoxygenic photosynthesis is biochemically simpler than oxygenic photosynthesis; it uses single 

photochemical reaction centers—rather than the coupled photosystems of oxygenic photosynthesis—and 

electron donors with much lower reduction potentials rather than H2O. Anoxygenic phototrophy evolved 

very early in Earth history; geological data suggest this occurred likely prior to 3.4 billion years ago. 

Today, anoxygenic phototrophy is known to exist in the bacterial phyla Proteobacteria, Chloroflexi, 

Chlorobi, Acidobacteria, Firmicutes, Gemmatimonadetes, and the candidate phylum WPS-2; and is 

known to use electron donors such as H2, Fe(II), sulfide and other reduced sulfur species, nitrite, arsenite, 

and organic compounds. However, none of these phyla appear to be ancestrally phototrophic, leaving the 

identity of the lineage that invented anoxygenic phototrophy an enduring evolutionary mystery. It is 

possible that this lineage is now extinct. 

There is debate about the evolutionary timing of oxygenic photosynthesis, but a wide array of 

geological observations indicate that it had evolved from an anoxygenic ancestor in the Cyanobacteria by 

2.4 billion years ago. This transition involved the evolution of a reaction center with a much higher 

reduction potential, the innovation of the WOC/OEC to bridge the single electron photochemistry of the 

reaction center with the requisite four electron chemistry for H2O oxidation, and the coupling of two 

separate reaction centers in series in the electron transport chain. With the advent of oxygenic 

photosynthesis came the first meaningful environmental fluxes of O2; this transformed Earth surface 

environments dramatically and irreversibly, impacted all global biogeochemical cycles, and redirected the 

evolutionary trajectory of life by enabling aerobic metabolisms. This defining moment in Earth history is 

known as the Great Oxygenation Event (GOE).  

All photosynthetic eukaryotes (algae and plants) derived their photosynthetic machinery from 

Cyanobacteria, as their chloroplasts originated by the endosymbiosis of a Cyanobacterium with a 
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eukaryotic host cell. The earliest algal fossils date to 1.05 billion years ago, while the first land plants 

emerged circa 488 million years ago.  
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Figure 
 
 
 

 
 
Figure 1. A. Schematic diagram of the oxygenic photosynthesis electron transport chain. B. The Z-
scheme, depicting the energetics of electron transfer in oxygenic photosynthesis. Electron flow from a 
lower potential electron donor to a higher potential electron acceptor is thermodynamically favorable. The 
input of light energy to induce charge separation in the special pair (P680 in the case of PSII, P700 in the 
case of PSI), generates a very high potential electron acceptor (P+) and a very low potential electron donor 
(A-), allowing for favorable electron flow along the electron transport chain. C. The Calvin cycle, 
simplified as three stages—carboxylation, reduction, and regeneration. This pathway uses ATP and 
NADPH generated by the light-dependent reactions shown in panel A. The enzyme RuBisCO catalyzes 
the key step of CO2 fixation.  
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