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ABSTRACT

Thin-shell structures provide a lightweight solution for deployable structure appli-

cations. Despite being only few tens of microns thick, these structures provide

excellent bending stiffness, thanks to their curved cross-section. Their thinness also

allows them to be elastically packaged into small volumes to fit into a launch vehicle;

once in space, they can be self-deployed by releasing their stored elastic energy.

Most space applications use thin-shell structures to deploy and tension thin mem-

branes, such as solar sails, drag sails, and solar arrays. Recently, a novel space

solar power architecture has been developed at Caltech, and it relies on distributed

thin-shell components, connected in a space frame, to create large-area deployable

structures. Thanks to the unique properties of thin shells, these structure pro-

vide superior stiffness-to-mass ratio and self-deployment capabilities. However, to

demonstrate their reliability and enable their use on space missions, their deployment

dynamics must be understood and predicted.

Ground testing is the established approach to verify a structure throughout its design

and qualification process. However, replicating the space environment in a labora-

tory setting is generally not possible, especially for lightweight structures, which are

very sensitive to the effects of gravity and air. Numerical models are therefore the

only tool to predict the behavior of a structure in space. However, validation with

ground experiments is necessary to build confidence in the models, which must be

able to capture the complexity of the interaction with air, gravity, and the suspension

system that supports the weight of the structure.

The goal of this thesis is to develop high-fidelity models for large space structures,

where multiple thin-shell components are folded together and deploy by releasing

their strain energy. This overall objective is achieved in 3 steps. First, a ladder-type

rectangular strip is introduced, as a building block for more complex architectures.

The strip is composed by two thin-shell longerons, symmetrically folded at two

locations. The deployment dynamics of this structure is investigated through ex-

periments on 1 m-scale prototypes, both in air and in vacuum. A detailed analysis

of its elastic folds is performed using full-field displacement measurements from

Digital Image Correlation. A finite element model of this strip is presented, and it

is shown to accurately capture the dynamics of the strip for all tested conditions.

Then, the implementation of the packaging and deployment scheme of a space solar
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power spacecraft, composed of multiple strips, is discussed. A kinematic model of

the structure is proposed as a design tool to achieve systematic folding. A novel

concept of a deployment mechanism to coil the structure in a robust and reliable

way is proposed. Also, a staged deployment scheme is demonstrated, to reduce

the uncertainty of strain-energy deployment for large space structures. Finally, the

deployment dynamics of a 2 m-scale space structural prototype, based on the space

solar power architecture, is investigated. A full-scale finite element model of the

structure is implemented to replicate its complex folding scheme and capture the

deployment process, including the interaction with the deployment mechanism and

the suspension system. The simulations predict well the behavior of the structure

observed in experiments through motion capture techniques.

The work presented in this thesis advances previous studies on the deployment

dynamics of simple thin-shell components, and demonstrates that even complex

thin-shell architectures can be packaged and deployed in a controlled and predictable

way. The solutions proposed in this thesis have guided the packaging process

and the design of the deployment mechanism for DOLCE, an upcoming flight

demonstration of the space solar power architecture described in this work. However,

this research has much broader implications, as the experimental and numerical

framework presented herein can be generalized to different shell-based architectures,

and contributes to enabling a new generation of lightweight deployable structures

for future space applications.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation

In recent years, the space industry has experienced a rapid growth, driven by the

reduced cost of launches and by the development of small satellites, e.g. CubeSats,

which have offered low-cost access to space. While economic factors push towards

smaller and lighter spacecraft, system performances often scale with the operational

size of the system.

Deployable structures address these conflicting requirements, as they can be pack-

aged into tight volumes before launch, and expanded into their large operational

shape once in space. These features make them ideal for solar arrays, antennas, and

space telescopes. In more recent applications, deployable structures have also been

used for solar propulsion, deorbiting systems, and deployable booms.

The majority of deployable structures flown to space and commercially available to-

day consists of mechanical articulations of rigid components, supporting lightweight

surfaces. Notable examples include space antennas, most of which are based on a

mesh reflector architecture, where a rigid truss structure pretensions a network of

thin cables, supporting a reflective metallic mesh. Fig. 1.1a shows an AstroMesh

antenna, supported by a perimeter truss structure; Fig. 1.1b is an example of a radial

rib antenna, where the mesh is supported by an umbrella-like rigid mechanism.

In the case of solar arrays, the solar cells are typically supported by rigid panels

connected by hinges, packaged either by folding them in an accordion style (see

Fig. 1.1d) or using a fan-folding scheme (see Fig. 1.1c).

However, in the last decade, thin-shell structures have become increasingly popular,

as they provide higher stiffness-to-mass ratios, higher packaging efficiency, and sim-

pler actuation, compared to more conventional deployable structure architectures.

Thin-shell structures owe their superior performances to their curved cross-sections,

which provide high moments of inertia (hence high bending stiffness), despite their

walls often being only few tens of microns thick. The shape of their cross-section

allows them to be elastically collapsed, so that they can be stowed in a compact vol-

ume either by folding them multiple times [67], or by rolling them in a cylindrical

configuration [10]. Additionally, thin-shell structures can self-deploy by releasing
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their strain energy once in space, greatly simplifying the deployment mechanisms

that support them during launch.

(a) AstroMesh (Credit: Northrop Grumman) (b) Folded Rib Reflector [2] (Credit:

L3Harris)

(c) MegaFlex solar array [77] (d) Solar array of the Juno spacecraft

(Credit: NASA)

Figure 1.1: Examples of deployable antennas and solar arrays based on mechanical

articulations of rigid structural elements.

Despite their evident advantages, widespread application of these structures has been

limited so far by their nonlinear mechanical behavior, characterized by structural

instabilities [43][39][57] and localized deformations [90], as well as by their complex

deployment dynamics [107]. For these reasons, thin-shell structures have been

mostly used in space as deployable booms [42], monopole antennas [67], and

support structures to pretension thin films in solar sails [45][8], drag sails [96],

and solar arrays [38]. Fig. 1.2a shows a foldable antenna design, used aboard the

Mars Express and Mars Reconnaissance Orbiter spacecrafts, and passively deployed

under its own strain energy. Fig. 1.2b is an example of a deployable boom consisting

of 2 Ω-shaped half-shells, coiled around a cylindrical hub [10].

Coilable booms are particularly suited for tensioned architectures, in which the tip

of the boom is attached to the ends of a thin membrane, which is deployed and
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(a) SHARAD foldable antenna for the Mars

Reconnaissance Orbiter spacecraft (Credit:

Northrop Grumman)

(b) Coilable boom for solar sail applica-

tions (DLR) [10]

Figure 1.2: Examples of deployable booms.

tensioned by the boom. Fig. 1.3a is an example of a solar sail based on this concept,

in which 4 deployable booms connect to the ends of a square membrane. Another

remarkable example is the Roll-Out Solar Array (ROSA) [38], shown in Fig. 1.3b,

consisting of two deployable booms supporting a flexible blanket, which contains

solar cells. The structure is packaged by rolling it in a cylindrical shape, and can

be passively deployed in space under its own strain energy. After its successful

demonstration in 2018, this roll-out architecture is going to be used in 2021 for the

new solar arrays that will be integrated on the International Space Station [26].

While these concepts use deployable booms as compression elements, novel archi-

tectures have been proposed to exploit their bending stiffness to create large-area

structures that maintain their deployed shape without external preloading. This can

be achieved by distributing many thin-shell longerons over the structure, intercon-

nected in a space frame and acting as a bending-stiff skeleton to support flexible

membranes. This concept was first proposed for the space solar power architecture

[4] developed at Caltech (see Fig. 1.4). It envisions a constellation of large planar

spacecraft (up to 60 m × 60 m in size) consisting of an assembly of strips, each

composed by two thin-shell longerons to provide bending stiffness, and a thin mem-

brane supporting multiple functional units, called "tiles" [50][28], which combine

photovoltaics and antennas.

In general, space frames require a combination of coiling and folding techniques

to achieve efficient packaging. While the problem of co-coiling multiple shells has

received much attention and is better understood, folding and deploying a thin-shell

space frame remains an open problem.
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(a) NanoSail-D solar sail demonstrator (Credit: NASA)

(b) Roll-Out Solar Array (ROSA) demonstrator (Credit: NASA)

Figure 1.3: Applications of deployable booms to tension a thin membrane.

1.2 Challenges of Self-Deployable Thin-Shell Structures

One of the main challenges is to predict the evolution of the structure during deploy-

ment in space. In these regards, ground testing is an invaluable tool to understand

the behavior of the structure from its early stages of development. However, the

behavior observed in a laboratory setting can be quite different from what it would

be in space [22][111], due to spurious effects, such as gravity and air. These effects

are particularly significant for structures with large area-to-mass ratios deploying

dynamically, and need to be carefully quantified.

In terms of experimental techniques, optical methods are the state-of-the-art for rigid

deployable structures. In the simplest case, a single camera with its sensor plane

oriented parallel to the deployment plane can be used to record the deployment and
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Figure 1.4: Concept of a space solar power system developed at Caltech.

track the 2D coordinates of discrete points [66], or to measure the angle between

rigid portions of the structure [63]. For 3D motion, photogrammetry is one of the

most common techniques: it uses two or more cameras oriented at different angles

to take synchronized images of the same subject, identify the location of discrete

markers on each camera sensor, and triangulate them to find the 3D coordinates of

the points [48][78]. Similarly, motion capture systems use infrared scanners to swipe

their field of view, estimate the distance from retroflective markers by measuring the

time for light to be reflected back at the camera sensor, and triangulate the distance

from multiple cameras to obtain the 3D coordinates of the markers [15]. However,

reconstructing the shape of a structure from a few discrete points is possible only if

the geometry of the structure is known in advance (e.g. the distance of the markers

from the hinge axis). For a folded thin-shell structure, the axes of its elastic folds are

not fixed, and their locations needs to be measured during deployment. Therefore,

more detailed measurements are required, either by tracking a large number of

points, or by switching to full-field measurement techniques, such as Digital Image

Correlation.

In addition to experimental tests, numerical models are often developed to assist

the design of a structure and predict its performances in space. This is particularly

important for large structures, for which full-scale ground tests might not be possi-

ble, as in the case of the 20-m-long MARSIS antennas [73]. For rigid structures,

multi-body dynamics approaches often provide accurate solutions with reasonable
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computational cost [111][55]. On the other hand, thin-shell structures generally

require higher fidelity models, mostly based on the finite element method, to cap-

ture their nonlinear mechanical behavior [63]. In some cases, combinations of both

approaches have been used, where a high fidelity model of a subset of a structure

informed a lower fidelity simulation of the full structure. This method is particularly

useful when rigid parts are connected by elastic joints [24]. However, developing

a thin-shell space frame requires a high fidelity model of the entire structure, capa-

ble of capturing the complex interactions and contacts between multiple thin-shell

components, which has never been attempted yet.

Another challenge associated with foldable thin-shell space frames is achieving

reliable deployment. During strain energy deployment, a structure spontaneously

follows its minimum energy path, eliminating the need for external actuation and

dramatically simplifying its deployment mechanism. However, as the size and

complexity of the deployable structure increase, multiple energetically-similar de-

ployment paths can exist, resulting in a non-unique deployment process. Even

worse, it is possible that some of these alternative deployment paths possess local

energy minima, where the structure could achieve static equilibrium without ever

reaching its fully deployed configuration.

1.3 Research Objectives

The main objective of this thesis is to extend the use of thin-shell deployable struc-

tures to large area applications, by enabling a new generation of self-deployable

shell-based space frames. In particular, this study focuses on the deployment dy-

namics of initially folded structures, targeting the following goals:

1. Investigate the dynamics of space frames composed of multiple thin-shell

components, folded at multiple locations.

Current experimental techniques assume that the geometry of the structure

is known in advance, specifically in regards to the location of the hinges

for rigid structures. As elastic folds in thin-shell components can potentially

propagate, their location needs to be identified and tracked during deployment.

Established experimental methods can be used to develop a framework to

gather data with high spatial and time resolution, and to extract the full

evolution of the elastic folds. Using this tool, the behavior of foldable space

frames can be investigated, shedding light on the effects of various design

parameters, such as boundary conditions and the presence of a thin functional
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layer on the structure, as well as external disturbances, in particular regarding

air.

2. Predict the dynamics of deployment using finite element models.

Deployment simulations of thin-shell space frames pose unique challenges, as

structural instabilities, complex contact conditions, and constraints between

multiple shells need to be accurately captured. Achieving the correct packaged

shape before initiating the deployment simulation is essential. For complex

structures, the packaging scheme intended for physical prototypes might not

be practical to replicate in simulations. Therefore, identifying compatible

kinematic paths for the structure is required in order to devise ad hoc packaging

sequences for the numerical model, resulting in the correct packaged state.

Furthermore, to build trust in the model, it needs to be validated against ground

experiments, which requires correct accounting of the effects of gravity and

air on the deployment of the structure.

3. Design solutions to stow space frames in a predictable and controlled way.

Packaging a large space frame requires bi-axial compaction, using folding and

coiling techniques. The kinematics of this process is often not trivial, and the

elastic nature of the thin-shell components oppose the applied deformations.

This can result in unstable or uncontrolled behavior of the structure, with

consequent risk of structural damage. For foldable shells, imposing elastic

folds at chosen locations can lead to a more deterministic behavior. Kinematic

models can guide this process, as they can identify internal mechanisms of the

structure that require minimal elastic deformations. To prevent instabilities in

coiled shells, a deployment mechanism is generally needed. Its role is to apply

external constraints to the structure, making it conform to the geometry of

the hub. While mechanisms exist for standalone deployable booms, thin-shell

space frames introduce additional complexity, as their various parts must

be simultaneously coiled about different hubs. Synchronization becomes

essential, and robust control schemes for the mechanism are required.

4. Improve the deployment reliability of large space frames.

During strain energy deployment, a structure follows its lowest energy path.

However, large structures made of numerous thin-shell components might

have multiple energetically-equivalent deployment paths, resulting in a non-

unique deployment process. Some of these paths might present local minima,
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where the structure could achieve static equilibrium without ever reaching its

fully deployed state. To mitigate the risk of incomplete deployment, a staged

deployment scheme can be implemented, potentially increasing the reliability

of the deployment, by introducing a small number of additional actuators.

1.4 Layout of the Thesis

The research presented in this thesis focuses on a specific structural architecture,

i.e. the space solar power satellite described in Sec. 1. A rectangular strip is studied

first, as a building block for the larger structure and a benchmark problem to validate

the numerical model. Then, a 2-m-scale implementation of the space solar power

architecture is presented, and its packaging and deployment are studied in detail.

The thesis is organized as follows. Chapter II discusses the deployment dynamics

of a rectangular strip composed of 2 thin-shell longerons. The design and char-

acterization of an experimental setup to compensate gravity effects are discussed.

High-speed imaging and Digital Image Correlation are used to follow the structure

during its deployment, and an algorithm to reconstruct the shape of the strip and

track the evolution of the elastic folds is presented. The interaction of the structure

with air is documented by comparing experiments performed in air and in vacuum.

Then, a finite element model of the structure is presented, and an approach to ac-

curately model the suspension system and the interaction with air is proposed. The

model is validated by comparison with experiments.

Chapter III focuses on the implementation of a kirigami-inspired packaging scheme

for a thin-shell space structure composed of multiple thin-shell strips. Three main

topics are covered in the chapter, corresponding to the three phases of stowage and

deployment: folding, coiling/uncoiling, and unfolding. First, a method to fold the

structure in a predictable and controlled way is proposed, based on the idea of im-

posing elastic folds at opportune locations to create fixed elastic hinges, resulting

in a more deterministic kinematics. A kinematic model of the structure is imple-

mented to identify compatible kinematic paths and design the folding procedure.

Then, a novel deployment mechanism concept to achieve robust coiling and un-

coiling of the structure is presented, and its implementation is discussed. Finally,

a staged deployment scheme is proposed as a way to mitigate the uncertainty of

strain-energy deployment of interconnected thin-shell components. The concepts

in this chapter are demonstrated on a 2-m-scale structural prototype, and scalability

to larger structures is discussed.
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Chapter IV studies the deployment dynamics of a square space frame, composed of

12 deployable strips. In this case, a single-stage deployment is performed, although

the techniques used here could be readily applied to multi-stage deployment schemes.

A motion capture system is used to track the location of multiple retroflective targets

on the structure, and the envelope of the structure, as well as its deployed size over

time, are presented. The angle of the elastic folds on the outermost strips is also

reconstructed by a dedicated algorithm. An approach to folding and deployment

simulations with finite elements is also presented, and the results are compared with

experiments. Simulations are then used to investigate the evolution of the elastic

folds during dynamic deployment.

Chapter V concludes the thesis and discusses directions for future research.
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C h a p t e r 2

DEPLOYMENT DYNAMICS OF THIN-SHELL STRIPS WITH

ELASTIC FOLDS

Parts of this chapter were modified from the following publications:

[1] Antonio Pedivellano and Sergio Pellegrino (2021). “Deployment Dynamics of

Foldable Thin Shell Space Structures”. In: AIAA Scitech 2021 Forum. 2021-0299.

[2] Antonio Pedivellano and Sergio Pellegrino (Manuscript submitted for publica-

tion). “Deployment Dynamics of Thin-Shell Space Structures”. In: Journal of

Spacecraft and Rockets.

2.1 Introduction

Many deployable structures for space applications forming large planar surfaces

consist of rigid panels connected by hinges. Packaging involves folding the panels

around hinges, and deployment can be driven either by external mechanisms [101,

47] or by releasing the strain energy stored in elastic hinges [55, 44, 88]. Two folding

concepts are shown in Fig. 2.1. Z-folding consists of alternating mountain and valley

folds in an accordion-like fashion, and has been used in many structures, including

the 34 m × 12 m solar arrays of the International Space Station [107]. Tri-folding

consists of folding the panels in the same direction; typically, there is a central panel

on top of which two side panels are folded, hence the name. This folding method

has been used in CubeSats, e.g. MarCO [51] and OMERA [88], where the solar

panels are initially folded parallel to the faces of the bus, or in combination with

z-folding, such as in the Folded Integrated Thin Film Stiffener (FITS) array, for the

TacSat-2 mission [36].

Recent advances in solar cells, e.g. perovskite cells [109], and flexible electronics

[35] offer the opportunity to develop new structures for solar arrays and antennas

with reduced mechanical complexity, mass, packaged volume and, ultimately, cost.

A well-established approach uses thin-shell deployable booms to deploy solar array

blankets or multifunctional membranes. The Roll-Out Solar Array (ROSA) flight

test [93] has demonstrated a flexible blanket containing solar cells and supported by

two thin-shell composite slit tubes. This 5.4 m × 1.7 m array was initially coiled

on a cylindrical mandrel, and then self-deployed by the controlled release of elastic
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(a) Z-folding (accordion-type

folding) of a solar array [78]

[70]

(b) "Tri-fold" packaging con-

cept [48]

Figure 2.1: Packaging concepts for foldable strip architectures with rigid panels.

strain energy in the deployable booms. Another example is the recent technology

demonstration OrigamiSat-1, in which a 1 m × m membrane deployed by four

diagonal open section carbon fiber reinforced plastic (CFRP) thin-shell booms [42]

was partially covered with copper indium gallium selenide (CIGS) cells and shape

memory alloy antennas. In these examples, the booms are coiled with a deployment

mechanism that supports them and constrains their deployment.

An alternative approach was introduced in the Caltech Space Solar Power Project

spacecraft architecture [4], which considers large deployable structures consisting

of multiple strips and which are packaged through a combination of folding and

coiling. The present study is motivated by the desire to develop accurate simulation

models for the deployment dynamics of these future deployable structures which

include several thin-shell components that are folded together and spring open upon

release.

(a) Localized folds in a tape spring (image

adapted from [90])
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(b) Schematic moment-rotation re-

lationship for a tape spring

Figure 2.2: Non-linear mechanical response of a tape spring under bending. Af-

ter the initial linear behavior, a snap-through instability leads to the formation of

localized folds.
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The problem of folding and deploying thin-shell structures has been extensively

studied in the past for tape springs, i.e. cylindrical shells with a circular arc cross

section. Under applied bending moments, these structures exhibit a non-linear me-

chanical response and undergo snap-through instabilities, resulting in the formation

of localized elastic folds. Figure 2.2a shows two geometric configurations of a

tape spring. For small applied rotations, the tape spring deforms uniformly. At

the buckling limit, the cross section of the tape spring flattens in a small region,

creating an elastic fold. Figure 2.2b shows a notional moment-rotation relationship

for a tape spring: after an initially linear response, the bending moment drops and

becomes mostly independent of the applied rotation. The first documented study of

the geometry of elastic folds dates back to the 1920s [11], although models to predict

the moment-rotation relationship were not developed until the 1950s [108]. They

were later expanded by Rimrott [82] and Mansfield [64]. Seffen and Pellegrino [90]

investigated the dynamics of initially folded tape springs during strain energy-driven

deployment. Their study showed that elastic folds propagate along the axis of the

shell, resulting in a complex but predictable deployment behavior.

More recently, the dynamic deployment of foldable tubular shells with longitudinal

cutouts that create elastic hinges at some specific locations has been studied [63],

after the successful implementation of this concept in the 20-m-long antennas on

board the MARSIS spacecraft [67].

All of this previous research has focused on a single thin-shell structure, either with

a single elastic fold or with multiple folds whose propagation is prevented by the

geometry of the shell (as in the case of foldable tubes). Further developments of

foldable strip architectures will involve the deployment of shell structures in which

multiple shells are folded together, which is the focus of the present thesis.

Deployed configuration Folded configuration

Figure 2.3: Concept of foldable strip with tape spring longerons.

The experimental part of the study involved the design and construction of high-

quality test articles, as well as the development of a suspension system with low

inertia and friction, and robust against changes of the strip geometry that might occur
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due to propagation of the elastic folds. 3D Digital Image Correlation (DIC) was

used to characterize the deployment with high-speed cameras, and an algorithm to

identify the elastic folds and track their propagation from DIC images was developed.

The influence of air on the dynamic deployment of the strips was investigated by

performing deployment experiments both in air and in vacuum. The effects of a thin

film attached to the longerons and representing, for example, the photovoltaic cells

and the electric substrate of a solar array, was also studied.

The computational part of the study used a high-fidelity finite element model of

the strip to capture the elastic deformation and localization that occur during the

initial folding of the strip, the self-contact between different parts of the structure

as the folding develops, and the strain energy stored during the folding process. It

also captured the deployment dynamics and self-latching of the structure, and the

effects of air on the deployment process. This part of the study builds on previous

studies of the folding and deployment of tape springs [90] and tubular thin shells

with longitudinal cutouts [63].

The chapter is organized as follows. Section II describes the geometry of the

strips and the suspension system. Section III discusses the implementation and

characterization of the experimental setup. Section IV presents the experimental

results, and addresses the effect of attaching a thin film on the strip deployment,

as well as the influence of air during deployment. Section V describes the finite

element model of the strip, discussing the simulation technique and the simulation

parameters. Section VI presents the results from the simulations and compares them

with the experiments. In Section VII, the effect of the initial and boundary conditions

of the structure on its deployment dynamics is investigated through experiments.

Finally, Section VIII discusses the results and concludes the chapter.

2.2 Description of Test Configuration

The basic architecture of the strip was derived from the Caltech Space Solar Power

Project that has been described in previous publications [4, 85]. In the present

study, the overall shape of the strip was simplified to a rectangle, to create a plane

of symmetry that would allow a more symmetric deployment.

2.2.1 Strip Design

Figure 2.4 shows a strip consisting of two thin-shell longitudinal elements, herein

called "longerons," which provide bending stiffness to the deployed strip, and can

be folded by forming elastic folds. They have an open cross section consisting
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of two circular arc flanges, connected by a flat web. This cross section design,

first introduced in the Triangular Rollable And Collapsible (TRAC) booms [83] is

symmetric with respect to the axis of bending of the strip, and hence the moment-

rotation relationship is independent of the sign of the moment. The longerons

are connected by transverse rods, called "battens," which have a rectangular cross

section and are responsible for the bending stiffness of the strip in the transverse

direction, as well as for coupling the deformation of the longerons. The structure

formed by the longerons and battens supports a thin film that in an actual application

would support functional elements, such as solar cells or RF antennas. The strip is

terminated by two rigid connectors mounted in the middle of the outermost battens.

longerons battens

strip-cord

connector

membrane

flanges

web w

α

r

end viewtop view

Figure 2.4: Strip geometry: top view (left); side view and detail of TRAC longeron

geometry (right).

2.2.2 Suspension System Concept

Testing the deployment of thin-shell deployable structures in the presence of gravity

is challenging, due to existence of low stiffness deformation modes in the folded

configurations of these structures. Although gravity-related loads are rather small,

due to the lightness of these structures, they can have a significant impact on

deployment, and in fact many of these structures are unable to fully deploy under

gravity unless they are properly supported throughout the deployment process.

Therefore deployment testing of lightweight structures may involve drop towers [59]

[94] or parabolic flights [9, 21] to achieve micro-gravity for a few seconds, although

in most cases deployable structures are supported for deployment by a suspension

system.

Vertical cords can be attached to a fixed point [66], with or without soft springs

that allow extension of the cords with minimal variation of their tension (Fig. 2.5a).
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Nested fly beams have been used to create a "marionette"-like suspension [33]. For

deployment experiments, the cords are generally attached to sliders following the

structure, in order to keep the cords vertical at all times (Fig. 2.5b). A drawback

of this solution is the inertia and friction of the sliders can significantly affect the

deployment [22]. These effects can be avoided using active gravity compensa-

tion systems [34], which allow for zero-stiffness rigid body motion, zero friction,

and minimal added mass. However, such systems involve significant mechanical

complexity and are generally adopted for heavier structures with simpler kinematics.

A passive suspension system was chosen due to its simplicity and the potential for

accurately modeling its interaction with the structure during deployment. However,

the presence of elastic folds made it challenging to implement a suspension in which

deployment occurs in a horizontal plane. Therefore, instead of trying to minimize

the effects of gravity on the structure, a simpler suspension system was designed

that allows the complete deployment under gravity, while making it possible to

accurately estimate the constraint forces applied to the structure.

(a) Single-point suspension system for z-

folded rigid solar array [78]

(b) Gravity offloading with sliding flybeams

during deployment of a z-folded rigid solar

array [22]

Figure 2.5: Examples of passive gravity compensation schemes for ground deploy-

ment of folded rigid solar arrays.

Several support schemes were considered, Fig. 2.6. A scheme with sliders, Fig.

2.6a, would simplify the trajectory of the ends of the strip; however, the mass of

the sliders would be significant and their friction would be a significant source of

uncertainty. Figure 2.6b shows two end cords attached to a single suspension point.

Although this solution would add only a small mass to the strip, the resulting in-plane

forces would counteract the elastic moments in the elastic folds, likely preventing
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the complete deployment of the structure. An alternative solution is to connect each

cord to a pulley, and to use masses to apply tension to the cords and compensate for

the weight of the strip. This concept can be used to deploy the strip in 2 different

orientations, i.e. against gravity, Fig. 2.6c, or assisted by gravity, Fig. 2.6d. Since

the latter requires two sets of pulleys, thus increasing inertia and friction, the concept

in Fig. 2.6c was chosen. Its implementation is discussed in the next section.

Z

X

(a) Sliding supports

Z

X

(b) Single-point suspension system with soft

springs

Z

X

(c) Suspension system with counterweights

(upward deployment)

Z

X

(d) Suspension system with counterweights

(downward deployment)

Figure 2.6: Side views of suspension system concepts for ground deployment of

foldable flexible strips.

2.2.3 Design of Suspension System

The suspension system and the parameters required to fully define a deployment

experiment are shown in Fig. 2.7. Since the present study has focused on 1 m

scale strips, the distance ! 5 = 1300 mm between the pulleys was chosen, to provide

enough clearance for the structure during deployment.

When the strip is in the folded configuration the two forces are denoted by ' in

Fig. 2.7. These constraint forces are provided by a release mechanism that is

instantaneously released to initiate deployment.

The folded configuration of the strip is defined by the position and angle of the elastic

folds. For initially symmetric configurations of the folded structure, as considered

in the present study, the initial geometry is defined by the distance between the folds
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Figure 2.7: Geometry and design parameters of the suspension system developed

for the deployment experiments.

2_0!, with _0 ∈ [0, 1] (where _0 = 0 corresponds to a single fold at the center of

the strip), and the angle of the folds \0. _0 was set by the position of the release

system, whereas \0 was not controlled directly, but it was controlled by the distance

�0 between the center of the strip and the pulleys, as shown in Fig. 2.7, and the

mass " of the counterweights attached to the cords.

(a) Equilibrium of the strip (b) Equilibrium of the region AB

(from the fold to the end of the strip)

Figure 2.8: Free body diagram for a strip symmetrically folded. ' is the vertical

constraint applied by the release mechanism to prevent self-deployment.

The relationship between these parameters is governed by the static equilibrium of

the folded strip, described by the free-body diagram in Fig. 2.8. Specifically, the

equilibrium of the moments about the axis of the elastic fold for the region �� in

Fig. 2.8b can be written as:

" 5 − )0(1 − _0)! sin X + <26(1 − _0)2 !
2

4
= 0 (2.1)
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where )0 = "6 for the equilibrium of the moments for the pulley in �. Here,

<1 = 3_0! and <2 = 3 (1 − _0)! are the mass of each straight portion of the strip,

with 3 representing the mass per unit length. Also, " 5 is the steady-state moment

of the elastic hinge, which can be estimated from plate theory (its value is also

measured experimentally in Sec. 2.3.2). A second equation is required to solve the

problem in the two unknowns \0 and X. This is provided by a geometric condition,

relating the angles \0 and X with the known height �0 and the location of the pulley

�:

tan(\0 + X) =
�0 − (1 − _0)! sin \0

! 5 − [_0 + (1 − _0) cos \0]!
(2.2)

Eqns. 2.1 and 2.2 represent a system of non-linear equations that can be solved

numerically for given " , �0, _0, and known geometry and stiffness of the strip.

While, in principle, the choice of �0 can be arbitrary, a lower bound to the mass of

the counterweights exists, to guarantee that the suspension system can support the

self-weight of the strip during deployment. This condition is met when the release

mechanism applies a downward reaction ' to maintain the strip in its folded state,

i.e. ' ≥ 0 in Fig. 2.8a. This reaction can be easily calculated from the equilibrium

of the forces on the strip along the vertical direction:

' = )0 sin(\0 + X) − (<1 + <2)6 (2.3)

where \0 and X have already been computed. The minimum mass of the counter-

weights corresponds to the limit case ' = 0 and can be obtained by substituting

)0 = "6 and solving for ":

"<8= =
(<1 + <2)6
sin(\0 + X)

(2.4)

This expression is a function of _0 and �0 through the angles \0 and X, and its

maximum value increases as _0 and �0 decrease. Therefore, choosing �<8=
0

=

250 mm as the minimum height of interest and _0 = 0, the plot in Fig. 2.9 is

obtained.

The plot shows that the minimum mass for which the reaction of the release system

would be positive is "<8= = 25 g (for a strip without membrane, it would be

" = 12 g). The plot also shows that, for " > 25 g, the fold angle quickly

reaches a plateaux and becomes independent of the fold mass. However, for the
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Figure 2.9: Initial fold angle \0 and cord angle X as a function of the mass of the

counterweights " , for a folded strip with _0 = 0 and �0 = 250 mm. The right axis

shows the reaction force from the release mechanism, which must be non-negative

for the cords to support the self-weight of the strip.

chosen initial conditions, the maximum fold angle that can be achieved is only

\0 = 20◦. To understand what range of initial fold angles can be achieved for

different combinations of initial conditions, the equations above were solved for

_0 ∈ [0, 1] and �0 ∈ [0, 760] mm. In this case, a large value of mass " = 200 g

was used, to capture the asymptotic value of \0. The results are presented as a

contour plot in Fig. 2.10.
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Figure 2.10: Maximum fold angle for different combinations of initial height �0

and initial fold location _0.

The plot shows that the initial fold angle \0 increases both with �0 and _0. For the

range of heights considered, the maximum fold angle that can be achieved is about
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45◦ when the strip has a single fold at the center, and about 60◦ when the folds are

at _0 = 0.5.

Based on these considerations, a range of masses" ∈ [20 g, 100 g] and initial heights

�0 ∈ [250 mm, 760 mm] was identified. Experiments were carried out to explore

the parameter space defined by _0, �0, and " in these ranges. It was observed that

the qualitative behavior of the strip during deployment does not vary significantly

for most combinations of those parameters. Therefore, this chapter focuses on one

specific set of parameters (�0 = 400 mm, " = 50 g, _0 = 0.45), corresponding

to an intermediate point of the parameter space, but representative of the behavior

for a wider range of initial conditions. Results for different combinations of initial

height, mass, and fold locations can be found in Sec. 2.7.

2.3 Experimental Setup

2.3.1 Strip Prototypes

Two strip prototypes based on the architecture presented in Fig. 2.4 were manu-

factured, one with and one without the membrane. Both prototypes, shown in Fig.

2.11, have the same nominal length 2! = 1125 mm and have longerons placed 200

mm apart and connected by 5 equally spaced battens. The longerons have nominal

flange radius A = 12.4 mm, flange opening angle U = 90◦, and web width F = 8

mm.

(a) Strip 1, without membrane

(b) Strip 2, with membrane

Figure 2.11: Strip prototypes.

The flanges were manufactured from ultra-thin composite prepregs. The stacking

sequence was [±45��%,/0��/ ±45��%, ], where GFPW represents a Scrim Glass

fiber plain weave (25 gsm), and CF denotes a unidirectional MR70 carbon fiber
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(30 gsm). Both laminates had been pre-impregnated with 380 CE cyanide ester

resin by North Thin Ply Technology. An additional [±45��%, ] bonding layer (25

gsm Scrim Glass with the same resin) was interposed between the flanges in the

web region. This laminate design has been previously shown to induce low stress

concentration during coiling of TRAC longerons [56] and its stiffness properties

have been characterized [57].

The battens consist of pultruded carbon fiber rods, with a 3 mm× 0.6 mm rectangular

cross section, provided by CST The Composite Store, Inc. They are connected to

the web of the longerons by Ω-shaped sleeves, made of 2-ply JPS 1067 glass fiber

composites with PATZ-F4A resin. The strips are supported at the ends by PTFE-

coated glass fiber cords, attached to 3D-printed plastic connectors, bonded to the

center of the terminal battens. The two strip prototypes nominally differ only for the

presence of a 50-`<-thick Kapton film bonded to the web of the longerons on one

of the prototypes. The geometry of each strip was measured with a FaroArm laser

scanner. The actual radius and opening angle of the longerons were computed from

the point cloud generated by the FaroArm. The measured properties of the strips

are reported in Table 2.1.

Flange radius A [mm] Flange angle U [◦] Total mass [g]

Strip 1
12.4 ± 0.7 91.2 ± 4.6 23

without membrane

Strip 2
13.1 ± 1.1 80.3 ± 3.2 46

with membrane

Table 2.1: Geometry and mass of strip prototypes.

2.3.2 Moment-Rotation Relationship for the Strips

x
y

z

ux

φ
x

φ
z

uy

φy

Figure 2.12: Schematic of experimental setup for strip bending tests.
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The moment-rotation relationship for an elastic fold in the strip is of great impor-

tance, as it drives the self-deployment of the structure. It was measured with a

large-rotation bending apparatus [84] that measures the bending moments at the end

of the test sample as a function of the applied rotation, during quasi-static unfolding

of a strip with an elastic fold.

The apparatus consists of two sliders mounted in orthogonal directions, as shown

in Fig. 2.12. The strip was attached to acrylic clamps (grey in the figure) spaced

400 mm which were connected to the sliders. Note that the clamps were not

symmetrically located with respect to the ends of the strip, to avoid forming a fold

close to the central batten, because folds near a batten are energetically unfavorable

and carry larger moments. One of the sliders can freely translate along and rotate

around the H-axis, but rotations around the I-axis (bending axis) are not allowed.

The other slider can translate along and rotate around the G-axis; its rotation about

the I-axis is controlled by a brushless DC motor. Each slider is equipped with

New Way air bearings (25.4 mm diameter, 90 psi operating pressure). Mini40

force/torque sensors by ATI Industrial Automation are attached to both sliders and

measure all force and moment components applied by the structure, with a force

resolution of 0.2 N and a torque resolution of 0.25 Nmm.

To carry out a test, the strip was initially folded to an angle of 35◦ by manually

forming an elastic fold at the center. Then, a rotation in the opposite sense to the

folding direction was applied in small increments, until the strip had fully deployed.

The results of unfolding tests on the two strips are reported in Fig. 2.13. Each test

was repeated 3 times, showing a consistent behavior, with rms error of about 2 Nmm

for both strips. The maximum variation of the peak moment was 23 Nmm for the

strip without membrane, and 14 Nmm for the strip with membrane, corresponding

to respectively 6% and 13% of the peak values.

It was observed that during the unfolding process the fold undergoes shape and po-

sition changes . Specifically, for angles greater than 15◦, the fold remains symmetric

and the bending moment is mostly constant, slightly decreasing with the angle. At

approximately \ =15◦, a sudden increase in the bending moment occurs, and the

shape of the fold switches from a symmetric to an asymmetric configuration. For

smaller values of \, the moment keeps increasing until it reaches a peak for \ ≈ 3◦,

after which the fold disappears, as a local buckle forms in the longeron flange that

is under compression.

Both strips exhibited similar qualitative behavior, although the following quantitative
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(a) Bending tests of strip without membrane
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(b) Bending tests of strip with membrane

Figure 2.13: Moment-rotation relation for the two strip prototypes.

differences were noted. For \ > 15◦, the bending moment in the strip without

membrane was about 15% higher than for the strip with the membrane, due to the

larger flange angle of this strip, see Table 2.1. The strip with the membrane had 30%

higher peak moment, due to the fact that the folds on the two longerons disappear at

the same time, unlike the strip without the membrane, possibly due to the additional

coupling between the longerons that is introduced by the membrane.

2.3.3 Experimental Apparatus

The test structure and experimental apparatus, consisting of the suspension system,

the release mechanism, and the metrology system, are shown in Fig. 2.14.

(a) Experimental setup with

metrology system

(b) Detail of pulley

(c) Detail of release

mechanism

Figure 2.14: Experimental apparatus for strip deployment tests.
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The suspension system included two 12.4-mm-diameter, nylon miniature pulleys

mounted on ball bearings (SP4088, from Carl Stahl Sava Industries). The pulleys

were installed on a support structure consisting of aluminum T-slotted frames. By

varying the height of the pulleys from the ground, the initial fold angle of the

strip could be adjusted, as previously discussed in Sec. 2.2.3. It was shown by

analysis that the inertia of the pulleys contributes to less than 1% of the total

inertia of the system, and hence its effect was considered negligible. However, the

analytical model suggested that friction in the ball bearings can significantly affect

the dynamics of the suspension system, and therefore a detailed characterization of

the friction of the system was performed. It will be discussed in the next sub-section.

The release mechanism was responsible for holding the strip in the folded con-

figuration and releasing it upon a deployment command. The release actuation

was provided by two R12X12 DC pull-type linear actuators (24 V, 2.5 W) from

Magnet-Schultz of America. These actuators consist of solenoids that pull a central

magnetic shaft upon powering. They were connected in parallel to a power supply,

in order to achieve synchronized release, within 2 ms. The strip was connected to

the release actuators by cords with negligible mass. Specifically, two cords across

the strip were attached to the webs of the longerons; their location along the strip

defined the initial position of the elastic folds. A cord loop was placed across the

centers of the cords and the shaft of the corresponding release actuator, and was

held taut by the counterweights of the suspension system. By retracting the shafts

of the actuators, the cord loops were released and the deployment was initiated.

Lastly, the metrology system consisted of two Photron UX100 high speed cameras

set at a frame rate of 500 fps, to acquire monochrome images. The system was

configured to provide a 1.2 m field of view with 500 mm depth of field. A 72,000

lumens REL Sure Bright light module with 120 white LEDs completed the setup.

A speckle pattern was applied to the top face of the longerons, with approximate

speckle size of 5 mm, to perform Digital Image Correlation (DIC) on the image pairs

obtained during each test. Photogrammetry was used to extract the coordinates of

several targets placed on both the strip and the aluminum frame, which were used to

define a global coordinate system for the experiment. Both DIC and photogrammetry

measurements were performed using the VIC3D software by Correlated Solutions.

The experimental setup described above was used to perform deployment tests both

in air and in vacuum. The tests in vacuum were performed in an altitude chamber

with internal volume of 2.4 m × 2.4 m × 2.4 m, at NTS Santa Clarita, CA. During
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these experiments, the pressure was maintained at 55 torr (corresponding to about

7% of standard atmospheric pressure). The temperature within the chamber, which

was not actively controlled, varied between 20◦C and 30◦C.

2.3.4 Suspension System Characterization

The friction torque in the pulley bearings of the suspension system was measured

experimentally. The experimental setup consisted of two masses "1 ≠ "2 attached

to the opposite ends of a cord, running on a pulley as shown in Fig. 2.15a. The

masses, initially held stationary, started moving vertically as soon as they were

released, with the heavier weight accelerating downwards. A target placed on this

weight was tracked using the high speed camera system, which acquired images at

500 fps. Photogrammetry was performed with VIC3D to extract the coordinates of

the target. From the measured vertical coordinates, the variation of the target height,

ℎ, was obtained as a function of time, Fig. 2.15b, and a second-order polynomial of

the form ℎ(C) = 22C
2 + 21C + 20 was fitted to these data to estimate the acceleration

of the mass:

¥ℎ = 222 (2.5)

Each experiment was repeated 3 times, and the measured accelerations were repeat-

able within 1.5% of their mean value. The pulley friction torque was obtained from

the equation of motion:

("1 − "2)6' − ) 5 =
[
�? + ("1 + "2)'2

] ¥ℎ
'

(2.6)

where ' and �? are the radius and the second moment of inertia of the pulley,

respectively, and ) 5 is the friction torque on the pulley. Solving for ) 5 , substituting

¥V = ¥ℎ/', and using ¥ℎ from Eq. 2.5 gives:

) 5 = ("1 − "2)6' −
[
�? + ("1 + "2)'2

] ¥V (2.7)

) 5 was computed for nine different combinations of "1 and "2 in the range [15 g,...

100 g]. Given the relatively low angular velocity of the pulley during a deployment

experiment, it is reasonable to neglect viscous effects in the pulley ball bearing, and

to assume that friction is entirely due to the elastic rolling resistance [40], which

increases linearly with the normal load on the bearing. Therefore, for the case shown

in Fig. 2.15a, the normal force �= is given by:

�= = ("1 + "2)6 − ("2 − "1) ¥V' (2.8)
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where the first term on the right-hand side describes the static contribution from

the weight of the two masses, whereas the second term captures the inertial effects.

This equation indicates that the friction torque depends on both the sum "1 + "2

and the difference "2 − "1 of the two masses. Figure 2.15c shows a quadratic

polynomial fit of the measured values of ) 5 as a function of "1 +"2 and "2 −"1.

The plot shows that the friction increases with "1 + "2, but it becomes very small

if the masses are very different (as �= → 0 when "2 >> "1) or if they are very

similar (in which case the velocity of the pulley is very low).
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Figure 2.15: Characterization of pulley friction torque.

2.4 Experimental Results

Deployment experiments were performed on the two strip prototypes (with mem-

brane and without membrane) both in air and in vacuum. Each experiment was

repeated three times and the results of repeated tests were consistent. Overall, the
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experiments exhibited very similar qualitative behavior, Figure 2.16 shows snap-

shots from the deployment in vacuum of the strip with membrane, starting from the

folded configuration, with �0 = 400 mm. The strip maintained its initial symmetry

until the end of deployment, with the elastic folds remaining stationary and opening

out monotonically. At C = 300 ms, symmetry was lost as one of the elastic folds (on

the right hand side) latched before the other fold. After both folds had latched, the

strip began to vibrate in a small amplitude, smoothly curved mode.

(a) t = 0 ms (b) t = 100 ms

(c) t = 200 ms (d) t = 300 ms

(e) t = 400 ms (f) t = 500 ms

Figure 2.16: Snapshots from deployment of strip with membrane, in vacuum.

The images captured by the high speed cameras were processed with DIC, which

provided a point cloud for each longeron, at each frame. An algorithm was developed

in MATLAB to identify and track the elastic folds and also measure the fold angles.

The algorithm consists of an initialization phase, which is run on the first image
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taken during the experiment, and a loop, performed on all subsequent frames. The

initialization consists of the following steps:

1. Definition of global coordinate frame: the coordinates of 3 targets located

on the aluminum frame (%0, %1 and %2 in Fig. 2.16a) are extracted with

photogrammetry and are used to define a global coordinate system consistent

with Fig. 2.7.

2. 2D projection: the point clouds are projected on the G-I plane (see Fig. 2.7)

for increasing values of G.

3. Definition of curvilinear abscissa: the centerline of each longeron is obtained

by computing the median of the coordinates of a 50 points-moving window

(Fig. 2.17a). From a statistical perspective, the median is more robust than

the mean to outliers in noisy data [68] and therefore median filters are often

used in combination with DIC [37]. A curvilinear abscissa B = b! (Fig. 2.7)

is defined on the centerline, using B8 = B8−1 +ΔB8, for 8 = 2, ...#?. Here, ΔB8 is

the distance between 2 consecutive points on the centerline and #? is the total

number of points. The origin of the abscissa B is defined at the center of the

strip. A value of B is then assigned to each point in the cloud, by projecting it

on the centerline of the longeron and interpolating the previously computed

values of B on the centerline. Note that the curvilinear abscissa defines a body

fixed frame, which identifies each point in the cloud, throughout deployment.

4. Computation of local tangent: the local tangent T(B) to each longeron is

computed by performing a Principal Component Analysis (PCA) on a 50

points-moving window from the point cloud [46]. By performing an eigen-

value analysis on the covariance matrix of the coordinates of the points in the

moving window, this algorithm returns the directions along which the points

are distributed. The direction associated with the largest variance identifies,

in this case, the local tangent to the longeron. The use of PCA allows to

filter the noise due to some of the points being on the web and others on the

flange of the longerons, resulting in a robust algorithm. Each local tangent

is associated with a value of the curvilinear abscissa that corresponds to the

median of the abscissas of the points in the moving window. By computing

the dot product of the local tangents with the global G-axis, the local angle

\ (B) of the longeron as a function of B is obtained, Fig. 2.17b.
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5. Identification of folds: the longitudinal curvature ^(B) of each longeron is

computed from ^(B) = ‖ 3T(B)
3B

‖, where the derivative is computed numerically

using a symmetric finite difference scheme. The resulting curvature is first

smoothed using a 50 point-moving average, Fig. 2.17c. The two highest peaks

in the ^(B) curve define the initial location of the elastic folds.

Once this initialization has been completed, the algorithm iterates over each frame,

repeating only steps 4) and 5) of the list above. To track the localized folds, the

search for the peaks in longitudinal curvature is performed in a ± 20 mm region

centered at the location of the folds from the previous frame. In this way, the folds

can be tracked even when their longitudinal curvature becomes small, towards the

end of deployment, and hard to distinguish from the noise floor.

The outcome of the algorithm described so far is a map showing the distribution of

orientation and curvature along each longeron, as a function of time. An example of

these maps is shown in Fig. 2.18 for the deployment in air of the strip without mem-
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(a) Point cloud of a longeron projected on the G-I plane, and its

centerline (in red)
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(b) Orientation of the local tangent to the longeron, measured from

the G-axis

Figure 2.17: Calculation of local orientation and longitudinal curvature of a

longeron, starting from a point cloud extracted from DIC, at a given time step.

Data from deployment test in air of a strip without membrane.
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(e) Distribution of longitudinal curvature on the longeron

Figure 2.17: Calculation of local orientation and longitudinal curvature of a

longeron, starting from a point cloud extracted from DIC, at a given time step.

Data from deployment test in air of the strip without membrane (cont.)

brane. In these maps, the curvilinear abscissa on the H-axis is non-dimensionalized

with respect to the length of the strip using b =
B
!
, so that b ∈ [−1, 1], with b = 0

being at the center of the strip. The results for the two longerons are very similar

and therefore only one map has been shown.

Figure 2.18a shows that in each longeron there are three distinct regions with uniform

orientation. Specifically, the central region is approximately horizontal, whereas the

other two regions have equal and opposite slope, decreasing over time until the strip

fully deploys. Figure 2.18b shows two well-defined curvature peaks, corresponding

to the location of the elastic folds, which remain stationary during deployment.

Although these maps provide a full-field characterization of the deployment process,

a more compact description of the deployment test is useful for easier comparison

of the results. Therefore, in the rest of this chapter, the results are presented in terms

of the angle of the folds and the height of the center of the strip vs. time. These

plots provide insights into the dynamics of the elastic folds, as well as the rigid

body translation of the structure. The angle of each fold is computed by taking the

median of \ (B) between the location of the fold and the end of strip, at each time

increment. The height of the center of the strip is provided by the I coordinate of

two targets placed next to the center of each longeron (�1 and �2 in Fig. 2.16a),

tracked with photogrammetry. The results for each experiment are shown in the rest

of this section.

Figure 2.19a shows plots of the angle of the elastic folds as a function of time, for

the strip without membrane. Since each longeron has two folds, the plot contains

two lines starting from equal and opposite angles. Solid, dashed, and dotted lines

correspond to different runs of the same experiment. Also, green and blue lines

correspond to the two longerons for the tests in air, orange and red lines to the
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(a) Map of local orientations

(b) Map of longitudinal curvature

Figure 2.18: Distribution of local orientation \ (b) and longitudinal curvature ^(b)
over time for a strip without membrane deploying in air. b represents a non-

dimensional curvilinear abscissa, which is 0 at the center of the strip and ±1 at the

ends. Results are shown for one longeron only.

longerons for the tests in vacuum. In this plot, the deployment time can be defined

as the time when all fold angles become zero for the first time.

Overall, the tests are symmetric, with both longerons undergoing the same angle

variation on both folds. The fold angle starts from approximately ±42◦, and then de-

creases until becoming zero at about C = 300 ms. During deployment, an oscillation

of the fold angle, with a period of about 220 ms, can be observed. After reaching

\ ≈ 0◦, the localized folds disappear, and the strip vibrates with small-amplitude

deformations.

Comparing the tests in vacuum and in air, it can be observed that there is almost no

difference, indicating that the effects of added air mass and air drag on the unfolding
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Figure 2.19: Experimental results for strip without membrane. Initial conditions:

" = 50 g, _0 = ±0.45, �0 = 400 mm. Solid, dashed, and dotted lines correspond

to different runs of the same experiment.

process of a strip without membrane are negligible. The plot in Fig. 2.19b shows

the height of the center of the strip during deployment (with the zero corresponding

to the height of the pulleys). The plot shows that the height increases monotonically

until the strip is fully deployed at C = 300 ms. Afterwards, the structure continues to

move upwards as a rigid body and it overshoots� = 0, reaching a maximum height at

C = 400 ms. The longerons maintain the same height during deployment, indicating

that there is no twisting of the strip. In this case, comparing the experiments in air

and in vacuum, it can be noticed that the latter is faster during the last portion of

deployment (after C = 250 ms), and it reaches a higher peak at approximately the
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same time.
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Figure 2.20: Deployment results for experiments on strip with membrane, in air and

vacuum. Initial conditions: " = 50 g, _0 = 0.45, �0 = 400 mm. Solid, dashed,

and dotted lines correspond to different runs of the same experiment.

Figure 2.20 presents the results for the strip with membrane, both in air and in

vacuum. Again, the behavior of the strip is symmetric and the three runs of

the experiment are consistent. However, for this strip the presence of air plays a

significant role, with the deployment in air being about 1.7 times slower than in

vacuum (750 ms vs. 450 ms). Similarly to the strip without membrane, the fold

angle oscillates during deployment, with an average period of 280 ms in air vs.

220 ms in vacuum. Also, the amplitude of the oscillation is smaller for deployment

in air than in vacuum. Figure 2.20b shows the height of the center of the longerons
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over time. For deployment in air, the strip reaches its final height after 950 ms,

never overshooting the vertical location of the pulleys. For deployment in vacuum,

the vertical motion is much faster and the maximum height is reached after 550 ms.

In summary, the experiments have shown that, for the suspension system concept

studied in this chapter (and for the chosen values of �0 and "), the elastic folds do

not move and essentially behave as fixed, self-latching elastic hinges, deploying in

a consistent and repeatable fashion. If the structure is folded in a symmetric way,

symmetry is also preserved throughout the deployment, which is very advantageous

as it simplifies the development of mathematical models to predict the dynamics of

the structure.

2.5 Numerical Model

Numerical simulations of the packaging and deployment of the strip were carried out

with the Simulia Abaqus Explicit 2020 finite element software. The Abaqus model

is shown in Fig. 2.21. The longerons were modeled with S4R reduced-integration

shell elements, and their material properties were defined using direct specification

of the ABD matrix for the flanges and the web, based on previous measurements

on coupons of a similar laminate [57]. The battens were modeled with B31 linear

beam elements. The Ω-shaped connectors between the longerons and the battens

were assumed rigid and were modeled with kinematic coupling constraints between

the end nodes of the battens and a region of the longeron web of the same size as

the physical connector. The suspension system was modeled using a combination

of one-dimensional connector elements. More details about this model are provided

later in this section. The membrane was bonded to the webs of the longerons and to

the battens using tie constraints.

A uniform mesh of approximately 2 mm × 2 mm was used for all parts of the

model. Based on the essentially symmetric deployment observed in the experiments,

symmetry about the mid-plane of the strip was assumed, thus reducing the total

number of elements by a factor of two. The resulting model contained 81,355 nodes

and 79,556 elements, i.e. 24,156 shell elements and 54,900 membrane elements.

2.5.1 Membrane Formulation

Because of their small thickness, membranes have very small bending stiffness

and cannot sustain any in-plane compressive loads. Wrinkling instabilities arise

whenever the principal stress components in a membrane have opposite sign. A

detailed numerical characterization of the wrinkles, in terms of wavelength and
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(a) Finite element model of a symmetric strip. Longerons

and battens are connected by rigid coupling constraints; tie
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(CYL) elements introduce friction

in the pulley

Figure 2.21: Description of finite element model of strip with membrane.

amplitude, requires a shell element formulation, capable of capturing the small,

but still finite, bending stiffness of the membrane [106]. However, this approach is

computationally expensive, as very fine meshes are required to accurately capture the

short wavelength of the wrinkles. On the other hand, the onset and orientation of the

wrinkles can still be predicted accurately with less expensive membrane elements

[106], by implementing a wrinkling theory into an ad hoc material model, known

as the Iterative Material Model (IMP) [71][72]. This model is based on a mixed

stress/strain criterion to identify three regimes for the membrane: slack, wrinkled,

and taut.

Each regime is associated with a different material tangent stiffness matrix. For a

taut membrane, the constitutive relation is based on the standard stiffness matrix Dt

for an isotropic membrane. A slack state corresponds to no stress in the membrane,

hence the stiffness matrix Ds is null. Finally, for a wrinkled membrane, an effective

stiffness matrix Dw is defined, based on the assumption that the wrinkles are aligned

with the direction of principal stress in the membrane, and that the stress is zero in
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the direction normal to the wrinkles. Hence, the resulting model is expressed as:

Ds = 0 (2.9a)

Dw =
�

2



2(1 + %) 0 &

0 2(1 − %) &

& & 1



(2.9b)

Dt =
�

1 − a2



1 a 0

a 1 0

0 0 (1 + a)/2



(2.9c)

where � is the elastic modulus and the parameters % and & are functions of the

engineering strains nG , nH and WGH, defined as:

% =
nG − nH
n1 − n2

(2.10a)

& =
WGH

n1 − n2
(2.10b)

where n1 and n2 are the principal strains.

Various implementations of the IMP algorithm have been successfully used in finite

element codes, both with implicit [1] and explicit [14] integration schemes. The

particular implementation that was used in the present study was the Abaqus Explicit

VUMAT subroutine in Ref. [14].

2.5.2 Suspension System Model

Models for cables and pulleys have been developed in the context of cranes, electrical

transmission lines, and seat belts. Electrical transmission lines loaded by self-weight

have been modeled as truss elements with zero-sized frictionless pulley were allowed

to slide[7]. A formulation that accounts for friction between cords and pulleys in

cranes[49] allows for different tensions in the cord segments on the two sides of the

pulley, but does not consider inertial effects on the pulley.

The chosen model was based on seat belt systems models for dynamic simulations of

automotive crash events [23] [41], which use combinations of slip ring and retractor

elements. Slip rings are 2-node elements that enable a "material flow" degree of

freedom, which allows mass to enter or exit the element, and hence to increase or

reduce the element’s length without elastic deformation. Connecting two slip rings

in series, the mass exiting from one element enters the other element through their
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shared node. Retractor elements, instead, convert the material flow at one node into

rotation of the other node. Both of these elements are available in Abaqus.

A schematic model of a suspension pulley is shown in Fig. 2.21b: the circles 1-5

represent the nodes of the connector elements. Node 1 corresponds to the strip-cord

connector and is connected to the central nodes of the strip outermost batten using

MPC beam constraints. Node 3 represents the pulley, which has only one rotational

degree of freedom, about the H-axis. Node 5 represents the counterweight attached

to the end of the cord, whereas nodes 2 and 4 are auxiliary intermediate nodes.

Slip ring (SR) elements model the cords, connecting nodes 1-2 and 4-5. To prevent

the cords from experiencing axial compression during dynamic loading, a bi-linear

elastic model is assigned to the slip rings, with tensile stiffness  C = 1000 N/mm

and compressive stiffness  2 = 1 N/mm. A sensitivity study for these parameters

showed that, under the expected loads, the cords effectively behave as rigid in tension

and slack in compression.

To take into account the inertial effects of the pulley, retractor elements (RET)

between 2-3 and 4-3 convert the material flow at nodes 2 and 4 into rotation of node

3, according to:

V =
ΔΨ2

'
=
ΔΨ4

'
(2.11)

where ' is the radius of the pulley and ΔΨ2, ΔΨ4 define the material flow at nodes 2

and 4. Note that ΔΨ2 = ΔΨ4 because the retractor elements are connected in series.

Lastly, friction in the pulley bearing was captured by adding a second connector

element between nodes 2 and 3, in parallel with the retractor element. This element

models a cylindrical joint (CYL) that constrains all relative displacements between

its nodes, except for the relative rotation about the H-axis. It provides the friction

torque associated with the rotational degree of freedom, V, through the relationship:

)3 = −sign(V)) 5 (2.12)

where ) 5 is a constant obtained from the experimental characterization of the sus-

pension system described in Sec. 2.3.4.

The experiment presented in Sec. 2.3.4 was used as a benchmark to verify the model

of the suspension system, whose results showed very good agreement both with an

analytical solution and the experiment, see Fig. 2.22.
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Figure 2.22: Verification of suspension system model using the experiment in

Fig. 2.15a, with "1 = 20 g and "2 = 50 g.

2.5.3 Air Model

Modeling the effect of air on the deployment dynamics of lightweight large-area

structures in a general way would require a coupled fluid-structure model[53] which

would be beyond the scope of the present study. The approach that was adopted

was based on existing models for the vibration of large membranes. Membranes

vibrating in air have lower natural frequencies and higher damping than in vacuum

[110], and for simple geometries it can be shown that the effect of air pressure in

the equations of motion can be described in terms of a frequency-dependent added

mass and a radiation damping term[53].

A simple vibration model [92] used a geometric argument to define an effective

air volume, based on the velocity field for any chosen vibration mode and defined

an added air mass that was distributed in a non-uniform fashion, in order to be

maximum at the center of the membrane and zero at the edges. Higher fidelity

models have been developed to explicitly include the air around the membrane,

either using the boundary element method [102] or defining an air box with finite

elements [53].

Hence, it was assumed that a half-cylindrical volume around the strip is forced to

move with the structure, as shown in Fig. 2.23. The height of the added-air volume

above the structure only varies with the transverse coordinate, and is given by:

I0 (H) =

√(
,

2

)2

− H2 (2.13)

where , is the width of the strip. The corresponding mass of the air added to the
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Figure 2.23: Volume of air mass added to the strip model with membrane.

structure is therefore:

<0 = 2d0!

∫ ,
2

−,
2

I(H)3H = cd0,
2!

4
(2.14)

where d0 = 1.225 :6/<3 is the standard air density.

The added air mass was uniformly distributed over the area of the Kapton membrane

by scaling the mass of the membrane with the factor:

 =
<: + <0
<:

(2.15)

where <: is the total mass of the membrane.

From an implementation standpoint, the added air mass could be introduced by

increasing the density of the membrane. However, this would increase not only the

inertia of the structure during deployment, but also its gravity loading, thus altering

the starting folded configuration, as well as the height of the structure in its fully

deployed state. Therefore, the added air mass was introduced by using mass scaling,

which is a technique often used in quasi-static problems with explicit solvers. Mass

scaling has the advantage of increasing the density of the material and, therefore, the

stable time increment of the solver, drastically reducing the number of increments

needed to perform long simulations. The mass scaling formulation in Abaqus only

affects the inertial term in the equations of motion of the model, but the scaling

coefficient is not included in the calculation of gravity loads. Therefore, it is ideal

to model the effect of air on the dynamics of the structure, without affecting its

equilibrium configuration.



40

Based on this model, the added air mass for a strip with membrane deploying in air

was <0 = 31.7 g, which is compared to <0 = 46 g for the strip with membrane. The

added mass due to the residual air in the experiments in near-vacuum conditions,

as described in Section 2.3.3, is 3.0 g, and it was neglected. For the strip without

membrane, the air volume to consider would consist of two half-cylinders, with

diameter equal to the width of the two longerons. The resulting added mass for

deployment in air and would be 0.45 g and 0.04 g, respectively, and was neglected

in the simulations.

The second aspect of the air-structure interaction, damping, can be simply expressed

by a force �:
�

�
=

1

2
d0+

2
0 2� (2.16)

where d0 and +0 are the density and velocity of the undisturbed flow, � is the total

area of the structure, and 2� is the drag coefficient, which depends on the geometry

of the body and the Reynolds number. For a half-cylinder with the concave side

facing the flow 2� ∼ 2.3 [61].

This air drag model was implemented in Abaqus using a stagnation pressure load,

defined as:

?B = −2B (v · n)2 (2.17)

with v being the velocity of the point on the surface where the load is applied, and n

the local normal to the element. Substituting |v| = −+0 and equating the right-hand

sides of Eqns. 2.16-2.17 gives:

2B =
1

2
d02� (2.18)

In conclusion, air was only considered for the deployment in air of the strip with

membrane, and its effects consisted of an additional mass, modeled by mass scaling

with : = 3.0 of the membrane only. Damping was modeled as a stagnation pressure

with coefficient 2B = 1.4087 :6/<3.

2.5.4 Simulation Details

The simulations were performed in Abaqus Explicit 2020 on the symmetric model

shown in Fig. 2.21 and were organized in five steps, as described next.

1. In the first step, gravity was applied to tension the suspension cords. Localized

folds were formed in the longerons by the application of equal and opposite
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pressure of 0.1 MPa distributed on both flanges, over a 20 mm long region.

This length includes enough elements to avoid locking of the mesh induced

by excessive shearing.

2. A rigid cylinder with radius equal to the flange radius was used to push the

strip into its folded configuration, using displacement control.

3. The residual kinetic energy in the structure was allowed to dissipate to less

than 1% of the maximum strain energy. At this point, the folded configuration

was considered to have reached equilibrium.

4. In the deployment step, the cylinder was instantaneously removed and the

structure was allowed to self-deploy.

5. A final equilibrium step was carried out, to dissipate the kinetic energy from

deployment and obtain the final configuration of the strip.

Numerical damping was used to reduce unphysical, high-frequency vibration that

is a characteristic effect of explicit simulations. Previous studies have shown that

a velocity-dependent viscous pressure, defined as ? = −2Ev · n, is very effective at

dissipating such vibration in thin-shell structures [63][87]. Sensitivity studies of

strip deployment have found that a small amount of linear bulk viscosity, proportional

to the volumetric strain of the finite elements, is also beneficial to prevent numerical

instabilities. Hence, a combination of both damping models was used. Table 2.2

presents the values of the main parameters for each of the simulation steps described

above.

Step Duration [s] Linear bulk viscosity 11
Viscous pressure

2E [:6 <−2B−1]
1. Gravity 0.1 10−4 10

2. Folding 0.5 10−4 10

3. Equilibrium 0.3 10−4 100

4. Deployment 1.0 10−8 0

5. Equilibrium 0.3 10−4 100

Table 2.2: Simulation parameters

The duration of the first three steps was chosen by trial and error, such that the

correct folded configuration could be achieved in the shortest possible computational

time. The duration of the deployment step was chosen to be longer than the actual

deployment time of the strip (defined as the time at which the fold angles become
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(a) Initial configuration (b) Localized folds

(c) Folding (d) Deployment

Figure 2.24: Simulation sequence (actual simulation only includes half of the strip):

(b) Gravity is applied and the longerons are pinched to create localized folds. (c)

Rigid cylinders are used to fold the structure. (d) After an equilibrium step to

dissipate any residual kinetic energy from the folding step, the strip is deployed by

instantaneously removing the cylinders. A second equilibrium step allows the strip

to reach its final state.

zero for the first time). The duration of the final equilibrium step was chosen to allow

sufficient dissipation of the end-of-deployment vibration and rigid body oscillation

of the strip, using the previously chosen values of the numerical damping. With

these settings, a complete simulation of packaging and deployment, using 8 CPUs

on a server with 3.5 GHz Intel Xeon Gold 6144 processor took about 83 hours 45

minutes (30 hours 20 minutes for folding, 53 hours 25 minutes for deployment) for

a strip with membrane, 25 hours 25 minutes for a strip without membrane (17 hours

20 minutes for folding, 8 hours 5 minutes for deployment).

Figure 2.25 shows the energy contributions thorughout the simulation of the strip

with membrane, deploying in air. The artificial energy, associated with hourglassing

modes in the finite element mesh, is very small throughout the simulation. The

viscous dissipation increases during the folding process and is associated with the

viscous pressure introduced during that step. In the deployment phase, it slightly
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grows due to the air drag. In the final equilibrium step, the viscous dissipation further

increases as additional damping is introduced in the model (in the form of viscous

pressure and bulk viscosity) to reach the final equilibrium state. Regarding the strain

energy of the strip, the largest contribution comes from the formation of the elastic

folds during pinching of the longerons, in the first step of the simulation. Additional

strain energy is stored during folding, as the angle of the folds is increased. During

the deployment step, the strain energy gradually decreases to 10% of its value in

the folded configuration, when the elastic folds latch in the deployed configuration.

The residual strain energy, associated with elastic vibration of the strip, is released

in the final equilibrium step.
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Figure 2.25: Energy balance for strip with membrane deploying in air. Initial

conditions: �0 = 400 mm, _0 = 0.45, " = 50 g.

Note that the folding process is not quasi-static, since the kinetic energy is quite

high compared to the strain energy, but is dissipated to less than 1% of the strain

energy before the initiation of deployment. The same approach was previously

adopted in Ref.[63]. During deployment of the strip, the kinetic energy varies

smoothly, reaching its maximum after 420 ms from the beginning of deployment;

then, it suddenly increases when the elastic folds latch, and oscillates afterwards. In

the final equilibrium step, the residual kinetic energy is almost entirely dissipated.

Finally, the overall energy balance is described by the total energy �C>C , defined by

the following equation (in which only the relevant terms for this problem have been
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retained):

�C>C = �( + �� + �+� + � − �, = const (2.19)

where �( is the strain energy, �� is the artificial energy, �+� is the viscous dissi-

pation, � is the kinetic energy, and �, is the external work. Figure 2.25 shows

that the total energy (in black) remains constant and approximately equal to zero

throughout the entire simulation, indicating that there is no energy loss from or

injected into the model.

2.6 Comparison between Numerical Results and Experiments

The first part of this section presents a validation of the numerical model in Sec-

tion 2.5 that uses the quasi-static unfolding of a strip as a benchmark problem. The

results from the numerical simulation are compared with the experimental data pre-

sented in Sec. 2.3.2. The second part of the section presents a comparison between

the experimentally measured deployment behavior of the strips, with and without

membrane, with the correspoding numerical simulations.

2.6.1 Model Validation

A quasi-static unfolding simulation of the strips was performed using the static

implicit solver in Abaqus 2020. The boundary conditions matched the geometry

and kinematics of the experimental setup described in Sec. 2.3.2. The simulation

was structured in 4 steps. First, a small pressure load was applied to the flanges at the

center of the longerons, in order to facilitate the formation of elastic folds, similarly

to step 1 in Sec. 2.5.4. Then, the strip was folded to an angle \ = −35◦ by controlling

the rotation of its ends. Next, the pressure load was removed and then the strip was

unfolded by prescribing its end rotation. The deployment simulation showed that

the strip undergoes several instabilities, because the elastic folds tend to move along

the longerons, which makes convergence difficult to achieve. A small amount of

viscous stabilization was introduced to help the solver achieve equilibrium and an

analysis of the sensitivity to this parameter showed that a maximum allowable ratio

of stabilization energy to total strain energy on the order of 10−7, provides sufficient

stabilization with negligible effect on the predicted moment in the strip. However,

stabilization up to 10−4 was required in the final part of deployment, when snapping

of the elastic folds releases significant amounts of energy.

The results are shown in Fig. 2.26 for the strip with and without membrane.

Overall, the simulations are in good agreement with the experiments for large angles

(\ > 10◦), correctly capturing the steady-state moment of the strip. For smaller
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angles, the localized folds disappear and the simulations significantly overpredict

the peak moment, which is over 2 times higher than the measured value for the strip

without membrane, and 1.4 times higher for the strip with membrane.
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(a) Strip 1, without membrane
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Figure 2.26: Comparison between simulations and experiments for quasi-static

deployment.

There are two reasons for this discrepancy. First, as explained in Sec. 2.3.2,

the experiments show that the localized folds transition from a symmetric to an

asymmetric configuration for \ ≈ 15◦. At the peak moment, the localized folds turn

into local buckles along the compression flanges. As |\ | is decreased, the buckle’s

amplitudes gradually decrease as the applied rotation is reduced. The simulation

misses this transition from symmetric to asymmetric folding, although it captures

well the transition to local buckling of the compression flanges. Hence, it follows a

higher-energy equilibrium path, which results in a higher peak moment.

This difference in behavior is not surprising, as thin-shell structures exhibit multiple
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energetically-similar equilibrium paths [86], and the choice between different paths

is very sensitive to small geometric imperfections in the structure. Therefore, since

no imperfections were introduced in the simulation, the model follows the most

symmetric equilibrium solution, which is not necessarily the lowest energy path.

For the same reason, in the simulation the localized folds on the two longerons

disappear at the same time, but in the experiment this only happens for the strip

with the membrane. This explains why the error is smaller in this case. This result

suggests that the coupling between the longerons introduced by the membrane

might help making the structure less sensitive to imperfections, leading to a more

deterministic and predictable behavior.

2.6.2 Comparison of Deployment Results

The results of the deployment simulations have been compared to the experiments

on the two strips (with and without membrane), both in air and in vacuum. The

plots in Figs. 2.27-2.29 present the evolution of the fold angle and the height of the

center of the strip as a function of time.

Green and blue lines correspond to the experimental data for the two longerons; red

lines represent simulations. Different runs of the same experiment are indicated by

solid, dashed, and dotted lines.

Figure 2.27 shows the results for the strip without membrane. The simulation

closely matches the experiments. The fold angle decreases symmetrically for both

longerons, and hence only one angle has been plotted, and oscillates during the

process. The amplitude and period of the oscillations are well captured by the

simulation, and the deployment time is 4% slower than the mean deployment time

from the experiments. When the fold angles become zero for the first time, latching

of the longerons occurs and the strip starts vibrating. Figure 2.27b shows the

evolution of the height of the center of the strip. The simulation and the experiments

start from the same height (400 mm below the position of the pulleys), and match

very closely for the initial 250 ms of deployment. After this time, the simulation

becomes slightly faster than the experiment and reaches a 30 mm higher peak height.

Figures 2.28a and 2.28b show the results for a strip with membrane, deploying in

vacuum. Again, there is very good agreement between simulation and experiments,

with the predicted fold angle being within the envelope of experimentally measured

angles, and the predicted deployment time being less than 5% slower than the mean

experimental value. Regarding the height of the center of the strip, the simulation
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Figure 2.27: Comparison between experiments in vacuum and simulations for a

strip without membrane. Initial conditions: �0 = 400 mm, _0 = 0.45, " = 50 g.

starts from the same value as the experiment, but becomes slightly slower after 150

ms, maintaining a 30 mm constant offset after this point. However, at the end of

deployment, it reaches the same maximum height at approximately the same time.

Figures 2.29a and 2.29b present the results for a strip with membrane deploying in

air. The simulation correctly captures the amplitude and period of the oscillation in

the fold angle, as well as the deployment time. Because of the symmetry assumption

in the finite element model, the two folds on each longeron disappear at the same

time, whereas in the experiments there is a delay of 50 ms on average, possibly

due to geometric imperfections and/or initial pre-stress in the Kapton membrane. A

very good agreement is also found in the evolution of the height of the center of the

strip (Fig. 2.29b), throughout the entire deployment process.
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Figure 2.28: Comparison between experiments and simulations for a strip with

membrane. Initial conditions: �0 = 400 mm, _0 = 0.45, " = 50 g.

2.7 Experimental Investigation of the Effect of the Initial Conditions on the

Strip Deployment

The results presented so far assumed a fixed set of initial conditions (�0 = 250 <<,

_0 = 0.45, and " = 50 g), representative of the behavior of the strips under a wider

range of initial conditions. In this section, the experimental results that motivated

this choice are presented. The experiments were carried out on the strip prototypes

and with the experimental apparatus described in Sec. 2.3.

2.7.1 Design of Experiments

To explore the parameter space for the problem, 3 different values of initial heights

�0, 5 masses " , and 6 initial fold locations _0 were chosen for the experimental

campaign from the suitable ranges defined in Sec. 2.2.3. Fig. 2.30 shows a map

of all the combinations of initial conditions tested, for each strip prototype. The
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Figure 2.29: Comparison between experiments and simulations for a strip with

membrane. Initial conditions: �0 = 400 mm, _0 = 0.45, " = 50 g.

lowest mass of the counterweights was " = 20 g for the strip without membrane,

and " = 30 g for the one with the membrane. The largest mass tested was limited

to " = 100 g, to avoid damaging the strips due to bending of the terminal battens,

to which the cords were attached.

The experimental results were processed using the algorithm described in Sec. 2.4,

and the results were compared using 3 metrics:

• initial fold angle \0, defined as the mean absolute value of angle of the elastic

folds in the strip (2 on each longeron) at the time C = 0;

• deployment time C3 , defined by the time at which all the elastic folds have

latched for the first time (see Fig. 2.31a);
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Figure 2.30: Combinations of initial condition for the strip deployment experiments.

• maximum fold propagation ?<0G , defined as the maximum distance traveled by

an elastic fold during deployment. Its non-dimensional counterpart, Δ_<0G =
?<0G

!
, is defined in Fig. 2.31b.

The repeatability of the experiments was assessed by performing 3 runs for each

combination of initial conditions and each strip. For each of the metrics H8 defined

above, the maximum deviation across nominally identical runs of the 9-th test case

was computed as ΔH8 9 = max
:=1,..3

H
(:)
8 9

− min
:=1,..3

H
(:)
8 9

. The RMS of ΔH8 was used as a

measure of repeatability, and the results are summarized in Table 2.3. Note that, for

Δ\0 and ΔC3 , the percent variation is computed with respect to the mean value of

each test case; for ?<0G , the half-length of the strip ! is used instead.

The table shows that the experiments were very consistent for both strips, with the

initial fold angles \0 and deployment time C3 being repeatable within 2% and 3%

of their mean value, respectively. The maximum fold propagation ?<0G varied, on
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Figure 2.31: Definition of relevant metrics for the strip deployment experiments:

deployment time C3 , initial fold angle \0, and maximum fold propagation Δ_<0G . \0

is defined as the mean absolute value of the initial fold angle for the 4 folds.

Δ\0 ΔC3 ?<0G
Strip w/o membrane 0.45◦ (1.2 %) 11 ms (2.6 %) 18.8 mm (3.3 %)

Strip with membrane 0.53◦ (1.4 %) 20 ms (2.6 %) 9.8 mm (1.7 %)

Table 2.3: Repeatability of deployment tests for strips with and without membrane.

average, by about 10 mm for the strip with membrane and 20 mm for the strip

without membrane.

2.7.2 Experimental Results

The results for the strip without membrane are summarized in Fig. 2.32. The plots

report initial fold angle \0, deployment time C3 , and maximum fold propagation

?<0G as a function of the initial fold location _0. Each marker corresponds to a



52

0 0.14 0.25 0.46 0.74 0.89 1

0

0

50

100

150

200

250

p
m

a
x
 [

m
m

]

250

500

750

1000

1250

1500

1750

t d
 [

m
s
]

15

30

45

60

75

0
 [

d
e

g
]

M = 20 g, H = 20"

M = 20 g, H = 30"

M = 30 g, H = 10"

M = 30 g, H = 20"

M = 30 g, H = 30"

M = 50 g, H = 10"

M = 50 g, H = 20"

M = 50 g, H = 30"

M = 80 g, H = 10"

M = 80 g, H = 20"

M = 80 g, H = 30"

Figure 2.32: Results for strip without membrane.

different run of an experiment; different colors correspond to different masses of

the counterweights " , and different marker shapes correspond to different initial

heights �0. The first plot from the top shows that, for given initial fold location,

\0 increases with the initial height �0, as well as with the mass " . For fixed "

and �0, the initial fold angle also increases as the folds move towards the ends of

the strip. Using different combinations of " and �0, it is possible to achieve initial

fold angles between 10◦ and 65◦, which are in agreement with the predictions from

Fig. 2.10.

The middle plot in Fig. 2.32 shows that the deployment time C3 heavily depends on

the mass of the counterweights " , ranging from about 1.5 s for a mass of " = 20 g,

down to less than 200 ms for a mass of " = 80 g. Increasing the initial height �0

also increases the deployment time, as the initial angle \0 becomes larger. However,

for fixed " and �0, the deployment time is mostly independent of the location of

the folds.
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Finally, the bottom plot in Fig. 2.32 shows that some propagation of the elastic folds

can occur. However, in most cases, this propagation results from the folds oscillating

about their initial position. To isolate experiments with a more interesting behavior,

a threshold of ?<0G = 100 mm was chosen (dashed horizontal line in the plot). The

experiments with ?<0G > ?<0G correspond to configurations with the folds close

either to the center of the strip (_0 = 0.14) or to its ends (_0 > 0.74). In the next

section, these two regimes will discussed in more detail.
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Figure 2.33: Results for strip with membrane.

Fig. 2.33 shows the results from the experiments on the strip with membrane. The

top plot confirms the dependency of \0 on the initial conditions, already discussed

for the previous case. The middle plot shows the same qualitative behavior as the

strip without membrane. However, for the same initial conditions, the deployment

time for the strip with membrane is approximately twice the time for the other strip.

This is consistent with the higher inertia and weight of the strip, due to the presence

of the membrane. The bottom plot in Fig.2.33 shows some differences between
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the two strips in the maximum fold propagation. Specifically, for the strip with

membrane, the propagation is more pronounced when the folds are close to the ends

of the strip, where they can propagate for up to a 1/4 of the total length of the strip.

On the other end, no propagation occurs when the folds are close to the center of

the strip, unlike the strip without membrane.

2.7.3 Special Cases of Propagation of the Elastic Folds

This section focuses on the propagation of the elastic folds during deployment of

the strip prototypes, for certain combinations of initial conditions. In particular, two

regimes can be identified, with qualitatively different behavior: folds close to the

center of the strip, and folds close to its ends. A schematic of the folded strip for the

2 cases is shown in Fig. 2.34.

(a) Folds close to the center of the strip (_ =

0.14)

(b) Folds close to the ends of the strip (_ =

0.91)

Figure 2.34: Special configurations of a folded strip for which fold propagation can

occur.

Fig. 2.35 shows fold angle and fold location for the strip without membrane, with

initial conditions " = 80 g, �0 = 508 mm, and _0 = 0.14. During deployment, the

fold angle \ remained mostly symmetric, starting from an initial value of about 30◦

and fully deploying after 244 ms (Fig. 2.35a). However, shortly after the release

of the strip, one of the folds on each longeron propagated towards the other fold,

merging with it after 36 ms and 48 ms, for the 2 longerons. Soon after this (at C = 72

ms and C = 56 ms, respectively), the remaining fold moved to the center of the strip,

without propagating further until the end of deployment.

The other 2 runs of the same experiment showed the same qualitative behavior, with

the folds always merging and moving to the center of the strip. However, the order

in which the events occurred varied, and the folds would sometimes move to the

center of the strip and merge there, rather than creating the asymmetric configuration
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shown in Fig. 2.35b.
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Figure 2.35: Propagation of the elastic folds in the strip without membrane, for

" = 80 g, �0 = 20”, and _0 = 0.14.

Fig. 2.36 shows an example of propagation of the folds for the strip with membrane,

with initial conditions " = 100 g, �0 = 508 mm, and _0 = 0.91. In this case,

the strip deployed from an initial angle \0 ≈ 55◦, and the longerons reached their

deployed state at about the same time, after 516 ms. Fig. 2.36b shows that, in this

case, 3 of the 4 folds propagated towards the center of the strip, whereas the fourth

one remained stationary. The rate of propagation of the folds is approximately the

same, although one of the them stopped at b = 0.67, while the others propagated

until reaching b = ±0.5, which, interestingly, corresponds to the location of the

second and fourth battens in the strip. Despite some variability in the extent of the

fold propagation and the order of propagation, other runs of the same experiment

and different experiments with folds close to the ends share the following qualitative

traits:
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• the folds never propagate past the location of the battens;

• one of the 4 localized folds does not propagate, resulting in a non-symmetric

deployment process.
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Figure 2.36: Propagation of the folds in the strip with membrane, for " = 100 g,

�0 = 20”, and _0 = 0.91.

The first point can be explained in terms of a local stiffening effect of the battens,

which are connected to the flange of the longerons by glass fiber Ω-shaped connec-

tors. The additional bending stiffness introduced by the connectors likely creates

an energy barrier that stops the propagation of the folds. Although definitive proof

of this mechanism has not been presented yet, the results in this section hint at a

potential way to passively control the propagation of the elastic folds by artificially

stiffening the longerons at opportune locations.
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The second point mentioned above, i.e. the strip locking in a non-symmetric

configuration with only a stationary fold, is not understood yet. However, the

fact that it is more pronounced in the strip with the membrane than in the other

strip suggests that this could be an artifact of the shear constraints introduced by

the membrane. Similarly, this coupling between longerons might explain why, in

the strip with membrane, the fold merging mechanism at small _0 (presented in

Fig. 2.35) was never observed.

2.7.4 Discussion

The experimental campaign presented in this section showed that, for most combi-

nations of initial conditions, the strips exhibit the same qualitative behavior, with

the folds remaining stationary and the overall deployment being mostly symmetric.

There are few instances, discussed in the previous section, in which the symmetry

of the deployment is broken and the elastic folds propagate. While this behavior is

interesting and can shed some light on the interaction between different components

of the space structure, it only occurs in extreme cases, where the folds are very close

to each other or to the ends of the strip. Such cases are of limited practical interest

and, therefore, were not be investigated further in this thesis.

An intuitive way of packaging a strip by using two elastic folds would be to divide it

in 3 parts of equal length (corresponding to _0 = 0.33), so that the two end portions

would lie on top of each other when folded (see Fig. 2.3). Alternatively, _0 = 0.5

would result in a larger central panel and two side panels with half its length, as

shown in Fig. 2.1b; in this case, the side panels would not overlap when folded.

Based on these considerations, the intermediate value of _0 = 0.45 was chosen as

a reference for the strip deployment study in Chapter 2. The intermediate value of

initial height �0 = 508 mm (20”) was selected because it provides a relatively large

initial fold angle (\0 ≈ 45◦) without sacrificing the quality of the DIC measurements.

Greater heights, indeed, make it difficult to track the entire strip throughout the its

range of motion due to the large out-of-plane displacements, often resulting in partial

and/or noisy data.

Finally, regarding the mass of the counterweights, the experiments showed that

a mass of " = 30 g would be the minimum to effectively support either strip

prototype. However, the resulting deployment would have been quite slow (longer

than 1 s), which would have made it difficult to capture dynamic effects, such as the

interaction with air. On the other hand, large masses (between 80 g and 100 g) would
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result in a much faster deployment, but the dynamics of the structure might have

been dominated by the suspension system. Therefore, " = 50 g was chosen for

the final experiments, as it provides a good compromise between those conflicting

considerations.

2.8 Conclusion

This chapter has presented a study of the dynamic deployment of rectangular space

frames composed of interconnected, ultralight thin-shell longerons. The structures

were initially folded by forming two elastic folds, and were then deployed by releasing

the stored elastic energy. An experimental setup was designed to symmetrically fold

1.125-m-long structural prototypes, which were supported by a cord suspension

system and deployed against gravity with the assistance of two edge masses. Digital

Image Correlation was used to measure the deformation of the structure during

deployment, and an algorithm was developed to track the location and angle of

the elastic folds, robust against noisy and incomplete point clouds. The algorithm,

implemented in MATLAB, can be easily adapted to different shell geometries and

to point clouds obtained from different measurement techniques, and is available

to the interested reader at the following link https://github.com/apedivel/

thin_shell_localized_folds.git.

Deployment experiments have shown that a symmetrically folded structure remains

essentially symmetric during the deployment process. For the particular experiments

presented in the chapter, the elastic folds did not move along the longerons, behaving

as non-linear elastic hinges. In other experiments, with different initial locations

for the elastic folds (very close to the center or to the ends of the strips) and not

presented in this chapter, the folds did move, although they were often constrained

by the battens to remain within one bay of the structure.

The present simulation method can be used to predict the effects of different loading

and boundary conditions on the deployment of the structure, which can be significant.

For example, Fig. 2.37 compares the evolution of the elastic folds \ (B) for the strip

without membrane, if the end masses are replaced with constant force retractors.

This plot shows that free deployment in 0 g would be almost twice as fast as the

benchmark case studied in this chapter (deployment with gravity and suspension

system with 50-g end masses), with a deployment time of 144 ms vs. 282 ms. Also,

the angle of the folds monotonically decreases during free deployment, whereas it

oscillates in the final part of deployment for the benchmark case. The oscillation

https://github.com/apedivel/thin_shell_localized_folds.git
https://github.com/apedivel/thin_shell_localized_folds.git
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Figure 2.37: Effect of boundary conditions and gravity on the deployment of a strip.

in the fold angle is due to the inertia of the end masses. This was confirmed

by simulating a variant of the suspension system, where the counterweights are

replaced by a constant force spring retractor with negligible inertia, providing the

same amount of cord tension (5 N) as the benchmark suspension system. The results

for this case (yellow lines in Fig. 2.37) show that the fold angle is the same as the

suspension system with counterweights for the first 110 ms of deployment, but it

decreases much faster afterwards and remains monotonic. The deployment time for

this case is 175 ms, only 20% slower than free deployment in 0 g.

These results indicate that, although the suspension system presented in this chapter

offers a relatively simple implementation and can be accurately characterized ex-

perimentally and modeled in simulations, alternative suspension concepts may be

devised that provide a closer approximation to deployment under zero-g conditions.

The effect of air on the deployment dynamics of these structures has been exper-

imentally characterized for the first time. It has been shown that the interaction

with air significantly slows down the deployment of a strip prototype supporting

a thin membrane. However, this effect becomes negligible in the absence of the

membrane.

A finite element model of deployment has been developed. Quasi-static deployment

simulations were able to correctly predict the steady-state moment of the strip pro-

totypes, but significantly overpredicted the peak moment at the end of deployment.

This discrepancy was attributed to the longerons being sensitive to geometric imper-

fections, such as local variations of the flange radius and angle. Such imperfections

were not considered in this chapter, and require further work to be experimentally

characterized and included in simulations. As far as the dynamic deployment sim-
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ulations are concerned, they correctly capture the initial equilibrium configuration

in the folded state, and accurately predict the evolution of the fold angles during

deployment, with less than 5 % error on the deployment time. A simple model

to estimate the added mass of air from the geometry of the structure, as well as

an air drag model based on drag coefficients from literature, has been proposed.

Simulations made with this model closely match the deployment behavior observed

in experiments, both qualitatively and quantitatively. Although the present study has

considered initial folding angles of about 45◦, it would be interesting to investigate

the deployment of fully folded strips, which would require a different suspension

system.

In conclusion, it has been shown that the packaging and deployment of space

frames consisting of thin-shell longerons can self-deploy in a reliable and repeatable

fashion. This represents a promising path forward to the application of thin-shell

technologies to novel lightweight solar array concepts and other applications.
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C h a p t e r 3

PACKAGING AND DEPLOYMENT KINEMATICS OF A

THIN-SHELL SPACE STRUCTURE

Parts of this chapter were modified from the following publication:

[1] Eleftherios Gdoutos, Alan Truong, Antonio Pedivellano, Fabien Royer, and

Sergio Pellegrino (2020). “Ultralight deployable space structure prototype”. In:

AIAA Scitech 2020 Forum. 2020-0692.

[2] Antonio Pedivellano, Eleftherios Gdoutos, and Sergio Pellegrino (2020). “Se-

quentially controlled dynamic deployment of ultra-thin shell structures”. In: AIAA

Scitech 2020 Forum. 2020-0690.

3.1 Introduction

Thin-shell strips offer a simple architecture to build bending-stiff planar structures

using the one-dimensional packaging concepts established for deployable booms.

In Chapter 2, a folding scheme was proposed to deploy a strip under its own strain

energy, only requiring a simple release mechanism to hold down the structure

during launch and initiate deployment once in space. This solution is well-suited

for small scale applications (< 1 m2), for which simplicity and cost effectiveness

are prioritized. As the size of the structure increases, a larger number of elastic

folds would be needed, resulting in a complex deployment dynamics. In this case,

coilable strips offer a more efficient and scalable solution, of which the Roll-Out

Solar Array (ROSA) [38] represents the best example demonstrated in space so

far. Strip architectures up to 100 m2-area have been proposed [65], based on the

ROSA concept. Larger structures can be achieved by stacking multiple independent

strip units side by side, like in the MEGA-ROSA concept [65]. However, each of

these strips would require its own deployment mechanism, increasing complexity

and stowed volume of the structure. An alternative approach would be to build

a continuous structure that extends in two directions and is deployed by a single

deployment mechanism. In this case, bi-axial compaction is required to achieve

efficient packaging.

In this chapter, a square space frame architecture, composed of interconnected thin-

shell strips, is presented. Its kirigami-inspired packaging scheme was first proposed

by Arya et al. [4], and consists of a combination of folding and coiling techniques.
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While this concept has been previously demonstrated on membranes, in this chapter

we apply it to an actual thin-shell structure, and we propose the following objectives:

• Design a systematic and repeatable folding procedure to package the structure;

• Develop a deployment mechanism to achieve controlled and robust coil-

ing/uncoiling of the structure;

• Devise a strain-energy deployment scheme to deploy structures with a large

number of thin-shell components in a predictable and reliable fashion.

In the next section, the architecture of the space structure and its packaging scheme

are introduced. The challenges with the implementation of this concept are dis-

cussed, and the layout of the chapter is presented.

3.2 Background

Multiple architectures and packaging schemes for planar structures have been devel-

oped in the context of deployable membranes, such as solar arrays, reflectors, and

drag sails. Architecture studies by the European Space Agency (ESA) suggest that

square architectures, supported by 4 diagonal booms, offer the best compromise in

terms of deployability, complexity, and maneuverability [58].

Several solar sails have been flown based on this architecture: the Lightsail-1

mission [8] demonstrated a 32 m2 membrane, composed of 4 triangular quadrants,

each folded in two directions using a map folding scheme [81], as shown in Fig. 3.1b.

The same concept was used on De-orbit Sail [97], a 25 m2 drag sail flown in 2014. A

different packaging scheme is used for NEA Scout [62], a NASA mission featuring

a 85 m2 solar sail, set to launch in November 2021. In this case, the membrane is

Z-folded along one direction to become a rectangular strip, and then spooled about

2 cylinders to reach its stowed configuration (see Fig. 3.1a).

An alternative folding scheme for a square structure consists of creasing concentric

squares in alternating directions (mountain and valley folds), and adding 4 diagonal

valley folds. This crease pattern is known in the origami community as a pleated

hyperbolic paraboloid (or hypar), due to its natural tendency to form a saddle shape.

Demaine et al. [13] studied the kinematic compatibility of this folding pattern with

an ideal surface [12]; Seffen [91] developed an analytical model to predict the shape

of the structure for applications in compliant mechanisms and morphing structures.

In the field of deployable structures, the hypar folding scheme was applied in the
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Folding

Coiling

(a) Packaging of a square/rectangular structure by Z-folding in one direction, then coiling around 2

cylinders

Step 1 Step 2

(b) Packaging of a square structure made of disconnected triangular quadrants: each quadrant is

Z-folded in both directions like a map

Figure 3.1: Examples of bi-directional compaction schemes for large area mem-

branes.

late 1980s to fold thin membranes deployed by centrifugal forces [52], during

the experimental campaign leading to the Znamya-2 mission, the first large reflector

demonstrated in space, in 1993. In this context, circular membranes were folded with

2-fold, 4-fold, and 6-fold symmetry, and the ends of the folded star were coiled about

a large central hub. This study concluded that 4-fold symmetric structures provide

better deployment performances than 2-fold symmetric structures. More recently,

this symmetric scheme has been demonstrated on space webs (spin-stabilized cable

nets to support large structures) [27] and membranes, with the IKAROS mission

[74]. In both cases, a 2-step deployment scheme was used, in which the structure

first uncoiled its 4 arms to achieve a star shape, then it unfolded into its planar

deployed state.

Most solar sails consist of a continuous sheet or continuous triangular segments.

However, stripped architectures have also been considered, in which each segment is

composed of trapezoidal strips, each connected to the diagonal booms [60][17][19].
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Valley fold

Mountain fold

Figure 3.2: Origami pattern for a square structure. Releasing the folds generates an

hyperbolic paraboloid (hypar). When fully folded, the square is reduced to a star

shape. Image modified from [13].

Figure 3.3: Deployment scheme of IKAROS [74]: the solar sail is deployed and

stabilized by centrifugal forces applied by tip masses.

Greschik and Mikulas [31] suggested that such design makes it easier to compute

stresses in the structure, as each strip is essentially subject to uniaxial loading.

Also, the compressive and shear loads applied to the booms are distributed, rather

than being applied at the tips as in other designs, thus allowing for smaller and

lighter booms. A stripped design is also beneficial when used in combination with

packaging concepts involving folding and coiling the structure, such as the ones in

Figs. 3.1a and 3.3. Arya et al.[5] showed that, due to their finite thickness, stacked

strips need to axially slide with respect to each other during coiling. Continuous

sails prevent this motion, leading to wrinkles. Therefore, they proposed a concept of

"slipping folds," consisting of introducing cuts along the creases of the membrane,
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effectively resulting in a stripped design. A 4-fold symmetric structure based on

this concept was proposed for the Space Solar Power Project at Caltech [4]. The

novelty of this architecture was the use of thin-shell components to create bending-

stiff strips, capable of achieving the shape accuracy needed for a space solar power

application. The structural architecture and its packaging concept are presented in

more detail in the next section.

3.3 Architecture and Packaging Concept

The space structure architecture is shown in Fig. 3.4. It is composed of 4 triangular

quadrants, each containing several trapezoidal strips [85], connected by diagonal

cords. Each strip includes 2 deployable longerons based on the triangular, rollable,

and collapsible (TRAC) architecture [75], connected by transverse and diagonal rods

(battens), supporting functional elements for a satellite [29][35]. Two rigid joints

placed on the diagonal battens connect the strips to the diagonal cords, allowing

rotations about the cord axis and preventing axial displacements [103].

Quadrant

Strip

Longeron

Battens

Diagonal cords

Functional elements

Strip-cord connectors

Figure 3.4: Architecture of a space structure that can be packaged two-dimensionally.

Each quarter of the structure contains 3 trapezoidal strips (in this example); 4 adja-

cent identical strips constitute a square. Each strip includes 2 longerons, connected

at the ends by diagonal battens. A variable number of transverse battens connect the

longerons inside the strip. The strips are supported by diagonal cords via strip-cord

connectors, placed on the diagonal battens. A flexible sheet covers the interior of

each strip and simulates functional elements of the spacecraft.

The structure is packaged by first z-folding each quadrant (Fig. 3.5, A to C) and

then coiling each arm of the resulting star-shape into a cylindrical shape (Fig.3.5,
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C to E). A key aspect of this scheme is that, because of the 4-fold symmetry of

the structure, z-folding the strips also requires bending the longerons. As it will

be discussed later on, this aspect has important consequences on the deployment

behavior of the structure.

A
B

C

D

E

Figure 3.5: Packaging concept for a space solar power satellite.

The packaging concept described here is inspired by the "hypar" origami-scheme

presented in Fig. 3.2. Arya et al. [4] converted this concept in kirigami by adding

slipping folds, i.e. longitudinal cuts along the crease line that allow for relative

sliding between strips, required to package membranes of finite thickness. To

extend this packaging concept to thin-shell space structures, it is necessary to take

into consideration their mechanical response. During folding, they oppose bending

deformations and tend to form localized folds in unpredictable locations. This

can potentially induce excessive stress and damage other structural components,

such as the battens and their joints to the longerons. During coiling, thin-shell

structures store strain energy and tend to release it by self-deploying, or by deviating

from their nominal cylindrical shape. Coiling instabilities, such as local buckling or

blossoming, have the potential of damaging the payload on the structure by imposing

higher curvature than intended, or jamming the deployment mechanism.

Solving these challenges is the main objective of this chapter. First, a packaging
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procedure is proposed to star-fold the space structure in a predictable and controllable

way. The underlying idea is to exploit the nonlinear mechanics of the shells to impose

localized folds at opportune locations, so that each strip would essentially behave as

an assembly of rigid panels connected by hinges. This allows study of the kinematics

of the structure using established tools for rigid spatial mechanisms. Therefore, a

kinematic model of the structure is developed to identify admissible kinematic

paths between the initial, planar configuration and the folded state. It is shown that,

under certain circumstances, this kinematic path is unique, therefore allowing for

a predictable folding sequence. The interaction between multiple square loops in

the structure is also considered, to develop a folding procedure for a space structure

with a general number of strips.

The second part of the chapter addresses the problem of coiling the structure from the

star shape to its fully-packaged cylindrical state. A concept of pressure stabilization

is proposed to support and constrain the structure during packaging, launch, and

deployment. The concepts presented herein are demonstrated on a 1.7 m × 1.7 m

space structure, which is folded according to the proposed procedure, and coiled

with a deployment mechanism prototype based on the pressure stabilization concept.

Finally, a staged deployment scheme is demonstrated, in which the structure unfolds

from the star shape to its deployed planar state by dynamically deploying between

intermediate, known configurations. Such configurations are achieved by imposing

folds at desired locations using releasable constraints, to help the structure follow

a set kinematic path. By breaking down the deployment process in multiple small

steps, this approach can reduce the uncertainty associated with the dynamic deploy-

ment of large structures composed of many thin-shell components, and mitigate the

risk of incomplete deployment.

3.4 Kinematic Model Formulation

This section focuses on the design of a packaging procedure to fold a space structure

consisting of multiple, interconnected, thin-shell strips. The approach developed

herein exploits the nonlinear mechanical behavior of thin-shell components, in

particular their propensity to form elastic folds, to package the structure in a safe

and predictable way. Specifically, by imposing elastic folds at opportune locations,

the structure can be modeled as a kinematic chain consisting of rigid links connected

by revolute joints. This allows us to extend the use of established mathematical tools

for rigid spatial mechanisms to thin-shell space structures. In particular, this section
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derives a kinematic model for closed-loop kinematic chains, for which loop closure

conditions are formulated to identify compatible kinematic paths. This method

has been previously proposed by Gan and Pellegrino [25] to model one degree-of-

freedom mechanisms and identify bifurcation points along their kinematic path. In

this section, it is used to model a square loop consisting of 4 strips, each containing

two elastic folds, and it is applied to cases with single and multiple degrees of

freedom.

3.4.1 Loop-Closure Equations

Let us consider a linkage consisting of rigid, straight links connected by revolute

joints. A local reference frame can be assigned to each link (see Fig. 3.6a), with

the origin at one of its ends, the I-axis aligned with the axis of the hinge, the G-axis

lying in the plane defined by the I-axis and the axis of the link, and the H-axis chosen

to form a right-handed reference frame. Transformations between frames can be

expressed in terms of a translation vector E and a rotation matrix ', with can be

combined in a compact form using the Denavit-Hartenberg notation, often used in

standard textbooks [104]:

)8 =

[
'8 E8

01×3 1

]

(3.1)

In this notation, the 3D coordinates of a generic point %̃ are written as a 4 × 1

extended vector:

% =

[
%̃

1

]

(3.2)

Its coordinates %8+1 in the (i+1)-th frame can be expressed in the i-th frame by means

of the following expression:

%8 = )8%8+1 (3.3)

The rotation matrices are defined in terms of 3 Euler angles, obtained from a

sequence of elementary transformations to align the i-th reference frames with the

(i+1)-th frame. The convention used in this model is the following:

1. translation E8 of the coordinate system from $8 to $8+1 (Fig. 3.6b);

2. rotation about the H8 axis by q8, until the rotated I′8-axis is contained in the

H8 − I8+1 plane (Fig. 3.6c);

3. rotation about the new G′8 axis by b8, until the rotated I′′8 axis is aligned with

I8+1 (Fig. 3.6d);
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4. rotation about the I′′8 = I8+1 axis by V8, until G′′′8 is aligned with G8+1 (Fig. 3.6e).

With this convention, q is the angle between the hinge axis and the normal to the

link axis; b is the twisting angle between the ends of the rod, and V is the fold angle,

i.e. the rotation about the hinge axis.

By combining the 3 elementary rotations ('G , 'H, 'I), the full rotation matrix can

be obtained:

' = 'H'G'I =



cos q 0 − sin q

0 1 0

sin q 0 cos q





1 0 0

0 cos b − sin b

0 sin b cos b





cos V − sin V 0

sin V cos V 0

0 0 1




cos q cos V + sin V sin q sin b cos V sin q sin b − cos q sin V cos b sin q

cos b sin V cos b cos V − sin b

cos q sin b cos V − cos V sin q cos q cos V sin b + sin q sin V cos q cos b



(3.4)

Coordinate transformations between non-consecutive links can be obtained by mul-

tiplying the transformation matrices of all the links between the first and last joint

in the sequence, as follows:

)=1 = )1)2...)=−1 (3.5)

For a closed-loop kinematic chain, the initial and final frames must coincide. Hence,

the corresponding transformation becomes:

)1 )2...)=−1)= = �4×4 (3.6)

This matrix equation formulates the loop-closure constraints. Although it contains

16 scalar equations, only 6 of them are linearly independent (corresponding to 3

rotations and 3 translations, necessary to fully define a coordinate transformation).

By solving this system of trigonometric equations, it is possible to identify compat-

ible kinematic paths for a structure. Closed-form solutions are possible for simple

cases, but their complexity rapidly increases with the number of elements in the

linkage, requiring a numerical approach. Even so, due to the existence of multi-

ple kinematically-compatible configurations, nonlinear numerical solvers are highly

sensitive to the initial guess, and do not provide any information as to whether

two different admissible configurations belong to the same kinematic path or are

disconnected. To address these challenges, Gan and Pellegrino [25] proposed an

incremental solution capable of following the kinematics of one degree-of-freedom

mechanisms and identifying bifurcation points along this path.
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(a) Local reference frames for two adjacent rods in

a linkage
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(b) Translation E1 of the frame G0H0I0 to the origin

of the frame G1H1I1
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(c) Rotation q about the H0-axis, such that I′
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in the H0 − I1 plane
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to align G ′′′
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with G1

Figure 3.6: Elementary coordinate transformations between local reference frames

on adjacent links connected by an hinge.
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3.4.2 Linearized Kinematics

The incremental solution is based on a two-step algorithm: in the predictor step, the

loop-closure equations are linearized to find kinematically-admissible directions and

compute an increment of the solution; in the corrector step, corrections to the linear

prediction are computed iteratively until the error resulting from the linearization of

the nonlinear equations becomes smaller than a threshold. These steps are described

in detail in the next subsections.

3.4.2.1 Predictor Step

The predictor step requires a starting configuration G8, for which the loop-closure

equation is satisfied:

)1(G8) )2(G8)..)=−1(G8) )= (G8) = �4×4 (3.7)

Adding a small increment ΔG changes the transformation matrices, each of which

can be expanded as a Taylor series:

): (G8 + ΔG) = ): (G8) + ):, 9
��
G=G8

ΔG 9 +$ (ΔG2) (3.8)

Here, the index 8 refers to increments of the solution, 9 to components of the state

vector G, and : to joints in the kinematic chain. Note that the Einstein summation

convention is used, and partial derivatives are expressed as )8, 9 =
m)8
mG 9

, for brevity of

notation. Substituting the Taylor expansions of the transformation matrices in the

loop-closure equation and keeping only the linear terms in ΔG 9 , the following result

holds:

)1(G8) )2(G8)..)=−1(G8) )= (G8)+
+

(
)1, 9

��
G=G8

)2(G8)...)=−1(G8) )= (G8)+

+ )1(G8) )2, 9

��
G=G8

...)=−1(G8) )= (G8)+

+ )1(G8) )2(G8)... )=−1, 9

��
G=G8

)= (G8)+

+ )1(G8) )2(G8)...)=−1(G8) )=, 9
��
G=G8

)ΔG 9 = �4×4

(3.9)

The first term on the left hand side of the equation equals the identity matrix, as the

starting configuration G8 satisfies the loop-closure equation (Eq. 3.8) by hypothesis.

Therefore, this term can be simplified with the first term on the right hand side of

the equation. The remaining terms can be rearranged as follows:

�1ΔG1 + �2ΔG2 + ... + �<−1ΔG<−1 + �<ΔG< = 04×4 (3.10)
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where each of the coefficients � 9 is a 4 × 4 matrix, expressed as:

� 9 = )1, 9

��
G=G8

...)= (G8)) + ... + ()1(G8)... )=, 9
��
G=G8

(3.11)

This matrix equation can have up to 6 linearly independent scalar equations, corre-

sponding to the 3 components of the translation vector and 3 terms from the rotation

matrix. These equations can be extracted and written as an homogeneous system

of linear equations (where the off-diagonal terms of the rotation matrix have been

chosen):


�
(1,2)
1

�
(1,2)
2

. . . �
(1,2)
<−1

�
(1,2)
<

�
(1,3)
1

�
(1,3)
2

. . . �
(1,3)
<−1

�
(1,3)
<

�
(2,3)
1

�
(2,3)
2

. . . �
(2,3)
<−1

�
(2,3)
<

�
(1,4)
1

�
(1,4)
2

. . . �
(1,4)
<−1

�
(1,4)
<

�
(2,4)
1

�
(2,4)
2

. . . �
(2,4)
<−1

�
(2,4)
<

�
(3,4)
1

�
(4,4)
2

. . . �
(3,4)
<−1

�
(3,4)
<





ΔG1

ΔG2

...

ΔG<−1

ΔG<



=



0

0
...

0

0



(3.12)

The system can be written in compact form as

#?ΔG = 0 (3.13)

where #? is the Jacobian of the system. Non-trivial solutions to this equation belong

to the null space of #?, which can be obtained by standard methods, such as the

Singular Value Decomposition (SVD) [30]. This technique computes 3 matrices

*,+ and ( such that #? = *(+) . * and + are orthogonal matrices, containing

left and right singular vectors of #?, with * ∈ IR6×6 and + ∈ IRm×m, whereas ( is

a 6 × < matrix containing the singular values of #?. Pellegrino [80] showed that

the columns of + corresponding to null singular values of ( constitute a basis for

the space of internal mechanisms of a pin-jointed structure. Analogously, in the

present study, those columns identify a basis of the space of displacements that do

not violate the loop-closure equation.

If the null space has dimension 1, the mechanism has a single degree of free-

dom. Otherwise, any linear combination of the basis vectors of the null space is

a kinematically-admissible solution, and the coefficients of the linear combination

can be chosen arbitrarily. A physics-based approach to choose these coefficients for

the multi-degree of freedom case is presented later in this chapter.

Once the direction of the increment G< has been found, the new predicted configu-

ration of the mechanism is:

G? = G8 + XG< (3.14)

with X being a scaling parameter setting the size of the increment.
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3.4.2.2 Corrector Step

Linearizing the kinematics results in a small error in the loop-closure equation,

which is no longer equal to the identity matrix:

)1(G?) )2(G?)...)=−1(G?))= (G?) = �4×4 + � (3.15)

Similarly to what was done in the predictor step, an increment to the state vector

can be introduced to correct the error matrix � , so that the following equation is

satisfied:

)1(G? + ΔG))2(G? + ΔG)...)=−1(G? + ΔG))= (G? + ΔG) = �4×4 (3.16)

Expanding each transformation matrix to the first order, keeping only the linear

terms in the products, and substituting Eq. 3.15, we obtain:

()1, 9

��
G=G?

)2(G?)...)=−1(G?) )= (G?)+

+ )1(G?) )2, 9

��
G=G?

...)=−1(G?) )= (G?)+

+ )1(G?) )2(G?)... )=−1, 9

��
G=G?

)= (G?)+

+ )1(G?) )2(G?)...)=−1(G?) )=, 9
��
G=G?

)ΔG 9 = −�

(3.17)

This matrix equation can be written as a system of non-homogeneous linear equa-

tions, by extracting 6 components from the matrix (3 off-diagonal terms in the

rotation matrix and the translation components):

#2ΔG = −4 (3.18)

where 4 = [� (1, 2), � (1, 3), � (2, 3), � (1, 4), � (2, 4), � (3, 4)]) .

A least square solution to this equation can be obtained by using the SVD of #2

[80][54]:

ΔG∗ = −
rank(S)∑

:=1

D)
:
· 4

B::
E: (3.19)

where D8 and E8 are the left and right singular vectors of #2, respectively. The

predicted state of the structure can be updated with the correction G2 = G? + ΔG∗,

and the correction step can be iterated until the L2 norm of the error � (or any other

metric of choice) becomes lower than a set tolerance.
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3.5 Folding Kinematics of 4 Strips Connected in a Square Loop

In this section, a kinematic model of a square loop composed of 4 thin-shell strips

is presented. The geometry of the strips, shown in Fig. 3.7, is defined by the length

2! of their mid-line and the width 2F. Each strip has two localized folds at known,

fixed locations that, for simplicity, are chosen to be symmetric with respect to the

symmetry plane of the strip. A non-dimensional parameter _ defines the distance

between the folds, such that _ = 0 corresponds to having a single fold at the center

of the strip, and _ = 1 describes two folds at the end of the mid-line. Although _

is defined in the range [0, 1], not all of its values result in valid fold locations, as

it is shown in Fig. 3.7. In particular, the maximum admissible distance between

folds corresponds to the length of the shortest longeron: this prevents having folds

on the diagonal battens, which could be potentially damaged. Therefore, the non-

dimensional fold location is constrained in the range _ ∈ [0, _<0G], where

_<0G = 1 − F

!
(3.20)

depends on the aspect ratio of the strip. The strips are connected to each other by

hinges, aligned with their diagonal edges.

Figure 3.7: Geometry of a square loop composed of 4 trapezoidal strips connected

by hinges. Each strip has two elastic folds, spaced by 2_! and symmetric about the

mid-plane of the strip. Folds on the diagonal edges of the strips are not permitted.

Fig. 3.8 shows the kinematic chain describing the kinematics of the square loop.

Flat portions of the strips are idealized as rigid links, and both the hinges between
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strips and the elastic folds within each strip are modeled as joints. The joints have 2

rotational degrees of freedom about perpendicular axes, as shown in Fig. 3.8b, and

can be thought of as hinges with a rotating axis. This allows to model both bending

V and torsion b of an actual strip. The resulting kinematic chain for the square

loop structure contains 12 links and 24 degrees of freedom. A local coordinate

frame is assigned to each link, according to the convention defined in Sec. 3.4.1.

To write the loop-closure equation for the kinematic chain, it is necessary to define

the coordinate transformation matrices from each link to the next one, traveling the

chain in counter-clockwise direction. In the following, the notation )8 9 describes

the transformation from the (i+1)-th frame to the i-th frame on on the j-th strip.

Since the transformation matrices on each strip share the same structure, they are

derived only for a generic strip 9 , shown in Fig. 3.8b. They are fully defined by

6 parameters (3 translations and 3 rotations), through the sequence of elementary

transformations described in Fig. 3.6. Note that V8 9 and b8 9 are free parameters,

corresponding to the degrees of freedom of the joints. The remaining parameters

are fixed and are reported in Tab. 3.1. The angle q accounts for the hinges between

strips being oriented at 45° from the axes of the elastic folds. Also, EH is always

zero, as the H-axis is perpendicular to the axis of the link, by construction. The

distances in the model are non-dimensionalized by the length 2!, so that the results

are valid for strips of any size.

q EG EH EI

)1 9
c
4

1−_
2
√

2
0 −1−_

2
√

2

)2 9 0 _ 0 0

)3 9
c
4

1−_
2

0 0

Table 3.1: Denavit-Hartenberg parameters for the transformation matrices between

each link of a strip.

Once the transformation matrices have been defined, the loop-closure equation for

the square loop can be written as:

4∏

9=1

(
3∏

8=1

)8 9

)

= �4×4 (3.21)
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(a) Kinematic model of a square loop. The links correspond to the mid-line

of each flat portion of the strips; elastic folds and hinges between strips

are modeled as 2 degree-of-freedom joints. A local coordinate frame is

assigned to each link
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(b) Detail of the kinematic model for a strip, with its relevant dimensions.

The box in the top left defines the two degrees of freedom of the joints in

the model

Figure 3.8: Degrees of freedom and local reference frames for a square loop,

composed of 4 trapezoidal strips hinged together at their ends. Each strip has two

elastic folds equally spaced from its symmetry plane.
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To solve this equation, the incremental approach presented in Sec. 3.4.1 is used. To

this end, the degrees of freedom of the system are collected in the vector G ∈ IR24×1,

to be used in the linearized form of the loop-closure equation.

G =
[
V11 V21 V31 V12 . . . V34 b11 b21 b31 . . . b34

])
(3.22)

Next, a 4-fold symmetric solution to this equation is presented. A mirror symmetric

case is also considered as a more general example of a mechanism with more than

1 degree of freedom.

3.5.1 4-Fold Symmetric Kinematics

Given that the square loop is 4-fold symmetric, it appears natural to seek a kinematic

solution that preserves such symmetry. This assumption greatly reduces the number

of independent variables, as all strips deform in the same way, so V8 9 = V81 and

b8 9 = b81 ∀ 9 ∈ [1, 4]. Symmetry also requires the elastic folds to have the same

angle (V21 = V11) and prevents torsion between the elastic folds (b21 = 0). However,

torsion is allowed between hinges and elastic folds, under the constraint b31 = −b11.

Therefore, only 3 independent variables are left:

• V11, i.e. the angle of the elastic folds;

• V31, i.e. the hinge angle;

• b11, i.e. the torsion between hinges and elastic folds.

The original 24 parameters can be defined in terms of these independent variables

through the following relation:

G = �AGA + G (3.23)

where �A ∈ IR24×3 is a reduction matrix expressing the variables in G as a function

of the independent variables GA , and G ∈ IR24×1 contains the degrees of freedom that

have been set to a fixed value. For brevity, the full matrix�A for the 4-fold symmetric

case is not reported here, but it can be easily constructed by writing in matrix form

the constraints listed at the beginning of this paragraph. Using Eq. 3.23, increments

of the configuration G due to increments of the state vector GA can be written as:

ΔG = �AΔGA (3.24)
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Substituting Eq. 3.24 in the linearized form of the loop-closure equation (Eq. 3.4.2.1):

#?ΔG = 06×1 =⇒ #?�AΔGA = #AΔGA = 06×1 (3.25)

it is possible to define a reduced Jacobian #A = #?�A ∈ IR6×3 for the system.

(a) V = 0◦ (b) V = 90◦

(c) V = 135◦ (d) V = 180◦

Figure 3.9: 4-fold symmetric folding sequence for a square with _ = 0.5.

Applying the incremental solution approach to the reduced model, it was found that

#A has rank 2 throughout the folding process, so that there is only one kinematically-

admissible path between planar and folded configuration. Snapshots of the solution

for different values of the hinge angle V31 are shown in Fig. 3.9. Fig. 3.10a shows the

evolution of the fold angle V11 and strip torsion b11 as a function of the hinge angle

V31. The plot shows that V11 monotonically decreases from 0° to -45° when the

hinge angle is increased from 0° to 180°. Also, it can be observed that this kinematic

path does not require any torsion of the strip, which is ideal as it reduces the stress on

the structural components. Fig. 3.10b plots the evolution of the singular values for

the Jacobian #A as a function of the hinge angle V31. The plot shows that one of the

singular values is always equal to zero, corresponding to the compatible kinematic

path. The other 2 singular values are greater than zero for all values of V31, except for

the initial point V31 = 0, where the rank of #A drops to 1. This indicates a bifurcation
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(a) Kinematics of the square along its 4-fold symmetric fold-

ing path

(b) Singular values along the 4-fold symmetric path. The two configurations on the left hand side

correspond to different kinematic paths at the bifurcation point

Figure 3.10: 4-fold symmetric folding path for 4 strips arranged in a square loop.

The results are independent of the spacing _ between the elastic folds.

point, where two different kinematic paths meet. The alternative path consists of

the ends of the strips folding inwards, towards the center of the square (lower figure

in Fig. 3.10b). To avoid the bifurcation, a small perturbation, of the order of 10−3

rad, was applied to the initial configuration of the kinematic simulation. Note that

the results shown in Fig. 3.10 were derived for a fold spacing _ = 0.5. However, it

was observed that the results were identical for any other value of _. This means

that, although different _’s correspond to different geometric configurations of the

structure, the relationship between the hinge angle and fold angle is not affected.
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3.5.2 Kinematics with Mirror Symmetry

While a 4-fold symmetric path offers a single degree-of-freedom mechanism for the

structure, implementing it requires simultaneous control over the 4 corners of the

square loop, to make sure that symmetry is indeed preserved. In some instances,

it might be acceptable to sacrifice the predictability of this process for a simpler

folding procedure, to reduce the number of people required to fold the structure. For

example, a mirror symmetric folding scheme could be devised, in which a square

loop is folded in two steps, controlling two corners at a time. The folding sequence

for this process is shown in Fig. 3.11.

Figure 3.11: Mirror symmetric folding sequence for a square loop: corners C1 and

C2 are folded first (strip 1), followed by corners (C3 and C4).

One of the strips is folded first, by rotating its ends by 180° in a symmetric fashion;

then the opposite strip is folded in a similar way. To model the kinematics of this

process, the general model of the square loop was reduced by means of the following

transformation:

[
V

b

]

=

[
�V 012×5

012×6 �b

] [
VA

bA

]

=⇒ G = �AGA (3.26)

which reduces the original 24 degrees of freedom mechanism to only 11 (6 bending

rotations V 9 and 5 torsional rotations b 9 ). The full transformation matrices �V and
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�b are reported below.



V11

V21

V31

V12

V22

V32

V13

V23

V33

V14

V24

V34



=



1 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0





V11

V31

V12

V22

V32

V13



=⇒ V = �
V
A V

A (3.27)



b11

b21

b31

b12

b22

b32

b13

b23

b33

b14

b24

b34



=



1 0 0 0 0

0 0 0 0 0

−1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 −1

0 0 0 −1 0

0 0 −1 0 0

0 −1 0 0 0





b11

b12

b22

b32

b13



=⇒ b = �
b
A b

A (3.28)

During the second folding step, the rows of the matrices corresponding to V31 and

b11 were set to zero to fix the folded corners of the square loop.

Under the assumption of mirror symmetry, the linearized kinematics in Eq. 3.25

becomes underdetermined, as it has 6 equations and 11 unknowns. The singular

value decomposition of the Jacobian #? shows that the system has rank 6, hence the

null space of the matrix has dimension 5. Therefore, the choice of the increment of

displacement during the predictor step is not unique, and additional conditions are

required. A intuitive solution would be to assign arbitrary values to 4 of the free



82

variables to obtain a single D.o.F. system. However, it was found that this approach

can lead to unrealistic kinematic paths for the structure, characterized by very large

rotations of some of the joints to accommodate for the locked degrees of freedom.

The alternative solution proposed here consists of adding "soft" constraints to the

system, by keeping its 11 degrees of freedom and choosing a suitable direction of the

solution increment from the null space of the Jacobian #?. In particular, recalling

that, for a system with m degrees of freedom, the m right-most columns of the matrix

of right singular vectors + constitute a basis +< for the null space of the system, the

solution increment G< can be written as a linear combination of these vectors:

G< = +<2 (3.29)

where 2 is a vector of coefficients. The coefficients are computed by solving the

following optimization problem

2∗ = arg min
2
� (3.30)

in which the cost function � is defined according to the following physical and

practical considerations:

1. During folding, the structure lies on a planar surface, and it tends to stay in

contact with it due to gravity;

2. The largest displacements (rotations) should occur on the degrees of freedom

being controlled;

3. Torsional rotations should be as small as possible, to minimize the stress on

the structure.

Each of these criteria is expressed mathematically by a function �8, and the cost

function � for the optimization is defined by linear scalarization of its components,

using weights,8 that were manually tuned:

� =

3∑

8=1

,8�8 (3.31)

The planarity condition (1) is defined as follows:

• First, the coordinates of the lower longerons of the strip are evaluated at the

joint locations, and expressed in their local frames (%8 = [0, 0,−F, 1]) at
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the elastic fold locations, %8 = [0, 0,−
√

2F, 1]) at the location of the hinges

between strips).

• The coordinates %8 are converted to the same coordinate frame using com-

pound transformation matrices %
(0)
8

= ) 8
0
%8;

• A global frame is defined, with the origin at the centroid $ of the points %
(0)
8

and the axes aligned with the 0-th local frame. The global coordinates of the

points were computed as %8 = %
(0)
8

−$;

• The global coordinates of the points are fitted with a plane. This can be done

using the Principal Component Analysis (PCA) on the matrix of coordinates

- . The PCA returns the eigenvectors of the covariance matrix -)-; the

eigenvector corresponding to the smallest eigenvalue of -)- defines the

normal = to the fitting plane.

• The cost function contribution �1 is defined as: �1 =
∑
8

��� %8

‖%8 ‖
· =

���.

The second condition, i.e. that the displacement of the controlled D.o.F.’s should

be larger than any other component, is expressed as:

�2 = 1 − ‖G2‖ (3.32)

where G2 is a vector containing the components of G< associated with the control

variables. The last criterion, i.e. minimizing torsion, is defined as:

�3 = ‖b‖ (3.33)

where b = [b11, ...b34]) contains all the torsional components of the state vector.

The optimization problem was solved using a quasi-Newton algorithm in MATLAB.

Fig. 3.12 shows the evolution of the bending and torsional degrees of freedom for

the 2-step mirror symmetric folding path, on a strip with _ = 0.5. In the first step,

the control variable is V31, and it increases monotonically from 0° to 180°, while the

fold angle V11 on strip 1 decreases to approximately -90°. The other bending angles

experience a small variation, to approximately 30°. Torsion is generally small, with

the largest contribution coming from b22, i.e. the twisting between the fold angles

associated with strips 2 and 4.

The results from this subsection show that it is possible to star-fold a square loop

structure by controlling only 2 degrees of freedom. This can be advantageous
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Figure 3.12: 2-step folding kinematics: strip 1 is folded first, followed by strip 3.

in some cases, especially for small scale structures, as it reduces the number of

people involved in the packaging process. However, this comes at the cost of a

less deterministic kinematics, as there are multiple degrees of freedom. While the

results in Fig. 3.11 show a desirable sequence of configurations of the structure

during packaging, this is not the only possible path. Therefore, in the rest of this

chapter, a 4-fold symmetric packaging scheme is assumed for the structure, as it

guarantees a unique kinematic path.

3.6 Folding a Space Structure with Multiple Squares

In the previous section, a kinematic model for a single square loop was presented, and

it was shown that a 4-fold symmetric folding process would result in a single degree

of freedom kinematic path. This implies that, even when multiple square loops are

connected to each other in a more complex space structure, each of them evolves

essentially as an independent unit. However, the sequence by which the square loops

are folded and their relative position during this process must be chosen such that

their kinematics is compatible with the boundary conditions.

In this section, a space structure consisting of 3 square loops connected by diagonal

cords(see Fig. 3.4) is considered. The geometry of the structure, shown in Fig. 3.13,

can be described in terms of 2 non-dimensional geometric parameters, i.e. the aspect

ratio of the inner strip F̂ = F/! and the non-dimensional joint spacing [̂ = [/
√

2F.

The gap between strips 6̂ = 6/F is also defined as a third parameter, but it is less

critical and will be neglected for the purpose of this discussion. Unless otherwise

specified, the results in this section assume F̂ = 0.55 and [̂ = 0.53, corresponding

to the design point of the physical prototype presented later in this chapter. The goal
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Figure 3.13: Geometry of a space structure with 3 square loops. Each strip has 2

elastic folds, symmetric with respect to its mid-plane.

of this section is to design a folding sequence for which the structure can be folded

in a simple and predictable way.

3.6.1 Folding Square Loops in Sequence

An intuitive solution would be to fold one square loop at the time, starting from the

outermost one and proceeding inwards. Each of the squares can be folded using the

4-fold symmetric path presented in Figs. 3.9 and 3.10a.

For independent square loops, the elastic folds could be ideally placed anywhere in

the admissible region of the strips (green area in Fig. 3.13), as previously mentioned.

However, the presence of multiple concentric square loops constrains the location

of the folds, as the square loop being folded cannot geometrically interfere with the

other squares inside. This is important as, during star folding, the minimum distance

between opposite strips of the i-th square loop gradually reduces from its original

value of 2(!8 −F) to 2_8!8, as shown in Fig. 3.9. In the presence of a smaller square

inside, this distance cannot be smaller than the outer size of the inner square, hence:
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_8!8 ≥ !8−1 + F (3.34)

The two half-lengths !8 and !8−1 are related by the following geometric relationship:

!8−1 = !8 − 2F − @ (3.35)

Substituting in Eq. 3.34, the inequality can be solved in terms of _8:

_8 ≥
!8 − F − @

!8
= 1 − F

!8
− @

!8
(3.36)

In practice, the last term on the right-hand side of the inequality is very small

(typically in the order of 10−2) and therefore can be neglected. Recalling the

geometric constraint for _<0G in Eq. 3.20 (_8 ≤ _8,<0G = 1− F
!8

), it can be concluded

that sequential folding is only possible if the elastic folds are placed at the edges of

their admissible region in Fig. 3.13, i.e. at the ends of the shortest longeron in the

square. Using this approach, the folding sequence in Fig. 3.14 is obtained. At each

step of the process, a square loop folds according to the 4-fold symmetric path derived

in Sec. 3.5, while the inner squares remain planar. The outer squares are already

folded, but they have to undergo a second folding phase (as shown in Fig. 3.15) in

order to follow the displacements of the active square. This is necessary to satisfy

the constraint imposed by the cords connecting the strips. Indeed, as previously

mentioned, the inner dimension of the folded squares equals the distance between

elastic folds on the same strip. As the fold spacing changes between square loops,

the final structure would end up forming concentric squares of different sizes, rather

than the star shape shown in Fig. 3.14.

Figure 3.14: Folding sequence for a space structure with 3 square loops, being

folded one at a time (top view).

To avoid this problem, the location of the folds on the folded squares must be changed

to match the fold spacing on the active square loop. This can be done by adding
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two localized folds at the desired spacing, and folding them until the angle of the

existing folds becomes zero. Fig. 3.15a shows a snapshot of this process, where B

indicates the initial fold location, and A the new fold location. The kinematics of this

process can be described in 2 dimensions, as it does not involve any out-of-plane

displacements of the strip, and it is shown in Fig. 3.15b, where only half of the

mid-line of the outer strip is drawn, for clarity. In the plot, points B and C lie on the

diagonal symmetry plane G = H, and their coordinates are related by the geometric

relation:

G� = G� +
!8 − 1√

2
(3.37)

The location of B can be, in turn, computed by imposing �� = 1 − 0, which can be

expanded as:

2G2
� − 2(G� + 0)G� + G2

� + 0
2 − (1 − 0)2

= 0 (3.38)

The two solutions to this equation correspond to having B on either side of A on

the line G = H. Therefore, only its positive root can be accepted. Note that 0 and

1 correspond to the distance between the symmetry plane of the strip and the two

folds, measured along the strip mid-line. Equation 3.38 has a single free parameter

G�, which controls the folding process. Initially, G� = 1, corresponding to V� = 45◦

and V� = 0◦; at the end of this step, G� = 0, so that V� = 0◦ and V� = 45◦.

In a kinematic simulation of multiple square loops, G� can be chosen to match the

corresponding point on the adjacent square loop, in order to minimize their distance.

(a)

x

y

A

βA

β B

C

B
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b-a

L -bi

(b)

Figure 3.15: Kinematics of a folded square loop during formation of a secondary

elastic fold.

In addition to imposing constraints to the kinematics of the square loops in the G − H
plane, the cords between strips significantly affect their out-of-plane displacements

too. These additional constraints can be used to locate the strips with respect to
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each other in the I-direction, throughout the folding process. Here, it is assumed

that the structure sits on a flat surface, e.g. a table, during packaging. This is

not strictly necessary (one could also lift the structure by offloading it), but it is

certainly the simplest and most practical solution. Because of gravity, each square

loop tends to sit on the base surface (located at I = 0) at any time; however, in some

configurations, the cord length constraints do not allow it, resulting in an offset ΔI8

from this plane. Fig. 3.16 shows a section view of the structure at an intermediate

step of the folding process, and it defines the offsets ΔI2 and ΔI1 for the middle

square (being folded) and the inner square (still planar), respectively. In this case,

the lower longeron of the outermost square is located at I = 0.

Figure 3.16: Vertical displacement of the strips from the plane I = 0.

The vertical offsets are computed through the following algorithm, formulated for a

structure with # strips:

• Compute the configuration of the outermost square in the structure, and set

its lowest point to I = 0;

• Solve the kinematics of the (# − 1)-square loop to reconstruct its shape;

• For any offset ΔI#−1 ∈ [ΔI<8=,ΔI<0G], compute the distance between the

inner strip-cord connector &−
#

of the #-th strip and the outer strip-cord con-

nector &+
#−1

of the (# − 1)-th strip;

• From the vector of distances 3#−1,# , exclude the values for which the distance

exceeds the length of the cords (!2 = 2
√

2F(1 − [̂), with [ ∈ [0, 1]);

• Pick the smallest, non-negative ΔI#−1 for which the cord length constraint is

satisfied;
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• If there are no suitable non-negative offsets, choose the smallest (in absolute

value) ΔI#−1, and shift all the square loops so that the lowest point in the

structure is located at I = 0;

• Repeat for the remaining square loops.
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Figure 3.17: Vertical displacement of the strips required to folding one square loop

at a time, for a space structure with 3 square loops. Results are shown for different

joint spacing [̂.

The range of offsets is chosen to be large enough to include all the configurations of

practical interest (ΔI<0G = 2F = −ΔI<8=). Figure 3.17 shows the required vertical

offset for a structure with 3 square loops and F̂ = 0.55, packaged by folding one

square loop at a time. Solid, dashed and dotted lines correspond to different square

loops, and the results are computed for different values of the parameter [̂. The plot

shows that, during the first folding step, the middle and inner square loops need to

be lifted from the ground. The amplitude of the vertical displacement increases as

the spacing between strip-cord connectors increases, and it becomes as high as the

entire width of the strip for [̂ = 1. A non-zero offset remains at the end of the first

step, and it decrease to zero during the second folding step. In the final step, the

middle and outer square loops (already folded) need to be lifted for [̂ > 0.75.

3.6.2 Folding Square Loops in Pairs

In the previous subsection, a folding scheme was proposed for which the square

loops would be folded one at the time, starting from outermost one and proceeding

inwards. Despite its conceptual simplicity, implementing this folding scheme is
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challenging due to the significant vertical offsets involved, as shown in Fig. 3.17.

The kinematic analysis shows that, at the end of the first step, the middle and inner

square loops need to be lifted from the ground, thus requiring some suspension

system. Here, an alternative folding scheme is proposed, based on the idea of

folding square loops in pairs rather than individually. It is shown that this scheme

can dramatically reduce the vertical offset required during folding, and entirely

solves the problem of having to support the structure in between folding steps.

The simple underlying argument is that Z-folding requires a sequence of mountain

and valley folds. When folding one square loop at the time, the remaining flat

portion of the structure needs to align with the mountain or valley folds, alternatively.

However, if the square loops are folded in pairs, with a mountain fold in between

them, the remaining square loops ideally are always aligned with the valley folds,

therefore lying on the ground. For a 3-square-loop structure, the resulting folding

scheme is shown in Fig. 3.18. The outer and middle square loops are folded first,

followed by the inner square.

In this case, the elastic folds on the strips in the second and third square loops must

have the elastic folds at the same locations. This guarantees that, in their folded

configuration, they will have the same size of the inner square. The location of the

folds is set by:

_2 = 1 − F

!2

(3.39)

_3 = 1 − 3
F

!3

(3.40)

so that their actual distance is the same 3 5 = 2_2!2 = 2_3!3. Increasing the distance

between folds would place them in the non-admissible region for the middle square

(Fig. 3.13), while reducing it would result in geometric interference with the inner

square.

Figure 3.19 shows the required vertical offset ΔI from the kinematic analysis of the

2-step folding scheme, as a function of the non-dimensional joint spacing [̂. Similar

to the previous case, some offset is required on the inner and middle square loops

(strips 1 and 2, respectively), during the initial folding step. However, the amplitude

of the offset is about 50 % lower than in the previous case, with the maximum height

reaching half of the strip width for [̂ = 1. More importantly, no offset is required

at the end of the first folding step regardless of the value of [̂. During the second

folding step, the middle and outer strips require a vertical offset only for [̂ > 0.75,

analogous to the previous folding concept.
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Figure 3.18: 2-step symmetric folding sequence for a space structure with 3 square

loops.

To understand how the maximum offset changes with the size of the structure, the

kinematic analysis was repeated for a space structure with 10 square loops, F̂ = 0.55

and [̂ = 0.53. In this case, the packaging process would require 5 steps, each folding

a pair of square loops. The required offsets are shown in Fig. 3.20: pairs of square

loops folded together are plotted with the same color. The figure shows that the

maximum offset is the same for all the steps, and it amounts to about 13% of !.

During the first step, strip 10 remains on the plane I = 0, while strip 9 experiences

the largest vertical offset. The offset decreases as one moves inwards, with strips

1-4 not requiring any offset at all. A similar trend is observed for the other steps, in

which the inner square of the pair being folded always records the same maximum

ΔI, and the 4 adjacent squares requiring a lower value. Additionally, the strips

already folded need a small offset (with a maximum ΔI/! = 0.04) too, when the
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Figure 3.19: Vertical displacement of the strips required to fold the square loops in

pairs, for a space structure with 3 square loops. Results are shown for different joint

distance [̂.
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Figure 3.20: Vertical displacement of the strips to fold a space structure with 10

strips, folded in pairs. Results shown for F̂ = 0.55 and [̂ = 0.53.

Since the maximum ΔI for a structure is independent of the number of square loops,

it can only depend on the geometry of the strips, namely the parameters F̂ and [̂

defined in Fig. 3.13. Therefore, the design space was explored to find the maximum

ΔI as a function of those parameters, and the results are shown in Fig. 3.21. From

the map, it can be concluded that the offset increases both with the width of the strip

and the spacing between joints. In the worst case scenario, F̂ = 1 and [̂ = 1, ΔI<0G
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becomes about 42% of the inner strip half-length !. The map also shows the design

point for the structural prototype introduced in the next subsection.
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Figure 3.21: Maximum vertical displacement of the strips to fold the square loops

in pairs, as a function of the non-dimensional strip width F̂ and joint spacing [̂.

3.6.3 Packaging of a 2-m-Scale Space Structure Prototype

The packaging scheme illustrated in Fig. 3.18 was demonstrated on a 1.7 m × 1.7 m

space structure prototype, consisting of 3 strips, each about 250 mm wide (including

both the membrane and the longerons). Elastic folds were imposed at the desired

locations using hairpins to locally pinch each longeron in the strips. A 2-step process

was implemented, with the middle and outer square loops being folded first, followed

by the inner one. At the end of each folding step, additional hairpins were added to

hold together the folded strips.

For a structure of this size, it was found that 2 people were sufficient to achieve

symmetric folding. While the kinematic model assumed that the control variable

for the packaging process would be the angle of the strips about the diagonal cords

(V38), in practice it was easier to fold the structure using different control points. In

particular, the first folding step was controlled by lifting the mountain fold between

strips 2 and 3 at the location of the diagonal cords (red arrows in Fig. 3.22a), so

that the strips would spontaneously rotate about the cord axes under the effect of

gravity. In the second step, the shorter longeron of the inner strips was lifted, while

the middle and outer strips, already folded, were pushed inwards until the structure

achieved its star shape configuration.

Fig. 3.22 shows the sequence of intermediate configurations during the packaging
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process, which were remarkably close to the predictions from the kinematic model

(Fig. 3.18). The main deviation between model and implementation was in the

location of the elastic folds for the first step. In particular, the model expected the

distance between the folds to match the length of the short longeron on the second

strip. In practice, this configuration resulted in geometric interference with the inner

square loop, as the actual thickness of the longerons on the middle square reduced

the available volume inside the folded squares. This was adjusted by increasing the

distance between folds (by about 30 mm) until the inner square could fit in between

the others. While this solution required some bending of the diagonal battens, they

were flexible enough to tolerate such deformations.

(a) Deployed configuration

(b) Strips 2 and 3 folded (c) Fully-folded configuration

Figure 3.22: Packaging sequence for a 1.7m×1.7m space structure prototype with

12 strips arranged in 3 square loops.
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3.7 Coiling Concept

At the end of the folding process, the structure reaches its star shape and is ready for

the coiling step, which brings it to its final cylindrical configuration. A sequence

of snapshots from a kinematic model of this process is shown in Fig. 3.23. The

derivation of this kinematic model is beyond the scope of the present work, as it is

not instrumental in the present discussion. Instead, the objective of this section is

to discuss the implementation of this coiling scheme, and to present a novel deploy-

ment mechanism concept capable of achieving controlled, robust, and predictable

coiling/uncoiling of the structure.

Figure 3.23: Coiling sequence for a 4-fold symmetric structure.

3.7.1 Challenges in Coilable Thin-Shell Structures

Most thin-shell deployable structures used in aerospace applications are packaged

by coiling. The main advantage of this process is its high packaging efficiency and

scalability to large structures. However, controlling their behavior is challenging:

coiled shells tend to self-deploy to release their stored strain energy, and they

typically do not spontaneously conform to the desired coiled radius. A number

of studies have identified 2 types of instabilities in coiled thin-shell structures.

Blossoming (Fig.3.24a) occurs when the coiled shell uniformly increases its coiling

radius [39], whereas buckling (Fig. 3.24b) leads to the formation of uniformly spaced

regions of high curvature, connected by straight portions of the shell [43][20][79]

[76].

Wilson et al. [105] showed that the type of instabiity that occurs depends on the

ratio between the coiling radius ' and the natural radius of curvature of the shell A,
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(a) Blossoming (b) Buckling (adapted from

[105])

Figure 3.24: Instabilities of a coiled shell.

i.e. the radius of its elastic folds. In particular, when '/A < 1 blossoming occurs,

whereas '/A ≫ 1 leads to buckling. The natural radius of a shell depends on its

bending stiffness and geometry of the cross-section. For an isotropic tape spring, it

corresponds to the radius of its circular arc cross-section [11].

These instabilities not only reduce the packaging efficiency of a coiled shell, but

more importantly lead to severe loading conditions for the structure, which experi-

ences regions of higher curvature than expected, and potentially jam the deployment

mechanism. Therefore, a wide range of solutions has been proposed and demon-

strated in recent years. In the simplest case, radial forces can be applied at discrete

locations around the coiled shell, e.g. by using spring-loaded rollers [16][21]. This

solution has been demonstrated on the deployment mechanism of the 4 diagonal

booms of the LightSail-1 solar sail demonstrator [8], and it is often referred to as

a "pusher" mechanism, as the uncoiling process is driven by a central motor that

pushes the deployable boom out of the deployment mechanism.

Greschik [32] demonstrated an alternative approach to apply radial forces to a

wrapped array, by using pairs of rollers on opposite sides of the portion of the array

emerging from the coil. This generated a state of bending, with the root reaction

applying the required stabilization force.

Others have explored the concept of tension stabilization, consisting of applying

a tension at the free end of a coiled boom [105], as shown in Fig. 3.25b. The

advantage of this method is to generate a uniform state of stress in the structure,

which is more effective at suppressing buckling, compared to the previous concept.

An implementation of the tension stabilization approach was developed by DLR

[99][98], and is based on pairs of rollers "squeezing" the portion of a deployable
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(a) Radial force stabilization (b) Tension stabilization (c) Pressure stabilization

Figure 3.25: Stabilization concepts for a coiled boom (Figs. (a) and (b) adapted

from [105]).

boom emerging from the coiled region. One of rollers is driven by a motor, and its

motion is transferred to the boom through friction, which causes a state of tension in

the boom. An alternative approach to implement a "puller" mechanism consists of

co-coiling the deployable boom with a narrow metal or Kapton strip [100] [69][21].

The strip is connected to the central hub at one end, and to a roller at the other end.

The roller is driven by a motor, and a resisting torque is applied to the hub by a

torsion spring or a power spring. As a result, the thin strip is under tension, forcing

the deployable boom to conform to the hub. This concept, shown in Fig. 3.25c, has

been demonstrated by DLR on the De-orbit Sail mission [95][89], and is currently

being used by NASA [18] for NEA Scout and other upcoming solar sail missions.

3.7.2 Early Concepts of Deployment Mechanisms for Thin-Shell Space Struc-

tures

The first concept of a deployment mechanism for the space structure architecture

considered in this chapter was proposed in 2016 by Arya et al. [4]. The concept,

shown in Fig. 3.26a, was an extension of the radial force stabilization scheme in

Fig. 3.25a to a 4-fold symmetric structure. In this concept, the structure was enclosed

in a cage consisting of 8 rollers, which constrained it by applying radial forces. In

some implementations, the rollers were spring loaded to maintain contact with the

structure as it uncoiled. Coiling was performed manually, and uncoiling was driven

by 4 linear actuators that pulled the ends of the structure along the diagonals.

While this concept was successfully demonstrated on a small-scale structure, it was

later abandoned in favor of a centralized approach, where the uncoiling was driven

from the center rather than from the diagonals, in order to make the design more
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(a) Radial force stabi-

lization concept (adapted

from [3])

(b) Tension stabilization

Figure 3.26: Deployment mechanism concepts of a thin-shell space structure.

scalable. The radial force stabilization was also abandoned: its simple implemen-

tation came at the cost of non-uniform radial forces being applied to the structure,

which could potentially harm fragile functional elements. Additionally, the radial

force stabilization concept is effective at suppressing blossoming, but not necessarily

buckling.

The second generation of deployment mechanisms was based on a tension stabi-

lization scheme (see Fig. 3.26b), similar to the DLR implementation previously

mentioned. In this case, each arm of the star shape was compressed between two

rollers: one of them was idle, the other one was driven by an electric motor. The

rotation of the driver roller applied tension to the structure through friction forces,

controlling the uncoiling. Similar to the previous case, the coiling process was man-

ual. This concept was very promising, as it could potentially solve the limitations

of the first generation of mechanisms, but its implementation proved very challeng-

ing and unreliable, and it was only partially demonstrated on paper models and

membranes. The main issue was that the stabilization constraints relied on friction

between structure and rollers, which could greatly vary due to uncertainty in the

friction coefficients, as well as to variations in the normal forces between rollers and

structure, resulting from assembly and manufacturing tolerances. These challenges

would often result in slipping between rollers and structure, with consequent loss

of tension. These problems were exacerbated by the displacement control scheme

used for the rollers: a single motor drove a central gear, which would then distribute

the motion to the 4 driver rollers through a gear train. While this approach allowed

to drive the mechanism with a single actuator, it was not able to compensate any
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slipping between rollers and structure, which would gradually become more and

more asymmetric during uncoiling, following a slipping event.

Informed by the lessons learned from the first two generations of mechanisms, a

third concept was developed, and it is discussed in the next subsection.

3.7.3 Pressure Stabilization Concept

The deployment mechanism concept presented here is based on a pressure stabiliza-

tion scheme. It is intended to apply uniform loading to the structure, similar to the

tension stabilization approach, but using transverse forces like the first generation

of mechanisms. This is achieved by co-coiling the structure with a thin membrane,

subject to tension, similar to the "puller" mechanisms mentioned earlier on. Fig-

ure 3.27 shows a free-body diagram of this concept, in which the tension in the

membrane is balanced by pressure loads on the deployable structure. This, in turn,

is pushed on a rigid cylinder, conforming to its radius.

T

T

P P

Structure Membrane

Inner cylinder

Figure 3.27: Free-body diagram of a portion of a structure co-coiled with a mem-

brane under tension.

Figure 3.28 shows the concept of a deployment mechanism based on the pres-

sure stabilization method. 4 inner cylinders support the structure, controlling the

coiling/uncoiling process by rotating about a central shaft. Each inner cylinder is

attached to a membrane, whose other end is connected to a fixed roller. Each roller

applies a constant torque, which can be provided either by an electric motor or by a

spring. This concept potentially solves some of the issues previously mentioned: by

using force control rather than displacement control, each roller can independently

adjust its speed such that the load on the membranes remains constant. This makes

the mechanism insensitive to assembly imperfections (e.g. the membranes having

different lengths) and capable of compensating external perturbations (e.g. a mem-

brane becoming slack for any reasons), resulting in a robust design. Additionally,
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applying tension to the membrane rather than to the deployable structure is highly

desirable, as it reduces the risk of damaging any brittle functional elements mounted

on it.

Inner cylinders

Rollers

Coilable

structure

Membrane

4T

T
T

T

Figure 3.28: Pressure-stabilization concept to coil a 4-fold symmetric structure.

In order to allow the deployable structure to unfold to its deployed configuration,

the deployment mechanism must open at the end of uncoiling, removing both the

inner cylinders and the rollers. Various solutions had been devised for the previous

versions of the mechanism: they all had the rollers hinged at their base, so that

gravity would help their rotation after release, but they differed in the type of release

mechanism. In the first generation, the rollers were held together by a thin string

cut by hand, representing a burn-wire type of mechanism. In the second generation

of the mechanism, the inner cylinders were pushed out of the inner cage by the

deployable structure, at the end of uncoiling: this triggered a spring-loaded Hold-

Down and Release Mechanism (HDRM), which would disengage the rollers from

the top of the mechanism, allowing them to rotate about the hinges at their base.

In the concept proposed here, the mechanism would open in two steps, as shown in

Fig. 3.29. During coiling, the inner cylinders are held in a inner cage, composed

of a top and a bottom plate (orange in the figure), rotating with a central shaft.

The plates have slots, which allow the inner cylinders to slide radially when they

align with the rollers. When the structure is coiled, the inner cylinders are held

in place by the membranes and the structure wrapped around them. At the end of

uncoiling, though, the cylinders are free to move, and the tension in the membranes

automatically extracts them out of the inner cage, once they are aligned with the
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rollers (step 1 in Fig 3.29). In the second step, a release mechanism, placed at the

top of the deployment mechanism, simultaneously releases 4 latches that hold the

rollers in place. Upon release, the rollers rotate about their lower hinge, under the

action of torsional springs.

Figure 3.29: Design of the Mk IV deployment mechanism, based on the pressure

stabilization approach (membranes are not shown here). The sequence shows the

phases of the mechanism opening, at the end of uncoiling.

Figure 3.30 shows the implementation of the first deployment mechanism prototype

based on the pressure stabilization approach. This prototype, named Mk IV, was

the first full-scale active mechanism to coil a 1.7 m × 1.7 m thin-shell structural

prototype (packageability had been previously demonstrated on a coiling apparatus

turned by hand). The mechanism occupied a volume of 340 mm × 340 mm ×
520 mm, and packaged the structure around 4 inner cylinders with a diameter of

63.5 mm, achieving a packaged cylindrical volume of 185 mm diameter × 250 mm

height. The size of the inner cylinders was set by the maximum curvature that the

longerons could tolerate, with a safety factor of 2.5.

The deployment mechanism prototype consisted of a 3D-printed plastic structure,

reinforced by machined aluminum parts where needed, and off-the-shelf CFRP

inner cylinders and rollers. The central stage was driven by a brushless DC motor,

operating in closed-loop speed control. Each of the rollers was equipped with a

brushed DC motor, controlled in closed-loop current control (as these motors have

a linear relationship between current and torque). From a control standpoint, the

central motor and the roller motors were decoupled: the former controlled the

coiling/uncoiling process (both phases were automated), whereas the latter sensed
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(a) Deployable structure in the star-folded configuration before coiling

(b) Deployable structure partially coiled inside the

deployment mechanism

Figure 3.30: Demonstration of a pressure-stabilized coiling mechanism with a

1.7m×1.7m space structure prototype.

the variations in the membrane tension due to the rotation of the central motor and

automatically adjusted their speeds to return to their set value. The control loops

for the central motor and the roller motors were built-in in the motor controllers,

which were commanded through an Arduino MEGA. An additional linear actuator

controlled the release mechanism to open the rollers.
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(a) (b)

(c) (d)

Figure 3.31: Snapshots of the uncoiling process for the structural prototype. From

(a) to (c), the structure is uncoiled by the deployment mechanism; (d) shows the

structure after the rollers and inner cylinders have been released. In this configura-

tion, the structure is maintained in its star shape by hairpins.

It is worth highlighting that the choice of the actuation scheme represents a major

difference between this mechanism and the "puller" mechanism concept developed

for deployable booms. In the puller concept, the motor tensioning the membrane

was also responsible for pulling the structure out of the coil, and the central hub

would only apply a resisting torque. In our implementation, the structure is still

pushed out of the coil by the central motor, and the driving and stabilization aspects

are independent of each others. A key motivation behind this choice is that, if the

4 rollers were to drive the central hub in closed-loop torque control mode, variable

torque would have to be provided to make sure that the mechanism would not stall
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due to an increase in the resisting torque in the hub, requiring additional sensing and

software complexity. If, on the other hand, closed-loop speed control was adopted,

there would be no guarantee that the membranes had the same tension, falling in the

same pitfall as the previous generation’s mechanism.

Fig. 3.30 shows pictures of the deployable structure integrated with the deployment

mechanism. The inner ends of the diagonal cords of the structure were attached

to the central shaft of the mechanism; the other ends were attached to 4 tensioning

systems, consisting of spring-loaded cord retractors. This allowed support to the

structure at the end of deployment. Fig. 3.31 shows a sequence of snapshots from an

uncoiling experiment. The structure, initially coiled, was quasi-statically extracted

from the mechanism under the action of the central motor (the duration of this

phase was about 5 minutes). When it reached the star shape (Fig. 3.31c), the inner

cylinders were extracted, and the rollers were released on command (Fig. 3.31d).

Between 2019 and 2021, about 20 coiling/uncoiling experiments were successfully

performed with this mechanism prototype, confirming the reliability of the pressure

stabilization approach. A new iteration of the mechanism, based on the same

principles of operation, but designed with launch survivability in mind, has been

recently developed by the Space Solar Power Project team at Caltech, and it will be

demonstrated in space in 2022 as part of the SSPD-1 mission, under the name of

DOLCE (Deployment on-Orbit of an uLtralight Composite Experiment).

3.8 Staged Dynamic Deployment Concept

During the second phase of deployment, the deployable structure unfolds from the

star shape to its planar configuration, driven by its stored strain energy. In its simplest

implementation, the unfolding process is initiated by the release of the rollers in the

coiling mechanism, and the square loops in the structure deploy at the same time. The

dynamics of this process will be the main focus of the next chapter. Here, instead,

we propose an alternative approach, consisting of a staged deployment scheme. In

this case, the deployment path of the structure is broken down in smaller steps, so

that the structure dynamically deploys between intermediate, known configurations.

Such configurations are defined by releasable constraints that induce elastic folds at

opportune locations, chosen from a desired kinematic path for the structure.

One of main advantages of this approach is that it provides some control over the

deployment path of the structure, which is otherwise set by the direction of its steepest

energy gradient. For large structures with many thin-shell components, multiple
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energetically-similar paths are expected to exist, some of which might present local

energy minima in which the structure can achieve static equilibrium without ever

reaching its fully deployed state. Therefore, imposing intermediate checkpoints

along the deployment process can mitigate the risk of incomplete deployment.

Also, a staged deployment scheme would reduce the dynamics of the process, which

could become excessively fast and chaotic for large structures, posing the risk of

damaging any functional elements on it. Finally, a staged deployment reduces the

deployment envelope of the structure, as it is shown below. This reduces the required

clearance around the structure and the risk of contact with other components of the

spacecraft during deployment, which can result in structural damage or incomplete

deployment.

The effect of a staged deployment scheme on the deployment envelope can be

investigated using the kinematic model of folding developed in Sec. 3.4.1. Here,

we assume that each square loop follows the 4-fold symmetric path presented in

Fig. 3.10a. Different square loops in the structure can be integrated as done for the

folding case, but with different boundary conditions. In particular, during folding,

it was assumed that the structure would lie on a flat surface, and that each square

loop would sit on it if the length of the cords allowed it, or it would be lifted by

an offset ΔI otherwise. During deployment, the structure is suspended by diagonal

cords, so that each strip is free to extend vertically in either direction. In this case,

we assume that dynamic effects dominate over gravity, and that each portion of the

cords between strips remains horizontal. Also, the outer strip-cord connector on

the outermost strips are only allowed to slide horizontally, as shown in Fig. 3.32a,

since they are aligned with the cord tensioning systems at the ends of the diagonals.

Under these assumptions, the kinematics of the structure can be solved using the

same framework implemented for the folding case, and its deployment envelope

can be computed by tracking its highest and lowest points at each increment of

the solution. Figure 3.32 suggests that the extreme points are located at the center

of the two longest strips in the structure, which deflect upwards and downwards,

respectively, as a result of Z-folding.

The example in Figure 3.32 plots the envelope of a structure with the 3 strips and

F̂ = 0.55. For clarity, only the outermost 2 strips are plotted, as they contribute the

most to the envelope. The trajectory of the 4 points at the center of the two strips

is plotted in Fig. 3.32b. The difference between the maximum and minimum height

of the structure during deployment can be used as a measure of the deployment
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(a) Generic configuration of a structure during unfolding
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(b) Trajectory of the 4 points at the center of the outermost two strips

Figure 3.32: Example of deployment envelope for a structure with 2 strips deploying

at the same time, and elastic folds located at _1 = 0.1.

envelope, and is defined here as Δ�. For given strip geometry, this distance is a

function of the fold location _. Figure 3.33 shows the envelope for structures of

different sizes, as a function of _. Each line was generated by adding strips to the

same base design (F̂ = 0.55), so as to increase the overall size of the structure, and

isolating the two outermost strips, which experience the largest height excursion.

The plots show that the envelope is always greater than the width of the strips

(black line), which is the theoretical minimum possible (as it corresponds to the

space occupied by the strips in the star shape). Also, Δ� greatly increases as the

folds approach the center of the strips. This effect is dramatically amplified as the

structure gets bigger. For example, for a structure with 10 strips, having the folds

at the center increases Δ� by almost a factor of 4, compared to having them at the

ends. Also, it is interesting to note that, when _ = _<0G , the envelope is the same

regardless of the number of strips.

These results have profound implications on the design of a deployment staging.
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Figure 3.33: Maximum height of a structure with F̂ = 0.55 as a function of the fold

location _1. Results are shown for different numbers of strips.

Indeed, we have previously shown that, in order to simultaneously fold/unfold several

square loops, their elastic folds must have the same spacing. Therefore, the values

of _ on the last 2 strips cannot be chosen arbitrarily, but only discrete values are

possible, for which an integer number of strips is deployed at the same time. For

each architecture, the admissible values of _ are indicated in Fig. 3.33 by the black

circles. For example, a structure with 10 square loops can be deployed in 5 steps

by releasing 2 square loops at a time, achieving the most compact deployment

envelope. A 3-step process can also be conceived, by releasing 4 strips at each of

the first 2 steps, and the remaining 2 strips in the final step. In general, increasing

the number of strips being released in the first step increases the corresponding

Δ�. Therefore, for large structures, a carefully designed staged deployment scheme

can minimize the number of intermediate steps, while also achieving a sufficiently

compact deployment.

Here, the concept of staged deployment is demonstrated on the 1.7 m× 1.7 m

structural prototype, using the 2-step deployment sequence shown in Fig. 3.34. It

can be noted that the sequence corresponds to the same kinematic path used for

the folding process, but in opposite direction. Indeed, here the innermost strip

is deployed in the first step, with the second and third strips deploying together

afterwards.

To demonstrate this concept, the structural prototype was deployed starting from its

star shape. The deployment mechanism consisted of a central shaft, to which the

inner ends of the diagonal cords were attached, and 4 spring-loaded cord tensioning
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(a) (b) (c)

(d) (e) (f)

Figure 3.34: Deployment sequence from kinematic model for a 2-step deployment

scheme with fixed folds. The red lines represent the localized constraints, which are

simultaneously removed on the 4 arms of the star-shape. Dashed lines correspond

to fixed localized folds. (a) to (c) shows the release of the first set of constraints,

resulting in the deployment of the inner square. (d) to (f) shows the deployment of

the middle and outer squares, following the release of the second set of constraints.

systems, placed outside the structure and aligned with the diagonals. Early de-

ployment experiments used hairpins as releasable constraints, which were manually

removed in a synchronized fashion. Later on, more sophisticated releasable devices

were developed by the Space Solar Power Project team at Caltech. For the scope of

this discussion, it will suffice mentioning that the devices were miniaturized burn-

wire mechanisms, battery-powered and wirelessly controlled; they weighed about

5 g each and they were only 8-mm-thick, so as to be compatible with the coiling

process. The devices were attached to the Kapton membrane of the outer strips, and

holes were added to all the membrane at the location of the constraints to allow for

a wire loop to run around the longerons on each arm of the star shape, holding them

together.

Figure 3.35 shows the sequence of intermediate configurations during staged deploy-

ment of the structural prototype. In Fig. 3.35b, the structure is in its intermediate

configuration, in which the inner square is fully deployed. The structure was mostly

symmetric, although the spacing between folds on the upper longeron of the folded

strips varied along each square loop.
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(a)

(b)

(c)

Figure 3.35: Demonstration of a staged deployment sequence on a 1.7 m × 1.7 m

space structure prototype.
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This resulted from the constraints being applied only to one of the longerons in each

strip. It can be noticed that the distance between elastic folds on the remaining strips,

still folded, varied across quadrants. This resulted from the constraints being applied

only on one of the longerons at each location, therefore allowing propagation of the

elastic folds on the other longeron. In the second step of deployment (Fig. 3.35c),

the middle and outer squares successfully deployed, although gravity effects led to

a sagged configuration of the structure, with some buckling in the longest strip (at

the bottom of the picture).

Several experiments were performed using this approach, showing excellent re-

peatability of the intermediate configurations of the structure. The main challenge

encountered had to do with the implementation of the release actuators not being

sufficiently mature to guarantee reliable release of the constraints. Occasional fail-

ure to release caused incomplete deployment of the structure, highlighting the risk

of introducing single points of failure in the deployment. Additionally, the release

of the constraints on the 4 arms of the star shape at each step of deployment oc-

curred in a sequential way, with a delay between each actuator of about 100 ms.

While this delay did not appear to pose any risk for the deployment, it resulted in a

non-symmetric deployment dynamics in between steps, making the process harder

to quantify and predict using simulations.

Despite these challenges, the experiments confirmed the feasibility of a staged

deployment approach, opening a pathway for the controlled deployment of large

space structures, for which the uncertainty of deploying many thin-shell components

together exceeds the risk associated with the additional failure points in the system.

3.9 Conclusion

This chapter has presented a methodology to package and deploy a space structure

consisting of multiple thin-shell strips arranged in a square architecture. While

the packaging concept had been previously demonstrated on membranes and small-

scale simplified structures, here we have developed a framework that can be applied

to large structures, and we have demonstrated it on a 2 m-scale structural prototype.

By imposing elastic folds at opportune locations, we have shown that the kine-

matics of the structure can be described by a kinematic chain consisting of rigid

links connected by revolute joints. Using an algorithm previously developed for

closed-loop mechanisms, a computational framework was implemented to define

compatible kinematic paths for the structure, identifying a path for which a single-
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degree-of-freedom mechanism can be achieved. This allows folding of the structure

in a predictable and repeatable fashion and, most importantly, minimizes the inter-

nal stresses, reducing the risk of accidental damage to the structural components.

An analysis of the boundary conditions of multiple, interconnected square loops

revealed that the cords connecting adjacent strips impose constraints to the vertical

motion of the strips during packaging. Folding the strips in pairs appears to be

the best approach to package the structure in a sequence of simple steps, while

minimizing the interaction between strips. It was also found that the design pa-

rameters of the space structure, i.e. the aspect ratio of the strips F̂ and the spacing

between strip-cord connectors [̂, affect the kinematics of the structure, which should

therefore be taken into consideration in the early stages of the design process. A

mathematical foundation to studying kinematic paths with multiple degrees of free-

dom has been laid. This allows us to consider alternative folding schemes, in which

a lower degree of symmetry and a less deterministic kinematics are accepted in ex-

change for a potentially easier-to-implement folding procedure. The case of mirror

symmetry on a single square loop with 5 degrees of freedom has been presented as

an example. More work has to be done to combine multi-degree-of-freedom folding

schemes with structures composed of multiple square loops. Indeed, a 1 D.o.F.

mechanism allows us to decouple the internal kinematics of the square loop (the

relationship between its internal angles) and the external kinematics (its position

with respect to the other parts of the structure), greatly simplifying the analysis. For

the multi-degree-of-freedom case, the internal and external kinematics might have

to be solved at the same time for the entire structure, as the cord length constraints

would enter directly in the optimization algorithm for the direction of the solution

increments.

A novel deployment mechanism concept to coil the space structure from a star shape

to a cylindrical configuration was proposed and demonstrated. Inspired by existing

concepts for deployable booms, a pressure stabilization approach was implemented

to support the coiled structure during coiling, launch, and deployment, by co-

coiling it with a thin Kapton membrane. Independent actuators for each membrane,

operating at constant torque, provided reliable and robust operations, making the

mechanism insensitive to misalignments and slipping in the membrane. Although

the deployment mechanism prototype presented in this chapter used 6 actuators for

maximum flexibility during operations, their number can be drastically reduced by

switching to a passive roller design, in which pretensioning of the membranes is

applied by spring-loaded rollers.
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Finally, the concept of staged deployment was proposed to unfold the structure

from the star shape to the deployed configuration. This idea offers a compromise

between the simplicity of a strain-energy deployment approach and the reliability

of an actively-controlled deployment. In fact, it allows us to guide the structure

along a desirable deployment path using a small number of relatively simple release

actuators. The advantage of this approach is two-fold: firstly, it reduces the un-

certainty associated with the dynamic deployment of a large number of thin-shell

components; secondly, it reduces the deployment envelope of the structure, allowing

to integrate it with a spacecraft in a more compact package. While more work is re-

quired on engineering aspects of the implementation of the release devices, a staged

deployment scheme might be the key to enabling the strain-energy deployment of

large thin-shell structures for space applications.
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C h a p t e r 4

DEPLOYMENT DYNAMICS OF A THIN-SHELL SPACE

STRUCTURE

4.1 Introduction

In the previous chapter, a thin-shell space structure architecture was presented,

and its kinematics was investigated to design a safe and predictable packaging

process. A staged deployment scheme was also demonstrated deploying the structure

through a sequence of strain-energy deployment steps between intermediate, static

configurations.

In this chapter, the unfolding process of the structure is investigated from a deploy-

ment dynamics perspective. Experiments and high-fidelity finite element simula-

tions were used to characterize the evolution of the structure during a single-step

deployment, initiated by the release of a deployment mechanism. For the purpose

of this study, the Kapton membranes on the strips were omitted, reducing the space

structure to its thin-shell skeleton.

Figure 4.1: Concept of a single-step deployment process for a space structure with

3 strips per quadrant.
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The chapter is organized as follows. In Section 2, the geometry of the space structure

and the key features of the deployment mechanism are presented. Sections 3 and

4 describe the experimental setup and present the experimental results. In Section

5, the implementation of the finite element model is discussed. The results are

compared with experiments in Section 6, where a typical behavior of the elastic

folds on the structure is also presented. Finally, Section 7 discusses the results and

concludes the chapter.

4.2 Problem Description

The space structure studied in this chapter is based on the architecture presented in

Sec. 3.3, and it consists of 4 triangular quadrants, each composed by 3 trapezoidal

strips. Its geometry is shown in Fig. 4.2, where its key geometric parameters are

also defined. Their nominal values are reported in Tab. 4.1. The strips are based

on the same design as the rectangular strip studied in Chapter 2; details about their

components can be found in Sec. 2.3.1.
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Figure 4.2: Geometry of the space structure prototype and main geometric param-

eters
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Parameter Value

TRAC flange radius ' = 13.1 mm

TRAC flange angle U = 105°

TRAC Web width F = 8.5 mm

Inner length !
(1)
1

= 217 mm

Outer length !
(3)
2

= 1677 mm

Strip inner width 0 = 200 mm

Batten spacing - Strip 1 11 = 137 mm

Batten spacing - Strip 2 12 = 197 mm

Batten spacing - Strip 3 13 = 217 mm

Strip-cord connector distance [ = 180 mm

Diagonal gap @ = 20 mm

Strip gap 6 = 10 mm

Table 4.1: Geometric parameters of the space structure prototype

Figure 4.3: Schematics of the structure in its folded star shape, prior to deployment,

and geometry of the deployment mechanism.

The space structure is initially folded in a star shape and is installed in a deployment

mechanism, based on the architecture shown in Fig. 3.29. For the purpose of this

study, the key features of the mechanism are its 4 roller arms, each containing a roller

and the corresponding inner cylinder, to which it is connected through a Kapton

membrane. Before deploying the structure, the inner cylinders are extracted from



116

their inner cage, and the roller arms are the only constraint preventing the structure

from deploying. Each roller arm is connected to the top plate of the mechanism by

a release actuator, and to the bottom plate by a hinge. Synchronized actuation of

the release systems disengages the roller arms, allowing them to rotate about their

hinge and initiating the deployment of the space structure. The diagonal cords of

the structure are attached to the central shaft of the deployment mechanism on their

inner ends, and to spring-loaded cord tensioning systems at the other end. This

allows it to support the weight of the structure at the end of deployment. The key

dimensions of the deployment mechanism are reported in Tab. 4.2.

Parameter Value

Distance of cord tensioning system from central axis !3 = 1400 mm

Central shaft diameter �B = 55 mm

Roller diameter �A = 36 mm

Inner cylinder diameter �8 = 63.5 mm

Distance of the rollers from the central axis 3A = 146 mm

Height of the mechanism � = 275 mm

Height of cord attachment �2 = 191 mm

Table 4.2: Geometric parameters of the deployment mechanism

4.3 Experimental Setup

The deployable structure for the experiment, shown in Fig. 4.4, was an implementa-

tion of the design in Fig. 4.2. The structure was first star-folded by hand, following

a 2-step approach similar to the one presented in Chapter 3, and then integrated

in the deployment mechanism prototype, shown in Fig. 4.5. The details of the

deployment mechanism are outside the scope of this discussion; the main features

for the deployment are the roller arms with their release mechanisms and the cord

tensioning system.

The release of the roller arms was controlled by 4 TiNiTM ML50 Micro Latches,

shape memory alloy-based release actuators, powered in parallel to provide syn-

chronous release of the rollers. Each cord tensioning system consisted of a ML4575-

13 cable reel, manufactured by Almark Enterprises Inc.. The reels contained a power

spring, retracting a 0.5 mm-diameter stainless steel cable. The cable spooling from

the retractor passed through a miniature nylon pulley with a ball bearing (same

model used for the suspension system of the strip in Chapter 2), before engaging

with the outer end of a diagonal cord on the deployable structure. A carbon fiber

rod supported the pulley, setting the height of the cord at the same height as the
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Figure 4.4: Space structure prototype.

cord attachment on the central shaft of the mechanism. The rod was mounted at the

end of an 1.2 m-long T-slotted aluminum frame, oriented along the diagonal of the

structure, and acted as a surrogate of a deployable boom for a flight mechanism.

Figure 4.5: Folded space structure, integrated with the deployment mechanism

prototype.
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4.3.1 Metrology System

In Chapter 2, Digital Image Correlation (DIC) was proposed to extract full-field

displacement data from deployment experiments of a single strip. This method, in

combination with a dedicated shape reconstruction algorithm, allowed us to identify

and track the elastic folds in the structure, accurately measuring their location and

angle. Despite its undeniable advantages, preliminary deployment experiments,

carried on an earlier prototype of the space structure, highlighted the limitations of

DIC for this type of problems. For example, the large field of view (and consequent

pixel size) required to capture the entire structure resulted in speckles approximately

as large as the width of the longeron cross-section, leading to poor resolution in the

transverse direction. The large 3D translations and rotations of the strips prevented

following the speckle pattern for the majority of the deployment process, resulting

in incomplete data, especially in the early phases of the deployment. Furthermore,

DIC required significant preparation of the test structure, which was painted with a

black background (to avoid glare from the glass fiber ply of the composite longerons)

with hand-painted white speckles on it.

Therefore, a different metrology system was chosen for the deployment experiments

presented in this chapter, using motion capture techniques. The experiments were

carried out in the aerodrome of the Center for Autonomous Systems and Tech-

nologies (CAST) at Caltech, which is equipped with an OptiTrack motion capture

system, consisting of 47 PrimeX 41 cameras, distributed along the perimeter of the

test area. The cameras can track the position of retroflective markers, which reflect

back at the source the infrared light emitted by each camera. This information is

used to measure the 2D position of the markers on each camera sensor. Then, the

data from all the cameras is combined, in real-time, by the Motive software, which

reconstructs the 3D position of the markers.

Although motion capture only provided information at discrete points on the struc-

ture, offering lower spatial resolution compared to the full-field DIC measurements,

it provided superior quality of the data. Indeed, the large number of cameras dis-

tributed around the structure allowed us to track points on all the strips at the same

time, and the quality of the data did not suffer from out-of-plane displacements.

Also, its real-time coordinate reconstruction capabilities drastically reduced the

post-processing time required to extract the coordinates of the points, compared to

photogrammetry, which tends to be a much more involved process.

For the deployment experiments, only 7 cameras were chosen, operating at 180
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frames per second. 208 retroflective markers were distributed on both faces of the

space stucture prototype, to provide sufficient spatial resolution. Although spherical

markers provided, in general, better tracking performances, they would not allow the

structure to be coiled; therefore, flat flexible markers were used, combining 6 mm-

diameter circular markers and 8 mm × 8 mm square markers. The 3D coordinates

of the markers provided by Motive were exported and processed in MATLAB, using

the shape reconstruction algorithm described later in this chapter.

4.4 Characterization of the Experimental Setup

The dynamics of the roller release and the cord tensioning system were characterized

experimentally to calibrate the numerical model. The experiments are presented in

the following subsections.

4.4.1 Deployment Mechanism

The characterization of the deployment mechanism consisted of dry runs of the

release of the roller arms, which were tracked by the motion capture system. The

objective was to assess the synchronization of the release of the 4 roller arms, and

to measure their rotation over time, in order to estimate the friction in the system.

Figure 4.6 shows a schematic of the experiment, with the marker locations indicated

by red and green circles. Two markers were placed on the hinge axis of each

roller (green circles in Fig. 4.6) to identify the axis of rotation C8 = �8�8/‖�8�8‖
of the i-th roller. Several markers were placed at the top and on the sides of each

roller assembly. Although a single marker per roller would have been sufficient to

measure its rigid-body motion, the redundant markers provided more accurate data.

The normal =8 9 to the axis of rotation C8 passing through a point on the roller %
(8)
9

was computed as:

�8%
(8)
9
|= = �8%(8)

9
− (�8%(8)

9
· C8)C8 (4.1)

=8 9 =
�8%

(8)
9
|=

‖�8%(8)
9
|=‖

(4.2)

Therefore, the rotation of the point about the hinge axis was computed as:

q8 9 (C) = cos−1(=8 9 (C) · =8 9 (C0)) (4.3)

At each time increment, the angle of each roller was obtained by averaging the

computed angle on each of its markers.

To calibrate the system, a simple analytical model was derived to describe the

dynamics of the roller, whose free-body diagram is shown in Fig. 4.6b. The equation
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Figure 4.6: Experimental verification of the deployment mechanism. Retroflective

markers are placed on the hinge lines (green circles) and on the rollers (red circles).

of motion for this 2D problem is the following:

"63 sin (q + q0) + )4 − )A = �ℎ ¥q (4.4)

where )4 and )A are the elastic and friction torques, respectively, and q0 is the angle

of the line between the hinge point and the C.G. location, measured from the I-axis

when the roller is closed. The elastic torque accounts for the contributions from

the torsional springs in the hinge, as well as from the kick-off springs at the top of

the mechanism (converted in equivalent torsional springs). The nominal stiffness

and initial torque of the springs was used for this calculation. Moreover, the mass

properties of the roller (mass " , second moment of inertia about the hinge line �ℎ,

and C.G. location) were extracted from its CAD model. The friction torque )A was

obtained from calibration, through a non-linear optimization algorithm (fminunc in

MATLAB) that minimized the function

� =

#C∑

8=0

(q0= (C8) − q4G? (C8))2 (4.5)

where q0= and q4G? are the analytical solution and the experimental measurements,

respectively. The analytical solution was obtained from numerical integration of the

equation of motion Eq. 4.4, using the ode45 solver in MATLAB, for given friction

torque )A .

Figure 4.7 plots the results from the calibration. The solid black line corresponds

to the average of the experimental results from 12 sets of data (4 rollers over 3
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Figure 4.7: Comparison between experiments and simulation for the calibrated

model of the mechanism.

experiments), shifted in time to remove the effect of delayed release of the rollers.

The shaded grey region represents the envelope of the experimental results. The

blue line is the result from the calibrated analytical model, using the optimal friction

torque )A = 319.4 Nmm. The same value was used in the finite element model

of the roller (described in Sec. 4.7.3), showing exact agreement with the analytical

solution). The results show that the rollers take about 320 ms to reach their final

angle q<0G = −109◦. After this point, the analytical and numerical model assumes

that the rollers lock at their maximum angle, whereas the experiments show that

the rollers bounce back by about 15° before returning to their final position. The

synchronization in the release of the rollers was also assessed: for the 3 experiments,

the mean delay between rollers was 29 ms, with a maximum delay of 90 ms between

the release of the first and last roller.

4.4.2 Suspension System

The suspension system was characterized through static tests (to measure the tension

in the cables and the stiffness of the power spring) and dynamic tests (to quantify

its friction). Fig. 4.8a shows the simple experimental setup for the static test: the

tensioning system was clamped at its base, and the end of its cable was attached

to a Mecmesin CFG+50 digital force gauge, with a resolution of 0.05 N. The cable

was initially extended to the maximum length of interest (about 900 mm) and

the force was measured with 25 mm-increments, in the unloading direction (to

simulate the conditions encountered during unfolding experiments). The results

from the experiments on each cord retractor are reported in Fig. 4.8b, where circles
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(b) Experimental results

Figure 4.8: Static characterization of the cord tensioning system.

of different colors correspond to different runs of the same experiment. The results

showed consistently a repeatable behavior, consistent across different cord retractors.

A linear fit was used to extract the initial force �0 and the stiffness of the spring  

for each retractor; the results are reported in Tab. 4.3.

Figure 4.9a shows the experimental setup for the dynamic characterization of the

cord tensioning system. The base of the rod was clamped and a mass " was
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Retractor ID  [#/<] �0 [#] f [#]
1 0.227 1.90 0.104

2 0.339 2.02 0.104

3 0.289 2.00 0.054

4 0.323 1.94 0.063

Table 4.3: Measured elastic properties of the 4 cord retractors.

attached to the end of the cable. The mass, initially held stationary by hand, was

instantaneously released, accelerating upwards (along the I-axis) due to the tension

in the cord. A circular target was placed on the mass, and a stereo high speed

camera system (consisting of 2 Photron UX100 cameras) acquired monochrome

images at a frequency of 1000 frames per second. The images were analyzed

through photogrammetry, using the VIC3D software by Correlated Solutions, to

extract the coordinates of the marker over time. The experiments were performed

for 2 different masses (50 g and 100 g) and for each cord retractor, and repeated 3

times each. The friction in the system was estimated with the same approach used

for the deployment mechanism, in the previous subsection. The equation of motion

of the mass can be written as:

�0 +  (�0 − I) − "6 −
) 5

'A
=

(

" +
�?

'2
?

+ �A

'2
A

)

¥I (4.6)

where �0 and  are known from the static characterization, 'A and '? are the radius

of the power spring and the radius of the pulley, respectively, and ) 5 is the effective

friction torque of the system, applied to the cord retractor.

Using the same approach previously described for the calibration of the deployment

mechanism, a non-linear optimization algorithm was used to find the value of)∗
5

that

minimized the deviation of the analytical solution from the experiments, for both

masses tested. The analytical model was solved with the ode45 numerical solver in

MATLAB, while the experimental data were represented by a third-order polynomial

fit of the combined data from the experiments. Figure 4.9b reports the results for

the two test cases, with the grey region containing the envelope of the experimental

data, and the black solid line corresponding to its 3rd order polynominial fit. The

red line corresponds to the analytical results, which is in very good agreement with

the experiments for the 100 g-mass case, while it predicts a slightly faster dynamics

for the 50 g case. This error shows that, in reality, the friction torque is not exactly

constant. This is not surprising, as the largest source of dissipation is the friction

between the spires of the power spring. The normal force between adjacent spires
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Figure 4.9: Dynamic characterization of the cord tensioning system.

depends not only on the pre-stress in the spring, but also on the centrifugal forces

resulting from its motion, therefore explaining the dependency of the friction torque

on the velocity. For the purpose of the present study, a higher level of granularity in

the description of the dynamics of the cord retractor was not deemed necessary, and

therefore the assumption of constant friction torque was accepted, as a first order

approximation of the physical system.

4.5 Shape Reconstruction Algorithm

The output from the motion capture system consisted of a point cloud containing, at

each time frame, the coordinates of its points, identified by a unique ID. The point

cloud was processed to reconstruct the shape of the strips and extract quantitative

data from the deployment test. The algorithm consisted of the following steps:
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1. Marker identification: the points in the point cloud were manually assigned to

the corresponding marker on the structure. This process allowed identification

of points with different IDs, but representing the same physical location on the

structure. This happened, for example, when markers were placed on the two

faces of a longeron, but at the same location, to extend the traceable range of

motion of the point. Unassigned points were discarded to filter out ghosts, i.e.

points generated by reflections or by uninteded bodies in the tracking volume.

2. Data stitching: data from points corresponding to the same physical location

were combined. Averaging was performed when multiple data was available

for the same time increment, and outliers were identified using a median filter

and discarded. An example of this process is shown in Fig.4.11.

3. Angle calculation: for each strip, the markers on each longeron were classified

in left and right markers, depending on their position relative to the center

of the strip, as shown in Fig. 4.12. The tangent to each side was computed

through the Principal Component Analysis (PCA), and was defined by the

direction associated with the largest eigenvalue of the covariance matrix. The

angle of the elastic fold in the strip was simply obtained from the dot product

of the tangents to the two sides of the strip, as follows:

\8 = sign(= · (C'8 × C!8 )) cos−1(C'8 · C!8 ) (4.7)

where the first term on the right-hand side is used to discern positive and

negative angles of the folds. The inclination of the center of the strip U from

the horizontal plane can also be computed as:

U = sin−1 =I (4.8)

where =I is the I-component of the vector =.

4.6 Experimental Results

A sequence of configurations of the structure during a deployment experiment is

shown in Fig. 4.13. The pictures show that, immediately after the release of the

rollers, the outermost strips of the structure moved upwards through the gap between

the rollers and the top plate of the mechanism (Fig. 4.13b). Contact between the

middle strips and the lower edge of the rollers kept the rest of the structure constrained

inside the mechanism until the rollers were fully deployed (Fig. 4.13e). Meanwhile,
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Figure 4.11: Example of data stitching for a marker on the structure, by combining

different points in the point cloud.

the outer strips, constrained by the cords with the middle strips, rotated about their

inner strip-cord connector, aligning their diagonal battens with the cords from the

tensioning system (Fig. 4.13e). After that, the middle strips started sliding on the

surface of the roller (Fig. 4.13e), while the outer strips continued their deployment,

opening the angle of their folds. In Fig. 4.13g, the inner strips were fully deployed,

while the middle and outer strips were still deploying, creating a peculiar diamond-

shape. Finally, Fig. 4.13h shows the structure in its final, deployment configuration.

The distance of the corners of the strips from the center to the structure (' in
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Fig. 4.14) can be used to describe quantitatively the deployment process, as this

distance is related to the maximum deployed size of the structure. Figure 4.15 plots

the distance ' for the 4 corners of the structure, measured by tracking the position

of 6 mm-diameter spherical markers attached to the diagonal cords, at the end of

the structure. The location of the central axis, from which ' was computed, was set

by fixed markers placed on the top plate of the deployment mechanism. At the time

C = 0, defined as the time at which the first roller was released, the mean distance

' was 929 mm, with a maximum variation of 24 mm between two corners. After

release of the rollers, the distance monotonically increased over time in a symmetric

fashion, reaching its final value ' = 1185 mm after 690 ms.

Figure 4.16 shows the evolution of the mean angle of the elastic fold on the outermost

strips for each longeron, indicated by \1 and \2 in Fig. 4.14. The angles were

computed through the shape reconstruction algorithm presented in Sec. 4.5. No

data was available at the beginning of deployment, when many of the markers were

shaded by the deployment mechanism and the opening rollers (at least 4 markers

per longeron are needed to compute the angle). The first available data point on

longeron 2 was at C = 95 ms, when the angle of the fold was \2 = 82°. The angle

decreased monotonically until becoming zero for C = 724 ms. After this point, 3

of the 4 longerons latched in their deployed state, while one of them overshoot,

buckling in the other direction before latching. The orange line shows the evolution

of the mean angle of the fold on longeron 1: in this case, no data was available

before C = 410 ms, since the markers on the outer face of the longeron were rotating

downwards as the strip unfolded, whereas the markers on the inner face, located in

the valley fold of the Z-folded quadrant, were not visible from the cameras until

the quadrant had sufficiently opened. The available data, starting from \1 = 62°

show a very similar trend as for the other longeron, with the deployment time being
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Figure 4.13: Snapshots from deployment test.

approximately the same, and one of the elastic folds overshooting at \1 = 0.

Another quantity of interest for the deployment process is the trajectory of the

center of the strips, where the highest and lowest points during deployment were

observed. Figure 4.17 shows both the distance from the central axis and the height

of the markers at the center of each longeron, averaged over the 4 quadrants. At the
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Figure 4.14: Definition of relevant metrics to describe the deployment of the space

structure.
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Figure 4.15: Distance of the corners from the central axis.

beginning of deployment, the only visible point was on longeron 2 of strip 3, i.e.

the upper longeron on the outermost strip of the star-folded structure. The distance

increased from the initial value of ' = 200 mm to the deployed size of each strip.

The deployment time of the longerons varied from C = 584 ms for the innermost

longeron (longeron 1 - strip 1), to 702 ms for the outermost longeron (longeron 2 -

strip 3).

Fig. 4.17b shows the mean height of the center of the longerons, as a function of

time. The reference height � = 0 is the height of the ends of the diagonal cords,

set by the position of the cord attachment to the central shaft of the deployment

mechanism, and by the cord tensioning system. In the deployment mechanism, the

structure was enclosed in the region −131 mm ≤ � ≤ 91 mm. At C = 200 ms,

the outermost longeron (longeron 2 on strip 3) started moving upwards, reaching
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Figure 4.16: Mean fold angle on the outer strips.

a maximum height of 260 mm after 515 ms, before dropping to −50 mm at the

end of deployment. The other longerons experienced a less pronounced vertical

motion, with the ones on strips 1 and 3 moving upwards and the ones on strip 2

moving downwards, as a result of the kinematics of the star-folded structure. At the

end of deployment, the longerons reached approximately the same final height. In

micro-gravity, this height would be ideally zero; however, under the effect of gravity,

the structure laid below the nominal height, so that the vertical component of the

tension in the cords would support its weight.

Finally, Fig. 4.18 shows the deployment envelope of the center of the structure,

reporting the maximum and minimum heights as a function of the distance from the

central axis. This information has practical implications, as it defines the keep-out

volume around the structure required for its deployment, thus affecting the size of

the deployment mechanism and the arrangement of other subsystems in a spacecraft.

4.7 Numerical Model of Deployment

A finite element model of the deployment was developed using an explicit formu-

lation in Simulia Abaqus 2020. 4-fold symmetry of the structure was assumed to

reduce the computational cost of the simulations, by modeling a single quadrant as

representative of the behavior of the whole structure. The resulting model is shown

in Fig. 4.19: each strip consisted of two longerons, modeled with S4R reduced

integration shell elements. Their material properties were assigned through direct

specification of the ABD matrix for the flange and web laminates. The matrices

were based on previous measurements by Leclerc and Pellegrino [57] on a similar
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Figure 4.17: Mean envelope of the structure at the center of the strips.

laminate, and were validated through bending experiments of a rectangular strip

presented in Chapter 2.

The battens were modeled using B31 linear beam elements, with a 3 mm × 0.6 mm

rectangular cross-section. They were connected to the longerons using kinematic

coupling constraints between a master node (the end node of the batten) and the

nodes on the longeron web in a 14 mm × 14 mm region around the master node, as

shown at the bottom right of Fig. 4.19. Although this modeling choice effectively

assumes that the longeron-batten connectors are rigid, the simplification was deemed

acceptable for this problem. At the ends of the strips, diagonal battens supported

the strip-cord connectors, which were modeled as a multi-point constraint between
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Figure 4.18: Deployment envelope of the structure, measured at the center of the

strips.

a reference point, placed on the diagonal plane of the structure, and a 10-mm-long

region of the batten, corresponding to the size of the actual strip-cord connectors.

In this case, the hypothesis of rigid connector was accurate, as the actual ones were

made out of solid 3D-printed plastics, and therefore were much stiffer than the

battens.

4.7.1 Diagonal Cord Model

Consecutive strips in a quadrant were connected by diagonal cords at the location of

their two strip-cord connectors, on each diagonal batten. In the physical prototype,

only one of the two connectors was bonded to the cord, in order to suppress any

rigid body motion between them, without over-constraining the system (which would

result in the cords losing their tension). Since relative sliding is not allowed, the

cord was modeled piece-wise, using 1D connector elements between the outer strip-

cord connector of a strip and the inner strip-cord connector of the following strip.

The resulting cord segments correspond to the red lines along the diagonals of the

structure, in Fig. 4.19. The innermost connectors of the shortest strip were connected

to a fixed point on the central shaft of the deployment mechanism. Likewise, the

outermost connectors of the longest strip were connected to the cord tensioning

system, whose model is described in detail later in this section. The mechanical

response of the cords was described by a bi-linear elastic model, so that the cords

would be very stiff in tension, approximating the stiffness of the steel cords used in

physical prototypes, and very compliant in compression, approximating the slack

behavior. The cords were "inactive" at the beginning of the simulation, and were



133

x

y

π 1π 2

θ

A1

(1)

B1

(1)

A1

(2)

B1

(2)

A
1

(3)

B
1

(3)

P
1

O1O2

A2

(1)

B2

(1)

A2

(2)

B2

(2)

A2

(3)

B2

(3)

P2

Bottom follower
Top follower

Bottom leader
Top leader 

central

shaft

cord 

retractor

cords

bonding 

distance

multi-point

constraint

π 1

coupling

constraint

batten

longeron

Figure 4.19: Finite element model of the space structure. 4-fold symmetry is as-

sumed, allowing to model only one quadrant as representative of the entire structure.

activated only after the structure had reached its star-folded configuration. This

choice was motivated by the fact that modeling an actual folding process compatible

with the cord constraints would introduce unnecessary complications in the model;

on the other hand, "disconnecting" the cords during folding would allow a simpler

folding sequence, which can occasionally violate the cord length constraints along

the folding path.

In practice, an internal variable 5 was defined on each cord (using Predefined field

variables in Abaqus), and the constitutive model of the cords was expressed as a

function of this variable. When 5 = 0, the cord was linear elastic, with a very low

stiffness ( 2 = 10−3 N/mm); when 5 = 1, the bi-linear model previously mentioned

was used, with stiffness  2 = 10−3 N/mm in compression and  C = 103 N/mm

in tension. The internal variable 5 was set to 0 during the folding process, and
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Figure 4.20: Finite element model of the cord tensioning system, using 1D connector

elements. The model includes inertia, elasticity, and friction in the cord retractor

assembly.

switched to 1 during the equilibrium step, when the structure was in the star-folded

configuration.

4.7.2 Cord Tensioning System Model

The cord tensioning system was modeled using 1D connector elements, which

capture its inertia, elasticity, and friction. A schematic of this model is shown in

Fig. 4.20: it consists of 3 nodes, with node 1 corresponding to the outermost strip-

cord connector of the structure, and nodes 2 and 3 sharing the same location, at the

outer end of the diagonal cords. The model is based on the same approach used for

the suspension system of the strip deployment in Chapter 2:

• a slipring connector ran between nodes 1 and 2, and allowed for a mass

flow ΔΦ2 to enter or exit the element at node 2, so that the cord could

change its length as it spooled from the retractor, without undergoing elastic

deformations; in addition to this, a bi-linear elastic model was defined, similar

to the other cords, to prevent the slipring from transferring any compressive

loads to the structure.

• a retractor element connected nodes 2 and 3, to convert the mass flow ΔΨ2

into rotation l of node 3, according to the relation: l = ΔΨ2/'A , where 'A is

the radius of the cord retractor; the rotary inertia assigned to node 3 resulted

in inertial effects to appear in the dynamics of the cord tensioning system.

• a cylindrical connector, in parallel with the retractor element, connected nodes

2 and 3. A linear elastic model of the form )4 = )
0
4 +  Al was assigned to

this element, to account for the elasticity of the cord retractor. Additionally,

a constant-amplitude friction torque of the form ) 5 = ` sign(l) provided a

first-order approximation of dissipative effects in the system.
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4.7.3 Deployment Mechanism Model

Figure 4.21: Finite element model of the deployment mechanism: exploded mech-

anism while folding the structure (left); closed mechanism when the structure is in

the star shape (center); open configuration of the mechanism, after release of the

rollers (right).

Figure 4.21 shows the finite element model of the deployment mechanism and

illustrates its configurations during the deployment simulation. The model includes

the central shaft, the top and bottom plates, a base plate, and the roller assembly

(comprised of roller and inner cylinder). While folding the structure, the mechanism

was in an exploded configuration to avoid any interference with the folding process.

After the structure reached its star shape, the mechanism was closed by translating

the top plate, bottom plate, and base plate along the vertical axis, and the roller

assembly along the radial direction. A hinge-type connector element ran between

the C.G. of the roller assembly and the location of the hinge axis. The roller was

released by unlocking the rotational degree of freedom of the connector element. The

rotation of the roller was driven by the elastic energy stored in pre-loaded torsional

springs. In the physical prototype, two torsional springs were located on the hinge;

additional kick-off compression springs were placed between the roller and the top

plate of the mechanism to facilitate their separation. In the numerical model, the

kick-off springs were converted into equivalent torsional springs by defining their

elastic torque as )4 = �43 and their rotation as q4 = ΔG4/3, where 3 is the distance

between the top of the roller and the hinge axis, and ΔG4 is the compression of

the springs. Since the kick-off springs only exerted a force on the roller assembly

while they were in contact, their elastic force was set to zero for angles greater than

their maximum contact angle. Three hinge-type connector elements were used in

parallel, each adding the elastic contribution from a different set of springs. The

values of the elastic constants for each set of springs are reported in the table below.
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During ground experiments, the rotation of the rollers was also helped by gravity.

While the effects of gravity could be automatically included by assigning the mass

of the roller <A to its center of gravity and defining a gravity field in the whole

model, it was found that this resulted in excessive kinetic energy when closing the

mechanism, as the mass of the roller amounted to about 10 times the mass of the

entire quadrant. To address this challenge, gravity was included as a concentrated

vertical force �A = <A6 applied directly to the C.G. of the roller, to which a very

small mass (1 g) was assigned. A non-zero mass was essential to avoid mass

mismatch between the nodes of the roller and longeron surfaces during contact; this

mismatch would cause penetration of the surfaces, which would prevent separation

afterwards. To capture the correct dynamics of the system, the total inertia of the

roller about its hinge axis was assigned to the hinge reference point.

Friction in the roller mechanism was modeled as a constant-amplitude friction torque

assigned to the main hinge element, using the same formulation described for the

cord tensioning system. The amplitude of the friction torque was obtained through

calibration from experiments, which are described later in this chapter. Finally,

the rotation of the roller was locked once it reached a maximum value q<0G , as

shown in Fig. 4.21. This accounted for the actual range of the rollers in the physical

mechanism, which was limited by their height from the ground.

4.7.4 Symmetry Conditions

N-fold rotational symmetry of an object requires that the object remains the same

after rotations by multiple of 2c/= about its symmetry axis. In simulation, this

condition was imposed at the boundary points between adjacent quadrants, i.e. on

the strip-cord connectors. This guaranteed that their displacements were compatible

with a 4-fold symmetric structure so that, if the solution for a single quadrant was

rotated by :c/2, with : = 1, 2, 3, the strips belonging to the same square loop would

be hinged together at the location of the strip-cord connectors.

Defining by D, E, and F the displacement components along G, H, and I, with the

pedices referring to the points at the two ends of the strips, symmetry of a quadrant

can be defined as follows:



D1

E1

F1



=



0 −1 0

1 0 0

0 0 1





D0

E0

F0



(4.9)

These conditions were imposed to each pair of strip cord-connectors at the two ends



137

of each strip, using 3 scalar linear equation constraints for each pair of points.

While Eq. 4.9 fully defines the symmetry conditions from a mathematical standpoint,

it is not sufficient to model the physical problem. In particular, it does not prevent

penetration between strips of adjacent quadrants. This becomes a problem when the

structure is folded in its star shape, where contact occurs between adjacent strips. To

address this challenge, two rigid diagonal planes were added (c1 and c2 in Fig. 4.19),

in order to contain the strips in the region between the planes, through contacts. An

additional linear equation constraint

D0 = E0 (4.10)

was added to each strip-cord connector along one of the diagonals, in order to

constrain the ends of the strip to lie on such planes. One of the consequences of the

use of diagonal planes is that the 4 arms of the star shape are forced to be straight:

although this is not a necessary condition (they could also deform in a curved shape),

experiments revealed that the arms are straightened by the tension applied at the

ends of the diagonal cords, thus justifying the approximation.

4.7.5 Simulation Technique

The simulation consisted of two main parts, folding and deployment, organized in

several steps:

1. Z-folding the structure;

2. closing the mechanism;

3. applying external loads;

4. equilibrium;

5. deployment.

In the first step of the simulation (Fig. 4.22a), the quadrant was Z-folded by applying

a vertical relative displacement ΔI = 0 to the two ends of the battens at the center

of each strip, which acted as control points for this process. Fig. 4.19 shows the

locations of the control points, which are classified in "top" (blue) and "bottom"

(red), depending on whether they are located on a mountain or valley fold. For each

of these groups, a leader node (square marker) was defined, whose out-of-plane

displacement was imposed to its follower points (circular markers). This facilitated
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the folding process, as it allowed folding the structure by controlling the relative

displacement between a single set of nodes. These constraints were defined as linear

equation constraints, similar to the ones used to impose symmetry. However, in this

case, the constraints had to be removed later in the simulation, in order to allow each

strip to move freely during deployment. To this extent, a dummy node was created

for each equation constraint, which was written as:

F 5 − F; = F3 (4.11)

where F 5 , F; , and F3 represent the out-of-plane displacement of a follower node, a

leader node, and a dummy node, respectively. When F3 = 0, the equation reduces

to imposing the same vertical displacement to the leader and follower node; if F3 is

not set, the left-hand side of the equation can take any value, effectively deactivating

the constraint. A small mass <3 = 10−3 g was assigned to each dummy node to

avoid singularities in the mass matrix, without introducing any appreciable effect

on the dynamics of the model.

In the second step of the simulation (Fig. 4.22b), the out-of-plane displacements

of the control points were locked, and the structure was pushed in its star shape

by applying in-plane displacements (along the H-axis in Fig. 4.21) to the ends of

the battens on the outermost strip of the quadrants. Meanwhile, the deployment

mechanism was closed around the structure, by translating the top/bottom plates

along the I-axis and the roller assembly along the H-axis.

In the following step (Fig. 4.22c), the external loads were applied to the structure:

in particular, gravity was introduced, the cords between strips were activated (by

changing the value of their internal variable), and the elastic torque was applied to

the cord retractor system (similarly to the cords). The equation constraints between

the control points were deactivated by freeing the displacements of the dummy

nodes, as well as the vertical displacements of the leader nodes.

Viscous pressure was applied to the entire model to dissipate any residual kinetic

energy in the system. It was observed that, in some instances, the longeron flanges

could fold on themselves due to contacts between strips, especially at the ends of

the longest longeron of each strip. To avoid such problems, the flanges were briefly

flattened and slowly released at these critical locations, achieving a more predictable

configuration of the longerons. In the equilibrium step, the viscous pressure was

gradually reduced to zero, and the linear bulk viscosity was decreased from 10−4 to

10−6, in order to minimize viscous effects on the deploying structure. Based on the
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(a) Z-folding

(b) Closing the mechanism

(c) Applying loads

Figure 4.22: Folding simulation of the space structure (diagonal planes not shown).

findings from the strip deployment study in Chapter 2, air effects are expected to

be negligible for a structure without membranes, and therefore were not included in

the simulation. Finally, the deployment simulation was initiated by simply releasing

the rotation of the roller about its hinge axis.

It can be noticed that the deployment of the structure does not occur until the very
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final step of the simulation, while all the previous steps were only intended to get the

structure from its initial, undeformed configuration to the folded configuration, in

the star shape. This is because deploying the structure only requires removal of any

applied constraints and letting it follow its minimum energy path, whereas folding

the structure requires actively controlling its many degrees of freedom to avoid

undesired deformations and instabilities, achieving the correct folded configuration.

4.8 Numerical Results

4.8.1 Model Validation

The numerical model was validated by comparison with the experimental data

presented earlier in this chapter. Three metrics were chosen for the comparison: the

distance of the corners of the strips from the central axis, the evolution of the angle

of the elastic folds on the outermost strips, and the maximum / minimum height of

the center of the strips over time.
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Figure 4.23: Position of the corners of the structure along the diagonal.

The first metric is plotted in Fig. 4.23: in the finite element model, synmmetry

conditions impose the same distance from the central axis to each corner of the

structure, hence a single curve is shown. For the experiments, the distance of

the 4 corners was averaged (blue line), and the envelope of the experimental data

is indicated by the shaded grey region. The numerical results capture very well

the deployment time measured in experiments, with the corners of the structure

reaching their maximum distance after 630 ms (about 5% faster than the experiment).

However, some differences can be observed at the very beginning of deployment,

in which the numerical model deploys faster than the experiment, with a maximum
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error of about 50 mm, at any given time. The discrepancy is possibly due to the

numerical model not accounting for the short delay (of the order of 50 ms) between

release of the roller arms in the deployment mechanism, observed in experiment.

Also, the simplified geometry of the roller arms in simulation removed some of the

geometric features that protruded in the real mechanism (such as the Micro Latch of

the release system), thus facilitating the extraction of the strips from the mechanism,

compared to the experimental case.

At 400 ms, an oscillation of the distance ' slows down the deployment simulation,

resulting in a better matching with the experiment. This oscillation was due to

contact between the edge of the deployed roller and the flange of a longeron on the

middle strip. At the end of the deployment, the numerical model predicted small

oscillations in the distance of the corners, due to elastic vibrations of the structure,

showing a less dissipative behavior than observed in experiment.

Fig. 4.24 compares the angles of the elastic folds at the center of the outermost

strips. Except for a more oscillating behavior, the finite element model follows quite

closely the angles reconstructed from the experiment, with an RMS error of about

15% on the angle of longeron 1, and 12% on the angle of longeron 2.
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Figure 4.24: Angle of the elastic folds on the central strip.

Finally, Fig 4.25 compares the maximum and minimum height of the structure

during deployment. The results in Sec. 4.6 showed that the extreme values occur at

the center of the strips, with the maximum height being on the outermost strip, while

the minimum height corresponds to the middle strip. Therefore, only these two strips

were considered for the comparison. The plot confirms that, at the beginning of
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deployment, the outer strip quickly moves upwards in simulation, sliding in the gap

between the top plate of the mechanism and the roller arm, shortly after its release.

In experiment, this vertical motion did not occur until about 200 ms after the roller

release. Also, the deployment in simulation is more dynamic, with a maximum

height of about 390 mm, vs 260 mm measured in experiment. However, after 400

ms, the simulation matches more closely the experiment. Regarding the height of

the middle strip, its minimum value from simulation is 260 mm below the reference

height, whereas, in experiments, the height remains mostly constant, varying from

-130 mm and -60 mm during deployment. At the end of deployment, the structure

overshoots in simulation, peaking at an height of about 45 mm above the reference

height, before dropping to approximately the same final value as in experiment.
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Figure 4.25: Evolution of maximum and minimum height of the structure, measured

at the center of the strips.

4.8.2 Numerical Determination of the Deployment Envelope

Experimental determination of the deployment envelope of the structure can be

challenging, as many points are not visible to the cameras, especially in the first

phase of deployment. Figure 4.17 showed that this is often the case for the inner

strips, as well as for the longerons at the bottom of the star-folded structure. A

finite element model represents a powerful alternative, as it provides high spatial

resolution data on the entire structure, throughout deployment. Fig. 4.26 shows the

deployment envelope from the simulation presented in the previous subsection. The

maps show the lowest and highest points on the structure, respectively.

Fig. 4.26a indicates that the highest point on the structure is located at the center

of the strips, in accordance with the observations from experiments. Regarding
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(a) Highest points on the structure (b) Lowest points on the structure

s

Figure 4.26: Envelope of the structure during deployment.

its lowest point, Fig. 4.26b identifies two potential locations: the center of the

strip and the diagonals of the structure, which reached �2
<8=

= −471 mm and

�3
<8=

= −440 mm, respectively.

4.8.3 Behavior of the Elastic Folds

The finite element model constitutes an ideal tool to investigate the behavior of the

elastic folds in the structure during deployment, providing access to deformation

and energy data with high spatial resolution. In particular, the strain energy field

in the longerons was found to be the most useful tool for this purpose. Fig. 4.27

provides an overview of the analysis scheme adopted.

1. First, the strain energy of each element was exported from Abaqus at each

increment of the solution, along with the connectivity matrix, and the unde-

formed nodal coordinates, necessary to locate the element in the structure.

This provides snapshots of the strain energy distribution in the structure, at

each time increment (see Fig. 4.27, top right).

2. Then, the strain energy per unit length of each longeron was computed by

summation of the energy in the elements along the cross-section, and ac-

counting for the element size. This allows us to create maps of strain energy

per unit length for the each longeron (Fig. 4.27, middle right), reporting the

distribution of strain energy along the axial direction (H-axis) as a function of

time (G-axis).
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3. Finally, the strain energy history of the longeron can be computed by integrat-

ing the strain energy map along the length of the longeron (Fig. 4.27, bottom

right).

Figure 4.27: Behavior of the elastic folds during deployment of the structure. Top

right: distribution of strain energy of the finite elements in the structure, at the

beginning of deployment. Middle right: map of strain energy per unit length of a

longeron (the example shows longeron 1 of strip 3). Bottom right: strain energy

history of the longeron. Left: snapshots from the simulation, showing different

configurations of the elastic folds during deployment: in (1), there are 2 separate

folds; in (2), the folds have merged into one; in (3), inner flange buckling.

The map of strain energy per unit length allows us to clearly identify the locations

of the elastic folds in the longeron, as they correspond to regions of high curvature

and, therefore, high strain energy. The map in the example of Fig. 4.27 shows
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a typical behavior of the elastic folds. At the beginning of deployment (C = 0),

there are two separate elastic folds, induced by the roller and the inner cylinder (1).

The strain energy in the two folds is slightly asymmetric, due to cylinders having

different diameter and, therefore, imposing different curvatures. After 200 ms, the

two folds merge into one (2): the strain energy map shows two sharp lines at the

boundaries of elastic fold, corresponding to its transition regions, characterized by

bending and torsional stresses. At C = 550 ms, the elastic fold turns into flange

buckling on the compression side of the fold (3). In this configuration, the other

flange and the web are essentially straight and with negligible strain energy. At

this point, the strain energy map shows that the buckle propagates, until it reaches

the closest batten (indicated by the line in the plot) and remains stationary until it

disappears, at C = 690 ms. This finding suggests that the battens create an energy

barrier for the propagation of instabilities, by locally increasing the stiffness of the

longeron. This supports similar observations on the deployment on the deployment

dynamics of a single strip, discussed in Chapter 2, for which it had been found that,

whenever an elastic fold propagated, it would never cross a batten.

4.9 Discussion and Conclusion

In this chapter, we have presented an experimental and numerical framework to

characterize the deployment dynamics of a novel class of thin-shell space structures.

While the packaging and deployment scheme has been previously demonstrated on

small-scale, idealized structures, and several space structure prototypes have been

developed, based on this architecture, this work is the first attempt at capturing and

predicting the complex dynamics of a structure consisting of a large number of thin-

shell components, folded together and deploying in a 3-dimensional motion. The

problem was studied with a dual approach: on one hand, deployment experiments

on a 2-m-scale space structure prototype were performed to observe the behavior of

a real system; on the other hand, a finite element model was implemented, offering

high-resolution data and a prediction and design tool for these structures.

On the experimental side, we have shown that motion capture systems represent a

powerful tool to easily track hundreds of points on the structure. Although spherical

markers generally yield better performances and offer a wider range of motion, it was

found that flat, flexible markers were sufficient to follow most of the points on the

structure, without interfering with its packaging process (e.g. coiling). Unlike other

optical measurements, such as Digital Image Correlation, motion capture systems

do not require special preparation of the surfaces (e.g. painting or speckling), and
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therefore offer a potential solution for large-scale applications and characterization

of flight hardware. In order to characterize the dynamics of the structure, we have

proposed an algorithm to reconstruct the shape of the longerons, measure the angle

of their elastic folds, and follow the trajectory of critical points. This method

offers an unprecedented level of detail on quantitative aspects of the deployment,

allowing assessment of its symmetry, measurement of the deployment envelope of

the structure, and verification of the repeatability of the experiments. Several features

aiming at increasing the robustness of the algorithm have been implemented: data

from different points in the cloud can be combined to increase the tracking range of

each point, and redundant points are used to measure the angle of the elastic folds.

However, the main limitation is that the algorithm relies on manual assignment of

each point in the cloud to the corresponding physical point on the structure, for

many time steps. Especially when the structure is still folded, the identification of

the points might be challenging and can lead to false matching, which increases the

noise in the measurements and deteriorates the quality of the data.

On the numerical side, we have developed a high-fidelity finite element model of

the deployment dynamics of the space structure. The model uses a combination of

established modeling techniques, such as equation constraints with dummy nodes,

field-dependent material properties, and 1D connector elements, to correctly fold

the structure into the star-shape in the least number of steps, and accurately model

its interaction with the deployment mechanism.

Overall, the results show good agreement with the experiment, capturing the de-

ployment time with less than 5% error. The evolution of the elastic folds on the

outer strips is also captured with good accuracy. However, the model overpredicts

the velocity of the structure in the early stage of deployment, showing higher inertial

effects than observed in experiment. The results presented in this chapter were based

on the assumption of 4-fold symmetry of the structure, in addition to having the

ends of the strips lie on the diagonal planes. While the experiment has shown that

the deployment is mostly symmetric, deviation from symmetry occurred both due

to variability in the initial conditions and delays in the release of the rollers in the

mechanism. As symmetry-breaking conditions can, sometimes, offer softer defor-

mation modes of a structure, it would be interesting to evaluate the effect of small

deviations from symmetry on the deployment dynamics of the structure. The com-

parison between experiments and simulations also highlighted that the interaction

between the space structure and the deployment mechanism can greatly affect the
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dynamics of the system. In particular, contacts and geometric interference between

parts can change both the kinematics and dynamics of the structure. While the

model currently uses an idealized geometry of the deployment mechanism, it might

be necessary to use higher fidelity representations to better capture the geometric

interaction between parts. Although more work is needed to refine and improve

the model, the numerical results in this chapter offered invaluable insights into the

deployment dynamics of the structure. On one hand, it complemented the experi-

mental approach, especially for the regions of the structure that could not be tracked

by the motion capture system. On the other hand, it provided detailed information

about the behavior of the structure, allowing us to study the evolution of the elastic

folds on the longerons.

The main limitation of this approach is its computational cost: as the current model

requires about 4 days to complete a simulation on a server, modeling larger struc-

tures or including thin membranes on the strips would quickly result in prohibitive

computational costs. In these cases, reduced-order models or adaptive meshing

techniques might offer substantial advantages.
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C h a p t e r 5

CONCLUSIONS

5.1 Summary and Contributions

This thesis has presented the first comprehensive study of the packaging and de-

ployment of large space structures consisting of multiple thin-shell components.

The overall objective of this research was to demonstrate the feasibility of structural

architectures that can be elastically packaged in small volumes, and yet maintain

a planar shape once deployed, thanks to their bending stiffness. Existing space-

craft architectures are based either on rigid structures that provide high bending

stiffness, but require complex and heavy mechanical articulations for packaging, or

on thin membranes, which can be easily packaged in small volumes, but require

external preloading to maintain their deployed shape. Thin-shell deployable struc-

tures combine the best of both worlds, offering high bending stiffness and elastic

packageability, in addition to the potential for self-deployment, using their stored

elastic energy.

While current applications employ thin shells as standalone deployable booms, com-

bining multiple thin-shell components in a space frame can extend this technology

to large-area applications, such as solar arrays and antennas. Not only can this lead

to a new generation of deployable structures with superior stiffness-to-mass ratio

and packaging efficiency, but it can also enable entirely new technologies, such as

space solar power, so far limited by excessive cost, mass, and mechanical complex-

ity. Despite their potential benefits, the feasibility of these structures depends on the

ability to achieve reliable and predictable deployment, which requires understanding

of their mechanical response. Previous studies on the dynamics of folded thin shells

have highlighted the complexity of their dynamic behavior, dominated by the onset

and evolution of elastic folds. These challenges are exacerbated when consider-

ing a space structure with many thin-shell components interacting with each other.

Ground experiments provide vital information, but are affected by undesired envi-

ronmental effects, such as air and gravity. On the other hand, numerical models can

predict the behavior of the structure in space, but they often struggle with complex

contact conditions and instabilities.

In this thesis, the following steps have been undertaken to address some of those
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key challenges:

• Study of the Deployment Dynamics of a Rectangular Strip

A strip architecture consisting of 2 thin-shell longerons, connected by trans-

verse battens, was presented in Chapter 2. The strip was symmetrically folded

with two elastic folds, and deployed under strain energy. A suspension system

was designed to support the structure during deployment. Deployment experi-

ments were performed both in air and in vacuum, to understand the interaction

with air on the deployment dynamics of the structure; the results showed that

air significantly affected the behavior of the structure if the surface of the strip

was covered by a thin membrane, intended to support functional elements in

a space application. In this case, the deployment in air was up to 70% slower

than in vacuum. However, air effects were negligible in the absence of the

membrane. We have also shown that, with this suspension system, the elastic

folds do not propagate in typical conditions, thus behaving in a predictable

way, as elastic hinges. A finite element model of deployment was imple-

mented in Abaqus, and a simple method to model air effects was proposed,

demonstrating excellent agreement with the experiments under various con-

ditions and different types of structure. The deployment of an unconstrained

strip in micro-gravity was predicted using simulations, and the result was used

as a baseline to compare different suspension system architectures for ground

testing. It was shown that the current implementation added significant inertia

to the system, and that alternative concepts might yield results closer to the

baseline.

The main contributions from this work are:

– an experimental framework to measure the dynamics of a thin-shell

structure, based on high-speed imaging and Digital Image Correlation;

– a robust algorithm to identify and track elastic folds on a structure from

full-field displacement data;

– a computationally efficient approach to include air effects in simulations,

without requiring calibration with experiments. The model is based on

geometric arguments to estimate the added air mass to the structure, and

to identify a drag coefficient from values in literature;
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– a numerical framework to accurately predict the deployment dynamics

of strips and capture the effects of air, gravity, suspension system, and a

functional membrane covering the structure.

• Analysis and Implementation of the Packaging and Deployment of a

Thin-Shell Space Structure

Chapter 3 focused on the packaging and deployment of a space structure,

composed of multiple thin-shell trapezoidal strips, arranged in a square archi-

tecture and connected by diagonal cords. This architecture and its packaging

concept had been previously proposed for space solar power applications. In

this thesis, we demonstrated, for the first time, the implementation of this

concept on a 2-m-scale structural prototype, and we discussed its extension to

larger scales. First, we proposed a systematic approach to folding the struc-

ture in a predictable way, by imposing elastic folds at opportune locations. A

kinematic model was implemented to identify admissible kinematic paths for

the structure, and to design a folding sequence that accounts for the kinematic

constraints between interconnected strips.

Then, we presented a novel deployment mechanism concept (patent pending)

to coil and uncoil the structure in a cylindrical configuration. The mechanism

relies on co-coiled membranes under tension to prevent packaging instabilities

in the structure, by converting tension in the membranes into pressure on the

structure. While the concept of pressure stabilization has already been used in

the past for deployable booms, novel features have been proposed in this thesis:

the use of force control in place of displacement control to tolerate deviations

from symmetry during coiling; and the decoupling of the coiling actuation

from the membrane tensioning system, which allowed for more controlled

loads on the structure. These features contributed to increasing the robustness

of the deployment mechanism, which was successfully demonstrated on 2-m-

scale structural prototypes.

Finally, a staged deployment scheme was proposed to deploy the folded struc-

ture. The concept consists of a sequence of dynamic deployment steps be-

tween intermediate, known configurations, defined by releasable constraints

that impose elastic folds at opportune locations. This approach reduces the

uncertainty associated with strain-energy deployment of the structure, as well

as inertial effects during the process, making it well-suited for large-scale

applications.
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The outcome of this research has enabled DOLCE (Deployment On-orbit of an

uLtralight Composite Experiment), the first flight demonstration of the space

solar power architecture studied in this thesis, set to launch in 2022. The pack-

aging scheme for the flight structure is based on the folding sequence presented

in Chapter 3, and the deployment mechanism is an implementation of the con-

cept proposed in the same chapter. The experimental framework presented

in Chapter 4 is also being used for the characterization of the deployment

dynamics of the space structure, throughout its launch qualification process.

Furthermore, a variant of the deployment mechanism concept has been imple-

mented to coil/uncoil individual thin-shell strips for the JPL/Caltech LADeR

(Large-Area Deployable Reflectarray) project [6].

• Investigation of the Deployment Dynamics of a Thin-Shell Space Struc-

ture

The work on the deployment dynamics of a single strip, presented in Chapter 2,

was extended to the space structure introduced in Chapter 3, to quantitatively

characterize its behavior, both experimentally and numerically. The unique

challenges associated with measuring the deformation of a large number of

thin-shell components that deploy in a complex 3-dimensional motion were

addressed. A motion capture system tracked the location of discrete points on

the structure, and an algorithm was implemented to measure the deployment

time, reconstruct the angle of the elastic folds, and compute the deployment

envelope of the structure.

A high-fidelity finite element model of deployment, based on the assumption

of 4-fold symmetry, was implemented in Abaqus. The simulations captured

the measured deployment time within 5% error, and showed good agreement

with the experiments on other metrics too. The numerical data provided

invaluable insights into the deployment process and the evolution of the elastic

folds on the longerons.

The main contributions from this work are:

– the first quantitative characterization of the deployment dynamics of a

thin-shell space frame;

– an experimental framework, based on motion capture technologies, to

track hundreds of points on a flexible structure, and extract key informa-

tion about the deployment from the point clouds;
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– a technique to simulate, in a finite element environment, the complex

folding process of a space structure, and capture its interaction with the

deployment mechanism during unfolding.

5.2 Future Work

This thesis demonstrated that thin-shell space structures can be packaged and de-

ployed in a controlled and predictable way, paving the way for the development of

novel shell-based structural architectures and their application in space. However,

we believe that this initial research can be expanded and improved in the following

areas:

• Investigation of the structural vibrations after deployment. Deployment

experiments on the structural prototypes studied in this thesis have shown the

vibrations after deployment to be quickly dissipated without producing any

major effects. Therefore, this research has only focused on the deployment

process until latching of the elastic folds. However, we expect vibrations to

become more important as the structure becomes less stiff (due to increased

size of the longerons), heavier (in the presence of functional membranes on

the strips), and less damped (in the absence of air). Such conditions would

make it likely for the longerons to buckle again after the first latching, as

it has been shown to happen for different thin-shell structures, resulting in

a complex sequence of latching and buckling until enough energy has been

dissipated. Also, the vibrations after complete latching would take much

longer to dissipate than on 2-m-scale prototypes and might require active

control from the spacecraft control system. Therefore, a detailed investigation

of the post-deployment structural behavior is needed to quantify the amplitude

of the elastic vibrations and ensure that they are controllable.

• Assessment of the loads on the membranes. In this thesis, the membranes

have mostly been investigated in terms of their effect on the deployment dy-

namics of the strips, and have not been included at all in the deployment study

of the space solar power structural prototype. However, as the membranes

are meant to support the functional tiles in a spacecraft (including photo-

voltaics and antennas), it is crucial to quantify the loads that they experience

during deployment to guarantee their survivability. While the computational

framework developed in this research offers an ideal starting point for such

analyses, additional details might be required to accurately capture the stresses
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on the membrane, which are influenced by the stiffness of the interface with

the longerons and battens, as well as by the prestress that can result from the

manufacturing process.

• Investigation of symmetry-breaking phenomena during deployment. The

deployment experiments on the space structure showed that the deployment

was mostly symmetric, despite some variability. However, propagation of

the elastic folds is often associated with symmetry-breaking phenomena, as

observed for the strip deployment study. Also, non-symmetric kinematic

paths can result in lower energy configurations of a structure, and therefore be

energetically-favorable. A systematic study of the effects of such deviations

from symmetry can shed light on the behavior of a structure in real conditions,

building confidence in the reliability of thin-shell structures.

• Extension to different architectures. While this research focused on a spe-

cific structural architecture, the numerical models we proposed can assist the

development of novel thin-shell structures and their deployment mechanism

by predicting their interaction. They can also be used to predict the deploy-

ment of a structure in space, and compare different suspension system designs

to find the design that best approximates that behavior during ground testing.

• Computational cost of the simulations. The symmetric model of a 2-m-

scale space structure, without membranes on it, required about 4 days to run

on a server with 8 CPUs. High-fidelity models of larger structures, without

symmetry assumptions, and/or with membranes on the strips do not seem a

viable solution, due to their prohibitive computational cost. On the other hand,

lower fidelity models can provide a valid alternative. Multi-body dynamics

has been used to model the behavior of structures based on tape springs.

Model reduction techniques offer a promising solution, as they can greatly

reduce the numerical costs while still achieving good solution accuracy for

certain problems. Adaptive meshing can also be beneficial, as it reduces the

number of degrees of freedom in the model.
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