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ABSTRACT

Excitons are bound electron-hole pairs that dominate the optical response of semi-
conductors and insulators, especially in nanoscale and wide bandgap materials
where the Coulomb interaction is weakly screened. Excitons can enhance light-
matter coupling at certain wavelengths, thus making their host materials candidates
for optoelectronic, photovoltaic, and quantum technology devices. For instance,
two-dimensional transition metal dichalcogenides have a large and tunable optical
response and hold promise for next-generation ultrathin light-emitting diodes. It is
remarkable that exciton properties such as the binding energy and radiative lifetime
can vary by orders of magnitude in different materials and can be further tuned
by material properties like defects and lattice vibrations. Therefore, quantitative
studies of exciton interactions and dynamics can advance understanding of the op-
tical response of complex materials and play a role in the design of future devices.
Among theoretical studies, numerical approaches based on density functional the-
ory (DFT) can quantitatively address the electronic structure in real materials and
their response to external perturbations, enabling accurate calculations of the con-
ductivity and dielectric properties. These first-principle methods, which employ
numerical quantum mechanics and use only the atomic structure of the material as
input (making no use of empirical parameters) have revolutionized studies of mate-
rials and condensed matter physics. Over the last few years, first-principles methods
for studies of excitons have focused on the GW-Bathe-Salpeter equation (GW-BSE)
method to compute exciton energies and optical absorption spectra. However, going
beyond calculations of exciton energetics to address the exciton dynamical processes
remains challenging and is an exciting new frontier of first-principles studies.

This thesis develops theory and novel numerical approaches to study exciton radia-
tive and nonradiative interactions from first-principles. For the radiative processes,
we demonstrate a systematic derivation of exciton radiative lifetimes in materials
ranging from bulk to nanostructures and molecules. The results correctly repro-
duce the observed power-law temperature dependence of the radiative lifetimes.
To benchmark our calculations, we study exciton radiative lifetimes in gas-phase
molecules, obtaining excellent agreement between theory and experiment. Our
framework is then applied in three different studies. First, we extend the radiative
lifetime formula to account for the dependence on light polarization and valley oc-
cupation and investigate exciton recombination in two-dimensional transition metal
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dichalcogenides (2D-TMDs). We show that excitons emit light anisotropically upon
recombination when they are in any quantum superposition state of the K and K′ in-
equivalent valleys. When averaged over the emission angle and exciton momentum,
our new treatment recovers the temperature-dependent radiative lifetimes derived in
early literature. Second, we use the exciton energy and radiative lifetimes to identify
the atomic structure of the defects in monolayer hexagonal boron nitride (h-BN). In
the study, we narrow down the potential structures to nine candidates and identify
the highest-likelihood structure as the VNNB defect, consisting of a nitrogen va-
cancy plus a carbon replacing boron in h-BN. Finally, we generalize the discussion
of isotropic bulk system to accurately compute the exciton radiative lifetimes in
bulk uniaxial crystals, focusing on wurtzite GaN. Our computed radiative lifetimes
are in very good agreement with experiments at low temperature. We show that
taking into account excitonic effect and spin-orbit coupling (to include the exciton
fine structure) is essential for computing accurate radiative lifetimes. A model for
exciton dissociation into free carriers allows us to compute the radiative lifetimes
up to room temperature.

In the study of exciton non-radiative process, we focus on the exciton-phonon (ex-ph)
interaction, which plays an important role to understand the dynamics of excitons in
materials. We establish and implement a first-principle formalism to compute the ex-
ph coupling constants by combining the electron-phonon couplings and the exciton
wavefunctions from the GW-BSE approach. Using the computed ex-ph coupling
matrix elements, we calculate the ex-ph relaxation times as a function of exciton
energy, momentum, temperature, and phonon mode in bulk h-BN. Our calculations
reveal the dominant ex-ph coupling with the longitudinal optical (LO) mode and
identify the threshold for LOphonon emissionwith an associated∼15 fs LOemission
characteristic time. In addition, we derive the phonon-assisted photoluminescence
(PL) from the ex-ph interaction and correctly reproduce the PL spectrum observed
in h-BN at both 8 K and 100 K. Based on our successful study of ex-ph interactions
in bulk h-BN, we extend the discussion to materials with strong spin-orbit coupling.
We investigate the bright exciton linewidth broadening and PL in monolayer WSe2.
The numerical results show an increase of linewidth by 20 meV from 0 K to 250 K
as observed in early experiments and identify the main PL peak as a consequence
of LA phonon emission while the side band is due to optical phonons. Lastly, we
present results from a joint theory-experiment study of the ultrafast exciton dynamics
in WSe2. We develop a Boltzmann equation for excitons and employ it to model
ultrafast exciton relaxation due to ex-ph processes. The simulation and experiment
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both show a ∼70 fs time delay for the electron intervalley scattering from the K- to
the Q-valley due to exciton dynamical effects. We also develop accurate simulations
of time-domain angle-resolved photoemission (ARPES) experiments, which are
becoming a powerful experimental probe of exciton dynamics in condensed matter.
In summary, this thesis work paves theway to quantitative studies of exciton radiative
and non-radiative processes, as well as exciton ultrafast dynamics, and quantitative
modeling of pump-probe experiments in materials with strongly bound excitons.
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C h a p t e r 1

INTRODUCTION

1.1 Research Statement

Background

Dating back to 1930s, when researchers studied the optical properties of insulators,
energy dilution was found during the light absorption. Comparing the energy quanta
with the atomic vibration mode, Frenkel concluded the energy transfer among atoms
to be in the form of "electron excitation wave" rather than the common heat carrier,
Debye wave, i.e. the phonon [1, 2]. The excitation consists of an electron outside
the closed electronic shell and a relic hole replacing the absent electron state. Due
to the opposite charge between them, the electron-hole pair forms a neutral bound
state and is no longer confined to any certain atom. Therefore, the pair locating at a
single atomic site can hop to neighboring atom and carry way the energy, resulting
the energy dissipation. This "excitation wave" today is called the Frenkel Exciton.

This idea was further generalized to semiconductors [3, 4] where the electron
doesn’t belong to a single atom but has wave function spreading in the crystal,
and the electron closed shells mixes with each other forming the valence band.
Contradictory to metals, semiconductors have finite dielectric constant (Y = 1 ∼ 10)
such that the electron and hole can form bound state with radius across several unit
cells without dissociating into free particles. Further, provided the electron-hole pair
nearly freely moving in the crystal under mutual Coulomb attraction, excitons in
semiconductor have the equation of motion identical to the hydrogen atom, having
the discrete spectrum indexed by principal quantum number. To emphasize the
fundamental difference of its long electron-hole separation and hydrogen-like energy
level compared to Frenkel exciton, exciton of thie kind is called the Wannier-Mott
Exciton.

The signature of the excitonic effect is commonly realized in optical process. In
direct-gap semiconductor, the lowest lying exciton state equals to the optical excited
the electron-hole pair. The formation of exciton requires less energy than the among
for a valence electron to jump to the conduction band, which lowers the threshold
of the photon absorption. The difference between this "optical gap" and the true



2

electronic gap equals to the exciton binding energy which characterizes the stablility
of exciton in a thermal bath [5, 6]. In general, the exciton binding energy is
of 0.1-1 eV for Frenkel exciton and ∼10 meV for Wannier-Mott exciton. Beside
the renormalization on the band gap, the formation of exciton also re-constructs
the transition dipole. The hydrogen-like equation of motion imposes symmetries
on exciton such that the optical transition is required to obey parity conditions.
Electron-hole in exciton states following correct parity can recombine by photon
emission. They possess a stronger dipole moment than the normal Bloch wave state
in crystal and result in a resonant pole in the absorption spectrum. This kind of
exciton is called the bright exciton for its high optical sensitivity. Otherwise, excitons
robust under optical perturbation are called dark exciton. Besides the dipole, exciton
can have different reasons for being dark. The first one is the relative spin between
the electron and hole. In non-magnetic systemwith weak spin-orbital coupling, spin
component along certain direction is a good quantum number. Since light emission
conserves the electronic spin, only the electron-hole pair in the spin-singlet form
can radiatively recombine while the spin-triplet exciton remains dark. This spin-
forbidden exciton can be "brightened" by external magnetic field and observed in
the magento-photoluminescence experiment [7, 8]. The other case is the indirect
exciton in which has electron and hole locate at different points in the Brillouin zone
[5]. The finite momentum difference forbids the light emission which can violate the
momentum conservation since photon momentum is in general negligible compared
to the crystal wave vectors. In semiconductor of indirect band gap, the lowest lying
exciton is an indirect state such that the bright exciton resonant peak only appears in
the absorption spectrum but absent in the emission one. Nevertheless, the indirect
exciton can still contribute to the optical response once electronic states couple to
the lattice vibration. By absorbing or emitting phonons, the exciton can transfer
the exceeding momentum to atoms and meet the momentum restriction for optical
process [9]. Early studies were performed on the absoprtion spectra [10–12] while
more on photoluminescence (PL) rencetly [13–15].

In early semiconductor technology, the application of excitons is limited by their
weak binding energy; No stable exciton feature can operate in room temperature.
This difficulty was overcome until the break through in the synthesis of low dimen-
sional nano structure, mainly like graphene, carbon nanotube and two-dimensional
transition metal dichalcogenide (TMD) family [16–18]. The reduction of the di-
mension weakens the screening effect, promoting the Coulomb interaction by orders
of magnitude. Further, in the confined 2D system, the modified effective potential
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has weaker short range attraction [19] which leaves the exciton Bohr radius to be
in order of a few nanometers when the binding energy is of ∼500 meV. Excitons in
nano structure is then categorized between the Frenkel exciton and theWannier-Mott
exciton and possess advantages from both of them, including stability at room tem-
perature [20], domination in the optical response [21, 22], and mobility for transport
properties [23, 24].

Current application of exciton mainly focus on the optical device. Optoelectronics
uses the strong electric field or injects electron and hole through p-n junction to
foster the formation of exciton and control the following light emission intensity.
This technique realizing exciton as the light emission source is matured on III-
V semiconductors, including GaAs, GaP, and InP, and more recently III-nitride
semiconductors (GaN, InN, AlN) as well as their alloy, in the form of quantum dot,
while the engineering on 2D heterostructuremakes the TMD the emerging candidate
for next generation light emitter [25–30]. In terms of the opposite process, the exciton
also brings out a revolution in light absorption device, mainly the solar cell [31].
The formation of exciton provides a different mechanism from conventional silicon
based solar cell in which the photon generated free electron-hole pair is separated at
the designed p-n junction to create the electric potential. In excitonic solar cell, with
the energy offset at a heterointerface matches with the optical gap of the material,
the stable exciton in bulk will dissociate at this "electronic trap site", separating the
electron and hole into different sides of the interface. This new design utilizing the
exciton binding energy can break the limit of photovoltage met in conventional solar
cell. Current excitonic solar cell researches are focusing on the organic materials
[32, 33] while design based on 2D TMD is also proposed as ultrathin and ultralight
photovoltaic devices [34, 35].

Exciton also promises new method for information storage. Current memory device
use the electron spin up/down to store binary information, while researchers are
looking for new binary quantum states for new information storing bits. One of the
candidate is the "valley" degree of freedom, denoting the inequivalent conduction
bandminimum in the Bernoulli zonewhich can be controlled by applying symmetry-
breaking strain or magnetic field to manipulate the electronic states [36, 37]. Early
studies focused on Silicon and AlAs [38–40] but had no decisive advantage to
industrialize this valleytronics technique over the conventional spintronics. Recent
progress on excitonic physics in 2D TMD provides the valleytronics an opportunity
to challenge the lead of spintronics again [41, 42]. The spin-valley locking effect
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in 2D TMD provides a polarization selection rule in the light emission/absorption
process; the light with opposite circular polarization can couple to electron-hole pair
in different valley exclusively [43]. Enhanced by exciton effect, this strong light-
valley coupling can serve as an high efficient readout tool which is not accessible
in AlAs [44]. Further, this light-controlled bit can be easier to integrate as qubit
for the application in quantum computing [45, 46]. However, the sensitivity to light
shortens the lifetime of the valley degree of freedom [47, 48], making the information
storage unstable and impractical. Thus, current research on TMD valleytronics are
seeking for long lifetime time excitonwhich can sustain the spontaneous and external
decoherence, like heterobilayer interlayer exciton [49, 50] and defect-bound exciton
[51, 52].

Problems & Research Subjects

Current understanding on exciton physics is progressing with the advance of syn-
thesis, engineering and spectroscopic technology. However, pure experimental
approach is insufficient to fully reveal the properties of excitons. For instance, the
light emission efficiency is controlled by the quantum yield (QY) which is deter-
mined by the ratio of exciton radiative lifetime and the non-radiative relaxation time
and highly depends on the sample quality. Different synthesis methods and sam-
ple preparations can result in totally opposite conclusion due to inevitable factors
like impurities and interaction from the substrate [53, 54]. Besides, experiment
measurement always contain a thermal average effect which can only be lowered in
cryogenic system but never excluded. The effective quantity may not sufficient to
represent the intrinsic property and, in some examples, can deviate from the true
value by orders of magnitude [48]. Thus, theoretical approach is mandatory to study
the intrinsic behavior of the electronic state without influence from environment.

Beyond the intrinsic exciton traits, the underlying mechanism connecting micro-
scopic properties and macroscopic quantities, like QY and PL, is also the critical
information to gain. In system of low exciton density, the exciton-phonon (ex-ph)
interaction dominates the coupled dynamics while the exciton-exciton or charged
carrier-exciton interaction are minor and negligible. The ex-ph interaction can be
extracted indirectly from the homogeneous linewidth broadening [47] or directly by
time-domain spectroscopies. However, direct measurement is challenging, for gen-
eral carrier-phonon scattering occurring in femtosecond times scale, and requires
ultrafast resolution. Recently, ultrafast spectroscopy are emerging as powerful tool
to time stepping the electron relaxation [55–57] while some of them are applied on
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exciton physics [58–60]. On the other hand, theorists using first-principle method,
including density functional perturbation theory (DFPT) [61] plus Boltzmann Trans-
port Equation (BTE) [62] and real-time Time-dependent density functional theory
(rt-TDDFT) [63–65], have successfully simulated electron-atom interaction in sys-
tem from molecule to extend crystal [66–68]. However, a corresponding study on
exciton-phonon dynamics is still missing.

In this dissertation, we present theoretical research on exciton intrinsic radiative
lifetimes, investigate the ex-ph interaction from first-principles, and shed light on
their ultrafast dynamics. This work fills up the gap knowledge of the exciton radiative
properties by developing a general tool to probe exciton recombination in all novel
materials. Besides, this work carry out an unprecedented ab initio algorithm to
compute the ex-ph matrix element and enable further quantitative calculations. Our
development on real-time exciton relaxation simulation for the first time provide a
bona fide theoretical tool to access the ultrafast exciton behavior from femtosecond
to picosecond without any empirical parameters. Overall, we open up the gate to the
first-principle research on exciton dynamics in the field of computational physics.

1.2 Methodology

Our methodology is based on density functional theory (DFT) [69], the GW-Bethe-
Salpeter-Equation (BSE)method [70, 71], and density functional perturbation theory
(DFPT) [61]. These methods are part of the mainstream first-principles tools to
model the electronic structure of real materials. They are characterized by their
ability to make accurate predictions using as the only input the crystal structure
and atomic positions of materials. These "ab initio" approach are thus uniquely
equipped to bridge the knowledge gap between the theory and experiment. In the
following, we provide a concise discussion on each method to setup the toolbox
used throughout this work.

Density Functional Theory (DFT)

Current DFT relies on the pioneering work of Hohenberg and Kohn (HK) in 1960s
[72]. HK proposed that, in Schrodinger equation, all ground state properties have
a one-to-one correspondence to the electron density and the external potential.
This breakthrough advance has enabled a computationally convenient reformulation
of the many-electron problem. In a follow-up work, Kohn and Sham (KS) [69]
introduced a fictitious non-interacting many electron Hamiltonian which is expected



6

to have the same electron density as the target system. The resulting Kohn-Sham
Equation is written as:[

−ℏ2

2<
∇2 +

∫
3r′

=(r′)
|r − r′| + Eext(r) + EG2 [=(r)]

]
k8 (r) = �8 [=(r)]k8 (r) (1.1)

where the second term is the Hartree potential from the mean-field electron density,
the third term is the electric attraction from the nuclei, and =(r) = ∑ |k8 (r) |2 is the
electron density. The last term in the LHS is the auxiliary "exchange-correlation"
potential encoding electronic interactions beyond the Hartree term. According to
the HK-theorem, once the total energy is minimized with respect to the density, the
one-to-one condition will guarantee that the density in the KS Hamiltonian equals
that of the real many-electron system..

In principle, solving the KS-equation self-consistently can provide the exact ground
state properties of the system. However, the exact form of EG2 is not known and thus
this term needs to be approximated. Among various approximations, two widely
adopted methods also used in this work are the local density approximation (LDA)
[73] and the generalized gradient approximation (GGA) [74], used alternatively
depending on the system at hand. Further, since calculating all the electron states in
a certain atom is too costly, only the valence electrons are treated explicitly, while the
core electrons, which typically do not contribute to bonding and optical transitions,
are included in the pseudopotentials employed to represent the Eext potential from
the nuclei plus core electrons of each atom. Libraries of pseudopotentials, obtained
from DFT calculations on isolated atoms, are available to DFT users and employed
in this thesis work [75].

After the success of KS-equation, the concept of density in HK-theorem is gen-
eralized. The one-to-one corrspondence no longer restricted between the electron
density and energy terms. The first one was proposed to solved the intrinsic Born-
Oppenheimer approximation in KS’s approach. Kreibich and Gross introduced the
"density" of the nuclei position in a equal footing as the electron density [76] such
that EG2 depends on both electron density and the generalized nuclei density and
involves all the mutual interaction in a nonadiabatic manner. This generalization
opens up a wide application of DFT. Examples like the magnetization in spin-DFT
[77] and superconductivity order parameter in superconductor DFT [78, 79] can be
found in literature.

This body of work has established the DFT framework as the standard approach
for material modeling. Several open source codes implement DFT and related
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Figure 1.1: Dyson equation for the one-electron Green’s function.

approaches, including the widely used QUANTUM ESPRESSO [80], ABINIT
[81], and VASP [82] codes, which have become mainstream packages applied in the
computation physics community.

GW-Bethe-Salpeter Equation (GW-BSE)

The using of approximated EG2 raises the insufficiency of DFT. The incapability to
include the full exchange-correlation energy in general results in underestimating
the band gap [70]. To correct the missed energy, the idea of quasi-particle (QP)
is applied. In many-body perturbation theory (MBPT), one particle propagation is
modulated by the "self-energy", which is the correction from quantum fluctuation
and can be rigorous obtained based on the quantum field theory. Fig. 1.1 shows
how the bare particle is dressed by the self-energy Σ and become the QP in Dyson
equation. In terms of one-particle quantum mechanics, the Schrodinger equation
can be written:[
−ℏ2

2<
∇2 + Eext(r) + E� (r)]

]
k8 (r) +

∫
3r′Σ(r, r′)k8 (r′) = �8,MBPTk8 (r) (1.2)

where the Hartree term E� is extracted out from the self-energy Σ. The form of
the self-energy depends on the coupling to be considered. In most of the cases and
system discussed in this work, the main interaction is the Coulomb interaction, Thus
we adpot the so called GW-approximation, using the selfenergy:

Σ = 8�,, (1.3)

where � is the QP propagator and, is the screened Coulomb potential, = n−1E2.
By comparing Eq. (1.1) and Eq. (1.2), to the lowest order of perturbation theory we
can obtain:

�8,MBPT − �8,DFT ≈ 〈k8 |Σ − EG2 |k8〉 (1.4)

which is the missed energy to be added back.
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Besides the correction on the one-body QP energy, MBPT can also provide us the
two particle propagation which corresponds to the electron-hole pair with the correct
time ordering. In terms of functional derivative, the exciton Green’s function can
be derived from the QP propagator [83]:

! (12; 1′2′) = X� (1, 1
′) [J]

XJ (2′, 2) , (1.5)

where ! is the full connected four point correlation function representing the prop-
agation of the exciton, J is some auxiliary nonlocal source proportional to the
strength creating and annihilating particles at different space and time for which
we use numbers as a composited coordinates, i.e., 1 = (r1, C1). Applying the
Dyson equation for one particle propagation, we arrive a Dyson-like equation for
the exciton:

! (12; 1′2′) = !0(12; 1′2′) + !0(14̄; 1′3̄) (3̄5̄; 4̄6̄)! (6̄2; 5̄2′), (1.6)

which is the Bethe-Salpeter Equation (BSE), shown diagrammatically in Fig. 1.2.
Here, we use the overlines denote dummy integration variables to simplify the
notation. Compared to !, !0(12; 1′2′) = � (1, 2′)� (2, 1′) is its non-interacting
counterpart, while the key ingredient in the BSE is the kernel  (3̄5̄; 4̄6̄), which en-
codes the interaction between the electron and hole. Within the GW approximation,
it can be written as

 (35; 46) = −8X(3, 4)X(5−, 6)E2 (3, 6) + 8X(3, 6)X(4, 5), (3+, 4), (1.7)

where the first term is the exchange energy and the second is the screened Coulomb
interaction.

To solve Eq. (1.6), we project the BSE in the "transition space" [83] which is
Hilbert space formed by the direct product of electron and hole states which, in
a periodic system, are Bloch wave functions characterized by the band index and
crystal momentum. In this space, the wave function of an exciton state ( with
center-of-mass momentum Q can be written as

|(Q〉 =
∑
E2k

�
(Q
E2k |Ek〉ℎ |2k +Q〉4 , (1.8)

where E labels the valence and 2 the conduction bands, k is the electron crystal
momentum, and the subscripts 4 and ℎ denote electron and hole states, respectively1.

1We apply the Tamm-Dancoff approximation, which ignores antiresonant transition terms [84].
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Figure 1.2: The Bethe-Salpeter equation in its Dyson form, shown using Feynman
diagrams. For details, see Ref. [83].

Applying Eq. (1.8) to write down the Lehmann representation of Green’s function
in Eq. (1.6), we can convert the self-consistent BSE into an effective Hamiltonian
[83, 85]:

(�2k+Q − �Ek)�(Q
E2k +

∑
E′2′k′

 E2k,E′2′k′�
(Q
E′2′k′ = �( (Q)�

(Q
E2k, (1.9)

where �2k+Q and �Ek are the electron and hole quasiparticle energies, and the kernel
 E2k,E′2′k′ can be written in the electron-hole basis as [85]:

 E2k,E′2′k′ = 8kEk(4̄)k∗2k+Q(3̄) (3̄5̄, 4̄6̄)k∗E′k′ (5̄)k2′k′+Q
(
6̄
)
, (1.10)

where k2(E)k are conduction (valence) single-electron Bloch wavefunctions. The
exciton expansion coefficients �(Q

E2k can be obtained from the eigenvector of Eq. (1.9)
and the exciton energy is the corresponding eigenvalue.

In practice, the ab initio BSE is solved by constructing the kernel (typically from
the static RPA dielectric function) and diagonalizing Eq. (1.9) with a linear algebra
package. Several codes implement this workflow, including Yambo [86], Abinit
[87], and BerkeleyGW [88].

Density Functional Perturbation Theory (DFPT)

Lattice vibration mode, i.e. the phonon, and its interaction with carriers is the base
to study the dynamics of electrons, holes, and excitons. The general idea about the
atomic vibration is derived from the Tylor expansion of the total energy respective
to the atom displacement:

� ({uB (;)}) = �0 +
1
2

∑
B;U,C<V

m2�

mDUB (;)mDVC (<)
DUB (;)D

V
C (<), (1.11)

where DUB (;) is the atomic displacement away from the equilibrium position of B-
th atom in the ;-th unit cell along U-direction. With the position indices B and ;
converted into momentum space, the dynamical matrix, m2�/mDmD, can be solved
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to obtain the characteristic frequency and collective atomic motions of a lattice
vibration quanta with a specific momentum q.

Several first-principle methods have been developed, like the multicomponent DFT
[76] and finite-displacement approach in the TDDFT [63]. Among them, the density
functional perturbation theory (DFPT) [61], which solves the linear atomic pertur-
bation (the Sternheimer equation [89]) in the KS-equation, stands out with their
computational advantage. DFPT can calculate the atom vibration eigenmode under
any wavelength without the construction of supercell.

DFPT also benefits in providing the electron-phonon matrix element [62]. During
solving the Sterheimer equation, the deformation potential is also computed from
the change of KS-potential:

Δ+KS =
∑
B;U

m+KS

mDUB (;)
DUB (;), (1.12)

where +KS is the collection of all potential terms in KS-equation, Eq. (1.1). With
the phonon solution, obtained from diagonalization of the dynamical matrxi, we
can rewrite the displacement function by the phonon operator in terms of second
quantization:

DUB (;) =
∑
aq

(
ℏ

2"BlaqN

)1/2
eBUaq48q·R;

(
1̂aq + 1̂†a−q

)
(1.13)

where N is the number of unit cell, "B is the mass of B-th atom in the ;-th unit
cell locating at R; , laq and 1̂aq are the frequency and the operator for the a-th
phonon mode with momentum q with eBUaq being the atom displacement along U in
the phonon mode. Under this representation, the electron-phonon coupling constant
characterizing the transition from Bloch state |=k〉 to |<k+q〉 can be written down:

6<=a (k, q) =
1√

2lEq
〈<k + q|Δaq+KS |=k〉 (1.14)

with
Δaq+

KS =
∑
BU

eBUaq√
"B

∑
;

48q·R;
√
N

m+KS

mDUB (;)
. (1.15)

Throughout this work, we use the QUANTUM ESPRESSO [80] code to carry
out the DFT and DFPT calculate to obtain the basic electron wave function, band
energy and the phonon quantities. For exciton, we use the YAMBO [86] code to
build and solve the BSE to get the exciton energy and coefficient. When discussing
carrier dynamics, we use the Perturbo [90] to calculate the electron-phononmatrix
element.
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1.3 Thesis Outline

Based on the first-principles approaches for excitons introduced above, this thesis
presents forefront research on exciton radiative and non-radiative dynamics, with
each topic articulated into separate chapters.

In chapter 2, we focus on the topic of exciton radiative emission. We first provide
a derivation of exciton radiative lifetimes for materials with any dimensioinality,
from bulk to nanostructure and isolated system (Sect. 2.1). Following the theo-
retical study and a benchmark of this approach (Sect. 2.2), we present a series of
applications, including the prediction of the anisotropic PL in monolayer transition
metal dichalcogenide (Sect. 2.3), determinaing defect structures in monolayer boron
nitride (Sect. 2.4), and analysis on the temperature dependence of exciton radia-
tive lifetime in bulk gallium nitride (Sect. 2.5). The theoretical approach we have
developed is general and can be applied to crystalline materials of any dimension
and symmetries. The applications of this framework shed light on specific open
problems related to light emission in bulk crystal and nanostructured materials.

In chapter 3, we focus on the exciton-phonon interaction and exciton dynamics. We
first provide a rigorous derivation of the exciton-phonon coupling in the framework
of ab initio electron-phonon interactions and BSE excitons. We then introduce the
workflow and numerical implementation (Sect. 3.1). With the ex-ph coupling in
hand, we apply the method to study exciton relaxation, PL, and emission linewidth
in bulk hexagonal boron nitride and monolayer tungsten diselenide (Sect. 3.2 and
Sect. 3.3). Last, we present a joint theory-experiment effort on understanding
ultrafast exciton dynamics and the related photoemission spectroscopic signatures
in monolayer tungsten diselenide (Sect. 3.4).

In chapter 4, we summarize the thesis work and outline future research directions.
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C h a p t e r 2

EXCITON RADIATIVE PROPERTIES

This chapter contains contents from following publications:

[1] H.-Y. Chen, M. Palummo, D. Sangalli, and M. Bernardi, “Theory and ab
initio computation of the anisotropic light emission in monolayer transition
metal dichalcogenides”,NanoLett. 18, 3839–3843 (2018).doi: 10.1021/acs.nanolett.8b01114.

[2] H.-Y. Chen, V. A. Jhalani, M. Palummo, and M. Bernardi, “Ab initio cal-
culations of exciton radiative lifetimes in bulk crystals, nanostructures,
and molecules”, Phys. Rev. B 100, 075135 (2019). doi: 10.1103/Phys-
RevB.100.075135.

[3] V. A. Jhalani, H.-Y. Chen, M. Palummo, and M. Bernardi, “Precise radiative
lifetimes in bulk crystals from first principles: the case of wurtzite gallium ni-
tride”, J. Condens.Matter Phys. 32, 084001 (2019).doi: https://doi.org/10.1088/1361-
648X/ab5563.

[4] S. Gao, H.-Y. Chen, and M. Bernardi, “Radiative properties and excitons of
candidate defect emitters in hexagonal boron nitride”, NPJ Comput. Mater.
2020 (Accepted for publication) (2020),

Exciton as a photon-excited electronic state has proved its importance in optical
absorption process [85]. The formation of exciton creates large oscillator strength,
resulting in the strong resonant pole at exciton energy in the absorption spectrum.
However, the research on the inverse process, i.e. light emission during the exciton
recombination, is still lacking. In particular, the radiative lifetime featuring the
stability of the exciton is an essential quantity for future application as light emitter
and information storage. Currently, calculations of radiative properties typically
employ simplified empirical models that can only qualitatively explain or fit the
experimental data [91, 92], or are carried out in the independent-particle picture [93,
94], neglecting excitons altogether. While desirable, first-principles approaches that
can accurately predict exciton radiative recombination and light emission are still in
their infancy − only a few examples exist in the literature [48, 95].

These approaches employ the ab initio Bethe-Salpeter equation (BSE) [83, 85] as
a starting point to compute the exciton radiative lifetimes. A calculation of this
kind was proposed by Spataru et al. [95] to compute the radiative lifetimes in a

https://doi.org/10.1021/acs.nanolett.8b01114
https://doi.org/10.1103/PhysRevB.100.075135
https://doi.org/https://doi.org/10.1088/1361-648X/ab5563
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one-dimensional (1D) system (carbon nanotubes) and was followed by Palummo et
al. [48] with the discussion in novel two-dimensional (2D) semiconductors which
enabled accurate predictions of the exciton radiative lifetimes, as well as their tem-
perature dependence. However, for the main light emitters of technological interest,
including bulk crystals, molecules, single quantum emitters, quantum dots, and
other zero-dimensional (0D) systems, an ab initio approach for computing exciton
recombination and the associated radiative lifetimes has not yet been rigorously
derived.

In this chapter, we carry out an universal treatment to compute exciton radiative
lifetimes and demonstrate three applications in nanotechnologies each of their own
interest in the field. We first derive and review exciton radiative lifetime formula
in bulk crystals, 2D and 1D materials, and 0D isolated systems in Sect. 2.1. In
Sect. 2.2, we present our benchmark calculation in gallium arsenide (GaAs) crystal
and in chosen gas phase organic molecules. In Sect. 2.3, we extend the lifetime
formalism in 2D system to photon emission and predict the anisotropic PL in 2D-
TMDs. In Sect. 2.4, we present the application on identifying the defect structure
in monolayer hexagonal boron nitride (h-BN). Sect. 2.5 studies the exciton radiative
lifetime in wurtzite gallium nitride (GaN), followed by conclusions in Sect. 2.6.

2.1 Theoretical Approach for Exciton Radiative Lifetimes

In this section, we first depict a general approach to compute the exciton radiative
lifetimes and discuss the formula in systems of different dimensions, respectively.
The derivation starts from the exciton wavefunction, Eq. (1.8) obtained by solving
the BSE, Eq. (1.9). With the wavefunction |(Q〉 for an exciton in state ( with center-
of-mass momentum Q, we use the minimal coupling Hamiltonian to describe the
interaction between electrons and photons,�i=C = − 4<A·p, wherep is themomentum
operator and A the vector potential in second quantized form which is reviewed in
Appendix A (here and below, 4 and< are the electron charge and mass, respectively,
and we use SI units) [96]. The radiative recombination rate at zero temperature can
be written using Fermi’s golden rule as

W( (Q) =
2c
ℏ

∑
_q

��〈�, 1_q |�i=C |(Q, 0〉
��2 X(�( (Q) − ℏl_q)

=
c42

n0<2+

∑
_q

1
l_q

��e_q · p( (Q)
��2 X(�( (Q) − ℏl_q),

(2.1)
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where the initial state |(Q, 0〉 consists of an exciton and zero photons, and the final
state |�, 1_q〉 is the electronic ground state plus one emitted photonwith polarization
_ and wavevector q, and + is the volume of the system. The summation runs over
the two photon polarizations and all possible wavevectors q of the emitted photon,
which has energy ℏl_q, while the delta function imposes energy conservation. The
transition dipole p( (Q) = 〈� |p|(Q〉 is in general a vector with complex-valued
components (in 2D and 1D systems, the only nonzero components are those in the
plane or line containing the material, respectively). In practice, we use the velocity
operator and compute the transition dipole as p( (Q) = (−8</ℏ)〈� | [x, �K(] |(Q〉 to
correctly include the nonlocal part of the Kohn-Sham Hamiltonian, �K( [97]. For
light emission, the values of Q compatible with energy conservation are very small.
For this reason, we approximate the dipole of an exciton |(Q〉 as p( (Q) ≈ p( (0) by
solving the BSE at Q = 0.

The radiative lifetime at finite temperature ) for a given exciton state ( can be
computed by assuming that the exciton momentum Q has a thermal equilibrium
distribution, which is a good approximation when (as is common) the thermalization
process is much faster than radiative recombination [98]. We can thus write the
radiative rate of the exciton state ( as the thermal average

〈W(〉()) =
∫
3Q 4−�( (Q)/:�) W( (Q)∫

3Q 4−�( (Q)/:�)
. (2.2)

The radiative lifetime is defined as the inverse of the radiative rate, 〈g(〉 = 〈W(〉−1.
We employ an isotropic effective mass approximation for the exciton dispersion,

�( (Q) = �( (0) +
ℏ2&2

2"(

, (2.3)

where the exciton mass "( is approximated as the sum of the electron and hole
effective masses, "( = <

∗
4 + <∗ℎ.

Note that the exciton dispersion and effective mass tensor can also be computed
(rather than assumed) by solving the BSE with a finite exciton momentum [99,
100]; this is particularly important in those cases in which a non-parabolic exciton
dispersion is expected. For example, Cudazzo et al. [101] have shown that in 2D
materials the exciton dispersion can be either linear or parabolic, depending on
the character of the exciton wavefunction at finite Q, and Qiu et al. [100] have
shown that of the two lowest-energy bright excitons in MoS2, one has a linear
and the other a parabolic dispersion. Here we focus on computing the radiative
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lifetime for excitons with a parabolic dispersion, and show in Appendix E the
corresponding results for excitons with a linear dispersion. In the following, we will
also assume that the exciton mass is large enough for us to set in the delta functions
�( (Q) − ℏl_Q ≈ �( (0) − ℏl_Q.

When only the lowest-energy bright exciton contributes to the PL, Eq. (2.2) is
a good approximation for the radiative rate. When multiple exciton states are
occupied, an additional average is needed to include the contributions from all
occupied exciton states. Assuming that the exciton states are occupied according to
a thermal equilibrium distribution, the effective radiative rate one expects to observe
experimentally is:

〈W())〉e 5 5 =
∑
(〈W(〉4−�( (0)/:�)∑
( 4
−�( (0)/:�)

. (2.4)

Below, we derive the exciton radiative recombination rate as a function of tem-
perature in materials with different dimensionality. The key quantities employed
in the derivations, including the coordinates, the exciton momentum Q and transi-
tion dipole p(, and the photon polarization vectors e_q, are shown schematically in
Fig. 2.1 for each case discussed below. The equations for the bulk and 0D cases are
derived here from scratch, while the 2D and 1D cases, which have been previously
investigated, are reviewed briefly for completeness.

Bulk (3D) Materials

We consider a non-magnetic and non-absorbing 1 anisotropic bulk crystal, in which
the static (zero-frequency) dielectric tensor can be written as

&A = diag(nG , nH, nI). (2.5)

In crystals with cubic, tetragonal, orthorhombic and hexagonal symmetry, we orient
the crystallographic axes along the {G, H, I} cartesian directions, and in the uniaxial
(tetragonal and hexagonal) cases we additionally orient the principal axis along
the I direction. In crystal classes with lower symmetry, including monoclinic and
triclinic, we orient the principal axes (i.e., the eigenvectors of &A) along the cartesian
directions. With these choices, our treatment is general and can account for any
crystal symmetry [102]. The photon energy in such an anisotropic material is
modified according to the dielectric tensor. For a given photon wavevector q =

1For the sake of studying light emission, this assumption has negligible effects as it amounts to
neglecting re-absorption or other dynamical processes of the emitted photons.
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Figure 2.1: Schematic of the exciton and photon quantities. Each panel cor-
responds to a different dimensionality. (a) Bulk (three-dimensional) anisotropic
material, in which momentum conservation requires q = Q, and the photon polar-
izations are nondegenerate and specified by the solution of the Maxwell equations
[see Eq. (A.15) in Appendix A]. (b) Two-dimensional material, in which the exciton
transition dipole p( lies in the GH plane containing the material, and the in-plane
projection of the emitted photon wavevector equals the exciton momentum, namely
Q = (q · &̂)&̂. (c) One-dimensional material, where both the exciton momentum
and transition dipole lie along the material direction I, and momentum conservation
imposes Q = q · Î. (d) Isolated (zero-dimensional) system, with no constraints on
the exciton momentum, photon wavevector and transition dipoles. In all cases, when
the two photon polarizations are degenerate, the polarization vectors e_q are chosen
as in-plane (IP) and out-of-plane (OOP), where the IP component is in the GH plane
and the OOP in the q − Î plane.

(@G , @H, @I), there are two propagating modes as solutions to Maxwell’s equations;
they correspond to the two photon polarizations [103], and their frequencies l±q

are the solutions of Eq. (A.15) in Appendix A:
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where U denotes the cartesian coordinates {G, H, I}, and @̄2
U = @

2
U − @2. The corre-

sponding polarization vectors for the two modes are

e±q =
1
Λ@

©«
@G (l2

±q `0n0nG − @2)
@H (l2

±q `0n0nH − @2)
@I (l2

±q `0n0nI − @2)

ª®®®¬ (2.8)

up to a normalization constant Λ@; for details, see Appendix A. This solution
applies to photons propagating in anisotropic materials with nG ≠ nH ≠ nI. For
materials with axial or cubic symmetry, in which, respectively, two or three of the
diagonal components of the macroscopic dielectric tensor are equal, the frequencies
and polarization vectors have simpler expressions, which can be derived from the
general case discussed here.

For an exciton in state |(Q〉 with momentum Q = (&G , &H, &I), we obtain the radia-
tive recombination rate by applying Fermi’s Golden rule [see Eq. (2.1)]. Momentum
conservation fixes the emitted photon wavevector to q = Q [see Fig. 2.1(a)], and
the summation over _ adds together the contributions from the l±q solutions. As
mentioned before, we approximate the transition dipole by evaluating it at Q = 0,

〈� |p|((Q)〉 ≈ 〈� |p|((0)〉 = ?(G x̂ + ?(Hŷ + ?(Iẑ, (2.9)

with complex components ?(U. Using these results, the exciton radiative recombi-
nation rate at zero temperature becomes

W3D( (Q) =
c42

n0<2+
×

∑
_=±

�����∑
U

?(U @U (l2
_Q`0n0nU − @2)
Λ@

�����2 X (
�( (Q) − ℏl_Q

)
l_Q

.

(2.10)

Next, we specialize our discussion to cubic or isotropic materials with a dielectric
constant n [i.e., with dielectric tensor &A = d806(n, n , n)]. Radiative lifetime calcu-
lations for an axial symmetric bulk crystal will be presented in Sect. 2.5. Due to
symmetry, in the cubic or isotropic case the two modes in Eq. (2.6) become degen-
erate, with polarization vectors perpendicular to each other and to the direction of
photon propagation. For a consistent notation for later discussion, we orient one of
the two polarization vectors to lie in the GH plane, and call this vector “in-plane”
(IP). The other polarization vector then has a nonzero I component, and is called
“out-of-plane” (OOP). These two polarization vectors can be written in spherical
coordinates as

IP : e1q =
1
√
n
(− sin i, cos i, 0)
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OOP : e2q =
1
√
n
(− cos \ cos i,− cos \ sin i, sin \), (2.11)

where \ is the polar and i the azimuth angle of the photon wavevector q [see
Fig. 2.1(a)]. Substituting in Eq. (2.10), we obtain the radiative rate at zero tempera-
ture for cubic or isotropic bulk materials (see Appendix B):

W
3D, iso
(

(Q) = c42

n0<2+2&
√
n

{���� ?(G&H − ?(H&G
&GH

����2
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+
����&G ?(G +&H?(H
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&
− ?(I

&GH

&

����2
OOP

}
X

(
�( (&) −

ℏ2&
√
n

)
.

(2.12)

The radiative recombination rate of a given exciton state ( at temperature ) , for
isotropic bulk crystals under the assumption that the exciton momentum has a
thermal equilibrium distribution, is obtained using Eq. (2.2) as (see Appendix B)

〈W 3D, iso
(

〉()) =
8
√
cn 42 ℏ ?2

(

3n0<2+�( (0)2

(
�( (0)2

2"(2
2:�)

)3/2
, (2.13)

where the exciton energy �( (0) and the transition dipole p( (and ?2
(
= |p( |2) are

obtained by solving the BSE. The)−3/2 temperature dependence of the radiative rate
(and thus, the )3/2 temperature dependence of the radiative lifetime) is consistent
with previous semiempirical theoretical treatments [104] and with low-temperature
experimental data [105].

For bulk crystals with a low exciton binding energy (< 0.1 eV), additional thermal
effects include exciton dissociation and equilibration with free carriers [98]. This
topic has been studied extensively experimentally and will be discussed further
in Sect. 2.5; the net effect of the coexistence between excitons and carriers is an
increase in the radiative lifetime, which can be important near room temperature and
can cause the radiative lifetime to deviate significantly from the )3/2 trend [105].
Such coupled exciton-carrier dynamics can be treated with kinetic models but is still
beyond the reach of first-principles calculations.

Two-Dimensional Materials

Novel 2D semiconductors, such as TMDs and related layered materials, exhibit
unique optical properties and strongly bound excitons that govern their light absorp-
tion and emission [106]. Exciton radiative lifetime study in 2D system has been
carried out before [48], and here we provide a review for completeness. The exciton
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recombination in 2D is still following the Fermi Golden rule in Eq. (2.1). However,
due to the lower dimensionality, the transition dipole is restricted to the 2D plane
containing the material:

p( = ?(G x̂ + ?(Hŷ, (2.14)

with complex components ?(G and ?(H. Furthermore, since translation symme-
try applies only in the plane containing the material, momentum conservation
is imposed on the in-plane projection of the emitted photon wavevector, using
(q · &̂)&̂ = Q [see Fig. 2.1(b)]. Unlike the bulk case, photons are emitted into the
vacuum surrounding the 2D material (unless a substrate is present), and thus the
emitted photons exhibit two degenerate polarizations for which, following the same
convention as in the isotropic bulk case, we choose the IP and OOP polarizations as
in Eq. (2.11) with n = 1. Upon integrating over all final photon states, we obtain the
radiative recombination rate of an exciton ( with momentum Q in a 2D material at
zero temperature (See Appendix C):

W2D( (Q) = W
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(2.15)

where W2D
(
(0) = 42?2

(

n0<22��( (0)
is the recombination rate for Q = 0 and � is the area

of the system in the GH plane. Note that due to momentum conservation there is an
upper limit of &0 to the momentum of an exciton that can recombine radiatively;
this limit occurs when a photon is emitted in the plane of the material, in which
case �( (Q) = ℏ2&0. Excitons with momentum & > &0 cannot emit a photon, and
their radiative recombination rate vanishes since energy and momentum cannot be
simultaneously conserved upon photon emission.

At finite temperature ) , the exciton radiative lifetime can be computed by assuming,
similar to the bulk case, a parabolic exciton dispersion �( (Q) = �( (0) + ℏ

2&2

2"( , where
"( is an in-plane isotropic exciton effective mass. Taking the thermal average in
Eq. (2.2) of the 2D radiative rate in Eq. (2.15), we obtain the radiative lifetime:

〈g2D( 〉()) = W
2D
( (0)

−1 × 3
4

(
2"(2

2:�)

�( (0)2

)
. (2.16)

This formula has been applied by Palummo et al. [48], giving temperature dependent
radiative lifetimes in excellent agreement (within 5−10%) with experimental results
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obtained by transient photoluminescence. Gao et al. [107] also recently applied this
formula to study light emission in bilayer TMDs. A similar equation was also
employed by Cudazzo et al. [108] to investigate light emission in 2D materials, but
it employed a prefactor that is incorrect for the 2D case.

One-Dimensional Materials

Excitons have been studied extensively in 1D materials, and first-principles calcula-
tions of exciton radiative lifetimes have been employed to investigate light emission
in single-walled carbon nanotubes [95, 109]. Since defects and intertube inter-
actions broaden and wash out the exciton spectrum, measuring exciton lifetimes
is challenging in carbon nanotubes, and ab initio calculations have provided key
microscopic insight into exciton recombination in carbon nanotubes [95].

In a 1D material, such as a nanotube or nanowire, the dimensionality constrains the
exciton transition dipole to the direction of the material, which we take to be the I
direction. The transition dipole can then be written as p( = ?(Iẑ, and momentum
conservation along the I axis imposes a condition on the emitted photon wavevector,
q · ẑ = Q, for the recombination of an exciton with momentum Q [see Fig. 2.1(c)].
Using Fermi’s Golden rule in Eq. (2.1), the exciton decay rate in a 1D material at
zero temperature can be written as [95]:

W1D( (Q) = W
1D
( (0) ·

�( (Q)2 − ℏ222&2

�( (Q)2
, (2.17)

where W1D
(
(0) = 42?2

(I

n0<2ℏ22!I
and !I is the length of the system along the I direction.

The radiative recombination rate decreases monotonically with&, and is zero when
&0 = �( (&0)/ℏ2. Similar to the 2D case, & = &0 is an upper limit to the exciton
momentum for radiative recombination, and excitonswith& > &0 cannot recombine
radiatively and emit light.

The finite temperature radiative rate is computed using the thermal average in
Eq. (2.2). Assuming a parabolic exciton dispersion, the exciton radiative lifetime in
a 1D material reads

〈g1D( 〉()) = W
1D
( (0)

−1 × 3
4

(√
2c"(:�)

�( (0)/ℏ2

)
. (2.18)

Using this equation, Spataru et al. obtained radiative lifetimes in carbon nanotubes
in good agreement with experiment [95].
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Atoms, Molecules, and Other Isolated (0D) Systems

We refer to an atom, molecule, quantum dot or other isolated light emitter as a
0D system [see Fig. 2.1(d)]. The approach presented here applies to both these
isolated emitters and to atoms, ions or other single quantum emitters embedded in
an isotropic material. Since there is no translation symmetry, the crystal momentum
can be taken to be zero and ignored, and we keep only one quantum number to
denote the discrete energy levels. Using these conventions, we rewrite the exciton
wavefunction Eq. (1.8) as

|(〉 =
∑
E2

�(E2 |E〉ℎ |2〉4, (2.19)

where E and 2 are quantum numbers associated with occupied and unoccupied
orbitals, respectively. In general, when there are no symmetry constraints, the
transition dipole is a complex vector, as in Eq. (2.9). When the system is embedded
in an isotropic material with dielectric constant n (for the 0D system in vacuum, one
should set n = 1), Fermi’s Golden rule gives the exciton recombination rate at zero
temperature (see Appendix D):

W0D( =

√
n42?2

(
�(

3cn0<223ℏ2 . (2.20)

In CGS units, in which n0 = 1/4c, we recover the known result W0D
(
∝ 4/3 ?2

(
�( for

the radiative rate of an isolated emitter or a defect embedded in a crystal [110], which
is also known as the Einstein � coefficient [111] in the thermodynamic treatment
of light emission. While light is quantized in our approach, we obtain the same
formula as in Dexter’s work in Ref. [110], where radiation is treated classically.
Due to the absence of crystal momentum for an isolated emitter, all the excitons
satisfying the selection rules with nonzero transition dipole can undergo an optical
transition and emit a photon. At finite temperature, since there is no momentum,
we take a thermal average only over different exciton states [using Eq. (2.4)], and
obtain for the effective radiative recombination rate:

〈W0D())〉e 5 5 =
√
n42

3cn0<223ℏ2

∑
( ?

2
(
�(4

−�(/:�)∑
( 4
−�(/:�)

. (2.21)

2.2 Benchmark Calculations in Gas Molecules and Bulk GaAs

To our knowledge, there are no examples in the literature of ab initio calculations
of radiative lifetimes in bulk crystals and 0D isolated systems within the BSE
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Fluorobenzene (C6H5F)
Lifetime: 19 ns

Thiophene (C4H4S)
Lifetime: 14 ns

Toluene (C7H8)
Lifetime: 258 ns

Ethylene (C2H4)
Lifetime: 32 ns

Figure 2.2: Chosen target molecules. The four molecules studied in this work
− fluorobenzene, ethylene, thiophene and toluene − and their computed exciton
radiative lifetimes.

framework. We apply our approach to compute from first principles the exciton
radiative lifetimes in a bulk isotropic crystal of GaAs and in several small organic
molecules in the gas phase to setup the benchmark of the developed formalism.
With supporting data from previous work [48, 112] and provided in the following,
this first-principle approach based on BSE can set its credibility in the computation
of exciton radiative lifetimes.

Gas Molecules

For the gas-phase organic molecules, we use the experimental structure in all four
cases—fluorobenzene, ethylene, thiophene, and toluene (see Fig. 2.2), and carry out
calculations at the Γ-point only. The DFT calculations employ the PBE exchange-
correlation functional [74] and a 90 Ry kinetic energy cutoff; we employ cubic
simulation cells with sizes between 33 − 38 Bohr and use a truncated Coulomb
interaction. In the BSE calculations, we use a 7 Ry cutoff for the statically screened
Coulomb interaction, together with GW-corrected electron energy levels and up to
180 empty states to accurately converge the low-energy excitons.

We apply the radiative lifetime formula, Eq. (2.21), and compare our results with
available experimental data [113] in Table 2.1. The predicted exciton lifetimes are
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g (nB) geG? (nB) ?2
(
(×106)

Fluorobenzene 19 12 − 23 7.54
Toluene 258 185 0.59
Ethylene 32 − 4.59
Thiophene 14 − 11.5

Table 2.1: Radiative lifetimes for chosenmolecules. Comparison of our computed
radiative lifetimes, g = (W0�)−1 obtained using Eq. (2.20), with experimental data
from Ref. [113]. For fluorobenzene, the experimental lifetime is given as a range,
which is obtained by combining data from Refs. [117, 118] and the quantum yield
from Ref. [119]. The symbol “−" means that we could not find experimental data.
The square transition dipoles are provided in the last column in atomic units.

within a factor of 2 of the measured values, and thus in very good agreement with
experiment. We find radiative lifetime of order 10−30 ns in fluorobenzene, ethylene
and thiophene; the lifetime in toluene is significantly longer, roughly 250 ns and
thus an order of magnitude longer than in the other molecules. To explain this trend,
we show in Table 2.1 that the square of the transition dipole of the lowest bright
exciton is an order of magnitude smaller in toluene than in the other molecules; since
the radiative lifetime is inversely proportional to the square dipole [see Eq. (2.20)],
the weaker transition dipole explains the longer lifetime in toluene. The simple
intuition is that in molecules like toluene with small transition dipoles the electron
and hole wavefunctions have a small overlap. Future work will attempt to correlate
the lifetimes and dipoles with the molecular structure and exciton wavefunctions in
a wider range of molecular structures.

One factor contributing to the small discrepancy with experiment is that we compute
the radiative rate using the ground state molecular structure rather than its excited-
state counterpart. The molecular structure typically relaxes in the excited state
from which light is emitted [114], leading to the so-called Stokes shift − a redshift
between the absorption onset and emission energy − which can be sizable in small
organic molecules. Since the exciton energies and transition dipoles are modified by
the structural relaxation, these effects are expected to account for at least part of the
small discrepancy between our computed radiative lifetimes and the experimental
values. Future work will employ recently developed methods to relax the molecular
structure in the excited state [115, 116] and investigate how the structure impacts
the radiative lifetimes.
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The formulas we obtain can be applied using transition dipole matrix elements that
may or may not include electron-hole interactions. But correctly treating excitons
through the BSE is essential whenever the exciton binding energy is sizeable and
whenever the low-energy optical transitions are excitonic in nature, which is the
case in most molecules and nanomaterials, and in crystals with a large band gap
or low dielectric screening. For example, for the gas-phase molecules, in which
the independent-particle picture fails altogether to describe the optical excitations
due to the large exciton binding energy, neglecting the electron-hole interaction
leads to large errors in the optical spectra and also in the lifetimes. In toluene,
the lowest bright exciton is the 27th eigenstate of the BSE Hamiltonian in order of
increasing energy; it has an energy of 4.92 eV and a lifetime of 258 ns (versus an
experimental value of 185 ns). By contrast, the 27th transition in the independent-
particle Hamiltonian gives a lifetime of 83,000 seconds; the lowest bright transition
in the independent-particle picture has an energy of 8.2 eV and a lifetime of 350
ns. Therefore, it is clear that the independent-particle approximation for radiative
lifetimes in molecules gives large and uncontrolled errors, and that correctly treating
the excitons with the BSE is essential for computing radiative lifetimes in molecules.

GaAs

For GaAs, we perform DFT calculations on the relaxed zincblende structure, em-
ploying the PBEsol exchange-correlation functional [120]. We use fully relativistic
norm-conserving pseudopotentials generated with Pseudo Dojo [75], and include
spin-orbit coupling in all calculations. The BSE is solved on a 30× 30× 30 k-point
grid with a rigid scissor shift applied to the DFT band structure to match the exper-
imental band gap [121]. We use a 6 Ry cutoff for the statically screened Coulomb
interaction and the highest 4 valence bands and lowest 2 conduction bands to con-
verge the low-energy excitons. In the radiative lifetime calculations, to remove a
possible source of error we use experimental values for the static dielectric constant
and effective masses [121, 122]. Due to the light electron mass, which leads to
a steep conduction band valley, fully converging the radiative lifetimes in GaAs
requires very fine Brillouin zone grids with a large computational cost. Using a
double-grid technique, Kammerlander et al. [123] have shown that a 40×40×40 k-
point grid is sufficient to converge the BSE absorption spectrum. Since the radiative
lifetimes depend on the energy and transition dipole of the lowest-energy excitons,
the k-point convergence of the lifetimes is similar to that of the absorption spectrum.
Using the standard BSE (without the double-grid technique of Ref. [123]), the finest
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Figure 2.3: Exciton radiative lifetimes in GaAs. Computed radiative lifetimes
in a GaAs crystal, shown as a function of temperature up to 50 K. The lifetimes
are obtained using the thermal average in Eq. (2.4). The inset shows the excitons
contributing to the thermal average along with their individual lifetimes at 10 K. In
the inset, the zero of the energy axis is taken to be the lowest exciton energy.

grid we were able to reach is a 30 × 30 × 30 k-point grid, which took over 10, 000
CPU cores to compute. Since our grid is close to the fully converged 40 × 40 × 40
k-point grid, it allows us to obtain results close to convergence. Further refinement
of the GaAs radiative lifetimes given here may be possible by using finer grids,
though their computational cost is at present prohibitive. The computed radiative
lifetimes in GaAs as a function of temperature are shown in Fig. 2.3. They are
obtained as the thermal average in Eq. (2.4) of the BSE exciton radiative rates for
a bulk isotropic crystal in Eq. (2.13). The inset of Fig. 2.3 shows the low-energy
excitons contributing to this thermal average; the lowest 5 excitons are dark and
associated with spin-forbidden transitions, and the 3 bright excitons at a slightly
higher energy also contribute to the average. The dark states increase the average
radiative lifetime by an order of magnitude compared to the average lifetime of the
bright excitons alone.

The computed BSE radiative lifetimes are of order 1−50 ps below 50 K, and exhibit
the )3/2 trend expected for bulk crystals at low temperature [105]. Comparing
these results with experiment is not simple. In GaAs, the radiative processes are
known to be affected by the coupling of excitons with phonons and free electron-hole
pairs, resulting in an intricate nonequilibrium dynamics that is still the subject of
debate [124–126]. The interaction with phonons is particularly important in GaAs,
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where exciton-phonon scattering is thought to provide the momentum needed by
excitons to transition toward the radiative region [124, 125]. For this reason, the
photoluminescence decay is expected to be much slower than the intrinsic exciton
radiative lifetimes computed here. Consistent with this view, the measured photo-
luminescence decay times are a few ns at low temperatures [124–126], while our
computed radiative lifetimes are a few ps in the same temperature range. This result
confirms that the long lifetimes observed in GaAs by measuring the photolumi-
nescence decay are the result of nonequilibrium exciton dynamics rather than an
intrinsic exciton lifetime. Future work will investigate the coupled nonequilibrium
dynamics of excitons and phonons, which will enable quantitative comparisons with
photoluminescence data.

With supporting data from previous work [48, 112] and provided above, the first-
principle approach based on BSE has set its credibility in the computation of exciton
radiative lifetimes. In the following, we explore three applications in modern optic-
technology based on the knowledge of exciton radiative lifetime.

2.3 Anisotropic Light Emission in 2D Monolayer Transition Metal Dichalco-
genides

2D-TMDs are atomically thin semiconductors with chemical formula MX2 (M=Mo
or W, and X=S, Se, or Te) in the hexagonal lattice. Monolayer TMDs generally
possess direct gaps, while their bulk types have indirect gaps [127, 128]. Mono-
layer TMDs can absorb light strongly [129] and emit light efficiently with intense
photoluminescence (PL) quantum yield [53, 129, 130]. Thus, the TMD now serves
a role as a promising material for applications in nanotechnologies, such as pho-
todetectors, optoelectronics, and valleytronics [21, 22, 48, 53, 106, 129, 131–134].
While their radiative recombination has been investigated using time-resolved spec-
troscopy [59, 135–137] and ab initio calculations [48], microscopic understanding
of light emission in 2D-TMDs remains incomplete.

The lack of inversion symmetry in monolayer TMDs leads to two inequivalent
valleys at the K and K′ corners of the hexagonal Brillouin zone. Locking between
the spin and valley degrees of freedom due to the strong spin-orbital splitting in
valence band introduces optical valley selection rules [138–140], whereby circularly
polarized light can be employed to selectively generate excitons in a specific valley,
while linearly polarized light can excite excitons in a quantum superposition of the
two valleys [41, 43, 44, 140, 141]. In terms of the inverse process, exciton in a
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single K-valley can emit circularly polarized PL, and a superposition state of them
can emit linearly polarized one. However, different from the circularly polarized
counterpart, the linearly polarized PL is anisotropic [142–144] and exhibits an
angular dependence that is still not completely understood. Provided the correlation
between PL and microscopic exciton quantum state, theory and experiments have
shed light on valley decoherence [142, 145–149], but quantifying exciton coherence
and the PL remains an open problem. Since the anisotropic PL could enable
novel light-emitting, optoelectronic, and photovoltaic devices, understanding exciton
dynamics, decoherence, and light emission is critical to advancing 2D-TMDs.

Here, we derive and compute the radiative rates as a function of photon emission
direction and polarization in monolayer TMDs based on the formalism developed in
Sect. 2.1. The lowest-energy eigenvectors of the BSE are rotated in their degenerate
subspace to form excitonswith different valley superposition states. Polar plots of the
PL generated when these excitons recombine can explain recent PL measurements
under excitationwith linearly polarized light, and predict new light emission regimes.
Our approach is general, and it enables ab initio calculations of the PL in 2D
semiconductors. Our results advance microscopic understanding of light emission
in 2D-TMDs, explaining their PL anisotropy and its link to valley polarization and
decoherence.

We carry out density functional theory (DFT) calculations within the generalized
gradient approximation [74] using the Quantum Espresso code [80]. Experimental
lattice parameters are used, together with fully relativistic pseudopotentials that
include the spin-orbit coupling and treat semi-core states as valence electrons2 [48,
150]. The Yambo code [86] is employed to solve the BSE using a 33×33×1 k-point
grid, and a rigid shift of the conduction band DFT eigenvalues is applied to obtain
quasiparticle bandstructures computed in GW method [48].

We compute the dependence of the radiative rate on the polar angle \ between the
photon emission direction and the layer normal (see Fig. 2.1). Using �( (&) ≈�( (0)
due to the very small exciton momentum inside the light cone, together with simple
geometric arguments, we have:√

�2
(
(&) − ℏ222&2

�( (0)
≈

√
�2
(
(&) − ℏ222&2

�( (&)
= cos \. (2.22)

2Orbitals of valence electrons are 5s2, 5p6, 5d4, and 6s2 for tungsten and 4s2 and 4p4 for
Selenium.
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x
y

Incident

Polarization

Figure 2.4: Anisotropic photoluminescence in 2D TMD. Polar plots of the radia-
tive rates, and the corresponding exciton wavefunctions, shown for several cases.
(a) Two distinct excitons entirely located, respectively, on the K and K′ valleys,
and their isotropic radiative rate. (b) Exciton with unequal weights on the K and
K′ valleys, and the resulting anisotropic radiative rate and PL emitted for \ = 60°.
(c) Exciton with equal weights on the K and K′ valleys, as generated by linearly
polarized light, and its radiative rate emitted at a polar angle \ = 60° (left panel) and
along the layer normal at \ = 0° (right panel). The rates for OOP and IP polarized
light emission are shown along with their sum. The arrow shows the polarization
direction of incident light.

Substituting in Eq. (2.15), and using W( (\, q) = W( (Q) cos(\) (see Appendix C), we
obtain the radiative rates for light emitted with IP and OOP polarizations:

WIP( (\, i) = W( (0)
����− ?(G?( sin i +

?(H

?(
cos i

����2 (2.23)

WOOP( (\, i)= W( (0) cos2 \

���� ?(G?( cos i +
?(H

?(
sin i

����2 . (2.24)

Since the intensity of light emitted at a given angle is proportional to the radiative
rate, these equations can provide polar plots of the PL. The IP andOOPcontributions,
which can bemeasured separately in experiments able to discern the PL polarization,
can be added together to obtain the total PL intensity.

An important point is that the lowest-energy exciton responsible for light emission
(so-called bright � 1B exciton [21, 48]) is two-fold degenerate in 2D-TMDs due
to the valley degeneracy. These degenerate excitons, called here |(1〉 and |(2〉,
are orthogonal but randomly oriented in their degenerate subspace when the BSE
Hamiltonian is diagonalized numerically at Q = 0. They can be rotated in the
degenerate subspace to new states |(′

8
〉 =M8 9 |( 9 〉 using a unitary matrixM in SU(2)

[151]:

M(D, \1, \2) =
(

D
√

1 − |D |248\1

−
√

1 − |D |24−8(\1−\2) D∗48\2

)
(2.25)
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where D, \1 and \2 are independent parameters defining the transformation. Since
excitons are represented by coefficients �(

E2k in the electron-hole basis employed to
solve the BSE [85, 86], the rotation is accomplished by transforming the exciton
coefficients as (�(

′
1
E2k, �

(′2
E2k)

) =M · (�(1
E2k, �

(2
E2k)

) , where T is the transpose.

In the following, the transformed excitons |(′
8
〉 are chosen as those physically relevant

in selected excitation scenarios of interest. The square modulus of their coefficients,
|�(

′
8

E2k |
2, define the probability to find the exciton in the K and K′ valleys. The exciton

dipoles, by virtue of their definition p(8 = 〈� |p|(8〉, transform in the same way as
the exciton states, namely p′8 ≡ p(′

8
=M8 9p( 9 . The dipoles p′1,2 of the transformed

excitons determine their radiative rate through Eq. (2.15).

Fig. 2.4 shows different excitation and light emission scenarios. For each case, we
plot the exciton weights

���(
E2k

��2 on the two valleys and the radiative rate — which
is proportional to the intensity of the PL signal — as a function of in-plane light
emission angle i at a fixed polar angle \. The results shown here are for WSe2, but
similar trends also hold for other 2D-TMDs.

Fig. 2.4(a) focuses on excitons generated with circularly polarized light. We trans-
form the BSE eigenvectors to obtain two excitons |(1,2〉, each located entirely on
one valley. We find that the PL for these excitons is isotropic about the layer normal,
regardless of the angle \ at which light emission is detected. The isotropic PL is
consistent with the fact that circularly polarized photons cannot break the in-plane
rotational symmetry of 2D-TMDs. In Fig. 2.4(b), we form excitons with unequal
weights on the K and K′ valleys, which can be directly excited with light or result
from decoherence processes. By placing more weight on either valley, the isotropic
PL pattern is broken − the radiative rate becomes greater along a specific direction,
and the PL is anisotropic.

Fig. 2.4(c) focuses on excitons generated with incident light linearly polarized in
the Êinc direction. We form two excitons |(1,2〉 with, respectively, dipoles p1

parallel and p2 perpendicular to Êinc. With this choice, only |(1〉 is excited since
|p2 · Êinc | = 0. Consistent with the optical valley rule, the resulting exciton |(1〉 is
an equal superposition state of the K and K′ valleys, further proving the validity of
our rotation procedure. The IP and OOP polarized emission rates, along with their
sum, are shown for two emission polar angles, \ = 60° and \ = 0°. The IP polarized
emission is stronger than the OOP at \ = 60°, leading to a total PL that is anisotropic
andmaximal in the in-plane direction normal to the incident polarization. For \ = 0°
(i.e., in the layer-normal direction) the two contributions are equal in magnitude and
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the resulting PL is isotropic. Both the IP and OOP polarizations lie in the GH plane
in the \ → 0 limit, and the emitted photons are polarized in the Êinc direction.

As seen from Eq. (2.23) and Eq. (2.24), the OOP and IP radiative rates and PL
signals are rotated by i = c/2 with respect to one another, and their ratio is:

WOOP
(
(i + c/2)
WIP
(
(i)

= cos2(\) ≤ 1. (2.26)

This result explains why recent experiments [142] observe a stronger PL signal
polarized in plane compared to out of plane. When the linear polarization direction
of the light that excites the sample is rotated (not shown), we find that only the
total phase of the exciton wavefunction changes, and the PL pattern in Fig. 2.4(c) is
unchanged but reoriented according to the linear polarization direction, in agreement
with the measurements in Ref. [142].

There is an important subtlety in the interpretation of recent PLmeasurements [142–
144]. Due to the small size of the samples, the PL is typically collected through
a microscope, measured in the layer-normal direction, and then passed through a
polarizer or analyzer [143, 144]. The resulting polar plots of the PL as a function
of the angle U between the polarizer and the incident polarization exhibit a cos(2U)
trend [142–144]. In these works, we think that the dependence of the PL on the
polarizer angle U has not been clearly differentiated from the PL dependence on
emission direction. We stress that the PL anisotropy computed as a function of
emission angle i in Fig. 2.4(b,c) is distinct from the PL anisotropy measured as a
function polarizer angle U, which can be readily explained with our approach.

In the \ → 0 limit probed experimentally, the radiative rate in Eq. (2.1) is W( ∝∑
_

��e_q · p(
��2. For excitation with polarization along x̂, which induces a dipole

p( = ?(x̂, collecting light through a polarizer oriented at angle U gives W( ∝
?2
(

∑
_

��(�Ue_q) · x̂
��2, where �U is the Jones matrix [152]

�U =

(
cos2 U cosU sinU

cosU sinU sin2 U

)
. (2.27)

For \→ 0, one obtains W( (U) ∝ ?2
(

cos2 U, a result that also holds for arbitrary \.
We thus predict a PL intensity as a function of polarizer angle � (U) = �0 cos2 U =

�0 [1 + cos(2U)]/2 (see Fig. 2.5), which explains the cos(2U) angular dependence
observed in the PL measurements [142–144]. By contrast, in Fig. 2.4(c) excitation
with linearly polarized light yields a PL with maximal intensity in the in-plane
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direction normal to the exciton dipole (as in classical dipole radiation) rather than
parallel to the exciton dipole as in the � (U) plots. To our knowledge, such direction
dependent measurements have not yet been carried out.

Also shown in Fig. 2.5 is the expected PL intensity including exciton decoherence
effects, which has a trend of � (U) = �1 + �2 cos(2U) (�8 are numerical constants).
Twomechanisms can induce exciton decoherence, including)1 relaxation processes,
in which the exciton weights on the K and K′ valleys vary due to intervalley scat-
tering, resulting in exciton wavefunctions similar to Fig. 2.4(b), and )2 relaxation
processes, in which the valley weights remain equal, but the exciton dipole — and
thus the polarization — rotates by a random angle. Decoherence due to both pro-
cesses opens a neck in the � (U) PL polar plot (see Fig. 2.5) since a polarizer placed
normal to the incident polarization will measure a non-zero signal. Recent mea-
surements of )2 times of ∼350 fs [143, 144] at low temperature, where the radiative
lifetime is of order 1−10 ps [48], justify the significant loss of polarization observed
experimentally [143, 144].

While we treated the bright � 1B exciton as two-fold degenerate, recent work has
shown that two exciton branches with a very small energy difference (∼1 meV in
MoS2) are present at the light cone due to the exchange interaction [100]. These
exciton branches correspond to a particular basis in the nearly degenerate pseudospin
space. In our notation, excitons in the lower branch with parabolic dispersion couple
only to IP polarized light, and excitons in the upper branch with E-shaped dispersion
only to OOP polarized light [100]. Our approach, which treats these branches as
degenerate, forms a single exciton |(1〉 that contributes to both IP andOOP polarized
emission, which is equivalent to summing over the nearly degenerate branches in
Ref. [100].

Our treatment generalizes the radiative rates derived in the Ref. [48] under the
assumption of isotropic exciton dipoles. When p( is real and oriented along the
G= H direction, so that ?G and ?H are equal, Eq. (2.15) reduces to the formula derived
in Ref. [48], W( (Q) = W( (0) ·

√
1 − ℏ222&2/�2

(
(Q) 3. The temperature dependence

of the radiative rates in Ref. [48] can also be recovered. Averaging the radiative rate
in Eq. (2.15) over momentum & and emission angle i (see Appendix C) gives the

3We remark that W( (0) =
42 ?2

(

n0<22��( (0)
derived here is a factor of 2 smaller than in Ref. [48],

where the unit vector along the exciton dipole was taken to be x̂ + ŷ, and thus incorrectly normalized
to
√

2 instead of 1. Note also that here we use SI units, whereas Ref. [48] uses CGS units, in which
n0 = 1/4c, and further substitutes ?2

(
= <2�2

(
(0)`2

(
/ℏ2.
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Figure 2.5: Exciton decohnerence signature in Photoluminecense. Polar plot
of the PL as a function of the angle U between the polarizer and the incident
polarization. Shown are the ideal case in which light is fully polarized along the
excitation polarization direction (indicated by the arrow) and the case in which light
is only partially polarized as a result of decoherence.

temperature dependent radiative lifetime derived in Ref. [48]:

〈g(〉()) = 〈W(〉−1 = W−1
( (0) ·

3
4

(
�( (0)2

2"(2
2:�)

)−1

. (2.28)

The few ps lifetimes at low temperature and few ns room temperature lifetimes pre-
dictedwith this formula inRef. [48] have nowbeen confirmed by several experiments
[59, 135–137, 153].

In summary, in this section, we presented a general ab initio method to compute the
radiative rate and PL as a function of direction and polarization in 2D semiconduc-
tors. The new treatment reveals the inherently anisotropic PL of 2D-TMDCs and its
dependence on polarization, valley occupation, and decoherence. Future work can
apply our approach to shed light on the PL of structurally anisotropic 2D materials,
including ReSe2 and black phosphorus, in which exciton anisotropy is expected to
lead to novel PL regimes.

2.4 Exciton Radiative Lifetime in h-BN Defect Structures

Point defects in 2D h-BN have been found as platforms to host single-photon emit-
ters (SPEs) [154]. Compared to defects in bulk crystals, such as diamond and silicon
carbide [155–158], defects in 2D h-BN as emitters promise to be more easily ad-
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dressed and controlled with a range of desirable properties, including high emission
rate, room temperature stability, strong zero-phonon line (ZPL), and easy integration
with other optical components [159–163].

A pressing challenge for defect emitters in 2D h-BN is identifying their atomic
structure. Various possible structures have been proposed on the basis of density
functional theory (DFT) calculations and their comparison with experiments [154,
164–170]. However, while DFT can provide valuable insight into the formation
energy, symmetry and electronic structure of SPE defects, it cannot address key
aspects of point-defect SPEs such as their excited states and radiative processes
responsible for light emission. Similar to other 2D materials and their defects [129,
171, 172], optical transitions at defects in h-BN are dominated by excitonic effects
[173], which require specialized first-principles calculations beyond the scope of
DFT.

The BSE approach with its accurate predicting power, especially in the exciton
energy and radiative lifetime, is the perfect tool to overcome the obstacle. Both
properties are accessible observable in experimental setting; The exciton binding
energy can be measured directly from fluorescence intensity decay, while the radia-
tive lifetime plays an important role determining the shortest decay time constant in
the second-order photon correlation function [96, 154, 161, 174]. Thus, applying
the BSE method to defect emitters would enable direct comparisons between theory
and experiment of the emission energy and radiative lifetime, providing valuable
information to identify defect SPEs.

In this section, we employ our method developed in Sect. 2.1 to compute from
first principles optical properties, transition dipoles, exciton energy and radiative
lifetimes of atomic defects in h-BN. We examine a large pool of candidate SPE
structures, spanning native defects and carbon or oxygen impurities, to correlate
their atomic structures with their photophysics. We find that different quantum
emitters exhibit radiative lifetimes spanning six orders of magnitude and emission
energies from infrared to ultraviolet.

Our candidate defect structures consist of charge-neutral native defects and carbon
or oxygen impurities occupying one or two atomic sites, for a total of 8 different
native defects and 7 structures for each of carbon and oxygen impurities. We
compute the ground state defect properties using DFT, employing fully relaxed
defect atomic structures in 5 × 5 × 1 supercells of monolayer h-BN. We refine
the electronic structure of selected defects using GW calculations [70], followed
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by BSE calculations to obtain the exciton energies and wave functions and from
them the optical absorption, transition dipoles and radiative lifetimes. The detailed
computation information is provided in Appendix F . In the following, we denote
the defects in h-BN as XNYB if neighboring N and B atoms are replaced by species
X and Y, respectively, where X and Y can be a vacancy (denoted by "V") or another
element [154, 164]. We focus on emitters in the interior of the 2D crystal [175, 176]
and do not consider defects that would likely appear at the sample edges or corners
[177, 178].

The electronic energies obtained using DFT, while in general not representative
of electronic or optical transitions, can be used for guidance and for estimating
qualitative trends. Figure 2.6 shows the lowest spin-conserving transition (HOMO-
LUMO) energy of the candidate defects, obtained from DFT, together with the
emission polarization inferred from structural symmetry. The defect structures
considered here exhibit three different types of local symmetries, D3h, C2v, and Cs.
In the high symmetry D3h structure, adopted by NB, VN, BN, CB, CN, and ON,
emitted light cannot be linearly polarized. Conversely, linearly polarized emitted
light, as observed experimentally in hBN SPEs [162], is possible in the C2v and Cs

symmetries. In the C2v configuration, which is the most common among the defects
investigated here, the 3-fold rotational symmetry is broken but all the atoms remain
in-plane, preserving the mirror symmetry with respect to the crystal plane. The Cs

symmetry found in the VNNB, VNCB, VNOB, and OB defects is instead associated
with an out-of-plane distortion that breaks the mirror symmetry about the plane.
The DFT transition energies for the 22 defect structures range from 0 to 3.5 eV. In
contrast, the ZPL of the measured SPEs are in the 1.6−2.2 eV energy range [162],
as shown by the shaded region in Fig. 2.6. While candidate structures with D3h

symmetry can be ruled out, C2v and Cs structures with exceedingly small or large
DFT transition energies also appear unlikely on the basis of the DFT results.

Starting from the DFT ground state, for selected defects we compute the excited
state properties with the GW-BSE method, obtaining the quasiparticle energies in
the one-shot G0W0 approximation and the exciton energies and wave functions with
the BSE, which captures electron-hole interaction and excitonic effects. We apply
the method developed in Sect. 2.1 to compute the radiative lifetime of an exciton
state from Fermi’s golden rule. Generalizing Eq. (2.20) for isolated (0D) emitters
to include anisotropic dielectric screening in h-BN, we obtain the radiative decay
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Figure 2.6: DFT transition energy of defect states in 2D h-BN. Distribution of
the DFT transition energy, structural symmetry and emitted light polarization of 22
candidate defect structures. The shaded area shows the experimental range of values
for SPEs in hBN.

rate W( (@) of an exciton state ( to emit photon with momentum q:

W( (q) =
√
nGH (@GH)42�(

3cn0<223ℏ2

[(
3
4
+ nI

4nGH (@GH)

)
|?(,GH |2 + |?(,I |2

]
, (2.29)

where nGH (@GH) and nI are the in-plane and out-of-plane dielectric function of hBN,
respectively, @GH is the in-plane photon wavevector, �( is the exciton energy and
?(,GH and ?(,I are the corresponding components of the exciton transition dipole.
For monolayer h-BN we take into account the dependence on wavevector q as [179]:

nGH (@) ≈ 1 + 2cU2�@, (2.30)

where U2� is a constant equal to 0.4 nm [180]. In this approach, which is appropriate
for 2D materials, the in-plane dielectric function of monolayer hBN reduces to a
value of 1 when the wavevector @ equals the wavevector of a photon at optical
frequencies.

Figure 2.7 shows the computed radiative lifetimes and lowest bright exciton energies
for nine selected defects, including VN, BN, VNNB, CN, VNCB, CNVB, OB, ONVB,
and VBON while the numerical data is summarized in Table 2.2. We find that
the exciton energy can differ significantly — by as much as 1 eV — from the
corresponding DFT transition energy, which fails to account for screening and
electron-hole interaction effects. In addition, we find that the computed radiative
lifetime for the selected structures span six orders of magnitude, from about 1 to
106 ns (1 ms), showing that the emission rate and brightness of quantum emitters in
hBN can vary widely. The values typically found in experiments for the emission
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Figure 2.7: Exciton radiative lifetime of selected defects in 2D h-BN. Radiative
lifetime and energy of the lowest bright exciton of candidate defect SPEs in hBN
from GW-BSE calculations. The range of experimental values is shown as a shaded
region. The blue line shows the radiative lifetime of an exciton with an assumed
transition dipole moment of 6.9 Debye.

type defect polarized energy energy radiative lifetime
or not (DFT, eV) (GW-BSE, eV) (ns)

native 
defect

VN N 2.05 2.93 3.6
BN N 2.20 3.09 15

VNNB Y 2.04 1.92 334
carbon 
impurity

CN N 1.25 1.96 21.7
CNVB Y 1.15 1.02 1.7x105

VNCB Y 1.93 2.61 121
oxygen 
impurity

OB Y 1.51 1.52 605
ONVB Y 0.72 0.31 1.7x106

VNOB Y 3.02 3.46 44
experiments Y 1.6-2.2 2-10

1

Table 2.2: Exciton properties in selected 2D h-BN defects.

energy (1.6−2.2 eV) and radiative lifetime (1−10 ns) are also given for comparison
in Fig. 2.7. Writing the exciton transition dipole in Eq. (2.29) as p( = −(8<�(/ℏ4)×
4 r( to highlight its physical meaning of an atomic-scale dipole, and setting |r( | =
|〈0|r|(〉| equal to the in-plane B-N bond length (this choice gives a dipole of 6.9
Debye), the resulting radiative lifetime as a function of exciton energy gives a lower
bound to the calculated radiative lifetimes (see the blue line in Fig. 2.7). The physical
insight of this analysis is that due to incomplete overlap of the electron and hole
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wavefunctions, the exciton transition dipole for most defects is significantly smaller
than the bond length, leading to longer radiative lifetimes than this theoretical bound.

The main finding from the data in Table 2.2 is that the VNNB defect, which was
originally proposed as a SPE in hBN on the basis of DFT calculations [154, 164,
169], possesses optical and radiative properties that most accurately match the
experimental results, even after taking into account excitonic effects and radiative
lifetimes. The next most likely structure is the oxygen impurity defect, OB, with an
emission energy of 1.52 eV just below the experimental range. On the other hand, we
find that theVNCB defect, which is also considered a likely candidate in the literature
based on DFT calculations [164, 169], has an emission energy of 2.6 eV that lies
too far above the experimental energy range when excitonic effects are included,
making it a less likely candidate. We note that although our analysis excludes the
VNCB defect and other defects with higher emission energies as candidates for the
1.6−2.2 eV SPEs, they could still be good candidates for SPEs in the ultraviolet
range [181, 182], which is not the focus of our discussion.

As the candidate defect structures have properties distributed across a wide range,
it is challenging to pinpoint the correct defect structure from ab initio data only.
As a result, members of our group provide a quantitative analysis of the relative
likelihood of the various structures using Bayesian inference, a statistical approach
for dealing with uncertainties and combining information from different categories,
in which the probability of a hypothesis is updated as more evidence or information
becomes available [183, 184]. The analysis arrived at the conclusion of VNCB

being the most probable candidate defect structure which is in agreement with
common believe [154, 164, 169], while a further study on the fine structure of
VNCB attributes the large discrepancy between calculated radiative lifetime and
experimental observation (334 ns and 10 ns) to its sensitive dependence on the
out-of-plane N atom displacement as well as nonradiative process which can lower
the quantum yield and render the time scale by an order of magnitude [184].

2.5 Exciton Recombination and Dissociation in 3D Wurtzite GaN

Gallium nitride (GaN) is widely employed for efficient light emission [185] and
has been investigated extensively in crystalline, thin film, and heterostructure forms,
both to understand its physical properties and to improve LED devices. Even
though the exciton binding energy is rather weak in GaN (of order 20 meV [186]),
accurately computing its absorption spectrum requires taking into account excitonic
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effects [187], so one expects that excitons also play a role in light emission.

The radiative properties of GaN have remained the subject of debate [67, 105,
186, 188–190]. Investigations of radiative processes require PL spectroscopies
or device experiments on pure samples. Since GaN films are typically grown
epitaxially, and their doping is nontrivial, thesemeasurements are affected by sample
purity and competing non-radiative processes due to defects and interfaces [98].
In addition, typical theoretical treatments of radiative lifetimes employ simplified
empirical methods that can only qualitatively interpret, or just fit, experimental
data [91]. Accurate first-principles calculations of the intrinsic radiative properties
of a GaN crystal would be highly desirable as they would serve as a benchmark
for interpreting PL measurements and for guiding microscopic understanding and
device design. Isolated examples of ab initio radiative lifetime calculations in bulk
materials exist [94, 191], but they neglect key factors such as excitonic effects, the
material anisotropy, and temperature dependence dictated by dimensionality.

In this section, we generalize the exciton radiative lifetime formula in isotropic 3D
material, Eq. (2.13), to a uniaxial bulk crystal, and apply it to wurtzite GaN. The
computed radiative lifetimes are in very good agreement (within a factor of two)
with experiment up to 100 K, and we include thermal exciton dissociation to retain
quantitative accuracy up to room temperature. In spite of the weak exciton binding
energy in GaN, we show that including excitons is essential for quantitative accuracy
as it improves substantially the agreement with experiment compared to the result
obtained within the independent-particle picture (IPP). We also show that including
spin-orbit coupling (SOC) and the related exciton fine structure is important in
spite of the weak SOC in GaN. Our work advances the study of light emission in
III-nitrides and anisotropic light emitters.

Exciton Radiative Lifetimes in Uniaxial Bulk Crystal

In uniaxial bulk crystal, the dielectric tensor is isotropic in the basal hexagonal plane,
and different along the principal crystal axis (the z direction) such that Eq. (2.5)
becomes:

&A = diag(nGH, nGH, nI). (2.31)

Therefore, for a given wavevector q, the two polarizations in the photon propaga-
tion mode can also be categorized as "in-plane"(IP) and "out-of-plane"(OOP) like
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Eq. (2.11) but now with a more general form. For IP:
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where 2 is the speed of light and @2
GH = @

2
G + @2

H. The exciton radiative recombination
rate can be obtain by applying Eq. (2.32) and Eq. (2.33) in Eq. (2.10) and becomes
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To compute the effective lifetime at finite temperature ) , we again assume the
excitons to follow the thermal equilibrium distribution and apply the thermal average
Eq. (2.2). In uniaxial material, the effective mass becomes anisotropic and has
different IP and OOP components, "GH and "I, such that the exciton dispersion
takes the form:

�( (Q) = �( (0) +
ℏ2&2

GH

2"GH

+
ℏ2&2

I

2"I

, (2.35)

where since BSE shows the lowest exciton states are composed of transitions from
the two heavy-hole bands, we approximate the hole mass as the average of the two
heavy-hole masses to compute "GH and "I. Applying Eq. (2.35) in Eq. (2.2), we
can obtain the exciton effective recombination rate in axial symmetric materials:
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where the exciton energies and transition dipoles are obtained by solving the BSE.
The radiative lifetime is defined as the inverse radiative rate, 〈g(〉 = 〈W(〉−1. Note
also that Eq. (2.36) reduces to the bulk isotropic case in Eq. (2.13) if one put nGH = nI
and "GH = "I.

Finally, we take into account the fact that multiple exciton states can be occupied
(including dark states with small transition dipoles, as is the case in GaN), and
compute the radiative rate assuming a thermal equilibrium distribution:

〈W())〉 =
∑
( 〈W(〉 4−�( (0)/:�)∑

( 4
−�( (0)/:�)

. (2.37)

In the following, we use this thermal average formula, computed with the exciton
radiative rates 〈W(〉 in Eq. (2.36), to study the intrinsic radiative lifetime 〈W())〉−1

in bulk wurtzite GaN.

Exciton Radiative Lifetime in GaN and Exciton Dissociation

We carry out first-principles calculations on a wurtzite GaN unit cell with relaxed
lattice parameters. The ground state properties and electronic wave functions are
computed using density functional theory (DFT) within the generalized gradient
approximation [74, 120] with the Quantum ESPRESSO code [80]. Fully-relativistic
norm-conserving pseudopotentials [192] generated with Pseudo Dojo [75] are em-
ployed, in which the shells treated as valence are the 3s, 3p, 3d, 4s, and 4p for
Ga and the 2s and 2p for N. A non-linear core correction [193] is included for all
remaining core shells for both atoms. We compute the quasiparticle band struc-
ture in GaN [194] with a “one-shot” GW calculation [71] with the Yambo code
[86] using a plasmon-pole model for the dielectric function, a 25 Ry cutoff for
the dielectric matrix, 300 empty bands, and a 14 × 14 × 10 k-point grid. For the
GW band structure, we start from DFT within the local-density approximation [73]
and employ scalar-relativistic norm-conserving pseudopotentials for both Ga and
N, where the 4s and 4p shells are treated as valence for Ga, and the 2s and 2p for
N. A non-linear core correction is included to account for the 3d core states in Ga.
The BSE is solved on a 24 × 24 × 18 k-point grid using a 6 Ry cutoff for the static
dielectric screening and the 6 highest valence bands and 4 lowest conduction bands.
These settings are sufficient to converge the energies, transition dipoles and radiative
lifetimes of the low-energy excitons, as we have verified. The IPP transition dipoles
and energies are computed by neglecting the electron-hole interactions in the BSE.
The exciton binding energy is converged by computing it with several k-point grids
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from 12 × 12 × 9 to 24 × 24 × 18 and extrapolating it to a vanishingly small k-point
distance (i.e., to an infinitely dense grid) [195] .

Our computed radiative lifetimes between 50-150 K are shown in Fig. 2.8a) along
with experimental values from Ref. [105], which are ideal for our comparison since
they were measured in a relatively pure GaN crystal. At low temperatures up to
100 K, our first-principles radiative lifetimes, with SOC included, are of order
200-900 ps and are in very good agreement (within less than a factor of two) with
experiment. We attribute the remaining discrepancy to small uncertainties in the
computed exciton effective mass, transition dipoles, energies and occupations, plus
inherent uncertainties in the experimental data. Both the computed and experimental
lifetimes exhibit the intrinsic )3/2 trend predicted by our approach [see Eq. (2.37)].
As Fig. 2.8a) shows, when neglecting excitons and using IPP transition dipoles and
energies, one greatly overestimates the radiative lifetime. The IPP lifetimes are
greater by nearly an order of magnitude compared to our treatment, which correctly
includes excitons, and by over a factor of three compared to experiment.

As seen in Fig. 2.8a), including SOC when computing the exciton states increases
the radiative lifetimes by a factor of 2-3 and significantly improves the agreement
with experiment. Though SOC is weak in GaN — the valence band splitting at W
is only 5 meV in our calculations — its inclusion is crucial for obtaining accurate
exciton states. Fig. 2.8b) shows the individual radiative lifetimes 〈W(〉−1and relative
energies of the low-energy excitons contributing to the thermal average in Eq. (2.37),
for both the cases where SOC is included and neglected. Without including spin and
SOC, the exciton structure consists of three bright singlet excitons, two of which are
degenerate. The lifetimes of all three excitons are nearly identical, and their value
determines the radiative lifetime for the calculation without SOC. Including the SOC
lifts the degeneracy of the two lowest bright excitons by ∼5 meV, and resolves the
exciton fine structure, splitting each exciton into four states due to a doubling of the
number of valence and conduction states that compose the electron-hole transitions.
With SOC, we find dark excitons with lifetimes roughly 3-10 orders of magnitude
longer than the excitons found without SOC. When included in the thermal average,
these dark states are crucial as they increase the radiative lifetime compared to the
average lifetime of the bright excitons alone. The inclusion of SOC and the exciton
fine structure are thus important for quantitative accuracy, even though SOC per se
is weak in GaN. Note that spin is always important. Even in the limit of vanishingly
small SOC, the triplet states with ideally infinite lifetime would still suppress the
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a)

b)

Figure 2.8: Exciton intrinsic lifetimes. a) Comparison of our radiative lifetimes
computed by including (blue) or neglecting (orange) the SOC in the solution of the
BSE, or obtained in the IPP by neglecting excitons (red). Experimental results from
Ref. [105] (purple) are shown for comparison. The gray dashed lines show the )3/2

trend predicted by our treatment at low temperature. b) The excitons contributing
to the thermal average in Eq. (2.37), along with their individual lifetimes at 100 K,
computed with (blue) and without (orange) SOC. The zero of the energy axis is
taken to be the lowest exciton energy for each case.

average radiative rate in Eq. (2.37) by a factor of 4, and thus increase the radiative
lifetimes by the same factor compared to a calculation that does not include spin.

Due to the small exciton binding energy in GaN, at high enough temperatures
the excitons dissociate into free electrons and holes, which mainly recombine non-
radiatively in GaN, giving rise to the lower radiative recombination rate and quantum
yield seen experimentally above 100 K [105, 196]. As a result of exciton disso-
ciation, the measured radiative lifetime above ∼100 K increases more rapidly with
temperature than the intrinsic )3/2 trend [see Fig. 2.8a)]. Here We adopt a simple
model to include exciton dissociation in our first-principles approach. Assuming
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Figure 2.9: Exciton effect lifetimes with eciton dissociation effect. Comparison of
our computed radiative lifetimes including exciton dissociation (orange) above 100
K with experimental data from Refs. [105] and [190]. Also shown is our computed
intrinsic radiative lifetime (blue).

that excitons and free carriers are in thermal equilibrium, we write the mass-action
law for their concentrations as [196]

=4=ℎ

=exc
=
[=0 + X=]X?
X= exc

= ^()), (2.38)

where =4, =ℎ, and =exc are the electron, hole, and exciton densities, respectively, =0

is the background electron density (from the doping), and X=, X?, and X=exc are the
excited electron, hole, and exciton densities, respectively, generated by an idealized
optical pump or electrical current.The equilibrium constant ^()) is given by [196]

^()) = 2
(
<red:�)

2cℏ2

)3/2
4−�1/:�) , (2.39)

where<red = <ℎ<4/(<ℎ+<4) is the reduced mass of the exciton and �1 its binding
energy. We find a converged binding energy of 19.7 meV, in excellent agreement
with the experimental value of 20.4 meV [186], and we use a typical doping of
=0 = 2.5 × 10−16 cm−3, taken from Ref. [105].

Assuming that the relative recombination probability of free carriers and exci-
tons is proportional to their concentration ratio, %carr/%exc = X=/X=exc, and using
%carr + %exc = 1, we can obtain the probabilities for exciton and free carrier re-
combination. The measured radiative rate will be a weighted average of the rates
of the two recombination processes, Γrad = Γcarr%carr + Γexc%exc. We assume that
Γcarr vanishes because free carriers recombine mainly via non-radiative channels,
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such as defect trapping, which is justified by the reported low quantum yield seen
experimentally near room temperature [105]. The measured radiative rate due to
excitons in equilibrium with carriers becomes Γrad ≈ Γexc/(1+ ^())/=0). Using this
result, together with our computed effective masses and converged exciton binding
energy, we are able to predict the exciton radiative lifetimes also above 100 K.

Fig. 2.9 compares the computed radiative lifetimes up to 300 K with experimental
results taken from PLmeasurements in Refs. [105, 190]. When thermal dissociation
is included, the radiative lifetime agrees with experiment even in the 100−300 K
temperature range, where the experimental data deviate from the intrinsic)3/2 trend.
Our ability to compute intrinsic exciton radiative lifetimes allows us to conclude that
the radiative lifetime increase seen experimentally above 100 K is due to exciton
thermal dissociation into free carriers. This conclusion is consistent with the results
by Im et al. [105], who found that a similar exciton dissociation model could fit their
experimental data at high temperature.

2.6 Conclusion

A unified approach based on DFT and the ab initio BSE method is presented to
compute the radiative lifetimes in bulk crystals, 2D and 1D materials, and in 0D or
isolated systems such as a molecule, quantum dot or single quantum emitter. Di-
agonalizing the BSE Hamiltonian in transition space is computationally expensive;
since the size of the transition space scales quadratically with the number of atoms
# , a straightforward diagonalization of the BSE Hamiltonian will scale as #6. Nev-
ertheless, once its eigenvalues and eigenvectors are obtained, the radiative lifetimes
calculations shown here only add a small computational overhead. The temperature
dependence of the exciton radiative lifetime at low temperature is predicted to be
proportional to )3/2 in bulk, ) in 2D and )1/2 in 1D materials. Our result provides
a framework for predicting the intrinsic exciton radiative lifetimes in materials with
any dimensionality. Since the BSE is considered a gold standard for computing
optical absorption and excitons [197], it is expected to also provide accurate results
for radiative processes and light emission.

Two benchmark calculations are demonstrated to support our method. The bulk
crystal treatment is applied to a GaAs crystal, where our computed intrinsic radiative
lifetimes are shorter than the values measured by photoluminescence, but consistent
with their interpretation in terms of nonequilibrium dynamics of excitons coupled
to phonons and free carriers. Computation for isolated emitters is applied to small



45

organic molecules in the gas phase, giving computed radiative lifetimes in good
agreement with experiment, up to corrections due to structural relaxation in the
excited state.

Three studies are carried out based on the developed formalism. We first refor-
mulate the exciton radiative lifetime formula in 2D system to study the exciton
PL. We point out the correlation between PL polarization and the valley coherence
which can be revealed from the anisotropy in PL strength. The results shed light on
the microscopic understanding in the underlying mechanism for TMD anisotropic
light emission and provide a alternative direction for designs in valleytronics. Sec-
ond, we investigate the excited state and radiative properties of many candidate
defect SPEs in monolayer h-BN. Our calculations address the photophysics of these
defect structures, including their optical transitions and radiative lifetimes, using
calculations that accurately account for excitonic effects and anisotropic dielectric
screening. Among the potential atomic structures, we identify the VNNB defect as
the most likely candidate. This finding can greatly benefit the search on novel single
emitters in future quantum technologies and lays out new insights in optoelectronic
device. Last, we develop accurate first-principles radiative lifetime calculations in
GaN, with both the electron-hole and spin-orbit interactions included. For excitonic
effect in general neglected in perivous studies, applying BSE scheme allows us to
compute intrinsic radiative lifetimes in very good agreement with experiment, and
gain microscopic insight into the excitons associated with light emission in GaN.
Further work can apply this analysis to nitride heterostructures and other solid state
emitters such as InGaN.

For general applications and future extensions, calculations of this kind can provide
a standard for materials in which intrinsic excitonic quantities are hard to access due
to stonrg extrinsic effects from impurities and the ultrafast dynamics . They can also
guide the interpretation of ultrafast spectroscopy measurements and the discovery
of new quantum emitters with long radiative lifetimes in the form of quantum well,
heterostructures, and semiconducting crystals.
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C h a p t e r 3

EXCITON-PHONON INTERACTION AND ULTRAFAST
DYNAMICS

This chapter contains the publication:

[1] H.-Y. Chen, D. Sangalli, and M. Bernardi, “Exciton-phonon interaction and
relaxation times from first principles”, Phys. Rev. Lett. 125, 107401 (2020).
doi: 10.1103/PhysRevLett.125.107401.

[2] H.-Y. Chen, D. Sangalli, and M. Bernardi, “Real-time exciton dynamics
and time-domain ARPES simulations using first-principles exciton-phonon
interactions”, In Preparation., (2021),

[3] S. Dong,H.-Y. Chen, D. Sangalli,M. Bernardi, andR. Ernstorfer, “Resolving
exciton dynamics in monolayer WSe2 via time-resolved ARPES: pump and
probe measurement and real-time ab initio simulation”, In Preparation.,
(2021),

Exciton dynamics is probed with ultrafast optical or device measurements [198–
200]; theories that can shed light on microscopic exciton processes and assist ex-
periment interpretation are highly sought after. However, while first-principles
methods to predict exciton binding energies, optical transitions [71, 85] and radia-
tive lifetimes1 are well established, accurate calculations of exciton dynamics and
non-radiative processes are a research frontier.

The interaction between electrons and lattice vibrations (phonons) controls the
dynamics of carriers and excitons. Recent advances havemade ab initio calculations
of electron-phonon (4-ph) interactions and scattering processes widespread [62],
enabling studies of charge transport [201–203] and nonequilibrium carrier dynamics
[67, 204] in materials. Thesemethods achieve quantitative accuracy and can provide
unprecedented microscopic insight into electron dynamics. In the typical workflow
[62], one uses DFT to compute the electronic band structure and DFPT [61] to
compute phonon dispersions, as well as the perturbation potential due to phonons.
These quantities are combined to obtain the 4-ph matrix elements2 [62, 205],

6<=a (k, q) = 〈<k + q|Δ+aq |=k〉, (3.1)
1See chapter 2 and corresponding references.
2See Sect. 1.2 for detailed introduction.

https://doi.org/10.1103/PhysRevLett.125.107401
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which represent the probability amplitude for scattering from an initial Bloch state
|=k〉 to a final state |<k + q〉, by emitting or absorbing a phonon with mode index
a and wave vector q, due to the perturbation of the Kohn-Sham potential, Δ+aq,
induced by the phonon [62].

Excitons pose new challenges to this framework, since one can no longer study inde-
pendently the scattering of electrons or holes with phonons when the two carriers are
bound together. Rather, the challenge is to address exciton-phonon (ex-ph) interac-
tions, which govern, from low to high temperatures, photoluminescence linewidths,
exciton diffusion, and ultrafast dynamics in broad families of materials with strongly
bound excitons [18, 23, 147, 206–213]. Several analytical or semi-empirical mod-
els have been proposed for ex-ph interactions [9, 214–220]; recent work has put
forward a many-body approach but did not present numerical results [221]. To date,
rigorous ab initio calculations of ex-ph interactions and dynamical processes are
still missing.

Here we provide a theoretical derivation within lowest-order perturbation theory and
build up an algorithm to carry out ex-ph coupling matrix elements and correspond-
ing physical phenomena from first principles. We apply the formalism to study the
exciton dynamics in bulk h-BN and monolayer WSe2. Our results show that the
ex-ph interaction can be viewed as a quantum superposition of electron and hole
scattering events with phonons, weighted by the exciton wave function in the transi-
tion basis. Our calculations in h-BN show a dominant coupling between excitons and
longitudinal optical (LO) phonons. We find ex-ph relaxation times of order 5−100 fs
at 77 K; the relaxation times drop rapidly above the LO phonon emission threshold
and become nearly temperature independent, while below the emission threshold
they increase linearly with temperature. The dominant ex-ph coupling with optical
phonon is also realized in the PL spectrum where two prominent optical phonon
emission line are found in both experiment observation and our numerical results.
In WSe2, we investigate the homogeneous bright exciton linewidth and found a ∼20
meV increasing from 1 K to room temperature in agreement with experiment data.
In addition, our analysis of the PL identifies the prevailing peak from longitudinal
acoustic phonon emission and the lower energy sideband is attributed to the optical
phonon emission. Last, we demonstrate a joint collaboration on exciton real time
dynamics study in WSe2. Our simulation correctly predicts the exciton relaxation
time scale of ∼50 fs. The analysis in the exciton scattering process reveals the re-
laxation path ways. We also provide prediction of the time-resolved ARPES which
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opens a new direction for future experimental research in 2D-TMDs. Our study
provides microscopic insight into exciton thermal and dynamical processes while
the method is general and ready to be applied in all exciton-hosting materials.

3.1 Theory and Numerical Method

To study the ex-ph interaction, we apply the first-order perturbation theory by intro-
ducing deformation potential from atomic displacements, while the ex-ph coupling
constant will be derived as the matrix element. The derivation for 4-ph interac-
tion based on the same method can be found in Appendix G. A system with static
atomic displacements {u8B} from the equilibrium positions provides a perturbed
Kohn-Sham potential, given by a Taylor expansion about the equilibrium positions
(See Eq. (1.12)):

+ ( ({u8B}) = + (0 +
∑
8BU

m+ (

mu8BU
u8BU + O({u8B}2), (3.2)

where 8 labels the unit cell, B the atom, and + (0 is the unperturbed Kohn-Sham
potential, for which all u8B = 0. The electronic wave functions and eigenvalues of
the perturbed system depend on the atomic displacements {u8B}. To obtain their
change in the perturbed system, we apply first-order perturbation theory by keeping
terms linear in {u8B}. To first-order, the correction to the eigenvalues vanishes, while
the correction to the wave functions q8 can be written as:

X |q8〉 =
∑
9≠8

〈q 9 |Δ+ |q8〉
n8 − n 9

|q 9 〉, with Δ+ =
∑
8BU

m+ (

mu8B
· u8B, (3.3)

where|q8〉 are the unperturbed Kohn-Sham wave functions satisfying:(
−ℏ2∇2

2<
++ (0

)
|q8〉 = n8 |q8〉. (3.4)

In the following, we use the tilde for physical quantities of the perturbed system,
and write the perturbed wave function as:

|q̃8〉 = |q8〉 + X |q8〉 = |q8〉 +
∑
9≠8

Δ8 9 |q 9 〉 (3.5)

with
Δ8 9 ≡

〈q 9 |Δ+ |q8〉
n8 − n 9

. (3.6)

With the change in the potential and wave function, we can define the unperturbed
BSE Hamiltonian � ≡ � ({u8B} = 0) and the perturbed BSE Hamiltonian �̃ ≡
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� ({u8B}). The unperturbed BSE Hamiltonian is solvable and gives the exciton
energies and wave functions by Eq. (1.9). On the other hand, the perturbed BSE
Hamiltonian is not solved directly, but to first order it provides the ex-ph interactions.
Using the known form of the BSE Hamiltonian, we write:

�E2,E′2′ = 〈E2 |� |E′2′〉 = (n2 − nE) XEE′X22′ +  E2,E′2′ (3.7)

and
�̃Ẽ2̃,Ẽ′2̃′ = 〈Ẽ2̃ |�̃ |Ẽ′2̃′〉 = (ñ2̃ − ñẼ) XẼẼ′X2̃2̃′ +  ̃Ẽ2̃,Ẽ′2̃′ . (3.8)

Here,  E2,E′2′ is the BSE kernel, defined as:

 E2,E′2′ = 〈E2 | |E′2′〉 =
∫

3x13x23x33x4 kE (x2)k∗2 (x1) (x1x2x3x4)k∗E′ (x3)k2′ (x4),
(3.9)

where

 (x1x2x3x4) = −8X(x1, x2)X(x3, x4)E(x1, x4) + 8X(x1, x4)X(x2, x3), (x1, x2)
(3.10)

includes the bare Coulomb potential E and the screened Coulomb interaction, . In
addition,  ̃Ẽ2̃,Ẽ′2̃′ is the corresponding BSE kernel in the perturbed system with the
phonon displacement frozen in:

 ̃Ẽ2̃,Ẽ′2̃′ = 〈Ẽ2̃ | ̃ |Ẽ′2̃′〉 =
∫

3x13x23x33x4 k̃Ẽ (x2)k̃∗2̃ (x1) ̃ (x1x2x3x4)k̃∗Ẽ′ (x3)k̃2̃′ (x4),
(3.11)

where

 ̃ (x1x2x3x4) = −8X(x1, x2)X(x3, x4)E(x1, x4) + 8X(x1, x4)X(x2, x3),̃ (x1, x2).
(3.12)

Solving the BSE Hamiltonian in Eq. (3.7) gives the exciton wave functions |(=〉 and
energies �(= :∑
E′2′

�E2,E′2′�
(=
E′2′ = �

(=�(=E2 with the exciton wave function |(=〉 =
∑
E2

�(=E2 |E2〉.

(3.13)
While we do not solve Eq. (3.8) directly, we project the perturbed BSE Hamiltonian
onto the unperturbed basis set and keep terms of first-order in the phonon perturba-
tion; by comparing the result with the unperturbed BSE Hamiltonian in Eq. (3.7),
the additional terms will define the ex-ph interaction. Also, since as mentioned
above the correction to the electron energies is of second order, we will use ñ8 = n8.
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We first write the perturbed BSE Hamiltonian in the unperturbed exciton basis:

�̃<= = 〈(< |�̃ |(=〉 =
∑
Ẽ2̃,Ẽ′2̃′

〈(< |Ẽ2̃〉〈Ẽ2̃ |�̃ |Ẽ′2̃′〉〈Ẽ′2̃′|(=〉

=
∑
E2,E′2′

∑
Ẽ2̃,Ẽ′2̃′

〈(< |E2〉〈E2 |Ẽ2̃〉〈Ẽ2̃ |�̃ |Ẽ′2̃′〉〈Ẽ′2̃′|E′2′〉〈E′2′|(=〉, (3.14)

wherewe inserted the complete unperturbed and perturbed basis sets,
∑
E2 |E2〉〈E2 | =

1 and
∑
Ẽ,2̃ |Ẽ2̃〉〈Ẽ2̃ | = 1, respectively. Using the BSE wave function 〈E′2′|(=〉 =

�
(=
E′2′, we write Eq. (3.14) as

�̃<= = 〈(< |�̃ |(=〉 =
∑
E2,E′2′

�(<∗E2 �
(=
E′2′ ×

[ ∑
Ẽ2̃,Ẽ′2̃′

〈E2 |Ẽ2̃〉〈Ẽ2̃ |�̃ |Ẽ′2̃′〉〈Ẽ′2̃′|E′2′〉
]
.

(3.15)
We focus on the term in brackets and separate it into two parts:∑

Ẽ2̃,Ẽ′2̃′
〈E2 |Ẽ2̃〉〈Ẽ2̃ |�̃ |Ẽ′2̃′〉〈Ẽ′2̃′|E′2′〉

=
∑
Ẽ2̃,Ẽ′2̃′

〈E2 |Ẽ2̃〉
[
(ñ2̃ − ñẼ) XẼẼ′X2̃2̃′ +  ̃Ẽ2̃,Ẽ′2̃′

]
〈Ẽ′2̃′|E′2′〉

=
∑̃
E2̃

〈E2 |Ẽ2̃〉 (n2̃ − nẼ) 〈Ẽ2̃ |E′2′〉 +
∑
Ẽ2̃,Ẽ′2̃′

〈E2 |Ẽ2̃〉 ̃Ẽ2̃,Ẽ′2̃′〈Ẽ′2̃′|E′2′〉.(3.16)

Since the effect of the atomic displacements on the bare and screened Coulomb
interactions can be ignored to first order, analogous to the GW approximation,
,̃ ≈ , [85, 222], we can approximate the perturbed kernel with the unperturbed
one,  ̃Ẽ2̃,Ẽ′2̃′ ≈ 〈Ẽ2̃ | |Ẽ′2̃′〉. With this approximation, we have:∑

Ẽ2̃,Ẽ′2̃′
〈E2 |Ẽ2̃〉 ̃Ẽ2̃,Ẽ′2̃′〈Ẽ′2̃′|E′2′〉

≈
∑
Ẽ2̃,Ẽ′2̃′

〈E2 |Ẽ2̃〉〈Ẽ2̃ | |Ẽ′2̃′〉〈Ẽ′2̃′|E′2′〉 = 〈E2 | |E′2′〉 =  E2,E′2′ (3.17)

and thus the term in brackets in Eq. (3.15) becomes∑
Ẽ2̃,Ẽ′2̃′

〈E2 |Ẽ2̃〉〈Ẽ2̃ |�̃ |Ẽ′2̃′〉〈Ẽ′2̃′|E′2′〉 =
∑̃
E2̃

〈E2 |Ẽ2̃〉 (n2̃ − nẼ) 〈Ẽ2̃ |E′2′〉 +  E2,E′2′ .

(3.18)
Next, we use Eq. (3.5) to expand

∑
Ẽ2̃〈E2 |Ẽ2̃〉 (n2̃ − nẼ) 〈Ẽ2̃ |E′2′〉 to order O(Δ). We

work within the Tamm-Dancoff approximation and keep only the resonant part of
the BSE Hamiltonian; as a consequence, only valence-valence and conduction-
conduction 4-ph scattering will take place, namely, ΔE2 = Δ2E = 0.
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Using Eq. (3.5), we get:

〈E2 |Ẽ2̃〉 = 〈E |Ẽ〉〈2 |2̃〉 = (XEẼ +
∑
E′′≠Ẽ

ΔẼE′′XEE′′) (X22̃ +
∑
2′′≠2̃

Δ2̃2′′X22′′)

=

(
XEẼX22̃ + XEẼ

∑
2′′≠2̃

Δ2̃2′′X22′′ + X22̃
∑
E′′≠Ẽ

ΔẼE′′XEE′′

)
+ O(Δ2) (3.19)

and similarly

〈Ẽ2̃ |E′2′〉 = 〈E′|Ẽ〉∗〈2′|2̃〉∗

=

(
XE′ẼX2′2̃ + XE′Ẽ

∑
2′′≠2̃

Δ∗2̃2′′X2′2′′ + X2′2̃
∑
E′′≠Ẽ

Δ∗ẼE′′XE′E′′

)
+ O(Δ2).(3.20)

Using these results, we find five first-order terms in
∑
Ẽ2̃〈E2 |Ẽ2̃〉 (n2̃ − nẼ) 〈Ẽ2̃ |E′2′〉,

which we simplify using the X’s:∑̃
E2̃

〈E2 |Ẽ2̃〉 (n2̃ − nẼ) 〈Ẽ2̃ |E′2′〉

≈ (n2 − nE) XEE′X22′ + X22′
∑̃
E

(n2 − nẼ)
∑
E′′≠Ẽ

(
Δ∗ẼE′′XEE′′XE′Ẽ + ΔẼE′′XE′E′′XEẼ

)
+ XEE′

∑̃
2

(n2̃ − nE)
∑
2′′≠2̃

(
Δ2̃2′′X22′′X2′2̃ + Δ∗2̃2′′X2′2′′X22̃

)
= (n2 − nE) XEE′X22′ + X22′

[ ∑
E′′≠E′

(n2 − nE′) Δ∗E′E′′XEE′′ +
∑
E′′≠E

(n2 − nE) ΔEE′′XE′E′′
]

+ XEE′
[ ∑
2′′≠2′

(n2′ − nE) Δ2′2′′X22′′ +
∑
2′′≠2

(n2 − nE) Δ∗22′′X2′2′′
]

= (n2 − nE) XEE′X22′ + X22′ (nE′ − nE) ΔEE′ + XEE′ (n2 − n2′) Δ∗22′, (3.21)

where we used Δ8 9 = −Δ∗98 to obtain the last line. Finally, the perturbed Hamiltonian
in the exciton basis in Eq. (3.15) becomes:

�̃<= =
∑
E2,E′2′

�(<∗E2 �
(=
E′2′ ×

{ [
(n2 − nE) XEE′X22′ +  E2,E′2′

]
+ X22′ (nE′ − nE) ΔEE′ + XEE′ (n2 − n2′) Δ∗22′

}
= �(<X<= +

∑
E2,E′2′

�(<∗E2 �
(=
E′2′ ·

(
X22′ (nE′ − nE) ΔEE′ + XEE′ (n2 − n2′) Δ∗22′

)
,

(3.22)

where we use the fact that the unperturbed Hamiltonian is diagonalized by the
Tamm-Dancoff exciton eigenvectors:

�(<X<= =
∑
E2,E′2′

�(<∗E2 �
(=
E′2′ ×

(
(n2 − nE) XEE′X22′ +  E2,E′2′

)
. (3.23)
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Therefore, the first term in the second line of Eq. (3.22) is the unperturbed Hamil-
tonian, while the second term is the ex-ph interaction,

�̃ex-ph =
∑
E2,E′2′

�(<∗E2 �
(=
E′2′ ·

(
X22′ (nE′ − nE) ΔEE′ + XEE′ (n2 − n2′) Δ∗22′

)
. (3.24)

To obtain the final result, we relabel all quantities in the ex-ph Hamiltonian for a
periodic system. The wave functions are Bloch states

|q8〉 → |q=k〉,

and the transition basis set for an exciton with center of mass momentum Q is
|E2〉 = |EkE, 2k2〉 = |EkE, 2kE +Q〉. We write the change in potential due to atomic
displacements as a sum of phonon interactions (See Sect. 1.2):

Δ+ =
∑
aq

(
ℏ

2laq

)1/2
Δaq+

KS(1̂aq + 1̂†a−q), (3.25)

where 1̂†aq and 1̂aq are phonon creation and annihilation operators. That the Δ8 9
describing the transition from 8-th state to 9-th state becomes:

Δ=k=′k′ =
〈=′k′|Δ+ |=k〉
n=k − n=′k′

=
∑
aq

6==′a (k, q)X(k′ − k − q)
n=k − n=′k′

(1̂aq + 1̂†a−q) (3.26)

where 6==′a (k, q) = (ℏ/2laq)1/2〈=′k′|Δaq+ KS |=k〉 is the usual 4-ph matrix element
in Eq. (3.1).

By introducing exciton creation and annihilation operators, 0̂†
(= (Q) and 0̂(= (Q) , we

rewrite the ex-ph Hamiltonian in Eq. (3.22) as:

�̃ =
∑
=Q
�(= (Q) 0̂

†
(= (Q) 0̂(= (Q) +

∑
aq
ℏlaq1̂

†
aq1̂aq

+
∑

=<a,Qq
G=<a (Q, q)0̂†(< (Q+q) 0̂(= (Q) (1̂aq + 1̂

†
a−q), (3.27)

where we defined the exciton-phonon matrix elements as:

G=<a (Q, q) =
∑
E2E′2′

kEk2k′E ′k
′
2′

�
(< (Q+q)∗
EkE ,2k2 �

(= (Q)
E′k′

E ′ ,2
′k′
2′

×
[
XEE′62′2a (k′2′, q)X(k2 − k′2′ − q) − X22′6EE′a (kE, q)X(k′E′ − kE − q)

]
.

(3.28)
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Figure 3.1: Schematic of the exciton-phonon interaction in Eq. (3.29). Ex-ph
interaction can be viewed as a superposition of electron-phonon and hole-phonon
scattering events, weighted by the wave functions of the initial and final exciton
states.

The exciton-phonon coupling constant G=<a (Q, q) is the probability amplitude for
scattering from an excitonwith band index =with center-of-massmomentumQ to an
exciton with band index< and center-of-mass momentum Q+q. Since �((Q)

EkE ,2k2 ≠ 0
only for k2 − kE = Q, in Eq. (3.28) we can impose three constraints, k2 − kE = Q,
k′2 −k′E = Q+q, and k′2 −k2 = q (or k′E −kE = q). As a consequence, we drop three
k-point Brillouin zone (BZ) summations, and the final result for the ex-ph matrix
element for a given exciton momentum Q and phonon momentum q becomes:

G=<a (Q, q) =
∑

k

[∑
E22′

�
(< (Q+q)∗
Ek,2(k+Q+q)�

(= (Q)
Ek,2′(k+Q)62′2a (k +Q, q)

−
∑
2EE′

�
(< (Q+q)∗
E(k−q),2(k+Q)�

(= (Q)
E′k,2(k+Q)6EE′a (k − q, q)

]
.(3.29)

This ex-ph coupling, which is pictorially shown in Fig. 3.1, is a quantum superpo-
sition of electron- and hole-phonon scattering processes, weighted by the exciton
wave functions of the initial and final states.

Numerical Implementation

Current algorithm is structured in two sections, see Fig. 3.2. The first part imple-
ments the Eq. (3.29) as a post-processing treatment combining the exciton wave
function from Yambo [86] and the 4-ph coupling constant from PERTURBO [90] to
calculate the ex-ph matrix element. The second part uses the ex-ph matrix element
to compute physical observable, including features of:

1. Interpolation and plotting the electron-, exciton-band structure, and phonon
dispersion
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Figure 3.2: Exciton-phonon dynamics numerical workflow.

2. Calculating the ex-ph relaxation linewidth and its temprature dependence

3. Mapping out the exciton scattering path

4. Computing the phonon-assisted PL spectrum

5. Conducting real-time (RT) simulation using ex-ph Boltzmann transport equa-
tion (BTE)

6. Predicting the time-resoled ARPES signal using the result from BTE-RT
simulation.

To our knowlegde, this computational routine is the only numerical scheme to
calculate the ex-ph coupling and corresponding dynamics from first principle. The
computation cost of ex-ph matrix element is expensive and scaling with n3

k × n2
b ×

na, where nk is the number of k-points used, nb is the number of exciton band
involved in the later discussion on exciton dynamics, and nv is the number of phonon
vibration modes. For instance, with energy cutoff and symmetry G<=a (Q+q,−q) =
G∗=<a (Q, q) implemented, in h-BN on 36× 36× 4 k-gird, it costs &10000 CPU hour
to comupte for 25 bands in full BZ. So far, some optimizating works are ongoing
and all functions are now merging into the framework of the PERTURBO code.

In the following, based on the developed approach, we perform studies on the Bulk
h-BN and monolayer WSe2 to investigate the ex-ph dynamics and corresponding
physical quantities.

3.2 Exciton-Phonon Signature in Bulk Hexagonal Boron Nitride

In this section, we apply our scheme to study excitons in bulk h-BN. The h-BN has
attracted attention in past decades as a high efficient light emitter with large band gap
(about 7 eV) deep in the UV spectrum. Even in the bulk-form, the weak Coulomb
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Figure 3.3: Absorption spectrum of bulk h-BN

screening effect along its stacking direction leaves strong electron-hole attraction
which leads to the significant excitonic effect in the material. L. Wirtz et. al. [223]
first used the GW-BSE method to compute the h-BN absorption spectrum and point
out the importance of excitonic modulation in h-BN optical properties. As shown in
Fig. 3.3, with electron-hole attraction included the absorption spectrum possesses
a strong resonant pole below the electronic gap corresponding to the formation of
exciton which is missed when the independent particle picture is employed under
RandomPhaseApproximation (RPA). However, the inclusion of exciton effect didn’t
resolve the mystery of h-BN. As a material of indirect gap, h-BN has extraordinary
quantum yield of 50 % which is believed to be observed only in direct-gap material
[13]. Until a recent observation of h-BN PL, the strong light emission is concluded
as a result of phonon interaction [224] which is later supported by a theoretical
work [208] using TDDFTmethod. Provided with strong excitonic effect and fruitful
phonon modulated optical properties, h-BN can serve as an idea material which
hosts remarkable signatures of ex-ph interaction to investigate. In the following, we
present the derivations and the computed results for observable, including the ex-ph
relaxation time and phonon-assisted PL, while the numerical details are provided in
Appendix H.
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Figure 3.4: Ex-ph self-energy diagram. One-loop exciton self-energy due to the
ex-ph interaction

Ex-ph Relaxation Time and Scattering rate

To study the ex-ph scattering rate, we derive the formalism based on the optical
theorem, which relates the scattering rate (inverse of the relaxation time g) and the
imaginary part of the self-energy Σ:

1
g
= −(2/ℏ)ImΣ. (3.30)

Consider the one-loop exciton self-energy, we utilize the method of Matsubara
frequency summation to calculate the Feynman diagram in Fig. 3.4. Using the
imaginary time coordinate and imaginary frequency, as is usual in the Matsubara
technique, the propagator for a boson (here, an exciton or a phonon) is written as:

D= (8l0, k) =
1

8l0 − �=k
− 1
8l0 + �=k

, (3.31)

where = is the band index for excitons or the mode index for phonons, �=k is the
on-shell energy, and the Matsubara frequency is defined as:

l0 =
2c
V
0 with 0 ∈ Z, V = 1

:�)
. (3.32)

More information on the optical theorem and Matsubara’s method can be found in
Ref. [225]. The self-energy diagram in Fig. 3.4 can be evaluated as follows:

Σ= (8l1,Q) =
−1
VNq

∑
<qa0
|G=<a (Q, q) |2D< (8l0+1,Q + q)Da (8l0, q)

=
−1
VNq

∑
<qa0
|G=<a (Q, q) |2

×
[

1
8l0+1 − �<Q+q

− 1
8l0+1 + �<Q+q

] [
1

8l0 − �aq
− 1
8l0 + �aq

]
=
−1
VNq

∑
<qa0
|G=<a (Q, q) |2
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×
[(

1
8l0+1 − �<Q+q

− 1
8l0 − �aq

)
× 1
�<Q+q − �aq − 8l1

−
(

1
8l0+1 − �<Q+q

− 1
8l0 + �aq

)
× 1
�<Q+q + �aq − 8l1

+
(

1
8l0+1 + �<Q+q

− 1
8l0 + �aq

)
× 1
−�<Q+q + �aq − 8l1

]
. (3.33)

To simplify the expression, we apply the identity for the Bose-Einstein statistics:

N(n) = 1
4Vn − 1

= −1
2
− 1
V

∞∑
==−∞

1
2=8c/V − n , (3.34)

and get:

Σ= (8l1,Q) =
−1
Nq

∑
<qa
|G=<a (Q, q) |2

×
[ (
#aq − �<Q+q

)
×

(
1

�<Q+q − �aq − 8l1
− 1
−�<Q+q + �aq − 8l1

)
−

(
#aq + 1 + �<Q+q

)
×

(
1

−�<Q+q − �aq − 8l1
− 1
+�<Q+q + �aq − 8l1

)]
,

(3.35)

where we changed the notation to distinguish the exciton and phonon sectors by re-
namingN(�aq) → #aq for phonons andN(�<Q+q) → �<Q+q for excitons. Lastly,
we use analytical continuation to extend the complex function Σ from the imaginary
exciton energy to full complex plane, by setting 8l1 → �=Q + 8n with infinitesimal
positive deviation n from the real exciton energy axis. The ex-ph scattering rate is
obtained by applying the optical theorem in Eq. (3.30) and computing the imaginary
part of the self-energy through the identity:

1
G + 8n = %

1
G
− 8cX(G), (3.36)

where n is a positive infinitesimal and % takes the principal value of 1/G. The total
exciton scattering rate obtained this way consists of multiple terms, in which we
denote the exciton energies as � and the phonon energies as ℏl:

Γ=Q()) =
2c
ℏ

1
Nq

∑
<qa
|G=<a (Q, q) |2[ (

#aq − �<Q+q
)
×

(
X(�=Q − �<Q+q + ℏlaq) − X(�=Q + �<Q+q − ℏlaq)

)
+

(
#aq + 1 + �<Q+q

)
×

(
X(�=Q − �<Q+q − ℏlaq) − X(�=Q + �<Q+q + ℏlaq)

) ]
.

(3.37)
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The four terms in Eq. (3.37) correspond to phonon absorption, two excitons combin-
ing into a phonon, phonon emission, and 3-particle annihilation, respectively. We
ignore the two terms due to two excitons combining into a phonon and annihilation
of two excitons and a phonon since they are not relevant here (the 3-particle annihi-
lation process is also prohibited by energy conservation), keeping only the phonon
emission and absorption terms. We thus obtain the ex-ph scattering rate:

Γ
ex-ph
=Q ()) = 2c

ℏ

1
Nq

∑
<aq
|G=<a (Q, q) |2

×
[
(#aq + 1 + �<Q+q) × X(�=Q − �′<Q+q − ℏlaq)

+(#aq − �<Q+q) × X(�=Q − �′<Q+q + ℏlaq)
]
, (3.38)

where # and � are phonon and exciton occupations, Nq is the number of q-
points, and the first and second terms in bracket correspond, respectively, to an
exciton emitting or absorbing one phonon. Within this approach, the temperature
dependence of the relaxation times is due to the phonon and exciton occupation
factors, while the exciton wave functions and energies are computed with the BSE
on a fixed atomic structure at zero temperature.

Using Eq. (3.38), we compute the exciton relaxation time and the ex-ph scattering
rate in bulk h-BN and summarize the results in Fig. 3.5. We first show the exciton
band structure along a high-symmetry line for the lowest 8 exciton bands, overlaid
with the ex-ph relaxation times at 77 K using color code in Fig. 3.5(a). Our exciton
band structure agrees well with previous results [226, 227], apart from a small
rigid energy shift; the global minimum is located close to a point called here Q,
the halfway point between Γ and K, which corresponds to the excitation across the
indirect electronic band gap of h-BN.Note also that in our calculation the degeneracy
between the 3rd and 4th exciton bands at Γ is lifted due to the inclusion, different
from Refs. [226, 227], of the G = 0 Hartree term in the BSE kernel, which splits
transverse and longitudinal excitons.

Our computed ex-ph relaxation times are of order 5−100 fs, corroborating the
widely used assumption that excitons thermalize rapidly before recombining. The
relaxation times are strongly energy dependent. At 77 K, they are of order 100
fs near the exciton energy minima, and drop rapidly to ∼15 fs above the threshold
for LO phonon emission, located 160 meV above the exciton energy minima [at
exciton energy of 4.95 eV; see Fig. 3.5(a)]. Analysis of the ex-ph coupling strength
[Fig. 3.5(c)] and scattering rate due to each individual phonon mode reveals that
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Figure 3.5: Ex-ph relaxation time and scattering rate. (a) Exciton band structure
for the four lowest-energy exciton bands, together with a log-scale color map of
ex-ph relaxation times at 77 K. Note the drop in the relaxation times above the LO
emission threshold at 4.95 eV, which is shown with a dashed line. (b) Average ex-ph
scattering rates as a function of exciton energy, up to 5.7 eV for three chosen exciton
states. The shaded region gives the standard deviation of the momentum-dependent
scattering rate at each energy. (c) The squared ex-ph coupling strength (in arbitrary
units) for the 12 phonon modes of h-BN.
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above this threshold the strongest scattering channel is the emission of an LO phonon
with average phonon energy of 160 meV. Since the exciton energy minimum is at 4.8
eV, only excitonswith energy greater than 4.95 eV can emit an LO phonon and scatter
to a final exciton state, which explains the much shorter relaxation times above the
LO emission threshold. This trend is analogous to the 4-ph scattering rates in polar
semiconductors (e.g., GaAs), where electrons couple strongly with LO phonons and
the relaxation time drops rapidly above the LO emission threshold [201].

Fig. 3.5(b) shows the ex-ph scattering rates as a function of exciton energy, averaged
over exciton momentum, for exciton bands 1−3. For the lowest-energy excitons in
band 1, the scattering rate increases monotonically with energy between 4.8−5.05
eV, with a change of slope at 4.95 eV due to the onset of LO phonon emission. We
find anLOphonon emission time of∼15 fs for excitons at 77K, a value comparable to
LO phonon emission times for electrons in polar semiconductors [201]. Compared
to excitons in band 1, the scattering rate is higher at low energy for excitons in
band 2, which can emit phonons with a range of energies and transition to band
1. Excitons in band 3 exhibit a drop in the scattering rate at 5.1 eV due to the
energy minima near Q with significant energy gaps from the two lower bands. We
have also verified that treating the electrons and holes as independent particles, thus
computing the square ex-ph matrix element as the incoherent sum of the electron-
and hole-phonon coupling, |� |2 ≈ |622′ |2 + |6EE′ |2, leads to order-of-magnitude
errors in the ex-ph scattering rates compared to the correct treatment in Eq. (3.29)
that includes excitonic effects.

The momentum dependence of the relaxation times is controlled by the exciton band
structure, which provides the phase space for scattering, and by the ex-ph matrix
elements. Fig. 3.6 analyzes the exciton relaxation times (for two specific bands, 2
and 4) as a function of exciton momentum in the Brillouin zone, together with the
average ex-ph coupling strength, defined as Ḡ= (Q) =

∑
<aq |G=<a (Q, q) |2. Both

the ex-ph coupling and relaxation times exhibit the six-fold symmetry of h-BN. As
a general trend, we find that larger coupling strengths are associated with shorter
relaxation times, consistent with Eq. (3.38). The relaxation times are maximal
near the exciton local energy minima at Q (and also at Γ for band 2), where the
anisotropic exciton dispersion gives rise to ellipsoid-shaped regions in momentum
space with longer relaxation times.

Understanding how temperature affects exciton dynamics is crucial in experiments.
Fig. 3.7 compares the temperature dependence of the ex-ph scattering rates for
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Figure 3.6: Ex-ph relaxation and coupling strength map. Exciton-phonon re-
laxation times at 77 K, shown as a function of exciton momentum in the Brillouin
zone plane parallel to the h-BN layers. The lower panel shows the average coupling
strength Ḡ= (Q) in arbitrary units, where red color indicates stronger coupling. In
both panels, the color maps are given on a log-scale.

two exciton states, one above and one below the LO-phonon emission threshold.
The scattering rate increases monotonically from 1 to 300 K for both states, but
with rather different trends. For the state below the LO emission threshold, the
scattering rate increases by over an order of magnitude between 1−300 K, while the
increase for the state above the LO emission threshold is much smaller, only about
10 percent over the same temperature range. We find similar trends when inspecting
other states in these two energy windows. Analysis of the contributions to exciton
scattering from the different phonon modes [see Fig. 3.7(c)] reveals that excitons
below the LO emission threshold and close to the energy minima mainly scatter
by absorbing low-energy acoustic phonons, which explains the strong temperature
dependence. On the other hand, at energies above the LO emission threshold,
scattering is dominated by LO phonon emission, a weakly temperature dependent
process with rate proportional to #+1 [see Eq. (3.38)].

Phonon-Assisted Photoluminescence

The photoluminescence intensity � (l) is defined as the number of photons with
frequency l emitted per unit time. The source of emitted photons is the radiative
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Figure 3.7: Temperature dependence of ex-ph scattering rate. Ex-ph scattering
rate as a function of temperature for an exciton state below (blue) and above (orange)
the LO-emission threshold. (a) The two states selected for the analysis are shown in
the exciton band structure. (b) The absolute value of the scattering rates (left) and
the same quantities normalized by the scattering rate at 1 K for each state (right) to
emphasize the stronger temperature dependence for the state below the LO emission
threshold. (c) Mode-resolved contribution to the scattering rate at 1 K, normalized
by the total rate for each state.
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decay of excitons, and thus we can write:

� (l) = 3=l
3C

= −
∑
=

∫
3Q

3#=Q

3C
=

∑
=

∫
3QΓ= (Q, l)#=Q (3.39)

where =l is the number of photons with energy l, #=Q is the number of excitons
in a given state (with exciton band n and momentum Q), which follows the Bose-
Einstein distribution at low exciton density, and Γ= (Q, l) is the radiative rate of
the same exciton state for emitting a photon with frequency l. Due to momentum
conservation, excitons with a large enough finite momentum cannot emit a photon
directly. The next-order emission processes is phonon-assisted luminescence, in
which an exciton can emit or absorb a phonon and change its momentum before
emitting the photon. We again derive the process rate using the optical theorem, by
computing the imaginary part of the self-energy diagram in Fig. 3.8 as:

Σ= (8l1,Q) =
−1
VNq

∑
<qa0
|A · p< (Q + q) |2 · |G=<a (Q, q) |2

× [D< (8l0+1,Q + q)]2Da (8l0, q)Dl (8l0+1,Q + q), (3.40)

where q is the phonon momentum and |A · p| is the standard exciton-photon in-
teraction within minimal coupling. We impose several conditions to compute the
physical process we are interested in. First, the photon momentum is negligible
compared to the crystal momentum, and thus we can set Q+q ≈ 0 (see Fig. 3.8 ). In
h-BN, we take the lowest two bright excitons (with zero momentum) for the optically
active exciton states; these two states are degenerate, with equal-in-magnitude but
perpendicular dipole moment p. Since we focus on photon emission in a temper-
ature range where phonon absorption is negligible compared to phonon emission,
we use only the emission part of the photon and phonon propagators:

Da (8l0, q) ≈ −
1

8l0 + ℏlaq
, Dl (8l0, q) ≈

1
8l0 − ℏl

. (3.41)

Note that the different sign in the photon and phonon propagators is due to the
opposite directions of the propagation arrows in the self-energy diagram in Fig. 3.8.
For the same reason, since only the emission process is considered, the intermediate
exciton state propagator becomes:

D< (8l0,Q) ≈
1

8l0 − �<Q
. (3.42)

As a result, the self-energy takes a simpler expression, which with constants ne-
glected reads:

Σ= (8l1,Q) ∝
−1
VNq

∑
<a0

|G=<a (Q,−Q) |2
[

1
8l0+1 − �<Γ

]2 −1
8l0 + ℏlaQ

1
8l0+1 − ℏl
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Figure 3.8: Phonon-assisted photoluminescence diagram. One-loop exciton self-
energy due to ex-ph processes involving photon emission. From left to right, the
exciton (double solid line) emits or absorbs a phonon with momentum q (dashed
line), and then emits a photon (zigzag line) with momentum Q+q ≈ 0. The process
then rewinds to form the self-energy loop.

=
−1
VNq

∑
<a0

(
� (1) + � (2) + � (3)

)
, (3.43)

where with some algebra we separate the self-energy into three terms:

� (1) =
−1

(�<Γ − ℏl)2
1

8l1 − ℏl − ℏlaQ

(
1

8l0−1 + ℏlaQ
− 1
8l0 − ℏl

)
� (2) =

1
(8l1 − �<Γ − ℏlaQ)2

1
�<Γ − ℏl

(
1

8l0 − �<Γ
− 1
8l0−1 + ℏlaQ

)
� (3) =

1
8l1 − �<Γ − ℏlaQ

×
[

1
�<Γ − ℏl

1
(8l0 − �<Γ)2

+ 1
(�<Γ − ℏl)2

(
1

8l0 − �<Γ
+ 1
8l0−1 + ℏlaQ

− 2
8l0 − ℏl

)]
. (3.44)

The terms � (1) , � (2) and � (3) are arranged according to their pole behavior. In
particular, � (1) has pole at 8l1 − ℏl − ℏlaQ = 0, while � (2) and � (3) have a double
and simple pole, respectively, at 8l1−�<Γ−ℏlaQ = 0. After setting 8l1 → �=Q+8n ,
only the first pole at 8l1 − ℏl − ℏlaQ = 0 is associated with our process of interest,
in which the initial exciton emits a phonon and transitions to a virtual bright state
before emitting light. The other pole corresponds to an on-shell intermediate state
(rather than a virtual one) and is negligible at low temperature since there are no
excitons with a high enough energy for this process to occur. Therefore, we keep
only the � (1) term. Using the identity in Eq. (3.34) and ignoring overall constant
factors, we obtain the phonon-assisted radiative rate:

Γ= (Q, l) ∝
∑

<∈bright exciton

[∑
a

|G=<a (Q,−Q) |2 ·
1 + # (ℏlaQ)
(ℏl − �<)2

· X
(
ℏl + ℏlaQ − �=Q

) ]
.

(3.45)
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Figure 3.9: Phonon-assisted photoluminescence in h-BN. Comparison between
the computed phonon-assisted PL intensity (blue curve) and experimental data from
Ref. [228] (red dots). The calculated spectra were shifted by ∼1 eV and normalized
to match the first peak of the measured spectra.

Substituting this rate in Eq. (3.39), we finally obtain phonon-assisted photolumines-
cence formula:

� (l) =
∑
=

∫
3QΓ= (Q, l)#=Q

∝
∑
=<a

|?(< |2
∫

3Q |G=<a (Q,−Q) |2 · #=Q
1 + # (ℏlaQ)
(ℏl − �<)2

· X
(
ℏl + ℏlaQ − �=Q

)
.

(3.46)

Using Eq. (3.46), we compute the phonon-assisted PL spectrum in h-BN, obtaining
results in agreement with PL experiments between 8−100 K up to a blue-shift of the
spectrum3 (see Fig. 3.9). At low temperature of 8 K, our computed PL exhibits all
four peaks seen in experiment, which correspond to LO, TO, LA and TA phonon-
assisted PL. We find dominant LO and TO peaks due to the strong ex-ph coupling
of these phonon modes. At 100 K, the PL peak linewidths accurately match the
experimental data. We have explicitly verified that including the real part of the
ex-ph self-energy in our calculation only causes a rigid red shift of the PL spectrum
by about 50 meV. Yet, the computed acoustic peaks are too intense, and the relative
LO and TO peak intensities at 8 K (but not at 100 K) are sensitive to the broadening

3Note that in Ref. [213], which employs a self-consistent GW0 approach to obtain an improved
value of the band gap, a 0.3 eV blue shift sufficed to match the experimental PL spectrum. Our work
employs G0W0, resulting in an underestimate of the quasiparticle band gap, so a larger blue shift is
needed.
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used in the PL intensity formula Eq. (3.45). Additional work is needed to fully
converge these fine features of the PL spectra.

3.3 Exciton-Phonon Dynamics in Monolayer Tungsten Diselenide

While researchers has advanced the synthesis technology [229, 230] and optical
spectroscopic techniques [17, 58, 231, 232] in TMDs and obtained great success
in applying the BSE method to study bright exciton physics4, a great part of the
full genus of exciton and corresponding phenomena are unexplored. For instance,
the PL spectra of TMDs as light emitters is not yet understood. Multiple emission
peaks are observed below the main direct transition energy and play significant roles
in cryogenic temperature, especially for materials with an indirect band gap [228,
233]. Besides, even for the bright exciton emission, the underlying mechanism for
linewidth broadening and the instability of the polarization, i.e. the depolarization
effect, is not revealed. Such signals are phenomenologically explained to be induced
by lattice vibration but with no sufficient theoretical proof. In the following, we
apply the ex-ph interaction formalism and discuss its effect in monolayer WSe2. We
investigate the general optical phenomena including emission linewidth as well as
PL spectrum, and further develop an algorithm for realtime simulation to study the
exciton valley depolarization effect in WSe2. The results successfully predict the
temperature trend of the bright exciton linewidth and correctly identify the phonon
contribution in the PL spectrum. The real-time simulation quantify the exciton
depolarization time scale of ∼100 fs at 77 K. Overall, our results lay out new
microscopic insight for phonon-modulated light emission behaviors and the valley
depolarization mechanism in WSe2 which can be generalized to the entire 2D-TMD
family. The detailed computational information can be found in Appendix I.

Bright exciton linewidth and photoluminescence in monolayer WSe2

The study of bright exciton linewidth can indirectly reveals the secret of the dark
exciton via ex-ph interactions. The homogeneous broadening of the emission line
is related to the exciton coherence lifetime [234] :

f exciton linewidth = ℏg
−1
coherence lifetime = ℏΓ()), (3.47)

where, in the right hand side, the Γ is the ex-ph relaxation rate, given in Eq. (3.38).
Thus, the existence of dark exciton states can provide the scattering channel for

4See Sect. 2.3 and corresponding reference.
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phonon-absorption and emission and thus shorten the coherence, resulting in the
wideness of the bright peak in the emission spectrum. On the other hand, the analysis
on PL spectrum can directly bring out the dark exciton structure and its phonon inter-
action. Indirect excitons possess finite-momentum electron-hole transition outside
the light-cone region (� > ℏ2 |k|) [48] and are forbidden from radiative recombina-
tion. But with the modulation from lattice vibration, phonon interaction provides a
path way for excitons to avoid this restriction, by first emitting or absorbing phonons
to release its exceeding momentum to satisfy the light-cone condition and under go
light emission [224]. Therefore, the PL spectrum involves information, including
the dark exciton energy levels and ex-ph coupling strength, and serves as an idea
physical quantity for dark exciton research, especially in material with indirect gap,
like monolayer WSe2.

Monolayer WSe2, in early study, was believed as a material with direct band gap
[127, 235, 236] which locates at the K/K′ corner of its hexagonal Brillouin zone, like
other TMD memebers. However, recent measurements show more evidence on its
indirect gap [237] with the true conduction bandminimum lying at themiddle ofΓ-K
line (denoted at Q point) which is lower by 80± 80 meV than the K-point minimum
[128]. Our one-shot G0W0-correction, however, overestimates this difference which
provides E −E& > 300 meV for the lowest conduction band. As a result, to avoid
possible error, we employ the experimental measurement [128] as a reference to
fine-tune our calculated band structure, by tilting and stretching the conduction
bands to meet the 80 meV difference while maintaining the valence bands.

Based on the tuned electronic band structure we apply the ex-ph scheme and
Eq. (3.38, 3.47) to compute the bright exciton linewidth under temperature from
0 K-250 K and present the result in Fig. 3.10(a). Here we focus on the bright
exciton locating solely in one of the K-valley which corresponds to the excitation
from the circularly polarized incident pumping. The result shows great agreement
with the experimental data up to a rigid 9 meV shift [238]. We attribute the differ-
ence to temperature-independent factors, including the radiative decay and possible
defect trapping. In addition to reproducing the experimental result, our calculations
provide more information on the scattering path. By leaving out the summation
over phonon momentum in Eq. (3.38) when applied in Eq. (3.47), we provide the
momentum-resolved map in Fig. 3.10(b). It shows that the Γ-M scattering channel
is the dominant path for bright exciton relaxation with Γ-Q scattering being the
secondary, which also reflects the observation in earlier reports [239]. Furthermore,
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Figure 3.10: Bright exciton linewidth in WSe2. (a) Emission linewidth of bright
K exciton (excited by circularly polarized light) at temperature from 0 K to 250 K,
compared with experiment. Inset shows two main ex-ph scatter processes for bright
exciton relaxation, Γ to M and Γ to Q. (b) Phonon momentum resolved contribution
to the linewidth at T= 300 K. In addition to the main scattering with q=M phonon,
the secondary contribution lies in the coupling with q =Q′ (middle between Γ- and
K′-point) phonons, but noq =Qphonons. (c) Phononmodes resolved contribution to
the linewidth at T= 4K and 300K normalized by the total width at each temperature.

we find a chiral dependence of the Γ-Q scattering process [240]. The bright exciton
in K-valley can be scattered by the Q′-phonon but not Q-phonon ( Q′ is the middle
point between Γ and K′ to be distinguished from Q-point). This fact inherits from
the single electron property; an electron at K-point can absorb a Q′-phonon and
transits to Q-point easily, but the absorption of a Q-phonon will lead it to M-point
which is forbidden by energy conservation. Last, we analyze the phonon mode
dependence of the linewidth. Previous research has provided a detailed discussion
on phonon mode at K-point by symmetry analysis [233], but knowledge regarding
Q- and M-phonon is still missing. At low temperature, both acoustic and optical
phonons have significant contribution with ratio, Γ02.width/Γ

>?.

width ∼ 0.6/0.4. However,
with temperature raised to room temperature, the acoustic phonons dominate the
scattering processes.

We present the predicted PL spectrum at T= 15 K in Fig. 3.11(a) accompanied
by the experimental data [241] with the PL frequency normalized to the bright
exciton energy. The result shows that our prediction is ∼ 45 meV red shifted
below the experiment PL, which is within the error of the band edge measurement
ΔEKQ ∼ ±80 meV. Fig. 3.11(b) presents great agreement between our prediction
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Figure 3.11: Phonon-assisted photoluminescence in WSe2. (a) Raw theoretical
prediction for PL signal at T= 15 K with bright exciton energy X0 as reference zero
point to compare with experimental data. Spectrum within E= −40 ∼ −20 corre-
spond to the emission fromdark exciton and trion (D&T). (b) The predicted spectrum
is shifted to match its peak with the experimental data. (c) Exciton momentum-
resolved contribution to the integrated PL intensity. The main contribution lies in
the Q′-valley.

and experimental result after we match the main PL peak. Further, our calculation
also shows that the main peak is the result of longitudinal phonon emission while
the sideband is the collective contribution from optical phonon emission. We also
analyze the PL source, by leaving out the momentum integration but integrating the
PL intensity in Eq. (3.45). The momentum resolved PL is presented in Fig. 3.11(c)
which shows theQ =Q′ excitons have themain contributionwhile theQ =Mexcitons
are the secondary resources. This is a result of the exciton spin structure; the lowest
exciton eigenstate at Q =Q′ is spin-singlet but is spin-triplet at Q =M.

Exciton Depolarization in WSe2

The phonon effect in exciton depolarization is generally ignored in previous treat-
ments due to the spin-valley locking property and low spin-flipping phonon scat-
tering in TMDs [43, 233]. However, a recent study [242] shows a significant
contribution in intravally spin-flipping from 4-ph coupling, which challenges this
well adopted assumption. As a result, here we present a general discussion on
phonon effect in exciton depolarization. Based on the BSE solution, exciton in K-
and K′-valley are degenerate and orthogonal quantum states, independently evolving
with time, while the interaction with phonon can mixing them. In general, the tran-
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sition between a degenerate pair can be realized in quantum correction. As shown
in Fig. 3.12(a), a particle in =1 can emit(absorb) a phonon and re-absorb(emit) it,
and transit into the other state =2. While the initial state is the same as final state,
=1 = =2, this process becomes the self-energy correction [225]. Focusing on these
two states, we can write an effective 2 × 2 Hamiltonian:

� = �0 + � 1-loop =

(
� + Σ11 Σ12

Σ21 � + Σ22

)
(3.48)

where � is the degenerate energy and the amplitude of the correction follows :

Σ=1=2 (8l1,Q = 0) = −1
Nq

∑
<qa
G=1<a (0, q) · G∗=2<a (0, q)[ (

#aq − �<q
)
×

(
1

�<,q − �a,q − 8l1
− 1
−�<,q + �a,q − 8l1

)
−

(
#aq + 1 + �<q

)
×

(
1

−�<,q − �a,q − 8l1
− 1
+�<,q + �a,q − 8l1

)]
,

(3.49)

where analytical continuation will take the complex parameter 8l1 back to the real
energy axis by 8l1 = � . Applying Eq. (3.49) to the WSe2 bright exciton pair,
numerical result provides an extremely weak transition amplitude Σ12 of `eV which
is below our numerical accuracy. This vanishing amplitude indeed supports the
argument to overlook the phonon contribution. However, a detailed analysis shows
a delicate cancellation among the complex number 61 ·6∗2 in Eq. (3.49). On the other
hand, if we replace 61 · 6∗2 by its absolute value |61 · 6∗2 |, we can obtain a transition
amplitude of order of meV. Note that the summation of complex number is of nature
of quantummechanical superposition while, in classical procedure, the possibility is
summed as real number. As a result, we propose that the exciton depolarization via
phonon effect is forbidden in the quantum level but allowed in the classical process.
To this end, we apply the classical Boltzmann Transport Equation (BTE) and make
a real-time (RT) simulation of the bright exciton relaxation process to examine the
depolarization effect which is schematically presented in Fig. 3.12(b). We applied
the RT-BTE formula [62]:(

m�=Q

mC

) ex-ph
= −2c

ℏ

1
Nq

∑
<aq
|G=<a (Q, q) |2

×
[
X
(
�=Q − �<Q+q + ℏlaq

)
· � abs(C) + X

(
�=Q − �<Q+q − ℏlaq

)
· � em(C)

]
,

(3.50)
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Figure 3.12: Exciton depolarization in WSe2 from BTE. Realtime valley depo-
lariztion at T=300 K. (a) Exciton occupation number in K/K′-valley respectively.
(b) Occupation ratio between K/K′-valley after the illumination of circularly polar-
ized lights. This corresponding depolarization time is g3 = 29.8 fs at 300 K and
g3 = 104.1 fs at 77 K .

where�abs(C) and� em(C) are occupation factors for absorption and emission process:

� abs = �=Q#aq(1 + �=Q+q) − (1 + �=Q) (1 + #aq)�=Q+q (3.51a)

� em = �=Q(1 + #aq) (1 + �=Q+q) − (1 + �=Q)#aq�=Q+q. (3.51b)

where we suppress the time dependence for both � and # . In the absorption
process, Eq. (3.51a), the first term means that there is no scattering when there is
no exciton or no phonon (�=Q = 0 or #aq = 0), while for the emission, Eq. (3.51b),
its first term requires non-zero exciton occupation to realize the process but not
for phonons. For both scattering channels, the second terms are the time reversal
process of their first term, respectively. The (1 + �) structure reflects the bonsonic
property of exciton which is (1 − 5 ) for 4-ph scattering where 5 is the electron
(fermion) occupation number [62]. We present the simulation with steady incident
circularly polarized light for first 100 fs. During the process, we assume the phonon
to be in thermal equilibrium with environment and kept at T= 300 K, satisfying the
Bose-Einstein distribution. The evolution of exciton in K/K′-valley is presented as
a function of time in Fig. 3.12(c). The K-valley exciton fastly increase in first 50 fs
and gradually saturates near the end of the incident pulse. Once the pulse turned off
after 100 fs, the occupation number immediately drops exponentially. On the other
hand, the K′-valley exciton keeps increasing for 30 fs even after the incident pulse
stops and decreases very slow (−30% in 250 fs) afterwards. We define the exciton
depolarization by fitting the ratio of the occupation number between two valleys
with:

= K
= K’

= �4−(C−C0)/g3 , (3.52)
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where � and C0 are constants depending on the simulation setting, such as pulse
strength and pulse duration, and the time constant g3 is the intrinsic depolarization
time scale (Fig. 3.12(d)). Fitting data within 150 fs ∼ 300 fs, we obtain that the
exciton depolarization time scale at T=300 K is about g3 = 29.8 fs, such that, 250 fs
after the end of the pulse, excitons almost equally occupy the K/K′-valley. We also
present a calculation at T= 77 K and obtain a g3 = 104.1 fs depolarization time.
This result is consistent with the fact that the bright exciton relaxation time is about
three short at 300 K compared to the time at 77 K.

3.4 Joint Study on Exciton-Phonon Relaxation in Monolayer Tungsten Dise-
lenide

Optical measurements employed in excitonic research or discussed in previous sec-
tion are limited to capture the electron-hole with zero-momentum transfer without
spin-flipping while shading light only partially on finite-momentum exciton and
spin-triplet pairing indirectly via ex-ph coupling. Directly probing the drak exci-
ton, on the other hand, is achieved by the time- and angle-resolved photoemission
spectroscopy (trARPES)whichmeasures the energy-momentumdistribution of pho-
toemitted electrons in non-equilibrium systems on ultrafast timescales [243–245].
However, a corresponding theoretical description for dark exciton behavior is still
missing which requires the knowledge of exciton-phonon interaction.

In this section, we present a joint researchwith experimental collaborators, Professor
Ralph Ernstorfer and graduate student Shuo Dong in Max Planck Institute in Berlin,
on exciton real-time formation and relaxation in monolayer WSe2, by combining
their trARPES technique and our first-principle ex-ph formalism. Our results iden-
tify the electron relaxation from K-valley to Q-valley under the correlation within
an exciton and obtain a characteristic delay time of ∼100 fs. Our theoretical analysis
on ex-ph scattering map in full BZ suggests new path way that wasn’t captured
in former approaches which considered only K-K′ inter-valley transitions. Before
closing the discussion, we provide predictions on energy-resolved ARPES spectrum
for future validation which is not currently accessible due to the limited resolution
in energy domain of instruments currently equipped.

Exciton band structure

As emphasized in Sect. 3.3, the question ofwhether themonolayerWSe2 of direct gap
or indirect gap is still under debating, and critically depends on the synthesis method.
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Figure 3.13: Exciton band structure in monolayer WSe2. (a) Exciton energy-
momentum relations (band structure) along chosen symmetry line. Globalminimum
(Emin = 1.817 eV) locate at M and Q points corresponding to indirect band gap
transition between electron valance band maximum at K-point and conduction band
minimumatQ-point. Lowest bright excitons are the n= 3,4 excitation atΓ-point with
energy E3,4,Γ = 1.935 eV. Given phonon energy ∼30 meV, the relaxation window
for bright exciton is presented by horizontal red lines. (b) The independent particle
picture for electron-hole pairing in Brillouin zone of excitons at high symmetry
points: M, Q, and K.

Provided with our preliminary on bright exciton scattering path, the photo-excited
Γ-exciton will be scattered mainly by M-phonon and Q-phonon (See Fig. 3.10)
which corresponds to the scattering of electron from K-valley to Q-valley. As a
result, the relative energy alignment between the local minimum at K- and Q-point
in the conduction band plays a central rule in the early stage of the exciton relaxation
process.

In this study, we adopt the band edge offset from our experiment collaborators,
ΔE & =E −E& = 118 meV. Solving the BSE5, Eq. (1.9), for all Q−points in
the BZ, we obtain the exciton eigenenergy and exciton wave function to study the
dynamics. We present the resultant exciton energies in Fig. 3.13(a) and highlight
the location of the lowest bright exciton at 1.935 eV. Multiple minima are found
locating at high symmetry points. The global minima are the spin-singlet exciton
with momentum Q = Q and the spin-triplet exciton with momentum Q = M with
energy Emin = 1.817 eV, while the later is generally missed in the previous approach.
For later discussion, given phonon frequency ∼7 THz in WSe2, we also specify

5The detailed computational information and a discussion on substrate effect can be found in
Appendix I.
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the bright exciton relaxation window at Ebright ± 30 meV. The window shows that
the available phase space in excitonic Q- and M-valley for bright exciton relaxation
can be reduced by 50% once the bright exciton energy is lowered by 30 meV,
reflecting the strong dependence of relaxation time on the energy offset ΔE & . In
Fig. 3.13(b), we show the relative position of electron-hole pair in the BZ for chosen
exciton momentum. Note that since the highest valance band has only maximum at
K/K′ points and has larger curvature than the lowest conduction band, the hole is
less mobile than the electron and tends to stay in the K/K′ corner.

Ultrafast exciton relaxation and trARPES

The trARPES, like the standard ARPES, measures the electronic state, including
energy and momentum, by XUV-photon probing but with additional power on
time-resolution. The multidimensional signal � (k, l; C) is the product of electron
occupation =0 (k; C) in a quasi-particle state |0, k〉 at time C and corresponding
spectral function �0 (k, l). Thus, provided with the normalization of the spectral
function

∫
3l�0 (k, l) = 1, the integration of trARPES intensity along energy

domain can produce the electron occupation at each time step in the momentum
space and reveal the electron re-distribution during carrier relaxation.

To simulate the exciton relaxation process, we apply the RT-BTE formula, Eq. (3.50)
at room-emperature, 300K, in monolayer WSe2, with a Gaussian pumping of 55 fs
full width at half maximum (FWHM) acting equally on the K/K′-valley correspond-
ing to the linearly polarized incident pulse employed in the experiment setting. With
the time-evolution of the exciton occupation number, the corresponding ARPES sig-
nal can be obtained by [246]:

� (:, l; C) ∝ Im

{∑
<Q

�<Q(C)
∑
2E

|�<Q
E2k |

2

l − (�<Q + nEQ−k) + 8[

}
, (3.53)

where �<Q(C) is the exciton occupation from the RT-BTE result in the <-th exciton
state with energy-momentum (�<Q,Q) and |�<Q

2Ek |
2 is the probability to find the

electron in the exciton state (<,Q) with energy �<Q above the hole energy nEQ−k. [
is the line width broadening, for which we set as a constant value temporally but can
be determined by the line width calculation presented in Sect. 3.3. In Fig. 3.14, we
demonstrate few snap shots of our results of real-time exciton relaxation simulation
and the corresponding ARPES prediction. In the left side of Fig. 3.14, we use the
size of the circle to represent the occupation along with the exciton band structure
in the main panel, and the energy resolved and momentum resolved occupation are



75

t=10 fs

t=100 fs

t=200 fs

(a)

(b)

(c)

ΓM MKQ

ΓM MKQ

ΓM MKQ

t=10 fs

t=100 fs

t=200 fs

Γ MKQ

Γ MKQ

Γ MKQ

ex
ci

to
n 

en
er

gy
 (e

V)

1.85

1.90

1.95
ex

ci
to

n 
en

er
gy

 (e
V)

1.85

1.90

1.95

ex
ci

to
n 

en
er

gy
 (e

V)

1.85

1.90

1.95

n(k)

n(k)

n(k)

n(E)

n(E)

n(E)

el
ec

tro
n 

en
er

gy
 (e

V)

1.8

1.9

2.0

el
ec

tro
n 

en
er

gy
 (e

V)
1.8

1.9

2.0

el
ec

tro
n 

en
er

gy
 (e

V)

1.8

1.9

2.0

Figure 3.14: Snap shot of exciton relaxation process and predicted ARPES.
For all panel, left panel is the energy-momentum resolved exciton distribution, and
the right panel the the corresponding APRES signal. (a) At the peak time of the
pumping pulse, t=10 fs, excitons mainly locating in the Γ-valley. In ARPES, the hot
spot locating at the K point reflects the K-K electron-hole transition of the bright
exciton. (b) At t=100 fs, excitons occupy in all Γ-, Q-, and M-valleys, but merely
in K-valley. Signal at Q-valley is appearing in ARPES. (c) At t=200 fs, most of
excitons have left Γ-valley with only few in the buttom of bright state. ARPES spot
in K-point disappears, and signal in Q-point dominates the spectrum.
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shown in the right and bottom panel respectively. In the right side of Fig. 3.14, the
ARPES spectrum along the high symmetry line Γ-Q-K-M is presented. Fig. 3.14(a)
shows the exciton distribution during the pumping stage within which t=10 fs is
the time when the Gaussian pulse meets its maximum. In this early stage, as our
design, most exciton are residing in the Γ-valley above the optical gap of E=1.935 eV.
Besides, a minor portion of excited excitons have already been scattered. Among
them, the dominant scattered final states are those in M-valley above 1.95 eV which
results from the M-phonon absorption of the exicted Γ-excitons. In contrast to
M-phonon, the emission/absorption ratio is more balanced for Γ-exciton-Q-phonon
interaction which is generally weak. By applying Eq. (3.53), we can convert the
exciton occupation into the electronic spectrum. The result shows a single hot
spot located at the K-point which corresponds to the direct gap excitation of K-K
electron-hole pairs. Compared to previous study of excitonic ARPES [220], we
can obtained the downward parabolic shape as the shadow imagine of valance band
even with only incoherent excitons due to the superposition of electron-hole vertical
transition of k-points near the K-valley extreme in the bright exciton wave function.
After the pumping stops and excitons relax for ∼ 100 fs (see Fig. 3.14(b)), excitons
occupy all Γ-, Q-, and M-valleys, while, provided with narrow density of states,
the excitonic K-valley merely plays a role in the exciton relaxation process. The
growing exciton occupation in Q- and M-valley result in the appearance of signal
at Q-point in the ARPES; since the hole is robustly concentrating in the K-valley,
electron in Q-exciton andM-excitonmainly sit in the electronic Q-valley as shown in
Fig. 3.13(b). When time reaches t=200 fs (see Fig. 3.14(c)), only a small number of
excitons remains in Γ-valley occupying the bottom of bright exciton state which are
the relic of the pumped excitons. Therefore, in the ARPES spectrum, no significant
signal shows at the K-point any more, and Q-point spot dominates. The Q-point
spot comes from the high exciton occupation number in the bottom of continuous
band in Q- and M-valley with energy ∼1.90 eV. With a detailed analysis of the shape
of the spot6, a upward parabola can be obtained which corresponds to the exciton
band dispersion.

So far, we have provided an elaborate discussion on the energy-momentum resolved
ARPES spectrum. However, it’s challenging in experiment setup to access the
fine structure due to the limited energy resolution. Thus, in this collaboration, we
focus on the relaxation in the momentum space by studying the momentum-resolved

6We present the same data in log-scale in Appendix J
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t=0-30 fs t=100 fs

Figure 3.15: Momentum-resolved intervalley carrier dynamics. (a) By integrat-
ing the first 30 fs, the transient momentum map � (:G , :H) shows the excited-state
carriers distribution in the first Brillouin zone (dash hexagonal labelled) , including
the K and Q valleys. (b) The hot carrier distribution at t=100 fs. (c) The elec-
tron population time traces at K (red) and Q valley (blue) from experimental data
(dotted lines) and the ab initio calculated within ex-ph scheme (solid lines), within
independent 4-ph scheme (dashed line). The gray region represents the 55 FWHM
Gaussian pulse.

intensity:
� (k; C) ∝

∑
<Q

�<Q(C)
∑
2E

|�=Q
2Ek |

2. (3.54)

We show the result from both experiment and numerical simulation in Fig. 3.15.
Fig. 3.15(ab) presents the integrated intensity observed in the first 30 fs and the
snapshot at 100 fs in momentum space. In the early stage, hot spots located at the
corner of the hexagonal BZ are the optical pumped bright exciton. Strength in K-
and K′-valley are approximately the same, but 3-fold symmetry is lacking since the
pumping pulse is not vertical to theWSe2 crystal. After ∼70 fs, the excited electrons
relax from K-valley to Q-valley due to the phonon scattering which corresponds to
the Γ-M and Γ-Q relaxation in the exciton picture. We contrast the experimental
data and the computed result in Fig. 3.15(c) and obtain great agreement on the delay
time of the Q-valley occupation saturation within 10 fs. However, the discrepancy
is significant in the K-valley occupation after they reach a stationary state (200 fs
after the pulse). Rather, by fitting the decay trend from 50 fs to 200 fs with simple
exponent up to a rigid shift, we can obtain:

= exp(C) = 4−(C−15)/43.0 + 0.54 (3.55)

= theo. (C) = 4
−(C−50)/43.0 + 0.00 (3.56)

with the same characteristic decay time scale of 43 fs. Thus, we attribute the
inaccuracy to the uncertainty in the band edge offset which is critical to the electron
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distribution in thermal equilibrium but not from the dynamics. In addition, we also
carry out the relaxation with only 4-ph interaction but no excitonic effect, as shown
together in Fig. 3.15(c). The comparison between the two approaches, ex-ph and 4-
ph, shows how electron-hole attraction corrects the relaxation process; although the
decay in K-valley is fastened a little under the modulation from holes, the Q-valley
occupation can’t reach saturation even after 200 fs without them.

For detailed ex-ph dynamics, we demonstrate the exciton relaxation channel for
excitons in each valley in Fig. 3.16 which presents the scattering processes in
cartoon plots from both excitonic picture and electronic picture, accompanied with
a color map showing the coupling strength. Fig. 3.16(a) shows that the singlet
(bright) Γ-exciton couples mainly to the M-phonon and Q-phonon which scatters
the exciton into the corresponding M- and Q- valley. In terms of electronic picture,
this scattering channel corresponds to the scattering of K-electron into different
Q- and Q′-valley. Compared with the scattering mapping in Fig. 3.10, we retain
a six-fold symmetry for Q-phonon interaction, since the bright exciton is excited
with linearly polarized incident light and occupying in K/K′-valley equally here. In
Fig. 3.16(b), the M-exciton couples mainly with Γ-phonon such that the intra-valley
scattering domains the M-exciton relaxation. Besides, the M-exciton also couples
to M-phonon and is scattered into the other two inequivalent M-valleys, which
corresponds to the electron scattering among Q′-valley in electronic picture. Last,
for Q-exciton in Fig. 3.16(c), intra-valley is also the strongest scattering path, and
its interaction with M-phonon will create inter-Q-valley scattering in both excitonic
picture and electronic picture.

3.5 Conclusion

Ab initio method combining GW-BSE and perturbation theory to compute the
interaction between excitons and phonons is carried out in this study which shows
the ex-ph coupling can be viewed as a superposition of independent electron-phonon
scattering processes and hole-phonon scattering processes. Based on the theory, we
for the first time implement a fully parameter-free algorithm to investigate exciton
dynamics. The numerical approach merges state-of-the-art algorithms from the
exciton community (YAMBO) and the transport community (Perturbo).

Equipped with the methodology, we shed lights on ex-ph phenomena in bulk h-
BN and monolayer WSe2, including ex-ph relaxation time, phonon-assisted PL,
photon-emission line width broadening, and exciton depolarization effect. Our
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calculations in h-BN reveal the dominant ex-ph coupling with the LOmode, identify
the threshold for LO phonon emission and the associated LO emission time, and
unravel the momentum, energy and temperature dependence of ex-ph scattering
processes. Our studies on ex-ph effect in monolayer WSe2 accurately reproduce the
temperature dependence of bright exciton linewidth, phonon-assisted PL signal and
provide a prediction on exciton valley depolarization time scale. The analysis of
the linewidth shows a chiral dependence in K-valley exciton scattering channel and
reveals the dominant role of LA-phonon. Our calculation of PL identifies the source
of the light signal in both phonon and exciton sectors; the main peak comes from the
light emission of Q′-exciton with the assistance of LA-phonon while electron-hole
radiative recombination during the optical phonon emission creates a weaker but
broader side band. For the exciton depolarization, our BTE simulation predicts a
femtosecond characteristic time at room-temperature which was ignored in previous
treatments.

In the joint study with experiment group, we investigate the exciton real-time relax-
ation in monolayerWSe2. The result from RT-BTE calculation traces the exciton re-
distribution in the energy-momentum space which highlights the strong M-phonon
absorption in the early pumping stage and the following dissipation from Γ-valley
into Q- and M-valley. Based on the numerical data, we convert the time-resolved
exciton occupation into electronic spectrum that can be obtained by trARPES tech-
nique. Reducing the multidimensional information down tomomentum domain, our
prediction of the electron relaxation from K-valley to Q-valley under the modulation
of excitonic effect perfectly matches the observation conducted by our collabora-
tors. In addition, we provide a detailed analysis on the ex-ph scattering channel
for excitons in Γ−, Q-, and M-valley. The key finding is the dominant intra-valley
scattering of Q- and M-exciton over the inter-valley scattering which quantifies the
stability of Q-, M-valley degree of freedom under the ex-ph interaction.

Overall, our approach presented in this chapter paves the way to quantitative studies
of exciton transport and ultrafast dynamics in materials with strongly bound excitons
and provides novel insight into exciton evolution and light emission under the
influence of phonon effect. It benefits future investigations on exciton non-radiative
behaviors and studies in the strong correlated system where electron-hole-lattice
are coupled under equal footing. On the other hand, the special discussion on
TMDs deepens our understanding of the robustness of valley degree of freedom and
provides a guideline in future valleytronic design.
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C h a p t e r 4

CONCLUSION AND FUTURE DIRECTIONS

Over the past decades after proposal by Frenkel in 1931, exciton has now been a
central research subject in the field of condensed matter system and semiconductor
physics, with the importance growing even faster along with the advance in mod-
ern material design and synthesis technique. Each step of the development replies
on the support and guidance from corresponding theoretical studies. Currently,
the progress is slowed down by the lack of knowledge on the interaction between
exciton and uncontrolled environment. Thus, this thesis provides numerical ap-
proaches, shedding lights on the underlying mechanism in exciton intrinsic radiative
recombination and non-radiative ex-ph scattering.

For exciton radiative behavior, our work establishes a general framework to study the
exciton radiative lifetimes from first-principle. We review existing and derive new
formalism for excitons in 0D, 1D, 2D, and 3D nanostructures. The use of GW-BSE
approach correctly includes the electron-hole attraction on the top of independent
particle picture based onDFT. The analytic result shows a strong correlation between
the temperature trend of effective lifetimes and the system dimension by a power-
law due to the different phase space occupied in thermal equilibrium. The study
of different dimensionalities further points out the usage of incorrect prefactors in
the formula adopted by early literature when discussing low-dimensional materials.
These discussions are then supported by our numerical benchmark calculations in
gas molecules and bulk GaAs. The methodology developed enables quantitative
research based on the exciton radiative decay, and here we carry out several pioneer
works. First, we analyze the excitonic transition dipole in monolayer TMDs and
reformulate the radiative lifetime equation in 2D system into light emission rate as
a function of emission angle. The numerical calculation predicts an anisotropic
PL pattern from exciton recombination in TMD as a result of superposition of
bright exciton state in inequivalent K/K′ valley in BZ. Second, we use the exciton
energy and radiative lifetimes to identify the potential atomic structure of defects
in monolayer h-BN and conclude the most probable one to be the nitrogen vacancy
plus a carbon replacement at boron site. For the third application, we study the
exciton radiative lifetimes in bulk GaN. The inconsistency between our calculation
and experiment data raises the importance of considering the exciton dissociation
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effect which corrects the deviation after it is included. Taken together, the GW-
BSE scheme for exciton radiative lifetime presented in this thesis constitutes the
cornerstone of study regarding the light-matter interaction in novel materials and
advance the optical nanotechnology. Applications beyond the cases we work out in
Chapter 2 are vast. Examples like organic crystal and Perovskites are also emerging
material for optoelectronic deviceswith strong excitonic effect to be explored. On the
other hand, exciton in heterostructures, such as the indirect exciton in bilayer-TMD,
with their electron-hole spatially separated, can possess much longer lifetime than
monolayer. These excitons are of more interests from the perspective of quantum
engineering and urge for individual investigation. In summary, the access to the
exciton radiative lifetime helps us to isolate the intrinsic quantities from external
effects and provides the guideline for future design in optoelectronic and photovoltaic
technology.

For ex-ph interaction, our methodology combines the GW-BSE method and the first
order perturbation theory to compute the ex-ph matrix element. Our derivation
shows that the ex-ph scattering process can be viewed as a quantum superposition
of independent electron-phonon scattering and hole-phonon scattering weighted
by exciton coefficients. This idea was adopted as a makeshift in literature but a
rigorous proof was merely found. The key achievement demonstrated in this thesis
is that we for the first time implement the computation routine by interfacing the
mainstream DFT and BSE algorithms. This breakthrough enables the ab initio
simulation for all phenomenon from ex-ph dynamics. In this work, the scheme is
mainly applied on two excitonic systems, bulk h-BN and monolayer WSe2, with
stable exciton state in room-temperature of & 200 meV binding energy. Our study
in bulk h-BN reveals the strong exction coupling with the optical phonon which
was a general feature for charged carriers in polar materials but never shown for
neutral excitation. This fact results in the relaxation rate drop for exciton with
energy below the LO-phonon emission threshold and the two dominant peaks in
the phonon-assisted PL spectrum from optical phonon emission. The study on
the WSe2 discusses the homogeneous linewidth broadening of the bright exciton,
phonon-assisted PL. The success of reproducing the experiment data is the first
achievement of using fully first-principle method to study ex-ph phenomenon in
material with strong SOC. We further investigate the exciton depolarization effect
in WSe2. Our result points out that ex-ph coupling can’t cause the inter-K/K′ valley
scattering in pure quantum process, but semi-classically. We apply the BTE and
implement corresponding algorithm to time step the occupation ratio in K/K′ valley
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and determine a depolarization time scale of . 100 fs which was ignored in previous
treatment. This thesis closes with a joint collaboration with experiment group
on exciton relaxation in monolayer WSe2. The result highlights the fast electron
scattering between K- and Q-valley which dominates the electron relaxation process.
The comparison between simulations with and without exciton effect emphasizes
the important role of hole playing during the electron-phonon scattering which were
considered non-interacting in early study. From the simulation, we also provide
prediction on the ARPES signal for the first hundreds of femtosecond after the
pumping, left for future validation. Further studies are under discussion but not
included in this thesis. For instance, provided with the ability to access exciton
occupation in ultrafast timescale, our machinery enables us to study the time-
depending properties during the exciton formation while a collaboration is on-going
on investigating the transient absorption in h-BN. Additionally, the exciton transport
in monolayer TMD under thermal gradient is found to exhibit the exciton hall
effect for which opposite drift direction is found for exciton in different K/K′ valley.
This study requires the involving of the topological features in current framework
and is important for studies in topological materials. On the whole, this work
constitutes the theoretical basis to study the ex-ph scattering dynamics and grants
us a tool to quantify the non-radiative observables, which never exists before. In
addition, applications carried out in Chapter 3 provide microscopic insights of
exciton relaxation processes in terms of physical quantities including, temperature,
momentum, energy and lattice vibration modes.

On top on this thesis, some improvement can make the framework more complete.
For example, current GW-BSE method and following ex-ph discussion are imple-
mented on regular grid for which the computation cost increases as =2

:
on the grid

with =: -points. However, in general, O(100) points for each extended dimension is
required for real-timeBTE simulation, but During the study, wemeet a resource limit
when 72 × 72 × 1-gird is applied for monolayer WSe2 and use unphysical trilinear
interpolation to convert to fine grid. Thus, we call for future study on interpolation
scheme, like Wannier interpolation, for GW-BSE and ex-ph to reduce the compu-
tation cost and enable calculation on materials like organic crystal and perovskites.
Other refinements of the work, like program optimization, are undergoing when the
algorithm is being merged into the Perturbo code.

Beyond the scope of this work, some extension are expected and deserved to be
explored. In this thesis, we mainly focus on the clean semiconducting crystal with
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low exciton density and no free carrier such that fruitful interaction are neglected.
When the target material is doped or gated, excitons can further bind with charge
carriers and form trions. The study of trion dynamics and radiative decay should
be able to explain the full spectrum in the PL signal. On the other hand, when
exciton density is high enough over a critical point, exciton condensation will occur
accompanied with crystal deformation for which the ex-ph coupling will be a central
ingredient to compute the critical temperature of the phase transition.

In conclusion, the new ideas, approaches, and findings provided in this thesis expand
human understanding of exciton physics and grant the future nanotechnology a
theoretical foothold to advance in optoelectronics and photovoltaics.
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A p p e n d i x A

SECOND QUANTIZATION OF LIGHT IN ANISOTROPIC
MATERIALS

Starting from Maxwell’s equations in a material:

∇ · D = 0 ,
mD
mC

= ∇ ×H ; D = n0&AE ,

∇ · B = 0 , −mB
mC

= ∇ × E ; B = `0H , (A.1)

where n0 is the vacuum permittivity and `0 the vacuum susceptibility, we define the
vector potential A and the scalar potential Φ:

B = ∇ × A, E = −∇Φ − mA
mC
. (A.2)

We adopt a generalized Coulomb gauge, in which:

Φ = 0, ∇ · (n0&AE) = 0 , (A.3)

and write the equation of motion for A as

− `0n0&A
m2A
mC2

= ∇ × (∇ × A) = ∇(∇ · A) − ∇2A. (A.4)

From Eq. (A.4), we construct the Lagrangian

L =
1
2

∫
3r

[
n0E) (r)&AE(r) −

B(r)2
`0

]
=

1
2

∫
3r

[
n0 ¤A) (r)&A ¤A(r) −

(∇ × A)2

`0

]
. (A.5)

The conjugate momentum of the vector potential is

�(r) = XL
X ¤A(r)

= n0&A ¤A(r), (A.6)

and by performing a Legendre transformation, we write the Hamiltonian as

H =

∫
3r� ¤A − L = 1

2

∫
3r

[
�)&−1

A �
n0

+ (∇ × A)2

`0

]
. (A.7)

Note that the Hamiltonian for classical electromagnetic field in vacuum can be re-
covered by setting &A = I.
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To define the creation and annihilation operators for second quantization, we follow
the standard procedure and expand the vector potential in terms of its eigenmodes,
which are labeled by the index _:

A(r, C) =
∑
_

@_f_ (r)48l_C , (A.8)

where @_ are constants representing the amplitudes and f_ (r) satisfy

l2
_`0n0&Af_ − ∇ × (∇ × f_) = 0. (A.9)

Since l_ enters the equation as a square, both +l_ and −l_ can have the same
f_ solution. However, since the vector potential is always real, we need A† = A,
so that for each @_f_ (r)48l_C in Eq. (A.8), there must exists a corresponding term
@′
_
f′
_
(r)4−8l_C such that

@′_f
′
_ (r) = @∗_f∗_ (r). (A.10)

For convenience, we label this part of the solution as −_:

@′_f
′
_ (r)4−8l_C = @−_f−_ (r)48l−_C . (A.11)

To obtain an orthogonality condition for the solutions, we substitute f_ (r) =√
&A
−1

√
`0n0

g_ (r) and get:

l2
_g_ −

√
&A
−1

√
`0n0

∇ ×
(
∇ ×
√
&A
−1

√
`0n0

g_

)
= 0. (A.12)

Now with l2
_
as the eigenvalue, g_ are eigenfunctions of a Hermitian operator and

form an orthogonal solution set:∫
3r g†

_
(r) · g_′ (r) =

∫
3r `0n0f†

_
(r)&Af_′ (r) = X_,_′ . (A.13)

In the following, we take plane waves as our eigenmodes, and label them by their
polarization and momentum by substituting _ → (_, q), −_ → (−_,−q). We also
put

f_q(r) =
e_q√
`0n0

48q·r. (A.14)

The equation of motion becomes:

l2
_q`0n0&Ae_q + q

(
q · e_q

)
− @2e_q = 0, (A.15)

the orthogonality condition
e†
_q&Ae_′q = X_,_′ , (A.16)
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and the relation connecting _ and −_:

@∗_qe∗_q = @−_,−qe−_,−q. (A.17)

Then the vector potential can be written as

A(r, C) =
∑
_q
@_q

e_q√
`0n0

48(q·r+l_qC)

= 2
∑
_>0,q

@_qe_q4
8(q·r+l_qC) + @∗_qe∗_q4

−8(q·r+l_qC)

(A.18)

and the conjugate momentum becomes:

�(r, C) = 2
∑
_q
8@_ql_qn0&Ae_q4

8(q·r+l_qC) . (A.19)

The Hamiltonian can be written as:

H = n02
2+

∑
_q
l2
_q@
∗
_q@_q

= n02
2+

∑
_>0,q

l2
_q(@∗_q@_q + @_q@

∗
_q), (A.20)

where+ is the volume of the system. Finally, we can define creation and annihilation
operators for _ > 0:

0̂_q = 2

√
2+l_qn0

ℏ
@_q,

[
0̂_q, 0̂

†
_′q′

]
= Xq,q′X_,_′ (A.21)

using which the vector potential operator becomes:

A(r, C) =
∑
_q

√
ℏ

2+l_qn0

(
0̂_qe_q4

8(q·r+l_qC) + ℎ.2.
)

(A.22)

and the Hamiltonian:
H =

∑
_q
ℏl_q

(
0̂
†
_q0̂_q +

1
2

)
. (A.23)
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A p p e n d i x B

DERIVATION OF THE RADIATIVE RECOMBINATION RATE
IN ISOTROPIC 3D MATERIALS

We provide additional details for the derivation of the radiative recombination rate
in isotropic 3D materials, Eq. (2.13). In an isotropic bulk material with dielectric
constant n , the photon vector potential is given by Eq. (A.22) with frequency lq =

2 |q|/
√
n , and the IP and OOP polarization vectors are those in Eq. (2.11). Due to

momentum conservation, the summation over all possible final photon wavevectors
in Eq. (2.1) is restricted to q = Q. As a result, we can write the radiative rate as

W
3�,8B>
(

(Q) = c42

n0<2+2&
√
n

{��−?(G sin i + ?(H cos i
��2
IP

+
��?(G cos \ cos i + ?(H cos \ sin i − ?(I sin \

��2
OOP

}
× X

(
�( (Q) −

ℏ2&
√
n

)
.

(B.1)

By setting cos i = &G/&GH, where QGH is the projection of Q onto the GH plane, and
cos \ = &I/&, we obtain Eq. (2.12). To obtain the radiative rate at finite temperature
) , we plug Eq. (2.12) into Eq. (2.2) along with the parabolic dispersion in Eq. (2.3).
The denominator, due to lack of angular dependence, reduces to a Gaussian integral
of the kind

∫ ∞
0 3G G2 exp(−G2) =

√
c/4, and gives∫

3&G3&H3&I4
−�( (&)/:�) =

∫
3Ω

∫ ∞

0
3& &2 4

−ℏ2&2
2"(:�) =

(
2c"(:�)

ℏ2

)3/2

(B.2)

where 3Ω = sin \3\3i is the differential solid angle, and we leave out the factor
4−�( (0)/:�) , which is present both in the numerator and denominator and cancels out
in the final result. For the numerator, we note that the exciton parabolic dispersion
can be approximated as flat within the light cone, so that we can put �( (Q) ≈ �( (0).
As a result, we get∫

3&G3&H3&I 4
−�( (&)/:�) W3�,8B>

(
(Q) =

≈ c42

n0<2+2
√
n

∫
3Ω

∫
3& &

{��−?(G sin i + ?(H cos i
��2
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+
��?(G cos \ cos i + ?(H cos \ sin i − ?(I sin \

��2} X(�( (0) − ℏ2&√
n

)
=

c42

n0<2+2
√
n

∫
3i 3\ sin \

∫
3& &

{
|?(G |2 sin2 i + |?(H |2 cos2 i

+|?(G |2 cos2 \ cos2 i + |?(H |2 cos2 \ sin2 i + |?(I |2 sin2 \
}
X

(
�( (0) −

ℏ2&
√
n

)
=

8c242?2
(

3n0<2+2
√
n

∫
3& & · X

(
�( (0) −

ℏ2&
√
n

)
=

8c2√n42?2
(
�( (0)

3n0ℏ223<2+
. (B.3)

After dividing the numerator by the denominator, we obtain

〈W3�,8B>
(

〉()) =
8
√
cn 42 ℏ ?2

(

3 n0<2+�( (0)2

(
�( (0)2

2"(2
2:�)

)3/2
, (B.4)

namely the finite temperature radiative lifetime in Eq. (2.13).
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A p p e n d i x C

DERIVATION OF THE RADIATIVE RECOMBINATION RATE
IN 2D MATERIALS

We provide additional details for the derivation of the radiative recombination rate in
2D systems, Eq. (2.15) and Eq. (2.16). Without loss of generality, we apply Eq. (2.1)
with exciton momentum Q = & cos ix̂ + & sin iŷ lying in the xy-plane containing
the material. As emphasized in the main text, translation symmetry applies only in
the xy-plane while leaving the momentum along z-aixs unrestricted. Thus, Eq. (2.1)
is refined into:

W( (Q) =
2c
ℏ

{(q·&̂)&̂=Q}∑
_q

��〈�, 1_q |�i=C |(Q, 0〉
��2 X(�( (Q) − ℏ2@)

=
c42

n0<22+

{(q·&̂)&̂=Q}∑
_q

1
@

��e_q · 〈� |p|(Q〉
��2 X(�( (Q) − ℏ2@). (C.1)

To evaluate Eq. (C.1), we take the continuous limit of the summation over the photon
wavevector, using � for the area of the system and !I for its length along I (so that
+ = � · !I), and imposing the constraint @2 = &2 + @2

I inside the delta function, with
the 2D dipole moment p( = 〈� |p|(Q〉 = ?(G x̂ + ?(Hŷ, we obtain Eq. (2.15) of the
main text:

W( (Q) =
c42

n0<22+

!I

2c

∫ ∞

−∞
3@I

1
@

(
| − ?(G sin i + ?(H cos i|2IP

+ cos2 \ | − ?(G cos i − ?(H sin i |2OOP
)
X (�( (Q) − ℏ2@)

=
42?2

(

2n0<22�
2
∫ ∞

0

3@I

@

(����− ?(G?( sin i +
?(H

?(
cos i

����2
IP

+
@2
I

@2

���� ?(G?( cos i +
?(H

?(
sin i

����2
OOP

)
X

(
�( (Q)
ℏ2

−
√
@2
I +&2

)
=

42?2
(

n0<22�
·
∫ ∞

&

3@√
@2 −&2

(����− ?(G?( sin i +
?(H

?(
cos i

����2
IP

+ @
2 −&2

@2

���� ?(G?( cos i +
?(H

?(
sin i

����2
OOP

)
X

(
�( (Q)
ℏ2

− @
)
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Figure C.1: Exciton ratiation phase space. An exciton associated with the phase
space area 3�Q (shown in green) decays radiatively by emitting a photon through
the area 3�\ (shown in red).
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(C.2)

Angular Dependence of the Radiative Rate

To compute the PL intensity emitted as a function of angle by an exciton ( upon
recombination, we first substitute√

�2
(
(&) − ℏ222&2

�( (0)
≈

√
�2
(
(&) − ℏ222&2

�( (&)
= cos \

in Eq. (4) of the main text, and obtain:

W( (Q)=
W( (0)
cos \

·
{����− ?(G?( sin i +

?(H

?(
cos i

����2
IP
+ cos2 \

���� ?(G?( cos i +
?(H

?(
sin i

����2
OOP

}
.

(C.3)
Guided by Fig. S1 below, we then convert W( (Q) to W( (\, i), as follows. For an
exciton in state ( and with center-of-mass momentum Q located around a small area
3�Q in phase space, the emission occurs over a small solid angle spanned by the
area 3�\ . One can thus write:

W( (\, i) 3�\ = W( (Q) 3�Q. (C.4)
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Using 3�Q =& 3& 3i as well as 3�\ = @2 sin \ 3\ 3i, as seen in Fig. S1, together
with & = @ sin \, we obtain:

W( (\, i) = W( (Q) cos \. (C.5)

Using Eq. C.3, we finally obtain:

W( (\, i) = W( (0)·
{����− ?(G?( sin i +

?(H

?(
cos i

����2
IP
+ cos2 \

���� ?(G?( cos i +
?(H

?(
sin i

����2
OOP

}
.

(C.6)
This result is given in Eqs. (2.23) and Eqs. (2.24) of the main text, where the IP and
OOP rates are given separately.
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A p p e n d i x D

DERIVATION OF THE RADIATIVE RECOMBINATION RATE
IN 0D SYSTEMS

We provide additional details for the derivation of the radiative recombination rate
in 0D systems, Eq. (2.20). As discussed above, in the 0D case there is no constraint
from momentum conservation on the emitted photon wavevector. Therefore, we
replace the summation in Eq. (2.1) by an integration over the full momentum space
and write

W0�( =
c42

n0<2

∑
_

∫
3Ω 3@ @2

(2c)3

��e_q · p( (Q)
��2

l_q
X
(
�( − ℏl_q

)
(D.1)

which comes from rewriting the summation along each cartesian component U as∑
@U
=

∫
!U3@U/2c, and !G!H!I = + . In the 0D case, we can apply the photon

quantization solutions used in the 3D case, so that _ = IP or OOP, and e_q are in
the form of Eq. (2.11) with l_q = 2 |q|/

√
n . Note that this approach applies both to

isolated emitters, such as quantum dots and molecules, as well as to atoms, ions or
other single quantum emitters embedded in an isotropic material. Combining these
results, we can write

W0�( =
c42

8n0<2c32
√
n

∫
3i 3\ sin \

∫
3@ @

{��−?(G sin i + ?(H cos i
��2

+
��?(G cos \ cos i + ?(H cos \ sin i − ?(I sin \

��2} X(�( − ℏ2@√
n

)
(D.2)

and finally obtain Eq. (2.20),

W0�( =

√
n42?2

(
�(

3cn0<223ℏ2 . (D.3)
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A p p e n d i x E

RADIATIVE LIFETIME OF EXCITONS WITH LINEAR
DISPERSION

We provide an additional discussion for excitons with linear dispersion:

�( (Q) = �( (0) + � |Q|. (E.1)

The radiative lifetime at finite temperature can still be derived using Eq. (2.2). The
linear exciton dispersionmerely changes the phase-space integral in the denominator
of Eq. (2.2), leading to a simple extension of the treatment for parabolic exciton
dispersion. The phase-space integral in 3 dimensions can be written as:

� (3) =
∫

3Ω3

∫
3&&3−1 exp

[
−�&
:�)

]
, (E.2)

where 3 is the dimensionality of the material and Ω3 is the 3−dimensional differ-
ential solid angle. We obtain:

� (3) =


8c(:�)/�)3 3 = 3
2c(:�)/�)2 3 = 2
2(:�)/�) 3 = 1

. (E.3)

Using this result together with Eq. (2.2), we obtain the radiative lifetimes in isotropic
3-, 2- and 1-dimensional materials with linear exciton dispersion:

〈Wd,8B>
(
〉l8=40A ()) =


c
√
n42ℏ?2

(

3n0<2+�( (0)2

(
��( (0)
2:�ℏ)

)3
3 = 3

W2�
(
(0) × 2

3

(
��( (0)
2:�ℏ)

)2
3 = 2

W1�
(
(0) × 2

3
��( (0)
2:�ℏ)

3 = 1,

(E.4)

where W2�
(
(0) and W1�

(
(0) are the intrinsic radiative rates in 2D and 1D systems,

respectively, which are defined in the main text and are independent of the exciton
dispersion. The radiative lifetimes, 〈g(〉 = 〈W(〉−1, for excitons with linear dis-
persion exhibit a stronger temperature dependence, 〈gd,8B>

(
〉l8=40A ()) ∝ ) 3 , versus

〈gd,8B>
(
〉p0A01>;82 ()) ∝ ) 3/2 for the parabolic exciton dispersion case. For 2D materi-

als with linear exciton dispersions, which have been recently predicted, the radiative
lifetimes are thus expected to follow a )2 trend with temperature.
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A p p e n d i x F

NUMERICAL INFORMATION FOR THE COMPUTATION OF
EXCITONS IN 2D HEXAGONAL BORON NITRIDE DEFECTS

We carry out DFT calculations in the generalized gradient approximation using the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [74]. Our spin-
polarized DFT calculations employ the plane-wave pseudopotential method imple-
mented in Quantum Espresso [80]. The defects are placed in a 5 × 5 × 1 supercell
of hBN with the lattice constant kept fixed at 5 × 2.504 Å while the atoms are
fully relaxed without symmetry constraints. For calculations on monolayer h-BN, a
vacuum of 15 Å is used to avoid spurious inter-layer interactions with the periodic
replicas. We use ONCV pseudopotentials [192, 247] for all atoms along with a
plane-wave kinetic energy cutoff of 80 Ry and a 3 × 3 × 1 k-point Brillouin zone
grid. The GW-BSE calculations are carried out with the Yambo code [86] using a
2D slab cutoff of the Coulomb interaction. For calculations of defects in monolayer
h-BN, a 3 × 3 × 1 k-point grid is employed together with an energy cutoff of 10 Ry
for the dielectric matrix. The number of empty bands included in the GW calcu-
lation (for the polarizability and self-energy summations) is 7 times the number of
occupied bands.
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A p p e n d i x G

ELECTRON-PHONON INTERACTION IN FIRST-ORDER
PERTURBATION THEORY

In this appendix, we derive the 4-ph coupling using the method introduced in
Sect. 3.1 to validate our approach. After the introducing of deformation potential
following Eq. (3.2), we second quantize the perturbed Hamiltonian, introducing
unperturbed electron creation and annihilation operators, 2̂† and 2̂, and rewrite the
perturbed Hamiltonian as

�̃ = �0 + Δ+, where �0 =
∑
8

n8 2̂
†
8
2̂8 and 2̂

†
8
|0〉 = |q8〉. (G.1)

In addition, we project the perturbed Hamiltonian onto the unperturbed basis states
|q8〉:

�̃ =
∑
8 9

〈q8 |�̃ |q 9 〉2̂†8 2̂ 9 =
∑
8 9 ,:;

〈q8 |q̃:〉〈q̃: |�̃ |q̃;〉〈q̃; |q 9 〉2̂†8 2̂ 9 (G.2)

=
∑
8 9 ,:

ñ: 〈q8 |q̃:〉〈q̃: |q 9 〉2̂†8 2̂ 9 ≈
∑
8 9 ,:

n: 〈q8 |q̃:〉〈q̃: |q 9 〉2̂†8 2̂ 9 ,

where in the first line we insert the complete perturbed basis set,
∑
: |q̃:〉〈q̃: | = 1,

with basis elements satisfying �̃ |q̃:〉 = ñ: |q̃:〉, and in the second line we neglect
the electronic eigenvalue correction due to the real part of the 4-ph self-energy and
approximate the perturbed eigenvalues as ñ: ≈ n: to first order.

Next, we use Eq. (3.5) to expand the inner product of the unperturbed and perturbed
wave functions to first order, 〈q8 |q̃:〉 ≈ X8: +

∑
U≠: Δ:UX8U, and dropping terms of

order O(Δ2) we obtain:

�̃ ≈
∑
8 9 ,:

n:

(
X8: +

∑
U≠:

Δ:UX8U

) ©«X 9 : +
∑
V≠:

Δ∗:VX 9 V
ª®¬ 2̂†8 2̂ 9

=
∑
:

n: 2̂
†
:
2̂: +

∑
8 9

′
(
n8Δ
∗
8 9 + n 9Δ 98

)
2̂
†
8
2̂ 9 , (G.3)

where the prime in the summation
∑′
8 9 indicates 8 ≠ 9 . Using Eq. (3.6), we obtain

the perturbed Hamiltonian in a form that will be useful below:

�̃ =
∑
:

n: 2̂
†
:
2̂: +

∑
8 9

′
(
n8
〈q8 |Δ+ |q 9 〉
n8 − n 9

+ n 9
〈q8 |Δ+ |q 9 〉
n 9 − n8

)
2̂
†
8
2̂ 9
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=
∑
:

n: 2̂
†
:
2̂: +

∑
8 9

′〈q8 |Δ+ |q 9 〉2̂†8 2̂ 9 . (G.4)

By expanding Δ+ as a sum of phonon modes, one can also derive the usual 4-ph
interaction Hamiltonian.

This result holds true also in the presence of degenerate electronic states. Taking the
possibility of degenerate states into account, the perturbation expansion in Eq. (3.5)
is modified as:

|q̃8〉 =
∑
9∈D

U8 9

(
|q 9 〉 +

∑
:∉D

Δ 9 : |q:〉
)

with
∑
:∈D

U8: 〈q 9 |Δ+ |q:〉 = n (1)8 U8 9 , (G.5)

where D is the degenerate subspace containing the unperturbed state q8, U8 9 is the
unitary transformation mixing states within the subspace, and n (1)

8
is the first-order

correction to the energy eigenvalue, which is proportional to the intra-subspace
coupling 〈q 9 |Δ+ |q:〉 and can no longer be neglected. Substituting Eq. (G.5) into
Eq. (G.2) and using the unitarity condition

∑
: U8:U

∗
9 :
= X8 9 , we obtain the same

formula as in Eq. (G.3) for inter-subspace scattering:

� inter- subspace =
∑
DD ′

′ ∑
8∈D

∑
9∈D ′

(
n8Δ
∗
8 9 + n 9Δ 98

)
2̂
†
8
2̂ 9 =

∑
DD ′

′ ∑
8∈D

∑
9∈D ′
〈q8 |Δ+ |q 9 〉2̂†8 2̂ 9 ,

(G.6)
where the prime in the summation

∑′

DD ′ indicates D ≠ D′, while intra-subspace
scattering adds new terms:

� intra- subspace =
∑
D

∑
8 9 :∈D

n
(1)
:
U:8U

∗
: 9 2̂
†
8
2̂ 9 =

∑
D

∑
8 9 : : ′∈D

U:: ′U
∗
: 9 〈q8 |Δ+ |q: ′〉2̂

†
8
2̂ 9

=
∑
D

∑
8 9 : ′∈D

X 9 : ′〈q8 |Δ+ |q: ′〉2̂†8 2̂ 9 =
∑
D

∑
8 9∈D
〈q8 |Δ+ |q 9 〉2̂†8 2̂ 9 ,

(G.7)

where the 8 = 9 term contributes only to second order. After combining Eq. (G.7),
Eq. (G.6) and the diagonal term

∑
: n: 2̂

†
:
2̂: , we obtain the 4-ph interaction Hamil-

tonian in the same form as Eq. (G.4), which therefore is valid also in the presence
of degenerate electronic states.
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A p p e n d i x H

NUMERICAL INFORMATION FOR EX-PH DYNAMICS
CALCULATION IN HEXAGONAL BORON NITRIDE

The numerical calculations on h-BN are carried out within the local density approx-
imation of DFT using the Quantum Espresso code [80]. We use norm-conserving
pseudopotentials [248, 249] and a 60 Ry kinetic energy cutoff to compute the
electronic structure (with DFT) and lattice vibrations (with DFPT, which correctly
includes the Frohlich interaction). The 4-ph calculations are carried out with the
Perturbo code [90], while GW and finite-momentum BSE calculations are carried
out with the Yambo code [86]. The same 24 × 24 × 4 Brillouin zone grid is used
for k-points (for electrons), q-points (for phonons) and Q-points (for excitons). The
ex-ph matrix elements are computed without interpolation or symmetry. For the
ex-ph scattering rates, we use linear interpolation to obtain the matrix elements and
exciton energies on a 120 × 120 × 20 Brillouin zone grid.

In our calculations, the same set of electronic wave functions are employed in the
4-ph and BSE calculations, so that the ex-ph matrix elements in Eq. (3.21) of the
main text are not affected by the random phase of the electronic wave functions. The
quasiparticle energies are corrected using a one-shot plasmon-pole GW calculation
(with a 10 Ry cutoff and 100 bands) before solving the BSE at finite center-of-mass
exciton momenta. For the BSE, we use a 10 Ry cutoff for the statically screened
Coulomb interaction and the two highest valence and two lowest conduction bands
to obtain the lowest 8 excitonic states, of which 2 are bright and 6 are dark excitons at
Q = 0. The ex-ph matrix elements are computed without interpolation or symmetry,
using full Brillouin zone grids to converge the sum over k-points in Eq. (3.21) of
the main text. The delta function in the scattering rate equation is approximated by
a Gaussian with a small broadening of 4 meV.

Further, one point to be noted for the construction of the BSE kernel. When
computing optical processes, one usually focuses on transverse excitons and removes
the long-range part (G = 0 component, where G is a reciprocal lattice vector) of
the Hartree potential from the kernel [250, 251]. However, for ex-ph interactions,
both transverse and longitudinal excitons need to be considered, so we use the full
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Coulomb interaction (including the G = 0 Hartree term) in the BSE kernel 1.

Here we show the convergence of the ex-ph scattering rate for the lowest-energy
exciton band (the one with slowest convergence) by comparing results obtained with
Brillouin zone grids of 24 × 24 × 4 and 18 × 18 × 4. It is seen that the scattering
rates obtained with the two grids are in good agreement, so the values shown in the
main text (for a 24× 24× 4 grid) are expected to be reasonably well converged (say,
within ∼ 10 − 20% of the infinite-grid limit). Note that the same grid is used for
k-points (for electrons), q-points (for phonons), and Q-points (for excitons).
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Figure H.1: Convergence of ex-ph scattering rate calculation. The ex-ph scat-
tering rate for the lowest exciton band, computed with two Brillouin zone grids of
24×24×4 (orange) and 18×18×4 (blue). The lower panel zooms in the low-energy
region (below the LO emission threshold) marked by a rectangle in the upper panel.

1private communication with Fulvio Paleari and Andrea Marini
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A p p e n d i x I

NUMERICAL INFORMATION FOR EX-PH DYNAMICS
CALCULATION IN MONOLAYER TUNGSTEN DISELENIDE

The DFT calculations on WSe2 are carried out within the generalized gradient
approximation (GGA) [74] using the Quantum Espresso code with spin-orbital
coupling included [80]. The fully relativistic norm-conserving pseudopotentials
generated with Pseudo Dojo [75, 248, 249] and a 60 Ry kinetic energy cutoff are
used to compute the electronic structure (with DFT) and lattice vibrations (with
DFPT) [61]. The resultant electronic band structure is then fine-tuned according
to the experimental measurement. The 4-ph calculations are carried out with the
Perturbo code [90], while finite-momentum BSE calculations are conducted with
the Yambo code [86]. 7 Ry cutoff is applied with 300 bands for the Coulomb
screening while highest 2 valence bands and lowest 2 conduction bands are used to
converge the exciton energy in BSE calcuation. The 72× 72× 1 Brillouin zone grid
is used for k-points (for electrons), while a 36× 36× 1 grid (must be commensurate
with k-point grid) is applied for q-points (for phonons) and Q-points (for excitons).
For the bright exciton emission linewidth and PL calculation, trilinear interpolation
is employed to obtain the matrix elements and exciton energies on a 504 × 504 × 1
Brillouin zone grid while the real-time simulation is performed on 144 × 144 × 1
grid with 45 exciton bands.

Substrate dielectric effect on exciton binding energy
Here we present a side study on the substrate dielectric effect on exciton binding
energy. We adopt the empirical effective correction on the dielectric constant of
layered system [252]:

n (q) = n2
1 − (1−n2/n1) (1−n2/n3)

(1+n2/n1) (1+n2/n3) 4
−2@3[

1 − (1−n2/n1)
1+n2/n1

4−@3
] [

1 − (1−n2/n3)
1+n2/n3

4−@3
] , (I.1)

where n1 and n3 are the dielectric function of upper substrate and lower substrate,
and n2 is the dielectric function of sandwiched target material. Here we study a
simple case with only bottom substrate n3 = 4 without cap, i.e. n1 = 1 while using
the ab initio n2. We apply it onWSe2 on 24×24×1 k-grid and solve BSE for Q = Γ,
Q, and M respectively. We present the result in Fig. I.1 with all energy renormalized
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Figure I.1: Substrate effect on exciton energy in WSe2

by the value of their 4-th states in the upper panel. We found a universal decrease
of energy by ∼20 meV for the Γ exciton. On the other hand, the change in Q-
and M-excitons is in general .10 meV. In the lower panel of Fig. I.1, we present
their absolute value for lowest four states which shows a overall rigid blue shift
by ∼220 meV in agreement with the experiment measurement [253]. As a result,
since only Q- and M-excitonic states are relevant in exciton relaxation processes
as studied in Sect. 3.4, provided with O(1 meV) relative correction on the exciton
energy presented above, we validate our method adopted to study ex-ph dynamics
in WSe2 which neglects the effects from substrate.
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A p p e n d i x J

EXCITONIC TR-ARPES SPECTRUM IN LOG-SCALE IN
MONOLAYER TUNGSTEN DISELENIDE
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Figure J.1: Snap shot of predicted ARPES in log-scale.
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