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ABSTRACT

The overarching goal of the research presented in this dissertation is to apply and
extend a newly developed methodology to understand the buckling of complex thin
shell structures. This methodology enables the determination of tighter buckling
criteria and paves the way to the development of more efficient structures, used closer
than ever to their buckling load and even beyond. It would result in dramatically
lighter structures to be built and has the potential to enable new applications, such

as extremely large aperture satellites.

We first analyze the stability of open section thin shell structures under a pure bending
moment, through simulations. These structures are composed of longitudinal thin-
shell elements connected transversely by thin rods, and inspired by real spacecraft
structures. The present study applies and extends recent work on the stability of
cylindrical and spherical shells. The role of localization in the buckling of these
structures is investigated and early transitions into the post-buckling regime are
unveiled using a probe that locally displaces the structure. The probing method
enables the computation of the energy input needed to transition early into a post-
buckling state, which is central to determining the critical buckling mechanism for
the structure. We show that the structure follows stability landscapes also found in
cylindrical and spherical shell buckling problems. This initial computational study

is the basis for the first ever probing experiment on a complex structure.

In order to test these new structures under bending, a new bending apparatus is
designed and implemented. The boundary conditions are chosen such that the
apparatus is statically determinate (isostatic), and no state of self stress can develop
in the sample during its mounting and testing. This feature is especially desirable in
the study of thin shell structures and their elastic instabilities, for which imperfection
sensitivity plays a crucial role in the buckling transition and the post-buckling
regime. The accuracy of the isostatic bending machine is first assessed through
the testing of rods, and its imperfection insensitive behavior is then highlighted in

experiments on tape springs, and through numerical studies of the same structures.

The new bending machine is complemented by a probing apparatus, and the stability
of the open section thin-shell structures subjected to a pure bending moment is
studied experimentally. The experiment confirms that localization of deformations

plays a paramount role in the structure’s nonlinear post-buckling regime and is
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extremely sensitive to imperfections. This characteristic is investigated through
probing experiments. The range of moments for which the early buckling of the
structure can be triggered using this probe perturbation is determined, as well as the
energy barrier separating the pre-buckling and post-buckling states. The stability of
the local buckling mode is then illustrated by an experimental stability landscape of
shell buckling, and probing is then extended to the entire structure to reveal alternate
buckling modes disconnected from the structure’s fundamental path. These results
can be used to elaborate efficient buckling criteria for this type of structures, through

the use of transition diagrams determined experimentally.

Finally, the buckling and post-buckling behavior of ultralight ladder-type coilable
structures is investigated. These specific structures are used in the Space Solar Power
Project at Caltech and are referred to as strips. Similarly to the previous studies, the
stability of strip structures loaded by normal pressure is computationally studied by
applying controlled perturbations through localized probing. The probing technique
is generalized to higher-order bifurcations along the post-buckling path, and low-
energy escape paths into buckling that cannot be predicted by a classical eigenvalue
formulation are identified. It is shown that the stability landscape for a pressure-
loaded strip is similar to the landscape for classical shells, and the open section thin
shell structure studied initially in this thesis. While classical shell structures buckle
catastrophically, strip structures feature a large stable post-buckling range. Probing
enables the full characterization of the structure’s unstable behavior, which paves
the way to extend its operation closer than ever to the buckling load, and even in
the post-buckling regime. It would enable the design of more efficient structures
by dramatically reducing their mass, therefore enabling new large spacecraft to be
built.
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Chapter 1

INTRODUCTION

1.1 Motivation

Shell structures are ubiquitous in nature and in engineering applications. From egg
shells to large structural architectures, their high load bearing capabilities and very
low mass, make them some of the most efficient structural components available.
Most of their stiffness is derived from geometry, rather than material and thickness.
Thin shells have been instrumental in the development of aerospace applications and
vehicles throughout the twentieth century, where the reduction of structural mass
is paramount. They are the main components of airplane fuselages and rockets.
In some cases, a complex balance of membrane forces allows their thickness to be
reduced dramatically. It is for instance the case of the pressurized main fuel tank of
the Space Shuttle which featured a shell thickness of 2.5 mm at its thinnest, or the
fuselage of a Boeing 757, as thin as 0.99 mm.

In the past decade, the field of satellite structures witnessed a growing use of
thin shells, as they enable large deployable structures to be built. They allow for
the extremely efficient packaging of large systems which would be impossible to
launch otherwise. These recent advances have been fostered by the development of
deployable booms, for which the cross-section can be elastically deformed, flattened,
and rolled into a tight volume. They are often used to deploy and support large
aperture systems such as antennas, photovoltaic cells, and large membranes used
in solar sails. Examples of such spacecraft designs are shown in Figure 1.1. The
low magnitude of loading encountered in space enables designs in which the shell

thickness is dramatically decreased [50].

In the Space Solar Power Project (SSPP) conducted at Caltech, new spacecraft
architectures capable of collecting sunlight, converting it into microwaves, and
sending it back to Earth are developed. These new designs depart significantly
from previous large area deployable structures in which a membrane is tensioned
by deployable booms. In the SSPP design, thin shell longerons form bending-stiff
strips, which provide a support for functional elements [3]. Many of these strips
are assembled to form a large square structure measuring up to 60 m X 60 m.

The longerons are open cross-section components inspired by previously developed



Figure 1.1: (a) Roll-Out Solar Array (ROSA), deployed outside the International
Space Station in 2019 (Credit: NASA). Two thin shell deployable booms (in black)
are used to deploy and tension a photovoltaic blanket. (b) Lightsail 2 spacecraft
successfully launched in 2015 (Credit: The Planetary Society).

deployable booms and their thickness ranges from 50 um to 100 um. They enable
the entire structure to be flattened, coiled and deployed using the longerons’s stored
strain energy [18]. The SSPP concept and a small scale prototype are shown in

Figure 1.2.

Figure 1.2: (a) Space Solar Power Project architecture overview [3] and (b) 2 m
prototype of a module, composed of deployable strips [19].

In most cases, increasing the size of the structure also increases its capabilities,
which for SSPP is crucial to make the concept economically viable. However, the
range of operations for thin shell structures is most of the time bounded by buckling.
As thin shell components become lighter and thinner, predicting the load at which a
structure will buckle becomes more and more challenging, as the stochastic nature
of the instability is exacerbated. Therefore using structures close to their buckling

load is often deemed unsafe. In this thesis, we explore the use of a newly developed
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method, probing, to characterize the buckling of complex thin shell structures.
Increasing the knowledge of the structure’s behavior close to buckling, paves the
way to the design of safer and more efficient structures, by using tighter buckling

criteria, tailored to specific applications.

1.2 Thin shell buckling

This section aims to present a short review of the large body of work on thin
shell buckling. Here, we only focus on the background necessary to understand
the broader goal of the dissertation. Thorough reviews can be found in literature
[12, 39, 43, 74], and each chapter introduction provides additional literature review
on specific aspects of shell buckling. Throughout the twentieth century, the rapid
development of planes and rockets motivated extensive studies of cylindrical and
spherical shells, and their buckling behavior. Early experiments showed that these
shells were failing earlier than their theoretical linear buckling load, with experi-
mental buckling loads as low as 20% of their theoretical counterparts. In 1941,
pioneer work by Von Kédrman and Tsien at GALCIT showed that there exists a very
unstable falling post-buckling path (sub-critical) starting at the bifurcation point,
and that this path eventually restabilizes at dramatically lower loads [82]. They
attributed the discrepancy between theoretical and experimental buckling loads to
the presence of initial imperfections in the structure. In 1950, Donnell and Wan
conducted experiments on cylindrical shells with known dominant imperfections
and confirmed this hypothesis [13]. The post-buckling paths for the perfect and
imperfect shell are shown in Figure 1.3a. In the Netherlands in 1945, Koiter the-
orized the role imperfections play in the buckling behavior, in his doctoral thesis
[44]. Based on an analysis of the structure’s total potential energy, he showed that a
geometric imperfection taking the shape of the first buckling eigenvector can lead to
dramatically reduced buckling loads, and his results are summarized in Figure 1.3b.
He also provided an approximation of the falling post-buckling path. Later, Babcock
[6] reconciled theory and experiments on buckling of cylindrical shells through the
use of exceedingly closely toleranced shells obtained by an electroplating process,

as well as the control of the shell’s boundary conditions.

In practice, the design of compressed cylindrical shells used in rockets, for instance,
relies heavily on the so-called knockdown-factor method. It accounts for the effect
of imperfections in the shell’s initial geometry. It provides a lower bound on the
statistical load reduction observed in a large number of experiments, for various
shell radii to thickness ratios. The widely used NASA SP-8007 [62] knockdown
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Figure 1.3: Figures taken from [58]. (a) Sketch of the pre- and post-buckling paths
for a perfect (solid line, from [82]) and imperfect (dashed line, from [13]) cylindrical
shell under compression. (b) Sketch of the influence of an initial imperfection
on the buckling load, from [44]. The imperfection ratio corresponds here to the
imperfection amplitude divided by the shell thickness.

factor is presented in Figure 1.4. Even if this method proved to yield safe designs
for cylindrical shells, it is now seen as very conservative since it takes into account
the most severe type of imperfection, and was derived for steel shells. The use of
new materials, precise manufacturing techniques and well characterized boundary
conditions required an update of the NASA standard knockdown factor. In particular,
the recent development in the Shell Buckling Knockdown Factor (SBKF) project
aims to develop more efficient buckling criteria, in phase with today’s advances in
shell structures [29].

Another complication arising in thin shells is the localization of buckling defor-
mations. After the bifurcation point is exceeded, the deformed shape observed on
the post-buckling path is most of the time different from the buckling eigenmodes,
and features highly localized deformations. This is the result of a highly non-linear
process in which the structure’s real imperfections bias the structure to form buckles
at specific locations. This phenomenon has been observed and thoroughly studied
for the compressed cylindrical shell [36] as well as the spherical shell under pressure
[38]. The nature of localization itself generates a large number of post-buckling
solutions, often referred to as spatial chaos [80]. A more complete review and

analysis of localization is provided in section 2.1, and throughout the thesis.
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Figure 1.4: Figures taken from [58]. Lower bound used by NASA on experimental
knockdown factor, as a function of the cylindrical shell radius to thickness ratio [43].

In recent years, an experimental methodology has been developed to characterize
the onset of buckling, and offers a new way to establish buckling criteria for thin
shell structures. This new methodology, referred to here as probing, is described

next.

1.3 Probing methodology

Recent work on thin cylindrical and spherical shells has focused on the stability
of the buckling phenomenon and its sensitivity to disturbances. Rather than see-
ing buckling purely as a bifurcation problem, these new contributions have studied
in more detail the meta-stability of the structure’s unbuckled path and the early
transition into adjacent post-buckling paths requiring a small energy barrier to be
overcome [41, 75, 79]. It has been shown recently, for the cylindrical shell, that the
onset of buckling corresponds to the formation of a single dimple in the structure
[32]. The single dimple can evolve to more and more complex post-buckling defor-
mations through a series of destabilizations and restabilizations, until the cylinder
is fully populated by dimples [23, 45]. The goal of the probing methodology is to
characterize the formation of this single dimple by locally displacing the shell using
a probe. Such experiments have been realized for the cylindrical [81] and spheri-
cal [53] shells and are described in Figure 1.5a-b. Plotting the reaction force as a
function of the probe displacement and main loading forms a stability landscape of
shell buckling, which describes the single dimple behavior close to buckling. Such
a stability landscape is sketched in Figure 1.5c. Its features are described in details
in Chapter 2 and Chapter 5. The landscape reveals that the single dimple can be

formed earlier than the buckling load if a small amount of energy is brought to the
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system as a perturbation. This energy barrier is sketched in Figure 1.5d. Most
importantly, it has been shown that the load at which the dimple can first be found
in equilibrium in the structure provides an excellent lower bound to experimental
buckling loads. Therefore the methodology provides a unique opportunity to derive
tighter buckling criteria [20]. In addition, the experimental method is non destruc-

tive and can therefore be applied to the final structure, without having to conduct

statistical studies on a large number of test articles.
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Figure 1.5: (a) Probing experiment on compressed soda cans, taken from [81]. (b)
Probing experiment on pressurized hemispheres, taken from [53]. (c) Schematic
of thin-shell buckling stability landscape, inspired from [81]. (d) Energy barrier
formed between pre-buckled and post-buckled state, at a given level of loading.

1.4 Research objective and outline
The overarching goal of the research presented in this dissertation is to apply and
extend the newly developed probing methodology to complex thin shell structures.

While the original probing experiments showed great promises, their scope was



7

restricted to canonical problems and they suffered limitations when tackling practical
engineering applications. The present work aims to push the probing methodology
into the realm of real engineering structures and their design process. In particular,
probing is applied to open section thin shell assemblies, subjected to bending. These
structures are similar to the spacecraft components used in the Space Solar Power
Project at Caltech. Probing is used to unveil new buckling phenomena specific to
these structures, and shows that it can efficiently characterize their unpredictable
buckling mechanisms. Throughout the dissertation, we thus demonstrate that the
probing methodology can be harnessed to bring order into the stochastic nature of
shell buckling, and can yield tighter and more deterministic buckling criteria. It
provides the opportunity to develop more efficient structures, used closer than ever to
their buckling load and even beyond. It would resultin dramatically lighter structures
and has the potential to enable new applications, such as extremely large aperture
satellites. Professor Pedro Reis highlighted recently that structural instabilities can
be harnessed to create new functionalities in mechanisms and meta-materials, and
talked about a shift in thinking, "from buckliphobia to buckliphilia" [67]. Our hope
is to slowly be able to shift the field of spacecraft structures towards buckliphilia as

well.

The dissertation consists of six chapters. After the introduction, Chapter 2 presents
probing simulations for an open section thin shell assembly, inspired by real space-
craft structures. Buckling localization is unveiled, and probing is used to identify
critical buckling modes arising from spatial chaos. Simulations highlight that even if
these structures and their loading are very different from the compressed cylindrical
shell and the pressurized spherical shell, their buckling follows a similar stability
landscape. The methodology is then extended to multiple probe locations and direc-
tions, and reveals buckling phenomena that have never been observed before. This
computational analysis proves that probing is a powerful tool for the study of such

structures.

Motivated by the findings of Chapter 2, a probing experiment for the open section
thin shell structure is envisioned. However, it requires the design of a new bending
apparatus suitable for the testing of extremely imperfection-sensitive structures.
Chapter 3 presents the design and implementation of such a machine. It employs
a set of air bearings and counterweights to provide statically determinate support
conditions to the test structure, therefore guaranteeing that no self-stress can develop

during testing. The new bending machine is realized and validated using tests



8

on linear and nonlinear structures. It is the first isostatic bending apparatus ever
developed, and the only one able to applying strict pure bending conditions in a

structure of arbitrary geometry.

Chapter 4 presents probing experiments enabled by the newly developed bending
machine. A probing apparatus is added to the bending machine, and the behavior of a
similar structure to the one in Chapter 1 is in investigated. Probing revealed that many
localized buckled configurations can be found in the structure before the buckling
load is attained. Experimental stability landscapes as well as transition diagrams are
created to characterize the pre-buckling meta-stability and the competition between

main and alternate buckling modes in the post-buckling regime.

The computational work of Chapter 2 and the experimental work of Chapter 4
reinforce our confidence in the use of probing in real engineering problems. Chapter
5 focuses on probing simulations for such a problem, the ultralight ladder-type
coilable space structure under pressure loading. The structure features a long
and stable post-buckling regime which can be utilized on orbit. Probing and its
associated stability landscapes are used in the post-buckling regime to identify
key paths and characteristics of the structure, such as the maximum post-buckling
pressure. Sensitivity to geometric imperfections and the structure’s size is also
investigated. The simulations establish that probing can dramatically improve our
understanding of such structures, and that the results found for the cylindrical and
spherical shells can be extended to complex problems. Finally, Chapter 6 concludes

the dissertation and discusses promising research directions.

The chapters in this dissertation (excluding 1 and 6) are research articles in prepa-
ration for submission. As such, they can be read independently from each other
and are self-contained. Each chapter introduces the basis for the work presented in
it, and gives the necessary technical background and literature review. Since these
four publications are part of one single research effort, some necessary information

is repeated between the chapter introductions and conclusions.



Chapter 2

THIN-SHELL STRUCTURES UNDER BENDING:
COMPUTATIONAL STUDY

2.1 Introduction

Thin-shell structures are used extensively in engineering applications. In the
aerospace sector, they are enabling light weight air and space vehicles to be built.
While their use dramatically reduces the structural mass, their mode of failure is
often governed by buckling, which is hard to predict. Buckling of thin-shell struc-
tures is characterized by a sub-critical bifurcation, which means that the structure
exhibits a falling unstable post-buckling path right after the bifurcation point is
reached. This sudden drop in load-carrying capabilities leads to a dramatic collapse
if the post-buckling path never regains stability. Buckling is to be avoided at all
cost in these cases. However, in recent adaptive structures and materials, buckling
is no longer seen as failure but as a key shape-changing mechanism, which enables
switching among multiple functional configurations [33, 54]. Whether buckling
is used or to be avoided, understanding its cause and predicting its occurrence is
crucial, and this has been the subject of numerous research studies over the past
one hundred years. From the early 1920s, many shell buckling experiments were
conducted, and experimental buckling loads were consistently observed to be lower
than linearized classical buckling predictions. This discrepancy was later linked to
the presence of initial imperfections in the shell geometry [13, 44, 82]. Indeed, for
sub-critical bifurcations, there exists a range of loading for which the structure’s
fundamental (unbuckled) state is meta-stable, which makes the transition into post-
buckling extremely sensitive to imperfections and disturbances. On the upside, this
can also offer opportunities to build complex meta-stable structures [88] by using
buckled thin-shells as the main building blocks. In order to deal with the extremely
sensitive behavior of buckling in engineering applications, the design process thus
relies heavily on buckling knockdown factors applied to the classical buckling load.
Determining the adequate knockdown factor, unique for each structure/load com-
bination, is of utter importance. It led to the NASA space vehicle design criteria
for the buckling of thin-walled circular cylinders (NASA SP-8007) [62]. These
criteria, widely seen as very conservative, are now being revisited by NASA’s Shell
Buckling Knockdown Factor (SBKF) Project established in 2007, which focuses
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on testing shells with known imperfections and non-uniformities in loading and
boundary conditions [29]. It has been shown that knowing accurately the struc-
ture’s initial geometry enables the accurate prediction of the buckling event [51].
However, in many applications, measuring the shape of the structure before use can
be both expensive and in some cases impossible, and the traditional buckling and
post-buckling predictions rely on seeding a linear combination of the first buckling

modes as imperfections [66, 68].

Another complication arising from unstable bifurcations is the localization of buck-
ling deformations. This is observed for instance for beams on elastic foundations
[83] but more importantly for thin-shell structures such as the compressed cylin-
drical shell [36] as well as the spherical shell under pressure [38]. The nature of
localization itself generates a large number of post-buckling solutions even for a
small set of classical buckling modes, since the deformations can localize at many
different locations on the structure. This is referred to as spatial chaos [80]. Lo-
calization can arise on post-buckling branches determined by the buckling modes,
as observed in the spherical shell under pressure [4, 40]. In addition, localization
can also appear on post-buckling paths disconnected from the fundamental path
while running asymptotically close to it [23].In both cases, localized buckling can
be triggered earlier than the first buckling load if a small amount of energy is input
into the structure. It has been shown, for the compressed cylindrical shell, that a
single localized dimple forming in the middle of the structure constitutes the lowest
escape into buckling [32] and may therefore be the critical buckling mechanism.
This mode is not a bifurcation per se, but rather a mode "broken away" from the
fundamental path. The single dimple state sits on a ridge in the total energy of the
system between the pre-buckling well and local post-buckling well and corresponds
to the lowest mountain pass between these two states in the energy landscape [32].
For the cylinder, the single dimple can evolve to more and more complex post-
buckling deformations through a series of destabilizations and restabilizations, until
the cylinder is fully populated by dimples [23, 45]. This process is called snaking

and adds additional complexity to the full post-buckling sequence resolution.

For all the reasons mentioned above, predicting buckling is extremely difficult for
shell structures and often relies on a case by case approach. Recent work has
focused on the sensitivity of the buckling phenomenon to disturbances in thin
cylindrical and spherical shells. A non-destructive experimental method has been

proposed in 2013 to study the meta-stability of the fundamental path. It focuses on
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determining the energy barrier separating the fundamental path and critical localized
post-buckling states [41, 75, 79]. The search for the critical buckling mechanism is
carried out by imposing a local radial displacement in the middle of the structure
using a probe. This method effectively quantifies the resistance of shell buckling
against the single dimple mode mentioned earlier. The method has been successfully
applied to cylindrical shells [81] and to pressurized hemispherical shells [53]. These
experiments quantified in particular the onset of meta-stability, often referred to as
"shock sensitivity" [76] and a comparison with historical test data has shown that
this specific loading can serve as an accurate lower bound for experimental buckling
loads [20, 23].

In this chapter, we wish to apply these recent breakthroughs to more complex
thin-shell structures, inspired by recent advances in spacecraft design which use
thin-shell components to build large space systems. In particular, we are currently
investigating structural architectures for ultralight, coilable space structures suitable
for large, deployable, flat spacecrafts [3, 22] in the Space-based Solar Power Project
(SSPP) at Caltech. In the deployed configuration, each spacecraft measures up to
60 m X 60 m in size and is loaded by solar pressure. The main building block
is a ladder-type structure made of two triangular rollable and collapsible (TRAC)
[57] longerons, connected transversely by rods (battens). This structure is shown
in Figure 2.1 and scaled laboratory prototypes have been built [18, 19]. Previous
analysis showed that local buckling plays a key role in the structural behavior
[69] and motivates the need to conduct experimental buckling characterization.
However, the size of the structure together with the complexity of its components
and the peculiarity of its non-uniform bending moment, makes experiments very
challenging. In order to address these limitations, the behavior of a simpler structure
under pure bending is studied. This new structure is shown in Figure 2.2, and is made
of longerons and battens like the previously described structure, but the longeron’s
TRAC cross-section is abandoned for an open-circular cross-section. While the
structure and loading are different, it enables us to draw more general conclusions
on the buckling of structures with thin-shell open cross-sections. The computational
analysis presented here investigates the buckling behavior of such a structure and
assesses if and when early transitions into post-buckling can occur, using the novel
probing methodology. It also serves as a proof of concept for the experiment of
Chapter 4.

The chapter is structured as follows. Section 2.2 describes in more detail the
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Figure 2.1: Schematic of the Space Solar Power Project strip structure. It is made
of two thin-shell longerons connected with transverse battens, that support many
functional tiles.

structure and the problem. Following a classical buckling analysis, Section 2.3
highlights the importance of localization and spatial chaos and justifies the use of
the newly introduced probing methodology. In Section 2.4, probing is applied along
the entire structure to determine the location at which local buckling can appear,
and a critical probing scheme is identified. The analysis is then generalized in
Section 2.5 to more complex probing scenarios exhibiting instabilities, and leads to
an energy map from which the critical buckling mechanism is identified. Finally
a stability landscape of shell buckling is computed in Section 2.6, highlights key
characteristics of the critical buckling mechanism and shows excellent qualitative

agreement with landscapes previously constructed.

2.2 Computational model

Geometry and material

For this chapter, the analysis is restricted to a single geometry, shown in Figure
2.2. The dimensions have been chosen on the basis of the experiment of Chapter 4,
and allow for testing to be possible with the available experimental apparatus. The
structure is composed of two thin-shell longerons of length 0.4 m. The longeron
cross-section consists of a circular arc. The opening angle is 60 deg, the arc
radius is 10 mm, and the shell thickness is 0.1 mm, which gives a bending stiffness

comparable to the one obtained for the spacercraft structure’s TRAC cross-section.
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The two longerons are connected with 6 regularly spaced transverse circular rods
called battens. The batten spacing is 80 mm and ensures that a significant amount
of battens are connecting the two longerons as in the spacecraft structure. The
batten length is 50 mm, and the batten cross-section radius is 1 mm. A finite
element model of the structure is built using the Abaqus commercial software. The
longerons are modeled with 4 node reduced integration shell elements (S4R) and
the battens with linear 3D beam elements (B31). The mesh is structured with 2 mm
elements. The element size is refined until convergence in the buckling eigenmodes
and eigenvalues, shown in Figure 2.4, is achieved. The mesh density was also
proven to be sufficient to resolve the localization process, discussed in Section 2.3.
We consider an isotropic material of Young’s modulus E = 130 GPa, and Poisson’s
ratio v = 0.35 for both battens and longerons. For the rest of the chapter, this

structure is referred to as a strip.

Figure 2.2: Structure composed of two thin-shell longerons connected transversely
by battens. This structure is referred to as a strip.

Finite element analysis

The structure’s end battens and the longeron end cross-sections are made unde-
formable and coupled to a reference point at each end on which the boundary
conditions and the main loading are applied. A sketch of the problem is shown in
Figure 2.3. The structure is simply supported at both ends: one reference point is
pinned (all translations blocked) at one end while the Z translation is allowed for
the reference point at the other end. Two equal and opposite moments of magnitude
M are applied at both reference points, and an arc-length solver (Riks solver in
Abaqus standard) is used to statically deform the structure and extract the overall

moment/rotation curve. In addition, in Section 2.4, for each value of moment, we
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probe the top edge of the longeron by applying a transverse nodal displacement U,
at location Z, and we extract the probe reaction force. Our two control parameters

in each calculation are thus the end moment and the probe displacement.

[Ux=Uy=Uz=0

S TEE:

Figure 2.3: Schematic representing the finite element analysis. The end battens and
cross-sections are undeformable (in green). One end reference point is pinned while
the other end reference point is allowed to slide along the Z-axis and to rotate along
all 3 axes. Two equal and opposite moments are applied at the end reference points.
When the probing methodology is considered (Section 2.4), a probe is introduced
on the top edge of the longeron (longeron and Z location determined by probing
scheme). It consists in an applied displacement on the probe node directed along
the X-axis.

The strip structure of interest has nonlinear pre-buckling behavior. We will need to
distinguish between two types of bifurcation buckling analyses and their associated
modes. We will use the standard terminology, classical buckling loads and modes,
for results in which the pre-buckling state used in the eigenvalue analysis has been
linearized, either about the condition at zero load or at a non-zero load. Our
approach will be making use of these eigen-loads and modes to gain insight into
the buckling behavior of the strip. However, most of the references to buckling
load and modes throughout the chapter will be to "exact" buckling loads and modes
computed by analyzing bifurcation from the nonlinear pre-buckling state. Usually
we will refer to the "exact" analysis and the outcome with the brief terminology:
buckling analysis, buckling loads, and buckling modes. However, if there is any
ambiguity the additional terminology, linearized or nonlinear pre-buckling state,
will be appended.
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2.3 Localization and spatial chaos

Buckling modes and limit points

The first step in assessing the buckling behavior of the strip is to carry out a classical
eigenvalue analysis to determine a sequence of the classical applied moments and
associated modes at which buckling bifurcations from the perfect strip occur. This
information gives a picture of not only the lowest buckling load and associated mode
but also of bifurcation modes lurking above the lowest critical mode. Such infor-
mation gives insight into potentially important imperfection shapes and to "nearby
paths" which might play a role in the post-buckling behavior. The computation
of the "exact" bifurcation moments and modes is itself is an iterative procedure
because the pre-buckling behavior is so nonlinear. To obtain first estimates of the
bifurcation points, the pre-buckling nonlinearity is neglected using the ground-state
linearity to compute a sequence of the lowest bifurcation eigenvalues (ABAQUS and
other structural codes have options for making such eigenvalue evaluations). These
bifurcation estimates are then used to guide the search for the bifurcations computed
accounting for nonlinear pre-buckling behavior. With full pre-buckling nonlinear-
ity, the strip is then loaded by a moment below the first eigenvalue, the nonlinear
pre-buckling problem is solved, and new estimates of the sequence of bifurcation
points are computed by linearizing about that state. This iterative process is repeated
with an increasing applied moment in each iteration until the bifurcation moments
converge. For the strip, nine bifurcation points are determined in the loading interval
before the strip attains a limit moment on the fundamental pre-buckling path. As
noted earlier, to distinguish between a buckling load of the perfect strip computed
using ground state linearity (traditionally called a "classical buckling load") and the
buckling load computed accounting for pre-buckling nonlinearity, we will briefly
refer to the latter as the "buckling load" and is associated eigenmode as the "buckling

mode". The result of this analysis is shown in Figure 2.4.

Both a classical Newton-Raphson solver and the modified Riks solver are used to
trace the response of the structure in its unbuckled configuration. The Newton-
Raphson solver reaches a limit point at M = 1464.2 Nmm, while the Riks solver
bifurcates from the fundamental path to a secondary branch at M = 1435 Nmm.

Note that this moment magnitude is between the first and second buckling moments.

Localization and post-buckling paths
We wish to trace the post-buckling paths corresponding to the several of the lowest

buckling eigen-moments and study the evolution of the structure’s shape on these
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Figure 2.4: 9 buckling modes with associated buckling moments found on the strip
fundamental path. These modes exhibit both global and local deformations. For
each mode, these deformations appear on both longerons and are concentrated on the
longeron’s top edge (edge in compression). These deformations are both extending
in an inward (towards the strip center) and outward direction. The battens do not
exhibit any appreciable deformation.

paths. Of primary interest is the moment/rotation relation for the strip where equal
and opposite moments are applied at the strip ends and the rotation corresponds to
the rotation around the X axis of the end located at Z = 0 (c.f., Figure 2.3). Asa
first step, a standard method is used to trace the post-buckling paths associated with
the first 3 buckling modes as now described. Each mode is seeded in the structure’s
initial geometry as a geometric imperfection. The maximum amplitude of this initial
imperfection is taken between 1 % and 10 % of the shell thickness (t). The modified
Riks solver is used to trace the post-buckling response of the imperfect structure.
The computed paths are shown in Figure 2.5, and the corresponding deformed
shapes are shown in Figure 2.6. For the second buckling mode, two imperfection

amplitudes have been used yielding the two post-buckling paths shown.

The main observation is that the deformed shapes for all the paths exhibit highly
localized deformations, contrary to the bifurcation buckling modes. For the first and

second mode branches, the post-buckling shapes are quite different from the initial
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Figure 2.5: Moment/rotation curves for the strip. The fundamental path (black)
stops at the limit point M = 1464.2 Nmm. The first buckling mode branch (blue) is
obtained by seeding the first mode as imperfection with an amplitude of 8%¢. The
second branch (red) is obtained for the second mode imperfection with an amplitude
of 8%t. The alternate second branch (green) is obtained for the second mode
imperfection with an amplitude of 10%tz. The third branch (yellow) is obtained for
the third mode imperfection with an amplitude of 8%¢?. Both second mode branches
and the third mode branch exhibit snaking. The deformed shapes obtained at the
end of these branches are labeled and shown in Figure 2.6. All branches start lower
on the fundamental path than the predicted buckling moments. This highlights the
imperfection sensitivity of the structure.

imperfection. These shapes only exhibit inward buckling deformations, whereas the
buckling modes also exhibit outward deformations. For the second mode branch,
just a slight variation in imperfection amplitude changes completely the buckling
location. For the second mode and third mode, the post-buckling paths undergo
destabilization and restabilization. This phenomenon is referred to as homoclinic
snaking and is also observed for the compressed cylindrical shell [23]. It physically
corresponds to the sequential formation of buckles leading to a fully buckled shell.
Snaking may occur in all the localized path if the analysis is pushed further. It is
interesting to note that we have found that it is possible to resolve the post-buckling
path for the third buckling mode without seeding any imperfection in the initial

geometry.

For mode 1 and mode 2, the localization process initiates on the imperfect structure’s

fundamental path, before reaching the falling unstable post-buckling path. Initial
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Figure 2.6: Deformed shape obtained at the end of the 4 post-buckling paths of
Figure 2.5. They consist in localized longeron deformations and differ from the
previously computed buckling modes. All deformations are occurring in the inward
direction, and the localization location differs between longerons for the mode
1 branch (labelled 1) and mode 2 branch (labelled 2). Deformations have been
magnified by a factor 15 in these images.

deformation grows proportional to the shape of the initial imperfection and then is
followed by a transition to a localized mode shape before attaining a limit point. At
this point, the location of maximum deformation has already been determined, and
on the falling unstable path, the local deformation increases in amplitude without
changing location. It is important to emphasize that the limit point for the imperfect
structure is offset from the perfect structure’s fundamental path, although extremely
close to it, due to the eroding affect of the imperfection on the initial stiffness. In
addition, these limit points appear at values of applied moment lower than the first
buckling moment which reveals the structure’s imperfection sensitive nature. Figure
2.7 highlights the localization process for each of the 2 first buckling modes. The
displacement of the longeron top edge in the (X-Z) plane is plotted at the limit
point as well as at the first post-buckling restabilization point and at the end of
the post-buckling path. The normalized buckling mode of the perfect strip is also
reported as a dashed line for comparison. For mode 1, localization occurs at two
levels. At the structure’s scale, local deformations only arise in longeron 1, while
for longeron 2, the global deformation tends to cancel the undulations associated
with the initial imperfection away for the point of localization. At the longeron
scale, the deformed shape goes from a smooth hill to a sharp peak for longeron 2.
In addition, the localization process is not unique. We observe different localization
mechanisms for buckling mode 2 depending on the imperfection amplitude, as seen

on the deformed shape comparison of Figure 2.6. The localization of mode 2 for
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an imperfection amplitude of 8% is shown in Figure 2.7c-d. It highlights the
sequential formation of the longeron 1 and longeron 2 buckle characteristics of
the snaking process. In the case of buckling mode 3, the buckling mode shape is
relatively localized and reassembles the shape observed in Figure 2.6 for the two
central buckles. Therefore, no further localization is observed on the post-buckling
path before the snaking process is triggered, and four highly localized buckles are

formed closer to the longeron ends.

To conclude this section, we re-emphasize that multiple post-buckling paths have
been exposed as having initially unstable behavior, but in some cases at least re-
stabilized at lower loads. Four different imperfections based on the first 3 buckling
modes have been considered here, but other imperfections or linear combinations of
buckling modes will give rise to different paths. Seeding imperfections highlights
qualitatively the importance of localization for this thin-shell structure and the fact
that deformations can localize at many different locations. This multiplicity of
buckling and post-buckling solutions is referred to as "spatial chaos." However,
we did not consider here all possible localized paths, and we do not know which
path constitutes the easiest escape into post-buckling. Based on these qualitative
observations, the next section aims at finding this critical localized path by using

the probing methodology introduced earlier for the cylindrical and spherical shell.
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Figure 2.7: (a-b) Localization process for longeron 1 (a) and longeron 2 (b), on the
first mode post-buckling path, for an imperfection amplitude of 8%¢. The longeron
top edge displacement in the X direction is plotted as a function of the strip Z
location. The normalized buckling mode is shown as a dashed line. The evolution
of the longeron top edge deformation is reported at the limit point, at the point where
the post-buckling path first stabilizes and at the end of the post-buckling path. (c-d)
Localization process for longeron 1 (c) and longeron 2 (d), on the second mode
post-buckling path, for an imperfection amplitude of 8%z.
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2.4 Probing along the strip length

Probing methodology

The previous section showed that buckling localization can lead to a large number
of post-buckling paths. Our focus in the rest of the chapter is to find the critical
buckling mechanism. Here "critical" means that we are focusing on finding the
easiest way the structure can buckle, in other words, finding how early the transition
into buckling can occur and which deformed shape is the most likely to arise. Two
situations may be encountered when end-moments are applied on the structure.
The first corresponds to an early transition to a path that intersects the fundamental
path, and for which the deformation matches one of the buckling modes (at least
at the bifurcation point). This situation may arise for buckling mode 3, for which
no imperfection is needed to resolve the post-buckling path. The second situation
corresponds to a transition to a disconnected equilibrium path, running in the close
vicinity of the fundamental path without intersecting it [36]. In both cases, a finite
input of energy into the system is required to make the structure transition early
to a secondary equilibrium path. Note that here, "early transition" means that the
transition to post-buckling occurs before reaching the first buckling moment. A key
assumption made here is that the critical buckling mechanism will exhibit highly
localized deformations. This is generally the case for thin-shell structures for which
buckling is a sub-critical bifurcation and is motivated by the observations made in

the previous section.

The probing method is used to quantify the amount of disturbance needed to trigger
early localized buckling. This is achieved by using a probe that displaces the
structure locally. In this chapter, the probing method is explored numerically and
consists in applying a displacement directed along the X-axis to a node on the top
edge of the longeron (the probed node). This is illustrated in Figure 2.3. The top
edge is chosen because it corresponds to the location where the structure exhibits the
largest compressive stress when bending moments are applied. The analysis goes
as follows. The two end-moments are applied on the perfect structure. When the
desired moment magnitude is reached, the moment is kept constant and the probe
displacement increases. During probing, the probe reaction force is computed. This
process is repeated for a wide range of moments up to the first buckling moment, and
for various probe locations along the longeron’s top edge. In this section, the Abaqus
static general solver (Newton-Raphson) is used for both the bending and probing
steps. The analysis is restricted to probing paths for which the probe displacement

is monotonic.



22

Two features are of particular interest. The first corresponds to the range of applied
moments for which buckled equilibrium states exist. An equilibrium state is located
when the probe reaction force falls to zero. When this situation is encountered,
there exists at least two equilibrium configurations for a given moment and therefore
the fundamental path is meta-stable. Above the moment for which negative probe
forces are first encountered, a disturbance may trigger early buckling. The second
important feature is the critical amount of energy that needs to be provided to the
system to reach the buckled equilibria. It indicates the level of disturbance needed

for the structure to transition early into these states.

Five probing schemes are investigated: double outward probing, double inward
probing, alternate probing, single outward probing, and single inward probing.
They are illustrated in Figure 2.8 and are inspired by the types of deformations seen
in the buckling modes. We will restrict our study to one single probe per longeron
at most. By characterizing the onset of meta-stability and the critical probe work
needed to trigger buckling, we will be using probing as an efficient tool to navigate

through spatial chaos and to find the structure’s critical buckling mechanism.

Double Inward

Probe
Single Inward

Double Outward

Alternate

Figure 2.8: 5 probing schemes considered. The arrows are representing the trans-
verse probe displacement. The double inward, double outward, as well as alternate
probing schemes are inspired directly by the localized modes found in the previous
section. However, we saw that the post-buckling paths exhibit snaking, and to ac-
count for a potential sequential formation of buckles, the single inward and single
outward probing schemes were also used.
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Double inward probing scheme

We first look at the double inward probing scheme. The probe force is plotted as a
function of the probe location along the longeron edge (Z-axis), and the probe dis-
placement. These maps are reported in Figure 2.9 for 2 values of applied moments.
We focus on a range of moment lower than M = 1100 Nmm. For higher moment
magnitudes, instabilities are encountered during probing which make convergence
hard to achieve. These probe instabilities are analyzed in detail in the next section.
This type of probing unveils a rich behavior. For values of moment under 1000
Nmm, probing only yields positive probe forces. The contours of constant probe
force exhibit local extrema in the probe location / probe displacement plane. For
M > 950 Nmm, regions of negative slope appear in the middle of the structure,
for probe displacements exceeding 0.2 mm. It creates a positive local minimum
of probe force for non-zero probe displacement, and the value of this minimum
decreases as M increases. For M = 1015.5 Nmm, the local minimum of probe
force falls to zero which indicates that the onset of meta-stability is reached for this
specific type of localization scenario: buckled equilibrium states appear, and the
minimum probe force decreases further to negative values as seen in Figure 2.9b for
M = 1040 Nmm. One can also notice that local minima of probe force appear at
new probe locations, away from the middle of the structure. However, these values
never reach zero for moments under 1100 Nmm. These results indicate that early
transition into buckling is possible above M = 1015.5 Nmm, and that the associ-
ated post-buckling shape consists of an inward local buckle in the middle of each

longeron. It resembles the third non-linear buckling mode found in Section 2.3.
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Figure 2.9: (a) Double inward probing map for M = 800 Nmm. The probe force is
shown as a function of the probe displacement along the X-axis (U,) and the probe
location along the top of the longeron (Z-axis). For ease of visualization, the regions
corresponding to probe location between 0 mm and 50 mm as well as between 350
mm and 400 mm are not shown since they exhibit large probe forces. In these two
regions, the probe force vs. probe displacement curve is almost linear. For all other
probe locations, the probe force increases monotonically as the probe displacement
increases. However, the map exhibits many features, such as regularly spaced local
minima of probe force for a given probe displacement. The lowest local minimum
is attained in the middle of the structure (200 mm). The probe force is positive for
all values of probe displacement. (b) Double inward probing map for M = 1040
Nmm. For probe locations ranging from 0 mm to 60 mm and from 340 mm to 40
mm, the probe force increases monotonically as the probe displacement increases.
For all other probe locations, the probe force increases and decreases. Regularly
spaced local minima of probe force appear, and negative values are reached in the
middle (200 mm).

Single inward probing scheme

Next we look at the single inward probing scheme. The corresponding probing maps
are reported in Figure 2.10 for 4 values of applied moment. For M < 900 Nmm,
probing only yields positive probe forces. The magnitude of these forces is very
similar to the ones obtained for the double inward probing scheme. However, more
features appear in these maps, and a basin of low probe force develops in the middle
of the longeron for M = 800 Nmm. At M = 950 Nmm, the probe force first falls to
zero which indicates the onset of meta-stability for this specific localization scenario.
It means that early transitions into a single inward post-buckling path are possible.
It is important to notice that as the moment increases, the probe displacement at
which the local minimum is reached decreases. For M = 800 Nmm, this probe

displacement is 1.2 mm and reduces to 0.78 mm for M = 1040 Nmm. Another
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important observation is that meta-stability appears earlier for this type of probing
than for the double inward probing scheme. For higher moment magnitudes, the
minimum of probe force is still achieved in the middle of the structure, but the region
of negative probe force spreads over a larger portion of the structure. Therefore there
exist multiple locations at which buckled equilibrium states are found. This supports
the observations of Section 2.3 where we saw that localization for the second mode
imperfection can occur at multiple locations. However, we see qualitatively that
the hill of probe force separating the unbuckled and buckled states is lowest in the
middle, which signifies that the minimum energy input required to form an inward
buckle is also achieved in the middle of a single longeron. For M = 1200 Nmm,
the probing map resembles qualitatively Figure 2.10b. A region of negative probe
force is reached in the middle of the structure for a probe displacement of 0.35
mm. In addition, a second minimum of probe force forms in the middle for a probe
displacement of 0.2 mm. However, when probing at other locations than the middle,
the probing path encounters instabilities as the probe force decreases after the peak,
and the Newton-Raphson solver aborts. It leaves the probing map incomplete.
Again here, we see that the probe displacement for which local minima of probe
force are attained decreases as the moment increases. When increasing the moments
to M = 1350 Nmm, instabilities occur for even smaller values of probe displacement
(as soon as 0.1 mm) and truncates the probing map. Furthermore, the map exhibits
two distinct regions of negative probe force in the middle, for a probe displacement
of 0.075 mm and a probe displacement of 0.14 mm. This shows that probing can
detect adjacent post-buckling equilibrium solutions. However, the overarching goal
of the probing method is to compute the minimum energy input needed to trigger
early buckling for every probe locations. Here it is not yet possible due to the
probe instabilities. At the locations where the probing sequence suddenly stops, it
is impossible to draw any conclusions regarding the structure’s meta-stability. It is
therefore necessary to resolve probing sequences past these instabilities, and this is

the subject of Section 2.5.
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Figure 2.10: (a) Single inward probing map for M = 800 Nmm. As the probe dis-
placement increases, the probe force increases monotonically, except in the middle
and its vicinity, for which a basin of local minima appears (probe displacement of
1.2 mm). The probe force is positive everywhere. (b) Single inward probing map for
M = 1040 Nmm. Local maxima of probe force appear and form a hill separating the
fundamental path and regions of local minima. The local minimum is negative in the
middle, whereas it stays positive at other locations, while being very close to zero.
This map resembles the one obtained for the double inward probing scheme. (c)
Single inward probing map for M = 1200 Nmm. A local minimum of probe force
appears for a probe displacement of 0.2 mm, before reaching the negative probe
force region at 0.35 mm. Probe instabilities truncate the map prematurely for probe
locations different from 200 mm. (d) Single inward probing map for M = 1200
Nmm. The probe instabilities appear as early as 0.1 mm of probe displacement
and cause a severe truncation of the map. The probing path in the middle exhibits
two regions of negative probe forces (for 0.075 mm and 0.14 mm) indicating two
adjacent buckled equilibrium states.

Outward and alternate probing schemes

We focus here on the double outward probing scheme. For this specific type of

probing, the structure does not exhibit any moment for which the probe forces
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decreases to O N. Instead, as the longeron is locally displaced outwards under
constant applied moments, the probe force increases monotonically. The probe
force reaches 1 N for a probe displacement of about 1 mm, which is an order of
magnitude higher than the probe force obtained with the double inward probing

scheme. Probing does not reveal any buckled equilibria.

The alternate probing scheme exhibits a more complex behavior. One probe is being
displaced in the inward direction whereas the other is being displaced in the outward
direction. For the outward probe applied on longeron 1, the probe force increases
monotonically as the probe displacement increases similarly to what was observed
for the double outward probing scheme. However for the inward probe on longeron
2, the probe force in the center becomes negative for all probe displacements,
above a certain moment magnitude. This suggests that the outward probe alone
on longeron 1 may be able to generate a buckle on longeron 2. It highlights that
the disturbance brought by probing can be transferred between longerons. However
since the outward probe force never falls to O N, probing does not reveal any buckled
equilibria. Similar behavior is observed for the single inward probing scheme.
When the probe outward displacement increases, the probe force monotonically
increases, while an inward buckle forms in the unprobed longeron. Similarly to the
alternate probing scheme, no equilibrium configurations are encountered, but the
probing path is truncated before the prescribed end displacement is reached due to

instabilities. These instabilities are analyzed in Section 2.5.

These 3 probing schemes seem to indicate that buckling localization can only arise
in the inward direction, since no outward buckled configurations are detected during
probing. This conclusion supports the observation of Section 2.3 for which no
outward localization was observed. However, the single outward probing scheme
showed that probing one longeron in the outward direction can cause the other
longeron to buckle inward, even if no equilibrium states were detected. It is shown

in Section 2.5 that such states exists if probing is extended past instabilities.

Critical probe work and initial probing schemes comparison

In order to find the critical buckling mechanism for the strip structure, the probing
schemes presented above need to be compared. The critical buckling mechanism
corresponds to the mechanism for which the minimum amount of energy is needed
to reach buckled equilibria. In practice, this energy is brought by disturbances. For

the present study, special care has to be taken with the terminology, especially when
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referring to the energy barrier to buckling and the critical probe work.

In all buckling and probing studies referenced in this chapter, the energy barrier
refers to the difference in total potential energy between the unbuckled state and
the unstable buckled state. As explained in the introduction, the unstable buckled
state corresponds to a saddle point (also called mountain pass point) in the energy
landscape and is attained for a critical value of probe displacement, when the zero
threshold in probe force is reached. If the main loading is kept constant, the probe
work reaches a local maximum at this critical displacement. We will use the
terminology of "critical probe work" to refer to this local maximum of probe work.
When the probe displacement is monotonic during probing (no folding of the path),
and for a displacement-controlled main loading, the critical probe work is equal to
the energy barrier. This scenario is for instance encountered for the probed cylinder
under constant end shortening [81]. However in the present study, energy barrier

and critical probe work can be different for the two following reasons:

* The main loading is moment-controlled, which means that probing occurs
at a constant value of end-moment. During probing, the ends of the strip
are rotating and the end-moments are doing work. As a result, the energy
barrier is greater than the critical probe work since it accounts for the end-
moments’ additional contribution to the energy of the system. However, the
constant moments are part of the known conditions the structure is subjected
to during operation. Therefore the contribution of an unknown disturbance
is only represented by the probe here, and as such the quantity of interest is
the critical probe work. The study has been repeated in the case of a rotation-
controlled loading and is presented in Section 2.7. In the later case, the probe

work only contributes to the total external work of the system.

* For unstable probing sequences, a vertical tangent can be reached and the
probing path can fold. In such cases, snap-buckling can be triggered before
the zero probe force threshold is attained, and the value of critical probe work
is computed at the point of vertical tangent rather than at the first buckled

equilibrium. Such cases are presented and analyzed further in Section 2.5.

We next focus on the critical probe work for the two inward probing schemes. We
saw that for both schemes, the probing path does not exhibit any instabilities in the

middle of the structure. As a result, meta-stability can be detected, and the critical
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probe work required to reach the buckled equilibrium states can be computed. The
critical probe work obtained for the middle probe location and for both probing

schemes is shown in Figure 2.11.
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Figure 2.11: Critical probe work between fundamental as a function of applied
bending moment, for both single and double inward probing schemes, for the central
probe location. It corresponds to the work done by the probe force between the two
states. The single inward probing scheme gives the smallest energy barrier for all
bending moments.

The single inward probing scheme gives a lower critical probe work than the double
inward probing scheme for the entire range of moments considered. As a result, if
buckling is to be triggered early, it likely to consist of a single buckle in the middle
of one of the longerons rather than on both longerons. When comparing the local
maximum of probe force obtained for both probing schemes, we also see that it is
the lowest for the single inward probing scheme, regardless of the probe location.
It seems therefore that if meta-stability is detected at a specific probe location,
the single inward probing scheme would also give the lowest critical probe work
at this specific location. Finally we saw in this section that buckled equilibrium
states appear for lower values of moments for the single inward probing scheme.
As snaking seems to play a prominent role for this structure, we would expect
a sequential formation of single buckles which supports the energy comparison
between the two probing schemes. For all these reasons, the rest of the chapter will
only focus on the single inward / outward probing schemes rather than the double

probing schemes.
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2.5 Unstable probing sequences

Single inward probing

This section extends the probing simulations to probing locations and moments for
which instabilities are encountered. The probing displacement is applied similarly
to what has been done before, but an arc-length solver (Riks solver) is now used,
which allows probing to continue even after a vertical tangency (fold) in the probe
force vs. probe displacement plane is reached. These probing sequences are first
computed for the single inward probing scheme and for all probing locations. The

2 main types of probing path instabilities encountered are analyzed in this section.

The results of this analysis for a probe located at 100 mm from the end of the
structure is shown in Figure 2.12. For moments of low magnitude (M < 1050
Nmm), the probing path is stable and the probe force exhibits a local maximum and
local minimum. However, the probe force is always positive and no locally buckled
equilibrium solutions exist. For M = 1050 Nmm, a vertical tangent is encountered
and the path folds. This path eventually restabilizes for a value of probe force of
about —0.1 N. However, the restabilized path is short and does not reach positive
probe forces. This suggests that another bifurcation is encountered for a probe
displacement of about 0.2 mm. This behavior is also encountered for higher values
of moments, although the corresponding probing paths do not restabilize for positive
values of probe displacement. Figure 2.13a shows the probing path for M = 1050

Nmm with four key points on the probing sequence.

The deformed shapes obtained for these four points are shown in Figure 2.13b. On
the stable part of the path (before reaching point 2), displacing the probe results
in an increase in local buckle amplitude. After point 2, the probing path becomes
unstable. As the probe displacement decreases, the probe force increases to point
3 to then decrease to O N at point 4, which corresponds to a buckled equilibrium
solution. Physically, the unstable path corresponds to the change of location of
the buckle formed during the stable probing path. At point 4, a local buckle in
equilibrium exists in the structure, but the final buckle location does not correspond
to the probing location. Note that the probe force vs. probe displacement curve
has a positive slope at point 4 which means that the equilibrium is stable. The
critical probe work required to form the localized buckled configuration at point 4
corresponds to the shaded area shown in Figure 2.13a. It is important to point out
that this area does not correspond to the energy barrier per se, as explained in the

previous subsection. In order to compute the energy barrier, i.e the difference in
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Figure 2.12: Probe force vs. probe displacement for a probe located at Z = 100
mm and for 4 values of applied moment. For M = 1000 Nmm, the path exhibits
a local maximum and local minimum without reaching the zero threshold for the
probe force. The path is well behaved and can be resolved with a Newton-Raphson
solver. For M = 1050 Nmm, the path starts folding. The point of vertical tangency
is reached for a probe displacement 0.92 mm, and the path past this point would not
be resolved with a Newton-Raphson solver. The loop formed by the path folding
is becoming smaller as the moment magnitude increases until it folds on itself for
M = 1385 Nmm.

total potential energy between the unbuckled state and the buckled state at point 4,
the area enclosed by the probing path would have to be considered. The area under
the curve formed by points 2, 3 and 4 would have to be subtracted from the shaded

area, and the work done by the end-moments would have to be added.

Path folding has also been encountered in the case of a compressed spherical shell
being probed at its pole, under rigid volume control [79], and all of the generic
bifurcations that can arise and disrupt a probing sequence have been described
[77]. Two approaches have been proposed to explore experimentally these unstable
probing sequences. The first one consists in introducing feedback control [77]. If
the probe displacement and probe force are chosen as inputs, it is then possible to
resolve vertical tangents. It is also possible to navigate around the fold and avoid
unstable probing paths by using the moment and probe displacement as inputs.

Another approach consists in using additional probes to suppress instabilities [79].

We next analyze the probing paths for a probe located at 160 mm from the end of
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Figure 2.13: (a) Probing path for a probe located at Z = 100 mm and an applied
moment M = 1050 Nmm. 4 key points are highlighted and corresponds to the
deformed shape shown in (b). The area shaded in green is the probe work needed
to be input into the structure to trigger snap-buckling. (b) Mode shapes obtained at
point 1, 2, 3, and 4 on the probing sequence. The stable part of the path (point 1 and
2) corresponds to the growth of the buckle formed by the probe. On the unstable
part of the path (point 3 and 4), we observe that the buckle previously formed is
shifting location. Deformations have been magnified by a factor 20 in these images.

the structure. The paths are shown in Figure 2.14. For moments of low magnitude
(M < 1050 Nmm), we observe similar results as the previous probe location.
The probing path is stable and the probe force exhibits a local maximum and
local minimum. For M = 1050 Nmm, we see a similar path folding as observed
previously. However the restabilized path extends further and reaches positive probe

forces, which indicates that a stable equilibrium solution exist. As the moments
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increase in magnitude, we observe probing path spiraling. The number of spirals
formed increases as the moment magnitude increases and the spacing between spirals

decreases. These spirals disappear closer to the buckling moment.
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Figure 2.14: Probe force vs. probe displacement for a probe location at 160 mm
and for 5 values of applied moment. For M = 1000 Nmm, the path exhibits a local
maximum and local minimum without reaching the zero threshold for the probe
force. The path is well behaved and can be resolved with a Newton-Raphson solver.
For M = 1050 Nmm, the probe path starts folding and the point of vertical tangency
is reached for a probe displacement 0.85 mm. The path folding is then replaced by
path spiraling as the moment is increased, which indicates that multiple equilibrium
solutions exist in parallel. The number of equilibrium solutions encountered on
the probing path increases as the moment increases. For M = 1200 Nmm, 4
equilibrium solutions are detected and the spiraling evolves for M = 1300 Nmm
to reveal 5 equilibrium solutions. Close to the buckling load, at M = 1385 Nmm,
a single path is observed for extremely small values of probe displacement, which
indicates an extremely low critical probe work.

The probing path for M = 1300 Nmm is shown in Figure 2.15a, and the 5 equilibrium
states are indicated. The deformed shapes obtained at these points are shown in
Figure 2.15b. As the probe displacement increases initially, the probe force increases
and then decreases. The probing path becomes unstable right before reaching the
first equilibrium state (1). At this point, a buckle (buckle 1) in equilibrium is formed
in the longeron at the probing location. Notice that this first equilibrium solution is
stable since the path slope is locally positive. The unstable path between state 1 and
2 exhibits negative probe forces, and we observe the initially formed buckle traveling

along the longeron’s top edge. This situation is similar to what has been observed at
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the 100 mm probe location. The main difference is that the path restabilizes with an
immediate increase in probe force. Point 2 is now also an equilibrium state, whereas
we only located one equilibrium solution before. Equilibrium state 2 is also stable.
From state 2 to state 3, the probe force increases, and the magnitude of the maximum
probe force is about twice the one attained before state 1. On this part of the path,
buckle 1 continues to travel along the longeron, and a second buckle (buckle 2) is
forming at the probe location. The path loses stability at a probe displacement of
about 0.4 mm and reaches the stable equilibrium 3, for which buckle 1 and buckle 2
are sustained, forming a "train" of 2 buckles. This buckle formation shifts location
before reaching the unstable equilibrium 4. The path proceeds with a third loop and
the 2-buckle formation continues traveling, while a third buckle (buckle 3) is being
formed at the probe location. The path reaches equilibrium 5 for which 3 buckles
in series are sustained in the longeron. Note that point 5 also corresponds to a local
minimum of probe force and as a result, no negative probe forces appear anymore

on the path.

Two other situations are encountered. Closer to the strip ends (probe location
between 20 mm and 60 mm) hysteresis is observed. The probe displacement first
increases, and the probe force increases until reaching a limit point, after which
the probe displacement decreases and the path returns to the origin. However, the
return path does not coincide with the first stable portion and exhibits lower probe
forces. This situation physically corresponds to a complex interaction between
longerons. The local inward displacement imposed on longeron 1 by the probe
causes a macroscopic in-plane bending of the full structure, causing the unprobed
longeron (longeron 2) to buckle. This transfer of energy between longerons through
the battens was also encountered for the alternate probing scheme and for the
unstable single outward probing scheme described in the next section. Finally,
for some combination of probe locations and moments, the solver stops before the
end of the analysis and the full probing path cannot be resolved. This is due to
secondary bifurcations being encountered during probing. While path folding and
spiraling could be resolved using the Riks solver alone, continuing these probing
paths after the bifurcation would require more evolved continuation algorithms [25]
and is beyond the scope of this chapter. In most cases, path folding is observed
before reaching the bifurcation point, but the path stops before reaching the zero
threshold for the probe force. Therefore, no equilibrium solutions can be detected,
and they may or may not exist. However, it is still possible to compute the probe

work required to trigger snap-buckling, when the vertical tangent is reached.



35

0.01}

Probe force (N)

0.1 0.2 0.3 0.4 0.5 0.6
Probe displacement (mm)

(a)

(b)

Figure 2.15: (a) Probing path for a probe location at Z = 160 mm and an applied
moment M = 1300 Nmm. 35 key points are highlighted and corresponds to the
deformed shape shown in (b). The area shaded in green is the probe work needed to
be input into the structure to trigger snap buckling. (b) Mode shapes obtained at point
1,2, 3,4, and 5 on the probing sequence. These points are all equilibrium solutions.
Points 4 and 5 correspond to unstable equilibria. The first loop yields a single
buckle equilibrium at the probe location and a shifted single buckle equilibrium.
The second loop gives double buckle equilibrium and the third one, a triple buckle
equilibrium. Deformations have been magnified by a factor of 40 in these images.

Single outward probing

No buckled equilibrium solutions were detected when the single outward probing
scheme was used in Section 2.4, and the probe force increased monotonically as
the probe displacement increased. Even if buckled equilibrium states seemed at

first unlikely to be encountered for this type of probing, the probing paths were
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prematurely terminated by instabilities and therefore no conclusion could be drawn
regarding their existence. Here, the Riks solver is used to compute the probing
paths past vertical tangents. Surprisingly however, we found that the single outward
probing scheme is able to trigger inward buckled equilibria, and the two main

buckling mechanisms are analyzed below.

The first buckling mechanism corresponds to the formation of a buckle, in the
unprobed longeron. Probing at M = 1100 Nmm and at a location of 180 mm
exhibits this behavior, and the corresponding probe force vs. probe displacement
curve is shown in Figure 2.16a. The structure’s deformed shapes obtained at selected
points on the path are shown in Figure 2.16b. The probing sequence starts with a
monotonic increase in probe force as the probe on longeron 1 is displaced outwards.
The deformed shape at point 1 shows the large displacement of the probed longeron
but no localization is observed. However pulling on longeron 1 results in a global in-
plane bending of the structure, which creates inward displacement of the unprobed
longeron 2, since the two longerons are connected by the battens. Past point 1, the
probe displacement decreases and the inward displacement of longeron 2 localizes
to form a buckle. At point 2, the inward buckle on the unprobed longeron 2 is
in equilibrium and stable. Once the probe displacement becomes negative, the
single inward probing scheme is recovered and an inward buckle is formed on the
probed longeron 1. Path folding is then observed which corresponds physically to
the buckle on longeron 1 travelling, as described in the previous subsection. The
only difference here is that the initial outward probing created an additional inward

buckle on longeron 2.

The second buckling mechanism is more surprising and corresponds to the formation
of an inward buckle in the longeron probed outward. Probing at M = 1300 Nmm and
at a location of 120 mm exhibits this behavior, and the corresponding probe force
vs. probe displacement curve is shown in Figure 2.17a. The structure’s deformed
shapes obtained at key points on the path are shown in Figure 2.17b. The probing
sequence starts again with a monotonic increase in probe force as the probe on
longeron 1 is displaced outwards. The deformed shape at point 1 shows the large
displacement of the probed longeron, but inward localization is observed farther
away from the probe, on the same longeron. Past point 1 the path becomes unstable,
and the localized fold present at point 1 is localized to form an inward buckle on
the probed longeron. The local hump in probe force observed on the unstable path

corresponds to the buckle traveling until the stable equilibrium at point 2 is reached.
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Figure 2.16: (a) Probing path for a probe located at Z = 180 mm and an applied
moment M = 1100 Nmm. 4 key points are highlighted and correspond to the
deformed shapes shown in (b). The area shaded in green is the probe work needed
to be input into the structure to trigger snap buckling. (b) Mode shapes obtained at
point 1, 2, 3, and 4 on the probing sequence. The unstable part of the path (point
1 and 2) corresponds to the growth of the inward buckle formed on the unprobed
longeron. After point 2, the single inward probing scheme is recovered and buckle
traveling is observed. Deformations have been magnified by a factor of 30 in these
images.

After point 2, the single inward probing scheme is recovered and an additional

buckle is formed on the probed longeron. Path folding is again observed here.

Finally, other types of outward probing paths are encountered for different probe
locations and consist of a superposition of the two simple buckling sequences

described above. Note that once the first buckle has been formed by the outward
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Figure 2.17: (a) Probing path for a probe located at 120 mm and an applied moment
M = 1300 Nmm. 4 key points are highlighted and corresponds to the deformed
shape shown in (b). The area shaded in green is the probe work needed to be input
into the structure to trigger snap buckling. (b) Mode shapes obtained at point 1, 2,
3, and 4 on the probing sequence. At point 1, the probed longeron exhibits large
outward deformations, but a local fold is observed right above the displaced region.
This folds localizes to form a buckle and a second buckle is formed through inward
probing. Buckle traveling is also observed. Deformations have been magnified by
a factor of 50 in these images.

probing scheme, these paths can exhibit spiraling, and very complex series of buckles
in equilibrium can be found. The analysis of each of these complex situations is
beyond the scope of this chapter, and corresponds to even more equilibrium solutions.
The main take away here is that both the single inward and single outward probing
schemes can trigger inward buckling, and no outward buckling has been observed

for this structure. For each probing scheme, a value of critical probe work to trigger
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snap-buckling can be computed.

Critical probe work map

The analysis is repeated for all probe locations, moments, and both the single inward
and single outward probing scheme. It leads to the two critical probe work plots
shown in Figure 2.18. Each color corresponds to a given moment magnitude. When
probing is achieved past the first zero threshold in probe force, a buckled equilibrium
is detected and indicated by a dot. In some cases, secondary bifurcations are
encountered on the probing path before reaching the zero probe force threshold.
In this case, additional techniques need to be used to trace the full probing path.
However, the critical probe work can be computed and is reported without a dot.
If the probing path can be fully resolved but never crosses the zero probe force
threshold, the maximum work done by the probe is also reported without a dot.
Since the problem is symmetric with respect to the middle transverse axis of the
strip, we are only reporting results for half a strip in Figure 2.18. No early buckling
can be triggered for a strip location between Z = 0 mm and Z = 20 mm, and this
region is not shown. Finally, it is important to highlight that the probe location does

not necessarily coincide with the buckling location.

We first focus on the inward probing scheme for which the critical probe work is
shown in Figure 2.18a. Multi-stability is first detected in the middle of the strip
(probe at 200 mm) for M = 950 Nmm, and for higher values of moments, the
meta-stable region extends almost on the entire length of the structure. For moment
values under 1385 Nmm, the minimum critical probe work is always reached in
the middle of the strip (probe at 200 mm) and is extremely small. For M = 1000
Nmm, it is about 0.06 mJ and quickly drops under the microjoules threshold for
M = 1350 Nmm. These magnitudes make early buckling extremely likely to occur
in an experiment. Closer to the first buckling moment (M = 1400.3 Nmm), the
location of the minimum critical probe work is changing. It is attained for a probe
at 180 mm for M = 1385 Nmm and shifts to 160 mm for higher values of moments.
Note that for this range of high moments, the critical probe work drops dramatically.
At M = 1400 Nmm, the critical probe work first drops to zero (marked as 1077 in
Figure 2.18 by convention).

We saw in the previous subsection that the single outward probing scheme also
induces inward buckling of the probed or the unprobed longeron. The critical

probe work for the single outward probing scheme is reported in Figure 2.18b.



40

10°F ' ' ' ]
q \/\\‘
3 —1000 Nmm
{10'2. J=1100 Nmm
g —1200 Nmm
) 1300 Nmm
-8 1350 Nmm
S51074¢ 1|——1385 Nmm
© 1395 Nmm
2 1400 Nmm
O 406k

50 100 150 200
Probe location (mm)
(a)

10°F \“‘*—*—;\‘3:;’—' |
%\ \’\‘\‘/—‘\-‘\‘_
E ——1000 Nmm
X102} 1l—1100 Nmm
g ——1200 Nmm
(0] 1300 Nmm
S \,,,,//\ 1350 Nmm
a107f S/, i——1385 Nmm
@ 1395 Nmm
= 1400 Nmm
C)106_

50 100 150 200
Probe location (mm)

(b)

Figure 2.18: (a) Critical probe work map for the single inward probing scheme.
When probing is achieved past the first zero threshold in probe force, a buckled
equilibrium is detected and indicated by a dot. In some cases, secondary bifurcations
are encountered on the probing path before reaching the zero probe force threshold.
In this case, additional techniques need to be used to trace the full probing path.
However, the critical probe work can be computed and is reported without a dot.
For moments under M = 1385 Nmm, the minimum critical probe work is reached
in the middle of the strip (probe location 200 mm). Closer to the buckling moment,
the minimum critical probe work location shifts and falls to 0 mJ for M = 1400
Nmm. (b) Critical probe work map for the single outward probing scheme. The
trend is similar to the single inward probing scheme except that the single outward
probing scheme requires more energy to trigger inward buckles than the single
inward probing scheme, for all values of moment.

Qualitatively, the behavior reassembles what was observed for the single inward

probing scheme. The minimum critical probe work is attained in the middle of
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the strip for moment values below M = 1385. However, the critical probe work is
consistently higher for this type of probing, suggesting that inward probing is the
critical disturbance for this structure. Closer to the buckling moment, for M > 1385
Nmm, the minimum critical probe work is similar for the inward and outward
probing schemes. At M = 1400 Nmm, the critical probe work first drops to zero
(marked as 107 in Figure 2.18 by convention) but for a probe location of 60 mm,

which differs from the single inward probing scheme.

For both probing schemes, and for M < 1385 Nmm (99% of the buckling moment),
the minimum critical probe work is attained in the middle of the structure and is
extremely low. In an experiment, we suspect that initial imperfections would erode
the critical probe work significantly, and as a consequence, the structure would
never attain moments close to the buckling moment prior to buckling. Having said
that, we can conclude that early buckling is most likely to be triggered by inward
probing in the middle of the structure, and it is thus the critical disturbance. For this
specific case, the probing and buckling location are the same. Therefore, the critical
buckling mechanism consists of a localized single buckle in the middle of one of
the two longerons. Finally, rotation-controlled simulations have been carried out,

and the rotation-controlled critical probe work maps are presented in Section 2.7.

2.6 Stability landscape for critical localized buckling

The notion of a stability landscape of shell buckling was introduced [81] as a way to
characterize the meta-stable nature of cylindrical thin-shell buckling. The original
experiment accompanying this study used soda cans. A local radial displacement
i1s imposed in the middle of the compressed can using a small ball probe (called
"poker" in [81]). The stability landscape is the surface created when the probe
force is plotted as a function of the probe displacement for various levels of the
main loading parameter (axial compression or end-shortening of the cylinder). The
landscape provides a very useful way to quantify the impact of probing on the
buckling behavior and a general way to study the structure’s buckling sensitivity to
disturbances. In the cylinder case, the probe location coincides with the location of
the critical buckling mechanism. As a reminder, this critical buckling mechanism
corresponds to the formation of a single dimple in the middle of the cylinder and
the probing experiment is aimed at triggering this specific mode (lowest mountain
pass point). From the previous section, we were able to identify the critical buckling
mechanism for the strip structure. Local buckling can first appear as a single inward

buckle forming in the middle of one longeron. As a result we are now able to
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construct the critical stability landscape of shell buckling for this new structure.

This landscape is reported in Figure 2.19.
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Figure 2.19: Stability landscape for the strip critical buckling mechanism (single
inward buckling in the middle). It shows a region of negative probe force enclosed
by a stable and an unstable buckled equilibrium contour, separated from the fun-
damental path by a ridge of probe force. The path restabilizes past the valley and
additional buckling events are triggered through snaking when the maximum limit
point contour is reached. No buckles can be sustained in the structure for moments
below the minimal buckling moment (M = 950 Nmm).

This landscape matches qualitatively the one obtained for the compressed cylindrical
shell, but also the stability landscape for more complex geometries and loading [69].
Several important features are observed and were previously noted in [81]. They are
explained here. The point of spontaneous buckling corresponds to the state for which
the structure will undergo buckling without any action from the probe (no probe
displacement). This point is reached when the moment attains the buckling load
(accounting for nonlinear pre-buckling deformation). However, before reaching
this point, buckled equilibrium solutions are accessible through probing. These
solutions correspond to the contour for which the probe force is zero (for a non-zero
probe displacement). It is split into two parts: stable and unstable states. For a
specific value of moment, the stable and unstable states coalesce. This condition
corresponds to the lowest value of moment for which a buckled equilibrium solution
exists, and thus represents the onset of meta-stability. The associated state is called

the minimally buckled state [81], and we will refer to this moment value as the
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minimal buckling moment for the rest of the chapter. For the strip structure, the
minimal buckling moment is 950 Nmm (68% of the buckling moment), and the probe
displacement at the minimally buckled state is 1.6 mm. Below the minimal buckling
moment, no local buckles can be sustained in the structure. This load may serve as
an effective lower bound for experimental buckling loads [23]. During a moment-
controlled experimental probing sequence, where the probe is not attached to the
structure, the longeron flange will dynamically snap as soon as the probe evolves
past the unstable equilibrium contour, since the probe will experience negative
reaction forces. Depending on the moment at which probing occurs, the structure
can restabilize and reach the stable equilibrium contour. For a moment above a
critical value, corresponding to the snaking point of Figure 2.19, the structure will
not restabilize and will completely collapse. The snaking moment is M = 993 Nmm
(71% of the buckling moment). It is possible to probe the stable post-buckling path
and compute the critical probe work required for early snaking, following the same
methodology. This will be the subject of a future study. However, it is important
to realize that the existence of the stable equilibrium contour is not guaranteed,
and depends on the structure but also on whether the experiment/simulation is load
controlled or displacement controlled. For example, a spherical shell under external
pressure will exhibit stable buckled states when loaded under volume-control but
has no stable buckled states (other than complete collapse) under pressure-control
[40]. In some cases, it has also been observed that the stable buckled equilibrium
contour can extend much farther than the first buckling load [69]. Note that the
unstable equilibrium contour stops at the buckling moment but does not intersect
the fundamental path. This case is also encountered for the compressed cylindrical
shell [23] and means that this "broken away" localized mode does not stem from
a bifurcation and is rather considered as a mountain pass point, as introduced in
Section 2.1.

The local maxima of probe force creates the ridge of the stability landscape, and
forms a hill of energy between the fundamental path and the unstable buckled equilib-
rium states. At any applied moment, the critical probe work is the minimum energy
that must be input into the structure for it to locally buckle. This quantity is directly
related to the buckling sensitivity to disturbances, referred to as "shock-sensitivity"
[76]. The ridge meets the fundamental path at the point of spontaneous buckling
under prescribed probe force (but not under prescribed probe displacement). Past
this point, negative probe forces are encountered as soon as the probe is displaced.

The local minima of probe force forms the valley of the stability landscape, and is
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the limit beyond which probing paths restabilize. The valley intersects the buckled
equilibrium contour at the minimally buckled state after which the minimum probe
force becomes negative. The ridge and valley intersect at M = 710 Nmm (51% of
the non-linear buckling moment), after which the landscape starts exhibiting a neg-
ative probing stiffness. In a moment-controlled experiment for which the probe is
not glued to the structure, kinetic energy would be released during probing, through
snapping (for force controlled probing). For higher values of probe displacements,
the stability landscape is bounded by limit points ending each probing sequence.
The ridge, valley, and maximum limit points are forming the landscape’s foldline
which defines more generally the range of stability for the structure against the sin-
gle buckle mode of deformation. Snaking, which corresponds to secondary modes
being triggered, will occur when the maximum limit points are exceeded. Finally,
rotation-controlled simulations have been carried out and yield qualitatively the
same landscape. The rotation-controlled stability landscape is shown in the next

section.

2.7 Rotation-controlled bending

The analysis presented in the chapter is repeated for a rotation-controlled main
loading. Here the rotation is prescribed at the two ends of the strips, at the reference
points shown in Figure 2.3. The moment-controlled and rotation-controlled studies
lead to the same qualitative results. The same buckling modes and unstable probing
paths are observed, and the critical probe work maps can be computed. These maps
are shown in Figure 2.20a for the single inward probing scheme and in Figure 2.20b
for the single outward probing scheme. The values of applied rotations are chosen
such that they correspond one-to-one to the moment magnitudes in Figure 2.18, on

the structure’s fundamental path.

One important difference here is that the probe work accounts for all the external
work since the end moments are not doing any work. For rotations (or corresponding
moments) between 0.745 deg and 0.894 deg, a higher critical probe work is required
to trigger snap-buckling when the loading is rotation-controlled rather than moment-
controlled. In this initial range of rotations, the minimum critical probe work is still
achieved by probing in the center (Z = 200 mm), and therefore the single inward
buckling in the middle of one longeron is also the critical buckling mechanism for
a rotation-controlled loading. For higher values of rotation, the critical probe work
is higher for the moment-controlled case, even if it has a similar order of magnitude

for both types of loading. Closer to the buckling point, we observe that the critical
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Figure 2.20: (a) Critical probe work map for the single inward probing scheme.
When probing is achieved past the first zero threshold in probe force, a buckled
equilibrium is detected and indicated by a dot. In some cases, secondary bifurcations
are encountered on the probing path before reaching the zero probe force threshold.
In this case, additional techniques need to be used to trace the full probing path.
However, the critical probe work can be computed and is reported without a dot. (b)
Critical probe work map for the single outward probing scheme.

probe work becomes chaotic across the structure’s length.

For the critical buckling mechanism identified above (single inward buckle at Z =
200 mm), the rotation-controlled stability landscape can be built and is shown
in Figure 2.21. It presents the same features as the moment-controlled stability
landscape. In both studies, the probing path restabilizes after the minimally buckled
state. The minimal buckling rotation is about 70 % of the classical buckling rotation

which is comparable to the minimal buckling moment which was 68 % of the
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classical buckling moment. Probing becomes unstable close to the snaking point
which explains the missing area in the map shown in Figure 2.21. It is important to
point out that when the applied rotation is held constant, the area under the probe
force vs. probe displacement curve is the critical probe work but also the energy

barrier between the unbuckled equilibrium and the unstable buckled equilibrium.
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Figure 2.21: Stability landscape for the strip critical buckling mechanism (single
inward buckling in the middle), and for a rotation-controlled loading. The same
features as for the moment-controlled study are observed.

2.8 Conclusion

This chapter has presented a numerical analysis investigating the buckling sensitivity
of a thin-shell strip structure, applying the novel probing methodology previously
used for cylindrical and spherical shells. The focus has been on one single geometry,
inspired from large spacecraft structures, with the goal of paving the way for the

experiment of Chapter 4.

First, a classical post-buckling analysis has been conducted and consisted in seeding
imperfections based on the structure’s buckling modes in the initial geometry. It
showed that from a limited set of 9 buckling modes, multiple localized post-buckling
solutions arose, which suggested that the structure was exhibiting spatial chaos.
Therefore, applying the probing methodology seemed particularly suited to finding
the critical buckling mechanism. This new methodology has been extended to
probe the entire structure and showed that only localized buckling in the inward

direction can be triggered before the buckling moment is reached. Furthermore,



47

the comparison between single and double inward probing schemes highlighted that
the longerons will most likely not undergo buckling simultaneously and will rather
exhibit a sequential formation of buckles know as snaking, which was also supported
by the classical post-buckling analysis. However, when the probing location does not
coincide with the middle of the structure, incomplete probing sequences have been
observed, for which instabilities are encountered on the probing path. Therefore,
an arc-length solver was further used to resolve unstable probing sequences. It
highlighted complex behaviors such as buckles traveling along the structure and
multiple equilibrium paths juxtaposed next to each other. In addition, unstable
outward probing also led to the creation of local inward buckling through complex
interactions between components at the structure’s level. The generalized probing
approach enabled the construction of a critical probe work map from which we
concluded that a single inward buckle forming on a single longeron was the buckling
mechanism requiring the least amount of disturbance to be triggered before reaching
the buckling moment. A further in depth study of this critical buckling mode enabled
the construction of a stability landscape of shell buckling. It highlighted the region
of stability for the buckled structure as well as the region for which restabilization
occurs, between the minimal buckling moment and the snaking moment. The
main observation is that this stability landscape is qualitatively similar to the one
constructed for a previous cylindrical shell experiment. Although the core of the
chapter presented results for a moment-controlled loading, for which probing occurs
at constant moment, a rotation-controlled loading had also been studied and leads

to the same qualitative results for this structure, shown in Section 2.7.

More generally, we have shown throughout this chapter that the probing methodol-
ogy can be applied to more complex structures than the cylindrical and spherical
shells. Therefore, the use of such a technique for complex assemblies of thin-shell
components seems to be possible and could enable an in-depth understanding of
any structure’s buckling sensitivity. One could think about designing for a specific
level of disturbance during operations and thus push the structure’s capabilities to
its fullest. If one does not have a full knowledge of potential disturbances, an
experimental determination of the minimal buckling load seems to provide an ex-
cellent buckling criteria. However, more work needs to be done to assess how initial
imperfections erode the critical probe work required to trigger buckling and how
they could provide connections between the adjacent post-buckling path and the
fundamental path. Recent studies suggested that the minimal buckling load varies

extremely slowly for imperfections of limited amplitude (about 50 % of the shell
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thickness) [69], even if the critical probe work is greatly affected. A thorough inves-
tigation of the role of imperfections on the buckling sensitivity will be the subject

of a future study.



49
Chapter 3

ISOSTATIC PURE BENDING MACHINE FOR
IMPERFECTION-SENSITIVE NONLINEAR STRUCTURES

3.1 Introduction

Three-point and four-point bending tests performed on universal testing machines are
well established as a way of characterizing the behavior of materials and structures
under bending. They are widely used to measure the bending stiffness and strength
of stiff test samples, undergoing small deformations. Recent applications involving
large bending deformations of compliant structures [5, 26], large-strain and ultra-
thin flexible components for spacecraft structures have been accompanied by efforts
to develop alternative testing setups. Our specific interest is in the deployment of
ultralight spacecraft apertures [17] based on thin-shell structures that include tape
springs and collapsible booms [27, 84], which can form localized folds with a small
radius. The ideal test configuration for this type of structure is pure bending, with
large imposed end rotations. Moreover, in the case of thin shells with geometric
imperfections, any redundant constraints imposed on the sample may lead to a state
of self stress if the structures’ end mounts are not exactly aligned. In practice, the
effects of this additional stress perturbation on the thin shell buckling behavior are
significant, and would increase dramatically the apparent imperfection sensitivity
of the test structure. Therefore, statically determinate boundary conditions are

particularly relevant for the testing of non-linear thin-shell structures.

Different fixtures that can be mounted on a universal testing machine have been
developed [16, 52, 56, 86] to characterize composite materials under large bending
deformations. However, none of them can generate a state of pure bending in a
sample of arbitrary geometry. Platen bending tests [52, 86] introduce normal and
shear forces, and the effective length of the sample changes during the test. An
improved version of these setups [16] can maintain a constant effective length but
still introduces normal and shear forces, as well as additional loads due to the mass of
the test fixture. These parasitic contributions create a more complex stress state than
pure bending and are sensitive to missalignements in the testing apparatus, due to
their redundant boundary conditions. A four-point bending fixture that can impose

large rotations without any axial forces has been developed [9, 56]. The kinematic
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diagram for this solution is presented in Figure 3.1c. However, a pure bending stress
state is only obtained if the test sample deforms symmetrically and therefore if its
material and geometric imperfections are negligible. This architecture is statically
indeterminate and initial geometric imperfections will induce an initial state of self

stress in the sample.

Special-purpose, pure bending machines have also been developed, often based on
pulleys and cables [14, 15, 30, 46]. In the design presented in [46], each end of
the sample is attached to a pulley, and a cable links the two pulleys ensuring two
equal reaction moments on both sides. The cable shortening can be imposed by an
actuator, causing the pulleys to rotate. The use of rollers in conjunction with the
cable and pulleys prevents any axial forces to appear. A kinematic diagram of this
testing apparatus is shown in Figure 3.1a. Identical setups were employed in [14,
15] and a similar concept is also proposed in [30, 55, 61]. However, these machines
are primarily used for the testing of very large and stiff samples for civil engineering
applications. In addition, even if the degree of indeterminacy is lower than for the

machine of Figure 3.1c, this architecture is still statically indeterminate.

Another type of machines eliminates external forces by employing linear guides
[11, 31, 49, 87] so that only a bending moment can be applied to the structure.
In the concept by [87], one sample end is resting on two perpendicular linear
guides which allows it to translate in plane. The other sample end is rotated by
a motor. The kinematic diagram for this machine is shown in Figure 3.1d. This
architecture reduces the magnitude of in-plane reaction forces, which can only arise
from friction in the sliders. The concept presented in [11] uses a similar architecture
and is illustrated in Figure 3.1e. It uses two perpendicular linear guides, on which
the sample’s ends are attached. One end is rotated relative to the corresponding
linear guide by a motor. The sliders on each guide are allowed to translate without
friction, which suppresses all in-plane reaction forces. They are also allowed to
rotate about the guide’s axis to suppress parasitic reaction moments. This testing
apparatus has only a degree of indeterminacy of 1, stemming from the redundant
constraint on the vertical translation of the sample. However, this machine is large
and is best suited for relatively stiff samples. The pure bending machine presented in
[49] and illustrated in Figure 3.1b is used for the testing of softer thin-shell samples.
It uses only one frictionless linear guide, and during testing, special care needs to be
taken to balance the reaction moments at the ends to avoid shear reaction forces at

the two sample ends. Doing so requires a careful coordination between the two end
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rotations, which is difficult if the test sample becomes unstable. A machine similar
to [11], but suitable for much smaller and softer samples, was designed in [31],
but not realized. A suspension system removing all external forces is presented
in [2] and uses two overlapping identical samples. The two samples are bent in
opposite directions by actuators. In this concept, pure bending is only achieved if

the properties of the two samples are identical.

Imperfection-sensitive structures and non-linear structures undergoing buckling or
snap-through are hard to study, and are particularly sensitive to boundary conditions,
as discussed earlier. Even if the testing apparatus described above is extremely
suitable for the testing of plate coupons and stiff structures, a fully isostatic pure
bending apparatus dedicated to the testing of thin-shell components does not exist
yet. This chapter presents the design of a new bending machine that uses the concept
presented in [11] as a baseline, and releases the redundant constraint by employing
an additional slider in the vertical direction, as illustrated in Figure 3.1f. It results in
an isostatic system generating a state of pure bending in the test sample, regardless
of its geometric or material imperfections. This new machine enables the testing of
ultra-thin materials and softer structures with complex cross-sections [17], needed

for modern aerospace applications.

The chapter is structured as follows. Section 3.2 discusses the impact of redundant
boundary conditions for testing thin-shell structures, and Section 3.3 presents the
physical implementation of the bending machine. Its stiffness is then assessed
through experiments on stiff tubes in Section 3.4, and Section 3.5 analyzes the
testing machine’s performance and its parasitic effects, through experiments on
circular rods. Testing is then extended to tape springs in Section 3.6, and the
interaction between kinematic constraints and sample imperfections is analyzed
using finite element simulations in Section 3.7. Finally, Section 3.8 concludes and
presents an outlook of future experiments rendered possible by this new testing

setup.
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Figure 3.1: Kinematic diagrams for various bending machine concepts. The bold
green line represents the test samples, and the kinematic pairs indicated in red are
actuated. The diagrams are drawn in the (X-Y) plane and the bending axis coincides
with the Z-axis. (a) Apparatus from Kyriakides et al. The dashed line represents
a chain coupling two revolute kinematic pairs. (b) Bending machine from Fisher
et al, (c) Murphey et al, (d) Yoshida et al., (e) Boers et al and (f) the new bending
machine described in the present chapter. (g) Definition of the kinematic pairs used
in the kinematic diagrams and their degrees of freedom. The symbols are based on
[42].
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3.2 Eliminating redundant constraints

The purpose of the new bending machine is to test thin-shell structures under large
deformations, and to predict accurately their buckling and post-buckling behavior.
One important feature of such structures is that they exhibit an unstable post-buckling
regime, and therefore, the pre-buckling state is metastable close to the buckling load.
A small amount of energy input into the system can therefore force the structure
to transition in its post-buckling regime before the theoretical buckling load is
reached. If the testing apparatus is statically indeterminate, geometric and material
imperfections can also perturb the pure bending stress state and affect significantly
the buckling transition. Another challenge arises from the study of structures with
non-symmetric cross-sections, or for which the stable mode of deformation is non-
symmetric. In this case, the structure will undergo large 3D deformation under
pure bending. If the boundary conditions restrain the displacement of the end
cross-sections relative to one another, large reaction forces and moments can arise
perpendicular to the bending axis. The structure will no longer be under pure
bending and its behavior will be influenced by statically indeterminate reaction
forces and moments at the supports. If boundary conditions can be modelled
accurately, simulations will in theory enable capturing these statically indeterminate
reactions. However, the test results become more sensitive to the structures’ initial
imperfections and its mounting into the testing machine. Therefore, it requires
adjustments to guarantee a structure free of self stress throughout the test, which in
practice may only be achieved by having no redundancy in the boundary conditions.
This important characteristic is studied in depth in [47], where the authors analyze
the buckling of a cylindrical shell under compression. The two shell’s end cross-
sections are held using friction, which in effect provides statically determinate
support conditions at high loads, allowing the end cross-sections to be non-planar.
Furthermore, the researchers introduced initial stresses by locally displacing the one
end cross-section, highlighting that the shell’s apparent imperfection sensitivity was
limited by the use of isostatic boundary conditions. Other studies focused on other
types of boundary conditions and showed how the constraints imposed by the testing
apparatus influence the structure’s sensitivity to buckling [21]. We wish to address
and justify here the choice of boundary conditions for the new bending machine. We
discuss successively the role of in-plane (X —Y plane) constraints on translations and
rotations, and will touch upon the release of the out-of-plane translation constraint,

in order to create a statically determinate (isostatic) testing apparatus.

Reaction forces aligned with the test structure’s neutral axis have a large influence on
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its stress state. Parasitic compressive or tensile stresses are respectively reducing or
increasing the buckling moment significantly. It is therefore important to remove any
redundancy in translational constraints along the sample’s longitudinal axis. This
condition is met by all designs presented in Figure 3.1. Translational redundancy
transverse to the sample longitudinal axis can create shear forces at the structure’s
supports, and this effect is for instance observed if the two bending moments at the
sample ends are imbalanced. In the design presented in Figure 3.1b, the two end
rotations are controlled independently and the bending moments can be matched
in theory, but is hard to achieve in practice. In the design of Figure 3.1a and 3.1c,
the single degree of freedom actuation results in two equal and opposite bending
moments only if the tested structure is close to perfect. Quantifying the parasitic
effect generated by shear forces is hard in practice due to the testing machine’s
static indeterminacy. To avoid any parasitic contributions from in-plane forces, the
designs in Figure 3.1d and 3.1e employ two perpendicular linear bearings which

remove any in-plane redundancy in translational constraints.

The effect of redundant rotational constraints is harder to analyze but is particu-
larly important for imperfect thin-shell structures. Recent advances in spacecraft
structures uses very thin and complex composite booms [48]. Even though these
components are designed to be straight along their longitudinal axis, they exhibit
residual twist and camber after manufacturing, and the two end cross-sections are
often non coplanar. If the coplanarity of the end cross-sections is enforced through
fixed rotation boundary conditions, it can induce a significant amount of prestress
in the test structure. One potential solution is to have custom end fittings which
compensate for these geometrical imperfections. However, the test results become
extremely sensitive to the position accuracy provided by these additional compo-
nents. In addition, if the test structure exhibits significant off-axis deformations, any
rotational constraint redundancy can create significant parasitic reaction moments
and a complex stress state in the structure. The impact of rotational constraints on
imperfect tape spring structures is analyzed in details through simulation in Section
3.7. To avoid any parasitic moments and self stress, the design presented in Figure
3.1e, employs a similar concept to Figure 3.1d, but the prismatic joint between
the sample and the linear guide is replaced by cylindrical joint, which releases the
rotational degree of freedom along the guide’s axis. This architecture removes all
redundant rotational constraints’ redundancy, and the same architecture is adopted

in the present bending machine.
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One redundant constraint in the apparatus of Figure 3.1e makes it statically indeter-
minate. The out-of-plane (z-axis) translations of both sample ends is constrained.
In the physical implementation presented in [11], the sample is hanging below the
plane formed by the two linear guides. As a result, the rotation of one sample end
around its linear guide’s axis results in a change of its z-coordinate. Compatibility of
displacements requires that the two ends have the same z-coordinate and therefore,
the rotation of both ends needs to be equal. For flat material coupons, deformations
transverse to the main bending axis have very limited amplitude, and coupling be-
tween the two end rotations may not be a concern. However, for complex structures
undergoing large 3D deformations, a coupling between global torsion and bending
transverse to the main bending axis arises, which creates a very complex stress state
and is hard to model accurately. In the design presented in this chapter, this coupling
is removed by adding a slider in the z-direction at one sample end, and the resulting
boundary conditions are statically determinate. The machine’s kinematic diagram
is shown in Figure 3.1f, and the boundary conditions are explicitly stated in Figure
3.2.
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Figure 3.2: Conceptual representation of the bending machine, specifying the
boundary conditions on the two ends of the sample. (a) Undeformed configura-
tion and (b) deformed configuration after a rotation of 6 is applied to end 1. U
corresponds to the translational degree of freedom and UR to the rotational de-
gree of freedom. In a previous concept [11], Uz was constrained for end 2. This
constraint has been released in the present bending machine. The local coordinate
systems attached to end 1 and end 2 are shown as well as the global coordinate
system.
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3.3 Design of the bending machine

The bending machine employs two perpendicular circular rods in the X — Y plane,
similarly to the setup presented in [11]. They form two linear guides on which two
air bearings are allowed to translate and rotate. As explained in Section 3.2, this
architecture suppresses all in-plane reaction forces and moments during the test, and
prevents any self-stress in the test structure. The pressure in the air bearings is 90 psi.
Several components are attached to each air bearing, and we refer to this assembly as
a slider. The actuated slider, on which one end of the test structure is attached (end
1, see Figure 3.2), is made of a DC motor (Harmonic Drive FHA-8C) which controls
the rotation of the sample around the local z-axis. An incremental encoder with a
resolution of up to 800, 000 counts per revolution measures the applied rotation. A
sensor (ATI Mini40) is attached to the motor’s rotating end and measures the three
reactions force components with a resolution of 1/100 N and the three reaction
moment components with a resolution of 1/4000 Nm. These sensors can measure
in-plane forces up to 40 N, out-of-plane forces up to 120 N, and moments up to 2
Nm. An aluminum bracket is mounted on the sensor and provides and interface
to attach the test structure. The second end of the test structure (end 2, see Figure
3.2) is attached to the rigid slider, where the DC motor is replaced by an aluminum
column. An offloaded bracket allows the sample to translate along the slider-local
z-axis. It uses a hanging mass and a pulley, which compensates for half of the mass
of the test structure and half of the mass of the bracket’s translating assembly. To
avoid parasitic moments caused by gravity, a counterweight is attached to the top of
each slider and can be translated to adapt to a wide range of sample mass. A CAD
model of the bending machine is shown in Figure 3.3. A custom Matlab code was
developed to read, display, and record the forces, moments, and rotations in real
time. The rotation of end 2 can be applied both as a ramp or as a smooth s-curve,
and the maximum angular acceleration can be chosen to limit dynamic effects. Note
that the apparatus is mounted on an optical table and the spacing of the circular rods
can be varied to accommodate a wide range of sample lengths and applied rotations.
The height of the table is adjusted using spacers. The physical implementation of

the machine is shown in Figure 3.4.

3.4 Experimental setup compliance assessment
The two main quantities of interest for a pure-bending test are the bending moment
around the z-axis and the rotation applied to the test structure. These quantities can

be affected by any torsional compliance in the sliders. Itis then critical to measure the
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Figure 3.3: CAD of the bending machine. Two frictionless linear guides are mounted
perpendicular to each other on an elevated optical table. Two sliders are suspended
on these linear guides and the moment caused by gravity is eliminated by using
counterweights. One slider assembly is made of a DC motor and sensor while the
other slider features an offloaded mounting bracket and a sensor.

Figure 3.4: Physical implementation of the bending machine. Here the test structure
1s a carbon fiber rod, corresponding to the test described in Section 3.5.

torsional stiffness of each slider and to understand the impact it has on the test results.

The compliance of the experimental setup can then be included in simulations. In
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order to measure it, a very stiff tube, shown in Figure 3.5 is attached to the machine.
The tube geometry is chosen such that it is orders of magnitude stiffer than any
samples that would be tested with the machine, and the tube can be considered rigid
in the analysis. When the motor is actuated, the tube rotates as a rigid body, resulting
in the twisting of both sliders. The twisting moment is measured for both sliders and
the rigid body rotation of the tube is determined experimentally using a laser scanner
(FaroArm). The tube and apparatus are represented in their deformed configuration
in Figure 3.6b. The measurements are repeated every rotation increment of 0.1
deg until an absolute rotation of 0.9 deg is reached. The twisting angle of both
sliders is determined. For the rigid slider, the equivalent twist is simply the rigid
body rotation of the tube, whereas for the actuated slider, the equivalent twist is the

difference between the applied rotation and the tube rotation.

Figure 3.5: Stiff tube mounted on the bending machine. This test sample is used to
determine the torsional stiffness of both sliders.

The reaction moment plotted as a function of the equivalent twist for both sliders
is shown in Figure 3.6a. The rigid slider appears to be softer in torsion than the
actuated slider. This can be explained by the presence of the offloaded bracket on the
rigid slider, which is partially made of acrylic and therefore softer than the rest of the
components made of aluminum. The sliders’ torsional response can be considered
linear up to a reaction moment of 0.7 Nm. The complete response could best be
described as bi-linear. A linear fit is shown in Figure 3.6a for reference. The softer
behavior can be due to a local deformation between the tube and its end mounts,
and may not be representative of the sliders’ torsional stiffness. Therefore, for the
rest of the chapter, a linear fit between a rotation of 0 and 0.2 deg is considered.
The resulting torsional stiffness is 203 Nm for the rigid slider and 301 Nm for the

actuated slider.
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Figure 3.6: Compliance assessment test performed with arigid cylinder. (a) Bending
tests results for a rigid cylinder. A linear fit is shown which is used to compute the
torsional stiffness of each slider assembly. (b) Schematic of the rigid tube test. An
equivalent twist can be defined and takes for arguments the angles indicated in the
figure.

3.5 Machine accuracy and parasitic effects

To assess the accuracy of the bending machine, an initial set of bending tests was
performed on 3 circular carbon fiber rods. 2 cross-section diameters are considered,
d =2.88 mm and d = 3.19 mm, as well as 2 different lengths, L = 581 mm and
L = 446 mm. Each rod end was inserted and bonded into an acrylic plate, which
attaches to the machine’s brackets. For each rod, 3 loading and unloading sequences
were performed and the 3 reaction moments and reaction forces were measured by
the sensors. The result of a specific test, performed on a rod of diameter d = 3.19
mm and length L = 446 mm, is shown in Figure 3.7. For this particular test, a
S-curve rotation profile is prescribed with a maximum angular velocity of 0.1 deg/s,
and the maximum rotation is set to 10 deg. The sensors are zeroed after the sample

is mounted on the machine.

The bending moments M,; and M, are linear for the entire range of rotations
considered. Even if some oscillations are noticeable, their amplitude is negligible
compared to the global linear trend. However when looking at in-plane moments
(Figure 3.7b) and forces (Figure 3.7d), as well as out-of plane forces (Figure 3.7¢c),
oscillations of larger amplitude are observed. This behavior is not caused by noise
in the sensors but rather by the physical oscillation of the two sliders. The bending
machine is equivalent to a system of two pendula coupled by a soft spring. Each
pendulum has its own mass, natural frequency, and plane of oscillation. The resulting

mechanical coupling creates a beating phenomenon (amplitude modulation) and
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Figure 3.7: Testresults for arod with diameter d = 3.19 mm and length L = 446 mm.
The maximum angular velocity for this specific test is set to 0.1 deg/s. The reaction
moments and forces are measured in the deformed reference frames attached to end
1 and end 2, described in Figure 3.2. (a) Main bending moment around the z axis,
(b) reaction moments around the x- and y-axes, (c) reaction forces on the z direction
and (d) reaction forces on the x- and y-axes.

explains the complex oscillatory profile observed for the out-of-plane forces. In
practice, the range of slider rotation characteristic of this oscillatory behavior is
extremely limited and is barely noticeable by eye. A series of tests has been
performed on the same rod sample with various maximum angular velocities. A
plot of in-plane bending moments for a maximum velocity of 0.01 deg/s and 0.6
deg/s is shown in Figure 3.8. In the case of Figure 3.8b, the test duration is about
17 min, whereas it is about 17 s in Figure 3.8a. Since the natural frequency of the
coupled pendula does not change, the data appear more noisy for the longer duration
test. However, the maximum angular velocity does not influence the results as long
as the test can be considered quasi-static.
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Figure 3.8: Test results for a rod with diameter d = 3.19 mm and length L = 446
mm for a maximum angular velocity of (a) 0.6 deg/s and (b) 0.01 deg/s.

Three tests are performed on the rod of diameter d = 3.19 mm and length L = 446
mm, with a maximum angular velocity of 0.01 deg/s. The results of these tests are
shown in Figure 3.9. The mean of the three tests is computed and filtered using
a moving average filter. The area corresponding to test data within one standard
deviation is also reported for the three bending moments and forces. The spread of
the data is caused by the oscillatory behavior explained above, and we mostly discuss
here the trends followed by the mean moments and forces. As observed before, M

and M, (Figure 3.9a) are linear, and their standard deviation is extremely small.

The in-plane forces are more complex to analyze. Fyj and Fy; (Figure 3.9d) follow a
linearly increasing trend. These reaction forces are along the linear guides’ axes. In
theory, the air bearings make the guide frictionless, and therefore the axial reaction
forces would be zero. However in practice, the presence of cables and air tubes, seen
in Figure 3.4, creates these non-zero reaction forces. During the test, both sliders
undergo a small rotation around their guides’ axes, due to small imperfections in
the sample. As a result, the sensor’s local z-axis is no longer aligned with the local
vertical, and part of the slider’s weight is projected onto the linear guide’s transverse
axis. This geometric effect creates the Fy; and Fy; reaction force components. Note
that as the test progresses, the tilt of each slider increases and therefore the weight
projection increases in magnitude as well, which explains the linear trend followed
by these forces. These reaction forces also have a separate component that partially
equilibrates Fy; and Fy>. The out-of-plane forces F;; and F,» (Figure 3.9¢) also

follow a linear trend, caused by the slider tilt.

The cables and slider tilt are also responsible for the in-plane moments observed in
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Figure 3.9b. The offset between the cables and the sliders’ axes of rotation creates
the moment components M, and My,. It is important to mention that the rigid
slider only has one cable connecting to the sensor and one air tube connecting to
the bearing, while the actuated slider has a significant amount of additional cables
connecting to the DC-motor. For this reason, My, is almost zero for the entire
range of rotations whereas M, has a larger amplitude. The linear increase can be
explained by the shift in the cable bundle’s center of gravity and therefore changes
the magnitude of the reaction moments. The out-of-plane forces create moment
components M, and M,>. When the slider tilt increases linearly, the magnitude of

M,y and M,, also increases linearly.

In conclusion, the parasitic reaction forces and moments measured by the sensors
are caused by two effects: the presence of cables and the the tilt of the sliders
during the test. However these effects do not significantly affect the accuracy of the
main bending moment measurement, and therefore the performance of the bending
machine, as discussed next. Improvement in the handling of the cables can be made,

but it was not deemed necessary for the type of structure we are looking at.

Next, the test described above was repeated three times for each rod sample, and
their bending stiffnesses were computed, based on the average of M;; and M.
In addition to the tests on the new bending machine, 3-point bending experiments
were conducted on the same samples, and the bending stiffnesses obtained by the
two methods are compared, see Table 3.1. A good agreement is observed between
the two tests, with a relative error under 2 % for all samples. The discrepancy
between the two tests can be attributed to 3 factors: the cables, the slider tilt and
the slider torsional compliance. Since the latter has been characterized in Section
3.3, its effects are included into a finite element simulation, where the rod model
is connected to two torsional springs of equivalent stiffnesses. The relative error
between the bending machine experiment and the simulation is under 1 % for all
samples. Qualitatively, the torsional compliance of the sliders reduces the rod’s
apparent bending stiffness. This effect is more significant for the shorter and thicker
rod, for which the bending moments are higher than for the two other samples. The
remaining discrepancy is attributed to the cables and slider tilt, and these effects are
more dominant for longer and/or softer samples. However, these parasitic effects
are very limited and are not a concern here. These initial tests revealed that the
performance of the new bending machine is satisfactory for linear structures, and

will next be assessed for more complex tests on non-linear thin-shell components.
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Figure 3.9: Test results for rod sample 2 (d = 3.19 mm and L = 446 mm). The
reaction moments and forces are measured in the deformed reference frames attached
to end 1 and end 2, described in Figure 3.2. (a) Main bending moment around the
z axis, (b) reaction moments around the x- and y-axes, (c) reaction forces on the z
direction and (d) reaction forces on the x- and y-axes.

d=3.19mm d=3.19mm d=2.88mm
L=581mm L=446mm L =446 mm

Methodology Rod bending stiffness, EI (Nm)
3-point bending 0.736 0.736 0.354
Simulation 0.738 0.723 0.357
Experiment 0.742 0.729 0.360
Reference Experiment relative error on EI (%)
3-point bending 0.912 -0.964 1.602
Simulation 0.541 0.824 0.754

Table 3.1: Measured bending stiffness for 3 carbon fiber rods. The first row corre-
sponds to a 3-point bending test performed on a universal testing machine (Instron).
The second row corresponds to finite element simulation, taking into account the
sliders’ torsional stiffness found in Section 3.3. The third row corresponds to the
tests preformed on the new bending machine. Finally the relative error between the
new bending machine experiment and the 3-point bending experiment is reported in
the fourth row and the relative error between experiment and simulation is reported
in the fifth row.
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3.6 Non-linear structures: tape springs

The main propose of the new bending machine is to test non-linear thin-shell struc-
tures and to study their instabilities. One such structure, used as a building block
for more complex thin-shell deployable components, is the tape spring, which has
been studied extensively [73]. It captures all the important features of the thin-shell
behavior: unstable buckling, imperfection sensitivity, and localization of buckling
modes. In this section, a series of tests on a short tape spring are carried out. The
tape spring cross-section is described in Figure 3.11 and has a length of 215 mm.
The tape spring is made of stainless steel and has a thickness of 110 um. The
sample’s Young’s modulus has been measured to be E = 208 GPa and its Poisson’s
ratio is v = 0.3. Each end of the tape spring is glued into an acrylic plate in which
the nominal cross-section is cut. The sample attached to the bending machine is

shown in Figure 3.10.

| “‘\i‘\\.‘“"i““o |
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Figure 3.10: Tape spring attached to the bending machine.

In addition, a finite element analysis is conducted, using the Abaqus Standard
software. The finite element model is detailed in Figure 3.11. The tape spring
is meshed using 1 mm x 1 mm reduced integration shell elements (S4R), and its
end cross-sections are held rigid and offset from the linear guide, similar to the
experimental setup. They are coupled to two cylindrical joints representing the
linear guides, which are implemented in Abaqus using boundary conditions. To
model the compliance of the sliders, the two cylindrical joints are attached to two
torsional springs whose stiffnesses have been determined in Section 3.4. For the
rigid slider, the other end of the torsional spring is clamped, whereas it is rotated
in the case of the actuated slider. The bottom edge of the experimental tape spring

has a slight camber (maximum deflection less than 0.5 mm), and the tape spring
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also exhibits a small twist (less than 1 deg). Both effects are included in the finite
element model. An arclength solver (modified Riks method in Abaqus) and a

Newton Raphson solver (Static general in Abaqus) are both used.

BC: applied rotation

BC: clamped Torsional Spring

V4 | AT
Torsional Spring k v E BC: cyl;(ndrl.caljomt
-axis
1
X
BC: cylindrical joint Rigid coupling

Y-axis

Translator z-axis
(Connector element)

Rigid coupling Tape Spring

Figure 3.11: Sketch of the tape spring finite element analysis. BC refers to the ap-
plication of boundary conditions in Abaqus. The rigid coupling is introduced using
an Abaqus constraint and the z-axis translator is implemented using a connector
element.

Equal sense and opposite sense bending tests are conducted, and their full loading
and unloading characteristics are reported in Figure 3.12. For each bending sense,
3 tests have been conducted and the mean and standard deviation are shown. The
opposite sense bending moment vs. rotation curves matches previous work on tape
springs [72], in the case of loading and unloading. The structure exhibits a uniformly
bent shape early in the test and the deformation quickly localizes in the center of the
tape spring, where the cross-section flattens and forms a localized fold of uniform
curvature. When unloading, the fold disappears at a lower rotation than the one
for which the snap-through occurs. Here, the well-known hysteresis behavior is not
affected by the new boundary conditions provided by the bending machine. The
finite element analysis captures well the experimental response. The Riks solver
diverges on the unstable part of the path, and a static solver with numerical damping
(107) is used to continue after the point of vertical tangency. Both peak and

steady-state moments are accurately predicted by the simulation. The deformed
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shape obtained from the experiment and the finite element simulation are in good

agreement and are shown in Figure 3.13.
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Figure 3.12: Results of the (a) opposite sense bending tests and (b) equal sense
bending tests of the tape spring sample. For each bending sense, 3 tests have
been conducted, and the mean of the 3 tests is plotted as well as an grey envelope
corresponding to one standard deviation around the mean. Finite element analyses
are reported in black. The solid line corresponds to an analysis using an arclength
solver whereas the dashed line uses a Newton Raphson solver.
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Figure 3.13: Tape spring deformed shape obtained for the opposite sense bending
test. (a) Experimental deformed shape and (b) finite element deformed shape. The
color map corresponds to the distribution of the Von Mises stress, but it used here
solely for visualization purposes.

Contrary to the opposite sense bending, for which a snap-through destabilizes the
structure, the structure under equal sense bending traverses a series of bifurcations.
Equal sense bending is therefore more unstable than opposite sense bending, and
the results are extremely sensitive to imperfections and disturbances. For a perfectly
straight tape spring, the top and bottom edges would exhibit symmetric deformations.
However, in practice, this mode of deformation is never observed and a torsional
instability appearing at the peak moment breaks this symmetry. The boundary
conditions specific to the present machine do not prevent global torsion to arise,

contrary to previous tests [72], and therefore changes the behavior of the structure
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after the peak moment is reached. The deformed shape observed in the experiment
is shown in Figure 3.14a. When the peak moment is reached, a single kink forms
on the bottom edge of the tape spring while a global torsion develops along the
structure. It is almost instantaneously followed by the formation of two kinks on
the top edge of the tape spring. This configuration is extremely unstable and one
kink reduces in amplitude as the test progresses, which causes the single bottom
kink to slowly migrate off-center. When one of the top edge kinks fully disappears,
the remaining top edge kink and the bottom edge kink move towards each other and
merge to form a single fold. Note that since torsion is allowed in the test, the fold
does not form in the center of the structure and it never becomes perpendicular to the
axis of the tape spring. The relative amplitude between the two top edge kinks drives
the behavior between the peak and the steady state. In the experiment, we observe
that both kinks fully form and their amplitudes grow until a rotation of about 20 deg,
which explains the rising path after their initial formation. However, in simulation,
while the amplitude of one top edge kink increases after its initial formation, the
other sees its amplitude decreasing rapidly. This sequence of amplitude increase
and decrease explains the falling path observed in simulation. Note that the two
different paths emerge from a single bifurcation point, and are extremely sensitive
to local edge imperfections. For other tape spring samples, the opposite behavior
has been observed in experiment, for which the path after the peak is falling all the
way to the steady state moment. An accurate resolution of the tape spring local
edge imperfections would allow the Riks solver to transition to the experimental
path (rising path), but this has not been attempted here. The peak and steady-state
moments are accurately predicted by the finite element analysis. The unloading
behavior differs from what is observed in the case of clamped boundary conditions
[72]. While previous experiments show no hysteresis for equal sense bending,
the present experiment features a different response. Both loading and unloading
responses are identical above a rotation of 20 deg. When the rotation is decreased
further during unloading, the global twist reduces while the single fold slowly
disappears, causing the bottom kink to travel to the middle of the edge while the top
kink travels towards the end of the tape spring. If the global twist was constrained,

the tape spring would instead form the two top edge kinks observed during loading.

To conclude this section, we saw that the bending machine allows to resolve the
loading and unloading of the tape spring, and the finite element simulation gives a
very accurate prediction of the key features of these tests. The isostatic nature of the

testing machine eliminates any self stress in the structure during the test, therefore
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Figure 3.14: Tape spring deformed shape obtained for the equal sense bending test.
(a) Experimental deformed shape and (b) finite element deformed shape. The color
map corresponds to the distribution of the Von Mises stress, but it is used here for
sole visualization purposes.

eliminating any stress disturbances. Statically indeterminate boundary conditions
often prevent the peak moment for both equal and opposite sense bending to be
predicted accurately. An accurate match between experiment and simulation is
achieved here, as the geometric imperfection is the only perturbation applied on
the test structure. The interaction between boundary conditions and tape spring

imperfections is explored further in the next section, and confirms this observation.

3.7 Interaction between kinematic constraints and imperfections

In this section, we use the example of a tape spring with initial geometric imperfec-
tions to illustrate the effect of statically indeterminate boundary conditions. If no
adjustments are made, misalignment between the structure’s end mounts can cause
an initial prestress in the test structure, which in turn can dramatically affect its

behavior.

To illustrate this sensitivity, the same nominal tape spring as in Section 3.6 is
considered, and its equal sense bending response is simulated. It is important
to recall that in the simulation of Section 3.6, the tape spring geometry includes
imperfections based on measurements of the actual experimental sample. In this
section, the nominal tape spring geometry is considered with different types of
geometric imperfections that do do not corresponds to the ones used before. For
this reason, we expect different responses from the simulation of Section 3.6 and
the one presented here. The finite element model, described in Figure 3.11, is also

used.
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We focus on the effect of releasing constraints in the boundary conditions, and
highlight the benefits of an isostatic testing machine. In particular, we are comparing
the testing machine of Figure 3.1d and 3.1e with our testing machine illustrated in
Figure 3.1f. Two types of global imperfections resulting in a missalignement of the
test structure’s mounts are analyzed here, using finite element simulations. Camber,
shown in Figure 3.15a, and twist, shown in Figure 3.16a, are of particular interest
since they are common global imperfections observed in thin-shell components.
Note that in the case of a bending imperfection around the z-axis, the actuator’s
initial rotation can be offset to guarantee that the structure is stress free at the
beginning of the test. In order to study the impact of global camber and twist, the
structure is deformed and its deformed shape is then imported into the finite element
simulation of Section 3.6. To create an initial camber, one end cross-section is
clamped while a rotation around the X-axis is applied to the other end cross-section
(kept rigid). To generate an initial twist, the process is similar, with a rotation
applied around the Y-axis. Note that only the deformed geometry is imported, and
the structure is stress free after the importation. In a first analysis step, an opposite
rotation is applied to the structure such that its end cross-sections are realigned. It
results in an initial stress of the structure. The boundary conditions specific for
each machine are then applied to the structure which is allowed to relax in a second

analysis step. In the final step, the structure is bent around the z-axis.

The buckling sensitivity to the tilt between the end-cross sections (caused by the
global camber), is shown in Figure 3.15. The main observation is that the initial tilt
affects dramatically the peak moment and transition into buckling for the statically
indeterminate boundary conditions. For the testing machine of Figure 3.1d, once
the structure has been prestressed during mounting, the boundary conditions do not
allow it to relax, if no adjustment systems are considered. Even a tilt between the
structure’s mounts as small as 0.05 deg results in a decrease of 20 % in the peak
moment. While one can argue that it is possible to mount the structure on adjustable
brackets that compensate for the structure’s imperfections, measuring and correcting
the misalignment of the mounts with an accuracy error below 0.05 deg is extremely
challenging in practice. Note that the prestress caused by the initial tilt also affects
the deformed shape in the postbuckling regime. For the testing machine of Figure
3.1e, the initial stress state created by straightening the structure changes once it
is mounted on the machine, since the release of the rotational constraints enables
the partial relaxation of the structure. However, in this design, the rotations of the

two sliders are coupled by the redundant constraint on the translation along the
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Figure 3.15: Analysis of an imperfect structure for which a global camber induces a
tilt between the two end cross-sections as illustrated in (a). The imperfect structure
behavior is simulated for the testing machine architecture of (b) Figure 3.1c for
which the sample rotations are constrained, (c) Figure 3.1d for which the sample
rotations are released, but the vertical translation is constrained, and (d) for the
present, isostatic bending machine.

Z-axis, as explained in Section 3.2. When one slider rotates, the corresponding end
cross-section translates along the z-axis. Compatibility of displacements imposes
a similar translation of the second end-cross section which inherently causes the
second slider to rotate. Therefore, there exists a coupling between bending and
twisting, and its effect is shown in Figure 3.15¢c. Even if the degree of indeterminacy
for this architecture is much lower than in the previous case, the buckling behavior
is dramatically affected by the redundant constraint. A tilt of 0.05 deg induces a 15
% decrease in peak moment and its effect is more significant for larger values of tilt.
Finally, the statically determinate architecture yields an imperfection-insensitive

behavior highlighted in Figure 3.15d. The boundary conditions allow the structure
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to be fully stress free before the bending experiment is carried out. The peak moment
decreases by 5 % between the perfect structure and the worst tilt analyzed (0.2 deg).
The response around the peak is identical for all tilt values and the spread in peak
moments is only caused by the change in the structure’s geometric properties and is
not influenced by the testing machine. Note that the behavior of the perfect structure
is similar in Figure 3.15¢ and 3.15d, but differs from Figure 3.15b in which the peak
moment is higher.
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Figure 3.16: Analysis of an imperfect structure for which a global torsion induces
a twist between the two end cross-sections as illustrated in (a). The imperfect
structure behavior is simulated for the testing machine architecture of (b) Figure
3.1c for which the sample rotations are constrained, (c) Figure 3.1d for which the
sample rotations are released, but the vertical translation is constrained, and (d) for
the present, isostatic bending machine.

We then shift our focus to the global twist imperfection, represented in Figure
3.16a. When the rotations are constrained, as in Figure 3.16b, the peak moment

increases significantly for all values of twist when compared to the perfect structure
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of Figure 3.15b. As mentioned in Section 3.6, the first buckle forms simultaneously
as the structure starts twisting. An initial twist affects significantly this behavior,
and a twist in the other direction will have the opposite effect (reduction of the
peak moment). However the variation in peak moment is less important than for
the camber imperfection. Since the torsional stiffness of the structure is much
lower than its in-plane bending stiffness, the prestress caused by the twist has a
lower magnitude than for the camber imperfection, which explains the more limited
spread in buckling moments. When redundancy is limited to the sample’s vertical
translation, the buckling behavior follows to distinct regimes, shown in Figure 3.16c¢.
For small twists, the state of self stress induced by the redundant constraint has a low
magnitude, and the testing apparatus behaves like the isostatic machine. However
for larger values of twist, the buckling behavior is similar to the one encountered in
Figure 3.16b. Finally, the isostatic machine exhibits almost no variation of buckling
moment when the twist is varied. Moreover, the bending characteristic observed
for the twist imperfection matches the one observed from the camber imperfection.
From the isostatic experiment, we can therefore conclude than the geometric twist
imperfection does not have a significant influence on the equal sense bending of the
tape spring. This conclusion would not have been possible to reach with the two
other experimental setups, as the effects of the parasitic stress perturbation mask the

low geometric imperfection sensitivity.

3.8 Conclusion

Throughout the chapter, we highlighted the importance of boundary conditions in
pure bending tests. Various pure bending machines have been designed and are
mostly used for material testing or stiff structures, for which they demonstrated
advanced performances. Of particular interest is the use of frictionless linear guides
which enable us to mitigate the effect of parasitic reactions moments and forces on the
test structure. However, these architectures all have redundant boundary conditions
which cause them to be statically indeterminate. While it is often not an issue for flat
and stiff samples, it has a dramatic impact in the testing of very thin-shell structures,
for which the unstable behavior at buckling is extremely imperfection sensitive.
Geometric imperfections are often introduced during manufacturing of thin-shell
structures, and will inherently affect the behavior of these structures, regardless
of the testing machine. However, in the case of a statically indeterminate testing
apparatus, the geometric imperfection can also introduce a stress perturbation in the

form of an initial stress state. In practice, the effect of this stress perturbation is much
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more important than the geometric imperfection itself, and artificially increases the

apparent imperfection sensitivity of the structure.

This chapter tackled the development of a new bending machine for which the
boundary conditions are statically determinate. It is inspired by the testing machine
presented in [11] and releases its only redundant constraint, the test structure’s out-of-
plane translation, using an offloaded sliding bracket. The accuracy of this machine
was first analyzed through the testing of circular rods. These tests highlighted a very
good agreement between simulations and experiments (less than 1 % relative error),
and the magnitude of parasitic effects induced by the cables and slider rotations
is negligible for the type of structures the machine is designed for. Testing has
then been extended to tape springs, which captures essential features of non-linear
structures undergoing complex instabilities. Here again, the analysis showed thatitis
possible to resolve accurately their complex bending behavior. We finally presented
simulations on the same tape springs which highlighted the effect of initial stresses
caused by geometric imperfections in statically indeterminate testing machines. It
has been shown that these effects dominate the structure’s buckling behavior and are
often masking the structures’ real geometric imperfection sensitivity. In the isostatic
bending machine presented in this chapter, the imperfection sensitivity of the test
structure can be directly quantified since no other perturbations can affect the test

results.

This new testing machine paves the way for the experimental study of the buckling
sensitivity of thin shell structures. Of particular interest is the study of localization
of buckling modes and the sensitivity to disturbances in the structure’s environment
[70]. The magnitude of the disturbances analyzed in such studies is extremely small
(disturbance energy below 1 mJ), and any parasitic effect or prestress introduced by

the testing machine would make these effects undetectable.
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Chapter 4

THIN-SHELL STRUCTURES UNDER BENDING:
EXPERIMENTAL STUDY

4.1 Introduction

Thin shells have been widely used in many engineering applications. They enable
very lightweight structures to be built, while featuring excellent load-carrying ca-
pabilities. They play a paramount role in the development of aerospace vehicles for
which mass is often the most critical design parameter. As new applications appear,
and more advanced capabilities are sought, the thickness of thin shells tends to go
down. In the past decades, the rapid progress of high-strain composites used in
deployable structures accelerated this trend [50], with thin shell booms being used

to support large aperture space systems [7, 16].

However, one of the main challenges in using thin shell structures is the unpre-
dictability of their buckling behavior. This complication lies in the physics of the
buckling event. For thin shells, buckling is part of a wider family of instabilities
called sub-critical bifurcations, which exhibit an immediate falling post-buckling
response in the load/displacement plane. If the path does not regain stability, the
structure loses all its load-bearing capabilities and fails. In most cases, the unstable
post-buckling path runs very close to the pre-buckling path (also called fundamental
path), making the structure meta-stable close to the bifurcation point. It is then pos-
sible to transition early into the post-buckling regime if a small amount of energy is
brought to the system, and if the difference in total potential energy between the two
states is overcome. The "proximity" between the pre-buckling and post-buckling
states also makes the structure extremely sensitive to imperfections, which was first
discovered in early experiments on cylindrical shells [13, 44, 82]. For a real struc-
ture, a small imperfection would easily erode the energy barrier between these two
states, otherwise found in the theoretically perfect structure. The imperfection thus
behaves like a connecting mechanism between these two states, causing the bifurca-
tion point to be encountered earlier than theoretically predicted. The phenomenon

is even more pronounced as the thickness of the shell decreases.

In order to still be able to use these structures in practice, structural engineers

usually avoid buckling at all cost. For axially compressed cylindrical shells and
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pressurized spherical shells, numerous experiments have been conducted in the
twentieth century, and a lower bound on the statistical distribution of experimental
buckling loads determined. The difference between the theoretical buckling load and
this empirical lower bound, called knockdown factor, has been the basis of practical
cylindrical and spherical shell designs. It led for instance to the NASA space vehicle
design criteria for the buckling of thin-walled circular cylinders (NASA SP-8007)
[62]. Although the classical knockdown factor approach is powerful, it has two
major limitations. First, it is widely seen as very conservative and therefore often
prevents using the mass saving capabilities of thin shells to their full extent. Recent
efforts by NASA’s Shell Buckling Knockdown Factor (SBKF) Project established in
2007, aims to develop revised and more realistic knockdown factors[29]. Second,
each knockdown factor is only valid for a unique structure/loading combination and
is therefore difficult to generalize to other kind of structures and applications. It
has been shown that knowing accurately the structure’s initial geometry enables
the accurate prediction of the buckling event [S1]. However, in many applications,
measuring the shape of the structure before use can be both expensive and in some

cases impossible.

On top of imperfection sensitivity, localization of buckling deformations makes
the thin-shell buckling behavior even harder to predict. It causes significant differ-
ences between the theoretical buckling eigenmodes and the experimentally observed
deformed shape. Localization arise in two situations. The first corresponds to post-
buckling localization and is a manifestation of the extremely non-linear response of
the structure after the bifurcation is exceeded. In this case, the onset of the buckling
eigenmode appears at the exact point of bifurcation, and greatly affects the struc-
ture’s geometric stiffness. As the loading is increased, deformations concentrate
at specific locations, given by the peak eigenmode amplitude and/or by dominant
imperfections. In this case, the buckling mode starts with global deformations and
becomes more and more localized. This type of localization is for instance observed
for beams on elastic foundations [83] or for spherical shells under pressure [4, 38,
40]. Another localization scenario is observed when a global post-buckling mode
is created through the sequential formation of localized buckles. It features a series
of destabilization and restabilization of the post-buckling path known as snaking,
or cellular buckling [35]. Interestingly, the first localized buckle can appear on
post-buckling paths disconnected from the fundamental path, while running asymp-
totically close to it [23]. This phenomenon is observed in cylindrical shells for

which a single dimple, "broken away" from the unbuckled state, evolves to a fully
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periodic buckling mode through snaking [23, 45]. It has been proven that for the
cylindrical shell, the single-dimple state sits on a mountain pass in the energy land-
scape, between the pre-buckling and post-buckling states, and is the lowest critical
escape mechanism by which the structure can buckle [32]. Since the location at
which deformations localize heavily depend on the imperfections of the structure,
it can generate a large number of post-buckling solutions even for a small set of

theoretical eigenmodes. This is referred to as spatial chaos [80].

The imperfection sensitivity driving the buckling behavior is then twofold. It erodes
the energy barrier between pre-buckling and post-buckling states, causing early
buckling, and it creates a high number of possible post-buckling paths through
localization. For these reasons, predicting buckling is extremely difficult for shell
structures and often relies on a case by case approach. Recent work has focused
on the sensitivity of the buckling phenomenon to disturbances in thin cylindrical
and spherical shells. A non-destructive experimental method has been proposed in
2013 to study the meta-stability of the unbuckled state. It focuses on determining
the energy barrier separating the fundamental path and the critical localized post-
buckling state [41, 75, 79]. The search for the load at which the critical buckling
mechanism can be triggered is carried out by imposing a local radial displacement
in the middle of the structure using a probe. This method effectively quantifies
the resistance of shell buckling against the single dimple imperfection mentioned
earlier. The method has been successfully applied to cylindrical shells [81] and to
pressurized hemispherical shells [53]. These experiments quantified in particular
the onset of meta-stability, often referred to as "shock sensitivity" [76], and a
comparison with historical test data has shown that this specific loading can serve as
an accurate lower bound for experimental buckling loads [20, 23], leading to better

knockdown factors.

In this chapter, we wish to apply and extend the experimental probing methodology
used for cylindrical and spherical shells to more complex structures. These thin
shells capture the essence of ultralight coilable space structures recently developed
in the Space-based Solar Power Project (SSPP) at Caltech [3, 71]. Previous analysis
showed that local buckling plays a key role in such structures [69] and motivates
the need to conduct experimental buckling characterization. However, the size of
the structure together with the complexity of its components and the peculiarity of
its non-uniform bending moment, makes experiments very challenging. In order to

address these limitations, the behavior of a simpler structure under pure bending is
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presented here. While the structure and loading are different, it enables us to draw
more general conclusions on the buckling of structures featuring thin-shell open
cross-sections. The approach here is purely experimental and complements finite

element probing analyses presented in previous work.

An important characteristic of the structure studied in this chapter is that its post-
buckling path restabilizes under bending and therefore, the maximum moment it
can carry is greater than the first buckling moment [69]. Such behavior offers an
incredible opportunity to operate closer to buckling than ever before. If applications
allow, the structure can also be used in its post-buckling regime, as long as we
have guarantees that it will behave safely. To achieve these goals, the present
chapter aims to show that by using the experimental probing methodology, the meta-
stable behavior of the structure close to buckling can be fully characterized. This
knowledge can be used to derive very efficient buckling criteria based on disturbance
levels, or the minimum load at which meta-stability arises. The methodology can
then be extended to navigate spatial chaos in the post-buckling regime, where
competing paths can be identified and a range of possible post-buckling responses
determined. The philosophy here is to embrace buckling rather than avoid it, and

therefore enable the use of dramatically lighter structures.

The chapter is structured as follows. Section 4.2 describes in more detail the test
structure and the experimental bending a probing setup. Following a classical buck-
ling analysis, Section 4.3 highlights the importance of localization and spatial chaos
by comparing finite element simulations and the experimental buckling response.
In Section 4.4, probing experiments are carried out to study the formation of the
experimentally observed buckling mode and characterize its meta-stable behavior.
In Section 4.5, probing is applied along the entire structure to determine alternate
locations at which local buckling can appear, and the formation of these alternate
modes is studied through additional probing. Consequences of their appearance on
the global bending response are finally highlighted, and Section 4.5 concludes the
chapter.

4.2 Test structure and experimental setup

Test structure

The test structure is made of tape springs called longerons, connected transversely by
rods called battens. The complete structure is referred to as a strip. The longerons

are cut from a Crafstman 1-in blade tape measure, and their length is L = 714
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mm. Their cross-section can be approximated by a circular arc to which tangent flat
segments are added to the two extremities. Details of the cross-section are presented
in Figure 4.1d. The circular portion of the cross section has a radius of 14 mm, an
opening angle of 75 deg, and the flat sections are 3 mm long. The shell thickness
ist = 110 um. The longerons are made of stainless steel with a measured Young’s
modulus of E = 208 GPa and Poisson’s ratio v = 0.3. The battens are pultruded
carbon fiber rods of diameter d = 2 mm and Young’s modulus E = 140 GPa. The

battens have a length of / = 50 mm.

Four battens are inserted and glued into rivets pinching the longerons. In addition,
both sides of the rivets (longeron back/front) are embedded into a hemisphere of
epoxy, which guarantees a full connection between longeron and batten. The end
cross-sections of each longeron are inserted and glued into an acrylic plate in which

the cross-section has been laser cut. The acrylic plates serve as the interface between

the test structure and the bending machine described next.

(d)

(b) (©)

Figure 4.1: (a) Thin shell test structure used in the experiment. The longerons
are made of stainless steel tape springs and connected transversely by carbon fiber
rods. Full (b) front connection and (c) back connection between batten, rivet, and
longeron. (d) Approximated tape spring cross-section used for the longerons.

Bending machine
The original pure bending machine used in the experiment is discussed extensively in

previous work, and a CAD model is shown in Figure 4.2. The actual implementation
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is shown in Figure 4.4. It employs two linear guides on which air bearings are
able to translate and rotate along and around the guides’ axes. This architecture
guarantees that no parasitic reaction forces can arise during the test, and that only
a bending moment can be applied to the structure. There is no redundancy in
boundary conditions provided to the test structure, which makes the system statically
determinate and prevents any self-stress during testing. The boundary conditions
provided to the test structure are detailed in Figure 4.3. Several components are
attached to each air bearing, and we refer to this assembly as a slider. The actuated
slider, on which one end of the test structure is attached, is made of a DC motor
(Harmonic Drive FHA-8C) which controls the rotation of the sample around the local
z-axis. The rotation profile follows a smooth s-curve, and the maximum angular
acceleration can be chosen to be 0.05 deg/s to limit dynamic effects. An incremental
encoder with a resolution of up to 800,000 counts per revolution measures the
applied rotation. A force/torque sensor (ATI Mini40) is attached to the motor’s
rotating end and can measure bending moments up to 2 Nm. An aluminum bracket
is mounted on the sensor and provides and interface to attach the test structure. The
second end of the test structure is attached to the rigid slider, where the DC motor
is replaced by an aluminum column. An offloaded bracket allows the sample to
translate along the slider’s local z-axis. It uses a hanging mass and a pulley, which
compensates for half of the mass of the test structure and half of the mass of the
bracket’s translating assembly. To avoid parasitic moments caused by gravity, a
counterweight is attached to the top of each slider and can be adapted to a wide
range of sample masses. Finally, a probing stage is added to the bending machine

and perturbs the test structure locally. This specific apparatus is described next.

Probing stage

In addition to being subjected to the main bending moment, the strip is perturbed by
a "probe" that locally displaces the longeron. The probing apparatus is composed
of a motorized linear stage (Newport MFA-CC) providing a positioning accuracy of
+3 um. A force sensor (ATI Nanol7) is mounted on the moving part of the stage
and supports a wedge that comes into contact with the longeron edge when probing
is applied, as seen in Figure 4.4c. The sensor measures the probe force with a
resolution of 1/320 N, and an incremental encoder on the motorized stage measures
the probe displacement with a resolution of 0.0176994 um. When the structure is
bent, half of the longeron will undergo compression, with the maximum stress being

found on the edge. The wedge axis is perpendicular to the longeron edge, creating a



Counterweight
N

Linear guide

Air bearing

o
©

[
1
e
|

=

-~

DC motor

- Linear actuator f[ x

T 1T 11
%

Test Structure

1 [ 1 ]
%‘\Probe

ool

i ~— Sensor
l |
a

Offloaded bracket

80

Linear actuator (2)

Wedge ™. \ N
Sensor 8\ _Longeron
LB e

/ B
X-Y Positioning stage

(a) (b)
== - 4,
G o z l 1 Fp ‘ T
5 E
0.25m

‘ L (adjustable) UP 1 .
e 2 L .‘E;J I N
Y&J/,x e (] o O o

(d)

Figure 4.2: (a) Front view of the pure bending machine and its probing stage. The
machine provides isostatic support conditions to the test structure and its dimensions
are illustrated in (c). Details of the probing stage are presented in (b) and (d).

X v X
Y Z Z1 é Y Z
4—4) X1
End 1 End 2 ~.
Uy1=Uz1=0 Ux2=0 ) ~.
URv=0 URX = URz=0 |
URz1 actuated 0 !
1
\1 x2=X x2'!
Free to 1 y1 z1 y2=Y ,I\ 2 Y2 | 2
. AN\
slide % N ~
Test structure Free to slide

@) (b)

Figure 4.3: Conceptual representation of the bending machine, specifying the
boundary conditions on the two ends of the sample. U corresponds to the transla-
tional degree of freedom and UR to the rotational degree of freedom. (a) Undeformed
configuration and (b) deformed configuration after a rotation of 6 is applied to end
1.

punctual contact between the two parts. As the longeron is probed, its cross-section
flattens, and there exists a relative motion between the wedge and the longeron. The

impact of friction on the probing characteristic is reduced by fabricating the wedge
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out of Teflon. Details of the probing stage are shown in Figure 4.2b, d, and Figure
4.4d, c.

Figure 4.4: Physical implementation of the experimental apparatus. (a) Setup
overview with the test structure mounted in the bending machine and the probing
stage placed under it. (b) Detailed view of the probing stage and (c) the Teflon
wedge that comes into contact with the longeron edge.

4.3 Classical buckling experiment and analysis

Buckling eigenmodes

The first step in understanding how buckling unfolds is to conduct a buckling
eigenvalue analysis. The goal is to detect bifurcations arising on the structure’s pre-
buckling path or fundamental path. It gives insights into the buckling loads/rotations
but also unveils additional buckling modes that can be found above the first bifurca-
tion. knowing the buckling modes is important since they reveal critical imperfec-
tions that have a practical influence on the transition into the post-regime regime.
They also give information about the deformed shapes to be expected once the

structure buckles.
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To compute the buckling eigenvalues/eigenmodes, a finite element model is created
in Abaqus 2018, which replicates the structure’s geometry, materials, and the bend-
ing machine’s boundary conditions. To compute the "exact" buckling eigenmodes
and moments, an iterative procedure is required as the fundamental path can exhibit
geometric nonlinearities for thin shell structures [48]. The first iteration follows
a classical buckling analysis. A linear perturbation is applied to the stress-free
structure and buckling moment estimates are computed. The strip is then loaded
by a bending moment, under the first buckling moment estimate, and the problem
is linearized about this new pre-stressed state, taking into account pre-buckling
nonlinearities. This process is repeated until the first buckling moment estimate
converges to its "real" value. The analysis yields four bifurcation points, and their

corresponding buckling eigenmodes are shown in Figure 4.5.

©) (d)

Figure 4.5: Buckling eigenmodes determined through finite element simulations.
The eigenvalue problem is linearized around a state where the structure is prestressed
by a bending moment of 1 Nm. (a) First (M., = 1.604 Nm), (b) second (M., = 1.759
Nm), (c¢) third (M., = 2.003 Nm), and (d) fourth (M., = 2.009 Nm) eigenmode.

The first two buckling modes are dominated by long wavelength deformations
spanning the entire longerons, and therefore can be characterized as global. The last
two buckling modes feature short wavelength deformations modulated in amplitude
by a global long wavelength deformation. Note that in Figure 4.5, the amplitude
of these deformations is arbitrary since it represents normalized eigenmodes. From
this analysis, a first buckling moment around M., = 1.6 Nm is expected, as well as a
post-buckling deformed shape resembling the first eigenmode, as seen in Figure 4.5a.
However, the classical buckling eigenvalue analysis has two main limitations. First,
it does not take into account the imperfections found in the real structure. These
imperfections can change the order of bifurcations, and prioritize one buckling
eigenmode over another. The post-buckling deformed shape often stems from a

linear combination of the first few buckling modes, if their buckling moments are
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relatively close. Second, thin shells exhibit buckling mode localization, as explained
in Section 4.1. In most cases, even for a perfect structure, the computed eigenmode
is only valid at the bifurcation point, and deformations localize at one or more

preferred locations as soon as the structure transitions to its post-buckling regime.

Moment/rotation response and post-buckling localization

A set of five bending experiments are carried out. The maximum rotation is set to
Omax = 3 deg. The mean moment/rotation response, as well as the experimental
standard deviation, is shown in Figure 4.6a. In Figure 4.6a and throughout the
chapter, the average of the two end bending moments is reported. The response is
linear until the structure bifurcates for 6., = 1.74 deg and M., = 1.25 Nm. The
structure undergoes a snap-back and restabilizes at M., = 1.09 Nm. Note that the
experimental buckling moment is 22% lower than the first theoretical bifurcation,
which highlights the imperfection sensitivity of the structure. In the experiment,
the snap-back occurs over a small range of rotations, and a quasi-static response
(vertical tangent) would be observed for a lower angular velocity. The post-buckling
regime is stable for both moment and rotation-controlled cases, and the response is
weakly non-linear. In further tests, presented at the end of the chapter, the maximum
rotation has been extended to 6,,,, = 10 deg and shows that the stable post-buckling
regime extends to larger values of bending moments. It suggests that the strip could
be safely operated in its post-buckling regime, and this type of behavior has been

observed previously for a similar type of structures [69].

We wish to compare the experimental response with finite element simulations. In
particular, we want to compute the post-buckling paths corresponding to the first
two eigenmodes. To do so, a standard method is employed [66, 68]. Each mode
is seeded in the structure’s initial geometry as a geometric imperfection. Here the
imperfection amplitude is chosen to be 30% of the shell thickness (t). The modified
Riks solver available in Abaqus is used to trace the stable and unstable part of the
post-buckling response. These paths are shown in Figure 4.6b together with the
experimental response. The corresponding deformed shapes at the end of the two
post-buckling paths are shown in Figure 4.6d (first mode) and 4.6¢ (second mode). In
both cases, the post-buckling shapes exhibit significant differences with the buckling
eigenmodes. They feature highly localized deformations extending inward (towards
the structure’s longitudinal mid-plane), forming a series of alternating buckles.
The buckle locations coincide with the inward peak deformations found in the

eigenmode. It illustrates that here, the localization phenomenon prioritizes inward
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Figure 4.6: (a) Mean experimental moment/rotation curve and standard deviation
for five bending experiments. (b) Comparison between experiment and FEA in the
vicinity of the bifurcation point. (c) Post-buckling mode obtained by FEA when
seeding the second buckling eigenmode as imperfection. (d) Post-buckling mode
obtained by FEA when seeding the first buckling eigenmode as imperfection. (e)
Experimental post-buckling shape.

deformations, as no outward buckles are found. The post-buckling paths feature
a snaking sequence, characterized by a series of destabilization and restabilization
events. Snaking corresponds physically to the sequential formation of buckles. For
the post-buckling path corresponding to the second mode, the structure bifurcates at
higher values of moments than for the first mode, as expected from the eigenvalue
analysis. The central buckle formation corresponds to the first post-buckling fold,
directly connected to the unbuckled path, while the side buckles form in the second
and third folds. The post-buckling shape corresponding to the first mode forms
in a similar way. The structure bifurcates around M = 1.58 Nm and the first
fold corresponds to the formation of one of the two buckles. When the second
destabilization point (called snaking point) is reached, the second buckle starts to
form. However, the simulation is stopped before the path restabilizes. At this point,

the two buckles compete, causing the solver to oscillate between forming one or the
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other. Continuing the simulation was not attempted here but is possible by tweaking

the initial imperfection.

Next, the simulation results and the experiment are compared. The deformed shape
obtained experimentally, after a rotation of 6 = 3 deg is applied, is shown in Figure
4.6e. It matches exactly the post-buckling shape found in simulation for the second
eigenmode imperfection, even if in theory, the lowest bifurcation corresponds to
the first eigenmode. Note that top and bottom longerons are interchangeable in
Figure 4.6c/d since no gravity is applied in simulation. In addition, significant
differences exist between the two post-buckling paths. The experimental post-
buckling restabilizes at a higher moment, and the post-buckling stiffness is also
higher. It highlights the limitations of a purely simulation-based design and analysis
approach for such structures. In particular, the transition to buckling happens at a
significantly lower moment, due to the structure’s imperfection sensitivity. Only two
types of geometric imperfections are considered here, but any linear combinations
of the four eigenmodes would potentially yield a different post-buckling solution
corresponding to a different localization mechanism, characteristic of spatial chaos
[24]. Note that it is possible to find all the potential post-buckling paths for the
perfect structure using an advanced computational method, such as path-following
[25]. However these methods are not usually available in commercial finite element
software, and can only be matched with experiments if the real imperfections in the
structure are known. Indeed, inreality, various post-buckling modes compete and the
structure’s imperfections determine which path connects to the unbuckled state. This
path does not necessarily coincide with the solution given by the lowest eigenmode,
and many paths can run close to the unbuckled path without ever intersecting it.
These alternate modes can be accessed if a small perturbation is applied to the
structure, causing early buckling. This meta-stable behavior is explored next, using

probing experiments.

4.4 Probing the experimentally observed post-buckling mode

This section focuses on the formation of the post-buckling mode observed experi-
mentally, if no perturbations are applied to the structure. In the rest of the chapter,
this specific mode is referred to as main post-buckling mode. When a rotation of
0. = 1.74 deg is imposed, the bifurcation point is reached and the structure experi-
ences a snap-back, during which three buckles form simultaneously. They are shown
in Figure 4.6e, and are referred to as the TC (Top edge Central), the BR (Bottom
edge Right), and the BL (Bottom edge Left) buckles. In reality, their formation



86

follows a specific snaking sequence, resembling the simulated post-buckling paths
of Figure 4.6b. However, in a rotation-controlled experiment, unstable portions of
the response are not captured, and the snaking sequence is hidden by the snap-back
event. Once the first local buckle forms, it triggers the formation of the second
buckle and subsequently the third one. These buckles interact with each other
through global structural deformations (torsion, in-plane and out-of-plane bending).
However, close to the buckling load, the structure is meta-stable and equilibrium
configurations featuring one or more of these local buckles can be attained if a
small perturbation is applied to the structure. Of particular interest is the lowest
rotation/bending moment at which these buckles can be found in equilibrium, and
the energy barrier that needs to be overcome to form them. In this section, each
of the three buckle locations (TC, BR and BL) are probed. For a fixed rotation,
the longeron’s edge in compression is locally displaced at each of the three buckle
locations, and the probe reaction force is measured. The rotation increment is set
to 0.05 deg initially and refined to 0.02 deg at higher values of rotation (when
ridge and valley start). Three stability landscapes, which display the probe force
as a function of the rotation and the probe displacement, are shown in Figure 4.7.
They give insights into which combinations of buckles can be observed before the
bifurcation point and identify the critical buckle responsible for the transition into
the post-buckling regime. This representation was first introduced in 2016 [81] for
cylindrical shells. We show here that similar stability landscapes can be found for

more complex structures.

Top edge central probing (TC)

The top edge central buckle location (TC) is first probed and the results of the
experiment are shown in Figure 4.7a. For 6 < 1.29 deg, the probe force F)
increases monotonically as the probe displacement U, increases, and the probe force
is close to linear with respect to the probe displacement when the applied rotation
is small (6 < 0.5 deg). When the rotation is increased, the probe force versus probe
displacement characteristic is no longer monotonic, and a region of negative probe
stiffness appears. It creates two important features in the stability landscape. The
local maximum of probe force forms the ridge (dashed and dotted line) and the
local minimum, the valley (dashed line). In a force-controlled probing experiment,
the structure would undergo a snap-through instability and kinetic energy would be
released. For probe displacements larger than the critical valley displacement, the

probe force increases monotonically again. As the rotation is increased, the probe
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Figure 4.7: Stability landscapes for the (a) TC probe location, (b) BR probe location,
(c) BL probe location, and (d) their common legend. (e) Schematic of the strip
structure with the three probe locations.

force at the valley decreases until it reaches O N for § = 1.5 deg. It corresponds
to the smallest value of rotation at which a local single buckle (labeled 1B) can be
formed and remains in equilibrium at the probe location. This value is referred to
as the single-buckle minimal buckling rotation and corresponds to the minimally
buckled state found at the end of the valley. The ridge displacement decreases as
the rotation increases until the ridge disappears at the point of spontaneous buckling
(or bifurcation point), for 8., = 1.74 deg. The stable (solid green) and unstable
(solid red) single-buckle equilibrium contours, for which F,, = 0 N, stem from the
single-buckle minimally buckled state. Above the minimal buckling rotation, the
structure undergoes a snap-through instability when the probe displacement reaches
the unstable equilibrium contour. At this point, the probe looses contact with the
longeron and F, = 0 N. Contact is restored when the probe displacement reaches
the stable equilibrium contour. The region in which there is no contact between the

probe and the longeron is referred to as the lake. If the probe was able to apply
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tension in addition to compression, the landscape would feature negative probe

forces in the lake.

Three types of equilibria appear during probing. These solutions are accessible if a
disturbance provides enough energy to the structure. The energy barrier separating
the unbuckled and buckled state can be computed by integrating the probe force as
a function of the probe displacement, between the unbuckled state and the unstable
equilibrium contour. An analysis of the energy barrier is presented in Section 4.4.4.
For U, < 2.3 mm and 6 < 1.64 deg, the single buckle equilibria are found (labeled
1B). However, for 1.58 < 6 < 1.62 deg, the probed structure undergoes instabilities
(fold region in Figure 4.7a) past the stable single dimple equilibrium contour. A
probe characteristic featuring this instability is shown for 8 = 1.6 deg, in Figure 4.8a.
This type of instability is called a cusp catastrophe [36]. When the probe reaches
the cliff (in purple), the structure undergoes a snap-back and the probe force drops.
The cliff corresponds to limit points at which the tangent to the probe characteristic
is vertical. At this point, the probing path becomes unstable, folds, and eventually
restabilizes at lower values of probe force. In the displacement-controlled probing
experiment, the unstable portion of the path cannot be captured and the structure
directly snaps to the lower (and stable) part of the fold. When retracted, the probe
follows the entire stable path until the probe force reaches 0 N. The stable two
buckles’ (2B) equilibrium contour (shown in orange) is then found. On this contour,
buckles appear at the TC and BR locations. If the probe displacement decreases
further, the probe loses contact with the longeron and the two buckles remain in
equilibrium. The shaded region represents the top view of the fold (or cusp). The
smallest rotation at which the two buckles equilibria are found is 8 = 1.58 deg and

is referred to as the two buckles minimal buckling rotation.

Finally, for # > 1.62 deg, equilibria featuring the full buckling pattern (3 buckles)
are found. For a fixed rotation within the range 1.62 < 6 < 1.64 deg, the TC buckle
is created first. However, as the probe displacement is increased past the unstable
three buckles (3B) equilibrium contour (dotted red), the structure experiences a
snap-through and the probe looses contact with the longeron until it reached the
stable three buckles equilibrium contour (dotted green). For 6 > 1.64 deg, any
probing past the single-buckle equilibrium contour results in a direct snap-through
to the three buckles equilibrium contour. If the stable single buckle is formed, and the
rotation is increased without any probing, the structure will follow the single-buckle

equilibrium contour until 8 = 1.64 deg, for which the three buckles pattern forms.
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Figure 4.8: Loading and unloading probe force/displacement characteristic, for
0 = 1.6 deg, at the (a) TC probe location and the (b) BL probe location.

This rotation is referred to as the snaking rotation. This observation reveals that
the snaking sequence is only composed of two folds corresponding to the buckling
of the top longeron, followed by the buckling of the bottom longeron, even if the

buckling pattern features three buckles.

Bottom edge right probing (BR)

The structure is unloaded and the probing experiment is repeated for the bottom
edge right buckle location (BR). The results are shown in Figure 4.7b. The BR
stability landscape exhibits the same features as the TC stability landscape. At
0 = 1.37 deg, the ridge and valley start. The valley vanishes at the single-buckle
minimal buckling load for 6 = 1.56 deg, where the unstable and stable single-buckle
equilibrium contours start. On these contours, a buckle at location BR is found in
the structure. At the point of spontaneous buckling, for 6., = 1.74 deg, the BR
and TC probing behaviors differ. For the BR location, the ridge does not intercept
the unbuckled state (U, = 0 mm) and ends abruptly. The unstable single buckle
contour is therefore offset from the unbuckled state. Such a buckling mode is often
referred to as a broken away mode [23]. This important observation suggests that
while the TC buckle can be formed at the bifurcation point, the BR buckle can
only appear later in the snaking sequence, as far as the unperturbed structure is
concerned. When perturbations are applied, the BR buckle can be triggered earlier,
if the energy barrier separating the unbuckled state and the unstable single-buckle
state is overcome. For 1.58 < 6 < 1.66 deg, a two pattern can be formed in the

unstable probing region (fold region). Similarly to the TC probing, once the probe
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displacement exceeds the cliff, the probe characteristic follows a different path when
retracted, and the two buckles equilibrium contour is found. It features the TC
buckle in equilibrium with the BR buckle. Finally the three buckles pattern can
be formed through large amplitude probing, for 1.66 < 6 < 1.68 deg. Above the
snacking rotation, for 8 = 1.68 deg, the structure experiences a snap-through to the
stable three buckles contour as soon as the probe displacement exceeds the unstable

single buckle contour.

Bottom edge left probing (BL)

Lastly, the probing experiment is repeated for the bottom edge left buckle location
(BL), and the results are shown in Figure 4.7c. At this probing location, the ridge
and valley appear at 8 = 1.55 deg, later than for the BR and TC probing. The single
buckle minimal buckling rotation is found at § = 1.67 deg, close to the point of
spontaneous buckling. Similar to the BR probing, the stability landscape appears
truncated at the bifurcation rotation, an the unstable single-buckle equilibrium con-
tour is disconnected from the unbuckled state. It suggests that similar to the BR
buckle, the BL buckle can only be formed through snaking or perturbation. For
1.59 < 6 < 1.74 deg, the stability landscape features a cliff beyond which the probe
snaps-back. Similar to the TC and BR probing locations, once the cliff displacement
is exceeded, equilibria are found when the probe retracts. For 1.59 < 6 < 1.61 deg,
the TC buckle is found in equilibrium, without the BL buckle being present. The TC
buckle quickly evolves to the fully formed buckling pattern above the three buckles
minimal buckling rotation, # = 1.61 deg. Note that the three buckle equilibria can
arise at rotations lower than the BL buckle minimal buckling rotation. Contrary
to the two previous probing locations, once the stable single BL buckle is formed
and the structure follows its stable equilibrium contour, the fully formed buckling

pattern will not appear prior to reaching the point of spontaneous buckling.

Energy barriers and early formation of buckling patterns

The stability landscapes revealed that the three buckles belonging to the main post-
buckling mode can appear in the structure before the bifurcation point is reached.
These equilibria are attained if a perturbation is applied to the structure, as long as
it provides enough energy to overcome a critical threshold, the energy barrier. The
purpose of this subsection is to compute the energy barrier for the three probing
locations (TC, BR and BL), and for all the buckle combinations identified in the

previous subsection. For a fixed rotation, the work done by the probe is found
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by integrating the probe force as a function of the probe displacement. The energy
barrier to form a specific combination of dimples corresponds to the maximum value
of probe work found between the unbuckled state (U, = 0 N) and the corresponding

buckled equilibria. The energy barriers for the three probing locations are shown in

Figure 4.9.
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Figure 4.9: Energy barriers required to form specific combinations of buckles before
the bifurcation point, for (a) TC probing, (b) BR probing, and (c) BL probing. These
energy barrier plots are combined in a (d) transition diagram, giving a more global
representation of the structure’s meta-stability.

We first focus on the energy barriers computed for the TC probing location, shown
in Figure 4.9a. For 1.5 < 6 < 1.64 deg, forming the TC buckle requires the smallest
amount of energy. However if more energy is brought to the structure, the TC &
BR buckle configuration can be found, which transitions to the full buckling pattern
above the three buckles minimal buckling rotation, § = 1.62 deg. Above the snaking
rotation, 8 = 1.64 deg, probing past the unstable TC equilibrium always results in

the three buckles pattern formation. The energy barrier decreases continuously until
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reaching 0 mJ at the bifurcation point, confirming that the TC buckle appears first

in the snaking sequence.

A similar energy barrier distribution is observed at the BR probing location, as
shown in Figure 4.9b. The lowest energy barrier branch corresponds to the single
BR buckle formation which transitions to the full buckling pattern above the snacking
rotation, 6 = 1.68 deg. The highest energy barrier branch corresponds to the same
buckle combinations found for the TC probing location. The TC & BR buckle
disappear to form the full buckling pattern for § = 1.66 deg. In theory, this rotation
should coincide with the three buckles minimal buckling rotation found for the TC
probing. In practice, the relative difference between the two rotations is less than
2%, and the small discrepancy can be due to small variations in the structure’s
initial configuration for the two probing experiments. It should also be noted that
the small amplitude of the BL buckle makes its detection difficult. When the rotation
increases, the three buckles energy barrier decreases slowly and plateaus without
reaching the 0 mJ threshold. It confirms that the BR buckle cannot be formed
through a fundamental path bifurcation, and is indeed a broken-away mode.

Finally, the BL probing energy barriers are shown in Figure 4.9c. Two energy
barrier branches are found. The lowest energy barrier branch starts at the single
buckle minimal buckling load and ends at the bifurcation point, corresponding to
the formation of the single BL buckle. Contrary to the TC and BL probing, no full
buckling pattern snaking is observed on this energy barrier branch. As previously
observed, the energy barrier does not fall to O mJ at the bifurcation point, and the
single BL buckle is broken away from the unbuckled state. The high energy barrier
branch starting at 6 = 1.49 deg forms the single TC buckle, which evolves to the full
buckling pattern at the three buckles minimal buckling rotation, 6 = 1.61 deg. Note
that as mentioned before, this specific rotation is in theory identical for the three
probing schemes, and here agrees well with the three buckles minimal buckling

rotation found for the TC probing location.

The energy barriers for the three probing locations are combined to create the
transition diagram of Figure 4.9d. It defines regions in the (Ep-6) plane, for which
the boundaries are given by the minimum energy barrier required to create critical
buckle configurations. For a given rotation and energy barrier level, the critical
buckle configuration corresponds to the largest set of buckles that can remain in
equilibrium. For instance, for 8 = 1.7 deg, the single BL buckle has a higher
energy barrier than the TC & BR & BL buckle configuration. Since it also belongs
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to this larger set found at a lower energy barrier, the single BL buckle is not a
critical configuration. In this representation, the probing location is abstracted, and
therefore, the energy barrier should be interpreted as a lower bound on the energy
required from any perturbation to trigger buckling, regardless of where it is applied
on the structure. Above the single TC minimal buckling rotation (6 = 1.5 deg), and
below the TC snaking rotation (6 = 1.64 deg), single buckle configurations (TC
or BR) always corresponds to the lowest energy barrier. Above the TC snaking
rotation, the three buckle configuration (TC & BR & BL) is the easiest to trigger.

4.5 Probing alternate post-buckling modes

The search for critical buckling locations

The previous section focused on studying the main post-buckling mode. For this
study, the probing locations were determined after a first buckling test was per-
formed, and the location of local peak displacement marked. This approach requires
the structure to buckle in order to determine the probing locations. For the present
structure, it is not an issue since the post-buckling regime is stable and the structure
remains in its elastic domain after buckling. However, for other types of structure,
such as cylindrical shells, buckling can be more dramatic, damaging the structure
and causing it to fail [82]. Note that if the locations of localized deformations can
be determined beforehand, specific probing methodologies allow prediction of the
structure’s bifurcation point and minimal buckling load/rotation without triggering
any buckling. Recent work on cylindrical shells showed that probing can be used to
track the stability landscape’s ridge and by extrapolation, find the bifurcation point
[1] without ever exceeding it. It is also envisioned that a similar approach can be
used to track the stability landscape’s valley and by extrapolation, the minimal buck-
ling load [81]. However these techniques face the same challenge: determining the
location at which localized buckling will first appear. Inrecent experiments, a defect
was introduced in a soda can to actively control the location of buckling [1] and
therefore the location of probing. Even if the introduced imperfection has a small
amplitude, altering the structure may not be acceptable for engineering components
such as rocket fuel tanks [29] or other aerospace systems. Further analysis showed
that probing away from the dominant imperfection can lead to inaccurate buckling

load predictions [85].

In the present chapter, a different approach is taken, and probing is used to search for
the locations where buckling modes localize. It is used as a tool to navigate spatial

chaos without prior knowledge of the expected post-buckling shape. This technique
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uses an important observation specific to our problem: the location of maximum
compressive stress in any given cross-section is known, and corresponds to the
longeron edge. For an axisymmetric cylindrical shell, the search for the critical
buckling location would be two dimensional, whereas our problem reduces to one
dimension. The longeron’s edge in compression is discretized into 17 regularly
spaced probe locations, and probing is carried out for at fixed rotations, under the
point of spontaneous buckling. In the rest of this section, the results of this analysis

are discussed. A schematic of the experiment can be found in Figure 4.10a.

Probing along the longeron’s edge and broken-away modes

The experiment is repeated for a small set of rotations, ranging from 6 = 1.5 deg
to 6 = 1.7 deg. For each probe location, the maximum probe displacement is set
t0 Up_max = 3 mm. Results for the bottom longeron probing and for 6 = 1.65 deg
are shown in Figure 4.10b. The probe force is displayed as a function of the probe
displacement and the probe location. The interval between probe locations is 36
mm and the probe force is interpolated between measurement points to construct
the corresponding probing contour map. In this representation, the maximum probe
displacement is limited to 1.5 mm. For larger displacements, global deformations
of the structure are induced by probing, and motion of the vertical linear bearing
is observed for probe locations over 625 mm. Due to physical constraints (size of
the probing stage), the first and last probing locations are offset from the strip ends
by half a batten spacing. For visualization purposes, the maximum probe force
is capped at 0.45 N and all dark red regions in Figure 4.10b correspond to probe
forces above this threshold. The schematic of the strip in Figure 4.10a is aligned
with Figure 4.10b such that the probe coordinate directly corresponds to its physical

location on the strip.

A periodic pattern of alternating local probe force maxima and minima is observed.
The maxima are attained at the locations for which the probe is aligned with a
batten. From this simple observation, we can postulate that there can only be a
single buckle forming per batten spacing, at a location close to (or at) the midpoint
between the two battens. The search problem is then reduced to a discreet set of 10
probe locations (5 for each longeron). A local buckle in equilibrium is found when
the probe force falls to O N (for a non-zero U,). Even when the probe force does
not reach this critical threshold, a non-monotonic probe force profile indicates the
potential for a buckle to form at higher rotations. On the bottom longeron, two of the

probe locations have already been studied and correspond to buckle BR and BL of
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Figure 4.10: (a) Schematic of the edge probing experiment and (b) probe force as a
function of the probe displacement and probe location, for 6 = 1.65 deg.

Section 4.4. A buckled equilibrium is detected at location BR as found previously,
and a local minimum approaching 0 N is found at location BL. As explained before,
both buckles are forming through the main snaking sequence, stemming from the

TC buckle formation at the bifurcation point.

However, competing buckling locations are revealed. In particular, a buckled equi-
librium is located at a probe location of 550 mm. This buckle does not appear in the
main snaking sequence, and therefore is not connected to the fundamental path. It is
a broken-away mode which can only be triggered if a disturbance is applied on the
structure. An important observation is that the location of this mode corresponds to
the buckles observed in Figure 4.6d, when the first eigenmode imperfection is seeded
in the simulation. This alternate buckle may be the trigger of an alternate snaking
sequence, competing with the one observed without perturbations. At a probe lo-
cation of 250 mm, the probe force profile features a local minimum. However,
the minimum probe force is relatively large. Probing at higher rotations indicates
that the probe force does not fall to O N at this location, before the spontaneous
buckling is reached. Finally, the probe force profile at the 400 mm location features

a low, but positive minimum. It is also a broken-away mode but corresponds to the
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same snaking sequence studied in Section 4.4, when top and bottom longerons are
swapped. While in the simulation top and bottom longerons are interchangeable,
gravity may bias the structure in the experiment towards the formation of TC rather

than its bottom longeron counterpart.

Repeating the experiment on the top longeron yields an almost identical contour
map. Local buckling equilibria are found at the probe location TC (as expected
from Section 4.4) and at 250 mm, similar to the alternate mode discussed above.
Broken away modes are found for the left and right probe locations (counterpart of
BL and BR on the top longeron) and belong to the snaking sequence triggered by
the bottom central buckle, mentioned in the previous paragraph.

Here, the spacing between probe locations is rather coarse, but adequate for this
specific structure. The experiment should be seen as a proof of concept, but other
structures may require a thinner discretization. Simulations can be harnessed to
compute the probing region of influence and thus determine an appropriate spacing.
We can also envision refining the density of probe locations to regions of interest
as the test progresses. A more systematic approach to finding buckling locations

through probing will be the subject of future work.

Triggering the alternate buckling modes

The previous experiment revealed two alternate locations at which buckling can be
triggered. One was found on the bottom longeron, at a probe location of 550 mm,
and another one on the top longeron, at a probe location of 250 mm. For the rest
of this section, these two probe locations are called BA (Bottom edge Alternate)
and TA (Top edge Alternate). In the following, probing is conducted at these two
locations for 1.2 < 6 < 2 deg. The initial rotation increment is 0.05 deg, and is then
refined to 0.02 deg above 6 = 1.55 deg. The corresponding stability landscapes are

shown in Figure 4.11.

We first focus on the BA probe location for which the landscape is shown in Figure
4.7a. For rotations below the point of spontaneous buckling, the stability landscape
is similar to the ones found for the TC, BL, and BR probe locations. It features
a ridge and a valley both starting at & = 1.31 deg. The minimal buckling load to
sustain the BA buckle in equilibrium is 6 = 1.59 deg. The minimally buckled state
marks the start of the single-buckle stable and unstable equilibrium contours. At
the structure’s bifurcation point, at 6 = 1.74 deg, there is still a significant hill of

probe force separating the unbuckled state and the unstable equilibrium contour. At
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Figure 4.11: Stability landscapes for the (a) BA probe location, (b) TA probe
location, and (e) their common legend. (c) Energy barriers for the BA and TA probe
locations and (d) schematic of the strip structure with the two probe locations.

this critical rotation, and in the absence of the BA buckle, the structure’s main post-
buckling mode forms, as seen in Figure 4.6¢. For § > 1.74 deg, U, = 0 mm does not
correspond to the unbuckled state anymore, but to the end of the main post-buckling
snaking sequence, and probing is applied to the buckled structure. For these large
rotations, the probing behavior changes significantly. The initial probe characteristic
is steeper and creates a large offset of the ridge to U, = 0.8 mm, and an extensive
region of higher probe force magnitude. When the probe displacement increases
further, the structure experiences a snap-back and the unstable three buckles (BA
& BL & TA) equilibria are found. This new landscape topology can be explained
as follows. Once the structure takes the shape of its main post-buckling mode, the
formation of buckle BA requires buckle BR to disappear, which requires large probe
forces to be applied at the probe location. Notice that if the BA buckle is formed
before the bifurcation point, the buckled equilibrium evolves to the three buckles
(BA & BL & TA) configuration for 6 > 1.74 deg.
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The TA probe location is then considered and the corresponding landscape is shown
in Figure 4.7b. It features a ridge and a valley that both start at 6 = 1.39 deg and a
single buckle minimal buckling rotation at = 1.66 deg. The TA buckle is also a
broken away mode and at the bifurcation point, the unstable equilibrium contour is
farther away from the unbuckled state than it was for the BA buckle. It suggests that
the TA buckle is harder to trigger. At higher rotations, the behavior is similar to what
was observed at the BA location. A large region of high magnitude probe forces is
encountered between the unbuckled state and the unstable equilibrium contour. It
physically corresponds to the probe force required for the TC buckle to disappear and
subsequently form the TA buckle. The TC buckle has the largest amplitude among
the three buckles found in the main post-buckling mode and therefore, more probe
work needs to be supplied to the structure to close it. It explains that at the TA probe
location, the region of high probe forces extends to larger probe displacements. The
main difference between the BA and TA probe locations is the nature of the stable
equilibria encountered while probing. At the BA location, only the formation of
the BA buckle was observed whereas, three buckle configurations can be triggered
from probing at the TA location. For 6 < 1.62 deg, the probe characteristic features
a cliff, similar to the TC, BR, and BL landscapes (Section 4.4). When the cliff is
reached, the structure experiences a snap-back caused by a fold (cusp catastrophe),
and the bottom left buckle (BL) is triggered. However no equilibrium solution is
found for the BL buckle when retracting the probe. The cliff converges to the two
buckles minimally buckled state, found for 6 = 1.62 deg. It marks the start of the two
buckles stable and unstable equilibrium contours on which the TC and BL buckles
can coexist. The stable single buckle and unstable two buckles equilibrium contours
meet at the snaking rotation, 6 = 1.67 deg. Finally the two buckles equilibra evolve
to the three buckles equilibria (TA, BR, and BL) for § > 1.68 deg.

Similarly to the analysis of Section 4.4, the probe force/displacement characteristic
is integrated to compute the energy barrier for the various buckle configurations.
The results are shown in Figure 4.11c. For both probing locations, the energy
barrier features two regimes. Under the bifurcation rotation, the energy barrier is
low (Ep < 0.05 mJ). After the main post-buckling mode forms, the energy barrier
increases by almost an order of magnitude. As explained previously, this increase
can be explained by the extra amount of energy that needs to be provided to the
structure to make the BR and TC buckle disappear. For the entire range of rotations,
probing at BA yields a lower energy barrier. Therefore, it is the critical alternate

mode, and the most likely to appear first if a perturbation is applied to the structure.
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Note that in the energy barrier plot for the TA probing, the energy barrier for the
single TA buckle is not reported since it only corresponds to a very short range
of rotations (0.01 deg). The present analysis highlights that it is possible to form
alternate modes, disconnected from the unbuckled state, and that switching between
paths in the post-buckling regime is achievable, but requires significantly more
energy. The energy barriers for the TA and BA probe locations are compared to the
energy barrier found for the TC probe location, in Figure 4.12a. As a reminder, TC
is the critical buckle for the main post-buckling mode, as it requires the least amount
of energy to be formed. The energy required to form the BA buckle is about twice
the energy required to form the TC buckle, and can only be formed above 6 = 1.6

deg, whereas the TC buckle can be formed above 6 = 1.5 deg.

Similarly to Section 4.4, the energy barriers of Figure 4.11c can be combined to
create the transition diagram of Figure 4.12b. As previously explained, boundaries
in the (Ep-6) plane are given by the minimum energy barrier required to create
the critical buckle configurations. For a given rotation, they correspond to sets of
dimples that can remain in equilibrium in the structure. For the alternate probing
locations, the diagram features three regions. The two regions found for higher
energy barriers correspond to the buckles triggered while probing at the TA location.
The critical alternate mode BA, encloses these two regions, and is reached for lower
values of energy barrier. The alternate transition diagram is superimposed on the
main post-buckling transition diagram (doted lines) of Figure 4.9d. The resulting
plot is a valuable tool to represent the competition between buckle configurations,
characteristic of the structure’s meta-stable state close to the spontaneous buckling
rotation. It reveals for instance that the alternate buckles mostly compete with the
early formation of the main three-buckle mode (BR, BL, and TC), but that they
require more disturbance to be triggered.

Alternate buckling sequence and large rotations

In this subsection, we explore the structure’s post-buckling response for large rota-
tions. In Section 4.3, we saw that the strip’s main post-buckling path is stable and
that the structure is able to withstand bending moments larger than its spontaneous
buckling moment. Of particular interest is the maximum load-bearing capacity of
the structure before failure. Here failure means that the structure reaches a stiffness

of 0 and corresponds to a horizontal tangent in the moment/rotation characteristic.

Without any disturbance applied to the structure, the main post-buckling mode
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Figure 4.12: (a) Energy barrier comparison between the TC, BA, and TA probe
locations and (b) transition diagram characterizing the formation of the alternate
buckling modes. The transition diagram for the main post-buckling mode is shown
in dotted lines.

appears when the spontaneous buckling rotation is exceeded. It consists of local
buckles at location BR, BL, and TC, as seen in Section 4.3. The full main post-
buckling response is shown in Figure 4.13a, as a solid line. As the rotation increases
after buckling, the amplitude of each buckle increases progressively, and a global
in-plane bending of the strip is observed. The maximum moment, M,,,, = 2.35 Nm,
is reached at § = 8.7 deg. Beyond this critical rotation, the structure experiences a
snap-back. It physically corresponds to a large increase in the TC buckle amplitude,
which makes the cross-section almost flat locally. Note that this specific mode of
failure has been observed previously for similar structures [69]. The deformed shape

obtained at the end of the bending experiment is shown in Figure 4.13b.

Next, we consider a small perturbation applied to the structure. Probing is conducted
at the BA probe location such that the critical alternate buckle is formed right before
the spontaneous buckling rotation. We wish to understand the consequences of the
alternate buckle formation on the full post-buckling regime. The previous subsection
demonstrated that the BA buckle can be sustained in equilibrium in the structure. It
is important to understand whether this specific buckle can be the start of an entire
alternate snaking sequence, similar to the role of the TC buckle in triggering the main
snaking sequence. In other words, we aim to determine if the competition between
two local buckles, TC and BA, can yield significant differences in the structure’s
global response. After the point of spontaneous buckling is passed, additional

buckles form simultaneously at location BL and TA, and buckle BA remains. The
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Figure 4.13: (a) Full post-buckling response obtained for the main (connected by
bifurcation) post-buckling path, and for the alternate (broken away) post-buckling
path. (b) Schematic of the paths leading to the main and alternate post-buckling
deformed shapes. (c) Main post-buckling deformed shape and (d) alternate post-
buckling deformed shape.

rotation is increased to trace the entire post-buckling characteristic, shown in Figure
4.13a, as a dotted line. The main and alternate post-buckling paths are similar until
6 = 2.6 deg. At this rotation, an additional buckle forms on the top longeron, in the
middle of the rightmost batten spacing. After this rotation is exceeded, the main
and alternate post-buckling responses diverge, and the alternate post-buckling path
shows a decreased stiffness. It ultimately yields a lower value of maximum moment,
M4 = 2.15 Nm, reached for a higher value of rotation, 6 = 9.5 deg. The deformed
shape obtained at the end of the alternate post-buckling path is shown in Figure
4.13c. At 6 = 9.5 deg, the structure experiences a snap-back corresponding to the
sudden increase in the TA buckle’s amplitude. Similar to the main post-buckling

deformed shape, the cross-section becomes locally flat. For the main deformed
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shape, two alternating buckles are separated by a double batten spacing wavelength,
whereas the interval between buckles goes from a double batten spacing in the

middle to a single batten spacing on the sides in the alternate deformed shape.

These experiments highlighted two competing post-buckling sequences, stemming
from the TC and BA buckles. From the stability landscapes and energy barriers
found in Section 4.4 and 4.5, the multiple post-buckling paths leading to these two
sequences are illustrated in Figure 4.13b. Here, a possible arrangement of these
paths is drawn qualitatively. With the current experimental setup, it is possible to
record the bending moment while probing, and therefore locate these paths exactly
in the moment/rotation plane. This will be the subject of future work. From a global
response point of view, we saw that if a small amount of energy disturbs the structure
and triggers the BA buckle, the maximum moment decreases by 9% and a lower
bending stiffness is achieved above 6 = 1.6 deg. It also yields different deformed
shapes. While both characteristics are stable and the difference in behavior can be
seen as minor, it will not necessarily be the case in all structures, and a competition
between local buckles could cause dramatic differences in post-buckling response

and stability.

4.6 Conclusion

Bending experiments were conducted on a specific kind of thin-shell structure,
consisting of an assembly of open cross-section tape springs connected transversely
by thin rods. Similar structures are used in large deployable spacecraft [18, 19]. One
of the most important characteristic they feature is a stable post-buckling regime
under bending, and they can therefore carry a load even after they first buckle.
This characteristic opens new design possibilities in which these structures are used
closer than ever to their buckling load, and even in their post-buckling regime. By
doing so, their mass efficiency can be dramatically improved by relaxing stringent

safety factors often applied to the buckling load.

The study used an experimental probing method to characterize the structure’s
meta-stability close to the buckling load. By locally displacing the longeron’s
edge in compression, and recording the probe force for various values of rotation,
stability landscapes were constructed and used to characterize the stability of each
of the local buckles forming the experimentally observed post-buckling mode. Of
particular interest was the determination of the minimum rotation at which these

buckles can appear in the structure, and the level of disturbance that the structure



103

required to form these buckles early. A transition diagram was derived from these
experiments and defined regions in the (E-6) plane for which specific combinations
of buckles can appear. If buckling is to be avoided, the transition diagram can serve
as a tool to derive a tighter lower bound on the actual buckling rotation, found in a
real environment in which perturbations and imperfections are present. A minimum
value of energy barrier, and maximum number of buckles can also serve as buckling

criterion, and a critical rotation can then be determined from the diagram.

The methodology was then extended to probe the longeron’s entire edge. It allowed
the detection of two broken-away modes. They are disconnected from the structure’s
fundamental path, but accessible if a disturbance is applied to the structure. They
directly compete with the main post-buckling mode. For the specific test structure
presented in this chapter, the energy barrier required to trigger the alternate modes is
about twice the one required to create the main critical buckle. However, additional
tests on other samples revealed that the two energy barriers can sometimes be
almost identical, and that these alternate modes cannot be neglected. Probing these
modes yielded an alternate transition diagram than can be superimposed on the main
buckling transition diagram, and gave a complete picture of the structure’s meta-
stability close to buckling. The analysis also showed that the alternate buckles can
also be triggered after the main post-buckling mode appears, but it requires more
energy. Finally, large rotation experiments were performed and showed that the
formation of the critical alternate buckle triggers a full snaking sequence featuring
four buckles, as opposed to three for the main post-buckling snaking sequence.
The two competing responses yielded different maximum moments and bending
stiffnesses for large rotations. It highlighted that characterizing the structure’s
response for all possible buckling modes is crucial, if the structure were to be used

in its post-buckling regime.

Finally, this study emphasized that in order to design and operate thin-shell struc-
tures near their buckling point, and in their post-buckling regime, finite element
simulations are helpful but not sufficient to characterize all the possible responses.
The finite element analysis of Section 4.2 did in fact predict the two competing
post-buckling shapes observed in experiment. However, while the lowest bifurca-
tion and therefore the connected path is in theory obtained for the first eigenmode
imperfection, the solution obtained for the second eigenmode imperfection was in
fact observed in experiment. Intrinsic imperfections in the real geometry biased the

structure to behave dominantly following its second eigenmode. In the framework
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developed here, the engineer would consider the whole set of theoretical post-
buckling solutions and for each of them focus on characterizing their stability and
the energy needed to form them. This approach paves the way to highly optimized
buckling criteria tailored to specific applications. Imperfection insensitive struc-
tures have been seen as an alternative approach to reducing buckling uncertainty.
Such designs have been explored for particular structures such as cylindrical and
spherical shells [59, 60], and the probing methodology could serve as an efficient

tool to enable more complex imperfection insensitive structures to be built.
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Chapter 5

ULTRALIGHT LADDER-TYPE COILABLE SPACE
STRUCTURES

Nomenclature

A: total area of strip

Apr: area of longeron webs and battens
b: batten cross-section width

d: longeron cross-section web width

h: batten cross-section height

L: strip length

P: pressure applied on area A

P 4p: pressure applied on area Agy

P.,: non-linear buckling pressure
P¢y—in: linear buckling pressure

Pjs: Minimum post-buckling pressure
Pax: Maximum post-buckling pressure
r: longeron cross-section radius

s: batten spacing

t: longeron flange thickness

W: strip width

Z: probe location along strip axis

0: longeron cross-section opening angle

Terminology

Brief descriptions of the key terminology used in the chapter are provided here.

* Linear buckling eigenvalue/load: buckling eigenvalue estimate obtained by

solving the buckling eigenvalue problem for the undeformed structure.

* Non-linear buckling eigenvalue/load: buckling eigenvalue estimate obtained
by iteratively solving the buckling eigenvalue problem as the structure is
loaded. A first buckling eigenvalue prediction is performed without any pre-

load. This first estimate gives the linear buckling eigenvalue. The structure is
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then pre-loaded under the linear buckling eigenvalue and a second buckling
eigenvalue prediction is performed. This step is repeated until the pre-load
converges to the buckling eigenvalue estimate, to give the non-linear buckling
eigenvalue. The associated mode shape is denoted as the non-linear buckling

mode.

* Minimum post-buckling load: load at which a specific post-buckling path
restabilizes. This is the lowest load reached on the post-buckling path, unless
no stable paths exist in the post-buckling regime. Note that the structure can
reach lower load values if there exist bifurcations on the stable post-buckling
path. In this case, one will associate one minimal post-buckling load with

each bifurcation.

* Maximum post-buckling load: ultimate load that can be sustained by a

structure before it loses its overall stiffness.

5.1 Introduction

Thin-shell structures have been used extensively for aerospace applications as they
enable lightweight vehicles. Since the early 1920s, discrepancies between shell
buckling experiments and theoretical buckling predictions based on linear bifurca-
tion analysis based on perfect shell geometries were observed. The experimental
buckling loads were lower than the analytical predictions and the discrepancy was
later linked to the presence of initial imperfections in the shell geometry [13, 44,
82]. Considerable efforts were made to find safe lower bounds for the buckling
load of these structures, which led to the NASA space vehicle design criteria for the
buckling of thin-walled circular cylinders (NASA SP-8007) [62].

Today, these empirical buckling criteria are still used but are seen as very conser-
vative, and have some inherent limitations. To address these shortcomings, the
NASA’s Shell Buckling Knockdown Factor (SBKF) Project was established in 2007
to develop less-conservative, robust shell buckling design factors by testing shells
with known imperfections, as well as non-uniformities in loading and boundary con-
ditions [29]. The introduction of precisely engineered imperfections in spherical
shells showed that buckling could be accurately predicted if the initial geometry is
known accurately [51]. However, in many applications, measuring the shape of the
structure before use can be both expensive and difficult. The traditional buckling
and post-buckling prediction method uses a linear combination of the first buckling

modes as imperfection [66, 68] and showed increased accuracy compared to the
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classical linear bifurcation approach. The importance of local deformations at the
onset of buckling was linked to localization effects that cannot be described as a

combination of eigenmodes [65].

In particular, post-buckling paths exhibiting localization are found in cylindrical and
spherical shells. In most cases, these paths are broken away from the fundamental
path but approach it asymptotically, and can be reached before the first eigenvalue
is attained if a small amount of disturbing energy is input into the structure [32,
34]. For these early buckling routes, the structure exhibits a single-dimple localized
deformation and sits on a ridge of total potential energy separating the pre-buckling
energy well and a lower energy, localized post-buckling well. This mode of de-
formation is thus called mountain pass point and it has been shown that the single
dimple corresponds in fact to the cylindrical shell lowest mountain pass point [32],
i.e. the post-buckling solution that can be reached with a minimal energy barrier.
An experimental procedure to determine the fundamental path meta-stability was
proposed in 2013 [76] and has been used experimentally [81]. Comparisons with
earlier work showed that the onset of meta-stability often referred to as "shock sen-
sitivity" [76] gives an accurate lower bound for experimental buckling loads [20,
23].

The objective of the present chapter is to apply these recent breakthroughs in un-
derstanding cylindrical and spherical shell buckling to more complex thin-shell
structures made of composite materials. In particular, the present authors are cur-
rently investigating structural architectures for ultralight, coilable space structures
for large, deployable, flat spacecraft [3]. In the deployed configuration, each space-
craft measures up to 60 m X 60 m in size and is composed of ultralight ladder-type
coilable strips of equal width, arranged to form a square, and each strip supports
many photovoltaic and power transmission tiles. This structure is described in a
previous paper [71] and is shown in Figure 5.1. Scaled laboratory prototypes of this

structural concept have been built and tested [18, 19].

A ladder-type structure consists of two triangular rollable and collapsible (TRAC)
[57] longerons, connected transversely by rods (battens), and will be referred to as
a strip in this chapter. In the proposed spacecraft architecture, the strips are simply
supported at the ends with boundary conditions that do not allow any tension to
be applied. For the specific strip considered in the present study, the battens are
rectangular cross-section carbon fiber rods and the longerons are thin composite

shells. In orbit, the main loading is solar pressure, and hence a static pressure is the
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Figure 5.1: Overview of the ladder-type structure for the Space-based Solar Power
Project.

main loading condition that will be considered.

The purpose of the present study is to understand and quantify the buckling and
post-buckling behavior of a strip, and explore the sensitivity of its transition to
buckling, considering the effects of disturbances and imperfections. Recent work
studied the longeron’s deployed behavior and showed that localized buckles form
under transverse bending, and that the post-buckling regime immediately after the
first bifurcation restabilizes quickly. The studies focused on replicating experimental
results using non-linear buckling and post-buckling simulations [8, 48, 49, 56], and
further work used non-linear buckling load computations coupled with modern

machine learning techniques to design optimized longeron geometries [10].

The present study takes a different approach. The stability of the pre-buckling
(fundamental) path is assessed, and insights into early transitions into the post-
buckling regime are gained by using localized probing to apply a perturbation to the
structure. The probing technique is then generalized to higher order bifurcations
arising from the post-buckling path. Low energy escape paths into buckling that
cannot be predicted by a classical eigenvalue problem are identified.
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The chapter is structured as follows. Section 2 highlights some experimental ob-
servations on the buckling of a strip, and Section 3 reviews the concept of stability
landscape for thin shell buckling, which is used in the rest of the chapter. Section 4
presents the numerical computation of stability landscapes for a specific strip struc-
ture, and Section 5 extends the use of these landscapes to the post-buckling regime.
In Section 6 the effect of the strip length on the stability landscape is investigated.
Section 7 generalizes the probing to the entire structure, unveiling the existence of
low energy escape paths into buckling, similar to the low energy paths observed for
the cylinder and the sphere. Finally, Section 8 presents a preliminary analysis of the

effect of geometrical imperfections on the strip stability landscape.

5.2 Experimental observations on strip buckling

A 0.8 m long strip prototype with 3 battens spaced at 0.2 m was built and tested in
the cantilever configuration shown in Figure 5.2b. The longeron end cross-sections
at one end of the structure were built into a stiff plate and the cross-sections at the
other end were attached to a stiff composite rod. These boundary conditions did
not allow the end cross sections to deform. Two load cells mounted on an acrylic
beam were attached to a translation stage, and were placed in direct contact with the
two longerons ends (using steel balls). When actuated, the linear stage displaced
the two longeron ends and the reaction force at each end was measured. The
end displacements of the longerons were also measured, using laser displacement

gauges.

The results of this experiment are shown in Figure 5.2a and the buckles that were
observed are shown in Figure 5.2b. It can be seen that longeron 2 is 10% softer than
longeron 1, due to a slightly smaller cross-section introduced by the manufacturing
process. The two longerons exhibit different buckling behaviors. A local buckle
at the location of the first batten connection appears (buckle 1 in Figure 5.2b) in
longeron 2 for a tip deflection of 1.5 mm. As the tip deflection is increased, a
gradual softening of longeron 2 is observed which physically corresponds to the
growth of buckle 1. No other buckles appear in longeron 2. For longeron 1, the
linear regime extends to a tip deflection of 2.5 mm, then the first buckle (buckle 2)
appears close to the cantilever base. Unlike longeron 2, the behavior of longeron 1
after the appearance of buckle 2 is linear. A second buckle (buckle 3) appears 0.5
m away from the cantilever base, for a tip deflection of 8.5 mm. The postbuckling
regime of longeron 1 after the formation of buckle 3 is also linear. Finally, unstable

buckling of longeron 1 occurs for a tip deflection of 17.5 mm (buckle 4). At this
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point buckle 3 disappears. This ultimate buckling is of a different type and consists
of a doubly-curved S-shaped flange deformation, which creates a localized region of
very high curvature and leads to the formation of a crack at this location. Since the
two longerons are connected at the tip by a carbon fiber tube, the drop in reaction

force in longeron 1 is accompanied by a sudden increase of reaction force in longeron
2.
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Figure 5.2: (a) Evolution of longeron reaction forces as a function of longeron tip
displacements. The simulation results are for longeron 1. (b) Experimental setup
and local buckles on the longerons. Each buckle location is indicated by its number
in (a).

Based on this experiment, the following observations can be made regarding the

behavior of the tested structure:

* Bothlongerons exhibited along and stable post-buckling regime, until ultimate
buckling occurred for a rather large tip deflection of 17.5 mm. For longeron 1,
the ultimate buckling reaction force was 4.8 times larger than the first buckling
reaction force, and 5 times larger for longeron 2. Each buckling event was

quasi-static.
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* The buckles forming in the longerons were very localized and consisted of a
single wave. Therefore, local deformation played a key role in the buckling of
the test structure, in analogy to the previously observed subcritical buckling

behavior observed in spherical and cylindrical thin shells.

* Imperfections and deviations from the nominal geometry played a key role in
the longeron behavior. Since more local variations in the shape of longeron
2 were observed, these imperfections were the likely origin of the gradual
softening behavior observed in the experiment, as opposed to the sudden

change of slope observed for longeron 1 (which has smaller shape deviations).

A finite element analysis was carried out to numerically reproduce some aspects of
the experiment. A classical post-buckling approach was used, which consisted in
seeding a linear combination of buckling modes into the longerons initial geometry to
resolve the bifurcations and their post-buckling branches. Two attempts are shown
in Figure 5.2a, respectively using the first 4 and the first 5 non-linear buckling
modes as imperfection. The total imperfection amplitude in the second attempt was
about twice that used in the first attempt. The results shown refer to longeron 1.
Qualitatively, the first attempt captured well the first buckling of longeron 1, but the
the second post-buckling transition occurred much earlier than in the experiment.
Convergence could no longer be achieved after a displacement of about 12 mm.
Numerical convergence up to ultimate buckling was achieved, but the imperfections
needed to resolve all buckling events degrade the initial pre-buckling path, causing an
early transition into the first post-buckling regime. These observations qualitatively
highlight the difficulties encountered while trying to model a series of subsequent

buckling events using seeded imperfections into the initial geometry [28].

This discussion indicates that it is important to quantify the post-buckling regime
of strip structures, as significant load-carrying reserves may be available beyond the
first buckling. Regarding the applicability of the present results to more general
cases, it should be noted that the bending moment distribution for the strip in this
experiment is non-uniform, which may influence the localization behavior and the

extent of the post-buckling regime.

5.3 General stability landscape approach to thin shell buckling
Recent work on thin cylindrical and spherical shell buckling has focused on the
stability of the buckling phenomenon and its sensitivity to disturbances. Rather

than seeing buckling purely as a bifurcation problem, these new contributions have
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studied in more detail the meta-stability of a structure’s fundamental path and the
early transition into adjacent post-buckling paths requiring small energy barriers to
be overcome. A review of these recent advances has been presented by Groh et al.
[23].

Following these developments, the approach to shell buckling that is adopted in this
chapter uses the buckling stability landscape, a recently developed tool to study these
phenomena. The notion of a stability landscape was introduced by Virot et al. [81]
as a way to characterize the meta-stable nature of cylindrical thin-shell buckling.
Virot et al. imposed a local radial displacement on a compressed cylinder, using a
small ball probe (called a "poker" in [81]) which creates a localized single dimple.
The stability landscape is the surface created when the probe force is plotted as a
function of the probe displacement for various levels of the main loading parameter
(axial compression or end-shortening of the cylinder). It provides a useful way to
quantify the impact of probing on the buckling behavior and a general way to study

buckling sensitivity of a structure to disturbances.

Even though the stability landscape was introduced for thin cylindrical shells, a
similar landscape can be found for other types of shell buckling problems. A thin
shell buckling stability landscape is sketched in Figure 5.3a. For the specific scenario
shown here, there exists a range of prescribed loads for which stable equilibrium
solutions exists. This is not always the case. The features of this landscape and their

significance, described in [81], are briefly summarized next.

* Point of spontaneous buckling. This point corresponds to a zero probe
displacement and the associated load is the non-linear buckling load. No
disturbance is needed for the structure to transition into its post-buckling

regime from this point.

* Minimally buckled state. The minimally buckled state corresponds to the
load below which no buckles can form in the structure, whereas buckled states
can exist above this load. This load corresponds to the load for which the probe
force first falls to zero for a non-zero probe displacement. Below this load,
the probe force does not drop to zero even for large probing displacements.
Thus, the minimally buckled state represents the onset of metastability. This

load can serve as an accurate bound for experimental buckling loads [20, 23].

* Buckled equilibria solutions. For loads above the minimally buckled state,

there exist two states of equilibrium on the contour of probe force vs. probe
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Figure 5.3: (a) Schematic of thin-shell buckling stability landscape, inspired
from [81]. The x-axis represents either a prescribed load or a prescribed end-
displacement. (b) Energy barrier between pre-buckled and post-buckled states, at a
given level of loading. If no stable buckled equilibrium solutions exist, the probe
force vs. probing displacement curve will follow the dashed line.

displacement where the probe force is zero for a non-zero probe displacement:
an unstable state and a stable state. These two states are connected via the
contour plotted in Figure 5.3a. The two states coalesce at the load associated
with the minimally buckled state. In a probing experiment where the probe
is not glued to the structure, the structure will dynamically snap to the stable
equilibrium state as soon as the probe attains the unstable equilibrium state. It
is important to realize that the details of the stable buckled equilibrium state,
and even its existence, depend on whether the overall loading applied to the
structure is load-controlled or displacement-controlled (or some combination
in between). For example, a spherical shell buckling under external pressure

has a stable buckled state when loaded under volume-control but has no stable
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buckled state (other than complete collapse) under pressure control. Note
that the unstable equilibrium contour intersects the fundamental path at the
point of spontaneous buckling in Figure 5.3a. In some situations, offset post-
buckling paths exist for which the unstable equilibrium contour never intersect

the fundamental path. Such situations are discussed in Section 5.7.

* Valley. At loads below those associated with the minimally buckled state,
a valley in the stability landscape is associated with the local minima of the
probe force. This contour of positive local minima terminates at the minimally
buckled state.

* Ridge. The ridge is the locus of local maxima of the probe force. Each local
maximum in the probe force is associated with an energy barrier between
the stable unbuckled state and the unstable buckled state, as indicated in Fig-
ure 5.3b. For any applied load, the energy barrier is the minimum energy that
must be imparted to the structure by a disturbance to cause buckling. The
energy barrier as a function of the applied load is directly related to the buck-
ling sensitivity or "shock-sensitivity" [76] of the structure to disturbances.
Note that the point of intersection between ridge and valley marks the appear-
ance of a negative probing stiffness. At loads above this level, kinetic energy

(snapping) would be released in a load-controlled probing experiment.

5.4 Computation of strip stability landscape

Finite element model

A finite element model (FEM) of a strip, composed of two longerons of length L in
the range 1.8 m to 4.2 m, was developed. The geometry of the structure is described
in Figure 5.1. The cross-section has an opening angle of 8 = 100 deg, radius
r = 12.2 mm, thickness ¢ = 98 um, and web length d = 8 mm. The two longerons
are connected by regularly spaced transverse rods, called battens, at spacing s = 0.3
m. The batten length is approximately equal to the width of the strip, W = 0.2 m,
and its rectangular cross-section has width » = 3 mm and height 2 = 0.6 mm. The
longeron flanges are made of a [+45 GFPW / 0 CF /45 GFPW] laminate, known
as FlexLam [64], where GFPW refers to glass fiber plain weave and CF refers to
unidirectional carbon fiber. The two flanges are connected with a ply of glass fiber

plain weave at the web.

The FEM was built using the Abaqus 2019 commercial software. The longerons

were modeled with 4 node reduced integration shell elements (S4R) and the battens
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with linear 3D beam elements (B31). The element size is 2 mm and is chosen such
that the eigenvalues and eigenmodes of Figure 5.5a have converged to their mesh

independent value.

Finite element analysis

The strip structure was held in a simply-supported condition, as shown in Figure 5.4.
The outer web edge (highlighted in orange) on one of the longeron cross-sections
was prevented from translating in any direction while the web edges of all other
end cross-sections were constrained in a way that allows the projections of the strip
length and width onto the (xz) plane to vary. Details on these boundary conditions

are provided in Figure 5.4.

A uniform pressure was applied on the longeron webs and on the battens’ top faces.
The total area loaded by pressure in the numerical model is Ap; (where BL denotes
battens and longerons), and the associated buckling pressure is called P.,_4p (were
AB denotes Abaqus). However, in an actual structure, a thin membrane would be
attached to the edges of the longerons and hence the loading (solar pressure) would
act on the entire area A = L X W spanned by the structure. In order to emphasize
the practical significance of the present study, all results are presented in terms of
P, although P43 is actually used in the analysis. The two pressure values are related
by PX A= Pap X Apr.

For each value of P, the top edge of the longerons was probed by applying a transverse
nodal displacement U, at Z = Z,,, and the probe reaction force was extracted. The
two independent control parameters to construct the stability landscape are therefore

the pressure and the probe displacement.

All the analyses were performed using the Abaqus implicit solver, in a static mode.
The pressure was applied as a load, whereas the probes were modeled as displace-
ment boundary conditions. An automated step size was used for both pressure

loading and probing, and no automatic stabilization was used.

The last important consideration is the choice of the probe locations. In a classi-
cal buckling and post-buckling analysis, one would compute non-linear buckling
eigenmodes and seed a linear combination of these modes into the structure’s initial
geometry [66]. The use of an arclength solver coupled with the imperfect geometry
enables tracing the first bifurcation branch. The early transition into such a branch,
governed by the structure’s non-linear eigenmodes, was studied first. Therefore, the

probing location was first chosen as the location at which the peak deformation for



116

Ux=0
Uy=0 %
Pressure P
7 X
Prescribed Uxp
Reaction force Fp Ux=0
Uy=0
Uz=0

Prescribed Uxp
Reaction force Fp

Ux=0

Figure 5.4: Schematic of FEM for strip loaded by pressure.

the first eigenmodes is reached.

The first non-linear eigenmodes were obtained using the following iterative scheme.
First, a buckling mode prediction was performed for the undeformed structure to
obtain the linear buckling load P.,_;,. Next, a pressure of 0.5P.,_;;, was applied
on the strip. A buckling prediction was then performed on the prestressed strip
and a new value of the critical buckling load was then computed. This process
was repeated until the pressure applied before the buckling prediction step had
converged, thus obtaining the non-linear buckling pressure. This procedure led to
the four closely spaced eigenmodes shown in Figure 5.5a, which consist of single
dimples localized on both sides of the central batten. The highly localized nature of
these eigenmodes could be explained by the pressure loading causing a non-uniform
bending moment along the strip length, which reaches a maximum magnitude at the
center of the structure. In order to study early post-buckling branches associated with
such modes, the probe location was chosen as the location of maximum displacement

for these modes.

Two probing schemes were considered in the present study, as shown in Figure 5.5b.
The antisymmetric probing scheme uses one probe per longeron. The location
of this probe matches the peak displacement of the first buckling mode for each

longeron. The symmetric probing scheme uses two probes on each longeron, and
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the probe displacements are all equal. The probe locations are given by the location
of peak displacement for the first two buckling modes. In both probing schemes, the
probes are displaced in the x-direction, in an outward sense. Note that the computed
modes are combinations of inward and outward flange deflections. By conducting
a conventional numerical post-buckling analysis based on a linear combination
of these modes seeded in the perfect geometry, it was observed that the deformed
shape obtained from the first bifurcation branch featured only outward buckles. This
motivated the choice of the outward probing scheme, but it should be noted that
restricting the chosen probing scheme to these modes, has the effect of restricting
the scope of the meta-stability study. There is no guarantee that this approach yields
the lowest transition into buckling, and a more complete set of probing schemes
would be needed to have a full picture of the complex buckling behavior of such a
structure. A more general approach, that does not use the eigenmodes to choose the

probing location, is presented in Section 5.7.

Antisymmetric probing

Probe longeron 1

-5

Mode 1 longeron 1
~~ Probe longeron 2

Mode 1 longeron 2

Mode 2 longeron 1

Mode 2 longeron 2 ’

(a)

Figure 5.5: (a) First 4 non-linear buckling modes for L = 1.8 m. (b) Symmetric and
antisymmetric probing schemes derived from these modes.

Stability landscape

Plotting of the reaction force as a function of the probe displacement for several
values of the applied pressure load generates the stability landscape for the strip.
This section focuses on a 3 m long strip for which the stability landscape for
antisymmetric probing is shown in Figure 5.6, and the landscape for symmetric
probing is similar. All the features described in the introduction and Section 5.3

can be seen here. The obtained minimum post-buckling load for this specific strip
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length is Py, = 0.86 Pa. The ridge, fundamental path, and unstable equilibrium

contour intersect at the non-linear buckling load P, = 1.45 Pa.

It is interesting to note that the values of critical probe displacement obtained in the
present study are similar to the values obtained for industrial cylindrical cans [81].
However, in the present study the open cross-section of the longerons lowers the
ridge probe force magnitude about two orders of magnitude beneath the cylindrical
cans [81], where ridge forces of about 1 N were found just above the minimum

post-buckling load.
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Figure 5.6: Stability landscape for 3 m long strip structure, for antisymmetric
probing.

Probing instabilities

The previous subsection has presented the stability landscape for antisymmetric
probing of a strip with L = 3 m. In the nominal probing scheme, the structure
remains straight and planar and the two probe forces are equal, such that there is
no net force resultant on the structure (although there is a moment resultant for the

antisymmetric probing scheme).

Bifurcations were encountered on the main probing path, in the immediate vicinity of
the unstable equilibrium point (first appearance of 0 probe force). They are reported
in Figure 5.7 with their corresponding mode shapes, for an applied pressure P = 1.17

Pa. Two types of instabilities can be seen. The first one is linked to the first and
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second eigenvalues, and involves an interaction between local flange instabilities
at the probe location, and in-plane bending of the entire structure. This type of
interaction arises from the low in-plane bending of the strip structure. The second
type of instability is purely local and is triggered by the third and fourth eigenvalues.
In the case of the first and third eigenmode, a local symmetry breaking bifurcation
occurs locally, as the single wave dimple at the probe location transforms into an
antisymmetric mode shape. This type of bifurcation has been observed before
in other structures, such as an elastic arch under normal concentrated force. A
classification of bifurcations and obstacles to a probing sequence has been provided

by Thompson, Hutchinson, and Sieber [77].
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Figure 5.7: Eigenvalues encountered during a probing sequence at P = 1.17 Pa.

The cluster of eigenvalues near an unstable equilibrium solution gives rise to multiple
probing paths. Two of these paths are highlighted in Figure 5.8a. The deformed
shapes following the dashed path are shown in Figure 5.8b, for 4 different probe
displacements. One can observe that the behaviors of longeron 1 and 2 are identical
until bifurcations are reached. In this initial probing regime, the buckle amplitude
of both longerons grows, and the probe force increases and then decreases towards
the unstable equilibrium solution. Past the bifurcation, the behavior of longerons 1
and 2 are different. The structure starts bending in plane, as previously described,
which results in an increase in the buckle amplitude for longeron 1 while longeron
2 deforms globally in bending. The paths shown by solid lines in the figure are
essentially delayed version of the dashed paths, for which bifurcations occur in the
range of negative probe forces. Once the bifurcation has been passed, the deformed
shapes obtained for the solid-line paths are similar to the ones for the dashed paths.
These two sets of paths illustrate the local/global interaction that can disturb a

probing sequence, but many other paths exist.
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Figure 5.8: (a) Two sets of probing paths for longeron 1 and 2 after encountering a
bifurcations, for P = 1.17 Pa. (b) Deformed shapes at various points of the probing
paths shown in (a).

These instabilities can be seen as limitations to the probing analysis, but in fact
they highlight a powerful approach to selecting appropriate sets of constraints and
boundary conditions for a given structure. In other words, these instabilities can be

avoided by the judicious implementation of additional boundary conditions.

5.5 Generalization of stability landscape to post-buckling regime

Iterative construction of stability landscapes

The focus of this section is the ultimate pressure that can be carried by the strip
structure which requires a study of the post-buckling response of the structure using
stability landscapes. Knowledge of the structure’s post-buckling behavior is the key

to understanding whether buckling is benign or catastrophic.

Consider the stability landscape shown in Figure 5.3. The unstable equilibrium
solutions, defined by the yellow contour, determine the critical probe displacements
needed to reach the yellow contour. Past this critical displacement, the probe can be
released and the structure will naturally snap into the stable equilibrium solutions,
defined by the white contour. Once the stable equilibrium contour has been reached,

the structure has transitioned into its post-buckling path.

This transition can be implemented easily in the finite element analysis. Note that
it differs from the classical approach, which consists in seeding imperfections in
the structure’s undeformed geometry, and using an arc-length solver to force the
bifurcation into a specific branch. While the classical methodology is useful to

obtain a rough idea of the structure’s post-buckling behavior, it can be quite difficult
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to implement, as shown in Section 5.2, because one does not have control over when
the imperfect structure will bifurcate, and the post-buckling path is approximate since
the structure’s geometry has been changed. For imperfection sensitive structures
(which include thin shell structures), these two effects are particularly pronounced,
and it becomes difficult to resolve higher-order bifurcation paths (i.e., bifurcations
from the primary post-buckling branch) since the imperfections needed to resolve the
higher-order bifurcations can modify the structure’s behavior for earlier bifurcations.
Path-following methods [25] are extremely powerful in this respect, as they allow
the exact post-buckling path for a structure to be traced. However these methods are
available only in research finite element codes. An advantage of using the probing
method adopted here is that it gives insights into the stability of the fundamental and
post-buckling paths and their resilience to disturbances, while allowing resolution
of the strip behavior after multiple bifurcations, and thus up to the ultimate failure
pressure. It can also be implemented in experiments, which is of course a major

advantage.

Once the structure starts following its first post-buckling path, its behavior can be be
computed uniquely until a new bifurcation is encountered. At this point, a non-linear
eigenvalue computation can be performed, and the probing process can be repeated
using the maximum amplitude location of these new eigenmodes to determine the
new probing location. Note that once the n — 1 buckle is fully formed, there is no
more need to continue probing at its location, and the n — 1 probe can be released
when the n probe is activated. This iterative process is repeated until the maximum

pressure is found.

This process is illustrated in Figure 5.9, corresponding to the antisymmetric probing
of Figure 5.11a. A specific post-buckling path is shown but there exist infinite
possible paths. Each path is associated with a specific level of disturbance and the
associated energy barriers are reported in Figure 5.9b. However, while the pressure
at which probing is started sets the point at which the transition into buckling occurs,
it does not affect the behavior of the structure after it reaches the stable equilibrium
path. Therefore, for a specific probing scheme, the maximum pressure will be
independent of the path chosen. Also, once a buckle is fully formed and the probe

is released, the peak displacement of the buckle can still be tracked.

The peak displacements of the three buckles are shown by black curves in Fig-
ure 5.9a, and the deformed shapes at points I, II, and III are shown in Figure 5.10.

Note that buckle 1 yields the largest deformation. Also note that global failure of
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the strip occurs when buckle 1 reaches a maximum value of outward displacement,
at Pp,qx. At this point, a localized fold forms at the center of the structure while the

amplitudes of buckle 2 and 3 decrease, and the strip starts folding.
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Figure 5.9: (a) Stability landscapes obtained for the first, second and third sets of
probing. The labels I, II, and III refer to particular points at which the deformed shape
of the structure is shown in Figure 5.10. (b) Energy barriers between pre-buckled
and post-buckled states for each of the 3 buckling transitions.

Post-buckling response for symmetric and anti-symmetric probing

The method described in the previous subsection was used to trace the structure’s
post-buckling response for symmetric and anti-symmetric probing. The antisym-
metric probing starts as shown in Figure 5.5b. The subsequent probes 2 and 3 are
determined using the iterative method described earlier, by considering only the
first eigenmode for each longeron. Similarly, the symmetric probing starts as shown
in Figure 5.5b and uses the first two eigenmodes to choose the probe locations,
which results in using 4 probes at a time. These two probing schemes are shown in

Figure 5.11a.

The probing approach allows one to trace the full post-buckling response shown in
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O)
Figure 5.10: Deformed shapes corresponding to points I, II, and III of Figure 5.9a.

Figure 5.11b. The x-axis corresponds to the displacement extracted in the middle
of the longeron (1.5 m from the end), at the cross-section centroid. The previously
described failure of the structure appears as a horizontal tangent in this plot, which
highlights the loss of stiffness at the maximum value of pressure. The deformed
shapes, just before failure and for both types of probing, are shown in Figure 5.12.
Note that the antisymmetric probing scheme yields a softer post-buckling regime
and a lower value of the maximum pressure. Thus, the antisymmetric probing
scheme is the one to be considered when determining safe bounds on the structure’s

operational range.

In addition to the probing method, an attempt was made to compute the full anti-
symmetric post-buckling response using the "traditional" method, which consists in
seeding the buckling mode shapes into the initial geometry. The result is shown by
a black dashed line in Figure 5.11b, for a total imperfection amplitude of 2% of the
shell thickness. The probing and "traditional" techniques give essentially the same
result for the first post-buckling branch. However, this simulation was not successful
in going past the first post-buckling regime. Due to the structure’s high imperfec-
tion sensitivity, seeding the second buckling modes in the initial geometry (even
for an imperfection amplitude of less than 0.5% of the shell thickness) degrades the
pre-buckling response and first bifurcation can no longer be resolved. Finally, the
numerical probing technique presented in this chapter allows the structure to transi-
tion from its fundamental path directly to the stable post-buckling branch while the

applied pressure is kept constant. Such a scheme, while numerically efficient, does
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not detect any potential bifurcations arising from the unstable post-buckling branch,
as highlighted by Pirrera et al. [63]. Such bifurcations could give rise to different
stable post-buckling branches.
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Figure 5.11: (a) Probing schemes for higher-order stability landscapes. (b) Full
post-buckling response for the symmetric and antisymmetric probing scheme.

Figure 5.12: Deformed shape for (a) antisymmetric and (b) symmetric probing.

To overcome this limitation, two approaches are taken. The first one consists in
checking the eigenvalues of the tangent stiffness matrix, as the structure is probed.
Any intersection with a new stable post-buckling branch will be detected in this way,
and the probing scheme can then be changed following the eigenmodes of this new
bifurcation, before reaching the stable equilibrium contour of the previously deter-
mined bifurcation branching from the fundamental path. However, this approach
is unable to detect unstable paths that do not restabilize since they do not intersect

the probing path. The second approach consists in releasing the probe right before
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reaching the unstable equilibrium contour. The full unstable and stable branch can
then be resolved using an arclength solver, and one can directly check for nega-
tive eigenvalues on the unstable post-buckling branch. This second technique has
been used successfully for different types of structure. For the ladder-type coilable
structure, no negative eigenvalues were detected while probing, and the preliminary
experiment discussed in Section 5.2 suggests that there are no fully unstable paths

leading to early failure before the ultimate pressure is reached.

5.6 Effects of strip length on buckling energy barrier and characteristic loads
The analysis described in Section 5.4.2 was repeated for lengths of 1.8 m, 4.2 m,
5.4 m, and 6.6 m. The first quantity that has a direct impact on the early buckling of
the structure is the minimum post-buckling pressure which was computed it for all
of the considered strip lengths. The evolution of the linear and non-linear buckling
pressures was also tracked. Finally, by computing the full post-buckling response

of the structure, the maximum post-buckling load was determined.

The evolution of these four quantities as a function of L is shown in Figure 5.13a.
This figure shows that the linear and non-linear buckling pressures decrease as the
strip length increases, with the linear buckling pressure (eigenvalue problem for the
undeformed structure) slowly converging to the non-linear buckling pressure and
the eigenmodes also become very similar. While the first non-linear eigenmodes
localize on a side of the central batten, the linear eigenmodes are symmetric with
respect to the central batten. As the length of the strip increases, the non-linear
buckling modes become less localized and more symmetric with respect to the

central batten, as shown in Figure 5.14.

By comparing the non-linear eigenmodes in Figure 5.14 with the post-buckling
deformed shapes in Figure 5.10, it can be noted that the non-linear eigenmode has
multiple peaks of decreasing amplitude, whereas the deformed shape I in Figure 5.10
features only a single buckle. This type of localization has been studied for various

problems, including elastic beams on an elastic foundation [83] and spherical shells

[4].

A second observation is that the ultimate buckling pressure decreases as L increases.
When looking at the formation of local buckles in the post-buckling regime, it is
observed that the longer the strip, the more buckles are formed before reaching the
ultimate buckling load. Since the formation of a buckle in the structure is associated

with a decrease in stiffness, the structure will reach a zero value of stiffness earlier
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Figure 5.13: Evolution of (a) critical loads and (b) energy barrier as a function of L.

if more buckles can form, since the minimum buckling pressure for higher-order
buckles does not increase significantly (see Section 5.5.2). The ultimate buckling
load is about 1.39% greater than the non-linear buckling load for L = 1.8 m and
only 1.26% greater for L = 4.2 m.

As L increases, a similar decrease in the minimum post-buckling pressure is ob-
served. Notice that the ultimate buckling load converges faster to the non-linear

buckling load than the minimum post-buckling pressure.

L=54m L=6.6m

Linear buckling

Non-linear buckling

Figure 5.14: Comparison between linear and non-linear buckling mode shapes for
3 different lengths.

The energy barrier against the buckling transition into the antisymmetric first mode at
P < P., hasbeen plotted in Figure 5.13b for the various strip lengths considered. The
shape of the barrier is consistent across the different lengths and follows qualitatively
the same trend as the minimum post-buckling pressure. A rather surprising effect

is that, whereas the minimum post-buckling pressure and energy barrier decrease
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when L is increased up to L = 5.4 mm, the opposite trend is observed when L is
increased further to 6.6 m. This result indicates that the minimum post-buckling

pressure and the energy barrier are not monotonic with respect to the strip length.

The results obtained in this section can be linked to the spacecraft design application
described in the introduction. In Figure 5.15, the linear buckling pressure for a range
of strip lengths and widths has been compared to the value of 9 x 107 Pa, which
corresponds to the solar radiation pressure on a spacecraft orbiting the earth (denoted
as 1 astronomical unit, or 1 au). For narrow strips (W < 0.6 m), buckling takes
the form of a localized longeron buckling, as previously described. In wider strips
(W > 0.6 m) the battens are longer and tend to buckle before the longerons, which
gives rise to a plateau in the linear buckling pressure for shorter strips. The evolution
of the linear buckling pressure for longer strips is consistent over the range of strip
lengths. For W = 1 m and L = 12 m, the linear buckling pressure is 2215 times
greater than the solar pressure, for L = 30 m it is 434 times greater, and for L = 60
m it is 333 times greater. These results indicate that the risk of buckling under solar
pressure is very small for all lengths considered. However, for these longer strips,
the linear buckling mode takes the form of a global strip twisting along its axis and
the non-linear localization effects may possibly yield significantly lower non-linear

buckling loads.
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Figure 5.15: Linear buckling pressure as a function of strip length and strip width.

5.7 Low-energy escape paths
The previous part of this study has analyzed early transitions into post-buckling,
corresponding to the first non-linear buckling modes. However, while these modes

give rise to a meta-stable fundamental path above the minimum post-buckling pres-
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sure, there may exist additional meta-stable paths in the immediate vicinity of the
fundamental path that are also associated with a very low energy barrier, and which
would yield an earlier transition into the post-buckling regime. Such broken-away
paths were recently studied for the case of the cylindrical shell under axial com-
pression and for the spherical shell under pressure [38, 40, 78]. In the case of the

cylinder, the corresponding mode shapes take the form of a localized dimple.

Broken-away paths run close to the fundamental path without ever intersecting it,
and therefore cannot be predicted by a bifurcation analysis [37]. The points forming
such paths are referred to as mountain pass points, because they correspond to the
top of aridge in the total potential energy map. This ridge separates the fundamental
well from a lower potential well corresponding to a localized buckling mode, and
the mountain pass points correspond to an unstable equilibrium contour in the probe
force stability landscape. The mountain pass point requiring the least amount of
energy to be reached is called the lowest mountain pass point, and for the cylinder it
has been shown that the single dimple solution is indeed the lowest mountain pass
point [32].

In order to search for broken away paths and mountain pass points for the strip
structure, the finite element analysis described in Section 5.2.2 was extended to
multiple probe locations. For L = 3 m, 39 different probe locations (one probe
location every 75 mm) were defined along the top edge of each longeron, with
the Z-coordinate defining their position. Both longerons were probed in the same
outward anti-symmetric fashion described in Section 5.4.2, but the probe location
Z was increased for each new analysis. The probe force for each probe location and
for different values of the applied pressure was obtained from the analysis, and the
energy barrier was computed as described in Section 5.3. Figure 5.16a is a plot of

the energy barrier as a function of the probe location Z and the applied pressure.

Focusing first on pressures close to the non-linear buckling pressure (P = 1.1 —
1.3 Pa), three plots of the energy barriers for varying Z are shown in Figure 5.16b.
The local minima occur for Z = 1,423, 1,579 mm, corresponding to the first
buckling modes. For P = 1.33 Pa, there exist two more local minima further away
from the center of the strip, at Z = 1,120 and 1,880 mm. These local minima
are relatively high compared to the buckling mode minima for P = 1.167 Pa, but
they quickly drop to comparable values for P = 1.33 Pa. This result indicates that
buckling could occur also at these locations for a small disturbance, instead of the

main disturbances near the center of the strip. However, note that for this range of
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pressures, the disturbances corresponding to the buckling modes still correspond

the lowest energy barrier.
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Figure 5.16: (a) Contours of energy barrier for varying z location of probe and
pressure. (b) Detail of 3 high-pressure energy barriers.

The situation changes if lower values of the pressure are considered, in Figure 5.16a.
For P = 0.96 Pa, there is a global minimum for the energy barrier at the center of
the strip (Z = 1,500 mm) surrounded by two local minima at Z = 1,282 mm and
Z = 1,722 mm. The global minimum changes location rapidly, and for P = 0.98
Pa the global minima are at locations Z = 1,202 mm and Z = 1, 802 mm, marked
with a + in the figure. Note that the pressure at which these local minima occur is

above the minimum post-buckling pressure for the strip structure.

The present analysis has shown that buckled equilibrium solutions exist for probing
at these alternative locations, which cannot be determined by solving the classical
buckling eigenvalue problem. An important observation is that the location of
the lowest mountain pass points for the strip structure depends on the value of the
pressure. Finally, although only antisymmetric probing was considered here, similar

results can be expected if only one longeron is probed locally.

5.8 Effect of initial imperfections on strip stability landscape

It is well known that thin shells are highly sensitive to geometric imperfections, and
a natural question regards the sensitivity of the stability landscape to imperfections
in the undeformed geometry. A preliminary investigation was carried out for the
case L = 1.8 m, with imperfections based on the first eigenmode for longerons 1

and 2, as shown in Figure 5.5a.

The imperfect structure was probed using the outward antisymmetric probing
scheme at the location of the peak buckling mode displacement. In this specific case,
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the probing location also corresponds to the location of the maximum imperfection
amplitude. The stability landscapes obtained for this specific probing scheme and
for imperfection amplitudes ranging from 0% ¢ to 50% ¢ are shown in Figure 5.17a.
This figure shows that the imperfection has a significant impact on the structure’s
buckling load, which corresponds to the pressure above which the stability land-
scape can no longer be computed (the solver encounters the first bifurcation). For
the perfect geometry, the buckling pressure is P, = 3.3 Pa which decreases to 2.9
Pa (88% of P,,) for an imperfection amplitude of 10% ¢, 2.48 Pa (75% of P.,) for
an imperfection amplitude of 30% ¢, and finally reaches 2.08 Pa (63% of P.,) for an

imperfection amplitude of 50% ¢.
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An important observation is that the minimum post-buckling pressure is barely
affected by the imperfection for amplitudes under 40% ¢. For the perfect geometry,
the minimum post-buckling pressure is Py, = 2.26 Pa. This value does not change
for an imperfection of 10% ¢ and decreases only slightly, to 2.22 Pa and 2.2 Pa for
imperfection amplitudes of 30% ¢ and 40% ¢, respectively. For a critical value of
imperfection amplitude, between 40% ¢ and 50% ¢, the buckling load equals the

minimum post-buckling pressure, and past this value of imperfection, the structure
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is no longer meta-stable.

A final observation is that the energy barrier required to reach early buckling for
the imperfect structure, shown in Figure 5.17b, decreases when the imperfection
amplitude increases, and there is a sudden drop for imperfection amplitudes above
10% t.

5.9 Conclusion

This chapter has presented a numerical study of the buckling and post-buckling
behavior of structures of interest for large coilable solar arrays. The specific structure
that has been studied is a ladder-type strip structure consisting of two coilable
thin-shell longerons connected by transverse battens. Its transition into buckled
configurations has been captured by plotting its stability landscape. This landscape is
a three-dimensional plot of three independent quantities, the force and displacement
of alocalized lateral disturbance, introduced on the strip using a probe, and the main
loading parameter. In the present case, the stability landscape of a strip structure is

a plot of probe force vs. probe displacement and vs. transverse pressure.

It has been shown that the stability landscape for a pressure-loaded strip is similar
to the landscape for classical shells, such as the axially-loaded cylinder and the
pressure-loaded sphere. Similarly to classical shells, the stability landscape for the
strip shows that an early transition of the strip into buckling can be triggered by small
disturbances, whose amplitude decreases when the main loading is increased. Key
differences between the strip structure and the classical thin shells have been high-
lighted. Specifically, while the classical shell structures buckle catastrophically, the
strip structure features a large stable post-buckling range. Therefore, the maximum
post-buckling load that can be sustained by strip structures is significantly higher
than the first buckling load.

The same probing technique used to derive the stability landscape for the strip to
form its first buckle has also provided an effective way to both investigate its post-
buckling response and to gain insight into the meta-stability of the post-buckling
path. This approach is especially useful when multiple successive buckles are
encountered, as the level of disturbance needed to form a specific series of buckles

can be determined.

The probing of the structure’s longerons was applied at multiple locations, and
this analysis showed the existence of broken-away paths (mountain pass points)

corresponding to the single dimple in the cylinder and the sphere. The mode shapes
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for these specific early buckling paths localize at different locations than the ones
predicted by a classical eigenvalue problem. An important take-away from this
problem is that the location of the lowest mountain pass point (minimum energy

barrier to transition into buckling) is a function of the pressure applied to the strip.

The effect of imperfections, based on the first buckling mode, on the strip stability
landscape has been assessed. While imperfections significantly degrade the buckling
load and also erode the energy barrier separating pre-buckled from post-bucked
states, it has been found that they have little impact on the minimum post-buckling
pressure. It was also found that for a sufficiently large imperfection amplitude,
the buckling load becomes as low as the minimum post-buckling pressure, and the

structure loses its meta-stability.

Regarding the practical design of strip structures, the present extension of the probing
approach to more complex thin-shell structures enables different design strategies.
For applications in which buckling is to be altogether avoided, the structure can
be designed such that it never exceeds the minimum post-buckling pressure. If
upper bounds on the disturbance amplitude during operation and manufacturing
deviations are known, the structure could be operated above its minimum post-
buckling pressure by using the energy barrier of the worst imperfect structure as the
main design limit. Finally, in the case of a stable post-buckling regime and if small
buckles during operation are acceptable, the ultimate failure load can be derived
efficiently, numerically or experimentally, using the probing technique and can be

used as a design criterion.

Last, for the specific strip structures that are of current interest [18], it has been
shown that 0.2 m wide strips with lengths ranging from 1.5 m to 4.2 m have critical
pressures from 5 Pa to 1 Pa, respectively. Under these loads, the structures will
elastically collapse by folding around the center. The corresponding minimum post-
buckling pressures range from 2.5 Pa to 0.5 Pa. For spacecraft applications it should
be noted that these values are several orders of magnitude larger than solar pressure
loading. For longer strips, knowledge of the strip stability landscape will be a crucial
tool, and the methods presented in this chapter will play a key role in enabling the

design of such structures.
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Chapter 6

CONCLUSION

6.1 Summary and contributions

The work presented in this thesis has made several contributions to the field of shell
buckling and in particular, its application to spacecraft structures. The overarching
goal was to extend the newly developed probing methodology to more complex
thin-shell structures. This methodology was first used in 2016 to characterize the
meta-stable behavior of cylindrical and hemispherical shells close to buckling. Even
if these experimental studies showed that in theory, the methodology could be used
to derive less conservative buckling criteria, their scope was restricted to canonical
problems and suffered some limitations. In fact, probing was only ever applied to
the two problems mentioned above, and was only used experimentally a handful
of times. The present work extended probing to real engineering structures and
loading, and demonstrated that it can be used in practice as part of the structure’s
design process. It paves the way to the development of more efficient concepts, in
which structures are used closer to their buckling load than ever before, and even
in their post-buckling regime. It would allow for lighter structures to be built and
has the potential to enable new applications, such as extremely large aperture space
solar power satellites. In order to fulfill the main research goal, the work has been

divided into four parts, and contributions of each of these steps are highlighted next.

In a first research effort, simulations have been conducted to explore the use of
probing for an open section thin shell structure under bending. This specific structure
and loading depart significantly from the two canonical problems studied before.
For cylindrical and spherical shells, it has been shown that imperfection sensitivity
and localization play a crucial role in the shell’s buckling behavior. In addition,
close to the buckling load, the shell’s behavior can be characterized by a so-called
stability landscape of shell buckling, which represents the probe force as a function
of the probe displacement and the main loading. In the present research, we showed
that for the more complex open-section structure and bending loading, imperfection
sensitivity and localization are also dominant, and that buckling follows the same
stability landscape of shell buckling. Even if previously, probing was restricted

to the study of a single buckle, the framework was extended to probe the entire
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structure, and new unstable probing scenarios revealed buckling phenomena specific
to assembly of thin shells and open sections, never observed before. This initial
work proved that probing can be used to navigate the complex multiplicity of post-
buckling solutions know as spatial chaos, for real engineering structures. It also

served as the basis for the experimental work of this thesis.

Motivated by the previous computational study, our next research work focused on
developing a new experimental setup to conduct probing on a real open-section
thin-shell structure under bending. This experiment required an important appa-
ratus, capable of applying bending to the test sample. Initial bending experiments
were conducted on classical bending machines commonly used to test engineering
structures. However, these machines have proven to be inadequate for the problem
at hand since they introduce prestress during testing and therefore worsen the struc-
ture’s imperfection sensitivity. Even an undetectable misalignment (on the order
of one arc-minute) between the test structure’s ends had a significant impact on its
buckling behavior, and masked the phenomena observed in simulation. To address
this major challenge, we designed and implemented a new bending machine suit-
able for testing extremely imperfection-sensitive structures. It uses a combination
of pressurized air bearings and counterweights to provide statically determinate
boundary conditions to the structure. Its isostatic nature guarantees that no prestress
can develop during the test, and therefore that the experimental setup does not in-
troduce any parasitic effects which would influence the buckling behavior. The new
machine’s performance has been validated with experiments on linear and highly
nonlinear structures. This type of bending apparatus has never been realized before,
and it is the only machine found in literature that is capable of applying a strict pure

bending moment in a general structure.

Next, probing experiments were conducted on the open-section thin-shell structure,
and were made possible by the new bending machine. A probing apparatus was
designed and added to the experimental setup. The experiment revealed an extremely
rich buckling behavior. Experimental stability landscapes have been obtained and
showed that multiple buckled equilibria are competing. The landscapes also revealed
interactions between local buckles and gave insights into their sequential formation
(snaking), which was never experimentally studied before. A new representation
of the structure’s pre-buckling meta-stability has been developed, and displayed
transitions between buckled states as a function of the bending rotation and the

energy required by a perturbation to trigger buckling. Probing was then extended to



135

the whole structure and used to search for alternate buckling modes, disconnected
from the structure’s unbuckled state. It revealed experimentally for the first time
that such modes exist. They can appear in a real environment where disturbances

are present and have a significant impact on the structure’s post-buckling response.

Finally, we focused on real composite space structures used in the Space Solar Power
Project at Caltech. On orbit, these structures are loaded by solar pressure and inertial
forces. Probing simulations were presented for the analysis of these particular open-
section thin-shell structures, and extended the methodology to non-uniform bending
moments. It has been shown that these structures feature a long stable post-buckling
regime, which can be used during operations. The use of probing stability landscapes
appeared to be powerful to numerically identify the multiple post-buckling paths the
structure can follow. These solutions were only possible to determine using complex
path-following algorithms before, but could easily be found here using probing in
a commercially available finite element software. The methodology was also used
to study the stability landscape variations with length and geometric imperfections,

and showed that efficient buckling criteria can be found for such structures.

6.2 Probing for the design of more efficient structures

The following subsection aims to give a broader perspective on the use of probing
for the design of lightweight structures. The ultimate goal is to use this technique
to increase the operational range of structures, while guaranteeing their safety. This
objective can be divided into two scenarios. In the first scenario, buckling is to be
avoided and therefore, probing would be used to determine a tight buckling criterion.
This scenario corresponds for instance to structures for which the post-buckling
response is fully unstable. In the second scenario, localized buckles are allowed to
form in the structure as long as it is still capable of bearing a load. This scenario
corresponds to the type of structures analyzed throughout the dissertation, for which
the post-buckling path quickly restabilizes, and the maximum load is higher than
the first buckling load. In this case, probing would be used to determine the range
of possible post-buckling responses and determine a maximum load criterion. The

use of probing for these two scenarios is detailed here:

* Operate structure below buckling: simulations can be used in the early
phase of the design process. By conducting probing in finite element analyses
on a perfect structure, a critical buckling mechanism can be identified. The

load at which a localized buckle can first be sustained in the structure can
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be determined, and used as an efficient buckling criterion. This specific
load called minimal buckling load, was shown in Chapter 5 to be insensitive
to imperfections, as long as the imperfection amplitude is under a specific
threshold (40% of the shell thickness for the ladder-type structure of Chapter
5). Later in the design process, probing can be carried out in experiments on
structural prototypes. It is possible to test these prototypes non-destructively
by tracking the ridge and the valley of the experimental stability landscape.
Ridge-tracking enables the determination of the exact buckling load for the
unperturbed structure, while valley-tracking yields the exact minimal buckling
load. If an upper bound on the energy brought by potential disturbances during
operations is determined, experimental probing can be used to derive a tighter

buckling criterion, based on the energy barrier required to trigger buckling.

* Operate structure up to its maximum load: probing can be extended to
the post-buckling regime through simulations. It enables the determination
of all possible post-buckling responses, with or without the presence of dis-
turbances. If multiple buckling events occur, stability landscapes can be used
iteratively to trace the full post-buckling responses, and a tight lower bound
on the structure’s maximum load can be determined. Using the maximum
load criterion, instead of a buckling criterion, can dramatically increase the
range of operation for the structure. Probing can then be used experimentally
to validate prototypes. An experimental disturbance diagram can be created
and the various post-buckling responses stemming from competing buckling
sequences can be determined. It enables the refinement of the maximum load

criterion determined through simulation.

6.3 Future work

The work presented in the thesis can serve as the basis for tackling more complex
studies and applications. Here, promising avenues of research are grouped into two
categories: advancing the probing methodology and extending its use in engineering

structures.

Improvements to the probing methodology can be made. In the experiment presented
in chapter 3, probing was used to find the critical locations at which buckling occurs.
To do so, the structure’s edge in compression was discretized into several probe
locations. A more systematic and efficient approach could be developed to carry

this search. For instance, one could think about having an initially coarse spacing
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between probe locations, which subsequently get refined in specific regions, based
on metrics computed during probing. The ridge probe force could for example be
used for such a metric. The modified method would then be the experimental analog

to mesh refinement, commonly used in simulation.

The current experimental setup only allows the probe to apply a compressive force
on the structure. The use of a bilateral probe presents significant advantages and
could be used in the future. First, it would allow to capture the negative probe forces
in the "lake" of the stability landscape. By integrating them, the kinetic energy
released during buckling can be measured, without triggering any snap-through of
the structure. This information can then serve as an additional criterion to assess the
risk associated to buckling. This is especially important for space structures since
they usually feature a very low damping on orbit, and kinetic energy release could
significantly affect the dynamic of the entire spacecraft. Second, a bilateral probe
would also allow probing in both directions, and the complex buckling scenarios

highlighted in chapter 2 can be explored experimentally.

One important output of the probing methodology is the energy barrier required
to trigger buckling. While this specific quantity can serve as a lower bound on
the energy needed for a general disturbance to cause buckling, the link between
the two quantities is not obvious. Additional work would be required to assess the
local effect of a global disturbance applied on the structure. Of particular interest
is the interaction between quasi-static probing and dynamic disturbances. This
can be investigated for instance by focusing on the coupling between vibration and
buckling, and the link between the probing energy barrier and the energy contained

in a specific vibration mode.

The methodology presented in the thesis can be extended to new applications.
Probing experiments can be conducted on the space solar power strip structure, an
alternate design can be built based on the probing buckling criteria. One could
also use probing as a tool to design imperfection-insensitive structures of arbitrary
geometry. Finally, we saw in the experiment that multiple buckled configurations can
be triggered by only probing at a single location. If the structure is engineered with
precise imperfections, we could envision building thin shell multi-stable structures,
in which a local probe actuator would make the structure switch between buckled
configurations. Probing would then have a double role. It would be used to construct
the stability landscapes needed during the design process, and would also be used

as the main actuator during operations.



[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

138
BIBLIOGRAPHY

A. Abramian et al. “Nondestructive Prediction of the Buckling Load of Im-
perfect Shells”. In: Phys. Rev. Lett. (2020). por: 10.1103/PhysRevLett.
125.225504.

G. Arnold et al. “A pure bending machine to identify the mechanical behaviour
of thin sheets”. In: 6th. International ESAFORM Conference on Material
Forming, Salerno, Italy. 2003.

M. Arya, N. Lee, and S. Pellegrino. “Ultralight Structures for Space Solar
Power Satellites, 3rd ATAA Spacecraft Structures Conference”. In: 2016. por:
10.2514/6.2016-1950.

B. Audoly and J. W. Hutchinson. “Localization in spherical shell buckling”.
In: Journal of the Mechanics and Physics of Solids 136 (2020), p. 103720.
pol: https://doi.org/10.1016/j.jmps.2019.103720.

Davide B. Extremely Deformable Structures. CISM International Centre for
Mechanical Sciences, Springer, 2015.

C. D. Babcock. “The Buckling of Cylindrical Shells with An Initial Imper-
fection under Axial Compression Loading”. PhD thesis. California Institute
of Technology, 1962.

J. Banik et al. “On-orbit validation of the roll-out solar array”. In: 2018 IEEE
Aerospace Conference (2018). por: 10.1109/AER0.2018.8396390.

J. A. Banik and T. W. Murphey. “Performance validation of the triangular
rollable and collapsible mast”. In: 24th Annual AIAA/USU Conference on
Small Satellites, Logan, UT: AIAA/ASU (2010).

T.BenZineb, A. Sedrakian, and J. L. Billoet. “An original pure bending device
with large displacements and rotations for static and fatigue tests of composite
structures”. In: Composites Part B: Engineering 34.5 (2003), pp. 447-458.
DpoI: https://doi.org/10.1016/S1359-8368(03)00017-9.

M.A. Bessa and S. Pellegrino. “Design of ultra-thin shell structures in the
stochastic post-buckling range using Bayesian machine learning and opti-
mization”. In: International Journal of Solids and Structures 139-140 (2018),
pp. 174-188. 1ssn: 0020-7683. por: https://doi.org/10.1016/j .
ijsolstr.2018.01.035.

S.H.A. Boers, M.G.D. Geers, and V.G. Kouznetsova. “Contactless and fric-
tionless pure bending - principles, equipment and experimental opportuni-
ties”. In: Experimental Mechanics 50.6 (2010), pp. 683-693. por: https:
//doi.org/10.1007/s11340-009-9257-2.

D. O. Brush and B. O. Almroth. “Buckling of Bars, Plates, and Shells”. In:
McGraw-Hill, New York (1975).



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

139

L. H. Donnell and C. C. Wan. “Effect of imperfections on buckling of thin

cylinders and columns under axial compression.” In: Journal of Applied
Mechanics 17.1 (1950), pp. 73-83.

M. Elchalakani, X.L. Zhao, and R.H. Grzebieta. “Concrete-filled circular steel
tubes subjected to pure bending”. In: Journal of Constructional Steel Research
57.11 (2001), pp. 1141-1168. por: https://doi.org/10.1016/S0143-
974X(01)00035-9.

M. S. Ellison and E. Corona. “Buckling of T-beams under cyclic bending”.
In: International Journal of Mechanical Sciences 40.9 (1998), pp. 835-855.
pol: https://doi.org/10.1016/S0020-7403(97)00126-4.

J. M. Fernandez and T. W. Murphey. “A Simple Test Method for Large
Deformation Bending of Thin High Strain Composite Flexures”. In: 2018
AIAA Spacecraft Structures Conference. DOI: 10.2514/6.2018-0942.

E. Gdoutos et al. “Ultralight Deployable Space Structure Prototype”. In: AIAA
Scitech 2020 Forum. 2020. por: 10.2514/6.2020-0692.

E. Gdoutos et al. “Ultralight Deployable Space Structure Prototype, AIAA
Scitech 2020 Forum”. In: 2020. por: 10.2514/6.2020-0692.

E. Gdoutos et al. “Ultralight Spacecraft Structure Prototype, AIAA Scitech
2019 Forum™. In: 2019. por: 10.2514/6.2019-1749.

S. Gerasimidis et al. “On Establishing Buckling Knockdowns for Imperfection-
Sensitive Shell Structures”. In: Journal of Applied Mechanics 85.9 (June
2018). por: 10.1115/1.4040455.

S. Gerasimidis et al. “On Establishing Buckling Knockdowns for Imperfection-
sensitive Shell Structures”. In: Journal of Applied Mechanics (2018). por:
https://doi.org/10.1115/1.4040455.

A. Goel, N. Lee, and S. Pellegrino. “Trajectory design of formation flying
constellation for space-based solar power, 2017 IEEE Aerospace Conference”.
In: 2017, pp. 1-11. por: 10.1109/AER0.2017.7943711.

R. M. J. Groh and A. Pirrera. “On the role of localizations in buckling of
axially compressed cylinders”. In: Proceedings of the Royal Society A: Math-
ematical, Physical and Engineering Sciences 475.2224 (2019), p. 20190006.
pol: 10.1098/rspa.2019.0006.

R. M. J. Groh and A. Pirrera. “Spatial chaos as a governing factor for
imperfection sensitivity in shell buckling”. In: Phys. Rev. E (2019). por:
10.1103/PhysRevE. 100.032205.

R.M.J. Groh, D. Avitabile, and A. Pirrera. “Generalised path-following for
well-behaved nonlinear structures”. In: Computer Methods in Applied Me-
chanics and Engineering 331 (2018), pp. 394-426. por: https://doi.
org/10.1016/j.cma.2017.12.001.



[26]
[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

140

Larry L. H. Compliant mechanisms. Wiley, 2001.

A. D. Hasanyan, C. Leclerc, and S. Pellegrino. “Interface Failure Analysis of
Triangular Rollable and Collapsible (TRAC) Booms”. In: AIAA Scitech 2020
Forum. 2020. por: 10.2514/6.2020-0694.

T. J. Healey. “Why bifurcation: a study of a reticulated dome”. In: Ameri-
can Society of Civil Engineers, Structures Congress '89, Sessions related to
design, analysis and testing. San Francisco, California (1989).

M. Hilburger. “Developing the Next Generation Shell Buckling Design Fac-
tors and Technologies”. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference. (2012). por: 10.2514/6.
2012-1686.

R. G.Hilland E. J. Zapel. Pure bending test machine. US patent N° 3,026,720.
1959.

J. P. M. Hoefnagels, C. A. Buizer, and M. G. D. Geers. “A miniaturized
contactless pure-bending device for in-situ SEM failure analysis”. In: Ex-

perimental and Applied Mechanics, Volume 6. Springer New York, 2011,
pp- 587-596.

J. Hordk, G. J. Lord, and M. A. Peletier. “Cylinder Buckling: The Mountain
Pass as an Organizing Center”. In: SIAM Journal on Applied Mathematics
66.5 (2006), pp. 1793-1824. por: 10.1137/050635778.

N. Hu and R. Burgueiio. “Buckling-induced smart applications: recent ad-
vances and trends”. In: Smart Materials and Structures 24.6 (2015), p. 063001.
por: 10.1088/0964-1726/24/6/063001.

G. W. Hunt and E. L. Neto. “Maxwell Critical Loads for Axially Loaded
Cylindrical Shells”. In: Journal of Applied Mechanics (1993). por: 10.1115/
1.2900861.

G.W. Hunt, G.J. Lord, and A.R. Champneys. “Homoclinic and heteroclinic
orbits underlying the post-buckling of axially-compressed cylindrical shells”.
In: Computer Methods in Applied Mechanics and Engineering 170.3 (1999),
pp- 239-251. 1ssN: 0045-7825. por: https://doi.org/10.1016/S0045-
7825(98)00197-2.

G.W. Hunt and E.Lucena Neto. “Localized buckling in long axially-loaded
cylindrical shells”. In: Journal of the Mechanics and Physics of Solids 39.7
(1991), pp. 881-894. por: https://doi.org/10.1016/0022-5096(91)
90010-L.

G.W. Hunt et al. “Cellular buckling in long structures”. In: Nonlinear Dy-
namics (2000). por: 10.1023/A:1008398006403.

J. W. Hutchinson. “Buckling of spherical shells revisited”. In: Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences
472.2195 (2016), p. 20160577. por: 10.1098/rspa.2016.0577.



[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

141

J. W. Hutchinson and W. T. Koiter. “Postbuckling theory”. In: Applied Me-
chanics Reviews 23 (1970), pp. 1353-1366.

J. W. Hutchinson and J. M. T. Thompson. “Nonlinear buckling behaviour of
spherical shells: barriers and symmetry-breaking dimples”. In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 375.2093 (2017), p. 20160154. por: 10.1098/rsta.2016.0154.

J. W. Hutchinson and J. M. T. Thompson. “Nonlinear Buckling Interaction
for Spherical Shells Subject to Pressure and Probing Forces”. In: Journal of
Applied Mechanics 84.6 (Apr. 2017). por: 10.1115/1.4036355.

ISO, Kinematic diagrams — graphical symbols. 1SO 3952-1. 1981.

R. M. Jones. Buckling of Bars, Plates, and Shells. Bull Ridge, Blacksburg,
2006.

W. T. Koiter. “On the Stability of Elastic Equilibrium.” In: Amsterdam,
Holland.: H. J. Paris, 1945. Chap. 8, pp. 201-213.

T. Kreilos and T. M. Schneider. “Fully localized post-buckling states of cylin-
drical shells under axial compression”. In: Proceedings of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences 473.2205 (2017),
p- 20170177. por: 10.1098/rspa.2017.0177.

S. Kyriakides and P. K. Shaw. “Inelastic Buckling of Tubes Under Cyclic
Bending.” In: ASME. J. Pressure Vessel Technol. 109.2 (1987), pp. 169-178.
DoI: https://doi.org/10.1115/1.3264891.

E.R. Lancaster, C.R. Calladine, and S.C. Palmer. “Paradoxical buckling be-
haviour of a thin cylindrical shell under axial compression”. In: International
Journal of Mechanical Sciences 42.5 (2000), pp. 843—-865. por: https:
//doi.org/10.1016/S0020-7403(99)00030-2.

C. Leclerc and S. Pellegrino. “Nonlinear elastic buckling of ultra-thin coil-
able booms”. In: International Journal of Solids and Structures 203 (2020),
pp. 46-56. por: https://doi.org/10.1016/j.1ijsolstr.2020.06.
042.

C. Leclerc et al. “Characterization of Ultra-Thin Composite Triangular Rol-
lable and Collapsible Booms”. In: 4th AIAA Spacecraft Structures Confer-
ence.DOIL: 10.2514/6.2017-0172.

Christophe Leclerc. “Mechanics of Ultra-Thin Composite Coilable Struc-
tures”. PhD thesis. Caltech, 2020.

A. Lee et al. “The Geometric Role of Precisely Engineered Imperfections
on the Critical Buckling Load of Spherical Elastic Shells.” In: Journal of
Applied Mechanics 83.11 (Sept. 2016). por: 10.1115/1.4034431.



[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

142

HMYC Mallikarachchi and Sergio Pellegrino. “Failure criterion for two-ply
plain-weave CFRP laminates”. In: Journal of Composite Materials 47.11
(2013), pp. 1357-1375. por: 10.1177/0021998312447208.

J. Marthelot et al. “Buckling of a Pressurized Hemispherical Shell Subjected
to a Probing Force”. In: Journal of Applied Mechanics 84.12 (Oct. 2017).
por: 10.1115/1.4038063.

E. Medina et al. “Navigating the landscape of nonlinear mechanical meta-
materials for advanced programmability”. In: Phys. Rev. B 101 (6 2020),
p- 064101. por: 10.1103/PhysRevB.101.064101.

J. M. Muiioz-Guijosa et al. “Simple Testing System for Pure Bending Tests
with Large Deflections”. In: Experimental Mechanics 52 (2012), pp. 679—
692. por: https://doi.org/10.1007/s11340-011-9535-7.

T. W. Murphey, M. E. Peterson, and M. M. Grigoriev. “Large Strain Four-
Point Bending of Thin Unidirectional Composites”. In: Journal of Spacecraft
and Rockets 52.3 (2015), pp. 882—895. por: 10.2514/1.A32841.

T.W. Murphey and J. Banik. “Triangular rollable and collapsible boom, U.S.
Patent 7,895,79”. In: 2011.

X. Ning. “Imperfection Insensitive Thin Shells”. PhD thesis. Caltech, 2015.

X.Ning and S. Pellegrino. “Imperfection-insensitive axially loaded thin cylin-
drical shells”. In: International Journal of Solids and Structures (2015). DOI:
https://doi.org/10.1016/j.ijsolstr.2014.12.030.

X. Ning and S. Pellegrino. “Searching for imperfection insensitive externally
pressurized near-spherical thin shells”. In: Journal of the Mechanics and
Physics of Solids (2018). po1: https://doi.org/10.1016/j. jmps.
2018.06.008.

A.B. Perduijn and S.M. Hoogenboom. “The pure bending of sheet”. In:
Journal of Materials Processing Technology 51.1 (1995), pp. 274-295. potr:
https://doi.org/10.1016/0924-0136(94)01596-S.

J. P. Peterson, P. Seide, and V. I. Weingarten. Buckling of thin-walled circular
cylinders. NASA Space Vehicle Design Criteria, NASA SP-8007. (Revised
1968). Tech. rep. NASA, 1965.

A. Pirrera, D. Avitabile, and PM. Weaver. “Bistable plates for morphing
structures: A refined analytical approach with high-order polynomials”. In:
International Journal of Solids and Structures 47.25 (2010), pp. 3412-3425.
1SsN: 0020-7683. por: https://doi.org/10.1016/j.ijsolstr.2010.
08.019.

E. Pollard and T. Murphey. “Development of Deployable Elastic Compos-
ite Shape Memory Alloy Reinforced (DECSMAR) Structures”. In: 47th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Mate-
rials Conference (2006). por: 10.2514/6.2006-1681.



143

[65] M. Potier-Ferry. “Amplitude modulation, phase modulation and localization
of buckle patterns”. In: COLLAPSE: the buckling of structures in theory
and practise (eds JMT Thompson, GW Hunt). Cambridge, UK: Cambridge
University Press (1983).

[66] T.Rahman and E.L. Jansen. “Finite element based coupled mode initial post-
buckling analysis of a composite cylindrical shell”. In: Thin-Walled Structures
48.1 (2010), pp. 25-32. por: https://doi.org/10.1016/j.tws.2009.
08.003.

[67] P. M. Reis. “A Perspective on the Revival of Structural (In)Stability With
Novel Opportunities for Function: From Buckliphobia to Buckliphilia”. In:
Journal of Applied Mechanics (2015). por: 10.1115/1.4031456.

[68] E. Riks. “An incremental approach to the solution of snapping and buckling
problems”. In: International Journal of Solids and Structures 15.7 (1979),
pp.- 529-551. por: 10.1016/0020-7683(79)90081-7.

[69] F. Royer and S. Pellegrino. “Buckling of Ultralight Ladder-type Coilable
Space Structures”. In: AIAA Scitech 2020 Forum. 2020. por: 10.2514/6.
2020-1437.

[70] F. Royer and S. Pellegrino. “Buckling of Ultralight Ladder-type Coilable
Space Structures”. In: AIAA Scitech 2020 Forum. por: 10.2514/6.2020-
1437.

[711 F. Royer and S. Pellegrino. “Ultralight Ladder-type Coilable Space Struc-
tures”. In: AIAA Spacecraft Structures Conference (2018). por: 10.2514/6.
2018-1200.

[72] K. A. Seffen and S. Pellegrino. “Deployment dynamics of tape springs”.
In: Proceedings of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences 455.1983 (1999), pp. 1003—1048. por:
10.1098/rspa.1999.0347.

[73] K. A. Seffen and S. Pellegrino. Deployment of a rigid panel by tape-springs.
Technical Report CUED/D-STRUCT/TR168 Department of Engineering,
University of Cambridge. 1997.

[74] J. Singer, J. Arbocz, and T. Weller. Buckling Experiments: Experimental
Methods in Buckling of Thin-Walled Structures: Vol. 1. Wiley, New York,
2002.

[75]1 J. M. T. Thompson. “Advances in Shell Buckling: Theory and Experiments”.
In: International Journal of Bifurcation and Chaos 25.01 (2015), p. 1530001.
DpoI: 10.1142/S0218127415300013.

[76] J. M. T. Thompson and G. H. M. van der Heijden. “Quantified "Shock-
Sensitivity" Above the Maxwell Load”. In: International Journal of Bifurca-
tion and Chaos 24.03 (2014), p. 1430009. po1: 10.1142/S0218127414300092.



[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

144

J. M. T. Thompson, J. W. Hutchinson, and J. Sieber. “Probing Shells Against
Buckling: A Nondestructive Technique for Laboratory Testing”. In: Inter-
national Journal of Bifurcation and Chaos 27.14 (2017), p. 1730048. por:
10.1142/S0218127417300488.

J. M. T. Thompson, J. W. Hutchinson, and J. Sieber. “Probing Shells Against
Buckling: A Nondestructive Technique for Laboratory Testing”. In: Inter-
national Journal of Bifurcation and Chaos 27.14 (2017), p. 1730048. por:
10.1142/S0218127417300488.

J. M. T. Thompson and J. Sieber. “Shock-Sensitivity in Shell-Like Struc-
tures: With Simulations of Spherical Shell Buckling”. In: International Jour-
nal of Bifurcation and Chaos 26.02 (2016), p. 1630003. por: 10 . 1142/
S0218127416300032.

J.M.T. Thompson and L.N. Virgin. “Spatial chaos and localization phenomena
in nonlinear elasticity”. In: Physics Letters A 126.8 (1988), pp. 491-496. por:
https://doi.org/10.1016/0375-9601(88)90045-X.

E. Virot et al. “Stability Landscape of Shell Buckling”. In: Phys. Rev. Lett.
119 (22 Nov. 2017), p. 224101. por: 10.1103/PhysRevLett.119.224101.

T. Von Karman and H. S. Tsien. “The Buckling of Thin Cylindrical Shells
Under Axial Compression”. In: Journal of the Aeronautical Sciences 8.8
(1941), pp. 303-312. por: 10.2514/8.10722.

M. K. Wadee, G. W. Hunt, and A. I. M. Whiting. “Asymptotic and Rayleigh-
Ritz routes to localized buckling solutions in an elastic instability problem”.
In: Proceedings of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences 453.1965 (1997), pp. 2085-2107. por:
10.1098/rspa.1997.0112.

L. Wilson, E. E. Gdoutos, and S. Pellegrino. “Tension-Stabilized Coiling of
Isotropic Tape Springs”. In: International Journal of Solids and Structures
188-189 (2020), pp. 103-117. por: https://doi.org/10.1016/j .
ijsolstr.2019.09.010.

K. K. Yadav et al. “A Nondestructive Technique for the Evaluation of Thin
Cylindrical Shells’ Axial Buckling Capacity”. In: Journal of Applied Me-
chanics (2021). po1: 10.1115/1.4049806.

J.C.H. Yee and S. Pellegrino. “Folding of woven composite structures”. In:
Composites Part A: Applied Science and Manufacturing 36.2 (2005). 7th In-
ternational Conference on the Deformation and Fracture of Composites (DFC-
7), pp. 273-278. por: https://doi.org/10.1016/j.compositesa.
2004.06.017.

F. Yoshida, M. Urabe, and V.V. Toropov. “Identification of material param-
eters in constitutive model for sheet metals from cyclic bending tests”. In:
International Journal of Mechanical Sciences 40.2 (1998), pp. 237-249. por:
https://doi.org/10.1016/S0020-7403(97)00052-0.



[88]

145

A. Zareei, B. Deng, and K. Bertoldi. “Harnessing transition waves to re-
alize deployable structures”. In: Proceedings of the National Academy of
Sciences 117.8 (2020), pp. 4015-4020. 1ssn: 0027-8424. por: 10 . 1073/
pnas.1917887117.



