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ABSTRACT 

Visualizing single cells and their organization in intact tissue is crucial to understanding their 

governing biological function. Even though single cell RNA sequencing has provided many 

insights into the heterogeneity and gene expression profiles across many tissue types, the 

dissociation process which loses the spatial information is hindering our deeper 

understanding of how these transcriptional distinct cell types are organized and interacting 

in their native tissue environment.  

The thesis begins by giving a background on how single cell RNA sequencing has 

transformed biology and the emergence of spatial technology such as sequential fluorescence 

in situ hybridization (seqFISH).  While spatial methods are useful for mapping the cell types 

identified from single cell RNA sequencing, the need for turning spatial technology such as 

seqFISH, which has high detection efficiency of the transcriptome with spatial information, 

into an in situ discovery tool is discussed as the scientific community’s goal heads towards 

building spatial atlases for every human tissues and organs such as the brain.  

While seqFISH has high detection efficiency, it is still limited in the number of genes capable 

of profiling at once. The major obstacle is the optical crowding problems when more RNA 

species are targeted and imaged using a fluorescence microscope. In Chapter 2, we first 

investigated, if the RNA molecules are instead captured on a coverslip and profiled with 

sequential barcoding strategy, the FISH-based method will reliably characterize the 

transcriptome when molecular crowding is not an issue.  

Finally, in Chapter 3, we demonstrate the barcoding strategy to break through the molecular 

crowding limit of multiplexed FISH. From being able to profile hundreds to a thousand genes 

by various multiplexed FISH methods at that time in the field, we succeeded in profiling 

10,000 genes by RNA seqFISH+, an evolved version of seqFISH, in various intact tissue 

sections, turning seqFISH+ into a spatial discovery technology with its genome-wide 

coverage and high detection efficiency. The work described in this part of the thesis is 

highlighted in Nature Method’s Method of The Year 2020- Spatially-resolved 

Transcriptomic article.  
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C h a p t e r  1  

Introduction 

 

1.1 Transformative biology by single cell RNA sequencing 

 

In the past decade, bulk RNA sequencing has been used to study gene expression in various 

tissue samples at population level1. Despite the great resources provided by bulk 

measurements, the lack of single cell resolution is limiting our understanding on biological 

problems. It is the advent of single-cell RNA sequencing (scRNA-seq) by multiple groups 

which enabled the studies of the transcriptome to dissect single cell heterogeneity and 

discover unexpected biological insights relative to classical transcriptomic profiling methods 
2–7. ScRNA-seq was first applied to a four-cell stage blastomere by Tang et. al. in which the 

sequencing library preparations were performed manually in individual tubes, hindering the 

single cells that could be studied at once. Subsequent years, multiple scRNA-seq 

technologies were developed to assay many cells at once including single cell tagged reverse 

transcription sequencing (STRT-seq)8, cell expression by linear amplification and 

sequencing (CEL-seq) 9 , MARS-seq 10, SMART-seq 11 , and many others. The invention of 

droplet based sequencing such as Drop-seq and In-Drop further outperformed the commonly 

used plate-based sequencing platform Fluidigm C1 due to their capability to assay tens of 

thousands of cells as well as lower cost 12 13.  

 

The unbiased genome-wide profiling and high number of single cells assayed in scRNAseq 

have allowed researchers to make biological discoveries in all fields such as in neuroscience 

and developmental biology. For example, Tasic et al had used scRNAseq to characterize the 

cortical cells in the primary visual cortex into distinct transcriptional types including 23 

GABAergic, 19 glutamatergic, and 7 non-neuronal cells. The author further confirmed that 

the transcriptomic states of these clusters could be associated with their electrophysiological 

and axon projection properties 14. Later years, the author applied scRNAseq to dissect the 

similarity and differences of the 133 transcriptomic cell types between anterior lateral motor 

cortex and primary visual cortex 15. In developmental biology, multiple studies have used 

scRNA-seq to understand the developmental trajectories of cells and investigate the 

transcriptional states of the cells and its descendants during development and regeneration. 

For example, the development of sci-RNA_seq (Single cell Combinatorial Indexing RNA 

sequencing) to profile almost 50,000 cells from the nematode Caenorhabditis elegans at the 

L2 stage revealed some rare neuronal cell types which only exists as few as one or two cells 

at that stage. Together with the defined 27 cell types, these data serve as a powerful resource 

to the nematode community16. On the other hand, Wagner et. al. used InDrop scRNAseq to 

sequence more than 90,000 cells following the developmental stages of zebrafish embryos. 

Their results uncover the progression of cell-state landscape across axis patterning, formation 

of germ cell layers, and organogenesis. The authors further developed TracerSeq which 

barcodes cell lineages during development. They found that the history of cell lineage does 

not always follow or reflect the cell-state graph topology based on the profiled 

https://paperpile.com/c/TC0wXV/sONy
https://paperpile.com/c/TC0wXV/66ny+TCZE+1Ldk+V25R+QqTl+9osF
https://paperpile.com/c/TC0wXV/QXNM
https://paperpile.com/c/TC0wXV/Ipus
https://paperpile.com/c/TC0wXV/u3Mj
https://paperpile.com/c/TC0wXV/GKQt
https://paperpile.com/c/TC0wXV/8I8D
https://paperpile.com/c/TC0wXV/Th4V
https://paperpile.com/c/TC0wXV/X4FB
https://paperpile.com/c/TC0wXV/Rriq
https://paperpile.com/c/TC0wXV/9kzy
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transcriptome17. Similar studies by Farrell et. al. which also applied scRNAseq to >38,000 

cells during early zebrafish embryogenesis revealed some interesting findings. Other than 

characterizing these cells into distinct transcriptional clusters which represent the 

developmental stages of the embryo, they identified modules of coexpressed genes by these 

cells across the developmental time. In addition, they revealed that at some developmental 

branches, multilineage priming exists in some of the cells based on co-expression of multiple 

genes characteristic of downstream cell fates 18. Many more scRNA-seq studies applied on 

other model organisms such as planarian Schmidtea mediterranea 19 , the western claw-toed 

Xenopus tropicalis 20 , and the house mouse Mus musculus 21–24 all served as valuable 

resources to the wide community. It is worthwhile to mention that in the studies conducted 

by Cao et. al., the number of cells being assayed at once in scRNAseq is particularly 

impressive with more than 2 millions single cells from 61 embryos which span across 

embryonic developmental stages of 9.5 to 13.5 are sequenced in a single experiment 25 . Their 

results demonstrate the global view of mouse organogenesis based on the transcriptome 

profiled, as well as the dynamics of the gene expression within cell types and trajectories 

across this critical developmental process. Finally, scRNAseq is also highly applied on 

human samples to comparatively study the transcriptome between healthy and diseased 

tissues26–30. In particular, scRNAseq has also been applied to study the coronavirus disease 

(COVID-19) pandemic to identify the immune response as well as the impact on various 

tissue organs of post-infection which helps scientists to understand the disease better31–35. 

 

 Indeed, scRNAseq has transformed how biological problems are studied nowadays, 

transitioning from small numbers of cells to millions of cells with the unbiased discovery 

power of genome-wide transcriptome profiling. However, it is also known that scRNAseq 

also suffers from multiple limitations. All scRNAseq libraries preparation requires the 

dissociation of tissue into single cell suspension. This created a few problems. The most 

precious spatial information of each single cell within its intact tissue is lost. Moreover, it is 

known that transcriptome-wide changes can be induced by the dissociation process. Lastly, 

different tissues have different dissociation efficiency and that certain cell populations could 

be lost in detection by scRNA-seq. This particular weakness has motivated scientists to 

instead, isolate the nuclei of single cells for transcripts instead of isolating the whole 

cytoplasmic RNA36,37. Moreover, inefficient reverse transcription, amplification bias of 

library preparation and high dropout rate of scRNAseq caused the detection of lowly 

expressed transcripts challenging, rendering a low detection efficiency of 1-20% of the 

transcripts per single cell depending on the platform used. The detection efficiency further 

drops when shallow depth of sequencing is performed in exchange for a higher cell number 

profiled38. In fact, all these problems can be potentially solved by the emergence of spatially 

resolved transcriptomics profiling methods in recent years.  

 

 

 

 

 

 

 

https://paperpile.com/c/TC0wXV/lZxz
https://paperpile.com/c/TC0wXV/PVfA
https://paperpile.com/c/TC0wXV/T9yN
https://paperpile.com/c/TC0wXV/ZXEE
https://paperpile.com/c/TC0wXV/wUCO+IYBc+GktY+UaVY
https://paperpile.com/c/TC0wXV/oakd
https://paperpile.com/c/TC0wXV/IicS+422P+eskk+l9Q8+LqJG
https://paperpile.com/c/TC0wXV/LnG7+Q9YG+2F54+jMVY+E5Bm
https://paperpile.com/c/TC0wXV/J17e+n5So
https://paperpile.com/c/TC0wXV/aQmt
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1.2 The emergence of spatial transcriptomic technologies 

  

It is crucial to understand single cells within their spatial organization in intact tissues as 

neighboring cell-cell interactions can govern the cell fate decision. For instance, classical 

studies showed how the “organizer” cells organize the dorsal ectoderm into a neural tube and 

the mesoderm into anterior-posterior axis through series of induction39,40. Techniques such 

as in situ hybridization (ISH) with colorimetric readout applied on mouse or human  brain 

slices, one gene at a time, by the Allen Brain Institute to create a reference map atlas has 

been useful to the neuroscience community over the past years41,42. However, ISH does not 

provide single cell resolution and the measurement is not quantitative. Current gold standard 

measurement in absolute transcripts quantitation method is still the single molecule 

fluorescence in situ hybridization (smFISH) technology developed by Raj et. al. which uses 

multiple fluorophore-labeled short oligonucleotides designed to bind to the same targeted 

transcript, yielding diffraction-limited spots when imaged under a fluorescence microscope. 

By counting these diffraction-limited spots which each dot represent a single RNA transcript, 

it allows the quantification of gene expression with near 100% detection efficiency43.  

 

The limitation of smFISH technology is the number of fluorescence channels one can use in 

microscopy, generally 4-5 fluorescence channels are available, which limits the scalability 

of the number of genes one can profile at once.  In 2012, Lubeck and Cai scaled up the 

measurement of smFISH to 32 genes through super-resolution imaging and combinatorial 

spatial and spectral barcoding. However, super-resolution is difficult to perform on a thicker 

sample, as well as the gene throughput is limited by the number of fluorophores available to 

perform super-resolution imaging44. This motivates the development of sequential FISH 

(seqFISH) which fundamentally works by generating temporal barcodes on each transcript 

by sequential rounds of FISH hybridization. They took advantage of the fact that since 

transcripts are fixed in cells, and the corresponding fluorescent dots should remain in place 

for multiple rounds of hybridization and by aligning these spots, one can identify the unique 

fluorophore barcode designed for each gene. The advantage of seqFISH is that the number 

of barcodes scales as FN , which F represents the number of fluorophores and N represents 

the number of sequential hybridization rounds performed. They further demonstrated that by 

introducing a redundant round of hybridization, one can decode the barcode assigned to each 

gene more robustly45. It is since this exciting technology development, that subsequent years, 

multiple spatial methods are developed. In particular, multiplex error robust (MERFISH) 

expanded the error correction scheme in the original seqFISH demonstration by using a 

Hamming distance of 4 based barcodes in the RNA detection in cell cultures46. Despite the 

highly quantitative power of smFISH, it is known to suffer from low signal to noise ratio. It 

has then been shown by combining tissue clearing technologies such as CLARITY and 

PACT (Passive CLARITY)47,48 with FISH can improve the signal-to-noise ratio in tissue 

sections. Even so, smFISH signals could be further amplified by branched DNA or 

hybridization chain reaction (HCR)49. For example, Shah et. al. performed up to 249 genes 

HCR-seqFISH measurement in the tissue sections which robustly characterizes the dentate 

gyrus spatial organization into distinct transcriptional clusters without any tissue clearing due 

to the benefits of ~20-fold signal amplification50. A hybrid method which combines FISH 

and in situ sequencing, STARmap (spatially-resolved transcript amplicon readout mapping) 

https://paperpile.com/c/TC0wXV/E432+tNUZ
https://paperpile.com/c/TC0wXV/tpG5+LZIf
https://paperpile.com/c/TC0wXV/SoTy
https://paperpile.com/c/TC0wXV/CpWU
https://paperpile.com/c/TC0wXV/hPdR
https://paperpile.com/c/TC0wXV/Aol6
https://paperpile.com/c/TC0wXV/cnO8+AQLo
https://paperpile.com/c/TC0wXV/DTag
https://paperpile.com/c/TC0wXV/liMu
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was developed to detect up to 1000 genes in the mouse primary visual cortex tissue section. 

STARmap begins by performing FISH using a pair of DNA probes which can be ligated 

when hybridized in close proximity. Once ligated, enzymatic amplification by phi29 DNA 

polymerase generates DNA nanoballs around the transcripts, the sample is then embedded 

in an acrylamide hydrogel to anchor the amplicons, followed by tissue digestion to improve 

the tissue transparency and signal-to-noise ratio.  Finally the tissue-hydrogel hybrid can then 

be sequenced out in situ for the barcodes assigned for each gene51. Around the same time as 

multiplexed smFISH technologies are evolving, in situ sequencing of RNA in single cells 

are also actively developing. To give an instance, fluorescent in situ RNA sequencing 

(FISSEQ) directly reverse transcribes the mRNA in intact cells, followed by amplicons 

generations through rolling circle amplification, and finally sequence-by-ligation to identify 

the RNA sequences. Despite being an attractive concept and method, FISSEQ suffers from 

very low detection efficiency (< 0.01% reported) , likely due to the inefficient reverse 

transcription step as well as difficulties to ligate the complementary DNA (cDNA) in situ52. 

Targeted in situ sequencing which involves reverse transcription step, followed by FISH, 

improves the detection efficiency but it is still lower than direct FISH to RNA as conventional 

smFISH does53.  

 

Imaging-based spatially resolved multiplexed FISH measurements are highly quantitative 

with high detection efficiency but have been limited to the hundreds of genes up to 1,000 

genes. On the other hand, slide-based spatial sequencing technologies such as Spatial 

Transcriptomics (ST) technology54 captures spatial information by using spatially barcoded 

and oligo(dT) probes printed as microarray spots on the surface of glass slides. Then, 

cryosectioned tissue slices are placed on top and digested away enzymatically to release the 

mRNA, allowing the mRNA molecules to be captured by the surface probes. Current 

optimized version in 10x Genomics in Visium platform contains 5000 barcoded spots which 

are 55um in diameter yielding an average resolution of 1-10 cells per spot. In order to 

improve the spatial resolution, Slide-seq and HDST were developed. Differ from ST 

technology, both Slide-seq and HDST packed a monolayer of beads on a rubber-coated glass 

coverslip with the former using 10um beads and the latter using 2um beads. Since these beads 

are assembled with random barcodes, the spatial identity of the beads required either 

sequencing by SOLiD chemistry for Slide-seq or sequential hybridization for HDST to 

decode, followed by matching the spatial barcodes to the sequenced amplicons55,56. Despite 

the genome-wide profiling and high throughput measurement, these slide-based spatial 

sequencing technologies have a few shortcomings. First of all, despite some of the methods 

approaching single-cell resolution, it is challenging to define a single cell boundary in the 

sample and hence impossible to study subcellular localization of transcripts. Second, the 

lateral diffusion of transcripts during dissociation of the tissue likely will cause the 

intermixing of transcripts leaked from one cell to another. Lastly, the capture and detection 

efficiency of transcripts are much lower than multiplexed FISH. For example, the optimized 

version of Slide-seq V2 reported <50% of any conventional droplet based sequencing of 

detection efficiency which has about 1-5% depending on sequencing depth 57.  

 

 

 

https://paperpile.com/c/TC0wXV/vnSJ
https://paperpile.com/c/TC0wXV/zNrQ
https://paperpile.com/c/TC0wXV/zKBR
https://paperpile.com/c/TC0wXV/7IZY
https://paperpile.com/c/TC0wXV/aYhU+57RJ
https://paperpile.com/c/TC0wXV/opXl
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1.3 The need for spatial transcriptomics methods as discovery tools 

 

Each of the spatial technologies has its strength and weakness. For example, slide-based 

spatial sequencing enables large numbers of cells to be profiled genome-wide, at the cost of 

low detection efficiency and not at single-cell resolution. On the other hand, targeted 

approaches such as seqFISH have very high detection efficiency, however this high detection 

efficiency is hindered by the molecular crowding as the number of genes profiled increases. 

Till now, all spatial methods have been used for spatial mapping of transcriptional clusters 

identified from scRNAseq, demonstrating the complementary of both technologies50,51,58–60. 

However, given cells function and interact with their neighbors, being able to study these 

neighboring cell interactions in addition to their spatial organization is crucial in dissecting 

the complex biological problems. If highly multiplexed FISH technology can only profile up 

to 1,000 genes with high efficiency, it is difficult to serve as an in situ discovery tool with 

such gene coverage. The major bottleneck of scaling up multiplexed FISH is because of the 

molecular crowding as the number of genes targeted increases, rendering decoding 

impossible. In fact, all spatial technologies can be benefited from expansion microscopy 

which the hydrogel-embedded sample is homogenized through enzyme digestion, followed 

by low osmolarity solution to physically expand the sample, thus pulling apart the cross 

linked RNA molecules, rendering super-resolution61,62. However, expanded samples require 

more technical attention to handle such as sample staging, prevention of molecules 

movement during imaging, as well as dramatically increases the imaging time as the sample 

volume increases. Hence, there is a need to scale up the number of genes detected by seqFISH 

to tens of thousands of genes efficiently with reasonable imaging time.  

 

1.4 Towards spatial cell atlas  

 

Over the past few years, the single cell spatial transcriptomics field has evolved so quickly 

as seen by more and more studies applying spatial technologies to study complex biological 

problems. In 2020,  Nature Method has recognized spatially resolved transcriptomics as the 

method of the year, in which the thesis work described here is highlighted63. With huge 

projects like the Human Cell Atlas64 which requires loads of collaborative effort to define all 

human cell types, spatial information becomes obviously indispensable. A comprehensive 

reference atlas without spatial information is not an atlas, and with the improvement of these 

spatial technologies, one should expect more and more spatial atlas covering tens of millions 

of cells with genome-wide measurement emerging in the near future.  

 

Just like how scRNAseq changes biology, I believe spatial technology will transform 

biology for the next decades. 

  

https://paperpile.com/c/TC0wXV/liMu+3TU7+gC6A+Voic+vnSJ
https://paperpile.com/c/TC0wXV/oi5L+IoVL
https://paperpile.com/c/TC0wXV/DT4N
https://paperpile.com/c/TC0wXV/XF5W
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C h a p t e r  2  

PROFILING THE TRANSCRIPTOME BY RNA SPOTS 

Eng, Chee-Huat Linus, Sheel Shah, Julian Thomassie, and Long Cai. 2017. “Profiling 

the Transcriptome with RNA SPOTs.” Nature Methods 14 (12): 1153–55. 

https://doi.org/10.1038/nmeth.4500. 

 

2.1 Abstract 

Single molecule FISH (smFISH) has been the gold standard in quantifying individual 

transcripts abundances.  Here, we demonstrate the scaling up of smFISH to the 

transcriptome level by profiling of 10,212 different mRNAs from mouse fibroblast and 

embryonic stem cells. This method, called RNA SPOTs (Sequential Probing of Targets), 

provides an accurate and low-cost alternative to sequencing in profiling transcriptomes.  

 

2.2 Introduction 

RNA sequencing (RNAseq)1,2 has been a powerful method to quantify RNAs in a diverse 

range of biological samples.  While RNAseq has replaced microarrays as the de-rigueur 

method for genomics studies because of higher sensitivities and dynamic range, reverse 

transcription and other steps needed to convert RNA to cDNA to sequencing libraries can 

introduce biases in the quantitation of mRNAs. Moreover, sequencing the RNAs at 

nucleotide level is not necessary for counting the abundances of transcripts. Single 

molecule fluorescence in situ hybridization (smFISH)3,4, which directly hybridizes DNA 

oligonucleotide probes to transcripts in cells, is highly sensitive and accurate in 

quantitating mRNA abundances.    

 

Here, we demonstrate transcriptome level profiling of mRNAs with single molecule 

sensitivity and high accuracy using a method based on sequential FISH (seqFISH)5.  We 

had shown that seqFISH can be applied to image hundreds of transcripts in cells and 

tissues6, image dynamics of chromosomes7 and allow lineage tracking with single cell 

resolution8.  However, the major limitation of seqFISH is that optical diffraction limit 

prevents many mRNAs from being resolved simultaneously in single cells.  In principle, 

super-resolution microscopy9 and expansion microscopy10  can resolve the optical density 

issue in situ.  However, many applications quantify mRNAs that have been extracted 

https://doi.org/10.1038/nmeth.4500
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from cells and tissues.  In these cases, capturing transcripts onto an oligonucleotide dT 

surface and adjusting the dilution factors can easily remove the optical crowding 

problems and allow the transcriptome to be decoded by seqFISH.  

 

2.3 Results 

 

To distinguish this in vitro application from the in situ seqFISH experiments, we call this 

approach RNA SPOTs (Sequential Probing Of Targets). Extracted mRNAs were first 

captured on a Locked Nucleic Acid(LNA) poly(dT) functionalized coverslip (Fig 1a) and 

then hybridized with a pool of 323,156 primary probes targeting the coding regions of 

10,212 mRNAs with 28 to 32 probes each gene (Figure 1a-b,Supplementary Table 1 

and Online Methods).  To barcode the 10,212 genes with sequential hybridization, we 

used a 12 “pseudo-color” based scheme such that 4 rounds of barcoding are sufficient to 

cover the transcriptome (124=20,736) (Supplementary Table 2), with an additional 

round of error correction to compensate for one drop in any round of barcoding6 (Fig 1c-

d).  The pseudo-colors design shortens the number of barcoding rounds, which reduces 

the errors in reading out barcodes. 

 

 
 

Figure 1. RNA SPOTs profiles 10,212 mRNAs in vitro. (a) mRNA is captured on a locked 

nucleic acid (LNA) poly(dT)-functionalized coverslip, and gene-specific primary probes 

(323,156 total) are then hybridized against the 10,212 targeted mRNAs. Each gene is 

targeted by 28–32 primary probes. (b) Each 149-nt primary probe includes a 25-nt gene-

specific sequence complementary to the mRNA, four 20-nt barcodes (A,B,C, and D)—each 

encoding one of 12 'pseudocolors') which are read out by fluorescent secondary readout 

probes, single T-nucleotide spacers between readout and gene-specific regions, and two 20-

nt PCR primer binding sites. Note that probes for each gene are divided into subsets in 

which sites A, B, C, and D may correspond to round I, II, III and IV or V, I, II, III, etc. to 

ensure the gene is measured in every round. (c) Each of five barcoding rounds is based on 
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Figure 1. (continued from above) 12 pseudocolors, which are read out by four serial 

hybridizations. In each serial hybridization, three readout probes conjugated to Alexa 647, 

Alexa 594, or Cy3b are hybridized to the primary probes, imaged, and extinguished. 

Images from four serial hybridizations are then collapsed into a single composite 12-

pseudocolor image representing one round of barcoding. Sets of four serial hybridizations 

are repeated for five barcoding rounds (I to V) for a total of 20 hybridizations. This 

corresponds to 124 = 20,736 codes, with an extra round of barcoding to correct for 

mishybridizations. (d) Digitized composite images based on actual experiments to decode 

10,212 distinct mRNA. White dashed squares represent correctly identified barcodes; red 

dashed squares represent false positives; yellow dashed squares represent barcodes 

identified despite mishybridization in one round of hybridization. Scale bars: overview, 10 

μm; rounds I to V barcoding, 1 μm. 

  

 

To implement the pseudo-color scheme, we designed the primary probes to contain a 25-

nt RNA binding sequence, as well as 4 overhang sites11 that can be bound by dye-labeled 

readout oligos (Figure 1b).  Each site has 12 possible sequences corresponding to the 12 

pseudo-colors.  To readout the 12 pseudo-colors, three of the readout oligos were 

hybridized at a time, imaged in the Cy3b, Alexa 594, and Alexa 647 fluorescence 

channels, and repeated 4 times to iterate through all 12 readout sequences, with disulfide 

cleavage12,13 in between the hybridizations to remove the fluorophores (Supplementary 

Fig 1 and 2). 

  

With 5 rounds of barcoding using the 12 pseudo-color readouts scheme, a total of 60 

readout oligos were used to decode the 10,212 genes targeted (Supplementary Fig 1-4 

and Supplementary Table 3).  Each set of primary probes that target a specific gene 

contains 5 unique readout sequences that are spread out over the overhang sites (Fig 

1b).  A total of 20 rounds of hybridization, or 5 barcoding round each containing 4 serial 

hybridization (Supplementary Fig 1) were performed.  A common sequence is present 

in all primary probes and targeted by an oligo labeled with Alexa 488 to serve as an 

alignment marker through all 20 rounds of hybridization (Supplementary Fig 2b).  Each 

four rounds of serial hybridization were collapsed onto a single image with 12 pseudo 

colors (Fig 1c).  The barcodes were determined from aligning five barcoding rounds of 

the pseudo-color images.  The switching and rehybridization time is fast, with the overall 

speed limited by imaging speed.  Typically, 100-200 fields of view containing more than 

106 mRNAs can be imaged with 20 rounds of serial hybridization in a 14-hour period 

through an automated fluidics system. We use Spots per Millions (SPM) to normalize 

spots counts for individual genes between experiments (Supplementary Table 4 and 5). 
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The false positive rates of detection is low, with 0.72 ± 1.9 SPM per barcode, as 

determined by the remaining 238,620 off-target barcodes. 

To determine the accuracy of the transcriptome level measurements, we compare the 

decoded RNA SPOTs data with RNAseq data in mouse fibroblasts (NIH/3T3) and mouse 

embryonic stem cells (mESCs), and found that they correlated with R=0.86 and R=0.9 

respectively (Fig 2a,b and Supplementary Fig 5 and Supplementary Table 

4).  Between two replicates of RNA SPOTs in fibroblasts, the results agree with R=0.94, 

indicating that RNA SPOTs is a highly robust and reproducible measurement method 

(Fig 2c, Supplementary Fig 5- 7 ).  Finally, RNA SPOTs correlated with the gold 

standard smFISH quantitation with a correlation of R=0.86 in mESCs ( 24 genes)14 and  

R= 0.88 in fibroblasts (7 genes) (Fig 2d and Supplementary Fig 8).   

 

 

 
 

Figure 2. RNA SPOTs is highly accurate and efficient. (a) Transcriptomic profiling of 

mouse NIH/3T3 cells by RNA SPOTs correlates strongly with measurement from RNA-

seq. SPM (spots per million) normalizes the number of each decoded mRNA spots (n = 

581,772) by the total number of spots. FPKM, fragments per kilobase per million reads. (b) 

RNA SPOTs profiling of mouse ES-E14 cell line strongly agrees with RNA-seq 

measurement. (n = 1,688,747 spots). (c) Comparison of two RNA SPOTs replicates 

profiling NIH/3T3 cells illustrates that the method is highly reproducible (n1 = 581,772 

spots; n2= 453,679 spots). (d) Comparison of averaged smFISH copy numbers of 24 genes 

in ES-E14 cells with RNA SPOTs SPM verifies the high-accuracy measurement of SPOTs. 
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Figure 2. (continued from above) Error bars represent s.e.m. across different 

measurements in single cells. (e) Differential gene expression between NIH/3T3 and ES-

E14 cells. P values smaller than 0.05 as determined from two-tailed student t-test and 

log2 fold change greater and less than ±2, respectively, are used as a threshold for 

significance. Magenta dots represent top 50 upregulated and top 50 downregulated genes 

between the two cell lines. Blue dots represent the well-known genes involved in 

pluripotency. Cyan dots represent the genes involved in maintenance of extracellular 

matrix. 

 

 

Comparing genes that were differentially expressed in fibroblasts versus mESCs, we 

observed the same trend as those detected by RNAseq.  For example, pluripotency factors 

such as Rex1 (also known as Zfp42), Esrrb and Sox2 are highly expressed in mESCs but 

not expressed in fibroblasts as determined by RNA SPOTs. Similarly, genes involved in 

extracellular matrix maintenance, such as Timp2, Timp3 and Collagen related genes such 

as Col4a1, Col6a3 are up-regulated in fibroblast cells compared to mESCs (Fig 2e and 

Supplementary Table 6).  

 

2.4 Discussion 

 

Another advantage of RNA SPOTs compared to RNAseq is that specific sets of genes 

can be profiled selectively.  In this fashion, ribosomal RNA and highly expressed 

housekeeping genes can be avoided simply by eliminating those probes from the gene 

set.  As each dot detected in our assay corresponds to a single mRNA, RNA SPOTs is 

more efficient in term of imaging compared to RNAseq, where many sequencing reads 

are needed to determine the abundance of a transcript.  The current barcoding space is 

sufficient for the entire transcriptome, and noncoding RNAs and other RNAs without 

polyA tails can be captured in hydrogels (Supplementary Fig 9) rather than with dT 

oligos.   

 

SPOTs is a significant improvement over existing Nanostrings technology15 because of 

the genome level coverage and the higher specificity due to the larger number of probes 

used per gene. By incorporating amplification methods such as HCR 6,16, SPOTs signal 

can potentially allow faster imaging with air objectives and higher throughput 

comparable to RNAseq.  

 

RNA SPOTs can be scaled down to single cell in combination with microfluidics tools to 

trap and lyse cells17 or with split-pool molecular indexing methods18.  While SPOTs 

cannot be used to discover new RNA sequences, identification of new cell types only 

requires quantifying the combinatorial expression patterns of genes.  Thus, there is no 

need to re-sequence the mRNAs at the nucleotide level just to count their 

abundances.  With targeted RNA SPOTs, we can choose to probe only for the 2000 
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transcription factors19 or 1000 landmark informative genes20 in single cells, instead of 

profiling the transcriptome, to capture the essential information in cells and to increase 

the number of cells sampled. As cost of sequencing is a major limiting factor in many 

genomics experiments, SPOTs enable an accurate and low-cost alternative to sequencing 

with many further applications beyond RNA to DNA and proteins.  

 

2.4 Supplementary Data and Figures 

 

 

 

 

Supplementary Figure 1. RNA SPOTs hybridization and barcoding scheme. To 

implement transcriptome RNA SPOTs, 5 rounds of barcoding are needed to 

generate >20,000 different unique error-tolerant barcodes using a 12-base coding scheme 

to code for the transcriptome. A round of barcoding involves 4 serial hybridizations, each 

of which uses three unique secondary readout probes fluorescently labeled to Alexa 647, 

Alexa 594, and Cy3b dyes. The images from each 4 rounds of serial hybridizations are 

collapsed to form each 12-pseudocolor composite image which is aligned to decode for 

the barcoded RNA species. 



 

 

25 
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Supplementary Figure 2(previous page). Fluorescent switching through cleavage of 

disulfide conjugate dye on readout probes is highly efficient (a) 20 rounds of 

hybridization are accomplished by extinguishing fluorescent signals through reduction of 

disulfide conjugated dye to readout probes using TCEP, followed by re-hybridization of 

the next unique secondary readout probes.  (b) Both priming regions (grey in the probe 

schematic) used in synthesizing gene specific primary probes are also used as a 

registration marker through the hybridization of Alexa 488 conjugated readout probes. 

The majority of the fluorescent spots stay even after 20 rounds of hybridizations. The 

amide bond between the Alexa 488 dye (shown in yellow) and primer readout probes 

used as a registration marker is not affected by TCEP. (Scale bars: 2μm.) (c) The 

fluorescent signals in each channel after treatment of 50mM of TCEP for 5 minutes at 

room temperature are reduced to minimal to none. (Scale bars: 5μm.) 
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Supplementary Figure 3. Raw images of 20 rounds of fluorescent switching in channel 

647. Bright dots are the real targets while dim dots are due to nonspecific binding. The 

switching between each round of hybridization is complete, with minimal retention of 

fluorescent signals from the previous round. (Scale bars: 2μm.) 
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Supplementary Figure 4 (previous page). Assessment of primary probes non-specific 

binding. (a) Raw images of 532 channel with the presence of mRNA on coverslips 

through LNA poly(d)T capturing. (b) No bright fluorescent signals is observed in the 

absence of mRNA on coverslips as a control. The left image has the same contrast as (a) 

while the right image contrast has been increased 4.5 fold to illustrate better the non-

specific fluorescent signals. (c) Quantitative measurement of fluorescent intensity in 

channel 647 with and without the presence of mRNA. A threshold can be set to 

distinguish between the two populations to identify the real signals. (d) & (e) same as (c) 

but for channel 594 and channel 532. 

 

 

Supplementary Figure 5. RNA SPOTs at lower depth. (a) Correlation between RNA-

seq FPKM and RNA SPOTs SPM from another replicate is high when a total of 376,781 

spots are counted. SPM, spots per million; FPKM, fragments per kilobase per million 

reads. (b) High reproducibility of RNA SPOTs between the two replicates in profiling 

ES-E14 cell gene expression (n1=376,781 spots, n2=1,688,747 spots).  
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Supplementary Figure 6 (previous page). Linear plots for Figure 2. (a) Correlation 

between RNA SPOTs and RNA-Seq for NIH/3T3 cells. (b) Zoomed-in boxed region in 

(a). (c) Reproducibility between two SPOTs replicates. The dashed line corresponds to 

the y = x line. (d) Zoomed-in boxed region in (c). (e) Correlation between RNA SPOTs 

and RNA-Seq for ES-E14 cells. (f) Zoomed-in boxed region in (e).  
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Supplementary Figure 7 (previous page). RNA SPOTs has little bias in GC content 

and transcript length. (a) Hexbin plot of NIH/3T3 mean SPM (n=2) shows no obvious 

trend with transcript GC content. (b) Transcript length does not bias RNA SPOTs 

detection. (c) Same as (a) but for genes with < 1 FPKM. (d) same as (b) but for genes 

with < 1 FPKM. (e) Boxplots of different groups of genes with different expression levels 

against transcript GC content. n = 1360, 2323, 1473, 2645 for each group from left to 

right. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 

interquartile range; points, outliers.  (f) Boxplot of SPM against transcript length.  (g) 

Replicate plot of SPOTs as shown in Fig 2b.  (h) Simulated replicates with Poisson 

noise.  The total number of simulated SPOTs (n1=447,094, n2=448,249) was set to match 

the experimental replicates.  (i).  SPOTs data from two sets of field of views (FOVs) from 

the E14 experiment 3, x-axis contains 25 FOVs (n1=269,459 spots), y-axis contains 

another 25 FOVs (n2=295,403 spots).     
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Supplementary Figure 8 (previous page). smFISH measurement in single cells 

correlates with RNA SPOTs measurement in NIH/3T3 cells. (a) Raw images of the 7 

genes measured by smFISH in NIH/3T3 cells. (Scale bars: 5μm.) (b) The averaged RNA 

smFISH counts agrees with RNA SPOTs SPM (spots per million) with a Pearson 

correlation coefficient of 0.88, indicating RNA SPOTs quantitation is accurate. Error bars 

represent the standard error of the mean (SEM) across different single cells. 
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Supplementary Figure 9 (previous page). mRNA can be immobilized by 

polyacrylamide hydrogel on a bind-silane treated coverslips. (a) mRNA is trapped in the 

hydrogel mesh once acrylamide and bis-acrylamide monomers crosslink completely on 

the coverslip. (b) smFISH detection of ACTB once the total RNA is captured on a 

coverslip through LNA poly(d)T capturing (left) or polyacrylamide hydrogel (right). 

Negative control (channel 488) shows that the fluorescent signals are not coming from 

nonspecific sources. (Scale bars: 5μm.) 

 

 

Supplementary Table 1. Primary probe sequences for 10,212 genes (Provided as a 

separate Excel file) 

Supplementary Table 2. 12-base code book for 10,212 genes (Provided as a separate 

Excel file) 

Supplementary Table 3. Readout probes sequences (Provided as a separate Excel file) 

Supplementary Table 4. Spots per million in NIH/3T3 and ES-E14 cells (Provided as a 

separate Excel file) 

Supplementary Table 5. Summary of experiments in RNA SPOTs 

 

Supplementary Table 6. Differential gene expression between NIH/3T3 and ES-E14 

cells (Provided as a separate Excel file.)  

 
 
 
 
 
 
 
 
 
 



 

 

38 
 

 

2.5 Methods 

Primary probe design. Gene specific primary probes were designed as previously 

described with some modifications [Shah 2016]. Probe sets were crafted separately for 

each gene and then refined as a full set to mitigate cross-hybridization in the 

experiment.  Individual probe sets were first crafted using exons only from within the 

CDS region of the gene.  For genes that did not yield enough targeted probes from the 

CDS region only, exons from both the CDS and 5' UTR regions were used.  The masked 

genome and annotation database from UCSC were used to look up the gene sequences. 

Consensus regions of all spliced isoforms were identified. 25-nt sequences of the gene 

sequences were extracted from these exons, and their GC contents were calculated. Probe 

sequences that fell outside of the allowed GC range (45-70% in this case) were 

immediately dropped. In addition, we dropped any probe sequences which contained 5 or 

more consecutive nucleotide bases of the same kind. A local BLAST query was run on 

each remaining probe against a BLAST database that was constructed from GENCODE 

reversed introns and mRNA sequences. BLAST hits on any sequences other than the 

target gene with a 15-nt match were considered off-target hits. We compiled a collection 

of RNA-seq data from ENCODE and computed a copy number table for all the genes 

across different samples. This off target copy number table was used to evaluate the off 

target hits. Any probe that hit an expected total off-target copy number exceeding 10,000 

FPKM was dropped. Probes were sequentially dropped from genes until any off-target 

gene was hit by no more than 6 probes from entire pool. At this stage, all of the viable 

probes for the gene had been identified.  For the final probe set, the best possible subset 

from the viable probes was selected such that none of the final probes were within 2 

nucleotide bases of each other on the target sequence. The overlapping probes were 

grouped and sorted by distance from the target GC content (55% in this 

case).  Overlapping probes were removed in order of descending distance from target 

GC, starting from the probe with the greatest distance, until no overlaps remained. To 

minimize cross hybridization between probe sets, a local BLAST database was 

constructed from all the viable probe sequences, and the probes were queried against it. 

All matches of 17-nt or longer between probes were removed by dropping the matched 

probe from the larger probe set.  For this experiment, the targeted probe set size range 

was set to 28-32 probes. Any probe set with more than 32 probes was trimmed down by 

removing probes with the farthest GC content from 55%. To design the 20-nt readout 

sequences, a set of probe sequences were randomly generated with the 4 bases 

nucleotides. Readout probe sequences with range 45-60% GC were selected. We used 

BLAST to eliminate any sequences that matched with any contiguous homology 
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sequences longer than 14-nt to the mouse transcriptome. The reverse complements of 

these readout sequences were included in the primary probes according to the designed 

barcodes. 

Primary probe construction. Primary probes were ordered as an oligoarray complex 

pools from Twist Bioscience and were constructed as previously described [Beliveau, 

2012, Engreitz 2013]. Briefly, a 2-step limited PCR cycles were used to amplify the 

designated probe sequences from the oligo complex tool. Then, the amplified products 

were purified using QlAquick PCR Purification Kit (28104; Qiagen) according to the 

manufacturer’s instructions. The PCR products were used as the template for in vitro 

transcription (E2040S; NEB) followed by reverse transcription (EP7051; Thermo 

Fischer) with the forward primer.  After alkaline hydrolysis, the single stranded DNA 

(ssDNA) probes were purified by ethanol precipitation and resuspend in primary probe 

hybridization buffer comprising of 30% formamide (F9037; Sigma), 2x SSC (15557036; 

Thermo Fischer) , and 10% (w/v) Dextran Sulfate (D8906; Sigma). The probes were 

stored at -20°C. 

Readout probe synthesis. 20-nt readout probes were ordered from Integrated DNA 

Technologies (IDT) as 3’ thiol modified at its oxidized form. Alexa Fluor 647 Cadaverine 

(A30679; Invitrogen) and Alexa Fluor 594 Cadaverine (A30678; Invitrogen) were 

reacted with N-Succinimidyl 3-(2-pyridyldithio)propionate, SPDP (P3415; Sigma) at 1: 

100 ratio in 1x PBS (AM9624, Ambion) at room temperature for at least 4 hours on a 

shaker. Then, the mixture was purified using PD MiniTrap G-10 (28-9180-10; GE 

Healthcare), and was evaporated in a vacuum concentrator. The dye-linker intermediate 

product was kept at -20°C until the conjugation with 3’ thiol oligonucleotide probes. 

10mM TCEP (77720; Thermo Scientific) was used to activate the 3’ thiol readouts at 

37°C for 30 minutes. Then the oligonucleotides were purified using illustra NAP-5 

columns (17-0853-02; GE Healthcare), and the oligonucleotides were directly eluted in 

1x PBS with 10mM EDTA (15575020; Thermo Fischer) and were mixed with the dye-

linker intermediate product. The reaction was allowed to proceed at room temperature for 

2 hours. Then, the mixture was ethanol precipitated, HPLC purified, resuspend into 

500nM concentration in 1x Tris-EDTA buffer (93283; Sigma) and was kept at -20°C. To 

conjugate Cy3B fluorophore (PA63101; GE Healthcare) to the 3’ thiol oligonucleotides, 

a (3-(2-pyridyldithio)propionyl hydrazide), PDPH (22301; Thermo Scientific) was used 

instead of the SPDP linker. 

Coverslips functionalization. Coverslips were functionalized as previously described 

[Bose 2015] with some modifications. Briefly, coverslips (3421; Thermo Scientific) were 

sonicated in 100% ethanol for 20 minutes. After drying, the coverslips were cleaned with 

a plasma cleaner at HIGH (PDC-001, Harrick Plasma) for 5 minutes. Then, the coverslips 
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were immediately immersed in a 2% (v/v) trimethoxysilane aldehyde (PSX1050; UCT 

Specialties) solution made in pH 3.5 10% (v/v) acidic ethanol solution for 15 minutes at 

room temperature. After triple rinsing of the coverslips with ethanol, the coverslips were 

heat-cured at 90°C for 10 minutes. Then an oligonucleotide reaction mixture containing 

2.5 μM 5’-aminated LNA-oligo(dT) (300100-02; Exiqon), cyanoborohydride coupling 

buffer (C4187; Sigma), and 1M sodium chloride (AM9759; Thermo Fischer) was 

sandwiched between two coverslips at room temperature in a humid hybridization 

chamber for 3 hours. The coverslips were then rinsed with Millipore water and dried with 

compressed air. A quenching reaction mixture made from 10%(v/v) 100mM pH7.5 Tris-

HCl (15567027; Thermo Fischer) buffer in cyanoborohydride coupling buffer was added 

to the entire silanized surface of the coverslips to quench the remaining aldehyde 

functional groups at room temperature for 30 minutes. Finally, the coverslips were rinsed 

with water and dried with compressed air. All coverslips were made fresh before SPOTs 

experiment.  

Cell cultures and RNA Preparation. ES-E14 cells were cultured as previously 

described[Singer 2014]. NIH/3T3 cells (ATCC) were cultured in DMEM (10569044; 

Gibco) supplemented with 10% FBS (S11150; Atlanta biologicals) and 1% penicillin 

(10378016; Gibco). Once the cell confluency reached 60-80%, the total RNA was 

extracted using RNeasy Mini Kit (74104; Qiagen) according to the manufacturer’s 

instructions. 

Hydrogel immobilization. Coverslips were first sonicated at 100% ethanol for 20 

minutes, followed by plasma cleaning with a plasma cleaner at HIGH for 5 minutes. The 

coverslips were then immersed in the 2% PlusOne bind-silane(17-1330-01) solution 

made in ethanol for 30 minutes at room temperature. After rinsing the coverslips with 

ethanol for several times, the coverslips were dried at 90°C for 30 minutes. Purified total 

RNA was mixed in 4% acrylamide/bis solution (1610147; Bio-Rad) with fresh 25mM 

VA-044 initiator (27776-21-2; Wako Chemical) and the solution was degassed for 10 

minutes on ice. A 12mm square coverslip (470019-000; VWR) was functionalized with 

GelSlick (Lonza; 50640). 1uL of the RNA hydrogel solution was added to the bind-silane 

functionalized coverslip and was spread out using the GelSlick functionalized square 

coverslip. The thickness of the hydrogel formed can be controlled by manipulating the 

volume added. The polymerization happened in a humid hybridization at 37°C for 2 

hours. After polymerization was complete, the coverslips were immersed in 2x SSC for 

an hour or more to facilitate the removal of the top coverslips. smFISH measurement was 

then performed according to standard protocol. 

Primary probe hybridization.  A custom Secure Seal Flowcell, 2 x 28mm 3mm ID, 35 

x 15 OD, 0.25mm thick (RD478685-M; Grace Bio-labs) was applied on the 
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functionalized poly(dT) coverslips. For NIH/3T3 cells experiments, 50 ng of total RNA 

in RNA binding buffer comprising of 1M LiCl (L9650; Sigma), 40mM pH7.5 Tris-HCl , 

2mM EDTA, 0.1% Triton X-100 (93443; Sigma), and 20U of SUPERase IN RNase 

Inhibitor (AM2694, Ambion) was allowed to be captured at room temperature for 1 hour. 

For ES-E14 experiment 1 and 2, the amount of total RNA used was 50 ng and 5 ng 

respectively. Once the mRNA is immobilized on the coverslip, 20 uL of 1 nM/probe for a 

total of 323,156 probes in hybridization buffer containing 30% formamide (F9037; 

Sigma), 2x SSC (15557036; Thermo Fischer) , and 10% (w/v) Dextran Sulfate (D8906; 

Sigma) was hybridized to the targeted mRNA at 37°C for 24 hours in a humid 

hybridization chamber. After hybridization, the sample was washed for 30 minutes at 

room temperature with wash buffer containing 40% formamide, 2x SSC, and 0.1% Triton 

X-100 to remove non-specific binding of the primary probes. The sample preparation of 

primary probe hybridization ended with a 3 times washes with 2x SSC and was kept in 2x 

SSC until the next step. 

RNA SPOTs imaging. Each readout probes hybridization mixture contained 10nM each 

for three unique readout probes either conjugated to Alexa 647, Alexa 594, or Cy3b in 

hybridization buffer comprising 10% formamide, 2x SSC, and 10% (w/v) Dextran 

Sulfate (D4911; Sigma). Each serial hybridization takes 15 minutes to achieve optimal 

fluorescent signals, followed by a 4-minutes high stringency wash containing 20% 

formamide and 2x SSC to remove non-specific binding of probes. Once the first 

hybridization is complete, the flow cell was connected to an automated fluidics delivery 

system made from two multichannel fluidics valves (EZ1213-820-4; IDEX Health & 

Science)  and a peristaltic pump (NE-9000G-UP, New Era Pump Systems Inc.). The 

integration of the fluidics valves, peristaltic pump, and microscope imaging were 

controlled through a custom script written in Micromanager software. Once the flow cell 

is connected, ~100 to ~200 frame of views (FOVs) were imaged at 647-nm, 594-nm, 

532-nm, and 488-nm channels with 500 ms exposure time under anti-bleaching buffer 

containing 20mM Tris-HCl pH 8 (15568025; Thermo Fischer), 50mM NaCl, 3mM 

Trolox (238813; Sigma), 0.8% glucose ( G7528; Sigma), 3U/mL pyranose oxidase 

(P4234; Sigma) or 50U/mL of glucose oxidase (G2133; Sigma), and 20 U/mL SUPERase 

IN RNase Inhibitor. The anti-bleaching buffer was stored under a layer of mineral oil 

(M5904; Sigma) throughout the whole experiment.  Imaging was done using a standard 

epifluorescence microscope (Nikon Ti Eclipse with custom built laser assembly), a Nikon 

60x oil objective and a sCMOS camera (Zyla 4.2; Andor). Nikon Ti Eclipse PFS 

autofocus was activated to keep the plane focused during imaging. Once the imaging is 

complete, reduction buffer made from 50mM TCEP (646547; Sigma), 2x SSC, and 0.1% 

Triton X-100 was flowed into the flow cells and the solution was allowed to incubate for 

5 minutes. Then, 2x SSC buffer supplemented with 20U/mL SUPERase IN RNase 
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Inhibitor was flowed into the flow cell in excess for 4minutes to completely remove the 

TCEP solutions. As our flow cell only takes ~22uL of solution, 200uL of subsequent 

serial hybridization solutions was flowed into the flow cell each time to ensure 

hybridization. The whole process was repeated until 20 rounds of hybridizations were 

imaged. Generally, a SPOTs experiment takes ~14 hours for imaging 100-200 FOVs. 

After the SPOTs imaging is complete, a few FOVs were imaged to use for threshold and 

illumination background corrections in image analysis. A multispectral beads slide was 

imaged at the end of experiment for chromatic aberration corrections. 

Image Processing.  To remove the effects of chromatic aberration, multispectral beads 

were first used to create geometric transforms to align all fluorescence channels. Next, 

the background illumination profile of every fluorescence channel was mapped using a 

morphological image opening with a large structuring element. These illumination profile 

maps were used to flatten the illumination in post-processing, resulting in relatively 

uniform background intensity and preservation of the intensity profile of fluorescent 

points. The background signal was then subtracted using the imagej rolling ball 

background subtraction algorithm with a radius of 3 pixels. Finally, the calculated 

geometric transforms were applied to each channel respectively. 

 

Image Registration. As the Alexa 488 channel labeled all the spots in the field of view, 

this channel was used to align all sets of images using a normalized 2D image cross-

correlation.   

  

Barcode calling. The potential RNA signals were then found by finding local maxima in 

the image above a predetermined pixel threshold in the registered images. Once all 

potential points in all channels of all hybridizations were obtained, dots were matched to 

potential barcode partners in all other channels of all other hybridizations using a 1-pixel 

search radius to find symmetric nearest neighbors. Point combinations that constructed 

only a single barcode were immediately matched to the on-target barcode set. For points 

that matched to construct multiple barcodes, first the point sets were filtered by 

calculating the residual spatial distance of each potential barcode point set and only the 

point sets giving the minimum residuals were used to match to a barcode. If multiple 

barcodes were still possible, the point was matched to its closest on-target barcode with a 

hamming distance of 1. If multiple on target barcodes were still possible, then the point 

was dropped from the analysis as an ambiguous barcode. This procedure was repeated 

using each hybridization as a seed for barcode finding and only barcodes that were called 

similarly in at least 4 out of 5 rounds were used in the analysis. The number of each 

barcode was then counted and transcript numbers were assigned based on the number of 

on-target barcodes present. The remaining barcodes were used to assess the false 
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positives rate by running through the same process. All image processing and image 

analysis code can be obtained upon request. 

 

smFISH. Unless stated, all smFISH measurements were conducted with 1nM/probe 

concentration with a total number of 24 probes targeting a gene in hybridization buffer 

comprising 10% formamide ,2x SSC and 10% (w/v) dextran sulfate at 37°C. The probes 

were conjugated to either Alexa 647, Alexa 594, or Cy3b dyes. NIH/3t3 cells were fixed 

with 4% paraformaldehyde (28908; Sigma) in 1x PBS at room temperature for 10 

minutes. After washes with 1x PBS, the cells were permeabilized using 70% ethanol and 

kept in -20°C. The probe sequences for each gene were designed using Stellaris 

Biosearch Technologies and the probes were ordered from IDT with 5’ amine 

modifications. The probes were conjugated to dye as previously described [Lubeck 

2014]. After hybridization, the sample was washed with wash buffer supplemented with 

30% formamide and 2x SSC at room temperature for 30 minutes. The samples were then 

stained with DAPI (D1306; Thermo Fischer) in 2x SSC, followed by imaging under anti-

bleaching buffer. The cells were segmented and the copy numbers for each gene were 

counted using a custom Matlab script. 

RNA-Seq. RNA-seq data were obtained from Gene Expression Omnibus  (GEO) with an 

accession number of GSE98674. Briefly, the total RNA was purified using RNeasy Mini 

Kit following the manufacturer’s instruction. The library was constructed using NEBNext 

ultra RNA-seq (E7530; NEB) according to the manufacturer’s instructions and sequenced 

on Illumina HiSeq2500. Base calls were performed with RTA 1.13.48.0 followed by 

conversion to FASTQ with bcl2fastq 1.8.4. Alignment was performed using TopHat 

algorithm. Transcript assembly and FPKM estimates were done using Cufflinks 

algorithm.  

Statistics and reproducibility. The technical replicates for RNA SPOTs of NIH/3T3 and 

ES-E14 are two in both cell cultures. The R values in the plots of technical replicates and 

SPOTs versus RNA-seq are Pearson's r correlation coefficient. For smFISH average 

measurements, the error bars represent the s.e.m. For differential gene expression 

analysis, two-tailed student t-test is carried out with n = 2 for mean SPM for both 

NIH/3T3 and ES-E14. P values smaller than 0.05 and log2 fold change greater and less 

than ±2 are used as a threshold for significance. 

A Life Sciences Reporting Summary for this publication is available. 

Data and software availability. The raw data for one field of view used to 

generate Figure 2 are available at Zenodo.org, 

doi:https://doi.org/10.5281/zenodo.1030239. Additional raw data from this study are 

https://www.nature.com/articles/nmeth.4500#MOESM2
https://www.nature.com/articles/nmeth.4500#Fig2
http://zenodo.org/
https://zenodo.org/record/1030239
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available from the corresponding author upon reasonable request. Custom-written 

scripts used in this study are available at https://github.com/CaiGroup/RNA-SPOTs and 

as Supplementary Software. 
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C h a p t e r  3  

TRANSCRIPTOME-SCALE SUPER-RESOLVED IMAGING IN 

TISSUES BY RNA SEQFISH+ 

Eng, Chee-Huat Linus, Michael Lawson, Qian Zhu, Ruben Dries, Noushin Koulena, Yodai 

Takei, Jina Yun, et al. 2019. “Transcriptome-Scale Super-Resolved Imaging in Tissues by 

RNA seqFISH+.” Nature 568 (7751): 235–39. https://doi.org/10.1038/s41586-019-1049-y. 

3.1 Abstract 

Imaging the transcriptome in situ with high accuracy has been a major challenge in single 

cell biology, particularly hindered by the limits of optical resolution and the density of 

transcripts in single cells1–5. Here, we demonstrate seqFISH+, which can image the mRNAs 

for 10,000 genes in single cells with high accuracy and sub-diffraction-limit resolution, in 

the mouse brain cortex, subventricular zone, and the olfactory bulb, using a standard confocal 

microscope. The transcriptome level profiling of seqFISH+ allows unbiased identification of 

cell classes and their spatial organization in tissues. In addition, seqFISH+ reveals subcellular 

mRNA localization patterns in cells and ligand-receptor pairs across neighboring cells. This 

technology demonstrates the ability to generate spatial cell atlases and to perform discovery-

driven studies of biological processes in situ.  

3.2 Introduction 

Spatial genomics, the analysis of the transcriptome and other genomic information directly 

in the native context of tissues, is crucial to many fields in biology, including neuroscience 

and developmental biology. Pioneering work in single molecule  Fluorescence in situ 

Hybridization (smFISH) showed that individual mRNA molecules could be accurately 

detected in cells6,7. Development of sequential FISH (seqFISH) to impart a temporal 

barcode on RNAs through multiple rounds of hybridization allowed many molecules to be 

multiplexed1–3.  Recently, we showed that seqFISH scales to the genome level in vitro8 and 

for nascent transcription active sites9.   

However, the major challenge preventing global profiling mRNA in cells is the optical 

density of transcripts in cells: each mRNA occupies a diffraction limited spot in the image 

and there are tens to hundreds of thousands of mRNAs per cell depending on the cell type. 

Thus, optical crowding prevents mRNAs from being resolved and has bottlenecked all 

implementations of spatial profiling experiments 3-5. For example, in situ sequencing 

methods, detected only ~500  transcripts per cell4,5,10 because of the lower efficiency and 

larger dot size of rolling circle amplification, whereas seqFISH detected thousands of 

https://paperpile.com/c/rQngbE/m9Ikf+zmzv3+b97Xs+feOs6+Q2Spx
https://paperpile.com/c/rQngbE/UcYXt+QC0OM
https://paperpile.com/c/rQngbE/m9Ikf+zmzv3+b97Xs
https://paperpile.com/c/rQngbE/vV81q
https://paperpile.com/c/rQngbE/O2UaX
https://paperpile.com/c/rQngbE/b97Xs
https://paperpile.com/c/rQngbE/feOs6+Q2Spx
https://paperpile.com/c/rQngbE/feOs6+Q2Spx+2lM9H
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transcripts per cell3. We have previously proposed to combine super-resolution 

microscopy with FISH11 to overcome this crowding problem. However, existing super-

resolution localization microscopy12,13 relies on detection of single dye molecules, which 

emit a limited number of photons and only work robustly in optically thin (<1 µm) 

samples.  

To enable discovery-driven approaches in situ, it is essential to scale up the spatial 

multiplexed methods to the genome level. To date, spatial methods have always relied on 

existing genomics methods, such as scRNAseq, to identify target genes, and serve to only 

map cell types identified from scRNAseq. At the level of hundreds and even a thousand 

genes, spatial methods cannot be used as de novo discovery-driven tool, which is a major 

drawback of the technology. In addition, many genes are expressed in a spatially dependent 

fashion independent of cell types14 that is not recovered in the dissociated cell analysis.   

3.3 Results 

Here, we demonstrate seqFISH+, which achieves super-resolution imaging and 

multiplexing of 10,000 genes in single cells using sequential hybridizations and imaging 

with a standard confocal microscope. The key to seqFISH+ is expanding the barcode base 

palette from 4-5 colors, as used in seqFISH1,3 and in situ sequencing experiments4,5, to a 

much larger palette of “pseudocolors” (Figure 1a) achieved by sequential 

hybridization.  By using 60 pseudocolor channels, we effectively dilute mRNA molecules 

into 60 separate images and allows each mRNA dot to be localized below the diffraction 

limit12,15,16 before recombining the images to reconstruct a super-resolution image.  We 

separate the 60 pseudocolors into 3 fluorescent channels (Alexa 488, Cy3b and Alexa 647) 

and generate barcodes only within each channel to avoid chromatic aberrations between 

channels. 203=8000 genes can be barcoded in each channel for a total of 24,000 genes by 

repeating this pseudocolor imaging 4 times with one round used for error-correction3.  

As imaging time is the main bottleneck in spatial transcriptomics experiments, seqFISH+ 

is 8-fold faster in imaging time compared to implementing seqFISH with expansion 

microscopy17 (Figure 1b). An equivalent 60-fold expansion of the sample would require 4 

colors x 8 barcoding rounds x 60 volume expansion = 1920 images per field of view (FOV) 

to cover 47=16,384 genes. In contrast, seqFISH+ acquires 60 pseudocolors x 4 barcoding 

rounds = 240 images per FOV to cover 24,000 genes, an 8-fold reduction in imaging 

time.  Furthermore, a large number of pseudocolors and a shorter barcode (4 units) 

decreases the errors that accumulate over barcode rounds. 

 

https://paperpile.com/c/rQngbE/b97Xs
https://paperpile.com/c/rQngbE/h1aYy
https://paperpile.com/c/rQngbE/iuxpy+sk1ul
https://paperpile.com/c/rQngbE/7idpG
https://paperpile.com/c/rQngbE/m9Ikf+b97Xs
https://paperpile.com/c/rQngbE/feOs6+Q2Spx
https://paperpile.com/c/rQngbE/RC2RH+rffR0+iuxpy
https://paperpile.com/c/rQngbE/b97Xs
https://paperpile.com/c/rQngbE/AP0y
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Figure 1. seqFISH+ resolves optical crowding and enables transcriptome profiling in 

situ. a,  Schematics of seqFISH+. Primary probes (24 per gene) against 10,000 genes are 

hybridized in cells. Overhang sequences (I-IV) on the primary probes correspond to 4 

barcoding rounds (orange panel). Only 1/20th of the total genes in each fluorescent channel 

are labeled by readout probes in each pseudocolor readout round, lowering the density of 

transcripts in each image.  mRNA dots in each pseudocolor can then be localized by 

Gaussian fitting and collapsed into a super-resolved image (blue panel).  Each gene is 

barcoded within only one fluorescent channel (Methods). b, Compared to seqFISH with 

expansion microscopy (seqFISH-Expansion, green line) in covering 24,000 genes, 

seqFISH+ with 60 pseudocolors (blue line) is 8 fold faster in imaging time. (Methods). c, 

Image of a NIH3T3 cell from one round of hybridization (n = 227 cells; scale bar = 10 

μm).  Zoomed in inset shows individual mRNAs (scale bar = 1 μm). Different mRNAs are 

decoded within a diffraction limited region, magnified from the inset (scale bar = 100 

nm).  The number in each panel corresponds to the pseudocolor round that each mRNA 

was detected, with no dots detected during the other pseudocolor rounds in this channel 

(640 nm).  
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To demonstrate transcriptome level profiling in cells, we first applied seqFISH+ to 

cleared NIH3T3 fibroblast cells (Figure 1c, Extended Data Figure 1,2)18–20. We randomly 

selected 10,000 genes while avoiding highly abundant housekeeping genes, such as 

ribosomal proteins. These 10,000 genes add up to a total of >125,000 FPKM values with a 

wide range of expression levels from 0 to 995.1 FPKM. All 24,000 genes in the fibroblast 

transcriptome add up to ~420,000 FPKM21, only a 3 fold higher density from the 10,000 

gene experiment, which can be accommodated with the current scheme, or with more 

channels or pseudocolors. 

Overall, 35,492±12,222 (mean±s.d.) transcripts are detected per cell (Figure 2a). The 

10,000 seqFISH+ data are highly reproducible and strongly correlated with RNA-seq 

(R=0.80)21, RNA SPOTs (R=0.80)8, and smFISH (R=0.87) (Figure 2b-d, Extended Data 

Figure 3a,b).  Each of the three fluorescent channels was decoded independently and 

correlated well with RNA-seq and smFISH (Extended Data Figure 3a,c).  The false positive 

rate per cell is 0.22±0.07 (mean±s.d.) per barcode (Extended Data Figure 3d,e). 

Comparison with 60 genes from smFISH showed that the seqFISH+ detection efficiency 

is 49%, which is highly sensitive compared to single cell RNAseq.  

 

seqFISH+ allows us to visualize the subcellular localization patterns for tens of thousands 

of RNA molecules in situ in single cells. Three major clusters were observed to be 

nuclear/peri-nuclear, cytoplasmic and protrusion enriched. Many new protrusion localized 

genes are found in addition to the ones identified previously22,23. We further observed three 

distinct subclusters in the perinuclear/nuclear localized transcripts with genes in each of 

these subclusters enriched in distinct functional roles (Extended Data Figure 3f-j). 

 

 

Figure 2  seqFISH+ profiles 10,000 genes in cells with high efficiency. a, Approximately 

47,000 mRNAs (colored dots) were identified in a NIH3T3 cell from a single z-section 

(scale bar = 10 μm). Inset shows the transcripts decoded in cell protrusions (n = 227 cells; 

scale bar = 100 nm). b, seqFISH+ replicates in NIH3T3 cells are highly reproducible (n1 = 

103 cells; n2 = 124 cells). seqFISH+ correlates well with (c) RNA-seq (n = 9875 genes) 

https://paperpile.com/c/rQngbE/rpGj+ImaUy+WvGE
https://paperpile.com/c/rQngbE/E4Gh6
https://paperpile.com/c/rQngbE/E4Gh6
https://paperpile.com/c/rQngbE/vV81q
https://paperpile.com/c/rQngbE/HO7l7
https://paperpile.com/c/rQngbE/TkkpN
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Figure 2 (continued from above) and (d) single molecule FISH (n= 60 genes; p-value 

= 2.26 x 10-19). The efficiency of seqFISH+ is about 49% compared to smFISH. Error bars 

in (d) represents standard error of the mean. (b-d, p-values < 0.0001, Pearson’s r,  two-

tailed p values). 

To demonstrate seqFISH+ works robustly in tissues, we used the same 10,000 gene probe 

set to image cells in the mouse brain cortex, the sub-ventricular zone (SVZ) (Figure 3a), 

and the olfactory bulb in two separate brain sections. We collected 10,000-gene-profiles 

for 2963 cells (Figure 3b-e), covering an area of approximately 0.5 mm2. In the cortex, 

cells contained on average 5615±3307 (mean±s.d.) transcripts from 3338±1489 

(mean±s.d.) detected genes (Extended Data Figure 4a,b). We imaged only a single z optical 

plane (0.75 μm) to save imaging time. Full 3D imaging of cells with seqFISH+ is available 

for 5-10x “deeper” sampling of the transcriptome. 

With an unsupervised clustering analysis24, the seqFISH+ cell clusters show clear layer 

structures (Figure 3h) and are strongly correlated to the clusters in a scRNAseq25 dataset 

(Methods, Extended Data Figure 4c-f, 5). Similar layer patterns are observed with Hidden 

Markov Random Field (HMRF) analysis14 where the expression patterns of neighboring 

cells were taken into account (Extended Data Figure 4g-i, 6).    

With the seqFISH+ data, we can explore the subcellular localization patterns of 10,000 

mRNAs directly in the brain in a cell type specific fashion (Supplementary Table 3). In 

many cells types, the transcripts for Snrnp70, a small nuclear riboprotein, and Nr4a1, a 

nuclear receptor, are found in the nuclear/perinuclear regions.  In contrast, Atp1b2, a 

Na+/K+ ATPase, and Kif5a, a kinesin, are observed to be near the cell peripheries in many 

cell types including excitatory, inhibitory neurons as well as glia cells.  In addition, many 

transcripts in astrocytes, such as Gja1 and Htra1, localize to the cell periphery and 

processes, which we confirmed by smFISH (Figure 3f,g, Extended Data Figure 7).  

 

https://paperpile.com/c/rQngbE/VHvNY
https://paperpile.com/c/rQngbE/gPeBG
https://paperpile.com/c/rQngbE/7idpG


 

 

53 

 

 

Figure 3. seqFISH+ robustly characterize cell classes and subcellular RNA 

localization in brain slices. a, Schematic of the regions (red boxes) imaged. b, Cells in a 

single FOV of the primary motor cortex (scale bar = 20 μm). c, Reconstruction of the 9,418 

mRNAs (colored dots) detected in a cell (scale bar = 2 μm).  d, Decoded transcripts for a 

magnified region (n= 523 cells, scale bar= 100nm). e, Uniform Manifold Approximation 

and Projection (UMAP) representation of the seqFISH+ data in the cortex, SVZ, and 

olfactory bulb (n=2963 cells).  f, Reconstructed seqFISH+ images show subcellular 

localization patterns for mRNAs (Cyan) in different cell types. (n = 62 astrocytes and 28 

oligodendrocytes; scale bar = 2 μm).  g, smFISH of Gja1 in cortical astrocytes shows 

periphery localization compared to the uniform distribution of Eef2 mRNAs. (n=10 

FOVs,40x objective;scale bar = 5μm). h. Each cortex layer consists of a distinct cell class 

composition (see annotations, Supplementary Table 2).  (scale bar = 20 μm). 

 

We next explored the spatial organization of the SVZ. We identified neural stem cells 

(NSCs, Clusters 8,16) expressing astrocyte markers Gja1 and Htra1, transit-amplifying 

progenitors (TAPs, Cluster 15) expressing Ascl1, Mcm5 and Mki67, and neuroblasts (NBs) 

expressing Dlx1 and Sp9, consistent with previous studies26.  We further quantified the 

spatial organization of the different cell types in the SVZ (Figure 4a, Extended Data Figure 

https://paperpile.com/c/rQngbE/Jk4tW
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8), and found that class 12 and 17 neuroblasts are preferentially in contact, whereas TAP 

cells tend to associate with other TAP cells. It would be exciting to further investigate the 

RNA velocity trajectories27 of these cells in situ with intron seqFISH9 as well as their 

lineage relationships with MEMOIR28. 

Next, we examined the spatial organization of the olfactory bulb. Our clustering analysis 

revealed distinct classes of GABAergic interneurons, olfactory ensheathing cells (OECs), 

astrocytes, microglia, and endothelial cells (Figure 4b,c), consistent with literature29. In the 

granule cell layer (GCL) at the center of the olfactory bulb, several cell classes are 

observed, with an interior core consisting of immature neuroblast-like cells expressing 

Dlx1 and Dlx2 encased by a distinct outer layer of the GCL composed of more mature 

interneurons (Figure 4b and Extended Data Figure 9,10).  An excitatory cluster of cells 

expressing Reln, Slc17a7 are observed in the mitral cell layer (MCL) as mitral cells and in 

the external plexiform layer (EPL) and glomerulus as tufted cells. We also found several 

clusters of Th+ dopaminergic neurons (Figure 4b-d, Supplementary Table 2) which were 

previously not known. For example, Cluster 1 cells express both Vgf, a neuropeptide, as 

well as tyrosine hydroxylase (Th), and are distributed both in the glomerulus and the GCL. 

Similarly, Trh is enriched in a distinct set of Th+ cells (Cluster 3), which are predominantly 

in the glomerulus, whereas Clusters 5 and 22 dopaminergic neurons are in the GCL. We 

validated these clusters by smFISH imaging (Figure 4d, Extended Data Figure 9,10).   

Finally, we analyzed ligand-receptor pairs that are enriched in neighboring cells, which are 

not available in the dissociated cell analysis. These proposed potential cell-cell interactions 

are hypothesized on the basis of mRNA and not protein. In endothelial cells adjacent to 

microglia in the olfactory bulb, Endoglin (Eng, a type III TGF-β receptor) and Activin A-

receptor (Acvrl1 or Alk1, a type I TGF-β receptor) mRNAs are expressed, with TGF-β 

ligand (Tgfb1) mRNA expressed by the microglia. Microglia-endothelial neighbor cells 

express, Lrp1 (Tgfbr5) and Pdgfb, in the cortex, indicating that signaling pathways may be 

used in a tissue specific fashion. Beyond ligand receptor interactions, we found broadly 

that gene expression patterns in a particular cell type are highly dependent on the local 

tissue context of neighboring cells (Figure 4e,f, Supplementary Table 4).  

 

https://paperpile.com/c/rQngbE/4jKBu
https://paperpile.com/c/rQngbE/O2UaX
https://paperpile.com/c/rQngbE/cVR00
https://paperpile.com/c/rQngbE/YSSLY
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Figure 4 (previous page). seqFISH+ reveals ligand receptor repertoires in 

neighboring cells and spatial organization in tissues. a, Spatial organization of distinct 

cell clusters in the SVZ. b, Spatially-resolved cell cluster maps of the mitral cell 

layer(MCL), granule cell layer(GCL), and c, glomerular layer(GL) (scale bars: 20 μm). 

Remaining FOVs are shown in Extended Data Figure 10. The cluster numbers in the SVZ 

and OB are different (Supplementary Table 2). d, Distinct populations of Th+ 

dopaminergic neurons in the OB with differential expression of Vgf and Trh, shown with 

smFISH, confirming seqFISH+ clustering analysis. e, Schematic showing ligand-receptor 

pairs in neighboring microglia-endothelial cells.  In microglia next to endothelial cells, 

certain genes, such as Tpd52, are enriched compared to microglia neighboring other cell 

types. f, mRNAs of Tgfb1 ligand and Acvrl1 receptor are visualized in adjacent microglia-

endothelial cells by smFISH. (d&f, n = 10 FOVs, 40x objective; scale bars = 5 μm) 

 

3.4 Discussions 

These experiments demonstrate that seqFISH+ can robustly profile transcriptomes in 

tissues, overcoming optical crowding and removing the last conceptual roadblock in 

generating spatial single cell atlases in tissues. seqFISH+ provides 10-fold or more 

improvement over existing methods in the number of mRNAs profiled and the total number 

of RNA barcodes detected per cell. seqFISH+ also allows super-resolved imaging with 

commercial confocal microscopes and can be generalized to chromosome30 and protein 

imaging.  

With the genome coverage and spatial resolution of seqFISH+, it is now possible to 

perform discovery-driven studies directly in situ. In particular, elucidating signaling 

interactions between cells is a crucial first step towards understanding developmental 

processes and cell fate decisions, along with explorations of the combinatorial signaling 

logic21. Lastly, the genomics coverage of seqFISH+ will allow discovery of novel targets 

that are cell type specific in disease samples as well as enable precise spatial-genomics and 

single-cell based diagnostics test. 

 

 

 

 

 

 

https://paperpile.com/c/rQngbE/57PcT
https://paperpile.com/c/rQngbE/E4Gh6
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3.5 Supplementary Data and Figures 

 

 

 

Extended Data Figure 1.  Clearing and probe anchoring protocols for the seqFISH+ 

experiments in (a) NIH3T3 cells and (b) the mouse brain slices. 
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Extended Data Figure 2 (previous page). Clearing removes background nonspecific 

bound dots.  a, Raw images of a NIH3T3 cell before and after clearing.  Significant 

decrease in background is observed in cleared sample.  Image is acquired on a spinning 

disk confocal microscope.  b, In each round of hybridization for the 10,000 gene 

experiment, diffraction limited dots are clearly separated, indicating the pseudocolor 

scheme effectively dilutes the density of the sample.  Signal is completely removed 

between different rounds of hybridization, with no “cross-talk” between the 

pseudocolors.  Stripping is accomplished by 55% formamide wash, which is highly 

efficient.  c, After the completion of each seqFISH+ experiment, readout probes used in 

hyb1 is re-hybridized in round 81.  The colocalization rates between Hyb1 and 81 are 

76% (647 channel), 73% (561 channel) and 80% (488 channel) within a 2-pixel radius. 

The colocalization between the two images indicates that most of the primary probes 

remain bound through 80 rounds of hybridization and imaging, although some loss of 

RNA and signal is seen across 80 rounds of hybridization (a-c, n = 227 cells). 
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Extended Data Figure 3.  seqFISH+ works efficiently across all three fluorescent 

channels and identifies localization patterns of transcripts in NIH3T3 cells. a, Correlation 

plots between seqFISH+ and bulk RNAseq in three fluorescent channels.  Barcodes are 

coded entirely within each channel, with n = 3334, 3333, and 3333 barcodes in each 

channel respectively.  Barcodes in all channels are decoded and called out efficiently.  b, 

seqFISH+ result correlates strongly with RNA SPOTs measurement in NIH3T3 cells. 

SPM= Spots Per Million. c, Correlation between seqFISH+ and smFISH for each 

fluorescent channel (from left to right: n = 24, 18, 18 genes). All correlations were 

computed by Pearson’s r coefficient correlation with two-tailed p values reported.  d, The 

callout frequency of on-target 10,000 barcodes versus the remaining 14,000 off target 

barcodes.  Off target barcodes are called out at a rate of 0.22±0.07 (mean±s.d) per 

barcode.  e, Histogram of the total number of mRNAs detected per NIH3T3 cell.  On 

average, 35,492±12,222 transcripts are detected per cell.  f, Genes are clustered based on 

their co-occurrence in 10x10 pixel window.  Three major clusters are nuclear/perinuclear, 

cytoplasmic, and protrusions.  g, mRNAs show preferential spatial localization patterns: 

nuclear, cytoplasm and protrusion (n = 227 cells).  The image is binned into 1 μm x 1 μm 

windows and colored based on the genes enriched in each bin (scale bar = 10 μm). h, 

Example of genes enriched in each spatial cluster.  i, Genes in the subclusters within the 

nuclear localized group.  Subcluster 1 contains genes encode for extracellular matrix 

proteins.  Subcluster 2 genes are involved in actin cytoskeleton while subcluster 3 genes 

are involved in microtubule networks.  j, Representative smFISH image (single z-slice) of 

three genes in subcluster 1 shows nuclear/perinuclear localization ( n = 20 FOVs, 40x 

objective).  Scale bar: 10μm. 
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Extended Data Figure 4.  scRNAseq comparison with seqFISH+, bootstrap, and 

HMRF analysis.  a, Histogram of the number of genes and b, total RNA barcodes 

detected per cell by seqFISH+ in the cortex. c, Unsupervised clustering of seqFISH+ 

correlates well with scRNAseq. (n = 1857 genes; Pearson’s r coefficient 

correlation)  d,  Supervised mapping of seqFISH+ analyzed cortex cell clusters with those 

from single cell RNA-seq clusters. (n = 1253 genes; p-value < 0.005). e, The number of 

genes were downsampled from the 2511 genes that expressed at least 5 copies in a 

cell.  For each downsampled dataset, the cell-to-cell correlation matrix is calculated and 

correlated with the cell-to-cell correlation matrix for the 2511 gene dataset.  5 trials are 

simulated for each downsampled gene level.  Error bars denote mean +/- standard 

deviation.  Even when downsampled to 100 genes, about 40% of the cell to cell 

correlation is retained, because the expression pattern of many genes is correlated.  f, 

Scatterplots of seqFISH+ with scRNAseq in different cell types. Each dot represents a 

gene and their mean expression z-score values in either seqFISH+ or scRNAseq in 

astrocytes, oligodendrocytes and excitatory neurons. In general, seqFISH+ and 

scRNAseq are in good agreement (n = 598 genes each). g, HMRF detects spatial domains 

that contain cells with similar expression patterns regardless of cell type. Domain specific 

genes are shown.  h, Spatial domains in the cortex.  i, Mapping of the hierarchical 

clusters onto the cortex.  X-Y coordinates are in pixels (103 nm per pixel).  Each camera 

field of view is 2000 pixels.  
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Extended Data Figure 5 (previous page). Differential gene expressions between the 

cell type clusters in both (a) seqFISH+ and (b) scRNA-seq. The expression patterns of 

seqFISH+ clusters are similar to scRNA-seq clusters (n = 143 genes) 
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Extended Data Figure 6 (previous page). Comparison of the spatial expression patterns 

across the primary motor cortex in the (a) seqFISH+ data versus the (b) Allen Brain Atlas. 

X-Y coordinates are in pixels (103 nm per pixel). Layers I-VI are shown from left to right.  
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Extended Data Figure 7 (previous page).  Additional analysis of cortex and 

subcellular localization patterns in different cell types.  a, Slide explorer image of the 

cortex and SVZ FOVs imaged in the first brain slice (n=913 cells). Schematic is shown in 

Fig 3a.  b, UMAP representation of cortex and SVZ cells. c, Mapping of the choroid 

plexus cells, which are exclusively present in the ventricle (n =109 cells).  d, Frequency 

of contacts between the different cell class in the cortex, normalized for the abundances 

of cells in each clusters.  e, Each strip represents cells that cluster together, which breaks 

into layers in the cortex, consistent with expectation, as cells within a layer preferential 

interact with each other (n = 523 cells). f,  Htra1 transcripts are preferentially localized to 

the periphery of the astrocytes in the cortex.  Left panel shows a reconstructed image 

from the 10,000 gene seqFISH+ experiment.  Htra1 transcripts are shown in cyan, and all 

other transcripts are shown in black.  Scale bar is 2μm.  Middle and right panels show 

single z-slice of smFISH images of Htra1 in cortical astrocytes (Scale bar: 

5μm).  g,  Atp1b2 localization in seqFISH+ (left; scale bar: 2μm) and single z-slice 

smFISH images (middle and right; scale bars: 5μm) .  Many Htra1 and Atp1b2 transcripts 

are localized to astrocytic processes (f,g, n= 62 astrocytes). SmFISH images were 

background subtracted for better display of RNA molecules (n= 10 FOVs, 40x objective). 

h, Nr4a1 localization patterns are distinct from Htra1 and Atp1b2 and are more nuclear 

localized across different cell types.  An excitatory neuron is shown from the seqFISH+ 

reconstructions (n = 337 excitatory neurons; scale bars: 2μm).  i, Kif5a, a kinesin, also 

exhibits periphery and process localizations in different cell types (n = 60 interneurons; 

scale bar: 2μm).   
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Extended Data Figure 8 (previous page).  Additional analysis of the subventricular 

zone (SVZ). a, Expression of individual genes in the SVZ in the UMAP representation (n 

= 281 cells).  b, Violin plots denotes z-scored gene expression patterns for Louvain 

clusters corresponding to NSC to neuroblasts in the SVZ, (n = 281 cells). c, Spatial 

proximity analysis of the cell clusters in the mouse subventricular zone(SVZ). Frequency 

of contacts between the different cell class in the SVZ, normalized for the abundances of 

cells in each clusters.  d, Neural progenitors appear to be in spatial proximity with each 

other. e, Two neuroblasts cell clusters are found to be in spatial proximity in the SVZ (c-

d, n = 281 cells). f, Subclusters of type 7 cells in the cortex (left). Medium spiny neurons 

that expressed Adora2, Pde10a, and Rasd2 marker genes form a separate cluster that is 

detected only in the striatum (right) (n = 42 cells in cluster 7). 
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Extended Data Figure 9.  Additional analysis of the olfactory bulb (OB).  a, Slide 

explorer image of the OB FOVs imaged in the second brain slice.  b, UMAP analysis of 

OB cells.  c, Z-scored gene expression patterns heatmap of cells in the olfactory bulb. d, 

Violin plots show z-scored marker genes expression patterns in the different classes of cells 

detected in the OB. (a-d, n = 2050 cells) e, Representative smFISH images of Th and Trh. 

Images were maximum z projected.  In the glomeruli layer (GL), cluster 3 cells express 

both Th and Trh, whereas in the GCL, only Th are expressed (cluster 5 and 22 cells). (n= 

10 FOVs, 40x objective). Scale bars: 13μm (left image); 6.5μm (right image). f,  Frequency 

of contacts between the different cell class in the glomerulus, normalized for the 

abundances of cells in each cluster.  g, Cell clusters #3 (Th+ interneurons) and #23 

(neuroblast) are in close proximity in the mapped image (f-g, scale bars: 20μm). 

 

 

Extended Data Figure 10.  Spatial organization of the olfactory bulb.  a, Schematics of 

the field of views imaged in the OB.  Spatial mapping of the cell clusters in the Glomerulus 

Layer (b) and Granule Cell Layer (c-f) in the OB.  Note the neuroblast cells tend to reside 

in the interior of the GCL (upper parts of c and d and lower parts of e and f), whereas more 

mature interneurons are present in the outer layer. This is consistent with the migration of 

neuroblasts from the SVZ through the rostral migratory stream into the granule cell layer. 

Scale bars : 20μm.  
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Supplementary Table 1.  Codebook for 10,000 genes.  Base 20 pseudocolor coding 

scheme for each of the 10,000 genes in the three fluorescent channels. 

Supplementary Table 2. Genes enriched in each of the cell clusters identified in the 

cortex and olfactory bulb data.  The top 20 genes in z-score are shown.  Cluster 

annotations are also listed.  The same cluster numbers are used in the main and extended 

data figures.  

Supplementary Table 3. mRNA localization patterns in the cortex.  Cells are divided up 

into the annotated clusters.  In each cluster, mRNAs that are periphery localized or near 

nuclear localized are tabulated. 

Supplementary Table 4.  Ligand-receptor pairs and gene enrichments in neighboring 

cells.  Ligand receptor pairs that are expressed above z-score of 1 are shown in the cortex 

and the olfactory bulb.  p-values are determined from randomly permuting cell labels 

(n=1000). The enrichment tab shows genes that are expressed more strongly in cluster 1 

cells that are neighboring cluster 2 cells than all cluster 1 cells. The expression values are 

z-scores and p-values are determined from permuting cell labels (n=100).  

3.6 Methods 

Data Reporting 

 

No statistical methods were used to predetermine sample size. The experiments were not 

randomized and the investigators were not blinded to allocation during experiments 

outcome assessment. 

 

Experiment Design 

Primary probe design. Gene-specific primary probes were designed as previously 

described with some modifications8.  To obtain probe sets for 10,000 different genes, 28-

nt sequences of each gene were extracted first using the exons from within the CDS 

region. For genes that did not yield enough target  sequences from the CDS region, exons 

from both the CDS and UTRs were used. The masked genome and annotation from 

UCSC were used to look up the gene sequences. Probe sequences were required to fall 

within the GC content in the range of 45-65%. Any probe sequences that contained five 

or more consecutive bases of the same kind were dropped. Any genes which do not 

achieve a minimum number of 24 probes were dropped. A local BLAST query was run 

on each probe against the mouse transcriptome to ensure specificity. BLAST hits on any 

sequences other than the target gene with a 15-nt match were considered off targets. 

ENCODE RNA-seq data across different mouse samples were used to generate an off-

target copy number table. Any probe that hit an expected total off-target copy number 

exceeding 10,000 FPKM was dropped to remove housekeeping genes, ribosomal genes, 

https://paperpile.com/c/rQngbE/vV81q
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and very highly expressed genes. To minimize cross-hybridization between probe sets, 

a local BLAST database was constructed from the probe sequences and probes with hits 

of 17-nt or longer were removed by dropping the matched probe from the larger probe 

set. 

Readout probe design. 15-nt readout probes were designed as previously described9. 

Briefly, a set of probe sequences was randomly generated with the combinations of A, T, 

G, or C nucleotides. Readout probe sequences within a CG content range of 40-60% were 

selected. We BLAST against the mouse transcriptome to ensure the specificity of the 

readout probes. To minimize cross-hybridization of the readout probes, any probes with 

10-contiguously matching sequences between readout probes were removed. The reverse 

complements of these readout probe sequences were included in the primary probes 

according to the designed barcodes. 

Primary probe construction. Primary probes were ordered as oligoarray complex pools 

from Twist Bioscience and constructed as previously described with some 

modifications8 . Briefly, limited PCR cycles were used to amplify the designated probe 

sequences from the oligo complex pool. Then, the amplified PCR products were purified 

using QIAquick PCR Purification Kit (28104; Qiagen) according to the manufacturer’s 

instructions. The PCR products were used as the template for in vitro transcription 

(E2040S; NEB) followed by reverse transcription (EP7051; Thermo Fisher) with the 

forward primer containing a uracil nucleotide31. After reverse transcription, the probes 

were subjected to 1:30 dilution of Uracil-Specific Excision Reagent (USER) Enzyme 

(N5505S; NEB) treatment to remove the forward primer by cleaving off the uracil 

nucleotide next to it for ~24 hours at 37°C. Since the reverse complement of T7 

sequences was used as the reverse primer, the final probe length in this probe set was 

~93-nt. Then, the ssDNA probes were alkaline hydrolyzed by 1 M NaOH at 65°C for 15 

minutes to degrade the RNA templates, followed by 1 M acetic acid neutralization. Next, 

to clean up the probes, we performed ethanol precipitation to remove stray nucleotides, 

phenol-chloroform extraction to remove protein, and Zeba Spin Desalting Columns (7K 

MWCO) (89882, Thermo Fisher) to remove any residual nucleotides and phenol 

contaminants. Then, the probes were mixed with 2 μM of Locked Nucleic Acid (LNA) 

polyT15 and 2 μM of LNA polyT30 before speed-vac to dry powder and resuspended in 

primary probe hybridization buffer comprised of 40% formamide (F9027, Sigma), 2x 

SSC (15557036, Thermo Fisher), and 10% (w/v) Dextran Sulfate (D8906; Sigma). The 

probes were stored at -20°C until use. 

Readout probe synthesis. 15-nt readout probes were ordered from Integrated DNA 

Technologies (IDT) as 5’ amine modified9. The construction of readout probe was similar 

to previously described. Briefly, 5 nmoles of DNA probes were mixed with 25 μg of 

Alexa Fluor 647 NHS ester or Cy3B or Alexa Fluor 488 NHS ester in 0.5 M sodium 

bicarbonate buffer containing 10% DMF. The reaction was allowed to go for at least 6 

https://paperpile.com/c/rQngbE/O2UaX
https://paperpile.com/c/rQngbE/vV81q
https://paperpile.com/c/rQngbE/wksND
https://paperpile.com/c/rQngbE/O2UaX
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hours at 37°C. Then, the DNA probes were subjected to ethanol precipitation, HPLC 

purification, and column purification to remove all contaminants. Once resuspended in 

water, the readout probes were quantified using Nanodrop and a 500 nM working stock 

was made. All the readout probes were kept at -20°C. 

Coverslip functionalization. For cell culture experiment, the coverslips were cleaned 

with a plasma cleaner at HIGH (PDC-001, Harrick Plasma) for 5 minutes followed by the 

immersion in 1% bind-silane solution (GE; 17-1330-01) made in pH3.5 10% (v/v) acidic 

ethanol solution for 30 minutes at room temperature. Then the coverslips were rinsed 

with 100% ethanol 3 times, and heat-dry in an oven for > 90°C for 30 minutes. Next, the 

coverslips were treated with 100 μg/uL of Poly-D-lysine (P6407; Sigma) in water for >1 

hour at room temperature, followed by rinsing with water three times. The coverslips 

were then air-dried and kept at 4°C for no longer than 2 weeks. For the mouse brain 

slices experiment, the coverslips were cleaned by 1M HCl at room temperature for 1 

hour, rinsed with water once, and followed by 1M NaOH solution treatment at room 

temperature for 1 hour. Then, the coverslips were rinsed three times with water, before 

immersion in 1% bind-silane solution for 1 hour at room temperature. The remaining 

steps are the same as the coverslip functionalization for cell culture. 

seqFISH+ encoding strategy.  We separate the 60 pseudocolors into 3 fluorescent 

channels (Alexa 488, Cy3b and Alexa 647) equally. In each channel,  the 20- pseudocolor 

imaging was repeated 3 times hence achieving  203=8000 genes barcoding capacity. We 

did an extra round of pseudocolor imaging to obtain error-correctable barcodes, an error-

correction scheme which we had previously introduced3. Thus, we obtained 8000 error-

correctable barcodes x 3 fluorescent channels = 24,000 error-correctable barcoding 

capacity in total. One can easily use more fluorescent channels and/or more pseudocolors 

to achieve greater dilution of the mRNA density per imaging round. In this experiment, 

we encoded 3333, 3333, and 3334 genes in each of the fluorescent channels. This 

pseudocolor scheme evolved from the one used in RNA SPOTs8 and intron seqFISH9 by 

eliminating chromatic aberration and dramatically diluting the density to achieve 

profiling of mRNA at the transcriptome level in situ.   

 

To visualize the different transcripts, 24 “primary” probes were designed against each 

target mRNA. The primary probes contain overhang sequences that code for the 4-unit 

base-20 barcode unique to each gene. Hybridization with fluorophore labeled “readout” 

probes allows the readout of these barcodes and fluorescently labels the subset of genes 

that contain the corresponding sequences.  All of the genes are sampled every 20 rounds 

of readout hybridization and collapsed into super-resolved images.  A total of 80 rounds 

of hybridizations enumerate the 4-unit barcode for each gene. Each round of stripping 

and readout hybridization is fast and completed in minutes. 

 

https://paperpile.com/c/rQngbE/b97Xs
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After primary probes hybridization, the samples were subjected to hydrogel embedding 

and clearing before seqFISH+ imaging. The details are available on cell culture 

experiment , tissue slices experiment, and seqFISH+ imaging. 

 

Cell culture experiment. NIH/3T3 cells (ATCC) were cultured as previously described8 

on the functionalized coverslips until ~80-90% confluence. Then the cells were washed 

with 1x PBS once, fixed with freshly made 4% formaldehyde (28906; Thermo Fisher) in 

1x PBS (AM9624, Invitrogen) at room temperature for 10 minutes. The fixed cells were 

permeabilized with 70% ethanol for 1 hour at room temperature. The cell samples were 

dried and the 10,000 gene probes (~1 nM per probe for 24 probes per gene) were 

hybridized by spreading out using another coverslip. The hybridization was allowed to 

proceed for ~36-48 hours in a humid chamber at 37°C. We found hybridization for 48 

hours yielded slightly brighter signals. After hybridization, the samples were washed with 

40% formamide in 2x SSC at 37°C for 30 minutes, followed by 3 times rinsing with 1 

mL 2x SSC. Next, the cell samples were incubated with 1:1000 dilution of Tetraspeck 

beads in 2x SSC at room temperature for 5-10 minutes. The density of the beads can be 

easily adjusted by varying the dilution factor or incubation time. Then, the samples were 

rinsed with 2x SSC and incubated with degassed 4% acrylamide (1610154; Bio-Rad) 

solution in 2x SSC for 5 minutes at room temperature. To initiate polymerization, the 4% 

acrylamide solution was aspirated, then 10 μL of 4% hydrogel solution containing 4% 

acrylamide (1:19), 2x SSC, 0.2% ammonium persulfate (APS) (A3078; Sigma) and 0.2% 

N,N,N′,N′-Tetramethylethylenediamine (TEMED) (T7024; Sigma) was dropped on the 

sample, and sandwiched by a coverslip functionalized by GelSlick (Lonza;50640). The 

polymerization step was allowed to happen at room temperature for 1 hour in a 

homemade nitrogen gas chamber. After that, the two coverslips were gently separated, 

and the excess gel was cut away with a razor. A custom-made flow cell (RD478685-M; 

Grace Bio-labs) was attached to the coverslips covering the region of cells embedded in 

hydrogel. The hydrogel embedded cell samples were cleared as previously described 

for >1 hour at 37°C19. The digestion buffer consists of 1:100 Proteinase K (P8107S; 

NEB), 50 mM pH 8 Tris HCl (AM9856; Invitrogen), 1 mM EDTA (15575020; 

Invitrogen), 0.5% Triton-X 100, and 500 mM NaCl (S5150, Sigma). Then, the samples 

were rinsed with 2x SSC multiple times and subjected to Label-IT modification(1:10) 

(MIR 3900; Mirus Bio) at 37°C for 30 minutes. After that, the cell samples were post-

fixed with 4% PFA in 1x PBS to stabilize the DNA, RNA, and the overall cell sample for 

15 mins at room temperature. The reaction was quenched by 1 M pH8.0 Tris HCl at room 

temperature for 10 minutes. The cell samples were either imaged immediately or kept in 

4x SSC supplemented with 2 U/μL of SUPERase In RNase Inhibitor (AM2696; 

Invitrogen) at 4°C for no longer than 6 hours. 

 

https://paperpile.com/c/rQngbE/vV81q
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Animals. All animal care and experiments were carried out in accordance to Caltech 

Institutional Animal Care and Use Committee (IACUC) and NIH guidelines. Wild-type 

mice C57BL/6J P23 (male) and P40 (male) were used for the cortex and olfactory bulb 

seqFISH+ experiments, respectively. For smFISH experiments, adult wild-type mice 

C57BL/6J aged 10 weeks (female) were used for the RNA localization experiment in the 

cortex and ligand-receptor interaction experiment in the olfactory bulb. For cell clusters 

validation in the olfactory bulb, a section from P40 mice was used.  

 

Tissue slices experiment. Brain extraction was performed as previously described3. In 

brief, mice were perfused for 8 minutes with perfusion buffer (10 U/ml heparin, 0.5% 

NaNO2 (w/v) in 0.1 M PBS at 4°C). Mice were then perfused with fresh 4% PFA in 0.1 

M PBS buffer at 4°C for 8 minutes. The mouse brain was dissected out of the skull and 

immediately placed in a 4% PFA buffer for 2 hours at room temperature under gentle 

mixing. The brain was then immersed in 4°C 30% RNAse-free Sucrose (Amresco 0335-

2.5KG) in 1x PBS until the brain sank. After the brain sank, the brain was frozen in a dry 

ice of isopropanol bath in OCT media and stored at -80°C. 5 μm sections were cut using a 

cryotome and immediately placed on the functionalized coverslips. The thin tissue slices 

were stored at -80°C. To perform hybridization on the tissue slices, the tissue slices were 

first permeabilized in 70% ethanol at 4°C for >1 hour. Then, the tissue slices were 

cleared with 8% SDS (AM9822; Invitrogen) in 1x PBS for 30 minutes at room 

temperature. Primary probes were hybridized to the tissue slices by spreading out the 

hybridization buffer solution with a coverslip. The hybridization was allowed to proceed 

for ~60 hours at 37°C. After primary probe hybridization, the tissue slices were washed 

with 40% formamide at 37°C for 30 minutes. After rinsing with 2X SSC 3 times and 1X 

PBS once ,  the sample was subjected to 0.1mg/mL Acryoloyl-X SE (A20770; Thermo 

Fisher) in 1X PBS treatment for 30 minutes at room temperature. After that, the tissue 

slices were incubated with 4% acrylamide (1:19 crosslinking) hydrogel solution in 2X 

SSC for 30 minutes at room temperature. Then the hydrogel solution was aspirated and 

20 μL of 4% hydrogel solution containing 0.05% APS and 0.05% TEMED in 2x SSC 

was dropped onto the tissue slice and sandwiched by Gel-Slick functionalized slide. The 

samples were transferred to 4°C in a homemade nitrogen gas chamber for 30 minutes 

before transferring to 37°C for 2.5 hours to complete polymerization. After 

polymerization, the hydrogel embedded tissue slices were cleared with digestion buffer as 

mentioned above , except it includes 1% SDS, for >3 hours at 37°C. After digestion, the 

tissue slices were rinsed by 2X SSC multiple times and subjected to 0.1mg/mL Label-X 

modification for 45 minutes at 37°C. The preparation of Label-X stock was as previously 

described19. To further stabilize the DNA probes, RNA molecules, and the tissue slices 

overall structure, the tissue slices were re-embedded in hydrogel solution as the previous 

step, except the gelation time can be shortened to 2 hours. The tissue slice samples were 

https://paperpile.com/c/rQngbE/b97Xs
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either imaged immediately or kept in 4X SSC supplemented with 2 U/μL of SUPERase 

In RNase Inhibitor at 4°C for no longer than 6 hours. 

 

seqFISH+ Imaging. Imaging platform and automated fluidics delivery system were 

similar to those previously described with some modifications. In brief, the flow cell on 

the sample was first connected to the automated fluidics system. Then the region of 

interests(ROI) was registered using nuclei signals stained with 10 μg/mL of DAPI 

(D8417; Sigma). For cell culture experiments, blank images containing beads only were 

first imaged before the first round of serial hybridization. Each serial hybridization buffer 

contained three unique sequences with different concentrations of 15-nt readouts 

conjugated to either Alexa Fluor 647(50 nM) , Cy3B(50 nM), or Alexa Fluor 488(100 

nM) in EC buffer made from 10% Ethylene Carbonate (E26258; Sigma), 10% Dextran 

Sulfate (D4911; Sigma) , 4X SSC and 1:100 dilution of SUPERase In RNase Inhibitor. 

The 100 μL of serial hybridization buffers for 80 rounds of seqFISH+ imaging with a 

repeat for round 1 (in total 81 rounds) were pipetted into a 96 well-plate. During each 

serial hybridization, the automated sampler will move to the well of the designated hyb 

buffer and flow the 100 μL hyb solution through a multichannel fluidic valves (EZ1213-

820-4; IDEX Health & Science) to the flow cell (required ~25 μL) using a syringe pump 

(63133-01, Hamilton Company). The serial hyb solution was incubated for 17 minutes 

for cell culture experiments and 20 minutes for tissue slice experiments at room 

temperature. After serial hybridization, the sample was washed with ~300 μL of 10% 

formamide wash buffer (10% formamide and 0.1% Triton X-100 in 2X SSC) to remove 

excess readout probes and non specific binding. Then, the sample was rinsed with ~200 

μL of 4X SSC supplemented with 1:1000 dilution of SUPERase In RNase Inhibitor 

before stained with DAPI solution (10 μg/mL of DAPI, 4X SSC, and 1:1000 dilution of 

SUPERase In RNase Inhibitor) for ~15 seconds. Next, an anti-bleaching buffer solution 

made of 10% (w/v) glucose, 1:100 diluted catalase (Sigma C3155), 0.5 mg/mL Glucose 

oxidase (Sigma G2133) , 0.02 U/μL SUPERase In RNase Inhibitor , 50 mM pH8 Tris-

HCl in 4x SSC was flowed through the samples. Imaging was done with the microscope 

(Leica, DMi8) equipped with a confocal scanner unit (Yokogawa CSU-W1), a sCMOS 

camera (Andor Zyla 4.2 Plus), 63 × oil objective lens (Leica 1.40 NA), and a motorized 

stage (ASI MS2000). Lasers from CNI and filter sets from Semrock were used. 

Snapshots were acquired with 0.35 μm z steps for two z slices per FOV across 647-nm, 

561-nm, 488-nm and 405-nm fluorescent channels. After imaging, stripping buffer made 

from 55% formamide and 0.1% Triton-X 100 in 2x SSC was flowed through for 1 

minute, followed by an incubation time of 1 minute before rinsing with 4X SSC solution. 

In general, the 15-nt readouts were stripped off within seconds, and a 2-minute wash 

ensured the removal of any residual signal. The serial hybridization, imaging, and signal 

extinguishing steps were repeated for 80-rounds. Then, stainings buffer for segmentation 



 

 

80 

purposes consists of 10 μg/mL of DAPI, 50nM LNA T20-Alexa 647, and 1: 100 

dilution of Nissl stainings (N21480; Invitrogen) in 1x PBS was flowed in and allowed to 

incubate for 30 mins at room temperature before imaging. The integration of automated 

fluidics delivery system and imaging was controlled by a custom written script in Micro-

Manager32 

 

smFISH. Single molecule FISH (smFISH) experiments were done as previously 

described8. In brief, 60 genes were randomly chosen from the 10,000 gene list across a 

broad range of expression levels. The same probe sequences were used for these 60 

genes, except each primary probe contained two binding sites of the readout probes. The 

fixed cells were hybridized with the primary probes(10nM/probes) in 40% hyb 

buffer(40% formamide, 10% Dextran Sulfate and 2x SSC) at 37°C for overnight. The 

sample was washed with 40% wash buffer for 30 minutes at 37°C and subjected to the 

same hydrogel embedding and clearing as the cell culture experiment before imaging. 

The imaging platform is the same as the one in  seqFISH+ experiment. A single z-slice 

across hundreds of cells was imaged and the sum of the gene counts per cell was 

analyzed by using a custom written Matlab script. For smFISH experiments in the tissue, 

sample was hybridized with 10nM/probe in 40% hyb buffer at 37°C for >16 hours. The 

sample was washed with 40% wash buffer for 30 minutes at 37°C and subjected to the 

same hydrogel embedding and clearing as the tissue experiment before imaging. Since 

the imaging time is short, the Acryoloyl-X functionalization and post hydrogel anchoring 

steps were omitted. 5 z-slices with z-step of 1μm were taken across multiple FOVs with 

the imaging platform in the seqFISH+ experiment, except a 40x oil objective was used 

(Leica 1.40 NA).  Images were background subtracted and maximum z-projected for 

clearer display of RNA dots.  

 

Image Analysis 

All image analysis was performed in Matlab. Unless a specific Matlab function is 

referenced, custom code was used. 

 

 

Image Registration. Each round of imaging included imaging with the 405-nm channel 

which included the DAPI stain of the cell along with imaging in the 647-nm, 561-nm and 

488-nm channels of TetraSpeck beads’ (T7279, Thermo Fischer) and seqFISH+  probes. 

In addition, a pre-hybridization image was used to find all beads before the readouts were 

hybridized. Bead locations were fit to a 2D Gaussian. An initial estimate of the 

transformation matrix between the DAPI image for each serial hybridization round and 

the only beads image was found using imregcorr (Matlab). Using this estimate 

transformation, the bead coordinates were transformed to each serial hybridization image, 

https://paperpile.com/c/rQngbE/sNyEv
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where the location of the bead was again fit to a 2D Gaussian. A final transformation 

matrix between each hybridization image and the only-beads image was then found by 

applying fitgeotrans (Matlab) to the sets of Gaussian fit bead locations. For the tissue 

samples no beads were used and registration was based on DAPI alone. 

 

Image processing. Each image was deconvolved, using a bead (7x7pixels) as an estimate 

for the point spread function. Cell segmentation was performed manually using ImageJ’s 

ROI tool. 

 

Barcode Calling. The potential RNA signals were then found by finding local maxima in 

the image above with a predetermined pixel threshold in the registered and deconvolved 

images. Dot locations were then further resolved using radialcenter.m 33.  Once all 

potential points in all serial hybridizations of one fluorescent channel were obtained, they 

were organized by pseudocolor and barcoding round. Dots were matched to potential 

barcode partners in all other pseudo channels of all other barcoding rounds using a 1 

pixel search radius (or for the tissue samples a 1.4 pixel search radius) to find symmetric 

nearest neighbors. Point combinations that constructed only a single barcode were 

immediately matched to the on-target barcode set. For points that matched to construct 

multiple barcodes, first the point sets were filtered by calculating the residual spatial 

distance of each potential barcode point set and only the point sets giving the minimum 

residuals were used to match to a barcode. If multiple barcodes were still possible, the 

point was matched to its closest on-target barcode with a hamming distance of 1. If 

multiple on target barcodes were still possible, then the point was dropped from the 

analysis as an ambiguous barcode. This procedure was repeated using each barcoding 

round as a seed for barcode finding and only barcodes that were called similarly in at 

least 3 out of 4 rounds were used in the analysis. The number of each barcode was then 

counted in each of the assigned cell areas and transcript numbers were assigned based on 

the number of on-target barcodes present in the cell. Centroids for each called barcode 

were also recorded and assigned to cells. The same procedure was repeated for 647, 561 

and 488 channels. The remaining unused barcodes were used as an off-target evaluation 

by repeating the same procedure as described.  

 

Data Analysis 

 

RNA-seq/RNA SPOTs. Pearson’s r correlation was performed to compare seqFISH+ 

data to RNA-seq (GEO: GSE98674),  RNA SPOTs8, and smFISH measurement using 

Matlab or Python function. 

 

https://paperpile.com/c/rQngbE/AFpLA
https://paperpile.com/c/rQngbE/vV81q


 

 

82 

Spatial clustering of genes for NIH3T3 cells. The same barcode calling procedure 

described above was repeated without cell segmentation to remove the possibility of 

clipping potentially interesting regions of the cell. RNA locations were coarse grained to 

10x10 pixels, resulting in a matrix of dimension total number of coarse grained pixels by 

the number of genes. Coarse pixels with no RNA were removed from the analysis. RNA 

with fewer than 10 copies per field of view were dropped. Genes were then correlated 

with Pearson’s r correlation and hierarchical clustering was performed on the resulting 

correlation matrix. Clusters of less than 10 genes were dropped. 

 

Hierarchical clustering of brain seqFISH+ data. The 10,000 genes were divided into 3 

approximately equal subsets (with 3334, 3333, and 3333 genes, respectively) based on 

the group in which genes are barcoded. Genes were normalized separately within each 

subset, by dividing the gene counts in per cell by the total counts per cell within each 

subset. We then multiplied the result by the scaling factor of 2,000 which is 

approximately the median count. Next, we selected the subset of cells that were in the 

motor cortex. We computed log(1+normalized counts). 

  

To select genes for clustering, we first computed statistics for the following criteria for 

each gene: 1) number of cells with nonzero expression, 2) average gene expression of all 

cells, 3) average expression of top 5% cells with highest expression, 4) average of top 

10% cells with highest expression, 5) average of top 2% cells with highest expression, 

and 6) average gene expression of all nonzero cells. For each criterion, we selected the 

top 25% of genes that were ranked based on the criterion. We next obtained the union of 

all 6 gene lists, forming an initial 3877 gene-set. The reasoning is that the union of genes 

would contain both genes needed to cluster common cell types (which would be 

expressed in a large population of cells, captured by criterion 2) and rare cell types 

(which would be expressed in a small population, captured by criteria 3, 4, and 5). The 

3877-gene expression data matrix was next transformed by z-scoring per cell and per 

gene. Principle component analysis (PCA) was performed and jackstraw procedure was 

adopted in order to further select the most relevant genes for clustering. Specifically, the 

jackstraw procedure34 permutes the expression of a small number of genes in order to 

identify significant genes with significantly higher loading than permuted case (P<0.001). 

Using the top 9 components, we found a total of 1916 significant genes to be used for 

final clustering. 

  

To this 1916-gene matrix we applied hierarchical clustering with Ward's linkage and with 

(1 - Pearson correlation) as the distance measure. Using the sigClust R package35, which 

evaluates the significance of each branching in the dendrogram, we found significant tree 

https://paperpile.com/c/rQngbE/3cJK1
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splits and produced 10-cluster and 16-cluster annotations corresponding to different 

cluster granularity. Each split was significant according to sigClust FWER corrected P < 

0.05. We further performed an additional round of clustering within the interneuron 

annotated clusters, repeated gene-selection procedure, and replaced the broad interneuron 

cluster with the subclusters. All together, we derived 13-cluster and 18-cluster 

annotations. 

  

Unsupervised comparison with scRNAseq data. Mouse visual cortex scRNAseq data 

was obtained from Tasic et al25. We used the cell-type annotations from the original 

study, representing 9 major, 22 fine, and 49 minor cell-types. For comparison, we 

focused on the 1857 genes that were commonly profiled by scRNAseq and seqFISH+ and 

processed the scRNAseq data in the same way as seqFISH+. The degree of similarity was 

evaluated by using the Pearson correlation (Extended Data Figure 4a). 

  

Supervised mapping of cell types from scRNAseq to seqFISH+. Cell-type mapping 

was done as described before14. Briefly, MAST36 was used to identify differentially 

expressed genes across annotated cell types in Tasic et. al. scRNA-seq dataset, using 

P=0.005 as the cutoff. 1253 of the differentially expressed genes were also profiled by 

seqFISH+ therefore retained for cell-type mapping.   Then, we performed a quantile-

normalization on the expression vectors of each gene in both the seqFISH+, scRNA-seq 

data to normalize cross-platform differences14. Multi-class support-vector machine 

models were trained on the scRNAseq cell types using linear kernels, and setting the 

tuning parameter C to 1e-5, shown in Figure 3g. The cross-validation accuracy of 

prediction of the 22 annotated cell types was 91% with these 1253 differentially 

expressed genes. 

 

Spatial gene identification. Briefly, we computed a spatial score per gene as previously 

described14. Cells were divided into two sets based on gene g: L1, contains cells with 

highest 90th percentile by expression, and L0, the remaining cells. The spatial score 

measures whether the cells in L1 are spatially adjacent to each other and is quantified by 

the silhouette coefficient. The silhouette coefficient was computed using the 

calc_silhouette_per_gene() function in the smfish Hmrf Python package 14 

(https://bitbucket.org/qzhudfci/smfishhmrf-py), setting dissimilarity matrix to rank-

transformed  Euclidean distance, examine_top=0.1, permutation_test=True, and 

permutations=1000.  Rank-transformed distance was computed with 

rank_transform_matrix() function with reverse=False, rbp_p=0.99 where rbp_p is a rank-

weighting parameter. We select all spatial genes with significant silhouette coefficient 

(P<0.01 permutation test). To further enrich for spatial signals within these genes, we 

performed a PCA analysis and then jackstraw procedure34 to arrive at a set of 988 spatial 

https://paperpile.com/c/rQngbE/gPeBG
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genes significantly correlated to the principle components. We performed HMRF 

analysis on the top 100, 200, and 400 of 988 genes. 

  

Spatial domain identification via HMRF procedure. HMRF is a probabilistic spatial 

clustering method that we developed previously to identify spatial domains based on 

spatial relationships and gene expression per cell. We constructed a neighborhood graph 

by adopting a fixed radius corresponding to top 1-percentile of pairwise physical 

distances between cells, resulting in an average of 5 neighbors per cell. HMRF was run 

with the following parameters: tolerance=1e-10, k=9, and convergence_error=1e-8. To 

search for an optimal value of beta, we scanned through all integer values between 2 and 

100 and ran the HMRF model for each setting. The value that resulted in minimal change 

of log-likelihood was selected as the final beta. 

 

Louvain clustering. Unless specified, all functions of pre-processing and Louvain 

clustering was performed in Python using the package SCANPY37. We followed a 

standard procedure as suggested in the SCANPY reimplementation of Seurat’s tutorial to 

analyze seqFISH+ data with some modifications. For clustering all cells from mouse 

cortex, subventricular zone(SVZ) , choroid plexus, and olfactory bulb, we first normalize 

the counts per cell, and then choose highly variable genes with >0.4 min_dispersion, 0.01 

min_mean, with max_mean =3. This yields 3509 genes. Then we take the logarithm of 

the data, regress out the total count effect per cell and scale the data to unit variance. We 

compute the PCAs and using top PCs to compute the neighborhood graph before 

performing Louvain clustering. We use the rank_gene_groups function with raw data and 

the top 20 genes enrichment in each cluster were used to identify the clusters based on 

marker genes annotation from single cell RNA-seq / DropSeq data29,38. We found that 

both Hierarchical clustering and Louvain clustering yield similar results despite different 

methods.  

 

To spatially map back the clusters on the raw image, we perform Louvain clustering on 

cortex, SVZ, and choroid plexus data, and olfactory bulb data separately. Genes with max 

count greater than 4 across all cells were chosen for cortex and SVZ (include choroid 

plexus cells) data. Next, we filtered out cells with less than 200 genes expressed from 

analysis. The counts were normalized per cell and a minimum dispersion of greater than 

0 with min_mean of 0.05 were chosen to filter out the variable genes. This yield 1813 

genes for subsequent analysis. For the olfactory bulb, genes with max count greater than 

2 across all cells were first chosen. Then the counts were normalized per cells. To obtain 

the highly variable genes, a threshold of min_mean=0.05, and min_dispersion of 0.2 were 

chosen. This yields 1972 genes for subsequent analysis. After choosing the highly 

variable genes, the data was subjected to PCA reduction, computed neighborhood graph 

https://paperpile.com/c/rQngbE/WTx4I
https://paperpile.com/c/rQngbE/YSSLY
https://paperpile.com/c/rQngbE/X4owY


 

 

85 

with top PCs, and Louvain clustering. The top 20 enrichment genes were obtained 

using rank_genes_groups function and the clusters were identified according to published 

literature. Sub-clustering of the main cluster was performed by repeating the process 

described above. The visualization of these clusters to two dimensions using Uniform 

Manifold Approximation and Projection (UMAP) was done with SCANPY function. 

These cluster numbers were mapped back to the original data to visualize the spatial 

heterogeneity of different cell types across different part of the tissues. 

 

Calculation of the time acceleration of seqFISH+ vs expansion seqFISH. For 

expansion seqFISH, we assume that to code ~20,000 genes, the coding scheme is with 4 

colors and 8 rounds of hybridization (4^7=16,384 genes) with 1 round of error 

correction.  Thus, the total number of effective imaging per field of view (FOV) is equal 

to the expansion factor x 4 x 8.  For 60-fold expansion, this is 60x4x8=1920 images.  For 

seqFISH+, we assume a coding scheme with 3 separate fluorescent channels, with 8000 

genes coded in each channel for a total of 24000 genes.  Pseudocolors are used to code 

for 8000 genes.  For example, if the number of pseudocolors is 20 per fluorescent 

channel, then 4 rounds of barcoding (including 1 round of error correction) is need.  The 

effective imaging per FOV is then 20 x 4 x 3 =240 images, a 8-fold acceleration 

compared to expansion seqFISH.  As another example, if the pseudocolor per channel is 

10, then 5 rounds of barcoding is need to cover 8000 genes per channel.  Then a total of 

10 x 5 x 3 =150 images.  However, this coding scheme only provides 10 x 3= 30 fold 

decrease in the RNA density.  If an equivalent of 30-fold expansion was implemented, 

then 30 x 4 x 8 = 960 images are needed per FOV for an acceleration rate of 960/150 = 

6.4 fold.   

 

Bootstrap analysis.  We calculate the cell-to-cell correlation matrix with the number of 

genes were downsampled from the 2511 genes that expressed at least 5 copies in a 

cell.  For each downsampled dataset, 100, 250, 500, 1000, 1500, and 2000 genes were 

selected randomly.  The Pearson’s correlation coefficient of each of the cell-to-cell 

correlation matrix is computed with the cell-to-cell correlation matrix for the 2511 gene 

dataset.  5 trials are simulated for each downsampled gene level.  Error bars denote 

standard deviation. 

 

Neighbor cell analysis.  The spatial coordinates for the cell centroids were used to create 

a nearest neighbor network (k =  4), whereby nodes represent individual cells and edges 

are observed proximities between 2 cells. Edges between identical or different annotated 

cell types were respectively labeled as homo- and heterotypic. To identify enriched or 

depleted proximities between two identical or different cell types the observed number of 

edges between any two cell types was compared to a random permutation (n = 100) 
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distribution by reshuffling the cell labels. Associated p-values were calculated by 

observing how often the simulated values were higher or lower as the observed value for 

respectively enriched or depleted proximities. 

 

Gene expression enrichment for cell types in close proximity was calculated as the average 

expression for that gene in all the cells of these two cell types that were in close proximity 

according to the spatial network. The number of observed edges between two cell types 

and z-scores for each gene were further used to filter and identify enriched gene expression 

in any combination of two proximal cell types. 

 

To determine the ligand-receptor pairs in neighboring cells, we extracted genes that have 

z-scores of 1 or greater, are expressed in at least 25% of the cells in the interacting pairs, 

and have at least 4 or more instances of being neighbors.  We then match up the ligand-

receptor pairs from literature39, which is shown in Supplementary Table 4.  To identify 

statistically enriched ligand-receptor pairs we compared the calculated ligand-receptor 

scores with that of a random permutation (n = 1000) distribution by reshuffling the cell 

labels. p-value < 0.05 is deemed to be significant. 

 

RNA localization analysis.  To determine the subcellular localization patterns of 

mRNAs in the cortex, all cells are first separated into the 26 cell clusters (Extended Data 

Table 2).  Within each cell class, the top 200 highly expressed genes are selected for 

localization analysis.  In each cell, the average distance of all of the transcripts for each of 

the 200 genes from the center of the mass of all of the transcripts for all the genes are 

calculated.  This metric corresponds to whether the gene is likely to be found close or far 

from the cell center.  Only cells with 4 or more copies of that RNA are included in the 

calculation.  The average distance from the center for each cell is normalized by the size 

of the cell, determined as the square root of the area span by the convex hull of all the 

mRNA dots in that cell.  To select the genes that are localized far from the center of the 

cell, a threshold of 0.45 for the localization score is used and the average expression level 

is set at greater than 2.5 copies detected per cell.  We selected genes that are close to the 

cell center using a localization score of 0.35 or lower and the expression level of greater 

than 2.5 copies per cell.  The results are shown in Supplementary Table 3. 

 

Contact maps. The minimum distance between the pixels defining the edge of all pairs 

of cells in a field of view were tabulated. To count the number of times cells of each type 

were in contact with cells of each other type, the following procedure was followed. Cells 

within 15 pixels of a given cell were considered in contact, and the appropriate entry in a 

square matrix of length equal to the number of cell types was incremented. The counts 

https://paperpile.com/c/rQngbE/KH7xA
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were then normalized such that each row sums to 1. Hierarchical clustering was then 

performed to cluster cell types. 

 

Code Availability. The custom written scripts used in this study are available at   

https://github.com/CaiGroup/seqFISH-PLUS 

 

Data Availability. RNA-seq data were obtained from GEO accession number GSE98674. 

RNA SPOTs data were obtained from a previous study8. Source data from this study are 

available at https://github.com/CaiGroup/seqFISH-PLUS. All data obtained during this 

study are available from the corresponding author upon reasonable request. 

 

  

https://github.com/CaiGroup/seqFISH-PLUS
https://github.com/CaiGroup/seqFISH-PLUS
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