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1. INTRODUCTION AND SUMMARY

The main problems studied in this thesis deal with transonic
flow, flow where the local speed of the gas is close to the local
speed of sound. Such problems are difficult because non-linearity
of the méthematical problems must be considered if the solutions are
to_fesemble reaiity. Nbg-linearity enters the provlem in different
ways and several of these are considered here. The main aim of the
research was a description of the flow past an airfoil through that
range of Mach numbers where local supersonic zones and shock waves
form on the airfoil. This problem cannot be regarded as solved.
However, some progress has been made in that direction.

When gas streams past a curved surface the flow speed may ex-
ceed the local speed of sound. The non-linearity which enters here
is in the accelsration terms like “3(23‘4 and in the variatien of
the sonic speed and this is balanced by the change of area. When
gas flows through a normal shock wave the flow speed also passes
through the sonic speed. The non-linearity which is important here
is the acceleration term 4 %i, which tends to steepen the wave
front ahd which, in this case, is balanced by the viscous stresses.
When shock waves occur on an airfoil both effscts are important, as
well as the effect of the viscous layer near the boundary. This
boundary iayer is omitted in the present work although its effect
may, in certain cases, be vital. A proper study of the boundary

t!

layer and its interaction with the "outer flow" depends on an



understanding of the non-linear phenomena already mentioned.

In the first part of the work some general equations for tran-
sonic fldw are deriﬁed. A law of similarity for these equations is
presented and some comparisons made with experiments., Then, omit-
ting shock waves, the first non-linear effect is studied in the
boundéry value problem for transonic potential flow past an airfoil.
A1l the problems studied deal only with the local supersonic zone
itself and some coﬁclusions are reached. However, not much could
be done about the important pfoblem of the global flow picture, es-
pecially the location of these supersonic zones in arbitrary cases.
The main mathematical problems which occur in the first part are
questions of the existence and uniqueness of solutions for a non-
linear equation of changing type. This has seldom been treated in
the literature. The gquestion of the heizht of the supersonic zone
and the drag of a transonic airfoil is also treated briefly in the
first part.

In the second part the non-linear effects in shock waves are
studied. It is shown approximately how a shock wave approaches a
steady state due to the non-linearity. It was planned then to
study the presence of both types of non-linear effects for the
flow past an airfoil but not too much progfess has been made yet
along these lines.

I would like to thank Professor P. A. Lagerstrom, who acted
as suéervisor,'and Professors C. de Prims and H. W. Liepmann for

their kind assistance. I would also like to thank the Transonic



Research Group, especially H. I. Ashkenas, for cooperating in ob-

- taining experimental results.



2, FLOW PAST A THIN BODY

In this section some problems in steady flow are considered.
The first aim is s derivation of approximate equations suitable for
transonic flow and a check on their approximation. Next the pro-
perties of these equations are considered in some detail. Some

viscous effects are also studied.

2e1 General Equations

The fundamental equations are statements of well-known physical
principles. The starting point of the discussion here is the state-
ment of the conservation of momentum in the Navier-Stokes equations.
Hence, the assumptions in the derivation of these eguations are im-
plicit in the results. We consider, at first, steady, two-dimensional
flow and later some remarks will be made about three-dimensioﬁal flow.

The momentum equetions for the x and y directions may be written:
Jee 2 )Ic
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(2.11)
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where
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velocity component in x-direction
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velocity component in y~-direction

pressure

density

viscosity
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The gaé is also assumed to obey the perfect gas law

7,,/,87 (2412)

where

R = gas constant = ¢p = Cy

3
]

absolute temperature

specific heat at constant pressure
¢y = specific heat at constant volume

In addition the conservation of matter expressed by the continuity

Dfrew) Jpov)
L. g =0 (2013)

The first step will be to derive an equation of motion of a com~

squation

pressible viscous fluid in a form suitable for discussion.
Upon multiplying equation (2.1la) by u and (2.11b) by v and

adding, one obtéins, -

“’;";'*“"/;*9?2 *I ﬁa ‘;J‘//“a}%*’%/ 7 4’%//(" *?’/%“/]
72/ e / ]
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(2414)

The expression involving the pressure gradients may be eliminated
from (2.14) by considering the equation for the comservation of
energy and using the continuity equation. Assuming that no extermal

heat is added to the system consisting of all the fluid, the energy



equatlon is

aaié;k? = —f/)ﬁ“‘ ?9/,,_ //2/"'//2 /97 .2//;,7// (2.15)

where
E = internal energy = e, T

k = specific thermal conductivity, and

rd
= 4 /2/;‘:/: :(?%7: /5"*%“/7';/» /a‘xa’a"éy ) (2416)

Equations (2.12), (2.13), and (2,15) imply, assuming cp and oy are

the dissipation function

]

Py
constant and writing 7/’2ﬁ s
T4

Jk v

//u -f-f-r—ié/—- 7/_/ "‘/:":‘%‘:?a//}g %//771/ x %/ (2.17)

L)
Hence, writing cL-r-4é » the velocity for an adiabatic disturbance,

/d

and using equation (2.17), equation (2.14) may be transformed to
o ) He 2y (),
(6:{1 /C%?undéfyé%;*>§?;/ (/ gy //, s 2?; // xvzgyﬁ€;,¢¢7
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(2.18)

The left hand side of the equation above represents the dynamic
terms as usually written while the right hand side represents the
effect of viscosity and heat conduction. No problems for (2.18)

will even be set up but simplifying assumptions will be made



immediately.

242 Approximations for Transonic Flow Past a Thin Body

In this section approximete equations applicable to a special
type of transonic flow will be developed. S8pecifically, the theory
will be restricted to the flow past a thin airfoil which may cause
a local supersonic region in a basically subsonic flow. In general
thefe will exist shock wafes in this region.

The most important parameter affecting the nature of the flow
field at a point is the local Mach number, or the ratio of the flow
speed to the sound speed at the point. For most of the flow field
the local sound speed and the flow speed can be simply related by

the well-lknown Bernoulli equation for compressible fluids

X2
wre? a” = omol = =& il
1 ot ' X o=/ (say) (2421)

In all cases a* is well defined from conditions given at upstream
infinity so that a&* = speed at which the local flow speed and sound
speed are equal. Equation (2,21), a statement of the conservation
of energy per unit mass, is derived by integrating equation (2.15)
along a streamline in a region of the flow field where the dissi-
pative terms are not important. Hence equation (2.21) can be written
in another form

u’pp? w?

T*f’7"'ﬁz"'§"‘5f7 (2.21a)

Transonic flow is defined here as flow in which the local flow



speed ié everywhere close to a¥*. The basic flow is uniform, di-
rected along the x-axis and the body, close to the x-axis, is assumed
to cause small disturbameces. The assumption of transonic flow and

a thin body may be introduced by restricting the velocity components

so that
<+
a{xI;/ = 4a “//X,//
yz:;.// = r’(x,;) (2422)
u’ y’
where ¥ , v &/ . Using equation (2.21) and neglecting terms

of higher order the Mach number M can easily be expressed as
’
Wi = Gl (2423)
a

The most important terms on the left hand side of equation
(2.18) may be isolated by considering the character of flow near
M = 1 past a thin body. An essential property is that in general
7‘)-;' >> Z}QJ ;:; é{ . This property may be understood by consider-
ing the rapid growth of a supersonic zone in the y=-direction as the
Mech number at infinity is increased. In another way, in the limit
as M_—> 1 in supersonic flow, the linearized theory (Ref. 1, p. 148)
indicates that the disturbance is propagated practically undamped to
infinity in the y=-direction but is restricted to a small width in
the x-direction.

Furthermore, shock waves in transonic flow are necessarily weak.
It is well-kmown that along any streamline the change in entropy

through & normal shock is proportional to (Mg- 1)3 where M, = Mach



number ahead of the shock (Ref. 1, p. 4l). Hence for transonic

flow the change in entropy depends on A_‘;/ 7 « This meens that
difficulties due to changes in entropy can be neglectéd to the
second order in 4%1/ and outside of shock waves and boundary layers,

the flow can be considered irrotational. Specifically, Crocco's

vortex theorem (Ref., 2) implies

' W A e
(gf Ix A Z}_ § = entropy

= STREAM FUNCETION
so that

e . w

%7 = 5y (2424)

BEquation (2424) also implies the existence of a perturbation vel-

ocity potential P ;/ » such that

i oF
“= Ox
>0 (2.25)
/

V= a}

The terms on the right hand side of equation (2.18) are of course
unimportant in general except in shock waves or boundary layers. As
a further simplification only one type of viscous effect will be
considered, namely shock waves. Recent research (Ref. 3) has shown
that longitudinal waves (shock waves) and transversal waves in a
viscous fluid may to a certain extend be uncoupled and treated sep-
arately. The boundary layer represents to a large degree a trans-
versal wave spreading into the fluid. For this work the boundary

layer will be omitted entirely but it should be remembered that
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both th;oretical and experimentél work (Ref. 4) has shown a strong
local intersction. Now make the following assumption about the
structure of the shoék. Viscosity and heat conduction effects are
considered to be importent in a region whose dimension 4 in the
x-direction is much less than its dimension // in the y=-direction.

( A<<.£ ). Since in this region
f/af;/f* > 694557 /;cj/u*bvk C2§£§/
RIS 54‘_;‘/ 4 £ 205

Then, in the right hand side of equation (2.18) all the terms of the
dissipation function 2{ and all of the other viscous terms can be

seen to be much less then

qu 2 Jie o«
?a—:" P ;’f;’,‘& /J/

In eddition, since across the shock the change in T (see Eg. (2.21a)

2 ¥ Y
A7~ Ak~ ~2a Az’ 4 gepperature term is seen to be of the same

order of magnitude,
o=/ /2
/a / /.ra-»‘ a /A/

Then, under all these assumptions and retaining only the dominant
terms, equation (2.,18) can be written

Aps gedu’ . W F ﬁ" ai’__ /:///1 917'

< a= — 2426
a* ixX % a’/;fd* ax /¥ ¥ )X" ( )

Surmarizing, equation (2.,26) may be considered a valid approximation

under the following assumptions:
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1) transomic flow
ii) +thin body
iii) Navier-Stokes equation valid
iv) flow.outsidq boundary layer
v) no heat addition
vi) shock‘que restricted to 2 narrow regioﬁ.
Heat conduction has qualitatively the same effect as viscosity and
that is now also omitted for purposes of simplification. Then omit-
ting the primes the basic system, under the assumptions above, is

Zﬁ/l( ?—“’-—- 9}’: z ;Zu_

a*  ox %? ™ Ix* (a)
5 0 (2427)
“w_ 2=
5} ox ()
— *
where = Jf
3/#1*

In the case of shock free flow the system reduces to

)’v‘/ J« — 2—V=0
a ¥

“ 7 (a)
(2428)
9“- - 2_1/ = &
% (b)
or if a potential isg introduced
F4 2
/9P OY _ ¥ _
a* Jx x* %;z = (2429)

243 Discussion of Approximate Equations

In this and the next section it is shown that the approximate
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équatioﬁs (2427 = 2,28) should be adequate for a description of
transonic flow phenomena wnder the assumptions made. This is done
in two ways, first by discussing briefly the properties of these
equations a.nd‘ secondly by deriving a law of similarity which is
compared with experimental resultse.

The signi:f‘ic:a.nce of (2.28) can be appreciated better by a com-
parison with the equation used in linearized theory of supersonic

and subsonic motion:
a> X
-2) ° 27 _
ﬂ— 72 Jxt # 4%2 =9 (2.31)

174
where / = "" = the Mach number of infinity, a constant. It should
be noted here that usually Z_X is taken to vanish at infinity,
at least upstream, while ;xp does not. The comparison between

(2428) and (2431) can be made more striking by rewriting (2.29) with

the aid of (2.23) as

2

) _ .
- 2/ ;jyz * .;j;’/‘ =0 (2432)

where, of course, ME /yf/);;/

Now the Mech lines or characteristics of equetion (2.31) are given

by the lines whose slope

and are real if the basic flow is supersonic. This is typicel of a



13

hyperboiic equation; they are imaginary everywhere typical of an
elliptic equation for Z&(q, o Partially supersonic and partially
subsonic flow cannot be described by the linearized theory. It is
clear that an.equation for transonic flow must be non-linear like
(2.29). The characteristics or Mach lines of such an equation must
be real or hmagingry depending on the magnitude of the velocity, i.e.
the equation must be able to change type, depending on the velocity.
The characteristics of equation (2.29) or (2.28) have the differ-

ential equation

:5% = 7 L = ;f:p/// 4

AT —5w (2.33)
7=/ ) 5%
The characteristics are evidently real if 5&?7c9 and imaginary

if é;? <0 , as they should be. The non=-linear equation (2,32)

is thus the simplest potential equation which retains the essential
features of transonic flow. Linear theory applies only locally in
mixed flow. Of course, the slope of the characteristic at any point
is just the Mach angle/ for /4-40/ "/y——f—‘; s as can be seen from
(2433).

Another interesting contrast with the linearized theory is pro-
vided by the fact that any individual stream tube has a throat, as
it should at M = 1, in the transonic ﬁheory;it cénnot have such a
throat in the linearized theory. This is essentially a consequence
of replacing 1 - M byl - Hﬁ; in the one-dimensional continuity

equation

S
~Z, A

-
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where

A = aree of stream tube

w = velocity along stream tube
It is élso reiated, in subsonic flow, to the representation of com~
pressible flow as an affine transformation of incompressible flow in
the linearized th@ory.

- Thus we have shown that qualitatively the approximaté equation
should be valid. Next we can indicate some quantitative results
both theoretical and experimental. First we can develop the relation-
ships which are valid for simple waves (Ref. 5, p. 59) in superscnic
flow as given by (2.28). These may be found by seeking the solutions

of (2.28) for which u is a function of v alone

“©= :741’/ (2435)
(2.28) becomes
27/ - =0
z Loy Aol v ;
L) ¥y~ ¥,=°
éY X
v/ ppf
so that — f;f:= /
. A
and
A
7#/
f: fl‘\-—?—z ;;f “« (2.36)

This agrees with the hodograph epicycloid for supersonic simple
waves (Ref. 5) when the Mach number is close to 1 and the deflection

angles are small. Since, in & sense, a shock free local supersonic
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zone can be represented as a construction with these simple waves
“we conclude that the approximate equation (2.28) should quantita-
tively describe the flow in such a supersonic zone. This will be
discussed in more detail later. Next we consider the system (2.28)
in the large and'make comparisons with experiments based on definite

problems.

2.4 Laws of Similarity

This is done by the transonic similarity law. Laws of similar-
ity are importent for several reasons. They contribute to a better
understanding of the problem by showing the relation between the
various important parameters. They are also needed for comparison
of experiments performed under different conditions. Laws of simi-
larity were first given by Karman (Ref. 6) and Guderley (Ref. 7),
and some aspects of the problem have been discussed by Graham (Ref. 8).

The derivation of the law of similarity can be regarded as an
attempt to see what flows can be related to an slready known flow by
a class of linear transformations.

Suppose that 32 fXQ;ﬁ) is the known velocity potential for

flow past a given body whose shape is

Z
é//= Z ///5_7 (2441)

where
7/ =1/2 thickness; f (o) =1
f; = shape function

1/2 chord.
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The oriéin is taken at the 1/2 chord point of the airfoil and the
~subscript 1 is used to indicate quantities comnected with the
"known" problem. It is assumed that the body is symmetric about
y = 0. Then .assuming shock free flow ﬂ/ff,;/// satisfies the

equation (2.29)
(2.42)

and the following boundary conditions may be taken:

(i) Linearized boundary conditions of flow tangent to the body

o8 _ 2 .,
;— e;‘ /c// 2l A= (2.43)

where the prime denotes differentiation,

(ii) Uniform flow, parallel to the x-axis, at infinity

+
2'4 - -—i //‘/Z;/

77 Py, (2444)

from (2.25)0
The potential _ﬂ is assumed to be determined uniquely by these
conditions.* Now, let us determine the constants A, B, C which will

relate a second potential %_ ‘to the known potential ﬁ in the

following way: 25 /
=ty A /4}/1/:4;2,9/&,// (2.45)

*This is a touchy point for mixed flows which is discussed later.
However, as applied, visual evidence indicates flow of a similar
nature.
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%z = flr/
po o

Let us see what problem is solved by the new potential 7? .

Corresponding points aré defined by

We have
95/ - _f'; —,

angd -

so that (2.42) becomes
z
2
2 2 C' /i

# £ AL T a0

In order that 9§ satisfies an equation similar to that satisfied
by je (2.,42) it is necessary that
g? At

a* f-” - (2a8)

22 may be considered to describe flow past a second body related
to the first by a transformation of the boundary condition at

(y3 =¥z =0). Then (2.43) transforms to

p) e 2% +r T LVT) e xh [k =0
A S 15/ Fo & LG g
or

4. 2" 6o £VE
Z

L7

if 4, = Z;}c/[ // gives the new body shape. In addition the fldw

(2449)
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at infinity must be altered. Equation (2444) becomes

* a*
VIR R M Ay E R S A
A oY Sided
/

or
* 2
/4__ % /'/2%v
g a* /M (2.410)

Equations (2.48), (2.49) and (2.410) give the conditions for simi-
larity. They tell how the potential, space coordinate, body shape,
Mach number at infinity, and total enthalpy can be altered to pro-
duce similar flow; of course comparisons can be made in various ways.
These conditions having been satisfied corresponding points (%, x3)
and (xz, yz) are defined and the properties of the two flows at
these points can be related. For example,

a* M A

g Hmp 8

(2.411)

In general, the two flows will have different directions and magni-
tudes at the corresponding points.
*

Now, for simplieity, consider the case of ag =ay , B = 1. The

constants may then be determined as

2 N
_ /"/72@ ﬁ‘___ /- I;
A— 7: )' /_/72
Ve /7 20

and the condition for similar flows then demands
4 ~ lrX
z -
/‘/%;/ _ __2 < 76’0 /fz/
Y =
/"/y/u

%, T /A7
Y 2 ._//
L7z
From this, two important points may be noticed. First, since T ¢

(2.412)



19

are coﬁstants, comparisons can only be made when the slopes of the
bodies at corresponding points are in a constant ratio. This can
be done when the siopes depend on the same power of x. Second, a
simultaneous variation of Mach number and body shape must occur if
any comparison is to be made. Picking the same body necessitetes
the same condition at infinity and the comperison is trivial, i.e.
identical flow pattern. -

Then a simple set of bodies that can be compared are aifoils
of the same shape functions, i.e. ﬂ/( ﬁ/— f/ o and of the
same chord 9‘=(i . If the condition for similarity (2.412), is

satisfied

%
2 £
/-t 22
A= . = (= (2.413)
/- /ylaa </
corresponding points are given by

Ay =,

/- "//a (24414)

VA S

and then the Mach numbers at corresponding points are related by
2
1= #1348/ >
= T 24415
ALY /Y (2.415)

Summarizing, equations (2.413), (2.414) and (2.415) can be taken as
the law of similarity for a case of
(i) flow outside viscous region

(i1) a; = a; , same total enthalpy

(1i1) ¢

c same chord
102’



(iv) 6'/2';’/= 7{ (.’_:‘/ , same shape function

The trensonic similarity as developed in (24413 - 2.415) can
be checked against experiments in several ways. Experimental meas-
urements (Ref. 4) of the Mach number decay above the maxnmm thick-
ness of 6% and 12% circular arc airfoils and the points are plotted
in Figures 1 and 2. By regarding the flow past the 6% airfoil as
lmm.vn ( 96 ), decay curveé for the 12% airfoil ( @& ) can be com-
puted. The details of the computation are given below.

The conditions for the similarity law as developed in (2.413=
2.415) are met, a.]*_ = a; 9 0 =og =1 1/2" end in accordance with
the linsarized boundary conditions ,l;/(—{//—‘// / —.ZC.’Y for
eircular arc airfoils. However since //a, is not well-defined in the
wind tunnel, the two flows are linked by comparing the Mach numbers
at the points of maximum thickness. This can be done since the
origin remains fixed in the transformation. Then

4= (5% (28] ey L
ALy e

The corresponding points are given by

.7{2,=3¢/

V-t 7 7
Jom b T THE) = T

Curves were faired through the experimental points for the 6% air-
foil and values of M; and y, were read off. Values of M, and ¥

on the decay for the 12% airfoil were then computed.,
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The computed curves are plotted in Figure 2 and show good
_ agreement with the experimental decay curves. The height of the
supersonic zone over the maximum thickness was checked in the same

way and is given im Figure 3.

Extension of Transonic Similarity to Flow with Shock Waves

The similarity law developed in (2.48 - 2.410) can be extended
to flow with shock waves, under the assumptions previously mentioned,

by considering (2.27). If the potential is introduced we have

g 2P 0P % _ o ¥
at Ix Ix* 9;/2"' x5 (2.416)

Then, following (2.45) we obtain, in addition to (2.48-2.410), the

condition that

2% 5 _
A 7 A (24417)
Thus if the viscosity may be varied comparisons may be mede in
various ways, as before. However, in the usual case
+ * *
% e 9 =q,% (2.418)
so that it is necessary that A = 1. This implies that
2 2
e/ /- Mo
— = — 7 X 4
5:: /.—”J; of ;{2 /"o%; / (2. 10)

a distortion of the x=-direction is necessary for similarity. Also,
in the usual case the shape is given by the same function so that

the chord must be correspondingly distorted. This is needed since
4
7

=0 at y = 0 ahead and behind of the airfoil. Thus
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2
g /1M _y

- Ep——]
A (24420)
so that
:iz.= 29 '
Then
2
- Z-z c} Z‘z /_,”2; (2.422)
Finally the condition for similarity (2.48) shows
j? _ /=M 00
72 /_/‘/2“’ (2 04233.)
3,
or i : T
Zyb = ____f”/)
e 2
‘2/p, /- Hon (2.423D)

Corresponding points are now defined and properties at these may

be compared. The law of similarity (2.423b) is the same as before
(2.413), but it should be remembered that the length scale in the
flow direction is altered. This distortion is comsistent with the
possibility of introducing a characteristic length, es.g. é;f ’
when a real fluid is considered. Some similarity of thé ratio of
shock wave thickness to chord is needed. Experiments have not yet
been carried out which permit an evaluation of this law. If any
comparisons are made, however, the state of the boundary layer will

also have to be taken into account (Ref. 4).

Further extension of the similarity law to three-dimensional
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flows énd axially symmetric flows can be made aﬁd the results are
qualitatively the same. They seem to emphasize the essential non-
linearity of the pfoblem. They also indicate that the transonic
approximation should give quantitatively correct results for a
reasonable range of Mach numbers close to M = 1, It was also seen
that the non-vigcous behavior should hold, at least up to the

maximup thickness of the airfoil.

25 Potential Flow

It was shown in the previous section that potential transonic
flow should have some significance. BExperiments (Ref. 4) have in-
dicated a regime in which shock~free transonic flow exists. There-
fore it is desirable to find eolutions for transonic potential flow,
with local supersonic zones past given bodies and to discuss their
meaning., This is difficult for two reasons. First, we are dealing
with en equation which is partly elliptic (subsonic ) and partly
hyperbolic (supersonic) and the proper prescription of conditions to
determine a unique solution to the mathemstical problem is noﬁ knovme.
Also the existence of such a solution is an open gquestion. Secondly,
the equations are non-linear so that representations cannot be built
up on a superposition principle. Some solutions have been given
however (Ref. 9), but thess all determine the bhody shape after start-
ing with a known solution in the hodograph. Hence they can never
discover, except perhaps by inspection, what additional conditions

(as contrasted to purely subsonic flow) are implicit in the physical
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problsm; An additional difficulty is that it is not known whether
potential solutions can depend continuously on the given data.
Guderly (Ref. 7) has attempted to show that it is not possible,
but the detaiis of his proof are obscure.

For these reasons practically no special problems will be
considered here. Instead some very general properties of super-
sonic gas flows and of gas flows in local supersonic zones will be
discussed. The ﬁasic concepts used are found in Ref. 5 and some

of the results appear in Nikolsky and Tagonoff (Ref. 10).

General Properties of Supersonic Flow

In the following work the transonic approximation will be used
exclusively, for the sake of simplicity. Almost all of the results
can be derived on the basis of the exact equations of motion. The
starting point is thus (2.28)
74 o 2% ;—V = 0
a*  ax # -~ (24282)
ox. _ 2Y =y
o (2.28b)
Now consider a pair of functions u(x,y), v(x,y) in a domain
P of the (x,y) plane. Then to eacmboint P(x,y) there corresponds
one point P(u,v) in the hodograph or (u,v) plane. We now study the
local mapping from x-y plane to u-v plane in the neighborhood of P.
If we consider e neighboring point Pl(x + dx, y + dy) this will map
on to a point Py(u,, v,) defined by

% = d/x-/-p&t./;’f—?/: a/x,/} *ﬁfx{,é( 7 g/yf, ‘?— + smaller terms
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s = VXA, /-?} = V/X//* A‘ *‘/y/ ﬁ- + smaller terms

In the limit the smaller terms venish and the infinitesimal vector
PPl maps to Fii. It has been assumed that u,v are differentiable at
P in ﬁ . We thus obtain the mapping of infinitesimal vector (dx,dy)
into (du,dv)

() = (du)p % +/‘9/f' ﬁ (2.518)
) = Hefp # -”’(?//’ y

(2451b)
or, the slope of the mapped vector !9

/a/r/ __(‘fo__i/fé’_/f’—(—/

Bl T ey ¢ ) (Z)) 5
(2.52) will be used to discuss the mapping of various local vectors
under the assumption that: the mapping functions satisfy the equa-
tions of motion in 08 . When the flow is supsrsonic two distin-

guished directions at P are the characteristic directions (Mach lines).

4 _ 4 )2

Aol .-— 1) A (2453)

The streamlines at P are in the first approximetion the lines ;l-=’-f
y = constant of the undisturbed flow and these bisect the angle be-
tween the 2 characteristics (*) given by (2.53). It is a general
result (Ref. 5) that the streamlines bisect the angle between the
characteristics in the physicel plene. According to (2452) thé

characteristic directions map into

a¥
v 4 LY Jae)n
x T ? Vo )
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or using (2.28)
.

¥*
Au 4 (2.54)

Thus a characteristic of one family (+) maps into a direction
orthogonal to the characteristic of the other family (-). The
characteristic direction in the hodograph may be imbedded in a

curve integrating (2.54).

Vs
2/ 2
J = C’-’-L"Z:Z/Zi" “ . = ConST. (2.55)

As will be shown later (2.55) is the equation of the characteristics
of the hodograph equations for the flow. Hence we have shown that
locally, characteristic directions in the physical plane map to
characteristic directions in the hodograph. To show that one
characteristic in the physical plane maps into one characteristic
in hodograph, i.e., that the constant ¢ is the same, we need to
approximate the characteristic in the physical plane by a series
of segments and use a covering theorem. We use here the result
that: a characteristic in the physical plane maps into a definite
charscteristic in the hodograph and the equation (2.55) with a
fixed constant is valid along both these characteristics.

The mapping of equation (2.55) to the hodograph depends on

the possibility of interchanging dependent and independent wvariables
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and leads to the linear equations

7/ —_ A, =
i

(2.56a)
% = fu=C
(2.56b)
This is always possible so long eas the Jacobian
, A%
‘e Y-V, &y = SPNEN .
/ 4y / £ 4 / 7{,\1/// (2 57)
does not venish, since (Ref. 5)
Uy = y . —d
x 67%?0’ 5 5?" 6;/6;%‘ ( )
2458

§%;= —}/ZZV é§:=6;/J4z
j represents a directed ratio of the local areas in the hodograph

to the local area in the physiecal plane. This may be seen by con-

- 7
sidering the map of vector product of du and dv at P.
2 W -y By G KT 5T
..9 .
' —>
= 7 (o@f’(‘?)

Thus if

j €0 the mapping is order reversing

j7 0 +the mapping is order preserving

Similarly in hodograph

ZZ’X?‘J‘Z‘?*W

where

~

Y

v v/

0D
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dJ repreéents ratio of local area in physical plane to local area
in hodograph. It can be shown that J, j €0 for M < 1 (except for
constant flow) but that they may change sign if M > 1, When J =0
for a solution of (2,56) along a curve in the hodograph the mapping
of (u,v) plene may form a fold in (x,y) plane and the edge of the
fold is called a limiting line. Limiting lines have been studied
in much detail (Ref. 1, 5). All we need to know is that solutions,
starting in the hodbgraph, which show this represent physicelly
impossible flow patterns and that: the critical curve in (u,v)
plane which maps into & limiting line can be described by the con-
dition that the images of the streamlines in the hodograph pass
through it in a characteristic direction. The characteristic
directions in the hodograph can be found from (2.56) and are known
in sdvgnce since the equations are linear. According to the usual
methods the chafacteristic differential equation for the system
(2454) aﬁd the characteristics are given by the semi-cubical
parsbolas of (2.55). |

The direction (of flow) along the streamline in the physical
plane is taken as a time-like direction and the direction of the
two characteristics at each point in the physical plane is pre-
scribed as downstream. These characteristics bound the region of
influence in the initisl instants, of a small disturbance intro-
duced into the stationary flow. A time-like direction is thus fixed
for the image of the streamline in the hodograph and then the direc-

tion of the characteristics in the hodograph is knowm. Hence, locally,
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the chaéacteristic.in the hodograph can be identified as expansion
" (B) i.e. increasing velocity or compression (C). This fixes the
characteristics in the physical plane by the mapping.
Three tfpes of flow may now be distinguished locally (of
course flow of the same type may fill a region):

(a) Source-like Flow: The characteristics leaving a streem-

line (S) are here both of same type, either both compression (CC)

or both expansion (EE). A typical example is shown below.

g v
& £
‘:;42:,4—$ ;5?4§:T-$
Vs . F
x u

(b) Vortex-like Flow: The characteristics leaving a stream-
line are of different types; one carries compression and the other
expansion (CE or EC) v

~J
c

EY

(¢) Characteristic-like Flow: In the hodograph the stream-

line S lies on & characteristic; thus S crosses only one set of
characteristics, either E or C. This is Prandtl-Meyer Flow o the
simple waves of Ref. 5.

Exact solutions of these three types of flow exist showing

that each type represents a possibility. In all the discussion so
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far, exﬁept (e), & locel bi-uniqueness of the mapping from hodograph
- to physicel plane was assumed. There is in general no bi-unique-
ness in the large. For a physical problem the flow in the hodograph
may have to Be represented on two or an infinite number of sheets.
The solutions may have to have certain singularities and folds in
the hodograph may alg® be needed. The problems of the solution in
the large will not be studisd here and the main attention will be

to potential flow in a local supersonic zone near an airfoil,

246 Properties of Potential Flow in a Local Supersonic Zone

In this section it is assumed that there exists a region of
shock=free local supersonic flow and the properties of this flow
are studied. In certain cases it will be shown that the assumption
of the existence of such a supersonic zone leads to contradictions.

To be specific, assume there are two continuous and piece-wise
differentiable functions u(x,y), v(x,y) satisfying (2.28) and the
conditions of flow tangent to a given body. Assume alsc there
exists a bounded region é? ,» Whose boundary is a simple closed
curve, in which u » O)and another region in which u < 0. The curve
K: u = 0 which forms part wall of the boundary of R is then
rectifiable and simple. (The case where u = O over a region is.
ruled out.) The body B is assumed to be a thin airfoil lying close
to the x-axis. For purposes of the mathematical boundary value
problem the airfoil coincides with a segment of the x-axis.

I. V(x,y) is a monotonic decreasing function of the arc length

on the sonic line u = 0 going in a clockwise direction about the
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region of higher velocity.

X=Xrs/

a//.—;/r)

Consider the sonic line K represented parametrically by

where (7~ is the arc-;length along the line. Consider

AEF AT
= 4 }ff 4y i (2.61)
by using (2.28). Hence
s o o K (2.62)

dr

In the figure, 5;1/ <0 and A, >0 . It is also possible %o
have ‘fﬂ >0 but then X, < ¢ since the direction of increas-
ing ( is clockwise about the region of higher velocity. If the
equality in (2.62) holds at any point then either ;,‘,y = 0 or
Uy = O at that point. If ; o d Uy = a a segmen
/ , po . ?ff #0 an / ¢ along a segment
of K and if we assume the solution is analytic in a neighborhoéod of
K it follows easily that U, Voo vy and all higher derivatives vanish
in that neighborhood. Under those assumptions uy = 0 leads to a con-
tradiction. However, the assumption of analyticity is hot always

plausible so that it is assumed here that J ;4 0 on the sonic lins.

7’}/ Z___ 2 - 2

Henceuyfo. Now if Zi#:o we have ”Z%"‘ffzét so

uy = 0. Hence 3—?{ = J is also ruled out by the assumption J # 0

and the sonic line cennot be vertical. Thus, in the following work
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wWe use

_}{’-{/ <o o> A~ (2.622)

It is interesting also to consider a curve X;, on which
u = uy = constant, which is assumed to separate a region of higher

velociy from a region of lower velocity. Then along K

bei iy G o Hrt

2
AR SN

2 sy z
6%{’-: é//;; ’/Zz‘;“’/&?//o’”/(/ (2463)

Hence if 4, £ 0 subsonic or sonic the same conclusion prevails
/ P

that

2v ¢ o @6«; K u=q (2.62)

ar

If the flow is supersonic (2.64) persists only if the flow is vortex-
like. In this case the line Kj: u = uj and the streamline S both
lie in the same quadrant between the characteristics leaving 2 point

when the flow is vortex like (see Fig. ). Hence, the slope of Kj

r—-’x p Lu;
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may be Sounded in the physical plane as
/2/ /ﬁ <= E
= / Ax /'—_'
7a¢

This inequality combined with (2.63) implies (2.64).

I¥. The boundary of the region R: u ? 0 must contain part

of bodz B.

The characteristics (Mach lines) are real at a point where
u >'O; each real characteristic in the physical plane maps in to a
definite characteristic in the hodograph (p. 27). Now assume that
the boundary of R does not contain part of the boundary B. Then
each characteristic from K must return to K eand thus intersect it
in two points Pl’ Po. These two points are mapped on the same
hodograph characteristic and actually on the same point since u only
taekes the value zero once on a given hodograph characteristic. This
follows from the extension theorem for the solution of ordinary
differential equations since the characteristics are defined as the
solution of certain differential equations. It can also follow
from arguments on the boundedness of the slope of the character-

istics. This implies that vP = vp «» But by I. this is possible
1 2

? ’g only if K is vertical at all points, which

( reduce R to a line. Hence R occurs next %o

\ él ' the boundary B. The arguments in I and II
R

apply just as well if there is more then one

supersonic region. The monotonicity properties
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still hold on +the .sonic line of each region and each must be ad-
~ jacient to the boundary.

III. The characteristics in R run from the sonic line K to

the boundary Be.

It has already been proved that the characteristics camnot run
from the sonic line to the sonic line. Now it is also shown that
characteristics oahnot run from the boundary B back to the boundary.
The slope of the characteristics which is the Mach angle is a con-
tinuous function over R since the velocibty u is assumed continuous.
Hence the characteristics rumming from P; to Py must somewhere
¢ attain the horizontal direction. This

W implies an infinite velocity which is con-
/// R\\\ tradiction. Hence III is true. In the

] above reasoning it is assumed that the body

2 ¥ 1s 40 thin that the data are given on the

x-axis.

It is interesting to note that the shape of the sonic line K
mey be fairly well specified. The lines x = sonstant must run from
B through R to the sonic line. If they do not, a contradiction
follows. The characteristic leaving P on K must run to the boundary
B. If y is not monotone on this character-
istic it must assume the horizontal direc-
tion, which is forbidden. The supersonic

zone must then have the following general

appearance,
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FYEICAL
CHAPACTER)LT1cs

IV. (u,v) are monotone functions of the distance from body B

along a characteristic in a local supersonic zone of potential flow.

Consider e segment AC of a characteristic which hits the sonic
line at D and the characteristic of the other family extending from

AC to the sonic line K. First, at any point A'

/
v o= 2—/{,,‘ v'-g'/ (2465)

This follows from the symmetry of the

hodograph characteristics onto which A'a*

x. and A'D are mapped or from their equation
ST 9
« 2 Sy =
=4 F ) a% 4 ) AELP (2466)

Now along A¥C*, #/ is decreasing. Hence by (2.65) along AC, V is
decreasing. But (2.66) holds along AC with a fixed constant and
sigh. Thus u is monotonic along AC.

It should be noted that this proof depended on the fact that

the charscteristics from AC extended to the sonic line K and that
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A¥ to ¢* was clockwise. For the other family of characteristics
. the reverse is true when traveling away from B.

v. .Transonic potential flow around a corner formed by straight

sides is not possible; more generally, & flat segment inside & local

supersonic zone is not possible.

- Consider & body with a corner formed by straight sides and
consider a local supersonic zone about that corner. Consider a

characteristic ruming from P on the sonic line K to a point P

PNy, before the corner on the body. From IV
> 'K. \\
v v, and fromI v_ > v, . There-
' \ P ” VB2 Pz~ 'P1
/ '
f % \ fore, for the assumed flow, vP3> va

which contradicts the assumption of

straight sides: (v = constant). There-
fore the sonic velocity can be reached on the body only at the
corner. From symmetry and from discussion of the shape of the super-
sonic zone unde; III it then follows the supersonic zone consists of
only the corner point. This solution makes sense for a body with
infinitely long sides and with the flow at rest at infinity. This
problem is solved for incompressible flow., However the infinite
velocity which occurs at the corner in the incompressible flow is
now replaced by the sonic velocity. When the body dimehsion is in-
finite there is no characteristic length in terms of which the height
of the supersonic zone can be expressed. However, when the body has
a finite size, as a double wedge airfoil, shock waves are needed to

satisfy the boundary conditions as soon as a sonic region develops.
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Tﬁe proof that potential flow cannot exist when there is a

~ flat ségment is analogous and depends on monotonicity of along
the characteristic.‘ Consider a flat segment joined to the body
With continuous slope and the characteristic going downstream from
its start. We have vy > vg and vg'7 Vy which implies vy 7 Vg

a contfadiction._ (vA = Vgt = Vg is ruled out as this implies the

existence of a simple wave: see next paragraph.)

Another interesting result is that the local supersonic zone
cammot enclose a body with a corner (v discontinuous). In turning
a corner the supersonic potential flow must use a simple wave
(Ref. 5). This simple wave is a region which has a degenerate
hodograph and which has one family of characteristics which are
straight lines. If these straight characteristics exténd to the
sonic line they must be vertical and hence the velocity is sonic
everywhere, a contradiction. The occurrence of a simple wave or
Prandtl-Meyer fan in a local supersonic zone always implies the
existence of a shock wave,

VI. The flow along a convex boundary next to a local super-

sonic zone is vortex-like.

The convex boundary is defined by ;Z, < ¢ along the boundary
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in the;flow direction. The proof of VI is indicated from an in-
spection of the flcﬁ picture and its mapping in the hodograph.

In the physical plane one expansion characteristic of E runs from
the sonic line into the streamline and one compression character-
istic must run from the streamline to the sonic line. In the
hodograph a vortex-like streamline is the only one for which this

is possible. The result may be demonstrated analytically as
v

follows. Consider a point P on S and the relationship which holds

along an E characteristic

~ 94
2z Sy
b=l 5/aE Y (2.67)

and differentiate (2.67) along the streamline. This may be written

— 4
dy _ dp¥ B 4 F p (2.6

av
But by I and since ap <0 along S, J;; > ¢ . Therefore
| »

(2468) gives
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¥
;_,/L’ <—y 2y, (2469
P |

74/
The slope of E at P in the hodogreph is just — )/ x % .

Similarly by considering C and the relationships that hold on it

2 _7:{/://, (2.610)

. 22; | =
Hence the flow is vortex-like.

By examining the hodograph picture it is apparent the flow
must be vortex-like in the entire region R. Hence the extension
of I applies and J/ must attain its meximum and minimum in the
boundary. The lines of constant velocity run from the boundary
to the boundary,

If for any reason the inequalities (2.610) must be violated
and the image of the streamline in the hodogreph is made to appear
source-like we have a contradiction and the assumed potential flow
cannot exist. For example, it is always pcssible to do this by
introducing a sufficient jump in the curvature of the surface if
the velocity is assumed fixed at a point.

Discussion.

The main question so far was the existence of & solution and
the consequence of it. It was shown first of all that for certain
bodies potential flow could not exist and that shock waves were

needed to satisfy the boundary conditions. The necessity of shock

waves for this reason is familiar from purely supersonic flow.
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Also if was shown that although one body may permit a transonie
zone, a body close to it with only a small flat segment cannot.
Also assuming & solution for'a givenh body and Mach number at
infinity thé supersonic potential zone may be made impossible by
a change in its curvature.

However, i@ is not so clear why, for a given smooth body,
the potential flow cannot exist as M is increased to one.
Friedrichs (Ref. 11) has shown that under these circumstances,
starting with the solution in the hodograph, the flow‘oannot
breakdown because of a limiting line. This is of course connected
with the fact that a limiting line demands a corner of the stream-
line and this cannot appear on a given body. The reason for the
impossibility of a potential sodution might be connected with the
¥violation of equations (2.69) and (2.,610) and the impossible flow
pattern in the hodograph. However this criterion is not very

useful and further research 1s needed along these lines.,

247 Drag of Transonic Airfoils

Cogsider a non-1lifting airfoil moving at U <1 through air
w®

at resé;with e local supersonic zone which contains shock waves.
In these coordinates it is easy to concentrate the attention on
a definite mass of gas,bounded by planes normal to the flight

direction at F @ ., Then the First Law of Thermodynamics applied -

to this gas states that:

Heat added to gas = Gain in internal emergy + work done by gas  (2.71)



If thetassumption.is made, as before, that no external heat is
added, all the heat édded to the gas comes from the dissipative
effocts. These effects are mainly in shock waves and the boundary
layer. If tﬁe flow pattern is steady the temperature distribution
is the same so that there is no gain in internal energy. The work
done by the gas is ell in retarding the airfoil. Thus in a unit
time, if

1 = dissipation function

D

drag per unit span (two-dimensional flow)

v

vsloeity of airfoil

[t 27

For transonic flow V = a* and ;7/is approximated assuming a single
normal shock of lengthu// « For convenliehce assume the airfoil is
symmetric. The expression for the dissipation, as worked out in

(3.2), is o0

. ) ¥ 3
£ f;/’ 2 _ 2L «
/%‘ a7l S (2475)
- 0

- OO

replacing @, of ( 72 ) by vy = velocity ahead of shock. Hence,

if / = height of shock

v
wede” [y < S’

~o

or:

Q§$v
i

ff/fﬂ//& /’
A *-

pﬁ/1'4/

bar denotes mean value



=

RS

6=—‘?‘;‘=E, = )t (274)

R S

C = chord

(2,74) gives the "wave drag® of a tramsonic airfoil. It is
normaily'quite spall but increasss rapidly as M —* 1 for f{ be-
comes large rapidly (see Fig. 3). This drag is, of course, felt

in the pressure distribution in the airfoil.

248 Determinatisn of the Height of the Supersonic Zone from Data

on the Airfoil

In this section it is assumed that we have transonic potential
flow adjacent to a convex boundary and that the velocities are known
on. the boundary. Theoretically it is possible to determine the
height and shape of the supersonic zone by the computetional methods
of characteristics. Practically this is impossible because the
slope of the characteristics become vertical hear M=1. It is
showvn here that a certain functional relationship must exist along
the streamline and the determination of the height of the supersonic
zone is reduced to the solution of an integral equation. A first
approximation is given for a special case.

A solution to the equation of motion must satisfy the follow-

ing equation in the hodograph

/ —y =
% Uy “fuc =0 (2.81)
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derived from (2.56). Darbfoux (Ref. 12) gives the general solu-
tion for (2.81) of an initial value problem, with y, y, given on
u =O (sonic line) . " P _5/

7
j/wu} "'/7[[//-,# ——/: /.,z;f,/]z‘ (/’Zl/ f/z‘

/

é
_,Ld//ﬁff.z' /'/14 Ag—/{/zf /—f] /Z‘

(2482)

which is valid at any point P whose domain of dependence lies on
the initial line.

If vy and vy are the velocities at the entrance and exit of
4 the sonic line the representation
(2482) is valid in the triangle

Vs s Vo formed by the character-

istics through vy and Voo In par-

ticular, assuming a convex body, the

bounding streamline SB is vortex-like

and hence lies within the trddngle so

that (2.82) holds in the local super-
sonic zone. The functions f and g are related to the initial data

since at u = 0

-%
%/ou}z 741»7 /f‘ g-2/ o = /g Frv)

_s/ /‘//
Where. /z" !A/— JZ = /,/.r‘/;/

(2.83)



47

= (7
S 18Y Z F (2484)
How approximate the airfoil by y = O and assume that all data are

g:‘ufen on the airfoil., We may express the data as:

"L/ﬂ% /"/ (2.85)

"'//}V/

Since x, =y, = /(v) on Sy we obtain, using (2485), the follow-

oG

ing pair of integral equations for f, g which must hold.

-7
/ L /.ef//]z‘ % we //a A ﬁ/” bt -t W

(24886)

% -
7~/ /z

M/év/égfd//[’*//”?/"/]/ﬂ// ?

//_ﬁ/f Aitn]? /—z/ 2
-/
Y7 / gy Lat) Jityl V-2) % (2.6)

The general solution of (2.86) and (2.87) has not been worked out.
However an approximate answer may be found by putting h =0 under

the integral sign. This gives

e S Ty B ET T
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. —Jdg/ v ]
/{r/-‘/#/// /V/ 74#1/1/3-;2/]%//: _/a] (2.89)

where

/
j/'=-/ZJ 2,7) ./z‘ /z‘ ety

For a symmetric solution we have g' (o) = £' (o) so that

/
//0/ —-/ /m/ f_—f (2.810)
7 %a’F o % 7
Frred = = B)5) AU
A

/ x 2
Now /f/#/: v -"ﬁf along Spe Hence the height of the super=-

(2.811)

sonic zone, on the line v = 0, is approximately (see (2.83))

D owar; ( : 2)
= — -~ 2481
S~ [
H5f o
Example: Consider & circular arc airfoil so that approximately
V= ""24*(/\’ on J} ; 7 = thickness ratio

Ay K

Fx = TAAF

Then: 2

N SN Y
<

/” :27:/7/) T - A (2.813)

—

For T = 0.06, 0.12 (2.813) gives straight lines which are drawn in

Fig. 3. In comparison with the one experimental point which is
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really aveilable the values seem slightly high but the agreement

is fair for M, £ 1.10.
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3. FLON THROUGH A SHOCK WAVE

A simple example of a non-linear longitudinal wave is a shock
wave, which in a real fluid is of course not a discontinuity but a
continuousvsteep variation. The effect of.the non-linearity in
maintaining the steepness and preventing viscous dispersion of the
weve is vital, and is lost in any lihearized theory.

| The actual nonflineafvproblems are very difficult and, at
present, not capable of solution. However, the main effects can be
shown by considering simplified problems. In the following sections

an approximate treatment of weak non-stationary waves will be given.

3,1 Derivation of Equations

Basic Equations for Transonic Flow.

Consider one-dimensional longitudinal flow with the velocity
u(x,t). The basic assumption is that at x = = ¢ the flow is uni-
form and steady, slightly faster than the speed of sound;
Uy = &+ 4l (3.11)
where the constant a™ is the speed of sound at M = 1. Under the
conditions assumed the flow is isentropic at - o0 and the Bernoullil

equation is

22
wz 2 o7/
Ly a2 . =2 iy = constant (3.12)

2 -/ z
The equations to be satisfied by the flow are continuity, momentum

energy; and the perfect gas law

4/7_,_ +%4</,\,=o | (3.132)
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/z( +/aza(z - —-ﬂ‘ Ji{ ‘{x/x (34131b)

/?y {:*/“"7 = / //4 {a/’)ﬂ/jf—/#x (3.13¢)
P 7/7 (3.134)

The assumptions of no heat conduction, no hegt addition to the
system, and a perfect gas have been made. The first step is the
derivation of suitable equations from (3.13)

Derivation of a Bernoulli Equation, Including Viscosity.

For convenience introduce a velocity potential _J/A; f/ such

that
©xt) = —é‘ (3.14)
Then integration of the momentum equation from —o2 to x yields

X
P
g4 8-/ F 2§P/f"’f%ﬂ % / % / 4 2 Gas)
A X % -

The right hand side of (3.15) can be integrated under certain per-
turbation assumptions. For transonic flow assume that all the

guantities differ slightly from their values at M = 1, Thus

X ¥ /’+
/p: f //”/6 / where & -— 7«;7’ —% 1is defined from the

_ X // V condition at — o0 =x
r
>+ &%)

= u X frra*)
/a /a , where /4‘7{ /71/
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. ) X ¥
and wheore all the quantities %’f J*/ ﬂ/ "</ + Purther intro-

duce a perturbation potential jﬂ (X, Z) such that

_éj;/,; Z) = a #,- Ayt (3417)

where A
ﬂ, << X

Then using (3.11), (3.,16) and (3.17) and neglecting higher order

terms we approximate (3.15) by
2 g x " /
Pyt = fo * d}“z/:;"”f:’év“ff*“ () (3.10)

(3.18) is the required relationship and expresses the pressure at

any point in terms of the derivatives of the perturbation potential

Derivation of an Egquation of Motion in Terms of the Perturbation

Potential fp .

Multiplying the momentum equation (3.13b) by u yields
Y = F r S )
Ly, +uy, =—— t L (pdy (3.19)
The continuity, energy and state equations of (3.13) can be used

to eliminate /, since
/7;‘ _/;/' = ;/y‘///#&z “//;9}”1‘/14? (3.110)

Then (3.19) and (3.1 are combined as

| z = _ £ .
wy v (B = P L F e )

Introducing the perturbestion assumptions (3.16) and (3.17) in (3.111)
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aﬁd neglécting smaller terms, we have
- 2
*° *
* +* f.!'*{/ = a
"‘ﬁz‘ f-/-?ajffﬂ //5 Y " ¥ 7éz‘ (3.112)

In order to obtain an equation for 9’, we eliminate pz from (3.113)
by using the Bernoulli equation (3.18) and we relate p* and s* by
using the energy equation (3.13¢c). Introducing the perturbation

assumptions in the energy equations
f’
/9*““ /ﬂ‘/’/ 6/// (302
Jf IX 0133)

or integrating

£ _s* = L-att) # Tt

7 (3.113b)

where J = integral of the dissipation, end J(- @ ,t) = 0. The

flow is isentropic at x = « & so that £ = 0 and

+#/
%m 2= T - (sa9)

Hence

76 o /)f?’* ;f/} (3.115)

Then using (3.18) and (3.115), we obtain from (3.112) the following

basic equation for 9ﬂ(x,t).

42‘ # IR ’292‘ +/M/ja ':rg =174 ~a” J/;f?/;/d'%«* xxf/ (3.116)

Non-linear terms which allow for both the steepening of the wave

« gﬁ‘ and variations in the local speed of sound are present in
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this equation. It should be remembered that the equation is ex-
~ pressed in a system of coordinates where the flow is slightly super-
sonic at x = - a0 . Notice also that the dissipation integral does

not occur in the right hand side but only in the lower order terms.

342 Transonic Flow Through a Shock Wave

Steady-State Solution.

For a shock wave which is already developed 9ﬂ=}427 and (3.116)

becomes
* _ __{y""
Grr) B Fy — 2 °7-/¢// =3 y’a‘xx (3.218)
where
v* 7~1) /) £ L5
T/ = F /
/ / (3.21b)
It is now assumed that the dissipation in (3.21la) is small
enough to be nerlected and (3.2la) is then integrated from —o to
x, to give
ﬁ%/*(
2 e 2 /s _ = .
W =W = Zy wkans 2/741) (3422)

(3.22) may also be integrated and if x = O when w = O we obtain

- j;,,,/ /%ﬁy (3.23)

Also we heve the potential

PR = - /7/% ‘”’4/%‘2 %/ (3424)
p=0
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(3.24) éepresents a velocity distribution which ié supersonic at

'x = - ¢o0 and subsonic at x = 4+, with a continuous variation which
is most rapid in the neighborhood of the origin x = 0. For smaller
valﬁeé of ‘v’¥this region of rapid change becomes increasingly
narrower and approaches zero as Z/f"’.

The importaqt effect of the non-linearity in allowing a tran-
sition from w » 0, (supersonic flow), to w < O, (subsonic flow) is
fhus shown. This transition is missing in any linearized theory.

As a check on the approximations the order of magnitude of
the dissipation integral (3.21b) can be found using the solution

(3423). We obtain

UJ'
par )
J-/)(}e: /7/-//2;3/ F

ffw?{xwfmaf//

so that the total dissipation is

—

1/3 2 7
07—/”/"‘-'345/77 q.‘:f; -~ @'// O (3.28)

This indicates that the dissipation can be neglected if the Mach
number ahead of the wave is sufficiently close to 1. Actually the
steady state problem including the viscosity and dissipation can
be solved for waves of arbitrary strength (see Ref. 13)., However
the viscosity is massumed to be constant in that derivation. For a
strong wave the variations of viscosity and heat conduction with
temperature, and the dissipation all become important. The weak
wave aésumption is the only one consistent with assuming constant

viscosity.
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An Approximate Non-Steady Solution.

In this approximation tie integral of the dissipation is again
neglected. Further; in order to simplify the problem the assump-
tion is made‘that
B <<y (3.25
so that certain terms in (3.116) may be neglected. This is an
approximation which becomes better for large t when the solution
will be shown to approach the steady state. (3.116) is thus approxi-

mated by

I SN
.?_cf,f # (Y+J )Sfﬂx = 3"" ﬂxx (3426)

Integration of (3.26) from — % +to x gives

% W//V Z) T 5 Y (3.27)

since = w/y s B, > 0 at x = = @ . (3.27) is a
non-linear equation for which the general solution of the initisal
value problem for the domain (—® <X < t > ¢") can be given.
Only a special example is treated here which is the diffusion by
viscosity of en initially sharp wave front. The initial choice is
the solution for a weak wave without viscosity and then at t = 0

the viscosity is introduced. The initial conditions are

grXo)= Ay x X< o
=-a X X>0 (3428)

The solution is found by assuming
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prt) = F7 XLl

(3.29)
‘where & (x,t) is to satisfy a linear equation and the function F
must be determined. Such an assumption about the solution is sug-
gested by similarity solutions of (3.27). Under the assumption
(3.29) (3427) becomes
Flo §2ap’l= 22 F g’ F,
/'/0)5'* 5 / AT 7 /ﬁ/ > Fi5) 8, (3.210)
(34210) is satisfied if ,
2 %
7;/ F e : i
(3.211)
and
A - 2
g F/&J g -® = J Ax (3.212)
The general solution of (3.211) is
F/ﬂ):’ -—A/&/ /"/ &(X/ZJ/
7
The constents 02, Cl mey be chosen by having 50'* © as 7 —+0 |
and having F = O where &= 0 . Then
= ) — &/X 'f//
A78) /7/&/ (1 / (34213)
/
/ — oot
~18) = /./?-éﬂ/r,i/ (3.214)

and the linear equations to be satisfied by & is a modified heat

equation
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P74
g - ?}’//-’?-19/= F 8, (3.215)

The boundary conditions for (3.,215) are found from the formulae re-

latlng &, # through the known function F:

f(X/f)s- -2/6’} //_ JQ(X’{I}

(3+216a)

Ox,t) = ./? / /= '%%[ —aly /x,i/]/z (3.216D)

Thus using (3.28) the initial conditions for (3.215) are

_ a2

Blx0)= '7//’6 £ ¥ <o (3.217a)
oo X

= Aj/- € T/ F>o (3.217b)

The solution to (3,215) satisfying the boundary conditions (3.217)

mey be obtained by Laplace tbansformation or other methods

Gt o !/——‘
ﬁ/‘/t}gz y. - T éﬂ‘ .z-wfx} a/?_
1+ 53 € A /"‘ (+1) 4l
21’" 22 "T)

A “'_?7 x>0  (3.218)

It may be verified that (3.218) satisfies the boundary condition

(3.217b) by virtue of the formula
&/
J < . =X
X / o (Y5 < . >

Y ﬂ.:— 7 X' >0 (3.219)
: :/ v’a-//a.z
@ av¥ /
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Thus thé_ potential and velocity distribution for x 7 O are obteained ;
ond Pul-%, t) = - Px(x 2 P %, t) = f, (x, L)

. (;(,;// » /
y,xlt)-a—)/&// w—»{ u/.,z /_‘mﬁf

(3.2208)
, a0
- '5’*/}_‘,{521‘ Z'Z‘ M //;" /
HoX, /¢ 22 /'.r = /ﬁ/)te. o
" M A 2 S "
A= ot - S T = / (3.220b)
cood C2X 2 -77 @2 ff— e X
3 2ar € A e — }l:”
P4l 3
:r* ¢ /
P
/14/}4/32‘ A
YY) = £Ale)
? 7 4
=z-3/ [av 22
é -~ 3nt _6’{-[)0}- (3. OC)

“ co
“YuX_ Lo T3 cov //i? ;y T
.zm£ = "7 o e—<t 2* “"_
2} ﬁf//yyz _j
Ve (—z5— *7
This solution (3.220) approaches the steady-state solution very
rapidly because of the exponential damping with time. The ratio
#¢
a‘;.? ‘may be computed from the solution (3.220) and it can be
X
seen that for t 2 O this term is very small except when x = 0,
whers %: © . For any fixed x = O the ratio becomes very small
after some time.
Thus one simple example has been given where the steady state

of the shock wave is the limit of special non-steady solution. The
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problem had to be simplified greatly in order to make an analytical
treatment possible. However, the essential features of non-linearity

and viscosity were retained.
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