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ABSTRACT

A theoretical and experimental investigation has been made of the
longitudinal dispersion of chemically and dynamically passive solutes
during flow through nonuniform, isotropic porous media. Both
theoretical and experimental results are limited to the high Peclet
number, low Reynolds number flow regime. The goal of the theoretical
investigation is to provide a quantitative method for calculating the
coefficient of longitudinal dispersion using only measurable structural
features of the porous medium and the characteristics of the carrying
fluid and solute. A nonuniform porous medium contains variations in
grain scale pore structure, but is homogeneous at the macroscopic level

for quantities such as the permeability or porosity.

A random capillary tube network model of nonuniform porous media
is developed which uses a pore radius distribution and pore length
distribution to characterize the grain scale structure of porous media.
The analysis gives the asymptotic longitudinal dispersion coefficient
in terms of integrals of kinematic properties of solute particles
flowing through individual, random capillary tubes. However, shear
dispersion within individual capillary tubes (discussed in Appendix C)
is found to have negligible impact on the overall longitudinal
dispersion in porous media. The dispersion integrals are evaluated
using a Monte Carlo integration technique. An analysis of the
permeability in nonuniform porous media is used to establish a proper

flow field for the analysis of longitudinal dispersion.



The experimental investigation of longitudinal dispersiom is
carried out by measuring (with conductivity probes) the development of
an initially sharp miscible displacement interface. The experimentally
determined longitudinal dispersion coefficients are found to be greater
in nonuniform media than in uniform media when compared using Peclet
numbers based on the geometric mean grain diameter. The experimental
breakthrough curves also display highly asymmetrical shapes, in which
the "tail" of the breakthrough is longer than would be expected from

advection-diffusion theory.

Although the theoretical model does not predict the tailing
behavior, it is found that the leading portion of the breakthrough
curve is described by advection-diffusion theory. The theoretically
determined longitudinal dispersion coefficients lie roughly within a

factor of 1.35 of the measured values,
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CHAPTER 1

INTRODUCTION

This research report presents an investigatiom into the
relationship between microscopic structure of porous media and miscible
transport phenomena during flow through porous media. This work was
done to provide a more fundamental understanding of environmental
problems relating to mass tramsport in soil and groundwater. With the
generation of roughly 10 million tons of non-radioactive hazardous
wastes per year, increasing 5 to 10 percent annually, it is not
surprising that a disposal problem exists (Eichenberger,et al., 1978).
In addition, current disposal pracfices put over 50 percent of these
wastes into the ground (Hill, et al., 1981). Demands on the land to
contain or degrade waste material poses serious design problems for
environmental engineers who are asked to predict the effects of
disposal in extremely complex environments. In addition to waste
disposal, pesticide management and salinity control in agriculture call
for an ability to predict mass transport in soil and groundwater to

prevent contamination of water supplies.

From a broader perspective, the ideas and techniques developed for
analyzing transport phenomena in porous media are useful in a variety
of engineering problems. Applications include packed bed reactors, ion
exchange, chromatography, enhanced petroleum recovery, filtration, and

transport in physiological systems such as blood capillaries and the

lungs.



While the details may differ in different applicatioms, it is
important to recognize the similarities of these problems. For
problems involving the tramsport of passive solutes, the fluid and
solute properties are often well known, while the the geometrical
structure of the pore system is usually difficult to characterize and
use in a solute transport model. The common practice is to neglect the
grain scale structuie of the porous medium and use macroscopic
transport equations with transport coefficients that are determined
empirically. By using a macroscopic approach, however, valuable

insight into the relationship of pore structure and transport processes

is lost,

1.1 Phenomenological Description of Flow Through Porous Media

Ever since the experiments of Henri Darcy (Darcy, 1856), the
relationship between flow rate and hydraulic gradient has been
recognized, For the one-dimensional system shown in Figure 1.l and an

incompressible Newtonian fluid, the relationmship is given as
o, - ¢
1 2
Q'KA( L ) . (1.1)

where Q = volume flux through the column (L3/T)
K = hydraulic conductivity (L/T)
A = cross-sectional area of the column (L2)

column lengthv(L)

e
]

z + p/(pg) = piezometric head (L)

-
[}
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Flow in a One-Dimensional, Homogeneous Packed Column
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p = fluid density (M/L3)
g = gravitational acceleration (L/Tz)

p = fluid pressure (M/LTZ)

Dividing Q by A gives the specific discharge (or Darcy velocity), Vpe
The specific discharge is a fictitious velocity, but the average linear
velocity in the direction of the column axis is given by Vg = VD/O,
vhere V_ is the seepage velocity (L/T) and 0 is the volumetric porosity
(volume of voids/total volume of medium). The seepage velocity may be
visualized as the velocity of a stable, immiscible displacement front

passing through the colummn.

A qualitative explanation of Darcy”s law can be made by
considering a balance between the applied piezometric head gradient and
viscous stress gradient., For a uniform porous medium (which has a
single grain size), the pore spaces may be scaled by a single length
scale,a. The dimensional piezometric head gradient is, pgV¢, and
the viscous force, Fo» is scaled by

Fv‘" uVSa

where u is the dynamic fluid viscosity (M/LT).

The viscous stress gradient, VTsh"is scaled by Fv/a3, or

vt ~ HVS/a2

sh
so if
Vo ~ uv /a2
g s
we have
2

S \Y



2
or vy~ -q%—& V¢ (1.2)

where v = %- is the kinematic fluid viscosity (L2/T).

Darcy’s law, given by equation (1.1), is limited to low Reynolds

number flows, where

Re = —%— is the Reynolds Number

and d is the grain size (L).

When the Reynolds number exceeds 1, nonlinear (inertial) effects become

significant and Darcy”s law is no longer valid.

1.2 Phenomenological Description of Dispersion in Porous Media

Solute molecules flowing through a porous medium do not all move
at the same velocity, demonstraéing that the mean velocity is an
average of a velocity distribution. As an example, consider again one-
dimensional flow in a packed column, with a solute slug introduced at
the origin, spread uniformly over the cross section. As the solute
moves downstream, the spatial profile of the solute concentration
spreads, indicating the distribution of longitudinal speed of the
solute molecules (see Figufe 1.2). Under certain conditions (to be
discussed in Section 1.4), this process has been found to be adequately
described by a macroscopic advection-diffusion equation (Bear, 1972).

2
3C 3¢ a%c
at T Vs 3x = DL 552 1.3
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FIGURE 1.2

Development of an Instantaneous Point Source
During Flow Through a One-Dimensional, Homogeneous Packed Column



where C = solute concentration (M/L3)
D, = longitudinal dispersion coefficient (L2/T)

time coordinate (T)

(a4
]

longitudinal coordinate (L)

M
]

The value of DL is a function of the flow and porous medium
characteristics, and is mathematically analogous to molecular
diffusion. It should be recognized here, however, that DL may be

orders of magnitude greater than the coefficient of molecular

diffusion,

The mathematical representation of an instantaneous point source
in an unbounded domain requires the following initial and boundary

conditions for a unit mass input:
C(x,0) = 6(?)
c(x,t) =0
where 6(x) is the delta function
o0 - 1 e e []

The solution of equation (1.3) under the initial and boundary

conditions given above is well known to be

2
-(x- Vst)

4DLt

C(x,t) = ————= EXP (1.4)



The typical experimental investigation of longitudinal dispersion
does not use an instantaneous slug, but displaces the resident fluid
with a solution of some constant solute concentrationm, C0 (Rose,
1977). Again, assuming an infinite, one-dimensional medium, the

boundary conditions are

lim

X+ =<  Clx,t) =Cy
lim

X & 4o C(x,t) =0

and the initial condition is
c(x,0) = Co
c(x,0) =0

The solution to equation (1.3) under these initial and boundary

conditions is

C0 X - Vst

C(x,t) = 5 erfc —-\/.4;——
D .t
L

where erfc is the complementary error functionm.

(1.5)

The complementary error function solution, shown in Figure 1.3, is
commonly known as a breakthrough curve. Actually, breakthréugh curves
are more often measured at a fixed location over time than as a spatial'
profile at a fixed time. The difference between the two profiles is

small under the following condition (Fischer, 1964):



FLOW

Packed

- Solute - Column
Concentration

aoup}siq

<

FIGURE 1.3

Miscible Displacement in a One-Dimensional,
Homogeneous Packed Column
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\ s::/1)L>>1

As vsx/DL becomes small, breakthrough curves measured at a fixed

location become increasingly skew.

Despite the general acceptance of an advection-diffusion model of
longitudinal mixing in packed beds, some deficiencies are evident. As
brought out in the review article by Sundaresan,et al. (1980), the
advection-diffusion model predicts backmixing at the source in
breakthrough problems and infinite propagation speed of the initial
solute appearance downstream, Backmixing was studied experimentally by
Hiby (1963), and his conclusion was that no backmixing occurs. The
infinite propagation speed of initial solute breakthrough is physically
impossible. These artifacts of advection-diffusion theory could be
significant at the "tails" of the concentration-distance profiles,
where a small amount of breakthrough would be erroneously predicted

using advection-diffusion theory.

Generalizing equation (1.3) to 3 dimensionms, with flow along the x
direction, gives
2 2 2
d 9
B,y o, 2_9+DT(8_9+.8_C> 1.6)

sz y2 dz

[e3)

where D, is the transverse dispersion coefficient (LZ/T).

Transverse dispersion is a hydrodynamic effect of the velocity

distribution transverse to the mean flow direction. The value of Dy,
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like DL’ is a function of the flow and medium characteristics.
Similarly, its value may be orders of magnitude greater than the
coefficient of molecular diffusion. Experimental investigations of DT
have used a steady-state dispersion pattern developed from coflowing
streams (List and Brooks, 1967). For steady-state dispersion in two

dimensions, as in Figure 1.4, equation (1.6) reduces to

2
9C o C
V —~=D. —+ D ——
s 9x L ax2 T By2

(@]
S8}

The longitudinal dispersive flux is considered negligible for a

continuous source when advection dominates longitudinal tramsport or

V x

>> 1
D
where x is the longitudinal distance from the source. Therefore,

sufficiently far from the source, the transport equation may be

approximated by

3¢ 3 C (1.7)

and the appropriate boundary conditions are (meglecting boundary

effects in Figure 1.4)
c(0,y) = CyH(y)
H(y) is a step function, defined by
H(y) =1 y<0

H(y) =0 y>0
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The solution of equation (1.7) under these boundary conditiomns is

C
C(x,y) = jg'Erfc ~—L
4DpX (1.8)
\'
s

The complementary error functionm solution is shown in Figure 1.4.

By comparing the data for longitudinal dispersion presented in
Bear (1972) with the data for lateral dispersion given in List and
Brooks (1967), the ratio DLIDT is found to be greater than or equal to
one. These data are the result of dispersion measurements in isotropic
media, and show that the existence of a flow direction creates
anisotropy in the dispersion. Since the medium is isotropic and
molecular diffusion behaves isotropically, the distinction between DL

and D,, must be a hydrodynamic effect.

T

1.3 Mechanisms of Dispersion

The use of the advection-diffusion equation with an enhanced
dispersion coefficient to model solute transport in porous media is
justified if sufficient time of motion is allowed for the solute to
sample the velocity distribution. T§ obtain a better understanding of
the phenomenon, the underlying physical mechanisms responsible for
solute behavior must be determined. Many mechanisms have been given as
the cause of dispersion in porous media (Greenkorn, 1981, Fried and
Combarnous, 1971). For a passive tracer, three general mechanisms are

proposed to explain dispersion.
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1.3.1 Molecular Diffusion

In stagnant or slowly flowing fluids, molecular diffusion is the
main dispersive transport mechanism. The rate ‘of macroscopic or overall
molecular diffusion in a porous medium is related to the rate of

diffusion in a free fluid by (Karger,et al., 1973):

DM = gD/X

where D, = diffusion coefficient in porous medium (L2/1)

diffusion coefficient in free fluid (LZIT)

o
]

>
L]

tortuosity (-)

Tortuosity is defined as the ratio of the average path length followed
by a solute molecule to the straight line distance between the initial
and final locations. As would be expected, the reduction of free
space, 0 , and the increase in path length, A , reduces the overall
diffusion rate. In higher veloéity flows, mechanical or hydrodynamic
dispersion tends to increase in importance relative to molecular
diffusion. The effect of molecular diffusion on dispersion can be
enhanced by the presence of dead-end pores or pores with relatively
stagnant fluid (Coats and Smith, 1964). Diffusion into and out of
stagnant zones combined with advective transport can produce highly

asymmetric breakthrough curves or "tailing,”

1.3.2 Tortuosity

Tortuosity, as defined above, refers to the tortuous path a solute

molecule must take to pass through a porous medium. Empirical studies
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have found the tortuosity to be related to the formation factor, F,

which is the ratio of the resistivity of the porous medium saturated
with electrolyte to the resistivity of the pure electrolyte over an

identical distance. The relationship found is (Bear, 1972;

Winsauer, et.al., 1952):

A = (Fo)3/5

Tortuosity can cause lateral dispersion by forcing solute molecules to
take random lateral steps. It affects the longitudinal dispersion by
presenting a selection of paths of different lengths which may be used
to travel from one point to another. In general, solute molecules
traveling along different streamlines will encounter various random

paths resulting in dispersion of the solute.

1.3.3 Differential Advection

Solute speed is defined as the tangential advective speed of a
solute molecule along a pore. Dispersion due to differential advection
is familiar from the work of G.I. Taylor (1953) on dispersion in pipe
flow. Differential advection creates dispersion on two scales in a
porous medium, First, speed varies within a pore due to the viscous
velocity profile. Second, the speed varies between different pores due
to a varying hydraulic gradient and differing pore sizes. Differential
advection can be seen to cause longitudinal dispersion and, coupled

with tortuosity, can increase lateral dispersion.
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The relative importance of these mechanisms is a function of the
molecular diffusion coefficient, the porous medium, and flow
conditions. These mechanisms will be discussed quantitatively in

Chapter 3 to develop a solute transport model.

1.4 Porous Medium Classification and Dispersion

A porous medium can be classified according to the character of
its pore spaces. A well-defined classification system is needed to
discuss the structural properties of a porous medium. Figure 1.5
outlines the terminology to be used here. Although many of the terms
are in general use, there are still differences in nomenclature used in

the different engineering fields which study flow through porous media.

From Figure 1.5, a porous medium is found to be either homogeneous
or heterogeneous at the macroscopic level. Properties at the
macroscopic level are averaged over a sufficiently large volume, called
the macroscopic averaging volume, to define continuous, stable
functions of spatial position (Bear, 1972). A homogeneous medium
contains two subcategories at the grain-scale level (or "microscopic"
level), the uniform or nonuniform medium. A porous medium is also seen
to be either isotropic or anisotrpic at the macroscale. The final
structural feature in Figure 1.5 is distinguished from the rest in that
it does not directly relate to the porous medium”s ability to conduct

and disperse fluids. However, the difference between a consolidated
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porous medium and an unconsolidated one is important im the

determination of structure at the grain scale.

The transport and dispersion of solutes are dependent on the type
of medium involved. Simple advection-diffusion (equation (1.6)) is
found to be valid for homogeneous, isotropic porous media, subject to
the limitations described in Section 1.2. Although the mechanisms of
dispersion are the same, nonuniformity and heterogeneity provide
greater variations in solute speed and tortuosity. The result of this
is increased dispersion, as indicated by the data of Orlob (1958) for
nonuniform material. For heterogeneous, isotropic porous media, a
generalization of equation (1.6) is possible (Bear, 1972) if the
spatial variations of all the macroscopic properties are known. The
effects of anisotropy on miscible mass transport are not completely

understood.,

Heterogeneous porous media are often modeled as homogeneous media
with an overall (super-macroscopic) mean flow direction and super-
macroscopic dispersion coefficient, since data on the exact nature of
the heterogeneities are usually not available. At this level, the
heterogeneity in permeability creates significant dispersive effects.
Extremely high dispersion coefficients are found when an advection-
diffusion modeling approach is used at this scale (Bredehoeft and
Pinder (1973)). Viewing the effects of heterogeneous permeability as a
dispersive phenomenonmay create a nondiffusive dispersiom in which
transport cannot be satisfactorily modeled using the advection-

diffusion equation. Nondiffusive dispersion is expected when
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heterogeneities in the medium are large compared to the scale of the

problem being analyzed (Smith and Schwartz, 1978).

1.5 Scope of this Study

A random capillary tube model has been developed for analyzing
miscible transport phenomena during flow through nonuniform, isotropic,
unconsolidated porous media. The analysis for a uniform porous medium
is a special case of the general model. The solute is assumed to be
chemically inert; i.e., no adsorption or reaction and dynamically
passive in that its presence does not create significant density or
viscosity deviations from the pure solvent state. In addition, the

flow must be saturated, and is restricted to the Darcy regime (linear,

laminar flow).

A laboratory investigation of solute transport in nonuniform
porous materials has been conducted. Previously, very little data
existed regarding the relationship of solute transport characteristics
and grain or pore size distribution data. Laboratory data
characterizing pore structure are used as input to the solute transport

model and results from model simulation and experiments are compared.
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CHAPTER 2

LITERATURE REVIEW

Transport phenomena during flow through porous media have been an
active topic of research over the past 30 years. During this time,
several distinct classes of porous media models have been developed.
Considering the geometrical complexity of a porous medium, a crucial
element in any model is the conceptual representation of the pore
spaces. The different idealizatioms used to model a porous medium vary
widely, ranging from simple capillary models which bear little
resemblance to a porous medium to statistical models in which the

complex geometry is modeled through probability density functions.

The results of this effort at modeling solute tramsport in porous
media are encouraging but far from complete. The problem in this type
of modeling appears to be a reluctance to use more detailed information
on the pore structure to define the medium. This reluctance is

understandable for two reasons:

1. It is difficult to incorporate microscopic structural information
into a solute transport model, particularly if one is interested in

eventually using a macroscopic model such as the advection-diffusion

equation.
2, Pore structural information is difficult to obtain and interpret.

Despite the limitations of the theoretical models reviewed here,

they provide reasonably accurate predictions for mass transport in
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uniform porous media and a useful conceptual framework for thinking

about more complex problems. The models of Saffman (1959) and Haring
and Greenkorn (1970) discussed here provide the foundation for the

model developed in Chapter 3.

2.1 Permeability Models

2.1.1 Bundle of Capillary Tubes

Due to the intricate geometrical detail of a real porous medium,
an exact representation of the pore spaces is impossible. One approach
is to neglect all detail except that the porous medium contains
uninterrupted connecting pathways of some characteristic size, and
model the medium as a bundle of straight cylindrical capillary tubes
(Bear, 1972). This simplistic model neglects the important effects of
tortuosity and interconnectedness, but is still able to represent the
basic functional behavior of the permeability. For incompressible,
linear-laminar flow conditions, such models are based on Poiseuille”s
law for flow in cylindrical capillaries. Only Newtonian fluids of
constant density will be considered. According to this law, the

average velocity in a capillary tube is

2
T=-08 23 d¢ (2.1)
v 8 dx
where a = capillary radius (L)

gﬁ-- piezometric head gradient along capillary axis (-)
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fluid demsity (M/13)

©
]

g = gravitational acceleration (L2/T)
u = dynamic viscosity (M/LT)
u = average velocity (L/T)
If we assume the seepage velocity, Vs, to be equal to u and employ

Darcy’s law

oy = =Pgk d¢ (2.2)

where o = porosity (-)

k = permeability (12)

combining equations (2.1) and (2.2) we find

caz
k = 5 (2.3)

The relationship between the permeability and hydraulic conductivity
(equation (1.1)) is given by K = kg/y. As Bear (1972) points out, the
constant (1/8) is meaningless since the model is too idealized.
However, the basic functional relationship k ~ Gaz is valid, with

the constant to be determined by experiment.

2.1.2 Hydraulic Radius Model

Probably the best-known permeability model is the Carman-Kozeny
theory (Carman, 1937). This permeability relationship is developed
using dimensional arguments similar to those givem in Chapter 1. The

main difference is that the length scale is taken to be the hydraulic
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radius, Ty rather than an effective capillary radius, a. The
hydraulic radius is given by T, = o/S, where S is the surface area of
solids per unit volume of medium (L-l). For a bed of uniform spheres,

_60 - 0)

S d

where d is the sphere diameter (L). The relation for ry becomes

od

TH T8 - o)

Substituting ry for a in equation (1.1) and fixing the constant of

proportionality by comparison with experiments, we find

—03d2 &)y
Vp =2 \v ¢
180(1 - o)

The permeability is

3.2
Kk = o’d

R - 2.8)
180(1 - 9

Carman (1937) quotes experimental verification of the dependence of the

permeability on porosity as given in equation (2.4).

2.1.3 Random Capillary Tube Network

Saffman (1959) used a random capillary tube network to model a
porous medium. By assuming random orientation for the capillary tubes,
conduction of fluid through each capillary tube to be independent of
the network interconnections, and flow in each capillary tube following

Poiseuille”s law, a permeability for the network could be determined.
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Saffman (1959) finds for the permeability, k

2
(e}
k= o— (2.5)

vhere a is the pore radius. Comparing the Saffman model (equation

(2.5)) with equation (2.4) we find

_ od
82741 - 0 (2.6)
Experimental evidence for this relation is scant, but the data of
Saffman (1959) and data given in Chapter 4 show the expression to be
accurate to within 10Z. A more detailed discussion of this model is

given in Chapter 3 where the model is extended to nonuniform media.

2.1.4 YVolume-Averaging Model

Bear (1972) presents a volume-averaging model which is based on
averaging the conservation equations for mass and momentum over a
representative elementary volume. No specific pore geometry is
assumed, but the pore space is assumed to consist of channels which
have definite directions (and axes) along which the flow is directed.
The development of Bear”s (1972) model requires some assumptions
regarding the spatial correlation of fluid properties, medium
properties, and the pressure field. A particularly significant
assumption is that there is no correlation between the pressure field

and the pore geometry. Bear”s result for the permeability is
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k,, = OBT (2.7)

vhere B is the channel conductance (L2) and Tij (-) is the coordinate
transformation from a local coordinate system oriented along the pore
channels to a fixed Cartesian coordinate system. The overbar denotes a
volume average. As an example, Bear (1972) shows for an isotropic
medium consisting of straight cylindrical capillaries of radius a and

channel conductance B = 32/8

2

which is the same result as found by Saffman (1959) (equation (2.5)).
Although the model is difficult to evaluate in general, it does provide

a theoretical relation for anisotropic porous media.

2.1.5 Deterministic Network Model

A natural extension of the capillary tube modei is a capillary
tube network which accounts for the exact nature of the
interconnections. This type of network model differs from the Saffman
(1959) model in that a deterministic network is used. The effects of
flow in one capillary tube on other capillaries in the network is taken
into account. The network approach was investigated in detail by Fatt
(1956) , who employed various two-dimensional regular networks to
represent porous media. Fatt”s model also presents one of the earliest

investigations of the effect of nonuniform pore structure on
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permeability (and relative permeability for multi-phase flow). Fatt
was able to vary both pore radius and length, although the
deterministic two-dimensional network did not allow random path lengths
between junctions. An interesting finding of this work is that the
permeability of networks in which pore radius and length vary randomly
and independently is nearly the same as for a similar network im which
there is a deterministic relationship between pore radius and pore

length.

2.2 Dispersion Models

2.2.1 Cell Models

As in permeability models, a crucial element of any dispersion
model is the representation of the geometry of the porous medium.
Previous theoretical investigations into the nature of dispersion in
porous media have used a variety of geometrical models. Cell models
are highly idealized representations of porous media in which the pores
are considered to act as a linear series of well-mixed storage cells.
The dispersion in this case is derived from the randomness of particles
making a transition from one cell to the next. The mechanisms of
dispersion as discussed in Chapter 1 are not specifically included.

The effect of these mechanisms are lumped into the random residence
time of a particle in a mixing cell., Despite these simplificatioms,
cell models produce the correct functional relationship between the
longitudinal dispersion coefficient and the velocity and length scales

for flow in uniform media at high Peclet number (V_d/D).
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Aris and Amundson (1957) calculate the probability demsity for the
position of a particle passing through a series of well-mixed cells.
The residence time in each cell is t. (cell volume/ flow rate), and the
time of passage between cells is neglected. Their result, for the
probability that a particle introduced at the origin at time t=0 is in
the nth cell at time t, is

(e/e )"
P (e) = —F— e t/tr (2.9)

Being a Poisson distribution, the mean and variance are equal, and

tend to a Gaussian as t/tr + . The Gaussian distribution

P(X,t) = ———— EXP 5

[« 4D ¢ (2.10)

will approximate the distribution in equation (2.1) if the
dimensionless mean and variance in equation (2.10) are equated to t/tr,
the mean and variance of the Poisson distribution. DL is the
longitudinal dispersion coefficient (LZIT). Aris and Amundson

" introduce yd as the length scale to nondimensionalize the mean and
variance of the Gaussian distribution, where Y 1is called the packing

factor. The dimensionless mean and variance are, respectively,
e = Vst/Yd

§2 = 2DLt/(Yd)2

Aris and Amundson equate € and §° to solve for DL.
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D = (1/2) V vd (2.11)
From experiments, they find y~1 for a random packing of grains.

Since the basic cell model does not model the intermnal structure
of a porous medium and uses a single velocity and length scale, it is
simpler to analyze the problem with dimensional analysis. The

pertinent variables are

D, = longitudinal dispersion coefficient L2/1)
D = molecular diffusion coefficient

in a free fluid (L%/T)
V, = seepage velocity (L/T)

d = grain size (L)

from the Buckingham pi theorem

D /v . d = £(V_d/D)
or

D,/D = £(V,d/D)

where Pe = Vsd/D is the Peclet number of the flow. Data for longitudinal
dispersion in uniform media (Figures 2.1 and 2.2) show good correlation
with these dimensionless groups. When the Peclet number is greater

than 1, a good order of magnitude approximation for the longitudinal

dispersion coefficient can be made with

D, =V.d

L s

A similar dimensional analysis can be made for transverse dispersion.
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Figures 2.3 and 2.4 display the experimental findings in dimensionless
form. The numerous exper;ments shown in Figures 2.1 to 2.4 have been
performed on uniform unconsolidated materials. The various experiments
have used different materials (glass beads, natural sands, etc.),
measuring techniques, apparatus and packing methods. This partially

accounts for the scatter, but strong correlations of the dimensionless

groups are still present.

2.2.2 §Statistical Models

The cell model is a highly idealized representation of a porous
medium, with a structure that is difficult to relate to the porous
medium. Statistical models assume a random pore structure which can be
quantified in a statistical semnse. A random or statistical character
is assigned to the meaium since a deterministic description of the
complex geometry of a porous medium is impossible. Statistical models
can use more detailed and realistic descriptions of the pore strﬁcture
than is possible in deterministic models. All statistical models
described here depend on the basic linearity or noninteraction of
solutes. This is needed since the behavior of a cloud of particles (or
solute solution) is investigated through analysis of the statistics of
a single particle., If interaction occurs, such as in nonlinear
adsorption phenomena, the statistics of a single-particle transport do

not describe how a cloud of particles behave,
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2.2.2.1 Random Capillary Tube Models

The first models of dispersion in porous media based on pore
structure are those of de Josselin de Jong (1958) and Saffman (1959,
1960). The Saffman (1959) model and the de Josselin de Jong (1958)
model use a similar approach, but Saffman”s work is more general and
includes the effects of molecular diffusion on dispersion. A separate

review of the de Josselin de Jong (1958) model will not be given.

Saffman”s (1959) model assumes a porous medium to consist of a
random interconnected network of capillary tubes, He considers a
passive tracer particle which proceeds through the capillary tube
network by making a series of random, independent steps, in which the
probability for making a given step is governed by the geometry of the
random network and the physics of laminar flow in a tube. Each step
consists of passing from one junction to another through a capillary
tube. The mean and variance for the motion of a single particle is
calculated and, using the ergodic hypothesis, determines the properties
for a "cloud" of particles. The variance about the mean is then

related to a dispersion coefficient through the Einstein relation

2 _ . 2 _
o = 2DLt 3 Op ZDTt
where UL2 = longitudinal variance of position about the mean (Lz)
GTZ = transverse variance of position about the mean (L2)

Through an analysis of the statistics of particle trajectories in the

network, Saffman was able to compute the mean and variance of the
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particle”s position at a given time for both longitudinal and
transverse motion. When the pore length to radius tends to infinity,

the resulting expression for the longitudinal dispersion is (Saffman,

1959)

D
L_1 1 3 L (2.12
D -3 Pe [3 1n (2 Pe> 12] )

Actually, the condition for equation (2.12) to hold is Pe << 8 6% where
8 is the ratio of the pore length to pore radius. The only implicatiom
in letting ¢ tend to infinity is that shear dispersion within
individual pores will be neglected. For the near field,

vst/D < 0.5(Pe), Saffman finds that the dispersion coefficient is a
logarithmic function of time; The longitudinal dispersion coefficient
for the case when 6 is small is also calculated. Figure 2.5 shows a
comparison between equation (2.12) and the data presented in

Figure 2.1.

Saffman determines the transverse dispersion to be
D,/D = (3/16)Pe (2.13)

and is independent of time or molecular diffusion. When compared to
the data in Figure 2.3, DT is seen to‘ be about 0.4 order of magnitude
high for Peclet >100 (Figure 2.6). Saffman states that the results for
transverse dispersion are questionable due to an assumption of
independence of the azimuthal angle in successive steps, which may not
be valid. A more detailed discussion of this theory will be given in

Chapter 3, where the model is extended to a nonuniform medium.
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In a second paper, Saffman (1960) addresses the problem of
dispersion when the Peclet number is not large with respect to 1. The
previous random walk approach is not valid for this case for two
reasons, First, the residence time of a significant fraction of
particles begins to depend on the molecular diffusion, which is only
crudely accounted for in the random walk theory. Second, the basis for
the selection of a pore by a particle at a junction does not follow the
simple probability demsity functiom previously derived, since diffusion
becomes significant in comparison to advection. Particles no longer
choose streamlines in proportion to the advective velocity along the
streamline. Saffman solves both problems by taking an entirely
different approach which uses Taylor’s (1921) classic analysis of
diffusion by continuous movements. According to Taylor (1921), the

variance of the positions of particles released at a point is (in 1

dimension)
2 A A
o~ 2t/ R(t)dt -
0
where R(f) = u(t)u(t') = Lagrangian correlation function (LZITZ)

lt - el ()

T
u(t) = longitudinal component of the particle velocity (L/T)

and bar denotes an average overall network configuration.
Saffman assumes the velocity to be low enough such that the results of

Taylor (1953) may be applied to each tube in the network. Under these

conditions, the dispersion of a tracer within a given capillary tube is
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governed by an effective advection-diffusion equation for the mean flow
through the tube, with the dispersion along the tube given by the
results of Taylor”s (1953) analysis. The mean velocity through a tube
is given by Poiseuille”s law and the projection of the macroscopic
pressure gradient. The longitudinal compoment of the velocity along a
tube (denoted by u(t)) is the sum of the longitudinal component of the
mean velocity plus a random component due to the effects of Taylor
dispersion. Averaging the Lagrangian correlation function over all
network configurations and integrating the time difference from

0 to » , Saffman finds

1

D 2 2

L_1 3 Pe Pe 2 2 McothM-1
.—=._+_ — —_— - _—

D "3780 42 T3 [(3w 1 5 du (2.14)

2 DM
where § = d/a = pore length/pore radius
w=cos(8) ; 6 = direction of motion relative to mean

flow direction
M = (3/2)Pe - w/De

D =1+ (3/16)(Pe - w/8)2

The final integral is a function of Peclet number (Vsd/D) and § .
Equation (2.14) is plotted as a function of Peclet number in Figure 2.5

for 6+ = o

Following a similar procedure, Saffman calculates the lateral
dispersion coefficient

1
Dr 1 1 pe? 9.2 2 2. M coth M - 1
T_1, 1 Pt 9, W21 - wd) do (2.15)
D ~3%8 2 7% b i
° e

0
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As seen in Figure 2.6, the results for transverse dispersion have
roughly the correct exponential dependence on the Peclet number but are
off by a constant multiple. When Pe> 0, the longitudinal and
transverse dispersion coefficients tend to a constant value, DL =Dy =
(1/3)D. Saffman (1960) found these values too low in comparison with
experimental findings and suggested the value of D =Dy = (2/3)D. The

constant has been adjusted to give the best fit as Pe+0 in Figures 2.5

and 2.6,

In summary, Saffman (1959, 1960) proposed two dispersion models
based on flow in a random capillary tube network. The random walk
model (Saffman, 1959) is valid for high Peclet number flow (Pe >> 1),
while the Lagrangian correlation approach (Saffman, 1960) applies when

the Peclet number is limited by Pe <<862 .

2.2.2.2 Yolume-Averaging Model

Bear (1972) presents a statistical theory of flow and tramsport in
porous media that is based on building macroscopic equations from
averaging microscopic quantities over a representative elementary
volume. Such an averaging volume is assumed to contain enough pores to
define macroscopic quantities such as porosity, permeability, and
dispersivity. The development of Bear“s theory contains some
questionable assumptions concerning mass conservation equations. Bear
derives a general expression for the dispersion temnsor in an

_anisotropic medium, but evaluation for the genmeral case is difficult.
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Through the use of scaling arguments, Bear finds for a uniform,

isotropic medium

D
-5‘:= pe[—7Fe ). (2.16)
Pe + 2 + 62

vhere A, experimentally determined, represents the effect of the porous
medium on the macroscopic molecular diffusion coefficient. Dispersion
due to direct molecular diffusion is added to the hydrodynamic
dispersion. Equation (2.16) is seen to be in good agreement with the
experimental data (Figure 2.7). Note that the limit 6+« ig entirely
different for Bear’s theory as compared with Saffman’s (1960) theory.
The scaling arguments used by Bear to arrive at equation (2.16) break
down for this limit. Bear does not derive a corresponding expression

for transverse dispersion in uniform, isotropic media.

2.3 TIransport Phenomena in Nonuniform Media

Theories discussed to this point have been directed towards
dispersion in a uniform medium. While it may be hoped that nonuniform
media could be handled by using an average value for the length scale
in the uniform media theories, existing data do not support this. 1In
the review by Perkins and Johnston (1963), the experiments of Raimondi,
et. al. (1959) and Orlob and Radhakrishna (1958) are summarized.
Perkins and Johnston (1963) show that the coefficient of dispersion
increases with increasing nonuniformity. Niemann (1969) also finds

that dispersion is greater when the grain size distribution becomes
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wider, The data are not conclusive in terms of quantitative
predictions of dispersion. The recent review by Greenkorn (1981)
indicates little progress has been made on dispersion in nonuniform

porous media beyond the few studies mentioned here.

The first theoretical model which explicitly includes the effects
of nonuniform media on dispersion is that of Haring and Greenmkorn
(1970). Their approach is similar to Saffman’s (1959), in which the
statistics of a single particle executing a random walk through a three-
dimensional capillary network describe the behavior of a cloud of
particles. In addition to the random orientationm of pores, Haring and
Greenkorn (1970) allow for distributions of pore length and radius.
Their model assumes that the pore length distribution and pore radius
distribution can be described by beta distributioms. The beta
distributions require specification of a maximum pore length and
maximum pore radius. The seepage velocity is calculated by averaging
the mean longitudinal velocity for each pore over a representative
sample of pores of random radius and orientation. The permeability
determined by combining this expression for the seepage velocity with
Darcy’s law. The fact that pores of larger radius will conduct larger
quantities of fluid due to the larger cross-sectional area is
neglected. They find for the permeability

32
k =ga-a—l((a’6) (2.17)

where a = arithmetic mean pore radius
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a = maximum pore radius

a, = a/am

d

g(ad) = probability demsity function for a,

G+ B+ 1)1 G B
gay = LA )% - )

K(G,B) = (@ + 2)(@+ B+ 2)/(a+ 1)(a+ B+ 3)

The derivations of expressions for the longitudinal and tramsverse
dispersion coefficients follow the analysis developed by
Saffman (1959). However, molecular diffusion is not included in the
model, so the longitudinal dispersion coefficient does not reach an
asymptotic limit for large times. They find for the longitudinal and

transverse dispersion coefficients

L_1 K@D . .. |22 @,n st
2

> =0 (2.18)
J7 (a,B)

T _3 RMmn . | (2.19)

where 9 = arithmetic mean pore length

)
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2 = maximum pore length
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f(ld) = probability density function for pore length
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The model does provide a method of estimating pore radius distributiomns
using capillary drainage curves but does not provide a way to estimate
pore length distributions other than fitting with dispersion
experiments. Pakula and Greenkorn (1971) performed dispersion
experiments on a nonuniform glass bead medium. The bead sizes ranged
from 0.59mm to 0.84mm. The longitudinal dispersion coefficient found
for this medium was about 5 times larger than what would be expected
based on an average bead diameter and the uniform media results given
in Section 2.2. The results are not consistent with the dispersion
experiment§ of Rifai,et al. (1956), whose data areshown in Figure 2.1.
Rifai, et al. used sands with a particle size range of the same order
as Pakula and Greenkorm, yet found values for the longitudinal
dispersion coefficient in agreement with other dispersion results for
uniform media., The Haring and Greenkorn (1970) model was found to
predict the measured longitudinal and transverse dispersion
coefficients found by Pakula and Greenkorn (1971) within about 30%.

The permeability calculation was found to be within 10% of the measured

value,

Wilson and Gelhar (1974) adopt a similar approach, building on the
work of Saffman (1959), to evaluate permeability and dispersion in a

nonuniform, partially saturated porous medium.
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2.4 Summary

Several different classes of permeability and dispersion models
have been reviewed and compared with published experimental data. The
vast majority of experimental and theoretical work pertain to transport
in uniform media. Both experimental and theoretical results for uniform
media indicate that miscible mass transport may be described by the
advection-diffusion equation with an emhanced dispersion coefficient.
Theoretical expressions derived by Saffman (1959) and Carman (1937) are
found to give accurate predictions of permeability for uniform media.
Experimental evidence supports the hypothesis that the two permeability
relations are equivalent. Theoretical results for longitudinal
dispersion (Saffman, 1959, 1960; Bear, 1972) show acceptable agreement
with experimental measurements, while for transverse dispersion,
theoretical calculations (Saffman, 1959, 1960) are found to have the
correct trend but do not have quantitative agreement with the
experimental data. The Saffman (1959, 1960) models are particularly
satisfying since the three dispersion mechanisms (given in Section 1.3)
are explicitly included in the analysis of solute transport through a

random capillary tube network.

Research on dispersion in nonuniform media is quite limited, but
the evidence indicates an increased dispersion due to nonuniformity.
Attempts to use an average grain size in uniform media dispersion
theories to predict dispersion in nonuniform media have not been

successful. Through an extension of the Saffman (1959) model, Haring
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and Greenkorn (1970) use a nonuniform random capillary tube network to
model permeability and dispersion in nonuniform media. The Haring and

Greenkorn model is found to have the following deficiencies:

1) The permeability model neglects the fact that pores conduct fluid in

proportion to the fourth power of the pore radius.

2) Neglect of molecular diffusion leads to an unbounded longitudinal

dispersion coefficient for large times,

3) Pore radius distributions and pore length distributions must follow

beta distributions.

4) No technique is developed to estimate pore length distributions from

measurable structural features of porous media.

5) Experimental support for the model is very limited.
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CHAPTER 3
A THEORETICAL MODEL FOR PERMEABILITY AND LONGITUDINAL DISPERSION
IN NONUNIFORM POROUS MEDIA
In this chapter, a theoretical method is developed for computing

permeability and longitudinal dispersion in isotropic, nonuniform
porous media based on structural features of the medium. As discussed
in Chapter 2, the spectrum of length séales present in a nonuniform
medium is important in determining the transport behavior of miscible
solutes. Because of additional variables describing the distribution
of length scales, there are more dimensionless groups to correlate
through experimentation. Since the range of parameters is large, it
would be helpful to have reliable models. Of the models presented in
Chapter 2, the network model, statistical capillary tube model, and the
volume-averaging model are capable of being extended to nonuniform
media. The model to be developed here is an extension of the random
capillary tube model proposed by Saffman (1959). No extensions were

attempted with the network model or the volume-averaging model.

As for the original model for uniform media (Saffman, 1959), the
extended ﬁodel is also limited to high Peclet number flows. The model
follows the original Saffman (1959) model closely, and is similar in
some respects to the nonuniform media model proposed by Haring and

Greenkorn (1970); however, there are some important differences:

1. Molecular diffusion is included as in the Saffman (1959) model such
that an asymptotic longitudinal dispersion coefficient may be obtained,

in contrast to the Haring and Greenkorn (1970) model.
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2. Permeability is found to be semsitive to "nmetwork” effects in the
medium which tend to equalize volume flux rates through different sized

pores. A pressure fluctuation function is introduced to take account

of this effect.,

3. Actual pore radius and grain size distributions are included in the
model. It is not necessary to fit these distributions to any

predetermined frequency distributions.

4, A method for estimating pore length distributions from measured

grain size distributions is proposed.

3.1 Permeability in a Random Capillary Tube Network

The random capillary tube network is an approximate geometrical
representation of the pore space in a porous medium. This type of
network is a three-dimensional, interconnected network of straight
capillary tubes, where the capillary tubes join at node points. The
nature of the network interconnections is not prescribed by the model,
which only describes the statistical behavior of the orientation and
size of each capillary tube element. The orientation of the capillary
tube is given by the distribution of two angles for the capillary tube
axis (Figure 3.1). The azimuthal angle, ¢a’ is not needed to describe
the longitudinal motion of a miscible solute because this angle has no
effect on the flow speed through a capillary tube, nor any effect on
the longitudinal component of the particle motion. Since we are only

considering longitudinal transport phenomena here, the orientation of a
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FIGURE 3.1
Definition Sketch for the Random Capillary Tube
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given capillary tube will be specified with the angle 6 relative to the
mean flow direction. The azimuthal angle, ¢a’ will not be used
further. The size of a capillary tube is specified by a pore radius,
a, and a pore length, £. The assumption to be used here is that the
pore radius and pore length vary independently and randomly according

to their respective frequency distributions.

The basic unit of the random capillary tube model is the straight
capillary tube as shown in Figure 3.1. A fundamental assumption of the
model is that the pressure gradient along a pore is simply the
projection of the mean pressure gradient. Assuming steady, laminar
flow in each tube, the flux of fluid through a given tube may be
computed using Poiseuille”s law with the orientation and radius of the
tube. This assumption "decouples" the network in that each capillary
tube conducts fluid independently of the network. For an isotropic
medium, the capillary tube is randomly oriented in space (as well as
having the length and radius vary independently of the orientation). The
probability of a given angle, 6, of the capillary tube axis relative to
the mean flow direction within a range d6 is given by the proportion of
area (or amount of solid angle) on a unit sphere swept out by the pore
axis, sin8d6é. It is now possible to derive a simple permeability

relationship for the network.

Consider a cross section through the capillary tube network,
perpendicular to the flow direction. The flux through each pore is

given by Poiseuille’s law
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Q 8n

where P cos6 is the projection of the mean pressure gradient along the
pore axis. The frequency that the a cross sectional plane
(perpendicular to the x-axis) will intersect a capillary tube of length
% and orientation 6§ is proportional to 2cos®. The probability for
intersecting a given pore within the differential range % to (2+d%),

6 to (6+dB) , a to (a+da) is

dS = 2%cos6sinbg(a)f(2)dedadeé

where g(a) is the probability density for pore radius and £f(%) is the
probability demsity for pore length. The 2 normalizes the probability
| density function. The variables 2 and a range from 0 to «» and 6 ranges
from 0 torﬂ/Z. Assuming a given cross section is a representative
sample of pores, the total flux through the cross section is equal to
the average flux through a pore multiplied by the total number of pores
in the cross section, N. The total flux, Q, passing through the cross

section is N times the probability-weighted average of equation (3.1)

© o T

/2
e dp? 2
Qp = ZfofMt?EM sineg(a)&f (2)d2dade (3.2)
O O O

where the triple integral represents the arithmetic average flux
through a pore. The seepage velocity through the porous medium is

given by Q/Ap, where Ap is the total area of pores in the cross
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section, Ap may also be found by taking the average pore area exposed

by the cross section and multiplying by N. The area of a given pore

2
exposed in the cross sectional plane is cg: 5 - The total area is
then
© o /2
na? :
A = 2N ( )cosesineg(a)lf(l)dldade
P cos? (3.3)
oo "o .

For the seepage velocity, V,, we divide equation (3.2) by (3.3) to

give ©

f a"g(a)da
A

(¢}

s 24y & , (3.4)
f a“g(a)da

(o]

\'

and from Darcy’s law

s o (3.5)

(3.6)
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The Haring and Greenkorn (1970) permeability model can be written as

2
ca
=93 3.7
k=2 (3.7)
which results from averaging the x-component of velocity through each
pore rather than using the average flux divided by the average area.
In general, a2 # a4/a2 . As pointed out by Wilson and Gelhar (1974),

the Haring and Greenkorn permeability derivation is inconsistent under

the assumptions of the model.

To investigate equation (3.6) further, we let g(a) take a
specific functional form. A commonly used form for representing the

distribution of lengths is the log-normal distribution

1 -(lna--lnua)2
g(a) = ————— EXP 5 (3.8)
aV2n(1noa)2 2(1no,)

where uy is the geometric mean radius and o, is the geometric

standard deviation. The general relation for moments of g(a) is

o 2

!L~lnc

(o)

so, for the permeability, we find using equations (3.6), (3.8), and

(3.9)

(3.10)
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2
ou
This relationship consists of two parts. The factor 24? is

analogous to the Saffman (1959) permeability relationship for a uniform
medium (equation (2.5)), with the pore radius for a uniform medium
being replaced by the geometric mean pore radius of the nonuniform
medium. The second factor represents the effect of pore radius
variance on the permeability. As an example, let o, =2. The
geometric standard deviation is equal to the square root of the ratio
of the 84.1-percentile radius to the 15.9-percentile radius for a log-

normal distribution. Therefore

61ng
a

o ~ 18
a

The permeability formula (equation 3.10) is much too sensitive to pore
radius variance when compared with measured permeabilities.
Experimental results (to be presented in Chapters 4 and 5) suggest the

permeability may be given by

(3.11)

where 9 is the geometric mean pore area divided by 7, i.e., the square
a

of the geometric mean pore radius as determined from the capillary

drainage curve (see Chapter 4). Note that equatiom (3.11) is

independent of the pore radius variance.

One hypothesis to explain why the permeability is insensitive to
the pore radius variance is that '"network" effects tend to even out

flux rates through the various sized pores. For example, consider a
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large pore which is connected to smaller pores in the network. It is
quite likely that the smaller pores will not be capable of supplying a
sufficient quantity of fluid to the large pore (mote that flux is
proportional to the fourth power of the radius) such that the large
pore can conduct fluid according to Poiseuille”s law and the projection
of the mean pressure gradient. Mass balance would then require a
reduced pressure gradient over the large pore and increased pressure
gradients over the smaller pores. This is equivalent to saying that
the pressure gradient in a nonuniform medium is not necessarily uniform
down to the grain scale, and would expect spatial fluctuations in the
pressure gradient to occur on the grain scale. By definitionm, however,
the macroscopic pressure gradient must be constant on the macroscale

for a homogeneous medium.

The nature of the random capillary tube model makes it difficult
to describe quantitatively network effects on the pressure gradient.
To include this effect in an ad %oc manner, consider the "“unit cell"
shown in Figure 3.2. A hypothetical "cell” of capiliary tubes replaces
each original capillary tube in the network, but only for the purpose
of calculating a pressure gradient over the original tube. The
capillary tubes in each cell have radii which vary randomly according
to the measured distribution for pore radii (g(a)), but their lengths
are constant. All pores in each cell are oriented in the same
direction (parallel to the original tube) and the number of pores
leading to and from a junction are equal. The pressure gradient over

the entire cell (between locations 1 and 2 in Figure 3.2) is assumed to
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Definition Sketch for the Unit Cell
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be equal to the projection of the macroscopic pressure gradient. The
pressure at the junctiom, however, is allowed to fluctuate according to
the requirements of a mass balance for the unit cell. The pressure
gradient computed for the outflow pores for the unit cell is used in
combination with the a. (outflow) pore radius. The only requirement
here is that an outflow pore radius from the unit cell be used with the
computed outflow pressure gradient. The selection of a. is arbitrary.
Alternatively, we could use an inflow pore radius in conjunction with
the inflow pressure gradient for the cell; the results are

statistically identical.

The pressure gradient over the inflow and outflow pores may be
computed using the following simple mass balance. Let i = (1, IF)
denote the inflow pores and C = 2(IF) be the total number of pores
connected to the junction. C will be called the comnectivity of the

medium. The pressure gradient over the cell is assumed to be

vherezj is the comstant pore length. Note that the junction is assumed

to have negligible volume. The mass balance over the unit cell

requires

P.-P IF p_-p c
A { ""f}* 2 { 2 a"}=0 (3.13)
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Substituting (3.12) into (3.13) and rearranging, we find

27 mo
%5 2;1ai

A secoy = = = (3.14)
R
i=1 i

The pressure gradient over the outflow pores is AP’, where A is a
function of 8150005 80, If

C IF
> aif >> 2 3 ai“
i=1 i=1

then 4> 0 since nearly all the pressure loss occurs over the inflow

pores. If

C Fo
a » a
1§=:1 1 §=:1 1

then A >2 since nearly all of the pressure loss occurs over the
outflow pores. Thus A is seen to vary between 0 and 2, with A =1

giving no fluctuation in the pressure gradient.

Now, if we assume that all pores are replacéd by the hypothetical
unit cells, it is possible to compute the permeability for a given
junction connectivity, C. The radius of the pore ag is arbitrarily
selected as the actual, physical radius for each tube, but the pressure
gradient is determined by A(al,...,aC)P’cose for each capillary tube.

The capillary tubes 85000585y 8TE used only for the computation of
the pressure gradient and are not considered "true" members of the
capillary tube network. Including equation (3.14) for the pressure

gradient the permeability is now given by
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[
. 'o/....[ a, A(al,..,ac)g(al)...g(ac)dal...daC
k=2 > (3.15)
/ a®g(a)da
o

where the flux must now be averaged with respect to all components of

the unit cell.

3.2 Longitudinal Dispersion in a Random Capillary Tube Network

The longitudinal (and transverse) dispersion coefficients for
isotropic, uniform porous media were determined by doing a statistical
analysis of particle trajectories through the medium., The first
assumption needed is that particle paths through the pores are random.
When a particle leaves one capillary tube, the next tube is selected on
a basis that is independent of the previous motion. Therefore,
particle trajectories represent a random walk, subject to specified

rules governing the selection of a pore and transport through a pore.

Due to the approximate nature of the capillary network model of a
porous medium, the velocity profile within a pore will be neglected.
All streamlines within a given pore will be assumed to flow at the mean
velocity of the pore. Appendix C gives details on the effects of shear
dispersion within a capillary tube, but these effects are neglected for
the purposes of the porous medium model. It is possible to include the
effects of shear dispersion within pores as was done by Saffman (1959).

The results for a uniform medium (Figure 2.5), however, show good
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agreement when these effects are neglected. Since a random capillary
tube network is only a rough approximation to a real porous medium,
details such as the velocity profile within pores cannot be modeled

with confidence.

As shown by Saffman (1959), the probability density for the
selection of a given pore is proportional to the flux into the pore
times the probability demsity for orientation of the pore axis. From
the analysis of permeability presented in Section 3.1, we know the

probability of a given flux rate through a pore within the differential

range (a1+da1),...,(ac+dac),(e+de) is proportional to

aé’A(al,..,aC)coseg(al)...g(ac)dal...dacde (3.16)

We also know that the probability for the orientation of pores relative to

the mean flow direction within a differential range 6+d® is

sin6d6 (3.17)

For a nonuniform medium, we also need to include the probability
density for pore lengths. The probability of a pore length within

the range 2+d% is

£(R)de (3.18)

where £(%) is the probability density for pore length. Combining the
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independent factors in expressioms (3.16), (3.17), and (3.18), the

probability for a given step, dF, within the differential range

(al+da1),...,(ac+dac),(9+de),(l+ de) is

L o ~
dF = 2aC A(al,...,aC)cosesineg(al)...g(aC)f(Q)dal..dacdlde (3.19)

Note that g(ai) is normalized such that the integrals over S ERRETLS

are one.,

Assuming the probability of selection of a given pore to be
proportional to the flux through the pore is equivalent to assuming
that all particles that enter a given pore will finish the transit
through the pore, i.e., that the particles will enter one end of the
pore and exit the other end. This is not neceésarily true when the
diffusion time scale for mass transport is on the same order or smaller
than the advective time scale, since diffusion will allow some
particles to enter and exit a pore through the same end. The Peclet
number represents the ratio of the diffusive to advective time scales,
so for low Peclet numbers the random walk approach is not valid. The
Saffman (1959) model as originally derived and as extended here is

limited to high Peclet number flows (Pe >> 1).

Once the pore is selected, the residence time in the pore is
needed to determine the kinematics of the particle motion. Since the
concentration of a solute may be thought of as the probability density
for position and time of a single particle, the advection-diffusion

equation for solute concentration also describes the probabilistic
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motion of a single particle., Hence the residence time for a particle
in a capillary tube (without shear) is governed by the following

equation

(3.20)

where u is the mean velocity in the pore and s is the local axial
coordinate. The boundary conditions imposed on equation (3.20) reflect
the definition of residence time to be used. For example, if we
consider an infinite domain with a point source at s = 0 we know the

solution is

~(s-ut_)?
C(s’ts) =.—-—l-_-.— EXP __._m_g___
V4ﬂDts s

For an observation point, 8;, the residence time distribution is
c(sl,ts), where residence time means the duration between t, =0 and
the first time the particle has a position s > 8 for all subsequent
times. Alternatively, we could have the boundary conditions

Lim C(s"ts) =0

g+ —o
C(Slsts) =0 51 > s,
with the initial conditiom c(s,0) = 6(s—so) . The residence time in
this case implies the duration between t, = 0 and the first time the
particle encounters the position s = 8- It is not clear as to what
definition of residence time is appropriate for the porous medium model

considered here. Initiating the source on the inlet boundary of a

capillary tube makes interpretation of upstream diffusion difficult.
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Due to the complexity of the problem and to the fact that the
model is already limited to high Peclet number flows, the following
simple rules developed by Saffman (1959) will be.used for the residence
time. Let t denote the residence time, ty denote the advective time

scale and tD the diffusive time scale. Then we have

t, = 2/u

ty = 22/(2D)

When a pore is flowing under high Peclet number conditions (based on u
and the pore length, 2), the residence time for a particle to pass
through a pore is approximately given by tA’ However, if the pore is
flowing so slowly such that ty, <tps then the residence time will be
approximated by ty. The following summarizes the rules for calculating

the residence time:

<t (3.21)

if tA D

t, = tp otherwise (3.22)

The rules for the residence time neglect the effect of diffusion except
in pores where the velocity is so low that t, > ty. Under these
conditions, it is necessary to invoke diffusion to prevent unrealistic
residence times. For high Peclet number flows, most pores will be

advection dominated, while some pores (usually at large angles with

respect to the mean flow direction) will be diffusion dominated.
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3.3 Asymptotic Behavior of the Longitudinal Dispersion

At this point we have sufficient information to simulate the
motion of particles in a random, nonuniform capillary tube network. A
comparison of the permeability model with experiments is required to
fix the comnectivity of the unit cell and measurements of the porosity,
pore-radius distribution and pore-length distribution are needed. A
simulation of mass transport from an instantaneous point source was
carried out to investigate the near-field behavior of mass transport
during flow through a uniform medium. The analysis performed by
Saffman (1959) shows that an asymptotic (constant) dispersion
coefficient is not obtained until

Pe?
4 ln(-% Pe) (3.23)

n >>

where n is the average number of steps taken by'a particle during a
given time. Saffman (1959) also derives relations for the longitudinal
dispersion coefficient for the near field, which is shown to be a
logarithmic function of time, but there is no guarantee that the
dispersive transport process in the near field is Fickian. Using the
simulation, it is possible to check the development of an instantaneous
point source to see if a symmetric or skew profile develops downstream. -
The simulation was carried out by generating particle trajectories
through the random capillary tube network based on the the probability
for choosing a given step (equation (3.18)) and the rules for the

residence time for each step (equations (3.20) and (3.21)). Figure 3.3
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shows a histogram of 10000 particle locations after a time t* = Vst/dg
= 100, with Peclet = 10000. The number of steps required before the
asymptotic dispersion coefficient applies is 2.6x106, while n = 150 for
Figure 3.3. The dispersion coefficient at this point is only 54% of
its asymptotic value, but the coefficient of determination between the
histogram and the standard Gaussian profile is 0.965. Thus, no
exaggerated skewness of the tracer profile is expected from this

theory, even in the extreme near field.

The change in the dispersion coefficient during the initial stages
of longitudinal transport has not been observed experimentally and is
apparently not significant over the length scales important in
laboratory measurements (Haring and Greenkorn, 1970). Figure 2.5 shows
that the experimentally determined longitudinal dispersion coefficients
match the asymptotic theory fairly well (within 50%) even under
extremely high Peclet number conditions when the column lengths were
clearly not long enough to reach the asymptotic limit. The simulation
is computationally time-consuming for calculation of the asymptotic
longitudinal dispersion coefficient since the particle trajectories
must be carried out for a sufficient distance downstream. At high
Peclet numbers this downstream distance becomes too large for practical
calculations. The analfsis of the random walk as given by Saffman
(1959) for the asymptotic longitudinal dispersion coefficient provides

a direct method for calculating the asymptotic dispersion coefficient

and requires only trivial modification to be used for a nonuniform

medium.
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Following Saffman (1959), we define normalized variables for

the position and time of motion of a given particle after n steps

xnf - xﬂ* ( )
X B oo 3.24
n nls
t* - ¢ ¥ (3.25)
1 =-D n
n n%
where x *n N
X == 2: x ./d
n dg i1 si' g
n
v t
Cx oo Vstn - s ] si
n d_ d
g g

X is the total longitudinal displacement of a particle after n steps,
;g is the (ensemble) mean position of a particle after n steps, t, is
the total time of motion after n steps, and E; is the ensemble mean
time of motion after n steps. The values X and tos represent the
longitudinal step length and residence time for the ith step,
respectively. Ensemble mean averages denoted by the overbar represent
integral averages using the probability density function given in
equation (3.19). Vs is the seepage velocity and dg’ the geometric mean

grain size, is a length scale used to nondimensionalize x and T .
n n

From the central limit theorem, we know that for n »>

n n
—_— — 2
2 _ * * 2
x* - x =0
Xn ( s s ) xs*
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where X = = (2 ]
xs/dg (Lcos )/dg

t

@ % o %

= vsts/dg

. . 2 .
The dimensionless variances, 02* and 0 ,, are for a single step. Both

Xg s
oi* and 02* are defined in terms of known integrals
s s

2 * _ * 2

o 4 = f(xs x_")°dF (3.26)
& F
2 * L Ey2

Og * = f(ts - tg ) dF (3.27)
s F

The differential probability density, dF, is given in equation (3.19)

and £ is given by equations (3.21) and (3.22).

For 02* we may calculate
Zs

o 2* = f(l*cose-z*cosﬁ)zdF
X 4

where z* = z/dgl and

red

| win

2*cos6 = fl*cosedF =
F

Therefore, 0 , is finite for a pore length distribution with finite
Xs

variance. From the central limit theorem, we find X, to be

asymptotically normal as n +> =,
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Since the residence time is bounded by a diffusion time scale, the
variance of the residence time distributionm, Gig, may be expected to be
unbounded as Pe - . The analysis to follow requires the asymptotic
behavior of the residence time distribution to be Gaussian with a
finite variance. An estimate of when T will be normally distributed

is given by (Saffman, 1959)

T << 1
n
now
* %\ 3 % x4 3
- = -t
(tn t ") n(tS R )
80

The restriction on n such that T is Gaussian is

35

ne>> (£ * - ¢ *)3
s s

(3.28)

Evaluation of this integral for a nonuniform medium requires numerical

calculations.

For the analysis of the dispersion coefficient, we want the
variance of the longitudinal displacement at a fixed time (rather than
a fixed number of steps). Let x denote the random longitudinal

position of particles after a given time t, and x the dimensionless

coordinate
* _ &
_X T (3.29)
X = “‘"j;‘“"
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Rearranging equation (3.29) we find

x* = n%x + nxs* (3.30)
Further analysis requires the determination of the distribution of n,
the number of steps, for a fixed time t. To do this, we will use the
dimensionless time, T, defined by

t* - nt *
s

TR

n

(3.31)

At this point, it is convenient to address the asymptotic (n + =)

relationship between Xp @d X, and T_and T. For a fixed number of

steps, n R
t* =nt *
n
= 2
* _ _ %k\2_ = * TFV2 _
(t t ") Op * n(tS ts) no, x
n s
therefore
o
t* g, *
n s
—— S — + 0 as n > =
tn* /ot

. . * .
As n > » , a unique time tn corresponds to each X, e So for a given

. %* - * % . .
time t - o, n = tn/tsand X = X;. This implies

X=%_=0

n
a_ 2 _ 2
X Xﬁ ox *

and X is Gaussian as n > *, For T » we know,



t* -nt *
T =D s
n
n%
— 2 2 . .
is Gaussian, Therefore

=0_,, and T

and as n > o, T =0, T
n n *

T, becomes independent of n as n + =, So 7 = T; 88 > o,

T=1—=0

and T is Gaussian as n -~ o

Using T = TS and X = X3 for large times, equations (3.30)

and (3.31) become

x* = n%x__ + nx *
n s (3.32)

t % -nt*

= —S (3.33)

T T %

Using equation (3.33) to solve for n we find
2
t* 2\t t* t ¥ 4t:t* )

. * .
where n goes from 0 to « as TZ 8oes from-=to +°, Since T-E/t is small

as n »», we can approximate equation (3.34) by
2

t* '@ t* ! <T_n> 1 <T—n ) by
na~—t - 2 t i/ n\_ 1/ @\ __1°
~Tx T x 2 *| 8\ Tx | [F.x (3.35)
ts ts ts ts ts ts t

|

x % -
Since t /ts *®as n > *° and Tﬁ/ts is independent of n
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x T *

N —— - 2 t (3.36)
t* ¢* Ye*
8 s s

To the same order of approximation, we find n1/2 is

k[ 1
P 2 e (3.37)

Substituting equations (3.36) and (3.37) into equation (3.32), we find

% * X * T X—
* _ t "§'+ t _ s T _ 1l @™
X =] %5 = {1 % \=|% 2 —% (3.38)
t t t t
s s s s

x % - —
Again, since t /ts-+was n +> « , equation (3.38) becomes for large n

*
* = L* * t* xs
X (t_*) xg +"—t_*_ , Xﬁ -\ = T (3.39)
t
S S S

Taking the average of equation (3.39) gives

[n
*

|'|'

x> (3.40)

t*
]

Since the mean position is defined to move with the seepage velocity,

we find

(ad L]
I | LI
n
[

(3.41)

Rearranging equation (3.39) and using equation (3.41), we find
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e * (3042)
x* - x* ="/:§: {>L.- t_}
t % n n
s

A longitudinal dispersion coefficient may be defined by

&\ 2
% " - x") (3.43)
= S
DL DL/(Vsdg) 2t
therefore
D* = L)y % + 12 —2x_r_)
L 2t * (D n n nf (3.44)
s
where x-2 =g 2* : 1_2 =0 2*
n xS n tS
= * _ _ * * _ %
EETE (xs xs)(ts ts)

In summary, the analysis of Section 3.3 provides a method of
calculating the asymptotic (m + =) longitudinal dispersion coefficient
of a cloud of passive tracer pa?ticles in terms of the statistical
properties of the transport of tracer particles for a single step. In
Section 3.4, methods used to obtain the distributions of pore radii
(g(a)) and pore length (£(2)) are presented, and Section 3.5 will

discuss the numerical technique used to evaluate equations (3.15) and

(3.44).

3.4 Determining the Pore Radius and Pore Length Distributions

The theoretical model gives the permeability and longitudinal

dispersion coefficient in terms of integrals (equations (3.15) and
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(3.44)) involving the ﬁore size distribution, pore length distributiom,
and porosity which characterize the structure of the porous medium.

The utility of the model is dependent on a means of determining these
properties. Measurements of the porosity follow standard methods which

are described in Chapter 4.

The pore radius distribution as determined by capillary drainage
or mercury porosimetry experiments gives the "effective" pore size as a
function of the pore volume of the sample. For a given pore radius, we
can measure what fraction of the pore volume is "controlled" by pores
with effective radii less than or equal to the given pore radius. This
type of pore radius distribution is a volume-weighted distributionm,
while the theoretical model requires a pore radius distribution
according to the frequency of occurrence of a given pore radius. The

necessary change is made as follows.

Following Haring and Greenkorn (1970), we can relate the measured
pore radius distribution to the random capillary tube network model.
Let N be the total number of pores contained in the medium. Assuming
the pore length to vary independently of the pore radius, the fraction

of pore volume contained in an infinitesimal range dn of pore radius

n is given by

N2mn?g(n)dn
(3.45)

where 2 is the mean pore length. The cumulative volume of pore space

in the medium with pore radius between 0 and a is given by integrating
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equation (3.45) from 0 to a

a

V(a) = N’Enfnzg(n)dn (3.46)

o
The total volume of pores in the medium is given by

(-]

vy = Ninfnzg(n)dn (3.47)
(o}

The cumulative probability of radius a, according to volume is given by

the ratio of equations (3.46) and (3.47).
a

f n?g(n)dn
V(a) = Jo

P (a) =
a Vv o
T 2
n“g(n)dn
/
or
a
P_(a) ~fnzg(n)dn
o (3.48)

Differentiating equation (3.48) gives

1
g(a)da ~ ;; dPa(a)

therefore

a a

G(a) =fg(n)dn ~ f iz dP_(n) (3.49)

-0 On
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This expression gives the frequency distribution G(a) in terms of the
measured cumulative distribution for pore radius by volume, Pa(a). The
distribution G(a) is normalized such that G(») = 1. In practice, the
"infinite" radius is the largest radius measured. In this vay, we
obtain from measurements the appropriate pore radius distribution for
the theoretical model. The details of implementing this technique for

specific cases is given in Chapter 4.

The pore length distribution is also required for the calculation
of longitudinal dispersion. Very little work has been published
regarding pore length distributions in porous media, and there are no
standard techniques for its measurement. The results for dispersion in
uniform media (Saffman, 1959; 1960) have shown that the pore length is
roughly equal to the grain diameter. To extend this idea for a
nonuniform medium, we will relate the pore length distribution to the
grain size distribution. The grain size distribution for medium and
coarse sand materials is typically measured using mechanical sieving
(to be described in Chapter 4). Sieving gives the cumulative size
distribution of diameters by mass. Assuming that all the grains have the
same density and similar shapes, we can write an expression relating
the frequency distribution for a given grain size, h(d), to the

measured cumulative distribution by mass, Pd(d),

d
ogfazah(c)dc:
Py(a) =& _ 7% (3.50)

T
pgfacah(;)dc
(o]
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where pg is the grain demsity
o is the constant ratio of particle volume to the
cube of the effective grain diameter

W(d) is the cumulative mass of sand of grain size between 0 and d

W, is the total sample mass.

T

Therefore d

Pg(d) "f t*h(z)dg
° (3.51)

Consider a grain packed in a nonuniform medium., Since we assume
the association of the grains to be random, it is expected that large
grains will have more grain contacts than smaller grains, in proportion
to the surface area of the grain. If we assume that pores are created
through grain contacts, then the number of pores associated with a
given grain is proportional to the surface area of the grainm.
Therefore, the cumulative distribution as weighted by surface area
would seem more appropriate when concerned with the relation between

grain size and pore length. Manipulating equation (3.51), we find

2 1
t h(zg)dg = de(c)

80

d
(3.52)
SORE
J(d) Ag x de(c)
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This expression gives the cumulative grain size distribution, J(d),

veighted by area, where

A(d) is the cumulative area of sand between grain size

0 and d

AT is the total area of the sample.
The distribution is normalized such that A(x) = AT' As with the pore
radius distribution, the "infinite" grain diameter is takem to be the

largest measured value when analyzing actual data.

To relate the grain size to pore length, the following simple
packing model is used. As shown in Figure 3.4, three grains pack to
form a pore space. When the grains are all the same diameter, we
expect the pore length to be about equal to the grain diameter. For
grains of unequal size, we would intuitively expect the pore lemgth to
be related to the interparticle grain spacing. Since the exact
definition of pore lemgth is not clear in terms of the geometry of
packed spheres, we scale the pore length as the cube root of the
interparticle "volume" defined by the three interparticle distances

shown in Figure 3.4.

1/3
L = (618283)

where Bi , 1 =1, 3, represents the three interparticle distances

d2+d3 . dl+d3 . d2+d3

3 2

Integrals involving the distribution of pore lengths, f(2), as required
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in equation (3.44) may be represented by the following:

@ o oo

fw(z)f(n)dz =ff/ (;l+c2) (c2+c3) (T +c3)}1/3)

j(?;l)j (gz)j (c3)dcldc2dc

(3.53)
3

where w(2) is any function of £ and j(Ei) = Cih(ci)

3.5 Monte Carlo Integration for the Permeability and Dispersion

Calculations for permeability and dispersion are carried out
by numerically integrating the expressions given in equatioms (3.15)
and (3.44). The required integrals are summarized in Tables 3.1 and
3.2. These integrals include experimentally determined distributions
for pore radius, g(a*), and grain diameter j(d*). Note that the
probability density functions in the above integrals may be writtenm in

terms of the corresponding cumulative distributions:

g(ai*)dai* = dG.*

]

[o N

o
*

. * *
J(Ci )dci

sin® d6 = -d(cosb)
where the limits of integration for all the independent variables are
from 0 to 1. Integrals of this type may be calculated using a Monte
Carlo numerical integration technique, which has the advantage of
simple implementation when applied to multidimensional integrals with

complex integrands. The basis of the technique is to generate uniform
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TABLE 3.1

Summary of the Theoretical Relationship for
Permeability in Nonuniform Porous Media

PERMEABILITY
3 Oa*“A(a* a¥*) (a.*) (a*)da* da *
ff c PIEREETTVbL-ICIUPEERY-1C R PERRLER
K* =% °0 o — (3.15)
%2 * *
[ac g(aC )dac
where k* = k/clg2 ai* = ai/dg
I &b
* 21';1 ai
A(al*,...,ac ) = —5 ; IF =C/2 (3.14)
Sar
i=]1
MONTE CARLO INTEGRATION
1 1
kb * * * *
f f ag Ma*,...,a)dG;...dG,
* o Yo o
k" =2 fl
%2 4%
a dG
° C C

*
where dGi is a differential element of the cumulative distribution, G:.

N
*y * *
. . E}_ acy A(ali”"’aCi)
k =3 % ]
*
a
] Ci

where N is the number of integration points.
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TABLE 3.2

Summary of the Theoretical Relationship for Longitudinal
Dispersion in Nonuniform Porous Media

LONGITUDINAL DISPERSION

1 2 2

DL* = -2—-_*_ {ox* + Ut* - Zox*t*} (3.44)
t

DL DL/Vsdg t Vst;/dg X x/dg

x = fcos® t=2%/u IF 2/u < 22/2D

t = 22/2D OTHERWISE

-aCZP'cosB
8u

2 2
since x* = t* , o %+ Ok - 20 4. % = X2 + £*2 - 2x*e*

x*t

MONTE CARLO INTEGRATION FOR A GENERAL FUNCTION, w
© o /2

w =fwdF = 2/...ffwac*“Acosesineg(al*)...g(ac*)j(zl*)j (4;2*):](;3*)
F o ovo

* * * * *
da1 ...daC dcl dz;2 d;3 de

1 1
=2 40 00s8dG. dG*dJ*dJ*dJ*d( 9)
PR, waC cos 1-.- C 1 2 3 cos
(o] [o]

N
1 *
= 2-—}:wa *
N30 Aayy ,...,aci*)(c::ose):l
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random numbers for each of the independent variables (cosf, G;, coo g

%*
C

for the selected values of the independent variables. Since any given

*® & % . * x k k %
G, Jl’ JZ’ J3) and compute the integrand, I(al,...,ac,;l,cz,c3,cose),
value of the integrand computed in this way is equally likely, the
value of the integrand, I, may be estimated from the average of N
values of the integrand with a weighting of 1/N for each, i.e.,

N
-— 2
I=2=< Z:I(a P * r % * *
E N 13 2cy » P10 "2 c3.is<cose>i>aci“A(al’;,...,aci*)(cose>

i=1 i’ i

From the central limit theorem, it is possible to show that the
estimate, Té, converges to the true value, I, like 1/VN (Hammersley
and Handscomb, 1979), The method used to generate uniform random
. . . * %
numbers is discussed in Appendix A, Values of 815000580 and
x % % * * * %
Cl’CZ’CB are generated from random values of Gl""’GC’ and Jl’ Jz,

J;, respectively, using a table of values based on the measured

cumulative distributions.

The results of an experimental study on permeability and
longitudinal dispersion in two different porous media are given in
Chapter 4. Pore radius and pore length distributions are determined
for the two media. Calculations of permeability and longitudinal
dispersion using the theoretical models developed in this Chapter are
made for the two porous media investigated experimentally. Results of
these calculations plus a comparison of the experimental and

theoretical results are given in Chapter 5.
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CHAPTER &
AN EXPERIMENTAL INVESTIGATION OF PERMEABILITY AND LONGITUDINAL
DISPERSION IN NONUNIFORM POROUS MEDIA
To test the theory developed in Chapter 3, a laboratory

investigation was undertaken to measure permeability and longitudinal
dispersion on two carefully selected granular media. The porosity,
pore size distribution, and grain size distribution,which are needed to
make predictions of a porous medium”s permeability and longitudinal
dispersion for a given flow, were also determined. No known
experimental study of permeability and longitudinal dispersion have
provided the latter measurements to characterize the porous medium.
The experiments are carried out for two spatially homogeneous (in the
macroscopic semse), unconsolidated sand media. These two porous
materials will be referred to as a uniform porous medium and a
nonuniform porous medium, although the uniform medium does have some

variations in the pore and grain sizes.

Measurements of pore and grain size distributions were done on
representative samples of the porous media. For the pore size
distribution measurement, a saturated sample is placed in contact with
a porous disc containing fine pore sizes, acting as a semipermeable
membrane. Suction head is applied on the saturated sample through the
disc in order to drain water from the sample. A capillary drainage
curve is determined by varying the magnitude of the suction and
measuring the volume of water drained. The pore size distribution is

related to the capillary drainage curve through the capillary rise
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equation. The total void volume of the sample is obtained from the
total volume of water drained and the residual saturation which is
determined by weight loss during oven drying. The total void volume is
used to calculate the total porosity. A separate sample of the porous
medium is used to determine the grain size distribution. This

measurement is made using a standard sieve analysis technique.

The dispersion experiments are carried out in a packed column, in
which a one-dimensional flow proceeds from top to bottom (Figure 4.1).
The dispersion experiments consist of displac{ng a resident solution of
homogeneous salinity from the column by a solution of different
salinity. As the displacing solution penetrates the column, the
initially sharp interface between the two solutions mixes and produces
a zone of intermediate salinity. The mixed zone continuously increases
in longitudinal extent as it is displaced downstream. Conductivity
probes in the column measure the change in salinity over time during
the passage of the mixed zone. These measurements comprise a
breakthrough curve (Figure 4.2), from which a dispersion coefficient is
obtained. Permeability is calculated for the packed column from
measurements of the flow rate and gradient of piezometric head.
Standard piezometer tubes are used to measure the piezometric head
along the column, Conductivity measurements are also used to estimate
the seepage velocity (the velocity of an immiscible displacement
front). The ratio of the Darcy velocity (flow rate/gross cross-
sectional area) to the seepage velocity is the effective porosity

between the top of the column and the conductivity probe.
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The dispersion experiments cover Peclet number from 50 to 700 for
the uniform medium and from 50 to 2600 for the nonuniform medium. As
seen in Chapter 3, the theoretical model is only valid when Pe >> 1,
due to assumptions on the role of molecular diffusion in the transport
process. By a comparison of theory and experiments for uniform media
(Figure 2.5), this restriction is seen to be Pe > 10. Although the
theory holds for all Pe > 10, flow conditions are limited to the linear
laminar regime (Darcy”s law regime) for which the Reynolds number,
Re==vsdg/v, must be less than 10 (Bear, 1972). Taking the ratio of Pe

to Re we find

Pe/Re = v/D = Sc = Schmidt number

4

and for the experiments done here, Sc ~ 103. Thus Pe < 10" is needed

to maintain linear-laminar flow in these experiments. From these

considerations, an approximate restriction on Pe for the theoretical

model is

10 < Pe < 10%

for the solute-solvent system used in these experiments.

An attempt was made to measure transverse dispersion using a
different experimental arrangement. For this measurement, a long
narrow box with a rectangular cross section was used. The overall
dimensions of the box are roughly 2.44m by 0.305m by 0.100m. Due to
the bulk of the apparatus, the box was set up for horizontal flow. The

packing of the box proved to be a difficult task. The box was vibrated
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to pack the saturated sand to its maximum packing density. When the
flow was turned on, however, the fluid pressure on the inflow end would
cause the box to bulge, resulting in a subsequent separation of the sand
pack from the 1lid of the box. This separation caused serious short
circuiting of the flow. Problems were also encountered in the
detection of transverse dispersion. Probes packed into the medium were
built to slide up and down through the medium in order to detect the
transverse dispersion pattern. The tight packing of sand around the
probes created so much frictional resistance, however, that sliding the
probes was nearly impossible without damaging them. Due to the
technical problems encountered with this apparatus, the vertically
packed column shown in Figure 4.1 was used instead. The experiments
carried out in the packed column were limited to longitudinal

dispersion (miscible displacements).

4.1 Apparatus and Materials

The two porous materials used for these experiments are a
relatively uniform natural sand and a highly nonuniform natural sand.
The uniform sand is a medium grained sand which has been further sorted
to produce a relatively uniform grain size distribution. The
nonuniform sand is a natural gravelly sand obtained from a local (Eaton
Canyon) stream terrace. Due to the steep slopes and highly variable
discharge, the local mountain streams tend to deposit Qell-graded
sediments during the recession of flood flows. These naturally mixed

deposits provide a convenient source of homogeneous, nonuniform porous
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media. More quantitative descriptions of the sand media will be given

following the descriptions of the measurement techniques.

The experimental set-up for the permeability and dispersion
experiments is diagrammed in Figure (4.l1). This arrangement is similar
to one used by Rumer (1962)., The column is a clear lucite tube with an
inside diameter of 89mm. The sand occupies a 1.29m long section of the
tube. Piezometer tubes are connected along the column at four
locations and are mounted on a vertically scaled piezometer board. The
piezometric head levels can be read to within 0.5mm. The piezometer
tubes are made of Poly-Flo tubing with an inside diameter of 6.2mm. A
small amount of cloth is loaded into the fitting which connects the
piezometer tube to the column to prevent sand from being pushed up into
the tube. It should be noted that the cloth makes the piezometers slow
to equilibrate after changing the flow rate through the column, so
this technique is not appropriate for transient flow measurements.
Valves are placed in all of the piezometer lines so that the column may
be made air tight for vacuum saturation procedures and since air will

enter the column through the piezometers when running at high flow

rates.

Water is supplied to the column through two separate supply
systems for fresh and saline (tracer) water (Figure 4.3). Water is
pumped from a reservoir to a head tank mounted above the column. Water

from the head tank flows into the inlet chamber just above the top of
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the sand pack. Constant head is maintained in the inlet chamber
through an overflow weir. When the valve at the outflow end of the
column is open, water percolates through the sand into the end chamber
of the column and drains into a constant head receiving reservoir which
overflows to drain. The flow rate is controlled by a ball valve at the
outflow end of the column. Flow rate is measured by directing the

outflow from the column into a volumetric flask and measuring its time

to fill.

Changes in salinity within the column are measured by a
conductivity probe-recording system. A block diagram of the system is
given in Figure 4.4. Conductivity probes are placed at three locations
along the column, with the probe plates lying close to the column axis.
The probes are held in Swagelock fittings attached to the column and
the probe rod penetrates the entire diameter of the column. The probes
(Figure 4.5), constructed in the Keck lab machine shop, are made of
6.4mm (outside diameter) lucite tubing. The tubing is cut and grooved
such that two stainless steel rings slide onto each grooved end with
their outer surface flush with the tubing outside diameter. To join
the pieces, the tubing ends are bored and grooved such that one end
will slide into the other. A lucite spacer ring separates the
stainless steel rings and provides additional strength to the joint. A
fine conducting wire is soldered to each stainless steel ring and drawn
through the lucite tube to connect the probe with the external

circuitry. The pieces are assembled and glued together to produce the

finished probe.
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The probes are driven by a Sanborn carrier preamplifier model 150-
1100AS, which has an excitatidn frequency of 2400cps and a frequency
response of 0 to 100cps. The probe is part of an external half-bridge
circuit (Figure 4.6) which connects to the preamplifier. Salinity
changes detected by the probe are displayed on a Sanborn model 154-100B
strip chart recorder. The voltage output (which drives the recorder
stylus) is sent through a voltage divider and low pass filter (Figure 4.7)
and is recorded digitally by a Digital Data model ADC 1370 analogue-to-
digital system. The voltage divider is necessary since the 150 volt
output of the Sanborn preamplifier exceeds the 10 volt input allowed
by the A/D system. The low pass filter removes the carrier frequency from
the output voltage (which is mechanically filtered by the strip chart
stylus). The A/D converter has a digitizing resolution of ome part in
2047 and a maximum sampling rate of 1600 samples/second. The sampling
window has an aperture of 0.l17usec, which is independent of the
sampling rate. The sampler voltage is converted from binmary to binary
coded decimal and written on a magnetic tape. Further information on

the Digital Data A/D system is available in Okoye and Raichlen (1969).

The hanging water column méthod is employed for measuring
capillary drainage curves. The experimental arrangement is shown in
Figure 4.8. The heart of the system is the fritted glass porous disc
in the Buchner funnel. The disc enables suction head (tensile stress)
to be applied to the porous medium sample without allowing air to enter
the water column and disrupt the tensile stress being applied. By

lowering the burette, greater suction is applied to the porous medium
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and more water drains out of the sample. The suction head is
determined by the difference in elevation between the porous plate and
the water surface level in the burette, The maximum suction which may
be applied before drawing air through the fritted glass disc is
determined from the capillary equation and the maximum pore size in the
disc. The maximum pore size in the disc is 8um, which corresponds to
1.9m of suction head. ‘The inner cylinder which holds the porous medium
is sealed to the fritted glass disc with silicone sealant. A loose

cover is placed over the Buchner funnel to reduce evaporation from the

sample.

Precision screens manufactured by the W.S. Tyler Co. are used for
the sieve analysis of grain size distributions. The stack of
successively finer screens (4/5 series) is shaken by a mechanical sieve

shaker. The screenings are weighed on a mechanical beam balance which

is accurate to 0.001g.

4.2 Characterization of the Porous Media

A lérge sample of several kilograms is taken and split down to a
sample size large enough to be representative but not so large such
that significant blocking of smaller grains by larger grains occurs.
For the uniform medium, samples on the order of 40g are used while a
sample of about 175g is used for the nonuniform medium. Being a
natural sand, the nonuniform medium contains a good deal of silt and
clay which is removed by washing the sand in a (NaPO3)6 and (NaZCO3)2

solution. Due to the uniform grain sizes in the uniform medium, only 6
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screens are needed to characterize the grain size distribution. A
series of 25 screens are needed to characterize the nonuniform grain
size distribution. The sieves are stacked and placed in the mechanical
shaker for 10 minutes. The sand retained on each screen is weighed to
give the fraction by weight of grains which are nominally larger than
the opening size of the given screen but less than the opening size of
the screen immediately above. The results are generally given as a
cumulative distribution of grain size by weight and often follow a log-

normal distribution (Vanoni, 1975), If we let doss dgg» and d,

th percentile grain size on the

represent the 84th, SOth, and 16
cumulative distribution, respectively, then the geometric mean grain

size, dg’ and the geometric standard deviation, og s are given by d50

and (d84/d16)1/2’ respectively, for a log-normal distribution.

Figure 4.9 shows the grain size distributions for the two porous
media. Both distributions are reasonably log-normal, the nonuniform
grain size distribution having a much greater geometric standard
deviation (cg = 2.93) than the uniform medium (og =1.,15). The
nonuniform medium also has a much greater mean grain size, dg =1.26mm,

compared to dg = 0.382Zmm for the uniform medium.

As discussed in Chapter 3, the grain size distribution is a

volume-weighted distribution (equation (3.51))
d
Pd(d)~fC3h(;)d;
°

vhere h(d) is the probability demsity for the grain diameter according

to the frequency of occurrence of a given grain. Pd(d) is the
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cumulative probability distribution shown imn Figure 4.9. The influence
of each grain on the pore length distribution is expected to follow the

cumulative grain size distribution weighted by the area of a given

particle
d

J(d) ~ f z?h(z)dz
()
To produce J(d) from Pd(d)’ we first interpolate the experimental data
to 1000 equally spaced probabilities on the cumulative distribution.
For probabilities beyond the range of the experimentally determined
values, the length is set to the maximum or minimum grain size. The

distribution is given by equation (3.52)

d
[ 1
J(d)~_[zdpd(c)

where the values of J(d) are normalized such that the integral over the
entire domain is one. This integration is performed numerically
(trapezoidal integration). Figure 4.10 shows the final grain size
distribution from this calculation. The d50 values for the uniform
and nonuniform media are 0.380mm an@ 0.453mm, respectively, for the
area-weighted distributions shown in Figure 4.10. The nominal
geometric standard deviations ((d84/d16)1/2) for the uniform and
nonuniform media (Figure 4.10) are 1.16 and 2.42, respectively. Table
4.1 presents a summary of the information on the grain size

distributions.
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Table 4.1
Grain Diameter Distribution Data
UNIFORM MEDIUM
Yolume-Weighted Qigggibggign(a) Area-Weighted gistribugion<b)
Grain - Cumulative Grain Cumulative
Diameter(mm) Probability(Z) Diameter(mm) Probability(%)

0.246 3.29 0.246 0.100

0.294 4,57 0.251 5.0

0.351 25.4 0.307 10.0

0.417 66 .6 0.320 15.0

0.495 98.5 0.331 20.0

0.589 99.9 0.341 25.0
0.350 30.0
0.358 35.0
0.365 40.0
0.373 45.0
0.380 50.0
0.388 55.0
0.396 60.0
0.405 65.0
0.414 70.0
0.421 75.0
0.428 80.0
0.437 85.0
0.448 90.0
0.464 95.0
0.549 99.9

(a) d =0.382mm o = 1.15

g g
(b) d_ = 0.380mm o_ = 1.16
g g
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Table 4.1 (continued)
Grain Diameter Distribution Data

NONUNIFORM MEDIUM

Volume-Weighted Qisggibgtiag(a) Area-Weighted Dist;;bgtion(b)
Grain Cumulative Grain Cumulative
Diameter(mm) Probability(Z) Diameter (mm) Probability(%)
0.175 2.60 0.175 0.100
0.208 3.70 0.175 5.00
0.246 7.00 0.175 10.0
0.295 8.10 0.203 15.0
0.351 12.0 0.223 20.0
0.417 15.0 0.240 25.0
0.495 19.7 0.290 30.0
0.589 24.8 0.322 35.0
0.701 29.6 0.352 40.0
0.833 35.4 0.406 45.0
0.991 41,2 0.454 50.0
1.17 47 .1 0.506 55.0
1.40 54.4 0.568 60.0
1.65 59.9 0.652 65.0
1.98 64.1 0.754 70.0
2.36 71.1 0.879 75.0
2.79 75.4 1.05 80.0
3.33 81.0 1.27 85.0
3.96 84.7 1.64 90.0
4.70 87.7 2.52 95.0
5.61 91.8 11.2 99.9
6.68 94.3 :
7.93 95.5
9.42 96 .6
11.2 97 .4
(a) dg 1.26 mm og ‘2.93
(b) d = 0.453 mm o = 2.42
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Water in the column experiments and the capillary drainage
measurements comes under tensile stress. To minimize the formation of
bubbles in the fluid, all water used in these experiments is de-aerated
under vacuum for about 30 minutes. Since several hundred liters of
water are needed for the column experiments, a battery of 11, 19-liter
glass jugs are connected in series to a vacuum line for de-aeration.
The de-aerated water is siphoned from the jugs into the supply

reservoirs to minimize air entraimment while transferring the water.

Procedures for the capillary drainage measurements follow those
given by Vomocil (1965). The Buchner funnel”s porous disc is saturated
by submerging the funnel in de-aerated water overnight and then drawing
water through the funnel and tubing by using a vacuum pump. The
saturated Buchner funnel, tubing, and burette assembly are mounted
vertically as shown in Figure 4.8. Before putting sand into the sample
cylinder, the system is calibrated for any plate drainage or tubing
collapse by running through the entire series of suction heads and
noting the drainage into the burette. A 600-700g sample of the porous
medium is stirred into the de—-aerated water to completely saturate the
sand. The sand and water mixture is then poured into the sample
cylinder in the Buchner funnel. The saturated sample is compacted by a
hand-held vibrator until the packing is at equilibrium. Excess water
is poured of the funnel while holding the sample in place. By lowering
the burette, a tension is applied to the sample and water drains into
the burette until equilibrium is reached. Due to the water draining

into the burette, the burette must be lowered as it fills to maintain a



107

constant tension. Equilibrium measurements of the volume drained for a
series of successively greater tensions determine the capillary

drainage curve.

Pore radii are related to the temsion head, AH, through the

capillary equation for circular cylindrical capillaries

a = 2y cos B/pghH (4.1)
where Y is the surface tension of water, p the density, g the
gravitational acceleration, and B the contact angle between the air-
vater interface and the solid-water interface., Since equation (4.1) is
used for a drainage capillary curve, the contact angle is generally
assumed to be zero (Vomocil, 1965). As indicated by Vomocil (1965) and
others, the capillary drainage method is a crude, semi-quantitative
technique for measuring pore sizes. Blockage of larger pores by
smaller pores during drainage, pore geometries which are not circular
cylindrical capillaries, and variation of the contact angle are some of
the problems neglected by this method. Unfortunately, there is no
practical alternative techniqﬁe, although direct microscopic
examination has been proposed (Dullien, 1979). Due to the approximate _
2

nature of the measurement, it is sufficient to take y = 72.8g/sec

p = 0.998x10_3g/mm3, g = 9800.mm/sec2, so that equation (4.1) becomes
a = 0.149/0H (4.2)

where a and AH are in millimeters. An important distinction between
the pore radius distribution and the grain size distribution is that

the pore radius distribution corresponds to lengths scaling the void
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space in the medium, while the grain size distribution is a measure of

the lengths scaling the solid space in the medium.,

The capillary drainage curve for most porous media display a
residual saturation which cannot be removed by increasing the temsion
head (Bear, 1972). This residual saturation is apparently due to water
trapped in pendular rings, nonconducting pores, and other situations
which isolate water from conducting pathways. Interpretation of this
problem for pore size distributions is difficult and for this study the
residual saturation will be ignored for the purposes of determining the
pore size distributions. The residual saturation will be taken into

account, however, for the determination of total porosity.

The results of the pore size distribution measurements are shown
in Figure 4.11. As discussed in Chapter 3, the pore size distribution

corresponds to (equation (3.48))

a
P (a)~ fﬂ Zg(n)dn
Yo

where g(n) is the frequency distribution (by number) for the occurrence
of pores of a given size a. While the pore sizes for a uniform medium
change rapidly near the extremes of the distribution, the distribution
is relatively flat between the 5 and 95 percentile. The nonuniform
medium pore size distribution has a 50 percentile size close to that of
the uniform medium, but shows a less peaked, more log-normal
distribution of pore sizes. The 5 to 95 percentile range in pore sizes
is 5.6 times greater than the corresponding range of pore sizes in the

uniform medium. Nominal values for the geometric mean and standard
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deviations for these distributions may be assigned (as discussed for

the grain size distributions). The values of ag for the uniform and
nonuniform media are 0.0679mm and 0.0745mm, respectively. The nominal
geometric standard deviations for the uniform and nonuniform media are

1.14 and 1.85, respectively.

When the sample has been drained to its residual saturation, it is
transferred from the Buchner funnel to a beaker. The sample is then
weighed and placed in an oven to dry the sample completely. After
drying, the sample is weighed. The weight loss during drying
determines the volume of water, V_, contained in the sample at residual
saturation. The residual saturation for both porous media is found to
be about 10Z of the total saturation volume. The dry weight of the
sample gives the volume of sand, Vs by assuming the sand density to be
2.65g/cc. The total porosity, ¢ = vw/(vs + vw), is found to be 0.313

for the uniform medium and 0.291 for the nonuniform medium.

To compute the cumulative probability distribution for pore sizes
according to the frequency of occurrence, we follow a procedure similar
to the analysis of the grain size distribution. The measured
distribution is interpolated to provide the pore radii at 1000 equally
spaced values in the cumulative distribution. For probabilities beyond
the range of the experimentally determined values, the radius is set to
the maxXimum or minimum pore size measured. The cumulative distribution
for the occurrence of pore sizes according to frequency is derived by

noting that (see equatiom (3.49))
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‘a
G(a)~fn—12— dP_(n)
/0

The cumulative probability distribution according to frequency, G(a),
is calculated from the above integral using numerical trapezoidal
integration. Figure 4.12 shows the distribution resulting from these
calculations. The ag values for the uniform and nonuniform media are
0.0635mm and 0.0383mm, respectively, for the distributions shown in
Figure 4.12., Values of the nominal geometric standard deviation for
the uniform and nonuniform media (Figure 4.12) are 1.27 and 2.17,
respectively. Table 4.2 presents a summary of the information on the

pore radius distributions.

4.3 Column Experiments for Porosity and Permeability

Dry sand is loaded into the vertical column by continuous pouring
through the opening at the top of the column. The cdnductivity probes
are in place in the column before the sand is loaded. When the test
section is filled, the sand is compacted by tapping on the column until
an apparent equilibrium is reached. Vibration compaction was not used
due to the possibility of radial segregation of grain sizes when
compacting nonuniform sand (Ripple, et él., 1974) . During compaction,
the sand level drops and additional sand is added to fill the test
section. The process is continued until the sand level is stable at
the proper level. All ports and openings are sealed and air is

evacuated through a port on the bottom of the column with a vacuum
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Table 4.2
Pore Radius Distributiom Data
UNIFORM MEDIUM

Volume-Weighted Qigtriggg;gn(a) Number Frequency Qigtribugion(b)

Pore Cumulative Pore Cumulative

Radius (mm) Probability(%) Radius (mm) Probability(%)

0.0142 0.400 - 0.0142 0.100

0.0230 0.800 0.0142 5.00

0.0337 1.30 0.0227 10.0

0.0426 2.00 0.0435 15.0

0.0496 5.40 0.0493 20.0

0.0604 18.6 0.0531 25.0

0.0776 91.4 0.0565 30.0

0.104 97.7 0.0596 35.0

0.148 99.1 0.0613 40.0
0.0624 45.0
0.0635 50.0
0.0645 55.0
0.0656 60.0
0.0666 65.0
0.0677 70.0
0.0689 75.0
0.0703 80.0
0.0718 85.0
0.0738 90.0
0.0765 95.0
0.148 99.9

(a) M, = 0.0679 mm o, = 1.14

(b) ua = 0.0635 mm oa =1.27
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Table 4.2 (continued)
Pore Radius Distribution Data

NONUNIFORM MEDIUM

Volume-Weighted Digtrigugiog(a) Number Frequency Qiggributign(b)
Pore Cumulative Pore Cumulative
Radius(mm) Probability(Z) Radius (mm) Probability(%)
0.0106 0.300 0.0106 0.100
0.0149 1.10 0.0107 5.00
0.0186 1.90 0.0123 10.0
0.0250 3.00 0.0139 15.0
0.0372 8.20 0.0156 20.0
0.0499 20.9 0.0179 25.0
0.0801 56 .6 0.0218 30.0
0.156 85.0 0.0264 35.0
0.315 95.7 0.0301 40.0
0.0343 45.0
0.0384 50.0
0.0416 55.0
0.0449 60.0
0.0485 65.0
0.0524 70.0
0.0567 75.0
0.0617 80.0
0.0679 85.0
0.0760 90.0
0.0942 95.0
0.315 99.9
(a) M, = 0.0745 mm o, = 1.85
= = 2.17

(b) My 0.0383 mm o,
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pump. De-aerated water is them allowed to enter through the inlet.
After roughly 257 of the medium is saturated, atmospheric pressure is
allowed into the space above the water surface. This increases the

driving head to saturate the column and causes the water to move

quickly through the column with a sharp saturation front. The vacuum pump
is turned off after the entire porous medium has been saturated. The
packing of the sand was not visibly affected by the saturation process;

no further settling of the sand pack was observed.

All water used in the column is de-aerated, as described in
Section 4.2. The saline tracer water is prepared by adding 0.03Z NaCl
by weight to each de-aeration jug. This low concentration minimizes
density differences (Ap n 0.0002g/ml) and viscosity differences, which

can produce unstable flow conditions (Bear, 1972).

Probe calibration is carried out by flushing known concentrations
of saline solution through the column and recording the probe voltage
output. Figure 4.13 shows that all probes give a liﬁear relationship
between relative cohcentration and voltage. This simplifies data
reduction and allows one to perform experiments without having to
calibrate for each experiment, which is quite time-consuming. Only one
of the probes is used at a given time as a simple way to prevent signal
cross talk between probes., A breakthroﬁgh experiment is performed by
draining the inlet chamber and refilling it with fresh or salt water
(depending on what currently saturates the porous medium), and then
opening the outlet valve to begin the flow. One experiment consists of

measuring a complete displacement of the resident water by the
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displacing water. Three experiments are required to measure the
breakthrough at all three probes., No distinctions were observed

between salt water displacing fresh water,versus fresh water displacing

salt water,

The Darcy velocity, VD’ is obtained for each experiment by
measuring the flow rate and dividing this by the cross-sectional area
of the column. The flow rate is determined by measuring the time
required for the outflow from the column to fill a 1 liter volumetric
flask. The piezometric head gradient, V¢, (which should be uniform in
a homogeneous sand pack) is obtained by taking the difference in
piezometric head at successive piezometers along the column and
dividing by the difference in distance between the piezometers. Since
the column has four piezometers, three independent measurements of the

piezometric head gradient may be made. Darcy’s law states ,

\/

D~ -KV¢

where K is the hydraulic conductivity. Dimensional analysis shows that
K =kg/v, where k, the permeability, has dimensions of area and is a
property of the porous medium. The quantities v and g are the
kinematic viscosity of water and gravitational acceleration. Combining

Darcy”s law with the expression for K gives,
k = VDv/V¢g.

Since V¢ is measured over three different sections of the column and VD
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is constant by continuity, we have a measure of the permeability

variation along the column.

Table 4.3 shows the permeability variations and overall permeability
for both porous media. The estimate experimental error for the
permeability measurement is *17. The average permeability of the
nonuniform medium is seen to be slightly larger than that of the
uniform medium. This is consistent with the results found for the pore
size distributions. The 50% pore size for the two distributions are
quite close although the spread and shape of the two pore size
distributions are distinct. Permeability variations within the porous
media are seen to be relatively small, with both permeabilities showing
a minimum in the middle section. This may be expected since packing
constraints at the th of the column and at the bottom may not allow
maximum packing density. The overall variation figures given in Table
4.3 are the maximum permeability differences found in the column
divided by the respective overall permeability between piezometers 1

and 4. This gives a quantitative estimate of the packing homogeneity.

Wall effects during flow through packed columns are difficult to
estimate quantitatively. Theoretical and experimental work presented
by Cohen and Metzner (1981) for uniform media suggest for uniform media
that a column diameter to grain diameter ratio greater than 30 is
necessary to avoid significant wall effects, For the uniform medium,
the column to geometric mean grain diameter ratio is 233, while for the

nonuniform medium the ratio is 71.
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Table 4.3
Permeability Data
Overall
Piezometers: 1 to 2 2 to 3 3toé4 1 to 4 Variation
(see Figure 4.1)
Uniform Medium
Permeability(lo-smmz): 5.83 5.53 5.72 5.56 62
(*12)
Honuniform Medium
Permeability(10™2m?): | 6.34 5.69 5.95 5.95 112
(£12) ‘
Table 4.4
Porosity Data
Effective Porosity

Total
Probes: 1 2 3 Porosity
(see Figure 4.1)
Dniform Medium
Porosity: 0.337 0.318 0.322 0.313
(+12) .
Nonuniform Medium
Porosity: 0.337 0.278 0.290 0.291
(£12)
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When one fluid displaces another immiscibly, the interface
velocity (or seepage velocity, Vs) is greater than the Darcy velocity.
This is caused by a portion of the cross section's being occupied by
grains which reduces the available cross-sectional area for flow. The
average areal porosity is known to be equal to the volumetric porosity
(Bear, 1972), but flow takes place only in pores which interconnect,

Thus an effective porosity may be defined by,

(4.3)

0e = VD/Vs

The difference in effective porosity to total porosity gives an
esfimate of the amount of fluid which is stagnant. If the miscible
displacement process follows advection-diffusion theory, the seepage
velocity is equal to the velocity of the 50% concentration point
(assuming adsorption is not significant). Using the conductivity
measurements, the velocity of the 50% concentration point is easily
found. Table 4.4 shows the variation in average effective porosity
between the top of the sand pack and each probe for both porous
materials. Experimental error for the effective porosity and total
porosity measurements is *1%7., The effective porosity at the first
probe, which measures over the top 7% of the column, is seen to be
higher than subsequent porosities further down the column. This effect
is most nmoticeable in the nonuniform medium, where the smaller grains
tend to filter down,6leaving the top portion of the column with larger,
more uniform grain sizes. Porosities measured at the other two probes
show more uniformity, as expected, since these measurements average

over a much greater portion of the column. Comparison of the average
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effective porosity for each medium (the effective porosity measured at
the third probe) with the total porosity (Table 4.4) shows no

significant differences., This indicates little or no stagnant water in

either columm.,

4.4 Column Experiments for Longitudinal Dispersion

For each dispersion experiment, the concentration of the saline
tracer vs. time is recorded at just one of the three probe locations.
Most theoretical descriptions of longitudinal dispersion in porous
media are based on the advection-diffusion equation, as discussed in
Chapter 2. The dispersion experiments consist of one-dimensional
miscible displacements which produce breakthrough curves for the
variation of concentration versus time measured at a conductivity probe
(see Section 1.,2). Several different forms of boundary conditions have
become popular since the exact physical circumstances which the
boundary conditions represent are not well understood. For example,
given the physical circumstances associated with these experiments, it
is difficult to say whether the proper inlet boundary condition for a

miscible displacement is

C(0,t) = Co t>0

which is a constant concentration condition, or

+ ) - p 2C ot ¢y =
VSC(O ,t) DL x (0',t) = VSCO t>0

which is a mass balance condition. The problem in deciding on the
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proper boundary condition arises since the inlet chamber is a distinct
physical system which should be considered for a complete solution.
Mass transport in the inlet chamber is not well understood, however,
such that a complete model is not possible. Appendix B discusses the
behavior of the solutions of equation (1.3) for miscible displacements
according to various boundary conditions., The important conclusion
from Appendix B is that all of the solutions using the various boundary
conditions are convergent to the same solution only a short distance
downstream (st/DL > 24). Therefore, to analyze the experimental data
we will use the simpler solution for an infinite medium with the
initial condition

c(x,0) = C0 x<0

c(x,0) =0 x>0

In nondimensional form, this solution is (see Appendix B)

1 X-T
C/C_ = % erfc (4.4)
o 2 e ( 2/1-, )

where X = st/DL, T = (vs)zt/DL and erfc is the complementary error
function. Equation (4.4) may be used more conveniently in the

following form

C/Co = % erfc[/fre; (,2(::;*)] (4.5)
A t

where dg is the geometric mean grain size and



123

* = Fe =
X x/dg t vst/dg PeD Vsdg/DL

Written in this way, we see that the experimental value of PeD may be

- * %
obtained by a linear regression of erfc 1(2C/C0) and (x -t )/(ZVE*). The
dynamic Peclet number, Pe;, is used to obtain DL/D through the

relationship
D, /D = Pe/Pe

which puts the dispersion data into a form common to other experimental

results (see Figure 2.1).

Figures 4.14a and 4.15a show typical experimental breakthrough
curves for high Peclet flow in the uniform and nonuniform media,
respectively. These profiles show the entire breakthrough (i.e.,
c/c0 + 1), while Figures 4.14b and 4.155 show an expanded view of the
central portions of Figures 4.l4a and 4.15a. The solid line in these
figures is a best fit of equation (4.5) to the experimental data. The
procedure for producing the best fit is discussed below. Figures 4.l4c
and 4.15c are additional views of the same breakthrough curves, but
plotted such that equation (4.5) is a straight line. The p~l function
used in Figures 4.l4c and 4.15¢ (also seen in Figures 4.16 - 4.21) is
the inverse of the cumulative Gaussian probability integral, which is
proportional to erfc_l. A significant feature of these curves is that
the experimental breakthrough curves start deviating from the
thegretical solution in the vicinity of C/C0 = 0.8. The exact point of

this deviation depends on the Peclet number, probe position and porous
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medium type. This deviation of the experimental breakthrough curve
from the theoretical curve is called "tailing", since the "tail"™ of the
breakthrough curve requires more time to complete breakthrough (C/C0 =
1) than would be expected theoretically. One hypothesis, to be
discussed in Chapter 5, is that the tailing behavior is a result of

heterogeneous features in the sand packs.,

Since the experimental breakthrough curves tend to deviate from
the theoretical curve at high values of C/CO, the only way we may use
equation (4.5) to calculate dispersion coefficients is to match the
theory to the leading portion of the experimental breakthrough curves.
As a consistent and practical technique for amalyzing the breakthrough
curves, we will use C/C0 between 1% and 80% to evaluate DL. The

theoretical curves are seen in Figures 4.14 and 4.15 to fit within 5%

the leading portion of the breakthrough curves (up to C/C0 = 0.8).

Figures 4.16 through 4.21 show breakthrough curves in the uniform
and nonuniform medium for various Peclet numbers and probe positions.
Note that the fit is slightly improved in the tail when the Peclet
number is lower. Comparing Figure 4.15 with Figures 4.20 and 4,21, we
see more pronounced tailing as the breakthrough curve is displaced
further along the column. Further discussion of the tailing phenomenon

and its interpretation are given in Chapter 5.

The variation of DL/D with the molecular Peclet number for both
uniform and nonuniform media is shown in Figure 4.22 and Table 4.5.

The separation of the two data sets on Figure 4.22 is dependent on the
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Table 4.5
Longitudinal Dispersion Data

Uniform Medium Nonuniform Medium
Longitudinal Longitudinal
Peclet Number Dispersion Probe # Peclet Number Dispersion Probe #

(Vsdg/D) (D, /D) (Vsdg/D) (p,/D)
56 .1 36.3 3 50.7 103. 3
58.4 45.6 2 52.3 103. 1
61.3 50.1 1 53.3 161. 2
160. 197. 1 203. 313. 1
165. 133, 3 218. 379. 3
170. 159, 2 222, 519, 2
353. 293, 3 449, 1060. 1
369. 334, 2 477. 988. 3
371. 295, 1 489, 727. 2
604, 553. 1 507, 1660. 2
627. 519. 1 578. 993. 3
667. 609. 3 603. 1440, 2
685. 821, 2 2135, 5090. 1
723, 639. 2 2249, 6690. 1
733, 671. 3 2477, 5550. 3
2583, 4750, 3
2697. 6910. 2
2722. 9170. 2

D = 1.545 x 1073 mmz/sec

v = 1.010 mm2/sec
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length scale chosen for calculating the Peclet number. The geometric
mean grain size is chosen here because it is a commonly used length
scale for describing sand. If we use d80 (the 80th percentile grain
size on Figure 4.9) as the length scale, the nonuniform medium
dispersion data will fall onto the uniform medium curve in Figure 4.22.
However, d80 is not necessarily a "similarity" lenmgth scale which will
cause longitudinal dispersion data for any porous medium to collapse
onto the same line, For example, consider two porous media with the
same value of d80° If the two grain size distributions have different
slopes or entirely different shapes, the dispersion coefficients may be
different. In general, the longitudinal dispersion is dependent on the

variance and higher moments of the grain size distribution as well as

the pore size distribution.

The dispersion coefficient is quite semsitive to changes in the
shape of the breakthrough curve. As seen in equation (4.5), the
dispersion coefficient is proportional to the équare of the slope of
the linear regression line. This doubles the effects of errors in the
slope on the dispersion coefficient. The presence of the breakthrough
curve tail is another source of error for estimating a "pure"
advection—-diffusion dispersion coefficient from the experimental data.
An additional source of error is longitudinal variations in the
packing. While the media used here are ideally homogeneous in the
macroscopic sense, the results for permeability do show some
macroscopic variations along the column. These problems are the most

likely sources of the scatter in Figure 4,22,
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CHAPTER 5

A COMPARISON OF MODEL CALCULATIONS AND EXPERIMENTAL RESULTS

As discussed in Chapter 3, the random capillary tube network model
cannot predict the permeability of a nonuniform porous medium based on
measurable structural features of the medium. The hypothesis suggested
in Chapter 3 is that "network" effects on the pressure gradient tend to
even out flux rates through pores of different sizes. Although the
model is mot suitable to predict permeability, it is still valuable as
a dispersion model. The permeability model can be used to set the
connectivity of the unit cell (see Chapter 3) by comparison with
experimental data for the permeability. Alternatively, some other
permeability model could be used which is able to predict permeability
from structural features., The limited experimental data given in
Chapter 4 support equation (3.11) as a permeability formula, although
there is no theoretical support for this relation. The approach used
here is to match the experimental results for permeability with the
permeability model by adjusting the junction connectivity. Once the
junction connectivity is set, the dispersion model is capable of
predicting the coefficient of longitudinal dispersion based on

structural features of the medium,

5.1 Permeability Calculations; Determining Junction Connmectivity

Permeability calculations using equation (3.15) were carried out
with various junction connectivities in an attempt to match the

measured permeabilities. These calculations were carried out using the
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Monte Carlo integration techmique described in Section 3.5. The pore
size distribution used for the calculations is shown in Figure 4.12.
Although the same number of pores leading to and from a junction are
required for a given unit cell (see Figure 3.2), it is possible to have
a continuous range of junction connectivity for the network. This is
accomplished by using the two nearest even connectivities, say Cl and

C2, in proportion o, such that the comnectivity for the network, C,

is,

C= oCl + (1L-a)cC2

Table 5.1 shows the computed and measured permeabilities using the
"best fit" junction conmnectivity, C = 16. This parameter was set
primarily to adjust the calculated permeability of the nonuniform
medium, since the uniform medium was fairly insensitive to the junction
connectivity parameter. Table 5.1 also shows the permeability
calculations when network effects are ignored (C+=). As expected, the
permeability of the nonuniform medium is significantly higher when the
network effects are not taken into account. Convergence of the Monte
Carlo integration scheme for the nonuniform medium is slower than for
the uniform medium, as shown in Figures 5.1 and 5.2. The nonuniform
medium required 400,000 iterations (unit cells), while the uniform
medium permeability was calculated using 100,000 iterations to get
within 1% of the final asymptotic value. Permeability as computed
from equation (3.11) is seen in Table 5.1 to do reasonably well (within

15Z) for both the uniform and nonuniform medium. The Haring and
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Table 5.1

Measured and Calculated Permeabilities

Uniform Medium(a) Nonuniform Medi&g)
(10”%m?) (10~ 3mm?)

Measured 5.55 5.94
Calculated ' 5.94 5.64
(Cc=16)
(equation (3.15))
Calculated 6.29 16.0
(C » =)
(equation (3.15))
Calculated 6.18 6.71
(equation (3.11))
Calculated 5.02 3.31
(equation (3.7))

0.382 mm = 1.15 (see Table 4.1)

Q
I

(a) dg

(b) dg 1.26 mm o] 2.93 (see Table 4.1)
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Greenkorn (1970) permeability model, generalized for an arbitrary pore
radius distribution in equation (3.7), is found to do well for the
uniform medium, but is significantly low (44%) compared to the measured

value for the nonuniform medium.

5.2 Calculation of the Longitudinal Dispersion Coefficient

With the junction connectivity set (equal to 16 for both cases),
it is possible to make dispersion calculations to compare with measured
results. Table 5.2 summarizes the computed variances which contribute
to the longitudinal dispersion (see equation (3.44) and Table 3.2). If
longitudinal dispersion were purely hydrodynamic, we would expect the

longitudinal dispersion coefficient to go like DL " v.d Thus any

sg°
variations in the dimensionless group DL/vsdg with Peclet number

indicates the effect of molecular diffusion on the dispersion process.
Table 5.2 shows that variations in DL/Vsdg versus Peclet number are

largely due to differences in the mean-square residence time for a

single step. The table also shows that the main difference between
dispersion in uniform and nonuniform media is the effect on the mean-
square residence time, which is due to the different pore length and

pore radius distributions of the two media, The theory presented in
Section 3.3 requires that_;;; =_:§;‘;§ and 25 are shown in Table 5.2. This
requirement is met with two place accuracy for all runs except the low

—_—

. . . . . *
Peclet calculation for the nonuniform medium. The deviation of ts from

* . . . . . . c g
X, indicates that molecular diffusion is playing a more significant

role in the theoretical calculations.
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Table 5.2
Computed Results from the Dispersion Model
UNIFORM MEDIUM
Peclet # DL/vsdg x:Z t:Z x:t; x: t:
58.0 0.788 0.470 1.17 0.315 0.644 0.641
165, 1.00 0.470 1.45 0.315 0.644 0.644
365. 1.17 0.470 1.67 0.315 0.644 0.645
670. 1.30 0.470 1.84 0.315 0.644 0.646
NONUNIFORM MEDIUM
Peclet # DL/vsdg x:2 tzz x:t: x: t:
52.0 1.30 0.225 1.01 0.150 0.373 0.358
215. 2.14 0.225 1.66 0.151 0.373 0.370
525. 2.80 0.225 2.16 0.151 0.373 0.373
2450. 3.99 0.225 3.07 0.152 0.373 0.375
UNIFORM MEDIUM NONUNIFORM MEDIUM
AT gakgs et AT paRch w2
Peclet # 8 s's ts Peclet # X Xets te
2c3 it 2k 2%
58.0 -0.125 0.913 52.0 -0.105 1.41
165. -0.124 1.13 215. -0.104 2.24
365. -0.124 1.30 525. -0.103 2.90
Definitions:
* * - THZ | O ED kKK
x xs/dg tg Vsts/dg 1)1‘/v3d8 (x ° + ¢t 2xsts)/2ts
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Figure 5.3 shows the calculated longitudinal dispersion
coefficients as compared to the measured values. Agreement is
acceptable (within 35%) for the uniform medium, as expected since
Saffman”s (1959) original analysis for a uniform medium is seen
(Figure 2.5) to predict the longitudinal dispersion coefficient within
50%2 when Pe > 10. The agreement between calculations and experiments
for the nonuniform medium is not as good, having about 70% discrepancy
with measured results at the high and low Peclet number extremes. As
previously noted, the low Peclet number result for the nonuniform
medium shows a 3% deviation of ;fifrom ;z; while the other cases show
differences less than 1%. This deviation indicates that a significant
fraction of pores are diffusion limited, which are treated only
approximately in the theory. When molecular diffusion becomes
important, we expect the theoretical calculations to fall below the

measured values (as the original theoretical predictions do when

Pe < 10 in Figure 2.5).

Table 5.3 shows results of the calculations for lonmgitudinal
dispersion and the estimate of the required number of steps such that
the asymptotic dispersion coefficient should apply (equation (3.28)).
Note that this condition should be considered sufficient, but not
necessary, for the asymptotic dispersion coefficient to apply. The
average number of steps to each probe for both the uniform and
nonuniform medium are given in Table 5.4. These are calculated by
dividing the total (nondimensional) distance to each probe by the

* .
average longitudinal step length, X5 given in Table 5.2. Comparison
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Table 5.3
Computed Results for the Average Number of Steps
Required before the Asymptotic Theory is Valid

DNIFORM MEDIUM NONUNTFORM MEDIUM
Peclet # DLID n Peclet # DL/D n
58.0 45,5 80 52.0 67 .6 688
165, 165, 902 215, 460, 25400
365. 427, 4880 525. 1470, 187000
670. 873. 17300 2450. 9770. 2660000
Table 5.4
Average Number of Steps to Each Probe
DNIFORM MEDIUM NONUNIFORM MEDIUM
Probe n Probe n
1 350 1 170
2 2100 2 1000
3 4200 3 2100
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of the required number of stepsvfor the asymptotic dispersion
coefficient to apply to the actual average number of steps downstream
to each of the probes indicates that the experimental measurements have
not been made sufficiently far downstream to reach this criterion for
the asymptotic condition, particularly for the higher Peclet number
experiments. This fact may explain the increase in the calculated
dispersion coefficient compared to measured values at the higher Peclet
numbers. It is difficult, however, to determine the necessary
downstream distance for the longitudinal dispersion coefficient to
approach the asymptotic value. This difficulty centers on the
inability to say what difference is expected between the asymptotic
dispersion coefficient and measured dispersion coefficient when the
asymptotic distance requirement is not met. In the Saffman (1959)
model for uniform media, the relation derived for the "near-field"
longitudinal dispersion coefficient shows a logarithmic growth in time.
This type of slow variation in the dispersion coefficient would suggest
that the measured dispersion coefficients will be close to the

asymptotic value long before the asymptotic distance is reached.

The discrepancy found at the higher Peclet numbers in Figure 5.3
was not expected, based on the experimental results and theoretical
predictions shown in Figure 2.5. In this figure, the asymptotic
dispefsion coefficient compares well over a range of Peclet numbers
from 10 to 106, although the typical experiment (using water) will lie
outside Darcy”s regime when Pe > 10*, Based on equation (3.23), the

required number of steps at Peclet = 103 is n > 3.4x104 or a distance
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of 23m for a lmm grain diameter. At a Peclet number of 104, the
downstream distance required for the asymptotic limit to apply is
1.7km, when the grain size is lmm. It is quite obvious that the
experiments at the higher Peclet numbers do not satisfy the asymptotic

distance requirement.

Typical plots of the Monte Carlo convergence for the dispersion
integral are shown in Figures 5.4 and 5.5. As with the permeability, a
greater number of iterations were required for the nonuniform medium to
attain acceptable convergence. The same number of iterations for both
media were used as for the permeability calculations. Convergence also
was slower for the high Peclet number calculations. This is probably
due to the greater spread in residence times under high Peclet
conditions, which results in a larger Monte Carlo integration error

(Hammersley and Handscomb, 1979).

5.3 Tailing in the Breakthrough Curves

As mentioned in Chapter 4, the experimental breakthrough curves
show highly asymmetrical shapes over the last 10 to 20 percent of the
breakthrough (i.e.,C/C0 = 0.8 to 1.0). Figures 4.14 - 4.21 demonstrate
that the "tail"” is much more pronounced for high Peclet number flows
and tends to disappear at lower Peclet number flows. This phenomenon
is not a result of the "mear field" in the sense that the downstream
distance is insufficient to apply the asymptotic theory p;esented in
Chapter 3. Proof of this statement is based on the observations that

“"tailing" at the first probe is always much less than at the second or
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third probes and the simulations discussed in Section 3.3 did not

demonstrate any tail in the near field.

A possible qualitative explanation of the tailing phenomenon can
be made in terms of diffusion~limited mass transfer (in macroscale).
Consider a packing of nonuniform grains which is nonideal in the sense
that segregation of particle sizes occurs over sufficiently large
length scales such that the medium is nonhomogeneous. Some spatial
variations in permeability, porosity, etc. are expected. Regions of
very fine material may form which have extremely low permeability.
These low permeability regions may have substantial (molecular)
diffusional mass transfer during a breakthrough experiment. Thus, even
during conditions which are high Peclet flows based on average length
and velocity scales, there may be regions in which the mass transfer

occurs under local low Peclet conditions.

Taking this to the extreme, we might consider the medium to
consist of separate advective dominated and diffusion dominated
(microporous) regioﬁs which are allowed to exchange solutes through
molecular diffusion. A model of such a system was proposed by
Passioura (1971), in which he determines the effects of a bidisperse
pore system on overall longitudinal mass transfer. The results of this
analysis show that, after sufficient time, the longitudinal mass
transfer may be described by advective-diffusion theory, where the

longitudinal dispersion coefficient is given by (Passioura, 1971)

L Vi
K =D *5 157
m
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where Op = total porosity
o, = porosity of micropore regions
lm = length scale for the microporous regions
b = overall coefficient of molecular diffusion

in the micropore regions
D = longitudinal dispersion coefficient in the porous
medium without microporous regions
K = longitudinal dispersion coefficient for
macropore/micropore system
The dispersion coefficient is the sum of direct molecular diffusion,
hydrodynamic effects, and the diffusional exchange between flowing and
stagnant regions in the bidisperse pore system. If the time of motionm
is not sufficient, the mass transfer process is not described by
advection-diffusion theory. The required time is estimated by

(Passioura, 1971)

855

o
t >>0.1 =z

o

m

Systems which display the tailing phenomenon are also known to
show an early initial breakthrough, in which the 50% relative
concentration point penetrates the column before the entire resident
fluid has been displaced from the column. Early breakthrough is a
result of the advecting pore regions in the column being displaced from
the column before the diffusion-dominated regions have enmough time to
undergo any significant mass transfer. This may be detected through

the difference in the total and effective porosities. Early



152

There is no page 152 in this manuscript



153

breakthrough will give a lower effective porosity as compared to the
total porosity. As shown in Table 4.4, no significant differences are
detected between the two porosity measurements. A possible explanation
for the absence of an early breakthrough may be that the amount of
diffusion-limited pore space in the column is small compared to the

total pore space in the column,

Now if the slope of DL/D versus Peclet number is ome to one on the
log-log plot (Figure 5.3), then the dimensionless group DL/Vsdg is
constant, i.e., independent of the Peclet number. From the slopes
quoted in Figure 5.3, we see that the longitudinal dispersion
coefficient is practically independent of the value of the molecular
diffusion coefficient (i.e.,DLm D—o'044 for the nonuniform medium),

Consider the advective diffusion equation nondimensionalized by

* *
t = Vst/dg X = x/dg

I Te =Kazc
at* | ax™ )

where K is a constant. In this case, we would expect all breakthrough
curves at a given location to lie on top of one another, regardless of
the Peclet number. Figure 5.6 shows breakthrough curves at the third
(last) probe in the nonuniform medium at three Peclet numbers. The
majority of the breakthrough for the three curves does lie close to a
single line, but the tail shows significantly different behavior as a

function of the Peclet number. The tail is longer for higher Peclet
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number flows since the advection time scale for mass transfer becomes

shorter while the diffusion time scale remains constant.

The conclusions are summarized in the next chapter, and

suggestions for future work are presented.
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CHAPTER 6

SUMMARY AND CONCLUSIONS; SUGGESTIONS FOR FUTURE RESEARCH

Longitudinal dispersion in flow through nonuniform porous media
has been studied theoretically and experimentally. An analysis to
include the effect of nonuniform grain size was developed from
Saffman”s (1959) random capillary tube model for passive solutes
flowing through homogeneous, isotropic, uncomsolidated porous
materials. Miscible displacement experiments were carried out on two
sands in order to test the theoretical model. The experiments also
demonstrated asymmetrical breakthrough curves which could not be

described by advection-diffusion theory.

6.1 Summary and Conclusions for the Investigation of Longitudinal

Dispersion

The theoretical model of longitudinal dispersion developed here
may be used to predict the asymptotic longitudinal dispersion
coefficient based on the measured permeability, pore radius
distribution, grain size distribution, and Peclet number of the flow
(Vsdg/D). No free parameters are used to fit the calculated
longitudinal dispersion coefficients with the measured values.
Therefore, this dispersion theory is based on measurable structural
features and the permeability. The permeability is required to fix a
parameter; the junction connectivity, to obtain a proper flow
distribution through the various sized pores. The following features

have been added to the Saffman (1959) model:
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1. Measured grain size distributions and pore radius distributions are

used directly in the theoretical model.

2. The area-weighted grain size distribution is proposed to describe
the frequency of interaction of grains with pores in nonuniform porous
media. A simple packing model is used to define the pore length as the

cube root of the three interparticle distances between grains forming

the pore.

3. Shear dispersion within individual capillary tubes is not included
in the model. Comparison of previous theoretical work with
experimental measurements (see Figure 2.5) and using the analysis
carried out in Appendix C in the capillary tube network model indicate

that this mechanism is generally negligible.

4. A Monte Carlo integration technique is introduced to allow greater

flexibility in modeling the physical system.

Miscible displacement experiments were carried out omn two
nonuniform porous media for the purpose of determining the permeability
and longitudinal dispersion coefficient. One of the materials is a
‘medium grade sand with a narrow grain size distribution (geometric mean
dg = 0.382mm , geometric standard deviation cg = 1.,15) and the other is
a gravelly sand with a wide grain size distribution (dg = 1,26mm,
cg = 2.93). The following conclusions may be made concerning the

theoretical model and experimental results:



158

1. Longitudinal dispersion in nonuniform media is found to be roughly
0.4 order of magnitude greater than in uniform media when compared
using a Peclet number based on the geometric mean grain diameter. For
the experiments done here, a Peclet number based on the d80 grain
diameter will cause the longitudinal dispersion data (see Figure 4.22)

for the uniform and nonuniform media to collapse to a single curve.

2. Comparison of theoretical predictions and measurements for the
longitudinal dispersion coefficient show agreement within a factor of
1.35 for the "uniform" medium (og = 1,15) and within a factor of 1.7
for the highly nonuniform medium (cg = 2,93). The larger discrepancies
for the nonuniform medium occur at the Peclet number extremes of the
experiments. The discrepancy at high Peclet numbers is thought to be
due to the fact that the experimentally determined dispersion
coefficients were measured in the "near-field" before the asymptotic
dispersion theory is considered fully valid. The discrepancy at low
Peclet numbers is a result of the limitation of the theoretical model
to high Peclet number flows. The decision as to when the flow may be

considered high Peclet number must be made on an individual basis from

. % I . . *
a comparison of xg and t, in the theoretical calculations. When X,

deviates from t: by more than 1%, the flow should not be considered a
high Peclet number flow. At intermediate Peclet numbers, theoretical

predictions lie within a factor of 1.35 of the measured results,

3. The mean-square residence time for a solute particle to pass
through a pore is the critical component in the dispersion integral,

containing the true Peclet number dependence of the asymptotic
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longitudinal dispersion coefficient, The mean-square residence time is
the principal component which causes greater dispersion in the

nonuniform medium as compared to the uniform medium,

4. Observations of breakthrough curves in both materials studied
indicate that highly asymmetric tails are a common feature of the
miscible displacement process in natural materials. The tails are
thought to be a result of local heterogeneities in the packing which
produce low-permeability, diffusion-limited regions. Greater tailing
is observed in the highly nonuniform medium, presumably due to greater
packing heterogeneities. One hypothesis for the tailing mechanism is
that material in diffusion-limited regions slowly diffuses into
advection dominated regions, causing the breakthrough curve tail to be
extended. The Peclet number dependence of the shape of the
breakthrough tail is demonstrated in Figure 5.6, where time is
nondimensionalized by an advection time scale. This finding adds
support to the hypothesis that the tailing is a result of diffusion-

limited mass transfer.

6.2 Summary of the Permeability Investigation

The permeability relationship (equation (3.15)) derived for a
nonuniform medium incorporates a "unit cell” or manifold to represent
each pore for the calculation of the pressure gradient over each pore
in the network. The inclusion of this feature in the model was
necessary to take into account network effects on the pressure

gradient, The artificial nature of the unit-cell concept, however,
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makes it impossible to calculate the permeability based on measurable
structural features alone. The permeability model contains a free
parameter, the junction connectivity, which is established empirically.
Thus the permeability model trades one parameter (the permeability) for
another (the junction comnectivity). The following conclusions on
permeability modeling can be made based on the theoretical development

and experimental results:

1. Network effects in flow through porous media are important for
determining the permeability. Theoretical models which use the pore
radius distribution but do not take network effects into account are

likely to overpredict the permeability.

2., Due to the network effects, the variance in the pore radius
distribution does not have a strong impact on the permeability. The
geometric mean pore size, as measured using the capillary drainage
technique, may act as an equivalent uniform pore size for predicting

permeability.

6.3 Suggestions for Future Research

There are a variety of important areas in need of further
research related to transport phenomena in flow through porous media.
Some of these topics are suggested by the results given above and some

have not been touched upon in this study.

1. While advection-diffusion theory is valid for homogeneous porous

materials, the results of this study indicate that perfectly
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homogeneous packing is not to be expected in general. The highly
extended breakthrough tails found experimentally are thought to be a
result of nonideal packing. A quantitative model of this process is
needed, since in some cases the residual concentrations in the tail are
important. Methods for determining the effective length and volume
scales of the diffusion limited regions are needed. Further

experiments are needed to test sands having different values of og.

2. Many problems concerning transport phenomena in the natural
environment must deal with large-scale, radical heterogeneity in the
permeability as well as adsorption and chemical reactions. For
regional scale problems, spatial heterogeneity in the permeability
dominates the macroscopic dispersion of contaminants. Although there
has been a large amount of work on this subject over the past 15 years,
there is still no consensus on the best way to deal with the problem.

The effects of adsorption, chemical reaction, and biodegradation can

also be extremely important,

3. A permeability model is needed for the purposes of understanding
transport phenomena based on the grain scale characteristics of the
medium, The results of this research indicate a deterministic network
model may be appropriate. On the other hand, empirical observations
may show equation (3.11) is satisfactory. A theoretical basis for the
permeability in terms of a capillary tube network model would provide a

better understanding of the flow distribution in nonuniform porous

med ia °
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4., Experimental and theoretical work on lateral dispersion is needed.
Data on lateral dispersion in nonuniform porous media are extremely
limited. Lateral dispersion may be important in determining the
longitudinal dispersion rate through layered media. Also, viscous

fingering during immiscible displacement may be sensitive to lateral

dispersion,

5. The use of network models (deterministic and random) should be
considered for modeling deep bed filtration processes. Most of the

work to date has concentrated on single "unit collector" models which

ignore the network as a whole.

6. The effects of density stratification and viscosity differences on
mixing are not well understood. Leachate plumes from landfills and

gasoline contamination are two common problems strongly influenced by

density differences.
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NOTATION

A = cross-sectional area (Lz)

Ap = cross-sectional area of pores (Lz)

Ap = total area of sample (Lz)

A(d) = cumulative area of grains up to size d 1?)

a = pore radius (L)

]
]

a/dg = dimensionless pore radius (-)
= a/am = dimensionless pore radius (-)
a_ = geometric mean pore radius (L)

th percentile pore radius (L)

a. = i
B = channel conductance (Lz)

C = solute concentration (M/L3)

C0 = source solute concentration (M/L3)

D = molecular diffusion coefficient in free fluid (LZ/T)

D, =1 + (3/16)(Pe-u/8)?

D, = longitudinal hydrodymamic dispersion coefficient (LZ/T)

D_ = molecular diffusion coefficient in porous medium (L2/T)

transverse hydrodymamic dispersion coefficient w?/m)

(=)
]

= DL/Vsdg ()
d = effective grain diameter (L)
d* = d/dg = dimensionless grain diameter (-)

dg = geometric mean grain diameter (L)

th

d. = i percentile grain diameter (L).

i
F = formation factor (=)

F, = viscous force (ML/TZ)
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f( 2) = probability density for pore length by frequency (L-l)
G(a) = cumulative probability for pore radius by frequency (-)
g = gravitational acceleration (L/TZ)
g(a) = probability density for pore radius by frequency (L-l)
h(d) = probability density for grain diameter by frequency (L'l)
J(d) = area-weighted cumulative probability for grain diameter (-)
j(d) = area-weighted probability demnsity for grain diameter (L-l)
K = hydraulic conductivity (L/T)
KL = longitudinal dispersion coefficient in a bidisperse

porous medium (L2/T)
k = permeability (L2)
kij = permeability tensor L?)
L = column length (L)
2 = pore length (L)

*
g = Z/dg = dimensionless pore length (-)

L. = zlzm = dimensionless pore length (-)

d

2m = maximum pore lemgth (L)

lj = pore length in the unit cell (L)

zmp= length scale of microporous regions (L)

M= 3Pe°w/2De (-)

m = parameter in beta distribution for pore length (-)
N = number of pores (-)

n = number of steps taken (-)

o= parameter in beta distribution for pore length (-)

P = pressure gradient (M/LZTZ)

Pe = Vsdg/D = Peclet number (-)
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Pa(a) = volume-weighted cumulative probability for pore radius (-)
Pd(d) = volume-weighted cumulative probability for grain diameter (-)

probability for the location n at time t (-)

P (t)

Pe, = V_d_/D. = dynamic Peclet number (-)

D s g L
p = fluid pressure (M/LTz)
Q = volume flux (L3/T)

Re = Vsdg/v = Reynolds number (-)

R(7) = Lagrangian correlation function (L2/T2)
ry = hydraulic radius (L)

r, = maximum pore radius (L)

specific surface area (L7!)

S
8 = local axial coordinate along capillary tube (L)

T = Vﬁt/DL==dimension1ess time (=)

Tij = transformation tensor from local to fixed coordinate system =)
t = time (T)

t, = advective time scale (T)

t, = diffusive time scale (T)

residence time in a mixing cell (T)

(a]
L}

residence time in a capillary tube (T)

(g
]

t = Vst/dg = dimensionless time (-)

* . . . . . .
ts = dimensionless residence time in a capillary tube (-)

u = average velocity in a capillary tube (L/T)

V, = specific discharge (L/T)
V. = seepage velocity (L/T)
Vp = total volume drained (L3)

V(a) = cumulative volume drained up to pore radius a (L3)
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= total sample mass (M)

W(d) = cumulative sample mass up to grain diameter d (M)

X = VSX/DL = dimensionless longitudinal coordinate (-)

x = longitudinal coordinate (L)

X

Y

= longitudinal distance after n steps (L)

x/dg = dimensionless longitudinal coordinate (-)

xn/dg = dimensionless longitudinal coordinate

after n steps (=)

longitudinal distance for a single step (L)
= xs/dg = dimensionless longitudinal distance for a
single step (-)
transverse coordinate (L)
transverse coordinate (L)
ratio of particle volume to cube of effective grain diameter (-)

parameter in beta distribution for pore radius (=)

= interparticle distance (L)

parameter in beta distribution for pore radius (-)

surface tension (M/Tz)

A(al,...,ac) = dimensionless pressure fluctuation function (=)

8

2/a = ratio of pore length to pore radius (-)

¢ = effective grain diameter (L)

*
T = c/dg = dimensionless grain diameter (=)

n

8

A

effective pore radius (L)
direction of motion relative to mean flow (=)
tortuosity (-)

dynamic fluid viscosity (M/LT)
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My = geometric mean pore radius (L)

v = kinematic fluid viscosity (L2/1)

p = fluid demnsity (M/L3)

pg = particle density (M/La)

o = volumetric porosity (=)

o_ = geometric standard deviation for pore radius (=)

o_ = geometric standard deviation for grain diameter (-)

8
o% = longitudinal variance (Lz)
0% = transverse variance (L2)
o = porosity of microporous regions (-)
cig = dimensionless longitudinal variance for a single step (-)
Oig = dimensionless residence time for a single step (-)
T = (t*-E*)/nI/2 = dimensionless time (-)

A

T = time lag in Lagrangian correlation function (T)

T = (t:—E:)/nI/2 = dimensionless time for n steps (-)
T,y = shear stress (M/L1?)

¢ = piezometric head (L)
¢a = azimuthal angle (-)
_ * % . 1/2 .. . . . .
X = (x-x)/n dimensionless longitudinal distance (=)
X, = (x:-E:)/nI/2 = dimensionless longitudinal distance

after n steps (-)

w = cos(6) (=)
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APPENDIX A

GENERATION OF UNIFORM RANDOM NUMBERS

Numerical evaluation of the multidimensional integrals derived in
chapter 3 are performed using a Monte Carlo integration technique.
This technique requires the use of a large number of real random
numbers uniformly distributed between 0 and 1. Truly random numbers
are difficult to obtain and not necessarily the most desirable, so
computer generated pseudo-random number sequences are used for most
Monte Carlo calculations. A pseudo-random number sequence contains no
apparent patterns, but is deterministic in the sense that the same
sequence is always generated when started under the same initial
conditions. It is useful to use the same sequence of random numbers
for testing and comparing calculations so that differences observed in
the calculations will not be due to the random number sequence. This
appendix describes the pseudo-random number generator used for the
Monte Carlo calculations presented in chapter 5. For convenience, the
descriptor "pseudo" will be dropped, but is implied throughout the
remainder of the appendix. Most of the discussion to follow is covered

in Knuth (1969).

The most common method for generating uniform random numbers is
the linear congruential method. The basis of this method is to compute
a new value of the sequence from the previous value using a linear

equation, i.e.,

Iep = AIg + B (a.1)
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th

where IN = N integer in the sequence

A = fixed constant
B = fixed constant

The randomness occurs due to integer overflow upon calculation of the
new value, Iy - Integer overflow results in a loss of the most
significant bits, leaving I+ defined by the least significant bits.
The random number generator (equation (A.l1)) gives a sequence of random
integers. To convert this to a sequence of real random numbers between
0 and 1, the sequence is divided by the largest integer in the

sequence.

There are two important characteristics that a random number
sequence should satisfy. These are sufficient randomness in the
sequence and a sequence length équal to the maximum integer which can
be represented on the computer. It is fairly easy to obtain the
maximum sequence length and it is easy to check. For an N bit
processor, the maximum sequence length which can be obtained with
equation (A.l) is 2(N-1) Rules for selecting A and B for
equation (A.l) have been developed (Knuth, 1969) such that the maximum
sequence length is obtained. The computer used for the Monte Carlo
calculations in chapter 5 is a PDP 11/60, which has a 16 bit processor.
This means the maximum sequence length which can be obtained by using
equation (A.1) is 32,768. This sequence length has not been found to

be satisfactory since some of the Monte Carlo calculations need many
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times this number. It is possible to increase the sequence length
dramatically at the expense of using two linear congruential sequences
simultaneously, which approximately doubles the computation time spent
on generating random numbers. If the two generators have sequence
lengths which are prime relative to each other (no common factors), the
sequence length of the combined generators can be made‘to produce a
sequence length equal to the product of the two original sequence
lengths. The algorithm shown below was first proposed by MacLaren and

Marsaglia, and is discussed in Knuth (1969).

Algorithm:

I (A.2)

N+l = A1 Iy * By

Generate 100 values from, say, the J sequence and store in

an array called L(k). Use the I sequence to generate a random

integer value of k, i.e.,

k = 100(Iy,;/Ipay)

where Ima is the maximum integer that can be represented

X

on the computer. The real random number, R, is

R =L(K)/JI

where J . would typically be equal to I __.

Use the J sequence to replace the value used, i.e.,

L(k) = JN+1
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It turns out that a sequence length of 32,768 factors into 2 3

and 32,767 factors into 7,31,151 which has no common factors. The I
sequence is shortened by 1 by throwing out a predetermined value (in
this case 0). Thus the sequence length for the combined generators is

32,767x32,768 = 1,073,709,056.

To determine if a sequence is sufficiently random is a more
difficult question than the sequence length. A number of empirical and
theoretical tests have been developed to detect nonrandom behavior.
Unfortunately, there is no single test which may be considered both
necessary and sufficient to declare a given random number generator
satisfactory for all applications (Knuth, 1969). One commonly used
test for a continuous random number sequence is the Kolmogorov-Smirnov
test. The basis of the test is to compare the cumulative distribution
of sample observations from the random number generator with the
theoretical cumulative distribution for the population. The following

description of the test follows Knuth (1969).

Kolmogorov=Smirnov Test
1. Generate N random numbers.
2. Order the numbers to compute the cumulative distribution
for the sample.
3. Compute k* = N2 max(j/N - F(X;))

K~ = nt/2 max(F(Xj) - (3-1)/N)

For a uniform distribution, F(Xj) = Xj. If the generated numbers are

random, then the values of K'Y and K~ are randomly distributed according
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to a known distribution function. The values may be compared to
tabulated values of K¥ (or K~) which give the probability of the
computed K* (or K™). Table A.l shows 30 independent samples of N =
1000 using the random number generator given by equations (A.2) and
(A.3). The values of K¥ (or K~) which correspond to the given place in
the cumulative distribution when N = 1000 are shown at the bottom of
Table A.1l. By comparing the samplé with the theoretical values, we see
that no extraordinary behavior is detected. Table A.2 shows a similar
calculation for a single linear congruential random number generator
(equation (A.1)). Again, acceptable random behavior is found. The
Kolmogorov-Smirnov test may be applied to the sets of K* and K~ values
displayed in Tables A.l and A.2. This is useful in detecting global
nonrandom behavior in the original sequences. Global nonrandom |
behavior refers to deviation from expected random behavior over the
entire sequence of random numbers (which is 30000 random numbers in
this case). The theoretical cumulative distribution for the

Kolmogorov-Smirnov coefficients (K* and K7) is approximated by
F(x) =1 - exp(-2x2).

Table A.3 shows the global test as applied to the values in Tables A.l
and A.2. We find that both generators display acceptable bahavior at
the global scale (30000 random numbers). Table A.4 presents a summary

of the constants and seed numbers used in the random number gemerators

tested.
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Table A.l

Kolmogorov-Smirnov Test of the Dual Linear Congruential Method

N Kt K

1 - 1000 0.7254 0.5695
1001 - 2000 0.1279 0.4951
2001 - 3000 0.8831 0.2571
3001 - 4000 0.6881 0.5165
4001 - 5000 | 0.8464 0.1472
5001 - 6000 0.6498 0.9749
6001 - 7000 0.5952 0.8585
7001 - 8000 0.4781 ©0.9395
8001 - 9000 0.6586 0.1215
9001 - 10000 0.4222 0.9876
10001 - 11000 0.3533 0.6019
11001 - 12000 0.7830 0.2979
12001 - 13000 0.1789 0.9061
13001 - 14000 0.7827 0.1527
14001 - 15000 0.4602 1.1114
15001 - 16000 0.8752 0.4569
16001 - 17000 0.5086 0.7681
17001 - 18000 0.6731 0.5046
18001 - 19000 0.2417 0.8539
19001 - 20000 0.6249 0.6061
20001 - 21000 1.0093 0.4433
21001 - 22000 0.3779 0.7720
22001 - 23000 1.1243. ; 0.3525
23001 - 24000 0.4456 0.4906
24001 - 25000 0.9829 0.5472
25001 - 26000 0.3859 0.6732
26001 - 27000 0.4626 0.6303
27001 - 28000 0.1594 1.1121
28001 - 29000 1.2748 0.1341
29001 - 30000 0.0506 1.3684

Theoretical Cumulative Distribution:

Cumulative
Probability 99% 95% 752 50% 25% 5% 1%

Value (K) 0.0661 0.1557 0.3746 0.5840 0.8275 1.2185 1.5111
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Table A.2

Kolmogorov-Smirnov Test of the Linear Congruential Method

N k' K™

1 - 1000 0.5549 0.6587
1001 - 2000 1.0379 0.4043
2001 - 3000 0.8436 0.7181
3001 - 4000 1.1094 0.2984
4001 - 5000 0.4815 1.0630
5001 - 6000 0.4404 0.8116
6001 - 7000 0.4668 0.5469
7001 - 8000 0.2685 0.6848
8001 - 9000 0.7827 0.3320
9001 - 10000 0.5234 1.0798
10001 - 11000 0.1162 1.3399
11001 - 12000 0.6983 0.8313
12001 - 13000 0.9578 0.0446
13001 - 14000 0.9058 0.1592
14001 - 15000 0.8462 0.4796
15001 - 16000 1.2432 0.1472
16001 - 17000 0.4831 0.5006
17001 - 18000 0.5867 0.9533
18001 - 19000 0.5601 0.7326
19001 - 20000 0.1924 1.2429
20001 - 21000 0.5801 0.4387
21001 - 22000 0.5574 0.6648
22001 - 23000 0.4351 0.7326
23001 - 24000 0.2879 0.9061
24001 - 25000 0.9993 0.1662
25001 - 26000 0.5867 0.9750
26001 - 27000 0.3050 0.9714
27001 - 28000 0.8617 0.5788
28001 - 29000 0.5719 0.6234
29001 - 30000 0.0374 1.0122

Theoretical Cumulative Distribution:

Cumulative
Probability 99% 95% 75% 50% 25% 5% 12

Value (K) 0.0661 0.1557 0.3746 0.5840 0.8275 1.2185 1.5111
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Table A.3
Global Kolmogorov-Smirnov Test

Dual Linear Congruential Generator:

Sequence Kt K
K’ 0.4205 0.2973
K 0.4807 0.5022

Single Linear Congruential Generator:

Sequence gt K
K 0.7429 0.6311
K 0.4358 0.8042

Theoretical Cumulative Distribution:

Cumulative
Probability 99% 95% 75% 50% 25% 5%

Value (K) 0.0435 0.1351 0.3509 0.5605 0.8306 1.1916

Table A.4

Parameters for the Random Number Generators

1%

1.4801

For Equation (A.1): A = 405 B = 6925 Seed = I, = 15735

For Equation (A.2): A; =405 B, = 6925 Seed = I, = 17375

For Equation (A.3): A2 = 405 32 6923 Seed = Jl = 29841
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APPENDIX B
A COMPARISON OF SOLUTIONS FOR THE
BREAKTHROUGH PROBLEM IN POROUS COLUMNS
The transport of a nonreactive, conservative solute through a
porous medium for one-dimensional flow is often described by the

advective diffusion equation for the solute, c

Eaviean e (8.1)
(Bear, 1972; Greenkorn, 1981), where v is the seepage velocity, defined
to be the volume flux of solution, Q, divided by the average cross—
sectional area of pores, Ap. The total cross-sectional area, Ay, can
be related to Ap through the relationship AP = 0Ay (Bear, 1972) ,

where 6 is the volumetric porosity. A great deal of effort has been
spent in studying D; , the longitudinal dispersion coefficient. For a
uniform porous medium (one composed of grains of a uniform size),
dimensional analysis with experimental research has resulted in a
quantitative relationship for DL/D as a function of the molecular
Peclet number, Pe = vd/D, where D is the molecular diffusivity and d is
the grain size (Bear, 1972). In addition, theoretical work has been
successful in describing the main features of the dispersion
coefficient (Saffman, 1959; 1960). The dispersion model, although
generally successful, does predict some physically unrealistic
behavior, which includes dispersive mixing upstream from a source

(which is not observed experimentally) and the instantaneous effect of
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a change in source strength over an entire domain, implying an infinite

speed of signal propagation (Sundaresan, et al., 1980).

B.1 The Breakthrough Problem

A common experimental method for studying longitudinal dispersion
is to displace a resident solution from a porous column by continually
injecting a solution of different solute concentration at the inlet of
the column (Rose and Passioura, 1971). The well-known breakthrough
curve results when the change in concentration with time is measured at
a particular longitudinal position along the column. Theoretical
solutions to this problem have employed equation (B.l) along with
appropriate initial and boundary conditions. While the initial
condition poses no difficulty, a significant body of literature is
devoted to the interpretation of the boundary conditions (Pearson,
1959; Werner and Wilhelm, 1956; Gershon and Nir, 1969; Choi and
Perlmutter, 1976; Kreft and Zuber, 1978). The three physical domains
to be investigated here are an infinite medium (- @ < x < + =), a semi-
infinite medium (0 < x < + ), and a finite medium (0 < x < L), The

boundary conditions for the infinite medium are

Lim c(x,t) = o t>0
X > =00

(B.2)
Lim c(x,t) = c. t >0

X > ©
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and initial conditiomn

(B.3)

c(x,0) = c. x>0

where, o is the feed solute concentration and c. is the resident fluid
solute concentration. For convenience in the arguments to be

presented, let ¢, =0, since concentrations are only significant in a

relative sense. Let X an T be nondimensional variables defined by

X = vx/DL
(B.4)

T = vzt/DL

In terms of the nondimensional variables in equation (B.4), equation

(B.1) takes the form

2
¢ 43 _2c (B.5)

3T ~ 3X  3x2

The solution to equation (B.5) with equatiomns (B.2) and (B.3) is (Bear,

1972):
_Ec_ = % erfc |21
o ' 2/T (B.6)

where erfc(z) is the complementary error function defined by

erfc(z) =-2—-[e dt
/n z
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A more controversial situation exists in establishing boundary
conditions for a semi-infinite medium and finite medium. For the semi-
infinite medium, the inlet boundary condition (at x = 0) has been

represented as (Ogata and Banks, 1961)

c(o*,t) = ¢y £t >0 (B.7)

which we call the source boundary condition. Let 0% and 0~ refer to
the interface position as approached from x > 0 and x < 0,
respectively. Dankwerts (1953) proposed a flux boundary condition at
the inlet, in which the flux of solute on each side of the inlet is

equal.
]
ve(ot,t) - DL3§(O+’t) = v¢, t >0 (B.8)

Diffusion in the free fluid (x < 0) is considered infinite, and being
an effectively infinite reservoir, can maintain a constant

concentration at x = 0", Conditions (B.7) and (B.8) are identical if
the dispersive flux at x = 0% is negligible. The boundary conditions

for x =+ » are

Lim c(x,t) =0 t >0 (8.9)

X > o

and the initial condition is

c(x,0) =0 x>0 (8.10)
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The solution to equation (B.5) with conditions (B.7), (B.9) and (B.10)

is (Ogata and Banks, 1961)
c 1 X-T X+T\ |
—_= = jerfe{ — ) + exp(X)erfc (———->

and for equation (B.5) with conditions (B.8), (B.9) and (B.10) is

(Brenner, 1962; Coats and Smith, 1964)

1 -
Ci- = -2- [erfc (E) - (l+X+T)exp(X)erfc (Zﬂ)]

° 2/1 2/T (B.12)

3

I (X-1T)?
+(3) em [- &2

Neither the source boundary condition nor the flux boundary
condition is precisely correct for the typical physical situation.
The flux boundary condition takes into account dispersive flux on the
downstream side of the interface, but there is no guarantee that the
hydrodynamic dispersion coefficient applies so close to a boundary.
The flux condition also neglects dispersive flux on the upstream side
of the interface. The source boundary condition makes no statement on
the flux through the interface, but the system must maintain a constant
concentration at the interface, which is an approximation to the
physical system. It is not clear which boundary condition is a better
approximation for modeling the miscible displacement experiments

described in Chapter 4.
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For a finite medium of length L, an appropriate boundary condition
for the exit of the porous medium must be developed. Dankwerts (1953)
again used a flux boundary condition

3

ve(L ,t) - D; 5%

(L,t) = ve, t >0

where €. is the exit concentration, and L~ refers to the exit interface

(x = L) as approached from x < L. Dankwerts (1953) argued, however,

that c(L7,t) must equal Cgs OT the solute concentration within the bed

would have to pass through a maximum or minimum. The exit boundary

condition is then,

w0 =0 £ >0 (B.13)
X

Brenner (1962) gives the solution to equation (B.5) with equations

(B.8), (B.14) and the initial condition

c(x,0) =0 0<x<L
to be
£ - 1o
c_ = Zexp| - (2X-T) | x (B.14)
ad PA A X A, X
§ : k k k
X [A cos (——) + Psin -—)]
2 2 2 2 k 2P 2P
) ( K TEAHP) (4 B9 |

X exp (-lzk T/4P%)
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vhere P = vL/4DL and Ak are the positive roots in order of increasing
magnitude of

2)\P

A2-p2

tan(2)) =

Note that an additional dimensionless parameter, P, has appeared due to
the additional length scale, L. If we only consider the exit
concentration (x = L), then we can write X = 4P and the solution may be
expressed in terms of X and T only.

o 16X, sin(2),) 422 T
ci = 1-exp [% (2X-T)] E k k exp (———k >
o (1612 +X2%+4X) x2 (B.15)

k=1 k

Table B.l summarizes the solutions according to the type of boundary

condition employed.

B.2 Comparison of Solutions

Figures B.1-B.5 present a comparison of the solutions for a range
of X from 0.8 to 80.0 as calculated from equations (B.6), (B.11),
(B.12), and (B.15). The values plotted for a finite medium are taken
from tabulated values given by Bremner (1962). As the value of X
increases, the different solutions tend to the same curve. For
X = 24., (Figure B.4), both solutions for a semi-infinite medium and
the solution for an infinite medium have less than 1% maximum error
among them. Maximum error is defined as the maximum difference in
concentration among the breakthrough curves being considered, expressed

as a per cent (i.e., a maximum concentration difference of .03 is a 3%
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maximum error). The breakthrough curve for the exit concentration from
a finite medium has a maximum error of about 4% relative to the other
solutions when X = 80. The solution for a semi-infinite medium with a
flux boundary condition is approximated to within 2% for X = 8.0

(Figure B.3) by the solution for an infinite medium.

For high Peclet flows (Pe > 1.0), we can write for the dispersion

coefficient in a uniform medium
D, > vd/2

Using this in the expression for X we find,
X < 2x/d

which says that X is less than two times the number of grain diameters
downstream. Thus, for Pe > 1.0, equation (B.6) approximates equation
(B.12) within 2% maximum error for X = 8.0, which is less than 16 grain
diameters downstream. This is probably well within the accuracy
requirements for most situations. By 48 grain diameters downstream,
equations (B.6), (B.11), and (B.12) have less than 1Z maximum error.
For low Peclet number flows (Pe < 1.0), DL tends to a constant, which
means X + 0 as v >~ 0 for a given x. Under these conditions, the
different solutions according to the different boundary conditions may

remain distinct far enough downstream to be significant.
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B.3 Summary

Solutions for the miscible displacement of a resident fluid in
infinite, semi-infinite and finite uniform porous media have been
compared for downstream distances ranging from 0.8 < X < 80., where

X = vx/pL. For a finite medium, the exit concentration is calculated

with X = VL/DL, wvhere L is the length of the porous medium., Under
conditions of high Peclet number flow, Pe = vd/D; > 1, the solution for
an infinite medium is found to approximate the solution for a semi-
infinite medium with a flux boundary condition at the inlet within 2%
maximum error for X = 8. The error is found to decrease with
increasing values of X. By X = 24, both solutions for the semi-
infinite medium are approximated within 1% maximum error by the
infinite medium solution. All solutions discussed are seen to lie

within 47 maximum error of each other when X = 80.
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APPENDIX C

SHEAR DISPERSION AND RESIDENCE TIME FOR LAMINAR FLOW IN CAPILLARY TUBES

(To appear in the Journal of Fluid Mechanics
Vol. 142, May 1984, pp. 289-308.)

The behavior of passive tracer particles in capillary
Poiseuille flow is investigated with regard to the residence time in
short axial sections of length z, in which z/a < Va/D, where a is the
capillary radius, V is the mean velocity, and D the coefficient of
molecular diffusion., While methods exist for calculating moments of
the cross-sectionally averaged axial concentration distribution as a
function of time (e.g. Smith 1982b), much less is known about the
distribution of residence time as a function of axial distance. An
approximate theoretical solution for point sources in high Peclet
number flows reveals that the mean residence time < t(z) >, which is
asymptotic to z/V0 near the source, will then rise faster than z/V0
before converging to z/V for large z, provided the source is not at the
capillary wall, VO is the advective velocity at the point of release.
The variance < tz(z) > is found to initially increase in proportion to
z3 provided the source is not at the capillary wall or on the axis. A
Monte Carlo method based on the solution to the diffusion equation in
the capillary tube cross-section is developed to compute particle
trajectories which are used to analyze both axial and residence time
distributions. The residence time distribution is found to display
significant changes in character as a function of axial position, for

both point sources and a uniform flux of particles along the tube.
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C.1 Introduction

When passive tracer particles are introduced into Poiseuille
flow, random lateral excursions caused by molecular diffusion coupled
with the velocity profile cause an enhanced longitudinal dispersion.
This phenomenon was first analyzed by Taylor (1953), who provided a
complete description of the asymptotic, cross—sectionally averaged
axial concentration distribution. Since that time, Taylor’s analysis
has been applied to a wide variety of fluid flow circumstances (Taylor
1954; Elder 1959; Saffman 1962; Fischer 1967). Taylor”s (1953)
analysis requires a certain initialization time, t > aZ/D, where a is
the tube radius and D the molecular diffusivity, before his results may
be applied. In some cases, for example blood flow in arteries, there
is interest in what happens for t << a2/D (Chatwin 1976). Most
analytical and numerical work for the near field problem has analyzed
the behavior of the spatial concentration distribution as a function of
time. In this paper, we will consider the variation in concentration
over time as a function of axial position. We will limit our attention
to small distances from the source, z/a < Va/D, where V is the mean

velocity.

The results to be presented are principally devoted to cases
where longitudinal molecular diffusion may be neglected. It is well
known that when the Peclet number, Pe = Va/D, is large relative to 1,
the longitudinal molecular diffusion is usually negligible., Chatwin

(1976) shows for a source on the axis that if
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Dt/a2 >> pe~2/3 (c.1)

longitudinal molecular diffusion is negligible. This relationship is
developed through scaling arguments which compare the amount of
longitudinal spreading due to molecular diffusion versus differential
advection. This reasoning may be extended for off-axis sources as
follows. For a point source far from the axis and capillary wall, such
that (Dt:)ll2 << a-r, and (Dt:)ll2 << ry, the velocity differential
developed due to radial diffusion over distances of the order (Di:)ll2

is

AV ~ V<r0/a)(Dt)1/2/a (C.2)

where r is the radial location of the source. This leads to
longitudinal spreading of the order AVt, while the longitudinal
spreading due to molecular diffusion is of the order (Dt)1/2. For

AVE >> (Dt)ll2 we find
pt/a® >> (_ Pe)™t (c.3)

where n, = rola. Relation (C.3) also happens to be valid for a source
at the wall, Ty = a. For sources far from the capillary wall,

(oe)1/2 a-ry, we may scale t by z/Vy, where V, is the advective
velocity at the source. For Poiseuille flow, V0 is of the order

v(1- ng). Substituting into relation (C.l) for t we find

2/a >> pel/3  if n, =0 (c.4)

For a source on the capillary wall, it is not possible to scale t by
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z/V0 since Vo = 0. For this case we scale t by z/AV, where AV is given
in expression (C.2) using ro = a. Using this in expression (C.3) we

find

z/a > Pe‘1/2 if n =1 (C.5)

For intermediate values of Nys the requirement on z may be constructed

from expression (C.3), scaling t by z/Vo to give
z/a >> (1- n2)/n_ (C.6)

which is valid if (1 - no)2n03 >> Pe-l. Expressions (C.4)
through (C.6) show when longitudinal molecular diffusion is negligible

at a given distance z downstream of the source.

Consider a point source which instantaneously injects a small
volume of tracer into high Peclet flow in a capillary tube. At an
observation point downstream of the source, we are able to detect the
cross—sectionally averaged concentration of tracer, szob,t), where z
is the axial distance of the observation station from the source and t
is the time since source injection. Assume zob/a to be sufficiently
large such that longitudinal molecular diffusion may be neglected. The
concentration distribution, Skzob’t)’ defines the probability demsity
that a tracer particle will be at z,;, at time t. 1In addition,';(zob,t)
is the probability density for a tracer particle to spend a time t in
residence with z f-zob' Suppose, for example, a radioactive substance
is injected to irradiate a given length of the capillary tube. The

residence time distribution, szob,t), would be needed to calculate the



202

radiation dosage for a given distance downstream. Another example may
be a chemical reaction which is desired to occur within a certain
distance downstream of the source. In this case, a comparison of the
residence time distribution with the reaction kinetics would be

necessary.

A difficulty arises when longitudinal molecular diffusion is
not negligible. Although ?(zob,t) is still defined, it is not the
residence time distribution. Through molecular diffusion, it is
possible for a particle to move upstream. A particle which has passed
the observation point, Z,p> may diffuse upstream to z < z , and again
contribute to f(zob,t). The time t for this particle has not been
spent entirely in the region z < z ,, so P(z,},t) may mot be considered
a residence time distribution in the sense given above. The difference
in interpretation of P(zob,t) takes on more significance when one
considers a continuous or intermittent source rather than an
instantaneous source. If-i(zob,t) may be considered a residence time
distribution, it is the same regardless of whether the source is
instantaneous, intermittent, or continuous. This is not true when

ilzob,t) is considered the tracer concentratiomn.

Little work has been done to develop techniques for
analyzingli(z,t) as a residence time distribution when z/a << Pe. Tsai
and Holley (1978) derive temporal moment equations in a manner
analogous to the moment method developed by Aris (1956). Through a
numerical solution of the moment equations, they compare spatial and

temporal moments for a tracer concentration distribution in open
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channel flow. In this paper we derive approximate analytical

expressions for

(-]

ft?(z,t)dt
0

ftz_l;(z,t)dt - (<t(2)>)
0

<t(z)>

2

<t2(z)>

which are derived under the condition that interaction between the
tracer and the capillary wall is negligible. A Monte Carlo
simulation of particle trajectories is developed to calculate moments

of the residence time distribution and the full distribution P(z,t).

C.2 Governing Equations

The governing equat{3n for the probability density of a
particle”s position in Poiseuille flow is the advection diffusion

equation, which in standard cylindrical coordinates is:

3P 3P _ o 3%P 3%P L 1P , 1 3%
3z 22 392 (C.7)

e T T e T T g

The velocity profile is u(r) = 2vV(1-r2/a2 ), a is the tube radius, V is
the mean velocity, and D is the molecular diffusivity.

Nondimensionalizing equation (C.l1), we find
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2 2 2
P
Zro20-ny L2 2F, 08, 1P, 13F (c.8)
9t 9z (Pe)? 0z an n 9an n° 9
where 2=_Di. E=]_)£ n=£
va? a? a

and Pe = Va/D is the Peclet number.

When concerned only with the axial distribution of the cross-
sectionally averaged probability, equation (C.8) may be averaged
over 6. In addition, we will limit the analysis to flows with high
Peclet numbers, so longitudinal molecular diffusion may be ignored.

Equation (C.8) becomes:

AP* 3P*  32px 1 ap%
— + 2(1-n? = =
at (1=n9 3z an? * n an (c.9)
2T
where P* = 4L- Pdo
2T
(o]

Equation (C.9) shows that the cross-sectionally averaged probability

density is a function of Z and t and the initial conditionms.

When advection dominates longitudinal transport, the main
effect of random molecular motion on the axial position of particles is
through the coupling of lateral diffusion with the velocity profile.
Taylor (1953) successfully investigated the asymptotic (far-field)
behavior of a passive tracer”s cross-sectionally averaged axial
concentration distribution by focusing on the interaction between
lateral diffusion and the velocity profile. Transforming to a
coordinate system moving with the mean flow, Taylor (1953) shows that

the axial mass transport is proportional to the axial concentration
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gradient, which leads to an effective advective diffusion equation for
the mean flow. No such simple transport equation exists for mear-field
advective diffusion, though attempts have been made to derive one
(Smith 1982a). Numerical calculations for the near field (Gill and
Ananthakrishnan 1967; Jayaraj and Subramanian 1978) have shown complex
behavior for the cross-sectionally averaged axial concentration
distribution, which indicates that a numerical solution may be
necessary to calculate the entire distribution. It is possible,
though, to derive exact expressions for the mean and variance of the
axial distribution which are valid for all distances from the source.
These may be derived by taking moments of equation (C.8) (Aris 1956;
Barton 1983), or by expanding the solution of equation (C.8) with
orthogonal Hermite polynomials (Smith 1982b). Perhaps the most direct
method is to use a technique due to Saffman (1960), which has been
applied in the present context by Chatwin (1977), who derived

approximate expressions for the axial mean and variance when £ << 1.

C.3 Analysis of Averaged Quantities

Let Y(r,t;ro) be the probability density for the radial
position of a particle released at r = Ios £ = 0. Then the mean

position may be calculated from (Saffman 1960; Chatwin 1977):

a
<V(t) > = /u(r) y(r,r;ro)rdr (C.10)
o
t
<z(t) > = /<V(T)> dt (C.11)

[o}



206

and the variance with respect to the mean (neglecting longitudinal

molecular diffusion),

<V(D) V(') > =//u(r)u(r')Y(r,T—r';r')Y(r',T';ro)rr'drdr' (C.12)
O o
<z?(t)> = 2//<V(T)V(‘r') > dt'dt - (<z(t)>)? (C.13)
O o

Now, Y(r,t;ro) is the solution of the diffusion equation in a circle

with an initial “ring” source, i.e.,

3y _ (2% 1_31)
3t " D(ar2 TToor ' (C.14)

with boundary and initial conditioms,

KA =0 on r =a
ar

1
Y(r’ogro) = ;"" <'5(17‘-]:'0)

_ o
where S(r-ro) is the Dirac delta function.

The solution for any initial axially symmetric distribution is well

known (Cramk 1956) and in this case gives,

Jo(raN)Jo(roaN)

(C.15)

Y(r,t;ro) = —2-2- 1+ Z EXP(-aNZ Dt) >
a N=1 Jo (aaN)

where o, is defined by Jl(a @y)=0, and Jy and J; are Bessel functions

of order 0 and 1. Using equation (C.15) and performing the integrals in
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equations (C.10) through (C.13), the mean and variance may be found to be

(in dimensionless form),

® J (n_By)
2 (t =t -8 [1 - EXP(-8 2{)] o o N
<Z( )> I; N BN“ JO(BN) (C.16)

<22 (8)> =128 s;"g Bg2- 1+ EXP(-82 e)s (€.17)
N=1 -

hd J (n_B,)
162:;1 1+ 2 2,\8 o o N
- - B.2t) EXP(-B.° t) —_——

3 =1 N N By I, (By)

o 2 2
+ 128 2; (Bm + By )Jo(noBN)
2 _a2yp2,b
N=1 m#N (Bm BN )BN Bm Jo(gN)

2 _r2%y_pn2 _2q4
] [1 _ By EXP(-By £)-B EXP(-B t)]

2 _ 2
Bm BN
2
o ' J (n_B)
~ N
-64 3 z:[l - EXP(—th)] —",,——2——2
&t N By I, (B

where BN = aa Both (C.16) and (C.1l7) are given in Smith (1982b).

N’

At first thought, one may reason that the average residence time
in a section of length z_ may be found by inverting expression (C.16)
to solve for t, with < z(t) > = z - However, this does not give the
mean residence time, but the time for the mean position to move a

distance zs. The mean and variance of the residence time distribution

are,
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o]

< t(z) > = d/- tP(z,t)dt (C.18)
< t2(z) > = f 2P (z,t)dt - (<t(z)>)? (C.19)
0
where a
P = —‘722-/ P*(z,r,t)rdr
a
o

P is the cross—sectionally averaged probability density function for an

—

instantaneous point source. P is normalized such that

[e<]

/ P(z,t)dt = 1 (c.20)

(o]

For t > 1, we know Taylor”s (1953) solution for ;k;,E) applies
(Chatwin, 1970). Scaling t by z/V we see that z > 1 is needed for the

asymptotic solution to be valid. Taylor’s solution is

5o oy 1 -(z-t)*?
P(z,t) = EXp | ——1

z,t) — [ /12 ] (c.21)
12 ¢ :

Substituting equation (C.21) into(C.18) and (C.19) gives for the mean

and variance
< E(i) >=z 4 1/24 (C.22)

<t2(2) > = 2/24 + 1/288 (C.23)



209

As previously stated, an exact solution forlg(i,f) is not available
when z << 1, but an approximate solution for small times due to Chatwin
(1976) may be used to investigate the initial behavior of the residence
time distribution, Chatwin’s solution for a point source located at
T = I, does not take into account interaction between the tracer and
the capillary wall, and is limited to £ << (1—rb)2. For Pe >> 1 and
t << (l-yk)z, we scale t by z/V,, which is of the order (z/V)(1l- ng)-l.
Substituting, we find the restriction on 2 for Chatwin’s solution to

be

2 << (1-n2)@ -n)? (C.24)
0
Chatwin”s (1976) approximate solution is:

_ A EXP[-(z-V t)?/4Dt]
P(z,t) = —z — (C.25)

3/z(z—V t) 2 2( (z=V t)?
S (B) =23 () |

A is determined through normalization (equation (C.20)). Performing

the integral in equation (C.18), and nondimensionalizing the solution in

terms of 2, Ny s V/Vo, and Pe, we find

2 4

. vV - AN 3 :
<t(z)>=(-—) z-[1+ 12(—-) z+6un2(L Y2+ 06 (L) —1 4 gson2f V) L
v v o \V, \V, ) ®e)? "o \V

o o/ (Pe)?




Now, conmsidering the case where Pe —+ «, we find

2 3
v YAANE
<E(2)>=<l>£ i +L12 <V°>+ "o (VOU_Z (C.26)
i 1+ [8 (—V—>Z+ 32%2(;]\7_)3]2

\)
o o

To neglect lomgitudinal diffusion for large but finite Peclet number,
we have an additional restriction on z which is derived from
expressions (C.4) or (C.6), depending on the source position. These
give restrictions on the downstream distance required such that
longitudinal molecular diffusion is negligible. The complete set of

restrictions on z for use of equation (C.26) are

-~ 2
z << (1 - n2)(1l - n))

~ -2/3 _
z >> Pe if n, = 0 (C.27)
1 - n2
~ [} . 2 3 -1
>> —— if 1 - -
z n Pe ( n)n .~ >> Pe

A more convenient nondimensional representation of the mean residence
time is < t(z) > = < Ve(z)/z > = < £(2) >/z, since this removes the

bias that a longer section will have a larger residence time. A
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particle which moves with the mean velocity, V, will have a mean

residence time < t(z) > = 1 for any distance downstream, Using this

scaling we have,

2 3
v 2f V\ 15
_ v 1+ [12 (Vo + 64n0 (Vo) ] z
<t(8)>= — —
o1 + [8 (Vo> + 3211o <Vo) z

when 2 << (I - n2) (1 - no)2 and Pe + o

Through a comparison with numerical results (Section C.6), we find for

roughly 10%Z accuracy in < t(z) >

z < 0.1(1 - n2)(1 - no)2
Plots of < t(z) > vs. z are shown in Figure (C.8). The initial
behavior of < t(z) > is to increase with increasing 2, regardless of
the position of the source (provided the source is not at the wall).
As an example, comnsider a source located at n, = 0.8 so that
V/V0 =1.39. As z + 0, we see that <t(z) > *'V/VO =1.39. For z~+>=,
we know < t(z) > +~ 1. Equation (C.28) predicts that < t(z) > will
initially increase beyond 1.39 as z increases before eventually |
decreasing to 1 as z - », Further comments on the behavior of the
mean residence time will be given in Section C.6 when Monte Carlo

simulation results are compared with equation (C.28).

Integrating equation (C.25) for the variance and

nondimensionalising as before gives

. 2 2 3,
<£2(z)> = (Vl> z2 1+ 16<Vl) z + -g-g-g-ng(vi) z
o

o (o}
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3221523
2 7?“0 v
£ < C (C.29)

Note that at this level of approximation, the first-order correction to
the variance for a source on the axis (no = 0) does not appear.
Equation (C.29) is restricted to the range of z given in expression
(C.27). 1In the following sections a Ménte Car}o method is derived
which numerically solves equation (C.9). The method is used to

calculate both axial distributions and residence time distributions.

C.4 A Monte Carlo Method for Axial Dispersion in Poiseuille Flow

An approximate method for modelling the longitudinal motion of

a particle in Poiseuille flow is to allow the particle to make a series
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of longitudinal steps for a fixed time step At. Neglecting axial

molecular diffusion, the length of the ith longitudinal step is

AZi = u(ri)At (C.30)

The key is to select T; from the appropriate distribution for a given
time step At, and previous radial coordinate r._j- This selection is

governed by equation (C.15), which in this case is (in dimensionless

form),

Jo(niBN)Jo(ni_leN)
2
I, (BN)

tn. ) =211+ 2 ¢
v(ngotn, ) =51 +NZ:1EXP(-BN aE)

(C.31)

Integrating equation (C.31) over the cross section from 0 to ng gives

o - 2 £
SO ai S Z EXP (-8, AL) Jl(niBN)Jo(ni_lsu) -
N=1 o N
where S is the cumulative probability distribution. For a fixed
time step we invert equation (C.32) to give
(C.33)
n =

Since S is the cumulative probability distribution, it represents the
probability that the new radial position of the particle will be less

than or equal to ng » given that the initial radial position is AR

For a fixed n; , , S varies monotonically with vuibetween $(0) = 0 and
§(1) = 1. The probability that S will lie between any two values, say

S2 and S1 is ISZ—Sl] o Since the probability that § lies within any
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interval is equal to the size of the interval, S is uniformly

distributed between 0 and 1.

The algorithm for each step is to generate a uniform
random number for S and using Ny_1 solve for Ny. Equation (C.30) may
then be used to calculate the amount of axial motion for each time
step. As to the selection of the time step, it is not possible to say
a priori how large a step may be used, but the results can always be
checked by the exact analytical results given by equations (C.16) and
(C.17). Restrictions on the time step are based upon accuracy
requirements since the solution is stable for any time step. We have
found the time step At = 0.001 to be sufficiently small for the
calculations done here. Generating random values of ny from eguation
(C.33) turns out to be too slow for practical calculations, so a large
table of values have been computed, from which nicould be accurately
estimated by four-point interpolation. A grid of g(201,51) ig used to
approximate equation (C.33), the finer divisions in S being necessary
since g changes rapidly near S = 0 and S = 1. Uniform random numbers
are generated by combining two linear congruential random number
generators to produce a third "ultra" random sequence. This technique,
attributed to MacLaren and Marsaglia, is discussed in Knuth (1969).
Axial and residence time distributions are produced by computing simple
histograms of the particle positions or times and filtering the
resulting distribution with a numerical lopas filter, which removes

high frequency Monte Carlo "noise" from the distribution.
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The calculation procedure presented here may be extended to
include longitudinal molecular diffusion. To do this, a stochastic
longitudinal step, AzDi, is chosen from a Gaussian distribution with a
mean of 0 and a variance 05 = 2DAt, Equation (C.30) becomes

Az, = u(ri)At + Az

i Di

As stated in section 1, when longitudinal molecular diffusion is
important at the observation point, z, ;kzob’t) fails to qualify as a
residence time distribution. With the Monte Carlo technique, it is
possible to calculate a residence time distribution based on a
definition suitable to the application. For example, if the
distribution in time when particles first pass z is desired, it is

very easy to set up the Monte Carlo routine to do this,

In general, the Monte Carlo method described here is attractive
when an analytical solution to the diffusion equation in the cross
section is available. Except for this restriction, the method is very
flexible and can easily accommodate any velocity field or time-
dependent phenomena. For example, it is possible to have an
oscillating flow or flow through a converging-diverging tube, provided
the cross section maintains a constant shape. The velocity field,
which must be known for all positions and times, is always superimposed

on the random motion. Turbulent flow may be modeled as well, if the
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assumption of a comstant transverse turbulent diffusivity is used.
Calculations for turbulent flow in tubes of circular cross section may
be done by changing from the laminar velocity profile to the mean
turbulent velocity profile. Everything else carries through as before,
including the "diffusion table,” g(S,n;_ ;). The calculations which
produced g(S,ni_l) are independent of the specific value of the
diffusion coefficient (molecular or turbulent), due to the

dimensionless nature of equation (C.32).

The Monte Carlo method has been previously used in studies of
turbulent diffusion (Kraichman 1970), for longitudinal dispersion in
turbulent open channel flow (Sullivan 1971), and for longitudinal
dispersion in laminar flows (Dewey and Sullivan 1982). The technique
as presented here is somewhat different in that exact analytical
results are used to model the random motions. It is essentially a
numerical technique for solving equation (C.9). It is of some interest
to see how well this technique can perform when no assumptions are
involved and exact calculations are available for comparison. 1In
addition, the Monte Carlo method has some advantages over standard
numerical solution techniques. It contains no numerical dispersion, is
absolutely stable, can exactly simulate delta function sources in space

and time, and is extremely simple to implement on a computer.

C.5 Results of Calculations: Axial Profiles at a Given Time

Axial profiles provide an opportunity to check the calculations

against the theoretical results given by equations(C.16) and(C.17) and
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with other numerical results. Table C.l1 summarizes the calculations
for axial mean and variance, and is seen to be within 1Z for the mean
and 27 for the variance in most cases. Previous published work
(Chatwin 1970; Gill and Ananthakrishnan 1967) have used an
instantaneous spike source uniformly distributed over the cross section
as a characteristic example. To produce this type of initial
distribution most easily, we would like to introduce particles
uniformly over the cross section in a random fashion (the AREA source
in Table C.1). The probability for a particle to enter the tube at a
given radius N within a differential range dn is in proportion to the
differential area ndn , Since the problem has axial symmetry, the
initial angular position in the cross section is not important. The

cumulative distribution is:

n

(e}
= = 2
S(no) Z/ndn o

o

To select initial coordinates, n, s from the appropriate distribution,
n, is chosen randomly as the square root of a uniformly distributed
random number. Figure C.1 shows the Monte Carlo calculations for a
short time ( t = 0.01 ) after release of the tracer particles., Plotted

along with this is the solution for pure advection, which in terms of

the dimensionless variables z and t is (Chatwin 1970),

il
—~
N>
o
(@24
~
L}

2% £(/1-2/28) 0<2 ¢ 28 (C.34)
t

P(z,t) = 0 OTHERWISE
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Table C.1
Axial Distribution Data

Source Dimensionless Monte Carlo Theoretical Monte Carlo Theoretical
Location Time Average Average Variance Variance
¢ <z(£)> <z(£)> <2(8)> <z2(t)>
0.0 0.01 0.01969 0.01960 0.9410 (-7) 0.1069 (-6)
0.0 0.05 0.09006 0.09031 0.6475 (=4) 0.6410 (-4)
0.0 0.10 0.1623 0.1622 0.7016 (=3) 0.7041 (=3)
0.0 0.20 0.2780 0.2784 0.003963 0.003949
0.0 0.30 0.3812 0.3822 0.008099 0.008079
0.0 0.50 0.5817 0.5833 0.01652 0.01648
0.67 0.01 0.01073 0.01072 0.4717 (=5) 0.4745 (-5)
0.67 0.05 0.05008 0.04997 0.3354 (=3) 0.3361 (=3)
0.67 0.10 0.09873 0.09849 0.001447 0.001443
0.67 0.20 0.1968 0.1973 0.004917 0.004845
0.67 0.30 0.2958 0.2970 0.008895 0.008816
0.67 0.50 0.4950 0.4969 0.01717 0.01709
1.0 0.01 0.002699 0.002714 0.2118 (-5) 0.2119 (-5)
1.0 0.05 0.02644 0.02643 0.1629 (-3) 0.1654 (-3)
1.0 0.10 0.06700 0.06691 0.8809 (-3) 0.8823 (-3)
1.0 0.20 0.1596 0.1603 0.003736 0.003711
1.0 0.30 0.2574 0.2588 0.007463 0.007458
1.0 0.50 0.4562 0.4584 0.01550 0.01564
AREA* 0.01 0.01005 0.01000 0.3108 (~4) 0.3177 (~4&)
AREA 0.05 0.05023 0.05000 0.6146 (-3) 0.6295 (-3)
AREA 0.10 0.1003 0.1000 0.001975 0.002024
AREA 0.20 0.1994% 0.2000 0.005627 0.005702
AREA 0.30 0.2986 0.3000 0.009614 0.009756
AREA 0.50 0.4979 0.5000 0.01779 0.01806

*Equivalent to an instantaneous source
uniformly distributed over the cross section
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where £(N) is the initial radial distribution of tracer at t = 0 and

z = 0, subject to the condition
1

Z/f(n)ndn =1

[o}

For the present case f£(n) = 1, and the pure advection solution is

7,8 = = 0 <z <2t

28
o (C.35)
P(z,t) =0 OTHERWISE

The peak lagging the mean in Figure C.1. is in agreement with
intuitive arguments put forward by Chatwin (1970) regarding the effects
of preferential, radially inward diffusion of particles initiated near
the capillary wall, Figure C.2a compares the finite difference
calculations of Gill and Ananthakrishnan (1967) with the current Monte
Carlo calculations. The two calculations compare very closely, with
the finite difference solution showing slightly lower peak values with
greater spreading at the tails of the distribution. These differences
may be the result of inclusion of longitudinal molecular diffusion in
the finite difference calculations. As is evident from Figures C.1
and C.2, the unfiltered Monte Carlo histogram contains a great deal
of high frequency noise which results from the estimation of a
probability density function from a finite set of discrete samples.

Figure C.2b shows the effect of doubling the number of particles and
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(a)

FIGURE C.2

Axial distributions, area source: probability density, P, vs. axial

distance, z. [ , Monte Carlo (unfiltered), (a) 5000 particles, (b)

10000 particles, ———, Monte Carlo (filtered); x, finite difference
Gill and Ananthakrishnan (1967)
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indicates that the Monte Carlo solution is less reliable for high
frequency information. The various small "bumps" in the filtered Monte
Carlo solution should be considered residual noise which is passed
through the lopas numerical filter, Figure C.3 shows a sequence of
distributions from t = 0.01 to £ = 0.5. Taylor’s (1953) asymptotic
Gaussian solution (equation (C.21)) is plotted along with the Monte Carlo
solutions. The Monte Carlo disfribution and the Gaussian solution are
seen to match relatively well by the time t = 0.3, which is in
agreement with a prediction of Chatwin (1970) that the Gaussian limit

is applicable beyond t = 0.25.

The solution for the axial distribution from a point source at any
initial radial position can also be calculated using the Monte Carlo
technique. Figure C.4 -shows the progression of the axial
distribution from an instantaneous point source with n, = 0. From
Table C.1, it is seen that all the mean values have small error
( < 1%), while a fairly large error occurs in the variance of the first
distribution. This more substantial error is a result of the highly
skewed shape of the distribution, for which a small error in
representing its long tail results in a large error in the variance.

As the distribution becomes more symmetric and approaches a Gaussian
shape, errors in the variance are reduced. This is consistent with
theoretical requirements that errors in the mean go to zero as lﬁdir
for any distribution, while errors in the variance are guaranteed to go
to zero aS\f§7fron1y for a Gaussian distribution , N being the number

of samples from the distribution (Hammersley and Handscomb 1979), The
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Axial distributions, area source: probability density, P, vs. axial
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FIGURE C.4

Axial distributions, point source, n, = 0: probability density, P,
vs. axial distance, z. [J , Monte ca%lo (unfiltered), 5000 particles;
, Monte Carlo (flltered), ————— s equation (C.21)._ Times: (a) tA

= 0.01, (b) £ = 0.05, (¢) t = 0.10, (d) t = 0.20, (e) t = 0.30, (f) t =
0.50.
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development of a "knee" in the distribution at t = 0.2 is a result of
interaction between the capillary wall and the radially diffusing
tracer. At t = 0.1, the capillary wall lies roughly 2.2 standard
deviations from the source position, while at t = 0.2, the wall is
within 1.6 standard deviations. This means roughly 10Z of the
particles have diffused to the wall when t = 0.2, compared to about 2%
at t = 0.1. Being ﬁnable to diffuse further out, the particles begin
to migrate radially inward. The axial position of particles which have
traversed the cross section should be roughly equal to the cross
sectional mean velocity, V, times t, which in dimensionless terms means

~

z=+¢t . This corresponds closely to the location of the knee.

C.6 Results of Calculations: Residence Time Distributions

Residence time distributions provide the complement of axial
distributions, being the distribution of the particle’s probability
density over time at a fixed location. This viewpoint is by far the
most common in experimental work. Rather than introducing particles
uniformly in the cross section as we did for axial distributions, a
more interesting problem is to allow particles to enter in proportion
to the flux along a given streamline., This will model a uniform flux
of tracer particles along the tube, where we are interested in the
residence time for the particles in a particular axial section. For
example, a well-mixed solution pumped through a short tube under steady-
state conditions would be represented by this initial condition,

neglecting end effects. The probability that a particle will enter the
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axial section at a given radius n within a differential range dn is

2 .
(1-n")n dn (Saffman 1959). The cumulative distribution is

n

o
- - n2
S(no) = 4[ (1 -n)ndn (C.36)
(o]
therefore,
n02 =1-4/1-5

Now if S is a uniform random number, it has the same distribution as

1-S so
=/1- /5
no 1 VS
Figure (.5 shows the comparison of the pure advection solutiom with

2
Monte Carlo. From equation (C.36) it is seen that f(n) = 2(1-n"),

Substituting into equation (C.34),we find for pure advection,

P(z,£) = z/2t 2 0s<z < 2t
(C.37)
P(z,t) = 0 OTHERWISE

Advection is seen to be the prime phenomenon that initially shapes the
residence time distribution. Figure C.6 shows the sequence of
distributions starting at z = 0.0l through z = 0.5, Taylor”s (1953)
asymptotic solution (equation (C.32)) is again plotted along with the
Monte Carlo solution. By z = 0.5, the asymptotic solution is a

reasonable approximation. Figure C.7 shows the sequence of
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FIGURE C.6

Residence time distributions, flux source: probability density, f; vs.
residence time, t. [J, Monte Carlo (unfiltered), 5000 particles; .
—, Monte Carlo (filtered); ----—- » equation (C.21). Locations: (a) z

= 0.01, (b) z = 0.05, (¢) z = 0.10, (d) z = 0.20, (e) z = 0.30, (f) z = 0.50.
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FIGURE C.7

Residence time distributions, point source, n_= 0: probability density,

P, vs. residence time, t. O, Monte Carlo (ungiltered), 5000 particles;
, Monte Carlo (filtered); =—=--- , equation (C.21). Locations (a) z

0.01, (b) z = 0.05, (c) z = 0.10, (d) z = 0.20, (e) z = 0.30, (f) z = 0

.50.
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distributions from a point source at Ny = 0 to successively more
distant axial stations. Note the sharpening of the peak between

z =0.01 and z = 0.05. As in the case with a flux source, the
residence time distributions are skewed to the right, a feature found
in all residence time distributions investigated. Table C.2 displays
some statistical properties of the residence time distributions
calculated with the Monte Carlo model. The median residence time,
ESO(E) in Table C.1l, is the time for 50% of the particles to pass the
downstream position z. For the uniform "flux" case at the nearest
station ( z = 0.01), the residence time distribution is highly skewed,
having 50% of the particles pass through the section in a time roughly
30%Z less than the mean residence time. As the distance to the
downstream section increases, the median moves closer to the mean (in a

relative sense) and the distribution becomes more symmetric.

The mean residence time as a function of axial distance for

various source positions is shown in Figure C.8. The mean residence

time here is nondimensionalized as < t(z) > = < Vt(z)/z > = < t(z) >/z.
The approximate theoretical solution obtained earlier (equation (3.19))
is shown with the Monte Carlo solution. The approximate solution is
seen to maintain roughly 10Z accuracy if z <0.1(1 —ng)(l -no)% Since
the dimensionless mean residence time, < T(z) >, will always initially
rise (except for a source at the wall), and since < T(z) > > 1 as

z + = , particles starting out on streamlines slower than the mean

velocity must necessarily display a maximum at some intermediate z. As

it turns out, particles started on streamlines somewhat faster than the
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Table C.2

Residence Time Distribution Data

Source Dimensionless Monte Carlo Monte Carlo Monte Carlo
Location Distance Average Median Variance
2 <E(2)> ) <t2(2)>
0.0 0.01 0.005052 0.005040 0.1700 (-8)
0.0 0.05 0.02661 0.02602 0.5200 (-5)
0.0 0.10 0.05919 0.05464 0.2061 (-3)
0.0 0.20 0.1437 0.1222 0.002274
0.0 0.30 0.2401 0.2180 0.005764
0.0 0.50 0.4375 0.4223 0.01401
0.67 0.01 0.01033 0.009178 0.1558 (-4)
0.67 0.05 0.05970 0.05021 0.7059 (-3)
0.67 0.10 0.1162 0.1071 0.002109
0.67 0.20 0.2215 0.2126 0.005130
0.67 0.30 0.3229 0.3123 0.009575
0.67 0.50 0.5245 0.5094 0.01829
1.0 0.01 0.02886 0.02737 0.1023 (-3)
1.0 0.05 0.09100 0.08736 0.8942 (-3)
1.0 0.10 0.1518 0.1477 0.002263
1.0 0.20 0.2598 0.2528 0.005764
1.0 0.30 0.3617 0.3546 0.009834
1.0 0.50 0.5641 0.5523 0.01850
FLUX™ 0.01 0.009813 0.007144 0.4706 (-4)
FLUX 0.05 0.04920 0.03814 0.6995 (=3)
FLUX 0.10 0.09978 0.08323 0.002117
FLUX 0.20 0.1996 0.1846 0.005534
FLUX 0.30 0.2997 0.2850 0.009631
FLUX 0.50 0.5006 0.4833 0.01835

*Equivalent to a steady-state, uniformly mixed
source of particles entering the capillary tube
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FIGURE C.8

Mean residence time, <t(z)>, vs. log (é). 0O, Monte Carlo (unfiltered),
2000 particles; ——, equation (c.2%9. Locations (a) n, = 0, (b) Ny = 0.5,
(c) Ny = 0.6, (d) N, = 0.7, (e) n, = 0.9, (f) n, = 1.0.
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mean also display this maximum behavior since the initial rise in the

mean residence time may exceed 1.

The initial rise in mean residence time is intuitively easy to
understand. Consider a linear velocity profile with a continuous point
source of tracer material being measured at a fixed downstream station.
Particles diffusing into the lower velocity region will take longer to
pass by the downstream station and hence will have more time to diffuse
laterally, allowing some particles to sample even lower axial
velocities. Particles diffusing into the higher velocity zone are more
rapidly swept by the downstream station and do not have as much time to
diffuse laterally. This asymmetry causes the initial rise in mean

residence time, with the boundary preventing further increase.
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C.7 Conclusions

Theoretical studies of near field advective diffusion have been
successful in analyzing some of the features of the cross-sectionally
averaged axial distribution. A Monte Carlo method is used here to
investigate some of the important features of the residence time
distribution for both point and uniform sources. The residence time
distribution is shown to change from a highly skewed character to a
more symmetric form with increasing axial distance for both point
sources and a uniform flux of particles along the tube. All residence
time distributions maintain the same sense to their skewness in that
the median always lies at a smaller time than the mean, which in short
sections can be quite pronounced. The dimensionless mean residence
time < E(z) > displays a maximum as a function of downstream distance
for point sources located approximately between Ny, = 0.6 and n, < 1.
Through integration of an approximate theoretical solution due to
Chatwin (1976), the mean and variance of the residence time
distribution are found for z << 1. For a point source located at n,,
0 < n, < 1, the variance < £2(2) > is found to initially increase in
proportion to 23 before converging to an asymptotic growth rate
proportional to z, The dimensionless mean residence time < t(z) > is
found to initially rise with increasing downstream distance for any
point source in the cross section, with the exception of a point source
at the capillary wall. This phenomenon is in agreement with the Monte

Carlo calculations and with intuitive reasoning.
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