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ABSTRACT

This thesis explores the application of artificial neural networks (ANNs) to nonlinear
system identification. We use neuronal microcircuits in the retina as a testbed for our
technique, which relies upon the marriage of partial anatomical information with
large electrophysiological datasets. Rather than a typical application of machine
learning, our primary goal is not to predict the output of retinal circuits, but rather
to uncover their structure. We begin with a theoretical exploration in a toy problem
and provide a proof of unique identifiability under a specific set of conditions. We
then perform empirical simulations in a number of different circuit architectures
and explore the space of constraints and regularizers to demonstrate that this tech-
nique is feasible in a hyperparametric regime that lends itself well to neuroscience
datasets. We then apply the technique to mouse retinal datasets and show that we
can both recover known biological information as well as discover new hypotheses
for biological exploration. We end with an exploration of active stimulus design
algorithms to distinguish between circuit hypotheses.
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C h a p t e r 1

INTRODUCTION

Much of modern biology is devoted to the art of untangling complex organic sys-
tems into clearly defined circuit diagrams. For instance, neuroscientists aim to
understand how brain tissue computes in the same way we understand an electronic
circuit [43, 71], and systems biologists study the cascading effects of gene expres-
sion or signal transduction networks by drawing molecular circuits [42]. In order
to call a biological circuit “solved,” we must uncover (1) the components of the
circuit (neuronal types, genes or proteins), (2) how these components are connected
(synapses or molecular interactions), and (3) how these components act on an input
signal (intracellular processing and synaptic weights or molecular rate constants and
binding affinities).

The field of biotechnology has exploded in recent years, yielding increasingly pow-
erful methods for collecting neuronal data. These include genetic tools for label-
ing neurons [4], high throughput methods for gene product detection [81], dense
electrode arrays for recording action potentials from living cells [37], genetically
encoded fluorescent activity reporters [14], and complex surgical procedures to
provide access to specific brain regions [21]. This progress has been swift and
impressive, but it remains impossible to collect a complete dataset that can simul-
taneously measure the activity and the connectivity at every node in a biological
system. Therefore, it falls to the biologists to carefully reason about incomplete
(but increasingly rich) datasets and thereby attain a holistic understanding of the
biological system.

In thiswork, we design and test amethod for fine-grained neural system identification
of biological circuits using rich but incomplete biological data. The technique aims
to infer both the synaptic weights and the local computations performed by neurons
within a feed-forward circuit by leveragingmodern artificial neural networks (ANNs)
and their associated optimization tools. For data collection, we assume the ability
to apply stimuli to the sensory neurons in the input layer of the circuit, and measure
the responses of the output neurons. We validate our approach in the mouse retina,
where such data are readily available [56].

Our method accomplishes this using an overparameterized ANN that includes as
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a sub-network an exact neuron-to-neuron and synapse-to-synapse correspondence
to a mechanistic model of the true biological circuit. When fitting the input/output
data collected from the biological circuit, this method operates much like standard
supervised learning, thus benefiting from modern deep learning techniques. This
technique also applies the standard sparsification technique of ℓ1 regularization to
prune the ANN and thereby match the synaptic patterns of the biological circuit. In
order to do this, the method incorporates common forms of neuroscience domain
knowledge in a systematic way to achieve more data-efficient learning by heavily
constraining the space of circuits being searched.

We explore applications of this method to biological circuits both theoretically and
empirically. We also showcase the practicality of the technique in a case study of
circuits in the mouse retina. Wemeasure responses to visual input from alpha retinal
ganglion cells (alpha RGCs) in a livemouse retina using amulti-electrode array [56].
Using our method, we show that it is possible to (1) recover known results in retinal
biology, and (2) guide experiment design to test biologically plausible hypotheses
regarding the structure of an unknown retinal circuit.

1.1 Neurobiology of the retina
The retina is made up of five major classes of neurons: photoreceptors, horizontal
cells, bipolar cells, amacrine cells, and ganglion cells. These are organized into
five layers: the outer nuclear layer (ONL), outer plexiform layer (OPL), inner
nuclear layer (INL), inner plexiform layer (IPL) and ganglion cell layer (GCL). The
photoreceptors, which come in twomajor types (rods and cones), are densely packed
together to form the outer nuclear layer (Fig.1.1). These are the light sensors of the
retina. The rod type is mostly responsible for low-light vision, while the cone type
is more active in bright light conditions. Most mammals have two types of cone
photoreceptors, which are known as the s-cone and m-cone. These are sensitive
to short wavelength (blue) light and medium wavelength (green) light respectively.
Some primates, including humans, have a third cone type known as the l-cone,
which is sensitive to long wavelength (red) light. The bipolar cell bodies live in the
inner nuclear layer, and are the main excitatory interneuron of the retina (Fig.1.1).
Every cone photoreceptor connects to every type of bipolar cell. The rod, however,
piggybacks onto the cone circuitry via a single bipolar cell type known as the rod
bipolar cell. Bipolar cells come in both ON and OFF varieties (which respond to
light increments or decrements respectively) and release glutamate from their axons,
which form excitatory synapses with both amacrine and ganglion cells.
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Figure 1.1: Illustration of the structure of the retina.

The horizontal cells have their somas in the inner nuclear layer, but receive signals
fromphotoreceptors and provide lateral inhibition to both photoreceptors and bipolar
cells. Amacrine cell bodies are also located in the inner nuclear layer, though
their processes are located in the inner plexiform layer, and provide glycinergic
and GABA-ergic inhibition (and in some rare cases cholinergic excitation) to the
bipolar-ganglion synapse, as well as to each other. It is becoming more and more
clear that amacrine cells already do a great deal of feature selection in the retina.

The ganglion cell layer is composed of ganglion cells, which are typically considered
to be the “feature-detecting” cells, meaning that they typically respond selectively
to specific features in the visual scene, due to the circuitry they form with upstream
interneurons. The ganglion cell axons form the optic nerve, and transfer visual
information to the brain (Fig.1.1). Ganglion cells fire action potentials, and encode
visual information in both spike latency as well as firing rate.

1.2 LN-LN cascade models can replicate the responses of retinal neurons
Based on our understanding of the signal flow through the classes of neurons just
described, it is well established that the activity of retinal ganglion cells can be
well modeled with an LN-LN Cascade Model. LN stands for Linear-Nonlinear. A
single LN unit takes the input and passes it through a linear convolutional filter,
then through a static nonlinearity such as a ReLU or sigmoid [6]. The cascade
model class combines two or more layers of LN model units to form a network.
The first layer is often used to model the computation of the entire outer retina,
including photoreceptors, horizontal cells, and bipolar cells, and the output of this
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layer is meant to mimic the glutamate release of retinal bipolar cells [6]. The next
layers model amacrine and ganglion cells. Stacking LN units in series can not
only successfully predict the output of the ganglion cell layer, but also provides
a mechanistic explanation for the type of feature selectivity often seen in retinal
circuits [5, 25, 28, 33, 58, 60, 66].

1.3 Past applications of deep learning to visual neuroscience
While cascademodels haveworkedwell for quite some time and provided a language
with which to describe myriad complex retinal computations, the recent explosion in
machine learning research has naturally brought with it a burst of efforts to leverage
the technology to model neuronal circuits. Neuroscience and deep learning have
long been intertwined, each field alternately driving progress in the other. For
instance, convolutional neural networks (CNNs) are originally inspired by biology
[24], and were designed to have computational characteristics of the vertebrate
visual system. More recently, researchers have endeavored to understand biological,
and specifically neuronal, systems using artificial neural networks [1, 43, 53, 54,
70, 71, 80, 92]. Notable examples include work by McIntosh et al on training a
standard CNN architecture on data collected from the output neurons of salamander
retina. This group found that retinal interneuron-like characteristics emerged in
intermediate layers [54]. The same group later determined that this artificial network
employed circuit motifs like the ones in retina to perform complex computations,
and was able to replicate many nonlinear retinal phenomena [51]. In 2019, Tanaka
et al extended this work to extract mechanistic understanding from the trained CNN,
which enabled the identification of connectivity motifs that underlie the network’s
ability to replicate a biological phenomenon [80]. The Yamins group has also
studied ANNs as a model class for the visual system, asking whether training these
networks on a visual behavioral task gives rise to the same types of computational
strategies employed in mammalian cortex [91]. In 2018, Abbasi-Asl et al developed
DeepTune, a framework to extract stimuli that demonstrate the tuning of individual
units in an ANN model of primate visual cortex area V4 [1]. Such work has been
largely restricted to coarse-grained analyses that characterize computation of regions
of the brain, rather than that of individual neurons interacting within a circuit, or to
the revelation of microcircuit motifs within trained CNNs that mirror those found
in biology.

In contrast, this work focuses on the possibility of performing fine-grained circuit
modeling where the neurons in the learned neural network have a one-to-one cor-
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respondence with individual biological units. Preliminary efforts in this direction
have been made for a smaller, more granular model of one layer of retinal synapses
[70], but to the best of our knowledge, this work covers only parameter estimation,
not hypothesis selection, and the general problem has not been studied theoretically
or empirically via systematic simulations, nor has it been tested on real data from
deeper circuits. The concept of using an artificial neural network as a 1:1 model
for a retinal microcircuit started as a long-shot idea. As we tested it in simulation
and were continually surprised by its success. In the work that follows, we will
describe the evolution of this idea from a set of preliminary simulations in a toy
model to a full-blown application of the technique to mouse retinal data. Along
the way we will explore the theoretical underpinnings of the method and play with
some interesting algorithms for optimal experimental design. We aim to convince
the reader that ANNs can, in fact, be a useful tool to a circuit neuroscientist if partial
prior knowledge is appropriately leveraged, and more generally, that the field of
nonlinear system identification might benefit as a whole from further exploration of
this technique.

1.4 System identification and structure recovery
Broadly speaking, system identification is the use of statistical methods to build
mathematical models of systems from measured data [50]. Nonlinear system iden-
tification is a key tool in modeling dynamical systems, which includes early work
on (coarse-grained) neural system identification for control systems [45]. A fun-
damental issue that arises is identifiability [11]—that is, when can one uniquely
recover the true system. This affects the reliability of the results for downstream
scientific analysis. Identifiability has been studied theoretically both in the context
of nonlinear neural networks [2, 20, 67, 79, 87] and in “linear networks” in the
context of matrix factorization [16, 34, 46]. In Section 3.3, we shall introduce and
discuss some of the theoretical concepts that have a bearing on identifiability.

A related concept to system identification is support recovery, where the main goal
is to discover which parameters of a model are non-zero [31, 48, 72, 75, 83], and
which can be thought of as a subgoal of full system identification. Support recovery
is commonly studied in sparse linear systems that have few non-zero parameters.
Biological neural networks are also sparse [28, 57], but are nonlinear multi-layer
models for which theoretical results in sparse linear support recovery do not directly
apply. Nonetheless, our approach takes inspiration from the classic Lasso [83]
for sparse linear regression in order to reliably estimate sparse neural networks
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with limited training data; an interesting future direction would be to establish
sparsistency results [48] for this type of approach.

Another related concept is structure discovery in (causal) graphical models [52, 69,
74, 84, 94]. These models are typically composed of nodes connected by edges.
The edges can be directed (meaning that two nodes only communicate in a single
direction) or undirected (meaning that signal flows bidirectionally between the two
nodes.) A common problem focuses on a network with directed edges, which is
acyclic, meaning that there are no “loops” created by the edges. This network is
used to generate a dataset, and the problem is that of recovering the structure of
the network (i.e., which edges are non-zero). This setting is very similar to ours
with a few differences. First, the goal of structure discovery in graphical models
is to recover the direction of the edges in addition to the weights, whereas in our
setting all the edge directions are known a priori. Second, the training data for
structure discovery is typically fully observed in terms of measuring every node in
the network, whereas for our setting we only observe the inputs and final outputs of
the network (and not the measurements of nodes in the hidden layers). Like in sparse
system identification, most prior work in structure discovery of graphical models is
restricted to the linear setting.
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C h a p t e r 2

A METHOD FOR NONLINEAR SYSTEM IDENTIFICATION OF
NEURONAL CIRCUITS USING ARTIFICIAL NEURAL

NETWORKS

2.1 Biologically-inspired regularization of artificial neural networks
Based on the huge amount of data collected about the retina over the past several
decades, we designed a technique that marries incomplete anatomical data with large
physiological datasets to generate microcircuit understanding of retinal circuits.
Each form of biological knowledge is incorporated into the structure of an artificial
neural network (ANN) which is designed so that every artificial neuron corresponds
to a single biological neuron. The ANN is trained on electrophyisological datasets
recorded from the output layer of the retina, the ganglion cell layer, in response to
a set of visual stimuli. This chapter will describe each form of regularization or
constraint in detail and lay out a road map for training these ANNs. The following
chapters will demonstrate this technique in theory, simulation, and in application to
real retinal data.

Artificial neurons as an analogy for biological neurons
Retinal neurons have been very thoroughly studied andmodeled over the past several
decades. One of the most commonly used models for single retinal neurons is called
the Linear-Nonlinear (LN) model. This model consists of two steps of computation.
The input to the neuron is convolved with a spatiotemporal filter, representing the
linear receptive field of the neuron. This simulates the integration of input signal
by the neuron. The second step is to pass the output of the convolution through a
static nonlinearity (usually a ReLU or sigmoid). This simulates the spike generation
or vesicle release process, which is nonlinear, and usually involves some type of
thresholding [6, 22, 38]. A common variant on this model is the Linear-Nonlinear-
Poisson (LNP) model, which uses a Poisson random variable to generate individual
spike times from the output of the nonlinearity. This produces actual spike trains as
the output of the model, rather than the continuous output from the LN model [38].

Figure 2.1 shows an example of the LN model for two simulated bipolar cell types.
Based on the shape of the temporal convolutional filter used in the linear part of the
model, we can simulate bipolar cells that have sustained or transient responses to
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Figure 2.1: Illustration of the LN model for a retinal bipolar cell. The time-varying
stimulus is convolved with a temporal filter and passed through a ReLU nonlinearity
to produce a time-varying output. Based on the shape of the temporal filter, a
sustained or transient response (red lines) can be generated to a 250 ms light flash
stimulus (black lines).

light stimuli.

Biologically-derived LN model parameters for bipolar cells
Because the retina has been so extensively studied, many datasets of retinal neuron
activity are publicly available. One of these, published by Franke et al in 2017,
contains the responses of bipolar cells to a battery of visual stimuli. The responses
are recorded as glutamate output rate, using the glutamate indicator iGluSnFr, which
fluoresces to indicate the concentration of glutamate in the synapse. The neurons in
the dataset were also labeled by type (there are 14 types of bipolar cells in the retina,
and these are classified by function and anatomy) [22]. We were able to use this
dataset to fit LN models to bipolar cell responses and average over many neurons
within the same type, to generate a single set of LN model parameters for each of
the fourteen bipolar cell types (Fig. 2.2.)
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Figure 2.2: Example fits of LN models to three types of bipolar cell data from [22].
Spike-triggered averaging is used to compute the temporal filters and then a static
ReLU nonlinearity is fit to the output. Each column is the fit to an individual neuron,
whose type classification is listed at the top of the column.

In order to compute these models, we began by deconvolving the iGluSnFr traces
with a kernel representing the time course of iGluSnFr fluorescence [36]. Thus, the
deconvolved traces represented the actual glutamate release, without the dynamics
of the glutamate indicator. These models could be plugged directly into an ANN
and fixed in place or allowed to vary slightly over the course of training. This
would depend on the assumption that the light conditions in the experiment that
generated the training dataset matched the conditions in [22], and therefore the LN
model parameters can be shared. It is known that due to changes in ambient light
conditions, these parameters may change [6]. In the work that follows, these filters
were never fixed in place in our ANNs, but they did occasionally serve to select
initialization parameters for the bipolar cell layer.

Neural net layers as an analogy for classes of retinal neurons
Each layer of the ANN can be thought of as representing one of the five classes of
retinal neurons. Photoreceptors and horizontal cells are not explicitly modeled in
this technique. We consider them as reporting the visual scene in a linear fashion
to bipolar cells, and therefore wrap them into the model of the bipolar cell as a
linear-nonlinear unit. The first layer of the ANN after the stimulus represents the
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Figure 2.3: Schematics demonstrating three different mechanisms of action em-
ployed by amacrine cells in retinal circuits. Left: The amacrine cell is excited by
a bipolar cell, and in turn inhibits a ganglion cell [19]. Center: An amacrine cell
provides presynaptic inhibition at the bipolar cell to ganglion cell synapse [15].
Right: An amacrine cell provides lateral inhibition to another amacrine cell which
presynaptically inhibtis a bipolar to ganglion cell synapse, as in [25].

bipolar cell layer. It is often subdivided into bipolar cells of various types. All cells
belonging to a given type share some parameters such as their temporal receptive
field or the threshold of their nonlinearity.

The second layer represents the amacrine cells, the inhibitory interneurons of the
retina. Amacrine cells in the retina have various mechanisms of action (Fig. 2.3)
including lateral reciprocal inhibition, and inhibition to the bipolar ganglion synapse
either pre- or post-synaptically (e.g. [15, 19, 25]).

The use of an inner plexiform layer “address book” for connectivity between
cell types as a constraint on the weights of the network
To further enhance reliable learning, we can constrain the weights of the network
in two ways, both of which lead to a convex set of allowable weights , . First,
existing domain knowledge constrains many connections to zero weight. In the
retina, such connectivity constraints are implemented by the precisely organized
anatomy of neurons. The so-called inner plexiform layer (IPL) is a meshwork of
synapses between different unit types (bipolar, amacrine, and ganglion cells). Each
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type sends its neural process into a distinct lamina of the IPL, and neurons may
connect to each other only if they co-stratify in at least one lamina. This implements
an “address book” of allowable connectivity between cell types in the network [73].
Using anatomical studies in the literature [7, 22, 26, 29, 40, 58, 85, 93], we have
compiled such an address book for 36 retinal cell types (Fig. 2.4).

We constructed a “retinal address book” based on this idea. Because these anatom-
ical data come from a number of studies with varying forms and thoroughness of
anatomical data published, this address bookwas constructed by painstakingmanual
inspection. For example, different authors divided the IPL into different numbers of
sublaminae, and set their boundaries in different locations.

We selected a sublamination scheme that was compatible with each of these. In
this scheme, the mouse IPL was divided into six sublaminae: outer marginal (0.0-
0.28 normalized depth), outer central (0.28-0.47 normalized depth), inner central
(0.47-0.65 normalized depth), inner marginal (0.65-1.0 normalized depth), and the
ON and OFF ChAT bands (defined by limits of choline acetyltransferase (ChAT)
expression). With this sublamination scheme, we were able to neatly define a binary
stratification profile for each cell type under study, and to therefore create a binary
address book (Fig. 2.4).

One could imagine, however, a future in which stratification profiles are given in
units of normalized IPL depth, with confidence intervals or some other measure of
uncertainty, for every retinal cell type. From such a dataset, one could replace the
binary entries of this table with a continuously varying measure of co-stratification
and uncertainty.

Regularization to constrain the sign of weights of excitatory and inhibitory
synapses
Another strong constraint on the weights regards their sign. Each synapse in the
network can be identified via prior knowledge to be inhibitory (nonpositive) or
excitatory (nonnegative) [28, 65, 88]. For example, bipolar cells can send only
excitatory input to amacrine and ganglion cells. In fact, for the retinal circuits we
study in in this work, we have sufficient knowledge to sign constrain every weight.
More generally, in other domains such as genetic circuits, the current scientific
understanding includes information about whether specific classes of genes up- or
down-regulate other genes [3].
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Figure 2.4: “Address book” of mouse retinal inner plexiform layer, showing
costratification of 36 cell types. This table was constructed with data from
[7, 22, 26, 29, 40, 58, 85, 93].

Low dimensional parameterization of convolutional filters
Throughout this work, we reduce the number of free parameters in the trained ANN
by reparameterizing the first convolutional layer. This layer takes a spatiotemporal
convolution of the stimulus with a bank of biologically inspired filters. These filters
have a stereotyped form, and can be parameterized in many ways. The first way is
to describe the filter as a “two-bump function” of the form

5 (C) = 5+(C) − 5−(C)

=

(
2+(C + 0+)=+4−1+ (C+0+)

)
−

(
2−(C + 0−)=−4−1− (C+0−)

)
(2.1)

An example of a subspace of filters spanned by this parameterization is shown in
Fig. 2.5. A similar parameterization is used in [66]. In this work, we often fix 0+,
0−, 1+, and 1− in place, and ask the network to only learn 2+ and 2−. This is done in
the following way: Let B represent a stimulus. Let 5 = 0 5+ − 1 5− be a “two-bump”
filter as described above. Then, note that by linearity of the convolution operator,
we can write
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Figure 2.5: Illustration of the two-bump function convolutional filter basis. Red
dashed lines depict each of the two-bump functions, while black lines show various
linear combinations of these basis functions to illustrate the range of shapes that can
be achieved by varying only two parameters.

B ∗ 5 = 0(B ∗ 5+) − 1(B ∗ 5−). (2.2)

Let H = � (B) represent the output of a network, �. Let { 58}#8=1 be a more general
“basis set” of convolutional filters.

Then we can describe the network by rewriting

H = � (B) = �′({B ∗ 58}#8=1). (2.3)

That is, we can make the input to the network the convolution of the stimulus with
our set of basis filters, which do not change during training, rather than the raw
stimulus. Then, all we need to learn is a set of weights on these basis convolutions.
Therefore, there are # free parameters representing the input convolution, rather
than having to learn the entire convolutional filter from scratch.

Another set of basis filters used frequently in this work (shown in Fig. 2.6) is taken
from [38] and takes the form:
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Figure 2.6: Illustration of the stretched sinusoid filters described in Eq 2.4. Each
successive basis function is vertically shifted for visual clarity.

5 9 (C) =


sin
(
c 9

(
2 C
g
−

(
C
g

)2) ) for 0 ≤ C ≤ g

0 otherwise
(2.4)

for 9 = 1, ..., # . When this filter basis is used, we typically let # = 16.

Removing degeneracy by fixing biases
In order to remove some degeneracy from the space of circuit models being searched,
it was, in some cases, necessary to fix the biases in place during training. The toy
example in figure 2.7 illustrates the need for this. In order to efficiently compute the
structure recovery score, ', we needed to remove this type of degeneracy from the
space of circuit structures being searched. When 1 is fixed in place during training,
this degeneracy is removed.

Training procedure
The ANN is constructed using whichever constraints are relevant from the list above.
Then, all weights are randomly initialized, and training proceeds with the standard
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Figure 2.7: Two toy networks with differing parameter sets which produce the same
output for an input, G.

squared loss function. That is, given training data pairs (x, y), and an ANN 5 (x; W),
the loss function can be written as:

! (x, y,W) =
∑
(x,y)∈(

‖ 5 (x; W) − y‖2. (2.5)

In what follows, the optimization algorithms used for training were either Adam
[41], Momentum [64], or standard gradient descent. An ℓ1 regularizer was used
unless otherwise indicated. Thus the objective function can be written as:

$ (x, y,,, _) =
∑
(x,y)∈(

‖ 5 (x; W) − y‖2 + _ |W|. (2.6)

Algorithm 1: An algorithm for fine-grained neural system identification
input: ( = {(w, H)} ; // training set

_ ; // ℓ1 regularization

5 (·; W) ; // neural circuit

, ; // allowable weights

for : = 1, . . . ,  do
Initialize a W randomly in, Solve W: ←W∈,

∑
(x,H) ∈( ‖ 5 (x; W) − H‖2 + _ |W| ;

// from the random initialization

return: W1, . . . ,W 

Algorithm 1 describes this process. TheANN is trainedmultiple timeswithmultiple
random initializations to produce a set of hypothesis circuit structures. Based on
this set, the experimenter can confirm or rule out their hypotheses, and can make
decisions about the allocation of future experimental resources.
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C h a p t e r 3

RESULTS I: A THEORETICAL EXPLORATION OF CIRCUIT
IDENTIFIABILITY UNDER INFINITE DATA CONDITIONS

3.1 Related work
System identification and structure recovery
Broadly speaking, system identification is the use of statistical methods to build
mathematical models of systems from measured data [50]. System identification is
a key tool in modeling dynamical systems, which includes early work on (coarse-
grained) neural system identification for control systems [45]. A fundamental issue
that arises is identifiability [11]—that is, when can one uniquely recover the true
system. This affects the reliability of the results for downstream scientific analysis.

Identifiability has been studied theoretically both in the context of nonlinear neural
networks [2, 20, 67, 70, 79, 87] and in “linear networks” in the context of matrix
factorization [16, 34, 46]. In Section 3.3, we introduce and discuss some of the
theoretical concepts that have a bearing on identifiability. As stated before, our
main goal is to provide a thorough theory-to-practice investigation grounded in real
neuroscience modeling challenges.

A related concept is support recovery, where the main goal is to discover which
parameters of a model are non-zero [31, 48, 72, 75, 83]. Support recovery can be
thought of as a subgoal of full system identification. It is commonly studied in sparse
linear systems that have few non-zero parameters. While biological neural networks
are also sparse [28, 57], they are nonlinear multi-layer models for which theoretical
results in sparse linear support recovery do not directly apply. Nonetheless, we show
that, under suitable conditions, one can employ ℓ1-regularized regression (that is
commonly used for estimating sparse linear models [83]) to reliably estimate sparse
neural networks with limited training data; an interesting future direction would be
to establish sparsistency guarantees [48].

Another related concept is structure discovery in (causal) graphical models [52, 69,
74, 84, 94]. A typical setting is to recover the structure of a directed acyclic network
(i.e., which edges are non-zero) that forms the causal or generative model of the
data. This setting is very similar to ours with a few differences. First, the goal of
structure discovery in graphical models is to recover the direction of the edges in
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addition to the weights, whereas in our setting all the edge directions are known a
priori. Second, the training data for structure discovery is typically fully observed
in terms of measuring every node in the network, whereas for our setting we only
observe the inputs and final outputs of the network (and not the measurements of
nodes in the hidden layers). Like in sparse system identification, most prior work in
structure discovery of graphical models is restricted to the linear setting.

3.2 An identifiability theorem
We formulate the problem of system identification in nonlinear feed-forward net-
works as follows. Consider a function 5 (x; W, b) known as the network. The
network is parameterized by an unknown weight vector W and bias b. We assume
that we can query the network’s nonlinear input-output mapping:

x ↦→ 5 (x; W, b) ≡ y. (3.1)

That is, we may apply input stimuli x to the network and record the output. See
Chapter 5 for details on collecting such data from the mouse retina.

Our goal is to recover the true W and b given such (x, y) queries. A first question
that arises is whether recovering the true W and b is possible, even with infinite
data—i.e., whether W and b are uniquely identifiable. Other questions include how
to accurately recover W and b (or at least their non-zero support) given finite and
noisy data, which data points to query, and what types of domain knowledge can aid
in this process.

In practice, estimating the true W and b given training data is tackled as a regression
problem. We are particularly interested in the case where W is sparse. The
conventional way to encourage sparsity is to use ℓ1-regularization [83], which we
will also employ. We discuss in Chapter 4 practical considerations through extensive
evaluation of simulated biological circuits.

Summary of Domain Knowledge. Our goal is to not only establish conditions
where system identification of nonlinear feedforward networks is possible, but also
that those conditions be practically relevant. Guided by neuroscience domain knowl-
edge, we study circuits with the following properties:

(i) The nonlinearity of individual neurons is well understood, and can be well
modeled using ReLUs or leaky ReLUs [6].

(ii) The dominant computation of the neural circuit is feedforward, which is true
for circuits found in the retina [28, 88].
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Figure 3.1: A one hidden layer ReLU network with skip connection (Eq 3.2). The
nonlinearity transitions occur on hyperplanes in input space.

(iii) Many potential weights can be preemptively set to zero, due to the implau-
sibility of neurons in various spatial configurations being connected to one
another [17, 73].

(iv) All weights can be sign constrained (either non-negative or non-positive), due
to knowing the inhibitory or excitatory behavior of each neuron [28, 65, 88].

Items (i) and (ii) above imply knowing the functional form (i.e., multi-layer per-
ceptron with known number of layers, maximal number of neurons in each layer,
and form of the nonlinearity). Item (iii) implies that one can reduce the number
of free parameters in the model, thus easing the burden of learning (although still
requiring high-dimensional sparse estimation). Item (iv) is perhaps the most in-
teresting property, as it effectively constrains the parameters to be within a single
known orthant. We show in Section 3.3 that the sign constrained condition is an
important sufficient condition for proving identifiability, and we show empirically
in Chapter 4 that ℓ1-regularized regression can succeed in system identification on
sign constrained networks and fail on unconstrained networks.

3.3 Theoretical analysis
Motivated by the neuroscience domain knowledge discussedChapter 2, we now theo-
retically establish factors that governfine-grained identifiability of neural networks—
a topic that has been studied since the 1990s [2, 20, 79]. To develop the core ideas,
it will help to consider the following neural network:

5 (x) := W2 max(0,W1x + b1) +W3x + b2, (3.2)

for weights W1 ∈ R=1×=0 , W2 ∈ R=2×=1 , W3 ∈ R=2×=0 and biases b1 ∈ R=1 , b2 ∈ R=2 .
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There are three reasons why this is a sensible network to consider. First, the
network’s relatively simple structure facilitates theoretical insight. Second, this
network bears a resemblance to neural (sub-)circuits found in the retina (see Figure
4.47). And third, if one ignores the skip connections, biases, and nonlinearity,
then the identification problem reduces to factorization of W2W1, allowing us to
compare to results in the matrix factorization literature [16, 34, 46].

We shall now provide a result on identifiability for this class of nonlinear networks
that is somewhat typical of the results in this literature. For example, in 1992
Sussmann [79] proved a similar result for a network with one hidden layer, tanh
nonlinearity, and no skip connections. In contrast, our result applies to networks
with skip connections and ReLU nonlinearity. The proof of Theorem 1 is given
below.

Theorem 1 Suppose that network (3.2) satisfies the following three conditions:

(i) no column of W2 or row of W1 is entirely zero;

(ii) no two rows of W1 are collinear;

(iii) W1 is nonnegative.

Let P denote an unknown permutation matrix and D an unknown positive diagonal
matrix. Then, by input-output queries of the form (3.1), we may recover DPW1,
DPb1, W2P−1D−1, W3, and b2.

The appearance of permutation matrix P reflects the invariance of a two-layer
network to permutations of its hidden units. Also, by positive homogeneity of
the max function, the output synapses of a hidden unit (columns of W2) may be
scaled up by some U > 0 provided that the input synapses (rows of W1) are scaled
down by 1/U. This gives rise to the diagonal matrix D. These symmetries are
innate to two-layer systems—the same issue is present in matrix factorization [34,
Definition 4].

Discussion of preconditions and assumptions
Condition (i) imposes that every hidden unit must be connected to both the input and
output of the circuit, and condition (ii) imposes that no hidden unit is computationally
redundant with another. These conditions are intuitively important for identifiability.
The most substantive preconditon is condition (iii), which imposes a sign constraint
on the synapses at the first layer. In the neuroscience context, this would correspond
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to knowing that all of the synapses in the first layer are excitatory as is the case for
the outgoing synapses of bipolar cells in the retinal circuit (see Fig. 4.47). This
demonstrates that neuronal cell types can simplify both the theoretical analysis as
well as the recovery of the neural network’s weights.

Our theoretical analysis has some notable limitations. For instance, our result
assumes that we can query the network on inputs x lying in the negative orthant,
which is often not biologically plausible. Additional constraints on the bias b1

would be required to guarantee identifiability given only non-negative input queries.
Furthermore, our result makes no comment on sample complexity or dealing with
non-convexity of the underlying optimization problem, which are all interesting
directions for future work. We do, however, provide an extensive empirical study of
such questions in Chapter 4.

Connection to identifiability in other systems
The preconditions of Theorem 1 are mild in comparison to results in the nonneg-
ative matrix factorization literature, which require strong sparsity conditions on
W1 to guarantee identifiability of W2W1 [16, 34, 46]. Theorem 1 suggests that—
surprisingly—the presence of nonlinearities can make system identification easier.
This is because the location of the nonlinear thresholds in input space is what reveals
the entries of b1 and W1 up to a scaled permutation. We illustrate this in Fig. 3.1.

Proof of Theorem 1
In this section, we prove the identifiability result of Section 3.3. See [2, 20, 67, 79, 87]
for related prior work. Recall the definition of network (3.2):

5 (x) := W2 max(0,W1x + b1) +W3x + b2,

for weights W1 ∈=1×=0 , W2 ∈=2×=1 , W3 ∈=2×=0 and biases b1 ∈=1 , b2 ∈=2 .

To begin, observe that each component of the vector output 5 (x) is a piecewise linear
function of x. We will first show that the transitions of the max function may be
identified with the transitions between linear regions, thereby allowing identification
of W1 and b1.

Since condition (i) excludes the possibility that any row of W1 is entirely zero, every
row of W1 will cause a transition of the max function. For the 9 th row of W1, the
transition occurs on a hyperplane � 9 in the input domain:

� 9 :=

{
x :

=0∑
:=1

W1
( 9 :)x(:) + b( 9) = 0

}
⊂=0 .
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The transition of the max function corresponding to the 9 th row of W1 will only
affect output component 5 (8) if W2

(8 9) ≠ 0. We know by condition (i) that such an
index 8 exists since the 9 th column of W2 is not entirely zero. Therefore all rows
of W1 correspond to a nonlinear transition in at least one output component of 5 .
Since the rows of W1 are not collinear by condition (ii), we are now sure that the
boundaries between linear regions of 5 correspond to =1 distinct hyperplanes that
partition input space. Since the formula of a hyperplane is unique up to scalings, we
may recover b1 and the rows of W1 up to scalings. Since we do not know in which
order the hyperplanes should be listed, the recovery is only unique up to scalings
and permutations.

Since we have identified W1 and b1 up to scaled permutations of the rows of W1,
we may now query 5 in the region of input space where all components of max
return zero. This region surely exists since by conditions (i) and (iii) combined, all
rows of W1 point into the positive orthant. Therefore, for x sufficiently far into the
negative orthant, we have that:

5 (x) = W3x + b2.

The gradient∇x 5 (x) in this region identifiesW3, at which point b2 may be identified
via:

b2 = 5 (x) −W3x.

All that remains is to identify W2. Consider a point x∗ on the 9 th hyperplane � 9

that is far away from the other hyperplanes �− 9 . Such a point exists by condition
(ii). Let x+ and x− denote points in the local neighborhood of x∗ but on the positive
and negative side of � 9 , respectively. Observe that:

m 5 (8)

mx(:)
(x+) − m 5

(8)

mx(:)
(x−) = W2

(8 9)W1
( 9 :) .

Therefore W(8 9)
2 may be identified by measuring the change in gradient of 5 (8) across

the 9 th hyperplane � 9 . Of course since the rows of W1 are known only up to a
permutation and scale, we will be unsure of the columns of W2 up to the same
symmetries.

WithW3 and b2 identified exactly, andW2, W1 and b1 identified up to a permutation
and scale, we are done.
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C h a p t e r 4

RESULTS II: SYSTEM IDENTIFICATION OF SIMULATED
MICROCIRCUITS

4.1 Simulating biologically inspired feedforward circuits
The work presented in this section rests on the assumption that cascade models are
ideal for representing retinal circuits at a level of abstraction that is useful to a circuit
neuroscientist. Though somemodels of individual ganglion cell circuits rest on finer
resolution models (e.g. [32]), this assumption generally holds for the circuits that
follow. Unless otherwise specified, the simulated retinal circuits described in this
chapter were designed based on the following principles:

1. The photoreceptor layer is modeled as linear. Contrast adaptation is not
modeled as stimuli are designed to be presented at a constant contrast level.

2. The output of the bipolar cell layer is modeled as a linear temporal or spa-
tiotemporal convolution of a filter representing photoreceptor and bipolar
cell computation with the stimulus image or video, followed by a half-wave
rectifying (ReLU) nonlinearity.

3. Any amacrine cells are modeled as simply taking a linear combination of
bipolar cell outputs and passing them through a ReLU nonlinearity, with no
further modification unless otherwise specified.

4. There is a single ganglion cell at the output of the network which takes a linear
combination of bipolar and amacrine cell outputs and passes them through a
final ReLU or sigmoid nonlinearity to produce the output.

4.2 Simulating retinal circuits
The W3 circuit
The W3 retinal ganglion cell is known for its small and densely packed receptive
field. It provides high-resolution information about the visual scene, and relative
to other cell types, there are more of retinal ganglion cells of this type. However,
the W3 cell does more than just pass a high-resolution representation of the visual
scene to the brain. It is also an object-motion detector, meaning that it responds to
small moving objects on a featureless or stationary background [93].



23

Figure 4.1: Illustration of global and differential motion stimuli. In each plot, the
vertical axis represents time, while the horizontal represents space. The stimulus is
spatially divided between the center and surround of the receptive field (blue and red
lines). In the global motion stimulus (left) the gratings in the center and surround
move simultaneously. In the differential motion stimulus (right), the center and
surround are temporally out of phase.

Detailed biological study of theW3 ganglion reveals that it pools input from bothON
and OFF bipolar cells, each of which is half-wave rectified. The W3 also receives
lateral inhibition via wide field amacrine cells whose receptive fields are located far
outside of the receptive field center of the W3 ganglion cell. Thus, local motion
excites the ganglion cell, while distant motion inhibits it, leading to selectivity for
local motion on a stationary background [93].

This mechanism lends itself well to the cascade model class. I simulated the circuit
described above and selected a set of parameters that led to strong object motion
selectivity. Fig. 4.2 shows the responses of each unit type in the simulated circuit
when a grating moves back and forth (Fig. 4.1.) When coordinated motion occurs
simultaneously in both the center and surround of the receptive field, excitation from
the center bipolar cells occurs simultaneously with inhibition from the widefield
amacrine cell, leading to no response from the ganglion cell. In contrast, when the
motion in the center and motion in the surround are out of phase with one another,
the excitation and inhibition are also out of phase, meaning that the ganglion cell
can be excited by the bipolar cells and respond to every shift in the grating in the
center of the receptive field.
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Figure 4.2: Time-varying responses of each neuron type in a simulated W3 circuit
to global and differential motion stimuli (shown in Fig. 4.1).

The PV-5 circuit
The PV-5 retinal ganglion cell, one of 7 Parvalbumin positive retinal ganglion cell
types is also known as the transient OFF alpha cell. This ganglion cell type is sensi-
tive to approaching motion stimuli, but not to lateral motion. This is accomplished
via a push-pull mechanism. OFF bipolar cells excite the ganglion cell, while ON
bipolar cells inhibit the ganglion cell via the AII amacrine cell [58].

This cell, too, can be well modeled by a cascade model. I implemented such a model
and was able to replicate the response of the neuron to an approaching and lateral
motion. The approaching motion stimulus works as follows: a dark spot appears
on the screen and remains stationary for two seconds. The ganglion cell responds
to the appearance of the spot, and then adapts and goes silent. At that point, the
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Figure 4.3: Simulation of the PV-5 circuit replicates its approach sensitivity. Ap-
proaching or laterally moving dark spots are presented to the PV-5 neuron. In each
case, the stimulus appears on the screen (first vertical line), then either expands or
moves laterally at either 400 or 200 `m per second (second-third vertical lines).
The PV-5 retinal ganglion cell fires action potentials in response to the appearance
of the spot in both cases, but only responds strongly to approaching motion, and not
to lateral motion. Our model matches the results recorded from real PV-5 cells in
[58].

spot begins to either expand or to move laterally at either 200 or 400 `m/second. In
the case of the expanding stimulus, the ganglion cell fires again during this second
phase of the stimulus. However, when the spot moves laterally, the ganglion cell is
silent during this second phase (Fig. 4.3).

4.3 Case Study: The ON/OFF direction-selective ganglion cell
TheON/OFF direction-selective (ooDS) ganglion cell poses an interesting challenge
for system identification. It is a retinal circuit that responds to motion in a preferred
direction, but not to motion in the opposite (null) direction. Direction selective
ganglion cells were first reported by Barlow and Levick in rabbit retina in 1965
[9]. They come in ON, OFF, and ON-OFF varieties. As indicated by its name, the
ON-OFF direction selective cell responds both to dark and light moving objects.
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Distinguishing between current circuit hypotheses
The mechanism for this computation is still under debate. Several models have been
proposed at varying levels of abstraction [13, 18, 23, 29, 32, 39, 47, 61, 77, 86]. These
models each point to the starburst amacrine cell (SAC) as the main driver behind
the direction selectivity. The SAC is an inhibitory interneuron whose dendrites fan
out in all directions, giving it a “starburst”-like appearance. The SAC may form
both excitatory and inhibitory synapses with nearby direction selective ganglion
cells (DSGCs). It is known to release two types of neurotransmitters: GABA as
well as acetylcholine (ACh). Its key computational unit is a single dendrite. When
the dendrite is stimulated by motion in the centrifugal (null) direction, it inhibits
DSGCs that synapse onto that dendrite. When it is stimulated by motion in any
direction, it actually excites DSGCs via ACh. Thus the DSGC receives directional
inhibition and symmetric excitation from the SAC [82].

Themechanism for this phenomenon at the level of the SAC dendrite is what remains
under debate. A wide variety of hypotheses have been suggested including but not
limited to:

1. Asymmetry of electrotonic conduction along the length of the dendrite [32];

2. Differences in the kinetics of inputs from bipolar cells along the dendrite
[23, 29, 39];

3. Lateral inhibition between SACs [47];

4. Thresholding at the SAC output synapse [86];

5. Asymmetric chloride gradient along the length of the dendrite [18];

6. Asymmetric distribution of potassium channels along the length of the den-
drite [61].

It has also been hypothesized that dendritic spiking in the DSGC enhances the
direction selectivity of the cell [59].

One interesting seeming contradiction in this vast body of work arose regarding item
2. In [39], it was hypothesized that bipolar cells with slower and/or more sustained
kinetics excite the proximal end of the SAC dendrite, while faster and/or more
transient bipolar cells excite the distal end. This asymmetry in combination with
sharp thresholding at the output of the SACwould give rise to a centrifugally selective
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release of GABA. However, Stincic et al later measured excitatory postsynatptic
potentials (EPSCs) along the dendrite of the SAC and did not find such an asymmetry
[77]. This was later refuted by Fransen et al who did measure temporally diverse
EPSCs along the length of the SAC dendrite [23], seeming to confirm the hypothesis
set forth in [39].

Thus, the ooDS circuit represents a canonical, well-studied retinal computation
which is truly complex, and whose precise mechanism is still hotly debated. It there-
fore presented the perfect testing ground for a system identification technique. Since
careful biological experiments seem to produce contradicting evidence, perhaps a
computational system identification method might one day settle this question.

As a test of the idea of using over-connected neural networks to do this type of
system identification, we focused on one detail of the models under dispute and
asked whether our technique could resolve the discrepancies in the literature in
simulation. Specifically, we focused on the discrepancy between [77] and [23], as
to the spatial distribution of bipolar cells with different temporal dynamics onto the
SAC.

We began by assuming the perspective of Stincic et al [77] with some adjustments.
Namely, that there are at least two types of bipolar cells that provide input to the
SAC (one sustained type and one transient type (Fig. 2.1)), but that these two
types synapse onto the SAC dendrite with an even spatial distribution from the
proximal end to the distal tip. In that case, the spatial asymmetry must arise in some
other form in order to generate direction selectivity. One idea, put forth by Alvita
Tran (a former Meister lab member), posited that the sustained and transient cells
connected to the SAC dendrite in pairs, and that each pair underwent its own half
wave rectification within a small segment of the dendrite. Biologically, this would
equate to a physiological restriction on the ability of one depolarized membrane
segment to pass that depolarization along to the next segment unless some threshold
was met. While this does not translate readily to the standard cable theory, it is not
unheard of for individual segments of dendrites to behave in this manner, due to, for
instance, the presence of voltage-gated ion channels [78, 89].

By pairing spatially adjacent sustained and transient bipolar cells in this way, one can
devise a situation in which each segment of the SAC dendrite is direction selective,
and the output at the distal tip of the dendrite is simply a reflection of the summed
activity of all the segments. Henceforth, we shall refer to this as the Tran model of
direction selectivity.
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Figure 4.4: Schematic of Tranmodel of direction selectivity. Adjacent sustained and
transient bipolar cells are paired at a single segment of SAC dendrite. The output of
the SAC is the sum of the output of each nonlinear segment, passed through a final
layer of nonlinearity. The transient bipolar cells also excite the ganglion cell.

Test of method in small circuit
We generated data from a simulated direction-selective cell with known circuit
connectivity, modeled in the form of a CNN. Each neuron performed a convolution
in time and passed the output through a static nonlinearity to produce an activation
(Meister and Berry 1999). The convolutional kernels were temporal filters chosen to
match the recorded flash responses of retinal cell types (Baccus and Meister, 2002).

The training data for each machine learning experiment consisted of a set of visual
stimuli and the associated network output of the true retinal model. Stimuli were
: × ) movies () frames of : pixels). Network outputs were 1 × ) sequences of
ganglion cell activation, which took a value between 0 and 1 at each time point C ≤ ) .
Visual stimuli were chosen from three classes: moving dot stimuli (Fig. 4.7a), static
random patterns (Fig. 4.7b) and moving random patterns (Fig. 4.7c). Each pixel of
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Figure 4.5: Right: Tran model circuit motif. “S” and “T” refer to sustained and
transient type bipolar cells. Left: each model neuron’s activations for apparent
motion moving dot stimulus in the preferred and null directions. Null direction
responses are vertically offset for visibility. Dotted orange line represents activation
of T1.

the stimulus corresponded to the spatial receptive field of a single simulated bipolar
cell. The duration of each stimulus was chosen based on the length of the temporal
convolutional filters used in the first hidden layer. This layer modeled the retina’s
bipolar cell layer (Fig. 4.6), which is known to comprise the slowest stage in retinal
processing after the photoreceptor layer (Baccus and Meister, 2002).

The simulated DSGC had a preferred direction of stimulus motion, defined by the
fact that the network was always activated by a white moving dot in one direction
and silent for a moving dot in the opposite (null) direction. This selectivity was
accomplished as follows: In the null direction, the white dot passed first over a slow
bipolar cell’s receptive field, before passing over the fast bipolar cell to its left. The
sustained response of the slow bipolar cell therefore overlapped in time with the
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Figure 4.6: TheCNNmodel’s layers correspond to the layers of the retina. Individual
artificial neurons model biological neurons as linear-nonlinear units with a temporal
convolutional filter and a static nonlinearity. Biological network cartoon taken from
Wei and Feller, 2011.

Figure 4.7: Examples of stimuli used to generate training data. Each stimulus was
500 ms long, consisting of two 250 ms frames. a: Moving dot: white dot on a
black background that shifts one pixel to the left or to the right. b: Static random
pattern: randomly generated pattern that turns on and off. c: Moving random
pattern: randomly generated pattern that shifts one pixel to the left or to the right.

more transient response of the fast bipolar cell. These two bipolar cell outputs were
then summed and the output was rectified by the second hidden layer, representing
nonlinear input integration at the amacrine cell dendrite (Fig. 4.6). Because of the
temporal overlap of the two bipolar cell responses, their sum crossed the rectifier’s
threshold, creating a nonzero rectifier output. The amacrine cell became activated
as a result and provided an inhibitory input to the ganglion cell. This inhibition
cancelled the excitatory input from the bipolar cells to the ganglion cell, silencing
the ganglion cell output (Fig. 4.5).
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In the preferred direction, the fast and slow bipolar cell responses occur in the
opposite order, and therefore do not overlap in time. Thus the input to the rectifying
unit is not sufficient to cross the threshold) and the rectifying unit output is zero.
The bipolar cell excitatory input to the ganglion cell is therefore unimpeded by the
amacrine cell input, leading to activation of the ganglion cell (Fig. 4.5).

Using these simulated training data, the problem of algorithmic modeling was
approached in three stages. In phase 1 we constructed a deep net with the data-
generating model and trained it in order to learn only the synaptic weights of the
original model. In phase 2 we increased the complexity of the learning problem
by constructing a deep net with the same structural motif, but more neurons than
the original model, and trained with ℓ1-regularization to encourage pruning away of
extra synapses and the recovery of the true model. Finally, in phase 3 we constructed
a deep net that also included alternative structural motifs and again used regularized
training in a way that encouraged the selection of model structure in addition to the
learning of synaptic weights.

Phase 1
In this phase, we attempted to learn only the synaptic weights of a retinal model. We
generated training data by presenting moving dot and static moving pattern stimuli
to a network model. We then constructed an identical network with randomly
initialized synaptic weights, and trained it to learn the synaptic weights of the true
model. We used basic gradient descent with a strong momentum parameter on a
dataset of about two thousand visual stimulus examples. The learning problem can
be expressed as:

F 9

(
#∑
8=1

(
Htrained(G8) − Htrue(G8)

)2
)
,

where F 9 were the synaptic weights of the model, G8 was the 8th visual stimulus,
Htrue(G8) was the output of the simulated retinal ganglion cell for stimulus G8, and
Htrained(G8) was the output of the trained CNN for stimulus G8.
We observed that regardless of random initialization, training consistently proceeded
in two stages. At first the synapses of the excitatory pathway (Fig. 4.8b, blue) were
learned within a few training iterations. Additionally, many inhibitory pathways
quickly moved from their random initializations to the neighborhood of the correct
value (Fig. 4.8b, green, red). After this, there was a slower stage in which the
synapses between the amacrine cell rectifying units and the amacrine cell convolu-
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tional unit were learned (Fig. 4.8b, magenta). During this stage, fine tuning of other
inhibitory pathway synapses also took place. It is interesting to note that in this
phase, the training set of visual stimuli consisted of about a thousand static random
patterns and about a thousand moving white dots. Using fewer moving dot stimuli
precluded the network from learning the correct values of the inhibitory pathway
synapses (Fig. 4.8c).

Figure 4.8: Phase 1: learning the synaptic weights of a direction selective model
retinal ganglion cell. a: True network structure. b: Synaptic weights in the trained
model converged to their true value (this is indicated by Ftrained

Ftrue
= 1). c: Using fewer

moving pattern examples (184 instead of 984) led to an inability to learn the correct
synaptic weights. Curves are colored to match their corresponding synapses in the
diagram.

Phase 2
In phase 2, we trained a network to learn the spatial receptive field of the true net-
work. In this stage, the true model had sixteen bipolar cells and seven amacrine cell
rectifying units, while the trained model was initialized with twenty-four bipolar
cells and eleven amacrine cell rectifying units. We generated training data with
moving random pattern and static random pattern stimuli. The basic connectivity
motif of the true model was conserved in the trained model initialization (Fig. 4.9).

A small amount of ℓ1-regularization was required in order to eliminate unnecessary
synapses. The learning problem thus becomes:

F 9

(
#∑
8=1

(
Htrained(G8) − Htrue(G8)

)2 + _
∑
9

|F 9 |
)
,
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Figure 4.9: Phase 2: learning a spatial receptive field. The network on the left was
pruned to the structure on the right.

where _ is a tunable parameter controlling the strength of the regularization term
during training. Without this regularization, extra neurons often maintained small
synaptic weights along the inhibitory pathway that contributed very little to overall
squared error on the training set (Fig. 4.10a). With regularization, these synaptic
weights often decayed linearly and slowly to zero, indicating that a large portion of
the gradient with respect to these synapses came from the regularizer rather than
the loss term of the objective function (Fig. 4.10b).

While phase 1 learning occurred using training data generated from moving dot and
static random pattern stimuli, phase 2 training could not be successfully completed
with these training data (Fig. 4.10c). Including moving pattern stimuli (Fig. 4.7c)
in the training set rather than static patterns led to successful learning in this phase,
even with half as much training data (Fig. 4.10b).

Phase 3
In phase 3 we aimed to learn not only the simulated ganglion cell’s spatial recep-
tive field and preferred direction but also its underlying circuit motif. In this case
the trained network was initialized with additional neurons and synapses such that
the overall network included multiple hypothesized computational pathways. This
time, “pruning” led to not only the elimination of unnecessary neurons but also the
selection of a model structure to reproduce the training data. This was the most
direct simulation of algorithmic modeling—an automated method to select model
structures and fit their synaptic weights to recorded data simultaneously.

In this case, we allowed for two potential inhibitory pathways to produce the phe-
nomenon of direction selectivity. First, we connected all bipolar cells directly to the
amacrine cell output node (the third hidden layer), simulating linear input integration
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Figure 4.10: Evolution of synaptic weights over time. Curves are colored to match
their corresponding synapses in d. For synapses whose true value is zero, Ftrained
is plotted instead of Ftrained

Ftrue
, and these curves are colored black. a: Without reg-

ularization, synapses included in the true model converged to their correct value
(this is indicated by Ftrained

Ftrue
= 1). However, unnecessary synapses remained at their

initialized value. b: With regularization, all synapses converged to their true value
and pruning was successful. c: Without moving pattern, but with twice as many
moving dot and static pattern data examples, synaptic weights failed to converge to
their true value.

by the amacrine cell dendrite (via summation and temporal convolution) and a single
output nonlinearity [39]. Second, we again included a pathway that paired adjacent
fast and slow bipolar cells and passed their summed outputs through rectifiers before
being convolved with the amacrine cell temporal filter and passing through the out-
put nonlinearity (again allowing for either choice of preferred direction.) The latter
mechanism, with two nonlinear processing stages at the amacrine cell, was used
to generate the training data, so we expected that all synapses corresponding only
to the former circuit as well as the latter circuit with opposite preferred direction



35

Figure 4.11: Phase 2: learning a spatial receptive field and preferred direction. In
the network initialization, the rectifying units pair each slow bipolar cell with both a
fast bipolar cell on the left and one on the right to allow for either preferred direction
to be learned. During training, the network on the left is pruned to the structure on
the right.

Figure 4.12: Phase 3: learning a network architecture. The network on the left is
pruned to one of the two candidate structures on the right.

would be eliminated during training, though we allowed the trained network to use
either mechanism or even a combination of the two (Fig. 4.12). Again, we were
able to train the network to correctly learn both the synaptic weight values of the
true network and to prune away the unnecessary neurons.

Phase 4
In phase 4, we extended the work in phase 3 to a larger network that includes both
ON and OFF pathways in order to recover the full, biologically plausible circuitry
of a simulated ON/OFF direction selective ganglion cell. Once again the network
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Figure 4.13: Left: Weight matrix of a simulated ON-OFF DS circuit. Entry (8, 9)
represents the magnitude weight between neuron 8 and neuron 9 . Center: Weight
matrix of initialized ANN. Right: Weight matrix of trained ANN is nearly identical
to the simulated circuit, with some small differences.

was initialized as overconnected, with too many neurons and synapses, and this time
included cells initialized as both OFF and ON neurons. The trained network was
able to recover the circuitry of the simulated ooDS cell almost perfectly, and this was
robust to random initialization. We randomly initialized all the synaptic weights in
the network 10 times, and were able to nearly perfectly reconstruct the circuitry each
time. This was the most direct simulation of algorithmic modeling—an automated
method to select model structures and fit their synaptic weights to recorded data
simultaneously.

Quantifying system identification
To better quantify the success of this system identification technique, we needed
to develop some type of heuristic or score. The first version of this was dubbed
the “projection score” and was computed by simply taking the normalized vector
projection of the learned synapticweightmatrix onto the true synapticweightmatrix.

Let the projection score be defined on the vectorized weight matrices as:

( =
Wlearned ·Woracle

|Woracle |2
. (4.1)
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Figure 4.14: Same as Fig. 4.13, but with a different random initialization.

Figure 4.15: Same as Fig. 4.13, but with a different random initialization.
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Figure 4.16: Same as Fig. 4.13, but with a different random initialization.

Figure 4.17: Same as Fig. 4.13, but with a different random initialization.



39

Figure 4.18: Summary of initialized and final training and test loss for the ooDS
simulations above.

We can now use this score to understand the success of system identification over
the course of training. Figure 4.27 shows one way of doing this. In it, we keep
track of the projection of the learned network onto both the true circuit (the Tran
circuit) as well as an alternative hypothesis, the Kim circuit [39] described in Section
4.3. By doing this, we are simulating the scenario in which the researcher trains
the ANN with both of these hypotheses in mind. Note that the initialized ANN
structure in all the experiments described so far can accommodate either hypothesis,
depending on which synapses are pruned away during training. The researched in
this scenario would compare the projection score of the learned ANN with each of
these two hypotheses at the end of training to determine which is more likely to have
generated the data.

Replicating the results of a classical circuit dissection experiment
Barlow and Hill discovered direction selective retinal ganglion cells in the rabbit in
1963 [8]. Upon this discovery, they set towork devising possible circuit architectures
that could perform such a computation. Two years later, Barlow and Levick proposed
two alternative models: the excitatory and the inhibitory model. Each version
employed a two subunits, one with a delay line, joined by a coincidence detector.
The excitatory model joined the two subunits with an AND gate, while the inhibitory
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model used an AND NOT gate [9]. In 1976, Wyatt and Daw set out to determine
which model was in use in rabbit retina. To understand whether inhibition was at
play in the direction selective retinal circuit, they applied pictrotoxin, an antagonist
of GABAA receptors. They found that this eliminated the direction selectivity
phenomenon and concluded that an inhibitory mechanism was in use in this circuit
[90]. The Tran circuit described above is somewhat different from the one that
Barlow originally drew. The excitatory mechanism in Barlow’s paper describes how
direction selectivity arises in the Starburst amacrine cell, but the SAC then inhibits
the ganglion cell, so that it does not fire when motion occurs in the null direction.

Can we re-discover this finding using a purely computational method? If so, this
would be an indicator that such a method can be extremely useful for circuit neu-
roscientists. To simulate this, I initialized an ANN containing all the neurons and
synapses necessary for both an excitatory and an inhibitory version of the Tran
circuit (Fig. 4.19). This network was then trained on data generated by the Tran
circuit, and converged to an inhibitory circuit with one small difference. A few
of the dendritic units directly inhibit the ganglion cell, rather than going through
the dendritic accumulator unit (Fig. 4.20). However, the ultimate result is still an
inhibitory circuit with two circuit motifs, one of which is the correct motif that
generated the data. Thus, the network was able to correctly replicate the result of
Wyatt and Daw’s experiment in simulation and identify that direction selectivity in
the retina arises via an inhibitory mechanism, and to partially recover the structure
of the ooDS circuit.

Intelligent choice of stimuli is necessary for circuit recovery
In studies of the ooDS and other direction selective cells, a commonly used stimulus
is the moving spot or moving bar [8, 9, 90]. In this stimulus, a spot or bar appears on
a plain, contrasting background and then moves in various directions (Fig. 4.22a.)
Typically the background is kept at a gray level to which the retina has adapted,
and the spot or bar is presented in black or white depending on the polarity of the
cell. This stimulus helps to identify direction selective cells, and can even be used
to do in real time during the recording. The moving spot can be thought of as the
simplest possible stimulus that gets at the heart of the computation done by the
DS cell. However, the amount of information one can learn by presenting moving
spot stimuli is limited. While the question of whether or not a neuron is direction
selective can be answered, it would be hard to estimate the weights of the network
based only on the response to this stimulus.
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Figure 4.19: Initialized ANN structure used to replicate experimental result in [90].
This ANN contains all the same elements as previous versions for the ooDS cell,
however, it also includes an excitatory pathway directly from the dendritic units to
the ganglion cell unit. These are meant to simulate an excitatory pathway.

Figure 4.20: After training the ANN in figure 4.19, the resulting structure is the
correct ooDS circuit that generated the training data, with one difference. The
dendritic units are directly inhibiting the ganglion cell unit, in addition to doing so
via the dendritic accumulator. Thus we can replicate the results of Wyatt and Daw
and prove that direction selectivity in the retina uses an inhibitory mechanism.
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Figure 4.21: Left: Weight matrix of a simulated ON-OFF DS circuit. Entry (8, 9)
represents the magnitude weight between neuron 8 and neuron 9 . Center: Weight
matrix of initialized ANN. Right: Weight matrix of trained ANN is nearly identical
to the simulated circuit, with some small differences.

Figure 4.22: Three types of visual stimuli. These stimuli have one spatial dimension
and are time varying. a In the moving dot stimulus, a dot appears on a blank
background and moves left or right. b In the random flicker stimulus, each frame
is a new set of checkers with random intensities. c The moving random pattern
stimulus begins by presenting a random pattern on the screen and then shifts that
pattern either left or right.
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For parameter estimation, a standard stimulus such as random flicker (Fig. 4.22b)
might be more useful. Random flicker stimuli are created by dividing the visual
field into 1D bars or 2D “checkers,” and giving each a random intensity. The bars
or checkers can be binary (black and white), or their intensities can be drawn from
a continuous grayscale. The intensities of each of the bars or checkers are randomly
drawn from a uniform or Gaussian distribution, and is redrawn in every frame of
the stimulus, which typically varies at 50 or 60 Hz. This stimulus is frequently
used for spike-triggered average and covariance analysis, and is designed to span the
space of spatial and temporal frequencies as much as possible during a time-limited
neural recording. Thus, the neuron’s response to this stimulus yields a great deal of
information and can be used for continuous parameter estimation in many cases.

However, it is true that not all neurons actually fire in response to random flicker
stimulus. Depending on the size of the bars/checkers and contrast of the stimulus,
it may not be sufficient to drive some neurons with highly nonlinear circuitry.
While direction-selective retinal ganglion cells usually do fire during random flicker
stimulus, we know that it is unlikely to drive the cells in the salient regime of visual
space that includes motion stimuli. Random flicker, while designed to be agnostic
and highly informative, does not do a great job of simulating motion, and therefore
may not activate the direction selective circuit in the relevant regime for system
identification.

To address this, we combined the moving spot stimulus with the random flicker to
produce what we call the “moving random pattern” stimulus (Fig. 4.22c). In this
condition, a random flicker-type pattern appears on the screen. But instead of the
pattern randomly changing every frame, this single pattern moves across the screen
in various directions. Thus, we are able to drive the neuron across a wide range of
stimulus space while still incorporating motion, which we know will activate the
circuitry relevant to our study.

Indeed, we found that data collected using only themoving dot stimulus is insufficient
for system identification (Fig. 4.23). Under this condition, most neurons in the
network are silent most of the time. Only a single subunit is being driven at any
given time, when the spot is over its receptive field. When the predominant signal
contributing to the loss function is silence, the sparsity regularizer dominates the
objective function, and almost all the synapses in the network are pruned to zero.
Thus, even though the moving dot stimulus would alert a human experimenter to the
fact that the neuron is direction selective almost immediately, it is not sufficient for
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Figure 4.23: Left: Weight matrix of a simulated ON-OFF DS circuit. Entry (8, 9)
represents the magnitude weight between neuron 8 and neuron 9 . Center: Weight
matrix of initializedANN.Right: Weightmatrix of trainedANN.When onlymoving
dot stimuli are used to generate training data, almost all synapses are pruned out of
the network.

the artificial network to recover its structure. Moving random pattern, on the other
hand, is informative enough and drives the circuit well enough to do near-perfect
system identification (Fig. 4.13).

We also found that training the network with moving random pattern stimuli only
led to better structure recovery than splitting the training dataset between moving
random patterns and random flicker (Fig. 4.24,) indicating that some information
about this motion-sensitive circuit simply cannot be conveyed by its responses to
the random flicker stimulus. However, with both training sets, the task of selecting
the Tran circuit over the Kim circuit is easily accomplished (Fig. 4.24).

The dynamics of learning
The network is set two tasks during training: prune away unnecessary synapses
and learn the correct value of each synaptic weight. Interestingly, these tasks are
performed in a stereotyped order. Training can reliably be divided into two phases.
The first phase is the structure learning phase, in which many synapses are quickly
pruned out of the network by the sparsity regularizer. Once the correct structure
has been learned, the synaptic weights must be approximated. We call this the fine-
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Figure 4.24: Projection score over the course of training for two trained ANNs with
different training sets. Thick lines represent projection onto ground truth circuit
structure. Thin lines represent projection onto alternative hypothesis. Black lines
represent ANN trained on a dataset of one hour of moving random pattern stimuli.
Red lines represent the same ANN trained on a dataset of 30 minutes of moving
random patterns and 30 minutes of random flicker. The purely moving random
pattern dataset leads to better final projection score, but slower convergence.

tuning phase of learning, which proceeds much more slowly and is driven purely by
the loss component of the objective function. Note that in these experiments, the
relative strength of the loss and regularizer was held constant throughout the course
of training, so this phasic behavior arises organically, and not due to a changing
objective function. One example is shown in Fig. 4.25, where a change in the
derivative of the loss function is also clearly visible at the epoch when the final
unnecessary synapse is pruned to zero.

A sparsity regularizer is necessary for recovery of this circuit
This approach rests on the idea of creating an overconnected ANN with too many
neurons and too many synapses, and pruning it down to only the necessary neurons
and connections needed to recreate the training data. To do so, we employ the
standard ℓ1-regularizer, which is commonly used to encourage sparsity both in
neural networks, but more famously in linear models [83]. But is this regularizer
truly necessary? After all, selecting the exact circuit that generated the data should
result in a loss of 0, so shouldn’t the loss function be sufficient to encourage pruning?



46

Figure 4.25: Top: Training and test loss over the course of training for ooDS circuit.
After 300 epochs, there is an escape from a local minimum to a structure that
produces lower loss. Bottom: Ftrained

Ftrained
plotted for weights of different types in the

trained ANNs. Black lines represent weights that do not belong in the true circuit.
All other curves are colored according to the color scheme in Fig. 4.4. At 300
epochs, the last unecessary synapses are pruned to zero, and this corresponds to the
shift in the loss function to a better solution. We therefore refer to the first half of
training, prior to this shift, as the “structure learning” phase, and the latter half as
the “fine tuning” phase, in which the synaptic weights of the remaining synapses
are adjusted to their final values.
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Figure 4.26: Left: Weight matrix of a simulated ON-OFF DS circuit. Entry
(8, 9) represents the magnitude weight between neuron 8 and neuron 9 . Center:
Weight matrix of initialized ANN. Right: Weight matrix of trained ANN. When
ℓ1-regularizer is not used, the structure of the ground truth circuit is not recovered.
Many extra synapses remain in the trained ANN.

Or, are there so many local minima and such complexity to the error surface being
searched that a regularizer is required to help the network identify the correct, sparse
solution? To test this, we re-trained the network without the ℓ1-regularization. We
found that in this case, system identification failed. The network converged to a
local minimumwith higher loss, which containedmany “extra” synapses that did not
correspond to anything in the true circuit (Fig. 4.26). Later in this work, we study
this idea systematically, for a variety of circuit architectures with various amounts
of training data and free parameters to understand whether it holds universally.

To summarize, Fig. 4.27 shows that training the ANN without regularization leads
to a poor projection score for both hypothesis circuits. Training it with only moving
dot stimuli also leads to poor projection scores for both hypotheses, and in fact,
the incorrect hypothesis has a higher projection score with the learned ANN at the
end of training. However, when sparsity regularization is implemented and the
more informative moving random pattern stimulus is used, the true circuit has a
much higher projection score with the learned ANN, close to 1, and the incorrect
hypothesis has a low projection score, around 0.3. Thus this experiment would
indicate strongly to the hypothetical researcher that the circuit uses the Tran structure
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Figure 4.27: Projection score over the course of training for three trained ANNs.
Thick lines represent projection onto ground truth circuit structure. Thin lines
represent projection onto alternative hypothesis. Black lines represent ANN trained
on a dataset of one hour of moving random pattern stimuli with an ℓ1-regularizer.
Red lines represent the same ANN trained on moving dot stimuli only, with an ℓ1-
regularizer. Blue lines represent the same ANN trained on moving random pattern
stimuli without an ℓ1-regularizer.

and not the Kim structure. This is the correct conclusion. This gives us confidence
that given an appropriate choice of stimulus and regularizers, this method can be
quite effective at correctly distinguishing between competing circuit hypotheses.

The quantity of training data required for circuit recovery
Biological experiments are time-limited, especially when live tissue is involved.
Most electrophysiological techniques for the retina involve enucleating the eye,
removing the retina from the eye cup, and keeping it alive in an oxygenated nutrient
bath during the recording. It is quite difficult to record action potentials from retinal
ganglion cells in an intact animal. Despite the experimenter’s best efforts to keep
the retina comfortable in the nutrient bath, the trauma of removal from the animal
as well as the lack of bloodflow to the tissue ultimately results in death of the retinal
neurons. However, a skilled experimenter can keep the retina alive outside of the
animal for a few hours before this happens. During this time, it is crucial to present
stimuli efficiently in order to extract as much information as possible about the
retinal circuitry. One might wonder whether sufficient data can be recorded during
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Figure 4.28: Final training and test loss is plotted for ANNs trained on varying
quantities of training data. Final learned structures were examined by eye and
qualitatively assigned to the “circuit structure recovered” (filled circles) and “circuit
structure not recovered” (open squares) categories. Circuit recovery is possible with
at least 15 minutes of training data or more, and this corresponds also to a sharp
decrease in the final train and test loss. Final loss decreases when more training data
are used.

this time to do something as intensive as train a convolutional neural network, which
are notorious for requiring large amounts of data. To check whether this would be
in the realm of possibility, we titrated the quantity of data provided to the ANN and
measured the final loss of the network (Fig. 4.28) and found, as expected, that larger
amounts of training data resulted in a smaller loss. However, we also inspected the
final learned structures and checked that theymatched or nearlymatched the structure
of the true circuit (qualitatively by eye). We found that given about 15 minutes of
training data, the network was able to perform near-perfect system identification.
Below that, system identification was not possible. Later in this work we quantify
the success of system identification using a system recovery score, and perform this
study more rigorously in multiple circuit architectures.

Incorporating noisy data
So far the simulations I have described all utilized noise-free data. However, retinal
ganglion cell spike trains, and in fact, all biological datasets, include noise. Sur-
prisingly, retinal ganglion cell spike trains are quite reliable [12]. RGC firing rates
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display Poisson statistics, and there are multiple places in the retinal circuit where
noise is introduced. Under scotopic conditions, when photons are scarce, noise in
the retinal spike trains is dominated by photon noise (noise inherent to the detection
of quanta of light) as well as photoreceptor noise [10]. That is because, at this light
level, little averaging occurs at the photoreceptor-horizontal cell gap junctions, in
order that the retina can respond to single quanta of light. However, other sources
of noise, which become more prominent under brighter light conditions, include
synaptic transmission noise in both the outer and inner plexiform layers, as well as
noise generated by the ganglion cell itself during the spike-generation process [63].

To understand whether neural system identification using ANNs is still possible
even under noisy conditions, I added two sources of noise to my simulated retinal
ganglion cell circuit. First, I inserted additive Gaussian noise at the input to the
network to model photon and photoreceptor noise. I also included additive Gaussian
noise at the level of the ganglion cell generator potential, just before the nonlinearity
for spike generation (Fig. 4.29.) This noise created some variability in the firing
rate of the simulated ganglion cell. I then provided the network with two types of
stimuli: 50 Hz random flicker and 4 Hz random flicker. The effect of the noise was
more pronounced for the faster stimulus, as firing events were denser and lower in
amplitude (Fig. 4.30). Under the 4 Hz stimulus condition, each firing event is very
pronounced and there are only a few "false positive" events where noise pushes the
cell over the firing threshold. However, under the 50 Hz condition, since all the
events are small and fast, it would be difficult to distinguish by eye a noise even from
a genuine stimulus-triggered firing event.

When the ANN is trained on these data, it predictably does a worse job at both
response prediction and system identification. First, the final training and test loss
is higher for the ANN trained on noisy data (Fig. 4.32). Additionally, the projection
score for this ANN maxes out at around 0.75, while the noise-free ANN reaches
about 0.9 projection score (Fig. 4.31). However, even with noise in the data, the
projection score onto the true circuit is well separated from the projection score
onto the alternate hypothesis circuit (0.75 vs. 0.3.) Thus, the task of distinguishing
between the two circuit hypotheses can still be accomplished, even with noisy data.

Conclusion
Using a simulated ooDScircuit as a test case, we found that, surprisingly, near-perfect
system identification is attainable using a biologically constrained neural network
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Figure 4.29: Left: Schematic of a generic simulated retinal circuit. The visual
stimulus is presented to the bipolar cells, which pass the signal through the bipolar
and amacrine cells to produce a firing rate readout. Right: The same circuit redrawn
with computational units to demonstrate where the addition of noise occurs. Noise
is added both at the stimulus as well as just before the output nonlinearity.

Figure 4.30: Responses of the ooDS circuit to two types of stimuli when noise is
modeled as described.
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Figure 4.31: Projection score over the course of training for two trained ANNs.
Thick lines represent projection onto ground truth circuit structure. Thin lines
represent projection onto alternative hypothesis. Black lines represent ANN trained
on a dataset without noise. Red lines represent an ANN trained on noisy data. The
noise-free ANN attains a higher projection score by the end of training.

Figure 4.32: Training loss, test loss, and ℓ1 norm are plotted over the course of
training for the two ANNs, one trained on noisy data and one trained on noise-free
data. The noise-free ANN converges to a lower final error rate.
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with a very basic training algorithm. This is not an intuitive result. Nonlinear system
identification is thought to be difficult, and the ooDS cell circuit is highly nonlinear,
and performs quite a complex visual computation. What makes this possible? We
hypothesized that due to the heavy constraints on the ANN derived from biological
understanding of the retina, the space being searched was so small that there is
really only one global minimum of the objective function in parameter space, and
that this corresponds to the correct solution, and we would go on to test this idea
in simulation and in theory. But many questions remained. Was this simply an
idiosyncrasy of the ooDS circuit? Was it possible to do system identification more
generally with other circuit architectures? We found that the ℓ1-regularizer was a
necessary constraint for system identification. Which other constraints were vital,
and could we gain a more general understanding of the hyperparametric regime
in which this type of system identification is feasible? The remaining sections of
this chapter describe our deep dive into the more general problem of nonlinear
system identification using ANNs. We maintain a connection to biology in the
generic architectures of the circuits we will study, but we try to attain a more general
understanding so that our findings might transfer to other applications as well. If the
success we had with the ooDS circuit is reflective of the general ease and success
of this method, this could present a powerful and broadly applicable new direction
in which nonlinear system identification will move in the future. As deep learning
progresses technologically and new, more effective algorithms and regularizers are
designed, this general framework can be adapted to myriad applications. But first,
a rigorous understanding of its success and failure modes is vital.

4.4 Implementing an “address book” constraint
One interesting potential biological constraint pertains to the genetic “address book”
described in Section 2.1. To test this constraint, we create a “toy retina” setting and
began exploring its utility. The first toy retina was designed to include three bipolar
cell types, called B1, B2, and B3, and three ganglion cell types: G1, G2, and G3. B1
cells provide excitatory input only to the G1 ganglion cell, B2 to G2, and B3 to G3
(Fig. 4.33). This is the ground truth circuit. It was simulated and used to generate a
training data set. Each bipolar cell in the circuit was a linear-nonlinear unit, which
took a temporal convolution of a constrained spatial region of the input stimulus with
a temporal filter derived directly from real bipolar cells in mouse retina [22]. The
output of this convolution was then passed through a ReLU nonlinearity, multiplied
by a synaptic weight matrix, and passed to the ganglion cell layer. Each ganglion



54

cell layer simply took its weighted input and passed it through an additional ReLU
nonlinearity to produce a time-varying output in response to the stimulus video.

We then imagined a fictional anatomical study, in which an experimenter performed
a careful genetic dissection of the inner plexiform layer (IPL) of this toy retina.
The results of this fictional study are drawn in figure 4.35 left. This toy retina IPL
contains five distinct laminae. Based on the stratification profile of each of the cell
types, a putative connectivity matrix is drawn in figure 4.35 right. Note that every
square of this table is filled in, meaning that every bipolar cell type could potentially
connect to every ganglion cell type. This is, therefore, the IPL address book for
this retina with the least possible information, and the fewest possible constraints on
connectivity. It should therefore be the hardest problem to solve, and we planned to
show that it was difficult and then make it progressively easier by using sparser and
sparser “address books.” However, as we will show, this problem was already very
easy for the network to solve and near-perfect system identification was achieved
without addtional constraints (Fig. 4.37).

From this IPL address book, we then derived the initialization for the ANN (Fig.
4.36 left), which meant creating and randomly initializing synapses from all three
bipolar cell types to all three ganglion cells. The task of training, then, was to
prune this fully connected network down to one with much sparser connectivity
(Fig. 4.36 right). Fig. 4.37 illustrates this process. The trained synaptic weight
matrix is almost identical to the true weight matrix, the only difference being very,
very slight variation in the precise values of the synaptic weights. This tiny variation
did not affect the output fit in any visible manner (Fig. 4.38.) Thus under these
conditions, using the very broadest possible address book constraint (essentially a
null constraint) the circuit could still be easily recovered. We therefore re-designed
the learning problem somewhat in order to make it more difficult and see if the
address book constraint would be more useful in that scenario.

The second toy retina includedmore cell types, specifically it also included two types
of amacrine cells, modeled with ReLU output nonlinearities, which we call A1, and
A2 (not related in any way to the AII amacrine cell type.) These two amacrine cell
types differ in that A1 is wide-field, with a large spatial receptive field which sums
over many bipolar cells, whereas A2 is narrow field, and each amacrine cell of this
type only connects to a single bipolar cell (Fig. 4.40.) The IPL stratification profile
for this toy retina and the putative connectivity matrix to which it gives rise are
shown in Fig. 4.35. This connectivity matrix is sparse. Many entries of the table
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Figure 4.33: Circuit diagram of a network with three bipolar cell types and three
ganglion cell types. Greyscale squares represent stimulus pixels. Each bipolar cell
unit has a single-pixel spatial receptive field.

Figure 4.34: Temporal convolutional filters assigned to each of the three bipolar cell
types in Fig. 4.33.
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Figure 4.35: Left: Fake inner plexiform layer used in this experiment. Black
dots represent layers in which each cell type stratifies. Right: Putative connectivity
matrix based on this fake IPL. Filled in entries represent possible connections. Every
entry is filled in, meaning that every bipolar cell type could potentially connect to
every ganglion cell type.

Figure 4.36: Left: Connectivity by type in the initialized ANN. Filled in squares
represent nonzero connections in theANN.Right: True connectivity by type, derived
from Fig. 4.33

.
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Figure 4.37: Left: Synaptic weight matrix for true circuit. Center: Initialized
synaptic weight matrix for trained ANN. Right: Weight matrix of trained ANN after
training is completed. The correct structure and weights are recovered.

Figure 4.38: Fit of the trained ANN output to the test data is virtually perfect.
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Figure 4.39: Left: Fake inner plexiform layer used in this experiment. Black dots
represent layers in which each cell type stratifies. Right: Putative connectivity
matrix based on this fake IPL. Filled in entries represent possible connections.

Figure 4.40: Schematic diagrams representing the two types of amacrine cells used
in this experiment. The wide-field amacrine cell pools over many bipolar cells,
while the narrow-field only gets input from a single bipolar cell.

are not filled in, indicating that based on the IPL stratification profile, it would be
impossible for those two cell types to connect to one another. Thus, the ANN can
be initialized without any of these synapse types included, reducing the number of
free parameters and therefore the complexity of the learning problem.

Fig. 4.41 shows the initialized connectivity matrix and also the true connectivity
matrix, corresponding to the “ground truth” circuit which was simulated and from
which a training dataset was generated. The synaptic weight matrix for this circuit
is shown in Fig. 4.42 on the left. The ANN is then initialized to include all
synapses considered legal under Fig. 4.39 with randomly initialized weights (Fig.
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Figure 4.41: Left: Connectivity by type in the initialized ANN. Filled in squares
represent nonzero connections in the ANN. Right: True connectivity by type.

4.42 middle.) This ANN was randomly initialized and trained three separate times,
and the results are shown in the rightmost panels of Figs. 4.42, 4.43, and 4.44.
These results are summarized in Fig. 4.46, focusing only on the third ganglion cell
type, since the other two circuits were correctly identified in every case. To the
fake experimenter studying this toy retina, this is the set of possible circuits giving
rise to the data collected from G3. As shown, in the first two trainings, the correct
circuit structure for G3 is identified by the ANN. However, in the third training, the
learned circuit is slightly different from the true circuit. The structure learned in this
case is shown in Fig. 4.45. The difference in this circuit is that one set of bipolar
cells, rather than inhibiting the ganglion cell via a widefield amacrine cell, connects
directly to the ganglion cell with negative weight.

This raises an interesting point. We, as retinal neuroscientists, know that such
a circuit is “illegal.” That is, the bipolar cell to ganglion cell synapse is always
an excitatory one. Therefore, the circuit learned in this third round of training
is biologically implausible and will be tossed out of the hypothesis set by the
experimenter. But since we knew this information about bipolar cells in advance,
could we have prevented the ANN from ever even providing such a hypothesis? The
answer is yes, and it requires nothing more than a simple sign constraint on each of
the weights. In the retina, we can classify almost all synapses as either “excitatory”
or “inhibitory” with confidence. We know, for example, that almost all synapses
between amacrine and ganglion cells are GABA- or glycinergic, and inhibitory. In
contrast, bipolar cell to ganglion cell synapses are glutamatergic and excitatory.
Therefore, we can constrain the space searched over the course of training to only
circuits which follow these rules. This is done in later experiments by simply putting
an absolute value around the synaptic weight variables in the Tensorflow code.
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Figure 4.42: Left: Synaptic weight matrix for true circuit. Center: Initialized
synaptic weight matrix for first trained ANN. Right: Weight matrix of trained ANN
after training is completed. The correct structure and weights are recovered.

The sign constraint aside, this experiment with the toy retina is a successful example
of how an IPL constraint can be employed in a real biological situation. IPL
stratification profiles like those invented in Figs. 4.35 and 4.39 have already been
elucidated for many retinal cell types [7, 27, 58, 85, 93], and can be put to use for
algorithmic system identification in this way.

4.5 Study of the parametric regime in which system identification is feasible
In this section, we empirically analyze conditions under which ℓ1-regularized re-
gression can lead to successful fine-grained identification of neural circuits, and
cross-reference with the theoretical results from Section 3.3 where appropriate.
Practical system identification of neural networks can be challenging even with
significant constraints imposed (e.g., many weights preemptively constrained to
zero). Most applications of artificial neural networks (ANNs) are not concerned
with identification of the “true” network, but rather focus on predictive performance
(which can be achieved by many parameterizations). Therefore, it is important to
understand, operationally, when system identification can be reliably performed.
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Figure 4.43: Left: Synaptic weight matrix for true circuit. Center: Initialized
synaptic weight matrix for second trained ANN. Right: Weight matrix of trained
ANN after training is completed. The correct structure and weights are recovered.

Since we assume that the true neural circuit is sparse, we employ ℓ1-regularized
regression. Given a training set ( = {(G, H)}, tuning parameter for ℓ1-regularization
_, neural circuit 5 (·; W), and set of allowable weights , the optimization problem
under study can be described as:

W: ←W∈
∑
(x,H)∈(

‖ 5 (x; W) − H‖2 + _ |W|. (4.2)

Due to the nonconvex nature of this optimization, it is preferable to run it with mul-
tiple ( ) random initializations, thereby producing a set of solutions W1, . . . ,W .

Using controlled simulated settings, we performed a systematic study to understand
the dependence of successful system identification on the following factors:

(i) The design of the function class 5 (·; W, b), and in particular the presence of
skip connections in the architecture.

(ii) The number of non-zero weights W ∈, via preemptively setting many con-
nections to zero.

(iii) The use of sign constraints on the weights W ∈.
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Figure 4.44: Left: Synaptic weight matrix for true circuit. Center: Initialized
synaptic weight matrix for third trained ANN. Right: Weight matrix of trained
ANN after training is completed. The correct structure and weights are almost
perfectly recovered, with some differences.

(iv) The use of ℓ1 regularization to encourage weight sparsity.

(v) The design of the training dataset, i.e., which data points to query.

In each simulated experiment, we created a sparse oracle network, and then trained
a second network to recover that structure via the optimization problem in Eq. 4.2,
while varying the constraints, regularizers, and datasets.

We define two measures of success: [System Recovery Score] Let the system
recovery score be defined on the vectorized weight matrices as:

'sys = 2 × Wlearned ·Woracle

|Wlearned |2 + |Woracle |2
. (4.3)

[Support Recovery Score] We will denote by W the vector of the same size as W
where W8 = 0 if Wi = 0 and 1 otherwise. Let the support recovery score be defined
on the vectorized and binarized weight matrices as:

'supp = 2 × Wlearned ·Woracle

|Wlearned |2 + |Woracle |2
. (4.4)
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Figure 4.45: Circuit diagram representing the structure learned in the experiment
shown in Fig. 4.44. Everything matches the true circuit, except that some of the B2
bipolar cells directly inhibit G3, rather than doing so via an amacrine cell, which is
biologically implausible.

Figure 4.46: The three training experiments give rise to three circuit hypotheses.
The first two are the same and are labeled Circuit A. This turns out to be the correct
circuit. The third is slightly different and is labeled Circuit B. Final test loss is listed
in each case. Note that experiment 3, which leads to an incorrect circuit structure,
also has a higher final test loss.
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Both measures are related to cosine similarity and the Jaccard coefficient. The
System Recovery Score achieves perfect performance when the exact system is
recovered with the exact weights. The Support Recover Score achieves perfect
performance whenever the non-zero support (i.e., the structure) is recovered exactly.

Summary of findings
Fig. 4.48 shows our main findings on the practicality of the approach. For all
simulated circuits, we are able to reliably recover most of the structure and pa-
rameters using ℓ1-regularized regression, when there are around 500 non-zero,
sign-constrained free parameters in the network. As we will see in Chapter 5, the
biological problems we are interested in have a few hundred free parameters, and so
are closely modeled by the black curves in Figs. 4.47 and 4.53.

Fig. 4.53 shows that successful recovery can be contingent on the use of ℓ1-
regularization as well as sign constraints. In particular, we see that ℓ1-regularization
is especially crucial when the circuit has skip connections (as is common in the
retina), and that the estimation problem fails completely without sign constraints.
The former finding potentially suggests skip connections as an important factor
for finite-sample analysis of system identification of nonlinear circuits, and the
latter finding supports our theoretical finding that sign constraints are an important
condition for guaranteeing identifiability.

Network architecture
We focus on the most generic network architectures that are prevalent in retinal
biology—though similar architectures arise in gene regulatory networks [52]. We
call these networks:

• Circuit 1: Three-layer networks whose first layer is convolutional and fixed,
and whose output layer is nonlinear (Fig. 4.47a).

• Circuit 2: Three-layer networks whose first layer is convolutional and fixed,
whose output layer is linear and which also include skip connections (Fig.
4.47b).

• Circuit 3A: Circuit 2 with the addition of a low-threshold ReLU output non-
linearity (Fig. 4.47b).
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• Circuit 3B: Circuit 2 with the addition of a high-threshold ReLU output
nonlinearity (Fig. 4.47b).

Note that Circuit 2 is, in fact, the circuit studied theoretically in Section 3.3, but with
a restricted input domain. In the retina, one can think of the output of the first layer as
modeling bipolar cell glutamate release rates, the second layer as modeling amacrine
cells, and the third asmodeling ganglion cells, though this “feedforward loop” circuit
motif also appears in other domains, most prominently in transcriptional regulatory
networks [3, 30].

For each of these four architectures, we constructed a specific oracle circuit by
selecting a fixed set of weights. Circuit 1 had 36 nonzero synapses. Circuits 2, 3A,
and 3B had 96 nonzero synapses. For each of these four circuits, we generated a
training dataset by presenting images to the circuit and recording the responses of
the output units. The rest of Chapter 4 will analyze recovery performance of these
architectures while varying the other factors of interest.

Non-zero connection constraints are helpful for identification of some architec-
tures
We first considered varying the number of free parameters in the ANN. Intuitively,
the more free parameters there are, the harder it will be to recover the true network.
However, constraining the network to fewer parameters would require increasing
amounts of domain knowledge.

Existing neuroscience domain knowledge constrains many connections to zero
weight. In the retina, such connectivity constraints are implemented by the pre-
cisely organized anatomy of neurons. The so-called inner plexiform layer (IPL) is a
meshwork of synapses between different unit types (bipolar, amacrine, and ganglion
cells). Each type sends its axons and dendrites into a distinct lamina of the IPL, and
neuronsmay connect to each other only if they co-stratify in at least one lamina. This
implements an “address book” of allowable connectivity between cell types in the
network [73]. Using anatomical studies in the literature [7, 22, 26, 29, 40, 58, 85, 93],
we have compiled such an address book for 36 retinal cell types (Fig. 2.4). A strong
address book constraint translates to a small number of free parameters.

For convenience, the first layer of weights (,1) were also constrained so that each
amacrine cell analogue in layer 2 only received input from a restricted spatial region
of the output of layer 1. This is to remove permutation symmetry of,1 and,2, and
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it is also realistic, since it is known that amacrine cells in the retina typically pool
inputs over a small region in space, not the entire visual field. Scaling symmetry of
the weights was removed by fixing biases in place during training.

Fig. 4.48 shows our main results, where we also employ sign constraints (we
later conduct an ablation study). We see that all circuits can be (approximately)
identified given enough training data and if sufficiently constrained in the number
of free parameters (around 500). Circuit 1, which is the only circuit without skip
connections, always yields high system and support recovery scores (given enough
training data) irrespective of the number of free parameters. However, the successful
recovery of Circuits 2, 3A, and 3B exhibits a strong dependence on the number of
free parameters, where recovery can be unsuccessful despite a large amount of
training data. Our theory directly implies that Circuit 2 should be identifiable,
which suggests that the non-convex optimization landscape of ANN training and the
restricted input domain may be a significant factor here.

Test loss is not always useful heuristic for structure recovery
Figures 4.49, 4.50, 4.51, and 4.52 display the final training and test losses computed
for the experiments plotted in figure 4.48. We can see that in the case of Circuit
1, higher structure and system recovery scores seem to correlate with lower final
training and test losses (Fig. 4.49). However, the same does not hold for Circuit 2. In
this case, even though smaller numbers of free parameters led to significantly better
system identification, the final training and test loss seems nearly identical for all
experiments where training data exceeded 1000 examples (Fig. 4.50). In circuits 3A
and 3B, there was yet another interesting behavior, in which all final losses appear
to be identical except for in the case of the smallest number of free parameters, in
which case the final loss was lower by multiple log units (Figs 4.51 and 4.52). This
means that in the case of those two circuits, having near perfect system identification
also translated to a significant decrease in the loss. However, differences between
experiments where the system and structure recovery scores were below one were
not resolvable just by examining the final test loss. This gives rise to the following
heuristic: For three layer circuits without skip connections, final test loss serves
as a decent proxy for system and structure recovery scores. For circuits with skip
connections but no output nonlinearity, when there are more free parameters in the
ANN then there are in the true circuit, this does not hold. Just because two ANNs fit
the data equally well, that does not mean that they approximate the structure equally
well. For circuits that include skip connections and an output nonlinearity, in the
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Figure 4.47: Networks studied in simulation. (a) Simulated circuit. (b) Three sim-
ulated circuits with skip connections, which vary in their use of output nonlinearity.
(c) The retinal circuit that inspired the models in (a) and (b). The photoreceptor
layer is treated as linear, and the convolutional layers in (b) and (c) represent the
combined computation of photoreceptors and bipolar cells.

regime where the number of free parameters is less than or equal to ∼5x the number
of true parameters test loss will drop with better system identification.

4.6 Sign constraints are necessary for system identification
Another way to constrain the network is to use sign constraints, due to abundant
neuroscience domain knowledge about whether certain neurons are either excitatory
or inhibitory [28, 65, 88]. In fact, for the retina circuits we study in Chapter 5,
we have sufficient knowledge to sign constrain every weight. Fig. 4.53 c and d
shows the results of an ablation study that removes the sign constraints. We see a
sharp contrast compared to Fig. 4.48 in that removing the sign constraints causes
system identification via (4.2) to fail. This finding is consistent with our theoretical
exploration and Theorem 1, where the sign constraint was a crucial element in
identifying the half planes generated by the ReLU units.

4.7 Sparsity regularization is helpful for identification of some architectures
We next investigate the benefits of using ℓ1-regularization in practice. Fig. 4.53 a
and b shows the results of an ablation study that omits the use of ℓ1-regularization.
Compared to Fig. 4.48, we see that regularization never hurts system identification,
and sometimes appears to be crucial in practice. In particular, one can still perform
identification without ℓ1-regularization for Circuit 1, which has no skip connections,
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Figure 4.48: System and support recovery scores (Definitions 4.5 and 4.5) for
Circuits 1, 2, 3A, and 3B respectively, using ℓ1-regularization and sign constraints.
Each curve represents an ANN with 325–4219 free parameters (see legend). The
ANN was given varying quantities of free parameters and training data. For each
circuit structure, a single training dataset was generated, then networks with varying
numbers of free parameters were given access to some fraction of the training set
and trained. System and support recovery scores were computed in each case. Mean
and standard deviation of these scores are plotted for 10 training runs, each with
a different random initialization. We see that one can reliably recover most of the
system structure and parameters when there are around 500 free parameters in the
system.
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Figure 4.49: Final training and test losses plotted for the training experiments on
Circuit 1 shown in figure 4.48a. Curve color represents number of free parameters,
as in figure 4.48.

Figure 4.50: Final training and test losses plotted for the training experiments on
Circuit 2 shown in figure 4.48b. Curve color represents number of free parameters,
as in figure 4.48.

Figure 4.51: Final training and test losses plotted for the training experiments on
Circuit 3A shown in figure 4.48c. Curve color represents number of free parameters,
as in figure 4.48.
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Figure 4.52: Final training and test losses plotted for the training experiments on
Circuit 3B shown in figure 4.48d. Curve color represents number of free parameters,
as in figure 4.48.

but not for Circuit 2, which has skip connections. We hypothesize that a theoretical
characterization of sample-efficient system identification of neural circuits could
depend in a non-trivial way on the presence or absence of skip connections.

The regularizer is controlled by a strength parameter, _, which is selected via cross-
validation. How sensitive is this approach to the strength of the sparsity regularizer?
It turns out that there is a wide range of _ that leads to a similar level of success
for system identification in a circuit with skip connections. In fact, that range spans
five log units, which means that this method is not very sensitive to the value of the
_, though outside of that five log unit range, the structure recovery score does drop
off steeply (Fig. 4.54). Thus, a simple cross validation should be sufficient to select
an appropriate value of lambda.

Dataset design matters when data is scarce
In visual neuroscience experiments one must choose among many possible images
or movies with which to query the neural circuit to collect training data. Practically,
biological experiments are time-limited, and therefore, the training dataset size is
limited. Unsurprisingly, system identification of all four circuits showed a strong
dependence on the size of the training dataset (Fig. 4.48a-d).

Our final analysis in this section is to compare the efficacy of two very different
data collection approaches: white-noise images vs. natural photographs. White
noise has a long history for system identification in engineering, whereas natural
images better reflect the signal domain that the retina evolved to handle. White-
noise stimuli were generated as random checkerboards. Each image was 100 × 100
pixels, and consisted of 5 × 5 grayscale checkers of random intensity. Natural
grayscale images were taken from the COCO (Common Objects in Context) dataset
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Figure 4.53: Results of ablation studies. Successful system identification can
be contingent on regularization, sign constraint and dataset type. For simulated
retina-style circuits: (a) System identification of Circuit 1 proceeds as normal
without ℓ1-regularization; (b) System identification of Circuit 2 is impaired without
ℓ1-regularization; (c) System identification of Circuit 1 is impaired without the
sign constraint; (d) System identification of Circuit 2 is impaired without the sign
constraint; (e) random noise images lead to better system identification of Circuit 1
than natural images when data is scarce.
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Figure 4.54: Structure recovery score for an ANN trained on data generated by
Circuit 3A. The random initialization remains the same in each case, but the value
of _, which controls the strength of the sparsity regularizer, is titrated on a log scale.
There is a wide regime of _ for which the structure recovery score is close to 1.

[49]. An overparameterized artificial neural network with architecture matching
Circuit 1 (Fig. 4.47a) was trained with varying quantities of data from both sets.
When training data were plentiful, performance on the two datasets was comparable.
However, when data were more scarce, random checkerboard stimuli led to better
system identification (Fig. 4.53e). Interpolating, we find that a system recovery
score of at least 'sys = 0.9 can be achieved with about 400 checkerboard images,
but requires 630 natural images.

4.8 A heuristic for estimating the dimensionality of an unknown circuit
The number of synapses in a given retinal circuit can be fairly well estimated based
on the field’s extensive understanding of synaptic convergence and divergence in
the retina [13, 28, 76]. However, this does not hold in other, less understood neural
systems, or in other domains. So, it would be nice to have a heuristic way to
understand how many synapses to put in the initialized ANN.

The most natural place to start searching for such a heuristic is by examining the
readout most readily available to a hypothetical future research: the validation loss:
that is, the error computed on a held-out dataset. One might begin one’s search by
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initializing several ANNs with a large range in the number of free parameters, fitting
each, and computing the validation loss in each case, then selecting the ANN with
the lowest validation loss.

It turns out that this straightforward solution actually proves fruitful. We tested
this approach on Circuit 1 described above, which has 36 synapses within it. We
initialized ANNs with anywhere from 30 to 2825 free parameters, randomly ini-
tialized each one five times, and plotted the final loss on a validation set in each
case. As one might expect, the loss is the lowest for the network initialized with
slightly more parameters than the true circuit (1.22x). As one increases the number
of free parameters in the ANN, the loss slowly increases. However, if one decreases
the number of free parameters in the ANN by just 15% below the true number (a
different random group of synapses deleted in each initialization), the loss shoots
up dramatically, in this case by eight log units (Fig. 4.56).

How does system identification itself fare under these conditions? As described in
previous sections, for Circuit 1, system identification is near perfect for all the ANNs
initialized with 36 or more free parameters. However, for the network initialized
with 30 free parameters, system identification obviously breaks down. We see that
the structure recovery score drops to about 85%which makes sense, given that about
15% of the necessary synapses are missing. However, the system recovery score
drops to an average of about 68% and takes on a huge variance (Fig. 4.55). This
indicates that the network converges to a wildly different set of weight values for
each random initialization, which is not the case in any of the other experiments
when the ANN is provided with sufficiently many free parameters.

Thus, our advice to future experimenters who do not know the number of synapses
in the system they are studying is as follows: Perform the cross validation described
above, and look for this point of fragility. If you initialize your ANN at or to the
right of the minimum of this curve, you are likely to perform successful system
identification. The minimum of this curve likely represents a tight upper bound
on the number of synapses in the system you are studying. Initializing with too
few synapses in your ANN, as one would expect, leads to a total breakdown of this
technique.

Onemight ask, however, if the eight log unit difference in the loss is truly catastrophic
in terms of the goodness of fit of the ANN initialized with 15% too few free
parameters? Would an experimenter know, even without performing the full cross
validation, that the ANN was lacking crucial dimensionality? The answer to this
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question is no. In examining the actual output of the 30- and 36 free parameter
trained ANNs and comparing them to the data, one can see that the 36 free parameter
network attains a virtually perfect fit to the data, while the 30-free parameter network
misses the mark quite frequently, as it is not expressive enough to attain this perfect
fit (Fig. 4.57).

However, computing the correlation coefficient between the ANN outputs and the
validation data (which in this case is equivalent to computing explained variance,
since the data are noiseless) shows that the 30-free parameter ANN is still able to
attain between a 73% to 98% correlation with the data depending on the random
initialization. So while for some initializations there is a performance difference
of nearly 30%, there are some “lucky” initializations that only fall 2% short of the
ANN with exactly the right number of free parameters (Fig. 4.58). Therefore, it is
not enough to rely solely on the error from a single ANN. One must perform the
cross-validation described above to be sure that one is using the appropriate number
of free parameters for system identification.
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Figure 4.55: System and structure recovery scores plotted for ANNs trained on data
fromCircuit 1 which have been initialized with different numbers of free parameters.
When the number of free parameters is less than the number of true parameters, there
is a severe breakdown in system identification. Structure recovery score is around
85% regardless of random initialization, but the system recovery score varies widely
depending on random initialization. System identification is much more successful
and consistent when the number of free parameters is greater than or equal to the
number of true parameters.
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Figure 4.56: Final training and test loss plotted for ANNs trained on data from
Circuit 1 which have been initialized with different numbers of free parameters.
When the number of free parameters is less than the number of true parameters by
just 15%, there is a very high loss. Loss declines sharply when the number of free
parameters equals the number of true parameters and rises gradually as the number
of free parameters is increased, indicating that a researcer without knowledge of the
size of the system under study could use validation loss as a heuristic to choose the
size of their initialized network.

Figure 4.57: Test data and output of two ANNs trained with different numbers of
free parameters.
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Figure 4.58: Correlation between ANN output and test data for two ANNs, one
which is initialized with too few free parameters and one which has the exact same
number of free parameters as in the true circuit. Correlation drops by about 10% for
the underparameterized network, while it is virtually perfect regardless of random
initialization when the network is initialized correctly.
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C h a p t e r 5

RESULTS III: CASE STUDY ON DATA COLLECTED FROM
MOUSE ALPHA RETINAL GANGLION CELLS

5.1 The four subtypes of the alpha ganglion cell
The alpha retinal ganglion cell is characterized by its large dendritic tree and cell
body, as well as its thick axon. Alpha cells can be divided into four subtypes:
transient ON, transient OFF, sustained ON, and sustained OFF. These are named for
their response dynamics and polarity. All of these types have a large receptive field
center, and display weak surround suppression and no direction selectivity. They are
present in many mammalian species, including both mice and humans [44]. Their
precise microcircuitry, however, is not yet fully understood.

5.2 Data collection using multi-electrode array
Due to their large size, alpha cells lend themselves well to extracellular electro-
physiological recording. Perhaps the simplest tool with which to do this is the
multi-electrode array [55]. This array is constructed on a sheet of glass, into which
a grid of 16 × 16 titanium nitride electrodes. A plastic bucket is glued to the glass
surrounding the array, which can be filled with a nutrient bath to keep the retina
alive. Two glass pipettes allow oxygenated solution to flow over the tissue.

To prepare the tissue for recording, a mouse is dark adapted, and then anesthetized
with cervical dislocation, to avoid introducing any drugs into the bloodstream that
may affect neuronal responses. The eye is enucleated and placed immediately in an
oxygenated nutrient bath. Then, the retina is dissected out from the eye and placed
ganglion-cell-layer-side down onto the array (Fig. 5.1), which is then connected to
an amplifier and recording begins. The recording starts with an additional 15-30
minute light adaptation period wherein the retina is simply exposed to a blank gray
screen. After this point, stimuli can be shown.

In most recordings, the following stimuli are presented to the retina and responses
to each are recorded:

1. Random flicker: The screen is divided into a set of bars. The width of the
bars is a parameter chosen by the experimenter. In our experimenters we used
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widths between 13 and 95 microns. These bars are colored in black or white
randomly. The pattern is randomly selected in each frame, and the frames
flicker at 60 Hz.

2. Fullfield flash: The screen starts out as gray. The entire screen is turned
black (or white) for one second, and then turns back to gray for one second.
This repeats several times.

3. Moving bars: The screen starts out as gray. A bar (whose width and angular
orientation is selected by the experimenter) is moved across the screen in one
direction, and then the opposite direction.

4. Switching gratings: A black and white grating appears on the screen. The
grating reverses sign every second. The spatial frequency of the grating is
chosen by the experimenter (Fig. 5.2).

5. Barcode: A single 20 second, 20Hz randomflicker with 95 `mbars is shown.
The same random flicker stimulus is repeated five times. This is presented
between other stimuli throughout the duration of the recording. Each neuron’s
stereotyped response to repetitions of the same stimulus helps keep track of
the health of the neuron throughout the duration of the recording.

5.3 Data preprocessing
After recording, spike sorting is performed using Kilosort [62]. Once the voltage
traces have been separated into spike trains attributed to single cells, the spike trains
are smoothed into continuous firing rate traces via convolution with a Gaussian
filter. At this point, various analyses are implemented in order to classify neurons
as alpha or non-alpha. This pipeline begins with a basic spike-triggered average
analysis in order to obtain an estimation of the receptive field center size. Alpha cells
are identified based on two properties: 1) receptive field center larger than a fixed
threshold and 2) lack of direction selectivity. They are then sorted into subtypes
based on polarity and decay time of their responses to the fullfield flash stimulus.
Over the course of three recording days, we recorded from a total of 190 neurons.
From among those, we were able to identify 2 sOFFU cells, 4 sONU cells, 14 tOFFU
cells, and 1 tONU cell for which the quality of the data was sufficient for further
analysis.
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Figure 5.1: Left: Schematic of mouse retina on microelectrode array. The retina
is positioned so that the ganglion cell layer is flush with the array of electrodes.
Signals from hundreds of ganglion cells can be simultaneously recorded. Right:
Example of signal from a single mouse retinal ganglion cell. Blue ticks represent
single action potentials. Black curve shows the smoothed firing rate of the neuron
over time.

5.4 A system identification problem for alpha cell circuitry
While the four alpha cell subtypes share similar morphology, close inspection re-
veals some functional differences outside of just their polarity or sustained/transient
response dynamics. One such difference can be easily identified using the switching
grating stimulus. Krieger et al displayed a switching grating stimulus in a circular
mask centered over the receptive field. For each of the alpha cells, when the grating
displayed was very fine, there was no response. Once the spatial frequency of the
grating crossed a certain threshold, the neuron began to fire in response to every
switch of the grating. Then once the the grating became coarse enough, the neuron
would only respond to every other switch of the grating [44].

This behavior can be explained using the well-known Y-Cell model of retinal com-
putation. In this model, the ganglion cell receptive field is divided into several
“subunits,” representing bipolar cells, each of which responds to only a small por-
tion of the receptive field, and whose response is half-wave rectified (Fig. 5.3b.)
Thus, switching gratings of an appropriate size elicits a response with every switch,
even though the overall intensity in the ganglion cell receptive field remains constant.
Using the switching grating stimulus, one can approximate the size of these subunits
by finding the finest grating for which the neuron fires with every switch. Krieger
et al showed that the subunit size of the sOFFU cell was significantly larger than the
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Figure 5.2: Contrast-reversing grating stimulus

Figure 5.3: Hypothesized circuit architectures for the alpha ganglion cell. Each
structure convolves the input video with a bank of 3D filters in the first layer. (a)
X-Cell circuit: Utilizes only linear units in the first layer. (b) Y-Cell circuit: Utilizes
only nonlinear units in the first layer. (c) Y-Cell circuit: Utilizes both linear and
nonlinear units in the first layer. (d) Push-pull circuit: Utilizes nonlinear units in
the first layer. Includes an additional inhibitory pathway. Structurally analogous
to circuits 3A and 3B in Fig. 4.47b. (e) The ANN is initialized to include all
components and connections used in all four hypotheses. (f) Structure and support
recovery scores when the ANN in (e) is trained on data generated by simulated
circuits with architecture matching (a)-(d).
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other three types (about 200 `m compared to about 25 `m) [44]. We recorded a
similar phenomenon in our recordings of alpha cells, though the difference was far
less pronounced. In our case, the sOFFU subunit size was approximated to be about
150 `m (Fig. 5.4 top left) while the tOFFU subunit size was approximated as about
95 `m (Fig. 5.5). This discrepancy is likely due to the fact that the switching grating
stimulus we presented was not fullfield, not presented solely over the receptive field
center. Since we performed simultaneous recordings from around 50 or so cells,
there was not sufficient recording time to isolate each receptive field individually
and display the masked version of the stimulus used in [44].

200 `m is much larger than any known bipolar cell receptive field size. What is the
circuitry that underlies this phenomenon? One simple idea is that the sOFFU cell
is not a Y-Cell, it is an X-Cell. The X-Cell model is the same as the Y-Cell model,
except that the subunits are not half-wave rectified (Fig. 5.3a.) This means that the
ganglion cell will not respond to moderately sized switching gratings, because the
intensity in the entire receptive field remains constant throughout the stimulus.

While this is the simplest explanation, it is not the only possibility. The sOFFU
cell might also utilize a push-pull type model, which includes rectified subunits, but
those subunits are inhibited by another set of subunits with the opposite polarity, via
an amacrine cell (Fig. 5.3d.). Or it may simply be an XY-Cell, which is what we
decided to name a circuit hypothesis that includes both rectified and non-rectified
subunits (Fig. 5.3c.). We simulated each of these models and showed that they could
replicate the phenomenology of the sOFFU cell response to switching gratings (Fig.
5.4).

And, while the Y-Cell hypothesis might seem the most plausible for the other three
subtypes of alpha cell, they could also possibly be described with an XY-Cell or
Push-Pull model. As a test of our system identification technique, we decided to
design an ANNwith the necessary components for all four of these hypotheses (Fig.
5.3e.), and to train it in turn on data from each alpha cell subtype to see if we could
identify any circuit differences between them.

Before applying the technique to real data, we simulated each of the four circuit
hypotheses and generated training data sets from each. We then trained the initialized
ANN depicted in Fig. 5.3e on each dataset and confirmed that the correct circuitry
could be recovered in each case. Fig. 5.3f shows the system and structure recovery
scores for 10 random initializations of each training. Each circuit could be correctly
identified and scores ranged between 0.8-1.0, lending confidence that the application
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Figure 5.4: Response of sOFFU cell and three models to switching gratings of
increasing size. We simulated each of the three models with parameter sets chosen
such that each responded only to large switching gratings. Note that the exact timing
and phase of these responses depends on precise choice of parameters, as well as
the spatial phase of the stimulus, and therefore we cannot rule out any hypotheses
based on this. Pink vertical lines represent times of grating switch.

Figure 5.5: Response of a tOFFU cell and three models to switching gratings of
increasing size.
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X-Cell Y-Cell XY-Cell Push-Pull
X-Cell 1.00 0.00 0.80 0.00
Y-Cell 0.00 1.00 0.40 0.07
XY-Cell 0.80 0.40 1.00 0.04
Push-Pull 0.00 0.07 0.04 1.00

Figure 5.6: For each simulated circuit used in the simulations in figure 5.3f, the 'sys
was computed with every other circuit hypothesis. This serves as a “floor” to better
contextualize the 'sys of the trained ANN’s in each case.

to real data would provide meaningful results. For comparison, Fig. 5.6 shows 'sys
scores computed between each of the four models.

5.5 Fitting an ANN to alpha cell data
The ANN shown in Fig. 5.3f is trained on data from each individual alpha cell
separately. The responses to approximately 1-1.5 hours of random flicker stimuli
with varying spatial frequencies were used as the training dataset in each case. Over
the course of training, we tracked the fraction of variance explained by the ANN
model using a held-out validation set. The variance in the alpha cell data was
computed using the repetitions of the barcode stimulus. A stopping condition was
imposed to stop training when the fraction of explained variance either exceeded
1.0 (overfitting) or 200 training epochs had elapsed, whichever came first. At this
point, we analyzed the structure of the trained ANN.

Fig. 5.7 shows one example of the quality of the fit of the ANN to the training data
for a single ganglion cell, and also summarizes the fraction of explained variance
of the final trained model, separated out by alpha cell subtype. While in many
cases, the explained variance is quite high, we know from our experience with the
simulations in Chapter 4 that this does not necessarily indicate that the circuitry
learned was correct.

5.6 Recovery of known biological information about the alpha cell
Our confidence in the learned circuitry of the ANN is bolstered by the simulations
summarized in Fig. 5.3, but we were also able to identify some known circuit
properties of the alpha cell subtypes that were recovered by the ANN. First, the
ANN was able to recover the spatial receptive field of the neuron in each case. One
example is shown in Fig. 5.8.

Additionally, the ANN was able to independently re-classify each of the neurons
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Figure 5.7: Left: Example of quality of fit to ganglion cell firing rate. Right:
Fraction of variance in the retinal data explained by the trained ANN, separated by
cell type.

Figure 5.8: The trained ANN can replicate the spatiotemporal receptive field of an
sOFFU ganglion cell. Receptive fields were computed using reverse correlation on
a held out test set.
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Figure 5.9: Temporal filters in the bipolar cell layer of an ANN trained on data from
an sONU cell with varying random initializations.

Figure 5.10: Temporal filters in the bipolar cell layer of an ANN trained on data
from an tOFFU cell with varying random initializations.
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Figure 5.11: Ratio of magnitude of second peak to first peak in each set of learned
temporal filters for nonlinear bipolar cells in the trained ANNs, separated by cell
type. ANNs trained on data from sustained type cells have a smaller peak-to-peak
ratio.

by subtype. The spatiotemporal filters of the bipolar cell subunits in each trained
ANN reflected either the sustained or transient and OFF or ON property of each
neuron correctly. The difference between sustained and transient temporal filters
can be quantified by measuring the ratio of amplitudes of the positive and negative
peaks of the filter. For an OFF cell, a high amplitude negative peak, followed by
a low amplitude positive peak, as in the example in Fig. 5.9, leads to a much
more sustained response than when the two peaks are comparably sized (Fig. 5.10.)
This phenomenon is demonstrated in Fig. 2.1. Quantifying the peak to peak
ratio illustrates that when trained on data from sustained alpha cell types, the ANN
subunits developedmuchmore sustained-type filters in their nonlinear subunits (Fig.
5.11). However, the same did not hold for the linear subunits (Fig. 5.12). Thus, the
ANN has successfully recovered known information about each of the four alpha
cell circuit subtypes.

5.7 The ANN correctly identifies the circuitry of the transient OFF alpha cell
and suggests an additional pathway

We next examined the circuit structures to identify which of the four hypotheses in
Fig. 5.3 best described each of the four cell subtypes. Strikingly, the four subtypes
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Figure 5.12: Ratio of magnitude of second peak to first peak in each set of learned
temporal filters for linear bipolar cells in the trained ANNs, separated by cell type.
ANNs trained on data from sustained type cells have a smaller peak-to-peak ratio.

were each assigned a circuit which we will call XY + Push-Pull by the ANN. All
four synapse types remained in the final trained ANN for all four alpha cell subtypes
(Fig. 5.13).

In the case of the transient OFF subtype, this finding confirms something which has
already been elucidated via painstaking biological circuit dissection experiments
[58]. The tOFFU cell is also known as the PV-5 ganglion cell [68], and has been
shown to use a Push-Pull circuit mechanism. Based on recordings of excitatory
and inhibitory currents in the PV-5 ganglion cell, it is known that the PV-5 cell is
excited by nonlinear OFF bipolar cells, and inhibited by ON bipolar cells via the
AII amacrine cell [58]. With our technique, however, we find that an additional
component is in use. In the trained ANN, there are linear bipolar cells which also
excite the ganglion cell.

This finding is exciting, because it proves that our system identification technique
can recover the correct circuitry of a real retinal circuit. But it also provides a
path forward for future experimentation. The inclusion of this linear excitatory
pathway suggests that previous studies may have missed a crucial component of
the circuit. Now that our system identification technique has made this hypothesis,
future researchers can direct resources towards confirming or ruling out the existence
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Figure 5.13: Sum of all weights in the trained ANNs, separated by synapse type, in
order to show relative contributions of the various pathways learned for each alpha
cell subtype.

of these putative synapses.

5.8 System identification as a tool for hypothesis selection
We next looked at the circuitry proposed by the ANN for the other three alpha
cell subtypes. While there were 14 transient OFF cells in the dataset, there were
only 2 sustained OFF, 4 sustained ON, and 1 transient ON cell in the dataset.
Thus, the findings we present for these neurons are preliminary and warrant further
exploration. As mentioned above, our working hypothesis was that the sOFFU type
used an X-Cell circuit, while the other three types used a Y-Cell circuit. We found
that this was not, in fact, the case, according to the ANN. All four cell types were
classified as XY + Push-Pull Cells. The sustained ON cell appeared to have a
relatively weak inhibitory pathway compared to the other three types (Fig. 5.13).

Our next question was: does the sOFFU employ more linear subunits than the other
three types? Perhaps that could account for its more X-Cell type behavior in [44].
In other words, perhaps the relative strength of W3, lin and W3, nonlin differed for the
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Figure 5.14: Comparing the strength of linear and nonlinear pathways in the learned
alpha cell models. !sys and !supp (Eq. 5.1 & 5.2) for artificial neural networks
trained on datasets recorded from each of the four alpha ganglion cell types in
mouse retina.

sOFFU cell.

To quantify this, we defined the following quantities:

!sys =

∑
8, 9 W8 9

3, lin∑
8, 9 W8 9

3, lin +
∑
8, 9 W8 9

3, nonlin

, (5.1)

and

!supp =

∑
8, 9 W8 9

3, lin∑
8, 9 W8 9

3, lin +
∑
8, 9 W8 9

3, nonlin

, (5.2)

where W3, lin and W3, nonlin represent the binarized versions of W3, lin and W3, nonlin.

Our analysis showed that for all four cell types, !sys > 0.5. !supp, meanwhile, was
also equal to or slightly larger than 0.5 in most cases. Thus, in all four subtypes,
the contribution of the linear subunits is larger than that of the nonlinear subunits.
This matches our expectation based on the analysis of the neurons’ responses to the
switching grating stimulus. Many of them did not respond to switching gratings
smaller than 95 `m and the average bipolar cell receptive field is approximately 60
`m in diameter [22]. This is a decidedly different finding than that presented in
[44], though as mentioned, the switching grating stimulus in [44] was restricted to
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the receptive field center, while ours was fullfield, and this alone could account for
the difference.

However, this may not be totally attributable to activation of surround suppression.
The amacrine cells available to the network were fully pruned out, when they could
have been used to model a suppressive surround. Another thing to note is that the
explaned variance of the trained ANNs varies between about 60-90%. Thus, there is
another 10-30% of the variance that was not accounted for by our ANNs. This points
to a second possibility: perhaps the difference in circuitry between the sOFFU cell
and the other three subtypes is due to a circuit mechanism that was not included in
the initialized ANN. Perhaps it is not a matter of simple X-Cell vs. Y-Cell circuitry,
but something more complex. There could be recurrence in the alpha cell circuit for
which we have not accounted, or lateral inhibition between bipolar cells may play
an active role. We should also note that our study was underpowered in all subtypes
except for the tOFFU cell which was overrepresented in the dataset and accounted
for 2/3 of the cells studied. Future work is needed to advance this technique to the
point that it can fully account for the phenomenon observed in [44].

5.9 Summary
We have shown that when applied to data from a real retinal ganglion cell, our
system identification technique can recover known information about the circuits
under study. This provides us with the highest form of confirmation of the utility of
this technique that is currently avaiable to us. The technique also presented several
interesting hypotheses regarding the various alpha cell types that could be directions
for research. This work provides a highly encouraging jumping off point for myriad
applications of ANNs for nonlinear system identification in neuronal circuits.
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C h a p t e r 6

RESULTS IV: AN EXPLORATION OF ALGORITHMS FOR
INPUT SELECTION IN SYSTEM IDENTIFICATION

After our system identification method has been applied, the researcher is meant to
be left with a set of potential circuit hypotheses, and must then generate targeted
biological experiments to confirm or reject each one. One way of doing this is by
using targeted visual stimuli to maximally distinguish between alternate hypotheses.
One could even imagine extending this idea so that the initial ANN training is done
online during the recording from the neuron. In that case, one could select the next
stimulus to display based on the current partially trained ANN, in order tomaximally
resolve some form of uncertainty. This would be a form of optimal experimental
design (OED) or “active learning.”

This is particularly intriguing because this application provides us with a lot of
flexibility in terms of dataset design. In most applications of machine learning, the
dataset is viewed as something static, which is handed to the researcher incomplete,
and to which very few if any changes can be made. In contrast, in retinal neuro-
science, one can show virtually any visual stimulus to the retina by simply altering
the pixels on a screen. And, as described in previous sections, we have already spent
some time thinking about the design of the dataset.

While input generation is easy, output collection (electrophysiological recording) is
expensive. This is due to the limited recording time when the retina is removed from
the animal. While the tissue can be kept alive in an oxygenated nutrient bath, this is
only feasible for up to six hours at best. Thus, it is crucial to choose stimuli wisely,
as each stimulus presentation takes up part of this limited time window. The idea of
targeted stimulus design to distinguish between hypotheses or resolve uncertainty is
therefore well suited to system identification of retinal circuits.

Optimal experimental design of the type described above may have any of several
possible goals. Some possibilities include:

1. Minimizing uncertainty about the network structure;

2. Minimizing uncertainty about the network’s output;
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3. Minimizing output error.

We spent some time investigating these possibilities in simulation.

6.1 An adversarial stimulus generation algorithm
The first and possibly most naive stimulus generation algorithm is as follows:

Algorithm 2: An adversarial stimulus generation algorithm

Result: Trained ANN

Initialize an overconnected ANN as described in previous sections;

Prepare a predefined set of visual stimuli, �;

Prepare retinal recording;

while Retina alive AND stopping condition not met do
Display a batch of stimuli, �8 ⊂ � and record retinal response; Run ANN
forward and select G8 ∈ �8 with maximum loss;

Generate a set of similar stimuli by taking small, random steps in stimulus
space. call this set -8;

Create a new batch of stimuli, �8+1, containing -8, along with some
additional stimuli from A and repeat

end

This simple algorithm can take on many variations depending on how the stimulus
space is parameterized. For example, steps can be taken in the high dimensional
space where every pixel is its own axis (demonstrated in Fig. 6.1), or steps can be
taken along axes corresponding to salient stimulus features, such as motion speed
or contrast.

We applied the simplest version of this algorithm in the case where the stimuli
were moving random patterns, and the circuit under study was the simulated ooDS
network described in previous sections. These stimuli were 16x1 random patterns
which shifted across the screen over the course of 12 individual frames, where each
frame was presented for 250 ms. This is known as an apparent motion stimulus.
We therefore parameterized stimulus space as 12×16 dimensional and took random
steps in this space rather than raw pixel space. We tracked the projection score over
the course of training to understand whether this algorithm could improve system
identification. However, we found that it actually led to poorer system identification
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Figure 6.1: Cartoon demonstrating stimulus generation method. If a flower is given
as the seed stimulus, taking random steps in stimulus space will give rise to several
noisy-looking pictures of the same flower.

than a passive algorithm which simply trained on moving random pattern stimuli
(Fig. 6.2.) While in both cases, the true circuit was easily distinguished from the
alternate model, active stimulus selection did not provide the boost in performance
we were expecting. This is likely due to the fact that the steps taken in stimulus
space were too small, and therefore the batches of stimuli were too similar and
did not contain enough information to perform accurate system identification. This
highlights the tradeoff between emphasizing certain stimuli where performance is
poor and lack of variety in the dataset.
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Figure 6.2: Projection score over the course of training for two trained ANNs
with different training algorithms. Thick lines represent projection onto ground
truth circuit structure. Thin lines represent projection onto alternative hypothesis.
Black lines represent ANN trained with standard “passive” optimization. Red lines
represent the same ANN trained using Algorithm 2. Passive learning results in
better system identification.

6.2 An algorithm to select between two classes of stimuli
Algorithm 3: A second adversarial stimulus generation algorithm

Result: Trained ANN

Initialize an overconnected ANN as described in previous sections;

Prepare a predefined set of visual stimuli, �;

Prepare retinal recording;

while Retina alive AND stopping condition not met do
Display a batch of stimuli, �8 ⊂ � and record retinal response; Run ANN
forward and select a set of G8, 9 ∈ �8 with maximum loss. Call this set -8;

Create a new batch of stimuli, �8+1, containing -8, along with some
additional stimuli from A and repeat

end

This algorithm, rather than generating new similar stimuli to the highest error
stimulus at each step, simply repeats training on the high error stimuli, and slowly
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Figure 6.3: Projection score over the course of training for two trained ANNs
with different training algorithms. Thick lines represent projection onto ground
truth circuit structure. Thin lines represent projection onto alternative hypothesis.
Black lines represent ANN trained with standard “passive” optimization. Red lines
represent the same ANN trained using algorithm 3. This time, adaptive stimulus
selection leads to better system identification, though convergence is slower.

adds more random stimuli to the training set. We applied this algorithm to the
stimulus distribution � that contained both random flicker and moving random
pattern stimuli in equal measure. This meant that during the course of training,
the algorithm actually favored one of these two stimulus types depending on where
the largest errors were being made. So, inadvertently, this algorithm provided us
with information about which stimulus type is most useful during specific phases of
training.

Optimal choice of training stimulus varies over the course of training
This algorithm did provide a boost in system identification, and improved the final
projection score by about 0.05, though it did also slow convergence somewhat (Fig.
6.3.) But the most interesting result of this experiment was the choices made by
the algorithm during training. Each new batch of stimuli, �8, is composed of some
moving random pattern stimuli and some random flicker stimuli, and the ratio of
these depends on which stimuli produce the highest error at this phase of training.
Fig. 6.4 shows the fraction of moving random pattern stimuli in each �8 over the
course of training. Early in training, during what we call the “structure learning”
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Figure 6.4: Fraction of motion stimuli selected by Algorithm 3 over the couse of
training. Motion stimuli are preferred early in training, while random flicker stimuli
are preferred later in training.

phase, much of the synaptic pruning is taking place. We found that early in the
structure learning phase, the algorithm strongly prefers moving random pattern
stimuli to random flicker stimuli (80% motion stimuli.) During the “fine tuning”
phase, after all the unnecessary synapses have been pruned out, the network is
simply adjusting the synaptic weights of the remaining connections. During this
phase, random flicker stimuli make up about 80% of each batch, �8 (Fig. 6.4.)

6.3 An algorithm to maximize output of the circuit
Another way to guide stimulus design is to try to select for stimuli that maximize
the firing rate of the circuit. We implemented a simple version of this in the
following way: We began by constructing two artificial networks which shared
weights. The first was the trained ANN. The second had the same structure and
shared the same weights, but was used to generate stimuli (Fig. 6.5.) In this scheme,
data are collected from the retina and used to train the trained network. After partial
training, the weights are passed to the stimulus-generating network, which uses the
current estimate of the weights to produce a new set of stimuli that should maximize
the firing of the retinal ganglion cell. These stimuli are presented to the retina and
the recorded responses are used to train the trained network. This process repeats
until convergence.
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Figure 6.5: Schematic of the active stimulus-generation algorithm.

Algorithm 4: A third adversarial stimulus generation algorithm

Result: Trained ANN

Initialize an overconnected ANN as described in previous sections;

Prepare a predefined set of visual stimuli, �;

Prepare retinal recording;

while Retina alive AND stopping condition not met do
Display a batch of stimuli, �8 ⊂ � and record retinal response; Run ANN
forward and select a set of G8, 9 ∈ �8 with maximum loss. Call this set -8;

Create a new batch of stimuli, �8+1, containing -8, along with some
additional stimuli from A and repeat

end

How should we generate stimuli to increase the firing rate of the output neuron?
Our method was inspired by [35]. The stimulus generating network is given an
approximation of the structure and weights of the network from the trained ANN.
To generate a new stimulus to show to the retina, we fix those weights in place. We
then backpropagate from the output of the stimulus generation network all the way
to the stimulus (Fig. 6.6.) We are therefore able to compute the partial derivative
of the network output with respect to the stimulus image, and use gradient ascent to



99

Figure 6.6: Stimulus generation method schematic.

find more salient stimuli.

To test this algorithm, we simulated a very simple circuit, made up of two LN bipolar
cells. Since the algorithm was quite complex, we wanted to start very small in order
to understand the behavior of the algorithm. They each had adjacent and isolated
1-pixel spatial receptive fields. The bipolar cells took a convolution of the stimulus
video with a temporal filter and passed the output through a ReLU nonlinearity. The
ganglion cell unit simply took a weighted sum of the output of these two bipolar
cells and passed it through a second temporal convolution and ReLU nonlinearity,
to produce a firing rate output (Fig. 6.7). Each temporal filter in the bipolar cell
layer was parameterized as a two-bump function, as described in previous chapters.
The two bipolar cells shared these parameters, but with signs reversed. Thus we
were simulating one ON bipolar cell and one OFF bipolar cell, each connected to
the same ganglion cell.

We then initialized an ANN with the exact same structure, but with random weights
and temporal filter parameters. This meant there was a total of four free parameters
in the ANN. No pruning was necessary, but these weights were randomly initialized
needed to be adjusted to match the simulated retinal circuit.

We first trained the ANN passively, by simply presenting a series of random flicker
stimuli to the simulated circuit, recording the output, and presenting these data to the
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Figure 6.7: Three neuron simulated circuit used in simulations of Algorithm 4.

ANN for gradient descent. As expected, after some training, the ANN approximated
the weights almost perfectly (Fig. 6.8). This is not surprising, since the network is
quite simple compared to previous circuits we have simulated and whose structure
we have successfully recovered with this technique.

Next, we applied Algorithm 6.4, and attempted to recover the weights once more.
This time, the weights were not learned correctly, though they came close and
certainly improved on the initialization (Fig. 6.9.) To understand this better, we
examined the stimuli that were generated by the stimulus-generating network over
the course of training.

The seed stimuli used in this case were random flicker stimuli where the pixels took
random intensities on a continuous scale from 0 to 1. Figure 6.10 shows the seed
stimuli on the left and stimuli generated by the stimulus-generating network after
500 epochs of backpropagation on the right. It is apparent that the gradient ascent
algorithm converges to high contrast stimuli which are simultaneously white in the



101

Figure 6.8: Ftrained
Ftrue

plotted for the weights and filter parameters in the circuit in Fig.
6.7 over the course of training when passive learning is used.

Figure 6.9: Ftrained
Ftrue

plotted for the weights and filter parameters in the circuit in Fig.
6.7 over the course of training when Algorithm 4 is used.
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Figure 6.10: Batch of 16 stimuli generated by Algorithm 4 in epoch 1 and epoch
500. Each stimulus is 2 pixels by 12 temporal frames.

left pixel (exciting the ON bipolar cell) and black in the right pixel (exciting the
OFF bipolar cell). This is, intuitively, a very straightforward stimulus to select if
one wants to maximize the firing of the ganglion cell in Fig. 6.7.

However, because there was no mechanism to encourage the algorithm to maintain
diversity in the stimulus set, as the stimulus generating network converges to this
high contrast “checkerboard” stimulus, the stimulus batches used to train the trained
network become verymonotonous. This may account for the failure of the algorithm
to perfectly recover the synaptic weights of the circuit.

6.4 An algorithm for optimal stimulus design given competing circuit hy-
potheses

Once system identification has produced a set of circuit hypotheses to describe a
biological system, how can one further narrow down this set? One option is to
design a stimulus that can optimally distinguish between these hypotheses, then
present that stimulus to the biological system, and use the response to further rule
out hypotheses. As a direction for future research, we propose an algorithm inspired
by work done by Hwang et al in 1991 [35]. This proposed algorithm would work
by creating an ANN whose output node is simply the squared difference between
the output of two circuit hypotheses. The weights of these hypotheses are fixed in
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Figure 6.11: Schematic of proposed stimulus design algorithm.

place, and gradient ascent is run to find a stimulus which maximizes the output of
the network (Algorithm 6.4.) This stimulus, therefore, maximizes the difference
in output of the two circuit hypotheses. It can then be applied to the biological
system in question to obtain ground truth, and provide evidence for or against each
hypothesis. Of course, many such stimuli can be generated from a set of randomly
chosen or carefully designed seed stimuli.

Algorithm 5: Stimulus design algorithm for distinguishing between circuit hy-
potheses
input: s0 ; // seed stimulus

, 5� (B; WA) ; // circuit hypothesis A

, 5� (B; WB) ; // circuit hypothesis B

Initialize an ANN whose output is the squared difference between the output of
network A, and that of network B (Fig. 6.11).
fix WA and WB in place
Solve s∗ ← argmaxs( 5 (B; WA) − 5 (B; WB))2 ; // from the random

initialization

return: s∗

6.5 Summary
In this chapter, we have simulated several different active stimulus generation net-
works. Algorithm 3 provided an improvement on system identification. Though the
others did not, they do demonstrate useful information about how training proceeds
in these ANNs. For example, we learned that different types of stimuli are preferable
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in early vs. late training, and our simulations also emphasized the importance of
having a diverse stimulus set.
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C h a p t e r 7

CONCLUSION AND FUTURE DIRECTIONS

In this thesis, we have thoroughly explored the application of ANNs to system
identification of neuronal microcircuits in the retina. We have demonstrated that
theoretically, a retina-like toy model can be shown to be uniquely identifiable.
Importantly, we saw that this is reliant on a sign constraint on at least one set of
weights. We saw that the necessity of sign constraints carried over to our empirical
simulations, in which we showed that nonlinear system identification with ANNs is
feasible for multiple different retinally-inspired architectures in a parametric regime
that is relevant to retinal experimental conditions. We also derived a heuristic
by which an experimenter working in a new system can decide how many free
parameters the ANN should have. We applied this technique to real data from
alpha retinal ganglion cells and confirmed known results while also suggesting
future directions for biological research. We also simulated several active stimulus
generation algorithms and provided a basis for future research in this area.

Many questions still remain to be untangled. The simulations can be extended to
further circuit architectures with more layers or with the addition of recurrence. The
alpha cell work can be extended to a larger dataset, and biological circuit dissection
experiments can be undertaken to confirm the hypotheses presented in this work.
The active stimulus generation techniques can be refined and even tested on live
retinal circuits. And this technique shows great promise for extension to other
systems. Within this work we have mentioned gene circuits as one possible target,
but another logical next step would be to move one synapse down in the visual
system, and to apply this technique to neurons in superficial superior colliculus or
lateral geniculate nucleus. One could even go further, into deeper colliculus or the
visual cortex. As mentioned in the introduction, this technique is applicable to any
feedforward circuit for which partial foreknowledge exists and for which the input
and output can be easily accessed. The possibilities are endless, and my hope is that
this work can open the door to more play and exploration of this type of nonlinear
system identification using the ever-improving tools of deep neural networks.
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