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- INTROBDUCTION

This research was undertaken as part of & general program of
the investigation of the formetion of shock waves én airfoilé.
Consequently, it was thought advisable to study potential solutions
for transonic flow to obtain information concerning the occurrence,
size, and shape of supersonic zones. From this point of view it
is especially desirable to ineclude the effect of wind tunnel walls
in modifying the flow field since the most reliable date can be
obteined in wind tunnels,

Until recently the main methods of investigating trgnsonic flow
were!

(1) Expansion of the velocity potential in e double power series

of space coordinates., This method, as applied by Taylor (Ref. 1)

and Gortler (Bsf. 2), solves an exact equation for the flow with
eoproximate boundafy conditias, Since the area of convergence

is very limited the use of this method is restricted to local problems
such as the flow in the throat of a nozzle, ete,

(2) Solution of the Hodograph Equation. The equation for the

two-dimensional flow of a compressible f1uid may be linearized by

a transformation of the independent variables., (See Ref, 3) Then,

in general, the simplified equation must be solved with correspondingly
more difficult boundary conditions, Tsien and Kuo (Ref. 4) have
applied this method to the flow past bodies of nearly circular shepe,

but even here the computations were lengthy.
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 (3) Development of velocity potential - in power series of thick-

ness ratio, In the first approximation this is the so-called "small
pefturbation" or Prandtl~Glauert method and has been used by many
authors to obtain information about compressible flows. The first
approximation is relatively simple and where carefully considered
yields much information, even in transonic flow. Gortler obtained
supersonic regions in the flow past a wavy wall in Ref. 8, The se-
cord approximation is more complex and has only been worked out for
special cases, e.g. Hantzche and Wendt (Ref. 5). (For = ?:;Z:ion

of these methods see Ref. 3)

(4) Solution of an Approximete Transonic Equation.' If in the

two-dimensional, irrotationel, isentropic flow of & compressible fluid,

& = velocity of sound at a point x,y in space
u = velocity of flow in x-direction at that point
v = velocity of flow in y-direction at thet point,

Q*-«‘/%’f—-zw_af_é%‘;/f.w/gz’: 0 W

4

Then;u is considered to be only slightly different from & veloeity of

sound and v is considered to be small, i.e.,

u=a% 4 %%? 3‘?.
- 3
: 2% 24 .
where 33 and g are much less than u, so that squares of their

%%

ratio may be neglected and where a* = velocity of sound when it equals

the flow veloecity on a*2 = u2 + v°, Eq. (1) may be written

Vi TP, 2 b I Y (2)
X X X+ q* g} 2‘\/7 = —— =

57"
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Solution of this equation should apply to transonic flow. Recently,
E. Graham and Th. von.Karman have used Eq, (2) as a starting point
and have, by similerity methods, obtained some results for the drag
of thése bodies in transonic flow.

A& consideration of the methods available made a logical first
choice the application of the small perturbation theory to the tren-
soniec flow past airfoils. The small perturbation theory maskes the
solutién of the flow of = ooﬁpressible fluid an affine transformation
of the solution of the flow of an incompressible fluid. The result-
ing problem in potential theory is solved by means of a Fourier in-
tegral. It can then be expected that as long as the assumptionsmade
in the theory are not violated, the results will epproximete the true
flow., In this way, supersonic regions over an 2irfoil and wind tunnel
well effects cen be cénsidered.

When exect equations, like (1), are used, supé{scnic flow is
governed by & hyperbolic equation and subsonic flow by an elliptic
equétion, or one can say that a supersonic zone is an hyperbolic
region end a subsonic zone is an elliptic regiom. The linearized
equation (see Eq. 5) used in the solution is, however, elliptic for
ell space. This implies the enalytic continuation of an elliptic
solution through & hyperbolic region. (The problem in general was
devised by H. Batemen, Ref. 7). However, this is not too strange,
for the limited hyperboliec region of & finite supersonic zme beheves
ellipticelly, i.e., every point on it influences every other point
and in fact, every point in space. This occurs in the following

way
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Pig., 1, the influence of a disturbance or pressure pulse at B

is felt in the domain dowmnstream through B. Thus, the influence

Vol “~ : of B is flet in the boundary of
/ N '
2 \
: the elliptic region and affects the
?// ¢ xfzzz
/ B 1\ rest of the elliptic region end

<::f:::::::::::::::j::>’ especially that part of the boundaery

. in whose domgin .of . "influence C lies,
Fig, 1

Physically, the small perturbation approximations are interesting
for it will be noticed that stream tubes have no throat at sonic speed
nor do they diverge when the velocity becomes supersonic. Fowever,

this is a natural consequence of replacing the exact equation for

du oA

e stream tube, (1 - MZ) 3 =—;5- where X

—

a

Mach number =

A

1

area of stream tube

by an approximate one
2 ) Ax _ _ BA
(;—/%;,/ “ T T ax where M

disturbance, as, in effect, the theory does.

L1}

¥ach number far from
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APPLICATION OF SMALL PERTURBATION METEOD TO TRANSONIC FLOW

By considering the conservation of mass, energy, and momentum
in a perfect compressible fluid which is disturbed only slightly
from steady rectilinear flow, it is possible to describe the motion

by the following linearized equation:

¢’ (7V dw ’_
(1w )3+t 55 o )
where M = Mach number in the undisturbed stream = -‘—2-'-*
0
ir V = velocity of flow in free streem, taken parallel to x-axis
and a, = varied velocity in free stream

Alos, if u, v, w are the velocity components at & point x, y, z in
the x, y, 2 direction respectively, then the induced velocities

u' =u =~V

vi = v

W'

’
B

In the diemeter of B it is assumed that the induced velocities are
small compared to the free stream velocity so that squares of this

7

ratio may be neglected and that v 5;—;' is also small, where t =

a cheracteristic length of the body causing the disturbance, ‘("’

is any induced velocity, and x‘, j_s any coordinate. (See Ref. 1)
These assumptions must be leter checked. It can also be shown, using

the same approximation that the pressure coefficient

Py _ 2a’ when p denotes pressure and ¢ (4)

-—
e

Y 2
fﬂp 4 V density.
If the free s.tream hes subsonic welocity and the entire motion

can be considered two dimensional,
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ﬁ =Xt + ;j’c = where % is a perturbation (5)
. | . 2/
potential such that “ = 3x . 2
F 2 oy

Some solutiors of (3) in special cases are now given,

A, Flow past a wall of almost arbitrary shape, the medium extending
to infinity y, as in Fig, 1, ;c,y are the coordinates in a physical
olene and y = £(x) gives the shepe of the wall, then (3) must be
solved with certain boundary conditions. These are:

l, Ho disturbance in y~direction far from the wall on

(8) v'= %—fo—'o ; —& o2

and
2. Flow tangent to the wall.

Within the approximation of the theory this can be expressed
as:

(7) l‘(‘ o) = I/f(l’j s i.e., the boundary comdition

is aepplied on the x-axis.

Y

v




Now et 5% so that

7rF
(8) ?;i £ éy:a " with these boundary conditions

la. ;?f —0 7 nd
w2 L pee

Then thé solution may be written (if £'(t) is suitably restricted).
__ Vv 1 _ ,

(9) BT / Z /6 27 £14) oo f/{—;)a/{

tor 7, 7P, 28 /di/e” Flyoo 20-§ )t

?g} 274/ / f
that 22 4o as g —ov amdat " o
27

74 /d] / /) e Al - g}df / //5/

The pressure distribution may then e found from
- / )
//,7 / 1Y L U)o D0t §) e
changing the orderﬂgf lntegratlon,cylelds,

3 75;_;//'/{/4{ S e o pie- 500

J

and integrating,

(¢- £)
d/ /; 7/”" /——{//fi—"j"' a7 s or in physiceal coordinstes
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The result can now be applied to the flow past a thin airfoil at zero
angle of attack.
1. Circular arc airfoil

pid

If the flow is past the circular arc airfoil shown in Fig, 3,

- X%
*/-/[X):’/’é" for /¥ £

(11)
=0 for /x| > &

to the order of the theory. Then, from (9),
/ &5 e
4 )4 4

(12) - /ﬂ 2 #-%) *7

Let a = 1, so that integreting by parts

2
., dp;ﬂ;ﬁ/k/gﬁ;(f%[‘ 571, - /7*/{f)”'?7
—UI- _ :/ﬁ[f@ 7?//‘f)¢
/74/*//4}}4
_ ﬁw_‘/_ﬁf—/? =/ J
| | .??y ?, 7;77ﬁu' _?;—5327 ;

- =t s /" r (x)”
(13) C’P(’W/'/W/?/ 7 /47/97“‘ (%)%

A ,//H ﬁ%” Fx
S ey }/

+4

Then

—4
(14) Cw (0,0) = e = W approximating the
' . surface by y = 0,

and above the maximum thickness

(as) G (94)= EPM //’/f ﬁ’“”/ﬁ;j



" on the surface of the airfoil, or approximately at y =0
G (2,0) = Cps [/, Ty L1
Moy /x/1=/

The met.hod of solution can now be extended to flow between

boundaries,

A, TFlow in & channel past a wall of arbitrary shape,

For closed channels, only the case of flow between & smooth wall
and a disturbing well will be considered but it will bé obvious how
flow between two disturbing walls cen be built up. For the case shown
in Fig, 4 the differential Eq., (8) still holds as does boundary condi-

tion 2a of (7) but boundary condition la must be modified so that

(2°a) V=22 .27 L_, .
LLLLLIIIIILL AL 10770000 1717
v ? =é 7 =/J = /

b v .v Then the solution is
- l Sy
_ L T x # . —= 5

for
V?4=0 end
A i f 4 (h-4/
27 /m/d’?_ﬂ;/EJ Uz éfé’,?é/ f)d{ so thet
‘5/ - 0 at 7=4 end at

. 7-°
< //{ //’/// o (¢~ §)dp-HF 15)

7y
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Then

A lhy)
- i 41/ CL e YV R

(18) i 19

changing the order of integration,

o = /W,/__zi/_‘,z/_ , 2ct-g) 41

/&ﬂ

This. may be integrated with respect to for 'Y

@ : /,u;[ 3{‘ o /615 ’
.-,/?4';’“"-";/;_1 ‘;’?M’ﬂ,.“;?z 4
4 g (See Ref., 9)
of ‘ .é:{
Honce G = o= 5 | I it ()
(7T ity el )

or

[ =

(19) ¢ / ~ / =t éf?/ de
/b(ﬂ, = z. A
7 “,4”,,/,4«:/3"»—/

For_the case where the disturbance is restricted to -a X a, the

pressure coefficient at the surface (y = 0) is given by

fL
. (20) f(ia/ //'/Z QA//-ZZW/ #

This is identically the result obtained by Tsien and Lees in a different

way (See Ref. 10), The results cen now be applied to a spscial case,



11.

" 1. Circular arc airfoil at 0° engle of attack in a wind tunnel

7’.’. - }1 for /z’/{d.

For this case, as before,
. ' = o for /¥ 74
(See Fig, 5) Then from (18)
Y
. a -
[LLI111 101011111011 771 twid (L

=7 7
() POy = ghR —FL-
V | F —&mA/ZZ‘J:,/__ w/f?/

Now let a=/

=t 4 b 4
Then /C“'/a,f 71/24?7/—“'7 7

or

\
S
i
ay
=
P\
~
N

(22)

This can easily be eveluated at the surface of the airfoil (; = 0),

Gun= /fwwﬁf/;!

for

(23)



ow M/M/= /”Z”’M ;«/ //%77 /J/n

‘where the BK are Bernoulli numbers,

This converges everywhere for a worst case of b = 1, Fora
zp

narrower channel other forms of expansion may be used, as for example

in Ref., 3, but this is sufficient for very practical ceases,

/ - ﬁrn-l/
_ _ £ & ., ),
fenes gugw= 7;“’71/;‘7 B Z//} ! tt f/

Y il
or j ”-/¢
=~/ vy~
—F wf . 2 Fe) #51 #
(24) 9,(&°)= ;-_?; /;‘ EI&//"/ ﬂ; (;w/’

It is seen thet the first tem of (24) corresponds to a surface dise
tribution of pressure (cp ) without & tunnel wall (Eq, 16), and the
o

second term gives the interference effects,

' 7
i.e, (24);,(1}0} = 90 + A[/'( v

aw~/
3 j/ " 3""/ #r f3
e
M=/

where AC/‘(‘S'V = (. -},

Y 7 ')"’
7.“. - Z”{-’/;/// -—7‘ —Z:Z #*

But ﬁ,_’,/ ¢
-/t
i Ak s sy
2% [3%¢,)
Hence,

(26) g eve) = 47 ()xu}’(""
ME/
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and for x = 0

” le &4 J}"'/ ;gj‘” ”4" g = _:i
s = Py T et 2 s ™ irf

7/
or - : 5 n
g=-y e~/ 5
(27) G (00 = [”FZ’K/Z (Jnf/),/ //
The ¢, can also be easily obteined at the tunnel wall y = 1, Fram (22)

pob= i 7“"'4//”/‘%

(28) Tﬂ

But

ok t3)e T AL )" (k1) 7

(502).)
ey

Then proceeding as before we get

.(29) 6, nb) = Z =) p A 4"-//4/ i)t i)/(d/
G 4] =

ms/ ptans1J!

and at x = 0 or above the maximum thickness

>

o, ol S s
=/ — /
= G, 2// (orr ) /
(30) ‘;b“;‘) /Mﬁ‘/
Another place where cp may be easily found is § = 1/2 or half way

between the wall and sirfoil. Then from (22)

_ s ) )
Gk (p-9/
(31) g ¢ 4ht = m’d ./ 7 g

50 that ”]
—/ d)/-// w2 s /N ,,,)(,.,,j”- -y (1987 éﬁ

Mz



or & " -?""f.e :»r_/)
o G b)e — 1) S /-3-//
(32) '

' 4/,? //2 1)
;,(O)‘A/ = (})u Z’/lj poris )/ i"‘" -/ ?j/

ey

This last solution may be extended by a Taylor expansion, by putting

‘L/‘J-L 7" vee
9,(0,;} = Gyl 6/ ) *+ (7— ‘A)SOIKO/‘AJ + CZ___ ;6 ro ‘/’/ #

(33) =7
when 9,’= ?;[ ete,
- From (21) we have »
o [ pt b 4
(34) DT TH Y hp - s 7]
2 ’4 /“"; g ﬁ
Henece, t/‘,'f', ) - ’—%(/(“.‘/_,w’y—/ /b/ /

G'st) = ,ea// / mé/

(35) | o - ;;;/Zzy/—w—ﬁ /,/‘*,/a:‘%/

S0

- 7
9;/{0,‘/;) = %_;—';/ﬁ/[ﬂ“[/'} ‘W{;‘ ]/[/

(36)

Then 2” 2

14,

% o) = {a///b// [f (w,a/_ 7/ (M/_w’ﬂ’/

/#



T grs)e 2 é/// i g /;‘7‘: Is.

o gt )
Then from (32) and (33)
R
- /7///%4/[7’* (o /: w/f]
A /& /»4»-4/ o/

i/

Z?_/}M a /2 = I (5 ’/'/J—f//""(m‘/r/’"‘ ]
Z"*‘5“":’//“"“/'//““/’ iz

For the case when the disturbing well is in a jet, or the airfoil

(28) Cf (’)/) = ‘};.ug

is in an open wind tunnel, the same method can be applied. TFor fhe
flow as in Fig, 5a the boundary condition 2'a must be changed so that
(2" = ;{ = y{o a constant at y =

b or y = h), but otherwise the

g =4, problem is the same. fence,

the solution can be written,




N ,__i‘_‘,z) S ,..,m—;/ 4o A
/:7)' ok Ah
for then
“/f ,a_/so

Zf 97 %s/‘; of 7:4 y 7,.0

Py op
2 £ Sa) | S mith R = LS
37 /1’/ _'”/ i /

Then, in the same way as before,

iy / b ) oy ditp) O
o o e

or changing the order of integretion

[

so thst ‘ (,é:.’fz/

(41) 9’“’//’/7 P“'/I (- Z/ / ‘/ [ j’

These results can be applied to the same disturbence as before,
2, Circular arc airfoil in open wind tunnel,

Then in the same notation as before

/’ i‘,u‘(/’;/z) p
w/“//‘”/

(a2) o = 1h?/""’/j’/"/

16.
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1/’ ./eﬁhf /“”./f /7 *”Aﬁﬁ 7}-aq>§y ?%

‘and a special case of some 1nterest isx =y =0, Then

e - “2: '/, ‘b/;“;A 1é ?ﬂ
Akt W whp =

(43) |
= P [f““”

Expanding
- ;’”‘/ .
‘é. si"l//‘* 2"5?/30 [E__?;Z—77r- /Zé} 427

and integrating yields

//+ »5/—4" (Z //ji’" /”/

4 = (, a9t M,P/
/ /’M Py J /

so that

- —//f’”"
(24) g o) = /, / j(// ﬂz " o1 ///

n=s

17,
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' JI RESULTS AND COMPARISON WITE EXPERIMENTS

Some results end comparison with experiments are shown in Figs.
6-13. The experiments ﬁere mede in the 2" x 20" transonic wind tunnel
of the GALCIT (see Hef. 11).

Figs, 6 and 7 show the pressure distribution et the airfoil
surface, ‘Cpéritical denotes pressure at which M = 1, As would be
expected, the agreement is better in the leading half of the airfoil
and at lower Mach numbérs. There is intrinsically less error in the
theory at lower Mach numbers., Also, boundary layer effects in dis-
torting the shape of the surface are less at smaller Mach numbers end
.on the leading part of the airfoil, The effect of boundary layer
and occurrence of shock waves on the aft part of the airfoil have
been noted in schlieren photographé (see Ref. 13). The paremeters

used in the computation were

a = half chord of airfoil = 1,5" =1
R = radius of curvature of airfoil surface = 6.785 = 4,51
b = 1/2 height of tunnel = 10" = 6,67
] . . T
o= T tunnel height parasmeter = __°__ = ,471.
8. 67

It was intefesting to note that the wall interference effect was
approximately constant mlong the surface of the airfoil when com-
puted with these parsameters.

Fig. 8 makes some comparison of the wind tunnel wall effects
for this tunnel and shows especially the increasing effect at higher
M . It is noted that the interfsrence effect of an open wind

tunnel is less than that of a closed mme. Fig, 9 shows how strongly



19,

the ratio of tunnel height to model chord affects thé interference.
Fig, 10 gives some indidation of the decéy of airfoil disturbance
avae the surface., It also indieates that the supersonic region
predicted would be too smalil,

In order to get the shape of some tyoical supersonic regions
Figs. 11,'12, 13 were prepared and for simplicity wind tunnel well
effects were neglected. . To show how much the locel supersonic zme
computed differs from the supersonic flow, the distribution of
velocity on the supersonic zone at the surface was used as a starting
point and the flow field extended by the method of chsracteristics
- (See Ref. 3), The result is shown as the dotted line in-Fig. 11.
Actually, the supersonic zones in this airfoil become more asymmetric
at higher M and hence the agreement with potential theory would be
worse,

An interesting theoretical method to determine conditions with-
in the supefsonic zone would be to successively alter the surface
distribution of pressure in the supersonic zone and make the M = 1
boundary of the characteristic extension agree with that predicted
by the small perturbation theory.

The sméll perturbation theory has then yielded some interesting
results for transonic flow over airfoils, but for more information
more accurate theories are needed, It is felt that the best attacks
~in the future will be through the second ap-roximation of this theory

or through the approximate transonic equetion,
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