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ABSTRACT 

Antibody-drug conjugates (ADCs), or chimeric modalities in general, combine the 

advantages and offset the flaws of their constituent parts to achieve a broader target space 

than traditional approaches of pharmaceutical development. My project combines the 

concept of ADCs with the full atomic simulation capability of computational protein design 

to define a new class of molecular recognition agents: CDR-extended antibodies, abbreviated 

as CDRxAbs. A CDRxAb incorporates a small-molecule binding event into de novo 

designed antibody/target interactions, creating antibody small-molecule conjugates that bind 

tighter against the target of the small molecule than the small molecule itself. In a proof-of-

concept study using monomeric streptavidin/biotin pairs at either a nanomolar or 

micromolar-level affinity, nanobody-biotin conjugates were efficiently designed to exhibit 

>20-fold affinity improvement against the model protein targets, with stepwise optimization 

of binding kinetics and the overall stability. A yeast display-based workflow was 

subsequently developed to further improve the off rate of the best designed conjugate by 

another 6 folds.  By fully incorporating the chemical space of immunoglobulins into the 

optimization of small molecule binding events, the workflow explored in this work could be 

potentially used as a generalizable new method to optimize small molecule-based 

therapeutics, by exploring a previously uncharted chemical space and the related target space. 

Chapter 1 reviews background information to justify the proposed CDRxAb molecular 

construct. Chapter 2 documents the detailed computational design process that generated the 

10 conjugates, of which the characterization and discussion are elaborated in Chapter 3. 

Appendix I documents a slightly related ongoing work that uses computational design to 

improve existing antibody therapeutics.   
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1 
C h a p t e r  1  

INTRODUCTION 

Section A: the advantages and flaws of small molecules and monoclonal antibodies as 

therapeutic agents 

Most pharmaceutical mechanism of action involves a tight and specific molecular 

recognition event [1]. The binder molecule interacts with its target, most frequently a 

protein, to inhibit or activate certain biological processes that would change the course of 

disease [1].  

Pharmaceutical development primarily focuses on two types of binders: synthetic small 

molecules and monoclonal antibodies (mAbs) [1]. Small molecules further represent over 

90% of all marketed drugs, and also the great majority of molecules that have ever entered 

the drug development pipeline [2]. Attributed to their versatility and over a century of usage, 

small molecules have been developed against proteins that differ widely by function and 

localization, resulting in a rich repertoire of molecules with exciting chemical and 

biological properties. Unfortunately, only a very small number of molecules from that 

repertoire are qualified to be used in treatments. From 2000 to 2014, less than 10% of small 

molecule drug candidates that entered clinical trials were eventually approved [3], while 

clinical stage development usually has higher success rate than pre-clinical stage [4].  

Although multiple reasons beyond the level of binder-target interactions play vital roles in 

drug failure, such as unrepresentative pre-clinical models and incomprehensive 

understanding of disease pathology [5],  limitations in developing small molecule-based 

binders do appear as a bottleneck. Previous analysis indicated that most drug development 

programs were terminated due to failed identification of promising lead molecules [6], 

while intrinsic difficulties also exist to prevent small molecules from being engineered to 

bind tightly against arbitrary targets. In general, small molecule drugs conform to the “rule 

of five”, which was first described by Lipinski et al. and indicates that in order to maintain 



 

 

2 
good solubility and permeability, small molecules need to obey certain limits in size, 

lipophilicity, and the number of N and O atoms [2,7]. Taking the Lipinski rules and other 

limits into consideration, including that small molecule targets need to have concave 

binding pockets to likely establish tight interactions, Hopkins et al. estimated that a limited 

~10-14% of human proteome are suitable small molecule targets [2]. Indeed, proteins 

outside of the estimated “druggable” realm have been less tractable by small molecules, 

exemplified by the challenges of developing potent small molecule inhibitors of protein-

protein interactions (PPIs), which are generally mediated by flatter surface [8].  

The small molecule target space is also characterized by its crowdedness [9]. Gao et al. 

surveyed ~20,000 binding pockets and concluded that the corresponding structural space 

can be categorized into ~1,000 representative shapes [9]. The high similarity among small 

molecule binding sites likely contribute to the observation that small molecule drugs often 

exhibit low binding specificity and promiscuous target selectivity [10]. Although multi-

specific binders can have positive therapeutic effects through beneficial polypharmacology 

[11], low specificity has been frequently associated with safety concerns, which indeed are 

a major contributor (~17%) to clinical-stage drug failure [5,10,12]. Meanwhile, a limited 

and crowded target space may further contribute to the increasingly higher cost and lower 

success rate of drug development [13]. A survey of existing small molecule GPCR drugs 

showed that 10.3 molecules in average were approved to target an identical protein, 

suggesting a significant degree of overlap in past drug development programs [14]. 

Investing resources into similar mechanism of action may lead to the difficulty of showing 

benefits in later pharmaceuticals, the so-called “better-than-Beetles problem” [13]. In fact, 

failed demonstration of efficacy is the most frequent reason behind failed clinical trials [5].  

To counter the above-mentioned challenges, pharmaceutical development has increasingly 

focused on novel drug targets in recent years [15]. In 2019, first-in-class drugs with novel 

mechanism of action constituted 42% of new approvals, although orphan drugs that were 

developed against rare diseases made the main contribution [16]. In concordance with this 

trend, it would be fundamentally beneficial to develop more efficient ways to explore new 



 

 

3 
targets, especially through methods that allow functional binders to be more easily 

developed against challenging proteins. One related effort in small molecule drug 

development is searching unconventional or uncharted chemical space to bring in new 

functional properties. Several successful small molecule PPI inhibitors were discovered 

among candidates that were unconventionally large and rich in hydrophobic rings to gain 

structural rigidity and broader contacting area, although at a cost of suboptimal 

pharmacokinetics [17,19]. A similar trend is behind the PROTACs, which are also 

chemically novel small molecules that use bispecific interactions to recruit protease activity 

to compensate for the relatively weak and transient engagement with difficult targets [18]. 

These examples suggest that chemical space expansion is a promising way to lead to target 

space expansion, by bringing in new properties that would be more suitable for certain 

functions. This idea is also reflected in the method proposed in the next section. 

Monoclonal antibodies (mAbs) harbor unique properties that allow them to perform better 

than small molecules in many areas. Through a binding mechanism facilitated by much 

larger contacting surface, mAbs usually demonstrate superior binding specificity and 

overall better biocompatibility [10]. The different binding properties have led mAbs to be 

a more frequently chosen modality for some difficult targets, such as PPIs [20]. Meanwhile, 

benefiting from the large size and FcRn-mediated recycling mechanism, mAbs can have a 

circulation half-life up to weeks [21]. By contrast, small molecules are often cleared from 

body within hours and require frequent dosage [22]. In addition, the spanned binding 

interface may also allow mAbs to be better active site inhibitors, through the associated 

improvement of binding specificity [23]. 

Despite the advantages and higher clinical stage success rates than small molecules in 

recent years [3], approved mAbs has minimally overlapped with small molecules in target 

space. In addition to antibodies’ intrinsic inability to target intracellular proteins, current 

mAbs and small molecules also target vastly different groups of membrane proteins 

[2,14,24]. For example, GPCRs are the biggest class of membrane proteins and a major 

type of small molecule targets (~25%) [2,14], but only two antibody drugs against GPCRs 
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have been approved [25], although GPCRs as drug targets remain popular and under-

explored [14,26]. Another major type of small molecule targets, ion channels, still does not 

have any mAb passing phase I clinical trials [25]. The discrepancies among target 

preference are largely due to the lack of similarity between how the two modalities are 

developed. For small molecules, cell-based phenotypic assays are routinely used in early 

screens [27], while for mAbs immunization is still the predominant method to identify early 

hits [28], and of course is incompatible with established phenotypic screening methods 

both by format and throughput. Therefore, whether mAbs can be reliably generated largely 

depends on whether the target protein can be produced in large quantity and remain stable 

[28,29]. As the result, currently multi-pass transmembrane proteins such as GPCRs and ion 

channels are difficult mAb targets [28-30].  

The same issue lies behind the challenge of developing site-specific antibodies, which 

frequently require the desired epitope to remain in stable and native-like conformation as 

isolated constructs [31,32]. By contrast, developing site-specific small molecules has 

benefited from the advancements of virtual screening and structure-based design in both 

hits discovery and hit-to-lead optimization stages [33-35]. Whereas for mAbs, such 

computational methods are not as robust, and practically have not outperformed 

immunization and display based approaches [36,83]. Furthermore, eliciting human mAbs 

against binding pockets seems to be difficult, also evidenced by examples of isolating very 

tight and specific antibodies that only partially block active sites of interest [23,37].  

In summary, small molecules and mAbs each have distinctive advantages and 

disadvantages, while the respective targets and development processes are in minimal 

communication. Exploring avenues of crosstalk between the two major modalities might 

lead to new mechanism of action that offers new solutions to existing challenges. This 

effort is so far best demonstrated by a chimeric modality called antibody-drug conjugates 

(ADCs). 
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Section B: antibody-drug conjugates (ADCs) and a proposed new format of molecular 

recognition agent 

ADCs combine the advantages and offset the flaws of existing small molecule and mAb 

drugs in order to achieve synergistic therapeutic effects [38]. The small molecule 

conjugation is achieved by functionalizing certain chemical groups, frequently primary 

amino or sulfohydrl moieties, of the antibody component [39]. The conjugates first bind to 

the antibody target, which is usually a cell type-specific membrane receptor, and then 

trigger receptor-induced endocytosis [38,40]. The antibody component is then digested in 

cytosol to release the conjugated small molecule, which is usually a potent toxin that does 

not discriminate cell types and has very low therapeutic index on its own [38,40]. Through 

antibody conjugation, the toxin can therefore induce cytotoxicity in a much more selective 

manner and demonstrate enhanced therapeutic benefits of drugging the corresponding 

target [38,40].  

To date, ADCs are primarily used as a controlled-release method by combining small 

molecules and mAbs that have been separately developed against different targets [38,40]. 

While in action, the direct binding activity of each component is also not affected by the 

other [40,41]. Since conjugation does not change the fundamental mechanism of action for 

the constituent parts, current ADC research largely focuses on controlling the conjugation 

sites, quantity of payloads, and release mechanism through improved linker chemistry and 

the involvement of non-canonical amino acids [42], whereas the molecular-level 

interactions among the small molecule, linker, and antibody side chains are under-explored. 

However, these interactions do appear to be associated with various pharmacologically 

relevant properties of both the small molecule and antibody components [43-48]. 

Antibodies with conjugated small molecules frequently display higher aggregation 

propensity, which can be tuned by varying linker composition and conjugation 

sites/quantity [43,44]. Su et al. from Genentech showed that antibody conjugation could 

modulate the metabolic stability of small molecules through various steric shielding effect 

surrounding conjugation sites [45]. Another Genentech group also reported that the 
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chemical composition of neighboring side chains can directly affect the reactivity of 

conjugated chemical moieties [46]. Small molecule drugs are often hydrophobic, and some 

studies enhanced water solubility of small molecules through rationally designed peptide-

drug conjugation, a concept similar to ADCs [47]. The physicochemical properties of 

conjugated small molecules in ADCs can also be altered by different linker choices [48]. 

Finally, small molecules usually demonstrate longer circulation half life upon antibody 

conjugation, as ADCs in general show antibody-like pharmacokinetics [41].  

While the above examples showed the potential of using antibody conjugation to modulate 

physicochemical behaviors of small molecules and vice versa, a recent study of designing 

ADCs to bind to an identical target explored a deeper level of cooperation between 

antibodies and small molecules [37]. Cheng et al. from Amgen used a co-crystal structure 

of a small molecule drug sitagliptin and a separately developed antibody in complex with 

the shared target protein DPP-IV to rationally design ADCs that synergistically inhibit this 

enzyme [37,49]. The antibody was isolated to bind tightly and specifically against DPP-IV, 

but only partially blocked the active site of interest, and was therefore not functionally 

sound [37,49]. Sitagliptin is a marketed DPP-IV inhibitor but has limited efficacy and 

undesired side effects [37]. The authors used molecular dynamics (MD) simulation to 

search antibody residue positions and optimal lengths of PEG linkers to connect sitagliptin 

with minimum energetic penalty [37]. The resulted conjugates showed 13 to 32-fold 

improvements in IC50 than sitagliptin itself [37]. In this work, antibody interaction is used 

to enhance the target-inhibition effect of small molecules, showing that ADC technology 

could potentially optimize the direct mechanism of action of small molecule drugs.  

Based on the promise from the above-mentioned studies, this thesis proposes that antibody 

conjugation could be used as a general methodology to modulate the binding behavior and 

other pharmacologically relevant properties of small molecule-based binders. Specifically, 

instead of combining both existing small molecules and antibodies, the proposed format of 

ADC focuses on existing small molecules only and uses structure-based protein 

engineering methods to select an appropriate antibody scaffold/sequence, whose 
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conjugation with the small molecule will create a chimeric modality that binds better 

against the small molecule target. Besides the binding behavior, other physicochemical 

properties of the conjugates should also be directly modulated by the sequence of the 

antibody component. As the result, the chemical space of antibodies can be directly brought 

into the development process of small molecule drugs. 

This new format of ADC echoes with some existing patterns of small molecule drug 

development. Crystallography is playing an increasingly important role in both hits 

discovery and hit-to-lead optimization steps, generating an abundance of co-crystal 

structures for protein targets and small molecule binders [33-35]. Structure-based hits 

discovery works by soaking protein crystals with small molecule fragments, and the 

identity of bound molecules can then be revealed by crystallography, leading to the 

isolation of binders up to low mM level affinity [33-35]. Crystallography is also involved 

in structure-based hit-to-lead optimization steps, providing co-crystal structures with µM 

to nM level small molecule binders [33-35]. By using these structures, the proposed format 

of antibody conjugation can participate in various stages of molecular discovery, starting 

from small molecules with mM, µM, and nM level affinities (Figure 1.1).  Potentially, an 

increased success rate can be attained through the resulted chemical space expansion. This 

new format of ADC may also be used to rescue failed small molecule drugs. Exploiting 

previous drug molecules has been an ongoing area of research, although mainly focusing 

on repurposing approved drugs instead of resurrecting failed small molecules [50]. Again, 

through an expanded chemical space, structure-based engineering of antibody conjugation 

may also bring drug-like properties to previous failed small molecule binders, leading to 

more efficient utilization of available molecular repertoires.  
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Section C: review of experimental and computational methods that may realize the new 

format of ADC 

Despite the projected benefits of this potential modality, the main question is whether 

existing technical capacities are enough to bring this new ADC format to reality. The 

technical obstacles are obvious. First, immunization cannot be used to isolate appropriate 

antibody sequences for conjugation, because the small molecules of interest simply do not 

exist in canonical antibody sequences. Display-based approaches are widely used for 

antibody engineering, but current ADC conjugation chemistry primarily utilizes functional 

groups that are ubiquitous among protein families [39]. As a result, no matter whether yeast 

or phage display is used to engineer the antibody component, upon small molecule 

conjugation, there will likely be significant amount of background labeling that masks the 

desired binding events. Nevertheless, very recently Islam et al. reported a non-canonical 

amino acid (NcAA) based yeast display system that allows appropriate differentiation of 

displayed conjugates/target interactions [51], indicating that NcAA based protein 

engineering workflow might be a good direction to pursue. Integration of NcAA has been 

better explored in peptide engineering, since synthetic amino acid building blocks can be 

introduced by peptide-building chemistry [52]. Gates et al. engineered ~30aa long 

“xenoproteins” with non-natural side chains in randomized regions, and used MS/MS 

sequencing to identify hit binders against targets [52]. However, peptide synthesis is 

limited by length and a typical antibody domain with >100 amino acids is a challenge for 

current technical capacity [52]. Moreover, MS/MS sequencing also requires certain 

restrictions on the length and complexity of randomized region to unambiguously report 

sequence identity [52].  

Structure-based computational design methods may offer the most appropriate solutions to 

the initial engineering of the new synergistically-binding ADC format. Computational 

protein design (CPD) works by searching the sequence and conformational space of 

polypeptides to identify 1) structures that lead to the desired functions and 2) amino acid 

sequences that support the structures, through atomic-level simulations and energy-based 



 

 

9 
scoring schemes [53,54]. The most prominent benefits of CPD would be allowing an 

enormous amount of potential sequence choices to be screened without experimental 

investment [53].  

Because engineering the new ADC format will involve creating new antibody/target 

interface, CPD methods for protein-protein interaction (PPI) would be most relevant. The 

initial successes of PPI design focused on modeling mutations in existing binding interface, 

creating mutants with altered binding specificity [55-57,63]. For antibody engineering, the 

similar approaches were used in nM to pM affinity maturation of existing antibody/target 

complexes [58]. Lippow et al. simulated single amino acid mutations in two 

antibody/target complexes, tested the single mutations that were predicted to be beneficial, 

combined the experimentally confirmed mutations, and finally obtained variants with 

respective ~10 and ~100 folds affinity improvement [58]. Based on the experience of 

interface redesign, a series of scoring criteria, including overall interaction energy score, 

hydrophobicity, shape complementarity, certain structural features, and  specific types of 

force such as ionic interactions, were proposed to aid the assessment of mutation choices 

[58-62]. Debating over which preference should be given over the metrics has been going 

on in later redesign and  de novo design works, as design protocols using similar metrics 

have succeeded and failed in different studies [64,65,70,71,77]. However, there is a more 

universal agreement over what are the energetic penalties that would jeopardize design 

success, including buried un-paired charges, solvent-inaccessible un-satisfied H-bond 

donors/acceptors, exposure of large hydrophobic groups, and cavities [65-69].  

The de novo PPI designs have largely focused on interactions facilities by ordered 

secondary structure elements [55,64,67,70,71-73]. In a pioneering study, Huang et al. 

designed monomeric GB1 protein into a heterodimer by a dock-and-design approach, 

which has become the general framework of de novo binding interface design [55]. Dock-

and-design first optimizes the binding geometry between interacting components, and then 

performs sequence optimization of the docked interface [55,64,70]. The designed GB1 

dimer only formed transient interactions, likely caused by fluctuation between 
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intramolecular and intermolecular interactions [55]. In a later study, dock-and-design 

resulted in the successful generation of a homodimer with certain protocol changes, which 

included utilizing a pre-engineered scaffold of hyper-stability and docking alanine-mutated 

surfaces [70]. Additional design successes were reported with modified docking protocols, 

mainly by including biases suggested by real-world structural evidence. Fleishmen et al. 

designed small proteins against influenza hemagglutinin at high nM/µM affinity by first 

identifying interaction hot-spots, which are sporadic residues that interact favorably with 

the target surface, and then docked candidate scaffolds (fetched from PDB) on the surface, 

with a bias to support the hot-spot residues [71]. Candidate scaffolds can also be generated 

by recombining structural fragments from PDB [68,72-74], allowing novel and realizable 

conformational space to be sampled for challenging design tasks. For example, Bale et al. 

docked recombinant scaffolds with geometric constraints, and then sequence designed the 

modeled interface to create stable and conformation specific icosahedrons [73]. Biases can 

also be introduced in the sequence design step to generate binders with interesting 

properties. Taking advantage of the structural rigidity of alpha helical bundles, Boyken et 

al. created the HBNet protocol to favor sequence choices that promote H-bond network 

formation and designed highly specific helix-helix interacting pairs, which were used to 

create interaction-based logic gates in follow-up studies [67,75]. 

Inaccuracies in energy evaluation and insufficient sampling of conformational space are 

correlated to non-ideal performances of designed proteins [55,64,71,76]. Therefore, 

directed evolution of designed protein binders has been an effective way to improve affinity 

[70,71,77]. By contrast, a recent study docked and designed recombinant scaffolds, 

expanded the screening size to 104 sequences, and isolated binders at low nM affinity, 

suggesting that experimentally testing an expanded and sequence-diversified pool of 

proteins may compensate for design inaccuracies [72]. In addition, advancements in deep 

sequencing and high throughput screening have allowed sequence-affinity landscapes to 

be measured and utilized to improve subsequent design efforts by machine-learning [78,79]. 

For instance, Jenson et al. measured the binding affinity of a designed peptide library 

against three Bcl-2 family proteins, and used the measured data to direct the design of 
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another library, from which highly specific and tight peptides were isolated against the 

individual Bcl-2 targets [78]. The above successes demonstrated that a myriad of functional 

computational methods, which incorporate real-world data and advanced understanding of 

structure-function relationship, is available for various PPI engineering problems.  

De novo antibody design is much harder than designing interactions mediated by rigid 

structural elements. Antibodies interact with targets through complementarity determining 

regions (CDRs), which are hyper-variable structured loops supported by a relatively 

conserved β-barrel framework (Figure 1.2) [80]. In mAb, three CDR loops are on each of 

the heavy and light chains [80]. Loops are much more conformationally flexible than 

helixes and sheets [36,81-83], and often adopt a dynamic ensemble of conformational 

states that deviate from the single state observed in crystal structures [81,82]. Nevertheless, 

modeling of antibody structures from sequences has been greatly facilitated by the 

identification of canonical conformations for most CDR loops [83,84,86,87]. However, the 

canonical structures of heavy chain CDR3 (CDRH3) loops have not been reliably reported 

[36,83], possibly due to their much longer length and unique interaction features [83,85]. 

Facing these challenges, de novo prediction of CDR loop structures and subsequent 

modeling of CDR/target interactions remain an ongoing area of research [36,83].  

Due to the difficulties of modeling CDR loops from scratch, successful de novo antibody 

designs reported to date usually used intact CDR conformations from existing structures 

[66,77,89]. Nevertheless, PDB harbors a vast and diverse collection of antibody/target 

structures, and therefore provides a functionally proven sequence and conformational space 

for design calculations to sample from. Nimrod et al. docked intact antibody structures 

from PDB onto IL-17A, repurposed the antibody scaffolds by modeling mutations in the 

docked interface, and constructed a designed library of ~105 diversity, from which a binder 

was isolated at 80 nM affinity against IL-17A after humanization [88]. A similar dock-and-

design approach was used by Baran et al., while the antibody scaffolds were recombined 

from segmented fragments of existing PDB structures, although native CDR loops 

remained intact in these fragments [66]. Successful designs were reported from ~103 
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screened sequences, although directed evolution was performed to bring affinity below 

100 nM [66]. A similar observation was reported by Dang et al. in designing an antibody-

mimetic binder, as directed evolution rescued a handful of non-binding designs to pM 

affinity [77]. Importantly, Baran et al. reported that sequence restrictions derived by multi-

sequence alignments, in their case PSSM score, increased the success rates of generating 

stable and functional antibodies [66]. One of the highest success rates was reported by Liu 

et al., who used hot-spot biased docking to identify binding conformations and isolated a 

~100 nM binder from 10 tested sequences [89]. In their work, hot-spot residues were 

fetched from a naturally occurring binding interface between Keap1 and Nrf2, and intact 

antibody scaffolds from PDB were docked against the Nrf2 binding surface, with a bias to 

support the hot-spot residues [89]. This high success rate is likely associated with the usage 

of naturally occurring interactions in the designed Ab/target interface [88,89], as other hot-

spot centric designs that de novo modeled the hotspot residues usually required directed 

evolution or larger screening size to achieve high affinity [71,72]. Different from designs 

that exploit existing CDR conformations, successful antibody designs by constructing 

novel CDR structures were mainly reported against disordered peptides [90,91]. For 

example, Sormanni et al. designed antibodies against α-synuclein and Aβ42 by piecing 

together small PDB fragments to build complementary paratope on a CDR loop [90]. 

Importantly, an existing antibody with insertion tolerant CDR was used as the starting 

scaffold in their study [90]. 

For this thesis and the design problem of interest, an antibody sequence should be designed 

against the target of a small molecule, so that upon conjugation with the small molecule, 

the antibody should interact with the target protein in a way to assist the small molecule 

binding event. Although this design scenario is not directly related to published design 

efforts, the successes discussed above showed that designing antibody/target interactions 

is a tractable problem. Therefore, by thorough analysis of the proposed design problem and 

careful selection of applicable design methods, constructing a functional design workflow 

should be attainable.  
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Section D: study design and summary of research outcome 

In this thesis, a proof-of-concept study was conducted to build a computational design 

workflow for the proposed new format of ADC and demonstrate the workflow on a model 

system. Specifically, monomeric streptavidin and biotin were chosen as the model target 

and small molecule. This interaction pair was chosen for the following reasons. First, 

streptavidin/biotin interactions are extensively studied with reliable co-crystal structures 

for computational design [92]. Second, throughout the past two decades, all monomeric 

versions of streptavidin showed dramatically worsened binding affinity and dissociation 

rate [93-95]. The best monomeric streptavidin reported to date, mSA, has a 105-fold 

reduction in affinity [93]. However, structural alignment showed that the binding pocket 

interactions in mSA/biotin almost overlap with WT streptavidin/biotin except for a flexible 

loop, indicating difficulties to further improve the small molecule/target interactions 

(Figure 1.3). Therefore, monomeric streptavidin and biotin are suitable as a protein and 

small molecule pair that is functionally sub-optimal and difficult to be improved by 

traditional methods. 

In this work, llama-derived single-domain antibody scaffolds (nanobodies) were chosen as 

the antibody component, for the easier computational and experimental manipulation in 

the initial method development stage (Figure 1.4) [96]. Nanobody-biotin conjugates were 

computationally designed to bind to mSA with >20-fold affinity improvement than biotin 

itself, through distinctively characterized kinetic enhancements. Designed conjugates were 

tested on protein/small-molecule pairs with nM and µM level initial affinities to 

demonstrate broad applicability. The aggregation profiles of the designed conjugates can 

also be directly improved by sequence design. Finally, a yeast-display based workflow was 

constructed to improve the designed conjugates, and a directed evolution trial successfully 

slowed the dissociation rate by another 6 folds. Overall, inspired by ADCs, this work 

defined a novel format of molecular recognition agent that brings in a previously irrelevant 

chemical space to optimize small molecule-based binders, an effort that echoes many needs 

from the pharmaceutical development process.  
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Figure 1.1 A proposed new method of optimizing small molecule-based binders. Taking 

advantage of the increased availability of high-resolution crystal structures of protein/small-molecule 

complexes in hit discovery and hit-to-lead optimization stages, antibody (Ab) scaffolds conjugating 

to small molecules in various stages of molecular discovery are proposed to be engineered in a 

structure-based manner, and the physicochemical property of the conjugated small molecules can be 

optimized by the antibody sequence. Ideally, the resulted chemical space expansion may lead to 

increased success rate of molecular discovery for pharmaceutical development.  
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Figure 1.2 A schematic representation of molecular architecture of IgG antibodies (adapted 

from Roy et al., 2017)[80]: The overall molecular composition of IgG antibodies is shown here. Each 

antibody molecule contains two heavy chains (VH, CH1, CH2, and CH3) and two light chains (VL and 

CL).  On top of the hetero-dimeric Fab fragments are the variable domains that interact with targets by 

six CDR loops L1, L2, L3, H1, H2, and H3.  
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Figure 1.3 Alignment of WT streptavidin (PDB ID 1MK5) and monomeric mSA streptavidin 

(PDB ID 4JNJ) [92,93]: One protomer of WT streptavidin is aligned globally with mSA. Cyan: 

crystal structure of mSA streptavidin. Green: crystal structure of WT streptavidin. Biotin molecules 

in two structures are shown as sticks. Residues that are within 4 Å distance from biotin in both 

structures are selected and shown as lines. Alignment of the selected residues in WT and mSA 

streptavidin returned an RMSD of 0.2 Å.  
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Figure 1.4  A schematic representation of VHH single domain antibody fragments (nanobodies) 

in comparison with full length IgG (adapted from Chromotek website) [97]. Nanobodies are 

structurally similar to the VH domain of full-length IgG, but are functionally stable as single-domain 

fragments with  comparable target-binding strength [96].  
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C h a p t e r  2  

THE COMPUTATIONAL DESIGN PROCESS OF GENERATING CO-BINDING 

NANOBODY-BIOTIN CONJUGATES 

Acknowledgement: Aiden J. Aceves wrote and executed the relevant scripts to construct 

the rotamer library and generate the raw rotamer virtual screening data. 
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Introduction 

This chapter documents the detailed design process of 10 nanobody-biotin conjugates, of 

which the experimental validation and discussion are elaborated in Chapter 3. Starting from 

two PDB-derived nanobody scaffolds, the first generation of conjugates were designed by 

a docking and filtering procedure that separately optimizes interface geometry and 

conjugation plan. Sequence optimization was then performed by a process that iteratively 

introduces limited number of mutations in variable and conserved regions of the 

immunoglobulin domain. As the result, from the two starting scaffolds, up to 13 and 19 

mutations were respectively introduced in the reported constructs. The design procedures 

described in this chapter are not restricted to the model system of monomeric 

streptavidin/biotin. Finally, exploration of various computational methods revealed 

potential key design principles, from which a general design strategy is proposed for this 

ADC-inspired chimeric modality. 

Section A: the design process of 4NBX.B-derived nanobody-biotin conjugates 

Overall design strategy 

Designing the antibody components of synergistically-binding ADCs will involve creating 

new antibody/target interface, which is challenging, largely because of the difficulty in 

predicting the global minimum conformation of antibody CDR loops against a targeted 

surface, while accurately modeling long structured loops remains a challenge in general 

[1-4]. To restrict unpredicted CDR conformations that could lead to non-binding designs, 

we decided to adopt an approach similar to the anchored-design methods [5]. Anchored-

design creates new protein-protein interface by first identifying hotspot residues that 

favorably interact with the target, then designing protein scaffolds to stabilize the anchoring 

hotspots [5-7]. For synergistically-binding ADCs, the conjugated small molecule can be 

viewed as a hotspot “residue” that interacts with the target protein. Therefore, to create co-

targeting ADCs, the drug can be designed as an anchoring non-natural CDR residue that is 

strengthened by additional CDR-target interactions, integrating the drug-target interaction 
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into the antibody-target binding event, and forcing the CDRs to more likely adopt the 

designed conformation (Figure 2.1). 

We therefore finalized the design strategy into the following steps: predicting the optimal 

CDR binding poses against the target surface, and searching for the ideal conjugation 

strategy that accommodates both the optimized CDR pose and the target-small molecule 

interaction. 

 

Searching optimal streptavidin-binding nanobody CDR conformations by docking and 

loop modeling 

Two monomeric streptavidin constructs were used as target protein during the design 

process. The initial steps were performed on a modeled streptavidin monomer with triple 

mutations S45A/T90A/D128A, which were reported to break up the WT tetramer [8]. Due 

to an instability issue described in Chapter 3, another published monomeric streptavidin 

construct mSA was used to perform later stages of design.  

The monomeric streptavidin model with triple mutations S45A/T90A/D180A was 

prepared from crystal structure of wild type core tetrameric streptavidin (PDB ID: 1MK5). 

A single subunit was extracted and standardized by an in-house computational protein 

design suite TRIAD [9]. S45A/T90A/D128A substitution was then performed by the 

TRIAD sequence-design module.  

To optimize nanobody/streptavidin binding conformations, protein-protein docking 

followed by loop modeling of nanobody CDRs was performed as the initial attempt. A 

published nanobody structure (PDB ID: 5VNW, chain C) was used as the starting 

nanobody scaffold, with all CDR residues replaced to alanine by TRIAD sequence design, 

in a hope to avoid sequence bias [10]. The nanobody scaffold was docked onto a set of 

manually selected surface residues surrounding the binding pocket of monomeric core 

streptavidin model S45A/T90A/D128A (Figure 2.2A). Docking was performed by a 
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previously developed FFT-based docking program, and top 15 CDR binding poses were 

kept [11]. CDR loop modeling of each pose was then performed to attempt optimizing 

CDR conformation against the target by the TRIAD loop modeling module. Only the top 

solution for each pose was kept, and no solution had reasonable CDR conformations that 

seemed to be beneficial for a good binding interface (Figure 2.2B). The sequence of the 

core streptavidin with the triple-alanine mutations is attached below, and the residues 

selected as docking targets are highlighted:  

EAGITGTWYNQLGSTFIVTAGADGALTGTYEAAVGNAESRYVLTGRYDSAPAT

DGSGTALGWTVAWKNNYRNAHSAATWSGQYVGGAEARINTQWLLTSGTTEA

NAWKSTLVGHATFTKVK.  

 

Searching optimal streptavidin-binding nanobody CDR conformations by docking native 

CDR sequences and conformations 

154 nanobodies that have continuous electron density with diverse target-binding CDR 

conformations were fetched from publicly available nanobody/target structures on PDB 

(please also refer to section C below). CDRs of each nanobody were subsequently 

annotated following the CDR-mapping criteria of nanobodies in a published study (Figure 

2.2C) [12], but with softer edge cutoffs so that the sampled nanobody approaching 

geometries are not too stringent. Using the annotated CDRs, each nanobody was docked 

against the binding pocket surface of the streptavidin model, and top 15 poses for each 

docking trial were kept. Initially, we still performed alanine-replacement on all CDR 

residues before docking. However, several CDR sequence design trials on a docked 

structure returned mostly small amino acids (data not shown), indicating that the 

designability might be restricted in alanine-replaced docking complexes. Therefore, we 

decided to dock the 154 nanobody structures with native CDR sequences.  
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The TRIAD surface-complementarity module was used to perform interface analysis of 

naturally occurring nanobody/target structures to report the distribution of interface 

separation distance, shape complementary, and buried interface area for future design 

reference (Figure 2.2D) [13]. 2310 docked poses were generated, and then filtered by three 

selection steps to identify most realizable binding poses (Figure 2.3). Step One selected 

poses with interface separation distance, shape complementary score, and buried interface 

area within 1 standard deviation of naturally occurring nanobody/target structures, 

returning 231 poses. Step Two then selected nanobody poses that use >80% of the residues 

that participate in the original binding interface to interact with the docking target, and 

returned 31 poses. This step aimed to identify binding poses that best recapitulate how the 

chosen nanobody scaffold engages with its original target, so the poses would resemble a 

naturally occurring binding mode. Identification of interface residues in both original PDB 

structures and docked structures was performed by a publicly available PyMOL script that 

selects interface residues by changes of solvent accessibility [14]. Lastly, Step Three 

selected poses that directly blocked the biotin binding pocket, and returned the final 7 poses 

after scaffolds with lower-than-3Å resolution were removed (Fig 2.3, 2.4). The degree of 

binding pocket blockage was reflected by calculating the change of solvent accessible area 

of the following selected residues (using PyMOL), which are a subset of the docking target 

residues that closely surround the biotin molecule (highlighted below):  

EAGITGTWYNQLGSTFIVTAGADGALTGTYEAAVGNAESRYVLTGRYDSAPAT

DGSGTALGWTVAWKNNYRNAHSAATWSGQYVGGAEARINTQWLLTSGTTEA

NAWKSTLVGHATFTKVK.  

A larger group of residues was selected in the previous docking step in order to minimize 

artificial factors that may unnaturally restrict binding pose sampling.  
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Rotamer library screening of biotin C2 maleimide side chain to determine the optimal 

conjugation plan 

Searching of energetically compatible conjugation strategy against the docked poses was 

then performed. A rotamer library of the biotin-CH2-CH2-succinimide-S-CH3 “side chain” 

was constructed by OpenBabel [15], and virtually screened against CDR amino acid 

locations of the 7 poses to find the optimal conjugation sites. In the rotamer library, the 

biotin portion remains intact, while the CH2-CH2-succinimide-S-CH3 portion is diverse 

in torsion angles. Screening was done by measuring 1.) the distance between the terminal 

carbon of the rotamer and the Cβ of respective CDR residues, 2.) steric clash between the 

rotamer and the streptavidin, 3.) steric clash between the rotamer and the nanobody, and 

4.) the angle of the rotamer terminal carbon approaching the respective attachment spot. 

Conjugation geometries that clashed with streptavidin by <1 unit, clashed with the 

nanobody by <15 units, approached the attachment spot by 100-120 degree, and were <1 

Å away from the Cβ of screened conjugation sites were kept. Measurements were 

performed only against CDR residues that are originally alanine, which is similar to 

cysteine in size and usually does not perform important structural role, as we hypothesized 

that making an alanine to cysteine mutation would less likely cause serious structural 

consequences to the nanobody. Alanine 103 on 4NBX.B was the only conjugation site that 

passed the above filters, and the rotamer that clashed least with both the streptavidin and 

nanobody was selected for further processing. To prepare the final conjugation structure, 

excess atoms were deleted, and a bond was made between the Cβ of the biotin-CH2-CH2-

succinimide-S-CH3 “side chain” to the Cα of 4NBX.B site 103. The conjugated structure 

of 4NBX.B-biotin against the S45A/T90A/D128A streptavidin was then relaxed by 

Biograf [16], with force constraints placed to maintain the biotin-streptavidin hydrogen 

bonds and torsion angles of the biotin aliphatic arm (Figure 2.5A).  

Inspecting the modeled structure reveals that 4NBX.B binds in a similar mode as in its 

original PDB structure (Figure 2.5B-C). In the model, the CDR residues interacting with 

streptavidin overlap significantly with the CDR residues that interact with the original 
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4NBX.B target. Specifically, two CDR residues Y112 and R27 participate in H-bond 

formation both in the original PDB structure and in the model. Therefore, the design goal 

of finding a binding scaffold that consists of both a naturally occurring nanobody structure 

and a naturally-resembling binding mode was achieved. 

To prepare 4NBX.B-biotin103/mSA structure, the crystal structure of mSA (PDB ID: 4JNJ) 

was aligned to the modeled triple-mutation streptavidin structure, and 4NBX.B-biotin103 

structure was relaxed by Biograf with the same force constraints (Figure 2.6) [16].  

Alignment of the final prepared models of 4NBX.B-biotin103 against mSA and 

S45A/T90A/D128A streptavidin showed a high degree of structural similarity, including 

the modeled linker connecting the nanobody and biotin components (Figure 2.6). Therefore, 

we kept the designed 4NBX.B-biotin103 construct and proceeded with sequence 

optimization against mSA as the target. 

Sequence design optimization of 4NBX.B-biotin103 

Because of the chimeric nature of the molecule being designed, high-throughput screening 

assays are not technically feasible. Therefore, the sequence design process was constructed 

to maximize the chance that a functional mutant could be identified with minimum 

experimental testing, instead of finding the best possible mutations. In accordance with this 

preference, each round of design only aimed to introduce a limited number of mutations, 

and certain restrictions on sequence choices were implemented.  

CDR sequence design was first performed on the prepared 4NBX.B-biotin103/mSAWT 

model. CDR residues were determined following the CDR-mapping criteria in a published 

study [12]. Specifically, the 4NBX.B model was first aligned with an example nanobody 

structure that follows the criteria (PDB ID: 5VNW, chain C), and then the corresponding 

CDR residues on 4NBX.B were selected. Residues 27-34 were selected as CDR1, 47-60 

were selected as CDR2, and 98-111 were selected as CDR3. Single-point mutation scan 

was performed on each CDR location with reduced sets of amino acids that were reported 
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to be frequently used in each corresponding CDR position [12]. The candidate amino 

acid choices for each position are as follows:  

Residue Position(s) Amino Acid Choices 
27 WT/N/S/T/Y 
28/51 WT/I 
29 WT/S/F 
34 WT/M 
47 WT/F/L 
48 WT/V 
49/60/98 WT/A 
50/55 WT/A/G/S/T 
52 WT/A/D/G/Q/S/T 
54 WT/G 
56 WT/I/N/S/T 
57/58 WT/T 
59 WT/N/Y 
60/111 WT/Y 
109 WT/F/H/L/Y 
30-33/53/99-102/104-108/110 WT/A/R/N/D/Q/E/G/H/I/L/K/F/P/S/T/W/Y/V 
 

Position 103 with the attached biotin “side chain” was left un-designed and the coordinates 

for all atoms were left unchanged. Rosetta force field with covalent terms was used during 

the calculations [17]. Biograf-relaxed 4NBX.B-biotin103/mSAWT structure was used as 

structural input. During the design calculations, residues that were within 10 Å from the 

site under design calculation were allowed to repack. Each rotamer optimization for the 

site under design calculation was initiated by random rotamer configurations, and then 

repacked while the Cα backbone was allowed to relax through Cartesian minimization to 

optimize the structures with different sequence choices. The sampled sequences were then 

ranked by the energy scores of the corresponding modeled structures after iterative rotamer 

repacking and backbone relaxation. The chemical attributes of the biotin103 “side chain” 

were generated by TRIAD and then used for calculating the energy scores. 10 runs with 
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different random seeds were performed for each design calculation, and averaged to 

reflect the final amino acids preference for each site that underwent single-site mutation 

calculations. Mutation choices with lower Rosetta energy unit than the WT amino acids 

were kept as designable mutations (Figure 2.7A). Designability of each site was reflected 

by the sum of Rosetta energy differences from the WT amino acid choice. As the result, 

the reported designable sites ranked by designability were as follows: 105, 109, 107, 104, 

106, 32, 108, 31, and 56. Those sites were also separately grouped into two bins. Bin 1 

contains sites that interact with the original target of 4NBX.B: sites 105, 104, 32, and 31, 

of which the order was ranked by designability. Bin 2 contains sites that do not interact 

with the original target of 4NBX.B: sites 109, 107, 106, 108, and 56. The order reported 

here was also ranked by designability.  

Combinatorial designs with different biases towards designable sites were performed in 

parallel, in order to test which design configuration would return mutations with predicted 

improvements. Combinatorial design 1 was performed on all the 9 designable sites. 

Combinatorial design 2 was performed on the designable sites in bin 1 only. Combinatorial 

design 3 was performed on the designable sites in bin 1 and bin 2, with an exception that 

for bin 2 sites, only mutation choices that are different from WT amino acid by >1 Rosetta 

energy units were used. Combinatorial design 4 was performed on the designable sites in 

bin 1 and bin 2, with an exception that for bin 2 sites, only the top-ranked mutation choice 

by energy score was used.  

Combinatorial designs were performed with the same configurations as single-site 

mutation designs that were described before, with one difference: the output sequences 

from the 10 parallel design runs were re-ranked by threading the sequences sampled in 

each run individually onto the backbone of the input structure, followed by rotamer 

repacking and backbone Cartesian minimization. The re-ranking step was introduced in 

consideration of the significantly increased size of sequence space being explored. The 

TRIAD-modeled structures and Rosetta energy scores of the top 20 sequences of the re-

ranked sequences were used to evaluate design results.  
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H-bonds were used as the criteria to confirm improved intermolecular interaction among 

the designs. Structures of the top 20 sequences for the 4 combinatorial designs were 

analyzed by PyMOL to visualize intermolecular H-bonds between mSAWT and 4NBX.B-

biotin103 variants, and also intramolecular H-bonds within 4NBX.B-biotin103 variants, 

using a publicly available PyMOL script that relies on the “find_pairs” command module 

of PyMOL [18]. The goal was to find sequences with improved overall energy score and 

new intermolecular H-bonds with mSAWT. In addition, an intramolecular H-bond profile 

comparable to 4NBX.B-biotin103 WT was also aimed to be achieved, as the imbalance 

between forming new interactions with targets and keeping the structural integrity was a 

common reason behind the failure of designing protein-protein interactions [19]. All 

combinatorial designs output sequences with improved energy scores, but only 

combinatorial design 2 output the top 20 sequences with an average number of 

intermolecular H-bond higher than that of the 4NBX.B-biotin103 WT against mSAWT 

(Figure 2.7B). The top 20 sequences in combinatorial design 2 also had the highest average 

number of intramolecular H-bonds in the nanobodies among the 4 designs. Variant v119 

was the top-ranked sequence in combinatorial design 2 by energy, and variant v149 had 

the highest number of predicted intermolecular H-bonds among the top 20 sequences 

(Table S1).  

To improve the stability of v149, we hypothesized that a suitable method would optimize 

the protein structure while preserving the designed interactions contributed by 

R31/S32/A104/R105. Therefore, we devised a sequential design workflow that creates 

stepwise local structural optimizations that compensate for the mutations built-up in 

previous steps. As the result, subsequent rounds of CDR sequence designs were performed 

on v149.  

Each round also consisted of two steps. First, single-point mutation scan was performed on 

the CDR residues using the identical setup as the first round of design. The calculation 

results were processed in the same way as the first round of design, with an exception that 

only mutation choices that were better than WT amino acid by >1 Rosetta energy units 



 

 

33 
would be kept, in order to reduce the complexity that would build up along the design 

cycles. Next, skipping the sites that were mutated in previous rounds, four combinatorial 

designs were performed on the designable sites reported by the single-point mutation scan 

calculation. Combinatorial design 1 was performed on all designable sites with the reported 

designable mutation choices. Combinatorial design 2 was performed only on the 

designable sites in bin 1. Combinatorial design 3 was performed on top 5 designable sites. 

Combinatorial design 4 was performed on 5 designable sites ranked by designability, but 

with a bias on sites in bin 1. In other words, sites in bin 2 were not used unless the number 

of sites in bin 1 was smaller than 5. All combinatorial design calculations were performed 

and processed under the same setup as the first round of design.  

The results of the sequential design calculations are elaborated below. The second round 

of design was performed using the v149 structure as input. No improvement in the number 

of intermolecular H-bond formation was observed in the outputs of all 4 combinatorial 

designs, while the number of intramolecular H-bond was minimally different. Therefore, 

combinatorial design 4, which was the design calculation that returned the biggest energy 

score improvement in its top 20 sequences, was chosen. Out of this design calculation, the 

sequence with the best energy score, v149 plus Y101L/R107F, was selected as the input 

structure for the third round of design. Combinatorial design 4 was performed with sites 

27/59/101/107/110.  

After the third round, once again no improvements in the number of intermolecular and 

intramolecular H-bonds were observed among the 4 combinatorial designs. So the 

sequence with the best energy score, v186  of combinatorial design 1 (v149 plus 

Y101L/R107F/R56T/Y106K/D108A/Y110S), was selected. Combinatorial design 1 

reported the biggest overall energy score improvement, and was performed with sites 

27/29/56/106/108/110. A further round of CDR design was performed on v186 and all 

combinatorial design results returned sequences with worse energy score than the parent 

sequence. Therefore, CDR design stopped at v186.  
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Based on experimental evidence and suggestions from MD simulations that are 

elaborated in Chapter 3, we hypothesized that only mutating CDRs was not sufficient. 

Therefore, we proceeded to design the β-barrel framework of v186. Because the framework 

sequences of nanobody are highly conserved [12], a suitable sets of amino acid choices and 

locations would be crucial for design success. Since the CDR designs were based on a 

published summary of nanobody CDR sequence diversity, we referred to the framework 

sequence used in that study for our design calculation [34]. We aligned 4NBX.B-biotin103 

v186 with chain C of 5VNW, identified framework sites where the two nanobodies differ, 

and performed a combinatorial design with the selected sites being one or the other amino 

acid choice. Site positions and sequence choices were as follows:  

Residue Position(s) Amino Acid Choices 
5 V/G 
12 A/V 
35 A/G 
37 F/Y 
40 P/A 
 

The v186 structure was used as input, and the configurations and processing of design 

calculation were the same as the combinatorial CDR sequence designs described above. 

The top-ranked sequence by energy score was v186_Fr (v186 plus A12V/F37Y) (Table 

S2). To see whether the identified framework mutation would be beneficial for all 4NBX.B 

derived conjugates, framework design with identical amino acid sites, sequence choices, 

and calculation configurations was performed using v149 (Table S3). Interestingly, no 

framework mutations were predicted to improve over the input sequence v149. 

In summary, using small-molecule/protein structure as input, 5 nanobody-biotin conjugates 

were computationally designed by evaluating against a series of energetic and structural 

features, which are used to select sequences that may realize the desired synergetic binding 

property. The conjugates are 4NBX.B-biotin103 WT, v119, v149, v186, and v186_Fr. 
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Testing whether the designed conjugates behave well in experimental setting would be 

crucial to evaluate the design quality.  

 

Section B: the design process of 2X89.A-derived nanobody-biotin conjugates 

One flaw in designing the 4NBX.B-derived conjugates was that the binding scaffold 

selection step and the sequence design step were performed on two different targets. To 

test the robustness of the design workflow, especially the reliability of the docking and 

pose optimization process, mSA was used as the input target structure to design compatible 

conjugates from scratch. 

Docking, pose filtering, rotamer screening, and binding pose generation for 2X89.A-

CCAA-biotin57 WT against mSAWT 

The 154 nanobody structures from PDB with native CDR sequences were docked against 

a manually selected set of surface residues around the biotin-binding pocket of mSA, in 

the same way as described in section A. The amino acids being docked against are 

highlighted below: 

GAEAGITGTWYNQSGSTFTVTAGADGNLTGQYENRAQGTGCQNSPYTLTGRY

NGTKLEWRVEWNNSTENCHSRTEWRGQYQGGAEARINTQWNLTYEGGSGPA

TEQGQDTFTKVK.  

Filtering procedures of the docked poses were also identical to the steps elaborated in 

section A, with an exception that the following highlighted were selected as the target for 

binding pocket blockage filter: 

GAEAGITGTWYNQSGSTFTVTAGADGNLTGQYENRAQGTGCQNSPYTLTGRYN

GTKLEWRVEWNNSTENCHSRTEWRGQYQGGAEARINTQWNLTYEGGSGPATE

QGQDTFTKVK.  
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6 poses that respectively used nanobody scaffolds 2X89.A, 3EBA.A, 4LHQ.B, 4OCL.C, 

3V0A.C, and 4P2C.G passed the filter series. Visual inspection of the poses revealed that 

the 4OCL.C and 3V0A.C binding poses showed significant contacts that are mediated by 

nanobody residues outside of the CDRs, so the corresponding two poses were discarded 

since these binding modes were potentially unrealistic. As the result, 4 final binding poses 

were kept for conjugation plan optimization (Figure 2.8A). 

The biotin-CH2-CH2-succinimide-S-CH3 rotamer library built in section A was used again 

for rotamer screening. Because the design process of the 4NBX.B-derived conjugates 

demonstrated that our design capability allowed structural stability of the conjugates to be 

designed after binding interactions were established, this time we did not put much 

emphasis on preserving structural integrity in the early stage of design. Therefore, instead 

of screening only against alanine CDR residues, all CDR residues were screened by 

measuring 1.) the distance between the terminal carbon of the rotamer and the Cβ of 

respective CDR residues, 2.) steric clash between the rotamer and the streptavidin, 3.) steric 

clash between the rotamer and both proteins, and 4.) the angle of the rotamer terminal 

carbon approaching the respective attachment spot. Conjugation geometries that clashed 

with streptavidin by <0.5 unit, clashed with both proteins by <10 units, approached the 

attachment spot by 100-120 degree, and were <2 Å away from the Cβ of screened 

conjugation sites were kept. Only one rotamer that was screened against I57 of 2X89.A 

passed the filter. The final conjugation structure was prepared by Biograf, under the same 

parameters as described in section A [16].  

In addition to the introduced cysteine, 2X89.A has a solvent accessible disulfide bond that 

may result in multi-conjugation. To remove the intra-CDR disulfide bond in the Biograf-

relaxed structure, C33A/C104A mutations were introduced by TRIAD sequence design 

module to create the finalized 2X89.A-CCAA-biotin57/mSA model for further sequence 

design optimization (Figure 2.8B). 
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Sequence design optimization of 2X89.A-CCAA-biotin57 

Summarizing the experience from designing the 4NBX.B-biotin103 conjugates, we gained 

the following insights into the sequence design principles of the conjugates: 

1.) Performing sequential rounds of design on limited sets of amino acid sites/choices, 

which are recommended by iterative energetic and structural analysis, allows functionally 

improved mutant conjugates to be discovered without experimentally screening a large set 

of sequences. 

2.) New intermolecular interactions between the nanobody scaffold and the target can be 

engineered first before further mutations are introduced to optimize the structural integrity 

of the conjugates. 

3.) Simply mutating CDR residues is not sufficient for structural optimization of the 

conjugates, and mutated CDR residues likely need accommodation by introducing 

mutations in the β-barrel framework region.  

Based on the above principles, we established a rudimentary sequence design pipeline, with 

a primary goal to optimize the overall stability. The detailed procedures are described 

below (Figure 2.9): 

1.) The pipeline performs sequential rounds of sequence design that is either restricted on 

CDR residues or framework residues. The first round of design is performed on CDR 

residues. Residues that are mutated in previous rounds are kept from mutation in further 

rounds.  

2.) H-bonds are still the only intermolecular interactions that are explicitly evaluated after 

design calculations and biased towards for sequence selection, but other types of 

interactions can be evaluated if they are deemed to be crucial for specific scenarios.  
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3.) CDR sequence design follows the procedures of designing the CDR loops of v149, 

as described in section A, with one exception: besides the four combinatorial designs, it is 

optional that two additional combinatorial designs can be performed in parallel, 

respectively on all identified sites and amino acid choices in bin 2, and on the top 5 

designable sites with a bias on sites in bin 2. All combinatorial designs are evaluated 

together as described in section A. 

4.) Framework design follows the procedures of designing the framework of v186, as 

described in section A.  

5.) To evaluate the design results of CDR design, the following steps are used: 

Sequences that showed worse energy score than the immediate parent sequence are 

discarded. Sequences with the number of intermolecular H-bonds lower than the immediate 

parent sequence are discarded. If no sequences survived the above two filters, perform 

framework design on the immediate parent sequence. For sequences pass the filters, the 

sequence that has the highest number of intermolecular H-bonds and the best energy score 

among sequences that share the same number of intermolecular H-bonds is kept as input 

for the next round of CDR design. 

6.) To evaluate the design results of framework design, the following steps are used: 

Sequences that showed worse energy score than the immediate parent sequence are 

discarded. Sequences with the number of intermolecular H-bonds lower than the immediate 

parent sequence are discarded. Sequences with the number of nanobody intramolecular H-

bonds lower than the immediate parent by >1 are discarded. If no sequences survived the 

above three filters, the design fails. For sequences pass the filters, the sequence that has the 

highest energy score is kept as input for the next round of CDR design.  

Following the pipeline, 7 rounds of sequence designs were performed in total. The 

originally designed conjugate 2X89.A-CCAA-Biotin57 and the outputs after rounds 3, 5, 

6, and 7, which are variants v37, v42, v20, and v5, were selected for experimental testing.  
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Section C: nanobody sequences that are used in this study for docking and binding 

pose selection 

Note: Sequences are represented by [PDB ID].[chain name] 

1BZQ.K, 1JTT.A, 1KXQ.E, 1OP9.A, 1ZVH.A, 1ZVY.A, 2X89.A, 3EBA.A, 3JBC.7, 

3JBE.7, 3JBF.7, 4GRW.E, 4I0C.C, 4W6W.B, 5BOP.A, 5C2U.B, 5FOJ.A, 5M13.B, 

5TJW.K, 2XT1.B, 3K74.B, 3SN6.N, 4C57.C, 4EIZ.C, 4FHB.D, 4GRW.F, 4HEM.E, 

4KML.B, 4LGP.B, 4N9O.B, 4NBY.B, 4NBZ.B, 4TVS.b, 5C3L.D, 5F1K.C, 5F1O.B, 

5H8O.A, 5IMK.B, 5J57.B, 5JA8.B, 5JMO.C, 5KU2.7, 5LHN.B, 5NBD.C, 5O03.C, 

5USF.C, 5UZ7.N, 5VXL.B, 5VXM.B, 4Z9K.B, 5IVN.A, 3QXT.A, 4DK3.A, 4GFT.B, 

4KRL.B, 4LHQ.B, 4N1H.B, 4S10.A, 5OJM.K, 5UKB.a, 5VXK.B, 1I3U.A, 1RJC.A, 

4GRW.H, 4IOS.D, 4OCL.C, 5BOZ.G, 5JDS.B, 5M2M.D, 1KXV.C, 1QD0, 1RI8.A, 

1ZV5.A, 3JBD.7, 3K3Q.A, 3QXV.A, 3RJQ.B, 3STB.A, 4AQ1.B, 4CDG.C, 4I13.B, 

4QO1.A, 4W6X.B, 4WEM.B, 4XT1.C, 5E0Q.A, 5G5R.B, 5GXB.B, 5LHR.B, 5LWF.C, 

5O8F.K, 5OCL.B, 4C58.B, 2XXM.B, 3JBG.7, 4X7F.C, 5F21.B, 5F7K.C, 5HVG.B, 

4LHJ.B, 4M3K.B, 5HVF.B, 5MJE.B, 1G6V.K, 2X6M.A, 3K1K.C, 3V0A.C, 4U3X.A, 

5E5M.B, 5HGG.S, 5HM1.A, 5J56.B, 5JA9.A, 5MWN.N, 5O2U.B, 5OVW.G, 5TOK.D, 

1KXT.B, 3CFI.C, 3K81.A, 4EIG.B, 4HEP.G, 4LGR.B, 4MQS.B, 4NBX.B, 4NC2.B, 

4P2C.G, 4W6Y.B, 4YGA.B, 5DFZ.E, 5IP4.A, 5J1S.C, 5JQH.C, 5KTZ.7, 5KU0.7, 

5KWL.7, 5L21.B, 5MY6.B, 5O02.C, 5O04.E, 5O0W.E, 5OCL.A, 5OMN.C, 5TOJ.D, 

5UK4.a, 5VXJ.B, 4X7C.C, 3EZJ.B, 5F7L.B, 5M30.D, 5M94.B, 3P0G.B, 4LDE.B, 

2BSE.D 
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Figure 2.1 The schematic representation of the envisioned workflow: Given the 

availability of a small molecule and its target, the sequence of a complementary 

immunoglobulin domain and a conjugation plan with the small molecule are 

computationally determined to create conjugates that synergistically bind to the target.  
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Figure 2.2 CDR conformational sampling by loop modeling and by adapting from 

naturally occurring structures: (A) One streptavidin protomer is shown with residues 

selected for docking colored red. The biotin molecule is shown as sticks. (B) Loop 

modeling on docked nanobody binding poses failed to return reasonable loop 

configurations. Streptavidin S45A/T90A/D180A is colored green, and nanobody scaffold 

is colored cyan. (C) Whole structural alignment of 154 curated PDB nanobody scaffolds 

with diverse CDR conformations and sequences. Red: CDR1. Yellow: CDR2. Blue: CDR3. 

(D) Interface statistics of naturally occurring nanobody-target complexes. Error bars 

represent standard deviations.  
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Figure 2.3 Selecting docked poses against streptavidin S45A/T90A/D180A by three 

filtering steps to identify potentially realizable binding poses: The first step selected 

poses with interface separation distance, shape complementarity, and buried surface area 

within 1 standard deviation of analyzed naturally occurring nanobody/target complexes. 

The second step selected poses that used >80% of interface-participating residues in the 

original PDB structure against the docked target. A CDF graph is shown here for reference. 

The third step than selected poses with lower than 600 square-angstrom of solvent exposed 

area for a limited set of residues surrounding the biotin binding site, followed by removing 

two poses with lower than 3-angstrom resolution. A CDF graph is shown here for reference. 
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Figure 2.4 The final seven poses that passed the filtering steps: Cyan: nanobody 

scaffolds. Green: streptavidin protomer modeled with S45A/T90A/D180A  triple 

mutations. The biotin molecules are shown as sticks. 
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Figure 2.5 The final prepared 4NBX.B-biotin103 structure in complex with the target 

protein recapitulates the original 4NBX.B binding mode: (A) Prepared structure of 

4NBX.B-biotin103 in complex to streptavidin S45A/T90A/D180A. Streptavidin 

S45A/T90A/D180A is colored green, and nanobody scaffold is colored cyan. Biotin103 

sidechain is shown as sticks. (B) The overlap of CDR residues that participate in interface 

formation in the original 4NBX PDB structure and the final modeled structure against the 

streptavidin target. (C) The H-bond forming potential of Y112 and R27 in 4NBX.B 

nanobody was predicted to be recapitulated in the designed binding pose with the 

streptavidin model. Streptavidin S45A/T90A/D180A is colored green, and nanobody 

scaffold is colored cyan. Y112 and R27 together with their predicted H-bond partners are 

shown as sticks.  
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Figure 2.6 Alignment results for prepared structures of 4NBX.B-biotin103 in complex 

with streptavidin S45A/T90A/D180A and mSA: Streptavidin models are colored green, 

and nanobody scaffolds are colored cyan. Residues that were identified by sequence 

alignment as pair-wise identical sequences are colored red. Biotin103 side chains from both 

models are shown as sticks.  
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Figure 2.7 Summary of first round of sequence design calculation of 4NBX.B-

biotin103: (A) Site-saturation analysis results. Sites with mutations predicted to be more 

favorable in overall Rosetta energy score were reported and grouped in two bins, as a 

reference for combinatorial sequence design calculation. (B) Analysis of the top 20 output 

sequences from four combinatorial designs using sequence choices reported in A. 

Differences in overall energy score, number of intermolecular H-bond, and number of 

intramolecular H-bond compared to the WT sequence were reported as average and 

standard deviation. 
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Figure 2.8 Pose identification and conjugate structure optimization of 2X89.A-

CCAA-biotin57 against mSA: (A) Finalized nanobody scaffolds and binding poses 

against mSA streptavidin. Cyan: nanobody scaffolds. Green: mSA streptavidin. Biotin 

molecules are shown as sticks. (B) Designed binding model and conjugation scheme of 

2X89.A- CCAA-biotin57 against mSA streptavidin surface. Biotin57 sidechain is shown 

as sticks. 
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Figure 2.9 A rudimentary sequence design pipeline that performs CDR and 

framework design in a step wise manner. 

 

 

 

 



 

 

49 
Table S1: Top 20 sequence outputs from CDR design of site 31, 32, 104, and 105 on 

4NBX.B-biotin103 WT. (Ranked by energy score) 

Ranking 
Energy 
Score Note Mutations: chain name and accepted residue 

1 -457.59 v119 B_31H+B_32A+B_104S+B_105H 
2 -456.83   B_31N+B_32S+B_104S+B_105S 
3 -456.57   B_31N+B_32S+B_104S+B_105A 
4 -456.56   B_31R+B_32A+B_104D+B_105R 
5 -456.50   B_31R+B_32A+B_104S+B_105Y 
6 -456.44   B_31N+B_32A+B_104S+B_105S 
7 -456.26   B_31Q+B_32A+B_104S+B_105Y 
8 -456.13   B_31H+B_32S+B_104S+B_105V 
9 -456.11   B_31N+B_32A+B_104S+B_105R 

10 -455.81   B_31N+B_32A+B_104S+B_105A 
11 -455.77   B_31N+B_32S+B_104S+B_105D 
12 -455.67   B_31R+B_32A+B_104D+B_105H 
13 -455.60   B_31Q+B_32A+B_104A+B_105R 
14 -455.27   B_31R+B_104S+B_105H 
15 -455.13   B_31H+B_32S+B_104D+B_105S 
16 -455.10   B_31N+B_32S+B_104A+B_105S 
17 -455.06 v149 B_31R+B_32S+B_104A+B_105R 
18 -454.98   B_31R+B_32S+B_104S+B_105Y 
19 -454.94   B_31K+B_32S+B_104A+B_105A 
20 -454.91   B_31Q+B_32S+B_104A+B_105A 

 
Note: chain B refers to the nanobody 
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Table S2: Top 20 sequence outputs from framework design on 4NBX.B-biotin103 

v186. (Ranked by energy score) 

 

Ranking 
Energy 
Score Note Mutations: chain name and accepted residue 

1 -500.87 v186_Fr B_12V+B_37Y 
2 -500.36   B_37Y+B_40A 
3 -500.24   B_5Q+B_12V+B_37Y 
4 -500.11   B_12V+B_35G+B_37Y 
5 -499.98   B_12V+B_37Y+B_40A 
6 -499.91   B_12V 
7 -499.23   B_12V+B_35G 
8 -499.15   B_5Q+B_12V+B_35G+B_37Y 
9 -499.02   B_12V+B_35G+B_37Y+B_40A 

10 -498.98   B_5Q+B_12V+B_35G+B_37Y+B_40A 
11 -498.79   B_37Y 
12 -498.64   B_12V+B_35G+B_40A 
13 -498.55   B_35G+B_37Y 
14 -498.54   B_12V+B_40A 
15 -498.48   B_5Q+B_12V+B_40A 
16 -498.31   B_5Q+B_37Y 
17 -498.04   WT 
18 -497.76   B_5Q+B_12V 
19 -497.68   B_5Q 
20 -497.60   B_5Q+B_35G+B_37Y 

 
Note: chain B refers to the nanobody 
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Table S3: Top 20 sequence outputs from framework design on 4NBX.B-biotin103 

v149. (Ranked by energy score) 

Ranking Energy Score Note Mutations: chain name and accepted 
residue 

1 -482.29   WT 
2 -481.68   B_37Y 
3 -481.66   B_5Q+B_12V 
4 -481.65 A12V/F37Y B_12V+B_37Y 
5 -481.52   B_12V+B_35G 
6 -481.51   B_5Q 
7 -481.48   B_35G 
8 -481.39   B_35G+B_37Y 
9 -481.33   B_5Q+B_37Y 

10 -481.14   B_40A 
11 -481.13   B_12V 
12 -480.84   B_35G+B_40A 
13 -480.83   B_12V+B_37Y+B_40A 
14 -480.51   B_5Q+B_35G+B_37Y 
15 -480.44   B_5Q+B_12V+B_40A 
16 -480.43   B_12V+B_35G+B_37Y 
17 -480.30   B_5Q+B_12V+B_37Y+B_40A 
18 -480.19   B_5Q+B_12V+B_35G+B_40A 
19 -480.17   B_5Q+B_35G+B_40A 
20 -480.17   B_12V+B_35G+B_37Y+B_40A 

 
Note: chain B refers to the nanobody 
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C h a p t e r  3  

EXPERIMENTAL VALIDATION, EVOLUTION, AND DISCUSSION OF 
DESIGNED NANOBODY-BIOTIN CONJUGATES 
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Introduction 

Most pharmaceutical mechanisms involve drug-target interactions that are mediated by 

synthetic small molecules or monoclonal antibodies—the two major drug modalities [1,2]. 

Despite impressive successes, many biological pathways are still difficult or even 

impossible to pharmaceutically intervene, often because through existing approaches either 

the desired interactions are fundamentally difficult to engineer, or the pharmacological 

trade-offs for establishing the interactions outweigh potential benefits [3-6]. Therefore, 

new modalities that incorporate new chemistry and new biology are constantly being 

created to realize a versatile toolkit that more easily tackles certain challenging targets, and 

also expands the targetable molecular space itself [7]. To create new modalities, one 

common way is combining existing modalities to consolidate individual advantages and 

offset individual flaws [7,8]. Antibody-drug conjugates (ADCs), for example, take 

advantage of the excellent specificity and biological compatibility of monoclonal 

antibodies to improve therapeutic indices of existing small-molecule drugs [8,9]. 

Traditionally, the antibody and drug components of ADCs are separately developed and 

bind to different targets while in action [8,9]. Most current ADCs improve the selectivity 

of conjugated drugs as they deliver the small molecules into cell targets through specific 

antibody-induced receptor endocytosis [9,10]. Some ADCs and peptide-drug conjugates 

were also reported to improve the metabolic stability, circulation half-life, and solubility 

of linked small molecules through antibody-associated pharmacokinetics, chemical 

environment around the conjugation sites, and linker design, indicating that protein 

conjugation could modulate a wide range of small-molecule properties [10-14]. Recently, 

Cheng et al. from Amgen developed ADCs whose antibody and drug components bind to 

an identical protein target to achieve synergistic binding/inhibition effects [15]. In their 

study, the co-crystal structure of a small molecule drug sitagliptin, a separately developed 

antibody 11A19, and the protein target DPP-IV was solved first [16]. Based on the structure, 

optimal conjugation sites and linker sequences were then searched to create ADCs that 

exhibited 13 to 32-fold IC50 improvement than sitagliptin alone against the target [15]. 

Cheng et al.’s work suggested that small molecule binding events could be directly 
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optimized by conjugated antibodies, turning ADC technology into a potential tool to 

expand the chemical space and therefore target space of molecular recognition agents that 

involve synthetic small molecules.  

Overall, the above discoveries demonstrated the potential for using rationally designed 

antibody conjugation to optimize the mechanism of action, along with many other 

pharmacologically relevant properties, of small molecule-based binders. However, to 

engineer the binding synergy required for this kind of applications, established methods 

that separately develop and characterize the antibody and small molecule components 

would be resource intensive, thus limiting the application scenarios. To realize the above-

mentioned potential, a workflow that can rapidly determine a compatible antibody 

sequence and conjugation strategy for a to-be-improved small molecule binding event 

would be ideal. However, whether such workflow is technically achievable is still a 

question. 

In this study, we explored the feasibility of computationally designing the antibody 

component of synergistically-binding ADCs. We introduced the concept of CDR-extended 

antibodies (CDRxAbs), which refer to computationally-designed antibodies whose 

complementarity-determining regions (CDRs) contain a small molecule ligand that binds 

to a certain target, with surrounding CDR sequences tailored to strengthen the target-

binding interactions. At this initial stage, we focused our design on nanobodies, which are 

llama-derived single-domain antibody fragments that can function by themselves, with 

attached Fc domains, or reformatted into IgGs [17-19] Using a modified streptavidin-biotin 

interaction pair as model system, we demonstrated that with only the structural knowledge 

of small-molecule/target interactions, nanobody small-molecule conjugates can be 

computationally designed to bind tighter against the target than the small molecule itself. 

Through subsequent sequence design, the affinity, binding kinetics, and overall stability of 

the conjugates can be improved in a stepwise manner. ≥ 20-fold affinity improvements 

together with targeted kinetic-tuning can be achieved when the starting small-

molecule/target affinity is as weak as 1 µM, or as strong as 7 nM. Finally, a yeast display-
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based workflow was constructed and tested on a designed conjugate, which was 

successfully displayed with good expression and a target-binding signal minimally affected 

by background labeling. A trial directed evolution experiment was then performed to 

isolate a variant with another 6-fold improvement in dissociation rate, confirming the 

effectiveness of this platform. 

Results and Discussion 

Computationally designed nanobody small-molecule conjugation creates tighter binders 

against the small-molecule target protein 

We first asked whether computationally determined nanobody sequences and their 

designed conjugation to a small molecule can exhibit an enhanced binding affinity to the 

small-molecule target. For demonstration purpose, we chose monomeric streptavidin as 

our model target and biotin as our model small molecule. Streptavidin-biotin interactions 

have been extensively studied with high-resolution crystal structures available for reliable 

design. Tetrameric streptavidin binds to biotin with almost the highest-possible affinity, 

but multiple monomeric streptavidin constructs were reported with >105-fold reduced 

biotin-binding affinity [27,28]. So as a model system, monomeric streptavidin-biotin 

interaction pairs not only provide room for affinity improvement, but also have a known 

affinity upper limit, and are thus ideal for method development. 

Design calculations were performed to first identify compatible nanobody scaffolds with 

CDR conformations that likely form favorable interactions with the target surface. To 

search the optimal CDR binding conformations, we first docked a starting nanobody 

scaffold onto a monomeric core-streptavidin structure with computationally modeled side 

chain replacements S45A/T90A/D180A, which were reported to monomerize streptavidin 

and reduce the biotin-binding affinity to 1.7 µM [27], and then performed loop-modeling 

on docked poses to attempt optimizing CDR conformations against the target surface. Most 

of the top loop modeling solutions were not representative of naturally occurring 

interactions. To sample realistic CDR structures, we instead only searched around 
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previously observed nanobody CDR binding conformations [29]. We curated nanobody 

structures with diverse target-binding CDR conformations from PDB, and individually 

docked them onto the target surface. 2310 docked poses were generated and filtered to 

potentially identify most realizable binding conformations, returning 7 final binding poses. 

Optimal conjugation strategy was then searched on the finalized poses. We chose to 

conjugate biotin onto nanobody CDRs by the cysteine-maleimide chemistry, which is a 

commonly used conjugation method in ADCs (Figure S1) [30]. Biotin C2 maleimide was 

chosen to be the conjugation reagent. Optimal nanobody scaffolds and conjugation sites 

were determined by computationally screening a rotamer library of the cysteine-conjugated 

side chain on the finalized nanobody-streptavidin poses. The top-ranked conjugation plan 

was amino acid site 103 of the nanobody scaffold 4NBX.B (chain B of PDB structure 

4NBX), which originally binds to a target unrelated to any streptavidin construct [31]. 

From the relaxed structure of the conjugate named as “4NBX.B-biotin103” in complex 

with monomeric streptavidin, Y112 and R27 of 4NBX.B are predicted to form hydrogen 

bonds with the target surface, whereas in the original PDB structure, these two residues 

also participated in H-bond formation, indicating that the designed pose is closely related 

to the natural binding mode of 4NBX.B, and potentially stabilized by specific CDR-target 

interactions upon biotin anchoring.  

We then synthesized 4NBX.B with site 103 mutated to cysteine, and performed 

conjugation with biotin C2 maleimide. We attempted to purify and refold the 

S45A/T90A/D128A mutant of core-streptavidin to perform binding measurement, but the 

resulted construct was unstable, as most proteins precipitated during refolding, and the 

refolded materials also quickly precipitated. Therefore, we aligned another previously-

reported monomeric streptavidin construct, mSA, onto the triple-mutation streptavidin 

model that mSA is homologous to (sequence pairwise identity: 57%, structure RMSD: 

0.5Å), and relaxed 4NBX.B-biotin103 against mSA [28]. The 4NBX.B-biotin103/mSA 

model preserved the rotamer configuration of conjugated biotin against the triple-mutation 

streptavidin, and H bonds contributed by Y112 and R27 were also recapitulated, and 

potentially participated in a broader predicted H-bond network that incorporated 
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biotin/mSA interactions, suggesting that 4NBX.B-C103biotin may bind to mSA with the 

designed beneficial synergy (Figure 3.1B-C). Indeed, surface plasmon resonance (SPR) 

binding experiments (Figure 3.1A) confirmed that under 25℃ 4NBX.B-biotin103 binds to 

immobilized mSA with a KD of 1.8±0.1 nM, and mSA binds to immobilized biotin with a 

KD of 7.0±0.1 nM, indicating a moderate 4-fold affinity improvement that is contributed 

by a higher ka (Figure 3.1D-E, 3.7A). Wildtype 4NBX.B did not show binding signal to 

mSA at concentrations up to 100 nM, indicating that the 4NBX.B-biotin103 conjugate 

binds to the targeted biotin binding pocket (Figure 1E left panel). The SPR-measured 

biotin/mSA affinity is similar to previously published fluorescence polarization 

spectroscopy data, which is 2.8±0.5 nM under 4℃ and 5.5±0.2 nM under 37℃ [28]. 

However, because the data fitting quality of the mSA/biotin binding curves is lower than 

the 4NBX.B-biotin103 binding curves, to confirm the estimated mSA/biotin affinity, we 

performed an alternative estimation by binding immobilized mSA to Smt3 SUMO protein 

that was biotinylated at the N terminus by biotin C2 maleimide. Smt3 SUMO protein has 

an unstructured N-terminus that we hypothesized would minimize the interaction between 

the protein components [32]. A similar KD is estimated with high data-fitting quality, 

indicating that the measured biotin/mSA affinity is an accurate SPR estimation (Figure 

3.1D right panel).  

To know whether computationally designed nanobody conjugation shows improved 

affinity with weakly-binding small molecules, we created a single mutation S27A on mSA, 

whose counterpart S45A in wild type streptavidin reduces biotin-binding strength and was 

predicted by molecular dynamics (MD) simulation to minimally affect the overall structure 

[33]. On size-exclusion chromatography (SEC), mSAS27A is eluted at the same time as 

mSAWT (Figure S3A). SPR estimated that mSAS27A binds to biotin with a KD of 1.14±0.02 

µM, while 4NBX.B-biotin103 binds to mSAS27A with a KD of 245±41 nM, indicating a 

similarly moderate 5-fold improvement (Figure 3.1F, 3.7B). Together, the above results 

showed that based on the sole structural information of a small molecule-target interaction, 

nanobody conjugation to the small molecule can be designed entirely by computational 

methods to exhibit an affinity-enhancing synergistic binding effect.  
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Sequence design further improves the binding affinity and kinetics for computationally 

designed conjugates 

Next, we performed sequence design on the CDR loops of 4NBX.B-biotin103 to improve 

its binding affinity against mSA and further validate the accuracy of the modeled binding 

pose. We in silico analyzed each CDR amino acid site for its favorability of accepting 

mutations, and performed combinatorial designs on the mutable sites. Four combinations 

with different site-selection biases were tested in parallel, and the residue choices for each 

site were decided according to a published study on the sequence diversity of nanobody 

CDR loops [34]. Analysis of design outputs revealed that the design with sites 31, 32, 104, 

and 105 most frequently returned sequences that were likely to form additional H-bonds 

with mSA and were also energetically stable. The top-ranked variant by energy, v119 with 

CDR1 mutations M31H/D32A and CDR3 mutations N104S/W105H, was predicted to 

form new H-bonds with residue Q108 of mSA by H31 and with E105 of mSA by H105 

(Figure 3.2A). The D32A mutation also eliminates a buried and unpaired charged residue 

that does not participate in extensive H-bond network formation. SPR measured the KD of 

4NBX.B-biotin103 v119 against mSAWT to be 0.9±0.2 nM, indicating a ~2-fold 

improvement from 4NBX.B-biotin103 WT (Figure 3.2A, 3.7A). However, the KD 

improvement was again mainly contributed by ka increase, while the observed kd values 

were only minimally different (Figure 3.2A, 3.7A). To obtain a variant that would more 

significantly reduce the kd, we picked variant v149 that has the highest number of predicted 

H-bond formation from the top 20 output sequences. 4NBX.B-biotin103 v149 has 

mutations M31R/D32S/N104A/W105R that were predicted to form more extensive H-

bonds with Y96, E105, and Q108 of mSA, with a potential salt bridge between the 

nanobody R105 and mSA E105 (Figure 3.2B). Interestingly, R-E interactions seemed to 

be frequently used by nanobodies, further validating this designed interaction [35]. Indeed, 

compared to v119, SPR measured a ~2-fold slower kd and a ~4-fold faster ka for v149, 

which together contribute to the KD of 0.12±0.01 nM, indicating a >20-fold KD 

improvement from biotin/mSAWT affinity (Figure 3.2B, 3.7A). However, according to SEC 
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traces, v149 seemed to be very prone to aggregation, indicating protein instability 

(Figure 3.3A).  

Sequence design reduces aggregation while preserving the binding strength for the 

designed conjugates 

One SEC, both 4NBX.B-biotin 103 WT and v119 showed single peaks eluted roughly at 

the same time as wild type 4NBX.B nanobody, indicating stabilized monomer foldedness 

(Figure 3.3A). The reduced monomer stability of v149 agrees with its predicted lower 

energy score than v119. Since only four residues were designed, to improve the stability 

of v149, we hypothesized that further CDR designs would better accommodate the 

biotin103 side chain and the four H-bond contributing mutations, thus stabilizing the loop 

and overall structure. We therefore performed two additional rounds of CDR residue 

mutability analysis followed by in-parallel combinatorial designs on v149 until no further 

CDR mutations were predicted to be energetically favorable. Mutations accumulated in 

previous rounds of design were kept intact in subsequent rounds. In top 20 sequences 

ranked by energy score of both rounds of design, no additional H-bond was predicted to 

form with mSA, so the sequences with the best energy improvement were selected. The 

resulted variant, v186, has 6 additional CDR mutations Y101L/R107F 

/R56T/Y106K/D108A/Y110S on top of v149, and was predicted to preserve the H-bonds 

contributed by v149 mutations. Indeed, v186 seemed to bind to mSAWT with very similar 

KD as v149 (Figure S5). However, SEC traces of v186 showed even worse aggregates 

formation than v149 (Figure 3.3A).  

MD simulations have been successfully applied to reveal the source of unexpected 

functional properties in designed proteins [36]. To understand the flaws of the structure 

and inform next design strategy, we perform MD simulation of 4NBX.B-biotin103 v186 

in complex with mSAWT. From the simulation, we noticed that the CDR3 loop that 

originally folded over the β-barrel framework region became gradually widened from the 

initial conformation, and eventually protruded away from the framework (Figure S2). The 

apparently destabilized loop-framework geometry suggests that the framework sequence 
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is not fully compatible with the mutated CDR sequences, and needs to be optimized. We 

therefore performed framework sequence design on v186, and the top-ranked variant 

v186_Fr was predicted to form additional H-bonds with CDR3 residues through the F37Y 

mutation (Figure 3.3C, Top). In addition, the A12V mutation also apparently increases the 

hydrophobic shielding of the β-barrel core (Figure 3.3C, Bottom). Interestingly, when the 

same framework sequence design was performed on v149, different from the v186 design, 

the A12V/F37Y mutations were predicted to be less energetically favorable than the parent 

v149, suggesting that the v186 mutations were a prerequisite for the A12V/F37Y mutations 

to be beneficial.  

4NBX.B-biotin103 v186_Fr showed significantly reduced aggregation on SEC. Collected 

fractions excluding the aggregates peak did not re-aggregate once rerun on SEC (Figure 

3.3A, S3B). SPR measured the KD of v186_Fr to be 0.20±0.03 nM, which preserved 

the >20-fold KD improvement from biotin/mSAWT (Figure 3.3B top panel, 3.7A). The 

kinetics profile of v186_Fr against mSAWT was also similar to v149 (Figure 3.3B top panel, 

3.7A). When binding to mSAS27A, v186_Fr exhibited KD to be 54±3 nM, indicating a ~20-

fold KD improvement contributed by both improved association rate and dissociate rate 

(Figure 3.3B bottom panel, 3.7B).  

To further investigate the functionally relevant structural features of v186 and v186_Fr, we 

performed additional 100 ns MD simulations of v186 and v186_Fr against mSAWT in 

triplicate. In general, during the simulations both the overall binding geometry of the 

conjugates and the conformation of the biotin103 side chain remained constant with small 

structural RMSDs (Figure S4, 3.4B first panel).  The 4NBX.B nanobody scaffold has two 

solvent-inaccessible clusters of hydrophobic residues in the framework, one being the β-

barrel core and another shielded by the CDR3 loop (Figure 3.4A). Stable solvent 

inaccessibility and packing of hydrophobic patches is usually correlated with protein 

folding stability, which is in turn related to aggregation [9,37]. For the majority of time in 

the MD simulations, the solvent-accessible area for the two hydrophobic clusters of both 

v186 and v186_Fr was distributed around similarly low values, indicating that both variants 
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should be generally foldable (Figure 3.4A). However, in contrast to v186_Fr, v186 

displayed apparent sub-populations whose hydrophobic core and CDR3-shielded 

hydrophobic residues were significantly more solvent-accessible, indicating possible 

structural instability that agrees with the expected stabilization effects of F37Y and A12V 

in v186_Fr (Figure 3.4A). Additional analysis of the v186_Fr/mSAWT interface from the 

simulations indicates high shape complementarity, large buried interface area, and close 

interface distance that remained generally constant along the timescale, in agreement with 

the measured sub-nanomolar affinity (Figure 3.4B). Overall, the design calculation, 

experimental data, and MD simulations are well-correlated with each other.  

Affinity and kinetics estimation of 4NBX.B-biotin103 WT, v119, v149, and v186_Fr were 

performed in biological triplicates. To make sure the prepared conjugates homogeneously 

harbor one biotin-maleimide “side chain” per nanobody molecule, we used intact-protein 

mass spectrometry (MS) to analyze one of the SPR-measured triplicates for each of the 

above-mentioned nanobody-biotin variants, as we reason one replicate should be 

representative given the small batch-to-batch variations in measured affinities (Figure 

3.7A-B). Deconvolution of MS spectra only returned components with molecular weights 

(MWs) within 20 Da from the expected values of mono-biotin conjugates, while each 

conjugated biotin-maleimide “side chain” would add an additional mass of 366 Da, 

indicating that all tested materials were effectively mono-conjugated with biotin C2 

maleimide (Figure S6). Subpopulations with ~+/-17 Da from the expected MWs were 

observed, and could be contributed by ring-open products of succinimides or ion adducts 

(Figure S6).  

Although the affinity and kinetics improvements are well correlated to the designed 

mutations, confirming whether the predicted interactions were accurately established 

require structural determination. Crystallization attempts using mSAWT in complex with 

v186_Fr and v119 only produced crystalline that failed to increase in size. This observation 

and the fact that the affinities of the designed conjugates in this study are predominantly 

affected by the biotin-binding affinity potentially indicate that the protein-protein 
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interactions are relatively flexible and dependent on the biotin anchoring, suggesting that 

further improvements over the protein-protein interface are possible.  

 

Constructing and testing a yeast display workflow for directed evolution 

Yeast display is a powerful tool to perform affinity maturation on antibody fragments, 

because of its eukaryotic expression system and compatibility with fluorescence-activated 

cell sorting (FACS) [20-22]. However, the traditional yeast display format is not 

compatible with the conjugates introduced in this study. First, antibodies are usually 

displayed through the Aga1p-Aga2p interaction that contains two disulfide bonds [23], 

which would be compromised by the maleimide conjugation reaction, as a TCEP reduction 

step is required to free up cysteine sulfohydrl handle [24]. Second, cysteine residues are 

ubiquitous on yeast surface and will result in a significant amount of background labeling 

[25,26], which will likely contribute to nanobody-unspecific binding signals that mask the 

binding event of interest. To solve the first problem, we employed an alternative published 

yeast display system that does not rely on disulfides to anchor onto cell surface [34]. To 

solve the background labeling problem, we chose to display our best designed conjugate 

v186_Fr, in a hope that the affinity difference would result in a high signal-to-noise ratio 

on FACS.  

4NBX.B-biotin103 v186_Fr was successfully displayed on yeast cell surface at high 

expression level (Figure 3.5). An on-cell maleimide labeling protocol was constructed to 

conjugate biotin C2 maleimide on the displayed nanobody. Taking advantage of the slow 

dissociation rate of v186_Fr, we introduced a wash step after incubating the labeled cell 

with mSA to further eliminate background binding events. As a control experiment, a 

parallel group of cells were incubated with WT streptavidin and washed in the identical 

way. Because WT streptavidin almost irreversibly binds to biotin, it would likely bind to 

all biotinylated yeast surface protein with similar strength and can therefore reveal the level 

of unspecific labeling. As expected, cells incubated with WT streptavidin showed almost 
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overlapping target-binding signal for cells with or without v186_Fr expression (Figure 

3.5A). By contrast, cells displayed with v186_Fr showed clear mSA binding signal that is 

proportional to the nanobody expression signal, while cells without expression showed 

virtually no binding signal against mSA (Figure 3.5B). This observation confirmed that 

unspecific labeling on yeast cells is significant for cysteine-maleimide reaction, but the 

designed conjugate v186_Fr binds to mSA at a strong affinity that allows the target protein 

to differentiate the conjugate from background binding partners. Therefore, an engineering 

process that first designs a conjugate and then improves it by directed evolution is a 

potential viable route.  

To test whether v186_Fr can be further improved by this yeast display platform, we 

conducted a trial directed evolution experiment by constructing an error-prone PCR library 

that samples both high and low mutation rates on the full nanobody sequence. To identify 

variants with further improved dissociate rate, four rounds of off-rate screening was 

performed on the library, and a variant with six additional mutations 

G10R/M34T/T58S/A61V/T91R/A108T, named as v186_Fr.1, was overwhelmingly 

enriched (Figure 3.6A). v186_Fr.1 was highly expressed on yeast surface, but had very low 

yield and significantly aggregated when expressed in E. Coli, indicating low stability 

(Figure 3.6B). This is surprising, since the display level of antibody fragments in yeast 

display is usually well-correlated to foldedness [20-22]. Nevertheless, after expressing a 

large quantity of v186_Fr.1, a sufficient amount of material was collected from the 

monomeric peak position on SEC to run an SPR experiment (Figure 3.6B). On SPR, 

v186_Fr.1 showed a ~6-fold slower kd than the parent, in agreement with yeast display 

result (Figure 3.6B).  

Overall, the directed evolution trial demonstrated that the binding property of designed 

conjugates can be further improved by in vitro approaches. However, the disagreement 

between display level and protein stability may disfavor strong selection stringency and 

high mutation rates bing implemented in evolution efforts. Although the disagreement in 

stability could be caused by the difference in prokaryotic and eukaryotic expression 
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systems, the high compatibility with bacterial expression is a unique advantage of 

nanobodies and should be preserved. Therefore, in future evolution experiments on 

designed conjugates, it would be favorable to introduce mutations in a more incremented 

manner with milder selection stringencies. 

 

Summary and further testing of a computational workflow for creating synergistically-

binding nanobody small-molecule conjugates 

Based on the above design results, we summarized the design process into the following 

general workflow (Figure 3.7C): docking a library of nanobody structures with diverse 

CDR sequences and conformations onto a desired target in complex with the to-be-

conjugated small molecule, filtering binding poses to preserve ones that closely resemble 

the original binding mode of the original nanobody scaffold, screening the rotamer library 

of the conjugated small molecule onto the poses to identify most tolerable conjugation plan, 

and finally re-designing the sequences of both the nanobody CDR loops and framework to 

improve binding affinity, kinetics, and overall stability. Because 4NBX.B was not obtained 

by directly docking nanobody scaffolds against mSA, we re-performed the docking, 

filtering, and rotamer screening steps on mSA, and selected a different scaffold, 2X89.A, 

with biotin conjugated to site 57. Similar to 4NBX.B-biotin103 v186_Fr, the selected pose 

of 2X89.A was predicted to interact with mSAWT through a R-E interaction, together with 

other potential intermolecular H-bonds (Figure S7A top panel). Since the original 2X89.A 

has an additional intra-CDR disulfide bond, to avoid over conjugation, the disulfide bond 

was replaced by two alanine residues. The resulted final conjugate, 2X89.A-CCAA-

biotin57 binds to mSAWT with a KD of 0.8±0.2 nM, and remarkably, a kd that is slightly 

better than our best designed 4NBX.B variant v186_Fr (Figure 3.7A, S7A bottom panel). 

2X89.A-CCAA-biotin57 aggregated obviously on SEC (Figure S7B). To reduce 

aggregation, we constructed a rudimentary sequence design pipeline that sways between 

CDR and framework design based on our previous experience on designing 4NBX.B 

conjugates, and applied the pipeline on 2X89.A. Top-ranked variants along the six rounds 
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of CDR designs and one round of framework design showed first worsened then 

improved aggregation profile after 18 mutations were accumulated (Figure S7C), similar 

to what we observed in the design process of 4NBX.B conjugates.  

 

Conclusion 

Using mSA/biotin system, we demonstrated for the first time to our knowledge that with 

the sole structural information of a small molecule binding to its target, a complementary 

immunoglobulin domain conjugating to the small molecule can be designed entirely by 

computational methods to bind tighter against the target, further bridging the two worlds 

of small molecules and biologics. The binding interface for the designed conjugates 

comprise of both an ultra-deep pocket that is uncommon for antibodies, and broad 

contacting interface that is uncommon for small molecules [38,39]. Therefore, the chemical 

space and target space of traditional molecular recognition agents could be expanded in 

this manner, offering new potential solutions to a wide range of challenges, such as 

reutilizing failed small molecules or tackling undruggable targets in pharmaceutical 

development. Our results showed that the affinity, kinetics, and stability of the conjugates 

can be designed in a step-wise manner, indicating that the development process is highly 

tunable and multiple physicochemical properties can be simultaneously optimized.  

Testing whether the design strategy introduced in this study works for therapeutically 

relevant targets would be a crucial next step. It will also be beneficial to study whether the 

workflow works with virtually docked small-molecule/target complexes. In addition, 

testing whether the workflow can engineer specificity in addition to affinity will be also 

highly desirable. There are many computational methods that could be used to improve the 

design strategy. Virtually recombining structural fragments was reported to help affinity 

maturation of computationally designed antibodies [26,40,41]. Specifically tailored 

algorithms that put more bias in the formation of hydrogen-bonding networks were also 

proven to be useful to the affinity and specificity of designed protein/protein interfaces [42]. 
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Advanced loop-modeling methods and ensemble design could also facilitate more 

accurate assessment of binding poses for the conjugates, and potentially engineer 

specificities [43,44].  

Because the designed conjugates have the CDR loops chemically extended beyond the 

natural repertoire, we name the computationally designed synergistically-binding antibody 

small-molecule conjugates to be CDR-extended antibody, abbreviated as CDRxAb.  

Materials and Methods 

Computational design workflow for nanobody-biotin conjugates: The detailed description 

of the computational design workflows for the nanobody-biotin conjugates introduced in 

this study is in Chapter 2. 

Plasmids, expression cell lines, and cloning of protein variants: pRSET-mSA was a gift 

from Sheldon Park (Addgene plasmid # 39860) [28]. S27A mutation was created by site-

directed mutagenesis using commercially available kits (NEB). 4NBX.B_C103 and 

2X89.A_CCAA_C57 sequences were directly ordered from IDT, and cloned into pHen6c 

vector by Gibson assembly using commercially-available reagents (NEB) [45]. The 

assembled pHen6c vectors harbor a PelB signal sequence before the N terminus of the 

nanobody sequence, allowing bacterial periplasmic expression [46]. Variants of 

4NBX.B_C103 and 2X89.A_CCAA_C57 were created by mutagenic PCR and assembled 

into pHen6c vector by Gibson assembly using commercially available reagents (NEB) [45]. 

4NBX.B WT sequence with C103A mutation was created by site-directed mutagenesis 

using commercially available kits (NEB). Smt3 SUMO protein with an N-terminal cysteine 

was created from wild type Smt3 SUMO by mutagenic PCR, and subcloned into pY71A(lc) 

vector by Gibsom assembly using commercially available reagents (NEB) [45]. Yeast 

display vector pYDS649HM was a kind gift from Andrew Kruse [34]. The DNA sequence 

of v186_Fr together with the linearized pYDS649HM was electroporated into yeast strain 

BJ5465 (ATCC), and then recombined in vivo to construct the full plasmid. For 



 

 

68 
cytoplasmic expression of v186_Fr.1, the DNA sequence was assembled into pET28b 

vector by Gibson assembly using commercially available reagents (NEB) [45]. 

Expression and purification of mSA streptavidin wild type and S27A variant: Expression, 

purification, and refolding of mSA variants followed published protocols with slight 

variations [28]. The expression plasmids were first transformed to E. Coli BL21-Gold 

(DE3) chemically competent cells (Agilent), which were then grown overnight in LB with 

100 µg/mL of ampicillin (amp 100) at 37°C and 250 rpm. 1 mL of the overnight culture 

was used to inoculate 300 mL of TB medium (2.3 g KH2PO4, 16.4 g K2HPO4, 12 g tryptone, 

24 g yeast extract, 4 mL glycerol, dissolved in water to 1 L volume) supplemented with 2 

mM MgCl2, 0.1% glucose, and amp 100. Inoculation was done at 37°C and 250 rpm until 

OD600 hit 1.5-2. Expression was induced by 1 mM IPTG at 28°C and 250 rpm for 18 hours. 

Cells were then centrifuged by 4500 g for 15 minutes at 4°C, and protein extraction was 

then performed using 50 mL of chemical lysis buffer. The buffer was composed of 1x PBS 

(137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4), 1x CelLytic 

B reagent (Sigma), 0.02 mg/mL DNase1, 0.2 mg/mL lysozyme, and 1 mM protease 

inhibitor AEBSF (Sigma). Pellets were resuspended in lysis buffer and nutated for 4 hours 

at room temperature. Cell lysate was then centrifuged at 15000 g for 30 minutes at 4°C, 

and the precipitates were used to refold and purify the protein. 

Precipitates were first resuspended into 3 mL of 6 M guanidine hydrochloride in 1x TBS 

(50 mM Tris, 150 mM NaCl, pH 8.0) and incubated under 37°C for 30 minutes to solubilize 

the proteins. Un-dissolved materials were cleared by 15000 g centrifugation for 5 minutes 

at 4°C. Supernatants were then chilled on ice before added drop by drop into 40 mL of pre-

chilled refolding buffer (50 mM Tris-HCl, 150 mM NaCl, 0.3 mg/mL D-biotin, 0.2 mg/mL 

oxidized glutathione, 1 mg/mL reduced glutathione, pH 8.0) while stirring. The refolding 

buffer with added mSA protein was then allowed to incubate on ice for another 2 hours 

with stirring before centrifuged by 15000 g for 30 minutes at 4°C to remove insoluble 

materials. The supernatants were then supplemented with 20 mM imidazole and then 

loaded onto 1 mL bed volume of Ni-NTA agarose beads (Qiagen) which were pre-washed 



 

 

69 
with 5 column volumes of 1x PBS. Sample loading was performed by gravity flow. 

Column was then washed with 10 column volumes of 1x PBS supplemented with 20 mM 

imidazole before 3 mL of 1x PBS supplemented with 500 mM of imidazole was used to 

elute the proteins. The entire Ni-NTA purification process was done at 4°C. The 3 mL of 

purified proteins were then dialyzed against fresh 1 L of 1x PBS (pH 8.0) under 4°C for 3 

times using Slide-A-Lyzer 10 kDa molecular-weight cutoff dialysis cassettes (Thermo). 

Each dialysis step took longer than 4 hours. The dialyzed mSA products were further 

purified at 4°C by Superdex 75 10/300 GL SEC column (GE) using 1x PBS (pH 7.4) as 

running buffer, and the fractions corresponding to the monomeric peak were collected for 

subsequent experiments. 

Expression and purification of Smt3 SUMO protein with N-terminal cysteine: The 

expression plasmids were first transformed into E. Coli BL21-Gold (DE3) chemically 

competent cells (Agilent), which were then grown overnight in LB with amp 100 and 1% 

glucose at 37°C and 250 rpm. 1 mL of the overnight culture was then used to inoculate 300 

mL of TB medium with 2 mM MgCl2, 0.1% glucose, and amp 100 at 37oC and 250 rpm 

until OD600 hit 1.5-2. Expression was then induced by 1 mM IPTG at 28°C and 250 rpm 

for 18 hours. Cells were then pelleted under 4500 g for 15 minutes at 4°C, resuspended in 

50 mL of chemical lysis buffer supplemented with 5mM 2-mercaptoethanol (BME), and 

incubated for 4 hours at room temperature to extract the expressed proteins. Lysate 

supplemented with 20 mM imidazole was cleared by 15000 g centrifugation at 4°C for 30 

minutes, and the supernatant was loaded onto 1 mL bed volume of Ni-NTA agarose beads 

(Qiagen) pre-washed with 5 column volumes of 1x TBS (pH 7.3). Sample loading was 

performed by gravity flow. The loaded column was then washed with 5 column volumes 

of 1x TBS (pH 7.3) supplemented with 20 mM imidazole and 5 mM BME and another 5 

column volumes of 1x TBS (pH 7.3) supplemented with 20 mM imidazole. 3 mL of 1x 

TBS (pH 7.3) supplemented with 500 mM of imidazole was used to elute the proteins. All 

Ni-NTA purification procedures were performed under 4°C. Purified proteins were then 

concentrated to ~0.5 mL using Amicon 10 kDa molecular-weight cutoff centrifuge filters 

(GE), and stored for subsequent experiments. 
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Cytoplasmic expression and purification of 4NBX.B-biotin103 v186_Fr.1: v186_Fr.1 in 

pET28b was chemically transformed in the Shuffle T7 Express cell line (NEB). The 

overnight culture preparation, inoculation, induction, and expression procedures were 

identical to those of Smt3 SUMO with N-terminal cysteine. Biotin conjugation was 

performed in the same way as the designed conjugates, except that PD-10 column was used 

for buffer exchange after both the TCEP reduction and maleimide reaction steps. 

Periplasmic expression and purification of nanobodies: The pHen6c expression plasmids 

were first transformed into E. Coli BL21-Gold (DE3) chemically competent cells (Agilent), 

which were then grown overnight in LB with amp 100 and 1% glucose at 37°C and 250 

rpm. 1 mL of the overnight culture was then used to inoculate 300 mL of TB medium with 

2 mM MgCl2, 0.1% glucose, and amp 100 at 37oC and 250 rpm until OD600 hit 1.5-2. 

Expression was then induced by 1 mM IPTG at 28°C and 250 rpm for 18 hours. Cells were 

then pelleted under 4500 g for 15 minutes at 4°C, and suspended in 12 mL of TES 

periplasmic extraction buffer (0.2 M Tris, 0.5 mM EDTA, 0.5 M sucrose, pH 8.0), 

supplemented with 5 mM BME if the nanobody had a cysteine handle for conjugation, 

before incubated on ice with shaking at 32 rpm for 1 hour [47,48]. 18 mL of 4x diluted 

TES buffer, supplemented with 5mM BME if the nanobody had a cysteine handle, was 

then added to the cells which were incubated on ice at 32 rpm for another hour [47,48]. 

After periplasmic extraction, the cells were pelleted by 15000 g at 4°C for 30 minutes, and 

the supernatants were supplemented with 20 mM of imidazole before loaded onto 1 mL 

bed volume of Ni-NTA agarose beads (Qiagen) pre-washed with 5 column volumes of 1x 

TBS (pH 7.3). Sample loading was performed by gravity flow. The loaded column was 

then washed with 10 column volumes of 1x TBS (pH 7.3) supplemented with 20 mM of 

imidazole, before 3 mL of 1x TBS (pH 7.3) supplemented with 500 mM of imidazole was 

used to elute the proteins. For nanobodies with a cysteine handle, 5 mM BME was added 

to the first 5 column volumes of wash buffer, and the elution buffer was supplemented with 

5 mM TCEP. The elution buffer was incubated with the beads for 30 minutes before eluting 

the proteins. The entire Ni-NTA purification process was done at 4°C. Purified nanobodies 

with a cysteine handle in 3 mL of the elution buffer were concentrated to ~0.5 mL using 
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Amicon 10 kDa molecular-weight cutoff centrifuge filters (GE), and stored for 

subsequent experiments. 4NBX.B WT was instead further purified by Superdex 75 10/300 

GL SEC column (GE) using 1x PBS (pH 7.4) as running buffer, and the fractions 

corresponding to the monomeric peak were collected for subsequent experiments. 

Biotin C2 maleimide conjugation and purification of conjugates: Maleimide labeling on 

surface cysteines of nanobodies followed a published protocol with some modifications 

[49]. Purified nanobodies in storage were first incubated with another 5 mM TCEP 

supplement under 4°C for 2 hours, and then buffer exchanged to 1x TBS (pH 7.3) using 

HiTrap desalting columns (GE) under room temperature to remove TCEP. Thawed stock 

solutions (100 mM in DMSO) of biotin C2 maleimide (AnaSpec) were immediately added 

to the buffer-exchanged nanobodies to 1 mM final concentration before the reaction 

mixture was nutated under 4°C for 4 hours with tinfoil cover to avoid light contact. Excess 

maleimide stock solutions were tossed away and not re-frozen for future experiments. 

Biotin C2 maleimide was in >20-fold molar excess over the nanobody in the reaction 

mixture. Finished reaction mixture was then filtered by 0.2 µm syringe filters (Thermo) to 

remove precipitated proteins, and then buffer exchanged to 1x TBS (pH 7.3) using PD-10 

desalting columns (GE) under room temperature to remove excess maleimide reagents. 

The labeled nanobodies were further purified at 4°C by Superdex 75 10/300 GL SEC 

column (GE) using 1x TBS (pH 7.3) as running buffer, and the fractions corresponding to 

the monomeric peak were collected for subsequent experiments. Maleimide labeling of 

Smt3 SUMO protein with N-terminal cysteine followed the identical procedures as above. 

Yeast display and off-rate screening:  An error-prone PCR library was constructed on the 

WT v186_Fr sequence in the display vector. A series of MnCl2 concentrations from 50 µM 

to 300 µM were used to introduce both low and high mutation rates in PCR reactions 

performed in parallel. PCR products were then pooled together and electroporated in 

BJ5465 yeast with linearized display vector, resulting in ~500,000 transformants. Yeast 

cells harboring either v186_Fr WT or the error-prone PCR library were grown in SD-CAA 

media (Teknova) supplemented with uracil at 30°C/250rpm, until OD600 between 1 and 
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10 was reached. The saturated growth culture was then pelleted down and resuspended 

in SG-CAA induction media (Teknova) supplemented with uracil at OD600=1, and 

expressed at 20°C/250rpm for 60 hours. For maleimide labeling reaction, 107 expressed 

cells were first incubated with 5mM of TCEP under 4°C for 30 minutes. Then, the cells 

were washed with TBS (pH 7.3)/0.1% BSA to remove residual TCEP. The washed cell 

pellets were then immediately resuspended in 1mL of TBS (pH 7.3)/0.1% BSA and 1mM 

Biotin 2C maleimide, and the reaction was left to proceed for 4 hours with tin-foil cover 

under 4°C. Labeled cells were then washed with TBS (pH 7.3)/0.1% BSA to remove excess 

maleimide reagents.  

To compare binding signals between mSA and WT streptavidin,  mSA and WT streptavidin 

at equivalent concentrations of binding sites were respectively incubated with identical 

amount of yeast cells displaying conjugated v186_Fr WT. WT streptavidin and mSA are 

both coupled with AF647 fluorescence dye. After overnight incubation at 4°C, the cells 

were pelleted down and washed in TBS (pH 7.3)/0.1% BSA for 3.5 hours. Anti-HA 

antibody with AF488 tag was also incubated in the wash buffer to assess expression level. 

After the wash step, the cells were further washed to remove the anti-HA antibody. The 

first two rounds of off-rate screening were performed by incubating the conjugated yeast 

cells with mSA-AF647, and resuspending the incubated cells in 50 mL of TBS (pH 7.3)/0.1% 

BSA at 4°C. Cells were harvested after 8 hours and 24 hours respectively for the first and 

second rounds. The third and fourth rounds of screening were performed by first incubating 

yeast cells with mSA-AF647, then resuspending the cells with 10 µM of mSA without 

fluorescence tag supplemented. With anti-HA antibody (AF488). Cells were harvested 

after 27 hours and 1 week respectively for the third and fourth rounds. Stained yeast cells 

were analyzed and sorted by a Sony SH800 cell sorter, according to the AF488 and AF647 

fluorescence intensity that respectively represents nanobody expression and target binding.  

Intact protein mass spectrometry (MS) workflow to analyze conjugation efficiency: HPLC-

MSD (HP, Agilent) was used to assess the labeling efficiency of prepared nanobody-biotin 

conjugates. Conjugates were first dried out using a spin vacuum evaporator, and 



 

 

73 
resuspended in 0.2% formic acid. A C3 HPLC column was used first to separate the 

protein sample before MS analysis. Before running samples, the column was first washed 

with isopropyl alcohol (IPA) to clean the column and also reveal background peaks 

irrelevant to our samples. Aanalysis of conjugation efficiency of 4NBX.B-based 

conjugates was performed by deconvoluting the eluted sample HPLC peak using the 

following parameters: positive adduct ion +H 1.0079 Da, negative adduct ion –H -1.0079 

Da, molecular weight cutoff 5000-80000 Da, maximum charge 90, minimum peaks 5, ion 

PWHH 0.6 Da, molecular weight agreement 0.05%, noise cutoff 0, abundance cutoff 10%, 

molecular weight assignment cutoff 40%, and envelope cutoff 50%. Deconvolution was 

performed in ChemStation (Agilent). For each sample of interest, about 0.1-1 µg of 

material was used for the above analysis. 

Surface plasmon resonance (SPR) analysis of binding affinity and kinetics: A Biacore T200 

instrument (GE) was used to perform SPR analysis. 4NBX.B WT, 4NBX.B-biotin103 

conjugates, and 2X89.A-CCAA-biotin57 conjugates were first buffer-exchanged to HBS-

EP+ buffer (Teknova) using Amicon 10 kDa molecular-weight cutoff centrifuge filters 

(GE). The concentrations of the conjugates were then determined by BCA assay using 

commercially-available kits (Thermo). The calibration curve for BCA assay was prepared 

using purified 4NBX.B WT, which was also buffer exchanged to HBS-EP+ but had 

concentrations determined by A280 readings using extinction coefficient 30035 M-1cm-1. 

For SPR analysis, biotin pentylamine (Thermo), mSAWT, and mSAS27A were respectively 

immobilized on CM5 censor chip (GE) by EDC/NHS amine coupling kit following 

standard protocol (GE). Binding kinetics were measured by kinetic titration, or single-cycle 

kinetics (GE). Biotin pentylamine was immobilized at 7.5 mM concentration to reach target 

surface density of ~200 resonance units (RUs) [50]. In order to compare how binding 

events changed in response to different surface densities, surfaces with three different 

densities of immobilized mSAWT at ~1000 RU, ~2500 RU, and ~3000 RU were 

respectively prepared under immobilization concentrations 0.1 µM, 0.5 µM, and 1 µM. 

Immobilization of mSAS27A was also performed at 0.01 µM and 0.05 µM concentrations 

with target surface density of ~200 and ~600 RU. The fitted affinities and kinetics of 
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identical conjugates against the different densities were minimally different. Reference 

channels were either treated with EDC/NHS using blank HBS-EP+ buffer, or 1 µM of 

4NBX.B WT to assess if the conjugates would self-associate and roughly see if the 

conjugates un-specifically interacted with proteins not of interest. No visible signal 

differences against reference channels with or without immobilized 4NBX.B WT were 

observed for various tested conjugates. All immobilization samples were dissolved in 

acetate buffer (pH 4.5).  

Binding experiments were performed under 25oC. HBS-EP+ was used as running buffer. 

The flow channels were first incubated in the running buffer before analytes at 5 different 

concentrates were consecutively injected at 30 µL/min flow rate through both the reference 

channel and the sample channel with immobilized molecules of interest. After injections, 

the surface-bound analytes were allowed to dissociate for 10 minutes to generate 

dissociation curves. HBS-EP+ buffer then washed through both reference and sample 

channels continuously to allow the rest of the bound analytes to dissociate, in order to 

regenerate the surfaces for next binding experiments. Curve fitting of sensorgrams 

processed by subtracting the reference channel signal from the sample channel signal was 

performed in Biacore evaluation software using 1:1 kinetics model. No incompletely 

subtracted bulk contributions were observed in binding against immobilized biotin. For 

binding curves against immobilized mSAWT, global fitting of bulk shifts was turned on as 

small bulk shift contributes before and after each injection event were distinctively 

observed. Bulk shift fitting was turned off in binding curves involving mSAS27A, because 

potential bulk shift signals would be obscured by the kinetics curves with fast dissociation 

rates and therefore not distinctively visible.  

Molecular dynamics (MD) simulation protocols: Molecular Dynamics simulations were 

carried out using ACEMD (Acellera) [51]. Each system studied was placed in a box with 

dimensions selected to allow an excess length of 12 angstroms on each side. The system 

was solvated using the TIP3P water model [52], and ions were added to neutralize the 

overall charge. The built system was then minimized for 500 steps. Subsequently, a 5 ns 
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equilibration was completed to allow the system to reach a stationary state, and a 100 ns 

production run was carried out at 300 degrees K. All experiments utilized the Amber 

ff14SB force field and a 4 femtosecond timestep [53]. Data from the equilibration run was 

not included in subsequent analysis, and where replicates were collected no part of the 

intermediate data was reused. Parameters for the biotin-CH2-CH2-succinimide-S-CH3 

“side chain” were prepared using Antechamber and utilized RESP charges calculated with 

Gaussian 09 [54,55]. Calculation of solvent accessible surface area was performed using 

MDTraj, and hydrogen bonding was assessed using a tcl script written for VMD [56, 57]. 
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Figure 3.1 Computationally designed nanobody-biotin conjugates bind stronger than 

biotin itself against mSA streptavidin: For SPR-measured KD, ka, and kd results, data from 

one of the triplicates is shown here, and data from the other two replicates is in Fig. S5. (A) 

Schematic representation of SPR binding experiments. Binding kinetics were measured by 

kinetic titration or single-cycle kinetics. Five consecutive concentrations of the analyte are 

injected onto the immobilized ligand and then spontaneously dissociate. The kinetic curves 

are fitted by 1:1 binding model to report ka and kd, which were then used to calculate KD. (B) 

Finalized model of 4NBX.B-biotin103 in complex with mSA streptavidin. The mSA is 

colored green, and nanobody scaffold is colored cyan. Biotin103 side chain is shown as 

sticks, and the H-bond forming potential of Y112 and R27 with mSA residues is also 

represented. (C) Y112 and R27 are predicted to participate in a broader potential H-bond 

network that involves biotin/mSA interactions. (D). SPR estimation of mSA/biotin binding 
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parameters by two methods. (E) SPR measurements determined that 4NBX.B-biotin103 

occupies the biotin-binding pocket of mSA with improved affinity and kinetics. (F) SPR 

measurements determined that 4NBX.B_biotin103 binds stronger towards a weaker biotin-

binding mutant of mSA than biotin itself.  
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Figure 3.2 CDR sequence design enhanced the mSA-binding affinity and kinetics of 

4NBX.B-biotin103: In the structural models, the mSA is colored green, and nanobody 

scaffold is colored cyan. Residues with predicted H-bond formation are shown as sticks. For 

SPR-measured KD, ka, and kd results, data from one of the triplicates is shown here, and data 

from the other two replicates is in Fig. S5. (A) Predicted affinity-contributing mutations and 

SPR-measured binding profiles of 4NBX.B-biotin103 v119 against mSAWT. (B) Predicted 

affinity-contributing mutations and SPR-measured binding profiles of 4NBX.B-biotin103 

v149 against mSAWT.  
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Figure 3.3 CDR sequence design followed by framework design monomerically 

stabilized the designed conjugates without imposing affinity penalty: (A) SEC traces of 

biological triplicates (colored by blue with different intensity) for designed 4NBX.B-

biotin103 conjugates, normalized by monomer peak height for better comparison of 

aggregates formation. SEC trace of 4NBX.B WT is overlaid with 4NBX.B-biotin103 WT 

traces and colored orange. * indicates peaks of sample-irrelevant instrument defect of the 

overall FPLC, please refer to Figure S3C for more details. SEC trace of 4NBX.B WT 
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nanobody is overlaid with 4NBX.B-biotin103 WT traces as reference. (B) SPR-measured 

binding profile of v186_Fr against mSAWT and mSAS27A indicates that the improved binding 

affinity and kinetics in v149 are preserved. Data from one of the triplicates is shown here, 

and data from the other two replicates is in Fig. S5. (C) Structural representation of nanobody 

amino acid position 12 and 37 before and after framework redesign. v186 and  v186_Fr are 

colored cyan, and residues of interest are shown as sticks. Additional H-bonds introduced by 

F37Y with CDR3 residues are shown as dashes, while the relevant CDR3 residues are also 

shown in both v186 and v186_Fr models.  
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Figure 3.4 MD simulation reveals design flaws and validates design success: (A) MD 

simulation revealed possible origins for the improved monomeric stability of 4NBX.B-

biotin103 v186_Fr compared to v186. Here shows the analysis of the solvent-accessible area 

for the selected hydrophobic residues of v186 and v186_Fr from 100ns MD simulations 

performed in triplicates. The selected residues are presented as spheres in the nanobody 

models shown on both panels. The observed distributions of the solvent accessible area for 

the selected residues from the 3X simulations of v186 and v186_fr are plotted into 80 bins 

along the x-axis (bars) with respective kernel density estimation (lines). Left panel: analysis 

of the hydrophobic core residues. Right panel: analysis of the CDR3-shielded residues. (B) 

Analysis of the interaction interface in the triplicate MD simulations of 4NBX.B-biotin103 

v186_Fr against mSAWT. Traces from simulation replicates are plotted on top of each other 
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along the 100ns timescales. Changes of whole-structure RMSD, interface shape 

complementarity, buried surface area, and interface separation distance along the time 

trajectories are plotted. 
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Figure 3.5 Flow cytometry analysis of v186_Fr WT displayed on yeast surface against 

WT and mSA streptavidin: These graphs show v186_Fr incubated with either (A) AF647 

tagged WT streptavidin or (B) AF647 tagged mSA streptavidin, together with AF488 tagged 

anti-HA antibody in both scenarios to quantify nanobody expression. AF488-AF647 

correlation diagram and AF647 only event count diagram are shown for both experiments. 
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Figure 3.6 Isolation and validation of a evolved variant of v186_Fr: (A) FACS sorting 

results after 4 rounds of off-rate screening. 10 sequences were isolated from the boxed cells 

and sequenced. The variant v186_Fr.1 was predominantly enriched. (B) SEC and SPR 

measurement of v186_Fr.1 against WT mSA streptavidin.  
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Figure 3.7 Summary of the design results for mSA-targeting CDRxAbs and the overall 

design workflow: (A-B) Summary of SPR-measured binding affinity and kinetics of 

nanobody-biotin conjugates and controls against mSAWT and mSAS27A. Experimental 

designs for each SPR binding experiment are depicted by the cartoon above the lanes. Blue 

square: SPR cheap for immobilization. Spheres: molecules that are immobilized (attached to 

chip) or flew through (floating above the chip) during binding experiments. Different 

molecules are represented by different colors. Individual data points represent measurements 

from biological triplicates. Error bars represent standard deviation. (C) Summary and 

proposal of a general design workflow for synergistically-binding nanobody-small molecule 

conjugates.   
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Figure S1 Biotin conjugation was performed by biotin C2 maleimide with mutated 

cysteine residues.  
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Figure S2 An initial MD simulation that inspired us to move towards framework re-

design: 5 snapshots from a 100 ns MD simulation of v186/mSA complex. Carton: nanobody. 

Ribbon: mSA. Blue: CDR3 loop. Snapshots from earlier time points are shown with dimmer 

saturation. 
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Figure S3 Additional Supporting SEC traces: (A) SEC traces of mSAWT and mSAS27A. 

(B) SEC rerun trace of collected monomeric fraction for 4NBX.B-biotin103 v186_Fr. * 

indicates peaks of sample-irrelevant instrument defect of the overall FPLC, please refer to 

section C for more details. (C) Blank run of the FPLC to reveal the sample-irrelevant periodic 

peaks that were constantly observed in SEC data. 
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Figure S4 Summary of MD simulations performed for 4NBX.B-biotin103 v186 and 

v186_Fr against mSAWT: For each simulation, 400 snapshots evenly spaced along the 

100ns timescale are aligned together. Green: mSAWT. Cyan: nanobody-biotin conjugates. 

Biotin103 residue is shown as sticks.  
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Figure S5 SPR measurements from the intermediate design variant 4NBX.B-biotin103 

v186, and from additional biological replicates not shown in the main text but were 

included for affinity and kinetics estimation. 
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Figure S6 Intact-protein mass spectrometry (MS) confirmed mono-conjugated 

materials: MS deconvolution of nanobody-biotin conjugates only returned MWs within 20 

Da from expected MW of mono-conjugated materials. 
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Figure S7 Designing and testing of a nanobody scaffold obtained by directly docking 

against mSA: (A) Predicted H-bond formation profile and SPR binding curve for 2X89.A-

CCAA-biotin57 WT against immobilized mSAWT. Data from one of the triplicates is shown 

here, and data from the other two replicates is in Fig. S5. (B) Size-exclusion chromatography 

(SEC) traces of biological triplicates for 2X89.A-CCAA-biotin57, normalized by monomer 

peak height for better comparison of aggregates formation. * indicates peaks of sample-

irrelevant instrument defect of the overall FPLC, please refer to figure S3C for more details. 

(C) SEC traces and newly accumulated mutations for sequence-designed variants of 2X89.A-

CCAA-biotin57 conjugates. Peaks of the monomeric fractions are normalized to identical 

heights. * indicates peaks of sample-irrelevant instrument defect of the overall FPLC, please 

refer to figure S5C for more details.  
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Table S1: amino acid sequences for the protein templates used in this study 

4NBX.B_
A103C 

QVQLQESGGGLAQAGGSLRLSCAASGRTFSMDPMAWFRQPPGKEREFV
AAGSSTGRTTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYC
AAAPYGCNWYRDEYAYWGQGTQVTVSSHHHHHH 

2X89.A_C
CAA_I57C 

QVQLQESGGGSVQAGGSLRLSCAASGYTDSRYAMAWFRQAPGKEREW
VARINSGRDCTYYADSVKGRFTFSQDNAKNTVYLQMDSLEPEDTATYY
CATDIPLRARDIVAKGGDGFRYWGQGTQVTVSSHHHHHH 

mSA_WT HHHHHHSQDLASAEAGITGTWYNQSGSTFTVTAGADGNLTGQYENRAQ
GTGCQNSPYTLTGRYNGTKLEWRVEWNNSTENCHSRTEWRGQYQGGA
EARINTQWNLTYEGGSGPATEQGQDTFTKVKPSAASGSDYKDDDDK 

Smt3 
SUMO 
with N-
terminal 
cysteine 

CLQDSEVNQEAKPEVKPEVKPETHINLKVSDGSSEIFFKIKKTTPLRRLME
AFAKRQGKEMDSLRFLYDGIRIQADQAPEDLDMEDNDIIEAHREQIGGH
HHHHH 

 
Note: the numbering scheme of the above sequences follows 1-2-3-4… The first residue is 

numbered as 1. 

 

 

 

 

 

 

 

 

 

 



 

 

94 
Bibliography 

1. D. C. Swinney, Biochemical mechanisms of drug action: what does it take for success? 
Nature Reviews Drug Discovery 3, 801–808 (2004). 
2. J. K. H. Liu, The history of monoclonal antibody development – Progress, remaining 
challenges and future innovations. Annals of Medicine and Surgery 3, 113–116 (2014). 
3. A. L. Hopkins, C. R. Groom, The druggable genome. Nature Reviews Drug Discovery 
1, 727–730 (2002). 
4. G. L. Verdine, L. D. Walensky, The Challenge of Drugging Undruggable Targets in 
Cancer: Lessons Learned from Targeting BCL-2 Family Members. Clin Cancer Res 13, 
7264–7270 (2007).  
5. M. A. Ayoub, et al., Antibodies targeting G protein-coupled receptors: Recent advances 
and therapeutic challenges. MAbs 9, 735–741 (2017). 
6. R. B. Dodd, T. Wilkinson, D. J. Schofield, Therapeutic Monoclonal Antibodies to 
Complex Membrane Protein Targets: Antigen Generation and Antibody Discovery 
Strategies. BioDrugs 32, 339–355 (2018). 
7. E. Valeur, et al., New Modalities for Challenging Targets in Drug Discovery. 
Angewandte Chemie International Edition 56, 10294–10323 (2017). 
8. G. D. L. Phillips, et al., Targeting HER2-Positive Breast Cancer with Trastuzumab-DM1, 
an Antibody–Cytotoxic Drug Conjugate. Cancer Res 68, 9280–9290 (2008). 
9. Y. Feng, et al., Conjugates of Small Molecule Drugs with Antibodies and Other Proteins. 
Biomedicines 2, 1–13 (2014). 
10. W. D. Hedrich, T. E. Fandy, H. M. Ashour, H. Wang, H. E. Hassan, Antibody–Drug 
Conjugates: Pharmacokinetic/Pharmacodynamic Modeling, Preclinical Characterization, 
Clinical Studies, and Lessons Learned. Clinical Pharmacokinetics 57, 687–703 (2017). 
11. D. Su, et al., Modulating Antibody–Drug Conjugate Payload Metabolism by 
Conjugation Site and Linker Modification. Bioconjugate Chemistry 29, 1155–1167 (2018). 
12. B.-Q. Shen, et al., Conjugation site modulates the in vivo stability and therapeutic 
activity of antibody-drug conjugates. Nature Biotechnology 30, 184–189 (2012). 
13. Y. Wang, et al., Peptide–Drug Conjugates as Effective Prodrug Strategies for Targeted 
Delivery. Adv Drug Deliv Rev 110–111, 112–126 (2017). 
14. R. Y. Zhao, et al., Synthesis and Evaluation of Hydrophilic Linkers for Antibody–
Maytansinoid Conjugates. J. Med. Chem. 54, 3606–3623 (2011). 
15. A. C. Cheng, et al., Structure-guided Discovery of Dual-recognition Chemibodies. 
Scientific Reports 8, 7570 (2018). 
16. J. Tang, et al., An Inhibitory Antibody against Dipeptidyl Peptidase IV Improves 
Glucose Tolerance in Vivo. J. Biol. Chem. 288, 1307–1316 (2013). 
17. S. Muyldermans, Nanobodies: Natural Single-Domain Antibodies. Annual Review of 
Biochemistry 82, 775–797 (2013). 
18. I. Hmila, et al., VHH, bivalent domains and chimeric Heavy chain-only antibodies with 
high neutralizing efficacy for scorpion toxin AahI′. Molecular Immunology 45, 3847–3856 
(2008). 



 

 

95 
19. C. I. Webster, et al., Brain penetration, target engagement, and disposition of the 
blood–brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate 
receptor type 1. The FASEB Journal 30, 1927–1940 (2016). 
20. L. R. Pepper, Y. K. Cho, E. T. Boder, E. V. Shusta, A decade of yeast surface display 
technology: Where are we now? Comb Chem High Throughput Screen 11, 127–134 (2008). 
21. G. M. Cherf, J. R. Cochran, Applications of Yeast Surface Display for Protein 
Engineering. 1319, 155–175 (2015). 
22. Y. Sun, B. Ban, A. Bradbury, G. A. S. Ansari, D. A. Blake, Combining Yeast Display 
and Competitive FACS to Select Rare Hapten-Specific Clones from Recombinant 
Antibody Libraries. Anal. Chem. 88, 9181–9189 (2016). 
23. W. Zou, M. Ueda, A. Tanaka, Genetically Controlled Self-Aggregation of Cell-
Surface-Engineered Yeast Responding to Glucose Concentration. Appl Environ Microbiol 
67, 2083–2087 (2001). 
24. E. B. Getz, M. Xiao, T. Chakrabarty, R. Cooke, P. R. Selvin, A comparison between 
the sulfhydryl reductants tris(2-carboxyethyl)phosphine and dithiothreitol for use in 
protein biochemistry. Anal. Biochem. 273, 73–80 (1999). 
25. S. M. Marino, et al., Characterization of surface-exposed reactive cysteine residues in 
Saccharomyces cerevisiae. Biochemistry 49, 7709–7721 (2010). 
26. Y.-M. Go, J. D. Chandler, D. P. Jones, The Cysteine Proteome. Free Radic Biol Med 
84, 227–245 (2015). 
27. M. H. Qureshi, J. C. Yeung, S.-C. Wu, S.-L. Wong, Development and Characterization 
of a Series of Soluble Tetrameric and Monomeric Streptavidin Muteins with Differential 
Biotin Binding Affinities. J. Biol. Chem. 276, 46422–46428 (2001). 
28. K. H. Lim, H. Huang, A. Pralle, S. Park, Stable, high-affinity streptavidin monomer for 
protein labeling and monovalent biotin detection. Biotechnology and Bioengineering 110, 
57–67 (2013). 
29. G. Nimrod, et al., Computational Design of Epitope-Specific Functional Antibodies. 
Cell Reports 25, 2121-2131.e5 (2018). 
30. N. Jain, S. W. Smith, S. Ghone, B. Tomczuk, Current ADC Linker Chemistry. Pharm 
Res 32, 3526–3540 (2015). 
31. T. Murase, et al., Structural basis for antibody recognition in the receptor-binding 
domains of toxins A and B from Clostridium difficile. J. Biol. Chem. 289, 2331–2343 
(2014). 
32. W. Sheng, X. Liao, Solution structure of a yeast ubiquitin-like protein Smt3: The role 
of structurally less defined sequences in protein–protein recognitions. Protein Sci 11, 
1482–1491 (2002). 
33. F. Liu, J. Z. H. Zhang, Y. Mei, The origin of the cooperativity in the streptavidin-biotin 
system: A computational investigation through molecular dynamics simulations. Sci Rep 6 
(2016). 
34. C. McMahon, et al., Yeast surface display platform for rapid discovery of 
conformationally selective nanobodies. Nature Structural & Molecular Biology 25, 289–
296 (2018). 
35. L. S. Mitchell, L. J. Colwell, Analysis of nanobody paratopes reveals greater diversity 
than classical antibodies. Protein Eng Des Sel 31, 267–275 (2018). 



 

 

96 
36. H. K. Privett, et al., Iterative approach to computational enzyme design. PNAS 109, 
3790–3795 (2012). 
37. A. Nisthal, C. Y. Wang, M. L. Ary, S. L. Mayo, Protein stability engineering insights 
revealed by domain-wide comprehensive mutagenesis. PNAS 116, 16367–16377 (2019). 
38. L. N. Makley, J. E. Gestwicki, Expanding the Number of ‘Druggable’ Targets: Non-
Enzymes and Protein-Protein Interactions. Chemical Biology & Drug Design 81, 22–32 
(2013). 
39. D. H. Nam, C. Rodriguez, A. G. Remacle, A. Y. Strongin, X. Ge, Active-site MMP-
selective antibody inhibitors discovered from convex paratope synthetic libraries. Proc. 
Natl. Acad. Sci. U.S.A. 113, 14970–14975 (2016). 
40. D. Baran, et al., Principles for computational design of binding antibodies. Proceedings 
of the National Academy of Sciences, 201707171 (2017). 
41. C. A. Voigt, C. Martinez, Z.-G. Wang, S. L. Mayo, F. H. Arnold, Protein building 
blocks preserved by recombination. Nature Structural Biology 9, 553–558 (2002). 
42. S. E. Boyken, et al., De novo design of protein homo-oligomers with modular 
hydrogen-bond network–mediated specificity. Science 352, 680–687 (2016). 
43. B. D. Allen, A. Nisthal, S. L. Mayo, Experimental library screening demonstrates the 
successful application of computational protein design to large structural ensembles. PNAS 
107, 19838–19843 (2010). 
44. D. J. Mandell, E. A. Coutsias, T. Kortemme, Sub-angstrom accuracy in protein loop 
reconstruction by robotics-inspired conformational sampling. Nature Methods 6, 551–552 
(2009). 
45. D. G. Gibson, et al., Enzymatic assembly of DNA molecules up to several hundred 
kilobases. Nat. Methods 6, 343–345 (2009). 
46. D. Demeestere, et al., Development and Validation of a Small Single-domain Antibody 
That Effectively Inhibits Matrix Metalloproteinase 8. Molecular Therapy 24, 890–902 
(2016). 
47. K. Hand, M. C. Wilkinson, J. Madine, Isolation and purification of recombinant 
immunoglobulin light chain variable domains from the periplasmic space of Escherichia 
coli. PLOS ONE 13, e0206167 (2018). 
48. S. B. Hansen, N. S. Laursen, G. R. Andersen, K. R. Andersen, Introducing site-specific 
cysteines into nanobodies for mercury labelling allows de novo phasing of their crystal 
structures. Acta Crystallographica Section D Structural Biology 73, 804–813 (2017). 
49. T. Pleiner, et al., Nanobodies: site-specific labeling for super-resolution imaging, rapid 
epitope-mapping and native protein complex isolation. eLife 4, e11349 (2015) 
50. M. L. B. Magalhães, et al., Evolved streptavidin mutants reveal key role of loop residue 
in high-affinity binding. Protein Sci 20, 1145–1154 (2011). 
51. S. Doerr, M. J. Harvey, F. Noé, G. De Fabritiis, HTMD: High-Throughput Molecular 
Dynamics for Molecular Discovery. J. Chem. Theory Comput. 12, 1845–1852 (2016). 
52. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, 
Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 
926–935 (1983). 
53. J. A. Maier, et al., ff14SB: Improving the Accuracy of Protein Side Chain and 
Backbone Parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015). 



 

 

97 
54. J. Wang, W. Wang, P. A. Kollman, D. A. Case, Automatic atom type and bond type 
perception in molecular mechanical calculations. Journal of Molecular Graphics and 
Modelling 25, 247–260 (2006). 
55. Gaussian 09, Revision A.02, M. J. Frisch, et al., Gaussian, Inc., Wallingford CT, 2016. 
56. R. T. McGibbon, et al., MDTraj: A Modern Open Library for the Analysis of Molecular 
Dynamics Trajectories. Biophysical Journal 109, 1528–1532 (2015). 
57. W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics. Journal of 
Molecular Graphics 14, 33–38 (1996). 
 



 

 

98 
A p p e n d i x  I  

COMPUTATIONAL DESIGN AND EXPERIMENTAL SCREENING OF 
NEUTRALIZING ANTIBODY VARIANTS AGAINST SARS-COV-2 

Contribution: Jingzhou Wang performed combinatorial designs on C002 and C118 

against the RBD of both WT and B.1.351 strains of SARS-CoV-2. Jingzhou Wang 

performed FACS sorting of a MACS-enriched degenerate codon library of C002 against 

WT RBD, and isolated 9 variants for further characterization. 
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Introduction 

COVID-19 is an ongoing global pandemic that is caused by the coronavirus SARS-CoV-2 

[1,2]. The virus enters human cells by its trimeric spike protein that protrudes from the 

capsid shell [2,3]. The receptor-binding domain (RBD) of the spike adopts two distinctive 

conformations [2,3]. Using the “up” conformation, the SARS-CoV-2 RBD interacts with 

the ACE2 receptor on host cells to start a cascade of biochemical processes that lead to 

viral entry [2-4]. Upon infection, the immune system produces IgG antibodies to recognize 

the virus outer protein surface at different epitopes, and a fraction of antibodies that bind 

to the RBD are able to neutralize the virus by inhibiting RBD-ACE2 engagement [5]. 

Structural characterization of patient-derived neutralizing antibodies (nAbs) classified four 

types of neutralization mechanisms [6]. Class I antibodies recognizes the “up” 

conformation of RBD and directly compete with ACE2 for RBD binding, class II 

antibodies compete with ACE2 while recognizing multiple RBD conformations, and class 

III and IV antibodies neutralize the virus by recognizing epitopes that do not overlap with 

ACE2 binding site [6]. Passive immunization therapies using especially potent nAbs were 

shown to effectively reduce the hospitalization rates for COVID-19 patients in high-risk 

groups  [7]. Several antibody treatments against SARS-CoV-2 were approved by FDA, 

including the monoclonal antibody bamlanivimab from Eli Lilly and the antibody cocktail 

REGEN-COV from Regeneron. Despite the demonstrated benefits, several drawbacks 

prevent antibody treatments against COVID-19 from broad usage. First, current passive 

immunization treatments usually require a high dosage around 1 gram per antibody [8,9], 

which results in a high cost that is incompatible with the current rapid infection rate across 

the globe. Second, no current antibody treatment has shown effectiveness in hospitalized 

patients, and therefore demonstrates a narrow therapeutic window with limited usage 

scenario [8,9]. Third, escape mutations on RBD have been reported to dramatically reduce 

neutralization efficacy of certain patient-derived nAbs, jeopardizing the long-term 

effectiveness of existing antibody treatments [10]. 
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We hypothesize that a further improvement in neutralization potency of existing nAbs 

might lead to more effective passive immunization treatments that alleviate the above-

mentioned problems. We chose two previously reported antibodies, which are respectively 

a highly potent class II antibody C002 [6] that is comparable in potency to approved 

antibody treatments, and a less potent class IV antibody C118 [11] that recognizes an 

evolutionarily conserved RBD epitope. Two combinatorial designs were performed 

respectively on C002 and C118 against WT RBD to identify mutation choices that 

potentially improve RBD engagement and preserve the existing binding mode. For C002, 

escape mutation E484K was reported to disable RBD binding and occurs in a reported 

variant strain  B.1.351 [6,10]. Therefore, a second C002 combinatorial design was 

performed against the B.1.351 RBD. Together, the three design trials output three sets of 

suggested mutations, which can be used for antibody library construction. Furthermore, the 

reported mutations for C002 design against WT RBD were combined with other 

calculation results to finalize a 3-million-member degenerate codon library, from which a 

variant with 6-fold improvement in potency was isolated. 

Results and Discussion 

Combinatorial design results of C002 against WT RBD 

C002/RBD(WT) structure was kindly provided by Christopher O. Barnes. The complex 

structure was first processed by standardizing the coordinates in Rosetta force field [12] 

and filling in missing RBD electron density using a complete RBD structure from PDB ID 

7BZ5. Interface residues were identified by a publicly available PyMOL script that uses 

change of solvent accessibility as the assessment criteria [16]. Site-saturation design using 

the full 20 amino acids was performed on each CDR residue in the binding interface, and 

the sequence ranks from 10 repeated calculations with different random seeds were 

averaged to report single mutations with improved overall Rosetta energy score than the 

WT amino acid (Figure 1). Single mutations were also ranked by improvements in 

interaction energy score and shape complementarity (Figure 1). The beneficial mutations 

from the three lists were then combined with different biases to perform 7 combinatorial 
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designs on the heavy chain and three combinatorial designs on the light chain, all in 

parallel (Figure 2). Each design calculation was repeated for 10 times with different 

random seeds, and the sequences sampled in each repeated trial were combined and re-

ranked to report the final output sequences, ranked by overall Rosetta energy score.  

For each combinatorial design, the top 20 sequences and the corresponding structural 

models were used to assess design quality by overall energy score, interaction energy, and 

shape complementarity (Figure 2). Of the 7 designs on the heavy chain (HC), the “all” and 

“inter_energy” design calculations showed consistent energy and shape complementarity 

improvements in the top 20 sequences, and are therefore chosen to construct the final 

recommended sets of mutations.  

For the “all” design calculation, the mutation preference in the top 20 sequences are as 

follows (times of occurrence are reported in the brackets): 

Residue Position (HC) Sequence Choices 
28 WT(0),D(10),Q(10) 
32 WT(13),F(7) 
33 WT(0), A(1),P(19) 
57 WT(11),H(9) 
99 WT(0), G(20) 
101 WT(0), G(18),S(2) 
102 WT(0), D(1),G(17),K(1),N(1) 
103 WT(5),D(13),N(2) 
104 WT(5),E(15) 
106 WT(0), G(6),N(13),S(1) 
107 WT(0), F(2),H(1),M(1),N(2),Q(3),R(10),S(1)  
109 WT(0), D(2),N(18)  
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For the “inter_energy” design calculation, the mutation preference in the top 20 

sequences are as follows (times of occurrence are reported in the brackets): 

Residue Position (HC) Sequence Choices 
28 WT(1),D(11),Q(8)  
32 WT(12),F(8) 
33 WT(1),A(6),P(10),S(3) 
57 WT(13),H(7) 
99 WT(1),G(19) 
101 WT(0),G(20) 
102 WT(0),S(20) 
103 WT(14),N(6) 
106 WT(0),G(5),N(15) 
107 WT(18),G(2) 
109 WT(0),A(1),D(3),G(2),H(8),M(1),N(5)  

 

The final set of HC mutations were recommended by combining the above two lists of 

sequence choices and forcing WT amino acid choice in each position: 

Residue Position (HC) Sequence Choices 
28 T,D,Q  
32 Y,F 
33 G,A,P,S 
57 N,H 
99 E,G 
101 R,G,S 
102 P,D,G,K,N,S 
103 S,D,N 
104 D,E 
106 V,G,N,S 
107 V,F,H,M,N,Q,R,S,G 
109 V,A,D,G,H,M,N 
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No obvious improvements were seen in combinatorial designs of the light chain (LC) 

residues. However, two of the designs “L_SC” and “L_int_skip3292” were chosen for 

consistently improved interaction energy and shape complementarity.  

For the “L_SC” design calculation, the mutation preference in the top 20 sequences are as 

follows (times of occurrence are reported in the brackets): 

Residue Position (LC) Sequence Choices 
30 WT(10),G(10)  
93 WT(5),D(1),G(1),K(1),Q(1),T(11) 
94 WT(6),A(2),F(1),H(1),I(2),N(1),S(3),W(3),Y(1)  
96 WT(8),F(12)  

 

For the “L_int_skip3292” design calculation, the mutation preference in the top 20 

sequences are as follows (times of occurrence are reported in the brackets): 

Residue Position (LC) Sequence Choices 
30 WT(9),G(10),N(1)  
93 WT(4),A(4),D(1),G(2),M(1),N(2),T(6) 
94 WT(3),E(2),F(2),H(1),I(3),L(2),M(3),N(1),R(2),W(1)  
96 WT(6),F(11),S(3)  

 

The final set of LC mutations were recommended by combining the above two lists of 

sequence choices, also forcing WT amino acid choice in each position.  

Residue Position (LC) Sequence Choices 
30 S,G,N 
93 S,A,D,G,M,N,K,Q,T 
94 T,A,E,F,H,I,L,M,N,S,R,W,Y 
96 R,F,S 
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Combinatorial design results of C002 against B.1.351 RBD 

Structure of C002/RBD(WT) from PDB ID 7K8S was used, and the B.1.351 mutations 

E484K and K417N that are close to C002 binding sites were modeled in after standardizing 

the structure in Rosetta force field [10,12]. C002 residues that are with in 6 angstroms away 

from residue 484 were considered for redesign. Since no obvious interactions were 

observed between C002 and residue 417 in the published structure, designs were not 

considered for K417N.  

Site-saturation design and analysis were performed on the selected residues in the same 

manner as the previous C002 design against WT RBD, resulting in three lists of ranked 

mutation choices for each CDR site of interest (Figure 3). Combinatorial designs were 

performed using the identified mutation sites and choices, in the same way as the design 

against WT RBD.  Analysis of top 20 sequences from each design calculation indicated 

various degree of improvements in total energy and interaction energy, but all of the 

designs resulted in reduction in shape complementarity (Figure 4). Nevertheless, since the 

starting sets of acceptable mutation choices were small, as only three sites showed mutation 

choices with favorable overall energy score, all of the four design calculations were 

combined to recommend the final set of mutation choices. WT amino acid is forced in each 

position to reduce the chance of non-functional sequences:  

Residue Position  Sequence Choices 
HC/52A Y,E,W 
HC/56 N,Y 
LC/96 R,D,E,F,H,I,M,S,T,V,A 

 

The consistently worse shape complementarity across the designs is discouraging. This 

result suggests that instead of designing with a single conformational state. a more 

comprehensive exploration of backbone and sidechain mobility may find better solutions 

to counter the E484K penalty. However, combining mutations reported by this design 

effort with favorable mutations identified by other avenues could also be advantageous.   
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Combinatorial design results of C118 against WT RBD 

C118-RBD(SARS1) structure was kindly provided by Claudia A. Jette. The structure was 

standardized in the same way as C002, and mutations were introduced to recapitulate 

sequence differences between SARS1 and SARS2 RBDs that are close to the antibody 

binding site. C118 interface residues were identified in the same way as C002 against WT 

RBD. Site-saturation and combinatorial design and analysis were performed in the same 

way as C002 (Figure 5&6). All of the four combinatorial designs performed in parallel 

showed consistent improvement in the three evaluation criteria: overall energy, interaction 

energy, and shape complementarity (Figure 6). Combining the results of the best three 

design calculations returned the final sequence recommendation, where the WT amino acid 

choice was forced in each position, like the other design trials: 

Residue Position  Sequence Choices 
HC/28 T,D,E,N,Q  
HC/31 N,H,L,Q,Y,E,F 
HC/53 Y,W,F 
HC/56 S,T 
HC/57 N,H 
HC/101 T,I 
HC/108 R,G,N 
HC/110 D,E,Q,A 
LC/51 N,F,Y 
LC/56 H,F,Y 
LC/57 S,E,L  

 

FACS sorting of a degenerate codon library that incorporates the C002 combinatorial 

design results against WT RBD 

The recommended mutations of C002 HC against WT SARS-CoV-2 RBD were combined 

with results of a single/double site(s) mutation search and a PSSM analysis, which were 

respectively performed by our collaborators Paul Chang and Stephanie Contreras, to 

mature into the final explicit sequence library: 
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Residue Position (HC)  Sequence Choices 
28 T,D,H,I,P,V  
32 Y,F 
33 G,S 
57 N,H,K,Y 
99 E,G,H,S,Y 
101 R,G,H,S,Y 
102 P,D,G,N,S 
103 S,D,N 
106 V,S,W,Y 
107 V,F,G,H,M,Q,R,S 
109 V,A,F,M,W,Y 

 

Our collaborators Paul Chang and Justin Chartron further represented this library into 

degenerate codons: 

Residue Position (HC)  Codon Choice 
28 VHC  
32 TWC 
33 GGA 
57 MAC 
99 GRA 
101 BRC 
102 VSC 
103 RRC 
106 KKG 
107 SDC 
109 DKS 

 

Justin Chartron then constructed the final degenerate codon library into a yeast display 

vector as scFv, and performed one round of magnetic-activated cell sorting (MACS) with 

50 nM WT RBD.  
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The MACS-enriched sub-library was then sorted by fluorescence-activated cell sorting 

(FACS) using WT RBD at 2 nM, which is a ~6-fold lower concentration than the published 

KD of WT C002 (Figure 7A) [6]. Cells with positive expression and RBD signals were 

collected, re-grown, and sequenced. 9 variants were isolated. Out of the 12 mutations 

observed in the isolated variants, 10 mutations were in the final explicit sequence library, 

1 is introduced by degenerate codon but not recommended by design, and 1 is introduced 

opportunistically during library construction. Importantly, 8 out of the 12 mutations were 

predicted by the combinatorial design calculation alone. Together, this result demonstrates 

the robustness of our sequence design capability on existing antibody/target complexes.  

The 9 vairants were reformatted into IgGs, which were expressed by our collaborators 

Annie Lam and Jost Vielmetter together with the WT C002 IgG as control. Finally, our 

collaborators Priyanthi Gnanapragasam and Jennifer Keeffe tested and analyzed the 

neutralization potency of the 10 C002 IgG variants against a SARS-CoV-2 pseudovirus. 

One variant, v4 with mutations T28P/N57H/V107H showed ~6-fold IC50 improvement 

than WT C002 in three independent technical repeats, and is also roughly one magnitude 

more potent than the FDA-approved antibodies from Eli Lilly and Regeneron (Figure 7B) 

[5,13,14].  

 

Materials and Methods 

Computational design: Combinatorial sequence design calculations on C002 and C118 

were performed on an in-house protein design suite TRIAD [15]. PyMOL (Schrodinger) 

was also used to assist structural analysis. 

Yeast display and FACS sorting: MACS-enriched EBY100 yeast cells with display vector 

pCTCON2 containing C002 scFv variants were provided by Justin Chartron. Under 4°C, 

107 cells were first washed by TBS (pH 7.4)/0.1% BSA and incubated with anti-c-myc 

antibodies (AF488) and 2 nM biotinylated SARS-CoV2 RBD(WT), which was provided 
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by Christopher O. Barnes. Incubated cells were then pelleted down, stained with 

streptavidin (AF647) for 5 minutes, and washed once by TBS/BSA buffer at 4°C before 

sorted by FACS. FACS was performed by a Sony SH800 cell sorter. Antibody expression 

was reflected by AF488, and RBD binding was reflected by AF647. Cells with double-

positive fluorescence signal were isolated and regrown in SD-CAA media (Teknova). 

Isolated scFv sequences were then miniprepped by commercially available kit (Zymo) and 

identified by sanger sequencing. 
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Figure 1 Single-site saturation analysis results of C002 CDR sites against WT SARS-

CoV2 RBD: Mutations with predicted improvements in overall Rosetta energy score, 

interaction energy, and shape complementarity than WT sequence choices were reported for 

each position. “H” refers to the heavy chain, “L” refers to the light chain, and “–aas” refers 

to amino acid site positions. 
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Figure 2 Analysis of C002 combinatorial design results against WT SARS-CoV-2 

RBD : Top 20 sequences from 11 combinatorial sequence designs that were either restricted 

on HC or LC alone were analyzed by overall energy score improvement, interaction energy, 

and shape complementarity (SC). Data was shown as average value in the 20 sequences with 

standard deviations. For interaction energy and shape complementarity, analysis was 

performed only on the antibody chain where mutations were modeled in. The interaction 

energy between heavy chain and RBD was calculated to be -10.8 and the interaction energy 

between light chain and RBD was calculated to be -6.6. The SC between heavy chain and 

RBD was calculated to be 0.62, and the SC between light chain and RBD was calculated to 

be 0.74. The detailed description of each design is as follows. Heavy chain designs: all – All 

amino acid sites and choices from list 1 on figure 1, inter_energy – Amino acid sites and 

choices observed in both list 1 and 2 on figure 1, SC – Amino acid sites and choices observed 

in both list 1 and 3 on figure 1, SC_int – Amino acid sites and choices observed in all of list 

1, 2, and 3, top_5_all – Top 5 amino acid sites according to the ranks on list 1, 

top_5_inter_energy – Top 5 amino acid sites according to the ranks on list 1 and amino acid 

choices observed in both list 1 and 2, and top_SC_int – Top 5 amino acid sites according to 

the ranks on list 1 and amino acid choices observed in all of list 1, 2, and 3. Light chain 

designs: L_int – Amino acid sites and choices observed in list 2, L_SC – Amino acid sites 

and choices observed in list 3, L_int_skip3292 – L_int design without sites 32 and 92, since 

they are a potential interaction hotspot.  
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Figure 3 Single-site saturation analysis results of C002 CDR sites against B.1.351 

SARS-CoV2 RBD: Mutations with predicted improvements in overall Rosetta energy score, 

interaction energy, and shape complementarity than WT sequence choices were reported for 

each position. “O” refers to the heavy chain, “P” refers to the light chain, and “–aas” refers 

to amino acid site positions. 
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Figure 4 Analysis of C002 combinatorial design results against B.1.351 SARS-CoV-

2 RBD Four combinatorial designs were performed as follows: ssDes_all – used all 

residue choices that showed up to improve the total energy (Figure 3 list 1). 

ssDes_all_inter_energy – used residues that showed up to both improve the total energy and 

the interaction energy (residues that appear in both Figure 3 List 1 and List 2). ssDes_SC – 

used residues that showed up to both improve the total energy and the shape complementarity 

score (residues that appear in both Figure 3 List 1 and List 3). ssDes_SC_int – used the 

residues that showed up to improve the total energy, interaction energy, and shape 

complementarity (residues that appear in all three lists. Top reported sequences were 

analyzed for overall energy, interaction energy, and shape complementarity change over WT 

sequence. Data is reported as average and standard deviations. 
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Figure 5 Single-site saturation analysis results of C118 CDR sites against WT SARS-

CoV2 RBD: Mutations with predicted improvements in overall Rosetta energy score, 

interaction energy, and shape complementarity than WT sequence choices were reported for 

each position. “B” refers to the heavy chain, “H” refers to the light chain, and –”aas” refers 

to amino acid site positions. 
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Figure 6 Analysis of C118 combinatorial design results against WT SARS-CoV-2 

RBD: Four combinatorial designs were performed as follows. ssDes_all – used all residue 

choices that showed up to improve the total energy (Figure 5 list 1). ssDes_all_inter_energy 

– used residues that showed up to both improve the total energy and the interaction energy 

(residues that appear in both Figure 5 List 1 and List 2). ssDes_SC – used residues that 

showed up to both improve the total energy and the shape complementarity score (residues 

that appear in both Figure 5 List 1 and List 3). ssDes_SC_int – used the residues that showed 

up to improve the total energy, interaction energy, and shape complementarity (residues that 

appear in all three lists. Top reported sequences were analyzed for overall energy, interaction 

energy, and shape complementarity change over WT sequence. Data is reported as average 

and standard deviations. 
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Figure 7 Designed C002 variants were isolated by FACS to confirm design 

effectiveness: (A) FACS sort of a MACS-enriched sub-library of C002 at 2 nM WT RBD 

concentration. 10 sequences were identified from the sorted cell population. (B) Potency 

improvement in one variant (v4) was confirmed in three independent technical repeats 

(data generated by Priyanthi Gnanapragasam and Jennifer Keeffe. ). In comparison, IC50 

values of approved nAbs and published C002 WT value were shown [5,13,14]. 
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