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ABSTRACT

Robotic bipedal locomotion has become a rapidly growing field of research as humans
increasingly look to augment their natural environments with intelligent machines. In
order for these robotic systems to navigate the often unstructured environments of the
world and perform tasks, they must first have the capability to dynamically, reliably,
and efficiently locomote. Due to the inherently hybrid and underactuated nature of
dynamic bipedal walking, the greatest experimental successes in the field have often
been achieved by considering all aspects of the problem; with explicit consideration
of the interplay between modeling, trajectory planning, and feedback control.

The methodology and developments presented in this thesis begin with the modeling
and design of dynamic walking gaits on bipedal robots through hybrid zero dynam-
ics (HZD), a mathematical framework that utilizes hybrid system models coupled
with nonlinear controllers that results in stable locomotion. This will form the first
half of the thesis, and will be used to develop a solid foundation of HZD trajectory
optimization tools and algorithms for efficient synthesis of accurate hybrid motion
plans for locomotion on two underactuated and compliant 3D bipeds. While HZD
and the associated trajectory optimization are an existing framework, the resulting
behaviors shown in these preliminary experiments will extend the limits of what HZD
has demonstrated is possible thus far in the literature. Specifically, the core results of
this thesis demonstrate the first experimental multi-contact humanoid walking with
HZD on the DURUS robot and then through the first compliant HZD motion library
for walking over a continuum of walking speeds on the Cassie robot.

On the theoretical front, a novel formulation of an optimization-based control frame-
work is introduced that couples convergence constraints from control Lyapunov func-
tions (CLF)s with desirable formulations existing in other areas of the bipedal loco-
motion field that have proven successful in practice, such as inverse dynamics control
and quadratic programming approaches. The theoretical analysis and experimental
validation of this controller thus forms the second half of this thesis. First, a theoreti-
cal analysis is developed which demonstrates several useful properties of the approach
for tuning and implementation, and the stability of the controller for HZD locomo-
tion is proven. This is then extended to a relaxed version of the CLF controller,
which removes a convergence inequality constraint in lieu of a conservative CLF cost
within a quadratic program to achieve tracking. It is then explored how this new
CLF formulation can fully leverage the planned HZD walking gaits to achieve the
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target performance on physical hardware. Towards this goal, an experimental imple-
mentation of the CLF controller is derived for the Cassie robot, with the resulting
experiments demonstrating the first successful realization of a CLF controller for a 3D
biped on hardware in the literature. The accuracy of the robot model and synthesized
HZD motion library allow the real-time control implementation to regularize the CLF
optimization cost about the nominal walking gait. This drives the controller to choose
smooth input torques and anticipated spring torques, as well as regulate an optimal
distribution of feasible ground reaction forces on hardware while reliably tracking the
planned virtual constraints. These final results demonstrate how each component
of this thesis were brought together to form an effective end-to-end implementation
of a nonlinear control framework for underactuated locomotion on a bipedal robot
through modeling, trajectory optimization, and then ultimately real-time control.
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C h a p t e r 1

INTRODUCTION

The realization of human-like capabilities on artificial machines has captured the
imagination of humanity for centuries. The earliest attempts to realize this were
through purely mechanical means. In 1495, Leonardo da Vinci detailed his Automa
cavaliere, a primitive humanoid in a knights armor and operated by a number of
pulleys and cables. However, these mechanical automatons lacked the ability to apply
feedback control and thus the field remained largely dormant until digital computers
became broadly available. In 1921, the word “robot” was coined by Czech playwriter
Karel Carek, just 40 years before microprocessors were introduced and soon thereafter
the field of legged robots began to emerge.

Today, the field of robotic legged locomotion is of special interest to researchers as
humans increasingly look to augment their natural environments with intelligent ma-
chines. In order for these robots to navigate the unstructured environments of the
world and perform tasks, they must have the capability to reliably and efficiently
locomote. The first control paradigms for robotic walking used a notion of static
stability where the vertical projection of the Center of Mass (COM) is contained to
the support polygon of the feet, leading to the WABOT 1 robot in the early 1970s
at Waseda University [1] and the first active exoskeletons by Vukobratović at the Mi-
hailo Puppin Institute [2]. This static stability criterion was very restrictive, leading
to the development of the Zero Moment Point criterion [3], [4], which enabled a wider
range of robotic locomotion capabilities by generalizing from the COM to the Cen-
ter of Pressure (COP). Despite this generalization, it still restricts the motion of the
robot to be relatively conservative and does not allow for more dynamic motions when
compared to the capabilities of biological walkers [5]. Nevertheless, this methodology
has been perhaps the most popular methodology to date for realizing robotic loco-
motion. The method has been applied to various successful humanoid robots such as
the HONDA ASIMO robot [6], [7], the HRP series [8]–[10], and HUBO [11].

As the field progressed into the 1980s, it became clear that to achieve truly dynamic
locomotion, it was necessary to further exploit the natural nonlinear dynamics of these
systems in an energy efficient and stable fashion. In stark contrast to the concept
of fully actuated humanoid locomotion, Mark Raibert and the LegLab launched a
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series of hopping robots which demonstrated running behaviors and flips [12], [13].
To achieve these behaviors, there was a shift from the conservative walking models
encoded by the zero moment point to reduced order models (e.g. the spring loaded
inverted pendulum) that ensure dynamic locomotion through the creation of stable
periodic orbits [14]. Building upon this core idea, Tad McGeer began development
of completely passive walking machines, which would ultimately give rise to the field
of passive dynamic walking [15]. The downside of this method is that the system has
little to no actuation with which it can respond to perturbations or to perform other
tasks. However, these breakthroughs were critical in demonstrating that dynamic
robotic locomotion was possible on systems which were not fully actuated, and that
this underactuation could actually be leveraged to improve their performance.

Despite the advances leading up to the turn of the century, there remained a grow-
ing gap between the physical capabilities of robotic systems and the development of
controllers to exploit them. This was particularly stark in the area of underactuated
walking, where the lack of formal approaches that leverage the intrinsically nonlin-
ear dynamics of locomotion limited the ability to fully exploit the robot’s actuation
authority. Bipedal locomotion algorithms with analytical guarantees of stability and
performance have been developed in a variety of contexts. A few alternative algo-
rithms that offer stability guarantees include controlled symmetries [16], [17], hybrid
reduction [18], [19], and hybrid zero dynamics (HZD) [20]–[22]. Of these methods,
only controllers based on HZD have been validated experimentally [23]–[28]. HZD
was developed in the early 2000s, where a key development was introduced by Jessy
Grizzle et al. [29] in which they developed the notion of virtual constraints, or holo-
nomic constraints enforced via control rather than a physical mechanism. Enforcing
these constraints leads to low-dimensional invariant surfaces, the zero dynamics sur-
face, in the continuous phase of the model. These virtual constraints could then be
designed such that this surface is hybrid invariant - being invariant under both the
continuous and discrete dynamics - ultimately leading to the concept of Hybrid Zero
Dynamics [30]. The end result is formal guarantees on the generation and stabiliza-
tion of periodic orbits [31], i.e., walking gaits. HZD has been extended to 3D robots
[32]–[36], to embedding simpler models [37]–[39], and templates [40]. This paradigm
for control of dynamic underactuated locomotion has pushed boundaries on what is
achievable, including fast running [41], [42] and efficient walking [43], [44].

With the goal of expanding the field of dynamic powered locomotion, it becomes pru-
dent to develop models and algorithmic approaches which are capable of stabilizing
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and even exploiting the underactuated dynamics of the walking problem. While all of
the dynamic walking paradigms introduced throughout this section can generate sta-
ble walking motions, their actual implementation requires the deployment of feedback
controllers capable of stabilizing the desired motions. In the case of methods which
aim to stabilize the fullbody dynamics of a robot, the dynamic walking problem can
involve a high level of complexity both in the form of nonlinearities and tightly coupled
equations of motion. It is for this reason that historically, model-based controllers for
HZD-based locomotion have primarily been available only in simulation or on lower-
dimensional and simple robots. While there are many difficulties to consider in the
implementation of feedback controllers for these robots, such as model inaccuracies,
there has been a particularly prohibitive bottleneck in available approaches to both
computationally attractive formulations of the problem and in providing sufficient
authority to tune the controller.

1.1 Motivation

As we examine this brief historical outline of key developments to dynamic walking,
it can be observed that with each new proposed methodology comes a greater under-
standing of how to model, plan, and execute increasingly complex behaviors on these
robotic systems. Due to the inherently difficult nature of dynamic walking, successes
in the field have typically been achieved by considering all aspects of the problem,
often with explicit consideration of the interplay between modeling and feedback con-
trol (see Fig. 1.1). Specifically, the robotic and locomotive models which are used
ultimately inform the planning problem and therefore the resulting behavior. Con-
trollers which can actuate and coordinate the limbs must then be developed which,
ideally, provide tracking, convergence, and stability guarantees. On top of these fun-
damental requirements of stability, it is often desired to achieve both increasingly
dynamic and efficient locomotion.

Improving the energetics or dynamic nature of legged locomotion is a fundamen-
tally challenging problem. Within both the gait planning and feedback control steps,
there are a large number of configurable parameters, models, and actuation strate-
gies which can be applied. In order to achieve this, it is often necessary to explicitly
consider domains of increased underactuation and compliance. Further, a roboticist
must consider how to tailor the locomotion plan and execution to fully exploit exist-
ing hardware to the greatest extent possible. This sets up several open questions to
be addressed such as: How do the locomotion models influence the degree to which
the walking problem is governed by the natural dynamics? What is a tolerable level
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of underactuation in the control problem? How can a feedback controller be imple-
mented on actual hardware to achieve the performance which is expected in plans
generated offline? The field of dynamic locomotion will have to confront these issues
in order to both expand the available behaviors and improve the resulting motions.

In this thesis, the interplay between modeling, motion planning, and trajectory reg-
ulation can be used to achieve dynamic and efficient locomotion on actual hardware
platforms is examined. The focus of this work is then on the study of dynamic lo-
comotion problems which are inherently never statically stable; in that they seek
to achieve stable periodic walking. The methodology and developments presented
herein begin with the design of dynamic and efficient walking gaits on bipedal robots
through HZD, a mathematical framework that utilizes hybrid systems models cou-
pled with nonlinear controllers that provably result in stable locomotion for both a
fixed gait and a continuum of walking speeds. It is then explored how new formu-
lations of feedback controllers can fully leverage these designed gaits to achieve the
target performance on physical hardware. Therefore, the overall control framework
presented allows for the full utilization of the mechanical designs for both DURUS
and Cassie, including: efficient cycloidal gearboxes and compliant elements in the legs
for absorbing impacts at foot-strike.

Figure 1.1: Dynamic walking is a complex behavior, requiring control designers and
roboticists to simultaneously consider: robotic models, the transcription of locomo-
tion into a motion planning problem, and the coordination and actuation of the
system via control laws. Depicted here is the interconnection of these components,
which provides an outline for how the broader ideas behind this thesis are connected.
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1.2 Approaches to Locomotion in the Literature

Bipedal robots are high degree of freedom (DOF) systems composed of numerous
linkages and actuators while subjected to intermittent and sometimes impulsive con-
tact with the environment in order to move. This results in a highly coupled and
highly nonlinear mechanical model of the system. It is due to these factors that
the locomotion problem is fundamentally different than traditional approaches for
fixed-base robots. Because of the nature of the problem, virtually all approaches to
realize dynamic walking must first decide upon a locomotion model which will dictate
available options for both trajectory planning and feedback control. The literature
on bipedal locomotion modeling can largely be divided into two categories:

• Reduced order models. At the core of dynamic walking is the idea of reduced
order models. These are either hierarchical—representing behaviors on simple
models, e.g., inverted pendula and compass bipeds—or formally determined—
low-dimensional systems rendered invariant by controllers, e.g., HZD.

• Full order nonlinear dynamics. Bipedal robots are inherently nonlinear with
hybrid dynamical behaviors. These full order dynamics must be accounted for,
either through assumptions thereon that yield reduced order models, through
nonlinear controllers, or via optimization algorithms.

1.2.1 Linear Inverted Pendulum and the Zero Moment Point

In this section, the basic aspects of the Zero Moment Point (ZMP) and how it has
been used in linear inverted pendulum models (LIPM) of locomotion are described.
The concept of the ZMP is identical to the center of pressure (COP), and was origi-
nally introduced through a series of observations on the stability of anthropomorphic
walkers by Vukobrativic̀ in the early 1970s [3], [45]. The primary interpretation of
the ZMP is: the point on the ground at which the reaction forces between the robot’s
contacts and the ground produce no horizontal moment. Consider a robot standing in
single-support, with a finite number of contact points (pi) that constrain the foot to
be flat. As shown in Fig. 1.2(a), the resultant forces will consist of normal (λn) and
tangential components (λt). The ZMP is then computed as:

pZMP :=

∑N
i=1 piλi,n∑N
i=1 λi,n

. (1.1)

This led to perhaps the most commonly used dynamic stability margin [46]–[50],
referred to as the ZMP criterion, which states that a movement is stable so long as
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Figure 1.2: A depiction of the principles and modeling assumptions of the LIPM
approach: (a) Visualization of the ZMP, where the foot is “dynamically balanced” if
the resultant force F is within the support polygon. (b) LIPM with a telescoping
leg and actuated ankle to control the robot along a horizontal surface. (c) Support
polygon and an example of a planned ZMP trajectory.

the ZMP remains within the convex hull of the contact points (also known as the
support polygon). This notion is conservative, and controlling these motions typically
require the robot to remain fully actuated, with position controlled joints and load
cells in the feet for control of the ZMP.

The ZMP criterion has been tied extensively to the linear inverted pendulum model
(LIPM) in order to considerably simplify the trajectory design process, as the ZMP
can be written explicitly in terms of the COM dynamics [51]. This has led to many
researchers to consider a Newton-Euler representation of the centroidal dynamics :

m(c̈+ g) =
∑
i

λi, L̇ =
∑
i

(pi − c)× λi, (1.2)

with c the COM position, L =
∑

k(xk − c)×mkẋk + Ikωk the angular momentum, g
gravitational acceleration, λi the contact forces, pi is each contact force position, ẋk,
ωk the linear and angular velocities on the k-th linkage, mk, Ik are the masses and
inertia tensors, and m the total mass of the robot. If we constrain the motion of a
fully actuated inverted pendulum with a massless telescoping leg such that the COM
moves along a horizontal (x,y) plane, then we obtain a simple linear expression for
the dynamics of the robot. An example of the LIPM is visualized in Fig. 1.2(b). The
dynamics of the LIPM at a given height of the constraining plane, zc, is given by:

ẍ =
g

zc
x+

1

mzc
uy, ÿ =

g

zc
y +

1

mzc
ux, (1.3)

where m is the mass of the robot, g is the acceleration of gravity, and ux, uy are
the torques about the x and y axes of the attachment to the ground, i.e., the ankle.
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The ZMP location on the ground can also be directly written in terms of the LIPM
dynamics as:

pxZMP = x− zc
g
ẍ, pyZMP = y − zc

g
ÿ. (1.4)

Intuitive visual representations of the LIPM have been frequently discussed as a cart-
table system [4], where the cart-table lies on a base with a geometry corresponding
to the support polygon of the robot and indicates the acceptable region of the ZMP
at which the table will not topple over [52]. The use of this LIPM and cart-table
representation means that the design of a walking behavior can be essentially reduced
to an inverse kinematics problem, where the primary planning is done on the ZMP
trajectory. Fig. 1.2(c) shows an example ZMP trajectory for several forward steps.
The ZMP trajectory for this walking is simply planned so that the ZMP always stays
within the support polygon. This approach is largely applied to humanoids, where
some of the most successful ZMP walkers to date are the WABIAN robots [1], HRP
series [8], [10], Johnnie [53], and HUBO [11].

1.2.2 Capturability and Nonlinear Inverted Pendulum Models

Rather than characterize the stability of walking based on the ZMP, Pratt [54] and
Hof [55] independently introduced the idea of a Capture Point (CP), referred to as the
“extrapolated center of mass” (XCOM) by Hof. The CP can be intuitively described
as the point on the ground onto which the robot has to step to come to a complete rest,
shown in Fig. 1.3(b). In canonical examples of the CP methods, the overall walking
motions of the robot are planned and controlled based on the (instantaneous) capture
point (ICP) dynamics. In this case, the COM of the robot is constrained to move
at a constant height along a horizontal plane, and thus uses a LIP representation
of the robotic system. Due to the force balance associated with the constant height
assumption, we know the forces in Equation (1.2) explicitly:∑

i

λi =
c− rCMP

z
mg (1.5)

where rCMP is location of the centroidal moment pivot (CMP) [56]. This greatly
simplifies the dynamics of the problem, for which it was shown in [57] that for the
compound variable rx,yic = c +

√
zc
gz
ċ, the unstable portion of the resulting system

dynamics (along the horizontal direction) can be written as:

ṙx,yic =

√
gz
zc

(rx,yic − r
x,y
CMP ), (1.6)



8

Figure 1.3: Representative nonlinear inverted pendulum models. (a) A depiction of
several variations on inverted pendulum models, which attempt to expand the possible
behaviors of the robot by accounting for more of the body inertia or by releasing the
constrained motion of the hip. (b) A depiction of the capture point for a LIP walking
robot.

where ṙx,yic is the horizontal location of the ICP. The main consideration of the loco-
motion process is then to ensure that the feet are placed such that rx,yic lies within the
support polygon:

rx,yic ∈ conv{px,yi }. (1.7)

Satisfying this condition means that the COM will converge to the CP and come
to a rest. Despite this intuitive representation of stability, the LIPM walking sim-
plifications come with a steep cost due to the stringent requirements on the motion
and actuation of the robot. On the other hand, it is precisely these characteristics
which make the model most suitable for performing complex multi-objective tasks
which include manipulation during intermittent conservative motions. The maturity
and reliability of the LIPM made it prevalent in the walking controllers used at the
DARPA Robotics Challenge [58]–[60].

In an attempt to overcome the issues associated with the strict assumptions of the
LIPM, researchers have introduced variations of more complex pendulum models as
illustrated in Figure 1.3(a). Perhaps the largest constraint on the motion of LIPM
walking is the constant center of mass height assumption, leading to the development
of a nonlinear inverted pendulum with variable mass height [61]. To better account
for the inertia of a swinging leg, the addition of a mass at the swing foot was proposed
and termed the Gravity Compensated LIPM [62]. Additionally, when a large robot or
humanoid is performing dynamic walking behaviors, nontrivial angular momenta can
result. One of the most commonly used models throughout the literature to address
this problem is to add a flywheel to the inverted pendulum, which can be used to
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represent the rotational inertia of the robot body as it moves [63]. A flywheel rep-
resentation of the robot has gained recognition as a convenient representation of the
robotic system particularly for CP control [54], [64]. Various pendulum models have
been widely used in analysis of push recovery and balance [65]–[68]. The usefulness of
the CP approach has also demonstrated walking behaviors successfully on hardware
[57], [69], and was famously used on Honda’s ASIMO robot [70], [71].

1.2.3 Spring Loaded Inverted Pendulum

Classic work by Raibert on hopping and running robots in the 1980s demonstrated
the efficacy of using compliant models in locomotion through the development of a
planar hopper which could bound at a speed of 1 m/s [12] and a 3D hopper which
could achieve running without a planarizing boom [13]. These early successes drove
researchers to investigate a Spring Loaded Inverted Pendulum (SLIP) representation
of bipedal robots, shown in Fig. 1.4(a). The SLIP model provides a low-dimensional
representation of locomotion which draws inspiration from biological studies on an-
imal locomotion [72], [73]. The SLIP is particularly attractive due to its inherent
efficiency and robustness to ground height variations.

In order to use this model to synthesize controllers for actual robots, the control
objectives are typically decomposed into three components: (1) achieving a particu-
lar footstrike location to regulate forward speed, (2) injecting energy either through
passive compliance or motors to regulate the vertical height of the CoM, and (3)
regulating the posture of the robot. One then designs the walking and running mo-

Figure 1.4: An example of the SLIP model and the emergent behavior of the walking
task. (a) The SLIP model, with the mass concentrated at the hip and virtual compli-
ant legs. (b) The resulting ground reaction forces during walking, the “double hump”
profile is observed throughout walking behaviors in biological walkers. (c) A periodic
orbit for the vertical COM position and velocity, noting that the lack of impact means
that there is no discontinuity at footstrike.
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tions with SLIP models and compensates for model mismatch or disturbances with
well-tuned foot placement style controllers [74]–[78]. To this end, the dynamics of the
SLIP are derived by assuming that the mass of the robot is concentrated at the hip
with virtual springy legs:

0 = ml̈ −mlθ̇2 +mg sin(θ) + Fslip (1.8)

0 = m[l2θ̈ + 2ll̇θ̇] +mgl sin(θ),

where l is the stance leg length, θ is the stance leg angle, and Fslip is the force arising
from the spring compression. One of the signature characteristics of this model is the
“double hump” profile of the reaction forces, shown in Fig. 1.4(b), described by the
force interactions observed in biological walkers [73]. A key contribution introduced
by the SLIP community is the handling of underactuated behaviors, with many of the
corresponding robots having point-feet and flight phases of motion. Finding a stable
gait thereon does not rely on the quasi-static assumptions used for the fully actuated
pendulum walkers of the preceding sections—instead focusing on stable cyclic loco-
motion. Dynamic stability is defined based on a constraint on the periodicity of the
walking. To achieve forward walking, the initial states of the robot and the angle of
attack α for the swing leg are chosen to yield a periodic gait; see Fig. 1.4(c). It is
important to note that since the legs are massless, impacts are not considered, and
the resulting orbit will be closed with no instantaneous jumps in the velocity.

The SLIP representation of walking has been primarily used for legged robots which
have springs or series-elastic actuators (SEAs). Some of the earliest inclusions of com-
pliant hardware on bipedal robots was with spring flamingo and spring turkey [79].
Later, the COMAN robot included passive compliance to reduce energy consump-
tion during walking [80], and the Valkyrie robot from NASA was the first full-scale
humanoid robot to heavily use SEAs [81]. Using inspiration from the SLIP morphol-
ogy, Hurst designed the planar humanoid robot MABEL [25] and the 3D bipedal
robot ATRIAS [82], [83] to include series elastic actuation and thus return energy
through impacts and shield the motors from impact forces at footstrike. One of the
latest robots in this series, the Cassie biped (described in Sec. 4.2) also mechanically
approximates SLIP design principles [84]. Several running robots have specifically
considered SLIP model principles in their mechanical design such as the ARL Mono-
pod II [85], the CMU Bowleg Hopper [86], and the Keneken hopper [87].
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1.2.4 Step Planning with Linear and Reduced-Order Models

Often for the simplest models of walking, such as traditional ZMP and LIPM versions
of CP, the linear dynamics of the restricted system yield straightforward approaches
to planning the motion of the COM. The walking characterized by these linear models
often implicitly satisfy quasi-static stability assumptions, ultimately allowing a control
designer to decouple the high-level step planner and low-level balance controllers
[88]. In this vein, Kajita [52] introduced the jerk of the COM as an input controlled
by a discrete LQR controller with preview action [89] to plan ZMP trajectories for
predefined footsteps. However, predefining the motions of the ZMP or footholds is
not always necessary or desirable.

If planners for these simple models could instead be performed online, then the robot
may be able to mitigate issues related to reactivity. Weiber [90] proposed using
linear trajectory-free model predictive control (MPC) as a method for explicitly han-
dling the constraints imposed by the ZMP approach of Sec. 1.2.1 while continuously
re-evaluating the walking path. Stephens [91] presented the use of MPC for push
recovery and stepping on the SARCOS humanoid, which could be extended to ob-
tain walking behaviors. The example shown in Fig. 1.2(c) visualizes the result of
this MPC approach applied to LIPM robotic walking. It has also been shown how
optimization and model predictive control can extend the notions of capture point
to viable regions on which the biped can step [92], or how push recovery can be
planned over a horizon of multiple steps [57]. Despite the ability of these planners
to adapt online, they cannot handle the discrete dynamics associated with footstrike,
and demand near-zero impact forces [93]. This rules out the nontrivial impacts which
are naturally associated with dynamic walking. It is also difficult to provide a pri-
ori guarantees on whether any given reduced-order plan is feasible to execute on the
full-order dynamics. Such methods typically use inverse kinematics [94], or inverse
dynamics [95] sometimes in an operational-space formulation [96] to compute the full-
order control inputs at each instant. Solving such near-term inverse problems does
not imply that future inverse problems in the trajectory will be feasible, requiring
additional planning [97], [98].

1.2.5 Passive Dynamic Walking

Some of the first work to study hybrid systems for the purposes of synthesizing walk-
ing were within the field of passive dynamic walking, which focused largely on how
elegant mechanical design can enable stable walking on simple machines. Tad McGeer
[15], [99] introduced several passive walking robots that could ambulate down small
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Figure 1.5: A canonical example of passive dynamic walking is the compass biped.
(a) An illustration of the biped and its configuration on the slope. (b) Directed graph
of the corresponding hybrid dynamical system, with only one continuous domain and
one discrete transition. (c) A closed limit cycle implies stable walking, shown is the
limit cycle for the biped walking down a 5 degree slope.

declines when started from a reasonable initial condition. While these early bipeds
were completely passive and relied on gravity, several bipeds were built to demon-
strate that simple actuators could substitute for gravitational power and compensate
for disturbances. Small electric actuators were used for the Cornell walkers [100]–
[102] and the MIT learning biped [103], [104], while the Delft biped instead used a
pneumatic actuator at the hip [105], [106]. Controlled symmetries [16] and geometric
reduction [18] has been used to extend these ideas to actuated robots and 3D walking.
It has also been shown how the use of actuated environments can excite walking on
passive robots [107]. Because of the care taken in mechanical design, these robots
could all operate without sophisticated real-time calculations—though at the cost of
diminished control authority.

The governing equations of motion for passive dynamic robots are nonlinear, and
correspond to the continuous full-order dynamics rather than using an approximate
(or reduced order) model. Further, an inherent feature of dynamic walking is that
the robot is moving quickly through the environment. This means that the resulting
motions cannot be slow enough for the feet to approach the ground with negligible
velocity; impacts with the ground, therefore, become an important consideration.
The locomotion problem can then be considered hybrid [108], [109], meaning it con-
sists of both continuous and discrete nonlinear dynamics where the key element that
determines the behavior is a directed cycle of continuous domains.

A canonical example of passive dynamic walking is an unactuated compass biped
walking down a slope of angle γ [110], shown in Fig. 1.5(a). This robot consists of two
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kneeless legs each with a point-mass and a third mass at the hip. The directed cycle
for the biped consists only of a single-support domain, with transition occurring at
footstrike (shown in Fig. 1.5(b)). The periodic nature of the stable walking behavior
is best summarized by the phase portrait given in Fig. 1.5(c), where there are discrete
jumps occurring at impact.

1.2.6 Hybrid Zero Dynamics

The method of hybrid zero dynamics (HZD) leverages nonlinear feedback control
design to induce stable locomotion on underactuated robots. Jessy Grizzle et al. [20],
[29], [111] introduced the concept and developed a set of tools which are grounded
in nonlinear control theory to deal formally with the nonlinear and hybrid nature
of dynamic walking (cf. the textbook [30]). The basis of the HZD approach is the
restriction of the full-order dynamics of the robot to a lower-dimensional attractive
and invariant subset of its state space, the zero dynamics surface, via outputs that
characterize this surface. If these outputs are driven to zero, then the closed-loop
dynamics of the robot is described by a lower-dimensional dynamical system that
can be “shaped” to obtain stability. As was the case for uncontrolled hybrid models
generalizing hybrid dynamical systems, a hybrid control system describes an actuated
walking robot, leading to the notion of hybrid zero dynamics.

The primary consideration which governs the overall locomotion problem is the spec-
ification of a directed cycle for the underlying hybrid (control) system. Because HZD
incorporates feedback control, significantly more complex motions are possible, such
as multidomain walking. The controlled compass walker [110] is presented in Fig. 1.6

Figure 1.6: An example of HZD-based control for a compass biped on flat ground.
(a) The robotic configuration. (b) Joint trajectories and torques over three steps of
stable walking. (c) The walking exhibits a stable limit cycle, with discrete jumps
occurring at impact.
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to provide a comparison to the passive dynamic walking. In this example, it can be
seen that torques applied at the hip are used to control the motion, while the robot
walks with a stable limit cycle on flat ground.

In the context of robotic implementations, HZD has proven successful in realizing a
wide variety of dynamic behaviors. Many of the early uses of the method were on
point-footed robots which were restricted to the sagittal plane. The first robot used to
study HZD was the Rabbit biped [112], followed later by MABEL [113] and AMBER
1 [114]. The ability of (P)HZD to handle multidomain behaviors led to its use on
more complex planar bipedal robots such as ATRIAS [115], [116], AMBER 2, [117]
and AMBER 3M [118]. New challenges appeared while extending the method of HZD
from planarized robots to 3D robots, which exhibit additional degrees of underactua-
tion. Control of fully actuated humanoids was demonstrated on a small-scale example
with a NAO robot [119] via PHZD, while point-footed 3D walking with HZD was first
shown at the University of Michigan with the MARLO biped [120]. At the DARPA
Robotics Challenge, the humanoid DURUS was featured in an efficiency walk-off [43]
where it demonstrated the first sustained humanoid HZD walking—over five hours
continuously. DURUS went on to exhibit the most efficient walking on a humanoid to
date, while performing human-like multicontact behaviors and managing significant
underactuation [44]. The method has been extended to powered prosthetic walking
[121]–[123] and to exoskeletons which can walk for patients with paraplegia [124],
[125]. The use of springs in locomotion has also proven useful in the development of
dynamic walking behaviors, though it presents additional challenges both mathemat-
ically and in practice. The notion of compliant hybrid zero dynamics was introduced
in the late 2000s [126], and was later expanded upon to obtain compliant robotic run-
ning [41]. One of the latest robots to successfully demonstrate stable HZD walking is
the Cassie biped, with the robot exhibiting underactuated feet and passive springs in
the legs. Dynamic walking on Cassie has been successfully realized on hardware both
by planning under the assumption of sufficient rigidity in the legs to ignore compliant
elements [127], and for walking which considers the passive compliance in the zero
dynamics [128].
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1.3 Contributions

While the hybrid zero dynamics (HZD) framework embraces the use of planning
and formal control for synthesizing walking gaits in a manner which can exploit the
fullbody (and therefore passive) dynamics of the system, it has only recently become
possible to actually use it for complex 3D robots. This was largely attributable to
the series of new methodologies, algorithms, and optimization developments discussed
earlier in this chapter, which has led to more efficient algorithms and optimization
problems that can handle the problem’s inherent computational complexity. However,
most of these developments have been primarily focused on improvements to offline
gait synthesis, and there still exists a significant gap in the available methodologies
existing in the literature for realizing model- and optimization-based control of these
behaviors on hardware. To address this gap, this thesis focuses first on developing a
solid foundation for HZD gait synthesis on two 3D underactuated bipeds which will
then be used to motivate a new formulation of control Lyapunov functions (CLF)s
that are amenable to implementation on robotic systems. The final result of the
thesis is then to combine these elements into an experimental study, which uses a
parameterization of a compliant HZD motion library to realize a CLF on hardware.

Figure 1.7: Outline and flow of this thesis, with contribution areas highlighted.
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The key results of this thesis are summarized below:

• The development of the first and only multi-contact humanoid walking devel-
oped with HZD to date, which is also the most efficient reported humanoid
walking in the literature to date.

• The development of a compliant locomotion model for the heavily underactuated
3D Cassie biped is introduced and then shown to accurately capture the passive
dynamics of compliant walking over a variety of walking speeds experimentally.
The experiments further the motivation of this thesis on leveraging fullbody robot
models in optimization, and show how model-based controllers can be developed
using a parameterization of the trajectory optimization results for each gait.

• A new inverse dynamics-based formulation of the control Lyapunov function
controller (ID-CLF-QP) for robotic systems is developed and then theoretically
analyzed. Additional discussion shows several of the benefits of this approach,
which introduces additional decision variables to the traditional (CLF-QP) in
order to pose an inverse dynamics problem with a Lypaunov convergence con-
straint. This combination allows for a simple affine representation with respect
to the robot torques, constraint forces, and accelerations for a variety of con-
straints and costs.

• A relaxed variant of the CLF controller which was developed in this thesis,
termed the (ID-CLF-QP+), is implemented on hardware. The overall approach
used a parameterization of the motion library developed in the HZD study
of walking on Cassie to allow for the CLF controller to be implemented with
smooth torques and within a reasonable computation time. The resulting ex-
periments demonstrate the first successful realization of a CLF controller on a
3D biped in the literature.
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1.4 Brief Description of Chapters

Chapter 2 describes general modeling concepts for locomotion on bipedal robots.
This begins with an introduction of the continuous and discrete models of motion,
resulting in a hybrid representation of the locomotion problem.

Chapter 3 presents the formal constructions underlying the hybrid zero dynamics
framework. With the models developed in Chap. 2, we introduce the main goal of
the HZD discussion: a nonlinear trajectory optimization problem that results in a
closed-loop plan for stable walking.

Chapter 4 discusses the hardware and robot models specific to the two robots con-
sidered in this thesis: DURUS and more importantly, Cassie. Further, we provide
a brief motivation for considering the full leg kinematics on Cassie, including the
passive compliant elements present in the leg.

Chapter 5 illustrates how the HZD framework can be leveraged to obtain complex,
dynamic, and efficient locomotion on the underactuated and compliant humanoid
robot, DURUS. These preliminary results motivate the subsequent work on Cassie in
Chap. 6, where the algorithms and software from this chapter are further developed.

Chapter 6 demonstrates the success of the HZD framework in capturing the passive
dynamics of locomotion on the compliant Cassie model, while rendering stable walk-
ing. Further, a compliant HZD motion library is developed, and the accuracy of the
robot model is validated using an inverse dynamics controller on hardware.

Chapter 7 presents the main theoretical contribution of this thesis : a novel formu-
lation of the existing control Lyapunov function based quadratic program for robotic
systems. The main result of this chapter is an optimization-based controller that cou-
ples convergence constraints from CLFs with desirable formulations existing in other
areas of the bipedal locomotion field that have proven successful in practice, such as
inverse dynamics control and quadratic programming approaches.

Chapter 8 presents the main experimental contribution of this thesis : an imple-
mentation of the (ID-CLF-QP) controller developed in Chap. 7, which is applied to
the compliant model we create for Cassie in Sec. 4.2, and used to track the compli-
ant HZD motion library which is found in Sec. 6.2 over a variety of walking speeds.
The results demonstrate the effectiveness of the overall approach, showing that it
accurately captures the passive dynamics of the planned walking, with balanced and
smooth tracking of the virtual constraints with the anticipated force and accelera-
tion profiles from optimization, and with evaluation times that make it tractable for
reliable real-time implementation at 1 kHz.
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C h a p t e r 2

MODELING OF BIPEDAL ROBOTS

In this chapter, a general description of the continuous and discrete dynamics which
govern legged robotic locomotion is described, followed by more specific descriptions
of the DURUS and Cassie robots. In classical nonlinear control design, analysis is
typically performed on a dynamical system of the control-affine form:

ẋ = f(x) + g(x)u, (2.1)

where x ∈ X ⊂ Rn is the set of controllable states, u ∈ U ⊂ Rm is the control input,
and the mappings f : Rn → Rn, g : Rn → Rn×m are assumed to be locally Lipschitz
continuous functions of x. While this is a more general approach to representing the
dynamics of feedback control systems, the dynamics of most bipedal robots takes on
a more specific form which will be useful in later sections.

All of the robotic walking which this thesis considers will be 3D locomotion, meaning
that the robot is unconstrained in its motion through the world except via contacts
at the feet. In addition, an important aspect which will be considered is passive
compliance in the leg structures of the robots. This serves not only the purpose of
shielding motors and gearboxes from large impacts, but the compliance can be used
to do negative work at impact instead of the actuators and therefore can improve the
efficiency of walking if utilized appropriately.

2.1 Bipedal Robots: Floating Base Systems with Contacts

Bipedal robotic platforms are conveniently modeled using a tree-like structure with
an ordered collection of rigid linkages. This structure lends itself well to generaliza-
tion, and thus tools to facilitate the generation of symbolic [129] or algebraic [130]
expressions for the kinematics and dynamics of the robot are commonly used. The
robot itself must ambulate through a sequence of contact conditions with the environ-
ment. Because interactions with the environment are always changing, a convenient
method for modeling the system is to construct a representation of the robot in a
general position, and then enforcing ground contacts through forces arising from the
associated holonomic constraints that are imposed at the feet. This is often referred
to as the floating-base model of the robot.
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Figure 2.1: A visual demonstration of the robotic configuration and contact con-
straints which can be applied to a bipedal robot. (a) The floating-base coordinate
system for an arbitrary bipedal robot, with a coordinate frame attached to the hip
and rotational joints connecting rigid linkages of the body. (b) Contact geometry of
the constraints for a flat-foot contact and an underactuated point-foot contact.

2.1.1 The Configuration Space

In order to represent the floating-base, let R0 be a fixed inertial frame attached to
the world and let Rb be a body reference frame rigidly attached to the pelvis of the
robot with the origin located at the center of the hip. Then the Cartesian position
pb ∈ R3 and orientation ϕb ∈ SO(3) compose the floating base coordinates of frame Rb

with respect to R0. The remaining coordinates which dictate the shape of the actual
robot, ql ∈ Ql ⊂ Rnl , are the local coordinates representing rotational joint angles
and prismatic joint displacements. An image of this floating base coordinate system
definition applied to an arbitrary bipedal robot is given in Fig. 2.1(a). Let TQ be
the tangent bundle of Q, then the combined set of coordinates is q = (pTb , ϕ

T
b , ql)

T ∈
Q = R3 × SO(3)×Ql with the states x = (qT , q̇T )T ∈ TQ = X.

2.1.2 Continuous Dynamics

If we continue with the assumption that the robot structure is a rigid collection of
linkages, then we can obtain the equations of motion using the method of Lagrange.
The Lagrangian for the floating-base system, L : TQ → R is defined by:

L = K(q, q̇)− V(q), (2.2)

where K : TQ → R and V : Q → R are the kinetic and potential energies of
the robotic system, respectively. The robot dynamics can be determined through
Lagrange’s equations:

d

dt

∂L
∂q̇
− ∂L
∂q

= Γ, (2.3)



20

with Γ the vector of generalized forces acting on the robot, written as:

Γ = Bu+ JTc λc +Bspτsp(q, q̇). (2.4)

The matrices B and Bsp are derived from the principle of virtual work and provide a
mapping for the actuator torques u ∈ U ⊂ Rm and spring torques τsp ∈ Rmsp enter
the dynamics, respectively. Finally, external wrenches due to contact constraints,
λc : TQ × U → Rmc , are mapped via the constraint Jacobian Jc(q), which will
be derived in Sec. 2.1.3. Because the robots considered in this work are open-chain
collections of linkages, the kinetic and potential energies are concisely written as [131]:

K(q, q̇) =
1

2
q̇TD(q)q̇, V =

n∑
i=1

mighi, (2.5)

where hi is the center of mass height for the ith link, mi is the corresponding link
mass, g is the gravitational constant, and D(q) is the manipulator inertia matrix. In
terms of the link Jacobians, Ji, the manipulator inertia matrix is defined as:

D(q) =
n∑
i=1

JTi (q)MiJi(q), (2.6)

whereMi is the generalized inertia matrix of the ith link. Following the derivation of
Lagrange’s equations in (2.3) ultimately leads to a structured set of equations which
describe the unpinned dynamics of the robot:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ Jc(q)
Tλc +Bspτsp(q, q̇). (2.7)

The matrix C(q, q̇) contains both Coriolis and centrifugal terms, G(q) is the gravity
vector, and these are often grouped into a single term H(q, q̇) = C(q, q̇)q̇ + G(q).
These dynamics can also be expressed in the state-space representation of (2.1) as:

d

dt

[
q

q̇

]
=

[
q̇

D−1(q)
(
Jc(q)

Tλc +Bspτsp(q, q̇)−H(q, q̇)
)]︸ ︷︷ ︸

f(x)

+

[
0

D(q)−1B

]
︸ ︷︷ ︸

g(x)

u. (2.8)

Traditional methods for modeling the dynamics of floating-base systems typically
result in the separation of the equations of motion into multiple parts [132]: one arising
from the multibody continuous dynamics, and the other imposed via constraints on
contacts with the environment. It is due to this that the external wrenches, λc, in
our models will be governed by an acceleration constraint on the evolution of the
dynamics, which is in the next section.
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2.1.3 Constrained Dynamics

The fact that the robotic model is derived using a floating-base representation means
that as we manipulate the robot, the resulting ground force interaction through the
Lagrangian dynamics in Equation (2.7) is critical. In the robotic models used through-
out this work, it is assumed that both the robot and the ground are rigid bodies,
meaning that the following assumptions should hold: the bodies exhibit no force
when they are not in contact and they are subject to nonpenetration, e.g., a point on
one body cannot enter below the surface of the other. The resulting forces are then
unilateral [132], meaning that they can only push and not pull on the ground:

λc ≥ 0, λTc ηc(q) = 0, ηc(q) ≥ 0, (2.9)

where ηc(q) is a closure equation representing the configuration of a given constraint,
and λc is a vector of constraint wrenches corresponding to the forces arising from the
constraint. The second constraint, λTc ηc(q) = 0, is an orthogonality condition, and
shows that for each possible contact, if the closure is violated and ηc(q) > 0, then the
constraint is no longer enforced and the corresponding normal force should be zero.
The equations in (2.9) are referred to as complimentary conditions in the literature,
and are used frequently for dynamic modeling [133]–[135] and simulation [136], [137]
of systems which are subject to intermittent contacts.

Since the robotic locomotion that will be considered in this work will be subjected
to a predetermined sequence of constraints, there is an a priori specification which
can be used rather than detecting and handling the more general case. All of the
constraints which will be considered here will be holonomic constraints, which will be
an explicit constraint on the relation between the position states of the robot, q [138].
More specifically, a holonomic constraint, ηc : Q → R, is a kinematic constraint of
the position or orientation between a contact point and the walking surface. For one
contact, the maximum number of constraints is then 6, and can be represented as:

ηc(q) = Sc

[
pc(q)

T , ϕc(q)
T
]T

= constant, (2.10)

where pc(q) is the Cartesian position of the contact point, ϕc(q) is a rotation between
contacting bodies, and Sc is a selection matrix for the applicable constraints. Without
loss of generality to (2.9), the constant term on the right hand side can be subtracted
to the left. Two of the most common types of foot contact for bipedal walking are
shown in Fig. 2.1. On the left, a 6-DOF constraint corresponding to a flat foot in
contact with the ground is shown which would correspond to Sc = I6×6, and on the
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right a 4-DOF constraint is depicted which restricts a point contact along with an
assumption of no yaw and corresponding to Sc = [I4×4 04×2] if ϕc(q) := [ϕzc , ϕ

y
c , ϕ

x
c ]
T .

We can differentiate (2.10) once to obtain a kinematic velocity constraint:

∂ηc(q)

∂q︸ ︷︷ ︸
Jc(q)

q̇ = 0, (2.11)

and in order to obtain an acceleration constraint, we differentiate once more:

Jc(q)q̈ + J̇c(q, q̇)q̇ = 0, (2.12)

leading to a system of equations where Equations 2.7 and 2.12 couple the accelerations
to the inputs and constraint forces. One way of handling the conditions on (2.7)
governing contact is to explicitly solve for λc and substitute by solving (2.12) for q̈:

λc(q, q̇, u) = −
[
Jc(q)D

−1(q)JT (q)
]−1
[
J̇c(q, q̇)q̇ + Jc(q)D

−1(q) (Bu (2.13)

+Bspτsp −H(q, q̇))] .

After some rearranging, the augmented equations of motion:

D(q)q̈ + Ĥ(q, q̇) = B̂u+ B̂spτsp (2.14)

now have terms which implicitly satisfy (2.12):

Ĥ(q, q̇) = H(q, q̇) + JTc (q)
[
Jc(q)D

−1(q)JT (q)
]−1
[
J̇c(q, q̇)q̇ + Jc(q)D

−1(q)H(q, q̇)
]

B̂sp(q, q̇) = Bsp + JTc (q)
[
Jc(q)D

−1(q)JT (q)
]−1

Jc(q)D
−1(q)Bsp

B̂(q, q̇) = B + JTc (q)
[
Jc(q)D

−1(q)JT (q)
]−1

Jc(q)D
−1(q)B. (2.15)

However, there is no guarantee that the complimentary conditions (2.9) or any ad-
ditional feasibility conditions such as friction (e.g. (2.21)) will be satisfied, and the
expressions have now become considerably more complex.

Direct Dynamics: Constraint Projection

Many robotic platforms are modeled using closed-loop topologies such as manipu-
lators with workspace constraints [96], [139], [140], parallel robots, [141], or legged
robots [142]. The end goal, as was seen in the last section, is to either form a set of
coupled differential algebraic equations (DAE) such as (2.7) and (2.12), or an ordinary
differential equation (ODE) such as (2.8). Many implementations for both feedback
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control and simulation approach this problem by augmenting (2.7) with the solved
acceleration as was done in (2.15); however, this approach often performs poorly both
for large DOF systems due to repeated inversion of the inertia matrix which magnifies
model error, and near singularities as the augmented inertia matrix invertibility relies
on the Jacobian rank. Instead, one could consider a linear projection operator [143]:

Pc(q) = I − J†c (q)Jc(q), (2.16)

where (·)† denotes the pseudoinverse. If we look again at (2.11), we see that it is
expressed in the form of the linear operation equation. This means that any admissible
velocity must belong to the null space of the constraint Jacobian matrix, i.e. q̇ ∈
Null(Jc). Thus, we can decompose the constraint velocity and accelerations as:

q̇⊥ ≡ (I − Pc(q))q̇ = 0 (2.17)

q̈⊥ ≡ (I − Pc(q))q̈ = Cc(q, q̇)q̇ (2.18)

with Cc(q, q̇) = −J†c (q)J̇c(q, q̇).

Aghili went on to show [143] how this decomposition could be used to pose the direct
dynamics of a constrained multibody system which produces a unique solution to the
acceleration:

Dc(q)q̈ +Hc(q, q̇) = Bc(q)u+Bc,sp(q)τsp, (2.19)

whereHc(q, q̇) = Pc(q)H(q, q̇)−Cc(q, q̇)q̇, Bc(q) = Pc(q)B, andDc(q) is called the con-
straint inertia matrix. This constraint inertia matrix is related to the unconstrained
inertia matrix, assuming a symmetric matrix, by:

Dc(q) := D(q) + Pc(q)D(q)− (Pc(q)D(q))T . (2.20)

Although Dc(q) is not unique1, since D(q) is invertible, the constraint inertia matrix
will also be invertible, meaning the acceleration can be uniquely determined from the
constrained dynamics of (2.19).

The form of the dynamics in (2.19) is desirable in some circumstances when a DAE
or ODE for the constrained system is desired without having to directly compute the
constraint wrenches as in (2.13). Further, it mitigates the downsides of (2.15) in that
no inversions of the mass-inertia matrix are necessary in the DAE form and the use
of a pseudoinverse is more desirable if the system ever operates near a singularity.

1Other valid choices of Dc(q) may include (PcD+α(I −Pc)) for scalar α, (D+PcD−DPc), or
(PcDPc + (I − Pc)D(I − PC)).
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Contact Feasibility and Friction

Finally, when designing motions for the robot it is important to also model the real-
world limitations to the allowed tangential force before it will break a nonslip condi-
tion. Ideally, a classical Amontons-Coulomb model of (dry) friction is used to avoid
slippage and is represented as a friction constraint [138]. For a friction coefficient µ,
the space of valid reaction forces is characterized by the friction cone:

C =
{

(λx, λy, λz) ∈ R3
∣∣λz ≥ 0;

√
λ2
x + λ2

y ≤ µλz

}
. (2.21)

However, this constraint is nonlinear, and cannot be implemented as a linear con-
straint. An alternative solution is to use a pyramidal friction cone:

P =

{
(λx, λy, λz) ∈ R3

∣∣λz ≥ 0; |λx|, |λy| ≤
µ√
2
λz

}
. (2.22)

This is a more conservative model than the friction cone, but is advantageous in
that it is a linear inequality constraint that can be implemented in a linear optimiza-
tion problem [144]. When a surface is in contact with the outside world, additional
constraints are introduced to prevent it from rolling over the contact edge in the form:

− l
2
λz <λmx <

l

2
λz

−w
2
λz <λmy <

w

2
λz (2.23)

where l and w are the lengths and widths of the surface [145].

2.2 Discrete Dynamics: Impacts

An inherent feature of dynamic walking is that the robot is moving quickly through
the environment. This means that the resulting motions cannot be slow enough for the
feet to approach the ground with negligible velocity; impacts with the ground, there-
fore, become an important consideration in dynamic walking. Formally accounting for
nontrivial impacts underlies the basis for hybrid dynamical approaches to modeling
locomotion [30], [138], [146]. Impacts during walking typically occur when the non-
stance foot strikes the ground. If we integrate the Lagrangian dynamics (Equation
(2.7)) over the duration of the impact, we obtain:

D(q−)(q̇+ − q̇−) = Jc(q
−)TFimp, (2.24)

where Fimp is the impulsive force and (q−, q̇−), (q+, q̇+) are the pre and post-impact
states. The simplest method for determining Fimp is to assume that the impulse is
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instantaneous, forming a perfectly plastic impact [108], [109]. Since this contact is
rigid and inelastic, when a point makes first contact, velocities must change instan-
taneously to adhere. This provides a kinematic relation for the post-impact velocity:

Jc(q
−)T q̇+ = 0. (2.25)

Combining Equations (2.24) and (2.25) leads to the overall impact model:[
D(q−) −Jc(q−)T

Jc(q
−) 0

][
q̇+

Fimp

]
=

[
D(q−)q̇−

0

]
, (2.26)

where the post-impact velocity, q̇+, can be found using the Schur complement [147]:

q̇+ =
(
I −D(q−)−1Jc(q

−)T
(
Jc(q

−)D(q−)−1Jc(q
−)T
)−1

Jc(q
−)
)

︸ ︷︷ ︸
∆q̇(q−)

q̇−. (2.27)

This is perhaps the simplest and most commonly used impact model leveraged for
legged robots. However, the determination of Fimp is a complex problem and an open
area of research. In real life, impacts are not truly instantaneous and do not always
achieve stiction. Situations with multiple impacts can arise [148] leading to Zeno
behaviors [149]–[151] or slippage [152], [153].

2.3 Hybrid Dynamical Models

Bipedal robots display both continuous and discrete behaviors, lending themselves
naturally to hybrid systems models. Continuous evolution of the biped dynamics
occurs when there is a fixed number of contact points with the environment, in which
we say the robot is on a vertex. There is a discrete change in the biped dynamics
when the number of contact points with the environment changes, on which we say
the robot has reached an edge. A bipedal walking gait often consists of one or more
different continuous phases followed by discrete events that transition from one phase
to another, motivating the use of multi-domain hybrid systems with a specific ordering
of phases. This is traditionally described as a walking cycle, which is a directed cycle
with a sequence of continuous domains and edges (changes in contact conditions).
A simple example of this is two-domain walking, pictured in Fig. 2.2(c), where the
robot traverses a double-support and single-support domain in a repeating order.

Definition 2.3.0.1. A directed graph is a graph described by the tuple Γ = (V,E)

where V is the set of vertices and E ∈ V ×V is the set of edges. Because the graph is
directed, the edges have a direction associated with them, meaning each edge defines
an arc from one vertex to another.
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Figure 2.2: A graphical representation of hybrid system model components. (a) A
hybrid dynamical system modeled as a system with impulse effects. (b) A periodic
orbit on which the flow, ϕ(t + T, t0, x0), evolves until it strikes the guard, S. (c) An
example of a two-domain directed cycle for a bipedal robot, i.e., discrete phases and
transitions that represent the walking pattern of the designated behavior.

Definition 2.3.0.2. A directed cycle is a directed graph Γ = (V,E), with a collec-
tion of vertices V = {v1, v2, ..., vnp}, and a set of edges E = {e1 = (v1 → v2), e2 =

(v2 → v3), ..., enp = (vnp → v1). Put simply, a directed cycle is a directed graph in
which each edge is traversed in the same direction.

Definition 2.3.0.3. A hybrid dynamical system, used to model a walking robot
[146], is defined as the tuple:

H = (Γ ,D, S,∆, F )

• Γ = {V,E} is a directed cycle specific to the desired walking behavior, with V
the set of vertices and E the set of edges, e = (vs → vt) ∈ E with vs, vt ∈ V , in
the cycle. Without loss of generality, the notation vs and vt has been shortened
here to mean a source (s) and target (t) vertex, respectively.

• D = {Dv}v∈V is the set of domains of admissibility. Each domain Dv can
be interpreted as the set of physically realistic states of the robot.

• S = {Se}e∈E is the set of guards, with Se ⊂ Dvs which form the transition
points from one domain, Dvs to the next in the cycle: Dvt.

• ∆ = {∆e}e∈E is the set of reset maps, ∆e : Se ⊂ Dvs → Dvt from one domain
to the next. The reset map gives the post impact state of the robot: x+ = ∆e(x

−).

• F = {fv}v∈V is a set of dynamical systems where ẋ = fv(x) for coordinates
x ∈ Dv, i.e., of the form given in Equation (2.1) with u = 0.
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A hybrid system of often alternatively written as a system with impulsive effects:

H ,

ẋ = f(x) if x ∈ D\S

x+ = ∆(x−) if x− ∈ S
(2.28)

which concisely states that the system evolves according to the dynamic system on
the domain D until the guard or switching surface S is triggered, at which time a
discrete jump in the system is applied according to the specified impact equations
∆. This overall concept is illustrated in Fig. 2.2(a), where it is common to represent
the continuous domain as a bubble, with the associated reset behavior and direction
represented as an arrow.

The continuous dynamics of the system depend on the Lagrangian of the robot model
and the holonomic constraints, such as foot contacts with the ground, defined on a
given domain. In the case of flat foot walking of a humanoid robot, the Cartesian
position and the orientation of the foot that is in contact with the ground remains
constant throughout the entire domain until the transition to the next domain occurs.

The discrete dynamics of the system determine the discrete change of robot states at
domain transitions. For transitions which do not experience a rigid impact, such as the
transition from single-support to double-support, there are no impact or coordinates
changes involved, therefore the reset map is described as the identity map: ∆e = I,
with I an identity matrix. Impact typically occurs when the non-stance foot hits the
ground. Given the pre-impact states (q−, q̇−) on Se, the post-impact states (q+, q̇+)

are determined using a reset map ∆e by assuming a perfectly plastic impact [108],
[109]. The configurations of the robot are invariant through the impact, but velocities
change due to the changes in holonomic constraints. The reset map, ∆e, is given as:[

q+

q̇+

]
=

[
R(q) 0

0 R(q)∆q̇
e(q
−)

]
︸ ︷︷ ︸

∆e(q,q̇)

[
q−

q̇−

]
(2.29)

where R(q) is the relabeling matrix for the coordinates change, and ∆q̇
e(q) is obtained

from the plastic impact equation previously derived in (2.27).

Coordinate Relabeling. In most instances of multi-domain walking, if both legs are
separately modeled as “left” and “right,” then the reset mapR(q) is simply the identity
map. This is due to the fact that there is no update necessary to the configuration of
the robot at impact since the leg coordinates remain the same, and the impact model
(2.27) is only applicable to the velocity.
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However, when studying symmetric walking gaits, it is sometimes useful to specify
legs as “stance” and “non-stance” or to specify a configuration reset for a swing leg
if there is a predetermined locking of passive elements such as springs. In this case,
R(q) is a relabeling matrix [30], [154], which “flips” the stance and non-stance legs or
zeroes specific spring elements. This is most often a linear map [155], [156], though
it can be nonlinear, with the only requirement being that ∂R(q)

∂q
has full rank.

2.4 Periodic Orbits and the Poincarè Map

One can view steady state walking as a periodic motion which is not instantaneously
stable, but is stable from step to step [157]—in other words, walking is “controlled
falling.” For undisturbed steady-state locomotion, this is most often represented by
periodic orbits of the hybrid system presented in Definition 2.3.0.3. In a seminal
paper on passive dynamic walking [15], McGeer popularized the method of Poincarè
to determine the existence and stability of periodic orbits [158] for walking. In this
approach, one step is considered to be a mapping from the walker’s state at a definite
point within a stride to the walker’s state at the same point in the next step.

Definition 2.4.0.1. Let D = Dv1 ∪ Dv2 ... ∪ Dvnp be an open connected submanifold.
For the hybrid system, H , we can naturally select a guard, S, as the Poincaré
section, and let ϕ(t, x0) be the solution to ẋ = f(x) with initial condition x0 ∈ D.

• A solution ϕ(t, x0) to a dynamical system ẋ = f(x) is periodic with finite pe-
riod T > 0 such that ϕ(t+ T, x0) = ϕ(t, x0) for all t ∈ [t0,∞).

• The set O ⊂ D is a hybrid periodic orbit with a fixed point x∗ if for some
periodic solution ϕ(t, x0), the following holds O = {ϕ(t, x∗) : 0 ≤ t ≤ T}.

Stable bipedal robotic locomotion often corresponds to stable periodic orbits in hybrid
systems. For robotic walking, the choice of a Poincaré section is governed by a
unilateral constraint such as the vertical distance of a contact point above the ground,
he(x), and coincides with the guard, Se:

S , {x ∈ E : h(x) = 0, ḣ(x) < 0} ⊂ h−1(0) ⊂ E, (2.30)

for which we have a Poincarè map P : S → S which is a partial function that maps
one step to the next as xk+1 = P (xk):

P (x)ϕ(TI(x),∆(x)), (2.31)
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where TI : S → R>0 is the time-to-impact function:

TI(x) = min{t ≥ 0 : t,∆(x)) ∈ X}, for x ∈ X . (2.32)

This periodic phenomenon is visualized in Fig. 2.2(b), where the flow evolves along a
line connecting the post-impact state to the pre-impact state through the guard and
reset map. The periodic orbit yields a fixed point x∗ = P (x∗) with x∗ ∈ O ∩ S, and
the stability of the orbit is equivalent to the stability of the Poincarè map.

Theorem 2.4.1. (Method of Poincaré sections [111]) If the hybrid system H has a
periodic orbit O that is transversal to S, then the following are equivalent:

1. x∗ is an exponentially stable (respectively, asymptotically stable or Lyapunov
stable) fixed point of P ;

2. O is an exponentially stable (respectively, asymptotically stable or Lyapunov
stable) periodic orbit.

A periodic orbit O is transversal to S if for all x∗ = O ∩ Se the vector field fv is not
tangent to Se at the point x∗, i.e. ∂He(x)

∂x
fvs 6= 0. A periodic orbit O is transversal if

it is transversal to Se for all e ∈ E, and is period-one if its closure intersects Se at
exactly one point for all e ∈ E.

While it is often not possible to analytically compute the Poincaré map, it is possible
in almost all circumstances to compute its Jacobian. More specifically, once a fixed
point x∗ is found, we examine a first order expansion of the Poincarè map:

P (x∗ + δx) ≈ x∗ +
∂P

∂x
(x∗)δx, (2.33)

where we can use the derivative of the Poincaré map, ∂P
∂x

(x∗). This is straightforward
to evaluate numerically: one can construct a numerical approximation of successive
rows by applying small perturbations to each corresponding state and then forward
simulate one step to obtain P (x∗+δx). The resulting Jacobian can be used to analyze
the stability of the discrete update:

xk+1 = P (xk), (2.34)

with fixed point x∗ = P (x∗). The fixed point is exponentially stable if the magnitude
of the eigenvalues of ∂P

∂x
(x∗) are less than one [22], [158], [159].
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C h a p t e r 3

GAIT SYNTHESIS WITH HYBRID ZERO DYNAMICS

While the constructions introduced in Sec. 2.3 and Sec. 2.4 may adequately charac-
terize how to obtain stable walking for the simple passive dynamic walkers introduced
in Sec. 1.2.5, dynamic actuated locomotion requires additional considerations on how
to shape control inputs to achieve the target behavior. The approach to locomotion
that is considered in this thesis is to establish the walking problem as a controlled
hybrid and periodic behavior. Though this increases the complexity of the problem
relative to simpler models such as the LIPM (Sec. 1.2.1) or the SLIP (Sec. 1.2.3), it
allows for high fidelity closed-loop trajectory optimization offline. This means that
the resulting motion plan has additional stability properties which will make its later
implementation (see Chap. 7) more straightforward.

3.1 Hybrid Control System

Recall that in Sec. 2.3, the hybrid dynamical system was introduced. In this sec-
tion, the controlled version of a hybrid system is introduced. This allows for the
consideration of an actuated legged robot within a hybrid framework.

Definition 3.1.0.1. For the tangent bundle of the robot configuration with (local)
coordinates (q, q̇) ∈ TQ ⊂ R2n, the hybrid control system [19] is the tuple:

H C = (Γ ,D,U , S,∆,FG). (3.1)

where Γ , S, and ∆ are defined as in Definition 2.3.0.3, and:

• U = {Uv}v∈V is the set of admissible control inputs.

• D = {Dv}v∈V is the set of domains of admissibility. Each domain Dv ⊆ TQ×U
which can be interpreted as the set of possible states and controls the robot can
assume given the constraints on the feet for the corresponding domain.

• FG provides the set of vector fields given by the equation: ẋ = fv(x) + gv(x)u,
where x = (q, q̇), u ∈ U . fv, gv are defined in each domain by the Euler-
Lagrangian dynamics.
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A hybrid dynamical system (Definition 2.3.0.3) is thus simply a hybrid control system
with U = ∅, meaning that any applicable feedback controllers have been applied,
making the system closed-loop. We can now correspondingly expand the definition
of a system with impulse effects (see (2.28)) to that of a controlled one:

H C ,

ẋ = f(x) + g(x)u if x ∈ D\S

x+ = ∆(x−) if x− ∈ S
(3.2)

where in the interest of space, this notation will be adopted where necessary in the
rest of this thesis.

3.1.1 Domain of Admissibility

Domains and guards of the hybrid system model can be determined based on admis-
sible states and controls of the system. This construct collects both the feasibility
constraints of Sec. 2.1.3 and any additional constraints which must be enforced on a
given domain, Dv, for it to be valid. Specifically, one can state constraints such as
the friction cone, (2.21), or ZMP foot-roll conditions, (2.23), in terms of a vector of
inequalities,

νv(q)λv(q, q̇, uv) ≥ 0, (3.3)

where νv(q) depends on the physical parameters of the robot. An additional con-
straint is that during single-support, the height of the non-stance foot should be
above the ground (a requirement of the guard shown in (3.6)), which is a unilateral
constraint. This can be modeled as the unilateral constraint, hv(q) > 0. There is
no unilateral constraint defined on a double-support domain. Combining (3.3) and
unilateral constraints (if present) yields the domain of admissibility:

Dv = {(q, q̇, uv) ∈ TQ× Uv|Av(q, q̇, uv) ≥ 0}, (3.4)

where,

Av(q, q̇, uv) =

[
νv(q)λv(q, q̇, uv)

hv(q)

]
, (3.5)

which defines the boundary of the domain manifold.

The guard is then just the boundary of the domain with an additional constraint that
the unilateral constraint is decreasing, i.e., the foot is heading in the direction of the
ground or the contact forces are approaching zero signaling foot lift:

Se = {x ∈ X | He(x) = 0, Ḣe(x) < 0}. (3.6)

This corresponds to the requirements imposed on the Poincaré section in (2.30).
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3.2 The Hybrid Zero Dynamics Framework

In order to obtain closed-loop walking controllers for the robots, we will build on the
robotic models and hybrid systems definitions of Chap. 2 and Sec. 3.1. The overall
approach will characterize motions through the concepts of virtual constraints and
feedback linearization, with the end result being a controller which drives the system
to the zero dynamics surface and render it invariant to the continuous dynamics. A
trajectory optimization problem is then posed, which can shape the surface in order
to render it invariant to impacts, resulting in the system having hybrid zero dynamics.

3.2.1 Virtual Constraints

At the core of the HZD methodology is the use of outputs as control objectives.
By approaching the problem in this way, we can encode the evolution of the robot
configuration into a set of outputs which can be shaped.

Definition 3.2.0.1. An output for a nonlinear control system (2.1) is a differentiable
function h : X → R. This can also be written as a vector of m functions:

y(x) =


y1(x)

y2(x)
...

ym(x)

 ∈ Rm.

Definition 3.2.0.2. Analogous to holonomic constraints, virtual constraints are
defined as a set of outputs that regulate the motion of the robot with a certain desired
behavior [155], [156]. The term “virtual” comes from the fact that these constraints
are enforced through feedback controllers instead of through physical constraints. Let
ya(x) be functions of the generalized coordinates that are to be controlled, i.e., encoding
the “actual” behavior of the robot and yd(t, α) be the “desired” behavior where α is a
matrix of real coefficients that parameterize this behavior:

y(x) := ya(x)− yd(τ(q), α), (3.7)

with τ(q) : Q → R a parameterization of time that is strictly increasing.

Driving y → 0 results in convergence of the actual outputs to the desired, with
ya : X → Rm and yd : R × Ra → Rm smooth functions encoding the underlying
behavior. We assume that y(x) has (vector) relative degree r [160]. The notion
of relative degree will be useful in Sec. 3.2.2, and will be useful in determining the
number of times an output must be time differentiated along the solutions of (2.1) for
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our control input to appear. More specifically, the derivatives of the outputs along
f(x) and g(x) we obtain:

y(r)(x) = L
(r)
f f(x)︸ ︷︷ ︸
L
(r)
f y(x)

+LgL
(r−1)
f g(x)︸ ︷︷ ︸
A(x)

u, (3.8)

where A(x) is called the decoupling matrix and is invertible in the case of a (vector)
relative degree.

It is often the case in robotic systems that r = 1 if y(x) depends on position and
velocity and r = 2 if it only depends on position, i.e., configuration variables. To
motivate later constructions, we consider a mechanical system with configuration
space Q, (local) coordinates q ∈ Q, and states x = (qT , q̇T )T ∈ TQ = X. Suppose
that for (2.1) there is a set of outputs y(x) = (y1(q, q̇)T , y2(q)T )T of vector relative
degree 1 and 2, respectively, on a region of interest; that is for y1(q, q̇) ∈ Rm1 and
y2(q) ∈ Rm2 with m = m1 +m2, we assume the vector relative degree is 1 for y1 and
the 2 for y2, i.e., (1, . . . , 1, 2, . . . , 2) with 1’s appearing m1 times and 2’s appearing
m2 times. We can then write an output tracking problem for each domain:

y1,v(q, q̇, t) = ya1,v(q, q̇)− vd,v (3.9)

y2,v(q, t) = ya2,v(q)− yd2,v(τv(q), αv), (3.10)

for v ∈ V , where y1,v and y2,v are relative degree 1 and (vector) relative degree 2
by definition, respectively. Additionally, vd ∈ R is the constant “desired” velocity
and yd2,v(τ(q, β), αv) are the desired outputs that give the desired trajectories of the
corresponding actual outputs as dictated by a parameter set αv and a state-based
parameterization of time τ(q, β). The introduction of τ(q), which has to be monotonic
over a gait cycle, is motivated by the desire to create an autonomous controller, which
is more robust than non-autonomous controllers [30]. In order to characterize the
progression of a walking gait, we then consider the monotonically increasing function:

τv(q) =
θ(q)− θ+

θ− − θ+
, (3.11)

where θ : Q → R is a phase variable, θ+ = θ(q+) is its post-impact value, and
θ− = θ(q−) is its pre-impact value. Therefore, τ : Q → [0, 1] from the beginning to
end of a domain.

In the context of implementation for robotic platforms, it is useful to select desired
outputs which are inherently smooth and computationally easy to work with. One of
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the most popular selections is a Bézier polynomial [30]:

b(τ, αv) :=
M∑
k=0

αv[k]
M !

k!(M − k)!
τ k(q)(1− τ(q))M−k︸ ︷︷ ︸
BM,k

, (3.12)

where M is the order of the polynomial. One of the attractive features of the Bézier
polynomial is that its derivatives can readily be obtained from simple and computa-
tionally attractive calculations [161]. For instance, the first and second derivatives of
(3.12) with respect to our phase variable are given by:

∂b(τ, αv)

∂τ
= M

M−1∑
k=0

(αv[k + 1]− αv[k])BM−1,k (3.13)

∂2b(τ, αv)

∂τ 2
= M(M − 1)

M−2∑
k=0

(αv[k + 2]− 2αv[k + 1] + αv[k])BM−2,k (3.14)

Giving us the desired relative degree 2 Bézier outputs and their derivatives:

ẏd2(τ(q), αv) =
∂b(τ, αv)

∂τ

∂τ(q)

∂q
q̇ (3.15)

ÿd2(τ(q), αv) =
∂2b(τ, αv)

∂τ 2

(
∂τ(q)

∂q
q̇

)2

+
∂b(τ, αv)

∂τ

(
∂

∂q

(
∂τ(q)

∂q
q̇

)
q̇ +

∂τ(q)

∂q
q̈

)
,

(3.16)

where in (3.16) we can see that q̈ appears, meaning that we can substitute our dynam-
ics to obtain the derivative along the nonlinear system (2.1) as was shown with the
general Lie derivative representation in (3.8). However, Bézier polynomials are not
the only possible choices; it has been shown that NURB splines can be useful in char-
acterizing some behaviors [116], and humans appear to follow spring-mass-damper
type motions [154], leading to alternative parameterizations.

Remark 1. The selection of outputs is greatly affected by the holonomic constraints
defined on each domain. The guiding principle is that the total number of outputs and
holonomic constraints cannot be greater than the total degrees of freedom of the system
and the total number of outputs cannot exceed the number of actuators available on the
robot. More specifically, given mv admissible controls and mc,v holonomic constraints,
the total number of independent relative degree 2 outputs is given by:

m2,v =

mv −m1,v if mv ≤ n−mc,v

mv −m1,v −mc,v if mv > n−mc,v

. (3.17)
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3.2.2 Feedback Linearization

In order to actually encode the walking behaviors described by the output polynomials
introduced in Sec. 3.2.1, we must prescribe a feedback controller which can drive
y(x) → 0. Feedback linearization is a common and powerful tool in the control
of nonlinear systems. The overall approach transforms a nonlinear system into a
linear one given a suitable change of variables and control input [162], [163]. Then,
one can obtain convergence guarantees for the linear system. In order to begin this
development along the lines of the preview which was shown in (3.8), we must first
ensure that a system is feedback linearizable.

Definition 3.2.0.3. An affine control system is feedback linearizable if there exists
a control law u = K(x, ν), K : X × V → U for V ⊂ R, such that:

ẋ = f(x) + g(x)K(x, ν) =⇒ y(r)(x) = ν, (3.18)

for the auxiliary control input ν ∈ V ⊂ R.

Let us begin the derivation of our controller for this system within the context of
robotic systems, which are the sole subject of this thesis, by again considering the
time derivatives of the outputs (3.9) and (3.10):

ẏ1(q, q̇) =
∂y1(q, q̇)

∂q
q̇ +

∂y1(q, q̇)

∂q̇
q̈

=
∂y1(q, q̇)

∂q
q̇ +

∂y1(q, q̇)

∂q̇

[
−D−1(q)H(q, q̇)

]
︸ ︷︷ ︸

Lfy1(q,q̇)

+
∂y1(q, q̇)

∂q̇
D−1(q)B︸ ︷︷ ︸

Lgy1(q,q̇)

u, (3.19)

ẏ2(q, q̇) =
∂y2(q)

∂q
q̇︸ ︷︷ ︸

Lfy2(q,q̇)

(3.20)

ÿ2(q, q̇) =
∂

∂q

(
∂y2(q)

∂q
q̇

)
q̇ +

∂y2(q)

∂q
q̈

=
∂

∂q

(∂y(q)

∂q
q̇
)
q̇ +

∂y2(q)

∂q

[
−D−1(q)H(q, q̇)

]
︸ ︷︷ ︸

L2
fy2(q,q̇)

+
∂y(q)

∂q
D−1(q)B︸ ︷︷ ︸

LgLfy2(q,q̇)

u, (3.21)

where the spring force term Bspτsp has been lumped with H(q, q̇) in the interest of
space, Lf and Lg are the Lie derivatives with respect to the vector fields f(x) and g(x).
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For more concise representation, terms are also grouped with a common notation:[
ẏ1

ÿ2

]
=

[
∂y1
∂q

∂y1
∂q̇

∂
∂q

(
∂y2
∂q
q̇
)

∂y2
∂q

]
f(x)︸ ︷︷ ︸

Lfy(x)

+

[
∂y1
∂q̇
∂y2
∂q

]
g(x)︸ ︷︷ ︸

A(x)

u, (3.22)

now in the form of (3.8). It is clear from this derivation that the system (2.1) is feed-
back linearizable. Further, we can see that the decoupling matrix, A(x), is invertible
due to the specific choice of virtual constraints. We can then prescribe the following
control law:

u(x) = A−1(x)
(
− Lfy(x) + ν

)
=⇒ y(r) = ν, (3.23)

where ν is an auxiliary feedback control value. Assuming that the preliminary feed-
back (3.23) has been applied to (2.1), we will render a linear system for the output
dynamics with coordinates η := (yT1 , y

T
2 , ẏ

T
2 )T :

η̇ =

ẏ1

ẏ2

ÿ2

 =

0 0

0 I

0 0


︸ ︷︷ ︸

F

η +

I 0

0 0

0 I


︸ ︷︷ ︸

G

v. (3.24)

A valid choice of ν which stabilizes this linear system is:

ν =

[
ẏ1

ÿ2

]
=

[
−1
ε
Kv̄y1

− 1
ε2
KPy2 − 1

ε
KDẏ2

]
, (3.25)

where 0 < ε ≤ 1 is a tunable parameter, and Kv̄, KP , KD > 0 are control gains for
the relative degree 1 and relative degree 2 output errors, respectively. This can be
grouped into the closed-loop linear system:ẏ1

ẏ2

ÿ2

 =

−
1
ε
Kv̄ 0 0

0 0 I

0 − 1
ε2
KP −1

ε
KD


︸ ︷︷ ︸

Fcl

y1

y2

ẏ2

 . (3.26)

Since Fcl is Hurwitz by definition (meaning that Re(eig(Fcl)) < 0), the resulting
linear dynamics is exponentially stable. In addition, the control parameter ε forces
the system to converge at a rate governed by ε. This will be useful in later sections,
where we note that the selection of 0 < ε < 1 creates rapidly exponential stability,
and ε = 1 instead renders exponential stability.
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3.2.3 Zero Dynamics

The application of the feedback controller (3.23) to each domain of the nonlinear
system (2.1) with the auxiliary control choice of (3.25) can be synthesized for virtual
constraints yv(q) = yav(q) − ydv(τ(q, t), αv) associated with each domain Dv, v ∈ V ,
yielding the nonlinear “closed-loop” system:

ẋ = fαv (x, αv) = fv(x) + gv(x)u∗(x, αv), (3.27)

wherein for this system y → 0 exponentially fast according to the closed-loop response,
which is dependent on αv. The multi-domain hybrid system associated with the
closed-loop dynamical system is described as [164]:

H α ,

ẋ = fαv (x, αv) if x ∈ Dαv \Sαe
x+ = ∆e(x

−) if x− ∈ Sαe
(3.28)

where fαv is a set of dynamical systems defined on Dαv for the system (3.27). Moreover,
the control law prescribed in (3.23)-(3.25) renders the zero dynamics submanifold:

Zαv = {(q, q̇) ∈ Dv|y1,v = 0, y2,v = 0, Lfy2,v = 0} (3.29)

invariant over the continuous dynamics of the domain [163]. In other words, any
solution that starts in Zαv remains on Zαv until reaching a guard. Care has been taken
in (3.29) and the associated hybrid system (3.28) to show the explicit dependence on
the parameter set αv. This implies that the zero dynamics surface can actually be
shaped through the selection of these parameters.

3.2.4 Hybrid Zero Dynamics

The surface in Equation (3.29) has been designed without taking into account the
hybrid transition maps of (2.29), meaning that there is no guarantee that the re-
sulting walking cycle will be invariant to impact. To enforce impact invariance, the

Figure 3.1: A depiction of the multi-domain hybrid system geometry and its associ-
ated notation.
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desired outputs can be shaped through the parameters αv in ydv such that the walking
satisfies a hybrid invariance condition which necessarily guarantees that the reduced
dimensional manifold is invariant to the impact dynamics due to the discrete change
of velocities when reaching an edge.

Definition 3.2.0.4. At a given edge e ∈ E, the reduced dimensional hybrid system
(3.28) is impact invariant, and thus has hybrid zero dynamics (HZD) if and only
if Zvs ∩ Se 6= ∅ and:

∆e(Zvs ∩ Se) ⊂ Zvt , ∀ e = (vs, vt) ∈ E, (3.30)

where vs and vt are the source and target continuous domains mapped by the edge e.
A submanifold Z

⋃
v∈V Zv is called hybrid invariant if it is invariant over all domains

of continuous dynamics and impact invariant through all discrete dynamics.

The main ideas of hybrid zero dynamics are illustrated in Fig. 3.2, which shows how
zeroing the outputs renders a reduced dimensional surface that can be shaped to
achieve stable periodic motions. In fact, the HZD condition (3.30) implies stability
of the overall system dynamics if the zero dynamics are rendered stable through
the continuous domains of the hybrid motion. Additionally, the satisfaction of the
invariance condition (3.30) guarantees HZD for the full multi-domain hybrid system.

The overarching goal of these constructions is to provide a framework for the synthesis
of dynamic walking gaits. With regards to the actual design of walking motions,
shaping the zero dynamics to obtain a stable periodic orbit is perhaps the most
challenging task. It can thus be beneficial in the development of HZD controllers
or in analysis of the hybrid system to directly deal with coordinates on the zero
dynamics manifold rather than within full-order state space (3.27). To construct a
restricted hybrid system model, let zv ∈ Zv ⊂ Rlv be the local coordinates of the
zero dynamics in a given domain, and let ηv ∈ Dαv ⊂ Rnv−lv be the controlled normal
states corresponding to our choice of feedback linearized output dynamics in (3.24)
and transversal to Zv. Suppose that there exists local coordinate transformations
Φz
v : Dv → Zv and Φη

v : Dv → Dαv so that (ηv, zv) = (Φη
v(x),Φz

v(x)) := Φv(x). With
these transformations, we can write our controlled system in normal form as:

η̇ = f̄(η, z) + ḡ(η, z)u (3.31)

ż = ω(η, z)
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where because η is defined in terms of x due to our selection of the virtual constraints,
y, we can write the dynamics as:

f̄(η(q, q̇), z(q, q̇)) =

[
ẏ(q, q̇)

Lfy(q, q̇)

]
, ḡ(η(q, q̇), z(q, q̇))) =

[
0

A(q, q̇)

]
. (3.32)

The closed-loop dynamics of the η coordinates evolve according to the previously
shown linear time-invariant system, η̇v = Fclηv, and describe the dynamics transversal
to Zv. In essence, the feedback linearizing controller and choice of auxiliary feedback
control law render the zero dynamics surface attractive and invariant under the con-
tinuous dynamics of the system, i.e. η → 0 and η(0) = 0 implies that η(t) ≡ 0 ∀ t ≥ 0.
Thus, we can write the zero dynamics as the maximal dynamics compatible with the
output equal to zero:

ż = ω(0, z) := f |αZv(z). (3.33)

Then, according to Definition 3.2.0.4, if the zero dynamics has been shaped to achieve
impact invariance, the multi-domain hybrid control system has hybrid zero dynamics,
H |αZ . The restricted hybrid dynamical system with impulses can then be written as:

H α|Z ,

ż = fα|Zv(z) if z ∈ Zαv \Sαe
z+ = ∆e|Sαe ∩Zαv (z−) if z− ∈ Sαe

(3.34)

The stability of hybrid systems, particularly ones which exhibit periodic behaviors,
is often determined by the existence and stability of periodic orbits. If the system
(3.34) has HZD, then due to the hybrid invariance of Z, there exits a stable hybrid
periodic orbit, O|Z ⊂ Z, for the reduced order zero dynamics evolving on Z, i.e., if
we are evolving on the restriction dynamics of fα|Z(z), then O|Z is a stable hybrid
periodic orbit for the restricted dynamics in (3.34) [30]. More concretely, using the
constructions introduced in Sec. 2.4, let ϕf

α

t |Z(z0) be the (unique) solution to (3.33)
at time t ≥ 0 with initial condition z0. For a point z∗ ∈ S, we say that ϕf

α

t |Z is
hybrid periodic if there exists a T > 0 such that ϕf

α

T |Z(∆(z∗)) = z∗. Further, the
stability of the resulting hybrid periodic orbit, O|Z = {ϕf

α

t |Z(∆(z∗)) : 0 ≤ t ≤ T},
can be found by analyzing the stability of the Poincaré map, wherein z∗ is a fixed
point, as previously presented in (2.33).

On the basis of (3.30), we define the restricted Poincaré map ρv = Pv|Z , where
ρv : Svs ∩Zv → Svt ∩Zv. The Poincaré return map for the multi-domain hybrid zero
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Figure 3.2: Illustration of the key concepts related to hybrid zero dynamics: contin-
uous convergence to a low dimensional zero dynamics surface Z, with an invariance
condition: ∆(S ∩ Z) ⊂ Z, and the end goal being a stable periodic walking gait.

dynamics can be defined as the composition of all maps for one gait cycle:

ρ := ρv1 ◦ ρv2 ◦ ... ◦ ρvnp . (3.35)

It is shown in [111], [165] that if there exists a feedback control law rendering the in-
variant manifold sufficiently rapidly attractive, then the existence and stability of the
periodic orbitO of the full order system can be determined from those of the restricted
(reduced-dimensional) zero dynamics periodic orbit, O|Z , through the canonical em-
bedding ι : Z → D. Thus, if the system has HZD and there exists a periodic orbit for
O|Z of H α|Z , then the full order system also has a hybrid periodic orbit O = ι(O|Z).

Theorem 3.2.1. (Orbital Stability of the Hybrid Zero Dynamics) Suppose that O|Z
is an exponentially stable transverse periodic orbit of the corresponding hybrid zero
dynamics system (3.34). Then there exists an ε̄ > 0 such that for all ε̄ > ε > 0,
the hybrid periodic orbit O|Z is locally exponentially stable for the full order hybrid
periodic orbit O = ι(O|Z) of the hybrid system Hα.

3.2.5 Partial Hybrid Zero Dynamics

If a walking cycle has been prescribed with relative degree 1, or velocity based outputs,
the impact invariance condition of (3.30) is often too strong to be obtained due to
the change in velocities caused by the impact map. Therefore, zero dynamics is only
enforced on the relative degree 2 outputs, resulting in a partial zero dynamics [155],
given by:

PZv = {(q, q̇) ∈ Dv|y2,v = 0, ẏ2,v = 0}. (3.36)

Moreover, we say that the submanifold PZv is impact invariant if and only if there
exist a set of parameters α = {αv}v∈V and vd so that:

∆e(PZvs ∩ Se) ⊂ PZvt , ∀ e = (vs, vt) ∈ E. (3.37)



41

A manifold PZ = PZvs∪PZvt is thus called hybrid invariant if it is invariant over all
domains of continuous dynamics and impact invariant through all discrete dynamics.
If a feedback control law renders PZ hybrid invariant, then the multi-domain hybrid
control system has a partial hybrid zero dynamics (PHZD), H |PZ .

3.2.6 Non-autonomous Considerations

Recall how it was previously shown for the autonomous virtual constraint formulation
that the derivatives of the outputs took on a feedback linearizable form in (3.8). In
the case of a trajectory tracking problem, or in other words the tracking of time-based
desired outputs, we must separately consider the actual outputs, ya(q, q̇), and desired
outputs, yd(τ(t), α), as one is a function of state and the other time:

y(q, t) = ya(q)− yd(τ(t), α), τ(t) =
t− t0
tf − t0

, (3.38)

where the loss of state dependence in yd(τ(t), α) is due to τ(t). For general outputs of
relative degree r, the non-autonomous output tracking problem has the derivatives:

y(r)(x) = L
(r)
f f(x)︸ ︷︷ ︸
L
(r)
f ya(x)

−yd,(r)(τ(t), α) + LgL
(r−1)
f g(x)︸ ︷︷ ︸
A(x)

u, (3.39)

where yd,(r)(τ(t), α) is the rth time derivative of the desired output. We can then
feedback linearize the system through the time-based feedback control law:

u(x) = A−1(x)
(
− L(r)

f ya(x) + yd,(r)(τ(t), α) + ν
)
. (3.40)

For our more specific representation of robotic outputs only considering relative degree
1 and 2 outputs, we then select a slightly modified set of normal coordinates:

ηt :=

y
a
1(q, q̇)

ya2(q)

ẏa2(q, q̇)

−
 yd1(τ(t))

yd2(τ(t), α)

ẏd2(τ(t), α)

 , (3.41)

from which we can derive a similar linear system to what was shown in (3.24), and
obtain a closed-loop stable system through the selection of the auxiliary control, ν.

Recall that for a state-based phase variable τ(q) in (3.11), the derivatives of our
desired outputs in (3.15) and (3.16) were also configuration dependent, leading to
their representation in Lie derivative form. For a time-based Bézier output, these
derivatives are only a function of polynomial coefficients and time:

ẏd2(τ(t), αv) =
∂b(τ, αv)

∂τ
τ̇(t) (3.42)

ÿd2(τ(t), αv) =
∂2b(τ, αv)

∂τ 2
τ̇ 2(t). (3.43)
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3.2.7 Output Selection

The designation of outputs is perhaps the area in which a control engineer is given the
largest amount of creative freedom when working within the HZD framework. While
output selection can directly influence the resulting behaviors of a legged robot, there
are no hard and fast rules on what necessarily constitutes a “best” selection. Past
work has looked to human motions [146], reduced order models [166], or directly used
joint angles to select outputs.

The approach presented here is inspired by the authors’ previous work on human-
inspired bipedal locomotion [146]. One of the first observations that this method
leverages is that the linearized position of the hip, δphip(q), appears to be essentially
a linear function of time during forward walking. This feature makes it particularly
suitable for selection as a phase variable. On a biped of human-like morphology, this
can be written mathematically as:

δphip(q) = Laθra + (La + Lc)θrk + (La + Lc + Lt)θrh, (3.44)

where La, Lc, and Lt denote lengths for the ankle, calf, and thigh linkages of the
robot. The linearized forward hip velocity can then be correspondingly picked as the
velocity-modulating output:

ya1,v(q, q̇) = δṗhip(q, q̇). (3.45)

It is important to note that numerous other selections are possible. Examples of other
choices include the position of the center of mass or the pitch angle of the stance ankle.

As the number of holonomic constraints applied to the robot change through the
application of various contacts in different domains, so too will the choice of position-
modulating outputs. Letmr denote the number of actuators on the robot, and nη,v be
the number of holonomic constraints applied in a given domain. We then say that a
domain is Fully-actuated if mr = n−nη,v, Under-actuated if mr < n−nη,v, and Over-
actuated if mr > n−nη,v. The proper number and configuration of outputs should be
selected such that the decoupling matrix A = LgL

(r−1)
f y(x) has full row-rank. This

ultimately means that the Jacobians of the outputs must be linearly independent of
one another, and linearly independent with regard to the constraints applied to the
robot. Thus for fully- and under-actuated domains, the total number of outputs will
then be equal to mr, while in over-actuated domains, the number of outputs need to
be reduced to n− nη,v.
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3.3 Trajectory Optimization

Throughout the previous section, we outlined how the HZD locomotion problem is
fundamentally different than traditional approaches to modeling and control of fixed-
base robots. It is because of this inherent complexity that virtually all approaches
to realize dynamic walking must transcribe the locomotion problem into a motion
planner which can handle the various constraints naturally imposed on the problem.
While several of the more classical walking paradigms offer simple solutions to con-
servative walking, there has been a push over the last two decades towards leveraging
optimization to obtain increasingly dynamic maneuvers. In this section, it is shown
how trajectory optimization can be used to design virtual constraints. This method-
ology will be essential both to shaping the behavior to achieve desired outcomes, such
as efficiency, and to obtain hybrid invariant locomotion.

3.3.1 Background

Open-Loop Optimization for Gait Generation

As a result of the rapid developments within the trajectory optimization community,
researchers began to move towards utilizing nonlinear dynamic gait optimizations
rather than relying on the constraints imposed by linear modeling assumptions. Us-
ing nonlinear optimization, i.e., numerical approaches, to generate stable walking be-
haviors on bipeds is not a new concept [167], [168], though computational limitations
were a considerable hindrance towards generating motions on 3D robots. Computa-
tion power finally increased sufficiently throughout the mid 2000’s to begin handling
3D dynamic walking behaviors [169]. The simplest application of nonlinear optimiza-
tion to walking can be found in Sec. 1.2.5, wherein passive dynamic walking relies on
the generation of fixed points associated with periodic orbits of a hybrid dynamical
system. This naturally lends itself to numerical approaches for the optimization of
open-loop stable periodic motions [170], since passive dynamic walkers do not have
any actuators to consider. The use of open-loop optimization to generate feasible
motions for actuated robots are a natural extension of approaches used throughout
the field of trajectory optimization, where the planning problem is seen as “decou-
pled” from the feedback control applied to the actual robot [171] and “approximately
optimal” solutions are often sufficient. Further, in recent years, the application of
advanced trajectory optimization methods such as direct collocation have allowed the
optimization of the full body dynamics of (2.7) to be more computationally tractable,
sparking a growing interest in considering the fullbody dynamics of robot in the plan-
ning problem. For instance, in order to control the open-loop trajectory that results
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Figure 3.3: A conceptual illustration of how locomotion models must be first tran-
scribed into appropriate representations for use with nonlinear programming ap-
proaches in order to yield dynamically stable closed-loop plans for bipedal robots.

from the direct collocation optimization, a classical linear quadratic regulator (LQR)
based feedback controller can be constructed to stabilize the resulting trajectory ob-
tained for the constrained dynamical system [172]. In this type of approach, the
walking problem can be viewed as generating sequences of footholds for the nonlinear
centroidal dynamics given in (1.2) [59], [173] or with respect to the full Lagrangian sys-
tem given in Equation (2.7) [174]. Complementary Lagrangian systems [136] formed
the basis of the approach in [174], which allowed the optimizer to find walking behav-
iors without a priori enumeration of the type and order of contact events. Open-loop
trajectory optimization has also been used for ZMP conditions in a nonlinear fashion
[175], considerably improving the conservative walking presented in Sec. 1.2.1.

Closed-Loop Optimization

While the preceding nonlinear optimization approaches do consider the fullbody dy-
namics of the robot, it is not always desirable to apply feedback controllers to stabilize
an approximately optimal open-loop plan. Rather, it is often beneficial to couple the
gait generation and controller synthesis problems into a single framework: closed-loop
optimization. This allows, among other things, for the generation of provably stable
walking behaviors which simultaneously satisfy the constraints on the system from
admissible configurations to torque bounds. This idea forms the basis of designing
walking gaits with the HZD method introduced in Sec. 1.2.6, where feedback control
is used to generate provable stable periodic orbits. A visual summary of this section
is given in Fig. 3.3. By applying these closed-loop feedback strategies in the optimiza-
tion problem, ambiguous contact sequences are no longer possible [176] and must be
prescribed according to the directed cycle which governs the underlying hybrid sys-
tem. Doing so allows for the enforcement of feasibility constraints, e.g., unilateral
contact, in conjunction with the synthesis of controllers that guarantee stability.
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3.3.2 Gait Optimization Problem

In the context of HZD methods, with the formal constructions of the zero dynamics
(3.29) and hybrid invariance (3.30) defined, the problem of finding stable dynamic
walking can be transcribed to a nonlinear programming (NLP) problem of finding a
fixed point x∗ and set of parameters α = {αv}v∈V parameterizing the virtual con-
straints of Equation (3.7). The optimization problem is performed over one full step
cycle, e.g., footstrike to corresponding footstrike which forms a repeating orbit, with
a constraint imposed such that when the discrete impact (2.29) is applied to the
terminal state, so it satisfies the hybrid invariance condition of (3.30). It is also
critical that the motions respect the limitations of the physical system such as the
friction cone (2.21), foot rollover conditions (2.23), actuator limits, and joint limits.
These constraints can be directly placed into a NLP problem that can be solved by a
standard optimization solver:

w(α)∗ = argmin
w(α)

J (w(α)) (HZD Optimization)

s.t. Closed loop dynamics: Equation (3.27)

HZD condition: Equation (3.30)

Physical feasibility (e.g. Equation (2.21))

where w(α) ∈ RNw , with Nw being the total number of optimization variables and
here we made the dependence on the parameters, α, that dictate the closed loop
dynamics explicit.

In classical HZD implementations, the candidate solutions were found via direct sin-
gle shooting formulations [29], [155], where the decision variables are the fixed point
states x∗ and the desired output coefficients α. Because single shooting optimizations
are notoriously sensitive to poor initial conditions, multiple shooting methods were
also explored [177], with the eventual development of direct collocation formulations
[164] which would become the most successful to date. The FROST optimization
package [129] was developed based on these successes as an open-source package to
transcribe HZD locomotion into a direct collocation problem. In this thesis, the
FROST approach to direct collocation and trajectory optimization is the core com-
ponent to the HZD based optimization success. The robots which will be introduced
in Chap. 4 are so complex that a direct single shooting formulation would either take
too long to converge or fail completely too often for it to be useful.
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Collocation Algorithm

Here, we simply introduce the main idea of the direct collocation optimization [164].
In particular, the solution of each domain, Dv, is discretized based on the time dis-
cretization 0 = t0 < t1 < t2 < · · · < tNv = TI,v, assuming TI,v > 0 is the time at
which the system reaches the guard associated with a given domain. Let xi and ẋi be
the approximated states and first order derivatives at node i, the defect constraints
are defined at each odd node as:

ζ iv := ẋi − 3(xi+1 − xi−1)/2∆tiv + (ẋi−1 + ẋi+1)/4 = 0,

δiv := xi − (xi+1 + xi−1)/2−∆tiv(ẋ
i−1 − ẋi+1)/8 = 0, (3.46)

where ∆tiv = ti+1−ti−1 is the time interval. Moreover, the first order derivatives must
satisfy the system dynamics, i.e., the restricted hybrid dynamics (3.34).

Constrained Hybrid Dynamics as Differential Algebraic Equations

Recall that reduced dimensional restricted dynamics, i.e., the zero dynamics, is de-
termined via the full order dynamics (2.8) subject to the holonomic constraints and
virtual constraints being zero. Thus, the restricted dynamics can be described as the
differential algebraic equations:

Fv(q, q̇, q̈, u, λv, αv) :=

 D(q)q̈ +H(q, q̇)−Bu− JTv (q)λv

Jv(q)q̈ + J̇v(q, q̇)q̇

η̇v(q, q̇, q̈, αv)− νv

 = 0, (3.47)

subject to the initial value conditions:

hv(q
+) = h̄v, Jv(q

+)q̇+ = 0, y2,v(q
+) = 0, ẏ2,v(q

+, q̇+) = 0, (IVC)

where h̄v is a vector of constants, and (q+, q̇+) are the initial state values. This system
can be considered as an implicit form that is equivalent to the zero dynamics equation
by its definition. It is shown in [176] that this implicit equations yields a much simpler
representation of the constrained system due to the fact that we no longer need to
invert the inertia matrix D(q) or the decoupling matrix LgLfy2,v in (3.23) to solve
for the explicit expression of the zero dynamics.

Moreover, the trajectories of the system states of two neighboring domains are con-
nected via the discrete dynamics captured in the reset maps. Specifically, suppose
that (q+, q̇+) are the post-impact states of a particular domain and (q−, q̇−) are the
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pre-impact states of the previous domain, then they must satisfy:

(q+, q̇+)−∆e(q
−, q̇−) = 0, (3.48)

where e ∈ E corresponds to the transition between these two domains. This constraint
together with the initial value constraint in (IVC) guarantee that the hybrid invariant
conditions are satisfied, therefore, the solution to the optimization lies in the hybrid
zero dynamics manifold given in (3.29) and satisfies the HZD condition (3.30).

Remark 2. The representation of the dynamics as the implicit DAE system of (3.47)
no longer requires the inversion of the inertia matrix, D(q), to solve the zero dynamics
equation (3.29), and is thus a significantly simpler representation of the constrained
floating-base system to evaluate from a computational perspective.

General Direct Collocation Optimization Formulation

In the previous section, we introduced the continuous dynamics and hybrid invariance
condition for the continuous dynamical system. If we apply the time-discretization
introduced in Equation (3.46), then we must correspondingly apply the time dis-
cretization of the constraints on the continuous system as:

Fv(q, q̇, q̈, u, λv, αv) =


Fv(q

(0), q̇(0), q̈(0), u(0), λ
(0)
v , αv)

Fv(q
(1), q̇(1), q̈(1), u(1), λ

(1)
v , αv)

...
Fv(q

(Nv), q̇(Nv), q̈(Nv), u(Nv), λ
(Nv)
v , αv)

 = 0, (3.49)

where i = 0, 1, . . . , Nv indicate the i-th cardinal node in the time discretization for
each domain. These continuous dynamics must also satisfy the admissibility con-
straints at each time step:

Av(q, q̇, λv) =


Av(q

(0), q̇(0), λ
(
v0))

Av(q
(1), q̇(1), λ

(
v1))

...
Av(q

(Nv), q̇(Nv), λ
(
vNv))

 ≥ 0. (3.50)

Combining the time discretized dynamics with the collocation constraints, discrete
dynamics, initial value condition for hybrid invariance, and various variable bound-
aries, we can now state the more direct collocation form of the general optimization
problem which was stated in (HZD Optimization). Let w be a vector containing
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all optimization variables and c(w) be a vector of constraint functions. The direct
collocation HZD optimization is then [164]:

w∗ = argmin
w

∑
v∈V

Jv(w) (HZD Direct Collocation)

s.t. ζ iv(w), δiv(w) = 0 i = 1, 3, . . . , Nv − 1 (Defects)

Fv(w) = 0 (CL Dynamics)

Av(w) ≥ 0 (Admissibility)

x(0)
vt (w)−∆e(x

(Nvs )
vs (w)) = 0 (Discrete Dynamics)

IVC(w) (HZD)

wmin ≤ w ≤ wmax (Bounds)

Using this optimization formulation, we can solve for not only the polynomial coeffi-
cients which parameterize the stable feedback controller for an optimal walking gait,
but due to the discretization and direct collocation formulation, also directly obtain all
discrete time-integration values for the robot configuration, generalized accelerations,
and constraint forces as optimization variables. This direct collocation algorithm will
be used as the general optimization framework for finding walking trajectories for the
experimental studies shown in Chap. 5 and Chap. 6.

Cost Functions

The choice of cost function or performance metric, Jv for use in the optimization is
largely a design choice influenced by the individual motion task. Within the field of
dynamic walking, this choice most often coincides with torque reduction, mechanical
power reduction, or by using the mechanical cost of transport. The simplest of these
choices is to minimize the norm of the torque squared:

Ju(w) :=
∑
v∈V

Nv−1∑
i=0

||uiv||2. (3.51)

However, in some cases simply minimizing overall torque may not always be desirable
since it does not always have a direct correlation to overall efficiency. Instead, we can
look at the 2-norm sum of the mechanical power, given as

P i
v(q̇, u) = ‖(ui)T q̇i‖, (3.52)

JP (w) :=
∑
v∈V

Nv−1∑
i=0

Pv(q̇, u), (3.53)
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where uiv and q̇iv is the computed torques and joint velocities at the i-th cardinal node.

In some cases, it becomes useful to also incentivize forward movement even if it
requires more power. For this purpose, we define the cost function of our gait opti-
mization for minimizing the total mechanical cost of transport of the gait [43]:

JCOT(w) :=
1

mgd

∑
v∈V

Nv−1∑
i=0

(
‖Pv(q̇i, uiv)‖ ·∆ti

T iI,v

)
, (3.54)

where mg is the robot weight, d is the distance traveled, and Pv(uiv, q̇i) is the total
power consumed assuming no power-regeneration at each integration node i of the
discretized problem passed to the NLP solver [176]. In the context of the direct
collocation optimization, the numerical integration in (3.54) is computed with the
discrete state and control variables using quadrature rules [176].
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C h a p t e r 4

ROBOTIC HARDWARE DESCRIPTIONS: DURUS AND CASSIE

In this chapter, the robot models and hardware for both the DURUS humanoid and
the Cassie biped are presented. While their morphology is considerably different, both
robots have spring components in their legs to return energy from impact, and have
low reduction cycloidal gearboxes. This combination makes both robots particularly
well suited for low friction and high efficiency motions. These bipeds will be the
primary experimental platforms used in this thesis, and are featured in the walking
and control development outlined in Chapters 5, 6, and 8.

4.1 The DURUS Humanoid

Developed by SRI International, the DURUS humanoid was built with the sole pur-
pose of achieving the most efficient walking possible, thereby allowing for extended
usage for autonomous battery-powered operation. Reaching this ambitious target
required a tight coupling between the electromechanical design of the robot and the
control algorithms which would ultimately be realized on the system. This section
will give an overview of the key components within the electromechanical design,

Figure 4.1: The humanoid robot DURUS. (Left) Experimental walking outside at
Georgia Tech under a mobile gantry. (Right) The generalized coordinates chosen to
represent the configuration of DURUS.
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including the actuators, gear reductions, motor controllers, and the overall power de-
livery system. This design plays an integral role in the walking behaviors achieved on
DURUS and—when coupled with the novel electromechanical design and nonlinear
control framework—forms the basis for realizing efficient locomotion.

4.1.1 Robot Model

Generalized Coordinates

Assuming R0 be a fixed world frame and Rb be a body reference frame rigidly attached
to the pelvis of the robot with the origin located at the center of the hip, the Carte-
sian position pb = (pxb , p

y
b , p

z
b) ∈ R3 and the orientation ϕb = (ϕxb , ϕ

y
b , ϕ

z
b) ∈ SO(3)

of Rb with respect to R0, respectively, composes the floating base coordinates of
the robot. The configuration of the robot body, as illustrated in Fig. 4.1, consists
of three kinematic chains: waist joints, qw = [qwy, qwr, qwp]

T , left leg joints, qlleg =

[qlhy, qlhr, qlhp, qlk, qlap, qlar, qls]
T , and right leg joints, qrleg = [qrhy, qrhr, qrhp, qrk, qrap, qrar, qrs]

T ,
respectively, where qwy, qwr, and qwp are the waist yaw, roll, and pitch angles, qlhy,
qlhr, qlhp, qlk, qlap, qlar, and qls are the left hip yaw, left hip roll, left hip pitch, left knee
pitch, left ankle pitch, left ankle roll angle, and left spring deflection, respectively,
and qrhy, qrhr, qrhp, qrk, qrap, qrar, and qrs are the right hip yaw, right hip roll, right
hip pitch, right knee pitch, right ankle pitch, right ankle roll angle, and right spring
deflection, respectively. Every joint on the robot is actuated with the exception of
the floating base, (pb, ϕb), and the spring elements, qls and qrs. For simplicity, the
generalized coordinates of the robot will be given in terms of stance and non-stance
leg angles instead of left and right leg angles. That is, the generalized configuration
space Q is given in the following generalized coordinates:

q = (pb, ϕb, qr) ∈ Q = R3 × SO(3)×Qr,

where qr is the coordinates of body configuration space Qr determined by qr =

(qw, qlleg, qrleg) ∈ Qr if the right leg is the stance leg, and qr = (qw, qrleg, qlleg) ∈ Qr
if the left leg is the stance leg, respectively. When the stance leg switches due to an
impact, the coordinates need to be relabeled accordingly. This is done by switching
qlleg and qrleg and “flipping” the sign convention for all roll and yaw angles.

Relabeling Matrix

The walking on DURUS in simulation and in optimization is modeled as a symmetric
walking gait. This allows for control development to be simplified to only one step
rather than two to represent a full stable walking cycle. Following the definition
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that was given for the impact model used in our hybrid system representation of
locomotion, (2.29), we can use the relabeling matrix R : Q → Q to swap the left and
right leg angles and flip the sign on the corresponding yaw and roll angles as well.
The relabelling matrix is a linear map:

R :=


Rb 0 0 0

0 Rw 0 0

0 0 0 Rl

0 0 Rl 0

 , (4.1)

where Rb,Rw, and Rl are the individual relabeling matrix for the base, waist, and
leg coordinates, given by:

Rb = diag(1,−1, 1,−1, 1,−1), (4.2)

Rw = diag(−1,−1, 1), (4.3)

Rl = diag(−1,−1, 1, 1, 1− 1, 1), (4.4)

where diag(·) represents a diagonal matrix.

Robot Dynamics

The continuous dynamics of the robot follows the general derivations presented in
Chap. 2, with several modification or additions. We incorporate the reflected motor
inertia of the actuators as a decoupled addition to the mass-inertia matrix [178].
In the order of the coordinates defined previously in the robot configuration, the
actuated joint reflected inertia are Im,w = [1.44662, 1.44662, 1.44662] for the waist
and Im,l = [1.435046, 1.435046, 1.435046, 1.44662, 1.44662] for each leg. In addition,
the robot has two passive compliant springs at the ankles corresponding to the joints
qls and qrs. Thus, the dynamics evolve according to:

D(q) +Dm︸ ︷︷ ︸
DR(q)

+H(q, q̇) = Bu+ κ(q, q̇) + JTv λv,

where Dm ∈ R23×23 is a diagonal matrix with each element corresponding to the
reflected rotor inertia through the gearbox on the motor joints which is added to the
nominal mass-inertia matrix D(q), and κ(q, q̇) : TQ → R23 is a vector of spring forces.
The springs are modeled with a linear stiffness, ks = 38, 790 N/m, and damping,
bs = 300 N/m/s, forming a vector of generalized forces at the ankle spring joints:

κ(q, q̇) = [01×15, ksqls + bsq̇ls, 01×6, ksqrs + bsq̇rs]
T , (4.5)

where 0�×� is matrix of all zeros.
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Figure 4.2: Illustration of the geometry used for defining the foot on DURUS. Points
of contact for the toe and heel are applied depending on the domain of the robot, and
can be applied in any combination. For example, if both nst and nsh are in contact,
it would render the stance foot flat on the ground. On the right, a heel roll and flat
foot contact condition are depicted.

Contact Geometry

Because the feet of DURUS are rectangular, we permit two kinds of contact during
walking: a flat-foot constraint or a line constraint. This is illustrated for DURUS’
feet in Fig. 4.2, with the set of available contacts being C = {nsh, nst, sth, stt} (swing
heel, swing toe, stance heel, stance toe). What determines the holonomic constraints
applied to a given domain is the set of contact points currently in fixed contact with
the ground. The foot geometry forms a rectangle, where the length of the contacting
geometry is lf = st− sh and the width is wf = sfI − sfo, with the origin of the foot at
the center.

Assuming three non-collinear points of contact, the foot can be modeled as a flat
plane. When we have established a flat-footed contact, the position and orientation
of the plane with respect to the ground will create a 6 degree-of-freedom (DOF)
closure constraint in (2.10) (mh = 6). This means that the selection matrix for the
constraint is Sc,flat = I6×6.

In the other two cases, we allow for the feet on DURUS to roll over on the toe or
heel. When this is occurring, there is a 4 DOF closure constraint imposed with:

Sc,line = [I5×4, 05×1, I5×1], (4.6)

which demonstrates that there is a 3 DOF constraint on the position of the heel
with a corresponding orientation constraint on the roll and yaw, while the pitch is
completely unconstrained (meaning that I5×4 is an upper diagonal identity with a row
of zeroes in the final row and I5×1 is a column of zeros with a 1 on the final entry).
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Figure 4.3: Final ankle design which was used on DURUS. In particular, two passive
springs in the ankle were utilized below a two degree of actuation ankle. The result
is compliant interaction between the robot and the ground with rigidly controlled
linkages above.

4.1.2 Electromechanical Specifications

We begin by giving an overview of the key elements of the novel electromechanical
design that were utilized on DURUS. These key aspects include actuators, joint design
including the selection and use of cycloid gearboxes, motor controllers, and power
management systems. We give an overview of the main elements that were ultimately
combined to yield the final design of the robot.

Compliant Ankles

The morphology of DURUS, and specifically the role of passive-compliant elements,
directly impacts the ability of the control methodology to achieve dynamic and effi-
cient locomotion and, conversely, the control scheme utilized—and the fact that it can
exploit underactuated degrees of freedom—can inform the mechanical design; that is,
there a direct coupling between control algorithms and mechanical design.

The end result of the design procedure was passive springs in the ankles of DURUS,
shown in Fig. 4.3, which are used to absorb ground impacts and to store and release
energy during the walking cycle, reducing the energy input required. These springs
have a linear action and, by adjusting the ankle angle, can be positioned to act in
an optimal direction upon touchdown. This makes the spring behavior predictable
and easily matched with the control model. The small amount of friction in the
linear bushings causes some lost energy, but the resulting damping greatly improves
controllability of the system. To reduce rebound and energy loss during ground
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impacts, the unsprung mass is kept as low as possible.

In addition to the specific leg morphology of DURUS, the concrete design approach
for the leg was to keep the inertia about the hip axis as low as possible to reduce the
energy consumption during swing phase. To this end, the motors and other heavy
components in the leg were positioned as proximally as possible and the mass of the
foot was kept to a minimum. The number of components inside the moving leg is kept
to a minimum, with the hip yaw and hip roll actuators positioned up inside the pelvis.
There is always a trade-off between weight and stiffness, but the control techniques
used on DURUS were able to handle some compliance in the structure of the robot
(due to the fact that, as will be discussed later, they utilize the full-order dynamics of
the robot). This means that we were able to design a relatively lightweight structure
capable of fast motion with low energy consumption.

Actuators and Joints

The sagittal joints of the legs of DURUS, where high-power is required, use a cus-
tom transmission design developed by SRI. A low-cost BLDC outrunner motor is
connected via a chain drive to a cycloidal transmission which drives the link output,
shown in Fig. 4.4. Typical existing cycloids use bushings, are up to 80% efficient, and
are non-backdriveable. The mechanisms of such cycloid drives have been analyzed
in [179], [180]. The SRI cycloid works on a similar principle, but uses needle roller
bearings at the interfaces of all contacting surfaces, thereby reducing friction and
resulting in a transmission whose efficiency is measured to be 97%. The gear ratio for
the cycloid was selected to be 15 : 1, while the chain drive between the motor and the
gearbox increases the overall gear ratio to 56 : 1. The inclusion of the chain drive is
an efficient way of increasing the gear ratio, reducing the necessary size and weight of
the cycloid. The motor is a Rotomax 50cc outrunner motor with peak power 5.3kW,
chosen for its low cost and high torque density. Joint torque sensing is achieved using
a strain-gauge based torque sensor from ME Systeme. A 21-bit absolute encoder is
included on the link output and a relative optical encoder measures the speed of the
rotor. Mechanical stops are also included within the joint housing. The total weight
of the joint is 2.7 kg, the peak torque is 250 Nm, and the maximum joint acceleration
exceeds 130 rad/s2.

For the joints in DURUS with lower power requirements, such as the waist and ankles,
a smaller, lighter-weight actuator was designed. In particular, it is smaller than the
cycloid joint, weighs only 1.1 kg, and has a peak torque of 150 Nm. This design uses
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Figure 4.4: DURUS had two actuated joint types: a high power (left), and low
power (right) joint. The high power design used a custom cycloidal gearbox, which is
shown in an exploded view. For joints which did not require large torques a compact
harmonic drive was coupled with a smaller BLDC motor, the coupled geometry is
shown in a cutaway profile.

an inexpensive Aerodrive F3A outrunner motor with peak power 2.7 kW, connected
directly to a Harmonic Drive speed reducer with gear ratio of 100 : 1. This actuator
includes mechanical stops, a 20-bit absolute encoder on the link output, and a custom
torque sensor which uses low-cost strain gauge based sensing. The stacked motor and
gearbox configuration is shown in Fig. 4.4.

To ultimately realize dynamic and efficient locomotion on DURUS, precision in control
implementation is required at every level of the hardware. Therefore, an essential
component in the process of realizing locomotion is a motor controller which can
accurately track desired trajectories. In particular, desired trajectories will be derived
at the high-level via nonlinear controllers, and ultimately realized at the embedded
level via high precision position control. Therefore, accurate tracking at the joint level
is a necessary component of successful implementation—the motor controllers were
specifically designed to achieve this objective. High-fidelity tracking at the joint level
is crucial to incorporating the formal walking methods successfully. Good tracking
ensures that the physical hardware is as close as possible to the robot model and
reduces the stabilizing effort necessary from the more heuristic regulator stabilization
methods. These motor controllers tracked joint positions with an overall rms error
of 0.005 rad and a peak error of 0.026 rad. Therefore, the motor controllers and
actuators achieve the desired goal of under 0.01 rad tracking error, allowing for the
implementation of the formal controllers that will be discussed in subsequent sections.
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Figure 4.5: Battery design and placement on DURUS. The torso of DURUS, shown
on the right, contains mounts for two battery packs along with the central computer
for the robot.

On-Board Power and Processing

DURUS is powered by two on-board battery packs. Each pack weighs 10.2 Kg and
has a capacity of 1.1 KWh, making a total of 2.2 KWh. The batteries are low cost
Li-Po units, purchased from a hobby store, but analysis showed these units to have
excellent specific energy density, very close to that of high-end customized units.
Each battery pack contains ten of these units encased in an insulating fiberglass
enclosure. The power safety circuit of DURUS enables wireless and manual control
of power distributed to the system. The concept is implemented by combining solid-
state relays and fuses to provide a dual level of protection. A multi-drive wireless
emergency stop (ESTOP) transceiver drives a bank of relays enabling wireless cutoff
of each appendage of the robot. The wireless receiver also responds to manual ESTOP
button control. The batteries design used on DURUS is pictured in Fig. 4.5, along
with an illustration of the battery placement. In addition to the battery shown,
which is mounted in the back of the torso, an additional battery can be mounted
beneath the chest cover. DURUS also had onboard processing (also contained in the
torso under the back torso battery mount), in the form of a Linux computer running
a Simulink Real-Time binary to communicate with the motor controllers over an
EtherCAT network card.
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Figure 4.6: The Cassie bipedal robot. (Left) Experimental walking outside at Caltech.
(Right) The generalized coordinates chosen to represent the configuration of Cassie.

4.2 The Cassie Biped

The Caltech Cassie biped was purchased from Agility Robotics1. The design of the
robot encompasses the physical attributes of the spring loaded inverted pendulum
(SLIP) model dynamics [84]. The primary characteristic is a pair of light-weight legs
with a heavy torso so that the system is approximated by a point-mass with virtual
springy legs. On Cassie, a compliant multi-link mechanism is used to transfer power
from higher to lower limbs without allocating the actuators’ weight onto the lower
limbs, and effectively acts as a pair of springy legs.

4.2.1 Robot Model

Generalized Coordinates

Assuming R0 to be a fixed world frame and Rb to be a body reference frame rigidly
attached to the pelvis of the robot with the origin located at the center of the hip,
the Cartesian position pb = (pxb , p

y
b , p

z
b) ∈ R3 and the orientation ϕb = (ϕxb , ϕ

y
b , ϕ

z
b) ∈

SO(3) of Rb with respect to R0, respectively, composes the floating base coordinates
of the robot. The configuration of the robot body, as illustrated in Fig. 4.6, consists
of two kinematic chains: left leg joints, qlleg = [qlhr, qlhy, qlhp, qlk, qls, qlt, qlhs, qlak]

T , and
right leg joints, qrleg = [qrhr, qrhy, qrhp, qrk, qrs, qrt, qrhs, qrak]

T , respectively, where qlhy,
qlhr, qlhp, qlk, qls, qlt, qlhs, and qlak are the left hip roll, left hip yaw, left hip pitch,
left knee pitch, left shin spring, left tarsus pitch, left heel spring, and left ankle pitch,
respectively, and qrhr, qrhy, qrhp, qrk, qrs, qrt, qrhs, and qrak are the right hip roll, right
hip yaw, right hip pitch, right knee pitch, right shin spring, right tarsus pitch, right

1https://www.agilityrobotics.com/

https://www.agilityrobotics.com/
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heel spring, and right ankle pitch, respectively. The actuated joints are symmetric
for both legs, shown in Fig. 4.6 as a red joint, and correspond to [qhr, qhy, qhp, qk, and
qak totaling 10 actuated joints on the overall model. As will be shown in the robot
dynamics, there are also four passive compliant springs at the qs and qhs joints on each
leg. For simplicity, the generalized coordinates of the robot will be given in terms
of stance and non-stance leg angles instead of left and right leg angles. That is, the
generalized configuration space Q is given in the following generalized coordinates:

q = (pb, ϕb, qr) ∈ Q = R3 × SO(3)×Qr,

where qr is the coordinates of body configuration space Qr determined by qr =

(qlleg, qrleg) ∈ Qr. When the stance leg switches due to an impact (this is only done
for the walking presented in Sec. 6.1, and not in Sec. 6.2 or Chap. 8), the coordi-
nates need to be relabeled accordingly. This is done by switching qlleg and qrleg and
“flipping” the sign convention for all roll and yaw angles.

Relabeling Matrix

In Chap. 6, we will consider two different styles of walking, which will coincide with
two different reset maps. The first is a spring reset map for an asymmetric, or
period-2, walking gait. This means that no leg swapping is necessary as left and
right are explicitly modelled in their own individual stance phases. However, in this
model there is an assumption of a rigid swing leg and instantaneous double-support
domain. Because of this, the reset map is not simply an identity matrix, but rather a
nonlinear mapping which zeroes the spring deflections in the leg. In the second case,
walking will by considered as symmetric, meaning we designate the gait cycle under
the assumption that right and left stance are the same. For this locomotion model,
we do not zero the spring deflections in the swing leg, but do need to use a linear
mapping to relabel the left and right leg coordinates from step to step.

Asymmetric Spring Reset Map: Because the legs are compliant, they may not
necessarily leave the ground with the springs at exactly their neutral angle. For the
majority of the walking that we consider, the swing leg is assumed to be sufficiently
rigid to model the springs as a holonomic constraint while in the air. Thus, we must
define a spring reset function, which can be applied as part of our relabeling matrix
to zero the springs. While simply setting the spring values to zero is sufficient for
those joints, we must solve for a nontrivial value on the tarsus. While we can solve
explicitly for the inverse kinematics given the pre-impact configuration, the explicit
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solution is too long to write concisely. Specifically, the inverse kinematics problem
solves the multi-bar (zero spring deflection) closure constraint:

γ̄tar(q) :=0.028794 + 0.118906 cos(qk)− 0.112216 cos(qt)

− 0.0280613 cos(qk + qt)− 0.0161784 sin(qk)− 0.0425142 sin(qt)

− 0.00647928 sin(qk + qt) = 0. (4.7)

The inverse kinematics solution for the neutral tarsus angle is then denoted q̄t(qk) :=

fγ̄tar(qk). Using (4.7), we can solve for the post-impact tarsus joint, q+
t , given the

pre-impact values for q−k and assuming q+
s → 0, q+

hs → 0. The inverse kinematics
solution will be denoted as q+

t = ∆γ̄
tar(q

−).

The walking on Cassie in simulation and in optimization is most generally represented
as a period two walking cycle, meaning that the cycle repeats after the left and right
legs have both been through a stance phase. This is because on Cassie, we explicitly
consider lateral walking, which cannot be represented as a symmetric walking gait.
Thus, for our asymmetric walking model, the reset map R : Q → Q becomes:

Rasym(q−) :=
(
Rb,asym(q−),Rl,asym(q−),Rl,asym(q−)

)T
, (4.8)

where Rb,asym(q−) := I6×6qb and Rl,asym(q−) is a nonlinear function which is mostly
the identity mapping combined with the spring zeroing inverse kinematics applied at
the tarsus:

Rl,asym(q−) :=
(
qhr, qhy, qhp, qkp, 0,∆

γ̄
tar(q

−), 0, qtp

)T
, (4.9)

and it can be seen that the zero entries correspond to the shin and heel spring indices.
The velocity spring reset map is then a linear function which coincides with the
Jacobian of the position mapping:

Ṙasym :=
∂Rasym(q−)

∂q
, (4.10)

which results in an overall impact and relabelling mapping that slightly differs from
the one previously introduced in (2.29):

∆(q−, q̇−)asym :=

[
q+

q̇+

]
=

[
Rasym(q−)

Ṙasym(q−)∆q̇(q−)q̇−

]
. (4.11)

Symmetric Relabelling Matrix: While the relabelling presented in (4.8) is suf-
ficient for asymmetric walking gaits, in Sec. 6.1 we do explicitly consider symmetric
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walking due to the complexity of adding an additional double-support domain. Thus,
a symmetric relabeling matrix can also be used to swap the left and right leg angles
and flip the sign on the corresponding yaw and roll angles as well. When we use
the symmetric walking assumption, we also allow the swing leg to remain compliant,
meaning we do not need to zero spring elements in the reset as was done in (4.8).
The symmetric relabelling matrix is a linear map:

Rsymm :=

Rb,symm 0 0

0 0 Rl,symm

0 Rl,symm 0

 , (4.12)

whereRb,andRl are the individual relabeling matrix for the base and leg coordinates:

Rb,symm = diag (1,−1, 1,−1, 1,−1) , (4.13)

Rl,symm = diag (−1,−1, 1, 1, 1, 1, 1, 1) . (4.14)

Robot Dynamics

The continuous dynamics of the robot follows the general derivations presented in
Chap. 2, with several modifications or additions. We incorporate the reflected motor
inertia of the actuators as a decoupled addition to the mass-inertia matrix [178]. In the
order of the coordinates defined previously in the robot configuration, the actuated
joint reflected inertia are Im,l = [1.435046, 1.435046, 1.435046, 1.44662, 1.44662] for
each leg. In addition, the robot has two springs at the ankles corresponding to the
joints qls and qrs. Thus, the dynamics evolve according to:

D(q) +Dm︸ ︷︷ ︸
DR(q)

+H(q, q̇) = Bu+ κ(q, q̇) + JTv λv,

where Dm ∈ R22×22 is a diagonal matrix with each element corresponding to the
reflected rotor inertia through the gearbox on the motor joints which is added to the
nominal mass-inertia matrix D(q), and κ(q, q̇) : TQ → R22 is a vector of spring forces.
The springs are modeled with a linear stiffness, ks = 2, 300 and khs = 2, 000 N/m,
and damping, bs = 4.4 and bhs = 4 N/m/s, forming a vector of torsional generalized
forces at the spring pivots:

κ(q, q̇) = [01×10, ksqls + bsq̇ls, 0, khsqlhs + bhsq̇lhs, (4.15)

01×5, ksqrs + bsq̇rs, 0, khsqrhs + bhsq̇rhs, 0]T , (4.16)

where 0�×� is matrix of all zeros.
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Figure 4.7: Illustration of the dimensions used for defining the foot and contact
geometry on Cassie. We only consider each foot as either in contact or not, with both
nst and nsh touching the ground. Enforcement of this contact constraint gives a line
contact along the length of the foot.

Contact Geometry

The feet on the Cassie robot are effectively a line contact, illustrated in Fig. 4.7, with
the set of available contact points being C = {nsh, nst, sth, stt} (swing heel, swing
toe, stance heel, stance toe). The foot geometry forms a line, where the length of the
contacting geometry is lf = st− sh with the origin of the foot at the center.

When we have established contact, the position and orientation of the plane with
respect to the ground will create a 5 degree-of-freedom (DOF) closure constraint in
(2.10) (mh = 5). This means that the selection matrix for the constraint is:

Sc,line = [I5×5,05×1], (4.17)

which demonstrates that there is a 3 DOF constraint on the position of the foot with
an orientation constraint on the roll and pitch, while the yaw is unconstrained.

4.2.2 Electromechanical Specifications

This section will provide an overview of the key elements of the electromechanical
specifications on the Cassie bipedal robot. The primary aspects of the robot which will
be relevant to later experimental work includes a description of the springs in the leg,
gearbox and motor specifications, the computing available for control development,
and modeling which was done to allow for a mathematical representation of the multi-
bar leg mechanism. All hardware was designed and built by Agility Robotics2., while
the multi-bar leg modeling and software for networking the control computers were
created specific to this work.

2The Agility Robotics GitHub: https://github.com/agilityrobotics/cassie-doc
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Figure 4.8: A blown-up view of the multi-bar leg mechanism on Cassie. Also shown
are the individual fiberglass leaf springs which provide torsional compliance at the
shin pitch and heel spring coordinates.

Fiberglass Springs

The Cassie robot has a compliant leg morphology, pictured in Fig. 4.8, effectively
forming a 6-bar mechanism with 2 fiberglass leaf springs. In analysis that was intro-
duced by the robot designers [84], [181], [182], it was shown that while this particular
morphology does not reduce peak energy consumption for steady-state walking, it
does provide exceptionally desirable properties in disturbance rejection, power re-
quirements, and efficiency. The leg design of Cassie is the logical result of these
findings, with opposing springs at the heel and shin and actuators at the knee and
hip pitch which can provide torque transmission to propel walking.

As opposed to the prismatic spring action of DURUS, which was always normal to
the foot configuration, the spring action on Cassie acts along the sagittal plane of
the leg mechanism in both the radial and tangential directions. This means, if we
exponentially zero a virtual constraint in the leg length and leg angle directions, there
will be an associated passive compliance along both the leg angle and length, rather
than just the axial length.

A significant effort was made in this thesis to fully leverage this compliant leg struc-
ture by modeling the passive compliance at qsp and qhs as underactuated coordinates
which enter the zero dynamics. These springs will also be used explicitly in feedback
controllers which are used on hardware in Chap. 8, allowing the control method-
ology to use the spring torques for tracking rather than assuming that they allow
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instantaneous torque transfer in the leg as would be for a rigid mechanism.

Actuators and Gearboxes

Most of the information on the actual actuators and gearboxes is proprietary in-
formation maintained by Agility Robotics. However, we can describe the general
components. Each leg is fitted with three separate sets of grouped actuators and
gearboxes; the hip roll and hip yaw joints have an intermediate reduction of 25 : 1

through a highly efficient custom cycloidal gearbox. This allows for minimal friction
losses and highly transparent torque transmission. As the most dynamic and impor-
tant joints for force control, the hip pitch and knee joints have a lower reduction of
16 : 1 with a cycloidal gearbox. Finally, the foot pitch actuators, which are used
minimally to perform tasks such as pointing the feet in the air and during standing,
have a harmonic gearbox with a reduction of 50 : 1. The harmonic gearbox has a sig-
nificant amount of friction in comparison to the cycloids as would be expected. The
end result is a low-reduction and easily backdriveable set of joints that makes model-
based control significantly easier to accomplish. This fact will be very important in
the implementations provided in Sec. 6.2 and Chap. 8.

Loop Constraints

As previously mentioned, the compliant constrained mechanism which makes up the
leg structure on Cassie was meticulously designed to provide symmetric axial compli-
ance which accurately mimics the SLIP model [84]. Because this structure is essen-
tially a constrained 6-bar mechanism, it affects how we obtain manipulator Jacobians
for the system. We hereby derive the constrained manipulation Jacobian for the leg.
Let r ∈ R3 be the position of an end-effector with respect to the robot’s center of
mass. This can be obtained by r = fFK(q), where fFK(q) : Q → R3 is the forward
kinematics and q ∈ Rn is the vector of generalized coordinates in the unconstrained
configuration space. In the case of the Cassie biped, the end effector is chosen as the
ankle when we are solving for the estimated contact force, since the foot is a passive
joint and only serves to add an additional coordinate to the expressions.

The general methodology to derive the constrained forward kinematics of a robotic
manipulator is to open the mechanism loop, propagate the kinematics along the
branches, and add kinematic constraints to close the loop. We partition the con-
figuration coordinates into active (θa ∈ Rna) and passive (θp ∈ Rnp) joints, with
n = na +np. Note that we define the joints connected by a motor or spring as active.
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This means for each leg, na = 7, np = 1. Next, we apply a kinematic constraint to the
leg. Specifically, the heel spring is attached to the rear of the tarsus linkage, with its
end constrained via a pushrod affixed to the hip pitch linkage. The pushrod attach-
ment is a holonomic constraint applied between the hip and heel spring connectors:

η4bar(ql) := dach(ql)− 0.5012 = 0, (4.18)

where the attachment distance dach(ql) ∈ R is obtained via the forward kinematics
from one connector to the other. For each leg, this constraint is only a function of
the knee, shin, tarsus, and heel spring joints. The forward kinematics representing
the achilles rod constraint is given by the closure constraint:

η4bar(ql) =− 0.0245852− 0.00127968 cos(qhs) + 0.0145632 cos(qk) + 0.0546589 cos(qs)

+ 0.104342 cos(qk + qs)− 0.0001308 cos(qhs − qt)− 0.0543322 sin(qhs + qt)

− 0.0000349 cos(qhs − qk − qs − qt)− 0.088198 cos(qhs + qt)

− 0.0071611 cos(qhs + qs + qt)− 0.003046 cos(qk + qs + qt)

− 0.0249808 cos(qhs + qk + qs + qt)− 0.013847 sin(qhs + qk + qs + qt)

− 0.0113784 sin(qk) + 0.0387967 sin(qs)− 0.0048 sin(qk + qs)

− 0.0000897 sin(qhs − qt)− 0.00002636 sin(qhs − qk − qs − qt)

+ 0.0260913 sin(qt)− 0.0000281 cos(qhs − qs − qt)

+ 0.00250917 sin(qs + qt)− 0.0168716 sin(qhs + qs + qt)

+ 0.00734167 sin(qk + qs + qt) + 0.00844 sin(qhs) = 0. (4.19)

Further, we can write the end effector and constraint velocities as:

ṙ =
∂r(ql)

∂ql
= Jee(ql)q̇l

Γ̇f =
∂Γf (ql)

∂ql
= Jc(ql)q̇l.

We then partition the Jacobians Jc and Jee into active and passive components to
obtain the system of equations:0 = Jc,aθ̇a + Jc,pθ̇p,

ṙ = Jee,aθ̇a + Jee,pθ̇p,
(4.20)

where Jc,a ∈ Rnp×na , Jc,p ∈ Rnp×np , Jee,a ∈ R3×na , and Jee,p ∈ R3×np . Because we have
one passive joint per constraint (see the tarsus joint in Fig. 4.6), Jc,p is invertible.
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Figure 4.9: The onboard computers and battery pack contained within the pelvis of
the Cassie robot. On the back of the pelvis are two computers, one Intel NUC and
one Simulink Real-Time target PC. Clamped to the front of the pelvis, effectively
forming the face of the robot, is the Li-ion battery pack.

We can then calculate the passive joint velocities from the active as θ̇p = −J−1
c,p Jc,aθ̇a.

The end effector velocity became:

ṙ = (Jee,a − Jee,pJ−1
c,p Jc,a)︸ ︷︷ ︸

J̄

θ̇a, (4.21)

where J̄ ∈ R3×na is the constrained end effector Jacobian.

On-Board Power and Processing

Cassie is able to operate completely autonomously, with compact onboard power
and computing both contained in the pelvis. The battery, pictured on the right in
Fig. 4.9 is an approximately 4.75 kg lithium-ion pack enclosed in an aluminum shell
that clamps onto the front face of the robot. This accounts for nearly 40% of the total
mass of the pelvis, which is the most massive grouped linkage in the entire model.

There are two computers available for use, one Intel NUC and one Simulink Real-
Time target PC. The Simulink xPC is linked to Elmo gold twitter motor controllers
over an EtherCAT bus and also networked to the NUC via an Ethernet cable and
UDP interface. This allows for a hard real-time interface to the critical low-level
motor controllers, while exposing a Linux-based PC for more complex control and
estimation development. While some existing infrastructure is provided for the xPC
from Agility Robotics to facilitate the low-level hardware communication, the Intel
NUC was provided as a blank computer, and we were responsible for developing all
software development and infrastructure which was implemented.
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4.3 Justification of the Compliant Cassie Model

The inclusion of model detail in feedback controllers for underactuated bipedal loco-
motion can be used to accurately capture the underactuated dynamics of the system
in a manner which also facilitates accurate tracking of planned motions. However,
implementing model-based planning and control methods on physical systems is typ-
ically non-trivial due to the inherent model inaccuracy, dynamically changing contact
constraints, and possibly conflicting objectives for the robot which naturally arise in
locomotion. It is due to these challenges that bipedal robots which exhibit simulta-
neously robust, efficient, and agile motions are rare in practice [183].

One area of model-based planning and control which is particularly difficult to di-
rectly address is passive compliance in locomotion. Some of the earliest inclusions of
compliant hardware on bipedal robots was with spring flamingo and spring turkey
[79], ERNIE [184], and more recently MABEL [25] and ATRIAS [83]. One of the lat-
est robots to exhibit compliant leg structures is the Cassie biped (shown in Fig. 4.6),
which is the experimental platform that we consider in this work.

In several works from other groups on Cassie [127], [185], it was shown how a rigid
model of the robot could be used to generate stable walking behaviors. This model is
shown on the right in Fig. 4.10, where the heel spring is removed, the shin spring is
fixed at zero deflection, and the tarsus angle is purely a function of the knee angle as
a result of a holonomic constraint which is imposed to close the undeflected four-bar

Figure 4.10: An illustration of the model differences between a compliant and rigid
representation of the Cassie leg. On the left, a 22 DOF compliant leg with two springs
and a passive tarsus is shown, while on the right, a 16 DOF rigid leg with no compliant
elements or passive joints.
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linkage (see Sec. 4.2). One of the primary reasons that a more constrained model may
be considered is that it requires fewer degrees of freedom and the compliant mech-
anism not only increases local stiffness of the nonlinear dynamics, but also induces
modelling uncertainties for the springy joints. Despite these initial difficulties that
spring dynamics may bring, the kinematics of the leg mechanism (detailed extensively
in Sec. 4.2) clearly have a nontrivial amount of compliance when in contact with the
world. Locomotion built on simple models demand the controller to compensate the
uncertainties caused by the gap between the assumed reduced model dynamics and
the full body dynamics. This can sometimes be an infeasible task and it is not always
clear how to coordinate the full-order system to behave as a low-dimensional pendu-
lum while respecting physical limits. It is due to this fact that the translation of rigid
plans to the actual hardware often require some form of heuristic tuning in the form
of leg angle offsets or additional feedforward torques to overcome the discrepancy in
the model which arises from the trajectory planning in order to implement.

In this section, we will discuss the advantages that using a compliant leg model may
provide. Cassie was designed to encompass several of the primary physical attributes
of the SLIP model [84] dynamics. The primary idea is to have a pair of light-weight
legs with a heavy torso so that the actual system can be approximated by a point-mass
with virtual springy legs (see Fig. 4.8). On Cassie, a compliant multi-link mechanism
is used to transfer power from higher to lower limbs without allocating the actuators’
major weight onto the lower limbs, and effectively acts as a pair of springy legs, with
the compliant model specifically considered shown on the left in Fig. 4.10. Each leg
has two passive compliant springs, with the multi-bar linkage closed via a holonomic
constraint representing the connection that the achilles rod provides from the hip
pivot to the end of the heel spring. The primary differences between the rigid and
compliant models can be summarized briefly as:

- Rigid model assumes that all four leaf springs are rigid linkages, which yields
kinematic approximations such as the trivial geometry relation Γs(q) := θk −
θt − 13◦ ≡ 0 for the multi-link structure. The constrained rigid model with no
contact is 16 DOF.

- Compliant model instead treats the rotational joint of the leaf spring linkage
as a torsional joint, with stiffness and damping effects. In addition, the distance
between the hip and end of the heel spring remains a constant (as shown by the
dash line in Fig. 4.10). This geometry relation can be described as a holonomic
constraint: Γf (q) ≡ 0. The full compliant model with no contact is 22 DOF.



69

Figure 4.11: A comparison of the rigid model and compliant model for Cassie im-
plemented in an accurate simulation environment. On the left, the rigid gait has
not anticipated passive compliance, and thus drops and strikes the ground early. On
the right, the compliant motion has an accurate plan for the shin and heel springs,
meaning the neutral leg length output offsets to accommodate for the leg deflection.

A Comparison in Optimization and Simulation. As a first point of comparison,
an HZD optimization was performed to find a stepping in place gait for both the
compliant and rigid models of Cassie [128]. These were run with separate domain
structures, where the compliant gait had both a double-support and single-support
domain while the rigid only had a single support as the rigid leg necessitates an
instantaneous transfer from one leg to the next. The optimization was run on a
Ubuntu-based computer with an i7-6820HQ CPU @2.70GHz and 16GB RAM. The
resulting computational performance is summarized in Table 4.1, where we see several
expected results. Specifically, the rigid model was approximately 10 times faster
to converge, and took approximately 3 times less iterations. However, we should
note that HZD optimizations are typically performed offline, and approximately 12

minutes is still a reasonably fast convergence time (see the times given in Chap. 5
for convergence times on DURUS, which has 23 DOF). In addition, later work on
Cassie [186] (see Sec. 6.2) improved the convergence time of the compliant model to
an average of 264 seconds, which is actually less than the rigid model here.

The obvious advantage is illustrated in simulation through Fig. 4.11, where the rigid
model and compliant model were both placed into an accurate simulation environ-
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Table 4.1: Computation performance on a Ubuntu-based computer with an i7-
6820HQ CPU @2.70GHz and 16GB RAM.

simple model full model
# of iterations 275 773
time of IPOPT (s) 20 153
time of evaluation (s) 78 755

ment of the robot. Because the rigid model has no planning for the passive degrees
of freedom that the true system experiences, the leg length does not account for the
vertical leg deflection causing an early strike. Reality differs from the rigid model’s
dynamics, inducing additional forces on the other foot and pushing the actual dynam-
ics away from its designed behaviors. On the right, the difference between the neutral
leg length (corresponding to the outputs which are derived in Chap. 6) clearly antic-
ipates this deflection and increases to keep the torso at the desired walking height.
For these same reasons, to make a rigid model based controller (or trajectory) work
successfully in reality, one needs to design controllers which treat the compliant dy-
namics as uncertainty to overcome such dynamical gaps. While we do not wish to
overfit physical reality, sufficiently large uncertainty caused by known modelling error
could result in poor controller design. We argue that a large portion of this particular
trade-off can be compensated through the inclusion of the compliance which exists in
in the physical model.

Advantages in a Gait Library and Model-based Control Framework. In
Sec. 6.2, we develop a gait library for compliant walking on Cassie at a variety of
speeds. This not only provides a user with a set of outputs which have planned for
the passive compliance, such as the one just shown in Fig. 4.11, but it can also provide
additional information useful in control design. Rather than simply track the output
Bézier polynomials purely through a model-free PD control law, we would ideally
have some feedforward information on how the dynamics should evolve through time.
In other work on passive compliant walking robots [41] simply adding the torque into
the control law provided sufficient torque to obtain reasonable tracking. However,
many bipedal implementations outside of HZD also rely on inverse dynamics [142]
and thus some parameterization of the generalized accelerations, q̈, from step to step
[187]. We will also make use of the generalized accelerations for HZD in Sec. 6.2 with
inverse dynamics for tracking interpolated gaits from a motion library. Additionally,
in Chap. 7 a model-based control Lyapunov function approach is introduced which
uses a quadratic program to track gaits in a pointwise-optimal fashion. The actual
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Figure 4.12: The vertical ground reaction forces compared for compliant and rigid
walking on Cassie.

implementation of this controller in Chap. 8 requires highly accurate regularization
terms for the torque, ground reaction forces, and accelerations on top of the compliant
output Bézier polynomial coefficients.

With the aim of developing feedforward and regularization terms for feedback control
development, we would next like to investigate some of the characteristics of the
compliant motion library found in Sec. 6.2, and compare them to a rigid collection
of gaits. The implementation of the optimization for the compliant gait library is
outlined in Sec. 6.2, where here we have imposed identical constraints and an identical
cost for the rigid optimization (with the exception of the added holonomic constraints
on the springs).

As was previously shown, the actual model of the Cassie robot naturally behaved
similarly to the SLIP model. The SLIP model is also an emergent behavior of the
contact forces shown in Fig. 4.12, where we have plotted the ground reaction forces
for a gait for backwards walking and forward walking. Recall in Sec. 1.2.3 that one of
the defining characteristics of the SLIP model is the “double-hump” force profile of the
biped while walking. This is clearly shown for the compliant model, with the ground
reaction force having a fairly continuous load transfer from foot to foot. Because
Cassie has such low leg inertia, the post-impact vertical force is not large as the
motor torque is not instantaneously transmitted through the springs to the ground.
In comparison, the rigid model has an almost constant vertical ground reaction force,
meaning that this profile is not an accurate representation of the compliant leg, as it
assumes that the force will instantaneously spike to approximately 375 N due to the
holonomic constraints imposed on the springs.

One of the most important characteristics of a controller with regards to implementa-



72

Figure 4.13: Torque at the hip roll joint compared for the rigid and compliant models
of Cassie.

Figure 4.14: Torque at the knee joint compared for the rigid and compliant models of
Cassie. Because the knee directly corresponds to the leg length, the emergent torque
is very similar to the vertical reaction force.

tion on hardware is smooth torque profiles. Actual actuators cannot instantaneously
change torque due to internal dynamics and large discontinuities can lead to insta-
bility, vibrations, and even damage to the hardware. On Cassie, the two highest
torque joints are the knee and hip roll joints. If we directly compare first the knee in
Fig. 4.14 and the hip roll in Fig. 4.13, we can see a similar phenomenon in the torque
as was seen with the constraint forces. The most important motivation for using the
parameterized torque from the compliant model is the relatively low torque at the
beginning and end of a step, with a very small jump at impact. This means that if
this torque is used as a feedforward term directly, it will not cause any problems due
to discontinuity. In comparison, the rigid model clearly does not consider the passive
compliance during stance, and undergoes a massive discontinuity at impact.

Another important consideration for the stability of walking on hardware is the impul-
sive force arising from impact. In comparison to other robots, Cassie has a relatively
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Figure 4.15: Impulsive force at footstrike for sagittal walking with rigid and compliant
gait libraries on Cassie.

small impulse as the distal limbs of the robot are all low mass carbon-fiber tubes
and the impulsive force is related to the impacting mass. Recall the derivation of the
post-impact velocity derived in (2.26). Instead, we can simultaneously solve for the
post-impact velocity q̇+ and impulse Fimp:[

q̇+

Fimp

]
=

[
D(q−) −Jc(q−)T

Jc(q
−) 0

]† [
D(q−)q̇−

0

]
, (4.22)

by simply taking the appropriate pseudo-inverse. We compare the impulsive force at
impact for the rigid and compliant walking gaits in each library along their sagittal
speeds in Fig. 4.15. Here we can see that the compliant model has a very consistent
impact force, while the rigid gait varies roughly proportional to speed. Near zero the
rigid gait actually performs slightly better, while at the larger speeds in the library
exhibits impulsive forces roughly double the compliant gait. Walking is typically the
most difficult to stabilize at higher speeds than while stepping in place, meaning that
we would like to keep the impulsive force low at these extremes in the library.
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C h a p t e r 5

EXPERIMENTAL STUDY: EFFICIENT LOCOMOTION ON DURUS

This chapter will present a set of experiments which were largely performed at Georgia
Tech and published in 2016, along with a manuscript currently in preparation:

[1] J. Reher, A. Hereid, S. Kolathaya, et al., “Algorithmic foundations of realizing multi-
contact locomotion on the humanoid robot DURUS,” in Twelfth International Work-
shop on Algorithmic Foundations on Robotics, 2016.

[2] J. Reher, A. Hereid, E. Cousineau, et al., “The humanoid robot DURUS: How hybrid
system models, novel electromechanical design and nonlinear control realized new
levels of humanoid efficiency,” IEEE Control Systems Magazine, 2021, In Preparation.

The walking experiments shown feature the humanoid robot, DURUS, locomoting
with a stable human-like HZD gait in 3D on a treadmill, and were motivated largely
by improving the walking efficiency of previous work on DURUS presented in [43],
[176] and demonstrated at the DARPA robotics challenge. This work was highly
collaborative, with co-authors Ayonga Hereid, Shishir Kolathaya, and Christian Hu-
bicki all contributing various aspects under the mentorship of Dr. Aaron Ames. In
addition, Eric Cousineau, Eric Ambrose, Stephen Morfey, Paul Birkmeyer, Zachary
Shivers, and many more made contributions on the hardware and software infrastruc-
ture for DURUS, which were foundational to the work that went into the multi-contact
walking. As it pertains to this thesis, the contributions, and the motivation for the
inclusion of these experiments are:

• The primary contribution to this work was on the physical implementation,
software and algorithm development, and in interfacing with Ayonga Hereid
on developing constraints and tuning which were necessary in our model and
trajectory optimization to obtain the final walking trajectories.

• The resulting motions are the first and only multi-contact humanoid walking de-
veloped with HZD to date, and is the most efficient reported humanoid walking
in the literature to date.

• These experiments demonstrate the advantages to leveraging fullbody models
of robots, specifically through underactuation and compliance within the HZD
framework to achieve increasingly dynamic and efficient walking.
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5.1 Motivation

Preliminary Work with DURUS

Through the formal and heuristic walking methods presented at the beginning of
this thesis, combined with novel electromechanical design, the DURUS humanoid was
developed as a joint effort between SRI, the AMBER Lab at Texas A&M, and at times
the Dynamic Robotics Lab at OSU. This large-scale effort culminated in exceptionally
efficient locomotion showcased at the DARPA Robot Endurance Test in 2015. This
was a sub-competition which took place during the DARPA Robotics Challenge in
Pomona, CA. The competition was funded with the explicit purpose of bettering
the humanoid efficiency available on full-scale disaster relief humanoid robots. In a
walk-off of sorts available to the public (see Fig. 5.2), the SRI International robot
DURUS and the Sandia National Labs robot [189], STEPPR, walked side-by-side on
treadmills while displaying efficiency metrics of roughly an order of magnitude more
efficient than the walking taking place just steps away at the main event.

Figure 5.1: The competition space inhabited by both DURUS and STEPPR [189] at
the DARPA Robot Endurance Test.

Figure 5.2: Shown are an array of photos which show DURUS walking at the DRC
Expo. The robot walked on a large treadmill while the general public could approach
and view the experiment as it took place.
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Figure 5.3: Photos of the experiment performed with DURUS traversing the sidewalks
of Georgia Tech’s campus.

The Robot Endurance Test at the DARPA Robotics Challenge (DRC) took place over
two days, during which DURUS exhibited continuous walking over large distances
with an efficient cost of transport of approximately 1.6 [43]. The most impressive of
these walking runs took place during the second day, during which DURUS walked on
two batteries and exceeded walking distances of 3.8 km. Walking data was periodically
recorded in ten minute segments while demonstrating the robot to the public. As
DURUS walked at the event, a diagnostic feed which displayed real-time efficiency
data was facing the public which broadcast distance walked, cost of transport, and
power usage. In Fig. 5.1, the walk-off space is shown with STEPPR and DURUS on
their respective treadmills and the diagnostic screens1.

After this event, DURUS was taken with the AMBER Lab to Georgia Tech. There,
the existing walking controllers were improved, and new controllers were developed,
which will form the basis for this chapter. At Georgia Tech, it was also shown that
DURUS could operate without walking solely on a treadmill surface. To perform an
outdoor experiment, a mobile gantry was constructed which could catch the robot in
the case of a fall, shown in Fig. 5.3. The robot was then taken around Georgia Tech’s
campus and made to traverse a variety of sidewalks. A video of these experiments2

is provided, where it can be seen that the robot was able to walk unassisted over a
variety of mostly flat areas.

1DURUS walking at the DARPA Robotics Challenge: https://youtu.be/a-R4H8-8074
2DURUS takes a walk around Georgia Tech: https://youtu.be/Uh7NOD73L_0

https://youtu.be/a-R4H8-8074
https://youtu.be/Uh7NOD73L_0
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Motivating Multicontact Locomotion Models

Biological bipeds, such as humans, demonstrate walking patterns which are efficient,
agile, fast, and robust to a degree not yet attainable by robotic systems. While
humans and other biological bipeds can perform these motions with relative ease,
translation of these capabilities to 3D humanoid systems is fraught with complexities
in the form of nonlinearities, modeling errors, and high degrees of freedom which must
be coordinated. The array of behaviors which these bipeds demonstrate is vast: there
are bipeds that are efficient but slow [5], fast but inefficient [190], agile but not robust
[7], and robust but not fast [91], but none that demonstrates all of these attributes.
Human walking consists of several phases, described in this work as domains during
which a biped’s feet interact with the environment through various contact points.
With the goal bridging this gap in natural and efficient locomotion on robots, it is
advantageous to develop algorithmic approaches capable of exploiting the natural dy-
namics of the robot. While some researchers argue that robotics is currently limited
by physical hardware capabilities [191], a lack of fundamental knowledge in the area
has yet to be bridged as well. Robotic walking presents a wide range of mathematical
and algorithmic challenges that provides a fertile proving ground for addressing these
gaps. In an attempt to generate more human-like walking patterns, multi-contact
methods have been implemented which allowed for longer walking strides and in-
creased energy efficiency through heel and toe contact conditions [192], [193]. One

Figure 5.4: The humanoid robot, DURUS, walking heel-to-toe experimentally.
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Figure 5.5: The “meta-algorithm” followed to achieve walking control on hardware for
the DURUS humanoid, with decision points (diamonds) representing iteration based
on the results of robot experiments.

difficulty with this approach is that its inherent assumptions prevent it from utilizing
the natural forward momentum of the robot in a manner similar to humans.

The goal of this section is thus to provide a foundation upon which HZD based
multi-contact walking behaviors can be formally generated and then experimentally
realized on humanoid robots. With this goal in mind, we begin with a discussion of
human walking patterns and their relation to the domain structure hybrid model of
humanoid walking in Sec. 5.2. The optimization method, including the cost function
and constraints necessary to arrive at an experimentally realizable gait, are presented
in Sec. 5.3. The experimental methods and results along with the discrete feedback
compensation algorithms used for experimental stabilization are presented in Sec. 5.4,
in which a mean cost of transport over 200 steps is shown as 1.02, the lowest electrical
cost of transport yet reported on a 3D humanoid robot. An analysis of the overall
performance for the multi-contact gait is then presented in Sec. 5.5. Each section can
be thought of as a component within the overall “meta-algorithm” that synthesizes
stable walking controllers for hardware, illustrated in Fig. 5.5. In addition, a photo of
DURUS walking with the controllers developed in this chapter is shown in Fig. 5.4.

5.2 Multi-domain Human Locomotion Model

In studies of human locomotion, multi-contact behaviors have been found to be es-
sential in reducing joint torques and increasing walking speeds [195]. In this work, a



79

heel
strike

toe
strike li

toe heel
li li

toe heel
strike

toe
strike

heel
li

heel
strike

swing stance

swingstance

le
foot

right
foot

Figure 5.6: Multi-contact locomotion diagram of a typical human gait cycle [194] (left)
with a domain breakdown of two steps of one subject based on the changes of heel
and toe contact condition. Blue circles represent one specific point in contact with
the walking surface. The corresponding directed cycle of four domains is also shown
(right), where red circles show the active foot contact points used in our formulation.

walking gait for a 3D humanoid robot is designed with a hybrid domain breakdown
matching that of the temporal domain pattern observed in natural human walking
motions [155]. From Fig. 5.6, it can be observed that human walking has at least
four distinct phases: heel strike (hs) when the swinging foot strikes the ground, toe
strike (ts) when the toe of the foot goes down and the legs switch, toe lift (tl) when
the other foot takes off the ground and becomes the swinging foot and finally heel lift
(hl) when the stance heel goes up with the stance toe being the only contact point
with the ground. Other work by authors in the AMBER Lab [156] detailed the im-
plementation of multi-contact locomotion on two 2D robots, in which three domains
were used to represent locomotion, with the removal of the domain corresponding to
the toe liftoff before swing (ts). While this domain is relatively short in comparison
to the overall gait cycle, the inclusion of this phase allows for walking which is more
closely aligned with human locomotion and permits longer steps.

The behavior which is ultimately realized on hardware is directly influenced by how
the hybrid system is posed. In this work, we consider a dynamic walking motion,
which includes more features of human dynamic locomotion such as heel strike and
toe push-off with narrow shoe-clad feet. This section details the hybrid graphs, or
templates, for how the domain structures are organized, along with the output se-
lections used to parameterize the motions ultimately found through the optimization
framework. A periodic human-like walking gait described by a directed cycle consist-
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ing of four vertices and edges is prescribed, and represented by a graph Γ = (V,E):

V = {ts, tl, hl, hs},

E = {ts→ tl, tl→ hl, hl→ hs, hs→ ts},
(5.1)

where each vertex represents a continuous domain and each edge corresponds to a
transition between these domains, as shown in Fig. 5.6.

5.2.1 Holonomic Constraints

Recall from the DURUS model development in Sec. 4.1 that we allow for two modes
of contact for each foot, a flat-foot contact and line contact representing the robot
pivoting about the toe or heel. In accordance with the walking pictured in Fig. 5.6,
we can prescribe the holonomic constraints applied to each of the respective domains
which are then based on the prescribed contact conditions:

ηts(q) := (psf , ϕ
xyz
sf , pnst, ϕ

xz
nst) ∈ R11 (5.2)

ηtl(q) := (psf , ϕ
xyz
sf ) ∈ R6, (5.3)

ηhl(q) := (pst, ϕ
xz
st ) ∈ R5, (5.4)

ηhs(q) := (pst, ϕ
xz
st , pnsh, ϕ

xz
nsh) ∈ R10, (5.5)

where psf , pst, pnsh, and pnst are the positions of the stance foot (center), stance toe,
non-stance heel, and non-stance toe.

5.2.2 Domains

The continuous domains of walking are determined by the limiting conditions on the
ground reaction wrenches and unilateral constraints, as was introduced in Chap. 3,
and outlined in the associated discussion on constraint feasibility associated with
holonomic foot constraints in Sec. 2.1.3. During the (ts) domain, the stance foot is
flat on the ground with a line contact constraining the non-stance toe, meaning we
will enforce both friction (2.22) and foot rollover (2.23) in both the pitch and roll on
the stance foot while only enforcing friction and lateral rollover on the swing foot:

Ats(q, q̇, u) =



{λzsf , λznst}
µ√
2
λzsf − {|λxsf |, |λ

y
sf |}

µ√
2
λznst − {|λxnst|, |λ

y
nst|}

wf
2
λzsf − {|λmxsf |, |λ

my
sf |}

wf
2
λznst − |λmxnst|
pznsh


≥ 0, (5.6)
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where wf and lf are defined for the contact geometry presented in Fig. 4.2, and pznsh
indicates that the non-stance heel must not go below the ground. Next, the (tl)
domain is simply single-support with the stance foot flat on the ground, with (hl)
taking place when the robot is in single-support with the foot pitching on the toe:

Atl(q, q̇, u) =


λzsf

µ√
2
λzsf − {|λxsf |, |λ

y
sf |}

wf
2
λzsf − {|λmxsf |, |λ

my
sf |}

pznsh, p
z
nst

 ≥ 0, (5.7)

Ahl(q, q̇, u) =


λzst
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 ≥ 0. (5.8)

Finally, in the (hs) domain, both the stance toe and swing heel are in contact:

Ahs(q, q̇, u) =



{λzst, λznsh}
µ√
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
≥ 0. (5.9)

5.2.3 Guards and Reset Maps

We follow the definitions given in (3.6) to prescribe the guards for each transition:

Hts→tl(q, q̇, u) := λfznst(q, q̇, u), (5.10)

Htl→hl(q, q̇, u) := λfzsh(q, q̇, u), (5.11)

Hhl→hs(q, q̇, u) := pznsh(q), (5.12)

Hhs→ts(q, q̇, u) := pznst(q), (5.13)

where it can be seen that for the Hts→tl and Htl→hl guards, a domain transition occurs
when one of the contact points leaves the ground, corresponding to a loss of normal
force. Thus, there is no impact associated with these transitions, and the reset map
(2.29) will be an identity map. When the final guard is triggered, we apply the
relabeling matrix associated with the symmetric walking assumption given in (4.1),
which will switch the right and left legs before entering the (ts) domain. Both the
Hhl→hs and Hhs→ts are associated with an impact, and will enforce stiction of the new
contact point through the instantaneous impact equation derived in (2.27).
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5.2.4 Virtual Constraint Selection

A control engineer has a large amount of freedom in the selection of outputs to be
controlled. In this work, the choice of virtual constraints is inspired by previous work
on human-inspired locomotion [155], which uses data from human walking to guide
output selection. Several of the core ideas behind the process we follow in the output
selection process for walking are given in Sec. 3.2.7.

All possible relative degree 2 output combinations that we made available for our
two walking behaviors on DURUS are visualized in Fig. 5.7, where the specific joint
indexing can be referenced in Fig. 4.1 and (px�(q), py�(q), pz�(q)) are the Cartesian
positions of a point indicated by the subscript, as illustrated in Fig. 4.2. In addition,
the expressions for each output are provided in Table 5.1. We consider positional
differences between points on the feet for yaw, pitch, and roll rather than an Euler-
angle representation. The reason for picking these outputs over Euler angles is that
their expressions do not contain inverse trigonometric functions, which can sometimes
cause problems in the optimization.

The output selection for the multicontact walking varies depending on the domain
for both the velocity and position-modulating outputs because of the many changing
holonomic constraints between domains. Due to the nature of the underactuation

Figure 5.7: A visualization of the outputs which can be selected for DURUS on a given
domain. Pictured is the sagittal plane (left) consisting of mostly forward moving and
pitch related outputs, and the frontal plane (right) which is primarily associated with
the lateral and roll motions of the robot.
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Table 5.1: Mathematical expressions for each output made available for selection on
DURUS, assuming the right leg is stance.

Stance ankle pitch: ya2,sap := θra
Stance torso pitch: ya2,stp := −θra − θrk − θrh
Stance ankle roll: ya2,sar := ϕra

Stance torso roll: ya2,str := −ϕra − ϕrh

Stance knee pitch: ya2,skp := θrk
Non-stance leg roll: ya2,nslr := ϕra − ϕla

Stance hip yaw: ya2,shy := ψrh

Non-stance foot roll: ya2,nsfr := pznsf I(q)− pznsfO(q)

Waist pitch: ya2,wp := θw
Non-stance foot pitch: ya2,nsfp := pznst(q)− pznsh(q)
Waist roll: ya2,wr := ϕw

Non-stance foot yaw: ya2,nsfy := pynst(q)− p
y
nsh(q)

Waist yaw: ya2,wy := ψw

Non-stance slope: ya2,nsl := −θra − θrk − θrh + Lc

Lc+Lt
θlk + θlh

Non-stance knee pitch: ya2,nskp := θlk

present in Dhl and Dhs, these domains do not use the velocity-modulating output
(3.45), and it is only applied to the other two domains. The position-modulating
outputs for each domain are:

Ots = {yskp, ystp, ysar, ystr, yshy, ywr, ywp, ywy, ynskp} ,

Otl = Ots ∪ {ynsl, ynsap, ynslr, ynsfr, ynsfy} ,

Ohl = Otl ∪ {ysap} ,

Ohs = Ots ∪ {ysap, ynsap} ,

where it is important to note that where possible, we maintain output selections
across domains. This allows us to find one smooth desired polynomial which spans
all applicable domains in our optimization routine that follows [155], [156].

5.3 Trajectory Optimization

For multi-contact gait optimization on DURUS, the overall problem is posed as was
originally introduced in Sec. 3.3.2, with the specific hybrid system model and virtual
constraints outlined in Sec. 5.2. With the goal of optimizing for the most efficient
walking possible, we select the mechanical cost of transport (3.54) as the cost function.

As the primary component in designing these walking gaits, an efficient implementa-
tion of the optimization is crucial to the rapid design of highly complex walking gaits.
The optimization is implemented in MATLAB using the software package IPOPT3

with linear solver ma57 on a laptop computer with an Intel Core i7-3820QM processor
3The IPOPT package: https://projects.coin-or.org/Ipopt

https://projects.coin-or.org/Ipopt
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(2.7 GHz) and 12 GB of RAM. The number of cardinal nodes are picked as 10, 15,
20, and 12 for the toe-strike, toe-lift, heel-strike, and toestrike domains, respectively.
In combining all of the various HZD optimization components, we arrive at an NLP
with 21, 309 variables, 22, 721 constraints, and a Jacobian sparsity of 0.05%. Typical
computation times for the multi-contact behavior in this work is 647 seconds over 418

iterations.

In addition to the constraints defined in Sec. 3.3.2, other physical constraints can be
easily added into c to ensure that the resulting gaits are feasible on hardware. For
example, torque bounds, joint velocity limits and angle limits, etc., can be imposed
directly as the boundary value of corresponding optimization variables in wmin or
wmax. Typically, these boundary conditions are determined by the limitation of the
robot hardware. It is important to know that, however, only enforcing these basic
physical constraints does not guarantee an implementable stable walking gait. Hence,
the method lends itself naturally to the addition of physical constraints based on
actual hardware considerations for the physical hardware. Using this approach, the
following constraints are added to the gait optimization and are configured specifically
to provide favorable conditions for experimental walking.

Torso Movement: The optimization tends to find energetically minimal walking gaits
in which the torso inertia is used similarly to arm-swing to counter moments generated
by the swinging legs. When implemented experimentally, gaits with particularly large
torso swing tend to worsen unwanted contact conditions, such as loss of foot contacts
or early striking. This can be prevented by constraining the torso movement in the
gait design. Let ϕtor(q) : Q → R3 be the three dimensional orientations of the upper
torso link, be restricted within a small range [ϕmin

tor , ϕ
max
tor ], i.e.:

ϕmin
tor ≤ ϕtor(q) ≤ ϕmax

tor . (5.14)

Impact Velocity: If the swing foot impacts the ground too hard, it can destabilize the
robot. Therefore, we constrain the impact velocities of the heel to be within a reason-
able range. Let vmax

x , vmax
y , vmax

z > 0 be the maximum allowable impact velocities in
x, y, and z directions, respectively, then the swing heel velocities ḣswh(q−, q̇−) should
satisfy:

|ḣxswh(q−, q̇−)| ≤ vmax
x , |ḣyswh(q

−, q̇−)| ≤ vmax
y , |ḣzswh(q−, q̇−)| ≤ vmax

z , (5.15)

where (q−, q̇−) ∈ Dhl ∩ Shl→hs.
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Swing Leg Roll: Due to the existence of unmeasured compliance in the mechanical
system, the swing leg can strike the stance leg if they are not separated enough. The
separation of legs can be expressed as the difference between stance and swing hip
roll angles. Assuming the right leg is the stance leg, then the following constraint
should be enforced:

ϕmin ≤ ϕrh − ϕlh ≤ ϕmax, (5.16)

where ϕrh and ϕlh are the right and left hip roll angles, and ϕmax > ϕmin ≥ 0 are the
maximum and minimum allowable leg separation angles.

Ground Reaction Wrench Constraints: In Chap. 2, we model the ground-foot con-
tact as holonomic constraints. However, these constraints are unilateral in essence.
Thus the ground reaction wrenches resulting from the contact conditions cannot be
infinitely large. The limitations of ground reaction wrenches are often described as
the Zero Moment Point (ZMP) constraints, which are discussed thoroughly in [138].
In particular, we enforce the ZMP constraints only during the single support domain
Dtl when the stance foot is flat on the ground. In addition, we also constrain the yaw
reaction moment of the stance foot, λmzsf , to be reasonably small:

‖λmzsf ‖ ≤ λmax, (5.17)

where λmax is the maximum acceptable yaw reaction moment.

5.4 Feedback Control and Implementation

While the prior sections detail how to formulate and find stable walking behaviors
which can be applied to our humanoid in simulation, it is not sufficient to simply try
to place the trajectories and feedback linearizing controllers on hardware. Specifi-
cally, model uncertainty and computational limitations mean that we will not be able
to always achieve the perfect tracking properties enjoyed by our simulated robot.
Additional considerations must be taken to design controllers which can track the
desired behaviors as closely as possible, and to add trajectory level feedback to keep
the system stable through disturbances. In the previous section, we discussed the
optimization and constraint tuning procedures for obtaining periodic walking motion
plans. These trajectories are then slightly modified in their implementation through
the use of heuristic regulators, shown at a high-level in Fig. 5.8, which help overcome
uncertainties due to model mismatch and tracking errors.
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5.4.1 Control Architecture

Due to the large effort placed into the formal generation of walking motion offline,
the high-level control code actually applied directly on hardware for walking was
relatively simple. The hardware implementation of behaviors in this work is realized
through the time-based tracking of the optimized motions on embedded level position
controllers, with several state feedback terms in the form of trajectory perturbations:

q̃d = qd0(t)︸︷︷︸
feedforward

+ ∆qd(τ, ϕb)︸ ︷︷ ︸
feedback

(5.18)

where qd0 is the feedforward trajectory taken directly from simulation of the optimiza-
tion result, τ is a state based parameterization of time, αv is a parameter set found
through optimization, and ∆qd(τ, θ) is a trajectory perturbation induced by an ad-
ditional feedback control layer which we term a regulator. This concept is shown in
Fig. 5.8, where regulators are superimposed on top of the nominal trajectories as a
feedback element to robustify the walking behavior. Once this has been computed,
the model coordinates can be transformed back into hardware coordinates for track-
ing. The implementation in software followed that of [178]: each joint on the robot
had a corresponding microcontroller and communicated with a Simulink-generated
real-time process via EtherLab using EtherCAT.

Desired joint trajectories travel through two stages before reaching the low-level em-
bedded control. First, desired motor positions are sent via shared memory from the

HZD Orbit

regulatorformal gait

Figure 5.8: Visualizations of the algorithm and control implementation on DURUS.
(Left) High-level diagram of the software control components integrated with the
embedded electronics. (Right) A visualization of the stabilizing feedback control
perturbing trajectories in an attempt to drive the system back onto the HZD surface.
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high level process to the Simulink-generated process responsible for communicating
with the joint microcontrollers. At this stage, the desired trajectory is interpolated
from 250 Hz to 1 kHz and sent to the embedded level via EtherCAT. These compo-
nents, with their respective loop rates, are shown in Fig. 5.8. Incremental encoders
and absolute encoders were both available on each joint, but the incremental encoders
were the only sensors actively used in the joint-level feedback. Additionally, a YEI
3-space IMU was used to determine the global orientation of the torso which was used
in the feedback regulators.

Formal Gait. To effectively implement the walking gait produced from the opti-
mization problem on hardware, the desired joint and angular velocities of the robot
in each iteration must be found. To obtain a set of time-based trajectories for play-
back on the physical hardware, DURUS is simulated using the feedback linearizing
controller in (3.23) [155] and the parameter set obtained from the optimization. The
joint trajectories of the stable walking in simulation are recorded and stored as a set
of time-based positions and velocities for tracking as:

qd0(t, αv) = qasim(ctt, αv) (5.19)

q̇d0(t, αv) = q̇asim(ctt, αv) (5.20)

where ct is a scaling constant which is used to allow for the walking trajectories to be
sped up or slowed down when implemented on hardware as the qd0 term in Fig. 5.8.

Regulators for Stabilization. While the nominal trajectories are generated to
satisfy dynamics and physical constraints of the ideal system, it was very evident in
experimental trials that some form of minor feedback would be crucial to stabilizing
the robot for sustained periods of walking. The authors adopted a regulator design
similar to those of [83], [196], but with a focus on local position control instead
of foot placement or modifying how the outputs are formulated in the trajectory
design. Given the actual and desired objectives for a given regulator, perturbations
to the nominal trajectory, ∆qd, were computed and then superimposed to yield the
final desired trajectory. The primary function of these trajectory perturbations is to
smoothly stabilize the robot laterally and to steer the robot.

Each leg is assigned both a stance and swing blending factor for the associated stance
and nonstance hips, si,k ∈ [0, 1], and is dependent on the contact conditions of the
associated leg, i ∈ {stance, swing}. This blending prevents large jumps in the com-
manded position that can occur through transitions between domains. The discrete
logic of how the blending factor evolves is implemented using the phase variable,
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Figure 5.9: An example of how the regulator control modes are blended during peri-
odic flat-footed walking on hardware. Pictured is data recorded from the left hip roll
swing blending factor, with the spring deflections triggering classification of contact.
Left single support is shaded as blue, while right single support is red, regions without
shading are double-support, in which no change is made to the blending factor.

(3.11). Throughout domains in which only one foot is in contact with the ground,
{Dtl,Dhl}, the swing leg blending factor sns,k was increased for the swing leg according
to sns,k = sns,k + ∆s and the associated stance leg blending factor is correspondingly
decreased as sst,k = sst,k − ∆sst,k, where ∆s = cfb(τk − τk−1) and cfb ≥ 1 is a tun-
able acceleration factor. These blending factors are either increased according to
si,k = si,k + ∆si,k where ∆s = (τk − τk−1), or decreased according to s = s− cfb∆sk
where cfb ≥ 1 is an acceleration factor such that the applied regulator action blends
out faster than the duration of the entire domain. During domains with double-
support, {Dhs,Dts}, all blending factors are held constant, such that each of the legs
do not oppose the motion of the other.

The implementation of the blending factor and how it behaved with regard to the
spring based switching played a critical role in the behavior that the regulators in-
duced. During the single support phases of a step, the non-stance regulator would
begin to blend into action. Throughout double support phases, no deceleration is
applied to the factor. Once a new leg has become stance, the blending factor is taken
away, forcing the regulator control action to return to zero, the stance foot is the
point of contact with the ground and will turn or roll the body slightly as it returns
to the feedforward trajectory.

Switching of the legs and the regulator modes is handled by spring deflection. The
discrete modes of the controller are shown in Fig. 5.9, with the red and blue shaded
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Figure 5.10: Pictured is an illustration of the regulator response to (a) an excessive
frontal waist roll. During stance, (b) a counter-rotating torque on the torso is desired
to correct the torso roll (left), so a kinematic command is given to the stance leg to
adjust the abduction/adduction angle (right). During swing, (c) the regulator widens
the strike stance between the two legs (left) by kinematically adjusting the swing leg
abduction/adduction angle (right).

regions representing the portions of the gait that the right and left legs are stance,
respectively. The effects of the blending factor are seen here, where an angle change is
allowed to blend in as the swing phase progresses, then blend out after double support.
A physical phenomenon that manifested in the regulator response was the slight
hardware asymmetry in the legs of the robot. Throughout the walking experiments,
the robot was noticeably less stable to the right in the roll direction. The robot also
had a tendency to steer to the left. The result of these asymmetries can be seen in
the regulator response as compensating with more roll action in the right leg and a
steering action opposing a left turn (Fig. 5.11).

Roll Regulator: Roll regulation is provided for two scenarios in which it can compen-
sate for rolling to the outside of the stance leg or towards the swing leg, pictured in
Fig. 5.10. Each regulator performs motion in one direction; adduction for the stance
leg and abduction for the swing. Specifically, the main stabilizing action of the swing
roll regulator is to abduct the hip joint of the swing leg to change the foot striking
position of the leg while the stance roll regulator adjusts the hip angle to correct for
excessive lateral torso lean. The regulator action for each leg is then:

∆qdi,k = −si,kKi(y
a − yd), (5.21)

where ∆qdi,k are the angle abduction and adduction angles added to the trajectories
as regulation, ya := ϕx,ab , and yd := ϕx,db are the measured waist roll and time based
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Figure 5.11: Regulator changes to formal walking trajectories during flat-footed walk-
ing. Shaded area is one standard deviation of regulated trajectory

waist roll recorded in simulation, and Ki are the tunable nonstance hip and stance
hip proportional gains. In order to arrive at a steady state walking gait, the robot
is typically brought up with gains of zero. The gains are iteratively increased and
decreased while a researcher stabilizes the robot until the appropriate regulator action
is achieved to permit steady state walking.

Yaw Regulator: The yaw regulator incorporates user input from a joystick as the
desired objective, takes zero as the actual heading, and then modulates the hip yaw
joints. The user input from the joystick was used instead of a magnetometer heading
as environmental interference was sufficient to make the data unusable in direction-
keeping while walking on a treadmill. The desired effect of this regulator on the
physical system is to yaw the hip joint while the leg is in swing phase to change the
orientation at which the foot will strike the ground. After double support, the hip
yaw is blended away with the foot planted, turning DURUS about the stance leg and
into the desired direction.

Unmodeled Compliance Compensation. A prevalent problem with humanoid
hardware is unmeasured compliance in the system. Throughout the walking behav-
iors presented in this work, DURUS exhibited unmeasured compliance in its hips
with deflections reaching over 0.1 radians. This has also been cited as an issue on
early versions of the DRC ATLAS [58], in which a linear compliance assumption is
introduced to augment the measured angles fed to a fullbody estimator. A similar ap-
proach is used here with the primary difference that the compensator directly adjusts
the desired joint configuration via a position command:

qcompj = qdM,j + uj/Kj, (5.22)
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Figure 5.12: The anticipated torque computed on the robot (Left) using the time-
based trajectories over two steps of multicontact walking, with the angle compensation
applied directly to the hip roll and pitch joints (Right) over the corresponding steps.

where qj ∈ Q are the corresponding joints, qcompj is the preprocessed joint angle to be
passed to the controller, qdM,j is the nominal joint angle, uj is the feedback linearizing
torque computed at each time step from simulation, and Kj is the stiffness coefficient
which has been measured for each joint. The compliance parameters, measured with
a force gauge and caliper in units of Nm/rad, for the joints on DURUS were found to
be Klhp = 1284, Klhr = 900, Krhp = 1124, and Krhr = 815. The anticipated torque
at the joint is computed online and the values qcompj are displayed in Fig. 5.12.

Ankle Inverse Kinematics. While performing multi-contact walking, the heel
contact constraint is very important, particularly as it impacts the ground and tran-
sitions between the domains Dhl and Dhs. If the robot strikes the ground with a foot
configuration which does not have the heel parallel to the ground, then it will be
thrown off balance. To ensure the holonomic constraint at this transition is satisfied,
we implement an inverse kinematics solver. Angles for the motors controlling the
push-rod transmission in the swing foot are solved with a Newton-Raphson method
and ensure the swing heel strikes the ground evenly. The solver’s objective ensures
that the swing foot strikes the ground evenly, with both the inner and outer edges
of the heel at the same time. The solver is only active on the swing leg through the
domains Dtl,Dhl, and once the leg switches to stance, the modified configuration is
slowly blended away with a linearly decreasing constant.

5.5 Results and Conclusions

This section discusses the experimental results which were obtained through the im-
plementation of the walking gait which was found for the multi-contact motion prim-
itive. The limit cycles achieved experimentally on DURUS shown in Fig. 5.14 exhibit
a closed behavior, indicating that the multi-contact walking behaviors are stable. It
is clear from the hip roll limit cycle that this is the joint most heavily augmented by
the feedback regulators. The resulting walking is also shown as a series of walking
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Figure 5.13: Visualization of the human-like motion on hardware. (a) Tiles of DURUS
walking seen at an angle from front. (b) Human-based cost of DURUS compared to
eight healthy human subjects.

Figure 5.14: Pictured is the trace of continuous walking limit cycles over 10 steps
(solid) compared to the nominal trajectory simulation (dashed).

tiles in Fig. 5.13(a), where the experimental movements are time-synchronized to the
simulated walking motions.

The experimentally implemented multicontact walking gait ambulated with a forward
velocity of 0.60 m/s and a stride length of 0.39. Energy efficiency is used throughout
these results as a metric in which to evaluate the mechanical design and control
implementation. Specifically, we compare the walking controllers using the specific
cost of electrical transport. Note that this is different from the cost function previously
used in (3.54), as it includes all electrical power consumed. The specific cost of
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Figure 5.15: Experimental results for the use of PD control of joint tracking for the
DURUS hip and knee during multicontact walking.

Figure 5.16: The specific cost of transport and mean motor power consumed per step
over 200 steps of continuous walking.

electrical transport cet,i for each step i is computed according to [197] as:

cet,i =
1

mgdi

∫ t−i

t+i

Pel +
15∑
j=1

Ij(t)Vj(t)dt, (5.23)

where Pel is the average logic power consumed by the on-board computer and motor
controllers, di is the x-position traveled by the non-stance foot of the robot through
the ith step, and Ij(t) and Vj(t) are the currents and voltage recorded for the jth motor.
The mean total power consumed over all 15 actuators for 200 steps along with the cost
of transport per step can be seen in Fig. 5.16. These results indicate that the mean
CoT for DURUS during steady-state multi-contact locomotion is c̄et = 1.02, which
is 37% more efficient than experimental results obtained on DURUS for flat-footed
walking [43].

The reported electrical cost of transport for several robots is summarized in Ta-
ble 5.2, from which we observe the robots utilizing passive elements, small motors, or
anthropomorphic designs to leverage energy savings demonstrating the lowest energy
expenses (Cornell Ranger and Biped). Additionally, robots employing HZD to achieve
locomotion exhibit efficient locomotion (AMBER 1 and 2D-DURUS), although these
are restricted to walking in a 2D plane. The closest efficiency numbers come from
ATRIAS—yet this robot is not humanoid in nature. Therefore, in the category of
full-scale bipedal humanoid robots (e.g., ATLAS and ASIMO), the electrical cost of
transport on DURUS is the lowest reported to date.
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Table 5.2: Comparison of reported specific cost of
electrical transport for walking behaviors on several
bipedal platforms.

Name c̄et m (kg) v (m/s)
Human 0.2 · ·
Cornell Ranger [199] 0.19 9.9 ·
Cornell Biped [197] 0.2 13 0.4
2D-DURUS [178] 0.63 31.5 0.68
AMBER 1 [114] 1.88 3.3 0.44
ATRIAS [83] 1.13 62 0.85
ASIMO [197] 3.23 52 0.44
ATLAS [199] 5 102 2
DURUS (Flat foot) 1.61 79.5 0.3
· (Multicontact) 1.02 0.6

Table 5.3: Comparison of do-
main durations in humans ver-
sus the walking on DURUS.

Domain Human DURUS
Dts 6% 4.6%
Dtl 59% 52.4%
Dhl 18% 29.6%
Dhs 17% 13.4%

Since this methodology begins with analysis and utilization of a domain sequencing
mirroring that of humans, we would like to better determine whether the approach
generates behaviors in line with that of nominal human walking. To provide a more
quantitative measure of “human-likeness” of DURUS’ walking, the human-based cost
of eight human subjects4 and DURUS are computed with respect to the nominal
human domain cycle presented in Table 5.3. We define a walking cycle as a pair
(γ, l) with l = (V,E) the graph presented in Fig. 5.6 and γ : l → R|V | is a function
such that γ(v) ≥ 0 and

∑
v∈V γ(v) = 1. The human-based cost for the multi-contact

walking gaits can be found as the cut distance between the the nominal human cycle
(γ∗, l∗) and the optimized cycle (γr, lr).

We then view γ∗ and γr as functions on V ∗ ∪ Vr by letting γ∗(i) ≡ 0 if i ∈ Vr\V ∗ and
γr(j) ≡ 0 if j ∈ V ∗\Vr. The cut distance is then computed as in [198] by:

d(γ∗, l∗, γr, lr) = max
I,J⊂V ∗∪Vr

∣∣∣∣∣ ∑
i∈I,j∈J

(γ∗(i)γ∗(j)β∗(i, j)

− γr(i)γr(j)βr(i, j))
∣∣∣∣+

∑
k∈V ∗∪Vr

|γ∗(k)− γr(k)| ,
(5.24)

where β∗(i, j) = 1 for all edges (i, j) ∈ E∗ and βr(i, j) = 1 for all edges (i, j) ∈ Er.
The eight healthy subjects feature human-based costs ranging from 0.12 to 0.36 in
which DURUS has a cost of 0.30. A comparison of the human-based costs for each
of these subjects and DURUS is pictured in Fig. 5.13(b).

4The human walking cycles analyzed are derived from the dataset presented in [198].
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C h a p t e r 6

EXPERIMENTAL STUDY: COMPLIANT WALKING ON CASSIE

The experiments presented in this chapter are the result of research performed at Cal-
tech from 2017 through the end of 2020, which resulted in two publications specifically
on the modeling and optimization of compliant HZD locomotion for Cassie:

[1] J. Reher, W.-L. Ma, and A. D. Ames, “Dynamic walking with compliance on a
Cassie bipedal robot,” in 2019 18th European Control Conference (ECC), IEEE,
2019, pp. 2589–2595.

[2] J. Reher and A. D. Ames, “Inverse dynamics control of compliant hybrid zero dy-
namic walking,” arXiv preprint arXiv:2010.09047, 2020.

This chapter contains two sections; the first details preliminary work on a compliant
multi-domain locomotion model for Cassie which includes a double-support domain,
and the second outlines the development and implementation of library of compliant
walking gaits. Both sections draw heavily from the compliant Cassie model which
was developed and motivated in Chap. 4.

This work was performed with a much smaller team than the previously presented
DURUS work in Chap. 5, with coauthor Wen-loong Ma collaborating closely on the
development of the trajectory optimization for the first publication. The optimization
and implementation in the second publication was primarily a sole effort, which built
on some of the existing tools from Chap. 5 and the first publication on Cassie. As it
pertains to this thesis, its contributions, and the motivation for the inclusion of these
experiments are:

• The contributions focused on the conception of the project, a collaborative effort
on the early modeling and optimization and an individual effort on the motion
library, theoretical discussion, implementation, software, and experiments.

• The development of a compliant locomotion model for a heavily underactuated
3D biped is introduced and shown to provide desirable properties over the ex-
isting methods in the literature.

• The experiments further the argument of this thesis on leveraging fullbody robot
models in optimization, and show how model-based controllers can leverage a
parameterization of the resulting HZD trajectories.
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6.1 Two-domain Compliant Walking

6.1.1 Motivation

One of the objectives of this thesis is to motivate the use of fullbody dynamics, includ-
ing compliance and underactuation, to synthesize dynamic and efficient locomotion.
As was previously discussed in Chap. 1, a significant subset of the bipedal robotics
literature mitigates the complexity of humanoids and bipeds by viewing walking as a
problem wherein the real world dynamics are assumed to be governed by the evolution
of a simpler system, such as a LIP models (Linear Inverted Pendulum [52], [200]),
SLIP models (Spring Loaded Inverted Pendulum [83]), and the ZMP (Zero Moment
Point [4]). These methods can reduce computational complexity for fast planning
and experimental success. Despite its viability in practical implementation, this local
representation of the system can limit the agility of behaviors and compromise energy
efficiency, and may require addition optimization to ensure viable walking [201], [202].

In contrast to these approaches, this section will explore a preliminary implementation
of HZD walking on Cassie that mirrors the two-domain compliant hybrid structure
of early work on DURUS (see the flat-footed walking in Sec. 5.1). Specifically, when
there is compliance within a leg structure during locomotion, there will inevitably
be a nontrivial domain in which both legs are in contact with the ground (double-
support). This additional domain can be leveraged in optimization to provide for a
smooth load transfer from stance to non-stance, and to improve stability.

Figure 6.1: Cassie walking outside, shown in double-support, and in a Simscape
Multibody simulation with a multi-domain and compliant gait.
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Figure 6.2: The directed graph of walking dynamics, on the left is double support
domain Dds and on the right is the single support domain Dss.

The primary point that will be made is that the use of a high-fidelity HZD trajectory
optimization can lead to a straightforward control implementation on the robot as the
optimization result encodes a significant amount of control information. Because HZD
synthesizes a closed-loop locomotion plan in the optimization which was presented in
Sec. 3.3.2, one of the simplest ways to enforce the behavior is to enforce high-gain PD
control of the output polynomials. If these are sufficiently zeroed, then the natural
dynamics of the system should behave in a stable manner according to the hybrid
invariance condition (3.30). The implementation here will thus demonstrate that
the optimization can accurately capture the passive compliance of a highly complex
robot, and will be used as a starting point for the development of more advanced
trajectory optimization strategies in Sec. 6.2 and as a foundation for implementable
model-based controllers in Chap. 8.

6.1.2 Multi-domain Locomotion Model

We structured the dynamics of walking on Cassie in a multi-domain and hybrid
fashion. A directed cycle, Γ = (V,E), is specified for the system:

V = {ds, ss},

E = {ds→ ss, ss→ ds},
(6.1)

where each vertex represents a continuous domain and each edge corresponds to a
transition between these domains, as shown in Fig. 6.2. Specifically, walking on
Cassie involves two continuous domains — a double-support domain, Dds and single-
support domain, Dss, which are connected by two state dependent events — lift
and impact. In addition, we consider the contact dynamics as a set of holonomic
constraints Γv(q) ≡ 0. For the double support phase v = ds, both feet remain in
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static contact with the ground, and for the single support phase v = ss we only
constrain the stance foot’s contact dynamics. Much like the walking presented in
Chap. 5, the two domain walking considered on Cassie will be symmetric, meaning
that we only need to consider one stance leg in the gait development.

Holonomic Constraints

Recall from the Cassie model development in Sec. 4.2 that we allow for only one
mode of contact for each foot, corresponding to line contact representing the robot
pivoting along the roll direction of the foot. In accordance with double- and single-
support indicating either one or both feet in contact with the ground, we define the
the holonomic constraints as:

ηds(q) := (psf , ϕ
yz
sf , pnsf , ϕ

yz
nst, η4bar) ∈ R12 (6.2)

ηss(q) := (psf , ϕ
yz
sf , η4bar) ∈ R7, (6.3)

where psf and pnsf are the positions of the stance foot and non-stance foot, pictured in
Fig. 4.7, and it can be seen that the closure of the compliant multi-bar leg is enforced
through the holonomic constraint (4.18). In the walking of this section, both the
swing and stance legs remain compliant, as can be seen by the lack of an additional
holonomic constraint on the swing spring deflections in (6.3).

Domains of Admissibility

The continuous domains of walking are determined by the limiting conditions on the
ground reaction wrenches and unilateral constraints, as was introduced in Chap. 3,
and outlined in the associated discussion on constraint feasibility associated with
holonomic foot constraints in Sec. 2.1.3. During the (ds) domain, the stance foot is in
contact with the ground as a line contact constraining the length of the foot, meaning
we will enforce both friction (2.22) and foot rollover (2.23) in the pitch direction on
both the stance and non-stance foot:

Ads(q, q̇, u) =


{λzsf , λzsf}

µ√
2
λzsf − {|λxsf |, |λ

y
sf |}

µ√
2
λznsf − {|λxnsf |, |λ

y
nsf |}

lf
2
λzsf − {|λ

my
sf |}

lf
2
λznsf − |λ

my
nsf |

 ≥ 0, (6.4)
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where lf is defined for the contact geometry presented in Fig. 4.7. Next, the (ss)
domain is simply single-support:

Ass(q, q̇, u) =


λzsf

µ√
2
λzsf − {|λxsf |, |λ

y
sf |}

wf
2
λzsf − {|λ

my
sf |}

pznsf

 ≥ 0, (6.5)

where pznsf indicates that the non-stance foot must not go below the ground for the
domain to be valid.

Guards and Reset Maps

We follow the definitions given in (3.6) to prescribe the guards for each domain
transition:

Hds→ss(q, q̇, u) := λfznsf (q, q̇, u), (6.6)

Hss→ds(q, q̇, u) := pznsf (q), (6.7)

where it can be seen that for the Hts→tl guard, the domain transition occurs when
one of the swing foot leaves the ground, corresponding to a loss of normal force.
Thus, there is no impact associated with this transition, and the reset map (2.29)
will be an identity map. When the final guard is triggered, we apply the relabeling
matrix associated with the symmetric walking assumption given in (4.12), which will
switch the right and left legs before entering the (ds) domain. The Hss→ds guard is
associated with an impact, and will enforce stiction of the new contact point through
the instantaneous impact equation derived in (2.27).

Virtual Constraint Selection

As was outlined in Sec. 3.2.7, the choice of virtual constraints within the HZD frame-
work is largely a design choice, and has some influence over the resulting behavior.
Since the Cassie robot was designed to behave mechanically similar to a SLIP, we
define outputs based on the undeflected Cartesian positions of the legs by zeroing the
spring deflections. By formulating the outputs in this way, the passive dynamics of
the system will contain the dynamics associated with the compliant elements [41].

Due to the nature of the underactuation, and of the relatively small nature of the foot
on the robot, we do not include a relative degree 1 output. Instead, the stance foot
actuator is constrained to produce zero torque and assumed to be passive, resulting
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Figure 6.3: A visualization of the outputs which can be selected for Cassie in this
section. Pictured are the definitions for the average center of mass location and
Cartesian foot locations. On the right is an illustration of the difference between the
actual foot position and the neutral leg configuration, for which the neutral (meaning
undeflected) positions are used as actual outputs.

in the robot having access to 8 actuators during double-support and 9 actuators in
single-support. Following the natural representation of Cassie as pendulum-like, we
first describe the “average” center of mass pictured in Fig. 6.3:

p̄com(q) = pb +R(ϕb)[0, 0, −0.125]T , (6.8)

where R(ϕb) is the rotation matrix associated with the floating base. This position
was found as an approximate value by moving the robot’s legs through a variety of
configurations and observing the location of the center of mass.

We then define all of the relative degree 2 actual outputs which are made available
to walking on Cassie as:

ya2,sf = p̄com(qb)− psf(qb, q̄l) (stance foot positions)

ya2,nsf = p̄com(qb)− pnsf(qb, q̄l) (swing foot positions)

ya2,shy = qshy (stance hip yaw)

ya2,nshy = qnshy (swing hip yaw)

ya2,nsap = ϕy(qb, q̄l) (swing foot pitch)

where psf and ϕy(qb) are the stance ankle Cartesian position and swing foot pitch, and
the expressions for the various leg configurations are shown derived for the “neutral,”
or uncompressed, leg through the coordinate substitution q̄l ∈ {Ql | qsp = 0, qhs =

0, qt = 13o − qk}. It should be noted that while the undeflected leg outputs are
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computed with the rough approximation given by qt = 13o − qk rather than the true
neutral configuration of (4.7), the compliant passive dynamics will still be encoded
for the full-order model of the compliant leg structure given in (4.18) through the
optimization. The result is to have a simple set of control objectives for derivation of
feedback controllers, while allowing the nonlinear optimization framework to do the
more complex work of embedding the spring dynamics.

The position-modulating outputs selected for control in each domain are:

Ods = {y2,sf , y2,nsf , y2,shy, y2,nshy}, (6.9)

Ods = Ods ∪ {y2,nsap}, (6.10)

where we maintain all outputs except for the swing foot pitch across both domains.
In order to simplify the control implementation on hardware and in optimization, we
enforce the selection of one smooth desired polynomial which spans both domains for
all applicable outputs (all except the swing foot). This is possible because the guard
Hds→ss is associated with a trivial impact map ∆ = I.

6.1.3 Trajectory Optimization

Following the derivations of Chap. 3, assume that we have zero dynamics in the form
ż = f |Zαv (z) for the full-order dynamical system of Cassie presented in this section
and Sec. 4.2. This leaves us with an optimization problem, wherein we must find a
set of Bézier parameters α∗ to shape the zero dynamics in order to achieve hybrid
invariance Sec. 1.2.6. This parameter search is solved with a direct collocation method,
see Sec. 3.3.2, coupled with the IPOPT solver [203].

As a proof of concept, we only design a single gait for stepping in place by constraining
the average forward and lateral velocity over a step to be 0. Corresponding to the
goal of simply finding a stepping in place gait, the objective function which was first
chosen is to minimize the pelvis velocity:

Jv(w) =
∑
i

ṗb(i)
T ṗb(i), i ∈ {1, 2, ...M}, (6.11)

where i ∈ {1, 2, 3...M} withM the total number of nodes for each domain. While this
choice is a particularly naïve one, as typically one would generally like to minimize
torque or some other performance metric, for simply stepping in place the resulting
controller was well behaved.

In fact, adding additional cost metrics proved to generate walking gaits which had
larger torso movements or attempted to more aggressively use spring compression in
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order to reduce energy consumption or torque, especially since Cassie has almost no
influence over its angular momentum due to its mass distribution. While these energy
reduction techniques and more dynamic motions are what we ultimately desire, the
simple heuristics and PD feedback control approach shown in Sec. 6.1.4 did not offer
high enough fidelity tracking to actually leverage them on hardware. Expanding the
available control methodologies will be the subject of Sec. 6.2, and then ultimately to
one of the main results of this thesis in Chap. 8. In these later sections, model-based
approaches will be developed which, coupled with the compliant model in optimiza-
tion, produce accurate feedforward and feedback controllers for more dynamic and
efficient locomotion over a range of walking speeds.

The optimization problem was solved on an Ubuntu-based computer with an i7-
6820HQ CPU @2.70GHz and 16GB RAM with linear solver ma57. The number of
cardinal nodes were picked as 8 for double-support and 18 in single-support. The
gait which was selected for use on hardware converged in 755 seconds and underwent
773 iterations. Additional constraints were added to the nominal problem, including
the double-support domain terminal time, Tds ∈ (0.025, 0.3) seconds, single-support
domain terminal time, Tss ∈ (0.3, 0.45) seconds, a narrower set of joint limits to
encourage convergence, an impact velocity bound ṗznsf(Tss) ∈ (−0.02,−0.10) m/s,
step width bound |pysf − p

y
nsf | ∈ (0.2, 0.25) m, vertical center of mass height pzb > 0.9,

and swing foot clearance pznsf(
Tss
2

+ Tds) > 0.09 m.

6.1.4 Experimental Implementation

The estimation and control routines are deployed in Simulink Real-Time, and run
on a real-time target machine on the robot. In order to adhere to the strict timing
requirements of the system, we run the estimation and control routines with concur-
rently executed multithreading. The estimation routine runs at 500 Hz, while the
control thread runs at 2 kHz. A block diagram of the software structure on the robot
is shown in Fig. 6.4. To facilitate testing before actually running controllers on the
physical hardware, a Simscape Multibody simulation of the robot provided by Agility
Robotics1 was modified to implement our control algorithm (pictured on the right in
Fig. 6.1). This was then used to tune controller parameters before implementation
which are directly used on the physical robot for performing the experiments.

In this section, the individual components to first the estimation and then feedback
control components of the real-time implementation are discussed. The feedback con-

1https://github.com/agilityrobotics/agility-cassie-doc
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Figure 6.4: Control and estimation diagram for two-domain locomotion on Cassie.
The estimation and controller blocks are separate threads running in parallel on the
robot’s real-time PC at 500 Hz and 2 kHz, respectively. The current controller domain
is triggered via the s{L, R} contact classifier.

trol method in this section is relatively simple, consisting of a heuristic feedforward
term for gravity compensation, and a PD controller which can approximately zero the
virtual constraints. In order to stabilize the walking from step-to-step, a foot place-
ment routine was also used to augment the Bézier polynomial coefficients to change
the footstrike locations. In the estimation thread, we first run inverse kinematics to
solve for the heel spring deflections based on the encoder measurements and the full
kinematics given in (4.19). This spring deflection is then used to obtain a quasi-static
contact force estimate and then use this to classify contact. These first two com-
ponents are common to this implementation and the gait library implementation in
Sec. 6.2, and are discussed in [128]. At the time of this implementation, a separate
velocity estimation scheme was used, which will be introduced next.

Estimation of floating base coordinates

Control for walking robots typically relies on knowledge of the full 6 DOF floating
base pose and velocities. However, the proprioceptive sensing typically included on
these robots cannot directly measure these states and they must be estimated. To
do this, we choose a set of states which capture the floating base coordinates while
providing implicit measurements through the full body kinematics. Specifically, the
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estimator state2 is chosen as x = [R, p, v, ba, bω, ci]
T , where p ∈ R3 is the position of

the CoM, v is its linear velocity, R ∈ SO(3) is the rotation describing the orientation
of the floating base in the world, ba ∈ R3 is the accelerometer bias, bω ∈ R3 is the
gyroscope bias, and ci,∈ R3 is the i-th contact location. The estimator presented here
is primarily drawn from [204], from which we combine measurements on the contact
velocities.

The Cassie biped is equipped with 14 rotary encoders and a VectorNav VN-100
IMU, from which we will utilize the 3-axis accelerometer and gyroscope. The raw
accelerometer and gyroscope data, ã and ω̃, are subject to the additive noise wa, wω
as well as a random-walk bias with noise wba, wbω. We then can obtain the expected
values of acceleration and angular velocity at the center of mass as:

a = R(ã− ba − wa) + g

ω = ω̃ − bω − wω.

The encoders provide access to the corresponding joint angle measurements θ̃ and
their velocities ˙̃θ, which are used to compute implicit measurements of the leg kine-
matics. Specifically, we can obtain the position ci and velocity ċi of the ith foot
(i = {L, R}) as:

ci = p+R ·
(
fFK,i(θ̃)

)
− nc

ċi = v +R ·
(
ω×fFK,i(θ̃) + J(θ̃) ˙̃θ

)
− nċ = 0,

where ω× denotes the cross product matrix of the angular velocity and the noise
v =

[
nTc , n

T
ċ

]T ∼ N (0, R). We do not consider the feet of the robot in the filter, and
treat the ankle pivot as the contact. The discrete Gaussian noise terms nc and nċ

incorporate sources of noise, including measurement and modeling uncertainty.

The estimator dynamics is given by its position and orientation along with their asso-
ciated velocities. We can track the state of the contact location to provide a relative
location of the contact-to-floating base. If no contact is detected, the associated co-
variance is set to a large value. The discrete-time dynamics of the floating base are

2This should not be confused with the walking dynamics state x in (3.27).



105

given by:

x̂−k = fest(x
+
k−1) =



R+
k−1Λ(ω∆t)

p+
k−1 + v+

k−1∆t+ a1
2
∆t2

v+
k−1 + a∆t

b+
a,k−1 + wk,ba

b+
ω,k−1 + wk,bω

c+
i,k−1 + wk,ci


, (6.12)

where Λ(ω∆t) is an incremental rotation matrix [204]:

Λ(α) := exp(α×)

= I +
sin(||α||)α×

||α||
+

(1− cos(||α||))(α×)2

||α||2
, (6.13)

with ‖·‖ the Euclidean norm and wk ∼ N (0, Q). If the robot has established contact
with the ground, we can then produce an implicit measurement of the foot position
and velocity relative to the floating base through the forward kinematics. We then
have the measurement and corresponding prediction models:

zk =

[
fFK,i(θ̃)

ω̃×fFK,i(θ̃) + J(θ̃) ˙̃θ

]
, h(x̂−k ) =

[
(R−k )T (c−i,k − p

−
k )

−(R−k )Tv−k

]
.

The filter presented thus far utilizes additive noise on a constant foot contact predic-
tion to allow for foot slippage during stance. However, there are certain scenarios in
which we may want the state estimate to satisfy some physical constraints on contact
during stance. Recent work on estimation for legged robots [205] exploits symmetries
naturally present in the model to provide additional convergence guarantees. An es-
timation scheme using full-body dynamics with assumed knowledge of the contact
surface has been used in a mixed integer Quadratic Program (QP) [206] for handling
contacts, and others have looked at predicting covariance values for contact velocities
through contact force [207]. In our work, we maintain that the estimate should satisfy
the heuristic inequality: −a/F̄i−a/F̄i

−b/F̄i

 ≤ c+
i,k − c

+
i,k−1 ≤

a/F̄ia/F̄i

0

 , (6.14)

where a and b are positive tunable scalar values, and F̄i = ||Fgrf,i||. The primary
function of this heuristic constraint is to disallow vertical positional drift in the contact
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Figure 6.5: Center of mass positions (left three) and velocities (right three) with
respect to the stance foot over 10 seconds of stepping in place on hardware (solid)
versus the optimization result (dashed).

estimate. We proceed with the standard EKF recursion:

Fk =
∂fest

∂x

∣∣∣∣
x+k−1

, Gk =
∂fest

∂w

∣∣∣∣
x+k−1

, Hk =
∂h

∂x

∣∣∣∣
x̂−k

P−k = FkP
+
k−1F

T
k +GkQkG

T
k , (6.15)

also computing x̂−k via (6.12) and yk = zk − h(x̂−k ). The measurement update with
the contact constraint can then be implemented as a QP with a linear heuristic
admissibility constraint:

x+
k = argmin

x∈R18

‖x− x̂−k ‖
2
(P−k )−1 + ‖yk −Hk(x− x̂−k )‖2

(Rk)−1

s.t. Contact constraint: Eq.(6.14)

where ‖v‖A :=
√
vTAv is the Mahalanobis norm, and the posteriori error covariance

is updated as:

P+
k = P−k − P

−
k H

T
k (HkP

−
k H

T
k +Rk)

−1HkP
−
k . (6.16)

The QP is solved using a custom MATLAB port of the static memory implementa-
tion of QPOASES [208], which is autocoded for implementation on hardware using
Simulink Coder to allow for hotstarting. The resulting linear velocities will be used
in the next section to stabilize the walking.
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Figure 6.6: Experimental results for the use of PD control for tracking walking on
hardware. Plotted is the vertical Cartesian position output tracking on Cassie while
walking with the two-domain compliant HZD gait [128].

Virtual Constraint Feedback Controller: PD + Feedforward

The simplest control scheme for determining motor torques is Proportional-Derivative
(PD) control [209]. The strongest argument for using this approach is the sheer
simplicity in its implementation and the intuitive physical meaning with respect to
tuning. As such, we formulate our virtual constraint tracking problem as a task-space
PD controller with a gravity compensation term:

u = −Y (q)−1
[
Kp(yav,2(q)− ydv,2(t, α)) +Kd(ẏav,2(q, q̇)− ẏdv,2(t, α))

]
+
∑

i∈{R,L}

siJ̄
T
i,mMg,

where Y (q) = ∂ya(v,2)/∂q is the output Jacobian, and ydv,2(t, α)) indicates that in im-
plementation, we are parameterizing each step using a time based phase variable that
begins at the start of double-support and reaches 1 at the end of single-support, Tss.
The PD gain matrices are given by Kp, Kd, with their values provided in Table 6.1. A
blending term is also used for the feedforward term, si ∈ [0, 1], such that sL+ sR = 1,
J̄i,m are the rows of (4.21) for a given leg corresponding to the motors, M = 33.32 kg
is the total mass of the robot, and g = [0, 0, −9.81]T is the gravitational constant.
Note that si is used to transition the approximate gravity compensation to the al-
ternating stance legs [83]. For underactuated dynamic walkers whose motions have
been planned with virtual constraints, simply tracking the outputs with a well-tuned
PD controller is sometimes sufficient to achieve walking on hardware [44], [113], [128],
[210], [211], and even running [42]. This is because the outputs implicitly encode the
dynamic behavior and stability constraints, even if it requires different torques on
the actual robot. In addition, because dynamic behaviors are often rendered stable
through this behavioral encoding while satisfying appropriate physical constraints,
almost all passive dynamic and HZD walkers to date do not include load cells in the
feet as feedback control of these quantities is not necessary for stability.
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Figure 6.7: Vertical leg forces as measured on hardware over four steps of typical
stepping in place for the left (red) and right (blue) legs. Contact classification is
shown as shaded regions, with double-support in green.

Directly implementing this controller with trajectory obtained from the NLP (HZD Optimization)
using time-based outputs, as in the PD controller in this section, can at best result
in a marginally stable locomotion for experiments. Motivated by this, a discrete PD
controller to augment the footstrike locations during locomotion is implemented as:

∆pnsf = K̃p(v̄k − vref) + K̃d(v̄k − v̄k−1), (6.17)

where the average velocity of the current step v̄k and previous step v̄k−1 are computed
directly from the floating base estimator. The reference velocity vref is obtained from
the average velocity over the first half of the desired walking cycle, and can be per-
turbed to command forward or lateral velocities to the robot. This regulator-type
controller is largely inspired by early work of [12], and has been successfully imple-
mented on similar legged systems [83], [211]. In addition, because the output values
are computed based on a Bézier polynomial, the update value ∆pnsf can directly aug-
ment the last two parameters of the corresponding output polynomials. We employ
a motion transition method [212] to update the trajectory which results in a smooth
tracking and preservation of the desired impact velocity.

Table 6.1: Controller parameters used on the physical robot.

Parameter Value
KP {600; 600; 600; 500; 600; 600; 600; 500; 100}
KD {10; 10; 10; 5; 10; 10; 10; 5; 4}
K̃p 0.35

K̃d 0.07
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Figure 6.8: Limit cycles for the right knee and hip over 10 seconds of stepping in
place on hardware (solid) versus the nominal cycle (dashed).

Figure 6.9: Deflections of the stance knee and heel springs over 10 seconds of walking
on hardware (solid) versus the optimization result (dashed).

6.1.5 Results and Conclusions

The controller and algorithms presented in this section were implemented on Cassie
experimentally, with the result being stable walking on hardware. In Fig. 6.9, we
compared the spring deflection between the actual experiments and designed behavior
from optimization. The gait design accurately captured the robotic compliance, with
the knee and heel spring deflections on physical hardware matching closely with the
nominal result. Because this matched closely to the planned compliance, minimal
tuning was then required to implement a simple output tracking PD controller. The
COM kinematics are shown in Fig. 6.5, with the primary difference appearing in
the vertical direction, likely due to the gravity compensation pushing on the ground
inconsistent with the designed motions. Additionally, limit cycles for the knee and
hip pitch joints are shown in Fig. 6.8 to illustrate stable walking.

The Cassie biped poses a unique challenge due to its compliant mechanism and highly
underactuated nature of the dynamics. In order to leverage these components in
experiments, we constructed a hybrid model for walking dynamics based on a rigid
model (simple model) and compliant model (full model). A comparison of these
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Figure 6.10: Cassie walking at 1m/s in the AMBER Lab using the two-domain gait.

Figure 6.11: Cassie walking indoors, outdoors, and on rough terrain.

two models with regards to computation performance and simulation suggested two
directions: ignoring the compliance and designing controllers which are robust to
the mismatch, and using a more complex model which designs locomotive behaviors
encoding the compliant behavior. We then posed an optimization problem to design
gaits for the 22 DOF compliant robot and present an algorithmic approach to estimate
and control the hardware. The result is that Cassie walks with experiment-level
robustness in various environments: indoor and outdoor (see snapshots in Fig. 6.11
and the associated video3). The two-domain walking was later shown to be capable
of walking at speeds exceeding 1 m/s, shown in Fig. 6.10 and as a video4.

These preliminary results demonstrate that the HZD trajectory optimization can
accurately model and synthesize closed-loop control plans for the underactuated and
compliant model of Cassie outlined in Sec. 4.2. The optimization which was presented,
and the successful algorithmic components of the experimental implementation, will
be used in later sections to obtain additional feedback control parameters which enable
the use of model-based and optimization-based real-time control development.

3Experimental two-domain compliant walking on Cassie: https://youtu.be/WQupor989dc
4Cassie walking at 1m/s: https://youtu.be/CgKEnQvKaKY

https://youtu.be/WQupor989dc
https://youtu.be/CgKEnQvKaKY
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6.2 Compliant Motion Library for Walking

6.2.1 Motivation

In the previous experimental study in Sec. 6.1, it was shown that the HZD methodol-
ogy can accurately capture the passive dynamics of the high-DOF and underactuated
model of Cassie which was introduced in Sec. 4.2. With the aim of creating a set of
tools which can enable a wider range of walking motions on Cassie, this section will
develop a motion library of compliant walking gaits over a range of speeds in both
the coronal and sagittal directions. While the single gait introduced in Sec. 6.1 was
able to locomote over a range of speeds, there was still a significant tracking error at
times. This is largely due to the fact that as the walking deviated further from 0 m/s
in average speed, the walking relied more heavily on heuristics for stability.

The first contribution of this section is a motion library of walking behaviors for Cassie
that leverage its full-body dynamics including its compliance. While motion libraries
for sagittal motions under the assumption of sufficient rigidity have been successfully
realized on Cassie [127] and on other robots [213], all of the existing literature within
the HZD field ignores the robot’s inherent compliance. This work, therefore, is the first
to combine motion libraries that consider the full-body dynamics of Cassie together
with compliance. To generate this library, we utilize the framework of Hybrid Zero
Dynamics (HZD) [30] which has demonstrated success in developing controllers for
highly underactuated walking behaviors, as discussed extensively in Chap. 5 and
Sec. 6.1. This section is also the first example of using an HZD optimization to extract
additional information on the closed-loop plan generated offline, including generalized

Figure 6.12: Cassie walking outdoors and in a Gazebo environment, using an identical
inverse dynamics controller built on the parameterized results from a motion library
of compliant walking gaits.
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accelerations and velocity profiles. While this is common practice in many robotic
applications, literature on real-time control development in the HZD walking field
has only extracted Bézier polynomial coefficients [30], [44], [127], [154], and in some
cases the torques [41], ignoring these terms and opting for high-gain output feedback
of the output polynomials.

The second contribution of this section is the synthesis of model-based controllers able
to realize motion libraries in a manner that exploits the compliance and underactuated
dynamics for which they were generated. One of the limiting assumptions which can
affect HZD behaviors is that their formal stability guarantees are tied to exponential
tracking of motion objectives or outputs. This can lead to the use of high-gain PD
feedback controllers when applied to hardware to obtain periodic stability. Instead, it
would be more desirable to achieve tracking with some inherent control compliance to
perturbations and unknown terrain. In this direction, model-based control in the form
of inverse dynamics [143], [214], control Lyapunov functions [31], or some combination
of the two [186] may offer more desirable control properties. However, implementing
model-based planning and control methods on physical systems is typically non-trivial
due to the inherent model inaccuracy, dynamically changing contact constraints, and
possibly conflicting objectives for the robot which naturally arise in locomotion. In
this work, we consider an analytical solution to the floating-base inverse dynamics
problem, extending the work in [142]. It is shown how we can use the additional
information extracted from the optimization to generate feedforward torques that
respect the active constraints on the robot. The end result is a model-based controller
that is able to leverage the compliance of Cassie for all motion primitives in the
library. This is demonstrated experimentally on Cassie, with the result being stable
walking on hardware.

6.2.2 Locomotion Model

A bipedal walking gait consists of one or more different continuous phases followed
by discrete events that transition from one phase to another, motivating the use of
a hybrid system formulation with a specific ordering of phases. This is traditionally
described as a walking cycle, which is a directed cycle with a sequence of continu-
ous domains (continuous dynamics) and edges (changes in contact conditions). We
structured the dynamics of walking on Cassie in a multi-domain and hybrid fashion.
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Figure 6.13: The directed graph of walking used in this paper is shown, where we
view walking on Cassie as consisting of two single-support domains with a compliant
stance leg, and rigidly stiff swing leg.

A directed cycle, Γ = (V,E), is specified for the system:

V = {ssR, ssL},

E = {ssR → ssL, ssL → ssR},
(6.18)

where each vertex represents a continuous domain and each edge corresponds to a
transition between these domains, as shown in Fig. 6.13. Specifically, walking on
Cassie in this section is considered as a period-two cycle of alternating single-support,
which are connected by the state dependent event of impact. This means that as op-
posed to Sec. 6.1, the double-support domain, Dds, here is instantaneous. While the
inclusion of a double-support domain is the most physically accurate representation of
the locomotion on Cassie, it adds a significant amount of additional variables and car-
dinal nodes to the optimization problem and makes the feedback control approaches
we will later derive unnecessarily complex for this study. Instead, the assumption of
a rigid swing leg allows for us to develop gaits that ignore this additional domain, as
we can plan walking which lifts the leg instantaneously on impact.

As previously stated, the walking is considered to be asymmetric, or period-two,
meaning that in optimization and in control development, we consider the right and
left stance phases as distinctly different. This is primarily done to allow for explicit
modeling of lateral walking gaits, which cannot be represented by a symmetric motion.
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Holonomic Constraints

It is common practice to model robotic manipulators in branched tree structures.
However, on Cassie, a compliant multi-link mechanism is used to transfer power from
higher to lower limbs without allocating the actuators’ major weight onto the lower
limbs, and effectively acts as a pair of springy legs [84]. When the mechanism has
a kinematic loop, this is often managed by cutting the loop at one of the joints and
enforcing a holonomic constraint at the connection to form the closed-chain manipu-
lator. In the Cassie leg, the heel spring is attached to the rear of the tarsus linkage,
with its end constrained via a pushrod affixed to the hip pitch linkage. Also recall
from the Cassie model development in Sec. 4.2 that we allow for only one mode of
contact for each foot, corresponding to line contact representing the robot pivoting
along the roll direction of the foot. In accordance with single-support indicating ei-
ther one or both feet in contact with the ground, we define the holonomic constraints
as:

ηR
ss(q) := (prf , ϕ

yz
rf , η4bar, qlsp, qlhs) ∈ R9, (6.19)

ηL
ss(q) := (plf , ϕ

yz
lf , η4bar, qrsp, qrhs) ∈ R9, (6.20)

where p�f and q�sp, q�hs are the positions of the stance foot (center) and the swing
springs, pictured in Fig. 4.7. The closure of the compliant multi-bar leg is enforced
through the holonomic constraint (4.18), with the swing leg assumed to be sufficiently
rigid to enforce the springs as an additional holonomic constraint. This rigid assump-
tion on the swing leg simplifies both the optimization and control implementations
[41], and makes the dynamics less numerically stiff.

Domains of Admissibility

The continuous domains of walking are determined by the limiting conditions on the
ground reaction wrenches and unilateral constraints, as was introduced in Chap. 3,
and outlined in the associated discussion on constraint feasibility associated with
holonomic foot constraints in Sec. 2.1.3. Here, the domains of admissibility for each
single-support domain follows the derivation already presented in Sec. 6.1:

A{R,L}ss (q, q̇, u) =


λzsf

µ√
2
λzsf − {|λxsf |, |λ

y
sf |}

wf
2
λzsf − {|λ

my
sf |}

pznsf

 ≥ 0, (6.21)
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where pznsf indicates that the non-stance foot must not go below the ground for the
domain to be valid and lf is defined for the contact geometry presented in Fig. 4.7.

Guards and Reset Maps

We follow the definitions given in (3.6) to prescribe the guards for each domain
transition:

HssR→ssL(q, q̇, u) := pzlf (q), (6.22)

HssL→ssR(q, q̇, u) := pzrf (q), (6.23)

where it can be seen that for each guard, we apply the relabeling matrix associated
with the asymmetric walking assumption given in (4.8), which does not swap the left
and right legs, but instead zeroes the compliance in the post-impact swing leg. These
guards are also associated with an impact, and will enforce stiction of the new contact
point and update the velocity of the tarsus to satisfy the rigid post-impact velocity
through the instantaneous impact equation derived in (2.27). The associated reset
map, ∆, is thus given as the update [109], [138]:

∆(q−, q̇−) :=

[
q+

q̇+

]
=

[
Rasym(q−)

Ṙasym(q−,∆q̇(q−)q̇−)

]
, (6.24)

where q− and q+ denote the pre- and post-impact configuration, Rasym(q−) the spring
reset matrix (4.8), ∆q̇(q) is obtained from the plastic impact equation derived in
(2.27), and Ṙasym(q−,∆q̇(q−)q̇−) applies the velocity reset matrix to correct the tarsus
velocity (4.10). As in [41] and shown in Sec. 4.2, the full transition map thus accounts
for the assumption that the spring on the swing leg is at its rest deflection, and is
otherwise identity as the positions remain constant when transitioning domains.

Virtual Constraint Selection

Since the Cassie robot was designed to behave mechanically similar to a SLIP, we
define outputs based on the undeflected leg length and leg angles, rather than Carte-
sian positions as was done in Sec. 6.1. One of the benefits of this approach is that
the expressions are far simpler, and can be easily decomposed into their respective
pitch and roll directions when using the orientation of the floating base, rather than
as a function involving a rotation matrix. A 6th-order Bézier polynomial is chosen for
the desired outputs, for which α is a matrix of real coefficients that parameterize the
curve according to (3.12). We then define all of the relative degree 2 actual outputs
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Figure 6.14: A visualization of the outputs which can be selected for Cassie in this
section. Pictured are the definitions for the average center of mass location and
Cartesian foot locations. On the right is an illustration of the difference between the
actual leg length and angle versus the neutral leg configuration, for which the neutral
(meaning undeflected) positions are used as actual outputs.

which are made available to walking on Cassie as:

ya2,b,x = ϕx (pelvis roll)

ya2,b,y = ϕy (pelvis pitch)

ya2,sll = ||ψs(q̄l)||2 (stance leg length)

ya2,nsll = ||ψns(q̄l)||2 (swing leg length)

ya2,nsla = atan2 (ψxns(q̄l)/ψ
z
ns(q̄l)) (swing leg pitch)

ya2,nshr = qnshr (swing hip roll)

ya2,shy = qshy (stance hip yaw)

ya2,nshy = qnshy (swing hip yaw)

ya2,nsap = ϕy(qb, q̄l) (swing foot pitch)

where ϕy(θtp) is the swing foot pitch angle and,

ψ{s,ns}(q) = p
{s,ns}
hp (q)− p{s,ns}ak (q), (6.25)

is the expression for the distance between the hip pitch and ankle pitch joints from
the forward kinematics, and because the foot geometry is quite small, we leave the
stance foot passive and do not define any outputs using this coordinate. Because we
use the neutral leg length, we can remove the tarsus and spring coordinates from the
expressions using the substitution rule q̄l ∈ {Ql | qsp = 0, qhs = 0, qt = 13o − qk},
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leaving us with a concise set of expressions for the leg length and leg angle outputs:

ya2,ll = 0.727226
√

1.002271 + cos(qk)− 0.0352921 sin(qk) (6.26)

ya2,nsla = atan2
(
−0.052805(cos(qhp) + 1.276576 cos(qhp + qk)

0.526541(cos(qhp) + 0.940933 cos(qhp + qk)
· · ·

· · · +9.971365 sin(qhp) + 9.38239 sin(qhp + qk))

−0.100287 sin(qhp)− 0.128024 sin(qhp + qk))

)
. (6.27)

The full geometry of the relevant expressions, along with the output definitions, are
illustrated in Fig. 6.14. By formulating the outputs in this way, the passive dynamics
of the system will contain the additional dynamics associated with the compliant
elements [41]. As a practical matter, this is also important as directly controlling
the compliance in the leg is a significantly more difficult problem to achieve. It
should be noted that while the undeflected leg outputs are computed with the rough
approximation given by qt = 13o − qk rather than the true neutral configuration of
(4.7), the compliant passive dynamics will still be encoded for the full-order model
of the compliant leg structure given in (4.18) through the optimization. The result
is to have a simple set of control objectives for derivation of feedback controllers,
while allowing the nonlinear optimization framework to do the more complex work of
embedding the spring dynamics.

The position-modulating outputs selected for control in each domain are:

O{R,L}ss = {y2,b,x, y2,b,y, y2,sll, y2,nsll, y2,nsla, y2,nshr, y2,shy, y2,nshy, y2,nsap}, (6.28)

for which the outputs are identical in the respective left or right stance domain, with
the expressions simply having the appropriate left or right leg coordinates swapped.

6.2.3 Gait Library Optimization

This section details the trajectory optimization approach used to design a collection
of trajectories which can be implemented to obtain compliant walking behaviors on
the physical system in both the sagittal and coronal directions. While each HZD
optimization problem determines one stable walking orbit, it has been shown that
one can expand the range of motions a robot can perform through systematic opti-
mization to build libraries of walking parameters [211]. Reinforcement learning has
also been used to handle robust transitions for different speeds or unknown terrain
height disturbances [213].

In order to obtain stable walking gaits for individual speeds, the desired evolution of
the outputs (3.7) must be designed such that we can satisfy hybrid invariance with
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a periodic orbit repeating every two steps. This is also combined with the physical
limitations of the hardware. A nonlinear trajectory optimization problem is formed
to solve this problem. Building off of the design of single walking gaits in Chap. 5
and Sec. 6.1, we would now like to design a variety of walking speeds for which the
robot can operate [127], [215]. To accomplish this, a library of walking gaits at sagittal
speeds of vx ∈ [−0.6, 1.2] m/s and coronal speeds of vy ∈ [−0.4, 0.4] m/s are generated
in a grid of 0.1 m/s intervals, resulting in 171 individual optimization problems to be
solved. The impact-to-impact duration of each step is fixed at 0.4 seconds for ease of
implementation.

Each hybrid optimization was performed over the two domains, D{R,L}SS , with a con-
straint imposed such that when the discrete impact (2.29) is applied to the terminal
state of each domain enforcing satisfaction of the hybrid invariance condition (3.30),
and that there is a periodic orbit repeating from right-impact to right-impact. It
is critical that the motions respect the limitations of the physical system. In order
to address this constraints for the friction cone, actuator limits, and joint limits are
imposed following the implementation in Sec. 3.3.2 and the admissibility constraints
outlined earlier in this section (6.21). While these constraints alone ensure invariance
and satisfaction of the physical constraints, additional constraints on the behavior
were tuned for implementation on hardware, such as the swing foot velocity, impact
foot configuration, step symmetry when vy = 0, and others outlined in Table 6.2.

In order to minimize torque and to center the floating base orientation movement
around the origin, the following cost function was minimized:

J (w) :=

∫ tf

t=0

(
cu|u|2 + cϕ|ϕb|2

)
dt, (6.29)

where w ∈ RNw with Nw being the total number of optimization variables and c� are

Table 6.2: Optimization constraints and parameters

Step duration = 0.4 sec
Average step velocity, v̄x,y = vx,y m/s
Pelvis height, pz ≥ 0.80 m
Mid-step foot clearance, pznsf ≥ 0.14 m
Vertical impact velocity, ṗzsw ∈ (−0.40,−0.10) m/s
Step width, pylf − p

y
lf ∈ (0.14, 0.35) m

Swing foot pitch, ϕy(q) = 0 rad
Friction cone, µ < 0.6
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weights applied to the respective terms. For the library presented in this work, the
weights used were cu = 0.0001 and cϕ = (20, 1, 30).

An optimization package, FROST [129], was used to transcribe the constraints and
cost of each of the 171 gaits into a nonlinear programming (NLP) problem that is
passed to the nonlinear optimization solver, IPOPT [203]. Each optimization was
then solved through the C-FROST interface [164] on a laptop with an Intel Core
i7-6820 HQ CPU @ 2.7 GHz with 16 GB RAM, and consisted of 8418 variables with
4502 equality and 5880 inequality constraints. Using each gait as an initial guess to
warm-start the next speed in the library, the average number of iterations per run was
199 with an average total evaluation time of 263.8 seconds, and an average objective
value of J (w∗) = 4.12.

6.2.4 Parameterizing Optimization Results

The controller implemented on hardware needs both the feedback control objectives,
defined by yd(α, t), and acceleration information q̈∗ from the optimal path to complete
the planned motions. The feedback parameters, α, already concisely parameterize the
feedback control, and are placed in a large matrix which can be used in a bilinear
interpolation routine. A subset of the resulting library of output parameters are
shown in Fig. 6.15, where the leg length, leg pitch, and hip roll outputs are visualized
over various walking speeds alongside a corresponding motion in simulation. An
interesting characteristic which can be immediately seen is that the stance leg length

Figure 6.15: Contour plots of the swing leg length, leg angle, and leg roll outputs
over the library speeds in the sagittal and coronal directions, showing the forward
and reverse sweep of the leg as it tracks the motions. Also shown is the corresponding
motion executed in a Gazebo simulation.
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Figure 6.16: The contours of the floating base x and y accelerations which are obtained
from the trajectory optimization problem. These contribute to the control action of
a feedforward controller which is dynamically consistent with the contact constraints
of the underactuated robotic walking.

output has a ‘double-hump’ shape, which is a result of the planned motions taking
advantage of the spring deflection in the leg to minimize torque (6.29). This will be
further exploited through the ground reaction forces in the optimization-based control
strategy presented in Chap. 8.

Generalized accelerations q̈∗ are also extracted directly from the optimization vari-
ables, w, as time-series data from each step. To allow for easier implementation,
regression is performed on each curve to obtain the parameters for a 6th order Bézier
polynomial (i.e. M = 5 in (3.12)), corresponding to the same order as the output
polynomials. They can then be stacked with the α parameters in the same bilinear
interpolation routine for code efficiency. Plots of the accelerations for the floating
base x and y coordinates are visualized in Fig. 6.16. Finally, the floating-base po-
sition p∗x,y and velocity v∗x,y relative to the stance foot is also extracted in the same
manner as q̈∗. This is shown on the velocity plots in Fig. 6.18 as the dashed lines and
serves as a reference velocity for regulation.

To begin the interpolation process, we collect the target average speeds into a sorted,



121

searchable matrix:

v̄ :=


v(1,1) v(1,2) · · · v(1,nvy)

v(2,1) v(2,2) · · · v(2,nvy)

...
... . . . ...

v(nvx,1) v(nvx,2) · · · v(nvx,nvy)

 (6.30)

where each row and column is sorted in ascending order from lowest speed to highest
in the associated x or y direction, and each gait has been optimized on an evenly
spaced grid of speeds. Given a desired speed, we can then search this matrix for the
indices corresponding to the adjacent values to the target.

The bilinear interpolation routine is built on the assumption that each parameterized
variable from the optimization is a rectangular matrix, α� ∈ RM+1,nα� , where nα�

is
the dimension of the variable in question (i.e. nαq̈ = 22 for Cassie as n = 22). In
order to make the problem easier to manage, we first flatten each parameter matrix,
and then concatenate them into a single parameter array:

β(i,j) := (ᾱy, ᾱp, ᾱv, ᾱq̈), (6.31)

where (i, j) corresponds to an index which matches its place in the velocity array
(6.30). Each flattened array is then organized into a matrix of arrays:

B :=


β(1,1) β(1,2) · · · β(1,nvy)

β(2,1) β(2,2) · · · β(2,nvy)

...
... . . . ...

β(nvx,1) β(nvx,2) · · · β(nvx,nvy)

 . (6.32)

In order to find the set of gait parameters for a given speed, we then need to perform
the interpolation. Specifically, we first interpolate in the sagittal direction using the
indices found in our prior search for the desired vx and xy place within (6.30):

p(vx, v
(j)
y ) =

v
(i+1)
x − vx

v
(i+1)
x − v(i)

x

β(i,j) +
vx − v(i)

x

v
(i+1)
x − v(i)

x

β(i+1,j) (6.33)

p(vx, v
(j+1)
y ) =

v
(i+1)
x − vx

v
(i+1)
x − v(i)

x

β(i,j+1) +
vx − v(i)

x

v
(i+1)
x − v(i)

x

β(i+1,j+1), (6.34)

where we can then also interpolate in the coronal direction to obtain the desired
interpolated parameters:

p(vx, vy) =
v

(j+1)
y − vy

v
(j+1)
y − v(j)

y

p(vx, v
(j)
y ) +

vy − v(j)
y

v
(j+1)
y − v(j)

y

p(vx, v
(j+1)
y ). (6.35)
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Figure 6.17: The control and estimation diagram for implementation of the compliant
gait library on Cassie. The estimation and controller ROS nodes run in separate
threads on dedicated cores of the Intel NUC CPU at 2 kHz and 1 kHz, respectively.

6.2.5 Experimental Implementation

The software infrastructure for feedback control and estimation used on hardware
were significantly upgraded in this implementation compared to the preliminary re-
sult in Sec. 6.1. Specifically, the control code is implemented in C++ on the Intel
NUC computer which comes installed in the Cassie torso, on which we added a PRE-
EMPT_RT kernel. The software runs on two ROS nodes: one which communicates
to the Simulink Real-Time xPC over UDP to send torques and receive sensor data
and to perform estimation, and a second which runs the controllers. Each node is
given a separate core on the CPU, and is elevated to real-time priority. The first
node runs at 2 kHz and executes contact classification, inverse kinematics to obtain
the heel spring deflection, and an EKF for velocity estimation [128], [204]. The sec-
ond node runs at 1 kHz and receives the estimation and proprioceptive data over
ROS. It then runs either the standing controller presented in [186], or executes the
inverse dynamics controllers which will be presented and heuristic feedback control
elements before communicating the commanded torque over ROS. The overall system
architecture for the control and estimation is illustrated in Fig. 6.17.

In this section, the primary components necessary for achieving stable walking on
hardware are outlined. This begins with the introduction and derivation of an inverse
dynamics controller that draws generalized accelerations from Sec. 6.2.4 (shown in
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Fig. 6.16 for the floating-base coordinates). This control approach generates an accu-
rate control torque which satisfies the holonomic constraints imposed on the physical
hardware at any given time, and approximately zeroes the virtual constraints. While
this inverse dynamics controller effectively forms a feedforward controller, we layer
a low-gain PD controller in order to approximately stabilize the zero dynamics. In
order to change the footstrike location from step-to-step if the robot is perturbed, a
PD controller which is equivalent to the one presented in Sec. 6.1 is introduced, with
some additional calculations required due to our change in virtual constraints. The
final feedback control component is to add a small amount of PID feedback to the gen-
eralized acceleration on the floating base. These augmented accelerations incentivize
the inverse dynamics to choose a torque which propels the robot in a desired direction
of motion. The estimation routines remain largely unchanged from Sec. 6.1, with the
primary difference being that they can now run at 2 kHz due to their implementation
in C++ rather than Simulink Coder.

Feedback Control Development: Inverse Dynamics + PD

The HZD optimization framework and subsequent library of walking behaviors cre-
ates a continuum of walking trajectories [213], which can be interpolated to obtain
walking motions at a range of speeds. In the previous HZD development on Cassie,
shown in Sec. 6.1 [128], PD control achieved reasonable tracking of the desired outputs
with the passive compliance in the system matching the planned response. However,
implementation relied on high-gain PD control with heuristic feedforward terms and
trajectory modifications that needed to be hand-tuned to account for the model mis-
match. A similar approach was used also by others [127], which demonstrated walking
without planning for compliance or velocity terms in the dynamics. A benefit to us-
ing inverse dynamics control approaches on robotic systems is that lower gain PD
feedback control can be used, while feedforward terms which respect the constrained
rigid body dynamics of the system are used to produce most of the control input.

The use of inverse dynamics control for underactuated and floating-base robots is sig-
nificantly more complex than for fixed-base manipulators. In developing controllers
for these systems, there are many considerations to address such as numerical prob-
lems due to repeated matrix inversions of the inertia matrix, contact force distribu-
tion, and computational efficiency [186]. Here, we follow the approach of Mistry [142],
which uses an orthogonal decomposition to compute the inverse dynamics torques in
the null-space of the constraints.
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The underlying idea of the method is to use a QR decomposition of the constraint
Jacobian matrix:

Jc(q)
T = Q

[
R

0

]
, (6.36)

where Q is an orthogonal matrix and R is an upper triangle matrix of rankmη. The Q
in the QR decomposition provides a coordinate transform which separates the system
dynamics (2.7) into the constrained and unconstrained components:

QT [D(q)q̈ +H(q, q̇)] = QTBu+

[
R

0

]
λ. (6.37)

Remark 3. In (6.37), the spring force term, Bsτs, is not present. We originally
developed the controller with the spring dynamics and were able to achieve walking.
However, the robot would often overreact to perturbations in the spring deflections.
Instead, we apply a constraint on the springs, but at their current deflected state.
This produces a torque consistent with the deflected leg configuration, but does not
react aggressively to spring oscillations.

Through the use of a selection matrix Su =
[
0(n−k)×k I(n−k)×(n−k)

]
, we can obtain

the unconstrained system dynamics which are not dependent on the constraints:

SuQ
T [D(q)q̈ +H(q, q̇)] = SuQ

TBu. (6.38)

Solving for u leads us to the inverse dynamics:

uff = (SuQ
TB)†SuQ

T
[
D(q)q̈d +H(q, q̇)

]
, (6.39)

Table 6.3: Feedback control values used for PD feedback and regulator heuristics for
tracking the gait library on Cassie.

Parameter Value
Kp [900, 500, 300, 250, 200, 200, 200, 200, 25]
Kd [12, 6, 4, 6, 5, 6, 4, 4, 2]

K̃x,y
p [0.045, 0.086]

K̃x,y
d [0.20, 0.22]

kx,yp [1.25, 1.90]

kx,yv [0.80, 0.60]
kx,yi [1.90, 0]



125

Figure 6.18: Experimental results for walking (top) and stepping in place (bottom).
The plots depict the accuracy of the tracking on the leg length and swing leg pitch
outputs. On the right is a comparison of the torque from the feedforward controller
with the total torque applied for the knee pitch and hip roll joints.

where † represents the appropriate Moore-Penrose inverse and q̈d is a target accelera-
tion for the system to follow. In addition to the feedforward term provided by (6.39),
a feedback correction is computed as a standard PD controller:

u = uff −
(
∂y(t, q)

∂qm

)†
(Kpy(t, q) +Kdẏ(t, q, q̇)) , (6.40)

where Kp and Kd are the proportional and derivative gains applied to the output
feedback on hardware, with their specific values provided in Table 6.3.

In order to select the parameters which are used for output tracking and for the
feedforward term, we use the average velocity of the previous step, v̄ak−1. Thus, our
Bèzier polynomial array provides us at each time instant with the nominal accelera-
tion q̈∗(t, v̄ak−1), outputs yd(t, v̄ak−1), floating-base positions p∗x,y(t, v̄ak−1), and velocities
v∗x,y(t, v̄

a
k−1). Plots which demonstrate the accuracy of the output tracking, and feed-

forward torques are shown in Fig. 6.18 for forward walking and stepping in place.
The accuracy of the feedforward torques is clearly demonstrated in this result, where
the outputs error is much smaller than was previously seen via methods only consid-
ering PD in Sec. 6.1. In addition, the feedforward accelerations which come from the
bilinear interpolation of the gait library in Sec. 6.2.4 are doing most of the effort in
the controller through the inverse dynamics.
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Foot Placement

The presented controller required no heuristic tuning on the feedforward terms to
achieve tracking of the outputs such as offsets or hand-tuned torque profiles. How-
ever, directly implementing this controller with the trajectory obtained from the NLP
(HZD Direct Collocation) can at best result in a marginally stable locomotion for ex-
periments as it has no way to trend walking towards an overall target walking speed.
Motivated by this, a PD controller is used to find an offset to the footstrike location,
and translated to the desired outputs:

∆ :=

∆x

∆y

∆z

 =

K̃p,x(ṽ
a
x − vdx) + K̃d,x(ṽ

a
x − v̄ax,k−1)

K̃p,y(ṽ
a
y − vdy) + K̃d,y(ṽ

a
y − v̄ay,k−1)

0

 , (6.41)

ydsw,ll = ||p∗nsf (yd) + ∆||2,

ydlp = sin−1

(
p∗x(y

d) + ∆x

ydsw,ll

)
− ydb,x(t, α),

ydlr = sin−1

(
p∗y(y

d) + ∆y

ydsw,ll

)
− ydb,y(t, α),

where ṽax,y = v̄ak−1 +
(
vax,y − v∗x,y

)
is the current step velocity, vdx,y is the target step

velocity from the user joystick, vax,y is the instantaneous velocity of the robot relative
to the stance foot, and p∗nsf (y

d) = (p∗nsf,x, p
∗
nsf,y, p

∗
nsf,z) are the nominal Cartesian

swing foot positions computed from the desired outputs. This style of regulator is
inspired by early work of [12], and has been used widely in the literature.

Acceleration Augmentation

An additional regulator is applied to modify the nominal accelerations of the floating
base accelerations, which were pictured in Fig. 6.16. Through the application of a
heuristic feedback controller, we can make the robot choose feedforward torques which
trend the robot toward the target velocity while satisfying the contact constraints on
the system:

q̈dx,y = q̈∗x,y + kp
(
pax,y(q)− p∗x,y

)
+ kv(ṽ

a
x,y − vdx,y) + ki

∫ t

0

γ(ṽax,y(t
′)− vdx,y(t′))dt′,

(6.42)

where kp is a gain affecting the x and y position errors of the pelvis relative to the
stance foot, kv is a gain on the step velocity tracking error, and ki is a gain on
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Figure 6.19: Shown is a comparison of the desired velocities from the current gait for
the gait library on Cassie, v̄ak−1, compared with the actual velocity of the robot for
walking (left) and stepping in place (right).

the accumulated step velocity error with a decay constant of γ = 0.9995 to avoid
integral windup. The gains used on hardware are detailed in Table 6.3. Because the
feedforward term (6.39) uses the full actuator matrix B, it does apply some control
effort on the stance foot actuator. It is for that reason that the integral term is
applied to the x direction, and not in the y.

6.2.6 Results and Conclusions

The Cassie biped poses a unique challenge due to its compliant leg mechanism and
the highly underactuated nature of the dynamics. In order to leverage these com-
ponents in experiments, we constructed a hybrid model for walking dynamics based
on a compliant model. A trajectory optimization was then developed to efficiently
generate walking trajectories using the method of HZD and was then tracked through
an inverse dynamics controller. The resulting experiments show that the optimiza-
tion can effectively capture the passive dynamics on a highly complex robot, while
providing accurate model-based feedforward information.

The controller, simulation, and trajectory optimization are also made available in an
open-source repository5. These controllers were first tuned in a Gazebo simulation,
shown on the right in Fig. 6.15, before implementation on hardware. Cassie was then
tested indoors for stepping in place and forward, backward, lateral, and diagonal
walking. Cassie was then taken outside to walk over several hills, raised roots, and
a brick path. A video of both the simulation and experiments is provided6, with
walking tiles of the robot walking on flat ground and traversing rough terrain shown
in Fig. 6.21.

5Open-sourced repository for the C++ controller code used in this work on hardware and for
use in a Gazebo simulation: https://github.com/jpreher/cassie_documentation

6Video of simulation and experimental results on Cassie: https://youtu.be/SvhjPZqSGFI

https://github.com/jpreher/cassie_documentation
https://youtu.be/SvhjPZqSGFI
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The results presented throughout this section demonstrate the ability of the HZD
optimization problem to be successfully extended to a continuous motion library of
walking gaits for the Cassie robot. Further, the hardware controller development
which includes an inverse dynamics controller with reliance on the generalized accel-
erations directly taken from optimization, q̈∗, demonstrates the benefit of extracting
additional model information from the HZD optimization beyond simply the Bézier
polynomial coefficients or torque. While simply commanding the optimal torques as
a feedforward term have been done to achieve tracking elsewhere on planar walkers
[41], this may not respect the current holonomic constraints imposed on the robot.

Plots demonstrating the accuracy of the output tracking and feedforward torques are
shown in Fig. 6.18 for forward walking and stepping in place, which help motivate
the desire to implement model-based controllers on hardware with HZD. Additionally,
limit cycles of the knee and hip pitch joints are shown in Fig. 6.20, with the closed
nature of the cycle demonstrating the stability of the walking. Pertaining to the accu-
racy of the trajectory optimization and gait library parameterization to characterize
the walking behavior, velocity tracking data is shown in Fig. 6.19. These velocity
plots show that in combination with tracking a given motion, effectively rendering
the zero dynamics stable, the combined motion library is able to shift the walking
from one orbit to another, with each planned gait satisfying hybrid invariance. One

Figure 6.20: Phase portrait of the left knee and hip pitch joints for forward walking
and stepping in place.
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Figure 6.21: Gait tiles of the robotic walking exhibited experimentally on the Caltech
Cassie robot. The top half is two steps of flat-ground forward walking outside, while
the bottom half shows several steps of the robot walking over a height variation caused
by both a shallow grassy slope and exposed roots.

additional facet of this implementation to note is how small the foot placement gains
are in Table 6.3 in comparison to those of Sec. 6.1. This is largely attributable to the
gait library, which always selects a gait which satisfies hybrid invariance at the cur-
rent walking speed and thus requires significantly less action from the foot placement
controller to stabilize the walking.

On the physical system, a trivial double-support domain is virtually impossible to at-
tain due to the compliance present in both legs. While this assumption simplified the
development of controllers and trajectory planning, the consideration of a continuous
double-support domain can enhance the stability of the behaviors. Future work on
locomotion should focus on reintroducing a nontrivial double-support domain to our
walking model. Additionally, the use of an analytical solution to the inverse dynamics
cannot account for optimal distributions of contact forces, friction, torque limits, or
provide convergence guarantees. Thus, our future controller development is focused
on further developing real-time model based controllers for implementation on hard-
ware, such as extending the control Lyapunov function based methods in [186] to
walking. These new control developments are introduced in Chap. 7 and Chap. 8.
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C h a p t e r 7

CONTROL LYAPUNOV FUNCTIONS FOR ROBOTIC SYSTEMS

In this chapter, control Lyapunov functions (CLFs) are introduced, beginning with a
general background for synthesizing and deriving them for nonlinear systems which
are feedback linearizable. With this general background introduced in the first half
of the chapter, the second half will focus on a novel representation of the CLF for
robotic systems, which was developed along two publications:

[1] J. Reher, C. Kann, and A. D. Ames, “An inverse dynamics approach to control
Lyapunov functions,” in 2020 American Control Conference (ACC), IEEE, 2020.

[2] J. Reher and A. D. Ames, “Control Lyapunov functions for compliant hybrid zero
dynamic walking,” IEEE Transactions on Robotics, 2021, In Preparation.

The end result will be a CLF with equivalent convergence properties, but with more
desirable traits for actual implementation and tuning on hardware. This will be
extended to a relaxed version of the CLF controller, which removes a convergence
inequality constraint in lieu of a conservative CLF cost within a quadratic program
to achieve tracking. These new developments will then form the basis for the ex-
perimental study introduced for Cassie in Chap. 8. As it pertains to this thesis, its
primary contributions and the relevance of these developments are:

• Sections 7.1-7.2 are largely literature review, while the theoretical developments
presented in Sec. 7.3 form the main theoretical contribution of this thesis.

• A theoretical analysis is shown which demonstrates several useful properties of
the approach for tuning and implementation, and the stability of the controller
for HZD locomotion is proven.

• The main result of this chapter is an optimization-based control framework that
couples convergence constraints from control Lyapunov functions with desirable
formulations existing in other areas of the bipedal locomotion field that have
proven successful in practice, such as inverse dynamics control and quadratic
programming approaches.
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7.1 Background: Several Existing Control Methods for Legged Robots

While the methods outlined in Chap. 3 and shown experimentally in Chap. 5-6 demon-
strate our ability to synthesize dynamic and efficient locomotion plans for high-DOF
nonlinear robots, there is a clear gap in the actual implementation of the walking
on hardware compared to the formal tools used in analysis. In almost all HZD ap-
proaches, simple PD controllers such as those shown in Chap. 5 and Sec. 6.1 are used
to approximately zero the virtual constraints. However, in Sec. 6.2 the argument was
made that not only could tracking be improved through the use of model-based con-
trollers, but we can also obtain desirable properties such as less aggressive gains and
control compliance to disturbances that satisfy the holonomic constraints imposed on
the robot.

As one of the most common tools within nonlinear control, feedback linearization
was introduced in Chap. 3 as a way to design stabilizing controllers which cancel
the nonlinear dynamics of a problem, rendering a linear one on which we can obtain
convergence properties. While this was useful as a conceptual tool in designing the
zero dynamics surface, feedback linearization is often not practically implementable
on highly complex robots, such as those introduced in Chap. 2 and more specifically
Chap. 4. Even if one was able to directly implement these controllers, they often run
counter to the goals set forth in Sec. 1.1, due to the fact that the approach does not
create controllers which utilize the natural dynamics of the system.

In this section, we will first outline several existing methods which have become pop-
ularized for the control of humanoids and bipedal robots. These methods have proven
to be implementable on embedded systems and have shown reasonable performance
in enabling complex motions and behaviors. Several of these ideas are used within the
control Lyapunov function framework background in Sec. 7.2 and will form a basis
for several new developments in Sec. 7.3.

Operational Space Control and Inverse Dynamics

Control approaches to legged robots need to enable safe and dexterous movement
while satisfying a variety of task objectives and contact constraints. Because the sta-
bility of the system is often tied to the simultaneous satisfaction of constraints and
accurate objective tracking, high-performance feedback control approaches are most
desirable. In addition, while moving through environments which may contain an
array of disturbances, it is important that the controller have some control compli-
ance when perturbed, while best satisfying the objectives. Torque control strategies,
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especially model-based approaches, have been widely used on robotic manipulators
for these reasons. However, until the late 2000’s they were not widely used on legged
robots because they are often intrinsically underactuated and are subject to varying
contact constraints. In the late 2000’s and early 2010’s, several inverse dynamics ap-
proaches were shown to be successful on floating-base legged robots [142], [143], often
using a null-space projections. By using a dynamically consistent null-space projec-
tion, control solutions are able to compensate for task dynamics and decouple them
from constraint dynamics, and is often necessary to obtain analytical expressions for
model-based feedback controllers.

Inverse dynamics is a widely used method to approaching controller design for achiev-
ing a variety of motions and force interactions. Given a target behavior, the dynamics
of the robotic system are inverted to obtain the desired torques. In most formulations,
the system dynamics are mapped onto a support-consistent manifold using methods
such as the dynamically consistent support null-space [218], linear projection [143],
and orthogonal projection [142]. Recall in Sec. 2.1.3 that we had derived a null-space
projection operator for finding the direct dynamics as:

Pc(q) = I − J†c (q)Jc(q), (7.1)

which allowed us to obtain a representation of the dynamics which implicitly satisfied
the holonomic constraint equations (2.12). Given a desired generalized acceleration,
q̈d, the joint torque is calculated simply by pseudo-inversion:

u = (Pc(q)B)†Pc(q) [D(q)q̈ +H(q, q̇)] . (7.2)

Alternatively, we can use a QR decomposition [219] as was done in Sec. 6.2 on the
inverse dynamics controller presented on Cassie. This approach was initially shown
to be effective for quadrupedal locomotion [142], where the constraint Jacobian is
decomposed as JTc = Q

[
RT 0T

]T , to obtain the inverse dynamics:

u = (SuQ
TB)†SuQ

T
[
D(q)q̈d +H(q, q̇)

]
, (7.3)

with Su =
[
0(n−k)×k I(n−k)×(n−k)

]
a selection matrix corresponding to the uncon-

strained dynamics.

When prescribing behaviors in terms of purely task space objectives, this is commonly
referred to as the operational space control (OSC) [96] formulation, which derives
end-effector dynamics for rigid body manipulators [220]. Recall in Sec. 2.1.3 how
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we had derived the direct dynamics (2.19) of a constrained robotic system using the
orthogonal constraint projection operator P = I−J†c (q)Jc(q). Additionally, using the
fact that a force at an end-effector F is mapped into joint torque via u = JTF , we
can obtain the operational space dynamics for a constrained system as:

Λc(q)ẍ+ Λc(q)
(
Jc(q)D

−1
c (q)Pc(q)H(q, q̇)−

(
J̇(q, q̇) + Jc(q)D

−1
c (q)Cc(q, q̇)

)
q̇
)

= F,

(7.4)

where Λc = (Jc(q)D
−1
c (q)Pc(q)J

T
c (q))−1. We can then formulate the OSC problem as:

u = JT (q)F +Nu0, (7.5)

where F is defined by (7.4) using a desired end-effector acceleration ẍd in place of ẍ,
N = I − JT (q)JT#(q) and:

JT#(q) := (J(q)D−1
c (q)Pc(q)J

T
c (q))−1Jc(q)D

−1
c (q)Pc(q). (7.6)

Sentis [218], [221], [222] developed several underactuated OSC approaches specifically
addressing the underactuation of humanoids, alongside Park and Khatib [223], [224].

Quadratic Programming Approaches to Legged Control

In some cases, there may be tasks of differing priority which cannot be simultaneously
satisfied on a robot. For instance, the task of maintaining a foothold is critical, while
some manipulation task is not necessary to maintain stability [225]. One way to look
at this hierarchy of tasks is as a system of linear equation:

Ai(x)X = bi(x), (7.7)

with the optimization variable X , and problems of the same priority are stacked
within each i of Ai and bi. This can be posed as a least squares problem:

min
X
||Ai(x)X − bi(x)||2, (7.8)

where if A = [AT1 , A
T
2 , . . . , A

T
np ]

T has full column rank, the cost is 0. Hutter [226]
showed how this can be solved analytically by iteratively performing a null-space
projection on each task. Alternatively, this can be posed as a quadratic program
(QP) [227], with the benefit of performing an efficiently solvable optimization subject
to linear inequality and equality constraints [187]:

X ∗ = argmin
X

1

2
X TQ(x)X + cT (x)X (QP)

s.t. AE(x)X = be(x) (Linear Equality Constraints)

CI(x)X ≥ dI(x), (Linear Inequality Constraints)
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where X is the unknown vector of optimization variables. The rest of the variables
are known vectors and matrices. By construction, we always maintain a positive
semidefinite matrix Q(x) which will allow us to solve this problem with standard QP
solvers. This is frequently done by formulating the cost as a least squares problem,
penalizing distance from A(x)X = b(x). Thus, G(x) = AT (x)A(x) and g(x) =

−AT (x)b(x). The matrices A(x) and b(x) are often decomposed into weighted blocks:

A(x) =
[
w0A

T
0 w1A

T
1 . . . wnpA

T
np

]T
, b(x) =

[
w0b

T
0 w1b

T
1 . . . wnpb

T
np

]T
, (7.9)

where wi is the weight associated with tracking the ith task. Through tuning these
weights, the optimization can handle conflicting goals with weighted priorities.

In many recent works, variations of these approaches have been shown to allow for
high-level tasks to be encoded with intuitive constraints and costs in optimization
based controllers, some examples being [59], [144], [214], [226], [228], [229]. Here we
present a minimal implementation of an inverse dynamics controller. The inverse
dynamics problem can also be posed using a QP to exploit the fact that the instan-
taneous dynamics and contact constraints can be expressed linearly with respect to a
certain choice of decision variables. Specifically, let us consider the set of optimization
variables X = [q̈T , uT , λT ]T ∈ Xext := Rn×U ×Rmh , which are linear with respect to
(2.7) and (2.12): [

D(q) −B −Jh(q)T

Jh(q) 0 0

]
X +

[
H(q, q̇)

J̇h(q)q̇

]
= 0. (7.10)

Also consider a positional objective in the task space of the robot, which can be
characterized using: (7.54):

Jy(q, q̇)q̈ + J̇y(q, q̇)q̇ − ÿ∗2 = 0 : (7.11)

where ÿ∗2 = KPy2 +KDẏ2 is a PD control law which can be tuned to achieve conver-
gence. In its most basic case, we can combine these elements to pose this QP tracking
problem as:

X ∗(x) = argmin
X∈Xext

||Jy(q)q̈ + J̇y(q, q̇)q̇ − ÿ∗||2 + σW (X ) (ID-QP)

s.t. Equation (7.10) (System Dynamics)

umin ≤ u ≤ umax (Torque Limits)

Equation (2.22) (Friction Pyramid)
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where W (X ) is included as a regularization term with a small weight σ such that
the problem is well posed, and we have included feasibility constraints such as the
friction cone (Equation (2.21)) and torque limits. Although this controller satis-
fies the contact constraints and yields an approximately optimal solution to tracking
task-based objectives, it does not provide formal guarantees with respect to stability.
In dynamic walking motions, this becomes an important consideration, wherein im-
pacts and footstrike can destabilize the system, requiring more advanced nonlinear
controllers.

7.2 Background: Control Lyapunov Functions

In Sec. 3.2.2, it was shown how feedback linearization could be used to render a linear
system which could be stabilized via PD feedback. While this procedure can expo-
nentially stabilize the output dynamics, it does not result in controllers that utilize
the natural dynamics of the system, and can result in overly aggressive torques. In-
stead, we would like to examine output tracking from a Lyapunov perspective, which
is to drive a Lyapunov function to decay in order to achieve convergence. Control
Lyapunov functions (CLFs), and specifically rapidly exponentially stabilizing control
Lyapunov functions (RES-CLFs), were introduced as methods for achieving (rapidly)
exponential stability for walking robots [31], [165]. This control approach has the
benefit of yielding an entire class of controllers that provably stabilize periodic orbits
for hybrid system models of walking robots, and can be realized in a pointwise opti-
mal fashion via optimization-based controllers. The CLF-based controllers presented
throughout this section have recently been explored for application on hardware,
because much like the optimization controllers of Sec. 7.1, they can be solved in
real-time. Experimental results have been shown on MABEL [31], [230] and DURUS-
2D [178], with recent results indicating how robust formulations can be used [231].
Additionally, it was implemented at over 5 kHz as an embedded level controller on
series elastic actuators [232], indicating possible future uses on explicitly controlling
compliant dynamic walking. The use of CLFs has also been used to automatically
generate stable walking gaits through SLIP approximations [233], and also to enforce
planned motions for reduced order models [234] along with realizing 3D bipedal jump-
ing experimentally on Cassie [235]. The fundamentals presented here will be used in
Sec. 7.3 to derive a new form for CLFs specifically tailored for floating-base robotic
systems, and are shown to be successful on hardware in Chap. 8.

In the theory of ordinary differential equations, Lyapunov functions are scalar func-
tions which can be used to prove the stability of an equilibrium. Let V : X → R be a
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Lyapunov-candidate-function for the uncontrolled dynamical system ẋ = f(x). The
derivative of V along its solutions is:

V̇ (x) =
∂V (x)

∂x
f(x), (7.12)

where the stability of an equilibrium point is tied to the negativity of V̇ (x).

Definition 7.2.0.1. (Lyapunov Stability [162]) The equilibrium point x = 0 of the
autonomous system ẋ = f(x) is:

• stable if, V (0) = 0, V (x) > 0 in X − {0}, and V̇ ≤ 0 in X,

• asymptotically stable if, in addition, V̇ (x) < 0 in X − {0}.

In simple terms, Definition 7.2.0.1 states that if V is positive definite and V̇ is negative
semi-definite, then x = 0 is stable, and if V̇ is instead negative definite, then x = 0 is
asymptotically stable.

The concept of control Lyapunov functions is to then extend the Lyapunov stability
properties to control affine nonlinear dynamical systems:

ẋ = f(x) + g(x)u, (7.13)

where x ∈ X ⊆ Rn is the set of controllable states and u ∈ U ⊆ Rm is the control
input. The mappings f : Rn → Rn, g : Rn → Rn×m are assumed to be locally
Lipschitz continuous functions of x. For the control system (7.13), we can propose a
control Lyapunov function candidate V : X → R. As opposed to the case in (7.12),
time derivative of V (x) is now a function of our input:

V̇ (x, u) =
∂V (x)

∂x
f(x)︸ ︷︷ ︸

LfV (x)

+
∂V (x)

∂x
g(x)︸ ︷︷ ︸

LgV (x)

u, (7.14)

with LfV (x) ∈ R and LgV (x) ∈ R1×m.

Definition 7.2.0.2. (Control Lyapunov Function [236], [237]) For the nonlinear sys-
tem (7.13), a control Lyapunov function is a function V : X ⊆ Rn → R satisfying:

c1||x||2 ≤ V (x) ≤ c2||x||2

inf
u∈U

[LfV (x) + LgV (x)u] ≤ −c3V (x),

for all x ∈ X and constants c1, c2, c3 ∈ R>0.
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7.2.1 Control Lyapunov Functions for Output Tracking

For all cases relevant to this thesis, we will consider only feedback linearizable systems
which attempt to zero a set of outputs with the goal of rendering a stable zero dynam-
ics surface according to the background presented in Chap. 3. Thus, we consider a
system which follows the modeling definitions provided in Chap. 2; with configuration
space Q, (local) coordinates q ∈ Q, and states x = (qT , q̇T )T ∈ TQ = X. This goal
of this system is to track desired trajectories of the form:

y(x, α) = ya(x)− yd(τ(x), α), (7.15)

where ya : X → Rm and yd : R×Ra → Rm are smooth functions encoding the desired
behavior. We assume that y(x) has (vector) relative degree r [160]. Suppose, as was
described in the construction of the zero dynamics surface in Sec. 3.2.4, that there
exists a diffeomorphism Φ : X → Y × Z for η ∈ Y ⊂ Rm representing the output
dynamics of the original dynamical system, and z ∈ Z ⊂ Rl as the uncontrolled
states, and x = Φ−1(η, z). The controlled system written in general normal form is
then:

η̇ = f̄(η, z) + ḡ(η, z)u (7.16)

ż = ω(η, z),

where f̄ and ḡ are derived in (3.32). Noting that Definition 7.2.0.2 is valid for the
normal form output dynamics in (7.16) with η, the derivative of the CLF along the
output dynamics is:

V̇ (η, z, u) =
∂V (η)

∂η

(
f̄(η, z) + ḡ(η, z)u

)
= Lf̄V (η, z) + Lḡ(η, z)u. (7.17)

One of the consequences of Definition 7.2.0.2 is that the existence of a CLF yields
a family of controllers which exponentially stabilize η. More specifically, η → 0

exponentially for any control value in the family of controllers:

K(x) = {u ∈ U : Lf̄V (η, z) + LḡV (η, z)u+ c3V (x) ≤ 0}. (7.18)

In the context of underactuated hybrid systems, which can be represented by the
normal form dynamics in (7.16), it can sometimes be necessary to achieve a stronger
bound on the convergence rate than the exponential one in Definition 7.2.0.2. This
motivates the following definition.
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Definition 7.2.0.3. (RES-CLF [31]) For the system (7.16), a continuously differ-
entiable function Vε : Y → R is said to be a rapidly exponentially stabilizing
control Lyapunov function if there exist positive constants c1, c2, c3 > 0 such that:

c1||η||2 ≤ Vε(η) ≤ c2

ε2
||η||2, (7.19)

inf
u∈U

[
Lf̄Vε(η, z) + LḡVε(η, z)u+

c3

ε
Vε(η)

]
≤ 0, (7.20)

for all 0 < ε < 1 and for all (η, z) ∈ Y × Z.

In the case of a RES-CLF, we can then consider the family of controllers:

Kε(η, z) = {u ∈ U : Lf̄V (η, z) + LḡV (η, z)u+
c3

ε
V (η) ≤ 0}, (7.21)

consisting of the control values that result in V̇ε(η, z, u) ≤ − c3
ε
Vε(η). To see this, note

that for uε(η, z) ∈ Kε(η):

V̇ε(η, u
∗(η, z)) ≤ −c3

ε
Vε(η) ⇒ V (η(t)) ≤ e−

c3
ε
tV (η(0)) (7.22)

⇒ ‖η(t)‖ ≤ 1

ε

√
λmax(P )

λmin(P )
e−

c3
2ε
t‖η(0)‖.

Thus, this gives the set of control values that exponentially stabilize the outputs and
we can control the convergence rate via ε. The selection of an appropriate choice
for the “best” control value possible leads to the notion of optimization based control
with CLFs, which will be addressed in Sec. 7.2.4.

7.2.2 Synthesizing Control Lyapunov Functions

With several of the basic definitions for CLFs in hand, we would now like to address
the task of actually synthesizing a CLF for a feedback linearizable system. Suppose
that for (7.13) there is a set of outputs y(x) = (y1(q, q̇)T , y2(q)T )T of vector relative
degree 1 and 2, respectively, on a region of interest; that is for y1(q, q̇) ∈ Rm1 and
y2(q) ∈ Rm2 with m = m1 +m2, we assume that the vector relative degree is 1 for y1

and the 2 for y2, i.e., (1, . . . , 1, 2, . . . , 2) with 1’s appearingm1 times and 2’s appearing
m2 times. We can then write an output tracking objective:

y1(q, q̇, t) = ya1(q, q̇)− yd1(τ, α) (7.23)

y2(q, t) = ya2(q)− yd2(τ, α), (7.24)

where ya and yd are the actual and desired outputs, and τ is some parameterization
of time for the desired outputs to evolve on. Taking the respective derivatives of the
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outputs results in: [
ẏ1

ÿ2

]
=

[
∂y1
∂q

∂y1
∂q̇

∂
∂q

(
∂y2
∂q
q̇
)

∂y2
∂q

]
f(x)︸ ︷︷ ︸

Lfy(x)

+

[
∂y1
∂q̇
∂y2
∂q

]
g(x)︸ ︷︷ ︸

A(x)

u, (7.25)

now in the form of (3.8). Assuming that the preliminary feedback introduced in (3.23)
has been applied to (7.13), we will render a linear system for the output dynamics
with coordinates η := (yT1 , y

T
2 , ẏ

T
2 )T :

η̇ =

ẏ1

ẏ2

ÿ2

 =

0 0

0 I

0 0


︸ ︷︷ ︸

F

η +

I 0

0 0

0 I


︸ ︷︷ ︸

G

ν. (7.26)

We can find the derivative of V with respect to the linear system (7.26) to be:

V̇ (η) = LFV (η) + LGV (η)v, (7.27)

where the Lie derivatives of Vε along the linear output system’s dynamics (7.26) are:

LFV (η) = ηT (F TPε + PεF )η, (7.28)

LGV (η) = 2ηTPεG. (7.29)

In order to convert back into a form which can be represented in terms of the control
input, we can use the previous relationship between u and ν:

A(x)u+ Lfy(x) = ν, (7.30)

to obtain the CLF derivative in terms of x since η depends on x (via y1, y2 and ẏ2):

V̇ (x, u) = LFV (x) + LGV (x)Lfy(x)︸ ︷︷ ︸
LfV (x)

+LGV (x)A(x)︸ ︷︷ ︸
LgV (x)

u. (7.31)

Continuous-Time Lyapunov Equation Synthesis

It was shown in Chap. 3 how in the context of robotic walking and Hybrid Zero
Dynamics, we had applied a feedback linearizing controller with the auxiliary feedback
chosen to force the resulting output dynamics (7.26) to evolve according to:

ÿ =

[
ẏ1

ÿ2

]
=

[
−1
ε
Kv̄y1

− 1
ε2
KPy2 − 1

ε
KDẏ2

]
(7.32)
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where 0 < ε ≤ 1 is a tunable parameter, and Kv̄, KP , KD are control gains for the
relative degree 1 and relative degree 2 output errors, respectively. If we choose the
linear state variables:

ηε =


1
ε
y1

1
ε
y2

ẏ2

 =⇒ εη̇ε =

−Kv̄ 0 0

0 0 I

0 −KP −KD


︸ ︷︷ ︸

Fcl,ε

ηε(t), (7.33)

where Fcl,ε is Hurwitz by definition (meaning that Re(eig(Fcl,ε)) < 0). Performing a
change of time scale τ = t

ε
yields d

dτ
ηε(τ) = Fcl,εηε(τ). Due to the Hurwitz assumption,

for any Q = QT > 0 there exists a P = T T > 0 which satisfies the Continuous-Time
Lyapunov Equation (CTLE):

F T
cl,εP + PFcl,ε = −Q. (7.34)

This yields the Lyapunov function:

V (ηε) = ηTε Pηε =⇒ d(ηε(τ)

dτ
≤ − λmin(Q)

λmax(P )︸ ︷︷ ︸
γ

V (ηε(τ)), (7.35)

where λmin and λmax are the minimum and maximum eigenvalues. It follows from a
conversion back to the original coordinates that:

||η(t)|| ≤ 1

ε

√
λmax(P )

λmin(P )
e−

γ
2ε
t||η(0)||. (7.36)

Hence the norm of η(t) converges to zero exponentially and the selection of 0 < ε < 1

creates rapidly exponential stability, and ε = 1 instead renders exponential stability.
We can also view V as a function of ε, with η independent of ε, with the selection of:

Vε(η) = ηT IεP Iε︸ ︷︷ ︸ η
Pε

, with Iε :=


1
ε
I 0 0

0 1
ε
I 0

0 0 I

 . (7.37)

This can ultimately be combined with Definition 7.2.0.2 and Definition 7.2.0.3 by
seeing that we can write the set of admissible control inputs for the Vε that we have
just found as (7.21).
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Algebraic Riccati Equation Synthesis

Rather than choosing specific control gains for ν, it is actually possible to synthesize
CLFs using the continuous time algebraic Riccati equations (CARE):

F TP + PF − PGR−1GTP +Q = 0, (7.38)

for Q = QT > 0, R = RT > 0, and with solution P = P T > 0. This ultimately
follows from the fact that the CTLE is a special case of the CARE, with no input
(i.e. GR−1GT = 0). While the CTLE is important in that it shows how to synthesize
a Lyapunov equation and show stability, the solution to the CTLE shows pointwise
optimality with respect to the linear output dynamics in (7.26). To see this, we can
consider the auxiliary feedback controller, ν = −R−1GTPη, where this specific choice
is just the infinite-horizon linear quadratic regulator (LQR) that minimizes:

JLQR =
1

2

∫ ∞
0

(
ηTQη + νTRν

)
dt. (7.39)

We can then take the optimal cost as a Lyapunov function V (η) = ηTPη, and show
that V̇ is negative semidefinite:

V̇ = 2ηTP η̇

= 2ηTP (F −GR−1GTP )η

= 2(ηTPFη − ηTPGR−1GTPη)

= ηT (PF + F TP )η − 2ηT (PGR−1GTP )η

= −ηTQη − xTPGR−1GTPη,

where both Q and PGR−1GTP are positive semidefinite by definition, so V̇ is negative
semidefinite. In terms of Definition 7.2.0.2, we can show that the P solution to the
CARE yields the inequality [31], [238]:

inf
ν∈Rm

[
LFV + LGV ν +

λmin(Q)

λmax(P )

]
= inf

ν∈Rm

[
ηT (F TP + PF )η + 2ηTPGν + ηTQη

]
= inf

ν∈Rm

[
PGR−1GTPη + 2ηTPGν

]
= inf

ν∈Rm

[
ηTPG(R−1GTPη + 2ν)

]
≤ 0,

from the selection of ν = −1
2
R−1GTPη and:

λmin(Q)

λmax(P )
V (η) ≤ λmin(Q)||η||2 ≤ ηTQη.

The same convergence results will follow from the selection of a (rapidly) exponentially
stabilizing CLF using Pε as in (7.37).
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7.2.3 Stabilizing Hybrid Zero Dynamics

This section addresses control Lyapunov functions within the context of the Hybrid
Zero Dynamics framework introduced in Chap. 3. Starting from the assumption
that a system has stable zero dynamics and is shaped in such a way that it has
hybrid invariance, meaning that it has hybrid zero dynamics, several conditions on
the stability of a periodic orbit are established. Towards this goal, consider a hybrid
control system (3.1) now in normal form (7.16):

H C =


η̇ = f̄(η, z) + ḡ(η, z)u

ż = ω(η, z)
if (η, z) ∈ D\S

η+ = ∆η(η
−, z−)

z+ = ∆z(η
−, z−)

if (η, z) ∈ S
(7.40)

where η, z, f̄ , and ḡ are defined as in (7.16), ∆η and ∆z are locally Lipschitz in their
arguments, and the domain and guard are defined according to (3.4) and (3.6) now
in terms of the normal coordinates as:

D = {(η, z) ∈ Y ×Z | H(η, z) ≥ 0}, (7.41)

S = {(η, z) ∈ Y ×Z | H(η, z) = 0, Ḣ(η, z) < 0} (7.42)

where H(η, z) : Y ×Z → R is a continuously differentiable function where LḡH = 0.
If we now assume that the normal-form hybrid control system has continuous invari-
ance, f̄(0, z) = 0, and discrete invariance, ∆x(0, z) = 0, then (7.40) has hybrid zero
dynamics. In other words, we have encoded satisfaction of the invariance condition,
∆(Z ∩ S) ⊂ Z, previously given for the full-order system (3.30). Thus the restricted
hybrid dynamical system H α|Z in (3.34) can be considered. If we further assume that
a RES-CLF Vε is chosen to obtain a locally Lipschitz control law uε(η, z) ∈ Kε(η, z)

Figure 7.1: A visualization of a CLF driving a Lyapunov function to zero (left), the
normal form hybrid zero dynamics representation, and a walking simulation (right).
The rapid exponential zeroing of the outputs (Equation (7.22)) is critical to achieve
sufficient convergence before impact (right).
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that can be applied to the closed-loop hybrid system:

Hε =


η̇ = f̄(η, z) + ḡ(η, z)uε(η, z)

ż = ω(η, z)
if (η, z) ∈ D\S

η+ = ∆η(η
−, z−)

z+ = ∆z(η
−, z−)

if (η, z) ∈ S
,

where uε(η, z) ∈ Kε(η) implies that uε(0, z) = 0 and thus preserves the hybrid zero
dynamics H α|Z . Because the hybrid zero dynamics holds, the analysis presented in
Sec. 3.2.4 on the stability of periodic orbits also follows [155]. In fact, a stronger
statement can be made regarding the stability of the hybrid system.

Theorem 7.2.1. (RES-CLF and Hybrid Zero Dynamics [31]) Let O|Z be an expo-
nentially stable periodic orbit of the hybrid zero dynamics H α|Z transverse to S ∩Z
and assume there exists a RES-CLF Vε for the continuous dynamics (7.13) of (7.40).
Then there exists an ε̄ > 0 such that for all 0 < ε < ε̄ and for all Lipschitz continuous
uε ∈ Kε(η, z), O = ι0(O|Z) is an exponentially stable hybrid periodic orbit of Hε.

The proof of Theorem 7.2.1 can be found at [31], with the primary takeaway being
that any RES-CLF controller uε ∈ Kε(η, z) results in a stable orbit for the full-
order dynamics if one exists in the reduced order dynamics. This general concept
is illustrated for robotic walking in Fig. 7.1, where a CLF is shown which renders
stable zero dynamics. If the system also has hybrid invariance, then the corresponding
periodic orbit is stable, and is in fact exponentially stable, with a robot shown starting
from a perturbed initial condition, and driving the jump at impact to zero over time
as the robot walks from step to step.

7.2.4 Control Lyapunov Functions as a Quadratic Program

The advantage of (7.18) is that it gives a large set of controllers that can result in
stable walking on bipedal robots. That is, for any u ∈ K(x), the hybrid system
model of the walking robot, per the HZD framework introduced in 1.2.6, has a stable
periodic gait given a stable periodic orbit in the zero dynamics [31]. This suggests that
an optimization-based framework nonlinear controller synthesis is possible, where the
inequality:

LfV (x) + LgV (x)u+ γV (η) ≤ 0, (7.43)
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is satisfied via a QP-based controller:

u∗ = argmin
u∈U⊂Rm

1

2
uTQ(x)u+ cT (x)u (CLF-QP)

s.t. LfV (x) + LgV (x)u ≤ −γV (x) (CLF Convergence)

where Q ∈ Rm×m is a symmetric positive-definite matrix and c ∈ Rm is vector.

The choice of Q(x) and c(x) is important in implementation. Specifically, not all
choices will result in Lipschitz continuity of the resulting torque, and selecting costs
which are inconsistent with the CLF convergence inequality can cause the controller
to “chatter.” One common choice is to use the fact that the preliminary feedback
control law in the HZD and CLF constructions is feedback linearization to minimize
ν in terms of the full-order states rather than u:

u∗(x) = argmin
u∈U⊂Rm

||A(x)u+ Lfy(x)||2

s.t. LfV (x) + LgV (x)u ≤ −γV (x)

with Q(x) = AT (x)A(x) and cT (x) = 2(Lfy(x))TA(x) in terms of the original cost.

For the holonomic constraints to be satisfied in the dynamics (2.8), and thus in the
QP constraint (7.43), we must either augment u with λ as an additional decision vari-
able [225], [233], or solve for the generalized force explicitly, assuming the holonomic
constraint is satisfied:

λ = (Jc(q)D
−1(q)JTc (q))−1

(
Jc(q)D

−1(q)(H(q, q̇)−Bu)− J̇c(q, q̇)q̇
)
, (7.44)

and substitute back into the expression (2.8) to remove it as a free variable.

Remark 4. In the special case where the cost function is simply the torque squared
and the only constraint is the Lyapunov convergence constraint, the CLF-QP:

u∗ = argmin
u∈U⊂Rm

uTu

s.t. LfV (x) + LgV (x)u ≤ −γV (x)

has an analytical solution given by the min-norm controller:

u =


− (LfV (x) + γV (x))LgV (x)

LgV (x) (LgV (x))T
if LfV (x) + γV (x) > 0

0 if LfV (x) + γV (x) ≤ 0.

(7.45)
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Convergence Relaxations for Implementation and Feasibility

The optimization formulation of CLFs allows for additional constraints and objec-
tives to be incorporated into the optimization. These constraints can include various
things which are important for realization on actual robotic platforms such as torque
constraints for input saturation, friction constraints, or unilaterality conditions on
contact forces. These constraints naturally fall under the general form introduced in
Sec. 7.1 as the inequality:

CI(x)u ≤ di(x). (7.46)

One of the downsides to incorporating additional constraints into the problem is that
it may not be possible to satisfy them concurrently with (7.43). This means that a
relaxation variable, δ, must be added to penalize violation of (7.43):

u∗ = argmin
u,δ

1

2
uTQ(x)u+ cT (x)u+ ρδ2 (CLF-QP-δ)

s.t. LfV (x) + LgV (x)u ≤ −γV (x) + δ

CI(x)u ≤ di(x)

where ρ is a large positive weight that penalizes relaxation of the CLF inequality.

In Sec. 7.3, we will develop a series of controllers which necessitate a relaxation of
CLF convergence in order to be experimentally realized in Chap. 8. While allowing
this violation enables more advanced controllers, it can destroy the formal stability
conditions which we have introduced for the hybrid zero dynamics framework. In
Sec. 7.3, we therefore provide sufficient conditions under which a relaxed CLF-QP
controller can retain exponential stability in the hybrid periodic orbit.
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7.3 Control Lyapunov Function-based Inverse Dynamics

Model-based control methods can help enable dynamic and compliant motion of
robots while achieving remarkable control accuracy. However, implementing such
techniques on floating base robots is non-trivial due to model inaccuracy, underactu-
ation, dynamically changing contact constraints, and possibly conflicting objectives
for the robot [225], [239]. Unlike their classical counterparts, optimization-based
approaches to handling these control problems allow for the inclusion of physical
constraints that the system is subject to [174], [240]. Partially as a consequence of
this feature, QP-based controllers have been increasingly used to stabilize real-world
systems on complex robotic platforms without the need to algebraically produce a
control law or enforce convergence guarantees [187], [214], [228].

These examples, however, typically do not consider periodic notions of stability for
highly underactuated systems; systems which often require additional convergence
guarantees in order to realize stability. It was shown in [31] that through the use of a
RES-CLF, coupled with HZD [30], [138], a wide class of controllers can be designed to
create rapidly exponentially convergent hybrid periodic orbits. It was also shown that
this class of controllers can be posed as a QP, in which the convergence is enforced
via an inequality constraint, forming a CLF-QP [31], [225]. Often, robotic systems
cannot produce sufficient convergence to dynamic motions without violating physical
constraints. One approach to address this conflict is to relax convergence guarantees,
which allows (local) drift in the control objectives to accommodate feasibility. This
class of controllers has since been used to achieve dynamic locomotion on robotic
systems both in simulation [233], [234], [241], [242] and on hardware [230].

While high level task-space controllers based on inverse dynamics approaches pose
similar problems as CLF-QPs, they have traditionally not been formulated in the
same way. In implementations of CLF-QPs, the vector fields associated with robotic
systems are typically utilized, which involves costly computations. Alternatively, in
task-based controllers, the dynamics are an equality constraint. Here, objectives
are driven towards their targets through PD controllers in the cost [187]. There
have been several connections shown in related research [59], [229], where control
Lyapunov functions were included in an inverse dynamics controller via an LQR in the
cost. In this section, we aim to repurpose several of the more mature concepts from
inverse dynamics-based approaches and demonstrate a more efficient CLF inspired
formulation.

Towards this goal, this section will consider only floating-base robotic systems such as
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those described in Chap. 2. As they will be used extensively throughout this section,
recall that the dynamics of these robotic systems can be formulated using the method
of Lagrange, with holonomic constraints [131]:

D(q)q̈ +H(q, q̇) = Bu+ JTc (q)λc (7.47)

Jc(q)q̈ + J̇c(q, q̇)q̇ = 0, (7.48)

where D(q) is the inertia matrix, H(q, q̇) = C(q, q̇)q̇+G(q) +F is the vector sum for
the Coriolis, centrifugal, gravitational, and additional non-conservative generalized
forces, B is the actuation matrix, and the Jacobian of the holonomic constraints is
Jc(q) = ∂ηc(q)/∂q with its corresponding constraint wrenches λc ∈ Rmc . This can be
converted to an ODE in the form of (2.1) as:

f(x) =

[
q̇

−D−1(q)
(
JTc (q)λc −H(q, q̇)

)] , g(x) =

[
0

D(q)−1B

]
. (7.49)

The specific form of (7.47) and (7.48) will be leveraged throughout this chapter to
enable CLF-QP formulations that are realizable on actual hardware in Chap. 8.

7.3.1 Revisiting Feedback Linearization

Taking inspiration from inverse dynamics approaches, we return to Sec. 3.2.2, where
the auxiliary control input, ν, for a feedback linearizing controller is set to equal
the second time derivative of the outputs. Suppose that for (7.49), there is a set of
outputs y(x) = (y1(q, q̇)T , y2(q)T )T of vector relative degree 1 and 2, respectively, on
a region of interest; that is for y1(q, q̇) ∈ Rm1 and y2(q) ∈ Rm2 with m = m1 +m2 we
assume the vector relative degree is 1 for y1 and the 2 for y2:

y1(q, q̇, t) = ya1(q, q̇)− yd1(τ(t, q)) (7.50)

y2(q, t) = ya2(q)− yd2(τ(t, q)), (7.51)

where ya and yd are the actual and desired outputs, and τ(t, q) is some parameter-
ization of time for the desired outputs to evolve on. Taking the derivatives of the
outputs along f(x) and g(x), we obtain:[

ẏ1

ÿ2

]
=

[
∂y1
∂q

∂y1
∂q̇

∂
∂q

(
∂y2
∂q
q̇
)

∂y2
∂q

]
f(x)︸ ︷︷ ︸

Lfy(x)

+

[
∂y1
∂q̇
∂y2
∂q

]
g(x)︸ ︷︷ ︸

A(x)

u, (7.52)

where A(x) is the decoupling matrix, which is invertible in the case of a (vector)
relative degree. This implies that the system (7.49) is feedback linearizable, and we
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can then prescribe the following control law:

u(x) = A−1(x)
(
− Lfy(x) + ν

)
=⇒

[
ẏ1

ÿ2

]
= ν, (7.53)

now in the form of (3.8) where ν is an auxiliary feedback control value.

This can equivalently be done by taking the derivatives of the outputs (3.9) and (3.10)
in terms of the system accelerations instead of along the vector fields f(x) and g(x):[

ẏ1

ÿ2

]
=

[
∂y1
∂q

∂
∂q

(
∂y2
∂q
q̇
)]

︸ ︷︷ ︸
J̇y

q̇ +

[
∂y1
∂q̇
∂y2
∂q

]
︸ ︷︷ ︸
Jy

q̈. (7.54)

We then return to (7.30) where ν is set to equal the second time derivative of the
output. Rather than directly choosing an input, u, we can instead solve for an
acceleration, q̈, that generates an equivalent response in the outputs.

Theorem 7.3.1. For a robotic system with dynamics (7.47) and outputs of the form
(3.9) and (3.10), where D(q) is positive definite (and therefore invertible) and the
outputs are independent (i.e., the Jacobian matrix Jy(q) is not rank-deficient), then
any controller in the set:

KIO(q, q̇) = {u ∈ U : q̈ = J†y(q)(−J̇y(q, q̇)q̇ + ν)}, (7.55)

elicits the same response in the output dynamics as the feedback linearizing input,

u = A−1(x)(−Lfy(x) + ν). (7.56)

Proof. Using (7.54), q̈ can be chosen to satisfy[
ẏ1

ÿ2

]
= Jy(q)q̈ + J̇y(q, q̇)q̇ = ν. (7.57)

By constraining:

q̈ = J†y(q)(−J̇y(q, q̇)q̇ + ν), (7.58)

where J†y is a right pseudo inverse of the full rank matrix Jy, with JyJ†y = I, and the
outputs evolve as:

Jy(q)q̈ + J̇y(q, q̇)q̇ = J̇y q̇ + JyJ
†
y(−J̇y q̇ + ν)

= ν

=

[
ẏ1

ÿ2

]
= Lfy(x) +A(x)u.
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This fact illustrates a significant connection back to the inverse dynamics controllers
implemented in Sec. 6.2 and outlined as background in Sec. 7.1. This concept is
not new, and the connection between inverse dynamics (or computed torque) for
manipulator dynamics and feedback linearization has been extensively studied in
the literature [243], along with their connections to underactuated or rank deficient
tracking problems [244]. To see this more clearly, note that we can transform the pair
of equations in (7.47) and (7.48) into the constrained dynamics (2.14) (or alternatively
in the form of (2.19)):

D(q)q̈ + Ĥ(q, q̇) = B̂u, (7.59)

which effectively pins the robot and makes the equations of motion no longer depen-
dent on the constraint forces. If we substitute the acceleration found in (7.58) into
these dynamics, we can simply perform several steps of algebra to obtain the feedback
linearizing controller:

D(q)
(
J†y(q)(−J̇y(q, q̇) + ν)

)
+ Ĥ(q, q̇) = B̂u

J†y(−J̇y(q, q̇) + ν) = D−1(q)(B̂u− Ĥ(q, q̇))

ν = Jy(q)D
−1(q)(B̂u− Ĥ(q, q̇)) + J̇y(q, q̇)q̇

= Jy(q)q̈ + J̇y(q, q̇)q̇

= Lfy(x) +A(x)u.

We can then use this to design an inverse dynamics feedback controller for floating-
base manipulator dynamics which has similar convergence properties as were given
for feedback linearization in Chap. 3 while directly accounting for the impact that
holonomic constraints have on the accelerations. Consider the inverse dynamics con-
trol law posed by Aghili [143], where a specific case by Mistry [142] was used on
Cassie in Sec. 6.2:

P (q) (D(q)q̈ +H(q, q̇)) = P (q)Bu, (7.60)

where P (q) = I − J†c (q)Jc(q) and the inverse-dynamics control input is:

u = (P (q)B)†P (q) (D(q)q̈d +H(q, q̇)) . (7.61)

Let us now substitute this controller into (7.47), and apply the constraint projection
(noting that P (q) is an annihilator for the constraint force, i.e. P (q)JTc (q)λc = 0):

D(q)q̈ +H(q, q̇) = B
[
(PB)†P (q) (D(q)q̈d +H(q, q̇))

]
+ JTc (q)λc, (7.62)

P (q) (D(q)q̈ +H(q, q̇)) = P (q)B(PB)†P (q) (D(q)q̈d +H(q, q̇)) , (7.63)

P (q) (D(q)q̈ +H(q, q̇)) = P (q) (D(q)q̈d +H(q, q̇)) , (7.64)
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which implies that q̈ = q̈d if q̇ ∈ N (Jc(q)) and q̈d is chosen such that it implicitly
satisfies (7.48). This allows us to effectively use the accelerations as a control input, so
long as they are chosen in a manner which is consistent with the holonomic constraints.

As was already shown in Theorem 7.3.1, we can design a desired acceleration to elicit
an equivalent response in the output dynamics to the feedback linearizing controller.
However, the floating-base inverse dynamics controller shown in (7.61) has an addi-
tional requirement on this feedback acceleration with respect to (7.48). We can use
the same definition of P (q) in Sec. 2.1.3 for (2.16) to obtain a desired acceleration
which is orthogonal to the holonomic constraints:

q̈⊥y = J†c (q)J̇c(q, q̇)q̇ + (I − J†cJc(q))q̈. (7.65)

This then transforms the condition (7.58), and therefore the output dynamics (7.54):

ν = Jy(q)q̈
⊥ + J̇y(q, q̇)q̇ (7.66)

= Jy(q)(I − J†cJc(q))︸ ︷︷ ︸
J⊥y (q)

q̈ +
(
J̇(q, q̇) + Jy(q)J

†
c (q)J̇c(q, q̇)

)
︸ ︷︷ ︸

J̇⊥y (q,q̇

q̇ (7.67)

and assuming that J†c (q) is invertible (i.e. that the outputs and holonomic con-
straints are linearly independent and J†c (q) thus has full row rank), application of
Theorem 7.3.1 then gives the set of controllers which elicit an equivalent reaction
to feedback linearization written now for the constrained floating-base manipulator
dynamics as:

K⊥IO(q, q̇) = {u ∈ U : q̈ = (J⊥y (q))†(−J̇⊥y (q, q̇)q̇ + ν)}. (7.68)

We can then design ν according to (3.25):

ν =

[
−1
ε
Kv̄y1

− 1
ε2
KPy2 − 1

ε
KDẏ2

]
. (7.69)

Because we have already shown that (7.61) renders q̈ = q̈d, application of Theo-
rem 7.3.1 means that the assertions in Chap. 3 on the exponential stability of the
zero dynamics hold for (7.61) with q̈ given by (7.68) and the selection of (7.69) as the
auxiliary feedback control law.

This approach has several benefits when applied to complex systems and in imple-
mentation on hardware. Perhaps the two largest incentives for using this approach is
that the actual controller does not require any inversions of the mass-inertia matrix,
and the constraint forces are eliminated through a simple kinematic projection rather
than back-solved through a highly model dependent series of calculations (see (2.13)).
This not only reduces computational load, but sensitivity to modeling errors.
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7.3.2 Inverse Dynamics Quadratic Programs with CLFs

In this section, we return to the concept of a QP which can solve the inverse dynam-
ics problem for a floating-base robot, as was shown in the literature review outlined
in Sec. 7.1. Despite the connections shown between inverse dynamics and feedback
linearization in Sec. 7.3.1, CLF-based controllers have only been successfully imple-
mented on hardware in planarized and low-dimensional robots with the min-norm
analytical solution (7.45) [31], as a very minimal QP [230], or indirectly by simulat-
ing the nominal system and tracking the resulting motions via a PD controller [178].
There are several outstanding issues which we suggest may be influencing this lack of
successful implementations in the literature.

The first significant difficulty in realizing optimization and model-based controllers,
and therefore in implementing CLFs, is in obtaining accurate models for the high-DOF
and highly-coupled nonlinear equations of motion. In the earliest implementations
of min-norm CLF controllers, significant system identification was necessary in order
to construct effective controllers [25]. To mitigate these issues, there has been recent
exploration of robust CLF formulations [245], machine learning methods to identify
Lyapunov function errors [246], and machine learning to account for model inaccuracy
in the continuous dynamics of the robot [247]. While these model discrepancies
may be large in some cases, the successes of (ID-QP) controllers on highly complex
humanoids as ATLAS [59] shows that it is possible. Thus the aim of the approach
presented in this thesis will not directly address model uncertainty and will instead
focus on how the formulation of the problem can influence its behavior on real systems.

Definition 7.3.1.1. Given a set of outputs (7.15) for the floating-base robotic con-
trol system described by (7.47) and (7.48), the inverse dynamics control Lya-
punov function quadratic program (ID-CLF-QP) with decision variables X =

[q̈T , uT , λT ]T ∈ Xext := Rn × U × Rmc is given as:

X ∗ = k∗idclf(x) = argmin
X∈Xext

1

2
X TQ(x)X + cT (x)X (ID-CLF-QP)

s.t. LFV (x) + LGV (x)
(
J̇y(q, q̇)q̇ + Jy(q)q̈

)
≤ −γV (x)

D(q)q̈ +H(q, q̇) = Bu+ JTc (q)λ

Jc(q)q̈ + J̇c(q)q̇ = 0

with Q(x) = QT (x) > 0 and real vector c(x) ∈ Rn+m+mc.

Here we have termed the QP with the phrase “inverse dynamics” as it is determining a
control input u based on convergence criteria imposed on the generalized accelerations,
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q̈, through satisfaction of the equations of motion (7.47) and (7.48). Perhaps the
most significant observation of Definition 7.3.1.1 is that we have traded an increased
number of decision variables for a set of equality constraints that do not require any
matrix inversions in a similar manner to the DAE representation of the dynamics
(3.47) used in our direct collocation trajectory optimization. This is particularly
relevant to implementation as it has been shown that the condition number of the joint
space inertia matrix increases quartically with the length of a kinematic chain [130].
Repeated inversions of this matrix therefore may be an obvious source of numerical
stiffness, and can lead to controller degradation on hardware [220]. For complex multi-
link robots, such as bipedal robots, these condition numbers are often exceptionally
large (for full humanoids sometimes on the order of 108). In addition, performing
the required inversions for evaluating the vector fields (2.8) are very computationally
expensive, and can often violate strict timing requirements when implementing these
controllers on hardware.

The main goal of this section is to construct a framework around the (ID-CLF-QP)
controller which motivates its use as a stabilizing controller for HZD locomotion. This
will build on the concepts outlined for CLFs in Sec. 7.2 to establish exponential stabil-
ity of the hybrid system. Specifically, let O be a periodic orbit of the zero dynamics
ż = ω(0, z) and assume that O ⊂ Z is exponentially stable. Then the following
result states that if the resulting controller from (ID-CLF-QP) using the RES-CLF
condition (7.74) is locally Lipschitz and unique, then it is possible to stabilize O in
the full-order dynamics.

Main Theorem 7.3.1. (RES-ID-CLF-QP and HZD) Assume that (ID-CLF-QP) is
locally Lipschitz and unique for all points in a neighborhood of an exponentially stable
periodic orbit, O|Z , of the hybrid zero dynamics H α|Z transverse to S ∩Z. Then for
the (ID-CLF-QP) controller with choice of RES-CLF, Vε(x), u∗ε(x) = kidclf,ε(x), there
exists an ε̄ > 0 such that for all 0 < ε < ε̄, O = ι0(O|Z) is an exponentially stable
hybrid periodic orbit of Hε.

Before we proceed with a proof for Theorem 7.3.1, we will first establish that the
pointwise optimal control action obtained from (ID-CLF-QP) in fact renders stability
of the transverse dynamics (7.26) in a similar manner to (CLF-QP). Using this result,
we will show that the (ID-CLF-QP) can be transformed into an equivalent (CLF-QP)
and then discuss the connection between the ES-CLF and RES-CLF constraint within
the (ID-CLF-QP) problem.
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Lemma 7.3.1.1. The pointwise optimal solution X ∗ = k∗idclf(x) of (ID-CLF-QP)
yields a control action within the set of admissible inputs for a CLF given by Defini-
tion 7.2.0.2:

k∗idclf(x) ∈ Ku(x) = {u ∈ Rm : LfV (x) + LgV (x)u ≤ −γV (x)} . (7.70)

As a result, if u∗ taken from X ∗ is locally Lipschitz and if the zero dynamics ż =

ω(0, z) is locally exponentially stable, then (ID-CLF-QP) is a locally exponentially
stabilizing controller for the closed-loop system in (3.31).

Proof. Application of Theorem 7.3.1 means that the collection of constraints:
LFV (x) + LGV (x)

(
J̇y(q, q̇)q̇ + Jy(q)q̈

)
≤ −γV (x)

D(q)q̈ +H(q, q̇) = Bu+ JTc (q)λ

J(q)q̈ + J̇c(q)q̇ = 0

can be rewritten as a single inequality by solving (7.47) and (7.48) for q̈ and substi-
tuting into the CLF inequality to obtain:

LfV (x) + LgV (x)u ≤ −γV (x), (7.71)

which is the convergence condition required for exponential convergence provided in
Definition 7.2.0.2. Because we can analytically show this equivalence, the existing
CLF convergence conditions in Definition 7.2.0.2 apply to (ID-CLF-QP). Just as in
Sec. 7.2, for any Lipschitz continuous feedback control law u ∈ Ku(x), the inequalities
in Definition 7.2.0.2 imply that the solutions to the closed-loop system:

η̇ = f̄(η, z) + ḡ(η, z)u

ż = ω(η, z)

satisfy (with γ = c3):

V̇ (η, u∗(η, z)) ≤ −c3V (η) ⇒ V (η(t)) ≤ e−c3tV (η(0))

⇒ ‖η(t)‖ ≤
√
c2

c1

e−
c3
2
t‖η(0)‖.

Remark 5. As was stated in Sec. 7.2 for (CLF-QP), not all choices of the cost terms
for Q(x) and c(x) for (ID-CLF-QP) will result in Lipschitz continuity of the resulting
QP controller [248], [249]. If they are selected in a way which conflicts with the
convergence constraint V̇ (η, u∗(η, z)) ≤ −γV (η), then the input can instantaneously
change and create a discontinuity when interfering with the inequality.
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Remark 6. If there exists a set of parameters α∗ that yields a feasible gait for the
(HZD Optimization) problem, then there exists a family of CLF controllers (7.21) that
can exponentially stabilize the transverse dynamics. Therefore, by Lemma 7.3.1.1,
there also exists a (ID-CLF-QP) controller which can stabilize this problem.

One of the most important consequences of Lemma 7.3.1.1 is that we can pose a
(ID-CLF-QP) controller to stabilize the zero dynamics surface during continuous
phases of motion for underactuated robotic systems. In fact, we can also show that
a (ID-CLF-QP) can be analytically converted into an (CLF-QP).

Lemma 7.3.1.2. For any given cost Jid(x,X ) = 1
2
X TQid(x)X+cTid(x)X with Qid(x) =

QT
id(x) > 0 and real vector cid(x) ∈ Rn+m+mc of (ID-CLF-QP), there exists a cost
Ju(x, u) which is quadratic with respect to u for (CLF-QP) such that the problems
are analytically equivalent.

Proof. To begin, we will simply establish a linear transformation between the decision
variables and then plug them into Jid(x,X ) to find a cost. We previously showed in
(2.13) that the analytical solution to (7.47) and (7.48) for the constraint wrenches is:

λc(q, q̇, q̈, u) = −
[
Jc(q)D

−1(q)JT (q)
]−1
[
J̇c(q, q̇)q̇ + Jc(q)D

−1(q) (Bu−H(q, q̇))
]
.

In Sec. 2.1.3, it was shown how the substitution of this constraint force to (7.47)
results in the constrained equations of motion:

D(q)q̈ + Ĥ(q, q̇) = B̂(q, q̇)u,

where we can solve for q̈, and thus form an expression relating u to X : q̈u
λc


︸ ︷︷ ︸
X

=

 D−1B̂

I[
JcD

−1JTc
]−1

JcD
−1B̂


︸ ︷︷ ︸

Au

u+


−D−1Ĥ

0[
JcD

−1JTc
]−1
(
J̇cq̇ − JcD−1H

)


︸ ︷︷ ︸
bu

(7.72)

where dependencies were dropped for the sake of compact presentation. Directly
substituting this relation yields a quadratic cost:

Jid(x,X ) = X TQidX + 2cTidX

= [Auu+ bu]
T Qid [Auu+ bu] + 2cTid [Auu+ bu]

= uTATuQidAuu+ 2
[
bTuQid + cTid

]
Auu+

[
bTuQidbu + 2cTidbu

]
=: Ju(x, u). (7.73)
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We have already shown in the proof for Lemma 7.3.1.1 that the constraints for
(ID-CLF-QP) analytically reduce to (CLF-QP), which completes the proof.

Remark 7. While Lemma 7.3.1.1 demonstrates exponential stability (ES-CLF) for
the controller shown in (ID-CLF-QP), an implication of the equivalence shown in
Lemma 7.3.1.1 and Lemma 7.3.1.2 is that we can similarly pose a RES-CLF, Vε(x)

within the (ID-CLF-QP) formulation to obtain rapidly exponential stability with bounds
given by Definition 7.2.0.3 using the inequality:

LFVε(x) + LGVε(x)
(
J̇y(q, q̇)q̇ + Jy(q)q̈

)
≤ −γ

ε
Vε(x), (7.74)

where Vε(x) can be constructed according to (7.37).

Proof of Main Theorem 7.3.1:

Using Remark 6, let us begin by posing a (ID-CLF-QP) with a RES-CLF condition
(7.74) on the CLF convergence:

X ∗ε = k∗idclf,ε(x) = argmin
X∈Xext

1

2
X TQid(x)X + cTid(x)X

s.t. LFVε(x) + LGVε(x)
(
J̇y(q, q̇)q̇ + Jy(q)q̈

)
≤ −γ

ε
Vε(x)

D(q)q̈ +H(q, q̇) = Bu+ JTc (q)λ

Jc(q)q̈ + J̇c(q, q̇)q̇ = 0.

The primary consequence of Lemma 7.3.1.1 and Lemma 7.3.1.2 is that this problem
will render an analytically equivalent control action to the RES-(CLF-QP):

u∗ε = argmin
u∈U⊂Rm

Ju(x, u)

s.t. LfV (x) + LgVε(x)u ≤ −γ
ε
Vε(x).

Thus, the control action belongs to the family of RES-CLF controllers given by:

k∗idclf,ε(x) ∈ Kε(x) =
{
u ∈ Rm : LfV (x) + LgVε(x)u ≤ −γ

ε
Vε(x)

}
. (7.75)

Because the pointwise optimal control action is thus a RES-CLF, if X ∗ε is locally
Lipschitz and unique, then Theorem 7.2.1 applies to k∗idclf,ε(x), completing the proof.
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7.3.3 Cost Functions and Gait Parameterization for HZD

One of the clear benefits to (ID-CLF-QP) is that there exists a wide range of costs
that can be designed without needing complex expressions, as the decision variables
are affine with respect to mostly kinematic matrices in the equations of motion
(7.47)-(7.48) and output dynamics (7.26). In other words, while it was shown in
Lemma 7.3.1.2 that costs can be shown transformed into a form which is affine to the
joint torques, u, they are considerably more complex expressions involving the full
system dynamics. This will be illustrated through a discussion of several of the most
common costs applied to CLFs in the literature.

Perhaps the simplest cost function that can be applied to (ID-CLF-QP) is to minimize
the square of the joint torques for the robot:

Ju(X ) := uTu, (7.76)

for which (ID-CLF-QP) has an analytical solution given by the min-norm controller if
it does not contain constraints other than the CLF derivative and dynamics. However,
driving the response towards zero torque may not be the most desirable action for a
controller to take if we already have some information on the preliminary feedback
controller (feedback linearization), which was prescribed in Chap. 3 to render the
output dynamics as a linear system:

JIO(x,X ) := ||Jy(q)q̈y + J̇y(q, q̇)q̇||2. (7.77)

The equivalence of the expression in JIO(x,X ) to (3.23) can be seen by Theorem 7.3.1.

Perhaps the most important observation that we should make is that in order for
(ID-CLF-QP) to be solved uniquely, the Hessian matrix, Q(x), must be positive
definite and therefore also full rank. However, the costs posed up until this point
each deal with only a subset of the decision variables. One of the most common ways
to address this is to regularize the decision variables about a nominal value:

Jreg(x,X ) = ||X − X ∗||2. (7.78)

In fact, if we have solved for a stable walking gait using the HZD methodology outlined
in Chap. 3 and using (HZD Direct Collocation), then we have already done the work
of obtaining a parameterized piecewise polynomial for X ∗α(t), which is the nominal
acceleration, constraint wrenches, and inputs when the robot is operating on the
stable hybrid periodic orbit.
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Proposition 7.3.1.1. (See [250], Chapter 4) Suppose that w(α∗) describes a fea-
sible walking gait solving (HZD Direct Collocation). Then the piecewise polynomial
solution ϕ∗(t) determined by the NLP solution, {T ∗, q∗(t), q̇∗(t), q̈∗(t), λ∗(t), u∗(t)}, is
hybrid invariant under the virtual constraint feedback control law (3.8) with parame-
ters α∗, i.e. ϕ∗(t) ⊂ Zα∗.

Proposition 7.3.1.2. Consider an (ID-CLF-QP) with two cost terms:

X ∗ = argmin
X∈Xext

Jz(x,X ) + ||X − X ∗α(t)||2

s.t. LFVε(x) + LGVε(x)
(
J̇y(q, q̇)q̇ + Jy(q)q̈

)
≤ −γ

ε
Vε(x)

D(q)q̈ +H(q, q̇) = Bu+ JTc (q)λ

Jc(q)q̈ + J̇c(q, q̇)q̇ = 0

where Jz(x,X ) is defined in such a way that Jz(X )|Z ≡ 0 (we can see that (7.77) is
an example of such a cost as y(x) ≡ 0 when η(x) ≡ 0). Then when the robot is on the
zero dynamics surface (i.e. ż = ω(0, z)), the optimal control action is X ∗ = X ∗α(t).

Proof. Proposition 7.3.1.1 means that the solution to (HZD Direct Collocation) lies
on the hybrid invariant zero dynamics surface of the corresponding walking gait.
Thus, when the robot is on the zero dynamics surface (i.e. ż = ω(0, z)), the QP
constraints vanish:

0 ≡


LFVε(x) + LGVε(x)

(
J̇y(q, q̇)q̇ + Jy(q)q̈

)
+ γ

ε
Vε(x)

D(q)q̈ +H(q, q̇) = Bu+ JTc (q)λ

Jc(q)q̈ + J̇c(q, q̇)q̇ = 0

since they are implicitly satisfied on the solution ϕ∗(t) ⊂ Zα∗ if w(α∗) is a feasible
solution to (HZD Direct Collocation). Further, the cost Jz(X )|Z ≡ 0 by definition,
and thus the optimal control action is given by X ∗ = X ∗α(t).

Incentivized convergence: One observation of the standard (CLF-QP) is that it
does not incentivize faster convergence rates than the chosen γ if control bandwidth
is available. This can lead to intermittent triggering of the CLF derivative inequality
and sometimes cause discontinuities in the controller. When the outputs are written
as in (7.54), the derivative of the Lyapunov function is only in terms of the decision
variable q̈ and scalar functions of the states:

V̇ (x,X ) = LFV (x) + LGV (x)
(
J̇y(q, q̇)q̇ + Jy(q)q̈

)
. (7.79)
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However, for a QP the constant terms in the cost do not influence the optimal solution.
Therefore, they are dropped and we consider the addition of the q̈-dependent portion
of (7.79) to the cost of an (ID-CLF-QP) in order to incentivize convergence:

X ∗ = argmin
X∈Xext

1

2
X TQ(x)X + cT (x)X + LGV (x)Jy(q)q̈ (7.80)

s.t. LFV (x) + LGV (x)
(
J̇y(q, q̇)q̇ + Jy(q)q̈

)
≤ −γV (x)

D(q)q̈ +H(q, q̇) = Bu+ JTc (q)λ

J(q)q̈ + J̇(q, q̇)q̇ = 0.

7.3.4 Constraint Relaxation

Up until this point in the development of (ID-CLF-QP) controllers, we have consid-
ered only the dynamics and CLF derivative constraints applied to the QP. However, in
order to implement these controllers on actual hardware, we often require additional
constraints that fall under the equality and inequality constraints given in (QP):

AE(x)X = be(x),

CI(x)X ≥ dI(x).

For walking robots, these are typically torque limits or admissibility conditions on
the constraint forces (see (2.22) and (2.23)). Due to the presence of these constraints,
it is not always feasible for the system to simultaneously satisfy physical constraints
and converge according to the CLF bound [230]. The accepted way of dealing with
this within the literature [230] is to add a relaxation term, δ, to the convergence
constraint with an associated weight, ρ. While this was previously illustrated for the
(CLF-QP-δ), we can do the same thing for the (ID-CLF-QP) form:

X ∗ = argmin
X∈Xext,δ∈R

1

2
X TQ(x)X + cT (x)X + ρδ2 (ID-CLF-QP δ)

s.t. LFV (x) + LGV (x)
(
J̇y(q, q̇)q̇ + Jy(q)q̈

)
≤ −γV (x) + δ

D(q)q̈ +H(q, q̇) = Bu+ JTc (q)λ

Jc(q)q̈ + J̇c(q, q̇)q̇ = 0

AE(x)X = be(x)

CI(x)X ≥ dI(x).

Because we have introduced a weighted relaxation to the inequality that is minimized
in the cost, we can actually solve for a cost term which moves the constraint completely
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into the cost as an exact penalty function [251]:

Jδ =
1

2
X TQ(x)X + cT (x)X + ρ||g+(q, q̇, q̈)||, (7.81)

where:

g(q, q̇, q̈) := LFV (x) + LGV (x)
(
J̇y(q, q̇)q̇ + Jy(q)q̈

)
+ γV (x)

g+(q, q̇, q̈) , max(g, 0)

One of the downsides to using this approach is that the cost term ||g+(q, q̇, q̈)|| is
clearly non-smooth. Instead, we can allow g(q, q̇, q̈) to go negative, meaning that
the controller will always drive convergence to V (η) → 0 even when the inequality
(7.43) is not triggered. This will lead us to a differentiable term in the cost that
is smooth, though possibly more aggressive in it4s control action. This observation,
motivates the removal of the CLF convergence inequality from (7.80) to obtain a
relaxed controller:

X ∗ = argmin
X∈Xext

1

2
X TQ(x)X + cT (x)X + V̇ (x,X ) (ID-CLF-QP+)

s.t. D(q)q̈ +H(q, q̇) = Bu+ JT (q)λ

J(q)q̈ + J̇(q, q̇)q̇ = 0

AE(x)X = be(x)

CI(x)X ≥ dI(x)

which incentivizes rapid convergence. Further, whenever it is feasible to do so, this
problem will render V̇ as negative as possible.

Remark 8. While the implementation for (ID-CLF-QP+) does not add any non-
smooth terms to the cost, it still may be the case that the controller is not Lipschitz
continuous depending on the equality and inequality constraints that are applied to
the problem. Addressing this problem requires careful consideration of the cost, con-
straints, and target behavior which is being planned [248].

Hard and Soft Holonomic Constraints

When implementing on hardware, often holonomic constraints are not satisfied pre-
cisely. The analytical solutions presented thus far make the problem more prone to
infeasibility. To solve this, we once again look to the robotics community where it has
become practice to differentiate between hard and soft constraints. Hard constraints
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such as the holonomic equality constraint equation for the system accelerations (7.48)
cannot be violated. Soft constraints, however, refer to an addition to the cost function
which penalizes violation of a preferred relationship. These are frequently added to
the nominal cost as the norm of a least squares problem:

w||AX − b||2 (7.82)

where X is as in (ID-QP) and w is a weight which penalizes violation of the equality
constraint. On hardware, holonomic constraints for footholds are a common candidate
to be implemented as soft constraints:

Jc(q)q̈ + J̇c(q, q̇)q̇ = 0⇒
[
Jc(q) 0 0

]
︸ ︷︷ ︸

A

X = − J̇c(q, q̇)q̇︸ ︷︷ ︸
b

. (7.83)

The formulation of holonomic constraints in this way allows for small violations,
which is sometimes necessary in practice where systems can be significantly perturbed.
Additional soft constraints that are beneficial for robotic walking include specifying
force distributions (weight per foot or in different places on the foot). The benefit
of using soft constraints is two-fold; as previously mentioned, it allows for small
violations of constraints and it speeds up computation time for the QP.

X ∗ = argmin
X∈Xext

1

2
X TQ(x)X + cT (x)X + whol

∣∣∣∣∣∣∣∣Js(q)q̈ + J̇s(q, q̇)q̇

∣∣∣∣∣∣∣∣2
s.t. D(q)q̈ +H(q, q̇) = Bu+ JTs λs

where the notation for Jc(q) is changed to Js(q) to indicate a soft constraint.

Projection operators for implicit satisfaction of soft constraints: One of the
consequences of using a soft constraint for the holonomic constraint equations is that
other costs may actively incentivize violation of (7.83). As an example, consider the
(ID-QP) trajectory tracking problem:

X ∗ = argmin
X∈Xext

wy

∣∣∣∣∣∣∣∣Jy(q)q̈ + J̇y(q, q̇)q̇ + ÿd(t, x)

∣∣∣∣∣∣∣∣2 + whol

∣∣∣∣∣∣∣∣Js(q)q̈ + J̇s(q, q̇)q̇

∣∣∣∣∣∣∣∣2
s.t. D(q)q̈ +H(q, q̇) = Bu+ JTs λs.

There are cases where the minimizing acceleration for the output feedback term:

wy

∣∣∣∣∣∣∣∣Jy(q)q̈ + Jy(q, q̇)q̇ + ÿd(t, x)ẏ

∣∣∣∣∣∣∣∣2,
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with ÿd(t, x) = ÿ∗(t)−Kpy(x)−Kd are in direct conflict with:

whol

∣∣∣∣∣∣∣∣Js(q)q̈ + J̇s(q, q̇)q̇

∣∣∣∣∣∣∣∣2,
the error of which will be balanced according to the choice of weights whol and wy.
This means achieving higher gain feedback may require a user to increase the soft
constraint weight until it is effectively an equality constraint, and it loses all the
intended desirable properties of a soft constraint.

To resolve this issue, we can use a null space projection, as was detailed extensively
in Sec. 7.1 and Sec. 7.3.1, to apply only feedback actions to the robot accelerations
that maintain the holonomic constraints. More specifically, accelerations which are
orthogonal to the holonomic constraints imposed on the system are:

q̈⊥y =
(
I − J†c (q)Jc(q)

)
q̈ + J†c (q)J̇c(q, q̇)q̇. (7.84)

Plugging in the orthogonal acceleration equation and performing some algebra gives
an output tracking cost that respects the holonomic constraints:∣∣∣∣∣∣∣∣Jy q̈⊥y + J̇y q̇

∣∣∣∣∣∣∣∣2 =

∣∣∣∣∣∣∣∣ Jy(I − J†cJc)︸ ︷︷ ︸
J⊥y (q)

q̈ + (J̇y + JyJ
†
c J̇c)︸ ︷︷ ︸

J̇⊥y (q,q̇)

q̇

∣∣∣∣∣∣∣∣2, (7.85)

where dependencies were dropped for compactness.

While the previous derivation was shown for the (ID-QP) controller with output
feedback in the cost, it can also be applied to the (ID-CLF-QP) and (ID-CLF-QP+)
controllers through the substitution of (7.84). As it pertains to (ID-CLF-QP), the
convergence inequality becomes:

LFV (x) + LGV (x)
(
J⊥y (q)q̈ + J̇⊥y (q, q̇)q̇

)
≤ −γV (x). (7.86)

With respect to (ID-CLF-QP+), the cost term for the control Lyapunov function
derivative becomes:

J ⊥
V̇

(x,X ) := LGV (x)Jy(q)q̈
⊥ = LGV (x)J⊥y (q)q̈,

where the remainder term JyJ
†
c J̇cq̇ is dropped as does not directly affect the optimal

value to the problem.
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C h a p t e r 8

REAL-TIME OPTIMAL CONTROL ON CASSIE WITH CONTROL
LYAPUNOV FUNCTIONS

The simulations and experiments presented in this chapter has resulted in two publi-
cations: first forming the motivation for using ID-CLF-QPs on hardware, and second
encompassing the overall approach and application to walking:

[1] J. Reher, C. Kann, and A. D. Ames, “An inverse dynamics approach to control
Lyapunov functions,” in 2020 American Control Conference (ACC), IEEE, 2020.

[2] J. Reher and A. D. Ames, “Control Lyapunov functions for compliant hybrid zero
dynamic walking,” IEEE Transactions on Robotics, 2021, In Preparation.

This chapter is a culmination of both the HZD planning which was presented in
Chap. 3 for the compliant model of Cassie which was introduced in Chap. 4 and
the feedback controllers which were developed in Chap. 7. First, the (ID-CLF-QP)
developed in Chap. 7 is motivated for use on hardware through two examples, one
being a simulation study with comparisons drawn to the traditional (CLF-QP) and
why alternative formulations may be necessary for hardware, with the second being
an implementation of a (ID-CLF-QP+) controller for dynamic crouching on hardware.

With this motivation in hand, the HZD motion library of compliant walking gaits
for Cassie obtained in Chap. 6 is further parameterized and then used to develop a
real-time (ID-CLF-QP+) implementation which achieves stable walking on hardware.
As it pertains to this thesis, the primary contributions, and the relevance of these
developments are:

• The content developed in this chapter was primarily an individual effort, with
assistance from co-author Claudia Kann in the early developments on simulation
and crouching shown in the motivating examples of Sec. 8.1.

• This chapter provides a thorough experimental validation of the (ID-CLF-QP)
controller developed throughout Chap. 7. The resulting experiments in Sec. 8.2.2
demonstrate the accuracy of the parameterized motion plans for walking, and
how they can be leveraged for smooth real-time control on hardware.

• The implementation shown in Sec. 8.2.2 demonstrate the first successful real-
ization of a CLF controller on a 3D bipedal robot.
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8.1 Motivation

This section presents an implementation of an optimization-based controller that
leverages the desirable convergence results provided by control Lyapunov functions
(see Chap. 7) and combines them with concepts from inverse dynamics-based con-
trollers presented in Sec. 6.2 and Sec. 7.1. This general methodology will first be
evaluated in Sec. 8.1.1 through a Matlab simulation for compliant walking on Cassie.
Several controllers are evaluated, showing the benefits of the approach which will ulti-
mately be used on hardware. The most consequential observation is that inclusion of a
Lyapunov term in the cost helped incentivize the system to converge more rapidly and
improved performance with respect to discretization and model inaccuracy/stiffness.
Based on these initial simulation findings, an (ID-CLF-QP) (see Sec. 7.3) is developed
for the real-time implementation of dynamic crouching on Cassie in Sec. 8.1.2.

The results shown throughout this motivation demonstrate that the control framework
can generate smooth torque, force, and acceleration profiles while accurately tracking
outputs. Further, the software and algorithms motivated and developed throughout
this section and Chap. 6 were critical to forming the necessary infrastructure to
implement the first successful 3D walking with CLFs on hardware in Sec. 8.2.

8.1.1 Preliminary Walking Results in Simulation

As the ultimate goal of this thesis is to arrive at a model-based control framework
which is realizable on hardware, it is important to evaluate the control concepts de-
veloped in Sec. 7.3 in simulation to ensure they are successful before attempting them
on hardware. Several walking gaits are found for forward walking behaviors using the
HZD framework introduced in Chap. 3 and Chap. 6 which are then parameterized ac-
cording to Sec. 6.2 so that output polynomials and accelerations are available for use

Figure 8.1: Time series motion tiles for simulated walking in Matlab with an ID-CLF-
QP controller on a compliant model of Cassie.
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within the controllers. Both gaits use a single continuous domain, with the first sim-
ulation assuming a rigid and planar version of Cassie and the second simulation using
the fully compliant and 3D model. The simulations present a side-by-side comparison
of the traditional CLF-QP with the series of controllers introduced in Sec. 7.3.

Planar Walking Simulation

The first gait we consider is designed on a planar, rigid model of Cassie. This is
done for the first case as this renders the robot fully actuated if the stance foot is
included as an actuator (as opposed to the passive ankle gait design in Chap. 6),
and the synthesis of stable controllers for fully actuated walking is considerably more
simple than underactuated. For typical walking motions, the forward position of the
hip evolves in a roughly linear manner with respect to time [146]. This means that
δphip ≈ phipt where phip is the linearized forward hip position with respect to the
stance foot. This motivates the state-based parameterization of time:

τ(q) :=
δphip(q)− δphip(q+)

v̄hip

, (8.1)

where δphip(q+) is the initial value of the linearized forward hip position and v̄ is a
parameter selected by the optimization corresponding to the desired velocity.

With the goal of controlling the forward velocity of the robot, we define a relative
degree 1 output corresponding to the linearized hip position:

ya1(q) = δṗhip(q, q̇) = dδphip(q, q̇)q̇, yd1 = v̄hip. (8.2)

A 6th-order Bézier polynomial chosen for the relative degree 2 desired outputs,
yd2(τ, α), for which α is a matrix of real coefficients that parameterize the curves
according to (3.12). Because we use the rigid leg, we can simply use the full leg
kinematics including the tarsus angle (as opposed to the substitutions necessary for
a compliant leg in Chap. 6), the relative degree 2 actual outputs are:

ya2,b,y = ϕy (pelvis pitch)

ya2,sll = ||ψs(q)||2 (stance leg length)

ya2,nsll = ||ψns(q)||2 (swing leg length)

ya2,nsla = atan2 (ψxns(q)/ψ
z
ns(q)) (swing leg pitch)

ya2,nsap = ϕy(q) (swing foot pitch)

corresponding to the output selection used in Sec. 6.2 where the yaw and roll coordi-
nates are removed due to the planarizing assumption.
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Figure 8.2: Performance of the planar simulated walking gait over two steps, started
from rest. Improvement is seen when the Lyapunov term is added to the cost. (a)
Lyapunov function, V (η) (b) Torque squared, ‖u‖2.

Four controllers are then applied to the model; (CLF-QP-δ), (ID-CLF-QP δ), (ID-
CLF-QP+ δ), and (ID-CLF-QP+). The simulation is run in Matlab using the ode45

solver with a variable timestep. Each step is simulated until the guard (3.6) is trig-
gered, at which time the integration is terminated and the impact model (4.12) is
applied and the resulting post-impact state is used as the initial value for the fol-
lowing step. In Fig. 8.2, the convergence of the Lyapunov function can be seen for
a system that is perturbed to start from rest (not started on its periodic orbit) and
must converge onto the periodic gait. It can be seen that the more traditionally
formulated controllers do not converge quickly enough in the first step, causing an
amplification of error in the second, while the two cases with the Lyapunov term
in the cost do. When the Lyapunov term is in the cost, the existence of the hard
convergence constraint (7.43) does not significantly affect the response. While the
performance differs between the four controllers, the torque applied from each is sim-
ilar in magnitude and form, as can be seen in Fig. 8.2. The various ID-CLF control
torques are overall smoother, and the controllers with the Lyapunov derivative term
in the cost have the smoothest torque profiles and best convergence performance.

3D Compliant Walking Simulation

The second simulation case is a time-based walking gait on the 3D compliant model
of Cassie [128]. A single continuous domain is prescribed, and forward progress of
each step is dictated by τ(t), a parameterization of time by the gait duration:

τ(t) :=
t− t0
tf − t0

(8.3)

where t0 and tf are the start and end times of the current domain.
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For this formulation, the relative degree 1 output is disregarded and four new relative
degree 2 outputs — both hip yaws (θhy), the swing hip roll (θhr), and the floating base
roll (ϕr) - are added. A 6th-order Bézier polynomial is again chosen for the relative
degree 2 desired outputs, yd2(τ, α), and all of the relative degree 2 actual outputs are
identical to those selected for the compliant motion library developed in Sec. 6.2 using
the neutral leg substitution q̄l ∈ {Ql | qsp = 0, qhs = 0, qt = 13o − qk} to obtain a
feedback controller via optimization that encodes the passive compliance.

The theory referenced in Chap. 7 assumes purely continuous control, however, in
reality torques are applied at discrete intervals. Thus while in the rigid and planarized
case we compared controller convergence as an approximately continuous variable
time step Matlab ODE, the compliant simulation will study the effect of realistic
control discretization on controller performance. Because the CLF-QP relies on an
inequality constraint to enforce convergence, there is the possibility for high-frequency
“chattering” in the controller as the robot repeatedly triggers and violates the bound.
This discretization will also exacerbate any discontinuities in the control cost.

Each proposed feedback control method is implemented in simulation, where the
dynamics is integrated using Matlab ode23s, which handles stiff ODEs such as the
Cassie model considerably better than ode45. In order to simulate a discrete controller
implemented on a continuous system, the walking sequence is discretized according to
the specified control frequency and placed in a loop where each iteration evaluates one
timestep. In each iteration, the associated controller is evaluated and then applied as
a constant value for a forward simulation over the given time window.

The Lyapunov function convergence and motor torques for each of the controllers can
be seen in Fig. 8.4 and Fig. 8.5, respectively. The controllers are first simulated at

Figure 8.3: The effect of the various controllers subjected to a 500 Hz control fre-
quency over several steps of forward walking. On the left is the traditional CLF-QP
and on the right is the ID-CLF-QP+ controller.
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Figure 8.4: Lyapunov function convergence on the 3D compliant robot for a time
based step at 500 Hz and 5 kHz control frequencies.

Figure 8.5: Torque of the 3D compliant robot for a time-based step at 500 Hz and 5
kHz control frequencies.

500 Hz and then increased by one order of magnitude to 5 kHz. An animation of the
resulting simulation is provided1, and shown as a sequence of gait tiles in Fig. 8.1.
While the traditional (CLF-QP-δ) and (ID-CLF-QP δ) controllers see a marked

degradation as loop rates decrease, the controllers which have Lyapunov derivative
terms in the cost, (ID-CLF-QP+ δ) and (ID-CLF-QP+), seem minimally affected.
Because this controller is run on the compliant model, the ODE is much more nu-
merically stiff than in the rigid planar case. As such, we see that (ID-CLF-QP δ),
which uses the inverted form of the mass inertia matrix, is much more sensitive when
applied at coarse frequencies. The degradation of the controller over time is dramat-
ically illustrated for the 500 Hz walking in Fig. 8.3, where on the left the (CLF-QP)
goes unstable after the control inputs violently chatter while the (ID-CLF-QP) re-
mains smooth with the exception of near impact. This jump in the (ID-CLF-QP)
appears to correspond to the portion of the gait where the vertical ground reaction
forces become very small, and the controller triggers the friction pyramid.

1Video of the 3D compliant simulation and experimental results for crouching on Cassie: https:
//youtu.be/CI9xv_OcfWw

https://youtu.be/CI9xv_OcfWw
https://youtu.be/CI9xv_OcfWw
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8.1.2 Dynamic Crouching with Control Lyapunov Functions

In this section, we discuss the first successful implementation of an (ID-CLF-QP) on
physical hardware. To validate the methods outlined in Sec. 7.3, an output tracking
problem was constructed for a crouching motion on the Cassie biped, which remains
purely continuous and involves no impacts or alternating contact conditions. The
motivation for beginning with a simpler and continuous application was to ensure
that the controller could sufficiently track the outputs without subjecting the robot
to impacts, which significantly complicates the tuning and implementation process.

A general description of the actual outputs, desired crouching polynomial, and QP
controller are first introduced for the specific crouching behavior. These are then
applied directly to hardware, with the results illustrating the accuracy of the tracking
problem and relatively smooth torque profiles. The resulting motion can be seen in
Fig. 8.6, where Cassie is mid-crouch in both a Gazebo simulation and on hardware.

Problem Description and Feedback Control Development

The motion task that we wish to stabilize for this experimental implementation is a
fast vertical crouch, using a set of outputs which are defined in such a way that they
can be tracked for any feasible contact configuration with both feet on the ground.
The contact configuration of the robot is shown on the right in Fig. 8.7, corresponding
to the geometry presented in Sec. 6.1 for double-support during walking.

Figure 8.6: Video still of Cassie performing a dynamic crouch in Gazebo and on
hardware with a CLF-QP controller.
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Figure 8.7: The contact geometry and output definitions for relative position and
orientation of the pelvis with respect to the mean foot configuration.

Recall from the Cassie model development in Sec. 4.2 that we allow for only one mode
of contact for each foot, which is consistent with a line contact along the x axis of
the foot. In accordance with the fact that with both feet in contact with the ground,
we define the holonomic constraints as:

ηcrouch(q) := (plf , ϕ
yz
lf , prf , ϕ

yz
rf , η4bar, ηsp) ∈ R16 (8.4)

where psf and pnsf are the positions of the stance foot (center) and non-stance foot
(center), ηsp demonstrates that we are making a significant assumption on the rigid-
ity of the leg in order to simplify this behavior (we will show how to mitigate this
assumption in Sec. 8.2 for compliant walking), and it can be seen that the closure of
the compliant multi-bar leg is enforced through the holonomic constraint (4.18). As
opposed to the “rigid” model presented in Sec. 4.3, ηsp(q) is applied at the measured
value of the spring deflection, and we do not make any coordinate substitutions to
the tarsus. This means that the leg geometry will be correct in the kinematic terms,
but the controller will assume that the springs instantaneously transfer torque to
connected joints essentially acting as a series-elastic actuator.

Actual outputs: Six relative degree two outputs for standing were prescribed for
the position and orientation of the pelvis relative to the mean foot configuration:

ya2,b,y(q) = pb −
1

2
(plf(q) + prf(q)), (pelvis position)

ya2,sll(q) = ϕb −
1

2
(ϕlf(q) + ϕrf(q)). (pelvis orientation)

Because we have subtracted the forward kinematics from the floating base, we are left
with a relative expression which is only a function of internal joint angles and thus is
not dependent on the measured values of pb and ϕb. In addition, because of the rigid
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spring assumption in (8.4), the behavior is over-actuated with 22 unpinned DOF, 16

constraints, 10 actuators, and 6 outputs.

Desired polynomial: The prescribed motion was a repeated crouch which moved
the pelvis vertically from 0.9 m to 0.5 m and back, with each segment being two
seconds in duration. This was formulated as two time-dependent sigmoids for the
vertical, with the full crouch motion taking place over 4 seconds:

p
d
z(t)

ṗdz(t)

p̈dz(t)

 =




0.90− 0.4

1+e(10−9t)

− (18e(10−9t))

5(e(10−9t)+1)2

(162e(10−9t))

5(e(10−9t)+1)2
− (324e(20−18t))

5(e(10−9t)+1)3

 if t ≤ 2,


0.5 + 0.5+0.4

1+e(26−9t)

(18e(26−9t))

5(e(26−9t)+1)2

(324e(52−18t))

5(e(26−9t)+1)3
− (162e(26−9t))

5(e(26−9t)+1)2

 if 2 < t ≤ 4,

(8.5)

where pdz(t), ṗdz(t), and p̈dz(t) are the vertical position, velocity, and acceleration re-
spectively. The remaining values are set to zero:(pdx, p

d
y, ϕ

d
x, ϕ

d
y, ϕ

d
z)

(ṗdx, ṗ
d
y, ϕ̇

d
x, ϕ̇

d
y, ϕ̇

d
z)

(p̈dx, p̈
d
y, ϕ̈

d
x, ϕ̈

d
y, ϕ̈

d
z)

 := 0. (8.6)

In addition to the time-dependent crouching behavior, there is a trigger which can be
enabled on the radio controller to place the robot into a user control mode. When in

Figure 8.8: Video still of Cassie performing a crouch with a small support polygon.
This illustrates how the outputs can stabilize the behavior under a variety of contact
conditions, since the holonomic constraints and their arising constraint forces are
directly considered by the optimization.
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this mode, the various knobs on the remote control can be used to adjust the vertical
position, lateral position, and pitch to constant setpoints.

ID-CLF-QP specification: The controller which was realized on hardware was in
the form of (ID-CLF-QP+), where all cost terms except for the CLF derivative are
specified as a least-squares term:

X ∗ = argmin
X∈Xext

||A(x)X − b(x)||2 + V̇ε(q, q̇, q̈)

s.t. D(q)q̈ +H(q, q̇) = Bu+ JTs (q)λs

λs ∈ ACcrouch(λs)

ulb ≤ u ≤ uub

where we have added torque bounds to the problem and ACcrouch(λs) is the admissi-
bility conditions on the constraint forces. The constraint feasibility associated with
holonomic foot constraints in Sec. 6.1 for double-support are used and are given as:

ACcrouch(λs) =


{λzlf , λzlf}

µ√
2
λzlf − {|λxlf |, |λ

y
lf |}

µ√
2
λzrf − {|λxrf |, |λ

y
rf |}

lf
2
λzlf − {|λ

my
lf |}

lf
2
λzrf − |λ

my
rf |

 ≥ 0, (8.7)

corresponding to the friction pyramid (2.22) and foot rollover condition (2.23). The
CLF derivative is given by:

V̇ε(q, q̇, q̈) :=
[
LGVε(x)Jy(q) 0 0

]
X , (8.8)

with the remaining cost terms defined as:

A(x) =

 wregI

wyJy(q)

wλJc(q)

 , b =


wregX ∗(t)

wy

(
ÿd(t)− J̇y(q, q̇)q̇

)
−wλJ̇s(q, q̇)q̇

 . (8.9)

Because the nominal motion for the full order system is not found offline as was the
case for HZD behaviors, we construct the regularization term for the robot accelera-
tions based on the current contacts and the desired output accelerations:

q̈∗ =

[
Jc(q)

Jy(q)

]†([
0

ÿd(t)

]
−

[
J̇c(q, q̇)

J̇y(q, q̇)

]
q̇

)
. (8.10)

In addition, the torque is regularized with the previous value u∗ = uprev and the
constraint forces, λ∗c , are all zeroes except for the vertical ground reaction force λ∗c,z =

mg/2, which compensates for half of the robot weight.
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Figure 8.9: Torque and Lyapunov function values over 45 crouches on hardware with
the shaded areas as +/− one std. deviation.

Figure 8.10: Height, velocity, and acceleration over 45 crouches. Desired outputs
shown as dashed, mean as black, and shaded blue as +/− one std. deviation.

Results

Finally, the presented (ID-CLF-QP+) controller was implemented on hardware. The
control architecture was built upon the existing framework presented in Sec. 6.2 (see
Fig. 6.17), with the primary modifications to the existing software being the addition
of the (ID-CLF-QP+) controller in place of (6.40) removal of the HZD gait library and
the addition of the time-dependent outputs presented in this section. The source code
necessary to run a Gazebo simulation or directly implement the code on hardware is
also provided online2.

The resulting QP was solved with the qpOASES package and had 49 variables and 41

constraints. As can be seen in Fig. 8.10, the height was smoothly tracked to within
several centimeters for the entirety of the motion. Because we are using a task-space
approach, it is not necessary to encode these objectives solely as combinations of the
actuated joint angles, and no joint level stabilization (i.e. individual joint tracking or

2Open-sourced repository for the C++ controller code used in this work on hardware and for
use in a Gazebo simulation https://github.com/jpreher/cassie_documentation

https://github.com/jpreher/cassie_documentation
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Figure 8.11: Time series motion tiles - hardware for the crouching experiment (right).

Figure 8.12: Contact forces for the left foot adhering to the pyramidal friction con-
straints over three consecutive crouches on hardware.

control) was used. The resulting motions thus do not require any specific placement
of the feet, illustrated in Fig. 8.8, where the robot was made to crouch with the feet
very close together at a yawed angle.

When this controller was created, the constraint projections considered in Sec. 7.3.4
to compensate for soft holonomic constraints were not yet developed, which can be
seen by the lack of the (·)⊥ notation in the associated costs (8.9). As such, the
tuning required a more careful balance between the feedback linearizing term, the
CLF derivative, and the soft contact constraints. This will be addressed in Sec. 8.2,
where in order to obtain for the considerably more dynamic task of walking, it was
necessary to apply them in order to track the outputs well enough to ensure stability.

The norm of torque applied to all motors can be seen in Fig. 8.9, which are smooth
and are satisfying all torque limitations. In addition, in Fig. 8.12 the contact forces
are shown to adhere to the friction cone (2.21). A video of the experiment along with
animations of the previous simulations are provided3, while a motion tile is shown in
Fig. 8.11 to illustrate the vertical height traversed for each crouch.

3Video of the experimental results for crouching on Cassie: https://youtu.be/CI9xv_OcfWw

https://youtu.be/CI9xv_OcfWw
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8.2 Compliant Walking with Control Lyapunov Functions

This section discusses the main experimental result of this thesis, and serves to il-
lustrate how the various aspects developed throughout the preceding chapters can
be combined on hardware to obtain stable walking. Specifically, the motion library
developed for hybrid zero dynamic walking in Chap. 6 on the compliant model of
Cassie in Sec. 4.2 is further parameterized and then combined with the (ID-CLF-QP)
control framework introduced in Chap. 7.

As indicated by the methods discussed throughout Chap. 5 and Chap. 6, there is often
an “artful implementation” step that translates model-based controllers to a form that
can be actually implemented on hardware. Ideally, methods can be developed that
allow the exact transcription of model-based methods to hardware in a robust fashion
and without heuristics. This work serves as a major step in this direction, with the
walking on Cassie detailed in Sec. 8.2.4 and shown in Fig. 8.13 being the first successful
experimental implementation of a CLF for walking on a 3D biped.

Several of the primary benefits that will be shown of the (ID-CLF-QP) version of
the (CLF-QP) controller used in this implementation is that it is computationally
tractable and lends itself particularly well to intuitive tuning, while keeping the number
of heuristics as minimal as possible. With regard to the compliance in the Cassie
model, the formulation of (ID-CLF-QP) shown in Sec. 8.2.2 was able to directly
optimize for the spring forces on the robot rather than using the measured values,
which are a significant source of oscillations and model inaccuracy. Posing the spring
torques as a decision variable was crucial in obtaining smooth force-based control
while simultaneously tracking virtual constraints and respecting the passive dynamics.

Figure 8.13: The Caltech Cassie biped walking outdoors and in a Gazebo simulation
while using a version of the optimization-based (ID-CLF-QP+) controller.
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8.2.1 HZD Locomotion Problem

This section will provide an overview of the HZD locomotion problem that was used
on Cassie for walking. The presentation will be minimal, as it builds directly from
the HZD motion library which was extensively detailed in Sec. 6.2.

Locomotion Model

The hybrid locomotion problem is specified as in Sec. 6.2, which considers two con-
tinuous domains of single-support with an instantaneous double-support domain (see
Fig. 6.13). The stance foot is left as a passive joint, leaving each continuous domain
with 9 inputs to track the relative degree 2 outputs:

ya2,b,x = ϕx (pelvis roll)

ya2,b,y = ϕy (pelvis pitch)

ya2,sll = ||ψs(q̄l)||2 (stance leg length)

ya2,nsll = ||ψns(q̄l)||2 (swing leg length)

ya2,nsla = atan2 (ψxns(q̄l)/ψ
z
ns(q̄l)) (swing leg pitch)

ya2,nshr = qnshr (swing hip roll)

ya2,shy = qshy (stance hip yaw)

ya2,nshy = qnshy (swing hip yaw)

ya2,nsap = ϕy(qb, q̄l) (swing foot pitch)

which are further described in Sec. 6.2.2 and shown in Fig. 6.14.

The stance leg is considered compliant and is modeled according to Sec. 4.2, with a
rigid swing leg in order to reduce the number of passive degrees of freedom that are not
significant to the walking (it is assumed that during swing the springs are sufficiently
rigid to impose as a holonomic constraint). In accordance with the assumptions on
the single-support domain, we define the holonomic constraints as:

ηss(q) := (psf, ϕ
yz
sf , η4bar, qnssp, qnshs) ∈ R9 (8.11)

where p�f and q�sp, q�hs are the positions of the stance foot (center) and the non-
stance springs, pictured in Fig. 4.7. The constraint feasibility associated with holo-
nomic foot constraints in Sec. 6.2 for single-support are used, and are given as:

ACss(λs) =

 {λzsf , λzsf}
µ√
2
λzsf − {|λxsf |, |λ

y
sf |}

lf
2
λzsf − {|λ

my
sf |, |λmzsf |}

 ≥ 0, (8.12)

corresponding to the friction pyramid (2.22) and foot rollover condition (2.23).
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Figure 8.14: Contour plots showing the parameterized ground reaction forces for the
right stance domain of walking on Cassie obtained from the HZD optimization over
a range of speeds in both the sagittal and coronal directions.

Figure 8.15: Contour plots showing the parameterized torques for walking on Cassie,
pictured for a range of walking speeds in the sagittal direction.

Gait Optimization and Parameterization

The trajectory optimization which was performed in Sec. 6.2 to obtain a motion
library of 171 individual walking gaits on Cassie was directly used in this section.
However, the controller in (6.40) only used a parameterization of the output polyno-
mials and generalized accelerations, shown in Fig. 6.15 and Fig. 6.16. Thus, in order
to form a full parameterization of the nominal hybrid periodic orbit via:

X ∗α(t) :=

 q̈
∗
α(t)

u∗α(t)

λ∗c,α(t)

 , (8.13)

we further parameterized the NLP result in order to obtain a 6th order Bézier poly-
nomial for each of the ground reaction forces and rotor torques. The resulting contact
force profiles over a variety of walking speeds is shown in Fig. 8.14, while the torques
are shown in Fig. 8.15. These parameters were appended to the polynomial collec-
tion given in (6.32) and extracted for a given walking speed according to a bilinear
interpolation routine (6.35).
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8.2.2 Feedback Control Development

In this section, the feedback controller used on hardware to track the HZD locomotion
problem posed in Sec. 6.2 using the concepts from Chap. 7. Several notable modifi-
cations were made in this section in order to achieve successful walking on hardware.
First, several of the constraints are removed using a linear projection operator as
described in Sec. 2.1.3, leaving the ground reaction forces as a decision variable so
that they can be easily used with the admissibility constraints (8.12). Next, the
stance shin and heel springs are added as an additional soft holonomic constraint. By
adding the spring forces in this way, we can allow the QP to choose the spring torque,
and can weight how closely it enforces a “quasi-static” assumption. The springs are
then regularized against the measured spring force, with the weighted soft constraint
smoothing the values and for allowing non-zero accelerations.

RES-CLF Specification

In order to track the virtual constraints in each of the continuous domains, a RES-
CLF (7.21) is found using the continuous time algebraic Riccati equations (7.38):

F TP + PF − PGR−1GTP +Q = 0,

for Q = QT > 0, R = RT > 0, and with the solution P = P T > 0. The matrices Q
and R are chosen as diagonal matrices, with specific gains given in Table 8.2. The
solution to (7.38), P , is thus a symmetric block matrix:

P =

[
Pud Pod

Pod Pld

]
,

where Pud, Pld, and Pod are found to be the diagonal matrices:

Pud = diag (794.80, 682.49, 137.30, 879.78, 1552.45, 795.89, 442.36, 189.37, 303.38)

Pld = diag (10.48, 11.31, 8.23, 10.88, 15.00, 12.50, 10.22, 9.83, 9.41)

Pod = diag (60.66, 60.33, 23.37, 56.59, 82.85, 63.69, 43.27, 26.98, 32.25) .

From this solution, we obtain a RES-CLF according to:

Vε(η(q, q̇)) = ηT (q, q̇)

[
1
ε
I 0

0 I

]
P

[
1
ε
I 0

0 I

]
η(q, q̇), (8.14)

with the specific value of ε given in Table 8.2.
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Robot Dynamics and Partial Constraint Elimination

The full holonomic constraint vector given in (8.11) contains several constraints which
are a function of the internal kinematics of the leg, and do not directly affect the phys-
ical feasibility (8.12) or lend any use in shaping as a decision variable. In addition,
the measured spring forces on the stance leg are a potential source of model uncer-
tainty, vibration, and numerical stiffness in the feedback controller. To address both
of these issues, we partition the holonomic constraints into hard and soft constraints,
and append the stance spring forces to the soft constraint wrench vector:

λc :=

[
λ4bar

λns,sp

]
∈ R4, (8.15)

λs :=

[
λsf

λs,sp

]
∈ R7, (8.16)

where λc denotes constraints which are “hard” and λs denotes the “soft” constraints.
Instead of enforcing the hard constraints as an equality constraint in the QP, we
instead remove them from the problem by forming a linear projection operator,
Pc(q) = I − J†c (q)Jc(q), as described in Sec. 2.1.3 to obtain the constrained equa-
tions of motion:

Dc(q)q̈ +Hc(q, q̇)q̇ = Bc(q)u+ JTc,s(q)λs,

where the individual terms are:

Dc(q) = D(q) + Pc(q)D(q)− (Pc(q)D(q))T ,

H(q, q̇) = Pc(q)H(q, q̇) +D(q)J†c (q)J̇c(q, q̇),

Bc(q) = Pc(q)B,

JTc,s(q) = Pc(q)J
T
s (q).

This does not significantly complicate the equations of motion, as Pc(q) is simply
a function of the internal leg kinematics forming the multi-bar mechanisms on each
leg. Despite its addition as a soft holonomic constraint, we do not want the spring
forces λs,sp to obey η̈s,sp ≡ 0. Instead, the soft constraint can be weighted to allow for
acceleration violations, and the regularization vector, X ∗α(t), is augmented to include
the measured spring forces:

λ∗s,sp := −Kspqsp = −

[
2300 qs,sp

2000 qs,hs

]
. (8.17)
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ID-CLF-QP Specification

The resulting controller that was implemented on hardware was posed in the form of
(ID-CLF-QP+), where all cost terms except for the CLF derivative are specified as a
least-squares term, and the decision variables are given as X =

[
q̈T , uT , λTs

]T ∈ R39:

X ∗ = argmin
X∈Xext

||A(x)X − b(x)||2 + V̇ (q, q̇, q̈)

s.t. Dc(q)q̈ +Hc(q, q̇)q̇ = Bc(q)u+ JTc,s(q)λs

λs ∈ ACss(λs)

ulb ≤ u ≤ uub

us,ak = 0

where us,ak is the stance ankle torque, which is constrained to zero in order to ensure
that the QP leaves it passive as was defined in the locomotion model. The resulting
QP problem then has 39 decision variables and 31 individual constraints (excluding
upper and lower bounds directly on the decision variables), and is evaluated using
the qpOASES solver [208].

Because we have mixed hard and soft constraints within the QP that was posed, the
cost terms which involve feedback on the generalized accelerations are projected to
ensure that the terms are orthogonal to the holonomic acceleration constraint (7.48).

Table 8.1: Weights used in the (ID-CLF-QP+) controller on hardware for Cassie.

Parameter Value
ε 0.1
Q [4600, 3640, 390, 4575, 8580, 4056, 1872, 520, . . .

. . . 520, 16, 7.3, 1.6, 56, 115, 28.8, 18, 15, 12]
R [0.8, 1, 1.4, 0.7, 0.8, 1, 1, 1.4, 1]
wreg
q̈b

[0.01, 0.01, 0.01, 0.01, 0.01, 0.01]

wreg
q̈l,st

[0.01, 0.01, 0.01, 0.01, 0.6, 0.01, 0.6, 0.01]

wreg
q̈l,sw

[0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]

wreg
ust [1, 0.9, 0.5, 0.1, 1]

wreg
usw [1, 1, 0.9, 0.8, 1]

wreg
grf [0.9, 0.1, 1.9, 1.3, 1.3]

wreg
spring force 1.0

wgrf [1, 1, 1, 1.3, 1.3]
wstatic spring 1.0
wy 1.42
wV̇ 1.40
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Specifically, the hard and soft constraints are stacked as:

Jc,s(q) :=
[
JTc (q), JTs (q)

]T
, (8.18)

forming the orthogonal acceleration substitution (7.84):

q̈⊥ =
(
I − J†c,s(q)Jc,s(q)

)
q̈ + J†c,s(q)J̇c,s(q, q̇)q̇, (8.19)

J⊥y (q) := Jy(q)(I − J†c (q)Jc(q)), (8.20)

J̇⊥y (q, q̇) := (J̇y(q) + Jy(q)J
†
c (q)J̇c(q, q̇)). (8.21)

The CLF derivative in the cost is then given by:

V̇ (q,X ) :=
[
LGVε(x)J⊥y (q) 0 0

]
X , (8.22)

with the remaining cost terms defined as:

A(x) =

 wregI

wyJ
⊥
y (q)

wλJs(q)

 , b =


wregX ∗α(t)

wy

(
ÿd(t)− J̇⊥y (q, q̇)q̇

)
−wλJ̇s(q, q̇)q̇

 . (8.23)

The soft constraints applied to the robot allow us to have some influence via the
cost with regards to the force that the robot exerts on the world. Specifically, by
including the nominal ground reaction forces and accelerations into the model as a
weighted trade-off with the virtual constraint tracking problem, the QP can allow for
some model inaccuracy to be compensated via nonzero constraint accelerations. This
is shown in Fig. 8.16, where the soft constraints for the foot constraints are shown,
with violation spikes shown at impact, and with a near-constant offset in the vertical
direction. The vertical acceleration offset will be discussed further in Sec. 8.2.4.

Figure 8.16: Shown are the acceleration violations of the soft constraint on the stance
foot contact over two steps. The largest error is in the vertical direction, which
corresponds to our observation that the total mass of the robot has some inaccuracy.
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Figure 8.17: The control and estimation diagram for implementation of the
(ID-CLF-QP+) on Cassie. The estimation and controller ROS nodes run in separate
threads on dedicated cores of the Intel NUC CPU at 2 kHz and 1 kHz, respectively.

Figure 8.18: Thread timing for the two ROS nodes which are running to enable soft
real-time control of Cassie. The estimation and communication relay takes place at
roughly 2 kHz, while the feedback controller is evaluated at 1 kHz.

8.2.3 Implementation

The software infrastructure for feedback control and implementation was built di-
rectly on top of the codebase which was introduced in Sec. 6.2, with additions made
in order to handle the QP and additional library interpolations. The code was run as
two separate C++ ROS nodes elevated to real-time priority on an Intel NUC com-
puter, with a general diagram shown in Fig. 8.17. In addition to implementation on
hardware, a Gazebo simulation which directly simulates the code running on hard-
ware was created in order to facilitate code testing and controller tuning without
needing direct access to the robot. The Gazebo simulation, robot models, feedback
control code, and trajectory optimization have been made available as a series of
open-sourced software packages4.

4Open-sourced repository for the C++ controller code used in this work on hardware and for
use in a Gazebo simulation: https://github.com/jpreher/cassie_documentation

https://github.com/jpreher/cassie_documentation
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One of the most significant considerations which had to be made in this section as
opposed to Sec. 6.2 is whether the QP controller can evaluate within the 1 kHz control
frequency that is prescribed for the control thread. Loop timing was recorded over 50

seconds of walking on hardware for Cassie, and is shown in Fig. 8.18. The resulting
plots show some timing jitter, with several very intermittent delays showing up in
the control thread, while the estimation thread is reasonably uniform. Despite the
intermittent jitter, there was no significant disruption to the controller, though there
are many software improvements that could be made to improve this in future work.

The heuristic controllers given in Sec. 6.2 for foot placement and acceleration aug-
mentation given in (6.41) and (6.42), respectively, are again used with some small
adaptations. Specifically, the acceleration regulator now drops the integral term, and
instead only has PD feedback:

q̈dx,y = q̈∗x,y + kq̈,p
(
pax,y(q)− p∗x,y

)
+ kv(ṽ

a
x,y − vdx,y) (8.24)

where kv is a gain on the step velocity tracking error and kq̈,p is a gain affecting the x
and y position errors of the pelvis relative to the stance foot. Also, the foot placement
controller adds an integral term:

∆ :=

∆x

∆y

∆z

 =

K̃p,x(ṽ
a
x − vdx) + K̃d,x(ṽ

a
x − v̄ax,k−1) + ki,x

∫ t
0
γ(ṽax,y(t

′)− vdx,y(t′))dt′,
K̃p,y(ṽ

a
y − vdy) + K̃d,y(ṽ

a
y − v̄ay,k−1) + ki,y

∫ t
0
γ(ṽax,y(t

′)− vdx,y(t′))dt′,
0

 ,
ydsw,ll = ||p∗nsf (yd) + ∆||2,

ydlp = sin−1

(
p∗x(y

d) + ∆x

ydsw,ll

)
− ydb,x(t, α),

ydlr = sin−1

(
p∗y(y

d) + ∆y

ydsw,ll

)
− ydb,y(t, α),

where ki is a gain on the accumulated step velocity error with a decay constant of
γ = 0.9995 to avoid integral windup. The current step velocity is given by ṽax,y =

v̄ak−1 +
(
vax,y − v∗x,y

)
, vdx,y is the target step velocity from the user joystick, vax,y is

the instantaneous velocity of the robot relative to the stance foot, and p∗nsf (y
d) =

(p∗nsf,x, p
∗
nsf,y, p

∗
nsf,z) are the nominal Cartesian swing foot positions..

Using the heuristics and controllers given thus far, it was found that the robot was
able to reliably step in place and walk undisturbed. However, because the walking gait
is now regularized around the nominal contact forces of the current walking velocity,
it would often lose energy with any small disturbances and lose a significant amount
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Table 8.2: Feedback control values used for the regulator heuristics on Cassie.

Parameter Value
K̃x,y
p [0.045, 0.0375]

K̃x,y
d [0.18, 0.21]

K̃x,y
i [0.06, 0]

kx,yq̈,p [2, 2]

kx,yv [3, 3]
kD,L, kD,L [1800, 22]
kλ,1, kλ,2, kλ,3, kλ,4 [0.025, 0.04, 0.0075, 0]

of speed, needing several steps to recover. To overcome this energy loss, we proposed
an additional regulator which finds a corrective force along the axial length of the leg,
∆Fl, adapted from the leg length heuristic introduced in [83]:

∆Fl = −kp,Fy2,sll(t, q)− kd,F ẏ2,sll(t, q, q̇) +


[
kλ,1v

d
x + kλ,2(vdx − v̄ax,k−1)

]
x
x0

if x ≤ 0[
kλ,3v

d
x + kλ,4(vdx − v̄ax,k−1)

]
x
x0

if x > 0

where x is the forward position within the stride. The QP is then regularized with
the augmented value λ∗ = λ∗α(t) + Rl(q)∆Fl where Rl(q) is a rotation matrix which
maps the axial force into a Cartesian force at the stance foot.

All of the heuristic gains used on hardware for walking on Cassie are given in Table 8.2.

Figure 8.19: Gait tiles for Cassie walking with an ID-CLF-QP controller on a sidewalk
at Caltech, and for lateral strafing indoors.
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8.2.4 Results and Conclusions

The results presented in this section demonstrate stable walking on Cassie over a
variety of terrains, for walking in all directions, and when subjected to a push dis-
turbance while stepping in place. Overall, these results illustrate the ability of the
(ID-CLF-QP) control framework to stabilize underactuated HZD locomotion while ac-
counting for passive compliance within a robot model. Walking was first performed
indoors for each of the behaviors to isolate segments of walking data to plot. The
robot was then taken outdoors where it walked on sidewalks and over rough terrain.
In addition, a video of these experiments is provided5. Gait tiles for forward walking
and a lateral strafe are shown in Fig. 8.20, where the period-2 orbital nature of the
lateral walking is clearly indicated by the contact configurations in every other frame.

The accuracy of the velocity tracking for each of the motions is shown in Fig. 8.20,
where the dashed line is the nominal value from the optimization and the solid line
is the estimated value obtained from an EKF running onboard. While there is some
slight vibration when walking at faster speeds, the overall behavior is stable.

The virtual constraint tracking for forward walking is depicted in Fig. 8.22, where
reasonable tracking performance is shown. The CLF value is also provided, which
approaches its largest value near mid-step, but converges back to a low value near
the end of the step and prior to impact. In addition, the commanded torques and
optimal constraint forces for the same steps during a forward walking motion are
given in Fig. 8.22. This is one of the more significant results in comparison to the
walking in Sec. 6.2, as the QP-based controller is actively choosing both the constraint
forces and the spring torques. In each of the torque and force plots, we can see that
the nominal value from optimization closely matches. The torques have some minor
oscillations near impact when the velocities of the system jump, but are otherwise
smooth. Further, the passive dynamics of the spring forces were clearly captured
by the HZD trajectory optimization, and then enforced in a compliant manner on
hardware. Finally, the friction pyramid is shown with the bound becoming very
small near impact due to the motion not having a planned double-support domain.

The same output and CLF plots for backwards and lateral walking are provided in
Fig. 8.26 and Fig. 8.28, while the torques and forces for backward and lateral walking
are given in Fig. 8.25 and Fig. 8.27. Each of these plots closely resemble the results
that were discussed for the forward walking case. However, the lateral walking plots

5Video of experimental and simulation results for ID-CLF-QP experiments: https://youtu.
be/vACSWOF6ap0

https://youtu.be/vACSWOF6ap0
https://youtu.be/vACSWOF6ap0
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Figure 8.20: Shown is a comparison of the desired velocities from the current gait for
the gait library on Cassie, v̄ak−1, compared with the actual velocity of the robot for
different behaviors while using an ID-CLF-QP controller.

show that the friction pyramid is triggered for a portion of the first step in the data
that was plotted. This is particularly interesting because we can see that when the
friction pyramid constraint is triggered, the CLF value rises and the forces and torques
begin to deviate from the nominal values given by the optimization.

The robot also performed well under disturbances, both in the form of terrain and
pushes. Motion tiles for Cassie walking outdoors over a system of roots and while
being pushed aggressively from behind are shown in Fig. 8.23. The velocity, outputs,
and CLF values which correspond to the push that is depicted are plotted in Fig. 8.24.
It can be seen that the push drives the robot forward to approximately 1 m/s, after
which the robot recovers to a near-zero speed in 5 steps, and has damped out any
remaining oscillations in the velocity within 8 seconds. Also shown is the CLF value
over the course of the push and recovery. The initial impact of the push coincides
with a marked spike in the value, and during the push and following 5 steps, the
mean value of the CLF is elevated. However, we can see that the CLF value neither
grows significantly nor is driven completely to zero over time because of the constraint
relaxation on the (rapidly) exponential convergence rate to the zero dynamics surface.
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Figure 8.21: Output tracking for forward walking with an ID-CLF-QP controller on
Cassie, with the Lyapunov function evolution over two steps also shown.

Figure 8.22: Inputs selected by the ID-CLF-QP which are applied to Cassie for for-
ward walking. Pictured are torques and contact forces, along with the friction pyramid
constraint satisfaction and the spring forces which are chosen by the QP compared
to their nominal values obtained within the HZD optimization.
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Figure 8.23: Gait tiles of perturbed walking on Cassie while using the ID-CLF-QP
controller. Shown on the top is the robot walking over a series of roots outdoors,
while on the bottom, the robot is aggressively pushed and then recovers.

Figure 8.24: Velocity and outputs for a large push from behind while walking on
Cassie. The velocity tracking plot and desired outputs show that the library accu-
rately captures the robot motion under even perturbed walking speeds.

These results demonstrate the first successful experimental walking with CLFs on a
3D biped that the authors are aware of to date. The accuracy of the robot model and
synthesized motion library allowed the control implementation to use a regularization
term as described in Proposition 7.3.1.2. The use of this regularization, combined with
the relaxed form of the (ID-CLF-QP+) gave smooth torques and force references which
would have been significantly more complex to implement on a (CLF-QP-δ).
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Figure 8.25: Inputs selected by the ID-CLF-QP which are applied to Cassie for back-
ward walking. Pictured are torques and contact forces, along with the friction pyramid
constraint satisfaction and the spring forces which are chosen by the QP.

Figure 8.26: Output tracking for backwards walking with an ID-CLF-QP controller
on Cassie, with the Lyapunov function evolution over two steps also shown.



189

Figure 8.27: Inputs selected by the ID-CLF-QP which are applied to Cassie for lateral
walking. Pictured are torques and contact forces, along with the friction pyramid
constraint satisfaction. It can be seen in the bottom right figure that for the first step
the friction pyramid constraint is triggered and active.

Figure 8.28: Output tracking for lateral walking with an ID-CLF-QP controller on
Cassie, with the Lyapunov function evolution over two steps also shown. The period-
2 nature of the walking is apparent in the reference polynomials, while the Lyapunov
function is shown to have a significant relaxation at the end of the first step. This
correlates with the portion of the gait when the friction pyramid was active.
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C h a p t e r 9

CONCLUSIONS

In conclusion, this thesis has presented the following discussion and contributions:

1. Full-order nonlinear modeling of 3D underactuated and compliant bipedal robots.
Bipedal robots are inherently nonlinear with hybrid dynamical behaviors. These
full order dynamics must be accounted for, either through nonlinear controllers
or via optimization algorithms. This thesis focused on developing a full non-
linear and compliant model of both the DURUS and Cassie bipeds in Chap. 4,
with the Cassie model being used first in an offline optimization (see Chap. 6)
and then within a model-based nonlinear controller (see Chap. 8).

2. Optimization for HZD gait generation on underactuated 3D bipeds. An HZD-
based controller was developed in Chap. 6 for Cassie to synthesize closed-loop
locomotion plans while leveraging the passive compliance in the robot model
to reduce impact, and generate trajectories that accurately reflect how the true
compliant robotic system would evolve on hardware. In addition, this thesis
presented the development of the first and only multi-contact humanoid walk-
ing developed with HZD to date, shown in Chap. 5, which is also the most
efficient reported humanoid walking in the literature to date. Due to the com-
plexity of these problems, developing and demonstrating algorithms that allow
for these optimization problems to be solved efficiently was essential in instan-
tiating successful walking gaits on hardware platforms.

3. Parameterizing HZD optimization results for model-based control development
on hardware. This thesis develops a compliant HZD motion library for Cassie
in Chap. 6 that leverages its full-body dynamics, including passive compliance.
While motion libraries for sagittal motions under the assumption of sufficient
rigidity have been successfully realized elsewhere on Cassie [127] and on other
robots [213], all of the existing literature within the HZD field on gait libraries
ignores the robot’s inherent compliance. It was shown how we can use the ad-
ditional information extracted from the optimization to generate regularization
terms as described in Proposition 7.3.1.2 that respect the planned constraints
on the robot. The end result is a set of trajectories for the virtual constraints,
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forces, and torques that can be used within a model-based controller that is able
to leverage the compliance of Cassie for all motion primitives in the library.

4. Theoretical development and analysis of an inverse dynamics-based CLF con-
troller for constrained robotic systems. In this work, a novel formulation of
an optimization-based control framework is introduced in Chap. 7 that couples
convergence constraints from control Lyapunov functions with desirable formu-
lations existing in other areas of the bipedal locomotion field that have proven
successful in practice, such as inverse dynamics control and quadratic program-
ming approaches. A theoretical analysis is shown which demonstrates several
useful properties of the approach for tuning and implementation, and the sta-
bility of the controller for HZD locomotion is proven. This was extended to a
relaxed version of the CLF controller, which removes a convergence inequality
constraint in lieu of a conservative CLF cost within a quadratic program to
achieve tracking.

5. Control laws and methodologies for hardware realization. Optimization-based
control laws allow for the generated gaits to, ultimately, be realized on hard-
ware in a manner which respects both the model and active constraints on the
system. These control algorithms are the final step in realizing dynamic walking
on bipedal robots that was shown in this thesis. In Chap. 8, a detailed formula-
tion of the (ID-CLF-QP+) controller was developed for use in real-time on the
Cassie biped. The results indicate that the control method, when combined with
the HZD motion library and parameterized optimization results from Chap. 6,
chose smooth input torques, passive spring torques, and feasible ground reac-
tion forces on hardware while reliably tracking the planned virtual constraints.
The resulting experiments demonstrate the first successful realization of a CLF
controller on a 3D biped in the literature.

Future Directions

There are many future directions that both the locomotion planning and real-time
control development could take, including but not limited to:

1. Generalized notions of stability and safety. The walking considered herein, and
the notions of stability, were entirely periodic in nature. To better represent a
wide variety of behaviors, the idea of stability should be extended to include
aperiodic walking motions [252], [253]. More generally, safety as represented
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by set invariance [254] could provide a powerful tool for more generally under-
standing locomotion.

2. Real-time optimal gait planning. It was seen that nonlinear constrained opti-
mization plays an essential role in generating dynamic walking behaviors that
leverage the full-body dynamics of the robot. These methods have become very
efficient, even allowing for online calculation in simple scenarios [255]. How-
ever, for the DURUS and Cassie bipeds shown in this work, finding a feasible
walking gait still consumed approximately 5-10 minutes on a laptop computer.
Further improving computational efficiency may enable real-time implementa-
tion of these methods yielding new paradigms for gait generation.

3. Bridging the gap between theory and practice. As indicated by the implementa-
tion methodologies discussed in Chapters 5, 6, and 8, there is often an “artful
implementation” step that transcribes model-based controllers into a form that
can actually implemented on hardware, or layers several heuristics such as foot
placement in order to further stabilize the locomotion. Ideally, methods can be
developed that allow the exact transcription of formal methods to hardware in
a robust fashion and without heuristics.

4. Robustness, adaptation and learning. Dynamic walking behaviors often work in
isolated instances and predefined environments. Translating these ideas to the
real-world will require robustness to uncertainty – both in the internal dynamics
and external environment. Adaptive and learning-based controllers can help
mitigate model uncertainty and unplanned interactions with the world, from
uncertain contact conditions to walking on surfaces with complex interactions,
e.g., sand.

5. Real-world deployment of bipedal robots. While most of the experiments in this
work were shown to be effective outdoors, they relied on purely proprioceptive
estimation and did not actively account for changing terrains. The ultimate
challenge is the ability to deploy bipedal robots in a variety of real-world sce-
narios. This ranges from everyday activities, to aiding humans, to venturing
into dangerous environments. Examples include bipedal robotics in a health-
care setting, e.g., exoskeletons for restoring mobility [256], to humanoid robots
capable of exploring remote or unsafe locations autonomously.
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