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ABSTRACT

In this thesis we establish a coarse Jacquet-Zagier trace identity for GL(n). This
formula connects adjoint L-functions on GL(n) with Artin L-functions attached
to certain induced Galois representations. We prove the absolute convergence
when Re(s) > 1, and obtain holomorphic continuation under almost all character
twists. Moreover, as an application, we obtain that holomorphy of certain adjoint L-
functions for GL(n) implies Dedekind conjecture of degree n. Some nonvanishing

results are also proved.
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Chapter 1
INTRODUCTION

1.1 Trace Formula: from Arthur-Selberg to Jacquet-Zagier

Let F be a global field, with adele ring Ar. Let G = GL(n). We consider a smooth
function ¢ : G(AF) — C which is left and right K-finite for a compact subgroup
K of G(AF), transforms by a unitary character w of Zg (Ar), and has compact
support modulo Zg (Af) . Denote by H(G(AF),w) the set of such functions. Then
¢ € H(G(AF),w) defines an integral operator

R(p)f(y) = / (0 f (yx)d, (L1)

Zg(AF)\G(AF)

on the space L? (G(F)\G(Ar),w™!) of functions on G(F)\G(Af) which transform
under Zg(Ar) by w™! and are square integrable on G(F)Zg(Ar)\G(Ar). This
operator can clearly be represented by the kernel function

Ky = > ey,
yeZo(P\G(F)

We will omit the superscript ¢ and simply write K(x, y) for K¥(x, y).

It is well known that L2 (G(F)\G(Ap), a)‘l) decomposes into the direct sum of the
subspace L} (G(F)\G(Ar),w™") of cusp forms and spaces Lz, (G(F)\G(Ar),w™")
and Lﬁes (G(F)\G(AF), w‘l) defined using Eisenstein series and residues of Eisen-
stein series respectively. Then K splits up as K = Ky + Kgjs + Kres . The Selberg
trace formula (cf. [Sel56]) gives an expression for the trace of the operator R(yp)

restricted to the cuspidal spectrum, and is roughly of the form

/ KO(X’ x)dx = XGeo — XEis — ZRes» (1.2)
G(F)Z(Ar)\G(AF)

where XGeo, ZEis, and XRres are contributions from geometric side, continuous spec-
trum, and residual spectrum, respectively. This formula and its generalizations play
important roles in the study of general theory of automorphic representations and
Langlands program. Typically, the right hand side of (1.2) has some convergence

issue, so a truncation is usually needed.
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In [Zag77], Zagier introduced the Rankin-Selberg method into the treatment of
(1.2). Precisely, he considered

I5(s) = / K¢ (x, x)E(x, s)dx, (1.3)
GL(2,Q)Z(Aqg)\ GL(2,Aq)

where E(x,s) is an Eisenstein series. Note that Ky(x, x) is rapidly decreasing and

E(x,s) is slowly increasing outside s = 1, thus the right hand side of (1.3) is well de-

fined as a meromorphic function, which has a simple pole at s = 1. Zagier obtained

a spectral expansion I(‘f (8) = Zgeo(s) — Zgis(s) — Zres(s) with meromorphic contin-

uation, from which he deduced holomorphy of L-function associated to symmetric

square of classical cusp forms.

Zagier’s trace identity (1.3) was further developed by Jacquet and Zagier [JZ87] in
terms of representation theoretical language to give a new proof of holomorphy of
adjoint L-functions on GL(2, Ar). They show (after continuation) the contribution
from continuous and residual spectrums is a holomorphic multiple of the Dedekind
zeta function, and the contribution from elliptic regular conjugacy classes gives
certain Artin L-series associated to finitely many quadratic extensions of F'. Hence
the holomorphy of adjoint L-functions can be deduced from class field theory, or
more generally, the (twisted) Dedekind conjecture (see Conjecture 3 below). As
another main motivation in loc. cit., studying I(‘f (s) provides a new way to derive
the Selberg trace formula by taking the reside at s = 1, avoiding the recourse to
Arthur’s truncation. See [Wul9] for details.

1.2 Statement of the Main Results

Aiming to generalize [JZ87] to higher ranks, we study in this paper a generalization
I(‘)p(s; 7) of I(‘)p(s) (defined in (1.3)) for G = GL(n) over a global field F :

Ig(s, T) = / Kg(x, X)Ep(x,®,1; 5)dx,
G(F)Zc(AF)\G(AF)

where Ep(x,®,7;s) is an Eisenstein series. See (1.6) in Sec. 1.3 for the precise
definition. Note that the cuspidal part of the Arthur-Selberg trace formula can be
realized as the residue of I(‘f (s,7) (with 7 = 1) at s = 1. In this paper, we obtain
a coarse geometric and spectral expansion of I(‘)p (s,7) and verify their absolute
convergence when Re(s) > 1. We also prove the analytic continuation for almost
all character 7’s. Some of our main results (Theorem E, F, G and H) may be

summarized informally as follows:
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Theorem A. Let notation be as before. Let Re(s) > 1. Let ¢ € H(G(AFr),w). Then

I(‘)p (s; 7) admits an expansion:

Ig(s; T) = IéeO’Reg(s, T)— I:i’Reg(s, T)+ Iéoing(s, T)— I\S,i,hi(s, T), (1.4)

where IGeoRree(S, T) is a finite sum of Tate integrals over certain direct sum of Etale
algebras of degree < n; I\‘,{,hi(s, T) is an infinite sum of I, (s, 7, 1) over cuspidal data x
associated to proper standard parabolic subgroups of G, with each I,(s, 7, ) being

a multiple of Rankin-Selberg period attached to y; Ii’Reg(s, 7) is a multiple of

A(s. AR ) - A = Ds, 7" A (ns. 7")
AGs + 1L,LDAQRs + 1,72) - - A((n = Ds + 1,71’

Here A(s,-) refers to complete Hecke L-functions. Furthermore, if T # 1 for
1 < k < n,then (1.4) has a meromorphic continuation to C, with Iff) Reg(s, 7)/A(s,T)
and I{,’;,hi(s, 7)/A(s, T) being holomorphic in Re(s) > 1/2.

Remark 2. (/). The expansion (1.4) generalizes Jacquet and Zagier’s formula for
GL(2) (see [JZ87]) to GL(n). A restricted version was obtained by Flicker
[Fli92] under some choice of test functions ¢ so that only elliptic regular part
of IGeoRee(S,T) shows up on the right hand side of (1.4). New ideas of our

proof are briefly summarized in Section 1.5 below.

(2). Ising(s, ) is defined geometrically, and it appears essentially when n > 3. For
certain applications, one can eliminate it by choosing discrete and cuspidal
test functions in the sense of [FK88]. Such test functions will be used to
deduce Theorem B (see Section 1.4 below), as an application of Theorem A.
Also, the analytic continuation ofléping(s, 7)/A(s, T) is given in [Yan21] when
n < 4.

(3). Each individual I,(s,7,1) is a period of automorphic forms in the case of
(GL(n) x GL(n),GL(n)) over the diagonal, in parallel to the (GL(n + 1) X
GL(n), GL(n)) studied in [IY15].

The distribution I(‘)p (s,7) and its calculation (4) are interesting for several reasons:
I(‘f (s,7) is the first moment of a family of Rankin-Selberg L-functions; the formula
(4) should involve more information than the Arthur-Selberg trace formula, e.g., one
may take 7 to be of order n and evaluate (1.4) at s = 1 to obtain a twisted trace
formula for G = GL(n), which has also been carried out using a different approach
in [Kaz83] when n is a prime; and Theorem 2 of [JZ87] reinterpreted the GL(2)
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case of the twisted trace identity as essentially equivalent to a theorem of Labesse
and Langlands [LL79].

On the other hand, the geometric-spectral expansion (4) of I(‘f (s, 7) is quite involved.
When n > 2, the continuous spectrum has not been investigated before. Never-
theless, the expansion turns out to convey some interesting information connecting
L-functions defined analytically and algebraically. In fact, we shall compute the
expansion and deduce from it that holomorphy of certain adjoint L-functions for
G = GL(n) implies the Dedekind conjecture for degree n extensions (see Theorem
B on p. 5). The relation between these two problems has been conjectured for a
long time, e.g., see [JZ87] and [JRI7].

Another consequence of studying 180 (s,7) is holomorphy of adjoint L-functions
(and their twists) for all cuspidal representations on GL(n), n < 4. This is done in
[Yan21].

1.3 Basic Notation

Denote by S(A’.) the space of Schwartz-Bruhat functions on the vector space A’
and by Sp(A”.) the subspace spanned by products ® = [], ®, whose components at
real and complex places v have the form

_ Xty X2, _ n
(Dv(xv) =e J=2vag . Q(xv,l,xv,Z’ cet ’xv,n), Xy = (xv,la Xy, t® axv,n) € Fv )
where Fv = R, and Q(Xv,la Xp2,t e ,xv,n) € C[xv,l, Xp2s xv,n]; and
gy o _ _ _
(Dv(xv) =e NZJ:I gt Q(xv,laxv,laxv,Z, Xp25 0 s Xy, xv,n)a

where F, =~ C and Q(x,1, X1, X2, Xp2," * * » Xy, Xy ) iS @ polynomial in the ring

C[Xv,l, Xv,la Xv.2, XV,Z, s Xy Xv,n]-

Denote by Z the set of unitary characters on F*\A% which are trivial on R’. For
any & € Ep, denote by A(s, &) the complete Hecke L-function associated to &. Let
® € So(A%). Let T € Ef be fixed. Letn = (0,---,0,1) € F". Set

flx,®,7;5) = T(detx)|detx|5/ O(ntx)r ()t d*t,
F
which is a Tate integral (up to holomorphic factors) for the complete L-function
A(ns, x. D, ") = Leo(nS, Xoo.Poo, T) + Lein(115, Xfin. fin, 7). It converges absolutely

uniformly in compact subsets of Re(s) > 1/n. Since the mirabolic subgroup Py is
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the stabilizer of 5. Let P = PyZ¢ be the full (n — 1, 1) parabolic subgroup of G, then
f(x,5) € IndIG,((ﬁlf )) (6;,_1/ 27"”), where 6p is the modulus character for the parabolic
P. Then we can define the Eisenstein series

Ep(x,®,7;5) = Z fx,®,7;9), (1.5)
yeP(F)\G(F)

which converges absolutely for Re(s) > 1. Also, we define the integral:
I(‘)p(s, T) = / Kg(x, X)Ep(x,®,7; 5)dx. (1.6)
G(F)Z(AF)\G(AF)

If there is no confusion in the context, we will alway write I(s) (resp. fr(x,s) or

f(x,s)) instead of 180 (s;7) (resp. f(x,®,;s)) for simplicity.

1.4 Some Applications

The distribution IGeoreg (s, 7) in (1.4) turns out to play arole in certain cases of beyond
endoscopy, see Altug’s work [Altl15b], [Alt15a], and [Alt17]. In this section, we
give other applications of (1.4) to some conjectures on holomorphy of L-functions

and nonvanishing problem. First, we recall

Conjecture 3 (t-twisted Dedekind Conjecture). Let notation be as before. Let E | F
be an extension of global fields. Then A(s,t o Ng/r)/A(s,7) is holomorphic when

s # 1, where N is the relative norm.

When 7 is trivial, the above conjecture is conventionally called the Dedekind con-
jecture, which is known when E / F is Galois by the work of Aramata and Brauer (see
Chap. 1 of [Mar77]) or has a solvable Galois closure E /F by the work of Uchida
[Uch75] and van der Waall [Waa75]. Moreover, Dedekind conjecture is the principal
case of Artin’s holomorphy conjecture. The 7-twisted version of Conjecture 3 has
been proved by Murty [MROO] when E/F is either Galois or has a solvable closure.

However, the general case (even general degree 5 extensions) is not yet known.

When n = 2, [JZ87] provides a connection between adjoint L-functions associated
to 1 € Ay(GL(2, F)\GL(2,Ap),w™") and A(s,7 o Ng/r)/A(s,7) when E/F is
quadratic. It was noted in [JR97] that, at least for degree/rank n up to 5, the
two families seem to be related on a nuts-and-bolts level in the theory of integral

representations, in addition to the relationships suggested by [JZ87].

Let ﬂéimp (G(F)\G(AF), w™") be the subspace generated by cuspidal representations
n € Ag(G(F)\G(AF),w™") such that 7 has a supercuspidal component. Following
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[JZ87], Flicker [Fli92] used a simple trace formula to conclude, modulo the key

Lemma 4 in loc.cit., that Conjecture 3 implies holomorphy of adjoint L-functions

A, TXTQRT)

A(s,m,Ad®T) = AG.T) ,

me ﬂ(s)imp(G(F)\G(AF),w_l),

when s # 1. However, this lemma is not correct as pointed out by Flicker himself
(ref. [F1i93], P. 202). Consequently, the asserted implication is not complete. In

this section we will prove an implication in the opposite direction, obtaining

Theorem B. Let notation be as before. Assume the twisted adjoint L-functions
A(s, m, Ad ®1) are holomorphic at s # 1 forall t € ﬂgimp(G(F)\G(AF), w™). Then
the T-twisted Dedekind conjecture holds for all field extensions of E | F of degree n.

Remark 5. (7). This relation provides a new perspective in the study of Dedekind
conjecture, which is currently wide open when the degree is larger or equal
to5.

(2). Suppose % # 1,1 < k < n. We can conclude from Theorem A, Theorem B
and Theorem H (see Sec. 7) that, if Ising(s, 7)/A(s, T) admits a holomorphic
continuation, then the twisted adjoint L-functions L(s,n, Ad ®T) are holomor-
phic at s # 1 for all 1 € Ay(G(F)\G(AF),w™") if and only if the T-twisted
Dedekind conjecture holds for all fields extensions of E | F of degree n.

In Section 9, we will see the proof of Theorem B would provide a result on the
nonvanishing of L(1/2,7 X r):

Theorem C. Let notation be as before. Let n > 2. Suppose there exists an extension
E/F with degree |E : F| = n, and {g(1/2) # 0. Then there exists an = n(E) €
Ao(G(F\G(AF), w™), such that L(1/2,7 x 1) # 0.

Remark 7. Assuming holomorphy of adjoint L-functions, there should be infinitely
many number fields F such that L(1/2,ax7) = 0 forall m € Ay(G(F)\G(Ar),w™").
Indeed, Frohlich [Fro72] proved that there are infinitely many number fields F such
that {F(1/2) = 0. Since L(s,n,Ad) is conjectured to be holomorphic, then for all
7 € Ag(G(F)\G(AfF),w™), L(1/2, 7 X 7T) = 0 conjecturally.

1.5 Idea of Proof and the Structure of the Thesis

Starting with the spectral decomposition

KO(X’ X) = K(X, X) - (KEiS(x’ )C) + KReS(X’ X)),
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we will further decompose these kernel functions by algebraic and analytic expan-

sion.

Denote by Py the mirabolic subgroup of G. Let S be the union of p~!yp modulo
the center Zg(F), where y runs through F-points of standard parabolic subgroups
of G, over all p € Py(F). Then

Ky = > ey+ ) et yy). (1.7)

Y€Zg(F)\G(F)-& yee
By Proposition 12 in Section 2.1, the set Zg(F)\G(F) — S consists of Py(F)-
conjugacy classes, giving rise to regular G(F')-conjugacy classes.
On the other hand, by Proposition 26 (see Section 3.1), we have the Fourier expansion
for o (x,y) = Kgis(x, x) + Kres(x, X) :

n—1

Ken(x3) + Keas3) = [ KGosy)du+ 33 73K + K. (19
Np k=2

Thus, combining (1.7) and (1.8) together we then obtain
KO(X’ X) = KReg(x) + KCOHSt(-xa X) + KSing(x, X) + KWhi(xa .X), (1 9)

where

Kreg(t, )= D o(xlyx),
Y€Zg(F)\G(F)-&

KConst(X, x) = _/ Z Qo(x_lu_lyx)d”’
NPl yezo(FNG(F)-&

Kwhi(x, x) = — Z / Keo(uyx, x)0(u)du,
yeN(F)\Po(F) V]

n—1
Ksing(x,%) = ) ¢(x'yy) - / D et yx)du = ) FiK(x,x).
k=2

veS Pl veS
One then substitutes (1.9) into (1.6) to obtain formally

IO(Sa T) = IReg(S» T) + IConst(S» T) + ISing(S, T) + IWhi(s9 T)’ (110)

where Iwni(s, 7) turns out to be an infinite sum of general Rankin-Selberg periods

involving Whittaker functions.
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As will be seen in Section 2, stabilizers of elements in Zg(F)\G(F) — S are direct
sums of Etale algebras over F of degree less or equal to n. Hence the corresponding
distribution Ireg(s,7) would be a sum of certain Artin L-series associated to these

Etale algebras. This has been treated in Theorem E in Section 2.2.

In Section 3 we prove Fourier expansion of automorphic forms on Py(F)\G(Ap),

which implies the decomposition (1.8).

In Section 4.1, we find explicitly representatives of Zg(F)\G(F) — S as Py(F)-
conjugacy classes. Then, very roughly, we develop a geometric reduction (in GL(2)
case, this is amounts to using Poisson summation, which is not available for GL(n),
n > 3), to relate Icons(s, T) to certain intertwining operators. Hence the convergence
and analytic properties follow from theory of intertwining operators. The results

are summarized in Theorem F in Section 4.2.

Then the rest of this thesis (Section 5 through 10) is devoted to the distribution
Iwni(s, 7), which is purely the spectral side. It turns out that Arthur’s approach with
modified truncation operators is not quite suitable for our situation. The reason is
that when we unfold the Eisenstein series and take the Fourier expansion of K,
it leads to the loss of G(F)-stability. We instead provide a different manipulation,
reducing Iwni(s,7) to a Mellin transform of the Kuznetsov relative trace formula,
which in turn is majorized by a finite sum of gauges (see Proposition 36). Therefore,
we obtain that Iwpi(s,7), when Re(s) is large enough, is an absolute convergent
infinite sum of Mellin transforms of certain Rankin-Selberg convolution for non-
discrete automorphic representations. Concrete statements are given in Theorem G

in Section 5.

In Section 6, we prove some properties of Rankin-Selberg periods for non-discrete
representations. These results will be used in Section 7 to show absolute convergence
of Iwni(s,7) in the strip 0 < Re(s) < 1, and thus get a holomorphic function
therein, see Theorem H in Section 8 for details. So Iwp;(s, 7) is holomorphic when
0 < Re(s) < 1 and Re(s) > 1. However, for 7 such that 7¥ = 1 for some 1 < k < n,
the function Iwhi(s,7) has singularities on the whole boundary Re(s) = 1. So we
need to find a meromorphic continuation for Iwn;(s, 7). This is investigated in Section
8, where we obtain continuation of each individual summand of Iwy;(s, 7) to some
zero-free region of Rankin-Selberg L-functions, proving Theorem I, which will be

of independent interest, e.g., it will be used in [Yan21]. Further continuation to
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some open region containing Re(s) > 1/2 are obtained for GL(n), n < 4, in the

Appendix 10.

In Section 9, we gather Theorems E, F, G and H to deduce Theorem A. Furthermore,
applying some special test functions ¢ into Theorem A and dealing with some

generalized Tate integral, we then prove Theorems B and C.

1.6 Further Relevant Results

When n = 2, Isjne(s,7) has no Fourier part, and has been dealt with in [JZ87].
For general n > 3, combining Theorems E, F, G, H and the functional equation
of Eisenstein series, we conclude that Ismg(s, 7) is uniformly convergent when
Re(s) > 1, and that it admits a meromorphic continuation to the whole s-plane
if 78 # 1 for 1 < k < n. Nevertheless, the distribution Ising(s, 7) is rather involved.
We will handle it for general T and G = GL(n), n < 4, in [Yan21] by developing
different methods from here. The treatment of Isine(s, 7) in [Yan21], together with
main results in this thesis, verifies some unknown cases (i.e., n = 3,4) of the Selberg

conjecture:

Conjecture 8. Let notation be as before. Then the complete adjoint L-function
A(s,m,Ad) = A(s,m X )/ A(s,7) for GL(n) admits an analytic continuation to the

whole complex plane.

More precisely we prove, in conjunction with Theorem B, that for n < 4, holomorphy
of (twisted) adjoint L-function is equivalent to Dedekind conjecture for degree n.

As a consequence, we show in [Yan21] the following:

Theorem D. Let notation be as before. Let n < 4. Then the complete L-function
A(s,, Ad ®7) is entire, unless T # 1 and 1 ® T ~ n, in which case A(s,n, Ad ®T) is
meromorphic with only simple poles at s = 0,1. In particular, Conjecture 8 holds

for any cuspidal representation m when n < 4.

Remark 10. If F is a function field over a finite field F,, by using the cohomology
of stacks of shtukas and the Arthur-Selberg trace formula, L. Lafforgue showed
the Langlands correspondence between cuspidal automorphic representations n of
GL,(Ar) and irreducible n-dimensional Q; representations p of the absolute Galois
group over F (see [Laf02]), with | ¥ q. Then Theorem D follows from the identity
A(s,m,Ad®7) = A(s,Ad p ® T) and analytic properties of A(s,Ad p ® 1), which is
well known by Weil [Wei74]. Our proof works for an arbitrary global field F. So
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it provides a new proof in the function field case. We shall however focus on the
case that F is a number field, where such a global Langlands correspondence is not

available.

Remark 11. Ifwe admit Piatetski-Shapiro’s strong conjecture on converse theorem
(e.g. see Chap. 10 in [Cog04]), Theorem D would imply that for any cuspidal
representation © of GL(n, Ar), there exists an adjoint lifting Ad(r), which will be
an isobaric automorphic representation of GL(n* — 1, Ap), in the sense of [GJ78].
Hence, in principle, Theorem D will play a role in Langlands functoriality for the

adjoint transfer.
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Chapter 2

CONTRIBUTIONS FROM GEOMETRIC SIDES

Let H (G(AF)) be the Hecke algebra of G(Ar) and ¢ € H (G(AF)). For any
character w of A%/F*. Let ¢ € C° (Z6(Ar)\G(AF)) N H (G(AF)) be of central
character w. Denote by Vj the Hilbert space

13 (GENG(ap), 07! ) = P Vi

where 7 € Ay (G(F)\G(AF), w_l) , the set of irreducible cuspidal representation of
G(AF) with central character w and V; is the corresponding isotypical component.
By multiplicity one, the representation of G(Afr) on V, is equivalent to . For each
n, we choose an orthonormal basis 8, of V, consisting of K-finite vectors. Let
Ko(x, y) be the kernel function for the right regular representation R(¢) on V. Then
we have the decomposition

Ko(x,y) = )" Ka(x,y), where Kr(x,) = Y m(@)p(x)p(y).  (2.1)

T B,
All the functions in the summands are of rapid decay in x and y. The sum of K(x, y)
converges in the space of rapidly decaying functions, by the usual estimates on the
growth of cusp forms. The sum over B, is finitely uniformly in x and y for a given

¢ because of the K-finiteness of ¢.

2.1 Structure of G(F)-Conjugacy Classes

Let B be the subgroup of upper triangular matrices of G, and T the Levi component
of B. Let N be the unipotent radical of B. Let W = W,, be Weyl group of G with
respect to (B,T). Then one can take W to be the subgroup consisting of all n X n
matrices which have exactly 1 in each row and each column, and zeros elsewhere.
Let A = {@12,a23, - ,an—1,} be the set of simple roots, and for each simple root
akk+1, 1 < k < n—1, denote by wy the corresponding reflection. Explicitly, for
eachl <k<n-1,

Ti—1 1
Wi = S , Where S = (1 ) 2.2)
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For each 1 < k < n — 1, let ‘W be the subgroup generated by elements w;,
i €{l,---,n—=1}\ {k}. Write Oy = BW};B. Then Qy is a standard maximal
parabolic subgroup of G corresponding to the simple root @ x+1. And every maximal
parabolic subgroup is conjugate to some Ok, 1 < k < n — 1. Clearly, under this

notation, one has P = Q,_;. Denote by

Qk(F)'") = {pgp™ : pe P(F), e Qx(F)}, 1 <k <n-1.

The main results in this section is the following two propositions:

Proposition 12. Let C be a regular G(F)-conjugacy classes in G(F). Then there
exists a P(F)-conjugacy class Cy such that

n—1
C =C ]_[ U C N Q(F)PF), 2.3)
k=1

Proposition 13. Let C be an irregular G(F)-conjugacy class, then one has
n—1
c=[Jcnourh. (2.4)
k=1

To prove (2.3) and (2.4), we need rational canonical forms of g € G(F), which
is an analogue of Jordan canonical forms of matrices over C (of course F is not

algebraically closed). The decomposition is given below:

Lemma 14. Let V be a n-dimensional vector space over F,and </ € End(V). Then

there exist invariant subspaces Vi C 'V, 1 < 1| < r, such that
V=VieV,® ---@V, (2.5)

and for each i, both of the minimal polynomial and characteristic polynomial of
oy, = o |y, are of the form p(A)*, where k € Ns and p(1) € F[A] is a irreducible
polynomial over F. Furthermore, for each [, there exists a basis a; = {ay,," - , @y, }

of Vi such that under «;, <y, has the following quasi-rational canonical form

C(p)

T (o*) =

C@) , 2.6)

N C(p)
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where C(g) is the companion matrix of p(A) and N =

0

Proof. Let m(Q) (resp. f(A)) be the minimal polynomial (resp. characteristic

polynomial) of .<7. Consider their primary decompositions over F :
m() = [ | i) and (1) = | [oi0),

where p(4)’s are distinct irreducible monic polynomials over F, 0 < e < ¢;, V i.
Take U; = ker p;(.o7)%. Then Uj is < -invariant. By cyclic decomposition theorem
(which holds for general fields), we have

U = Fl/]a" © F[o/]a'? & - - - & F[/]a™",

where each F[.</]a' is a cyclic subspace of U;. Then one has the decomposition
(2.5) and both of the minimal polynomial and characteristic polynomial of %%j =

A |per)aii are powers of g;(4).

For any i and 1 < j < r;, we may assume that the minimal polynomial of szvij on
F[.o/ ] is 9;(1) - with some 0 < e} ; < ). Write 9;(1) = Adi—cg A% — .. —cy.
Define

Usdisr = %‘Z;lgoi(dwf)sai’j, I<s<e,l<t<d.

Note that forany 1 < s < ¢/,
d: -1 .,.
d\/ijasd[ = ﬂ{wf@i(ﬂwj)s a*’
J
di -1 -1 ij i
= (4l = il ) ™1) ity )N + il )
J
= C0Q(s-1)d;+1 T C1A(s—1)d;+2 T °* T Cqj—1Qsd; T Asq;+1-

Therefore, under the basis {@sg+; : 1 <5 < elfj, 1 <t <d}, &%Vij is represented

by T (g)u)ezﬁf) defined in (2.6). 0

To prove (2.3) we need some further preparation. Given arbitrarily an £k € Ny,
denote by H(F) = Hy(F) = GLy(F). Let v € H(F) be regular and denote by
fQ) = 91 (D) - @, (1) its characteristic polynomial, where ¢; > 1, ; is

monic and irreducible over F, 1 < i < my. Letd; = deg g;. Set F(y) = F[1]/(f(1))
be the polynomial algebra generated by vy, and denote by F(y)* the set of invertible
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elements in F(y). Let Pgl (F) be the mirabolic subgroup of H(F'). Also, for any
0 € H(F), we always write Hs(F') for the centralizer of ¢ in H(F). We will always
use these notation henceforth.

Lemma 15. Let y € H(F) be regular elliptic, then for any (ai,as,- - ,ax) € F¥,

there exists a unique element x € F(y) such that the last row of x is exactly

(a15(129 te aak)'

Proof. Since vy is regular, H,(F) = F(y),and dim F(y) = k. Letn = (0,--- ,0,1) €

F*. Consider the linear map:
7: F(y) - FX, x - 7(x) = nx.

Since vy is elliptic, F(y)is a field, so any nonzero element is invertible. Consequently,
the map 7 is injective, and hence surjective. Thus 7 is an isomorphism of k-

dimensional F-vector spaces. Then the lemma follows. O

Remark 16. Let vy € H(F) be regular elliptic, we have H(F) = PgI(F)F(y)X. In
fact, since 7 is a bijection, given g € H(F), there exists h € H(F) such that ng = nh
which implies that gh™' € Péf(F), the isotropy subgroup of n, i.e., g € Pé{(F)F(y)X.

Lemma 17. Let v € H(F) be regular. Assume further that the characteristic
polynomial of y has only one irreducible factor. Then one can find y' € H(F)
conjugate to y such that for any (a1, ay,- - - ,ax) € F¥, there exists a unique element
x € F(Y’) such that the last row of x is exactly (ay,az,- - - ,ay). In particular, one

can take y' to be the quasi-rational canonical form of y.

Proof. Let f(1) = p(1)° be the characteristic polynomial of y, where (1) =
A+ 4129 + -+ 1A + ¢y € F[A] is irreducible. Then de = k. By definition,
Fly] = F[1]/(p(A)¢) . Consider the filtration

() LA/ (9() 2 9 FLAL/ (9()*1), 1 i< e - 1.
Pick the basis for F[y] over F as in the proof of Lemma 15, i.e., {A/p(1) : 0 <i <
d, 0 < j < e—1}. Withrespect to this basis, each element of F[y] has the following
type

Ao
Al A
Sy = {A =| Ay A Ay ,Ai € Myyy(F), 0<i<e-— 1}, 2.7)
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and under this basis, and the assumption that y is regular, y has the quasi-rational

canonical form

g = _ _ € GLi(F), (2.8)
N C
i.e., v is conjugate to J, where C = C(g) be the companion matrix of p(A1), i.e.,
0 —Co

C= ) _ ,and N = € GL4(F).

I —cqa1

Since elements in the same G(F)-conjugacy class have the same characteristic

polynomial, we may assume that y = 7 is a quasi-rational canonical form.

Then necessarily if A € F[y] of the form in (2.7), then it commutes with y. Indeed,
since 7 is regular, i.e., the minimal polynomial of y coincides with its characteristic
polynomial, any nonsingular matrix commuting with y must lie in F[y]*. Thus
Fly*={A e S NGL(F): Ay = yA}.

Now we consider the equation Ay = yA, A € §,. Clearly this is equivalent to a
system of Sylvester equations
CAp = AC

NAg + CA; = A;C + AoN
0 1 1 0 (2.9)

NA, »+CA,_1 =A._1C+ A.»N.

Since Ag € F[C]*,and C is regular elliptic, Ao commuting with C implies that there
exists some hg(d) € F[A], such that Ay = ho(C). We may assume that dy = deg hg <
d—1.Letn=(0.---,0.1) and write nC’ = (b b3, b)), 1 < i < d =1, for
the last row of C'. Define

(OO )
0 bd,l bd,z T bd,d—l
0o o Y - :
Xoy=|: . . - bS}z € GLy(F).
()
: bd’1
o ... ... 0 0
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Claim 18. Let notation be as before, then for any 1 <i < d-1,X = Xy is a

solution to the Sylvester equation

NC' +CX = XC + C'N.

Write Ag = ho(C) = c;OCd" + c;,o_lCdO_l +--+ ¢ C + cyla, C:lo # 0. Define
A;l[; = C:i()X(dO) + C,d()—]X(dO_l) +---t C; X(])

Clearly A| = AZ’; gives a special solution of the equation NAyg + CA; = A|C + AgN
(the superscript ‘sp’ refers to ‘special’). Given Ay = ho(C) as above, one then claims
that

A = {Aifg + hi(C): hy € F[A], degh; <d -1}

gives all solutions to the equation NAy + CA; = A;C + AgN. In fact, on the one
hand, elements in A; obviously satisfies the equation; on the other hand, let A’] be
any solution to the equation, then A;’g — A} commutes with C, thus it is a polynomial

of C, namely, A’1 € A;. This proves the claim.

Note that NAZIJ = Aifg N = 0, when substitute A; = AZIOJ + h1(C) into the equation
NA; + CAy = A,C + AN, to get N (C) + CAy = A>C + hi(C)N. Write hi(1) =
c(’j’ A9 4 c;l’ _l/ldl'l + e+ c’l’/l + cé’, and set

1 1

AY = ¢ Xy + i Xa-n + -+ Xy

Then A, = {AZ’I’ + h(C) : hy € F[A], deghy < d — 1} gives all solutions to
the equation NA| + CA, = A;C + A|N. Generally we define A;, 1 <i <e-1

similarly, and set Ay = {ho(C) : hg € F[A], deghg < d — 1}. These A;’s describe
the structure of F[y]*.

Therefore, given any a = (ay,az,- - - ,ax) € F¥, by Lemma 15 one can find uniquely
an Ay € F[C] such that nAg = (@k-g+1,ak—a+2," - - »ax). Denote the sections of a by
a; = (A@-1)d+1>A(i-1)d+2>** * »aia), 1 i < e—1.Let 1 <iy < e~ 1, assume that for

any 0 < i < ip one can find uniquely an element A; € Mx,(F) such that the last row
of A; is exactly a,_;, then let 4;,(C) € F[C]* be the unique element whose last row
is a,_;,, take A;, = AZ’O + h;(C). Then nA;, = nh;,(C) = a,—;,. Moreover, such an
A, is actually unique. Let A;O be another matrix satisfying that nAgo = e—j,. Since
A;O is a solution of NA;,_; + CX = XC + A;,-1N, A, — Al’.0 commutes with C. Thus
A, — Al’.o € F[C]. Note that the last row of A;, — Alfo is 0, so by the uniqueness from

Lemma 15, A;, — Al’.0 = 0. This shows the uniqueness of A

i io*
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Therefore, the proof ends with an induction on ip and the following proof of Claim
18. m]

Proof of Claim 18. We give a proof based on induction, although one might verify
the claim by brute force computation (which is pretty complicated). Note that the
case i = 1 is trivial, since X(;) = N. Now we assume that there exists an iy such
that 1 <ip < d—1,and for any 1 < i <ip, X = X{;) is a solution to the Sylvester
equation NC' + CX = XC + C'N. Write C/ = (bg{;)mw, 1 <j<d-1,then
a straightforward expansion implies that X = X ) is a solution to the Sylvester
equation NC® + CX = XC + CN if and only if the following system of linear

equations holds

b = —c1b) = eab) -+ = ca1b) .

=o)L+ )

plio) . oplio) _ . plo) plio) plio) (2.10)
dd—2 = T3y — by, Ca-1b44 3+ D31 :

Comparing entries on both sides of C = C~!C leads to the recurrence relations

(o) _ 7(i0—1) : _

Pi; = bager- 1 <=4 | @.11)
Sinceipg <d-1,ip—1 < d -1, then bg‘)l_l) = 0. Therefore, relations (2.11) implies
that

‘ _— . ‘ ,
which is exactly the first equation in (2.10). By other assumption, the system of
relations (2.10) holds when iy replaced by iy — 1. Therefore, forany 1 < j < d -2,
one has

(io—1) oo o g o1 (io—1) (io—1)
bya-in = ~Cibyy Cj+1by5 Ca-tbyqj + 051

Note that b(/.i(i_l) = b(/.ifr)l pl<j<d-2, b(fl_l) =0, and thus (2.11) implies that

— ooy o g o) (i0) (io)
dd—j = ~Ci+1by | = cjrabys Ca-1by i + b

which is exactly the (1 + j)-th equation in (2.10). Hence the proof follows from

induction. O
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Lemma 19. Let y € G(F) be regular. Then there exists a finite set of elements
Leg ={vi € G(F): 0 <i < mo} such that

1. G(F) = Uo<i<m, Po(F)yiF(y), where Py is the mirabolic subgroup of G;

2. There are at most one y; € Iy ¢ satisfying that
n—1
yiFoyt 2 ) o).
k=1

Proof. Denote by f(1) = 91(4)°" - - - 9,,(4) the characteristic polynomial of y €
G(F), where ¢; > 1, p;’s are distinct monic and irreducible polynomials over F,

1 <i<m.Letd; =degg,. Thende; +dre; +-- -+ dpe, =deg f = n. Set
F(y) = F[A]/(f() = @ F[A]/(i(A))
i=1

be the polynomial algebra generated by vy, and denote by F(y)* the set of invertible
elements in F(y). Since 7y is regular, then by Lemma 14, y is G(F)-conjugate to a

matrix of the form
1
J (97" GO(F)
T (93 GA(F)
€

T (o G™(F)
where GV(F) := GLge;(F), 1 <i < m. We may assume y = y*. Write k; = de;,
1 <i £ m. For any a = (aj,ap,---,a,) € F", let n = (0,0,---,0,1) and 7; :
F" — F*i_guch that

i (@) = (Akyetly y+15 > Ay ethy ki )s 1 <0 < m
Also, for convenience we write (%) (a) for the last d; components of 7; (a), namely

rI(Ei) (a) = (ak1+~"+ki_1+(€i—l)di+17ak1+~"+ki_1+(ei—1)di+27' t ’ak|+---+k,‘_1+ki), 1 < i < m.
We then split G(F) into a disjoint union of sets following the conditions on the a;’s

and show that each of the sets is a Py(F)y;F(y)* for a specific ;.

Let So = {0 € G(F) : n6 = a = (aj,a,--- ,a,) € F", suchthatfor 1 < i <
m, 1) (a) # 0}. Let ; = (0,0,---,0,1) € FX, 1 <i < m. Denote by

I,

Yo =

nm ... Nma I,
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Then applying Lemma 17 to each 7; (a) € F*, we find for each 1 < i < m, for any
6 € Sy, aunique x; € F[J (g)fi)]x, such that nx; = 7;6. (Write x; in the form in (2.7),
the definition of Sy implies that Ay # 0, thus Ag € F[C]*, so x; € F[J(9{)]*)
Let x = diag(xy,- -+ ,xu), then n(ypx) = nd. Consequently, 6(yox)~! € Py(F), i.e.,
6 € Py(F)yoF(y)*. Moreover, one has Py(F) N yoF(y)Xyal = {I,}. To see this,
look at the last row of yoxy, I A straightforward computation shows that

ni ()’0357’61) =nixi—ni, 1 <i<m-1,

and n,, ()/Oxya 1) = 1. Then by uniqueness part of Lemma 17, it follows that

xi=I, 1 <i<m.

Forany 1 </ <m-1land1 <ij <--- <1 <m,letS((l.ll)ml

) = {6 € G(F) :
né =a = (ay,as,--- ,a,) € F", such that ¢’ (a) = 0iff j € {i1,---,i;}}. For any
1<i<m1<e<e—1definen =(0,-,0,1,0,--,0) € F¥, where the only
nonzero entry (i.e. 1) occurs in the ed;-position, namely, there are (e¢; — e)d; zeros

on the right hand side of the entry 1. Let v; denote the [-th element of 1?, define

771* = (Oa e Oa Vdi+1:Vdi+2, " s Vki—d;> V1, V2, " avdi)'
Forany 1 <i <mand 1 < s <t < m,define the Weyl elements wgl) and wg’zt) as
Iy
0 I,
1,
Wb = ,
1
Iy
1y, 0

Iy
1

where k] = ki + - ki—1, k! = kiy1 + -+ kp, V1 <i < m;and

2 _
Ws,t -

Ik//

t
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We write simply that w( ) = I,if s =1t.

Given § € S() iy let n6 = a = (aj,ay,---,a,) € F". Then n(ef) (a) = 0 if and
only if j € {11, i) If pi(a) # 0, let e? < e; — 1 be the maximal integral
such that (ak1+--.+(e§?—1)d,+1’ak1+--.+kj,1+(e§?—1)d,+2»' o ’ak,+~~-+kj,1+e§?d,) # 0. Then by
Lemma 17, for each such j, one can find an element x; of the form in (2.7) such that

the eVd i-row of x; is exactly
J
(ak1+«--+kj,1+1,ak1+~«+kj,1+1, toe ’ak1+~--+kj_1+ede) # 0.
J

If 77;(a) = O, then take x; to be an arbitrary element in F'(J (goj.j ))*. Since () (a) # 0
for any i ¢ {ij,---,i;}, we can pick uniquely elements x; € F(J (pfi ))* such that
their last row is 7;a,i € {1,2,--- ,m} \ {i1,-- - ,i;}. Let x = diag(x1, x2,- -+ , Xp).

Apply the transposition []<;;(j,i;) € S, on the ordered n-set (1,2, -- ,n) to get

another ordered n-set (iy,- - - ir). Then clearly n(ei"n)(a) # 0, hence by

2 il’ i;+1’ e 2
our choice, the last row of x;; is exactly n;; (a). Thus we can define the element
Y- € G(F) as

I

1

Iy,

]

l
M,
141 l_[ w; Wj i

Iy, Jj=1

moonn oMy My, M, oo M I

n ) I+1 1+2

Then by our setting, UVE,) pr=a= n6. Then § € Po(F)y(,...i)F(y)*. Given any

x € F(y)*,, one checks directly that

1

z _
(1) (2) (1) (2)
l_[ WX 1_[ W € Qq, (F).

Therefore, (i, ipx¥; . ;) € Qay, (F) i€, ¥ in FOV Y.y € Qa, (F).

Now we consider S™ = {§ € G(F) : 16 = a = (aj,as,---,a,) € F" —
{0}, ) (a) =0, 1 < j <m}.Let 5 € S such that né = a = (aj,az--- ,a,) €
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F"—{0}.Foreach 1 < j < msuchthat7;(a) # 0, denote by eg.) < e; —1 the maximal
integral such that
(ak1+~--+(e;’—1)dj+1’akl+~-~+kj_1+(e?—1)dj+2’ T ’ak1+'~-+kj_1+€;)dj) # 0.

Likewise, for each such j, one can find an element x; of the form in (2.7) such that
0 .
the ejdj-row of x; is exactly (ak,+...+kj_l+1,ak1+...+kj_,+1,' - ’ak1+-~~+k,~-1+e?dj)' For

the remaining j’s, take arbitrary x; € F(j(g{);j))x. Let x = diag(xy,- -, xm)-

Now we pick arbitrarily a jo such that 77;,(a) # 0. Let j; # jo be another integer.

Denote by
Iy
Jo
wil = 0 i)y
Jo:€jy Iejo djy 0
Ly
Jo
Let
Ik.f{)
I,
- LM (2) (D) (2)
= Wi W ey o
Iy,
T]i*l PEEEEY 771 e nm “ e e Ik]

Then ny,,x = 6. So 8 € Po(F)y,,F(y)*. Moreover, for any x” € F(y)X, yux'y,! €
Qg,, (F), the standard maximal parabolic subgroup of type (jo,n — jg).
0

In all, we see that

m—1
an=s1) U so,[]s

=1 1<ij<-<ij<m

=P FyoF () U PoFIa o in FOY | PoF)ymF (),

1<l<m-—1
1<ij<--<ij<m

where y,,F(y)*y,,' and each y, ... i)F (y)x’y(;llm i) are contained in some standard
maximal parabolic subgroup, and Po(F) N yoF(y)*yy" = {I,.}. O

Now we prove the result on the structure of conjugacy classes:
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Proof of Proposition 12. By Lemma 19 we have G(F) = Uy<i<m, Po(F)yiF (),
where Py is the mirabolic subgroup of G, and y € C. If § € G(F), there exists
p € Py(F)andi € {0,2,--- ,mp} and x € F(y)*, such that § = py;x. So one has

6ys~' = pyixyxly ' p7t = pyiyyiph.

Ifi > 1,thendys™' € CNQ;(F)F (F) for some standard maximal parabolic subgroup
Q; of type (j,n—j),1 < j <n-1.Andfori =0, oys~! = pyoyy(;lp‘l. Take
v = yoyyal. Then Cy = {py’p~" : p € P(F)}. This proves the result. O

Note that we have a bijection W,,_{\W/W,_; «— {1,w,_1}. By Bruhat decompo-
sition

G(F) = P(F) U P(F)wy_1 P(F). (2.12)

Repeating (2.12) we then obtain

n—1
G(F) = P(F)| ) PFWu1wia - wiN;(F), (2.13)
j=1
where N;(F) := (Wjwjs1 -+ WyuN(F)Wuwy,_1 - - - w;NN(F))\N(F) is of codimension
1
n—jin N(F). Let N~ be the unipotent subgroup of the form S ,i.e.,
0 ... 1
SR |

the lower triangle matrix with entries vanishing outside the diagonal or the bottom.

Proof of Proposition 13. Let g € C be an representative. Set m(A) (resp. f(4)) to
be its minimal polynomial (resp. characteristic polynomial) over F'. Consider their

primary decompositions over F' :

m() = | | o) and £ = | [ o),
i€l i€l
where p(4)}s are distinct irreducible monic polynomials over F, I is a finite index
set such that ¢; > 0,V i € I. Write d; = degg;(1), Vi € I. We may assume that
di <dp < --- < dy. Also, write dy = 0. Since the conjugacy class C is irregular,

m(A) is a proper factor of f(1). Thus we have the following cases:

Case I Suppose #I = 1. Then m(1) = p(2)¢, f(1) = p(1)¢,and0 < ¢’ < e = dl‘ln.
Let C be the companion matrix of m(1). Then by Lemma 14, g is G(F)-
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conjugate to some element g = diag(gy,- - - ,gn) With
C
N C
N C
being the quasi-rational canonical form, and m > 1. Let r; := rankg;,

1 <j<m Wemayassumer; <ry < -+ <1y

For any h € G(F), if h € P(F), then clearly hgh™' € hQ, (F)h™';if h €
G(F)— P(F), it can be written as 1 = pwy,_; - - - wyuy, where p € P(F) and uy,
is of the form

I
1 % |eQuPF).
In—k

Suppose k > ry. Then wy_; ---wiuy € diag(GL,,,GL,—,). So hgh™! €

Q,,(F)P¥) Hence, we may assume k < .

Note that there exist a Weyl element w € GL(r,,) such that

C N

w ) ) w o= , (2.14)

where the left hand side of (2.14) represents wg,,w™~! and in the right hand
side the upper-left block is a r| X rj-matrix, which is precisely g;. Namely,

one can find a Weyl element w € GL(r,,) such that

’

wgnw! = |5 € GL(r,, F), (2.15)

4

). Denote by w” =

Wy —1Wp 2w if k < ri, and set w” = I, if k = rj. Let g7 = w”gw”~!.

for some matrices A’ and B’. Let w’ = diag(w, I,,—

rﬂ’l
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Then there exists a Weyl element wy € Py(F) such that

8m
82
WOWpo1Wn2 * - WEEWk * * - WyaWno1 W) =
Em-1
4
(2.16)
Let w = w”’wWwow,—1wy—2 - - - wg. Then by (2.15) and (2.16) one has
g B
wgw ! = A” (2.17)
4
for some matrices A” and B”. Note that w”w’wgy € Py(F). So N™(F) is stable
under the conjugation by w”w’wg. Also, wy_1 -+ - wgugwy - - - wp—1 € N™(F).
I,
Then Wwuw™! is of the form w | 0 I , where u} lies inside the
u 0 I,

intersection of Q, (F) and N™(F), and U is a r; X rj-matrix with the first
ri — 1 rows vanishing. Since g/’ is regular, by Lemma 17 there exists a unique
ri X ri-matrix y € F(g{') such that the last row of y coincides with the last
row of U. So

I,
wuw ™ = ulp’| 0 I, o, , (2.18)
Y 0 I

/ "

for some p’ € Py(F). Observe that p’~'u”p’ = u” and
p k k

-1

I, g B I,
0 In—2r1 A" 0 In—2r1 € er (F) (2.19)
Y 0 I g/ \y 0 I

as y € F(g}). Then we have, by (2.17), (2.18) and (2.19), that

wuguy'w e @, (F)P®), (2.20)

Recall that &7 = pw,_; - - - wruy. Note that p” := w”w'wg € Po(F). Then it
follows form (2.20) that

hgh_l :pp//—lwukguzlw—lp//p—l c er(F)P(F).
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Case II Suppose #I > 1. Then g is G(F)-conjugate to some g = diag(gy,- - ,&m)s

where each g; is of the form diag(g;1,- - - , 8im, ), with

Cij

N G

8ij = .
N G

and C;; is elliptic regular; and g; has characteristic polynomial p;(1)*. Since
g is irregular, so is g. Hence there must be some 1 < i < m such that
g is irregular. We may assume g is irregular and rank g;; < rankgs <
-+ -rank g1,,,. Then a similar argument as in the Case I shows that hgh~! €

O (F)P(F), where r; = rank g; ;.
Proposition 13 thus follows. m|

2.2 Contributions from Nonsingular Conjugacy Classes

Let s > 1. Consider the well defined distribution

Io(s,7) = / Ko(x, x)E(x,D; s)dx. (2.21)
G(F)ZG(Ar)\G(AF)

Unfolding the Eisenstein series (cf. (1.5)) we then obtain

Io(s,7) = Ko(x, x) Z f(x,s)dx,

G(F)Zg(Ar)\G(AF) yeP(F)\G(F)

Ko(x, x)f(x, s)dx.

/P(F)ZG (AF\G(AF)

Let Qy be the standard parabolic subgroup of GL(n) of type (k,n— k). In Proposition
12 we show that for any regular G(F)-conjugacy classes C in G(F), there exists a
P(F)-conjugacy class Cy such that

n-1
C=0C L| U C N O(F)PE),
k=1

Moreover, such a Cy is uniquely determined by C. When C is a non-regular G(F)-
conjugacy class, then by Proposition 13, we have
n—1

C=| |CcnouF)D.
k=1
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Take Cy to be empty set in this case. Denote by
n—1
& =) @atPnQuFE)P™". (2.22)
k=1

Following the approach in [JZ87], we will treat I(s) via the decomposition

Ko(x,x) = >~ Ke(x, %) + Kaeosing (%, %) + Keo(x, 1),
C

where C runs through all conjugacy classes in G(F)/Zg(F) and

Ke(xy)= D etclyy) = Y o07'yy), Koeoree()) = D Ke(x,y),
o

yeCo veC-6

KGeo,Sing(X, y) = Z go(x_lyy), Koo (x, Y) = KEis(x»y) + KRes(x, )’)-
ve®

Note that K¢ (x, x) and Kgeosing(x, x) are not G(F)-invariant, but they are P(F)-
invariant. Then it make sense to integrate them over Zg(Ar)P(F)\G(AF) against
f(x,5). So correspondingly, integrating these partial kernels against the f(x,s)

implies that Iy(s, 7) can be decomposed (at least formally) as
Io(s,7) = IGeo,Reg(S, T) + IGeo,Sing(sa 7) = loo(s,7), Re(s) > 1. (2.23)

We will show, under certain geometric restriction of test functions, that Igeoreg (s, 7),
IGeosing(s,7) and I (s, 7) all converge absolutely in Re(s) > 1, then the formula

(2.23) would be rigorous.

When G = GL(2), Jacquet and Zagier (see [JZ87]) computed the distributions
IGeoReg(8: T), IGeosing(s, T) and I(s, T) for general test function ¢, and verified the
convergence. Note that the contribution from IGeoreg(s,7) would give Artin L-
functions of degree less or equal to n. We shall deal with IgeoReg(s,7) in this
section, and leaving the computation of IGeosing(s, 7) and I (s, 7) in the following

parts. For each C, let (at least formally)

lo(s,7) 1= / Ke(x,x)f (x, )dx.
P(F)Zg(Ar)\G(AF)

Then by definition, Io(s,7) = 0 unless C is regular. To describe these conjugacy
classes, we introduce the classification of them by factorization of their characteristic

polynomials.
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Let C be a conjugacy class in G(F'). Denote by P(4; C) the characteristic polynomial

of C. Factorize it into irreducible ones with multiplicities as
8
P(3;C) = | | pia;0)%,
i=1

where ;(1;C) € F[A] is an irreducible polynomial of degree f;. We may assume
fi 2> f;.Denote by f = (fi,---, fg) € Zil and e = (eg, - ,e,) € Zgzl. Then
(f.e) = X fies = n.

Definition 20. Let notation be as before. We say C is of type (f,e; g). Let Iy, be
the collection of regular G(F)-conjugacy classes of type (f,e; g).

With the above definition, we have the decomposition:

|| ¢= || Tes (2.24)

C regular f eeZi .
(te)=n

A useful observation is that if C is a regular conjugacy class in G(F) of type
(fi,--- ., fgse1,--- ,eg),and y € C, then the centralizer of y in G(F') can be described
by the algebra EBlsngEiei, where E; is a field extension of F with [E;; F] = f;; and

P1<i< gEl.ei denotes the direct sum of e; copies of E;.

Let C € I'te;,. Let yc € C be a fixed element. Let Age.e € G(F) be defined by

-1

Iy
Ifl
/lf,e;g = .. , (225)
1 fe
nfl [ nfl .o nfg .o Ifg
where for each integer m, n,, = (0,---,1) € F™, the row vector with the last entry

being 1 and the rest being 0; and 1, is the identity matrix of rank m.
Then by Proposition 12 and unfolding E(s, ®; s), we have, when Re(s) > 1, that

e T A Yo dtegpx) D f(0%,s)dx.

Ic(s,7) = /
Zg(AFP)G(FNG(AF) e pi(F) 5eP(F)\G(F)
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Then switching the sums and changing variables we then obtain

Ie(s.7) = D, o P Yo dtegpx) f(x.s)dx
Z(AF)Po(F\G(AF) e piiF)

-/ o yex) f(AgL 3, 5)d,
Z6(AF)\G(AF)

supposing the above integrals converge absolutely. Combing this with (2.24) we
then deduce (at least formally) that, when Re(s) > 1,

Z Ic(s,7) = Z /Z go(x_lycx)f(/lf_’égx,s)dx. (2.26)

£, ecZ8, G(Ar)\G(AF) CéTtes

(£e)=n
Moreover, (2.26) would be rigorous if the right hand side converges absolutely,
which is indeed the case. To verify, we will consider each type (f, e; g) separately in
the following subsections.

Type (n;1)
We treat the conjugacy classes of type (f,e; g) = ((n),(1); 1) first, these are exactly
elliptic regular conjugacy classes. Denote by

Le(sm)=Ife(s) = ) Iols7).

C regular elliptic

Proposition 21. Let notation be as before. Then for every field extension E|F of

degree n, there is an analytic function Qg(s) such that
Ire(s,7) = Z Qr(5)A (5,7 © Ngyr), (2.27)
" 1E:Fl=n

where the summation is taken over only finitely many E’s, depending implicitly only

on the test function .

Proof. Since I'y .. (G(F)/Z(F)) is invariant under P(F)-conjugation, we have

I (5,7) / o yx) - f(xs)dx.
PIYZG(ArNGAF) yer, , (G(F)/2(F))

Denote by {I""¢} a set of representatives for the regular elliptic conjugacy classes in
[y (G(F)/Z(F)).Forany y € {I""“}, the centralizer of y in G(F)/Z(F) is exactly
F[y]*. Then we have

ey = ) > o(x~'571yox).  (2.28)
YT (GUEY Z(F)) yelFTe) SeFIy I Za (F\G(F)
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By Lemma 15 and the Remark after it, one has G(F) = P(F)F[y]*. Since P(F) N
Fly]* = Zg(F), every element 6 € Z5(F)\G(F) can be written unique as § = pv,
where p € Zg(F)\P(F) and v € F[y]*. Hence the inner sum of (2.28) could be
taken over p € Zg(F)\P(F). Therefore, substituting these into the expression of

I, . (s) one will obtain

o= [ Y Y e s @29

Y6 ye{Ire} pezg (F)\P(F)

where Y5 = P(F)Zg(Ar)\G(AF). For the given F, let E/F be a field extension of
degree n. Fix an algebraic closure F of F, then E embeds into F, we look at the
contribution from all the regular elliptic conjugacy classes together. We say that a
conjugacy class belongs to an extension E of F if it consists of the conjugates of
some elementy € E*/F*—{1} with the usual identification. We have to distinguish

between two cases:

(a) E/F is Galois.

(b) E/F is not Galois.

The idea is to replace the summation over y € {I""-¢ } by summation over extensions

E/F of degree n; and inside, summation over elements of E.

Case (a) When y varies over E*/F* we get each conjugacy class belonging to E

exactly n times.

Case (b) When vy varies over E*/F* we get each conjugacy class belonging to E
once; but the sets of conjugacy classes belonging to the n embeddings of E
in F are identical.

So in either case, we can rewrite the integral in (2.29) as

1 _

Lo (s,7) = —/ Z Z o(x "y x) f(x, s)dx (2.30)
N JZG(ARNG(AF) (E.Fl=n yeEX [F*—{1}

where the right hand summation is over all extensions E/F of degree n. Note that

(2.30) is the same as (2.26). Note that the sum over E/F such that [E : F] = nis

actually finite, as the summation in (2.28) is finite, as a consequence of the fact that

¢ is compactly supported.
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Moreover, since the coefficients of the characteristic polynomial of every y € E*/F*
are rational, and lie in a compact set depending on supp ¢ (and a discrete subset of
a compact set is finite), the sum over y € EX/F* — {1} is a finite sum. Thus we can

interchange integrals in (2.30) to get

Lo (s,7)=— Z Z /(A o(x lyx)d(nx)r(det x)| det x|*dx, (2.31)
=n yeE* | F* F)
y#1

where n = (0,---,0,1) € A”.. Let Ig(s) be the inner integral in (2.31), then
Ig(s) = / o(x"1yx) ®[(0,---,0, )tx]r(detrx)| dettx|*dtdx,
Gy(AF)\G(AF) Gy (AF)

where G, is the centralizer of y in G. Hence, G, (Af) ~ A%. If we identify G, (AF)
with A%, det |px: E* — F* with the norm map Ng/p, t + |dett|s, with the idele
norm in E, and S(A%) with S(Ag), we see that the inner integral is just the Tate
integral for A (s,7 o Ng / F) . So there is some elementary function Q(s) of s such
that Ig(s) = Q(s)A (s,7 o Ng/r), where A (s,7 o Ng/F) is the complete L-function
attached to E.

Consequently, Iz (s) itself converges normally for Re(s) > 1 and its behavior is given
by O(s)Lg (5,7 o Ng/r) . This also given the meromorphic continuation of /£ (s) to

the entire s-plane. Since

Le(st)= > 1c<s>— > DL Iy,

C of type ((n),(1)) EF] nyeEX/F*—{1}

where the sums are finite, then I, . (s, 7) is well defined when Re(s) > 1, admits a

meromorphic continuation to s € C, moreover, (2.27) holds. m]

Type (f,e; 1)
In this subsection, we deal with orbital integrals of general type (f,e; g). Note that

one of the key ingredients to handle the elliptic regular case is that

X - Z o(x~1Ax) (2.32)

A€EX[F*—{1}
has compact modulo G, (Ar). However, the function (2.32) is not compactly sup-
ported for general type (f,e; g). For example, (2.32) has no compact support for
regular unipotent conjugacy classes. So we must proceed differently from the

elliptic regular case in Subsection 2.2.
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In this section, we handle the case g = 1. This will, in conjunction with proof of

Proposition 21, play a role in the treatment of general types in the next section.

Let C be of type (f,e; 1). We may choose a representative y € Cy in its quasi-rational

canonical form:

N C

where C € GL(f) and there are ¢ such C’s in the partitioned matrix above. Then
the stabilizer of vy is studied in Lemma 17. In particular, let A be a stabilizer of vy,

then A must be of the form:

Ao
Al Ao

A=| A2 A1 Ao , (2.33)

A1 ... Ay Al Ay
with A; € My r(F),1 <i < e,and Ag € F(C). Let Pge;1 be the transpose of standard

parabolic subgroup of G of type (f, f,- - -, f),i.e., it is a lower triangle matrix group.
Let Kte.; be a compact subgroup such that G(Ar) = Pre.1(Ar)Kge:1(AF).

Therefore, we can decompose G, (Ar)\G(AF) as: for x € G, (Ar)\G(AF), write
1 f Ty

D, fh
x=B D2D1 Tz k, (2.34)

De_y---Dy Te—y
where each D; € G¢(AFr), which is the stabilizer of C,1 < j < e —1; and
Iy

Iy
B = B372 If ; (2.35)

Be,2 Be,e—l If
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and 7; € Gc(Ap)\GL(f,Ar), 0 < j < e—1; and k € Kge.1(Ar). Denote by
D = diag(ly,D1,- -+ ,De_1---D1) and T = diag(To,T1, - - ,T.—1). Note that the de-
composition (2.34) follows from Iwasawa decomposition and the unipotent term B is
of the form (2.35) because it’s first f-columns can be absorbed by left multiplication
of some stabilizer A € G, (Ar) of shape (2.33). Write

-1

Iy Iy
Iy Iy
B! = B3y Iy = B, Iy
Be,Z . Be,e—l If B;Z e B;,e—l If

For each B;,j’ we write B;,j = Blf,jC -C B{J. Let B be the group of such B’s.

By definition, the contribution from conjugacy classes of type (f,e; 1) is

hea(s) = [ S e e fU xsdx. 236)

(AFNGAF) CeTy g,

For two meromorphic functions 4;(s) and hy(s), we denote by hi(s) ~ hy(s) if
hi(s)/ha(s) admits an analytic continuation to the whole complex plane. We will

" "
~

keep this notation henceforth. In this subsection, we will show

Proposition 22. Let notation be as before. Then Iy,.1(s) converges absolutely when
Re(s) > 1 and

[N

Lre1(s) ~ O, ()AE,(js — j + 1,(T o NgypY),
j=1 [E,:F]:f

where the sum over number fields E;’s is finite and Qg; is an entire function of s.
Remark 23. The function Qg; is the ratio of the Tate integral and the L-functions.
Hence it is entire.

Proof. Write (2.36) simply as

lea(s) = [ S ¢y fx )

G(AF\G(AF) =5,

where vy runs over regular elements of type (f,e; 1). Then similar as the discussion

in Proposition 21, the sum over v is finite, depending only on the support of ¢. We
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then switch the sum to get
Irea(s) = )" Iy(s),
Y
where

L,(s) :=/ go(x_lyx)/ ®[(0,---,0, )tx]r(detzx)|det x| dtdx.
G,(Ap)\G(AF) G,(AF)

Substituting the decomposition (2.34) into the above integral, we obtain

Iy(s):// / /go(k‘lT_lD‘lB_lyBDTk)/
k J(Ge(Ap))et J(Ge(AR)\G(AR)) /B Gy(AF)

where the integral relative to & is over Kge.1(AF).

According to the preceding discussion we have

IE(S):// / /go(k‘lT_lD_lMDTk)/
k J(Ge(ar)e! J(Ge(hr)\Gar)) J B G, (Ar)

where M = B!yB is of the form

C

N C
B;,N B, +N C ,
B/,N B/, +B,N+B  u.(BijN,C) + 2:2(B;,N.C) ... B, +N C

where a typical entry of the above matrix is of the form
Bj, + B, N+ B, tux(Bij,N,C) + A (B;;,N,C)

with 4 (B; j,N,C) and A, x(B; j,N, C) are polynomials of B; ;, N,and C, withi < [ -1
and j > k +2.

A straightforward computation shows that if the first column of B’ i is determined,
then Efj = Blij - CBlfj is completely determined by its last f — 1 columns.

Therefore, when BZ,kN is fixed, then Bvl”k + B;’k 4N is an f X f matrix, linearly

determined by the last f — 1 columns of B;, and the first column of B

/

Lk+1°
this correspondence is one to one. So B — M gives a one-to-one continuous

and

correspondence. The set of M’s which contribute is contained in a compact region
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by our choice of ¢. Then, by a change of variable we see the integral relative to B

has compact support in 8. Then
L(s) = / / / / @(k™'T7' D' MDTk)Sp, (4, (T) !
k J(Ge(Ap)e! J(Ge(AR)\G(AR)) /B ’
/ ®[(0,---,0,1)ABDTk]|r(det ADT)|det ADT|*dAdBdDdTdk,
Gy(AF)

where 6p, . (a)(T) is the modular character associated to Pge;1 (A F). Change variable
B — DTBT 'D~! we then obtain

I(s) = / / / / o(k~'BT'T- D~y DTBK)
k J(Ge(ar)! J(Gelhr)\Glar)© /8

/ ®[(0,- - - ,0,1)ADTBk]|7(det ADT)| det ADT|*dAdBdDdTdk.
Gy(AF)

Then D~!yD is equal to

D;'N C

0 D;'D;'ND, C

-1 -1 -1
0 * D1 ”'De—zDe—lNDE—z'”Dl C

We can identify DjTlN with an element x; in E;.(/F>< —-1,1 <j<e-1,whereEjisa
field extension of F' with [E; : F] = f. Conjugate of DJTIN under this identification

becomes a Galois action on x;. Therefore, we have

1 e—1

e—1
his) =25 n Z / l_[ Tj(NE./'/F(xj))NEf/F(xj)js_j+1
A Af j=I

=1 x;€EX [F*~1
[Ej:Fl=f

/ / / o(k""B~'T1yPTBk)| det Ag|'~*
k J(Ge(ar)\G(ar)© J8

/ ®[(0,- -+ ,0,1)ATBk]r(det AT)| det AT|*dAdBdTdkdx; - - - dx,_1,
Gy(AF)

where the sum over x;’s is finite and

C C
D/'N C x1 C

yP={ 0 DN C =10 x, C

0 « ... DN C] \0 % ... x4 C
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Similar analysis from the proof of Proposition 21 shows the integral relative to T

actually is over a compact set since ¢ has compact support. Hence, the function

(xl,---,xe_l)»—>// /go(k_lB_lT_lyDTBk)ldetA0|1“’
k J(Ge(ar)\Gar)e J8

/ ®[(0,- - - ,0,1)ATBk]r(det AT)| det AT|dAdBdTdk
GV(AF)

is Schwartz; and the function

/ ®[(0,- - - ,0,1)ATBk]r(det AT)| det AT|*| det Ag|'~*dA
Gy(AF)
is the Tate integral for A(es,(t o Ng/r)®). Therefore, Proposition 22 follows. O

Orbital Integrals of General Type
Denote by

lexls) = | S e yen A v ),
Z

G(Ap)\G(AF) CeTteg

where g > 1,fe € Z% , (f.e) = n; and Re(s) > 1. We may write f = (fi,- -, f;)

>1°
with fi > --- > fo;and e = (e, - - ,e,).

Let E be a finite extension of F. Let y be an idele class character of A%. Let j be a

positive integer. Denote by

Ag[j1(s, x) = AeGis = j + 1, x)), (2.37)
where A(s, y) is the complete Hecke L-function associated to y.

Proposition 24. Let notation be as before. Then Ize.,(s) converges absolutely when
Re(s) > 1 and

g
Ireg() ~ | ] Or,,()AE ] (.70 Ngyr),  (2.38)
where for each i, the innermost summation is taken over only finitely many fields

E;;’s, depending implicitly only on the test function ¢; and each Qf, ,(s) is an entire

function.
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Proof. Let C be a regular conjugacy class of type (f,e; g). By Lemma 14 and proof

of Lemma 17, we can write C = {y}, with a typical element y given by

ai

(77

Am+1

ko Oyl

% a/g

Using this expression and the definition of A e],g (cf. (2.25)) one then sees that
Proposition 24 follows from combining analysis in the proof of Proposition 21 with

that in Proposition 22. O

Combining (2.24) and Proposition 24 we then obtain

Theorem E. Let notation be as before. Let Re(s) > 1. Then

n g e;
IGeoReg(8,T) ~ Z Z l_[ % Z Ok, (s) HAEi[j] (5,70 NgF) .

§=1f ezt i=1 [Ei:Fl=f; J=1
(fey=n
where for each i, the innermost summation is taken over only finitely many fields
E;’s, depending implicitly only on the test function ¢; and each Qg (s) is an entire
function. Moreover, the right hand side of IgeoRreg(S, T) in the above formula gives a
meromorphic continuation of IgeoReg(S, T) to the whole s-plane, with only possible
polesats € {1,1/2,2/3,---,1—1/n}.
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Chapter 3

MIRABOLIC FOURIER EXPANSION OF K (S)

Take a test function ¢ as before, then by the definition of Ep(x, ®; s) we have

Io(s,7) = I£(s,7) = —/ Koo (x, x) Z f(yx,s)dx.

G(F)Zg(Ar)\G(AF) yeP(F)\G(F)

where Ko (x,y) = Kgis(x, y) + Kgres(x, y) is left N(F)-invariant. Then

I(s,7) = — / Keo(x,x) f(x,s)dx. (3.1
Zg(Ar)P(F)\G(AF)
Now we proceed to compute (3.1) by considering the Fourier expansion of K (x, y).

3.1 Mirabolic Fourier Expansions of Automorphic Forms

Fourier expansions of automorphic forms of GL, are well known (see [Pia75]).
Following the idea of Piatetski-Shapiro in [Pia75], we give a new form of Fourier
expansions of weak automorphic forms in terms of generalized mirabolic subgroups,
via which a further decomposition of /,(s,7) is obtained. Here we call a function
f € C(G(AF)) a weak automorphic form if it is slowly increasing on G(AFr), right
K-finite and Py(F)-invariant, where Py is the mirabolic subgroup of G = GL,, .

Fix an integer n > 2. The maximal unipotent subgroup of G(Ar), denoted by N(Ap),
is defined to be the set of all n X n upper triangular matrices in G(Ar) with ones
on the diagonal and arbitrary entries above the diagonal. Let ¢r/g(-) = 27T o)
be the standard additive character, then for any @ = (@, - ,a@,-1) € F n=1 define a
character ¢, : N(Ar) — C by

n—1
Wo(u) = 1—[ Yro (@uige1), Y u=ij)xn € NAR).
i=1

Write Y = (o, 01,--,1) (Where the first n — k components are 0 and the remaining
k components are 1) and 6 = yy.... 1), the standard generic character used to define
Whittaker functions.

For 1 < k < n -1, let B,_; be the standard Borel subgroup (i.e. the subgroup

consisting of nonsingular upper triangular matrices) of GL,_x; let N,_; be the
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unipotent radical of B, ;. For any i, j € N, let M;,; be the additive group scheme of

i X j-matrices. Define the unipotent radicals
Iy B
N(k,l,-~~,1) = D : Be ka(n—k)a DeN, p,1<k<n-1.
For 1 < k < n—1, set the generalized mirabolic subgroups

|

For 2 < k < n — 1, define subgroups of R; by

A
0

: AeGL, Ce ka(n—k)» B e Nn—k}-

’

e GLyg,

A B C
Rg:{ 0 a D
a

0 0 B

C
D) € Mix(n-k), B € Nn—k}-

Also we define Ry = R(l) = No,-1) := N(,1,..1) to be the unipotent radical of
the standard Borel subgroup of GL,, . For simplification, we will denote by [H] :=
H(F)\H(AF) for an algebraic group H over F.

Proposition 26 (Mirabolic Fourier Expansion). Let h be a continuous function on
Po(F)\G(AF). Then we have

n

LOEDIEDY /[ S de ()
(k=1,1,-+-,1)

k=1 6;€Rx_1(F)\Rp-1(F)

if the right hand side converges absolutely and locally uniformly.

Proof. For 1 < k < n, we define

A
MQ:{ :AeGMhF%,
0 L«
Ab 0
M°°:{ 0 ¢c O :AeGL(k—l,F),beFk‘l,ceFX},
0 0 I

where I,,_ is the unit matrix of dimension n — k. For the sake of simplicity, write

Jhx) = ) h(n6xX)W-i(n)dn.
SkER1\Ry—y ¥ IN=1.1. )]
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where 9 = 1. Let N; C N be the subgroup consisting of elements of the form
1 ul,n

nD(u,) = , where u, = (U1, -+ ,ttp_1,) € A1
Upn—1n

1

Since N is abelian, & has the Fourier expansion with respect to Nj :

n—1
h(x) = Z /[NI] h(n D (uy,)x) l:[ Wr/Q (Qinltin) duy.

a(l):(al,n»"' san—l,n)an_l

h(x). Since h is Py(F)-invariant, then

. . 1
Denote the inner integral by W

W(l(),(),...7[yn71’n)h(7x) = / h(n(l)(un)yx)l//F/Q (a'n—l,nun—l,n) dun

[N ]

= /[ | h (y_ln(l)(un)yx) YriQ (a'n—l,nun—l,n) duy,
Ny

for any y = diag(A, 1), where A € GL(n — 1,F). An easy computation shows
that y~'nD(u,)y = nD(u}), where u, = A~'u,. Write A = (@;;)(n—1)x(s—1)» then

’
n—1,n

Up—1p = an_l’lu’l’n + -+ ool . This implies that for any such v,

1 1
W((),()’... ,an_l,n)h(yx) =W

h(x).
(an—l,la’n—l,nvan—l,Za’n—l,n:"'san—l,n—lan—l,n) ( )

Hence one has

M= > Wioge a0 + Wog g h(x).  (33)
Yn-1 EM;O_] \M271
an—l,neF><
For any a1, € F*,leta,_, = diag(l,- -+, 1, @p_1, 1) € R®_ \R,_y. Since h is left
invariant by a,_1,, Mr‘l’il\M}?_1 = R?l_l \R,-1 and

1 Lth 1 l/tl,n
1 1 : _1
= Qp-1,n . an—l,n’
Ap—1nln—1n e Up—1n
1 1

Wi o 1) = /[N 001
(n-1,1)
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Note that W(IO’O,M,O)h(x) = J,h(x) and Rg_l /R,—>» = GL(1), (3.3) then becomes
h(x) = / h(nd,—1 xW1(n)dn + J,h(x). (3.4)
Sno1€Rn2\Rn_1 ¥ No-1. ) (FN\N-1,1)(AF)

Let N, C N be the subgroup consisting of elements of the form

1 Ul n-1

1 (1) = s Unet = Ui s Un—2ne1) € A2

Up—2n-1

1

Since No(F) ¢ M2, W(lo,o,m,an,l,,,)h(“”—lx) =

Then we have the Fourier expansion of W(lo Ot
thel “hn—

W(l(),o,m,a,,,l,n)h(x)’ v Up—1 € Fn_l.
] )h(x) with respect to N; :

1 2
W(O,O, awn—l,n)h(x) = Z Wa(z) h(‘x)9

&(2)2(0{1 =1 &n-2 n-1 )an—Z

where Wz(z)
a

h(x) = W? h(x) is defined to be

(@1,n-1,02,n-15" \¥n-2,n1)

n-2

/[ | W(IO’O,,,_%_1 o (n(z)(”n—l)x) l—[ Ur/Q (Qip-1ttin-1) dup1.
N :

i=1

Likewise, we obtain

1 _ 2 2
Wiooeoana )= D Who o h(yneax) + Wi g h(x),

0
y”_zeM;o—Z\Mn—2
an—Z,n—ZGF><

where, by a direct computation, one has
Waoh@) = [ o u,-1,)dn
[Nn-2,1,1)]

W(zo,(),...gn_z’n_])h()’n—Zx) = /h(na,;_lz’n_l')’n—ZX)w(a'n—l,nun—l,n + un—Z,n—l)dn,

where the integral is taken over [N(,—211)]. Moreover, noting that Rg_z /R,—3 =

GL(1), then substituting the above computation into (3.3) implies that
hx)= ) h(nGu—x)Wa(n)dn + J,_1h(x) + J,h(x).
6n—2€Rn—3\Rn—l [N(n—2,1,1)]

Then clearly the expansion (3.2) follows from repeating this process n — 2 more

times. O
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3.2 Decomposition of /..(s,7)

Applying Proposition 26 to the kernel function K(x, y) viewed as a function of x,
we thus obtain a formal decomposition of the distribution /.,(s) when Re(s) > 1. In
fact, by the spectral decomposition of the kernel function K (x,y) (cf. Lemma 2
on p. 263 of [Art79]), one has

1 dim(A/Zg)
Koo(x,w:Z;n(A)— (g) / D Gy, dA,
X

PeBp

where y runs over proper cuspidal datum, P runs over all standard parabolic sub-
groups that are not equal to G; Bp , is an orthonormal basis of the automorphic
representation induced from P by y; a® is the root space which can be identified
with R""!; and

Cpy(x,y:6,4) = E(x, Ip()¢, VE(y, ¢, ),

with Zp the operator defined on p. 254 of loc. cit.(cf. line -4); and the integrals on

the right hand side converges absolutely.

Since for any m € Mp(F), we have

Emy,p, )= > ¢(6my)e @ VHrCOm) = E(y, ¢, 1),
6eP(F)\G(F)

where Hp is the log homomorphism defined by
Hp(m) = (n]" log| detmy],-- - ,n; " log | detm,|) (3.5)

for P of type (ny,- - - ,n,) and diag(my, . ..,m,) € Mp(AF).

Hence K (x,y) is Mp(F)-invariant with respect to both variables. Then we can
apply Proposition 26 with respect to the first variable of K. (x,y) to get, at least
formally, that

I(s,7) = Z Koo(n*nyx, x)0(ny)dnydn* f(x, s)dx, (3.6)
X JIN;TJN;]
k=1 k k

where the generic character 6 = ;... 1) is defined right before Proposition 26,
Xk = ZG(AF)Rk_l(F)\G(AF), and NIL = N(k,1,~--,1) and

Lot C
N,j:{ 1 : CEG’;—l}.

In—k



42

Moreover, when both sides of (3.6) converge absolutely, the identity is rigorous.

However, there are usually convergence problem with the decomposition (3.6). In

fact, for 1 < k < n, if we write 1§§ )(s) for the above (formal) integral, namely,

Igf)(s):/ / / Keo(n*nix, x)0(ny)dnydn” f(x, s)dx.
ZG(AF)R-1(F)\G(AF) J[N] J[N/]

Then in fact 153,‘ )(s) might diverge when 2 < k < n, if ¢ does not support in elliptic
regular sets. Nevertheless, we can show Iwn;(s,7) actually converges absolutely

when Re(s) > 1, and thus it defines a holomorphic function therein.

To start with, the first observation is that one can replace K, by K in the definition
of Igf)(s), 2 < k < n. Denote by V,: = diag(lx—1, Ny—k+1)- Let Vi be the unipotent
radical of the standard parabolic subgroup of type (k — 1,n — k + 1). Then for any
function ¢ on G(Ar) one has, for any x € G(Ap), that

/ / ¢(n*nx)9(n)dndn*:/ d(uu x)dud(u')du' .
[N:] YN (Vi1 & [Vkl

Since Vj is a unipotent radical, then one has
/ / ¢(n*nx)0(n)dndn® =0, ¥V ¢ € Ay (G(F)\G(AF)). (3.7)
[N JIV]
Then by (3.7) and the discrete spectral decomposition (2.1) one has
/ / Ko(n*nyx, x)0(ny)dndnodn® = 0. (3.8)
(N YN

Since K = K, + K, then by (3.8), for 2 < k < n, one sees that (at least formally)

Igf)(s) :/ / / K(n*nix,x)0(ny)dnidn* - f(x,s)dx
ZG(AF)Re-1(F)\G(AF) J[N;] J[N]]

:/ / / K(uu'x, x)dud(u')du' - f(x,s)dx.
ZG(AF)R—1(F\G(AF) J[V/] /[ Vi]

In fact, since Ko(x, x) is rapidly decreasing, the contribution from K in the above

integral is well defined, i.e, it converges absolutely.

Let n > 2. Recall that G is the union of (Zg(F)\Qx(F))?*") . Let
(n) -1 -1
Ko Sine(X%: ¥) = / e(x"u" yy)du,
Sine Ne(F)\Np(Ar) yezs
(n) (n) .
K heo (X)) = / K(ux,y)du - K_'o. (x,);
Ree Np(F)\Np(Ar) Sine

Kff;)(x, y) = Z K(uu'6;x, y)du(u')du',
v Jvi

Ok ER 1 (F)\Pn-1(F)
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where 2 < k < n. Define

n—1

k
KSing(x’y) = KGeo,Sing(xa y)— Kg,)Sing(x’ y)— Z Kgo)(xa y)- (3.9)
k=2

Let Re(s) > 1. Correspondingly, we define the distributions by
IGeo,Reg(sa T) = / KGeo,Reg(xa x) - f(x,s)dx;
ZG(AF)Po(F\G(AF)
oo = [ Ky () - £, )
ZG(Ap)Po(F\G(AF)

Tsngtsr) = [ Ksing(x.2) -/ (5, )dx:
ZG(AF)Po(F\G(AF)

h(s.) = [ KO () - fx )
Zg(Ap)Py(F)\G(AF)

where

KO, y) := Z / Keo(n6x,8y)8(n)dn, (3.10)
SeN(F)\Po(F) ¥ IV]

with N = Ry = N| being the unipotent radical of the Borel of G.

Since Ko(x, y) = K(x,y) = Keo(x,y) = K(x,y) = 27_, K®(x, ), then

Ko(x,y) = KgeoReg(¥,y) — Kg?Reg(x, ¥) + Ksing(x,y) = K(x, ).

Therefore, (at least formally) we have

Io(5,7) = IGeoReg(S, T) = IooReg(8, T) + Ising (5, T) — Iwni(s, 7). (3.11)

The analytic behavior of Igeoreg(s, 7) has been investigated in Theorem E. In the
following sections we will deal with I Reg(s, 7) and Iwhi(s, 7), and the analytic be-
havior of Igjyg(s,7) would follow from spectral expansion and functional equation.
As we will see, IooRree(s,7) Will be handled by Langlands-Shahidi’s method after
applying some geometric auxiliary results (see Section 2.1); and Iwni(s,7) can be
reduced to an infinite sum of Rankin-Selberg convolutions of irreducible generic
non-cuspidal representations of GL(n, Ar) (see Section 5). We also obtain a mero-
morphic continuation of Iywp;(s, 7) in Section 6 and Section 7. Hence the expansion
(1.4) is well defined on both sides for Re(s) > 1, and can be regarded as an identity
between their continuations when s € C is arbitrary and 7 is such that 7% # 1,V
1 <k<n.
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Chapter 4

CONTRIBUTIONS FROM I, rgG(S, 7)

Now we start with handling the distribution /. Reg(s,7). Our approach is some

geometric computation. Recall that, by definition,

IooReg(s,T) = / / Kg?Reg(ux, x)du f(x,s)dx
ZG(AF)Po(F)\G(AF) J Np(F)\Np(AF)

= / / Z o yx)du f(x, s)dx.
Zg(Ap)Po(F\G(AF) JINP] e 7. (FNG(F)-S

To simplify leoRreg(s, 7), we will write Zg(F)\G(F) = UC as a disjoint union of
G(F)-conjugacy classes modulo Zg(F), and further decompose each class C into
a disjoint union of P(F)-conjugacy classes. Then we will find representatives
of these P(F)-conjugacy classes explicitly. So eventually one can get rid of the
factor Py(F) = Zg(F)\P(F) in the domain; moreover, one can now apply Iwasawa

decomposition to the domain Zg(Ar)\G(AF) to compute this integral.

4.1 P(F)-conjugacy Classes
For any G(F)-conjugacy class C, denote by Cf éF)
CP(F )

the component Cy given in (2.3)
if C is regular, and take to be an empty set if C is irregular. Since Cf éF) does
not intersect any standard maximal parabolic subgroups and is nontrivial only when
cle!’

C is regular, for convenience, we call the regular elliptic component of C,

despite of the fact that it might not be elliptic.

Let Cif (eF) be the union of regular elliptic components of all G(F)-conjugacy classes
in G(F). Then @5(5) is a disjoint union of P(F)-conjugacy classes in G(F') by
Proposition 12. Moreover, Proposition 13 and Proposition 12 give a decomposition

of G(F) as P(F)-conjugacy classes
n—1
G(F) =D |1 o). (4.1)
k=1

For any 2 < k < n, let P be the standard maximal parabolic subgroup of GL; of
type (k — 1,1). In the following, we identify P; with diag(Py, I,,—x) when view it
as a subgroup of G = GL,. Write W the Weyl group of GL; with respect to the
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standard Borel subgroup and its Levi component. Let Ay be the set of simple roots.
Let Si be the subgroup of symmetric groups S, generated by permutations among
{1,2,---,k} c {1,2,---,n}. For any @ € Ay, via the isomorphisms and natural
inclusion Wy, =8 t — Sy > W,,, we identify it with its natural extension in A, the set
of simple roots for G(F) = GL,(F). Henceforth, write Ay = {a;;+1: 1 <i < k—1},
and for each simple root ;;1, write w;‘ for the corresponding simple reflection and

identify it with w; by the natural embedding.

Denote by (Eﬁ ’;(F) the union of regular elliptic components of all G(F)-conjugacy
classesin GLi(F),2 < k < n.Let Ry be a set consisting of exactly all representatives
of the Py(F)-conjugacy classes Cif ke(.F).

To compute IoRreg(s,7), an explicit choice of representatives of (Sf(j) in Bruhat
normal form needs to be taken. We will find at the end of this section that for each
2 < k < n, there exists a particular choice of each Ry, such that Ry is determined
by Rk-1. Thus a desired R, could be obtained by induction. This will be illustrated
in Proposition 29, to prove which, we start with the following result to narrow the
candidates of representatives for Gf(f).

Lemma 27. Let notation be as before. Set Rp = {w,_iwp—p---w1b: b e B(F)}.
Denote by Rﬁ(F) the union of P(F)-conjugacy classes of elements in Rp. Then one
has

PE), (4.2)

€ =Ry

Proof. By Bruhat decomposition, one has

G(F) = P(F)| | P(F)-wy1 - P(F).

For any g; € P(F) and g, € P(F) - w,—1 - P(F), since different Bruhat cells do not
intersect, the P(F)-conjugacy class of g; does not intersect with that of g. Also
note that P(F)-conjugacy classes of P(F) lie in P(F), so they are not regular elliptic.
Hence we reject all representatives in P(F'), and see clearly that P(F)-conjugacy

classes in (55 (eF) are represented by elements in w,,_; P(F).

A1 b
For any g = w1 | " ! 4 € w,_1P(F) N (‘Zf Ef), by Bruhat decomposition,

n

either A,y € P,_1(F) or A,_1 € P,_1(F)w,_2P,_1(F), where P,_; is the standard
maximal parabolic subgroup of GL,_(F) of type (n —2,1). If A,—; € P,_(F),
then g € 0, 2(F) € Ui<k<n-i Qi (F)P®) Thus g ¢ (ng). Therefore, A, €
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Py (F)Wp—2Py—1(F). For any 1 < k < n — 1, write R} the standard parabolic
subgroup of G = GL,, of type (k,1,---,1). So we can write

iy ¢ b Apo Cpn2
g(O) =8 = Wn-1 1 by Wi dy— € Wn—lRZ_l(F)9
1 dy
Ao Ch2
which is conjugate by w,,_» dp_1 € P(F) to
dy
Ap-2 Cp2 Ino ¢ b
g(l) = Wp-2 dn—l Wn—1 1 b2
d, 1
An—2 Cp-2 In—2 C bl
= Wp-2Wpn-1 dy 1 by|€ Wn—2wn—1RZ_2(F)'
dy— 1

Again, apply Bruhat decomposition to GL,_»(F) < GL,(F) to see either A, €
P,»(F) or A,y € Pu_(F)w,_3P,_»(F), where P,_, is the standard maximal
parabolic subgroup of GL,_»(F) of type (n — 3,1). If A,_» € P,_»(F), then gV €
0n-3(F) € Ui <rens Ox(F)YP®) Thus g ¢ €77 Therefore,

An—2 € Pn—Z(F)Wn—3Pn—2(F)-

So we can write

I3 ¢ C. o bll Ap-3 Cn-3
1 P v d_
1) _ n-2 2 n-2
& = Wn2Wn-1 Wn-3 )
n n 1 b n d,
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An—3 Cn-3
. . . dn—2
which is conjugate by w;,_3 J € P(F)to
n
dn—l
An_3 3 I,z ¢ c%l_)z b
- 12w
@ = yp,_ "2 Wp—2Wp— n=2 2
8 n-3 dn n—-2Wn-1 1 b’3
dp—1 1
Ap-3 cn3\[In3 C,gl_)z bll
d, 12w
= Wp-3Wp-2Wpn—1 i 1 bg .

dp—2 1

Clearly, g(z) € Wy_3Wy_2Wy_1 R:_3(F ). Continue this process inductively to see that

g is P(F)-conjugate to some element g2 € wyw, - - - W1 R} (F).

Therefore, (Sf_(f) C{yP®: yewiwy - Wn-1R{(F)}. So we have

P

(g ey c (PP y e RI(F)Wyr - - wawi}

= (PP y e w,iwua--- w1 B(F)},

since R{(F) = B(F) C P(F). Denote by ¢ : G(F) = G(F), g — g7, the inversion

P(F)
e

isomorphism. Then €, is stable under ¢, since | J; <t <1 Qx(F)* (F) js stable under

t. Hence,
P = (g g ey c (PP y € wpywpa - wi B(F)} = REE),

Now we show that RP{)(F) N Ui<kent Qx(F)PE) = 0, which implies by (4.1) that

REF) ¢ ¢ Therefore, €/ = REP).

Assume that Rg(F) N QOW(F)PF) £ @ forsome 1 < k <n—1.1f k = n— 1, then
Q«(F)PF) = P(F). Then the assumption forces that w,,_iwy_; - - - w € P(F), which
is obviously a contradiction. Thus we may assume that 1 < k < n — 2. Then by
Bruhat decomposition, one has
P(F) = ]_[ N(F)wB(F), and Qi(F) = L| N(F)w'B(F).
weW,_ w’eWy

For w € W,, denote by C(w) = B(F)wB(F), the Bruhat cell with respect to w. Then
the assumption RII;(F) N Qi (F)PF) £ ( leads to that

CW)C(Wp_1Wn_z - - w)C(w™ ) N Cw’) # 0. (4.3)
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However, Lemma 28 below shows that for any 1 < k < n - 2, any (w,w’) €
W,—1 X Wy, the intersection in the left hand side of (4.3) is always empty, which
gives a contradiction and thus ends the proof. O

Lemma 28. Let notation be as before, 1 < k < n — 2, then one has

CW)CWp_iWpz - - w)CW HNCW)=0,Vwe W,_i, w e Ws.

Proof. Recall that for any w € W,, and @ € A, we have (see [Spr09], Lemma 8.3.7)

C(sqw) if l(sqw) = 1(w) + 1,
C(sq)C(w) = 4.4)
Cw)u C(sqw) ifl(sqw) =1(w)—1,

where [ : W — Z is the length function. Also, a similar computation shows that

C(wsy) if l(wsy) =1(w) + 1,
Cw)C(sq) = (4.5)
Cw)u C(wsy) ifl(wsy) =1(w)—1.

Then by (4.4) and (4.5), one obtains that
C(sqwsqy), if [(sqwsy) = 1(w) +2;
C(sqw) U C(5qWsq), if l(sqw) < L(W), [(sqWsg) > [(sqW);

C(w)'e = (4.6)
C(wsy) U C(sqwsq), if lwsy) < L(w), [(sqwsq) > 1(wsy);

C(w) U C(sqw) U C(wsy) LI C(sqwsy), otherwise,
where we use C(w)*> to denote by C(s,)C(w)C(sq).

Let w € Wy and w € W,,_;. Let [(w) be the length of w. Then w could be written
as a products of /(w) simple reflections s;, | <i < n—2, and each s; corresponds to

the associated reflection of some simple roots in W,,_;.

o Assume that I(Wy_1 - - wowiw™!) = l(wp_q - - wowy) + I(w™!). Take w =
Si(w) * * * 5281 to be a reduced representation by simple reflections and apply
(4.4) and (4.5) inductively one then sees that

CW)C(Wno1Wn—z - w)CW™ ") = COWWpoiwy—g - - - wiw ™).

We will simply identify Weyl elements in W,, with translations on the set
{1,2,---,n} under the isomorphism W, — S,. Then the cycle type de-
composition of ww,_1w;,_5 - - -wiw™! is the same as that of w,,_w,_s - - - wy,
which is an n-cycle. However, since elements in Wy can never be n-cycles,
COWWp_1Wp—a - - wiw™ )N CW) =0,V w' € Wy.
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 Assume that [(w,_1 - --woww™!) < I(Wu_1 -+ wowy) + [(w™!). Denote by
D(w) the set of all possible reduced representations of w’ by simple reflec-

tions. Then by our assumption, one can take a reduced representation of

! !

w = s;( --- s’ s such that s/ = w;. Hence one can well define
w) 2°1 1
o= c s = .,13'3‘.
Jw lsljl,lsal)gw) {si0w)* - - 5251 € D(W) : 5; = w; i <j}

Letw = sy(y) - - - 5251 be areduced representation such thats; = w;, 1 <i < jy,.
Then w! = 515, Si(w)- Also, by (4.4) or (4.5) we have

C(w) = C(siw)) - - - C(52)C(s51), and C(w ™) = C(51)C(s2) - - - Clsy00))s
SO
CW)CW)C(W™) = Clsipw) - - - C(52)C(51)CIIC(51)C(52) - - - CSi00)),

where we denote by w = w,_1w,_»---w; for convenience. According to

(4.6), a brute force computation shows that

comemew ™y =co | | || co,
1<i<jy
where w* = ww,_1 -+ wj, oW 11Sj,,, " Siw), and for 1 < i < j, wd) =
WWp—1 == Wit IWiWisl == Wi Sj o Si(w)-
Let wj,) = Siow) " Sjsrs wZ‘jw) =Wj,  WiWu_1 W, 42Wj, +1. Then WEkjw)
is an n-cycle, and thus w* = W(jw)wa. )w(‘jl‘) is also an n-cycle. So w* ¢ Wy,
implying that C(w*) N C(w') = 0,V w’ € Wj.

Foreach 1 <i < j,, let
%
Wiy = Wi-1 - WiWn—1Wp-2 " " * Wit1,

W) = i) Sjws Wiy © - - Wi Then w® = W(i)wzkl.)w(_l.)l. One can check that
wiy = (L2, )i + 1,--+ ,n), ie. the cycle type of w, is (i.n — ). So w®
also has cycle type (i,n — i). Since elements in Wj can never have type of
the form (i,n — i), w(® ¢ W,. Therefore, Cw")n C(w(i)) =0,V1<ic<jy,
w € Wg.

This completes the proof. O
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Now we consider P(F')-conjugation among elements in Rp = {w,_ w2 ---wib :

b € B(F)} to determine representatives of Ri(F). Define a relation &% on the set
{wn_lwn_z cewitu s t € T(FX), u € N(F)¢ such that w,,_yw,,_5 - - - witu is related

to wy—1wp—p - - - wit’t’ if and only if u = v’ and dett = dett’, which is equivalent to

that there are elements ay,- - - ,a, = ag € F* such that

apt 1a_1 =t
1 1

-1 ’
aitbha =1
R 4.7)

an_ltna,jl =t.

One can check easily that RIIZ(F) forms an equivalence relation.

Proposition 29. Let notation be as before. Set
ﬁp = {Wn_lwn_z -cewqtu: teT (FX) , ue NP(F)}/%

Then Rp forms a family of representatives of R}}:(F).

Proof. Let wy_ 1wy ---wib and wy_1w,_> ---wib’ be two elements in Rp, and
write b = t,u, b’ = t)1’, the corresponding Levi decomposition. Assume that there
exists some p, € P,(F) = P(F) such that

PunWn-1Wp-2 " Wlbp;1 =Wp-1Wp-2- " Wlb/- (48)

Then wy—1ppwn-1 = wp—2 -~ Wlb,pnb_lwl Wy € P(F) = Qy-1(F). Since p, €

P(F), it is necessary of the following form

2 I, S R GLn—Z(F) * *
DPn = ap-1 0 |€ F* 0 | C QnalF).

a F*
-1 .
Hence, Wy oWy-1paWn-1Wn—2 = Wy—3 - - - wib'p,b™ w1 - -~ wy_3 € Qp2(F), e,

P P S R | GLn—Z(F) * *
Wn-2 ay 0 Wp—2 € F* 0]c Qn—Z(F)

an—1 Fx
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Then A,_» must lie in a maximal parabolic subgroup of GL,,_>(F) of type (n — 3, 1),

and the last component of ¢, must be vanishing. Thus we can write

0 P S (3 c,ﬁ”‘3) GL, 3(F) = * *

n—1
an-2 Cp-2n-1 0 F* % 0
pl’l = € ’
an-1 0 F>< 0
a, F*

. k
where for any column vector ¢; = (cy4, ¢4, - ,cm,,-)T, any 1 < k < m, write clﬁ ) =
(c1j»Cair- -+ ki), namely, the first k-entries. Now a similar analysis on the identity

’ -1
Wn—3Wn2Wn_1 PpnWn-1Wn—2Wn-3 = Wp_4 - Wib'p,b” w1 ---wy_4 € Q,_3(F)

leadstoc¢, = cf,"_4), namely, the last 4 elements of ¢, are all zeros. Likewise, continue

this process (n — 4)-more times to get ¢, = 0. Now (4.8) becomes
-1

ay 0 0 . 0 ay C¢12 - Clp-1 0
a ci2 0 Cip-l a -+ cp-1 0
b e =0, 4.9)
an-2 Cp-2n-1 ap-1 0
an-1 an

When expanded, (4.9) becomes (4.13), which will be investigated below. Before
seeking for a solution to (4.9), we will simplify it by taking showing that one can

actually only consider some special b and »’. This is justified by Claim 30 below.

Write t, = diag(,- -+ ,#,), and set #;; = t,-tj‘l; forany n — 2 < k < n— 1, define
I uy
n,_(F) = { 1 D ug € kal(F)}-
Ik

Letu,  =unmn, ((F),n—2 <k <n-—1.Then u = uju,.

Claim 30. For any b € B(F), there exists a unique 1 € ny(F) c P(F), such that
W wyea - wibi € Wy wyoa - wi T(F)ny (F).

So we only need to consider the P(F)-conjugacy of among elements in R =
{Wp_1wp_p - witu: t € T(FX), u € Np(F)}.

Let wy—1wy—2 - - - witylty, wy—1wp—2 - - - wit,u] € R be P(F)-conjugate. Then there
exists some p,, = diag(b,a,) € diag(B(F), F*) such that

-1 ’. .’
PnWn—-1Wp-2 Wltnulpn = Wp-1Wp-2 " 'Wltnul- (4.10)
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Write b = diag(ay, ap, - - - ,ay—1)1t, where we identity u with diag(u, 1) € np(F). Then
comparing the Levi components of both sides in (4.10) leads exactly the system of
relations (4.7); while the unipotent radical gives the equation (4.13) with cgj =1,
1 <i < j < n—1.By the uniqueness of solution (shown in the proof of Claim 30),

u = I,. Therefore, u; = uj € ny(F) = Np(F). Then the proof follows. O

Proof of Claim 30. Let notation be as in the proof of Proposition 29. Let u =
{uijhi<ij<n € (F), and ¢ = {¢ij}1<ijen = Wi+ Waot 0wy - witputy ! De-

note by u* = {u,/-,j}lsi,an € 1p(F). Then one has, for any 1 <i < j < n, that
ujj+ ”;,i+1”i+1,j + ulf’i+2ui+2,j + -+ ul'.,j_luj_l,j + Ml/',j =0. (411)

Also, an elementary computation shows that for any 1 <i < j < n, one has
Gij = l‘,‘l‘j_lbti’j + ti+1tj_1u;_1’iu,-+1,j + -+ tj—ltj_lul{—l,j—zuj—l,j + u;_Lj_l. 4.12)

Now fix lej, 1 <i < j < n,and t,, then we show by a double induction that there

exists uniquely u; j, 1 <i < j < n,such that ¢;; = Cijs 1 <i<j<n,i.e., we want

,

to solve the system of equations, for fixed ¢y, - - - , t,,

Lt

; (4.13)

-1 o / _ 0
Uij + L1l Uy g U1+ - Lol U g oUj—1 U g = G

When n < 4, one can check directly by hand that the solution to (4.13) exists and is

unique. So from now on we assume that n > 4. Let O; = {D;; = ujy1jyiv1 0 1 <

j<n-2-i},1 <i<n-3By#l12),c; = tltj‘lul,j, so to make ¢V = (1)].,
one takes u; = tl‘ltjc(l)’j, 1 <j<n-1.Also, by (4.11), ulf’m = —Ujj+1, 5O (4.12)

shows that ¢; ;11 = ujj41 + uz{—l,i =Ujjr1 —Ui-1;,2 < i <n-2.Letcijy = Cgi+1’ then
?l. 1 (1)2, then a simple induction
0

shows that elements in ©; are uniquely determined by the equation c¢;; = Ci o

Uijy1 = Ui—1; +C 2 <i<n-2.Since ujp = l‘]_ltzc

l<i<j<n.

Now, let 1 < ip < n — 3, assume that D; are uniquely solved out by (4.13) for
any 1 < i < ip. By our assumption and (4.11), u/ ; are now uniquely determined,
I <i <ip— 1. Then according to (4.12), D1 = Uiy+1p+2 = Ciotlig+2
Wy pU3jg+2 + Uy 3Uajos2 + - U Uige1jo+2, Where ujjosn € Digyo-i,3 <1 <ip+1.So

+ Uljg+1 T

D;, 1 is uniquely determined. Assume that we have solved out all D; ;, j < jo,in Dj,.
Then by (4.12), D; j, = jy+1,jo+io+1 cOmpletely depends on u;.w., Jo+1 < j < jo+ip,
and ujj 4k jorig+1 € Dig+1-k» 2 < k < ip. Again, by (4.11), we can inductively

compute each ”}oj in terms of uy js, jo < i < j° < j such that (i’,j") # (jo,Jj).
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By our inductive assumption, all these u;- j.’s and u; 4 j,+i,+1 have been solved out
uniquely. Then D; ;, is thus obtained. By induction, elements in 9, are uniquely
determined. Therefore, by induction on the index iy, one verifies that the solution to

(4.13) does exist and in fact is unique.

Denote by 19 = u; € n2(F) the solution to (4.13). Then uy depends only on
@ = {ng}lsi,an and t,, where we define cgn = Oin, | <1 < n, here ¢ is the
Kronecker symbol. Let b = uu;t, be an arbitrary element in B(F'). Take @ =y,
Uy € np(F) the solution to (4.13), and define np = uotrjlultnual € ny(F). Then the

following conjugacy equation holds:
-1
Uy Wy 1Wp—2 = WituTpllg = Wy 1wy—p - - - willaligt,.

Therefore, one can take representatives of P(F)-conjugacy classes Ri(F) in the set
R={wp_itwp_o---witu: t e T(F*), u e Np(F)}. |

Remark 31. Let y = w,_1w,_o---witu € GL,(F),t € T(F*),u € N(F), then the
P(F)-conjugacy class of vy is thoroughly determined by dety and uw N Np(F).

Now we consider for our purpose the decomposition of Zg(F)\G(F) into P(F)-

conjugacy classes. By (4.1) one has the following decomposition
n—1
Z6(F\G(F) = Zo(PNS | [ ZeENou(F)™ ™. @4.14)
k=1

Corollary 32. Let notation be as before. Set (F*)" = {t" : t € F*}, and let

In—3

R = {W1W2"'Wn—1 t u:teF*/(F)", ueNp(F)}. (4.15)
153

Then ﬁ; forms a family of representatives of Zg(F )\(Sf (eF)

Proof. By Lemma 27 and Proposition 29,

In—2
{Wn—lwn—z Cee W t Olu:te F*/(F)", ue Np(F)} (4.16)
1

forms a family of representatives of Zg(F )\@5 (eF) Then the inverse of elements in
the set defined in (4.16) also form a family of representatives of Zg(F )\Gf_ (eF) . Note

that these inverses are bijectively Py(F)-conjugate to R*, then the proof follows. O
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4.2 Holomorphic Continuation

Let Po(F) be the mirabolic subgroup of G(F), then by definition we have Py(F) =
R,_1(F). For any y € G(F), write y") for the Po(F)-conjugacy class of y, which
is the same as P(F')-conjugacy class of y. Then by Corollary 32 one can decompose
Zg(F)\G(F) as

n—1

Z(FNG(F) = | [ y*O | || @etPnQuF™ . @17)
yeRs, k=1

By the decomposition (4.17), one can write K(x, y) = Kgeoreg(¥, ¥) + Kgeosing (%, y),

where

Kaeoree(63) = D > @' p”'ypy),

yeR?, PEPO(F)

Keosing(3) = D > ¢x'pypy).

yPoF)ep pePo(F)

Hence we have the decomposition
Ioo,Reg(S, T) = / / KGeo,Reg(nxa x)dnf(x,s)dx.
Xn [NP]
where X, = Zg(Ar)Ry-1(F)\G(AF) = Zg(Ar)Po(F)\G(AF) and
P = {7P(F) cy € Zg(F)\Qi(F) forsome 1 < k <n- 1}.

Note that f(x,s) is P(F)-invariant, then by (4.17) and a similar trick of changing

variables and interchanging integrals one has formally that

Ioo,Reg(s,T):/X /[N] Z Z go(x‘ln-lp—lypx)dnf(x,S)dx

yeR;, PEPo(F)

:/ / Z o(xTn Yy x)dnf(x,s)dx
Z6(AF)\G(AF) NP(F)\NP(AF)y

o *
eRp

:/ / / Z o(x i n Yyux)dndu f(x, s)dx
ZG(AF)Np(Ap)\G(AF) J[Np] J Np(AF)

yeﬁ;

:/ / / Z o(x VY ynx)dndu f(x, s)dx.
ZG(Ap)Np(AP)\G(AF) J[Np] ¥ Np(AF)

yeﬁ;

In this section, we will prove the following:
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Theorem F. Let notation be as before, then IoReo(s,T) converges absolutely and
locally normally in the domain Re(s) > 1. Moreover, lores(s, T) admits a meromor-

phic continuation. Precisely, one has

A(s, T)A25,7%) -+ - A((n = 1)s, 7" V) A(ns, )
A(s+ L)ARs + 1,72) - A((n = D)s + 1, 7771)’

TooReg(S,T) ~ (4.18)

Proof. Recall that for any 2 < k < n, any v € Xf, we have defined

Ty uy
N]j = { 1 D UE € M(k—l)xl}-

In—k

Let N} (AF) be the restricted product of N, (F,)’s, over v € Xr. Then

N(arp) = | [ Ni(ar) = Ni(ApN;_ (AF) - N3 (Ap), and N(F) = [ | Nz(F).
k=2 k=2
Write N¥ = []{Z5 N;. Then one can write that N(Ar) = Np(Ap)NP(Ar) and
N(F) = Np(F)NF(F). Apply Iwasawa decomposition:

X'(Af) := Zg(Ap)Np(Ap)\G(AF) = Zg(Ap)\T(AF)N"(AF)K,

where T' ~ (G,,)" is the maximal split torus and K is a maximal compact subgroup.
Set T*(Ar) = Zg(Ap)\T(AF) for convenience. For any y € R, write it uniquely
I
asy = Wiwa - Wy t 0|u, withr € F*/(F*)",and u € N(F). Set w =
1
Wiwy - - - w,_1. There exist unique up € Np(F) and u” € NP(F) such that u = upu”.
Let pr- be the half-sum of positive roots of 7%, and set or+(t) = t2P1* to be the
modular character, explicitly, for any t = diag(t;,2, - ,t,—-1,1) € T*(F), o7+(t) =
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H;.:ll |t;] X‘Fz”l. Substitute these into the expression of /o reg(s) to get

LooReg(8,T) = / f(x,s) / /
X'(AF) Np(Afr) J Np(F)\Np(AF) Z Z

teF* [(F*)" ueNp(F)

I
w t unx | dndudx
1

4t
_ / / / FnPth, s)2—dn® dk / D /
K INP(ag) JTe(4r) 67+ (t) Ne(ar) T JINp]

I
Z ol k=1 W) t upnn’ 'tk |dndu
llpENp(F) 1

_ / / / F(tnPk, s)dtdn”dk /
K JNP(AR) JT*(AF) Np(Ar)

In—2
x/ ol kD) W t ntn®k | dndu,
Np(AF) 1

@ x !

teFX(FX)"

where the factor 67+(t) comes from the Jacobian of change of variables.

Recall that f(x, s) is defined by

f(x,s) = 7(det x)| detxljv‘/ O[(0,- - ,0)x]7" (@)t d™t, (4.19)

X
F

which is a Tate integral for the complete L-function A(ns,7").

Then f(tn*k,s) = 7(dett)| dett|® f(k,s), where we identify T*(Ar) with the sub-

group {diag(ty,--- ,ty-1,1): t; € A;, 1 <i < n— 1}. Therefore one has
TooReg(S,T) = / f(k, s)dk/ an/ / ZT(det t)] dettljg;l
K NP(AF) T*(Ar) J Np(AF) 3
In—2
X/ ol kD) W t tnn®k | dndud™t,
Np(AF) 1

where 7 runs through F*/(F>)" .
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Given any ' € NP(Ar), and any t' € T(Ar), we consider the following system of
equations with respect to variables ¢;j, 1 <i < j <n—1,and u € Np(Ar),
-1

1 ¢l -+ Cint O 10 0 ... 0
L - cp1 O L ci2 -+ cCip
s C = twun. (4.20)
1 0 I cp2pn
1 1

One sees easily that equation (4.20) is equivalent to (4.9) or the system of equations
(4.13). By the existence of solutions to equation (4.9) (with fixed initial datum), we
can find some u = 1y € Np(Ar), and ¢;; = c?j € Ap,1 <i < j <n-1,such that

(4.20) holds. Therefore, one can always find some element ¢ € N”(Ar) such that
I, » I,
Tt t |te=tT'w t |tuou’. 4.21)
1 1

. R
Hence for any ' € N”(AF), one can rewrite IoReg(s,7) = I ~(1'; 5), where

IR s) = / fk,s)dk / dn® / / ZT(dett)ldetﬂX:
K NP(AFR) T*(Ar) J Np(AF) 75

In—2
x/ ol k7' WP)y it t tn'n"k | dndud*t.
Np(AF) 1

Let cp = vol (NP(F)\N*(AF)) . By (4.21), 128 (’; 5) is NP(Af)-invariant, hence

one can integrate 1~¢(1’; s) over the compact domain N¥(F)\NP(Af) to see that

IooReg(s,7) is equal to

1
— / F(k,s)dk / dn” / / / Zr(dett)ldettlxl
cp Jk NP(AF) (NP) JT*(aF) I Np(AF) 5 g

I,
x/ ol k'@t t tn'n"k | dndud*tdv’
Np(AF) |
1
S (k,s)dk du 7(dett)| dett|S*!
Afp
cp JK N(AF) INPTITAF) e iy pey

I
N / ol k7 ut t [twl W'k | dnd*tdy’.
Np(AF)
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After a changing of variables one obtains

Ioo,Reg(S,T) /f(k S)dk/ du/ du/ A(v,lg(t)
N(AF) [NP] NP(AF)

zeFX/(FX)"

x/ / o| kM wni'k | d*t,
F F

l_]

n—1

e 1105 1
where d*t = d*t,d*ty - - - d*t,—1, and for any t = diag(t1,t2, - - ,ty-1,1) € T*(Ap),

n(n—1)

1
AR =) T 1l (”’]—[ (g D,

Depending on the purity of n, we can further simplify /.o reo(s, 7). Recall the test
function ¢ has the central character w, = is the set of idele class characters on Ap,
which is trivial on the archimedean places. Denote by Z,,, the subset {y € E :
X" =w} CE Also,let B, = {£ € E: £ =7} if nis even, and set 27, to be the
empty set if n is odd. Then both #Z” , < co and #= ro < 0.

When n is odd, we have, by the computation above, that Ioo,Reg(s, T) is equal to

— / f(k,s)dk / du / dv’ / dn / A (D1
N(AF) NP] Np(AF) A%

X€Ew,n F

X/ / SD k_lu W”lu,k dXtZ"'dxtn—la
A% AX

F F -1

51
where we use the fact that (A%)" - F*/(F*)" = F*. (FX\A¥X)", and 7| - |4, is

F*-invariant, and

(n=1)(s+1) 1>(A+1) n-1
—i]( +1)
A2 ©) = 2e)re) Tl ¢ | o Dl
i=2
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When 7 is even, one has a similar simplification as follows

LoReg(s,7) = — / f(k, s)dk /N (AF)du /NP A’ /N . DA )

= =n
XE€EEw.n EEE B,

X/ / 90 k_lu Wl’lu,k dxtl "'dxtn—l,
A% A%

4]

where the weighted character A{" vé is defined to be
(n—1)(s+1) n-1 ]( +l)
A (1) = RE)T@) T Il * ]_[ £t Il
Let T.(A%) = {diag(l,t1,t2, -+ ,tp-1) € T(AF) : t; € A%, 1 <i <n—1}. Set

D THAR) — T(AY), t > t = diag(Lt 51,60 L h).

For any n € Ny, define §, £(x; k,5) = §y (x; k, 5,0, D, 7) by

Fye(xik,s) = / du / du’ / cp(k_lut‘xu’k) Asropen()dt,
| Nap  Jwver Jrep |

1+( 1)"

where we write §,, = and denote by A , #,(t) the following character

(n=1)(s+1) 1)(v+1)

HOE) o) Tl ﬂx(mf(z,f ()" 5 g I,

Since [N”] = NP(F)\N"(Ar) is compact and ¢ is compactly supported, the integral
over N(Ar) converges absolutely; hence the function &, #(x; k, s) is well defined for
any y, & and Re(s) > 1.

Let b = ut € B(Af), where u € N(Ap), t = diag(ty,t,--- ,t,) € T(Ar). Then

Brebrikos) = [ [x@e@e) sl 1§ peikes). @22)

n t”+1 —2i

Since the modular character of T(AF) is 07a,)(t) = ;2 £ , S0 one has

GA n— n n 2’"
Bel ko) € Indgir) (g 10 e [, g )
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where for 1 <i < n, 4; = 212% _; Denote by

1
Gre(x;s) =G e(x;s,0,@0,7) = ; / flk,s)&ye(x; k,s)dk.
K

Then at least formally one can write I, Reg(s, 7) as a finite sum:

LooReg(S,T) = Z Z / G ¢(wn; s)dn, Re(s) > 1. (4.23)

XEEw,n fEEZ,Z NP (AF)

Let §11+(x5k,5) = Fra(xs ks, el |@1) and Gri+(x;s) = Gra(xss,lel, [@],1).
Then the above interchanging orders of integrals is justified by Fubini’s theorem on

integral of nonnegative functions. One then has

I;—),Reg(s’ T) = Z Z / G],1’+(‘F’an; S)dn,

XE€E1n £€EY, Np(AF)

where the sums are finite. Then pr( Ap) G1.1+(wn; s)dn converges absolutely in
Re(s) > 1 according to Langlands’ theory on intertwining operators. Therefore, by
dominant control theorem, /Np (Ar) G, £(wn; s)dn converges absolutely in Re(s) > 1.
It is thus a well defined intertwining operator. By Langlands’ theory (cf. [Lan71]
or [Sha84]) on intertwining operators, we have

— A(s, T)AQ2s,72) - - Al(n = s, 7" HA(ns, )
Gy e(wn; s)dn ~ 5 —
Np(AF) Als+ 1L, 1) AQRs + 1,72)---A((n — 1)s + 1,77 1)

where the last factor A(ns, 7") on the numerator comes from the Tate integral f(k, s)
(ctf. (4.19)).

So (4.23) is well defined. Then (4.18) follows since the sums in (4.23) is finite. O

Remark 34. In GL(2) case one can also prove Theorem F by Poisson summation (cf.
[JZ87]). However, the approach in loc. cit. does not generalize to higher rank case
because of a lack of Poisson summation formula. We take advantage of P-conjugacy
classes in G to show IwRreg(s,T) can be written as a finite sum of certain auxiliary
intertwining operators, and then apply general theory on intertwining operators.

This approach steers clear of Poisson summation.
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Chapter 5

CONVERGENCE OF THE SPECTRAL SIDE

We will deal with the spectral side

Iyni(s,7) = / / Koo (1, 00 ) f(x, 5)dx,  (5.1)
ZG(AF)N(F)\G(AF) J N(F)\N(AF)

where K (x,y) = K(x,y) — Ko(x, y) is the non-cuspidal part of the kernel function
relative to a general test function ¢ € H (G(Af),w). The main concern in this

section is the absolute convergence of Iwp;(s,7) when Re(s) is large.

Typically one needs certain suitable regularization or truncation for K, which is
slowly increasing. In the GL(2) case this can be handled by the techniques in
[Sel56] or [Zag81]. Also, Arthur (e.g., cf. [Art78], [Art79], [Art80] and [Art81])
develops a truncation approach to regularize the trace formula on general reductive
groups successfully. Arthur’s truncation operators and their variants (e.g., [Lap06])
provides a powerful toolkit to manipulate the convergence problem in the (relative)

trace formula.

However, these truncation operators seem to be incompatible with the distribution
(5.1). One of the main barriers is that the domain is not the usual automorphic quo-
tient Zg(Ar)G(F)\G(AF) but the larger region Zg(Ar)N(F)\G(AF). In particular,
the kernel in (5.1) is not G(F)-invariant now, which makes the usual truncation oper-
ators not work well here. One can appeal to the spectral expansion of K, and apply
Arthur’s truncation A’ to the second Eisenstein series and show it can be integrated
over a Siegel domain. With further covering process by Weyl elements conjugation,
one can show (5.1) converges absolutely with K (x,y) replaced by Ag Ko (x,y),
where Ag means the operator A7 is applied to the y-variable. This will be discussed
in Section 5.4. Nevertheless, taking Fourier coefficients in the first variable makes
the geometric truncation difficult to control, since it is not G(F)-invariant. So it is
not clear how to compute the spectrally truncated distribution as a polynomial of the
parameter 7 and show ultimately that this polynomial is indeed a constant. (Here
the letter ‘T’ is a conventional notation for the truncation parameter, while we use

“T” to denote the torus elsewhere.)

We will propose an alternative way to show convergence of (5.1). Our strategy is to

reduce (5.1) to a Mellin transform of the Kuznetsov relative trace formula, which is
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majorized by a gauge. So that one obtains convergence of (5.1) for all ¢ when Re(s)

is large enough.

Then substituting the spectral expansion (5.7) of Ko (x,y) into (5.1), then Iwp;i(s, 7)

can be written as

22

where Xg = Zg(Ap)N(Ar)\G(AF) and X is the (infinite) set of cuspidal data, and

W;’s are the Whittaker functions. See (5.10) below for details. We then summarize

= [ VI )W (s A D (). (52

YEX PeP P JAr é1 2

P+G

the final result on the absolute convergence of (5.2) as Theorem G at the end of this

section.

5.1 Reduce to the Kuznetsov Relative Trace Formula

Lemma 35. Let ¢ € H (G(Ar),w). Let K = K%, Ko = K¥ and Ko, = K be the

corresponding kernel functions. Then

Ko(x,y) = Z (K(ndx,0x) — Keo(ndx,6x)) 8(n)dn. (5.3)
seN(F)\Py(F) VIV

Proof. By the spectral decomposition of Ky(x, y) we see it is cuspidal as a function
of x. Applying Proposition 26 to the first variable of Ko(x, y) and take y = x we
then obtain

Ko(x,y) = Z Ko(ndx, x)0(n)dn.
seN(F)\Py(F) Y V]

Then (5.3) follows from the spectral decomposition Ko(x,y) = K(x,y) — Ke(x,y)
and the automorphy of these functions relative to the second variable. O

Let Re(s) > 1 in this section. We then plug Lemma 35 into

Io(s,7) = / Ko(x, x)E(x, s)dx
Zg(AF)G(F)\G(AF)

and unfold the Eisenstein series E(x, s) to obtain
lo(s,7) = Ixa(s, 7) — Iwni(s, 7),

where
Iki(s,7) = / / K(nx, x)0(n)dn f(x,s)dx. (5.4)
Zg(AF)N(F)\G(AF) J[N]
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Since Ko is rapidly decaying, then to show Iwn;(s, 7) is well defined, it suffices to show
Ixi(s, ) converges. We will show Ik (s, 7) converges for all ¢ € H (G(Ar),w) and
Re(s) large enough. Then by Cauchy inequality and the convolution decomposition

of ¢ we get the absolute convergence of Iywni(s, 7).

By a change of variable one has

Ixi(s,7) = / Jxuz (@, x) f (x, 5)dx,
ZG(AF)N(AF)\G(AF)
where

JKuz(‘Pax):/ / K(n1x,mx)60(n1)6(n2)dny dny
[N] J[N]

is a relative trace formula of Kuznetsov type. Hence, Ixi(s,7) is a (multiple)
Mellin transform of a Kuznetsov relative trace formula Jgy,(¢, x) since f(x,s) is
essentially | det x|*. Then in principle Ix;(s,7) is a sum of Kloosterman sum zeta
functions, which should converge when Re(s) is large enough. We verify this
intuition by showing that Jkyu,(¢,x) is majorized by a gauge. Recall that, for
x = diag(xy - - - xp—1,- - ,X1x2, X1, 1) € A(AF), a gauge G is a positive function of

the form
G(x) = E(x1, X2, -+, Xn1) - |12+ X |
with M > 0 and ¢ is a Schwartz-Bruhat function on (A%)"~!.
Proposition 36. Let notation be as above. Then as a function of x € A(Ap) =

Z6(Ap\T(AF), Jkuz(@, X) is a majorized by a finite sum of gauges on A(AF).

Proof. By definition of the kernel function K(x, y) we have

JKuz(¢ax):/[][] Z cp(x‘lnl‘lynzx)é’(nl)@(nz)dnldnz,
N N

Y€Zg(F)\G(F)

which converges absolutely since K(x, y) is continuous and [N] is compact.

Then we consider the double coset Zg(Ar)N(F)\G(F)/N(F), whose element is of
the form wa, where w is a Weyl element and a € Zg(F)\T(F). Let

H,, = {(nl,nz) e NXN: nl_lwanga_lw_1 € ZG}

be the stabilizer relative to the representative wa. Then

JKuZ(‘pax) = Z / QD(X_IHIIWanzx)@(”l)a(nz)dnldnz,
waed Y Hwa(F)\N(Ap)XN(AF)
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where @ is a set of complete representatives for Zg(Ap)N(F)\G(F)/N(F). Then

o(x7! nl_1 wany x)0(ny)0(n2)dni dn,

JKuz((Pax) = Z Cwa

waed

/Hwa(AF)\N(AF)XN(AF)

where
Cya = / Q(n’l)a(n’z)dn’ldn’z.

Call wa € @ relevant if Cy,, # 0, i.e., H(n’l)g(n’z) is trivial on H,,,(Afr). Denote
by ®@* the set of relevant elements in ®. By [JR92] (Prop 1 on p. 272) one
can take the following realization: ®* consists of wa, where w is the longest
Weyl element inside a stantard parabolic subgroup P C G of type (ki,-- -, k),
and a € Zg(F)\ diag(Ty,(F),- - - , Ty, (F)) (modulo some further relations), with Tk,
being the maximal split torus of GL(k;). For instance, when P = B the Borel, then
w=1,and a = I, and H,,, = N. Therefore,

T, ¥) = Y VOl Hival)Jiualep, X3 wa),

waed*

where

Jxuz(p, x; wa) = / (x~"ny ' wany x)0(m)6(n2)dny dns.
Hywa(Ap)\N(Ap)XN(AF)

By definition of @* each w corresponds to a unique (i.e., the minimal one) parabolic

subgroup P containing w. Suppose w # I,. Then by Levi decomposition it suffices

to consider the extreme case where P = G and w is the longest.
Recall that the test function ¢ is K-finite. Hence there is some compact subgroup
Ko € G(AFrgn) such that ¢ is right Ko-invariant. Let Ky = [], .. Ko,. Note that
Jkuz(p, x; wa) = [ 1, <co JKuzy(@v, Xv; wa), where

JKuz,v(QDV, Xy Wa) = / Qov(x;lnflWaan)gv(nl)év(HZ)dnldVQ-

Hyya(Fy)\N(Fy)XN(Fy)

Then for each finite place v, Jkuz,(¢y, Xy; wa) is right Ko, -invariant. So there exists
a compact subgroup Ny, € Ko, N N(F,), depending only on ¢,, such that

Jxuzy(@y, Xplty; wa) = Jxuzy(@y, X3 wa), for all x, € A(F,) and u, € Ny,

On the other hand, Jiuz,(¢y, Xuy;wa) = 0(x,u,x, ") Jcuzy (@, X, wa). But then,
there exists a constant C, depending only on Ny, and @ such that 8(x,u,x; ') = 1

if and only if |a;(x,)|, < C,, where q;’s are the simple roots of G(F) relative to B.
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Note that for all but finitely many v < oo, Ko,, = G(OF,). Thus we can take the
corresponding C, = 1. Hence for any x, € A(F)), Jkuzv(¢v, Xy; wa) # 0 implies that
lai(x,)ly < Cy, 1 <i <n-1,and C, = 1 for all but finitely many finite places v.

Denote the compact set by
Atp,ﬁn = {a = (av) € A(AF,ﬁn) : |a'i(av)|v < Cv, I<i<n- 1}~
Then supp Jruz(¢, X; wa) € A(AF.co)Agpfin-

For any y = ®,(yij,) € G(Ar). We define ||y, ||, = max;; |yi ;| if v < oo; and
12
Il = | 2 Iyl it | .
ij

Then ||y,|l, = 1 for almost all v. The height function ||y|| = [, |[yv]|y is therefore
well defined by a finite product. Also, by supp Jku(¢, X; wa) € A(AfFe)Agfin and
the compactness of supp ¢,, we have |[w='x,wx,al|, < C/ for some constant C,

depending only on ¢,, v < oo, and C;, = 1 for almost all v’s.

Now we investigate the archimedean Jkyz,(¢v,X,;wa), i.e., v | co. Note that ¢,
is a compactly supported on Zg(F,)\G(F,). Then Jgu,(¢y,x,; wa) = 0 unless

1 _ -1
ny,Yywha, € supp ¢,, where y, = x;

wax,w™ . Hence ||nl_!ivan2’vw_1||v <C,
for some constant C, depending only on ¢. A straightforward computation shows
that ||,y + |lnoylly + [lyvlly < C, for some constant C; depending only on
¢. So ¢,(n;,y,wny,) has compact support relative to n;, and np,. Therefore,
Jxuz(@yv, Xy; wa) = 0 unless ny,, na,, run through a compact set of N(F,) and |y||, is

bounded.

Similar to (??) we define an additive character for x € A(Af) :

n—1

Ux(u) = l_[ Yro (Xittiiv1), Y u = (ij)axn € N(AF).
i=1
Then Jguz (¢, x; wa) is equal to

s [ X s )6, (n1 B () di
Hya(AP)\N(AF)XN(AF)

where 6, is the modular character of the parabolic subgroup associated to w.

Since n; and n; lie in a compact set determined by supp ¢, then for a fixed y € A(Ap),

Vv | oo, the v-th component of

/ o(ny " ywnp)0x(n1)0x(n2)dnydny
Hyva(Ap)\N(Ap)XN(AF)
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is a Schwartz function of x since it is the Fourier transform of a compactly supported
smooth function. Hence, Jgyu, (¢, x; wa) is majorized by a nonnegative Schwartz-

Bruhat function Z(x " 'waxw™!, x) on A(Ar)? with

x "waxw™ € A" :={be AF): ||b| < HCC.}
v

By properties of the height || - || (e.g., see [Art05] p. 70) one has
# (w'lx CAT- wx'l) < C-(Ixg - xpmt M+ xp - x0g |TM),
for some constants C and M depending on supp ¢. Therefore,

Z | Jkuz(p, x; wa)| < Z E(w  xwxa, x) = Z Z(a, x),
acA(F) acA* aewlx-A*wx~!
which is majorized by |x; - - - x,,—1| ™M -&(x1,- - -, X,—1) forsome M > 0 and Schwartz-

Bruhat function £.

The remaining case is that w = [, i.e., P = B. In this case

Y Malpxiwa) =6,) [ planydnjan
acA(F) N(Ap)
is the Fourier transform of a Schwartz-Bruhat function. So it is majorized by a

gauge. Then Proposition 36 follows. m|

As a consequence of Proposition 36 and the Iwasawa decomposition, we have
Ixi(s,7) converges absolutely when Re(s) is large enough. Therefore, Iwn;i(s,7)

converges when Re(s) is large enough.

To show the absolute convergence of Iwpi(s,7) and thus to obtain meromorphic

continuation, we need to analyze properties of K, by its spectral expansion.

5.2 Spectral Decomsition of the Kernel Function

In this subsection, we review briefly the spectral theory of automorphic represen-
tation of reductive groups, and then apply the results to the non-cuspidal kernel
function K. Denote by H a general reductive group and P a standard parabolic
subgroup of H. Let Mp (resp. Np) be the Levi component (resp. unipotent radical)
of P.

Let H'(AF) = {g € H(AF) : |A(g)|a, = 1, V A € X(H)r}, where X(H)F is space
set of F-rational characters of H. Let ay = Homz(X(H)F,R). Letaj, = X(H)r ®R.
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Denote by ap = ay, and aj, = aj‘wp. Let Py be a fixed minimal parabolic subgroup
of H over F. Write ag (resp. ag) for ap, (resp. a}",o). These notations concur with
those used by Arthur, e.g., see p.20-31 of [Art05].

Then by spectral theory (e.g., cf. p. 256 and p. 263 of [Art79]), the decompo-
sition of the Hilbert space L? (Zy(Ar)Np(Ar)Mp(F)\H(AF)) into right H(Af)-
invariant subspaces is determined by the spectral data y = {(M, o)}, where the
pair (M, o) consists of a Levi subgroup M of H and a cuspidal representation
o € Ao (Zu(Ar)\M'(Af)), where M is defined in a similar way to H'; the class
(M, o) derives from the equivalence relation (M,o) ~ (M’,o”) if and only if M is
conjugate to M’ by a Weyl group element w, and o’ = o on Zy(Ap)\M'(Af). Let
X be the set of equivalence classes y = {(M, o)} of these pairs, we thus have
L*(P) = L* (Zu(AR)Np(AP)Mp(F\H(AP) = D L2 (P),, (5.5
X€X
where L? (P) \ consists of functions ¢ € L? (Zy(Ap)Np(Ap)Mp(F)\H(AF)) such
that: for each standard parabolic subgroup Q of G, with QO C P, and almost all
x € H(AF), the projection of the function

m— x.¢po(m) = / d(nmx)dn

No(F)\No(AF)
onto the space of cusp forms in L2 (ZH(AF)MQ(F )\Mé(AF)) transforms under
Mé(AF) as a sum of representations o, in which (Mg, o) € y. If there is no such
pairin y, x.¢o will be orthogonal to Ay (ZH(AF)MQ(F)\Mé(AF)) . Denote by Hp

the space of such ¢’s. Let Hp , be the subspace of Hp such that for any (M, o) ¢ x,
with M = Mp, and P; C P, we have

/ / Yo(m)p(nmx)dn = 0,
M(F)\M(AF)' J Np (F)\Np, (AF)

for any Yo € L3 (M(F)\M(AF)")_ , and almost all x. This leads us to Langlands’

yex WP’X‘ Let Bp be

an orthonormal basis of Hp, then we can choose Bp = | yex Bp,y, where Bp , is an

result to decompose Hp as an orthogonal direst sum Hp = P

orthonormal basis of the Hilbert space Hp ,. We may assume that vectors in each

Bp,, are K-finite and are pure tensors.

5.3 Spectral Expansion of Iyp;(s, 7)

By definition, we have

IWhi(S,T)Z/ //Koo(nl)C,nzx)@(nl)é(nz)dnldnzf()f,S)dx-
ZG(AF)N(Ap)\G(Af) J[N] J[N]
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Denote by Koo (x,y) the Fourier expansion of K (x, y), namely,

Ruo(x,) := / / Koo (215, 12)0(1 (2 . (5.6)
[N] ¢/[N]

For our particular purpose here, we take in Section 5.2 that H = G. By spectral

theory, one can expand K (x,y) as

ZZ k},v(zﬂ)k,a[I : i Z E(x, Ip(A, )¢, VE(y, ¢, )dA,  (5.7)

XE€X PeP G ¢€Bp

where P is the set of standard parabolic subgroups which are not G; and for any such
P, kp is the number of blocks of the Levi part of P. Also, (5.7) converges absolutely
(cf. Lemma 2 on p.263 of [Art79]). Since [N] = N(F)\N(AF) is compact, Izoo(x, y)
is then well defined.

Lemma 37. Let notation be as before. Then one can interchange the integrals in

the definition of Kw(x, y), namely, one has

Ka(uy) = ) ) o kp,(zﬂ)kp / . D7 Wi (6 OWeia(y; Ddd, (5.8)

XEX PeP G ¢€Bp )

where the Fourier coefficient Wrgis1(x; 1) = Wgis(x, Zp(A, ¢)$, A) is defined by

W (6, Zp (4, @)b, ) o= / E(mx, Zp(4, @), )0(m
N(F)\N(AF)

and similarly, Wgis2(y; A) = Wris(y, ¢, A) is given as

WEiS(y’ ¢9 /l) = / E(nz)” ¢’ A)H(HZ)an

N(F)\N(AF)

Proof. The main idea of the proof is similar to that in [Art78] (see p. 928-934). For
any P € P, let cp = kp!(27)*P. Substitute (5.7) into (5.6) to get a formal expansion

of Keo (x,y), which is clearly dominated by the following formal expression

)

Denote by Js(¢; x,y) the above integral. We will show Js(¢; x, y) is finite, hence

/ |E(n1X, Ip(A, ©)$, DE(n2y, ¢, 1)|dAdndns.

yeX PeP €p Jiap fiag; ¢E‘Bp

(5.8) is well defined. One can write the test function ¢ as a finite linear combina-
tion of convolutions ¢ * ¢, with functions ¢; € C. (G(AF)), whose archimedean

components are differentiable of arbitrarily high order r. Then one applies Holder
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inequality to it. Clearly it is enough to deal with the special case that ¢ = ¢; * gojf,
where ¢7(x) = ¢;j(x71),and x = y. Define for g € G(AF) that

JG(QDj,g):/ Koo(ng,ng)dn.
(V]

Then Js(¢;,g) is well defined since [N] is compact and K, is continuous. By (5.7)

we can expand Jg(¢p;, x) as

S

Note that the summands are nonnegative. In fact, the integral over A and sum over

/ E(nx, Ip(A,¢j)p, VE(nx,Ip(A, ¢j)¢, )dAdn.

Xe’EPeP Cp Jiap fiag; $€Bp

X, P and ¢ can be expressed as an increasing limit of nonnegative functions, each of
which is the kernel of the restriction of R(¢; * go;f), a positive semidefinite operator,
to an invariant subspace. Since this limit is bounded by the continuous nonnegative

function

Krx= > grgiTlyn= > ey,

YEZ(F)\G(F) YEZ(F)\G(F)

we then obtain
Jo(pj, x) < / K(nx,nx)dn < oo
[N]

since the domain [N] = N(F)\N(AF) is compact.

Note that Bp , is finite due to the K-finiteness assumption, and Eisenstein series

holomorphic on 4, hence the integrand becomes

Y, EG (L@ DEG. g0 = D E(xIp(d¢)d DE(, Zp(1 ¢/, D).

¢€%P:X ¢€%P,X

Then by Cauchy inequality one has Jg(¢; x,y) < y/J6(¢j, x)J(¢j,y) < co. Hence,
Keo (x,y) converges absolutely. Then (5.8) follows from a straightforward computa-

tion. O

Let ¢ € Bp . Then 7p(A, ¢)¢> can be expanded by a linear combination of vectors
in Bp , . As a consequence,

E(xIp(L@)¢2, ) = Y (Tp(d,@)¢2, $1)E(x, 61, ),

¢IE%P,X
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where the sum is finite due to the K-finiteness of ¢.

For 1 < i < 2, define the Whittaker function associated to ¢; parameterized by
A €iayfiag as

Wi (x,2) = W; (x, pa» A) 1= / ¢i(wonx)e PP () i, (5.9)
N(AF)

where wy is the longest element in the Weyl group W,,.

Since the residual spectrum is degenerate, that is, has no Whittaker model, the
integral is zero unless the representation is cuspidal. Hence, unfolding the Eisen-
stein series and by Bruhat decomposition on G(F') one can write the non-constant
terms Wegig;i(x;4) in terms of W;(x,4), e.g., cf. p.123-124 of [ShalO]. Set
X = Zg(Ap)N(Ap)\G(Ar), cp = kp!(2n)*F, and A* = iay/iag;. Then by (5.8)

one can rewrite (at least formally) Iwpi(s, 7) as
/ / D0 (Tp(d 9)da, $1)Wi (s YWa(x; DA f (x, ), (5.10)
X6 yex Pe?’ P IN T 5
where ¢; € Bp,, 1 <i < 2.
Theorem G. Let notation be as before. Then there exists a constant ¢, depending

only on ¢ such that Iwni(s, 7) converges absolutely for Re(s) > c,. Moreover, when

Re(s) > ¢y, Iwni(s, T) is equal to

Z Z Z / (Zp(4, 90)¢2,¢>1>/ Wi (x; OWa(x; A) f(x, 5)dxdA,

X PeP cp ]e%p)(q)ze%p)(

where y runs over the proper cuspidal data, i.e., x is not of the form {(G,n)}.
Particularly, as a function of s, Iwni(s,T) is analytic in the right half plane {z :
Re(z) > c,}.

Proof. For x € Zg(Ar)N(Ap)\G(AF) we write it into the Iwasawa coordinates:
x = ak,where a € A(Ar) and k € K. Then

f(x,8):= f(x,®,71;5) = T(deta)ldetals/ O(ntk)r ()|t d*t.
AX

F

Therefore, | f(x,s)| = | deta|R® h(k, s), where

h(k, s) = ‘ /A OOkl dt
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is a nonnegative continuous function of k and converges absolutely when Re(s) >
1/n. Let ¢ € H (G(AF),w) . Then by Proposition 36,

[ oo tcestar= [ [ ddp.ak)- | detal s @) an.s)ak
XG K A(AF)
converges when Re(s) is large. By Lemma 35 we have

J(e,s) :=/X IA(oo(x,X)lf(x,S)ldx=/X Jruz(@, X) - | f(x. 5)|dx = G(s),

where

i) = [ Kovx) D, If@ws)ldx
ZG(Ap)G(F)\G(AF) §eP(F)\G(F)

Since the series X sep(ry\G(r) |f(9x,5)| is slowly increasing and Ko(x, x) decays
rapidly on Zg(Ar)G(F)\G(AF), then Jo(g,s) converges absolutely. Hence J(¢,s)

converges and is well defined.

Take test functions of the form g * ¢, where ¢j(x) = ¢o(x~1). Plugging the spectral

expansion Lemma 37 into J(g, s) to get the convergence of
1 2
/ DI / W(x: Zp(4, 90), V)| 1/ (x, 9)|dAdx (5.11)
X6 ") pep cp $EBp A
where y runs over the proper cuspidal data and
W(x; Zp(A, @0)$, A) = / (Zp(L 90)¢) (wonx)e PP g (1) d,
N(AF)

with wg being the longest element in the Weyl group W,,. Hence (5.11) is convergent

and also nonnegative. So it converges absolutely.

For arbitrary test function ¢ € H (G(Ar),w), one can write ¢ as a finite linear
combination of convolutions ¢; * ¢;> with functions ¢;; € C.(G(Afr)), whose
archimedean components are differentiable of arbitrarily high order r, 1 < i < 2,

and j € J is a finite set. Then one applies Holder inequality to it to see

ZZ Z Z /A/x ‘<IP(/1,90)¢2,¢1>W1(X;/l)Wz(x;ﬂ)f(x,s)

XEX PeP ¢1€%pv‘, ¢2€%Ps)(

2
<> 11 [Z > /A /XG Wi (6 OW (65 ) - | £(x, )| dxda

J€J i=1 | yeX PeP ¢€Bp )

dxdA

1/2

< 00

’

where W;;(x; 1) = W(x; Ip(4,¢;;)¢p,A), forany 1 < i < 2,and j € J. This proves
the first part of Theorem G. |
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Remark 39. Ifthe base field F is a function field, then it has no archimedean places.
Thus supp Wi(x; A) |aar)S Apfin, ¥ A € 0y /iar, 1 < i < 2, namely, the support of
K,o(x, x) is compact. Also, in the function field case the cuspidal datums have no
infinitesimal characters, so the sum over x'’s is only finite. Therefore, Theorem G is

clear.

Note that for any y and P, the space Bp , depends only on the support and K-finite
type of the test function ¢. Hence, givenany A, = (17,43, -+, 47) € ay,(C) = a;, ®C,
the function ¢(-) exp{A5, Hu,(-)) shares the same support and K-finite type with the
test function ¢. Hence, one can replace ¢ in Theorem G with ¢(-) exp{A°, Hy,(+))
to get that

Corollary 40. Let notation be as before. Let s € C be such that Re(s) > 1; and
for any standard parabolic subgroup P, let A5, = (17,45, -+ , A7) be a fixed point in
ap(C). Let Yo = Zg(AF)N(Ap)\G(AF). Then the following integral

DI /A/X ‘UP(/l+/lga90)¢2,¢1>W1(X;/l)Wz(x;ﬂ)f(x,s) dxdl

)(6% PeP ¢1,¢2€Q3P,X
is finite, and is uniformly bounded if s lies in some compact subset of the right half
plane {z : Re(z) > 1}.

Remark 41. Let notation be as before, and let ¢ € Co(G(AF)), to apply Theorem G,
one still needs to verify that the function ¢(-) exp{A°, Hy,(-)) lies in H(G(AFr),w)
as well. Noting that they have the same support, one then concludes that for
any ¢ € H(G(AFr),w), the function ¢(-)exp{A°, Hy,(-)) € H(G(AFf),w). Then
Corollary 40 follows from Theorem G.

To obtain a further holomorphic continuation of Iywp;(s, 7), we shall study

/ W1(x; OWa(x; ) f(x, s)dx, (5.12)

ZG(AF)N(AF)\G(AF)

which is a Rankin-Selberg convolution for (non-cuspidal) automorphic represen-
tations of G(Af). Note that [IY15] constructed a regularized global integral to
compute these Rankin-Selberg periods in the case of GL(n + 1) X GL(n). However,
such a truncation has not been established in the case of GL(n) X GL(n). Never-
theless, we investigate the analytic behavior of local factors of (5.12) in Section 6,
proving (5.12) is a holomorphic multiple of an L-function A(s, 7, ® 7 X 7_,). See
Proposition 60 below for details. Although (5.12) only converges when Re(s) > 1,
we will obtain its meromorphic continuation to the whole complex plane by analytic

properties of A(s, 1) ® T X 71_)).
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5.4 Discussion on Arthur’s Truncation Operator

In this section we discuss Arthur’s truncation operators in our case. We will use the
conventional notations on p.24-29 of [Art05]. For any parabolic subgroup P of G,
let Tp be the characteristic function of the subset {¢t € ap : @(t) >0, Vw € Zp} of
ap. Let aj be the set of positive coroots. Let T' € aj, we say T is suitably regular if
a(T) is large, for each simple root . For any suitably regular point 7' € aj and any
function ¢ € By (Zg(Ar)G(F)\G(AF)), define the truncation function A7 ¢ to be
the function in B, (Zg(Ar)G(F)\G(AF)) such that

AT¢(x):Z(—1)dim<AP/AG> Z 7p (Hp(6x) = T) / d(néx)dn. (5.13)
p SeP(F)\G(F) [Np]

The inner sum may be taken over a finite set depending on x, while the integrand is

a bounded function of .

Before moving on, we still need to choose a nonnegative function || - || on G(Af) to

describe properties of the truncation operator AT quantitatively.

Let x = (x,), € G(AF). Recall that ||x, ||, = max;; |x;;,|, if v < co; and

) 1/2 ]
llxylly = [Z |xi,j,v|v] , if v | c0.

i,j
Then ||x,|l, = 1 for almost all v. The height function ||x|| = [], ||x,]|, is therefore
well defined by a finite product. Then one has ||xy|| < ||x]| - [|y]l,V x,y € G(AF).
Also one can check that there is some absolute constants Cy and N, such that for

any x € G(Ar), we have ||x||~! < Co||x||™, and
#{x e G(F): ||x|| <1} < Cot™, 1t > 0.

Note that the test function ¢ is compactly supported. Let

lx-suppe -y~ := max |lxgy”'|.
gEsupp ¢
Then one sees that
Kyl = [Ke(oy) < > sup (gl
yeZG(F\G(F) 8€ZG(AF)\G(AF)
llyll<llx-supp -y~

Hence |K(x,y)| <, #{y € G(F) : |lyll < |lx-suppo -y [} <, [IxI™ - [ly[|™,
where Né is some absolute constant, i.e., independent of the choice of test function

. Thus there exists some constant c(¢) such that | K(x, y)| < ¢(@)||x||N0 - || y]|™.
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Now we consider derivatives of the kernel K(x, y). Suppose X and Y are left invariant
differential operators on G(Ar ) of degrees d; and d,. Suppose also that the test
function ¢ € C/ (G(AF)), for some large positive r. For any cuspidal datum y € X,

define the corresponding kernel function as

1 -
Ky(x,y) = Z W‘L;/m* Z E(x, Ip(A, )¢, VE(y, $,)dA,  (5.14)

PeP G ¢€Bp

which is convergent absolutely. By [Art79] there exists some function ¢xy €
Cf_d‘_dz (G(AF)) such that its corresponding kernel function K, ;. , (x,y) is equal
to XY K, (x,y), for all x,y € G(Ar). Then one can apply the above estimate for

kernel functions to obtain

YKy )| < cloenlel® - Il%, vy € Glar). (5.15)
X

Also, for any function H(x,y) in B, ((G(F)\G(Ap)') x (G(F)\G(AF)")), define
the partial Fourier transform of H(x, y) with respect to the x-variable as
F1H(x,y) := / H(nix,y)0(ny)dn,. (5.16)
N(F)\N(AF)
Let w be a matrix in Ko, the maximal compact subgroup of G(A ), representing a
Weyl element. Regard w as a matrix in K by setting its components to be the trivial

matrix at finite places. Define similarly
F'H(x,y) = / Hw™ 'nywx, y)0(n))dn,. (5.17)
N(F)\N(AF)
This is well defined since H(x,y) is G(F)-invariant on the x-variable, and the
quotient N(F)\N(AF) is compact.
Let Areo = ZG(AFo)\T(AFo), Where T(Af) is the Afp-points of the torus

isomorphic to (Gy,)". For any ¢ > 0, let A, be set consisting of all

ayas -+ - ap-1
ayaz - --dp-2
a= € Areo (5.18)

ai

1
with |gjlee > cfor1 <i <n-—1.Clearly Ao € ZG(AFco)\T(AF ),V ¢ > 0.

A Siegel set S, for ¢ > 0 is defined to be the set of elements of the form nak,
n € Q C N(Ap), compact, such that N(F)Q = N(Ar); k € K,anda € As, = {a €
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A(AF) : |ai(a)] = ¢, 1 <i < n—1}. Then from reduction theory (see [Bor69]),
there exists some ¢y > 0 such that G(Ar) = Zg(Ar)G(F)S,,. Denote by Sy = S,
and we may assume that 0 < ¢y < 1. Let R be a function on Zg(Ar)G(F)\G(AFr),
we say that R is slowly increasing if there exists some r > 0 and C > 0 such that
R(x) < C||x||", ¥V x € G(AF); we say R is rapidly decreasing if for any positive
integer N and any Siegel set S, for G(AF), there is a positive constant C such that
|R(x)| < C||x||™" for every x € S..

We will apply the truncation operator A” to the second variable of kernel functions
K, (x,y) and show that it is absolutely integrable twisted by any slowing increasing
functions over Aj oAy fin - K for some h > 0, where A fn be a compact subgroup of
Afin = ZG(AFfin)\T(AF fin) depending on ¢.

Lemma 42. Let notation be as above. Then )., ‘7:1 Ag K, (x, x)‘ is rapidly decreas-
ing on Syg. Moreover, let R be a slowly increasing function on Zg(Ar)G(F)\G(AF).

Then we have

/S > ‘ﬁAg K, (x,x) R(x))dx < oo, (5.19)
0 x

where y runs over all the equivalent classes of cuspidal datum and the truncation
operator AT acts on the second variable of kernel functions K, . Moreover, (5.19)
holds when ¥ is replaced by F," (defined in (5.17)), where w is a Weyl element.

Proof. Clearly for any given x € G(Ar), 1 K,(x,y) is a well defined function
(with respect to y) in B, (Zg(Ar)G(F)\G(AF)) . Then according to Lemma 1.4 in
[Art80] (or a more explicit version given by Proposition 13.2 in [Art05], p.71) one
sees that given a Siegel set S, positive integers M and M;, and an open compact
subgroup Ko of G(AF fy,), one can choose a finite set { X; } of left invariant differential
operators on Zg(Ar.)\G(AF) and a positive integer r with the property that if
(Q, dw) is a measure space and ¢p(w) — @(w, x) is any measurable function from Q
to C" (Zg(AF)G(F)\G(AF)/Ko) , then

sup(nng Ji |AT¢(w,x>|dw) < sup (nxu—M‘Z I |x,-¢(w,x>|dw).
xeS Q x€G(AF)! 7 JQ
(5.20)

In particular, {X;} is independent of (Q, dw).

Since our test functions lie in the Hecke algebra, we may assume that ¢ is biinvariant

under Ko, where K is an open compact subgroup of G(Arfin). Also, set My = M

and M large, then we can find a finite set {Y;} of left invariant differential operators
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on G(AF «) such that (5.20) holds for the measure space (Q, dw) = (X, d), where X is

the set of cuspidal datum and d = d, is a discrete measure depending on x € G(Ap).

Under our current particular choices (5.20) becomes

sup (nynMZ a2 Kx<x,y>]) < sup (Z Iyl " %) KX<x,y>])
X

yeSo yeG(a) \ 5 :

< sup (Z |y~ Z ‘(Yi)Z Ky (x,y) ) ;
i X

yeG(A)

where (Y;), above indicates that the differential operator acts on the y-variable; and
each ¥; is independent of x. By the estimate (5.15), the right hand side of the above
inequality is bounded by

sup
yEG(A)

DI eyl ||y||N6) < > cler)lIxl™, (5.21)

i i

for any x € Sp, where [ refers to the trivial identity operator. Denote by Vy =

vol([N]). Then by mean value theorem there exists some ny € [N] such that
> ‘ﬁAg K, (x, x)( Wy )Ag K, (o, x)). (5.22)
X X
Substituting (5.21) into the right hand side of (5.22) we then obtain

AN K0 <0 D clomplil M,
X i

for any x € Sp, where y runs over all the equivalent classes of cuspidal datum. Also,
since R(x) is slowly increasing, then by taking M to be large enough we conclude
that 3., ‘?—]Ag K, (x, x)‘ - |R(x)| is a bounded function on Sy, hence it is integrable.
Note that the above argument still works when #7 is replaced by ;" Then Lemma
42 follows. O

Let S, be the permutation group on n letters. Let o € §,. For any a € Af,

write it in its Iwasawa normal form given in (5.18). Let alf =aiay- - au_, 1 <

i <n-1l;andseta, = 1. Forany I < i < mleto; = a;'---a | al. Set
o(n)i

a, = diag(ag(1),ar2), " »a5()). Clearly as,) = 1, and each a, ;) is a rational

function of ay,- - - ,a,-1. Moreover, each a,;) is a monomial, 1 <i < n— 1. Note

that a, is of the form in (5.18). So o induces a well defined map Ar o — AF o,

a — a,. Denote by ¢, this map. Then ¢ is actually a bijection from Ar « to itself.
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Write ay) = as()(ai,az,- -+ ,a,-1) to indicate that a,; is a fractional function of

aj,as,- - -ay—1. Forany ¢ > 0, let

ariy(an, az,- - an-1)

Aoi+n(@i,az, -+ ,an_1)le

7\’§={(al,az,---,an-l): > c, 1§i$n—1}.

Let S, :={c€S,: o)< o(+1),3<i<n-1}.Let0 < c < 1. Denote by
UAFw) " = {(a1,a2,+ ,an-1) € Cu(Ape)™ : |ai| > ¢, 1 <i<n-3}.
Lemma 43. Let notation be as above. Let n > 4. Then one has

WAr) s c | ) HE. (5.23)

oes,

Proof. For any o € S, if 0(2) < o(3), then define i, = 2; if o(ip) < o (2) <
o (ip + 1) for some 3 < iy < n — 1, then define i, = ip; if 0(2) > o(n), then define
i = n. Since such an iy (if exists) is unique, then i, is well defined. It induces an n
to 1 surjection teq : S, — {2,3,-- ,n}, givenby o - i,. For2 <i < n,let §'°¥

n,i
be the fibre at iy = i, i.e., S| ¥ = t¢,(i)"". Then

n

) He= | #He (5.24)
cess =2 geses
Let 0(Arw) = {(aaz,+,an-1) € (Ape)® : |ay-2|, > c}. Denote by
t(Are)® = {(ar, a2+ ,an-1) € UAFe)® @ |a1az---an|, < 1/c}. De-

fine, for any 3 < i < n— 1, that (;(Ar) 8 = {(al,a2,~ e, an-1) € UAFe) 8 :

|an_l~an_,-+1---an_2|c>0 > ¢, an_,-+1an_,-+2---an_2|oo < l/c}. Note that, for any
2 <i<n,ti(Are) 8 is well defined.

Claim 44. Let notation be as before. Then one has, for any 2 < i < n, that

w(Are) s c | ) H. (5.25)

oes’¢8
n,i

A straightforward combinatorial analysis shows that ((Ar )¢ is contained in the

union of ¢;(Are) “8 over 2 < i < n. Hence (5.23) comes from (5.24) and (5.25):

L(AF’OO)reg - L’J L,‘(Ap,oo)re‘g c O U 7_{oc_ = U 7‘{5.
i=2

i=2 reg reg
creSnJ oes,
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Proof of Claim 44. Forany 2 < i < nand any o € S °¥, recall that H{ is equal to

agiy(an, az, - ,an-1) .
{(a1,a2,- <L an-1) € UAF) AR M >c,i<n-— 1}.

Case 1

Case 2

Ao+n(@n az, -+ ,an_1)le

Leti = 2and o € S If 0(2) + 1 < o(1) < n, then there exists
a unique j, such that 0(jr) < 0(2) < 0(jo + 1). In this case HE is
equal to {(a1, a2, ,an-1) € UAF)® : lan-2lw > ¢, lan-j, =+ Gp-1leo >

¢ lan—j, 41 ap1leo < l/c}. If o(1) = n, then HS = {(al,az,- c L, dp-1) €

UAFe) 8 o apn—i+ - an-2le = ¢, |a1- - ap-1le < l/c}. If (1) = c(2) +
1, then H¢ is equal to {(al,az,--- Jan-1) € UAFe) ™ @ |ap—2an-1le =
¢, lan-1lo < 1/c, |ap—1ap-2|c0 < 1/c}. If o(1) = 0(2) — 1, then Hf is
equal to {(a1,a2,- * ,an-1) € UAFe)® : lapalew > ¢ lap-1lo > c}.

Now one sees clearly that the union of HS over o € S;ig does cover the
sets {(a1, a2, ,an-1) € UAFe)“® : |ana|, > ¢ lan-1le > ¢} and
{(al,az,- L, n-1) € UAFe) 8 : |an_2|oo > ¢, lap—1]e < l/c}. Therefore it

covers ((Afr.) 6. Hence (5.25) holds in the case where i = 2.

let3<i<n—1lando € 5%

ni

If 0(2) + 1 < o(1) < n, then there exists a
unique j, such that o(j,) < 0(2) < 0(js + 1). In this case HS is equal to

1

{(ar, a2, an-1) € UAF)® : lan-i+ - paloo = ¢, |apiv1 - paleo < =
|an—j(r canetle 2 6, ||an—j(,+l c e S I/C}-

If o(1) = n, then H¢ is equal to

{(ar,az, -+ ,an-1) € UAF) : lan-i - ansle > c,

lan-i+1 - an-2le < 1/c, lar -+ ap-1le < 1/C}-
If o(1) = 0(2) + 1, then H is equal to

{(ar,az, -+ ,an-1) € UAF.) : lan—i - an-2n-1le > c,

lan-1leo < 1/c, |ap-is1 -+ an-2leo < I/C}-
If o(1) = 0(2) — 1, then H is equal to

{(ar,a2,- -+ ,an-1) € UAF) 8t lan-i -~ analw = c,

|an—1|oo 2 G, |an—i+1 tot an—lloo < 1/C}
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If1 < (1) < 07(2)—1, then there exists a unique j, such that o(j,) < (2) <

0 (jo + 1). In this case HY is equal to

{(ar, a2, ,an-1) € UAF) ® t lan-i** Qpaloo = € |apoiv + Apaloo < 7

|an—ja e 'an—2an—1|00 2 C, |an—j(r+1 e 'an—lloo < I/C}
If o(1) = 1, then

Hs ={(ar,az,- -+ ,an-1) € (AFe)®®  |an-in_is1 - Gn-2leo > €,

|@n-is1 - Ap2leo < c_l, c < |a,,_2a,,_1|oo}.

Now one sees clearly that the union of HS over o € S °% does cover the sets

{(ar,a2,- - an-1) € UAF)®® : |an-i@n-is1 -~ an=a|, > c,

|an—i+lan—i+2 Tt an—2|oo < l/C, |an—1|00 2 C}

and

{(ar,a2,++ san-1) € UAFe)® ¢ |an-i@p-is1 -+ an-al, > c,

|an—i+1an—i+2 toe an—2|00 < I/C, |an—1|00 < I/C}
Therefore, it covers (;(Ar ) . Hence (5.25) holds.

Leti =nand o € S, 5. If o(1) = 0(2) + 1, then HE = {(ar,az, -+ ,an-1) €
UAFe) 8 ¢ lan-1leo < 1/c, lajaz - - - ap-2]e < l/c}. If (1) = 0(2) — 1, then
H is equal to

{(ar,a,- - ,an-1) € UAF) 8t lan-ile = ¢, la1az -+ an-1le < 1/c}.

If 1 < o(1) < o(2) — 1, then there exists a unique j, such that o(j,) <
0(2) < 0(js + 1). In this case H is equal to {(a1,~ o ,an-1) € UAFe) 8 :
lat -+ an-ale < 1/, lan—j, -+ an-tleo > €, l@njo+1* an-tloo < 1/c}. If
o(1) = 1, then HS = {(al,ag,- L an-1) € UAFe) 8 ¢ |ap—is1 - Ap-2|eo <
1/c, |layaz -+ ap—2ap-1l0 = c}. Now one sees clearly that the union of
HS over o € S;jg does cover the sets {(al,a2,~- Jan-1) € UAF) 8 :
|a1a2---an_2|w < 1/c, lap-1lo = c} and {(al,az,--- san-1) € UAFoe) 8 :
|a1a2-~-an_2|oo < 1/e, lap-1]eo < l/c}. Therefore, it covers ¢,(Arq) 8.
Hence (5.25) holds for i = n.

Therefore, Claim 44 follows from the above discussions. O
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Proposition 45. Let notation be as before. Let t : Apo — G,(Ape)! be the

isomorphism given by a & (aj,as,--- ,an—1). Then for any 0 < ¢ < 1, one has
(Are) € | ) He. (5.26)
g€eS,

Proof. When n = 2, (5.26) is immediate. When n = 3, there are six different
H¢’s. In this case, one can verify by brute force computation that the union of
these hyperboloids does cover ((Arq). Hence (5.26) holds for n = 3. From now
on, we may assume n > 4. For any m € Z, let 7,, : Z — Z be the shifting map
defined by j — j+m,V j € Z. Set $,3[2] :={mocgo1,: o€ §,»}asa
set of bijections from the set {3,4,-- - ,n} to itself. Regard naturally S,_»[2] as the
stabilizer of {1,2} of S,,. Then clearly S,,_»[2] is isomorphic to S,,—». Denote by o the
natural isomorphism S,_» — S,_2[2], o — T2 0 o o T_,. Note that #5,°¢ = n(n — 1),

then we have a bijection:
Sia X S5 S, (0,07 (o) 0 0. (5.27)

Assume that (5.26) holds for any ngp < n — 2. Let (aj,a2, -+ ,ap-1) € (AF).
Let a € Apo be such that «(a) = (aj,az,---,a,—1). Then (aj,az,---,a,-3) €
(5""2(Apo), Where (5772 1 Apo, —> Gp(Ape)" is the map given by a
(ay,az,- -+ ,a,-3). Then by our induction assumption, there exists some o € S,_»
such that (aj,ap, -+ ,a,-3) € 7{50, where o, := o~ !(c). Note that for each 1 <
i <n-3 a%(i)(al,az,~ -+ ,day-1) is independent of a,_, and a,-;, we may write
Ao, ()(@1,a2, "+ s an-1) = g, h(a1,a2,- -+ ,ay-3),1 <i <n-3.Letby = ajaz -+ a2
g, (@ az- -+ ap-3)"", by = ayaz---ap2a,-1 - b;', and b, = 1. Let by =
a%(,-)(al,az,- <o ,ap-3), 1 < i < n-3.Setb = diag(by,by,---,b,). Then clearly
b = a,,. Hence b € Apo and «(b) = (b1, b, -+ ,by-1), where b; = by_; - b;_liﬂ,
1 < i < n— 1. By our definition of b, one sees that «(b) € ((Ar) 4. Then by
Lemma 43 there exists some o € S, such that «(b) € H¢,. Therefore,

b5y (b1, D2, -+ s bp1)loo = €« [Bor(i1) (b1, b2, -+ s by-1)|eoy 1 ST < —1.
Since b = A, the above system of inequalities becomes, for 1 <i < n — 1, that
@ ()00 (1) (@1, a2, * + s an-1)|eo = € [g(o)ori+1) (@1, a2, 5 An-1)]c0-

Then according to (5.27), «(a) € H for & = o(o) o o’ € S,,. Hence (5.26) holds for
no = n. Since it holds for ny = 2 and ny = 3, Proposition 45 follows by induction on

initial cases. O
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Proposition 46. Let notation be as above. Let Ayfn be a compact subgroup of
Z6(AFan)\T(AFfin) depending only on ¢ and F. Let R(x) be a slowly increasing

function on Sy. Then we have
/ / / > ‘7—‘1/\5 K, (nak,nak) - R(nak)|d*adndk < co,  (5.28)
K [N] AF,OOAgo,ﬁn X

where y runs over all the equivalent classes of cuspidal datum.

Proof. Let A}, = {a € Are : t(a) € Hy}. Then Proposition 45 implies that
Are = | ] A (5.29)
o€eS,
The decomposition (5.29) implies that the left hand side of (5.28) is not more than
Jo = Z / / / Z (ﬁAg K, (nak,nak) - R(nak)|d*adndk.
oes, VK JINI JAE Apiin T

Note that for any o € S, let a € Ag’m, then a, € S.. Let w € K, be the matrix

representation of the Weyl element corresponding to o so that a, = w™'aw. Then
?‘]Ag K, (nak,nak) = leAg K;(w_lnwagaﬁnw_lkw, wnwagagawkw),

where K refers to the kernel function relative to the test function ¢" defined by
@"(x) = p(wxw™).

Let «(a) = (ar,a2,- -+ ,an-1), and (ay) = (A 1,002, -+ , a0 n-1), then a straightfor-
ward computation shows that each q; is a rational monomial P, of the variables

ar 1,002, "+ A p—1. Since such a monomial is at most polynomially increasing on

S, one then changes variables to see

/ / / Z )T] Ag K, (nak,nak) - R(nak)
K JIN] JAZ A

@.fin -y

d*adndk

is bounded by the integral over K, N(F)\N(AF) of

/ Z )fleAg K¥(X,X) - R(nagasink)Pr(a5)|d” ag-d asin, (5.30)
AT A

@.fin -y

where X = w™lnwagagaw ™ Hkw, w nwagagaw™ kw. Note that (5.30) is bounded

by the integral over A, g, of G (1, dwo, k), Where G (n, aco, k) is defined to be

/ Z )7‘]’”/\5 KV (X', X) - R(naooaﬁnk)Pg(aoo)‘dxaoo,
AF,DOQSC 5%
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where X’ = w!

NWaeasnw ™ kw. Since the function de — R(Ndeotfink) P (o) iS
slowly increasing on Ar o NS,, Lemma 42 implies that G, (n, ac, k) is well defined

and thus it is continuous. So

/ / / Gy (1, a0, k)d* agndndk < oo, ¥ o € S,,.
K [N] A<p,ﬁn

Therefore, (5.28) follows from the estimate below:

J. < Z / / / Gy (1, aoo, k)d* agndndk < oo.
K N(F)\N(AF) Acp,ﬁn

geS,

Then Proposition 46 follows. O

Corollary 47. Let notation be as above. Let R(x) be a slowly increasing function
on Zg(Ap)N(F)\G(AF). Then we have

> ‘ﬂAg K, (x,x) - R()|dx < oo, (5.31)

~/ZG (AR)N(F\G(AF) =

where y runs over all the equivalent classes of cuspidal data.

Proof. To handle ﬁAg K, (x, y) we can substitute the definitions of #; and AT into
the expansion of K, (cf. (5.14)). Note that (5.14) is convergent absolutely and AT
is a finite sum for given x and y. One can thus apply the operators 7 and AT inside

the integral over iajy, /ia; to obtain explicitly that

1 _
FATK o) = Y, = [ ) FEG (06, DATEG. D

PeP €p Jiaj, fiag; PEBp
This an easier analogue of Lemma 37. Then as before, the non-constant Fourier
coefficient ¥ E(x, Ip(A, )¢, A) of E(x,Ip(A,¢)p, 1) becomes a Whittaker function
W(x; Q).
Recall that our test function ¢ is K-finite. Hence there is some compact sub-
group Ky C G(Argn)' such that ¢ is right Ko-invariant. Then for ¢ € Bp v,
FE(x,Ip(A, )¢, )ATE(y,$,1) = 0 unless ¢ is right Kp-invariant. Let Ky =
[1,<c Ko,. Note that the Whittaker functions are decomposable, i.e.,

W(x; ) = ]—[ W, (x; ).
VveEXF

Then for each finite place v, W, (x; ) is right K ,-invariant. So there exists acompact

subgroup Ny, € Ko, N N(F,), depending only on ¢, such that

W, (tyuy; ) = Wy(t,; ), for all t, € T(F,) and u, € Ny,
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On the other hand, W, (t,u,; 1) = 0, (u,)W,(t,; 1), where 6, (n,) = 6(t,n,t; 1), for
any n, € N(F,). But then, there exists a constant C, depending only on Ny, and 6
(hence not on A) such that 8; (u,) = 1 if and only if |a;(#,)| < C,, where ;’s are the
simple roots of G(F). Note that for all but finitely many v < oo, Ko, = GL,(OF,),
thus we can take the corresponding C, = 1. Hence for any ¢, € T(F,), W,(t,; 1) # 0
implies that |a;(t,)| < C,, 1 <i < n-1,and C, = 1 for all but finitely many finite
places v. Set A = Zg\T, and

Aptin = {a = (ay) € A(Arsn) : lai(a)| < Co 1<i<n— 1}.

Then supp W(x; 1) |aap) S A(AFe)Apfin, YV 4 € iapfiag, 1 < i < 2. So after

applying Iwasawa decomposition, we see that the integrand in (5.31) are supported
in [N]-A(AF)AgfinK,independent of y. Therefore, (5.31) follows from (5.28). O
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Chapter 6

RANKIN-SELBERG CONVOLUTIONS FOR GENERIC
REPRESENTATIONS

By Theorem G, we see that when Re(s) > 1, Iwni(s, 7) is equal to

ZZL Z Z /A*<IP(/L90)¢2,¢1>‘I’P,X(S,W1,W2;/l)d/l, (6.1)

C
Y Pep P 3eBp, $268p,

where Wp , (s, W1,W; 1) = /ZG(AF)N(AF)\G(AF) Wi(x; /l)mf(x, s)dx, and the
Whittaker function W; (x, 1) = fN( AP) Pi(wonx)eA+PPIHPMOR) g(ydn 1 < i < 2,and
wy is the longest Weyl element.

For our purpose, we need to show that Iwp;(s, 7) is a holomorphic multiple of L(s, 7).
So we have to compute (6.1) explicitly (up to an entire factor), then continue it to
a meromorphic function which is a holomorphic multiple of L(s,7) as we desired.
To achieve that, we start with computing each Wp , (s, W1, W5; 1) associated to a
standard parabolic subgroup P and a cuspidal datum y = (Mp,0) € X.

Let P be a standard parabolic subgroup of G of type (n,ny,---,n,), 1 <r < n,
with ny + np + ---n, = n. Let y € X be represented by (Mp,o). Let Bp, be an
orthonormal basis of the Hilbert space Hp,, . For ¢; € Bp,, 1 < i < 2, define the

Whittaker function associated to ¢; parameterized by 4 € iajy,/ia/, by

Wp i (x,2) = W (x,;, ) := / qbi(wonx)e(/HpP)HP(WO”X)H(n)dn,
N(AF)

where wy is the longest element in the Weyl group W,,. Define

Wp (s, W1, W, 4,0) = / We o 1(x; )Wp 2 (x;4) f(x, 5)dx.
ZG(Ap)N(AF)\G(AF)
From now on, we fix such a standard parabolic subgroup P of type (ni,---,n,)

and a cuspidal datum y = (Mp,0) € X, where o is a unitary representation of M

of central character w. Then there exist r cuspidal representations m; of GL,, (AFr),
G(AF)

lSiSr,suchthatazmEB7r2€B~--@7r,.Let7r:IndP(AF)

(7T1’7T2 e ,7Tr)- For

any A = (A1, A, -+ ,4,) € ia;/iag, denote by

G(A .
o= Indgen (el [ mel 2, mel ). 6.2)
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Then 7, is also a unitary automorphic representation of G(Ar). Fix ¢1, ¢ € Bp,
and a point A = (A1,4z," - ,4,) € iap/iag. Write W;(x,4) = Wp,,;(x,4), and
¥ (s, W1, W2 4, @) = Wp,, (s, W), Wp; 4, ®) . Since A € ia},/ia%, A = —1, one has

W (5, W1, Wp; 4, @) = / Wi(x; YW (x:-1) f(x,s)dx.  (6.3)
Z(AF)N(AF)\G(AF)

Since Wj(x; 1) and W, (x; —1) are dominant by some gauge, and f(x, s) is slowly in-
creasing when Re(s) > 1, then ¥ (s, Wi, W5; A, @) converges absolutely and normally
whenRe(s) > 1. Note thatr; = ®,7;,, 1 <i < r,where, foreachv € Zp,x;, isauni-

tary irreducible representation of GL,, (F, ), of Whittaker tape. Then for each v € Xf

e % [k G(EJ
and A = (1,42, ., 4y) € iap/iag, denote by m, = Ind 7 | (1w o 3 Ty)
and
G(F, P! P! A
Ty = IndM(P(f?‘v) (7Tl,v ® | ' |F‘1)a7T2,v ® | : |Fi’ Ty ® | : |Fv) .

Then n = @ m, and ) = ®, 7y, . Recall that f(x,s) = [], fi(x,,s), where
S(xy,s) = 7(det x,)| det Xv'irv / ( )(Dv[(o, T ,lv)xv]Tg(tv)Vvl;idxtv,
Z6(F,

if ® = ®®D,. Since ¢ and ¢, both have central character w, = w, which is unitary.
So is Wi(x; A1) and Wy(x; A). Hence one can rewrite V¥ (s, Wi, Wy; A, @) as

/ Wi (x; )W (x; =) D(n7x)7(det x)| det x |, A (6.4)
N(AF)\G(AF)

where n = (0,---,0,1) € F". According to the definition we can write ¢; = ®¢;,,
1 <i < 2. Thus one can factor W;(x; 1) as [], ez, Wiy(xy; 4), where
Wiy (x5 4) = i (Wonx, e HHPPHPOO gy v € By, 1 <0 < 2.
N(F)
We may assume @ = ®®, and ¢; = ®,¢;,,i = 1,2. Then one has
b4 (S’ Wl,w WZ,V; A, (D) = 1_[ ¥, (S, Wl,Va W2,v; A, (Dv) s

VEXR

where each local factor W, (s, Wi, Wa,; 4, ®,) is defined to be

/ Wiy (xy; OWay (x5 =)@, (nx,)7(det x,)| det x, |3, dx,, (6.5)
N(F)\G(F,) '

where W;,(x,;1) = /N(F ) biy(wonx)eArPrHe won)g(p)dn, 1 < | < 2. Since
Wi, (x; ) and Wy, (x; —1) are dominant by some local gauge, and f,(x,, 5) is slowly
increasing when Re(s) > 1, then W (s, Wy, Wa,; 4, ®,) converges absolutely and

normally when Re(s) > 1, for any v € 2.



86
6.1 Local Theory for ¥, (s, W,,Wa2,;1,®,)

In this section, we shall compute each local integral representation ‘P, (s, Wiy, Ways A, (Dv)
defined via (6.5). Let v € X be a place of F. Note that v may be archimedean or
nonarchimedean. Let u = (u;;)1<ji<, € N(F,), the unipotent of GL,,, we denote by
NJ(.)(u) the matrix

O I N S 2% Ulp—j+3 = = Ul
1 o .. ... u27n—j+2 MZ,n—j+3 ... .o .. uz’n
L Up—jiin-j42 Un—jsln-j+3 *°° **° Up—j+ln
1 0 e 0
1 T
1 Up—1n
1

associated to 1. Denote by le(u) the matrix

1

1 up up, . Uip—j+3 "0 0 ULy
1n—j+2
1
1 o« e PR uz’n_j+2 uz’n_]+3 ... PR uz’n
1 0 Up—j+1n—j+3 =" Un—j+ln
1 0 el 0
1 T
1 Un—1n




1

associated to u, where Uppejpp = Uln—j+2 = Ulp—j+1Un—j~1n-j+2, 1<l<n-j. For

any 2 < j < n, we denote by NJQ(u*) the matrix

L w0 uipjs1 Uiy Ulp—j+2
L uppjy1 u2p U p—j+2
1 Un—j+ln  Un—j+ln—j+2
1 0
1

Uln-1

Uz n—1

Up—j+1,n-1

Un—j+2.n-1

Up—2n-1

and for u = (uj;)i1<ji<n € N(F,), we let N](.)+2(u”) represent the matrix

’
1 uig -+ Uip—j-1 Uln ul,n—j
’
1 e uz’n_j_l uz’n u2,n—j
’
1 Un—j-1n Uy i |pj
1 0
1

with u;m_j = Up—j+ Sp—julbkp—j-1, 1 <k <n—j—1.

Uln-1

U2 n-1

Un—j-1n-1
0

Up—jn-1

Up—2n-1

1
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Let w; be the simple root of GL, corresponding to the permutation (j,j + 1),

1 < j <n-1.Let 1, be the longest element in the Weyl group W,, of GL,,, n > 2.

Then 7, = w1 Wy_oWp_ 1w - - wiws - - - w,_1, for any n > 2. Recall that we write wy

for the longest element for G; when we highlight the rank n we then use 7, instead.

The 7, is only used in this section.

Fix a nontrivial additive character & = 6, on F,. This notation in only used in

this section and should not be thought as a local version of notations in Sec. 3.1.

Let @ = (aj,a2, - ,ay-1) € FV”_I. Denote by 6, the character on Fv”_1 such that

Oo(x1,- -+, xp—1) = O(a1 X1 + - - - + @y—1X,—1). Extending 6, to a character on N(F))

by 0,(11) = O(iu12 + @au23 + - - - + Ap—1Up—1,), Where u = (ugg)1<k1<n € N(F,). Let
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¢, € m,. Define the Whittaker function associated to ¢ and « by

Wo(a, ) = / by (ra10) CEPHEENG (1)
N(F,)

GL(F, _ .
Let my4 = IndB(an() ) (xval - 1M, xvnl - [*7) be a principal series. Let w,_; =
(uy,up, -+ ,cn-1) € Fv”_l. For any @ = (a1, @y, -+ ,a,-1) € Fv"_l, we set

Wy (@13 ) = / by (Ty_gu) VP, g (1) du,
Nn—l(Fv)

with @, = (a(u) 'a(ur)ay, - -, a(un—2) ' a(un—1)an—2) € FV”_Z. Hence the func-
tion W, j(a-1; A) is a Whittaker function on GL,,_; associated to the principal series

. GLp-1(Fy) Pl An = -2
representation ‘IndBn_l (IFV) (xv2l - 12,- -+, xuul - 1) and parameter @,—; € FJ'=.
Let xy; = |-, v € R, 1 <[ < n. Denote by zx; = A — A + ivy —iv; € C,

1<k<l<n.

Let x, € F,. If v is an archimedean place, then define the functions @ and s on F,, as
follows:
(1+ |xv|5)_1/2, s(xy) = xpa(xy), if F, ~R;

a(xy) = 12 _ )
(1 + |x]y)7 7%, s(xy) = Xpa(xy), if F, = C.

If v is a nonarchimedean place, then define the functions a and s on F, as follows:

1, if x, € Of,; 0, if x, € Of,;
a(x,) = | s(xy) =
x, ", otherwise; 1, otherwise.

Lemma 48. Let notation be as above. Assume that r, is right K, -finite. Letv € Xf

be an arbitrary place and let nr, = Indg(LI;’Ff v) ( Xvil>" s Xva) be a principal series.

Then the Whittaker function W, (a; A) is equal to
n | n—1
~ N +

Z / Wy (@13 V)01, + 1) I_I laGup—re1)l," 1—[ duj, (6.6)

- Fr-l p

jeJ © v =2 j=1
where j runs over a finite index set depending only on the K,-type of ¢,; and

5}1(”1, Tt un—l) :O(G'n—lun—l - a’n—2c(un—l)un—2 - a’n—3c(un—2)un—3
— = e jC(Upjp 1 Up—j — - - — @1c(up)uy).

Proof. Assume that v is an archimedean place. Let r € R and g € [0,2x). Then by

a straightforward computation we have the Iwasawa decomposition

. N ) oiB 2B
1 re”'B 1 't _re %P B ] :
< Vi) TV Ve
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If v is a nonarchimedean place of F. We then fix an uniformizer @, of F,*. For any

u € F,, one can write u = u°w])", for some m € Z, where u° € O;( .If m > 0, then
’

. . 1 u
u € Of,, implying that ( | € GL(n,OF,). If m < 0, then one has that

(1 | :(u11 1) ( 1)(11 é) 68)

Let v be arbitrary and u € F,. Forany 2 < j <n, 1 <1 < 4,let M;j(u) = M, ;(u) be

the matrix defined by

I, I
3 1 u B a(u)™! _
My (u) = | . My(u) = s alu) ;
I s I
Iy Iy
3 a(u)™! 3 1
Ms(u) = o) , My(u) = w1 ,
Ij—2 Ij—2

where c(u) = a(u)s(u). Let 7,j = w1 -+ Wy_j+1,2 < j < .

Denote by wyg = Id,, the identity element. Then one has Ng(u) = u, and for
any j > 2, N]Q(u) = N}(H)Ml(un—j+l,n—j+2) and Wn—j+le1(u)Wn—j+l = N](‘)+](u,)a
where u' = () )1<ki<n € N(F,) is defined by u), = w1 if [ = n—j+2;
Lt;(’l =ugp1 ifl =n—-j+1; ”;c,l = up+1y if k =n—j+2;and Lt;(’l = uy, other-
wise. Now applying (6.8) one then has that M1 (41— ,-j+2) = Mo(Upst1-jp—j+2)k =
My(ups1-jp—jr2)M3(Ups1-jn—j+2)k, where k € K(F,), the maximal compact sub-
group of GL(n, F,). Consequently, we have TnNJ(.)(ll) = Tanl (WM (Up—js1p-js2) =

O o .
an,,_j+1Nj+1(u’)w,,_j+1Ml(u”_j+1,n_j+2), which is equal to

TuWnoj+1 N](-)+1(u,)wn—j+l My(Upi1—jpjr2)M3(Upi1—jp-jr2)k.

Note that we have wy,—j1 Ma(ttp+1-jn-j+2) = Mi(Uns1-jp-j+2)Wn-j+1 and
N](-)H(u’)Ml (Uns+1-jn—j+2) = M) (Mn+1—j,n—j+2)Nj(~)+1(ﬁ),

where 11 = (ﬁk,l)lsk,lgz (S N(Fv) is defined by ﬂk,l = u;c’l + un+1_‘,~,n_j+2u;(+1’l if

k=n—j+1;ix; = u;al +un+1_j,n_j+2u;(’l_1 ifl =n—j+2;and iix; = ”;c,z otherwise.
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Therefore,

T”N](-)(ll) = ann—j+lMl(un+l—j,n—j+2)NJ‘0+1(ﬁ)wn—j+1M3(un+1—j,n—j+2)k
= M{(un+l—j,n—j+2)ann—j+lNJ(‘)+1(ﬁ)M3(un+l—j,n—j+2)_lWn—j+lk»

where M/ (uns1-jpnj+2) = TaWnoj+1M1(tn+1-jn—j+2)Wn-j+17, . Then one has that
Mll(un+1—j,n—j+2) € N(F,).Let2 < j <nand Py = ¢ve(/l+p)HB(')). Then

W (a; ) = / ( )¢V (rnNg(u)) WOHEEN W) g (1) gy
N(F,
-/ oy Ot (M )T NGO M1 1 ) O ()
N(F,)
= /( )‘pv,/l (M;n(un—l,n)Tan—lNg(u*)wn—lk) 9&2)(11)0111,
N(F,

. . _ a2
where M (uy-1,) = diag(a(ttn-1,), a(tn-1,)"s La2); 65 () = Oty + -+ +
Op-3Up-3p-2 t a'n—Za(un—l,n)un—Z,n—l + a’n—lun—l,n) ' 0(_an—2c(un—l,n)un—2,n)'

Denote by MzT"(u) = 1I,. Let j > 3 and M;,3 < [ < j, be matrices. Denote by
{:2 M, the matrix M, - - - M;. Define the matrix

. a(un—l+2,n)
M7 (1) = ﬁ I3
! =3 a(”n—l+2,n)_1

In—l+1

Write ay; for a(ui); and ci for c(ugy). Let Br(1) = a;  ak+1,. Denote by 09 ()
the product of

O(arury + - - &y j-1Up—j-1p—j + An—jdn—j+1nlln—jn—j+1

+ Upeji 1 B jrt Wt jr1p—ju2 + -+ + W2 Bp—2(WUp—2,-1)

and g(an—lun—l,n — Up2Cn—1nlUn-2n — UAn-3Cn-2nUUn-3p— """ — an—jcn—j+1,nun—j,n)» for
any 2 < j < n—1;and 600 (u) = 0(1Bi(Wurz + -+ + CnejBuej(Witkyjn_js1 +
e a’n—Zﬁn—Z(u)un—Z,n—l) : H(Q'n—lun—l,n —Ap2Ch—1ulln—2n — An-3Cp-2nUn-3pn — " —

An—jCn—j+1nUn—jn — " — a’lc2,nu1,n)- Let
J

W@ ) = [ goa (M1 00mm N (0 @) 05 | a2, du.
N(F,) ! ! 12 ’
where kj (1) = Tn‘}kj(u) and kr(1) = k. Then W,(a;1) = Wv(z)(a;/l). Let

NJ’.“H(u*) = (u;;l)lsk,ZSn such that u;c”l = 0if (k,/) = (n—j + 1,n); and u;c”l = Uy,
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otherwise. Let My = My4(uy—j+1,), M3 = M3(tt—j+1,). Then a changing of variables
leads to that ng )(a/; A) is equal to

/( )¢v,/1 (M]'TL(U)TnTnJ L )M4M3k]+1(u)) 9(1)(11)“ a, l+1ndu =
N(F,

=2

/ )¢v,/l( j+1(u)M4TnTn]+1N z(u )Wn ]M3k]+1(u)) 9(])(u)1—[ a,_ l+1ndua
N(F, =2

where W € N(F,). Since ¢, is left N(F,)-invariant, the right hand side of the

above equality is equal to

/( )¢v,/l (M,'Til(u)TnMﬂn,jH 2 (Wwy_j ]+1(u)) 9(j+1)(u)1_[ - l+ln
N(F,

implying that for any 2 < j < n — 2, one has WY (a3 1) = W§J+1)(a;/l). By our
definition of 93”), a similar computation to the above shows that Wgn_l)(a;/l) =
Wén)(a/; A), namely, one has that W, (a; 1) is equal to

/N(Fv) ¢M( L (W TN, oL )kn+1(u)) (")(u)n a-” l+1ndu. (6.9)

By definition, one has, for any ¢, € m, ,, that

—l—j+/l

v(tyx,) = 1_[ /\/V](IV])“le ?

j=
Substituting (6.10) into (6.9) one then sees that W, (a; 1) is equal to

- dy(xy), x, € GL(n, F,). (6.10)

n
/( ) ¢v,/l (TnTn,nN,(,)+1(u*)kn+l(u)) 0((71”)(11) n Xl,l(an—l+1,n)a,]1+;1_,l_1 ildu (6.11)
N(F, =2

where x1/(dn-r+1,) = Xv,1(@n-t+12) X1 (an-1+1,)"". Since 7, is right K, -finite, one
then sees, according to (6.11), that W,,(a; 2) is equal to

>

n
(J) TnTn nlN +1(11 )) ggl)(u) 1_[ Xl,l(an—l+1,n)a,11+;l_,l_1;llldu (612)
jel (F) 1=2

where J is a finite set of indexes, whose cardinality depends only on the K, -finite type
of m,; and each ¢&’/)l € myq. Let W, j(a; A) be the summand of (6.12) corresponding
to the index j € J.Letd; = 4;+A;/(n—1),2 < j < n. Denote by B, the standard
Borel subgroup of GL,,_; and N, the unipotent of B,,_;. Then a change of variables

implies that W, ;(a; A) is equal to

-1

~ == 1424
le,j(an—l;/l)Qn(ul," Uy 1)1_[X11(an ) @iy ll—[duj-
B i=1

Then Lemma 48 follows. O
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Let v € XF be a fixed nonarchimedean place, let 7, be the contragredient of .
Let @, be a uniformizer of Of,, the ring of integers of F,. Let ¢, = Np, /Qp (@),
where p is the rational prime such that v is above p. Denote by

lI"v (S’ Wl,v, WZ,V; 4, (Dv)
Lv(s, Ay ® Ty X ﬁ—ﬂ,v)’

Ry (s, W1, Wp,54) := Re(s) > 1.

Proposition 49 (Nonarchimedean Case). Let notation be as before. Let s € C be
such that Re(s) > 1.Then we have

(@) R,(s,Wy,,Ws,; ) is a polynomial in {q%, q_°, /li, i1 <i<r).
, , poty 99y 549y >4y

(b) We have the local functional equation

\Pv (S’ Wl,v» WZ,V; A, (Dv)
Lv(s’ Ay ® Ty X ﬁ—ﬂ,v)

lIj\/(l -5, Wl,v, WZ,\); _27 EISV)
Lv(l - S,;Td_/i,v ® T, X 7T/1,v) ’

= 8(Sa Ay X ;T’—/l,w Q) :
where g(s, 7, X T_ay,0) is a polynomial in {q, q,°, qf",qv_)“" 1 <i<r}.

Proof. We shall only prove Part (a), since Part (b) will follow form [JS81].

Let T(F,) be the maximal torus of G(F,), and for any m € Z, let T")(F,) = {r €
T(F,) : |dett|r, = g,”}. Using Iwasawa decomposition and the fact that W;, and
®, are right G(OF,)-finite, we can rewrite V), (s, Wy, Wa,; 4, ®,) as

2 | Wila OWY) (av: =) @ju(na,)r(deta,)o7 ()] det ayly, da,

RY
je] T(FV)

where the sum over a finite set J, Wl(jv )(av; A) is a Whittaker function associated
to some smooth functions in Hp,, 1 < i < 2, and ®@;, is some Schwartz-Bruhat
function. Note that for 1 <i <2and j € J, Wl.(j)(xv;/l) is right G(OF,,)-finite. So
there exists a compact subgroup Ny, € G(OF,,) N N(F,), depending only on ¢, such
that Wl(’v )(tvuv; A) = Wl.(’]V. )(tv; A), for all 1, € T(F,) and u, € Np,. On the other hand,
W (ty1,: ) = 6, ()W (2,; 1), where 6,,(n,) = 6(tynyt; "), for any n, € N(F).
But then, there exists a constant C,, depending only on Np, and € (hence not on A)
such that 6, (u,) = 1 if and only if |e;(¢,)| < C,, where @;’s are the simple roots
of G(F). Thus each Wl.(’i )(xv;/l) is compactly supported for a fixed 4 € iap/iag.
Therefore, for a fixed 4, ¥, (s, Wiy, Ways A, (Dv) is a formal Laurent series in g, °.
Indeed, one can chose some nonnegative integer M independent of A (but depending

on 7 and ¢), such that

¥, (S, Wl,v, WZ,v;/L (Dv) = Z \I"l(;m) (Wl,v’WZ,v§ A, CDV) . q;ms,

m>—-M
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where ‘I’im) (s, Wiy, Wa,y; A, @,) is defined by the integral

Z L(m)(F ) Wijv)(av; /l)ng) (av; _/i)q)j,v(nav)Tv(det av)é;l(av)dav-
jeJ v

Apply the above analysis on supp W;,(a,; 1), we see similarly that
W, . (m) . () _
supp W, '(ay; ) € {t e T"(F,) : |ey(t)lr, < Gy, 1 <1 <n-1}

for some constants Céj ), Hence, for each j € J,m > —N and a, € T"(F,), the

function a, +— Wijv)(av; /l)Wéjv) (ay; —A) is analytic and is a formal Laurent series in
{qv_ﬂ" : 1 <i<r}by(2.5.2)of [JS81], and the function

a, — Wijv)(av; /l)Wéjv) (av; —/i)(Dj,v(nav)T(det av)éfl(av)

is locally constant. Therefore, lpﬁ”” (Wl,w Ways 4, CDV) is an analytic function of A

and is a formal Laurent series in {q, . 1<i< r}.

Since m,, is of Whittaker type, we can use Theorem 2.7 of [JS81] to see that, for
fixed A € iap/iag, ¥, (s, Wiy, Way; 4, @) - Ly(s, 0, ® T, X T-2,)"" is a polynomial
in {g;,q,*} with coefficients functions of A. Moreover, L, (s, 7, ® T, X 7_ A,V)‘l is

a polynomial in {qi,qv_s,qfi,qv_/li : 1 <i <r}. So we can write

Ly(s,may ® Ty X T3y)7" = Z 0i()g;",
lII<N

where N is a positive integer and Q;(1) are polynomials in {qf" Qv . 1<i<r)
Then for A € iap/iag, ¥, (5, Wiy, Way; 4, ®,) - L(s, 71 ® Ty X T-p,) " is equal to
the sum over m > —N — M of Ry, (s, W1, Wa,; 4, ®,) ¢, where

Ry (5, Wi Wars @) = 3" Qi)W (Wi, Way; 4,0,
i+j=m
li|<N,j>=-M
Since the sum on the right hand side is finite, R; (s, Wiy, Ways A,(DV) is analytic in
A. Moreover, it is a formal Laurent series in {q(}",qv_ 4. 1 <i < r}. Therefore, part
(a) of Proposition 49 follows from Claim 50 below. O

Claim 50. There exists some My € Z, independent of A € iap/iag, such that
R, (s, Wi, Wy /L‘Dv) = 0 for allm > My and for all A € iap/iag. Moreover, for
each m € Z, Ry, (s, W1, Wa,; 4, ®,) is a polynomial in (g%, ¢=% - 1<i<r})
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Proof of Claim 50. Let [ € Z. One then defines

A ={A€iapfiag : Ry (s, Wiy, Way;4,®,) =0forallm > [}.

Then each A; is closed since R, (s, Wiy, Ways A, (I)v) = ( are analytic (hence con-
tinuous) in A. Since R,(s,2) = Y, Ry (5, Wiy, Way; ,®,) ;™ € Clgs, q;*), for
fixed A € iap/iag, there exists some M(A) such that Ry, (s, Wi, Wa,;4,®@,) = 0
as long as m > M(Q). Therefore, iap/iag is covered by the union of all A;. Not-
ing that iap/iag ~ R'~! is a Banach space, by Baire category theorem there ex-
ists some A, having nonempty interior, Int(A;), say. Then for any A4 € Int(Ay),
Ry (5, W1, Way; A, ®,) = 0 for any m > . Since Ry, (s, Wi, Wa,; A4, ®,) is analytic
for any [ € Z, Ry (s, Wi, Wa,; 4,®,) = 0 for all A € iap/iag, proving the first part.
For the remaining part, we consider the functional equation (see [JS81]):

\Pv (S’ Wl,v» W2,v; 4, (Dv)
Lv(s’ Ay ® Ty X ;T’—/l,v)

lIIV(I -, Wl,v, WZ,v§ _27 EI\)V)
Lv(l - S’ﬁ—i,v ® 7_-11 X 71'/1,\,) ’

= 8(Sa 7T/l,v X ;T’—/l,w 9) :

where &(s, 1, X T_1,,6) is a polynomial in {qﬁ,qv‘s,q‘ﬁli,qv_ﬂ" 1 <i<r}.

We can interpret the functional as an identity between formal Laurent series in
{qﬁ",qv_ 1 << r}. The left hand side are formal Laurent series of the

form X, > u, gy i while the right hand side are formal Laurent series of the

form ¥,,> m, 0"
{g. 9,7, gl,q;% . 1 <i<r}. Then the proof of Claim 50 follows. O

24 Since they are equal, they must be both polynomials in

One will see that Proposition 49 is insufficient for our continuation in next few
sections. Hence we need to compute R, (s, Wi, Ws,; 4) more explicitly. We will
do principal series case below since this is the only case we need for the particular

purpose of this thesis.

Lemma 51. Let v be a nonarchimedean place of F. Let &, be a principal series
characters xy.1, Xva,*** s Xvn- Assume that m, is right K, -finite. Let a € Go(F,)" !
and let W,,(a, A) be a Whittaker function associated to m, y and a. Then W,(a, A) is
of the form B,(a, 1)L, (), where B, (a, ) is a holomorphic function, and

L) = 1_[ l_[ Ly(1+4; - /l"Xv,in,j)_l-

1<i<ri<j<r

Proof. 1t follows from Lemma 48 and induction that Lemma 51 holds for any » if it

holds for n = 2 case. Now we show that Lemma 51 holds for n = 2.
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We may assume that y12 = xy1 Xv_é is unramified. Otherwise, the local L-function
L(s, x1X>) is trivial, and Lemma 51 follows from Part (a) of Proposition 49. Ac-
cording to (6.8) and the K, -finiteness condition, one has

Wy(@, )= > > ¢ / o xa(a@)laG)y ™~ 6(au)du + We(a, ),

jeJ I=1 @y

We@.d) = Y ¢; / xu(a@)la@| = 0ewdu = ¢; / O(cu)du,
jeJ O jeJ Oy
where j runs over a finite set J and c;’s are constants; moreover, J and c;’s relay
only on the K, -type of x,. For u € F, write u = u°w£, where u® € O)f = O;v, and
| € Z. Write @ = a°@X, where @° € O. Recall that by definition the one sees that
the conductor of @ is precisely the inverse different of F,,, which is TD;vl ={x, €F,:
trr,/q,(xv) € Zp}, where p is the characteristic of residue field of O, . Note that D;v'
is a Z,-module of F, and thus has the representation D;vl =w, 40, where d € Nsg.

Hence one sees that

I:/ 6’(au)du:/ 9(a°ugolv‘)du:/ 9(uw{f)du
o, o, o,

is vanishing if k < —d — 1. Clearly I = 1 if k > —d. Note that

/ xia(a@)a@)| R 0(au)du = yia(w,) o, | / 6(au)du
w—lox w—lox

v v v

is vanishing if [ > k + d + 2. Let ¢, = |@,|; . Then one sees that

k+d
Wy, d) = C+C )y (1= g Yxa(@) g, " ™ + C - W, (6.13)
=1

where C is a constant depending only on F and K, -type of ¢, and

Wre = xia(an,)Ha g e D) / O(uwy)du. (6.14)
w;k—d—10‘>}<

Since 6 is nontrivial on @, 4~10,, then /w 8(uw*)du = 0. Note that , *=4-10X =

—k—d-1
Sked-10,
~k=d-10, \ @;*=90,. Then one has that

/ G(wa)du :/ 0(uw§)du —/ 9(uw§)du
w;k—d—lo;( w;k—d—lov w;k—dov

=_ /_k_d O(uwX)du = - vol(w;*40,) = —¢g"**.
w v
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Then it follows form (6.13) and (6.14) that W, (a, 1) is equal to C multiplying

k+d
L=1+) (1-gYx@) "™ — yia(m,)rdl g =Lt
=1

An elementary computation leads to the identity

L=(1-yu@)g"™" ™) Plrn(@)g "), (6.15)
where P(2) = (1 =K. (1 -2 ' =1+ z+--- + & e C[z].
Therefore, one has that W, (a, 1) = CQ(/\(lz(wv)qv_(ﬁl_Az))-Lv(l +A1—A42, x¥12), where
0(z) = P(z) if k > —d; Q(z) = 0, otherwise. Taking B,(a, 1) to be the function
CO(x12(my)q, (i=42) ) we then obtain Lemma 51 in n = 2 case. The general case

follows from this and induction, since integral with respect to y;; is exactly the

same as above, 1l <[/ < j < n. O

Proposition 52 (Principal Series Case: nonarchimedean). Let v be a nonarchimedean

place of F. Let i, be a principal series characters x1y, X2, ** » Xny- Assume that m,,

is right K, -finite. Then the function R, (s, W1,,Wa,; A) is of the form Q, (s, 1)L, (1),

where the function Q,(s, ) € Clq;*, g . 1 <i < nl;and £,() is defined to be
[T ] 20+a =207 L= 4+ 4, % x50 ™"

I1<i<ri<j<r
Proof. By Lemma 51 the function
— +4; .
Wv(xv;¢l,w/l) 1_[ 1—[ Lv(l + /11' - ﬂ'aXi,VXj,v) € C[Qv B . J = l’l]
1<i<ri<j<r
Then applying expansions in [JS81] and changing orders of summations we see that
Ro(s: Wiy Wi ) [ | [ ] Lol + 4 = Ao xiXn) - L1 = i + 23, X5, X0
1<i<ri<j<r
lies in C[¢**, ¢ : 1 <i < n]. Done. O
Corollary 53. Let v € X gy be a finite place such that rr,, is unramified and @, = ©;,
is the characteristic function of G(OF,,). Assume that ¢, = ¢2,, = ¢, be the unique

G(Ory)-fixed vector in the space of n, such that ¢8(e) = 1. Then R,(s,W1,,Wa,; 1)

is equal to

n l—[ Lv(l + /L' — /1ja7ri,v X 7’;:]_"})—1 . Lv(l — /1,' + /1j’7?i,v X ﬂj’v)_l.

1<i<ri<j<r

In particular, R, (s, A) is independent of s.
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Proof. Fix A € iap/iag. Let W be the G(OF,,)-invariant vectors such that W? (e) =
1,1 <i < 2. Then by the computation from [JS81], we know that

¥, (s, Wi W3s 4, ®3) JLy(s,mma ® T, X T_y,) = 1,

1,v°

where @7 is the characteristic function of O}, . Then Corollary (53) follows from
induction and unramified computations of nonconstant Fourier coefficients of Eisen-
stein series (see Chap. 7 of [Shal0]). ]

Now we move to the archimedean case. In the current state of affairs the local
L-functions Leo(s,ma X T X -2) = []je0 Lv(S, 7y X 7y X 7_4,) are not defined
intrinsically through the integrals as nonarchimedean case, but rather extrinsically
through the Langlands correspondence and then related to the integrals. Let I'r(s) =
152 (s/2) and T'c(s) = 2'*27T'(s). Then by Langlands classification (e.g. see
[Kna94]), each archimedan L-function L, (s, X T, X m_,,) is of the form

[ et +m | [rees+u). (6.16)
iel jedJ
where I and J are finite set of inters satisfying #1 + #J < n; y;, ,u} e C.

Combining results from [Jac09] and well known estimates on archimedean Satake

parameters one concludes the following result.

Proposition 54 (Archimedean Case). Let notation be as before. Let v € Xf o, be an

archimedean place. Then we have

(@) W, (s, Wiy, Way; A, @,) converges absolutely and normally in the right half plane
{s € C: Re(s) > 1 =2/(n*> + 1)}, uniformly in A € iap/iag. Moreover, it is
bounded at infinity in any strip of finite width.

(b) The function R,(s,W1,,Ws,; A) is a holomorphic function of s and A. Hence,
W, (8, Wiy, Way; 4, @) = Ry(s, Wiy, Ways )Ly(s, 70y ® Ty X T-ay) admits a

meromorphic continuation to the whole complex plane.

(d) We have the local functional equation

\Pv (S, Wl,v» W2,v; A, q)v)
LV(S’ Ay ® Ty X ;T’—/l,v)

lIl\/(l - S, Wl,v, WZ,V; _/i’ EI;V)
Lv(l - S’ﬁ—/i,v ® 7_-1/ X 7T/1,v) ’

= 8(Sa 7T/l,v X ;T’—/l,w Q) :

where £(s, 7, X T_ay,0) is a holomoprhic function.
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Remark 55. It follows from Lemma 5.4 in [Jac09] that if both rt is tempered, then
the Rankin-Selberg convolution ¥, (s, Wiy, Ways /l,(DV) converges absolutely and
normally in the right half plane {s € C : Re(s) > 0}, uniformly in A € iap/iag.

We need a more explicit description of the polynomial Q, (s, 1) in Proposition 54
when 7, is a principal series. To start with, we recall the definition of archimedean
L-function associated to a unitary Hecke character. If F}, ~ R, then the only possible
choices for a unitary Grossencharacter are x, +— sgn(x,)*|x,|?” for k € {0,1} and
v € R. If F,, = C, then the only possible choices for a unitary Grossencharacter
are x, — (x, - |xV|_l/ 2)k|xv|i" for k € Z and v € R. Furthermore, since the units
are killed by such a character, then the sum of those v’s must be 0. The Gamma
factors at the real infinite places are I'((s + iv + k)/2) and at the complex places are

['(s + iv + |k|/2). To prove Proposition 58, we need some preparation.

Lemma 56. Let v be an archimedean place of F. Let m, be a principal series
characters xy.1, Xva,* " » Xvn- Assume that m, is right K, -finite. Let « € Go(F,)" !
and let W,(a, A) be a Whittaker function associated to m, y and a. Then W,(a, A) is
of the form B, (a, 1)L, (1), where B, (a, ) is a holomorphic function, and

L) = 1_[ HL(1+/1 A X7

1<i<ri<j<r

1/[F,:R]

where for any x5, 1 <1 <n, x\') = xviol-| is the unramified part of x,,.

Proof. It follows from (6.6) and induction that Lemma 56 holds for any # if it holds

for n = 2 case. Now we show that Lemma 56 holds for n = 2.

By (6.7) it suffices to show that for any «, z € C, one has
/ la(u)|36,(au)du ~ T, (z + 1) (6.17)
F,

Since the proof is similar, we only consider real places. Let F,, ~ R. Then

2mcm
rR(z+1)/ la(u)|26, (a/u)du—/ / %-(1+ Z)Jdu%
u 2

/ / —t(1+u )+2miau ﬂduﬂ

— “1 |C¥|Z/2/ —7r|oz|(t+l 1) /290 dt
0 t
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Since the function g(¢) = e+ s Schwartz, then its Mellin transform

/ g d*t
0

is entire. Hence one has a continuation of Whittaker functions and proves (6.17). O

Remark 57. Note that in the proof of Lemma 56, /000 g(O)**d*t # Oforanya,z € C.
Hence fF |a(u)|26,(au)du never vanishes. Then by induction one concludes that
Wy(a, 1)/ L,(A) # 0, for any @ and A.

Combining Lemma 56 and [JS81] one then concludes the following result.

Proposition 58 (Principal Series Case: archimedean). Let v be an archimedean
place of F. Let nt, be a principal series characters X1, Xv2, " Xvn. Lhen the
function R,(s,W1,,Wa,; Q) is of the form Q,(s, 1)B,(1)L,(1), where Q,(s,A) is a
polynomial in s and A, 1 < j < n; B,(A) is a holomorphic function, and
L) =[] [ 0o+ = a5 x5 ™ - Lol = 4 + 5,500
I1<i<ri<j<r

Remark 59. Let v € Xf, be an archimedean place such that r, is unramified and
®, = @} is the characteristic function of G(OF,). Assume that ¢1,, = ¢2, = ¢, be
the unique G(OF,)-fixed vector in the space of wr, such that $°(e) = 1. Applying the
result in [Sta02] we then have that P, (s, W1, Wa,; A, ®,) is equal to

l_l ﬂ Ly(s,mpy ® T, X T_)
L1+ 2 = Aj,miy X Tj) - Ly(1 = 4 + 4,7, X 7j,)

I<i<ri<j<r

In particular, R, (s, A) is independent of s.

6.2 Global Theory for ¥ (s, Wi, W;; 2)
In this section, we shall compute the global integral representation ¥ (s, Wy, W,; A, @)
defined via (6.4).

Let 7, be the contragredient of 7,,. Let @, be a uniformizer of Op,, the ring of
integers of F,. Let g, = NF, g, (@), where p is the rational prime such that v is
above p. Denote by

Py (5, Wiy, W52, D))
Lv(s, Ay ® 1, X 7?—/1,1/),

R(s,W;,Wp; Q) := l_[

VEXE

Re(s) > 1. (6.18)

Then R(s, Wi, W»; A) is holomorphic for any A € iaj},/iag;. Putting the local compu-

tations together in the last section, we get
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Proposition 60 (Global Case). Let notation be as before. Let s € C be such that
Re(s) > 1.Then
(@) The integral Y (s, W, Wa; A, ®@) converges absolutely in Re(s) > 1.

(b) We have the global functional equation for Re(s) > 1 :

‘P(l - s,Wl,WZ;A,T—l,cB) — P (5, W), Wa; 4,7, D).

(¢) Forany fixed A € iaj, / iag, R(s, W1,W»; A) can be continued to an entire function.

Remark 61. By Proposition 52, we see that if the irreducible representation m =

G(AFr)
Ind P(Ay)

Yy (s, Wi, Wp; 4, @) 1
= Hy(s, )] | nm o

L(s,my®T X7_)) I <ii<n Aj, 7 ij)’

i£j

(my,- -+ ,my) is a principal series which is K-finite, then

(6.19)

where ¥ (s, W1, Wa; A, @) is the finite component of ¥ (s, W1, Wa; A, @) and H (s, A)
is a finite product of polynomials, depending on the K-type of .

According to Proposition 58 we have, for each irreducible representation m =

Indg&; )) (m1,- -+ ,7y) is a principal series which is K-finite, that
Woo (5, W1, W25 4, @) H ﬂ)n 1—[ 1
= = S, s
Loo(s,m)y @ T X TT_)) i i< Loo(1 + A; = Aj, 71" X ;f}h)
i#]

(6.20)

where HZ(s,A) is a product of polynomials and Mellin transform of Schwartz
functions. Moreover, H(s, 1) is nonvanishing when Re(s) > 1 —2/(n> + 1).
Let v be an archimedean place. Let ¥\ be the set of archimedean places such
that F, ~ R and n,;n, ; is ramified. Then for any v € X1, one has Le(1 + A; —
ﬂj,ﬂ'iur X 7?}'.”)[400(1 + A — ﬂj,ﬂ,‘ X 7?1‘)_] =IRr(l+ 4 - ﬂj) Tr(2+ 24 — /lj)_l. Let
%, be the set of archimedean places such that F, ~ C and m,;m,; is ramified, then
for any v € Ly, one has Loo(1 + 4; — A, " X 7?}4’)L00(1 + A4 = Aj,m X 7?])‘1 =
To(l+4; =) Telky + 1+ 4= )7 =TI 0+ 1+ 4= 4)7", where k, € N3

Let Ho(s, ) be the product of HZ (s, A) and the function

ky,—1 Y -
1—“—“—[ ]_[(1+1+Ai—ﬂj)ﬂr(2”£ A,)r(lué /1,) 1.

1<i,j<n wneX, [=0 VIEX]
i#]
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Then H(s, ) is holomorphic with respect to s € C and with respect to A =
(A1,- -+, Ay) in the domain |A; — A;| < 2,1 <i,j <n.

Let H(s,A) = Hoo(s, )H (s, ). Then by (6.19) and (6.20) we have

¥ (s, W1, W, 1, D) 1
— = H(s, A —. 6.21
A(s,my @ T X 7)) (s )l—[ 1—[A(l + A — Aj,m X 7)) ( )

Let notation be as before, we then define, for A € iaj, / ia*G and ¢, € Bp ,, that

P (s, W1, Wa; A)
As,my@TXx7_y)

R(s. 592) = D (Tp(L,9)$1,62) - Re(s) > 1, (6.22)

¢1€QSP,X
where A(s, 1y ® T X m_,) is the complete L-function, defined by [],cx, Ly(s, 72, ®
T, X m_,,). Write ¢ as a finite sum of convolutions ¢, * ¢g. Since Bp , is finite

dimensional, we have, when Re(s) > 1, that

D (T4, 9)p1,9)

¢1€%P,X

Y(s, Wi, Wy; A) Z Z W(s, Wo, Wg; 1)
= (6.23)
@ B

A(s,my @ T X T_)) A(s,my ® T X7_y)

where Wa(x; 1) = W(x,Zp(4, pp)¢; A) and W, (x; A) is the Whittaker function de-
fined by W,(x; 1) = W(x,Ip(A,¢q)¢; A). Then we have (s, W,, Wg; 1) equal to
[TY. (s, Wq,, Wg,; 1), Re(s) > 1; and each W, (s, W,,,Ws,; 1) is a finite sum of
W, (s, W1y, Wa,; 4). Then according to Proposition 49 and Proposition 54 we see
that, when Re(s) > 1, W, (s, Wo», Wg,s DAL(S, Ay ® Ty X Ty, v)~! are independent
of s for all but finitely many places v, and as a function of s, is a finite product of
holomorphic function in Re(s) > 0. Hence both sides of (6.23) are well defined and
is meromorphic in Re(s). Then after continuation we have, for Re(s) > 0, that

R(s; 50) = ) (Tp(A. @)1, 9YR(s, Wi, W23 1) = D" R(s, Wes Wgs D). (6.24)
$1€Bp a.B

Then clearly by Theorem G we have that, for Re(s) > 1, Iwni(s, 7) is equal to

Z Z - Z /A Ry(s, 4; $)A(s, 14 ® T X T_2)dA.

C
X PeP Pq)e%p,)(

Note that the integrands make sense in the critical strip 0 < Re(s) < 1. To continue
Iwni(s,7) to a meromorphic function in the right half plane Re(s) > 0, we need
to show that the summation expressing Iwni(s,7) in Theorem G in fact converges
absolutely in the strip S 1) = {s € C: 0 < Re(s) < 1}, which we call the critical
strip.
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Chapter 7

ABSOLUTE CONVERGENCE IN THE CRITICAL STRIP S )

Let 1| < m < n be an integer and 7 € Ay(GL,,(F)\GL,(AF)) be a cuspidal
representation of GL,, over F. For v € gy, let f(m,) be the conductor of x,, set
C(my) = q{ (””), where g, is the cardinality of the residual field of F), then C(xr,) = 1
for all but finitely many finite places v. For v € X, then F, ~ R or F, =~ C. Let
Ly(s,my) = [1;TF,(s + ir, ;) be the associated L-factor of m,. Denote in this case

by C(my; 1) = [1;(2 + |ir + ,umlev)[FV:R], t € R, and set C(r,) = C(m,;0).

Definition 62 (Analytic Conductor). Let notation be as above, denote by C(r;t) =
[Tyes, C(my;t),t € R. We call C(nr) = C(n; 0) the analytic conductor of . Note that
it is well defined.

To prove our Theorem H, we need an explicit upper bound for Rankin-Selberg
L-functions in the critical strip in terms of the corresponding analytic conduc-
tors. Nevertheless, the standard convexity bound L(1/2,0 ® T X 0’) < C(0 ®

T X 0_1)1/2+e

is unknown unconditionally for general cuspidal representations o €
Ao(GL(F)\GL,,(Ar)) and ¢’ € Ay(GLyw (F)\GL,y(AF)). To remedy this, we
prove a preconvex estimate (which is sufficient for our purpose) for L(s,0 ® 7 X o)

in the critical strip 0 < Re(s) < 1.

Lemma 63 (Preconvex bound). Let 1 < m,m’ < n be two integers. Let o €
Ao(GLn(F)\GLy(AF))and o’ € ﬂO(GLm’(F)\GLm’(AF))-Letﬁm,m’ = 1_1/(m2+
1) = 1/(m’> + 1). Then for s € C such that 0 < Re(s) < 1, we have

148,y it —Re(s)

L(s,0 @ T X 0') <pe (l + |s(s — l)|_1)C(0'®T><o";s) 2 (1.0

where the implies constant is absolute, depending only on € and the base field F .

Proof. By definition, 7 extends to a character on G(Af) via composing with the
determinant map, i.e., by setting 7(x) = 7(| det x|a, ), for any x € G(Ar). Thus 7 is
automorphic and invariant on N(Af). Hence o ® 7 is also cuspidal. We may write
the cuspidal representations as 0 ® 7 = ®,(0, ®7,) and 0’ = ®/,07,. For prime ideals

p at which neither o, or o is ramified, let {Stye.; ()}, and {Sty, j(p)};ﬁ:'l be the
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respective Satake parameters of o ® 7 and o’. The Rankin-Selberg L-function at
such a p (there are all but finitely many such primes) is defined to be

m

Ly(s,0p ® Ty X 07) = l_[

=1

1

[ 11 = Strorie)Stor j(RINE/() )"
j=1

Since 7 is unitary, by [LRS99] we have |10ng/Q(p) 1Stoeri(P)] < 1/2 = 1/(m? + 1),
and |logNF/Q(p) ISty ;(p)| < 1/2 = 1/(m + 1). For the remaining places p, The

Rankin-Selberg L-function at such a p can be written as
m m !
Ls,oy@tyxo) = [ || | (1 - Streroii®NEg®) ™),

with |10gNF/Q(p) |Stogrxaij®)l] < |10ng/Q(p) IStreri(P)| + |lOng/Q(p) IS5 j(P)],
which is bounded by B, = 1 — 1/(m? + 1) — 1/(m’> + 1). Then an easy esti-

mate implies that for any s such that 8 = Re(s) > 1 + 8,7, we have

m
|L(S,0' ®TX 0")| - rl |Lp(s, Op @ Tp X 0';)| < l—[ l_l |1 - NF/Q(p)Bm,ml—ﬁr

p p =1 j=1

= [ [11 = Nesa@Pr 2™ = £p(B = Buw)™,
p
where {r(s) is the Dedekind zeta function associated to F'/Q. In particular,

IL(B +iy,0 @ T X )| < Zr(B = B )™ = Opy(1), B2 o > 1+ B (7.2)
Also, at each infinite place v | oo, there exists a set of mm’ complex parameters
{Hoorxorvij i 1 £i<m, 1 <j < m'} such that each local L-factor at v is

m m
Lv(s’o-v ® T, X O-é) = Qv(s) l_[ l_[ I_‘F‘, (S + /10'®T><o";v,i,j) 5

i=1 j=1

where Q,(s) is entire. Likewise, we have | Hoerxa’vi, j| < Bmm, according to loc.

cit. Moreover, since o, ® T, = 0, ® T,, the finite set {liggrxoviy 1 1 <i<m, 1<
Jj < m'} is equal to {u5®;xg,,w-j 1 <i<m,1<j<m}foranyv e Zpq. Note

that by Stirling’s formula one has, for s = g + iy, where g < 1 — 3, ', that
T(1—s+/2)-T(s+p/2)7" <p (1+]iy+pu)'**,

for any 4 € C such that Re(u) > —1 + By Then combining these with the
duplication formula I'c(s) = I'r(s)['r(s+1) we have, for s = S+iy with 8 < 1—Bym»
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that

l_[ L,(1-50,9T, XE’V)

< Clo, ® 1, X 03 y) /*P,
L,(s,0, ® T, X 07) ﬁl_[ (0 &7 v:7)

v]oo v]oo

Hence together with the functional equation we have

LB +iv,0®Tx0')=0 (C(O' ® 7 X a’;y)”z‘ﬁ) B < Bo< P (13)

If o ® T ¢ 0, then according to [JS81], L(s,0 ® T X ¢”’) is entire. Then combining
the nice analytic properties of L(s,oc ® X ¢”) (see loc. cit.) and Phragmén-Lindelof
principle with (7.2) and (7.3) we obtain the following preconvex bound in the interval
—Bmm < B <1+ B -

l+,8m’m/*,3

LB+iyv,oetxd)<. Clo®@rxo';y)” 2 '€ (7.4)

If o ® T ~ ¢, then according to loc. cit., L(s,0 ® T X o) has simple poles precisely
at s = 1 and possibly at s = 0. Consider instead the function f(s) = s(s — 1)(s +
2)~C+Bum=PI2[ (5,00 ® T x o). Then clearly f(s) is holomorphic and of order 1 in
the right half plane Re(s) > —f,,,»». Hence by (7.2), (7.3) and Phragmén-Lindelof
principle we have that f(s) is bounded by O, (C(O‘ ® T X o’ y) I Pmm =B/ 2+6) in
the strip =B < Re(s) < 1 + By, leading to the estimate
l+[$m,m/fﬁ
LB+iy,c @Ttx0") < |(B+iy)B+iy-D|'Clo@rxo’;y) 2 ¢, (1.5)
where 0 < 8 < 1. Now (7.1) follows from (7.4) and (7.5). O
Lemma 64. Let s = 8+ iy such that B > 0 and y € R. Then one has
5171727 7 < ()] < BT(B) - IsI 7, (7.6)

where C(s) = min {# + ﬁ,2|s|}. Moreover, if |y| = 1, we have uniformly that

ind(s)

(s) = Vame 22 MDD (1 )™ ). )

where 6(s) = 1ify > 1,and 6(s) = =1 if y < —1; and |A(s)| < V3B 2B 3 _

Proof. Consider 1/T'(s), which is an entire function. Take the logarithm of its
Hadamard decomposition 1/T'(s) = se¥* [1(1 + s/n)e™*/" (here yo = 0.57721 - - -
is the Euler-Mascheroni constant) and take real parts on both sides to get

log |F(S)_1| = log |S| + ’)/()ﬂ + Re Z (log (1 + E) _ i) +S,
n n

n<2|s|
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where S; = Re 3,595 (log(1 + s/n) — s/n) . Expand the logarithm to see

3 YOy s (B <

n>2|s| k=2 n>2| | n>2|s|

k—1 k
51| = [R L

where C;(s) = min{n?/6,|s|>/(2|s| = 1)}. Therefore, log |%S)| is no more than

log|s| +y0B+ ) (% - g) +Ci(s) < (1 +2|s] - 28) log 5] + C(s),

n<2|s|

which is further bounded by (1 +2vy)log |s| + C(s). This proves the left inequality of
(7.6). For the right hand side, consider the integral representation of I'(s+1) = sT'(s),
we have |s['(s)| = |/0°° tse"dtl < /000 |ts|e_’dt = /Ooo tPe~'dt = BT'(B), which proves
the right inequality of (7.6). Hence (7.6) holds.

To prove (7.7), we may assume thaty > 1. Write s = 8 + iy = pe'?, then

Z ifB=>0;
0<o=" _actan? <17 1P (7.8)
2 Y 5 — arctan Sy, if Bo < B <0,

where arctan x is taken its principal value, i.e., —7/2 < arctanx < 7/2,V x € R.

A standard application of Euler-MacLaurin summation formula leads to that

logl'(s) = (s —1/2)logs — s + 1/210g27r+/ du, (7.9)
0

(u + 5)?

where b(u) = 1/2{u} — 1/2{u}?, here {u} := u — [u] with [u] denoting the Gauss

symbol, i.e., [u] is the largest integer no more than u. Then

bw) 0\ > du 1 0\ 1
‘/ (u+s)2 <1/2(cos§) /0 (p+u)2< (cosi) Sg, (7.10)

since 0 < 6/2 < /4 according to (7.8). Substitute (7.10) into (7.9) to get

logT(s) = (B + iy — 1/2)[log B + ¥2 +i0] — B — iy +log V27 + Ci(y)
=(B-1/2)log B2+y2—76—,8+llog27r+C1(7)+iC2(s)
N 3 ,

where C>(s) = ylog /B2 + y2+(8—1/2)-6—7. Also one has elementary inequalities

|arctan,8)/‘1 —ﬁy‘1| < |,83/(373)|,

(7.11)
|log VB2 + y2 - logy| < B*/(2y?).
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Then plugging (7.11) into the expansion of log I'(s) to get that log I'(s) is equal to

1 1 1
S log 27 - % + (,8— E)1ogy+i{«ylog«y—y+ % (,8— E) } L Gi(s),  (1.12)

where |C3(s)| < (1/3 + B%/2+ 8/3) - |y|™!. Then the case y > 1 of (7.7) follows
from (7.12) and the elementary inequality |e“* — 1| < (e — 1)x, for any ¢ > 0 and
0 < x < 1. Taking the complex conjugate of both sides gives the case where y < —1.

Hence the lemma follows. O

Corollary 65. Let 1 < m,m’ < n be two integers. Let o € Ay(GLy(F)\GL,(AF))
and o’ € Ao(GL,(F)\GL,/(AF)). Let v be an archimedean place. Let 3 > 5.
Then for each s = By +iy € Csuch that 1 —1/(n>+1) < By < 1 and y € R, we have
L,(B+iy,00,®T, X))

Cloy, @1, X07;7)

|Lv(s, oy ® T, X 0'6)| <Cg-

, (7.13)

where Cg is an absolute constant depending only on 3, n and the base field F.

Proof. Let tg = 2¢'/3*8*/12+8’/3 Then 15 > 2. Recall that by definition

m
L,(s,00,®T, X O-\C) = 1—[ l_[ [k, (S + /10'®T><o";v,j,k) . (7.14)

j=1 k=1

m’
k=
We can write fogrxovjk = Bjk +ivjk- Then |Bjx] < 1-1/(1+m?)—1/(1+m") <
1-2/(1+n?). Lettjx =y +7vyjk1<j<m1<k<m' Lets, =2/[F, :R].

Case 1: If |tj x| < tg. Then by the estimate (7.6) we see that

'k, (s + /10'®T><0";v,j,k) . (2 + liy + #0'®T><o";v,i,j|Fv)[Fv:R]

ro (ﬁ +iy + /vlzf®r><(r’;v,j,k)

1+2
B+ Bkl +15] "

Oy

b

+ B, 2(B+1B;j k 1+13)
r (ﬁO ﬁ],k (;— ]

2
) 2+ 1Bjklr, +liglr,) e o
Oy

which can be seen clearly to be bounded by

Crjx(B) 2 (B + |tg]? + 1)¥632BHERD . max — T(8/6,).
1/(n2+1)<p’<2

Case 2: If |tjx| > tg > 2. Then by the estimate (7.7) we see that

I'r, (S + #U@TXO";V,j,k) : (2 + |iy + M0'®T><o";v,i,j|Fv)[Fv:R]

Tk, (B+ 1y + Hosrxov.jik)
2+ |Bjklr, + |t,8|Fv)2 (1 + 1205 + pogrxorw i) - 1tk
|(5171tj,k|’8_’80 : ((1 - M(ﬁ + i’)/ + /’tO'®TXO";v,j,k)|) : |tj,k|_1)

b
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whichis bounded by 3(3+|t; x|*)?|5; #jx|'# 2 Cs.jx(t;x). Note that C.j (¢ x)

is bounded in the interval [g,00). So we can define

Cojk(B) = sup Cajk(tjk)-
|tj’k|2t'5
Now let Cj x(B8) = max{C1.; k(B), C2.jx(B)}. Then C; (B) is well defined, 1 < j < m,
1 <k <m'. Set Cg =[] [1x Cjx(B)- Then by (7.14) and

ml

m
. F,:R
C(O-v ® T, X O-;;y) = 1_[ 1—[ (2 + |Vy + ﬂO’@TXU”;V,i,lev)[ ],
i=1 j=1

the estimate (7.13) follows. O

Remark 66. Let 1 < m,m’ < n be two integers. Let o € Ay(GL,(F)\GL,,(AF))
and o’ € Ao(GLy(F)\GL,(AF)). Let v be an archimedean place. Let N > 1 and
B = 4N + 1. Then essentially the same proof of Corollary 65 leads to the result that
foreach s = By + iy € Csuch that 0 < By < 1 and y € R, we have

L,(B+iy,op®T, X07,)

|Lu(s,00 ® Ty X )| < Cwvg - Cloy ® 1, X}, y)N
v v Vo

, (7.15)

where Cy g is an absolute constant depending only on N, §, n and the base field F.
This slightly general bound (7.15) will be used in [Yan21].

Let v € ZFsn be a nonarchimedean place of F. Let ®,; be a constant multiplying
the characteristic function of some open ball in F}'. Then its Fourier transform @’i)_v\l
is also of the same form, i.e., a constant multiplying the characteristic function of

some open ball in F}.

Now we consider integrals W} (s, Wi, W ,; 4, ®,;) defined by
/ Wl,v(xv; /I)Wl,v (xv; _/i) : (Dv,l(nxv)| det xvli:v dx,.
N(F)\G(F)

Let VT/LV be the Whittaker function of m,_,, defined via VT/LV(x) = Wi(wxh),
where x € G(F,) and w is the longest element in Wp\W/Wp. Define the integral
\P:(S, Wl,v, Wl,v; /L q’)v\,l) b}’

/ Wl,vﬁ}l,v (xv; _/i) : 6\/\,1(77351/” det xvl;v dx,.
N(F,)\G(Fy)
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Lemma 67. Let notation be as before. Let 0 < € < 1/2. Let g, be the cardinality of
the residue field of F,. Let W\ be a Whittaker function associated to y € Xp. Then

there exists a constant c,, depending only on the test function ¢ such that

|5 (5. Wi Wiy L, @0)) | < g

lP: (1 — €, Wl,v, Wl,v; /L (DVJ)

, (7.16)

for any s € C such that Re(s) = €.

Proof. We can apply the same argument on the support of Wl,v as that of Wy, in
the proof of Corollary 47 to show that there exists a positive integer m, = m,(¢,),
depending only on the place v € S(r,®) and the K-finite type of the test function
¢, such that supp VT/LV lacr,) € {x = diag(xy,- -+ ,x,) € A(F,) : max{|xi|,} < ¢,"}.
Noting 671 is an indicator function, then for any s such that Re(s) = ¢,

—nmy €
v

/ Wi, (s OWi, (13 -1) - @, (17x,)| det |5 dx,
N(F,O\G(Fy)

2q;nmv(l—e)

b

/ Wl,v(xv; A)Wl,v (xv; _/i) : (I/)_v,\l(nxv” det xvlflr‘jedxv
N(F)\G(F,)
from which one easily obtains the inequality that

256, Wi Wi 4, @, )] = g™ [ (1 — €, Wiy, Wiys 4,@,7)- (7.17)

On the other hand, we have the functional equation

T:(l - Sa Wl,\/’ Wl,v; /17 E)V\,l)
L,(1—s,m, XTT_2y)

G(S, 7r\)7 /1)\113 (S’ Wl,Va Wl,v; /l? (Dv,l)
Ly(s, Ty X 7?—/1,\/)

, (7.18)

where €(s, 71, A) = y(s, 71y, ALy (s, w1y X T_,)Ly(1 =5, 74, X T_,,)~ " is the e-factor,
here y(s,m,,A) is the y-factor. By the stability of y-factors and [CP17], we have
the stability of e(s, 7y, A). Thus €(s,m,,A) = [T[1e(s + A4 — 4j,0,; X 0,j,4). Let
gv = Nrg(p). Then one has that (see [JPS83]) each e(s + A; — 4,0, X 7, j, 4) is of
the form cq, 75 where lc| = qé/ % and f, is the local conductor, which is bounded by
an absolute constant depending only on K, -type of the test function ¢. Hence there

exists some absolute constant e, € N, relying only on ¢, such that
|e(s, 7y, De(l = s, ﬂv,/l)_l| > g, ¢, (7.19)
Then combine (7.17), (7.18) and (7.19) we have

\P: (69 Wl,v’ Wl,v; /1, q)v,l)
Lv(fa Tay X 7?—/1,\/)2

Py (1= € Wiy, Wiy 4,@y))
L,(1—¢my, XT_1,)>

nm,+e, e

(7.20)
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Since m, ) € Xp is generic, then it is irreducible. Hence, according to [CP17], we

have
P

’
LV(S,T[,LV X ﬁ_ﬂ’v) = l_l 1_[ LV(S + /7.,' - /1]',0'\,7,' X 5",’]'). (7.21)
i=1 j=1

Let p be the prime ideal representing the place v € Xz;,. Then for any s,

r r o n Ny
L,(s, Ty X ﬁ—ﬂ,v)_l = l_[ 1_[ l_[ 1—[ (1 - Staxa/,k,l(p)NF/Q(p)_S_/li+/lj)

i=1 j=1 k=1 I=1

is a finite product, hence it is an entire function. Moreover, since |St(7><af,k,1(p)| <
NF/Q(p)ﬁi,j, where B;; = 1 — 1/(”1'2 +1)- 1/(n12. + 1), we then have
)n[+l’lj

r r
LG,y x T < [T T 1+ Vepae) e
i=1 j=1

(7.22)

where n; and n; are ranks of components of Levi subgroup of P respectively. Also,

r r n;i+n;
Ly x 7o) 2 [ ][] (1= Nea ®eer8)™™ 0 7.23)
i=1 j=1

Then it follows from (7.20), (7.22) and (7.23) that

|‘I’;k (€, Wiy, Wiy 4,@,) | <gq'

Wy (1= € Wiy, Wiy 4, @y)

, (7.24)

where ¢, is a constant depending only on the test function ¢. Noting that @, is a
constant multiplying the characteristic function of some connected compact subset
of F", 50 W5 (s, Wiy, Wiy 4, @) | < [¥5 (Re(s), Wi, Wiy; 4,®@,,) | Then (7.16)
follows from this inequality and (7.24). O

With the preparation above, now we can prove the following result:

Theorem H. Let s € C be such that 0 < Re(s) < 1, then
1 —
YY Y [ RskonGmerxiod (29
cp A*
X PeP ¢€%p,)(

converges absolutely, normally with respect to s, where Ry(s,A; ¢) is defined in

(6.22) and A(s, )y ® T X _)) is the complete L-function.

Proof. Fix a proper parabolic subgroup P € P of type (ny,nz,--- ,n,). Let Xp be
the subset of cuspidal data y = {(M, o)} such that M = Mp. Denote by

Jp(s) = Z Z ‘/A Ry(s, A3 p)A(s,m4y ® T X _y)dA.

XEXp ¢E%P,/\/
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Let Mp = diag(M, M>,- - - , M,), where M; is n; by n; matrix, 1 < i < r. We may
write o = (07,09, -+ ,07), where 0; € Ag(M;(F)\M;(AF)). By the K-finiteness of
¢, each o7 has a fixed finite type, so its conductor is bounded uniformly (depending
only on ¢). Let Co(0; ® T X 073 1) = [Tess . C(ojy ® T, X 07, t). Then one has
Coolo; ® T X 05 t) X, C(0; ® T X 0j; 1), where the implies constant depends only
on supp ¢. For any ® = P - [[,c0o @y € So(A}), where Py =[], Oy. Let

Xy = (X1, %2, -+, Xyn) € F)', then by definition, @, is of the form
) m
Y K2
D,(x,)=e LN Z Qk(xv,l, Xp2,t ot ,xv,n), (7.26)
k=1
where F, 2 R, Qx(xy.1,Xp2,-** , Xpn) € Clxy 1, X2, + + , Xy,] are monomials; and

m
-2 n X — — =
q>V(')CV) =e€ HZJZI Bd g : Z Qk(xv,l,xv,la xv,2, xv,z’ Tt xv,n’ xv,n), (727)

k=1
where F, = C and Qk(x,1, Xy 1, X2, Xp2, ** , Xy, Xy,) are monomials in the ring
Clxy.1, X1, Xp.2, Xy 2, * + » Xy, Xy n]. Thus there exists a finite index set J such that
Do (Xoo) = Z rl q)v,jv(xv)a Xoo = l_[ Xy € G(AF,OO)’
J=0v)viw€d v]oo v]oo

where each @, ; is of the form in (7.26) or (7.27) withm = 1. Let O, j = thx, D,
J = (jv)vjo € J. Then @ isequal to the sumover j € Jofeach®; = Oy [[,c0o Py €
S()(A’;:).

Since for each v | co and j € J, ¥, (s, W, Wg,; 4, @, j) converges absolutely in
Re(s) > 0 (see [Jac09]), one has

T (5 W Was 2.0) [ < 3 | ]9 (5 Was Waai 4005 ) |- (7:28)

v]oo J€J |
Since each @, ; is a monomial multiplying an exponential function with negative
exponent, P, (s, Wa,y, Wg,; 4, D5, is in fact of the form c;7%* TT,; [T; T'(s + i),
where c;, ¢; and v; are some constants and the product is finite. Although these
parameters depend on the representations o~ and 7, the local Rankin-Selberg integral
Y, (s, Waws Wgys 4,0y, jv) is either nonvanishing in Re(s) > 0 or vanishing identically
(i.e. ¢; = 0). Note that for each archimedean place v, there exists a polynomial
0O(s) = QO(s, 1) (see loc. cit.) depending on 7, and 4, such that

r r
L5,y @7 xF1) = Qs ) | || | Lols + 4 = 4,005 @ 70 x T ),
i=1 j=1
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where Re(s) > B,, = 1 —2/(n®> + 1). Clearly Q(s, 1) is nonvanishing in Re(s) >

Bnn. Combining this with the preceding discussion we conclude that there exists a

polynomial Q, ;(s; 4) (depending on ) for each A such that

Wy (5, Wars Wos A @y 5,) = Qv (s D | || | Lols + 4 = 4,0 @ 7 x B ).
i=1 j=1
Then the above analysis leads to that each Q,j (s;4) is either nonvanishing in
Re(s) > S, or vanishing identically (i.e. ¢; = 0). Write O, ;, (s; 1) = c.j, [1(s—0.),
withRe(0;) < Bun. Let so = Bo+iyo such that By, v € Rand 1-1/(n?+1) < By < 1.
Let Ue(sg) € S[0, 1] (with 0 < € < (1 —Re(sp))/10) be a neighborhood of sy. Then
|s — 04| < |s" — 4|, for any s € Uc(sp) and s” = B+ iIm(s), B = 5. Therefore,

Q. (53 DI <100, (s DL Y v [ oo, j = (juhjeo € J, A € dapfiag, — (7.29)

where s = B+ iy € Ue(so) and 8" = 5 + iy. Combining (7.29) with (7.13) leads to

l—[ Y, (S,, Way, Wﬁ,V; A, (I)Vsjv) (7.30)

Cv(ﬂ/l,v ® 1) X }F—/l,v; 7) ’

‘ H \Pv (S, Wa/,v’ W,B,V; /l’(Dijv) < CglF '

v]oo

v|oo

where dp = [F : Q]. Let S(xr,®) be the finite set of nonarchimedean places such
that 7, is unramified and @, = @; is the characteristic function of G(OF,,) outside
YF .00 U S(mr, @). Then by Proposition 49 we have

Rsaay(ss )= [ | R WanWais ) e (X) Clgqs: 1<i<rl.
veS(m,d) veS(m,d)
Letv € S(mr, @). Write Ry(za)(5, Wa; 1) = [ es(ra) Rv(S, Waws Wap; A); write Ry(ra)(s, Wg; 1) =
[Tvestrm) Ro(s, Wpy, Wg,; 2). Then they both lie in the ring (%), g0 Clg®, ¢
1 <i < r]. Write R,(s;4) = R,(s,W,,,Wp,; ) in this proof. By definition we
have R,(s;0) =, (s, Wan, Wgys 4, Dy ) - Lu(s, M0y ® Ty X T-1,,) "}, when Re(s) > 1.
Recall that W, (s, Wy, Wa,; 4,®,) is equal to

/ Wa,v(xv; /I)W,B,v (xv; _/i) ®,(nx,)7(det x,)| det x, |;7V dx,,
N(F)\G(Fy)

which converges normally in Re(s) > 0, uniformly in A € iay/iag, due to the
standard estimate on Whittaker functions (they are bounded by compactly sup-
ported functions in this case). Thus it defines an holomorphic function with re-
spect to s in the region Re(s) > 0. By definition and gauge argument we see
that the integral W, (s, Wa.y, Wg,; 4,®,) converges normally in Re(s) > 0. There-
fore, W, (s, Wa, Wgp; 4,®,) - Ly(s,m0 ® Ty X T_py) " is exactly R,(s,A) for any
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Re(s) > 0. Since @, is a Schwartz-Bruhat function, we can write @, as a finite sum
of @, ;, where each @, is a constant multiplying a characteristic function of some
open ball in F}'. Then the Fourier transform of @, is of the same form. Recall that
the integral ¥ (s, Wa.p, Wa s 4, @) is defined by

/ Wa (s OWeyy (x0;=1) - @ 1(7x,)| det x, |3 dx,.
N(F\G(F,)

Hence |‘I’;k (s, Waws Ways 4, (I)v,l) | < |‘I’: (Re(s), Wavs Waus 4, (I)v’l) | Likewise, one
has |‘I’j(s, VT/(,,V, Ww; A, 5;)| < |‘I’: (Re(s), VT/(,,V, Ww; A, 5\

q5* s (8, Waw, Wa s 4, @y )
(6—5)(s+5)Ly(s,mp X T_3,)

H,(s,c) = , 1/2 < Re(s) <5,

where v € S(r, @) and ¢ > 0 is a parameter to be determined, depending only on the
test function ¢. Clearly for any ¢, H, (s, c) is bounded in the strip 1/2 < Re(s) < 5,
tends to zero as Im(s) tends to infinity. Let 0 < € < 2/(n* + 1) and 55 € (1 —€1).
Then by maximal principle, there exists an s; such that Re(s;) = 5 or Re(s;) =
1/2 such that |Hv,l(s(’), c)| < |Hv,1(s1,c)|. Now we assume Re(s;) = 1/2. Consider
the functional equation (7.18). Let g, = Npg(p). By the stability of e(s,m,, 1),
one has that (see [JPS83]) e(s,7,,A) = [T [1e(s + A; — /l],av, X 0y,j,4) and each

e(s + A; — Aj,04,; X 0y, 4) is of the form cg, s

, Where |c| = qv % and fy is the local
conductor, which is bounded by an absolute constant depending only on K, -type
of the test function ¢. Hence there exists some absolute constant e, € Ny, relying

only on ¢, such that

|e(s, 70, D)e(1/2,m,, )Y = gy "W). (7.31)

The same argument on the support of Wi v as that of Wy, in the proof of Corollary 47
shows that there exists a positive integer m, = m, (¢, ), depending only on the place
v € S(m, @) and the K-finite type of the test function ¢, such that supp Wl v lar,) <
{x = diag(xy,- -+ ,x,) € A(F,) : max{|x;|,} < ¢g;"}. Then one has, for any s in the
strip 0 < Re(s) < 1/2, that

—nm,, Re(s)
v

/ Wa,v(xv; /I)Wa"’ (x"; _/1) v l(nxv)| det x, |Fe(s)dXV
N(F)\G(Fy)

qu_nm”ﬁ‘/ W (xp; DWW, (x0; =) - @, ;(nx,)| det x, 1/dev
N(F,)\G(F,)

Therefore we can substitute s = 1 — s, into the above inequality to get

nmL (2 50)

SO’ Wa/v, Wav’ 4, (Dvl)‘

¥ (1/2 VVa/w‘/Vav’/l (Dvl)‘ (7 32)



113
Then combining this with (7.18), (7.31) and (7.32) one has

\P: (SE), Wa',\/a Wa,v; /L (I)v,l) \P": (1/2, Wa,v’ Wa,v; /L q)v,l)

Lv(l - Sé’ﬂ/l,v X 77—/1,\1)

v(sg) )

- 1%

, (7.33)

Lv(sé’ Ay X 77—/1,\1)

where v(s() = nm,(1/2 — 5;)) + ey, is a constant depending only on the test func-
tion ¢. Denote by R* (s, A) the function ¥ (s, Wa,y, Ways A, D) /Ly (s, a0 X T_2),
Re(s) > 0. Then one combines (7.33) with (7.22) and (7.23) to get

1 _ S() 1+,Bl] nl+n]
R} (50, 2)] > RN 1—[ l—[ —1/2+ﬂ,, R:,(1/2,2)]. (7.34)
i=1 j=
Let ¢, be a positive constant such that
’ ’ : it
(s4-1/2)cv0 ~v(s}) (6 — SO)(SO + 5) l_[ 1_[ 1/2+,3 i |tny
' " l6-1/2)(1/2 +5) T oiehy

Note that such a ¢, g always exists since s, > 1/2. Then it follows from (7.22), (7.23)
and (7.34) that |Hv,l(s6, c)| < |Hv,l(s1,cv,0)|. Therefore, we have a contradiction by
assuming that Re(s;) = 1/2. Hence, we have Re(s;) = 5 if ¢ = ¢,0. Then for
any s such that Re(s) = s, |‘PV (5, Wans Ways 4, @) | < |‘P’V“ (s(’), Wews Waps 4, d)VJ) ,

which bounded, since |Hv,1(s(’), cv,o)| < |Hv,1(sl,

Sey ’ ’ ’ =~
CIvC 26 - So)(so + S)LV(SO, Ty X T-ay)

’ IP: (5’ WQ’,V’ Wa',v; /L (Dv’l) ’

Cy 08} _
10g, °L,(s1, 1y ® Ty X T_2)

Then by (7.23) and trivial estimate on L, (s1,7,, ® T, X 7_,,) one concludes that
there exists some constant ¢, depending only on ¢, such that

Ly

W5 (50 Was Was 4, @) | < e Z
=1

v (5’ Waws Wap: 4, (Dv,l) ) (7.35)

Then combining (7.35) and Lemma 67 we have, for any s with € < Re(s) < 1 — €,

vV

|\Pv (S, Was Ways 4, (DV) | < q‘fé Z
=1

\P: (5’ Wops Was 4, (Dv,l) )’ (7.36)

where ¢/, is a constant depending only on the test function ¢.

Note that when ¢, is G(OF,)-invariant, then m,; is unramified. So the cardinality
of the finite set S(r, @) is bounded in terms of 7, ® and the K-finite type of the

test function ¢. Namely, there exists a finite set Sy ;¢ of prime ideals such that for
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any 7 from some cuspidal datum y € Xp, one has S(x, @) € S, ;. Therefore, we

conclude that

|Rs () (5, Wes )| < Z n qsg

lz(lv)v eS(n,D) VGS(”v(D)

‘P: (5, Waws Ways 4, (DVJv)

,  (1.37)

where the sum over multi-index [ is finite in terms of ¢, 7 and ®. Similarly,

|Rs () (s, W3 )| < Z 1_[ 6156“1’: (5, Wp,, Wy A, Dy, ‘ (7.38)
l:(lv)vES(n,(l!) VES(ﬂ',(I))

By Proposition 49 we have, when v € g, — S(7,®) = S* - that
R,(s,1) = 1_[ n Lo(1+ 4 = A,y X 7i0) " Lo(1 = 4 + Ay, Ty X 7j) 7!
1<i<ri<j<r
is independent of s. So we write R, (1) for R,(s, A1) in this case.

Let s € Uc(sg) and 5" = 5 + i Im(s). Then by (7.28) and (7.37) we see that when
é1 = ¢ € Bp,, |R(s, DA(s, 1) @ T X 77_,1)| is bounded by |RS(,T,<D)(S, /l)| multiplying

L merxzo [ [R@]- Y]]

vesu-r J€J v]oo

n,®

Y, (S’ Waps W,B,v; 4, (Dv,jv)

By (7.1) and (7.21) we have the preconvex bound L(s,7) ® T X 1)) <f ¢ Cool(m) ®
7 X _y; Im(s)). Then combining this bound with (7.30) we have

ﬂ W, (5, Wans Wpps 1,@,),) | < l—[

v]oo v|eo

va (S,, Wa/,va Wﬁ,v; /1’ (I)Vsjv)
L(s,my®TX7_))

, (7.39)

where the implied constant is absolute. Let
Weo (5, Was Wi ,@5) = | | W0 (5", Was Wgs 4, @y,
v]eo
if j = (Jy)v|oo. Similarly, for any I = (I, ),es(r»), We denote by

W (5 War A @) = [ |85 (5 Was Wans 4. @)
veS(m,d)

Let C = ]—[VGS(,L(D) qsé < oo. Then combine (7.37), (7.38) and (7.39) to conclude
that

ol < D Y, [ IR W - Mm@ 7 xF-
« B

XEXp ¢peBp
sczajzﬁ][z 2 /A Ja(D)ldA] X2¢; /A Ip@ldal

XEXp ¢€%P,X

1
2

2

b
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where J, (1) = Jo(4; x, ¢) is defined by

22 [ (5, 1Wol, Wi 2,101) Wy, 5. Wi )| ][R

jeJ veSy
Likewise, we have definition of Jg(1) = Jg(4; x, ¢) of the same form. Note that

[ (5, IWal Wl 4 1051) 5, 5. Wi L) - T R
veS;:;(rD'

\Il: (S,a WQ,V; /L |(DV|)
L(s",\my @ T X 7))

s“l’oo (s',|Wa|,|Wa|;/1,|(DJ-|)‘P;‘a(S,Wa;/l,cD,)‘. [

VES;;;g
<]/

vexy Y NIE\G(F)

s DWe (x5 /l)q)j,l,v(nxv)

- | det xv|15pvdxv,

where @j, is certain positive Schwartz function of form (7.26) and (7.27) if v is
archimedean; ®;;, = |®,, |, if v € Sgr0; and @;;, = |®,| otherwise; and Cy is
an absolute constant, independent of 7 and A. Note that ®;; € So(A’). Denote by
W* (5, Wa; 4, @;,) the last integral in the above inequalities. Then we have by the
first part of Theorem G that

2 2 / Jo(A)da < ZZ DY / W (5, Wa3 4, @) dA < oo,
XE€Xp ¢€Bp jeJ XE€Xp ¢€Bp

since the sums over j and [ are finite. Similarly, one has
> / Jﬁ(/l)cm<zzz /\11 (5, Wp; 4, ®@j4) dA < 0.
XEXp $€Bp jeJ XEXp ¢€Bp

Since the sums over @ and 3 are finite, and since there are only finitely many standard

parabolic subgroups P of G, we have shown that

L 2 Joa,

X PeP

Ry(5, 45 $)A (5,70 ® T X E_ﬂ)‘a‘u <o, (740

forany 1—1/(n®+1) < so < 1. Now we apply Proposition 60 to this result to see that
(7.40) holds for any 0 < Re(s) < 1/(n* + 1). Note that Ry(s, ; p)A(s, ma @ T X 7T_))
is analytic inside the strip 1/(n> + 1) < Re(s) < 1 — 1/(n? + 1). Then by Phragmén-
Lindelof principle we have that |R(p(s, AL QAN(s, Ty @ T X T /1)| is bounded by

max max
so€{1/(n%2+1),1-1/(n2+1)} Re(s)=s0

Ry(s, A3 p)A(s,m4 ® T X 77_/1)|.

Therefore, (7.25) holds for all s € S(g1). |
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Corollary 69. Let notation be as before. Assume T is such that ™ # 1 for all
1 <k <n.Then

Z Z Z / Ry(s,4; 9)A(s,my ® T X T_1)dA

X PeP cp ¢€Bp,

admits a holomorphic continuation to the whole s-plane.

Proof. Since 8+ 1forall 1 < k < n,then m; ® T # 7, for all A. Then A(s, 7, ®
T X 7_,) is entire. Hence the arguments in the proof of Theorem H (with V(s, 1)
removed) works here for all Re(s) > 0. Then Corollary 69 follows from the functional

equation Proposition 60. m|

We note that (7.25) converges absolutely when 0 < Re(s) < 1 and Re(s) > 1, and
Corollary 69 gives a special case where (7.25) converges for all Re(s) > 0. However,
for general 7, the holomorphic functions defined by (7.25) in 0 < Re(s) < 1 and
Re(s) > 1 are not compatible, i.e., they do not give a natural continuation. The
reason is that in this case (7.25) may diverge for all s with Re(s) = 1, e.g., this

happens when 7 is trivial.

To handle these (finitely many) cases, we will consider the Iwni(s, 7) in Re(s) > 1 and
obtain its continuation to the half plane by analyzing residues of certain functions

of several complex variables in Section 8.
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Chapter 8

HOLOMORPHIC CONTINUATION VIA MULTIDIMENSIONAL
RESIDUES

From preceding estimates, we see that when Re(s) > 1, Iwni(s, 7) is a combination
of Rankin-Selberg convolutions for automorphic functions which are not of rapid
decay. Zagier [Zag81] computed the Rankin-Selberg transform of some type of
automorphic functions and derived the desired holomorphic continuation for n = 2
and F = Q case. However, general Eisenstein series for GL(n) do not have the
asymptotic properties as Zagier considered, since there are mixed terms in the
Fourier expansion (see Proposition 26). Thus one needs to develop a different

approach to obtain the continuation.

Iwni(s, 7) can be written as a sum of functions fA F (s, A)dA, which is well defined
when Re(s) > 1. Moreover, for each sy with Re(sg) = 1, there exists some 1y € A
such that F(s, Ap) is singular at s = s59. Hence the original integral representations for
Iwni(s, 7) have singularities at all points on the line Re(s) = 1. We shall use contour-
shifting and Cauchy’s theorem to continue Iwn;(s, 7). To illustrate the underlying
idea, we simply "think" F(s,4) = (s — 1 — DN (s-1+ /l)_1 and A = iR, namely,

100 1
Tyni(s, 7) = dl, R 1.
whi(5,7) /_iw(s—l—nxs—lm) e(s) >

Now we fix s such that 1 < Re(s) < 1 + €/2, for some small € > 0. Then shift

contour to see

€+ioco 1 1
el /E_im CES ) IS ) R Tra s (81

Note that the right hand side of (8.1) defines a meromorphic function in the region
1 —€/2 <Re(s) < 1+ ¢€/2, with a simple at s = 1. Hence we obtain a meromorphic
continuation of Iwni(s, T) to the region Re(s) > 1 — €/2. Do this process one more
time one then gets a meromorphic continuation to the whole complex plane, with

explicit description on poles.

Just as the above prototype, the genuine situation admits the same idea of continua-
tion, but with more delicate techniques required, since Iwni(s, 7)/A(s, 7) is typically

infinitely many sums of such integrals. Details will be provide in the following
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sections. Moreover, we find all possible explicit poles of the continuation of each
such integral as well, and show they cancel with each other except for s = 1/2,

where Iwni(s, 7)/A(s, ) has at most a simple pole if 72 = 1.

8.1 Continuation via a Zero-free Region
Recall that we fix the unitary character 7. Let 9, be a standard (open) zero-free
region of L(s,7) (e.g. see [Bru06]). We fix such a D, once for all. We thus can

form a domain
R(1/2;7) :={se€C: 2s € D} 2{s €C: Re(s) > 1/2}. (8.2)

In Section 8.3, we will continue Iwhi(s, 7) to the open set R(1/2; 7)~. Invoking (8.2)
with functional equation we then obtain a meromorphic continuation of Iyy;(s, 7) to

the whole complex plane.

Let P be a standard parabolic subgroup of G of type (ni,ny,- - - ,n,). Let Xp be the
subset of cuspidal data y = {(M,0)} such that M = Mp = diag(M|, M3, -- ,M,),
where M; is n; by n; matrix, 1 < i < r. We may write o = (0,09, - - ,0), where
;i € Ag(M;(F)\M;(Ar)). Let m be a representation induced from y = {(M,o)}.

Forany A = (41,42, -, 4;) € iaj [iag, ~ (iR) !, satisfying that Ay + Ao +- - -+, = 0,
we let k = (ky, ko, -+ , k) € C"~! be such that
Ki=Aj—=Aj11, 1 <j<r—1,

(8.3)
K= —A, =k +K2+- - +K_1.

Then we have a bijection iaj, /ia, i iay/iag, A — k given by (8.3), which induces
a change of coordinates with dA = mpdk, where mp is an absolute constant (the
determinant of the transform (8.3)). So that we can write 4 = A(k). Let Ry(s,4; ¢)
be defined by (6.22) and A(s, 7, ® T X7_,) be the complete L-function. Then we can
write Ry(s, 4; ¢) = Ry(s,k; @) and A(s, ma@TX7_y) = A(s, mc®@TX7_¢). Recall that if
v € X fipn i a finite place such that 7, is unramified and ®, = @ is the characteristic
function of G(OF,). Assume further that ¢, = ¢, = ¢, be the unique G(OF,)-
fixed vector in the space of m, such that ¢¥(e) = 1. Then R,(s,Wy,,Wy,;1) =
R, (s, W1,,Ws,; k) is equal to (53), which is, in the k-coordinate, that

[] [] 20 +kijoixT)™" - Lol = ki, Fip x )7, (84)

I<i<ri<j<r

where k;; = k; +--- + kj_1. By the K-finiteness of ¢, there exists a finite set

S0 of nonarchimedean places such that for any 7 from some cuspidal datum
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X € Xp, R,(s,W;,,Ws,;k) is equal to the formula in (8.4). Then according to
Proposition 49 and Proposition 54 we see that, when Re(s) > 0, R, (s, W, Wa,,; k)
are independent of s for all but finitely many places v. Therefore, as a function of
s, Ry(s,k; ¢) is a finite product of holomorphic function in Re(s) > 0; for any given
s such that Re(s) > 0, as a complex function of multiple variables with respect
to K, Ry(s,k; ¢) has the property that R,(s,k; ¢)Ls(k,m, ) is holomorphic, where
Ls(k, 7, ) is denoted by the meromorphic function

n n l_[ Ly(1+k;j,00 X Tjy) - Ly(1 = k;j,07, X 0j,).

I<i<ri<j<rveS, .o

Hence R,(s,k; ¢) is holomorphic in some domain D if Lg(k, , ) is nonvanishing

in ©. Now we are picking up such a zero-free region D explicitly.

Let 1 < mym’ < n be two integers. Let o € Ay(GL,(F)\GL,,(AF)) and o’ €
Ao(GL,y (F)\GL,(AFr)). Fix €y > 0. For any ¢’ > 0, let D, (o, 0”) be

Y-2m+m’) Ly Lo
(C(o)C(0)) ]2 e } 55

{K = ﬁ + i’}’ . ﬁ Z 1 - C/ * [ (|')/| + S)me/[FQ]

if o’ ¢ o; and let D, (o, 0’) denote by the region

(C ]—%+s%—fo
(171 +3pmtr2) |

{K:ﬂ+iy:,821—c’-[ (8.6)
if o’ = 0. According to [Bru06] and the Appendix of [Lap13], there exists a constant
Cmp > 0 depending only on m and m’, such that L(k,o X ¢’) does not vanish in

K = (Kl" o ,Kr) €D r(o—’ 0-/) X X Z)cm’m/(o_’ OJ)- Let ¢ = minlSm,m’Sn Cmm’

and C(o,0’) be the boundary of D.(o,0’). We may assume that ¢ is small such
that the curve C(o-,0”’) lies in the strip 1 — 1/(n +4) < Re(kx;) < 1,1 < j < r. Fix
such a ¢ henceforth. Note that by our choice of ¢, L(k,o X ¢”’) is nonvanishing in

De(o,0")X - X Dc(o,0’) forany 1 < m,m’ < n.Forv € S, 0, we have that

r r 1_;_ 1 nitn;
|Lv(K,0-v X OJV)_1| < 1—[ rl (1 +q, m2+1 ml2+1) < o0,

i=1 j=1
for any k such that each Re(x;) > 0,1 < j < r. Let Lg(k,00 X 0’) = L(k,0 X
o) [Tves, .0 L,(k,0, X 0,)"!. Then Lg(k,o x o) is nonvanishing in D.(c,0”) X
co - X De(o,0’) forany 1 < m,m’ < n.

G(AF)

Let y e Xpand m = IndP(AF)

(01,072, ,04) € x. For any € € (0, 1] we set

D,(e) = ﬂ ﬂ {K €eC: Re(k)>0,1-kc€ Z)CE(O'i,O'j)}. 8.7)

1<i<ri<j<r
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Also, for € = 0, we set D, (0) = {K € C: Re(k) > 0}. Then by the above
discussion, as a function of k, Ls(k,n, ) is nonzero in the region D, (€) = {K =
(ki,-+- k) € C": K € Z)X(el)}, where € = (€,---,¢) € [0,1]". We can write
D, (€) as a product space D, (€) = [[;_; D,(€), and let 0D, (€) be the boundary
of D, (g). Then when ¢ > 0, 9D, (g) has two connected components and one of
which is exactly the imaginary axis. Let C,(¢) be the other component, which is a
continuous curve, where 0 < ¢ < 1. When ¢ = 0, let C,(¢g) be the maginary axis.
SetCy(e) =Cyle) X+ xCyle-1),0<g <1, 1<l <r-1.
Let € = (€1, -+ ,6—1) € [0,1]"!. Then by the above construction, Ry(s,k; @) is
holomorphicin D, (€). Hence Ry (s, k; ¢)A(s, 1, ® T X7_) is holomorphic in D, (€).
Moreover, Ls(k,7,7) # 0 on C,(€), for any € = (€1, ,&-1) € [0,1]"! and any
cuspidal datum y € Xp. Let Re(s) > 1. For any ¢ € Bp, and € = (€1, - ,6_1) €
[0, 17, let

Jp,(s;0,C\(€)) = / Ry(s,K; @)A(S, T ® T X T_y)dK. (8.8)
Cy(e)

which is well defined because Jp,, (s; ¢,C,(€)) = Jp,,(s; ¢,C,(0)) by Cauchy inte-
gral formula. Therefore, according to Theorem G,

1 —_—~
2. cp 2 2 /C ( )|R¢(S’K; PIA(s, T ® T X T_)|dK < 00
P v (€

XEXp ¢€Bp

for any Re(s) > 1, € = (e, - ,&—1) € [0,1]"71,
Lete = (e, - ,&—1) € [0,1]"~!. For any 8 > 1/2, we denote by
R(B: ., €) = {s €1+ z)X(e)} v {s el- @X(e)}. (8.9)

Lemma 70. Let notation be as before. Let P € P and let € = (1/n,1/n,--- ,1/n) €
R"=1. Then for any s € R(1; x,€) \ {1}, we have

Z Z / |R¢,(s,l<; DIA(s, T @ T X ﬁ_K)|dK < oo, (8.10)
Cy(e)

/YEXP ¢GEBP,X
Proof. We start with a variant of Lemma 37:

Claim 71. Let notation be as before. Let
Izoo(x,y) = / / Koo (n1x,12y)8(n1)8(n2)dn dn;. (8.11)
N(F)\N(Ap) JN(F)\N(AF)

Then Izoo(x, y) is equal to

Z Z e /C Z W(x, Ip(4, )¢, YW (y, ¢, )dA. (8.12)

| k
Y€X PeP kpl(2m)tr (€) $eBp
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Then the proof is similar as that of Theorem H except that Lemma 37 should be
replaced with Claim 71 and the constant e, in (7.31) is replaced with e, + 1. m|

Proof of Claim 71. The main idea of the proof is similar to Lemma 37. For any

P € P,letcp = kp!(2m)k?. Applying Cauchy’s integral formula we see that Koo (x, y)

is equal to
E(x,Ip(A, )¢, VE(y, ¢, 1)dA, (8.13)
)(Ze;ez; kP'(z’r e /Cx(f) ¢e;m

the absolute convergence of (8.13) is justified in [Art79] invoking Langlands” work

on Eisenstein theory (see [Lan76]).

Substitute (8.13) into (8.11) to get an at least formal expansion of Km(x, y), which

is clearly dominated by the following formal expression

‘/N] /N]Xexpe@ p

Denote by Ji the above integral. We will show Jg is finite, hence

Retun) =2 Y = | D W (5 W0 D
laP iak

XEX PeP G ¢€Bp

/C D E(xIp(4,9)¢, DE(y, ¢, D)dA|dmdns.

(e) $EBp

is well defined. One can write the test function ¢ as a finite linear combina-
tion of convolutions ¢ * ¢, with functions ¢; € C. (G(AF)), whose archimedean
components are differentiable of arbitrarily high order r. Then one applies Holder
inequality to it. Clearly it is enough to deal with the special case that ¢ = ¢; * (p;f,
where go}f(x) = ¢j(x~1), and x = y. Note that Bp , is finite due to the K-finiteness
assumption, and Eisenstein series converge absolutely for our 4, hence the integrand

D EGL(L )¢ VE(, ) = > E(x.Ip(4,¢))¢, VE(x, Ip(1,9,)¢, )
$EBp $€Bp
is well defined and obviously nonnegative. In fact, the double integral over A and
¢ can be expressed as an increasing limit of nonnegative functions, each of which
is the kernel of the restriction of R(¢; * 90;?), a positive semidefinite operator, to an

invariant subspace. Since this limit is bounded by the nonnegative function

Kiex)= > ¢jgi(xlyx),
yeZ(F)\G(F)

and the domain [N] = N(F)\N(AF) is compact, the integral J; converges. O
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8.2 Meromorphic continuation of Jp , (s; ¢,C, (€)) across the critical line Re(s) =
1

Let € = (1/n,1/n,---,1/n) € R" ! and s € 1 + D,(€) and Re(s) > 1. Then by

(6.19) we see that R(s, W1, Ws; k,p)A(s,mx ® T X m_,) is equal to a holomorphic

function multiplying

HA(S [on ®TXO' )l_[r[ A(S+sz,0'l ®TX0'1+1)A(S Ki,ja0-j+1 ®TX5,‘)
‘ ¢ ] 1 i= A(l+Kl,]’o-lXO—]+1)A(1_K1"]',O']'+1XF5'Z-) :

Let G(k;s) = G(k;s, P, xy) denotes the above product. Also, for simplicity, we
denote by F(k;s) = F(k;s, P, ) the function Ry(s,k; §)A(s,me ® T X 7_) if x is
fixed in the context. Then the Rankin-Selberg theory implies that ¥ (k; s)/G(k; s)
can be continued to an entire function. We will write C for the boundary C, (1), and
(0) for the imaginary axis. Then an analysis on the potential poles of G(k; s) leads
to an expression for the integral Jp , (s; ¢,C,(0)) = Jp ,(s;¢,C) — I, (s), where

r=1 j
Ty (5) :Z / / dkj_1 - d/q/ / Res T(K S)dkr—1 -+ - dKj1,
(0) (0) C Ki,j=5—

J=11i

where Res ¥ (k;s) is identically vanishing unless 0; ® T ~ o4, in which case
Ki,_,-=s—1

one must have n; = nj,1. Let S(r) be the symmetric group acting on {1,2,--- ,r}.
To obtain meromorphic continuation of Jp ,(s; ¢,C,(€)) to the critical strip 0 <

Re(s) < 1, we start with the following initial step:

Proposition 72. Let notation be as before. Let y € Xp. Let € = (1/n,1/n,---,1/n)
and s € 1 + D, (€) and Re(s) > 1. Then

D Irs:6.C0) = > Upy(si6,0)= D T(s:4,0),  (8.14)
¢€%P,X ¢€%P,)( ¢€%P,X
where C = C,, and the summand [ (s; ¢,C) is defined to be
dKr_l tee dKl
...... Res --- R et 7
Z Z Cj - / /C Res es T(K s)dij‘_.dKj],

Kjp =8— =s-1
m=1 " jm.jm-1- Jm K
1<jm<- <]1<r 1

r—1

where cj, ... j,’s are some explicit integers, and dk,_1 - - - dk [(dk;,, - - - dk;j, ) means
dk,_1 - - J/(Tm e Zl’K; -+~ dky; namely, omitting dk;, - - - ,dk;,. Moreover, the terms
in (8.14) converges absolutely and normally inside R(1; x,€)\ {1}, where R(1; x,€)
is defined in (8.9). Hence (8.14) gives a meromorphic continuation of the function
Z¢€%P,x Jp, (55 0,C(0)) to R(1; x, €), with a potential pole at s = 1.
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Proof. Forany 1 < j <r-1land1 <i < j,if n; = nj,, we can take the following
change of variables to simplify the integral of Res T(K 5):

Kij=s—1

A=A, 1 # i of = o, 1 # i, ;
and
A =4, /l;. = A, ol =0, 0'1’. = 0.
Letk =4, -4, 1 <1 Sr—l;andkl”m:/(l’+-~-+/<,’n,l <l<m<r-1.To
describe the relation between {«; : 1 <[/ <r—1}and{« : 1 <1 <r -1}, we

need to consider separately as follows:

Case 1 Ifi = j — 1. Then a direct computation shows that

Kl—K 1<i<r-11#i-1ii+1;

Ki—-1 = K

i-1,i° K; = _Ki’ Ki+1 = K

Li+1°
Hence, the domains Re(x;) = 0,1 </ <i = j— 1 are equivalent to Re(x;) = 0

1 <1 <i=j—1.Notethatdet{dk;/dk,,}1<im<r—1 = —1,and K;. =kij =5—1,

then one has

/ / dKj_l---dKl/---/ Res ?(K S)dKr 1° dKj+1

(0) (0) C kij=s=1

—/ / dK’;_y - dKI/ / Res T(K s, P, x)dK;_y -+ dKC
(0) (0) c kj=s-1

where y” is the cuspidal datum attached to representations (o, - - - , o). Hence

X' = x as an equivalent class.

Case 2 Ifi < j — 2. Then a direct computation leads to that

K=k, 1<I<r-11#i-1ij-1,];

K,]—K

/ . — / R /
i-1j-10 K = Ky o Ki-1 = 7K s K=K

L]

One can show inductively that the domains Re(x;)) = 0,1 <[ <i=j -1
are equivalent to Re(x)) = 0,1 </ <i = j — 1. Note that the determinant of

transition matrix det{d«;/0«],}1<im<r—1 = —1, and K;. = K;,j, SO again

/ / dKJ 1 dK]/ / Res T(K S)dK,- 1° dKj+1

0) (0) C kij=s—1

—/ / dK;- dKI/ / Res T(K 8, P, X )iy -+ dK
0) 0) C Kj=s-1
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While if n; # nj,1,then Res F(k;s) = 0. In all, we have

Ki,j:S—l

/ / dkj_1 - d/q/ / Res T(K S)dkr—1 -+ - dKjs1
¢E% (0) (0) C kij=s-1

/ / dkj-1 - d/q/---/ Res F(k;s)dky_1 - - dKji1.
(0) (0) c ki=s-1

Therefore, we see that 3 scs,, Jp(s:6,C(0)) - 2ipeBp,, Jp (55 ¢,C) equals

/ / dk; -1 dK1/ / Res T(K S)dKr 1° dKj+1,
0) (0) c Kj=s-1

where c ’s are some explicit constants, depending only on the type of P. Consider

/ / dkj, 1+ d/q/ / Res T(K S)dkr—1 -+ -dkj+1, 1 < j1 <r -1
(0) (0) C Kjy=s-1

Then by Cauchy integral formula we can write it as the sum of

/ /dkj] - d/q/ / Res T(K s)dky—1 - - - dkj,+1 and
C Kkj=s-1

a-1 j
di,—1 -+ dKjy 41
E E dK~_1---dK1/---/ReST(K;s) ,
iz /0) /(0) " c Je dK;

h=1i=1 ( !

#€Bp

¢E%P j=

where cl’ j, are some explicit integers depending only on the type of P. Res¥ (k; s) =

Res | Res 1?' (k; s). Then one can do the similar analysis to replace «;, j, = s — 1
K‘Z N =5— Kj] =§—

with kj, = s — 1. Then by induction (or simply continue this process until m = r — 1)
we obtain the expression (8.14). Recall that by definition

Fkis) = >, (Tp(h@)d1,¢2) - s, Wi, Wa3 ). (8.15)

¢1€%P,)(

Then ¥ (k; s) is a Schwartz function of k by Claim ??. Hence all the above integrals

converge absolutely. Then the proof is completed. O

Let notation be as in Proposition 72. Denote by Zy(s; y) the summand of the first
term of the right hand side of (8.14), i.e.,

Iy, (s) = Z Jp,(5;0,C), s €1+D,(€), Re(s) > 1.
¢€%pv\/,
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Proposition 73. Let notation be as before. Let s € 1 + D, (€) and Re(s) > 1. Then

Top()= D0 Jpy(si 6 CuO)+ > T2s), (8.16)

¢€%P:X ¢€%Pv\/

where C = Cy; and the summand j)?(s) is defined to be

d ood

Z Z Z Cjr. / """ / Res --- Res T(K S)M’

m=1 - jmsfm-1- © (0) Kim=1=5 &= dxj,, - - - dkj,
1<Jm< <]1<r 1

where Cj, .. ;s are some explicit integers, depending only on P; and the mea-
sure dk,_1 -+ - dky/(dk;,, - - - dkj,) means dk,_1 - --dk;j, ---dk;j, ---dki. Moreover,

the terms in (8.16) converges absolutely and normally inside any bounded strip.

Proof. The proof is pretty similar to that of Proposition 72. Hence we will omit
it. O

8.3 Meromorphic Continuation Inside the Critical Strip
Lets € R(1; y,e)and 1 <m < r—1.Let ju, ju—1, -+ ,Jj1 be m integers such that
1 <jnu<---<ji <r—1.Consider the summand in the second term of (8.14):

dk}_1~--dK]
Ty (s) = Z / ...... /C Res --- Rgs_ F(k; s)m_

ki, =s—1
¢€%P Jm

Then each 7,, () is naturally meromorphic in R(1; y, €) with a possible at s = 1.

Theorem 1. Let notation be as before. Let n < 4. Let y € Xp. Assume that
the adjoint L-function L(s,o,Ad ®t) is holomorphic inside the strip Sq) for any
cuspidal representation o € Ay (GL(k,AF)), and any k < n — 1. Then for any

0 <m < r—1, the function

Z Iy (s), s €R(; xe),

¢€Bp
admits a meromorphic continuation to the area R(1/2;71)~, with possible simple
poles at s € {1/2,2/3,---,(n — 1)/n,1}, where R(1/2;7)” is defined in (8.2).
Moreover, forany3 < k < n,if L(k—1)/k,7) = 0,then s = (k —1)/k is not a pole.

Remark 75. In can be seen from the proof that when n < 3, we can continue
the functions Z(ﬁe%},% I (s) to Re(s) > 1/3. When n = 4, we can only continue
2peBp, Iy (s) to R(1/2;7)7, an open set just containing the right half plane
Re(s) > 1/2. This is because some of its components involve A(2s,7%)~! as a factor.

The key ingredient is that R(1/2; 7)™ is uniform with respect to y € Xp.
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Remark 76. We restrict ourselves to the case n < 4 for the following two reasons.
On the one hand, we actually need to assume Dedekind Conjecture of degree n to
handle the contribution from geometric side. This conjecture has been confirmed
when n < 4, so we will get unconditional results if n < 4. On the other hand, when
n > 5, the procedure of meromorphic continuation is even more complicated, since
we are lack of a symmetrical description of this process. Thus, we will focus on

n < 4 case in this thesis.

Since the case n = 2 has been done in [GJ78], we only need to care about the
situation where 3 < n < 4. To prove Theorem I in these cases, we deal withn = 3

and n = 4 separately, since we want to give explicit descriptions.

Let notation be as before. To simplify our computations below, we shall write, for
any B € R, that R(B) = R(B; x,€), R(B)” = R(B; x.€) N {s : Re(s) < B}, and
R(B)" = R(B; x,€) N {s : Re(s) > B}. Recall also that we use Sz to denote the
strip a < Re(s) < b, for any a < b.

8.4 Proof of Theorem I when n =3

Proof. Let n = 3. Then there are two possibilities forr : r =2 orr = 3. If r = 2,
then the parabolic subgroup P is maximal, and any associated cuspidal datum is
of the form y =~ (o,07), where o is a cuspidal representation of GL(2, Ar) and
o> is a Hecke character on A?. In this case, ¥ (k,s) is equal to an entire function

multiplying

A(s + k1,01 @ T X 02)A(s — k1,07 ® T X 071)
A(l + K1,01 X 52)/\(1 — K1,072 X 5‘1)

2
: ﬂ Als, 00 ®TXT%).  (8.17)
k=1

Since each completed L-functions in (8.17) is entire inside S ), then F(k,s) is
holomorphic (after continuation) when 0 < Re(s) < 1. On the other hand, ¥ (x, s)
vanishes when Im(x;) — oco. Let Re(s) > 1. By Cauchy integral formula,

IO = 3 [ Fesaa= Y, [ Fesdn,
peBp , Y (0) ¢eBp, V€

which gives holomorphic continuation to an area Re(s) > 1 — ¢, for some ¢; > 0.

Hence we obtain holomorphic continuation of Jp ,(s; ¢, C(0)) to Re(s) > 0.

Now we handle the more complicated case where r = 3. In this case, cuspidal

data y correspond to (x1, x2, x3), Where x;’s are unitary Hecke characters such that
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X1X2X3 = w, the fixed central character. Then ¥ (k, s) is equal to

A(s + Kij TXX 74 1) = Kijs TXj41X7)
H (s, k)A(s, 7’ ﬂ ]_[ by A b A (8.18)
j=1 i= A(l + Kl,],Xl/\/j+])A(1 - Ki,j,)(j+1)(i)

where H (s, k) is an entire function and A(s, y”) is the completed Hecke L-function
associated to the unitary Hecke character y over F. Let 3, denote the double

summation over ¢ € Bp . Then by Proposition 72,

Jp (53 6,C(0)) = Z / / Fk.s)diadiy —c12 ), Res Res F(k.s)

K1=8S— 1K2 s—1

_— Z / KlReﬁ F(k,s)dkr — 2 Z /C K2R?§ F(k,s)dky,

for some integers ¢y, ¢; and cj; and s € 1 + D(€). Denote by Jfl’)((S; ¢,C(0)) the
right hand side of the above equality. Then J IL’X(S; ¢,C(0)) is meromorphic in the
domain s € R(1). Then we get a meromorphic continuation inside R(1)~ with a

possible pole at s = 1. We will handle these integrals respectively.

Recall that, for meromorphic functions A(s) and B(s), by A(s) ~ B(s) if there exists
some holomorphic function C(s) such that A(s) = C(s)B(s). Then by (8.18),

A(s = k2, X1X2T)ARs = 1+ ko, o x T9)AQ2s — LTHA(s,7)*

Res F(k,s) ~ — — ;
K1=s—1 () A+ k2, Yo X DAQR = 5 — k2, xi X7 DAQR = 5,771)

A(s — k1, xox 1 T)A2s — 1 + Kl,)(lszz)A(Zs — 1, 7)A(s,7)?
Res F(k,s) ~ — — ;
Ko=5—1 A+ k1, xix)AQR = s — k1, xox 17T HAQR - 5,771

ABs — 2, 7HAQ2s — 1, T2)A(s,

Res Res F(k,s) ~ (s TIAEs TALs T).
K1=s—lkr=s-1 A(3 - ZS,T_Z)A(2 - S,T_l)

Hence by Cauchy integral formula we have, for s € R(1)7, that

/ Res F(k,s)dk; :/ Res F(k,s)dk; — Res Res T(K s), (8.19)
c (

ki=s—1 0) kK1=5— 1 Kr=2-2sKk1=5—1

where the right hand side is holomorphic inside 1/2 < Re(s) < 1, since

5.3 )
Res Res (. 5) ~ ABs 2 7)ARs — L)AL T) (8.20)

Kky=2-2sKk1=5—1 A(3 - 2S,T_2)A(2 - S,T_l)
From (8.20) we see /C Res,,=s—1F (k, s)dk> has a potential pole at s = 2/3 when

73 = 1. Likewise, we have the continuation for /C Res,,—s—1F (&, s)dk :

/ Res F(k,s)dki —/ Res F(k,s)dk; — Res Res F(k,s), (8.21)
c (

Kkp=s—1 0) k2=5— 1 K1=2-25kr=5-1
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where the right hand side is holomorphic inside 1/2 < Re(s) < 1, since

AQBs = 2, 7HAQ2s — 1,72 A(s,
Res Res F(k,s) ~ Bs TIAQs TAT)

8.22
K1=2-2sKp=5~1 AG =257 A2 -5, 71 (8.22)

From (8.22) we see /C Resy,=s—1F (&, s)dk; has a potential pole at s = 2/3 when
73 = 1. Now we deal with the remaining term /C /C F (k, s)dkodk; . By Proposition
73, for s € R(1)7, there are integers cy, ¢z and ¢, such that

//T(K s)dkrdky = Z A)) F (K, s)dkodr) = ¢ 5 Z KlRel:SSKZRf]:S F(k,s)
—c} Z/ Res T(K s)dky — 022/ R?s F(k,s)dk.
) K1= (O) K2 S

According to (8.18), one can compute the partial residues of ¥ («, s) :

A(s + &1, xix,T)AQ2s — 1 - K1,X2/?1T2)A(2S — 1, 72)A(s, T)Z-

Res F(k,s) ~ — — ;

Ky=1—s (,5) A = k1, Yo X DAQR = 5 + k1, xix, T DAQR - 5,771
A(s + k2, Yo x1TAQ2s — 1 — K2,X1}272)A(2s - 1,T2)A(S, 7)2

Res F(k,s) ~ — — ;

K1=1—s A = k2, xiX2)AR = 5 + k2, xox 17T HAQR - 5,771)
ABs — 2, 7HAQ2s — 1,72)A(s,

Res Res F(k,s) ~ Bs TIAEs Al T)

k1=1-skr=1-s A(3 - 2S, T_Z)A(2 - S, T_l)

From the above formulas and combining with the analytic behavior of the function
Res,, =s—1Resy,=s—1 F (k, s) we conclude that fc /c F(k, s)dk>dk; admits a meromor-
phic continuation to 1/2 < Re(s) < 1, with a possible pole at s = 2/3 when 73 = 1.

Denote by J(I/ZI)(S

¢,C(0)) this continuation. Now we continue our meromor-
phic continuation to some open set containing Re(s) > 1/2. Let s € R(1/2)*.

Then one can plug (8.19) and (8.21) into formulas for f(o) /(0) F (&, s)dkrdk; and
fc /C F(k,s)dk>dk; and shift contours to see that J;,l)/( 21) (s; ¢,C(0)) is equal to the
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sum over and ¢ € Bp , of

/ F(k, s)dkrdk) — c12 Res Res 7:(K s)— / Res 7:(K $)dky
(0) J(0)

—skr=1— (0) k1=

- cé/ Res F(k,s)dk| — c1/ Res F(k,s)dky — cz/ Res F(k,s)dk;
( (

0) k2= 1-s 0) k1=5— 1 (0) Kr=s5—1
+c1 Res Res F(k,s)+c2 Res Res F(k,s)—ci2 Res Res T(K s)
Kkp=2-2s5k1=5—1 K1=2-25kr=5—1 k1=s—1kr=5-1
= / F(k, s)dkodk) — c12 Res Res F(k,s) — / Res F(k,s)dk,
0) J(0) —skp=1-s c k1=1-s

- Cé/c Res F(k,s)dk; — 01/C Res 7"(K s)dky — 02/0 Res f(K s)dki

ky=1-s k1=s—1 Kr=s5—1

+c; Res Res F(k,s)+c; Res Res F(k,s)—ci2 Res Res T(K s)

Kkp=2-25k1=5—1 K1=2-25kr=5—1 K1=s—1kr=s5-1
+c¢; Res Res fT (k,5) + ¢, Res Res f? (x,s),

1 2

kr=25—1k1=1- k1=25—1kr=1—

where the right hand side of the above equality has a natural meromorphic contin-
uation to the domain R(1/2). Denote by J ;,/j (55 ¢,C(0)) the last expression. Note
that a direct computation leads to that

ABs — 1,7)AQ2s — 1,72)A(s,7)?

Res Res F(k,s) ~

Kr=25—1K1=1—s AR =25, 7DAQR - 5,7 HA(l + 5,7)’
ABs —1,7)AQ2s — 1,72)A(s,7)?

Res Res F(k,s) ~ (s TIAEs TALsT) .

K1=25—1Ky=1—5 AR =25, 7HAR - 5,7 HA(l + 5,7)

Also, when s € R(1/2), 2 — 2s lies in the zero-free region of L(s,7%) and Lu(2 —
25,772) is holomorphic (hence nonvanishing), then A(2 — 25,772) # 0. So the last
two terms of J;)’/)? (s; ¢,C(0)) is meromorphic in R(1/2) with a possible simple
pole at s = 1/2 when 72 = 1. Hence, we have a meromorphic continuation of
Jp,(s50,C(0)) = J 11)/)? (55 ¢,C(0)) to the region R(1/2) with a possible simple pole
ats = 1/2 when 72 = 1.

Now consider J, I/ 2(S' ¢,C(0)), where s € R(1/2)". Invoking the analytic behaviors
of Res T(K s), Res 7:(K s), Res ¥ (k, s) and Res F (k, s) with Cauchy’s formula

K= Kky=s—1 k1=1-s ky=1-s
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we obtain that J;,l)/f’l/ 2)(s; #,C(0)) is equal to the sum over and ¢ € Bp , of

/ F(k,s)dradiy = ¢, Res Res F(k,s)—c} / Res 7’(:( s)dKy
(0) /(0) C

k1=l-sky=1-s K=

- cé/ Res F(k,s)dk| — ci / Res F(k,s)dkr — C2/ Res F(k,s)dk;
C ( 0

K=1-s 0) kK1=5— 1 )K2:S—1

+c; Res Res F(k,s)+c» Res Res T(K s) —c12 Res Res '7:(K s)

Kkr=2-2sk1=5—1 K1=2-2sKkr=5—1 k1=s—1lkr=s5—1

+c| Res Res T(K s)+c, Res Res F(k,s)+c; Res Res Fl(k,s)

K= =2s5— 1K1 1- K1—25 1K2 1-s K= 1- 2SK1—S—1

+ ¢y Res Res F(k,s).

K1= 1- 25K2 s—1
Denote by J 113/; (s; ¢,C(0)) the last expression. Note that we have
AQBs - 1,T)AQ2s - 1,7H)A(s,7)?
Res Res F(k,s) ~ (s TIAGs AT ;
Kky=1-2sKk1=5-1 A(2 —2s, T_Z)A(z - S,T_I)A(l + 5, T)

ABs — 1L,THAQ2s — 1,72)A(s,7)?
Res Res F(k,s) ~ (s TIAEs TALsT) )
k1=1-2sKy=5—1 AR =25, 7HAR - 5,7 HA(l + 5,7)

Note also that the integrals in J Il,/j (s; ¢, C(0)) converges locally normally when 1/3 <
Re(s) < 1/2. Hence J ;,/j (s; #,C(0)) has a natural continuation to 1/3 < Re(s) <
1/2, where it is holomorphic. In all, we obtain the meromorphic continuation of
Jp(55¢,C(0)) to S1/31) U R(1) as follows:
7}, (5:4.C(0)). 5 € R(1):
JWZJ)(S;¢,C(0)), s € 83121

‘/2<s $.C(0), s € R(1/2);
Jff,ff 1(5: 4,C0). s € S(1/3,1/2).

Jpy(s;¢,C(0)) =

Moreover, the continued function Jp , (s; ¢, C(0)) is meromorphic inside R(1/2) U
S(1/2.1), with possible simple poles at s = 1/2 and s = 2/3 when 72 = 1 and 7° = 1,
respectively. O

8.5 Proof of Theorem I when n =4

The case n = 4 seems to be much more complicated than n = 3, but they share
the same underlying idea. The proof is similar, but does not quite follow from
GL(3) case. In fact, the essential difficulty as n increases is the determination
of partial residues of each continuation: there are roughly O(n?) such multiple
residues, and there is not likely a simple systematical description of them, so we
give a proof by explicitly dealing with all possible cases. Some careful computation

and continuation are carried out in the appendix (see Section 10 for details).
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Proof. Letn = 4. Then there are three possibilities forr : r =2, r =3 orr = 4. We

will deal with these cases separately.

r =2 : In this case, the parabolic subgroup P is of type (2,2), and any associated
cuspidal datum is of the form y =~ (o,07), where o and o, are cuspidal
representations of GL(2, A ). In this case, ¥ (k, s) is equal to an entire function

multiplying

A(s + k1,01 @ T X 02)A(s — k1,07 ® T X 071)
A(l + K1,071 X 5‘2)/\(1 — K1,0p X 5’1)

2
: ]_[ Als, 0 ®TXT%). (8.23)
k=1

Let s € R(1)*. Since ¥ («,s) vanishes when Im(k;) — oo, then by Cauchy
integral formula, we have that

I (s:6,C0) = > /C F(k,s)dki = ). Res Flk,s).  (8.24)

The term Res,,=s_1 ¥ (k, s) is nonvanishing unless o] ~ 0» ® 7. Hence

Res 7:(K,S) - A(ZS - 1,0 ®T2 Xa'l)A(s,o;l QT X’o"-l).
k1=s-1 A(2 - 5,01 ® T_l X 0.1)

So Resy,=s—1 ¥ (k,s) admits a meromorphic continuation inside the domain
R(1/2) U S1/2,1), with possible simple poles at s = 1/2. Now the right hand
side of (8.24) is meromorphic inside R(1), with a possible pole at s = 1.
Denote by J IIJ,X(s; ¢,C(0)) the continuation of Jp ,(s; ¢,C(0)) in R(1). Apply
Cauchy formula again to get

/T(K, s)dky = F(k,s)dk; + Res F(k,s), (8.25)
C (0) k1=1-s
where s € R(1)™. By (8.23), /(0) ¥ (k,s)dk; is holomorphic inside S(1/21);
also, Resy,=1—s F (k, s) is nonvanishing unless o» ~ o ® 7, in which case one
has

Res F(k.s) ~ AQ2s - 1,00 ® 7% % Ez)A(s,o;z ®T X 52).

K=l—s AR —-s,00 @7 X 0)

So Res,,=1-s F (k, s) admits a meromorphic continuation to R(1/2) U S(1/2,1),
with possible simple poles at s = 1/2. Substituting this with (8.25) into (8.24)

we conclude that J },,X(s; ¢,C(0)) admits a meromorphic continuation to the
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domain R(1/2) U 8y 2,1). Denote by J 11,/; (s; ¢,C(0)) this continuation. Hence

we have

Jp(5:6.C(0)), s € R(1);

Jp(s:6,C0), 5 € Sou.

Moreover, by assumption A(s, 0, ® T X 07)L(s, )7 is holomorphic in (1),

Jp(5:¢,C(0)) =

then from the expressions above we see that Jp ,(s; ¢,C(0))L(s, 7)~! admits

a meromorphic continuation in s € §(/31) with a possible simple pole at
s = 1/2 when 72 = 1.

: In this case, the parabolic subgroup P is of type (2,1,1), and any associated

cuspidal datum is of the form y = (o7, x2, x3), Where o is a cuspidal rep-

resentations of GL(2,AF); and 2, x3 are unitary Hecke characters on A%.

Since A(s,01 ® T X x;) is entire, 2 < i < 3, then ¥ (k, s) is equal to an entire
function H (k, s) multiplying

A(s + k2, 2003 T)A(s — K2, Y3X2T)A(s, 01 ® T X T1)A(s, T)?

A1+ k2, o x3T)A( = k2, X3X27) ’

Let s € R(1)*. Since ¥ («,s) vanishes when Im(k;) — oo, then by Cauchy

(8.26)

integral formula, we have that Jp , (s; ¢, C(0)) is equal to
> / / F(k.s)dkrdky = / Res F(k, s)dk;. (8.27)
¢eBp,, YCYC eBy,, 0 C 1=
P.x P.x
The term Res,,=s—1 ¥ (k, s) is nonvanishing unless x| ~ x> ® 7. Hence
AQ2s — 1, T)A(s, T)A(s, 01 ® T X 71)
AR -s,771)

where H(s, «1) is an holomorphic function. So Res,,=;—1 ¥ (k,s) admits a

ReslT(K, s) = H(s, k1)

Ky=S—

b

meromorphic continuation inside the domain S 1), with possible simple poles
at s = 1/2. Now the right hand side of (8.27) is meromorphic inside R(1),
with a possible pole at s = 1. Denote by J }1,7 X(s; ¢,C(0)) the continuation of
Jp(s;¢,C(0)) in R(1). Apply Cauchy formula again to get

/ / F(k,s)dkidky = / F (&, s)dkodk) + / Res F(k,s)dk;, (8.28)

cJc ¢ J) C ke=l-s
where s € R(1)". By (8.26), fC f(o) F (k,s)dkadk; is holomorphic inside
Sa/3,1); also, Res, —1_s F(k, s) is nonvanishing unless 0» =~ o ® 7, in which
case one has
Res F(k.s) ~ AQ2s — 1, T2)A(s, T)A(s,01 ® T X 5'1)'
K=1-s AR -s,7t71)
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So /C Res,,=1-s ¥ (k, s)dki admits a meromorphic continuation to S 3 1), with
possible simple poles at s = 1/2. Substituting this and (8.28) into (8.24) we
conclude that J }1)’ X(s; ¢,C(0)) admits a meromorphic continuation to the do-
main S(,3,1). Denote by Jg)/( 3’1)(5; ¢,C(0)) this continuation. Hence invoking

the above discussion we have

J},’X(s;gb,C(O)), s € R(1);

Jp(55¢,C(0) =
Jg)/(s,l)(s; $,C(0)), s € S(1/3,1).

Moreover, by assumption A(s, 0, ® T X 07)L(s, )7 is holomorphic in Sq ),
then from the expressions above we see that Jp . (s; ¢, C(0))L(s,7)"! admits
a meromorphic continuation in s € §(,3,1) with a possible simple pole at
s =1/2whent? = 1.

: In this case, the parabolic subgroup P is of type (1, 1,1, 1), and any associated

cuspidal datum is of the form y =~ (yi1, x2, ¥3, X4), Where x;’s are unitary
Hecke characters on A% such that x| x2x3 x4 = w. Then there exists an entire

function H (s, k) such that 7 («, s) is equal to

A(s + ki, Tx; AN(S = Kijs TXj+1 X
H (s, k)A(s, 7)41—11—[ ( 5 XX ) ! XJH_X) (8.29)

izt A+ K XX )AL = K Xj1Xo) ’

where A(s, x’) is the completed Hecke L-function associated to the uni-
tary Hecke character y’ over F. Then by Proposition 72, when s € R(1)",
Jp (55 ¢,C(0)) is equal to

Z///T(K s)disdrod _CIZ// Res T(K s)dkzdko—
c kK1=s-1
° ; /C /C KzEgglf(K’ s)diadk = c3 Z / /c K£?§1T(K, s)dkydky—

CI’ZZ/ Res Res T(K s)dk3 — c13 Z/ Res Res ?'(K $)dkr—
¢ ¢

k1=s—1kr=5-1 k1=s—1k3=s—1

€23 Z/ Res Res 7:(K s)dky —c123 Res Res Res F(k,s),

Kr=s—1k3=5-1 m k1=s—1kr=s—1k3=5—1
where the coefficients ci, ¢z, ¢3, €12, €13, 23 and cjp3 are some absolute
integers; and the sum with respect to ¢ in taken over ¢ € Bp ;.

Due to the finiteness of Bp , and rapidly decay of F(«,s) as a function of k

(see Claim ??), each term in the above expression converges absolutely and
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locally normally. Hence we only need to consider each summand in the above

expression. Denote by x;; = xix;, | <i,j < 4. By (8.29) we have

Res ?-(K §) ~ A(s + k1, x12T)A(s — k1, x21T)A(S — k2, x32T)A(s — K12, X31T)
K3=s-1 AL+ k1, x12)A(L = k1, Y21)A(L + k2, }23)A(2 — 5 — K2, 3277 1)
AQ2s = 1 + k2, x23T2)AQR2s — 1 + k10, x137)AR2s — 1, T2)A(s, 7)3_
AL + k12, Y13)AQ2 = 5 — k12, 31T HAQR = 5,771) ’
A(s = k1, x21T)A(s = K3, xa3T)A(S + K13, X14T)A(S — K13, X417T)
Res F(k,s) ~ 1
Ko=s—1 A1 + k1, x12) AL + k3, x38)A(1 + K13, Y14)A(2 — 5 — K1, Y2177)
AQ2s—1+ /<3,)(3472)A(2s -1+ K1,X12T2)A(2S - 1,T2)A(S, 7)3'
AL — k13, xa1)AQ2 — 5 — k3, xa3T A2 — 5,771) ’
A(s + k3, }34T)A(s — k3, x43T)A(s — k2, X32T)A(S — K23, Y427)
Res F(k,s) ~ 1
Ki=s-1 A1 + k2, x23)A(1 = k3, x43)A(1 + k3, x34)A(2 — 5 — K2, x3277 1)
AR2s — 1+ Ky, )(237'2)A(2s -1+ K23,)(24T2)A(2S - 1,T2)A(S, 7)3
A(L + k23, x24)A(2 = 5 — k23, xao T HAQ2 = 5,771)

Hence from the above expressions we see that Res1 Res 7 (k,s) is equal to
ko=s—1k3=5-1

some holomorphic function multiplying

A(s — k1, x217)A(Bs =2 + K1,X12T3)A(3S -2, 7'3)A(2s - I,TZ)A(S, 7)2
A(L + k1, x12)A(3 = 25 — k1, Y21 T 2)AB3 = 25, 772)A2 — 5,771)
(8.30)

Likewise, Resl Resl?“(K s) equals some holomorphic function multiplying
K1=S—1K3=5—

the product of A(2s — 1,7%)?A(s, 7)>A(2 = s,77!)7? and

A(1 = k2, 31)A(s = k2, x32T)A2s — 1 + k2, x237)ABs = 2 + k2, x237°)

A(1 + k2, x23)A(s + ko, x23T)AQ2 — 5 — ko, 32T HAB — 25 — Kz,)(327(_23))'1)
Also, the function Res1 Reslf(K s) is equal to some holomorphic function
K1=s—1lkr=5—
multiplying the following function

A(s = k3, ya3T)A(3s — 2 + k3, x3a7)ABs — 2, 7)A2s — 1, 72)A(s, T)?

AL+ k3, x30)A(3 = 25 — k3, xa3T2)A(3 = 25,7 2)AQ2 — 5,771)
(8.32)

Moreover, one can continue the computation to see that
A4s =3, 7HABs — 2, 7HAQ2s — 1, 72)A(s,
Res Res ResT(Ks) (4s TIABs TIARs TALsT)
K1=s—1ky=s—1k3=5-1 A(4 - 3s, T_S)A(3 - 2s, T_Z)A(z -5, T_l)

Therefore, we have, from the above expressions, that Jp , (s; ¢, C(0)) admits a

meromorphic continuation to s € S(1). Denote by J 113,)((5; ¢,C(0)) the contin-
uation. Then clearly J },’X(s; ¢,C(0)) is holomorphic when s € R(1)".

Let s € R(1)~. Let L(s, ) be the finite part of Hecke L-function with respect

to 7. Then by Cauchy integral formula we have that
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Claim 77. /C /C Res T(K s)dk3dky admits a meromorphic continuation to
K1=S8—

the domain S(1 /3 c0)- When restrictedto R(1/2;7)"US(12,1), it only has possible
simple poles at s = 3/4,s = 2/3 and s = 1/2. Moreover, if L(3/4,7) = 0, then
s =3/4 is not a pole; if L(2/3,7) =0, then s = 2/3 is not a pole.

Claim 78. /C /C KR?S ¥ (k,s)dk3dky admits a meromorphic continuation to
the domain S| /3,06)2 When restricted to R(1/2; )~ US(1 /2,1y, it only has possible
simple poles at s = 3/4,s =2/3 and s = 1/2. Moreover, if L(3/4,7) = 0, then
s =3/4 is not a pole; if L(2/3,7) =0, then s = 2/3 is not a pole.

Claim 79. fC fc KRGS:S F (k,s)dkadk) admits a meromorphic continuation to
the domain S| /3,00; When restricted to R(1/2;7)~US(12,1), it only has possible
simple poles at s = 3/4,s = 2/3 and s = 1/2. Moreover, if L(3/4,7) = 0, then
s = 3/4 is not a pole; if L(2/3,7) =0, then s = 2/3 is not a pole.

Claim 80. fC KlRi,slszc;:ng(K ,8)dk3 admits a meromorphic continuation to
the domain S(1 3 00). When restricted to R(1/2; 1)~ US(1j2,1), it only has possible
simple poles at s = 3/4,s =2/3 and s = 1/2. Moreover, if L(3/4,7) = 0, then
s =3/4 is not a pole; if L(2/3,7) =0, then s = 2/3 is not a pole.

Claim 81. /C K]]R?SIK3R§§ 17" (k,s)dky admits a meromorphic continuation to
the domain S(1 3 00). When restricted to R(1/2; T)~US(1 j2,1), it only has possible
simple poles at s = 3/4,s =2/3 and s = 1/2. Moreover, if L(3/4,7) = 0, then
s =3/4 is not a pole; if L(2/3,7) =0, then s = 2/3 is not a pole.

Claim 82. fc KzR(;;SIKFEﬁlT(K ,8)dky admits a meromorphic continuation to
the domain S(1 /3 ). When restricted to R(1/2; 1)~ US(12,1), it only has possible
simple poles at s = 3/4,s =2/3 and s = 1/2. Moreover, if L(3/4,7) = 0, then
s =3/4 is not a pole; if L(2/3,7) =0, then s = 2/3 is not a pole.

By Proposition 73, for s € R(1)7, there are integers ¢ c23 and

1€ €5 C 12’ 13’
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61,2,3’ such that /C fc /C F (k, s)dk3dkrdk is equal to

Z/ / T(K,s)dkgdkzdkl—c;Z/ / Res F(k, s)dk3dkr—

5 J 0 J0) /0 5 J ) J)x=l=s

CQZ/ / Res T(K,s)dmd/q—ch/ / Res F(k,s)dkrdki—
5 70 J©r=ls 7 70 J) =1

c122/ Res Res T(K,s)d/q—cbZ/ Res Res F(k,s)dkr—
’ 5 0 ki=l-sky=1-s ’ 5 /0 ki=l-sk3=1-s

05,3; /(0 ) Res Res F(k,s)dk; —c'1,2,3z¢: Res Res Res F(k,s),

k=1-sk3=1-s k1=1-skr=1-sk3=1-s

where the coefficients ci, cé, cé, c’l 9 c’13, Cés and ¢/ ,, are some absolute

123
integers; and the sum with respect to ¢ in taken over ¢ € Bp .
Due to the finiteness of Bp , and rapidly decay of ¥ (k,s) as a function of «
(see Claim ??), each term in the above expression converges absolutely and
locally normally. Hence we only need to consider each summand in the above
expression. According to (8.29), we have that
A(s + k1, x12T)A(s = k1, x21 TA(s + k2, x237)A(s + K12, X¥137)
AL+ k1, 12)ACL = k1, Yo )AL = k2, x32)A(2 = 5 + Ko, Y2377 ")
AQ2s =1 = k2, x30T2)ARs — 1 = k12, x31T)AR2s — 1, T2)A(s, 7)3'
A(1 = k12, Y3)AQ2 = s + K12, Y137 DAQR = 5,771) ’
Res F(k.s) ~ A(s + k1, X12T)A(s + k3, x3aT)A(s + k13, Y14T)A(s — k13, Y417)
Ko=1-s A1 = k1, x21)A(1 = k3, xa3)A(L + k13, Y12)AQ2 = s + ki1, Y1277 1)
AQ2s = 1 = k3, xs3T)AQ2s — 1 — k1, y21T2)ARs — 1, 72)A(s, 7)3.
. A1 = k13, Ya1)AQ2 = s + &3, Y347 A2 = 5,771) ’
Res F(x.s) ~ A(s + &3, X34T)A(s — K3, YasDA(S + ko, Y3 DA(S + Koz, kdT)
x=I-s A1 = k2, x32)A(1 = K3, xa3)A(1 + k3, x34)A(2 = 5 + Ko, Y237 7)
AQ2s — 1 — k2, x32T)AQ2s — 1 — k23, xaoTHA2s — 1, T2)A(s, 7)°
A1 = k23, Xa2)A(2 = 5 + K23, xoaT A2 = 5,771)

Hence from the above expressions we see that Rflzs Relrs ¥ (k, s) is equal to
k=1-sk3=1-5

Res F(k,s) ~
k3=1-s

some holomorphic function multiplying
A(s + k1, x12T)A(Bs — 2 — K1,X21T3)A(3S -2, T3)A(2s - 1,72)A(s, 7')2

A = k1, x20)AB = 25 + k1, 12T 2)AQB = 25,7 2)AQR - 5,771)
(8.33)

Likewise, R?s R?s ¥ (k, s) equals some holomorphic function multiplying
ki=l—-sk3=1-s

the product of A(2s — 1,72)?A(s,7)*A(2 — s,7~')"% and
A1 + k2, X13)A(s + K2, x237)AQ2s — 1 = k2, x3272)ABs — 2 — k2, x327°)

A1 = k2, x32)A(s — K2, x32T)AQ2 — 5 + K2, 237 A3 — 25 + KZ’XBT(;%;L)
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Also, the function Relzs R?s ¥ (k, s) is equal to some holomorphic function
ki=l—-skr=1-s

multiplying the following function

A(s + k3, Y34 T)ABs = 2 = k3, xs37°)AB3s — 2, 73)A2s — 1, 72)A(s,7)?

A(1 = k3, x43)A(3 = 25 + k3, 34T 2)A(3 = 25, 77)A2 — 5,771)
(8.35)

Moreover, one can continue the computation to see that
A(ds = 3,7)ABs - 2,73)AQ2s — 1, TH)A(s,
Res Res Res F(k,s) ~ (4s TIABS TIAEs T)(ST).
Ki=1-sky=1—sk3=1-s A4 =3s5,73)AQB = 25, 77HAQR - 5,77 1)
Let s € R(1)". Then by Cauchy integral formula we have that

Claim 83. /(0) f(o) KE?E ST(K, s)dk3dky admits a meromorphic continuation to
the domain S(1 3 00). When restricted to R(1/2; 1)~ US(1 j2,1), it only has possible
simple poles at s = 3/4,s =2/3 and s = 1/2. Moreover, if L(3/4,7) = 0, then
s = 3/4 is not a pole; if L(2/3,7) =0, then s = 2/3 is not a pole.

Claim 84. /(0) /(0) KZEGI:E ST(K, s)dksdk| admits a meromorphic continuation to
the domain S(1 3 e0). When restricted to R(1/2; 1)~ US(12,1), it only has possible
simple poles at s = 3/4,s =2/3 and s = 1/2. Moreover, if L(3/4,7) = 0, then
s =3/4 is not a pole; if L(2/3,7) = 0, then s = 2/3 is not a pole.

Claim 85. /(0) f(o) K}E?E ST(K, s)dk>dky admits a meromorphic continuation to
the domain S(1 3 e0). When restricted to R(1/2; 1)~ US(12,1), it only has possible
simple poles at s = 3/4,s = 2/3 and s = 1/2. Moreover, if L(3/4,7) = 0, then
s =3/4 is not a pole; if L(2/3,7) = 0, then s = 2/3 is not a pole.

Claim 86. /(0) KE?§SK£?E ST(K, s)dk3 admits a meromorphic continuation to
the domain S(1 3 00). When restricted to R(1/2; 1)~US(y j2,1), it only has possible
simple poles at s = 3/4,s =2/3 and s = 1/2. Moreover, if L(3/4,7) = 0, then
s =3/4 is not a pole; if L(2/3,7) =0, then s = 2/3 is not a pole.

Claim 87. /(0) Kllieltgmliflbg ST(K, s)dky admits a meromorphic continuation to
the domain S(1 3 00). When restricted to R(1/2; 1)~ US(1/2,1), it only has possible
simple poles at s = 3/4,s =2/3 and s = 1/2. Moreover, if L(3/4,7) = 0, then
s = 3/4is not a pole; if L(2/3,7) = 0, then s = 2/3 is not a pole.

Claim 88. /(O) Kzlieltgmlit?g ST(K, s)dk1 admits a meromorphic continuation to
the domain S(1 3 e0). When restricted to R(1/2; 1)~ US(12,1), it only has possible
simple poles at s = 3/4,s =2/3 and s = 1/2. Moreover, if L(3/4,7) = 0, then
s = 3/4is not a pole; if L(2/3,7) = 0, then s = 2/3 is not a pole.
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The proof of these claims are given in the Appendix 10. Then Theorem I follows. O
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Chapter 9

PROOF OF THEOREMS IN APPLICATIONS

By Theorem E, F, G and H, we conclude the first part of Theorem A, obtaining
(1.4), namely, for Re(s) > 1,

(s,7)+ I (5,7) + Iwni(s, 7).

I5(s,7) = I, (s,7)+ 17, Sing

eoReg -Reg

(s,7),and I

the whole s-plane. Consequently, Iépm (s,7) can be continued to a meromorphic
g

Moreover, I} (s, 7), I, (s,7) admit meromorphic continuation to

eo,Reg ,Reg

function on C.

Assume 7 is such that 78 # 1,1 < k < n. Then by Corollary 69 we conclude that
Iwni(s, 7) has a meromorphic continuation to Re(s) > 0. Then by functional equation
of Eisenstein series, we conclude that Iwni(s, 7) has a meromorphic continuation to

the whole s-plane. Then Theorem A follows.

Let ¥ = X, [[XZ; be the set of places of F, where X, denotes the subset of

archimedean places, and X denotes the subset of nonarchimedean places.

For a place v € X, we say that a test function ¢ = ®,¢, € H (G(Ar)) is discrete
at v if ¢, is supported on the intersection of G(OF,) and the regular elliptic subset
of G(F,). Let ¥*(w) be the set of smooth functions ¢ = ®,¢, : G(Ar) — C which
is left and right K-finite, is discrete at some v € Xy, transforms by the character
w of Zg (AF), and has compact support modulo Zg (Ar). Let F(w) be the space
spanned linearly by functions in ¥ *(w).

Proof of Theorem B. Fix a field extension E /F of degree n. Let so € C—{0,1}. Let
vo € G(F) be such that F[yg]* = E. Although such yy’s are not unique, we fix one

0.
Consider the continuous map
o G(F) - Fn’ Y= (an—l()’), T ’al()/)’ aO(Y))a

where a;(y)’s are the coefficients of characteristic polynomial f, of y, namely,
f(t) = det(tl, —y) = 1" + au_1(Y)" 1 + -+ - + a1(y)t + ap(y). Then o extends to a
continuous function G(Ar) — A7
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Note that when y runs through G(F), the image o (y) is discrete in A%.. Take a
compact neighborhood U, of o (yp) in A7, such that U,, does not intersect with
other o(y) when o(y) # o(y9) and y € G(F). Let Cy C Gy, (Ar)\G(AF) be
a small compact neighborhood of the identity such that o(cy Yyoco) € Up, and
a(calyco) ¢ Uy for all ¢y € Cy, where y € G(F) satisfies o(y) # o(yp). Shrink Cy
suitably if necessary so that we may assume 7 o det is trivial on Cy. Let x € Cp.
Denote by

T(s,x) = / O(ntx)r(detrx)| dettx|*d™t.

E

Then by Tate’s thesis, T(s,x) is an integral representation for A(s,7 o Ng/r). So
T(s,x) = Q(s,x)A(s,T o Ng/r), where Q(s, x) is a function holomorphic in s and
smooth in x, depending on ®, 7, and E. Moreover, one can choose ® such that
0O(s,x) = 1 when x = 1. Fix the choice of ® henceforth. Then Q(s, x) = [], O, (s, x,)
with Q,(s,x,) = 1 for v ¢ Sg/rr and x, € G(OF,), where Sg/F is a finite set of
places including the archimedean ones determined by £ /F and 7.

Let C =[], C, be a compact subset of Cp = [], Co,,. Let C= Ueecc Myoc. Then 'l
is a compact set in Zg(Ap)\G(AF). Shrink C suitably if necessary such that there
exists a nonzero ¢ € H(G(Ar),w) such that ¢, > 0 for all v € Xr and the support
supp @ C C, and

L#e yoneeonds =[] [ 705 om0 toxids, 20, @1

where the product only takes over finitely many v € Xr. The existence of such a C

comes from the fact that Q(sp, x) is continuous.

Let u be a place of F such that u splits in E, 7, is unramified, and ¢, is the
characteristic function of G(OF,) and vy, € G(OF,). Let p be a finite dimensional
admissible representation of G(Op,). Let p" be the contragredient of p. Denote by

®,v the character of p". Since vy is elliptic regular, we can take such a p with
properties that ®,v(yp,) # 0 and the compact induction 7, = ¢ — Indggg“: VP is

irreducible. Hence r,, is supercuspidal. Let

®pv(x), if x € G(OFM);
My, (x) =
0, otherwise.
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Now take ¢(x) = ®yuy @y (x,)®my, (x,). Then ¢ € F(w) and supp ¢ C C. Moreover,

at v = u we have Q(so,x,) = 1. Hence,

/ ‘PV(X;I')/O,MXM)Q(SO’ X,)dxy, = ®pv(70,u) # 0.

u

In conjunction with (9.1) at v # u we then obtain that
/~90(x_17’0x)Q(50, x)dx # 0. 9.2)
C

Substituting this choice of ¢ into Theorem A we obtain

1) _ AlToNgyp)
A(s,T) nA(s, 1)

- e(x ™ y0x)Q(s, x)dx. (9.3)

Assume that the twisted adjoint L-function L(s,, Ad ®7) is holomorphic outside
s=1forall r € &Zl(s)imp(G(F WG(Ar),w™ ). Then by spectral expansion (2.1), the
function I(‘f (s,7)/A(s,T) is holomorphic at s = s9. Therefore, it follows from (9.2)
and (9.3) that A(s,7 o Ng/r)/A(s,7) is regular at s = so. Then the meromorphic
function A(s,T o Ng/r)/A(s, 7) is holomorphic at s = 5.

Since s is arbitrary, then the meromorphic function A(s,7 o Ng/r)/A(s,7) is holo-
morphic outside s = 0,1. So the 7-twisted Dedekind conjecture holds. Then
Theorem B follows. O

Remark 89. It is conjectured (cf. [JZ87], [JR97]) that the reverse direction also
holds, namely, the t-twisted Dedekind conjecture for all field extensions E|F of

degree n should imply holomorphy of the t-twisted adjoint L-functions. This is
proved in [Yan21] for n < 4.

Proof of Theorem C. Let E be a field extension of F of degree n, such that (g (1/2) #
0. By the proof of Theorem B, one can choose some test function ¢ € ¥ (w), such
that

/JD(X_I?’OX)Q(I/Z, x)dx # 0.
c
It then follows from (9.3) that

15(1/2,7) # 0. 94

Theorem C then follows from (9.4) and the spectral expansion (2.1) of the cuspidal
kernel function Ky(x, x). ]
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Chapter 10

APPENDIX: CONTINUATION ACROSS THE CRITICAL LINE
FOR GL(4)

In this appendix, we shall prove the claims in our proceeding proof of Theorem I
when n = 4 in subsection 8.5. The processes here are in the same flavor of those in

the n = 3 case in subsection 8.4, but they are typically much more complicated.

Proof of Claim 77. Let s € R(1)*. Let Ji(s) := / / Res ¥ («k,s)dkszdk,, and
(0) (O) k1=s—1
J11 (s) := f f Res F(k, s)dkszdk;. By the analytic property of Res ¥ (k,s) we see
c C/q:s—l k1=s—1
that Jl1 (s) is meromorphic in the domain R(1), with a possible pole at s = 1. Let

s € R(1)". Applying Cauchy integral formula we then see that
Ji(s) = / / Res F(k, s)dkrdks + / Res Res F(k,s)dks, (10.1)
c J(0) k1=s—1 C ko=2-2sk1=5-1

where R2es2 Resl¢(K, s) is equal to some holomorphic function multiplying
K)=Z—28K1=S8S—

A(s + k3, x347)A(3s — 2 — K3,X43T3)A(3S -2, T3)A(2s - 1,T2)A(S, T)2
AL = k3, x43)A(3 = 25 + k3, Y347 2)A(3 = 25,77 2)AQ2 — 5,771)

(10.2)

Then Jll(s) is equal to, after applications of Cauchy integral formula to (10.1),

/ / Res F(k,s)dkadk3 +/ Res Res F(k,s)dk +/ Res
(0) J(0) Kk1=s—1 (0) k3=1-sk1=5-1 (0) K3=2-25—kK2

Res F(k,s)dk + / Res Res F(k,s)dks + Res Res Res F(k,s),
(

k1=s—1 0) Kkp=2—2sKk1=5—1 k3=1—sKkp=2-2sk1=5-1

where Rfl:s Resl?~ (k,s) is equal to some holomorphic function multiplying the
K3=1—SK1=S—

product of A(2s — 1,72)2A(s,7)? - A(2 — 5,7 1)"2 and

A(s = k2, xT)AQRs = 1 = k2, x32T2)A(2s — 1 + k2, ¥23T2)A(s + k2, X23T) (103)
A+ k2, x23)A(1 = k2, x32)AQ2 = 5 — k2, x32T DAQR — 5 + ko, Y23771) 7

and Res Res F(k,s)is equal to some holomorphic function multiplying
K3=2—2S—K2K]=S—l

A(s — k2, x32T)A(3s — 2 + kp, )(237'3)A(3s -2, 7'3)A(2s - 1,7'2)A(s, 7)2
AL+ k2, x23)A(3 = 25 — k2, x32T2)A(3 = 25,77 2)AQ2 — 5,771)

(10.4)
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From the formula (10.2), we see that Res Res Res ¥ (k, s) is equal to some
k3=1—skr=2-25K1=5—1

holomorphic function multiplying

Ads =3, 7HABs — 2, )AQ2s — 1, 7)A(s,7)
A4 =35, 73)AB - 25,7 HAQR - 5,771

(10.5)

We thus see from the proceeding computations of analytic behaviors of the functions
Res F(k,s), Res Res 7:(K s)and Res Res Res F(k,s),that f © f 0, Res 7: (&, 8)dKrdk3

k1=s—1 k3=1—-sk1=s—-1 k3=1—skr=2-25K]=5—1

and f 0) Res Resl‘}’: (k, s)dk, admit meromorphic continuation to the domam 1/ 2 <
K3 SK1=8§—

Re(s) < 1, with a possible pole at s = 2/3 if 7> = 1;and Res Res Res F(k,s)

k3=1—skr=2-2sKk1=5—1
admits a meromorphic continuation to the domain R(1/2)™ U Sj;/2,1), with possible

simple poles at s = 3/4,s =2/3and s = 1/2, when 7* = 1, 7% = 1 and 7% = 1,
respectively, according to (10.5).

From (10.4) we see that the function / 0) Res Res ¥ (k,s)dk, admits holo-
K3=

=2-25—K2K|=
morphic continuation to the domain 2/3 < Re(s) < 1. From (10.2) we see that the

function f(o) Rgs2 Resl?’(K s )dx3 admits holomorphic continuation to the domain
K2 SK1=8§—

2/3 < Re(s) < 1. Then combining these with (10.3) and (10.5) one sees that Jl1 (s)
admits a holomorphic continuation to the domain 2/3 < Re(s) < 1. Denote by
Jl(z/ 3’1)(s) this continuation, where 2/3 < Re(s) < 1.

Let s € R(2/3)*, then by Cauchy integral formula we have

/ Res  Res 7 (k,s)dk, —/ Res  Res 7 (k,s)dk;. (10.6)
( c

0) k3= =2-2s—kKkyk1=5—1 k3=2-25—kKkyKk1=5—1

Likewise, for s € R(2/3)%, /(0) Res Res T(K s5)dks is equal to

Kkp=2—2sKk1=5—1

/ Res Res 7:(K $)dk3 — Res Res Res 7’(:( s). (10.7)
C

Kkp=2-2sk1=5—1 k3=35-2Kkp=2-2sKk1=5—1

Then according to (10.2), (10.3), (10.4), (10.6), (10.7), and the computation that
the function Res Res Res F(k,s) is equal to some holomorphic function mul-
k3=35-2Kkp=2-2sKk1=5—1
tiplying
Alds —2,7HABs — 2, 7)A2s — 1,T2)A(s, 7)?
AB =35, 7HAB =25, 7HAQR - 5,7 HA(l + 5,7)

(10.8)

we see that Jl(z/ 3’1)(s) admits a meromorphic continuation to the domain R(2/3),

with a possible pole at s = 2/3 when 72 = 1. Denote by le / 3(s) this continuation,
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s € R(2/3). Now let s € R(2/3)". Then we have

J2/3(s) / / Res ¥ (k, S)dszK3+/ Res Res F(k,s)dk
0) /(0 (

)K]Sl 0)K31s1<1sl

+/ Res Res F(xk, S)dK2+/ Res Res T(K s)dk3
C

Kk3=2-25—kKkpk1=5—1 C K2=2-2sk1=

+ Res Res Res T(K s)— Res Res Res 7:(K s).

k3=1—skr=2-25K1=5—-1 k3=35-2Kkp=2-2sKk1=5—1

According to (10.2), (10.4), (10.6) and (10.7), the terms in the right hand side
of the above formula are holomorphic in 1/2 < Re(s) < 2/3 except the term

fc Res  Res 7 (k,s)dk,, which is equal to, by Cauchy integral formula, that

Kk3=2-25—kKkpk1=5—1

/ Res Res F(k,s)dkx + Res  Res  Res F(k,s). (10.9)
(

0) k3= =2-2s—kKkyk1=5—1 Kky=2—-35k3=2-25—kKpK1=85—1

By (10.4), one sees that Res Res  Res 7 (k,s) is equal to some holomorphic

ky=2-35Kk3=2-25—kKkp K| =5—1
function multiplying

Ads = 2,T™HABs — 2, 7)AQ2s — 1,72)A(s, 7)?
AB =35, 7HAB =25, 7 )AR - 5,7 HA(l + 5,7)
By (10.9) and (10.10) one sees that /C Res  Res ¥ (k,s)dk, admits a mero-

Kk3=2-25—Kkyk1=5—1
morphic continuation to S(j/32/3) with a at most double pole at s = 1/2 when

72 = 1. Hence we obtain a meromorphic continuation of le / 3(s) to the strip

1/2 < Re(s) < 2/3. Denote by Jfl/ 22/3) this continuation. Then

(10.10)

J51/2,2/3)(s):/ / Res T(K,s)dkzdk3+/ Res Res F(k,s)dk
0) 4 (0

) k1=s—1 (0) k3=1-sk1=s—1

+/ Res Res 7 («k, S)dK2+/ Res Res 7:(K s)dks
( (

0) k3= =2-2s—Kkrk1=s—1 0) k2= 2-2sk1=s—1
+ Res Res Res ?—'(K s)— Res Res Res T(K s)

k3=1—-skr=2-2s5K]=5—-1 k3=35—-2Kkp=2-25Kk]=5—1

+ Res Res Res F(k,s).

Kkr=2-35Kk3=2-25—kKkpK1=5—1
One sees clearly that the terms in the right hand side of the above expression are mero-
morphicin R(1/2),except the terms f(o) /(0) Klli(z,g IT (k, s)dkydks and /(0) Res Res 7’(1( s)dxky,

k3=1-sk1=s—-1

which by Cauchy integral formula and (10.3), is equal to

/ Res Res F(k,s)dky — Res Res Res F(k,s), (10.11)
C

k3=1-sk1=s—-1 ky=25—1Kk3=1—-sK]=5—-1

where s € R(1/2)*. From the formula (10.3), we see that Res Res Res F(k,s)

Kko=25—1Kk3=1-sK1=5-1
is equal to some holomorphic function multiplying

Alds =2, 7HABs — 1, HAR2s — 1, 72)*A(s, 7)°A(1 — 5,771)
AB =35,7)AQ2s, T)A + 5, 7)AQR - 25,7 2)AQR - 5,771

(10.12)
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We then apply the functional equation A(2 — 2s,772) ~ A(2s — 1,7%) to (10.12) to

see that Res Res Res 7 (k,s) equals some holomorphic function multiplying
k3=1—skr=2-25K1=5—-1

Ads = 2,7HABs — 1,THAQ2s — 1,7)A(s,7)
AB =35, 7)ARs, )AL + 5, T)AQ2 — 5,712

(10.13)

Note that when s € R(1/2)~, 2s lies in a zero-free region of A(s,7%). Also, Note
that /0) /0) Res F(k,s)dkrdks = /C./C Res T(K s)dkrdks when s € R(1/2)*.

k1=s—1

Then by (10.11) and (10.12) we conclude that Jfl/ 22/ 3)(s) admits a meromorphic

continuation to the area R(1/2). Denote by J 11 / 2(s) this continuation, then

Jl/z(s) //C Res T(K S)dszK3+/C Res Res T(K s)dk>

k1=s—1 k3=1-sk1=s—-1

/ Res  Res F(k,s)dky +/ Res Res F(k,s)dk3
( (

0) k3= =2-25—Kkpk1=5—1 0) k2= 2-2sk;=s5—1
+ Res Res Res F(k,5)— Res Res Res F(k,s)

k3=1—skp=2-25K1=5—1 k3=35—2kp=2-2sK1=5—1
+ Res Res Res F(kx,s)— Res Res Res F(k,s).
Kko=2-35k3=2-25—Krk1=5—1 ko=25—1k3=1—sK1=5—1

Let s € R(1/2)". By Cauchy’s formula we have

// Res T(K s)dkydks —/ / Res F(k,s)dkrdks
C K= =s5—1 (0) J(0) K1=5— 1

+ / Res Res F(k,s)dks + / Res  Res 7 (k,s)dks;
c (

ky=1-2sKk;=5—1 0) k3= 1-2s—kok1=5-1

and the function /C Res Reslﬁ‘~ (k, s)dk, is equal to

k3=1-5K

/ Res Res F(k,s)dko + Res Res Res F(k,s),
(

0) k3= 1-skj=s—1 kr=1-2s5k3=1-sK]=5—-1

where we have Res Res Res 7:(K §) ~ Res Res Res F(k,s). Now we have
ko=1-2s5k3=1-sK1=5—-1 Kkp=25—1Kk3=1-5sK1=5—-1

a continuation of J; /2 )(s) to the region 1/3 < Re(s) < 1/2. Denote by J§1/3’1/2)(s)
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this continuation, then

JOPBI(5) = / / Res F(«, s)dkadks + / Res Res F(k,s)dk,
0 J(0) (

k1=s—1 0) k3=1-sk;=s—1

+/ Res Res T(K,s)dk3+/ Res  Res 7 (k,s)dk;
C (

kr=1-2s5k1=5—1 0) k3=1-25—Kk2k1=5—1

+/ Res Res T(K,s)dkz+/ Res Res F(k,s)dks
( (

0) Kk3=2-2s5—KkpKk1=5—1 0) Kkp=2—2sKk;=5—1

+ Res Res Res F(k,s)— Res Res Res F(k,s)

K3=1—-skp=2-2sK;=5-1 k3=35-2Kkp=2-2sk1=5—1

+ Res Res Res F(k,s)— Res Res Res F(k,s)

Kky=2—-35k3=2-25—kKpK]=5—1 ky=25—1Kk3=1—sK]=5-1

+ Res Res Res F(k,s).

ky=1-2s5k3=1-sK]=5—-1

Thus we obtain a meromorphic continuation of Ji(s) to the area S1/3,00) :

Ji(s), § € S(1+00)}

Ji(s), s € R(1);

J$2/3,1>(S), s € 827315

Ji(s) = 1I7(s), s € R(2/3); o
]§1/2,2/3)(S), s € 831/22/3);

J1}7(s), s € R(1/2);

JIPD (), s € Sayanpy;

From the above formulas one sees that J;(s) has possible poles at s = 3/4,s =2/3
and s = 1/2; and the potential poles at s = 3/4, s = 2/3 are at most simple, the
possible pole at s = 1/2 has order at most 2. Moreover, from the above explicit
expressions of J1(s), we see that J;(s) - A(s,7)"! has at most a simple pole at s = 1/2
if L(1/2,7) =0.

Case 1: If L(3/4,7) = 0, then by functional equation we have that A(1/4,77!) = 0.
Suppose that J;(s) has a pole at s = 3/4, then from the proceeding explicit
expressions, we must have that 7* = 1, and the singular part of Ji(s) around
s = 3/4 is a holomorphic function multiplying A(4s — 3,7%)A(3s — 2,73).
Note that A(3s — 2,7%) |s=3/4= A(1/4,7%) = A(1/4,77") = 0. Hence, when
L(3/4,7) =0, Ji(s) is holomorphic at s = 3/4.

Case 2: If L(2/3,7) = 0, then by functional equation we have that A(1/3,77!) = 0.
Suppose that Ji(s) has a pole at s = 2/3, then from the proceeding explicit
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expressions, we must have that 7> = 1, and the singular part of Ji (s) around
s = 2/3 is a holomorphic function multiplying A(3s — 2,7°)A(2s — 1,72).
Note that A(2s — 1,7%) |y=2/3= A(1/3,7%) = A(1/3,77!) = 0. Hence, when
L(2/3,7) = 0, Ji(s) is holomorphic at s = 2/3.

Now the proof of Claim 77 is complete. O

Proof of Claim 78. Let s € R(1)". Let J(s) := /0) /0) Res T(K s)dkdxks, and
J (s) := /C /c Res 7—' (k, s)dk1dks. By the analytic property of Res F(k,s) we see

Kko=s-1
that J2 (s) is meromorphlc in the domain R(1), with a possible pole at s = 1. Let

s € R(1)~. Applying Cauchy integral formula we then see that
J (s) —// Res 7:(K s)dkidks +/ Res Res 7:(K s)dks, (10.15)
C

(0) k2= s—1 K1=2-25kr=5—1

where Réas2 Resl?' (k,s) is equal to some holomorphic function multiplying the
K1 SKy)=§—

product of A(s,7)> and the meromorphic function

AQ2s =1 = k3, xa3T)AQR2s — 1 + k3, y34T2)ABs = 2, 72)AQ2s — 1,77)
A2 =5+ k3, x35)AQ2 = 5 — k3, xa3) A3 = 25, 72)AQR2 - s,771)

(10.16)

Then J21 (s) is equal to, after applications of Cauchy integral formula to (10.15),

/ / Res F(k,s)dk dks +/ Res Res F(k,s)dk; +/ Res
(0) J(0) k2=5~ 1 (0) 3= =2-2sKkp=s5—1 (0) K3=2-25—K]

Res F(k,s)dk + / Res Res F(k,s)dks + Res Res Res F(k,s),
(

Ko=s5—1 0) k1= =2-2skp=s5—1 Kk3=2-25k1=2-25Kkp=5—1

where Rzes2 ReSIT(K s) is equal to some holomorphic function multiplying the
K3 SKy=8—

product of the meromorphic function A(s, 7)? and
AQ2s = 1+ kg, x12)A2s = 1 = k1, x2172)AQBs — 2, 7°)A(2s — 1,72)
A2 = s + k1, x12)AQR = s — k1, x21)A(B = 25,77 2)AQ2 — 5,771)

also, Res Res F(k,s) is equal to some holomorphic function multiplying the
Kk3=2—-25—kK1Kkp=5—1

product of A(2s — 1,72)?A(s,7)? - AQ2 — s,77!)"2 and

; (10.17)

AL = k1, Y21)A(s = k1, x217)A3s = 2 + k1, x12T)AQ2s = 1 + k1, x1272)

A+ k1, x12)A(s + k1, x12T)AB = 25 — k1, 21T AR — s — k1,771
(10.18)

From the formula (10.16), we see that Res Res Res ¥ (k,s) is equal to some
Kk3=2-25k1=2-25Kkp=5—1

holomorphic function multiplying

Alds =3, 7HABs — 2, 7)A2s — 1, 72)A(s, 7)
A4 =35, 73)AB =25, 7 HAQR - 5,771

(10.19)
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We thus see from the proceeding computations of analytic behaviors of the functions
Res T(K s), Res Res T(K s), Res Res T(K s), and

Kky=s—1 k3=2-25Kkp=5—1 K1=2-25Kkp=5—1

Res Res Res F(k,s),

Kk3=2-25k1=2-2sKkp=5—1

that the functions

/ / Res F(k, s)dkdxks, / Res Res F(k,s)dk;
(0) J(0) k2=s-1 (0) K3=2-2sK2=5~1

and f(o) Rzes2 Res 7:(K s)fk3 admit meromorphic continuation to the domain
K1 sky=s—1

1/2 < Re(s) < 1, with a possible pole at s = 2/3 if > = 1; and

Res Res Res F(k,s)

Kk3=2-25Kk1=2-2sKkp=5—1

admits a meromorphic continuation to the domain R(1/2)™ U Sj;/2,1), with possible
simple poles at s = 3/4, s =2/3and s = 1/2,when 7* = 1,7 = 1 and 7% = 1,

respectively.

From (10.18) we see that the function Res  Res T (k,s) might have infinitely

Kk3=2-25—K1K2=5—1
many poles in the strip 1/2 < Re(s) < 1. These poles come from nontrivial zeros of

L(s, x127) is this strip. Hence we may have a problem shifting contours if we try to

continue f(O) Res  Res F(k,s)dk; directly. To remedy this, we need to first deal

Kk3=2—-25—K1Kr=5—1
with the factor A(s + «i, xy127). Thanks to the uniform zero-free region of Rankin-

Selberg L-functions defined in Section 8.1, the function = Res  Res F(k,s) is

K3= =2-2s— K1K2=S8S— 1
holomorphic in the domain R(1 — s). Then we can apply Cauchy integral formula

to obtain that

/ Res  Res F(k,s)dk; :/ Res  Res F(k,s)dki, (10.20)
( (1-

0) k3=2-25—k1kp=5—1 5) k3=2—-25—kKk1Kkp=5—1

where the integral on the right hand side is taken over (1 — 5) := {z € C: Re(z) =
1 —Re(s)}. Let k] = k1 + 5 — 1, k) = k2 and &} = «3. Denote by &' = (&, &5, K5).
Then dK;. = dk;j, 1 < j < 3. Hence we have

/ Res Res 7 («k,s)dk; = / Res  Res F (&', s)dxk], (10.21)
© (0) %3

) K3= =2-25—kKk1kp=5—1 f=1-s5— /<1/<2 =s—1

where by (10.18), Res Res #(k’,s) is equal to some holomorphic function

3:1—s K1K2 s—1

multiplying the product of A(2s — 1,72)*A(s,7)? - A2 — s,77!)72 and
A(s + k7, x12T)A(s = K, xa1 T)A(2s — 1 + K;,)(lzT AQ2s —1 - K;,)(lez)

A+ K 12AT = K 2DAR = 5 + K a2 DAR =5 — K x|
(10.22)
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Then from (10.20), (10.21) and (10.22) we conclude that

/ Res  Res F(k,s)dk;
(

0) Kk3=2-25—K1Kkr=5—1

admits a meromorphic continuation to the strip 1/2 < Re(s) < 1. We then have
a meromorphic continuation of le(s) to the area S(j/21). Denote by Jél/ 2D this

continuation. Then Jél/ 2’1)(s) is equal to

/ / Res F(k,s)dkdk3 +/ Res Res F(k,s)dk; +/ Res
(0) J(0) *2=s-1 (0) K3=2—2s5K2=5-1 (0) K5=1-s5—K]

/Resl7:(l<',s)d/<i+ / Res Res F(k,s)dk; + Res Res Res F(k,s).
Ky=s— (

0) Kk1=2-2sKkp=5—1 Kk3=2—25Kk1=2-2skr=5—1

Let s € R(1/2)*. Then by (10.17) and Cauchy integral formula we see that the
function f(o) Res Res F(k,s)dk is equal to

k3=2-25Kkp=5—1

/ Res Res F(k,s)dk; — Res Res Res F(xk,s), (10.23)
C

k3=2-25Kkr=5—1 k1=25—1k3=2-2sKkp=5—1

and Res Res Res 7 (k,s) isequal to some holomorphic function multiplying
K]=2S—1K3=2—2SK2=S—1

Alds —2,7HABs — 2, 7)A2s — 1, T2)A(s, 7)?
AB =35, 7HAB =25, 7 HAR - 5,7 HA(l + 5,7)

(10.24)

By (10.22) and Cauchy formula we see that /(0) Res Resl?" (k’, s)dk| equals

o ! — o
K3—1 S—K{K)=S

/ Res  Res F(«’,s)dx; — Res Res Resl?‘(K,s), (10.25)
C K

o ! — e [ T T /o
=1-s K{Ky=S 1 K1—2S 1/<3—2 2s1<2—s

and Res Res Res 7 (k,s) isequal to some holomorphic function multiplying
Ky =2s—1Kk;=2-2sK;=5-1

Ads —2,7HAQBs — 1,75)AQ2s — 1,72)?A(1l = 5, 7=1)A(s,7)?
A =35, 73)AR = 25, 7HAQR - 5,7 H2A2s, TH)A(1l + 5,7)

(10.26)

By (10.16) and Cauchy formula we see that /(0) Res ReSIT(K, s)dk3 equals

K1=2-25Kp=85—

/ Res Res F(k,s)dks — Res Res Res F(k,s), (10.27)
C

K1=2-2sKky=5—1 k3=2s—1k1=2-2sKky=5—1

and Res Res Res F(k,s) isequal to some holomorphic function multiplying
k3=25—1k1=2-2sKkp=5—1

Alds —2,7HABs — 2, 7)A2s — 1, T2)A(s, 7)°
AB =35, 7HAB =25, 7 HAR - 5,7 HA(1 + 5,7)

(10.28)
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Note that /C Res Res F(k,s)dk, fc Res Res F(«’,s)d| and the function

K3=2-2sKy =51 K=1=s—k{ K}=s~1

fC Kleshszgﬁ ¥ (k, s)dk3 are meromorphic inside R(1/2), with a potential pole of
order less or equal to 2 at s = 1/2. Moreover, it follows from (10.20), (10.21)
and (10.22) that if L(1/2,7) = 0, then these three integrals are holomorphic at
s = 1/2; and the ratio of these integrals and A(s,7) have at most a simple pole
at s = 1/2. In particular, combining equations (10.23), (10.24), (10.25), (10.26),
(10.27) and (10.28), one thus has a meromorphic continuation of Jél/ 2’1)(s) to the
domain R(1/2), with a potential pole of order less or equal to 2 at s = 1/2. Denote
by le / 2(s) this continuation. Then le / 2(s) - A(s,7)"! has at most a simple pole at
s = 1/2if L(1/2,7) = 0. Explicitly, by Cauchy’s formula we have

Jl/z(s) //C Res 7:(K S)dKldK3+/C Res Res F(k,s)dk;

Kky=s—1 k3=2-2s5Kkp=5—1

+ / Res Res F(k’,s)dk] + / Res Res F(k,s)dk3
C C

K—ISKK =s—1 K1=2-25Kkp=s5—1

+ Res Res Res F(k,s)— Res Res Res F(k,s)

k3=2-25k1=2—2sKkp=5—1 K1=25—1k3=2-2sKkp=5—1
— Res Res Res T (k,s) — Res Res Res F(k,s).
K{ZZS—IK =2- 2s1< k3=25—1k1=2-2sKkr=5—1

Let s € R(1/2)". Then fc /C RCSIT(K, s)dk1dks is equal to
Ky=S—

/ / Res F(k, s)d/qdk3+/ Res Res F(k,s)dk3
0) J(0 (

) K2 =5 1 0) k1= 1-2skp=5-1

+/ Res Res F(k,s)dk; + Res Res Res T(K s).
(

0) k3= 1-2skr=5-1 k3=1-2s5k1=1-2sKp=5-1

Likewise, the function fc R;:s2 ReslT(K s)dk is equal to
K3 SKy=§

/ Res Res F(k,s)dk; + Res Res Res F(k,s);
(

0) k3= =2-2skp=s5—1 k1=1-25k3=2-2sKkp=5—1

the function fc Res Res T(K s)dk is equal to

—1 —s— K1K2 s—

/ Res Res F(«’,s)dk; + Res  Res Res F(«',s);
(0) 43

—1s1<1/<2 —123K—1s1</< =s—1

and the function /C Res Res ¥ (k, s)dks is equal to

=2-2skp=s—1

/ Res Res F(k,s)dks + Res Res Res F(k,s).
(

0) k1= =2-2skp=s5—1 k3=1-25k1=2-2sKkp=5—1
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As before, a computation of the above integrals leads to a meromorphic continuation
of le / 2(s) to the region 1/3 < Re(s) < 1/2. Denote by this continuation Jél/ 31/2) (s),
then

J () = /0 ) /(O Res F(k,s)dkdxs + /( Res Res F(k,s)dk

) kr=s5—1 0) Kk3=2-25Kkp=5—1

(
+/ "Res  Res T(K’,S)dki+/ Res Res F(k,s)dks
(0) &3 (

=1—S—K{K£:S—1 0) K1=2-2s5kr=5—1

+ Res Res Res F(k,5)— Res Res Res F(k,s)

k3=2—-2s5Kk1=2-2sKkp=5—1 K1=25—1Kk3=2—-2sKkp=5—1

— Res Res ReSIT(K,s)— Res Res ReSIT(K,s)

K{:2s—11<§:2—2s1<2’:s— k3=25—1Kk1=2-2sKp=5—

+/ Res Res F(k,s)dk; + Res Res Res F(k,s)
(

0) k3=1-2s5Kkp=5-1 k3=1-2sk1=1-2sKk2=5—1

+ / Res Res F(k,s)dks + Res Res Res F(k,s)
(

0) k1=1-25kp=5-1 k1=1-2s5k3=2-2sKp=5-1

+ Res Res Res F(k',s)+ Res Res Res F(k,s).

KI=1—2SK§=1—S—KIK2’=S—1 k3=1-25k1=2-2sKkr=5—1
Thus we obtain a meromorphic continuation of J>(s) to S(1/3.c0) :

J2(5), § € S(1,400)5

le(s), s € R(1);

Da(s) = {8205, s € Saymny; (10.29)
L(s), s € R(1/2);

Jém’l/z)(s)» s € 8(1/3.1/2)-

From the above formulas one sees that J>(s) has possible poles at s = 3/4,s =2/3
and s = 1/2; and the potential poles at s = 3/4, s = 2/3 are at most simple, the
possible pole at s = 1/2 has order at most 2. Moreover, from the above explicit
expressions of Jo(s), we see that Jo(s) - A(s,7)"! has at most a simple pole at s = 1/2
if L(1/2,7) =0.

Case 1: If L(3/4,7) = 0, then by functional equation we have that A(1/4,771) = 0.
Suppose that J5(s) has a pole at s = 3/4, then from the proceeding explicit
expressions, we must have that 7* = 1, and the singular part of J~2(s) around
s = 3/4 is a holomorphic function multiplying A(4s — 3,7%)A(3s — 2,77).
Note that A(3s — 2,7%) |;=34a= A(1/4,7%) = A(1/4,77") = 0. Hence, when
L(3/4,7) = 0, Jr(s) is holomorphic at s = 3/4.
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Case 2: If L(2/3,7) = 0, then by functional equation we have that A(1/3,77!) = 0.
Suppose that J>(s) has a pole at s = 2/3, then from the proceeding explicit
expressions, we must have that 7> = 1, and the singular part of J>(s) around
s = 2/3 is a holomorphic function multiplying A(3s — 2,7°)A(2s — 1,72).
Note that A(2s — 1,72) |s=2/3= A(1/3,7%) = A(1/3,77!) = 0. Hence, when
L(2/3,7) = 0, Jr(s) is holomorphic at s = 2/3.

Now the proof of Claim 78 is complete. O

Proof of Claim 79. Let s € R(1)". Let J3(s) := /(0) /(0) Res ¥ (k,s)dk dk;, and
k3=s—1
J31 (s) := / / Res F(k, s)dk dk;. By the analytic property of Res ¥ (k,s) we see
C CK3=S—1 Kk3=s—1

that J31 (s) is meromorphic in the domain R(1), with a possible pole at s = 1. Let
s € R(1)". Applying Cauchy integral formula we then see that

J (s) —// Res ?(K s)d/qu2+/ Res Res T(K s)dko, (10.30)
C

(0) k3= =s—1 k1=1-sk3=s—1

where R(i:s Res T (k,s) is equal to some holomorphic function multiplying the
k1=1-sk3=s—1

product of A(2s — 1,72)?A(s,7)> - A2 = 5,771)72

A(s + k2, x23T)A(s — k2, x32T)A2s — 1 + k2, x2372)AQ2s — 1 — ko, x3277)

AU+ 1 A0 = ko xAQ =5 4 i st DAC =5 —koT)

Then after applications of Cauchy integral formula to (10.30), we obtain that

J (s) = / / Res 7 (k, S)dK]dK2+/ Res Res F(k,s)dk;
0) J(0 (

)K3s1 0)K222s1<3sl

/ Res  Res F(k,s)dk; +/ Res Res F(k,s)dky
( (

0)/@223 K1 k3=s—1 0) k1= 1-sk3=s5—1
+ Res Res Res F(k,s)+ Res Res Res F(k,s),

ky=1-sk;=1-sk3=5—1 Kky=2-2sk1=1—-sKk3=5—1

where s € R(1)™ and Rzes2 ReSIT (k,s) is equal to some holomorphic function
K= SK3=8§—

multiplying the product of the meromorphic function A(s, 7)? and

A(s + k1, y12T)ABs = 2 — ki, 2172 )ABs — 2,73)AQ2s — 1,7'2)'
A(l - K19X21)A(3 - 25 + K19X12)A(3 - ZS’T_Z)A(Q' - S9T_1) ’

(10.32)

and Res Res 7(k,s)is equal to some holomorphic function multiplying
Kkp=2-25—kKk1K3=5—1

A(s — ki, x217)A(Bs =2 + K1,X12T3)A(3S -2, 73)A(2s - 1,T2)A(S, 7)2
A(L + k1, x12)A(3 = 25 — k1, Y21 T 2)AB3 = 25, 772)A2 — 5, 771)

(10.33)
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From the formula (10.31), we see that Res Res Res F(k,s) is equal to some
Kkp=2-25k1=1—sK3=5—1

holomorphic function multiplying

Ads =3, 7HABs — 2, 7)AQ2s — 1,7)A(s,7)

10.34
A4 =35, 73)AB - 25,7 )AQ2 - 5,771) ( )

Moreover, by (10.31) and the fact that A(s + «2, x237) - A2 — s — K2, X327 1) is

holomorphicat k) = 1—s when y3 = 7! wededucethat Res Res Res F(k,s) =
ko=1-sk1=1-sk3=5-1
0.

We thus see from the proceeding computations of analytic behaviors of the functions
Res F(k,s), Res Res 7:(K s)and Res Res Res ?—' (k, ), that

k3=s—1 k1=1-sk3=s—-1 Kky=2-2sk1=1-sKk3=5—-1

/ / Res F(k,s)dkdk;
(0) J(0) k3=s-1

and / ) Res Res F(k,s)dk, admit meromorphic continuation to the domain 1/2 <
K

1=1—-sk3=5-1
Re(s) < 1;and Res Res Res F(k,s)admits a meromorphic continuation to the
Kko=2-2s5k1=1—sK3=5—1

domain R(1/2) U8y 2,1), with possible simple poles at s = 3/4,s = 2/3 and s = 1/2,
when * = 1, 73 = I and 72 = 1, respectively, according to (10.34).

From (10.32) we see that the function f Res Res F(k,s)dk; admits holomor-
) Kky=2-2s5Kk3=s5—1
phic continuation to the domain 2/3 < Re(s) < 1. From (10.33) we see that the
function / Res  Res F(k,s)dk; admits holomorphic continuation to the do-
O)Kz 2-2s—k1k3=5—1
main 2/3 < Re(s) < 1. Then combining these with (10.32) and (10.34) one sees that
J31 (s) admits a holomorphic continuation to the domain 2/3 < Re(s) < 1. Denote

by ng/ 3’1)(s) this continuation, where 2/3 < Re(s) < 1.

Let s € R(2/3)*, then by Cauchy integral formula we have

/ Res  Res F(k,s)dk; = / Res  Res 7 (k,s)dk;. (10.35)
( C

0) k2= =2-2s5—kKk1Kk3=5—1 Ky=2—-25—k1Kk3=5—1

Likewise, for s € R(2/3)*, by (10.32), /(0) Res Res T(K s)dk is equal to

Ko=2—-2s5Kk3=5—1
/ Res Res F(k,s)dk; — Res Res Res F(xk,s), (10.36)
C kK2=2-2sk3=s—-1 =35—2kp=2-2sk3=5—1

where Res Res Res ¥ (k, s) equals some holomorphic function multiplying
k3=35—2kr=2-2sKk1=5—1

Ads —2,THABs - 2, THAQ2s — 1,75)A(s, 7)?
AB =35, 7HAB - 25,7 )AR - 5,7 DAl + 5,7)

(10.37)
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Then according to (10.32), (10.33), (10.35), (10.36) and (10.37), we see that

11(2/ 3D (s) admits a meromorphic continuation to the domain R(2/3), with a possible
pole at s = 2/3 when 7> = 1. Denote by J32 / 3(s) this continuation, s € R(2/3). Now
let s € R(2/3)". Then we have that

kp=2-2sKk3=5—1

J32/3(s):/ / Res T(K,s)dkldkz+/ Res Res F(k,s)dk;
(0) J(0) #3=5-1 c

+/ Res Res T(K,s)dkl+/ Res Res F(k,s)dk>
C (

Kky=2—25—k1k3=5—1 0) k1=1-sk3=s—1

+ Res Res Res F(k,5)— Res Res Res F(k,s).

Kka=2-2sK1=1—-sK3=5—1 K1 =352k =2—25K3=5—1
According to (10.33), (10.34), (10.35), (10.36) and (10.37), the terms in the right
hand side of the above formula are holomorphic in 1/2 < Re(s) < 2/3 except the
term /C Res  Res 7 (k,s)dk;, which is equal to, by Cauchy integral formula,

Ko=2-25—k1k3=5—1

that

/ Res Res F(k,s)dk; + Res Res Res F(k,s), (10.38)
(

0) Ko=2-25—k1k3=5—1 K1=2-3sKkp=2—-25—K1Kk3=5—1

where s € R(2/3)~. By (10.33), one sees that Res  Res ReslT(K, s) is equal

Ky=2-35Kk3=2-25—Kp K| =5—
to some holomorphic function multiplying

Alds —2,7HABs — 2, 7)A2s — 1, T2)A(s, 7)°
AB =35, 7HAB =25, 7 HAR - 5,7 HA(1 + 5,7)

By (10.33), (10.38) and (10.39) one sees that fc Res  Res ¥ (k,s)dk; admits

Kky=2-25—k1K3=5—1
a meromorphic continuation to S(j/3/3) with a at most double pole at s = 1/2

(10.39)

when 72 = 1. Hence we obtain a meromorphic continuation of le / 3(s) to the strip
1/2 < Re(s) < 2/3. Denote by J3(1/ 22/3) this continuation, namely,

J§1/2,2/3)(S) :/ / Res T(K,s)dkldkz+/ Res Res F(k,s)dk;
( (

0) J(0) k3=s—1 0) Kky=2-2s5Kk3=5—1

(
+ / Res  Res F(«k,s)dk; + / Res Res F(k,s)dk>
( (

0) Kkp=2—-25—k1Kk3=5—1 0) k1=1-sk3=s5—1

+ Res Res Res F(k,s)— Res Res Res F(k,s)

Kky=2-2sk1=1—-sKk3=5-1 K1=35-2Kkp=2-2sKk3=5—1

+ Res Res Res F(k,s).

Kk1=2-35kp=2-25—kK K3=5—1
One sees clearly that the terms in the right hand side of the above expression are
meromorphic in R(1/2),except the term f(()) Res Resl?'(K, s )dk>, which by Cauchy

k1=1-sk3=s5—
integral formula and (10.31), is equal to

/ Res Res F(k,s)dky — Res Res Res F(k,s), (10.40)
C

k1=1-sk3=s-1 Kky=25—1k;=1-sKk3=5-1
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where s € R(1/2)*. By formula (10.31), we see that Res Res Res F(k,s) is

ko=25—1k1=1-sK3=5—1
equal to some holomorphic function multiplying

Ads = 2,THAQBs — 1, THARs — 1,72)°A(s, 7)>A(l — s,771)
AB =357 )AQ2s, 7)A + 5, 7T)AQR - 25,7 2)AQR — 5, 7712

(10.41)

We then apply the functional equation A(2 — 2s,772) ~ A(2s — 1,7%) to (10.41) to

see that Res Res Res 7 (k,s) equals some holomorphic function multiplying
Kky=25—1k1=1-sKk3=5—-1

Ads —2,7AQBs — 1,7)AQs — 1,72)A(s, 7)°A(l = 5,77 1)
A =35, 73)AQR2s, T2)A(1 + 5, 7)AQ2 — 5,771)2

(10.42)

Note that when s € R(1/2)7, 2s lies in a zero-free region of A(s, 7%). Then by (10.40)
and (10.42) we conclude that J f 122/ 3)(s) admits a meromorphic continuation to the
region R(1/2). Denote by J31 / 2(s) this continuation, then

Jl/Z(S) //C Res 7-“(1< S)dK]dK2+/( Res Res 7 (k, s)dk;

k3=s—1 0) k2= 2-2sk3=5—1

/ Res  Res F(k,s)dk| + / Res Res F(k,s)dk
( C

0) k2= =2-2s—k1k3=5—1 k1=1-sk3=s5—1

+ Res Res Res F(k,5)— Res Res Res F(k,s)

Kky=2-2sk1=1—-sk3=5—1 k1=35—2Kkp=2-2sk3=5—1

+ Res Res Res F(k,5)— Res Res Res F(k,s).

Kk1=2-35kp=2-25—kKk1 K3=5—1 ky=25—1k1=1—-sKk3=5—1

Let s € R(1/2)". Then by Cauchy’s integral formula we have

// Res T(K s)dkidky —/ / Res F(k,s)dkydk;
¢ r=s-l (0) J(0) k3=s=1

+/ Res Res 7 (k,s)dk +/ Res Res F(k,s)dk;.
C k=1-2sk3=5-1 (0) K1= —2sk3=s5—1

Also, by (8.31) we have fc Res Res F(k,s)dk, equal to

—SK3 =s—1

/ Res Res F(k,s)dko + Res Res Res F(k,s).
(

0) k1= 1-sk3=s—1 ky=1-2s5k1=1-5K3=5—-1

Substituting the above equalities into the expression of J31 / 2(s) we then obtain

a continuation of J3l / 2(s) into 1/3 < Re(s) < 1/2. Denote this continuation by
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J3(1/ 22/3) (s), then

J(1/22/3)( ) / / Res T(K’s)dkldkz +/ Res Res 7:(’( S)dK]
0) J(0 (

) K3=S— 1 0) kp=2-2sKk3=5—1

/ Res  Res 7 («k,s)dk; + / Res Res F(k,s)dk>
© (

) k2= =2-2s—k1k3=5—1 0) k1= 1-sk3=s—1

+ Res Res Res T(K s)— Res Res Res T(K s)

Kky=2-2s5k1=1-sKk3=5—-1 K1=35-2Kkp=2-2sk3=5—1

+ Res Res Res F(k,s)— Res Res Res F(k,s)

Kk1=2-35kp=2-25—kK1 k3=5—1 ky=2s—1k;=1-sKk3=5—1

+/ Res Res F(k, s)d/q+/ Res Res F(k,s)dk
c (

ky=1-25k3=5—-1 0) k1= 1-25k3=5-1
+ Res Res Res F(k,s).

kr=1-2s5k1=1-sKk3=5-1

Thus we obtain a meromorphic continuation of J3(s) to the area S(1/3.00) :

J3(5), § € S(1400);

Ji(s), s € R(D);

IS, s € Sy

() = 113 (s), s € R(2/3); o
J§1/272/3>(s), s € 8(1/22/3)

IP(s), 5 € R(172);

J§1/3,1/2)(s)’ s € S8(1/3,1/2).

From the above formulas one sees that J5(s) has possible poles at s = 3/4,s =2/3
and s = 1/2; and the potential poles at s = 3/4, s = 2/3 are at most simple, the
possible pole at s = 1/2 has order at most 2. Moreover, from the above explicit
expressions of J3(s), we see that J3(s) - A(s,7)"! has at most a simple poleat s = 1/2
if L(1/2,7) =0

Case 1: If L(3/4,7) = 0, then by functional equation we have that A(1/4,771) = 0.
Suppose that J3(s) has a pole at s = 3/4, then from the proceeding explicit
expressions, we must have that 7 = 1, and the singular part of J~3(s) around
s = 3/4 is a holomorphic function multiplying A(4s — 3,7)A(3s — 2,73).
Note that A(3s — 2,7%) |yz34= A(1/4,7%) = A(1/4,77) = 0. Hence, when
L(3/4,7) = 0, J3(s) is holomorphic at s = 3/4.

Case 2: If L(2/3,7) = 0, then by functional equation we have that A(1/3,77!) = 0.
Suppose that J3(s) has a pole at s = 2/3, then from the proceeding explicit
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expressions, we must have that 7> = 1, and the singular part of J~3(s) around
s = 2/3 is a holomorphic function multiplying A(3s — 2,7°)A(2s — 1,72).
Note that A(2s — 1,7%) |y=2/3= A(1/3,7%) = A(1/3,77!) = 0. Hence, when
L(2/3,7) = 0, J3(s) is holomorphic at s = 2/3.

Now the proof of Claim 79 is complete. O

Proof of Claim 80. Let s € R(1)*. Let Jia(s) = /0) Res Res T(K s)dksz, and

ki=s—1lkr=s—1

2(s) = /C Res Res ?‘(K s)dks3. Then by (8.32) one sees that J 2(s) is meromor-

k1=s—1kr=5-1

phic in the region R(1), with a possible pole at s = 1.

Let s € R(1)~. Applying Cauchy integral formula we then have that

Jllz(s) :/( Res Res F(k,s)dk; + Res Res Res T(K s), (10.44)

0) K1=5— lky=s—1 k3=3-3sk;=5—1Kkp=5-1

where Res Res Res 7 (k,s) equals some holomorphic function multiplying
k3=3-3sk1=5—1Kkp=5—1

Ads =3, 7AQBs = 2, 7)AQ2s — 1,72)A(s, 7)
A4 =35, 73)AB =25, 7HAQ2 - s, 771

(10.45)

Then one sees, by (8.32) and (10.45), that f ©) Res Res ?—' (k, s)dk3 and the func-

k1=s—1ky=s-1

tion Res Res Res F(k,s) are meromorphic in the strip 2/3 < Re(s) < 1, with

k3=3-3sk1=5—1Kkp=5—1

possible simple poles at s = 3/4 if 7* = 1. Hence, by (10.44), we obtain a mero-
morphic continuation of J llz(s) to the strip 2/3 < Re(s) < 1, with possible simple
poles at s = 3/4 if 7* = 1. Denote by Jl(é/ 3’l)(s) this continuation.

Lets € R(2/3)*. Applying Cauchy integral formula to (8.32) to see that the function
f( 0, Res Res 7:(K s5)dks is equal to

=s—1ky=s—-1

/ Res Res F(k,s)dks — Res Res Res T(K s), (10.46)
C

k1=s—1kr=5-1 k3=2-3sk1=s—1Kkp=5-1

and Res Res Res 7 (k,s) is equal to some holomorphic function multiplying
k3=2-3sk1=5—1Kkr=5—1

Ads =3, 7HABs — 2, 7HAQ2s — 1,75)A(s, 7)?
AB =35, 7)A + 5, 7)AB = 25,7 2)AR - 5,77 1)’

(10.47)

Then by (10.46), (10.47) and the fact that fc Res Res F(«k,s)dk3 is holomorphic

k1=s—1lkr=s—-1
in R(2/3), we obtain a meromorphic continuation of J (2/3, 1)(s) to the region R(2/3),

with a possible simple pole at s = 2/3,if 73 = 1. Denote by J; (s) the continuation.
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Let s € R(2/3)". Then by (10.44) and (10.46) one has

2/3( )_/ Res Res T(K s)dkz — Res Res Res T(K s)

k1=s—1kr=5—-1 k3=2-3s5k1=5—1Kkr=5—1

+ Res Res Res F(k,s).

k3=3-3sKk;=s—1Kkp=5—1

Since the right hand side is meromorphic in the strip S(o2/3), with a possible simple
pole at s = 1/2 if 7> = 1. We thus obtain a meromorphic continuation of J (s) to
the region 0 < Re(s) < 2/3, with a possible simple pole at s = 1/2if 7> = 1. Denote
by Jg/ 3.2/ 3)(s) this continuation. Thus we obtain a meromorphic continuation of
J12(s) to the area S(1/300) :

J12(5), § € S(1,+00)3

Jllz(s), s € R(1);

Tia(s) = $7230(s), 5 € Sp); (10.48)
I (s), s € R(2/3);

T (s), s € R(1/2) U Saj3273)-

From the above formulas one sees that flz(s) has possible poles at s = 3/4, s =2/3
and s = 1/2; and these potential poles are all at most simple. Moreover, from the
above explicit expressions of Jia(s), we see that J12(s)- A(s, 7)~! has at most a simple

pole at s = 1/2. We discuss the other two possible poles separately.

Case 1: If L(3/4,7) = 0, then by functional equation we have that A(1/4,77!) = 0.
Suppose that Ji2(s) has a pole at s = 3/4, then from the proceeding explicit
expressions, we must have that 74 = 1, and the singular part of flz(s) around
s = 3/4 is a holomorphic function multiplying A(4s — 3,7*)A(3s — 2,7°).
Note that A(3s — 2,7%) |s=3/4= A(1/4,7%) = A(1/4,77!) = 0. Hence, when
L(3/4,7) = 0, J12(s) is holomorphic at s = 3/4.

Case 2: If L(2/3,7) = 0, then by functional equation we have that A(1/3,77!) = 0.
Suppose that J12(s) has a pole at s = 2/3, then from the proceeding explicit
expressions, we must have that 73 = 1, and the singular part of Ji 2(s) around
s = 2/3 is a holomorphic function multiplying A(3s — 2,7°)A(2s — 1,72).
Note that A(2s — 1,7%) |y=2/3= A(1/3,7%) = A(1/3,77!) = 0. Hence, when
L(2/3,7) = 0, Jia(s) is holomorphic at s = 2/3.

Now the proof of Claim 80 is complete. O
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Proof of Claim 81. Let s € R(1)*. Let Ji3(s) = /0) Res Res T(K s)dky, and

k1=s—1k3=5—1

1113(s) = /C Res Res F(k,s)dky. Then by (8.31) one sees that J 5(s) is meromor-

k1=s—1k3=5-1

phic in the region R(1), with a possible pole at s = 1.

Let s € R(1)". Applying Cauchy integral formula we then have that

Ji(s) = / Res Res 7:(K s)dks + Ri(s) + Ra(s), (10.49)
(

0) kK1=5— lkz=s—1

where Ri(s) := Res Res Res T(K s), and R;(s) denotes the meromorphic func-
Kko=2-2sk1=5—1Kk3=5—1

tion Res Res Res ¥ (k,s). Thenby (8.31)R|(s) = 01f/\/231' # 1.Let yo372 = 1.

Kkr=3-3s5k1=5—1Kk3=5-1

Then the function G(ky) = A(2s — 1 + k2) - A(3 = 25 — k»)~! is holomorphic at
ky =2 —2s. Hence R;(s) = 0. Also, according to (8.31),

A(4s =3, 7)AQBs — 2,7)ARs — 1, 72)A(s,7)

R ~
)~ T 350 IAG = 25T DA — 5.0 ])

(10.50)

Thanks to the uniform zero-free region of Rankin-Selberg L-functions defined in

Section 8.1, the function Res Res T(K §) is holomorphic in the domain R(1 — s).

k1=s—1k3=5-1
Then we can apply Cauchy integral formula to obtain that

/ Res Res 7 (k,s)dky = / Res Res F(k,s)dk, (10.51)
( (1-

0)K151K3S1 S)K1S1K3S1

where the integral on the right hand side is taken over (1 — 5) := {z € C: Re(z) =
1 —Re(s)}. Let 5 = k2 + s — 1, k| = k1 and &} = k3. Denote by k" = (&, &5, K5).
Then dK;. =dkj,1 < j < 3. Hence we have

/ Res Res F(«k, S)dKQ—/ Res Res F (&', s)dK>, (10.52)
( (

O)Klle‘g =s—1 O)K le =s5—1

where by (8.31), Res Res 7:(l< s) is equal to some holomorphic function multi-

Kl—S lK

plying the product of A(2s — 1, 7%)?A(s,7)* - A2 - 5,77')"% and

A(s + Ky x23T)A(s — k5, x32T)ARs — 1 + K5, x23TH)AQ2s — 1 — K5, x327%)

AL+ K, x23)A(L = K, x32)AQ2 = 5 + K5, Y237 DAQR = 5 — K5, x3771)
(10.53)

Then from (10.52) and (10.53), we conclude that /(0) Res Res T(K s)dk, admits

k1=s—1k3=5—1
a meromorphic continuation to the strip 1/2 < Re(s) < 1. Combining this with

equations (10.49) and (10.50), we then obtain a meromorphic continuation of J 3(s)

(1/2.1)
']13

to the area S1/2,1). Denote by this continuation. Then

Jg/z’l)(s):/ Res Res T(K s)dk, + Res Res Res T(K 5). (10.54)
©

)K =5— IK kr=3-3sk1=s—1k3=5—-1
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Let s € R(1/2)*. Applying Cauchy integral formula to (10.54) to obtain that

Jg/z’l)(s):/c Res Res 7:(K $)dKy, + Ro(s) — Ra(s), (10.55)

Ks1/<

where R3(s) := Res Res Res F(«’,s). By (8.31), we have that
Ky =25—1k{=s=1kj=s—1
Ads —2,7AQBs — 1,7)AQ2s — 1,72)*A(1 = 5, 7=1)A(s, 7)?

R ~ .
3(5) A =35, 73)AQR - 25, 7HAQR - 5,7 H)2A25,72)A(1 + 5,7)

(10.56)

By (10.56), the right hand side is meromorphic in R(1/2), with a possible pole at
s = 1/2 of order at most 1 according to the functional equation A(2s — 1,7%) ~
A(2 — 2s,772). Hence we obtaln a meromorphic continuation of J(l/ 21)(s) to the

domain R(1/2). Denote by J, (s) this continuation.

Let s € R(1/2)". Then by (10.53), fC Resl ,Resl?'(lc’, s)dx’, is equal to
Kky=s—lky=s—

/ Res Res F(k’,s)dx; + Res Res Res T(K s),
(

0) kj=s—1k3=s-1 Ky =1-2sKk|=s-1k}5=

where Rles2 Res1 Res ¥ (k’,s) is equal to a holomorphic function multiplying
= SK, =S K =s—1

AQ2s — 1,72)2A(s5,7)*ABs — 1, 7)A = 5,77 HA(4s — 2,7%)
AR = 5,77 )2AQ2 - 25,77 )ARs, THAB = 35,7 HA(s + 1,7)

Thus we obtain a meromorphic continuation of Ji2(s) to the area S /3 c0) :

J13(5), § € (14003

J113(s), s € R(1);

J13(s) = 3 Jg/z’l)(s), s € 8a/21); (10.57)
I (s), s € R(1/2);

J2s). 5 € Sapap.

From the above formulas one sees that J;3(s) has possible poles at s = 3/4,s =2/3
and s = 1/2; and these potential poles are all at most simple. Moreover, from the
above explicit expressions of Ji3(s), we see that J13(s)- A(s, 7)~" has at most a simple

pole at s = 1/2. We discuss the other two possible poles separately.

Case 1: If L(3/4,7) = 0, then by functional equation we have that A(1/4,771) = 0.
Suppose that Jj3(s) has a pole at s = 3/4, then from the proceeding explicit
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expressions, we must have that 7# = 1, and the singular part of J~13(s) around
s = 3/4 is a holomorphic function multiplying A(4s — 3,7)A(3s — 2,73).
Note that A(3s — 2,7%) |y=34= A(1/4,7%) = A(1/4,77") = 0. Hence, when
L(3/4,7) = 0, Ji3(s) is holomorphic at s = 3/4.

Case 2: If L(2/3,7) = 0, then by functional equation we have that A(1/3,77!) = 0.
Suppose that J3(s) has a pole at s = 2/3, then from the proceeding explicit
expressions, we must have that 73 =1, and the singular part of f13(s) around
s = 2/3 is a holomorphic function multiplying A(3s — 2,7°)A(2s — 1,72).
Note that A(2s — 1,72) |s=2/3= A(1/3,7%) = A(1/3,77!) = 0. Hence, when
L(2/3,7) = 0, Ji3(s) is holomorphic at s = 2/3.

Now the proof of Claim 81 is complete. O

Proof of Claim 82. Let s € R(1)*. Let Jys(s) = /0) Res Res T(K s)dki, and

Kky=s—1k3=5—1

J213(s) = /C Res Res F(k,s)dk;. Then by (8.30) one sees that J 3(s) is meromor-

Ko=s—1k3=5-1

phic in the region R(1), with a possible pole at s = 1.

Let s € R(1)~. Applying Cauchy integral formula we then have that

J213(s) :/(0 Res Res T(K s)dk) + Res Res Res T(K s), (10.58)

) Ko=5— 1k3=s—1 =3-3skp=s5—1k3=5—1

where Res Res Res 7 (k,s) equals some holomorphic function multiplying
k1=3-3skp=s5—1Kk3=5—-1

Alds =3, 7HABs — 2, 7)AQ2s — 1, T2)A(s, 7)
A4 =35, 73)AB =25, 7 HAR - 5,771

(10.59)

Then one sees, by (8.30) and (10.59), that f 0, Res Res 9’ (k, s)dk; and the func-

=s—1k3=s—-1

tion Res Res Res F(k,s) are meromorphlc in the strip 2/3 < Re(s) < 1, with
k1=3-3skp=s5—1Kk3=5-1

possible simple poles at s = 3/4 if 7# = 1. Hence, by (10.58), we obtain a mero-
morphic continuation of J213(s) to the strip 2/3 < Re(s) < 1, with possible simple

poles at s = 3/4 if 7* = 1. Denote by Jz(g/ 3’1)(s) this continuation.

Lets € R(2/3)*. Applying Cauchy integral formula to (8.32) to see that the function
f( 0 Res Res ?-'(K s)dk is equal to

r=s—1k3=s5—1

/ Res Res F(k,s)dk; — Res Res Res T(K s), (10.60)
C

ky=s—1lk3=5-1 k1=2-3sKkp=s—1k3=5—1
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and Res Res Res 7“(/( s) is equal to some holomorphic function multiplying
k1=2-3s5kr=5—1Kk3=5—1

A(4s = 3,7YABs - 2,7)A(2s — 1, T)A(s,7)°
AB-35,7)A +5,7)AB - 25,7 )AR - 5,771)’

(10.61)

Then by (10.60), (10.61) and the fact that /C Res Res T(K s)dk is holomorphic

ky=s—1k3=s—1

in R(2/3), we obtain a meromorphic continuation of J,3 /3, 1)(s) to the region R(2/3),

2/3

with a possible simple pole at s = 2/3,if 73 = 1. Denote by J53”(s) the continuation.

Let s € R(2/3)~. Then by (10.58) and (10.60) one has

LP(s)= | Res Res Tk, 5)dics = Ri(s) + Ras),

¢ ke=s—liz=s-1

where Ri(s) = Res Res Res T(K s); Ro(s) = Res Res Res T(K s).

K1=2-3sky=5—lk3=5~1 =3-3sk=5—lk3=5-1
Since the right hand side is meromorphic in the strip S(o5/3), with a possible simple
pole at s = 1/2 if 72 = 1. We thus obtain a meromorphic continuation of ]223/ 3(s) to
the region 0 < Re(s) < 2/3, with a possible simple pole at s = 1/2 if 72 = 1. Denote
by Jéé/ 32/ 3)(s) this continuation. Thus we obtain a meromorphic continuation of

Jo3(s) to the area S(j/300) :

J23(5), 5 € S(1 400>
J213(s), s € R(1);
Ta3(s) = 1I230(s), 5 € Sy (10.62)
L (s), s € R(2/3);
(1/32/3)(S) 5 € 8(1/32/3)-

From the above formulas one sees that J>3(s) has possible poles at s = 3/4,s =2/3
and s = 1/2; and these potential poles are all at most simple. Moreover, from the
above explicit expressions of J23(s), we see that J»3(s)- A(s, 7)~! has at most a simple

pole at s = 1/2. We discuss the other two possible poles separately.

Case 1: If L(3/4,7) = 0, then by functional equation we have that A(1/4,771) = 0.
Suppose that J>3(s) has a pole at s = 3/4, then from the proceeding explicit
expressions, we must have that 7# = 1, and the singular part of J~23(s) around
s = 3/4 is a holomorphic function multiplying A(4s — 3,7)A(3s — 2,73).
Note that A(3s — 2,7%) |;=34= A(1/4,7%) = A(1/4,77") = 0. Hence, when
L(3/4,7) =0, J~23(s) is holomorphic at s = 3/4.
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Case 2: If L(2/3,7) = 0, then by functional equation we have that A(1/3,77!) = 0.
Suppose that J3(s) has a pole at s = 2/3, then from the proceeding explicit
expressions, we must have that 73 =1, and the singular part of f23(s) around
s = 2/3 is a holomorphic function multiplying A(3s — 2,7°)A(2s — 1,72).
Note that A(2s — 1,72) |s=2/3= A(1/3,7%) = A(1/3,77!) = 0. Hence, when
L(2/3,7) = 0, Jo3(s) is holomorphic at s = 2/3.

Now the proof of Claim 82 is complete. O

Proof of Claim 83. Let s € R(1)". Let Hfl/z’l)(s) = /(0) /(0) Res F(k,s)dkzdk.
k1=1-s
Recall that we have computed the analytic property of Res 7 (k,s) :

ki=1-s
A(s + k3, x3a4T)A(s — k3, x43T)A(s + k2, Y23T)A(S + K23, X247)
A(1 = k2, }32)A(1 = k3, xa3)A(1 + K3, x34)A(2 = 5 + k2, ¥23771)
AQ2s — 1 — k2, x32T)AQ2s — 1 — k23, xaoTHA2s — 1, T2)A(s, 7)3
Al = k23, xa2)A2 = s + K23, x24T AR — 5,771) .

R(;,s F(k,s) ~
k1=1-s

Therefore, we see that Hil/ 2’1)(s) is holomorphic in the strip 1/2 < Re(s) < 1. Let
s € R(1/2)*. By Cauchy integral formula we have

H*D(s) = / / Res F(k, s)dkadks — / [Ri(k3) + Ra(x3)] dics,  (10.63)
©0) Jexi=l=s (0)
where Ri(k3) = Ri(k3;5) = Res Res F(k,s), and

k=2s—1k1=1-s

RQ(K3) = Rz(K3; S) = Res Res T(K, S).

k=25—1—-k3k1=1-s
By functional equation of Hecke L-functions over F we see that R;(«3) is equal to
some holomorphic function multiplying the product of A(3s — 1, 73)A(s,7)% - A2 -
s,7 ") and

A(s + k3, x34T)A(s — k3, xa3T)A(3s — 1 + k3, y347°)
A = k3, xa3)A(2 = 25 — k3, xa3T )AL + 5 + k3, y3aT)A(l + 5,7)

(10.64)

Also, applying functional equation of Hecke L-functions to Res  Res F(«k,s)

Kky=25—1—kKk3K1=1-5
leads to that R(k3) is equal to some holomorphic function multiplying the product

of ABs — 1, 7)A(s,7)3 - AQ — 5,77 1)~ ! and

A(s + k3, x34T)A(s — K3, xa3T)A(3s — 1 — k3, ya37°)
A+ k3, x34)A(2 = 25 + k3, 34T )AL + 5 — k3, xa3T)A(l + 5,7)

(10.65)
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Due to the uniform zero-free region discussed in Section 8.1, one sees that both
f(o) Ri(k3)dk3 and f(o) Ry(k3)dk3 converges normally in the region R(1/2). Hence
they are holomorphic in this are. Also, note that f f Res F(k,s)dkydks is
o Jc ki=1-s
meromorphic in the region R(1/2), with a possible simple pole at s = 1/2 if
72 = 1. Denote by H, 1/ 2(s) this continuation. It’s clear that H, 1/ 2(s) admits a natural
meromorphic continuation to the region 1/3 < Re(s) < 1/2. Denote by Hfl/ 31 2)(s)
this continuation. Then we obtain H (s), a meromorphic continuation of Hil/ 2’1)(s)

to the domain S(;/31), by (10.63), (10.64) and (10.65). Explicitly, we have that

12,1
HE 2D(s), s € S

H(s) = {H|*(s), s € R(1/2); (10.66)
H§1/3’1/2)(s).

Moreover, H(s) has a possible simple pole at s = 1/2 if 72 = 1. Now the proof of
Claim 83 is complete. O

Proof of Claim 84. Let s € R(1)". Let H(l/z’l)(s) /0) /0) Res 7:(K s)dkzdk .
Recall that we have computed the analytic property of Res F (K s)

2— —S

Res F(k.s) ~ A(s + k1, X12T)A(s + k3, x34T)A(s + K13, Y14T)A(s — K13, Ya17)
Kr=l-s AL = k1, xa)A(1 = k3, x43)A(1 + k13, x14)AQ2 = 5 + K1, Y12771)
AQ2s =1 = k3, xs3T)AQ2s — 1 — k1, y21T2)ARs — 1, 72)A(s, 7)1
. AL = k13, Ya)AQ2 = 5 + K3, }34T HAQR — 5,771)

Therefore, we see that Hél/ 2’1)(s) is holomorphic in the strip 1/2 < Re(s) < 1. Let
s € R(1/2)*. By Cauchy integral formula we have

Hél/Z,l)(S) :/;))/(;k§?8s¢(K’s)dK1dK3 _‘/()) [Rl(K3)+R2(K3)]dK3
//RCSZ(K S)dKldK3—/ [Rl(K3)+R2(K3)]dK3—/R(Kl)dkl,

where Res;(k, s) = Res T(K 5); Ri(k3) = Ri(k3;8) = Res Res F(k,s),Ry(k3) =

k=1 k1=2s—1kr=1-s
Ry(k3;8) = Res Res F (k, s), and the meromorphic function R(k;) = R(k1; s) =
K1=25=1-K3K2
Res Res F(k,s). By analytic properties of Res ¥ (k, s) and functional equation
k3=25—1Kkr=1-s K=1-s

of Hecke L-functions over F' we see that R;(k3) is equal to some holomorphic func-
tion multiplying the product of A(2s— 1, 72)A(s,7)3 - AQ2—s, 77 )1 A2 =25, 772!
and
A2s + k3, y3aTHAQ2s — 1 = k3, xa3T2)A(1 + k3, x34)A(Bs — 1,7%)
A = k3, xa3)A(1 + 5 + k3, Y34T)AQ2 = 5 + k3, 34T DAl + 5,7)

(10.67)
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Also, applying functional equation of Hecke L-functions to Res  Res F(«,s)

K1=25—1—k3Kkp=1-s
leads to that Ry(k3) is equal to some holomorphic function multiplying

A(s + k3, x3uT)ABs — 1 — k3, xa37°)A(25,7)A(2s — 1,7)A(s,7)*
AR = s+ k3, 3T DA + 5 — k3, xa37)AQ2 — 5, 7" DA(1 + 5,7)

(10.68)

Again, by functional equation of Hecke L-functions we see that R(«) is equal to
some holomorphic function multiplying the product of A(2s — 1, 72)A(s,7)% - A(2 -

5,7 )71 A(1 + 5,7)~! and the meromorphic function

AL+ k1, Y12)A2s = 1 = k1, x2172)AQ2s + k1, Y12t ABs — 1,7)
A = k1, )21)AR2 = 5 + k1, x12T DAL + 5 + k1, x127)AQ2 = 25,772)

(10.69)

Due to the uniform zero-free region discussed in Section 8.1, one sees from (10.68)
and (10.69) that both A(2s,7%)~1-A(2s-1,7%)7!- /(O) R(1; s)dkz and A(2s—1,7%)71-
fC R(k1; s)dk) converge normally for any s € R(1/2). Hence they are holomorphic in
this area. Then we obtain a meromorphic continuation of f(o) R(ky; s)dks to R(1/2),
with a possible pole of order at most 2 at s = 1/2 if 7> = 1; and a meromorphic
continuation of fc R(k1; s)dky to R(1/2), with a possible simple pole at s = 1/2 if
72 = 1. Moreover, if L(1/2,7) = 0, then both /(0) R(k1; s)dkz and fc R(k1; s)dk; are
holomorphic at s = 1/2.

By (10.67), one can apply Cauchy integral formula to deduce that

Hél/z’l)(s)=L/CR652(K,S)dK1dK3—L [Rl(l<3)"‘Rz(/<3)]al/<3—‘/CR(Kl)dK1

+ Res Res Res F(k,s),

k3=25—1k1=25—1Kkp=1-s

where Res Res Res 7 (k,s) is equal to, according to (10.67), some holomo-
k3=25—1k1=25-1Kkp=1-s

prhic function multiplying the meromorphic function

Ads — 1L,T™HABs — 1,7)A2s — 1,72)A2s, 72)A(s, 7)1
AR =25, 772)2A2 - 5,7 HA + 5,7)?A(35,73)

(10.70)

Hence Res Res Res ¥ (k,s) admits a meromorphic continuation to R(1/2),
k3=25—1k1=25—1Kkp=1-s5

with a possible pole of orderat most 2 at s = 1/2if 72 = 1. Moreover, if L(1/2,7) = 0,
then Res Res Res ¥ (k,s) is holomorphic at s = 1/2.

k3=2s—1k1=25-1Kkp=1-s
Also, note that fC fc Resy(k, s)dkdks, fc Ri(k3)dk3 and fc R>(k3)dk3 are meromor-
phic in S(j/31/2) U R(1/2), with a possible pole of order at most 2 at s = 1/2 if
72 = 1. Moreover, L(1/2,7)7! -/CfCResz(K, s)dkdkz, L(1/2,7)7! -/CRl(K3)dK3
and L(1/2,7)7! - /C R>(k3)dks all have at most a simple pole at s = 1/2. Denote by
H§1/3’1/2](s) this continuation of Hél/z’])(s) to R(1/2).
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Thus, we obtain Ha(s), a meromorphic continuation of Hél/ 2’1)(s) to the domain
S(1/3,00) by (10.67), (10.68), (10.69) and (10.70). Explicitly, we have that

(1/2,1) .
~ H (), s € S1/2,1);
_ 2 g
H(=1"2 (10.71)
H2 (S), s € S(1/3,1/2) U R(l/Z).

Moreover, Ha(s) - A(1/2,7)"! has a possible pole of order at most 1 at s = 1/2 if
72 = 1. Moreover, if L(1/2,7) = 0, then Ha(s) is holomorphic at s = 1/2. Now the
proof of Claim 84 is complete. O

Proof of Claim 85. Let s € R(1)™. Let Hgl/z’l)(s) /0) /0) ReS 7:(K s)dkydk .
Recall that we have computed the analytic property of R?s T(K, s) :
k3=1-s

Res F(k.s) ~ A(s + k1, x12T)A(s — k1, Y21 T)A(S + k2, x23T)A(s + K12, X137T)
K3=1-s AL+ k1, x12)A(L = k1, x21)A(L = k2, x32)A(2 = 5 + K2, Y2377 1)
AR2s—1- K2,)(32T2)A(2S -1- K12,)(31T2)A(2S - 1,T2)A(S, 7)3
A(l = k12, 31)AQ2 = 5 + k12, Y137 DAQ2 = 5,771) '

Therefore, we see that Hél/ 2’1)(s) is holomorphic in the strip 1/2 < Re(s) < 1. Let
s € R(1/2)". By Cauchy integral formula we have

H(I/Z 1)( )_/ / Res T(K s)dkrdky — / [RI(KI) + Rz(Kl)]dKl, (10.72)
0) JC X 0)

where Ri(k1) = Ri(ky;8) = Res Res T(K s), and

Kky=25—1k3=

Ry(k1) = Ro(k1;8) = Res  Res 7:(K s).

Kkr=2s—1-k1K3=1—
By functional equation of Hecke L-functions over F we see that R;(k;) is equal to
some holomorphic function multiplying the product of A(3s — 1, 73)A(s,7)* - A2 -
s,7 1! and

A(s + k1, x12T)A(s — k1, x21T)ABs — 1+ k1, x127°)
A1 = k1, Yo )A2 = 25 — k1, Y21 T 2)A( + 5 + k1, x12T)A(L + 5,7)

(10.73)

Also, applying functional equation of Hecke L-functions to Res  Res ¥ (k,s)

ky=2s—1—k1k3=1-s5
leads to that R(k1) is equal to some holomorphic function multiplying the product

of ABs — 1, 7)A(s,7)° - AQ — 5,77 1)"! and

A(s + k1, x12T)A(s = k1, x21T)AQBs = 1 = k1, x217°)
AL+ k1, x12)AQ2 = 25 + k1, Y127 )AL + 5 — k1, x2a AL + 5,7)

(10.74)
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Due to the uniform zero-free region discussed in Section 8.1, one sees that both
f(o) Ri(k1)dky and f(o) Ry(k1)dki converges normally in the region S(q/31/2)UR(1/2).
Hence they are holomorphic in this are. Also, note that f f Res F(k,s)dkydk;
0 JC k3=1-s
is meromorphic in the region S(j/31/2) U R(1/2), with a possible simple pole at
s = 1/2if 2 = 1. Denote by Hgl/ 31 2](s) this continuation. Then we obtain I%(s), a
meromorphic continuation of Hgl/ 21 (s) to the domain S /30, by (10.72), (10.73)
and (10.74). Explicitly, we have that

(1/2,1) .
~ H (5), s € Say);
_ 3 ’
Hys)=1 2 o (10.75)
I‘I3 (S), s € S(1/3,1/2) U 'R(1/2).

Moreover, I%(s) has a possible simple pole at s = 1/2 if 72 = 1. Now the proof of
Claim 85 is complete. O

Proof of Claim 86. Lets € R(1)". Let Hg/ll)(s) = f(O) Res Res T(K s)dks. Re-

ki=l-skr=
call that by (8.35) one sees that Hl(i/ 3’1)(s) admits a natural holomorphlc continuation
to the strip 2/3 < Re(s) < 1. Now let s € R(2/3)". Then we have

HSB’I)(S) :/ Res Res F(k,s)dks — Res Res Res F(k,s), (10.76)
c

ki=l-skp=1-s k3=3s5-2Kk1=1-sKp=1-5

where Res Res Res ¥ (k,s) equals some holomorphic function multiplying
k3=3s5-2k1=1-5sKp=1-5

Alds —2,7HABs — 2, 7)A2s — 1, T2)A(s, 7)?
AB =35, 7HAB =25, 7 HAR - 5,7 HA(l + 5,7)

Then by functional equation A(3s — 2,7°) ~ A(3 — 3s,773), we have that

A(ds =2, 7)A2s — 1,7H)A(s,7)?
Res Res Res F(k.s) ~ — 4 =27 )AQs — LA T)
k3=3s5-2k1=1-5sKp=1—-5 A(3_2S’T_2)A(2—S,T_1)A(1 +S,T)

(10.77)

Hence Rgs ) R?s R?s ¥ (k,s) admits a meromorphic continuation to the region
K3 N K1 SKp=1—§

Sa1/3,1)» with a possible pole of order at most 2 at 1/2 if 2 =1.

Moreover, due to (8.35), the function fc Res Res F(k,s)dk; is meromorphic in

k1=l—-skr=1-s

the region S(1,32/3) U R(2/3), with a possible simple pole at s = 2/3 if 73 = 1; and
a possible simple pole at 1/2 if 7> = 1. Thus we get a meromorphic continuation of
H(2/3’1)(s) to the region S(1/32/3) UR(2/3). Denote by H(1/3’2/3](s) this continuation.
Now we obtain from (10.76) and (10.77) a meromorphic continuation of H,, 2/3, 1)(s)
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to the region S(1/3,1), namely,

(s), s € S2/3.1);
HUPBs), s € S0 3073 URER/3).

2/3.)
H12

Hia(s) = (10.78)

From (8.35) and the above formulas one sees that H 12(s) has possible polesat s = 2/3
and s = 1/2; and these potential pole at s = 2/3 is at most simple, the possible pole at
s = 1/2 has order at most 2. Moreover, from the above explicit expressions of Hia(s),
we see that H1»(s)- A(s,7)~! has at most a simple pole at s = 1/2if L(1/2,7) = 0. In
additional, if L(2/3,7) = 0, then by functional equation we have that A(1/3,77!) = 0.
Suppose that Hj»(s) has a pole at s = 2/3. Then from the proceeding explicit
expressions, we must have that 3 = 1, and the singular part of H 12(s) around
s = 2/3 is a holomorphic function multiplying A(3s —2,7°)A(2s — 1, 72). Note that
A@2s = 1,7%) |s=2/3= A(1/3,7%) = A(1/3,77!) = 0. Hence, when L(2/3,7) = 0,
H»(s) is holomorphic at s = 2/3. Now the proof of Claim 86 is complete. O

Proof of Claim 87. Lets € R(1)™. Let Hl(;/z’])(s) = /(0) Res Res F(k,s)dk;. Let
N

K1=1—SK3=1—
/ ! /! /A ’ / /
Ky = 1 =5+ Ky, kK = k1 and «§ = k3. Denote by «’ = (KI,K2, «5). Recall that

Rels R?s ¥ (k,s) equals some holomorphic function multiplying the product of
k1=1-sk3=1-s

AQ2s — 1,72)*A(s,7)*A(2 — 5,7~1)7? and the function

AL+ k2, x13)A(s + K2, x23T)A(2s — 1 = k2, x327°)ABs — 2 — k2, x327°)

A = k2, x32)A(s — k2, x32T)AQ2 — 5 + k2, X237 A = 25 + Ko, x23772)

Then after the above changing of variables, we have that R?s R?s F(k,s) =
k1=l-sk3=1-s

,R?s /R?S F(«’,s) is equal to some holomorphic function multiplying the product
ki =l-sk;=1-s

of A(2s — 1,72)?A(s,7)*A(2 — s,7~1)72 and the function

A(s + &, x23T)A(s — K, x32T)A2s — 1+ K5, x0372)A2s — 1 = Kb, x37%)

A+ &, x23)A(L = K5, x32)AQR = 5 + K5, Y3 T DAQR = 5 = k), x32772)
(10.79)

One then sees that H%/ 3’1)(s) admits a natural holomorphic continuation to the strip
1/2 < Re(s) < 1. Now let s € R(1/2)*. Then we have

Hg/z’])(s):/c Res Res F(k’,s)dk, — Res Res Res F(«',s), (10.80)

F 1o’ —1_ P Ve 1! —1—op! —1_
Kl—l s1<3—1 s /<2—25 1Kl—1 SK3—1 s

where Res Res Res 7 («’,s) equals some holomorphic function multiplying
Ky =2s—1k{=1-skj=1-s

Alds =2, 7HABs — 1, HAR2s — 1, 72)*A(s, 7)°A(1 — 5,771)
AB =35, 7)AR =25, 7HAQR - 5, 77 )2AQ2s, THA(1 + 5,7)

(10.81)
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Denote by Ry 137 (k’,5) = Rgs | Relzs Res ¥ (', s). Applying the functional equa-

tion A(2s — 1,72) ~ A2 — 25,7 2) and A(1 — s5,771) ~ A(s, 7), one then has
Ads —2,7HAQBs — 1,7)AQ2s — 1,79)A(s, 7)°
AB =35, 73)AR = 5,7 D2AQ2s, THA(1l + 5,7)

Ryi3F (k') 5) ~ (10.82)

Note that for s € R(1/2), A3 = 3s,773)"1 - A(2s,7%)"! is holomophic, since 3 — 3s

and 2s lie in a zero-free region (see Section 8.1). Hence Res Res Res F(k’,s)
Ky =2s—1k|=1=s&j=1-s

admits a meromorphic continuation to the region S;/3,1/2) U R(l/ 2), with a possible
pole of order at most 2 at s = 1/2 if > = 1. Moreover, if L(1/2,7) = 0, then
A(s, )L Res Res Res #(k’,s) is holomorphic at s = 1/2.

=25— lK s1<3 1-s

On the other hand, the function fc Res Res F(k’,s)dk} is clearly meromorphic

ISKls

in R(1/2), with a possible pole of order at most 2 at s = 1/2 if 7> = 1. Moreover, if
L(1/2,7) = 0, then A(s,7)"! /C Res Res F(k’, s)dk} is holomorphic at s = 1/2.

=1-ski=1-s
Then we obtain a meromorphic continuation of Hg/ 2’1)(s) to the region R(1/2).

Denote by H 113/ 2(s) this continuation.

Let s € R(1/2)". Then /C Res Res F(«,s)dk is equal to

’ISK—ls

/ Res Res F(k’,s)dk;, + Res Res Res 7(«',s), (10.83)
(

0) kj=1-sk3=1-s ky=1=2sk{=1-skj=1-s

where Res Res Res ¥ («’,s) is equal to a holomorphic function multiplying

K212.S‘K1SK31S

AQ2s — 1,72)?A(s, 7)°A(1 — 5,7 HAQBs = 1, 75)A(4s — 2,7%)
A2 = 5,77 H2AQ2 - 25,772)A(25, T2)AB = 35,7 3)A(s + 1,7)

Now we obtain from (10.79), (10.80), (10.82) and (10.83) a meromorphic contin-

1/ 2(s) to the region S1/31/2). Denote by Hg/ 31/ 2)(s) this continuation,

then Hl(;/ 5 1/ 2)(s) can be expressed as

uation of H

/ Res Res F(«/, S)dK2+ Res Res Res F(k',s) — Ry3F (', 9).
(

0) Kj=1-sk3=1-s —2sk{=1-sk;=1-s
In all, we obtain a meromorphic continuation of H,, (/2D s) to the region S(1/31) :
1/2,
( / Dis), s e Sa/21)s

Hys(s) = 1/2(5) s € R(1/2):; (10.84)
H§13/3’1/2)(S), s € 81/3,1/2)-
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From the above discussions one sees that ﬁlg(s) has a possible pole of order at
most 2 at s = 1/2 if 72 = 1. Moreover, if L(1/2,7) = 0, then A(s,7)"! - Hj3(s) is
holomorphic at s = 1/2. Now the proof of Claim 87 is complete. O

Proof of Claim 88. Lets € R(1)™. Let Hg/B D /0) Res Res 7:(l< s)dk, . Re-

—SK3=
call that by (8.33) one sees that Hg/ 3"1)(s) admits a natural holomorphlc continuation
to the strip 2/3 < Re(s) < 1. Now let s € R(2/3)*. Then we have

Hg/3’1)(s) :/C Res Res T(K s)dky — Res Res Res T(K s), (10.85)

Ky=1-sk3= =35—2kp=1-sK3=1—

where Res Res Res 7 (k,s) equals some holomorphic function multiplying
=35—2kp=1-sk3=1-s5

Ads = 2,T™HABs — 2, THAQ2s — 1,75)A(s, 7)?
AB =35, 7HAB - 25,7 )AQR - 5,7 DHA(l + 5,7)

Then by functional equation A(3s — 2,73) ~ A(3 — 3s,773), we have that

A(4s = 2,7HAQ2s - 1,7H)A(s, 7)?
Res Res Res 7:(K §) ~ (4s —2,7)AQ2s — 1, 7)A(s,7) .
=dmao=loe=ls AB =257 )AQ2 = s, 7 DA +5,7)

(10.86)

Hence R3es 5 Res Res ¥ (k, s) admits a meromorphic continuation to the region
K1=35-2K2 SK3 s

R(1/2) U S(1/2,1), with a possible pole of order at most 2 at 1/2 if 2 =1.

Moreover, fc Res Res ?—' (k, s)dk; is meromorphic in the region S /32/3) UR(2/3),

ky=1-sk3=1-

with a possible simple pole at s = 2/3if 73 = 1; and a possible simple pole at 1/2
if 72 = 1. Thus we get a meromorphic continuation of Hg/ 3’1)(5) to the region
St1/32/3) U R(2/3). Denote by Hg/ 32/ 3](s) this continuation. Now we obtain from
(10.85) and (10.86) a meromorphic continuation of Hg/ 3’1)(s) to the region S(q/31),
namely,

(2/3.1) .
~ H (), s € Sp/3.1);
_ 23 >
H23(S) = (1/32/3] (1087)
H23 (s), s € 5(1/372/3) U R(2/3).

From (8.33) and the above formulas one sees that I-123 (s) has possible polesat s = 2/3
and s = 1/2; and these potential pole at s = 2/3 is at most simple, the possible pole at
s = 1/2 has order at most 2. Moreover, from the above explicit expressions of Has(s),
we see that H»3(s)- A(s,7)~! has at most a simple poleat s = 1/2if L(1/2,7) = 0. In
additional, if L(2/3, 7) = 0,then by functional equation we have that A(1/3,77!) = 0

Suppose that Hy3(s) has a pole at s = 2/3. Then from the proceeding explicit

expressions, we must have that 3 = 1, and the singular part of ﬁgg(s) around
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s = 2/3 is a holomorphic function multiplying A(3s — 2,7%)A(2s — 1, 72). Note that
A@2s = 1,7%) |s=2/3= A(1/3,7%) = A(1/3,77!) = 0. Hence, when L(2/3,7) = 0,
Ho3(s) is holomorphic at s = 2/3. Now the proof of Claim 88 is complete. O

Remark 90. One can of course deal with each individual // F(k,s) instead of
the infinite sum 3., 2.4 // F (k, s). However, without Proposition 72 or Proposition
73, the expression of each single ff F (k,s) would be super complicated. For
example, one needs to consider residues with respect to k1. We give meromorphic
continuation of // F(k,s) as follows, which involves 56 terms in total for GL(3)
case (also some of them are same but locate in different regions). Let J(s) =
/(0) /(0) F(k,s)dk1dky. When s € R(1)*, we have, by Cauchy integral formula, that
J(s) is equal to

//7:(K,S)dK1dK2—/ Res T(K,s)dkz—/ Res T(K s)dk)

cJC ¢ xi=s-1 C ke=s—1

—/ Res F(k,s)dk; + Res Res T(K s)+ Res Res ¥F(k,s).
C

K2=S—1 K1 K1—S—1K2 s—1 K1= =25— 2K2 s—1— —K1

Since the right hand side is meromorphic in R(1), we get meromorphic continuation
of J(s) in R(1)~. Denote by Jy(s) this continuation. Let s € R(1)~. Then

Ji(s) = F(k, S)dK]dK2+/ Res T(K,s)dkz+/ Res F(k,s)dk
(

0) J(0) 0) ki=1-s 0) Kky=1-s—k1

+/ Res F(k,s)dk| — / Res ¥ (k,s)dk| — / Res F(k,s)dky—
(© © ©

)K21S )K2S1 )Klsl

/ Res F(k,s)dk; + Res Res F(k,s) + Res Res T(K §)—
(

0) Ko=s5—1—kq K1=1—skr=1-5 k1=s—1kr=5-1

Res Res F(k,s) — Res Res ¥F(k,s)— Res Res T(K s)

=2-2s5Kkp=5—1 k1=1-skr=s—1-k Ky=2-25K|=

+ Res Res ¥F(k,s),

K1=2-25k2=5—1—k]

where the right hand side is meromorphic in 1/2 < Re(s) < 1. Hence we obtain a

meromorphic of Ji(s) to the domain S j2,1). Denote by J(s) this continuation. Let
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s € R(1/2)*. Then we have, again, by Cauchy integral formula, that

J(s) = F (k, s)dkdkn +/ Res T(K s)dks +/ Res ¥ (k,s)dk;
(0) J(0) C K1= C ke=1-s—x

+/ Res ¥ (k,s)dk —/ Res T(K s)dky — / Res 7’(1( s)dkr—
C

ky=1-s ky=s—1 c K1=s-1

/ Res ¥ (k,s)dk; + Res Res ?'(K s)+ Res Res T(K §)—
C

Ko=s5s—1-k1 ki=l-skp=1- k1=s—1kr=5-1

Res Res F(k,s)— Res Res F(k,5)— Res Res T(K s)+

K1=2-2s5Kkr=5—1 K1=1-skr=5—1-k kp=2s5—1k1=1—
Res Res ¥(k,s)— Res Res F(k,s)— Res Res T(K s)
K1=2-2sKkr=5—1—kK] Ko=2-2sk1=5—1 K1=2s—1kr=1-
+ Res Res F(k,s)— Res Res ¥ (k,s),
k1=25—1kr=5—1-k—1 k1=25—1ky=1-5-kK]

where the right hand side is meromorphic in R(1/2). Hence we obtain a meromor-
phic continuation of Jy(s) in s € R(1/2). Let s € R(1/2)". Then we have, again, by
Cauchy integral formula, that

Jr(s) = F(k,s)dkdky +/ Res F(k,s)dk> +/ Res F(k,s)dk
0) J(0) C K1= 1-s CK2:1—S—K1
+/ Res ¥ (k, s)dki —/ Res ¥ (k,s)dki —/ Res F(k,s)dky—
C ke=1-s (0) kp=s—1 (0) k1=s—1

/ Res ¥ (k,s)dk; + Res Res T(K s)+ Res Res 7:(K 5)—

(0) ky=s—1—kq ki=l—-skr=1— K1=s—1kr=5-1

Res Res F(k,s)— Res Res ¥F(k,5)— Res Res T(K s)+

K1=2-2sKkp=5—1 K1=1—-skr=5—1-k] ky=2s5—1k1=1—
Res Res F(k,s)— Res Res F(k,s)— Res Res 7—" (x,s)
K1=2-2sKkp=5—1—K] Kr=2-2sk1=5—1 K1=2s—1Kkr=1-
+ Res Res F(k,s)— Res Res F(k,s)+
k1=25—1kr=5—1-k—1 K1=2s—1Kky=1-5—kK]

Res Res F(k,s)+ Res Res F(x,s)+ Res Res ¥ (k,s),

k1=1-2skp=s5—1 kr=1-2sk1=5—1 K1=1-2skp=5s—1—k

where the right hand side is meromorphic in 1/3 < Re(s) < 1/2. Hence we obtain a
meromorphic continuation of Jo(s) in s € S(1/3,1/2). Therefore, putting the above
computation together, we get a meromorphic continuation of J(s) to the domain
s € S(1 /3,1)-

Then one needs to investigate these terms individually. What is worse, the situation

would be much more complicated in GL(4) case.
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