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ABSTRACT

Recent missions to small bodies in the past decade (e.g., Rosetta, Hayabusa 2, and
OSIRIS-REx) have reshaped our understanding of small bodies and inspired new,
more-capable future missions. Despite the high demand for more missions, large
uncertainties in small body properties make missions challenging. Recent work
in stochastic optimal control can ensure safety in the face of uncertainty in state,
constraints, and dynamics. These stochastic optimal controllers require a model of
the underlying dynamics, which is difficult for proximity maneuvers and landing
around small bodies. Shape models and finite element-like models are the state-
of-the-art for high-fidelity gravity models, but they are computationally expensive
and do not readily incorporate onboard data. No gravity model yet exists that can
use short-horizon position and acceleration data from recent trajectories onboard
in safety-critical autonomous proximity maneuvers and landing. Therefore, we
propose a new trajectory-only learning-basedmethod to develop a gravitymodel. We
consider three learning frameworks: Gaussian Process Models, Neural Networks,
and Physics-InformedNeural Networks. For each framework, we assess the benefits,
computational costs, and limitations of the framework. We found that the Gaussian
Process Model generally outperforms the other frameworks in cases of moderate
uncertainty. As the uncertainty declines or the data is sufficiently filtered, Neural
Networks with spectral normalization provide more accurate gravity models and are
computationally cheaper to evaluate. Lastly, we reflect on the methods in this thesis
and recommend possible problem reformulations for future research.



vi

TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Chapter I: Motivation and Background . . . . . . . . . . . . . . . . . . . . 1

1.1 Small Body Exploration for Science, Economics, and Humanity . . . 1
1.2 Meeting the Challenges: Proximity Maneuvers and Landing . . . . . 3
1.3 Dangers of Uncertainty in the Dynamics . . . . . . . . . . . . . . . 5
1.4 Core Problem: Developing an Efficient GravityModel for Spacecraft

Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Contributions of theThesis: NewMethods inTrajectory-OnlyLearned

Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Chapter II: Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter III: Physics Engine for Trajectory-Only Learned Dynamics . . . . . 13

3.1 Physics Engine Architecture . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Gravity Model Trade-Offs . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Zonal Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Physics Engine Equations of Motion . . . . . . . . . . . . . . . . . 20

Chapter IV: Small Bodies through the Lens of Asteroid 101955 Bennu . . . 22
4.1 Upper Bound on Validity: The Hill Sphere . . . . . . . . . . . . . . 22
4.2 Lower Bound on Validity: The Brillouin sphere . . . . . . . . . . . . 23
4.3 Zonal Harmonic Dominance within the Region of Validity . . . . . . 24

Chapter V:Methods for Trajectory-Only LearnedDynamics within Stochastic
Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1 Methodological Consistencies across Learning Frameworks . . . . . 29
5.2 Methodological Differences across Learning Frameworks . . . . . . 30

Chapter VI: Gaussian Process Model Frameworks . . . . . . . . . . . . . . 33
6.1 Base Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Gaussian Process Model Training and Evaluation . . . . . . . . . . . 33
6.3 Comparison of Gaussian Process Model Across Different Harmonics 44
6.4 Remaining Gap after Gaussian Process Model Trade-Offs . . . . . . 46

Chapter VII: Neural Network Frameworks . . . . . . . . . . . . . . . . . . . 48
7.1 Neural Network Training and Evaluation . . . . . . . . . . . . . . . 48
7.2 Comparison and Contrast between the Neural Network and Gaussian

Process Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Chapter VIII: Physics-Informed Neural Network Frameworks . . . . . . . . 54

8.1 Physics-Informed Neural Network Training and Evaluation . . . . . 54



vii

8.2 Comparison and Contrast between the Physics-Informed Neural Net-
work and Other Learning Frameworks . . . . . . . . . . . . . . . . . 55

Chapter IX: Recommendations for Future Learned Gravity Models Research 59
Chapter X: Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 63
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Appendix A: Derivation of Accelerations from Zonal Spherical Harmonics . 69

A.1 Gravitational Potential and Preliminaries . . . . . . . . . . . . . . . 69
A.2 Acceleration from Gravitational Potential . . . . . . . . . . . . . . . 70
A.3 Cartesian Conversion . . . . . . . . . . . . . . . . . . . . . . . . . 71

Appendix B: Legendre Polynomial Recurrence Relation Derivation . . . . . 73
Appendix C: Dimensional Analysis: Buckingham Pi Theorem . . . . . . . . 75

C.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C.2 Dimensionless Expressions in the Lowest Order System . . . . . . . 75
C.3 Dimensionless Differential Equation . . . . . . . . . . . . . . . . . 76
C.4 Summary and Key Takeaways . . . . . . . . . . . . . . . . . . . . . 78



viii

LIST OF ILLUSTRATIONS

Number Page
1.1 Examples of solar system small bodies illustrating the breadth of

geometries including near-spherical, elongated, and binary bodies. . . 1
1.2 Concept schematic of how this thesis fits into the broader context of

autonomous proximity maneuvers and landing. . . . . . . . . . . . . 4
1.3 Graphic of the cyclic problem in successfully building a gravitymodel

for small bodies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Physics engine code base architecture . . . . . . . . . . . . . . . . . 14
3.2 Side view of normalized �= term anomalies for �2 to �5. . . . . . . . 19
4.1 Comparison of Hill sphere radii between larger planet sized objects

and small bodies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Radius as a function of co-latitude \ where the specific potential of

the =-th harmonic term is 10% of the specific potential at the Hill
Radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1 A comparison of true position trajectory and noisy training position
trajectory where each trajectory is split into Cartesian coordinates
G, H, and I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Three-dimensional plot of the training and testing trajectories in di-
mensionless position space for the base orbits for testing the Gaussian
Process Model Framework. . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Loss curve over the training process for the base example used to test
the Gaussian Process Model Framework. . . . . . . . . . . . . . . . 35

6.4 Acceleration trajectories and respective errors for the first two of the
four training orbits closer to the body for the base example used to
test the Gaussian Process Model Framework. . . . . . . . . . . . . . 37

6.5 Acceleration trajectories and respective errors for the last two of the
four training orbits closer to the body for the base example used to
test the Gaussian Process Model Framework. . . . . . . . . . . . . . 38

6.6 Three-dimensional plot of the training and testing trajectories in di-
mensionless position space and associated loss for the comparison
orbits at lower noise for testing the Gaussian ProcessModel Framework. 39



ix

6.7 Acceleration trajectories and respective errors for the first two of the
four training orbits closer to the body for the comparison orbits at
lower noise for testing the Gaussian Process Model Framework. . . . 40

6.8 Acceleration trajectories and respective errors for the last two of the
four training orbits closer to the body for the comparison orbits at
lower noise for testing the Gaussian Process Model Framework. . . . 41

6.9 Propagated state trajectory showing the position along the trajectory
in R3 for testing the Gaussian Process Model Framework. . . . . . . 43

6.10 Side view of normalized �= term anomalies as quarter spheres for two
cases: �= only and stacked �= terms. . . . . . . . . . . . . . . . . . . 45

6.11 Gaussian Process Model error across trajectories for two experiments
with different gravity models. . . . . . . . . . . . . . . . . . . . . . 47

7.1 Acceleration trajectories for the first Neural Network test case with
noisy data and without the spectral normalization. . . . . . . . . . . 49

7.2 Acceleration trajectories for the secondNeural Network test case with
noisy data and with the spectral normalization. . . . . . . . . . . . . 50

7.3 Acceleration trajectories for the third Neural Network test case with-
out noisy data and with the spectral normalization. . . . . . . . . . . 51

8.1 Three-dimensional plot of the training and testing trajectories in
dimensionless position space and associated loss for the Physics-
Informed Neural Network . . . . . . . . . . . . . . . . . . . . . . . 55

8.2 Potential trajectories and respective errors for all four training orbits
closer to the body for testing the Physics-Informed Neural Network
Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.3 Acceleration trajectories from the Physics-Informed Neural Network
Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9.1 Graphical representation between the trajectory-only extrapolation
case, dense interpolation case, and recommendation for future work. . 60



x

LIST OF TABLES

Number Page
3.1 Trade-off table for gravity model choices . . . . . . . . . . . . . . . 15
4.1 101955 Bennu gravity field and size parameters . . . . . . . . . . . . 26
6.1 Trade-off table for Gaussian Process Model settings . . . . . . . . . . 44
7.1 Neural Network training cases to illustrate the underlying limitations

and the impact of spectral normalization . . . . . . . . . . . . . . . . 48
C.1 Conversion table between dimensionless quantities (each has a tilde)

and quantities with dimensions . . . . . . . . . . . . . . . . . . . . . 79



xi

NOMENCLATURE

Brillouin sphere. The minimum sphere containing the entire small body within the
reference coordinate frame.

Differentiation. The process of separating dense material (namely iron) towards
the core of a body and lighter material (namely silicates and ices) towards
the surface.

Finite element methods. A technique in mechanical engineering used most com-
monly in fluids and solids research. A paralleled technique in gravity re-
search separates a small body into many smaller elements with point mass
like properties.

Gaussian Process Model. A class of machine learning strategies that builds upon
stochastic processes to form a distribution over functions. In this thesis, we
narrow the Gaussian Process Model to exact inference with a radial basis
function kernel.

Gravity model. An approximation of the gravity field within the relevant region
around a solar system body.

Hill sphere. The sphere whereby the gravitation influence of the secondary (such
as an asteroid) begins to overtake the gravitation influence of the primary
(such as the sun).

Learning. A short-hand for “machine learning," which refers to algorithmic strate-
gies to make inference from training data.

Lipschitz continuity. A condition on the smoothness of a function to avoid abrupt
shifts. Lipschitz continuity is especially valuable in differential equations.
Within robotics and learned dynamics research, Lipschitz continuity is im-
portant to ensure safe motion for an autonomous vehicle.

Neural Network. A versatile, popular, and broad class of machine learning strate-
gies that feature layered nodes of variable size. In this thesis, we narrow
the Neural Network to a feedforward Neural Network with 3 to 5 layers and
rectified linear unit activation functions.

Physics-Informed Neural Network. A type of Neural Network with a modified
cost function to ensure that the network predictions comply with a given
physical law. For smoothness, we use hyperbolic tangent functions over
rectified linear unit activation functions.

Planetary defense. The monitoring and research efforts to understand possible
small body impacts with Earth.
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Polyhedron shape model. Amesh-like description of an object as a set of vertices,
edges, and faces. This mesh-like shape model can fully describe a gravity
model if the object is of constant density.

Proximity maneuvers. Spacecraft motion planning and correction near the surface
of a solar system body.

Resurfacing. The large-scale process whereby a solar system body’s surface melts,
subducts under other crustal material, or otherwise altered (such as via
volcanism or heavy bombardment).

Small bodies. A large class of solar system objects (including asteroids, comets,
and some moons) where their self-gravity is not large enough to produce a
spherical shape.

Spectral normalization. A technique to constrain the weights in a Neural Network
to ensure a Lipschitz continuous output.

Spherical harmonics expansion. A series expansion that is convenient to solving
Laplace’s equation (a partial differential equation) in spherical coordinates.

Trajectory-Only. Building training data from a single trajectory rather than a ran-
domized collection of points.
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MATHEMATICAL NOMENCLATURE

0 = Semi-major axis (m)
®0 = Acceleration vector (m s−2)
0̃ = Normalized acceleration (see Appendix C)
0A,\,q,G,H,I = Acceleration in the A, \, q, G, H, or I directions, respectively (m s−2)
� cosU = Projected area (m2)
2 = Speed of Light (2.997 92 × 105 km s−1)
� = Integrating constant
�<= = (=, <)-th Cosine Tesseral Coefficient
4 = Eccentricity
E = Expectation Operator
®� = Force (N)
F = Safe set of states (set over m and m s−1)
®6 = Gravitational acceleration field (m s−2)
6 = True dynamics (m s−2)
6̂ = Learned dynamics (m s−2)
W = Scaling parameter between the =-th harmonic an Hill sphere
� = Gravitational Constant (6.6743 × 10−11 m3 kg−1 s−2)
�(� = Solar Constant (1.36 kW m−2 at Earth)
�, �∗ = The cost function and optimized cost value, respectively
�̃= = Dimensionless =-th Zonal Coefficient
 = Shared acceleration coefficient (defined in Appendix A)
 ! = Lipschitz constant
< = Mass of the Secondary (kg)
<B = Satellite Mass (kg)
" = Mass of the Primary (kg)
` = Central Body’s Gravitational Parameter (�< or �")
= = A natural number denoting the term in the spherical harmonics expansion
%0
= = %= = The =-th degree Legendre % Polynomial
%<= = The =-th degree <-order Associated Legendre % Polynomial for < ≠ 0
Pr = Probability of a specified event
q = Azimuthal Angle (rad)
A = Radius, Â for unit vector, ®A for radius vector (m)
Ã = Normalized radius vector (see Appendix C)
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A� = Hill Radius (AU or m)
d = Density (g cm−3)
' = Normalizing average radius of the body (m)
(<= = (=, <)-th Cosine Tesseral Coefficient
C0, 5 = Starting and final times, respectively (s)
®) = Control Thrust (N)
g = Orbital period (s)
\ = Polar Angle from the equator (rad)
Θ = Neural Network weights
D = Specific Energy (m2 s−2)
D=,� = Specific Energy of the =-th harmonic or Hill sphere, respectively (m2 s−2)
D̄ = Mean control trajectory (N)
* = Gravitational Potential (J)
U = Set of mechanically feasible controls (set over N)
+ = Volume (m3)
EG,H,I = Velocity in the G, H, or I Cartesian directions, respectively (m s−1)
Ẽ = Normalized velocity (see Appendix C)
G, H, I = Position in the Cartesian directions (m)
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C h a p t e r 1

MOTIVATION AND BACKGROUND

1.1 Small Body Exploration for Science, Economics, and Humanity
Small bodies, such as asteroids and comets, hold resources, opportunities, and
challenges that larger solar system objects do not share. Without a large size, these
objects do not have the self-gravity to maintain a spherical shape. Combining
observation from Earth and spacecraft, NASA has developed a database of known
small bodies (Davis et al., 2021). Examples of these small bodies are included in
Figure 1.1. Knowing that these small bodies exist is not enough. For scientific,
economic, and humanitarian reasons, we seek to visit, land, and sample small bodies.

Figure 1.1: Examples of solar system small bodies illustrating the breadth
of geometries including near-spherical (101955 Bennu and 9P / Tempel 1),
elongated (433 Eros and 25143 Itokawa), and binary (486958 Arrokoth and
67P/Churyumov–Gerasimenko). From left to right, theOSIRIS-RExmission visited
the carbonaceous Near-Earth asteroid 101955 Bennu, theNEAR Shoemakermission
visited the stony asteroid 433 Eros, the Hayabusa mission visited the carbonaceous
Near-Earth asteroid 25143 Itokawa, the New Horizons mission visited the trans-
Neptunian object 486958 Arrokoth (also known as Ultima Thule), the Deep Impact
mission visited the comet 9P/Tempel, and the Rosetta mission visited the comet
67P/Churyumov–Gerasimenko. Images from NASA Goddard/UArizona, NASA
JPL/JHUAPL, JAXA, NASA JPL/University of Maryland, NASA/JHUAPL/SRI,
and ESA. Data from NASA JPL and public domain.
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Scientific Motivations for Small Body Exploration
Planetary science and astrophysics research actively seeks to understand the early
solar system, the formation of planetary systems, and the transport ofmaterial around
the solar system. However, Earth’s resurfacingmechanisms have destroyed nearly all
of the first billion years of Earth’s sedimentary geologic record. On Earth, the oldest
fragments of early Earth date back to 4.4 billion years ago but are only tiny Zicron
grains (Cavosie, Valley, and Wilde, 2007). The oldest known sedimentary deposits
date to 3.7 billion years ago. While these sedimentary deposits are much larger
than the tiny Zircon grains, heavy metamorphism has tarnished the interpretability
of these samples (Myers, 2001). Other terrestrial bodies suffered similar fates.
Volcanic processes constantly overturn Venus’s crust yielding an extraordinarily
young surface (Basilevsky and Head, 1998). Mercury might seem more promising
since its surface is less active, but the immense heat from the accretion process
means that it too underwent resurfacing. Our best data indicates that the oldest
portions of Mercury’s surface are 4 billion years old (Marchi et al., 2013). The gas
and ice giants (e.g., Jupiter, Saturn, Uranus, and Neptune) don’t have a surface at
all. The solar system moons are also often young. Triton and Europa have notably
young surfaces and the mechanism to renew their surface is not yet understood
(Schenk and Zahnle, 2007; Kattenhorn and Prockter, 2014). While interesting in
their own respects, these large planet-scale andmoon-scale bodies, unfortunately, do
not let us probe questions about the early solar system, its formation, or its transport
mechanisms.

On the other hand, small bodies have not experienced this level of resurfacing
(Patterson, 1956; Amelin et al., 2002). Therefore, small bodies are unique time
capsules into the early solar system. To form a holistic picture of the solar system, we
need a diverse set of small body samples across asteroid classes, Kuiper belt objects,
and long-period comets. With such an inventory, we can probe pressing scientific
topics including the origin of prebiotic material, the transport of interplanetary or
interstellar material, the mineralogy of the early solar system, and the mechanisms
for Earth’s planetary growth.

Economic Motivations for Small Body Exploration
Small bodies are economically valuable for extracting rare materials and enabling
long-duration outer solar system missions. Whether platinum for catalytic con-
verters, tellurium for cell phones, precious metals for jewelry, or lanthanides for
precision spectroscopy targets, many industries eagerly seek access to rare metals
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that one can readily access on small bodies (Lotzof, 2020; Kargel, 1994). Most
dense metals migrate inwards during planet formation (Caro, 2011; Weiss and
Elkins-Tanton, 2013), rendering these metals largely inaccessible. With a smaller
size and without large-scale material differentiation (i.e., the separation of dense
material into the body’s core), rare metals are easily accessible on small bodies.

Moreover, the asteroid belt provides a convenient, resource-rich pit stop for outer
planet missions, including access to water and hydrocarbons. With a smaller gravity
well, launching off a small body takes much less fuel than larger bodies. Moreover,
the water and hydrocarbons available on asteroids provide convenient fuel sources
for pit stops between the inner terrestrial planets and the outer giant planets (Rapp,
2018). These asteroid-based refueling stations may be both lucrative and enabling
technologies for outer solar system exploration.

Humanitarian Motivations for Small Body Exploration
Small bodies can also be destructive. NASA and international partners (i.e., the
International Academy of Astronautics) have allocated notable funds to planetary
defense: the field that monitors and investigates possible small body impacts with
Earth. Small body impacts (most commonly Near-Earth asteroids) can incur sub-
stantial costs in infrastructure damage and human casualties (Tricia Talbert, 2018),
although mass extinction level impacts are extraordinarily rare and to not seem to
pose an immediate danger to Earth. At current, small body outgassing and inter-
planetary transport is an active area of research that influences our ability to predict
long-term asteroid trajectories (Bottke et al., 2006). Measurements from Earth are
difficult and of low resolution compared to the high-fidelity data from small body
missions, such as Rosetta (2004-2016), Hayabusa (2003-2005 and 2014-2020), and
OSIRIS-REx (2016-2023). Therefore, for our sake as a population, we seek to un-
derstand small bodies in-depth: their scientific properties, their short and long-term
processes, their astrodynamics, and their dangers.

1.2 Meeting the Challenges: Proximity Maneuvers and Landing
Each motivating field (science, economics, and humanitarian) requires spacecraft
missions that orbit near the small body surface or lander missions to sample the
small body. We need to unpack the technologies necessary to fulfill the motivating
goals and determine how this thesis can address the needs of spacecraft missions to
small bodies. Figure 1.2 serves as a map for placing this thesis in the broader field
of proximity maneuvers and landing on small bodies.
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Figure 1.2: Concept schematic of how this thesis fits into the broader context of
autonomous proximity maneuvers and landing. In the background section, we will
start from the outer box with an overview of proximity maneuvers. Then, we
will discuss the autonomy stack and narrow in on the Information-Cost Stochastic
Nonlinear Optimal Control, which works well with learning-based methods. Lastly,
we will expand on the difficulty of gravity models and demonstrate the contribution
of this thesis.

Since these small bodies are far from Earth, the light time delay during critical
near-surface maneuvers prohibits teleoperated operations. Increasingly, spacecraft
must operate autonomously and safely. The failure of the Philae Lander in 2014 (as
part of the Rosetta mission to the comet 67P/Churyumov-Gerasimenko) highlights
the need for novel active, robust, and safe autonomous landing techniques for small
bodies (ESA, 2015).

Spacecraft and robots alike face the difficult control challenge of optimally maneu-
vering from an initial position with an initial velocity to a target position at a target
velocity. We can split this challenge into three broad categories (1) Perception or
Navigation, (2) Motion Planning or Guidance, and (3) Control. The perception
or navigation system (hereafter called the perception system) is responsible for de-
termining the spacecraft’s position and velocity (grouped under a state vector in
R6). The motion planning or guidance system (hereafter called the motion planning
system) is responsible for using the estimated system state to determine the desired
trajectory. The control system controls onboard subsystems, such as thrusters and
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reaction wheels, and is responsible for executing the desired path.

Safety requires that the spacecraft is able to prepare a crash-free trajectory. Op-
timality requires that we find the best crash-free trajectory. In physical systems,
uncertainty (including uncertainty in spacecraft state and uncertainty about the
small body) makes the safe and optimal autonomy challenge especially difficult.
Recent work has formulated spacecraft and robotic motion planning with chance
constraints in stochastic optimal control to handle uncertainty within the autonomy
stack (Oguri and Jay W McMahon, 2020; Nakka and Chung, 2019; Nakka, Liu,
et al., 2020; Nakka, Hönig, et al., 2021).

The recent Information-cost Stochastic Nonlinear Optimal Control (Info-SNOC)
framework presented in (Nakka, Liu, et al., 2020) provides an especially valuable
subset of stochastic optimal control. In particular, Info-SNOC is a sequential convex
optimization algorithm that balances simultaneously exploring the gravity field
and maintaining a collision-free, physically-feasible trajectory. First, the learning
framework (such as a Neural Network) within Info-SNOC is responsible for learning
any unmodeled dynamics terms using data from the spacecraft perception system.
We label the data-driven approximation of the dynamics as the learned dynamics.
Second, the stochastic optimal control framework takes in three critical inputs:
(1) the learned dynamics, (2) the exploration objectives (i.e., preference to help
the learning framework) and performance objectives (i.e., preference to reduce
control magnitudes), and (3) the safety-critical chance constraints. With these three
inputs, Info-SNOC produces an optimized, safe trajectory that balances the need
to obtain information for the learning framework with the control limits of the
spacecraft. Low-level, high-frequency controllers (such as a combination of short-
horizonmodel predictive controllers and PID controllers) are responsible for keeping
the spacecraft on the optimized trajectory. To further the Info-SNOC framework as
an enabling strategy for spacecraft motion planning around small bodies, we need
to understand and model the uncertainties in the learned dynamics.

1.3 Dangers of Uncertainty in the Dynamics
Of the possible uncertainties, uncertainty in the dynamics is particularly worrisome
for spacecraft. Flying with an inaccurate dynamics model incurs substantial risks
for proximity maneuvers and landing, including spacecraft collision with the small
body. For proximity maneuvers, the highest magnitude term in the dynamics is the
force of gravity from the small body on the spacecraft. Equation 1.1 describes the
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most general form of the gravitational potential (* : R3 → R) (Takahashi, 2013).

* = �

∫
+

d(®A′)
|®A − ®A′| 3E (1.1)

Where � is the gravitational constant, + is the integrating volume, d(®A′) is the
density distribution, ®A is the radius vector of the spacecraft, and ®A′ is the radius
vector of the mass element. With appropriate mathematical steps, the potential
obeys Poisson’s equation as per equation 1.2. For empty space, d → 0 to form
Laplace’s equation (Robert A. Werner and Daniel J. Scheeres, 1997).

∇2* = −∇ · ®6 = 4c�d (1.2)

Where ∇2 = ∇ · ∇ is the second partial derivative of the spatial variables (i.e., the
Laplace operator), ∇· is the divergence with respect to the spatial variables, and
®6 : R3 → R3 is the gravitational field (i.e., the force per mass of the spacecraft at
a specified location). The critical insight of writing the gravitational field in this
way is to recognize that gravity forms a conservative field. The force on an object
due to gravity is only a function of position: the gravitational field does not depend
on velocity, and it is path independent (i.e., it does not matter how the spacecraft
reached that position). Despite the deceptively simple expression in equation 1.2,
the density distribution is highly uncertain for small bodies.

The gravity of the small body is not the only force on the spacecraft. Additional con-
tributions include solar radiation pressure, solar gravity, and small body outgassing.
These forces largely depend on how far the spacecraft is from the sun and the small
body of interest. The solar radiation pressure and small body outgassing are not
conservative forces. Often, the solar radiation pressure can be treated as a bias term
that pushes the spacecraft away from the sun. This is a time-varying process that
depends on the sun’s location relative to the spacecraft and the projected area of the
spacecraft onto the solar radiation front. As per (Bate, Mueller, and White, 1971),
the force (�?) of solar radiation pressure is given by equation 1.3,

�? =
�(�

2
� cosU (1.3)

where �(� is the solar constant, 2 is the speed of light, and � cosU is the projected
area (that varies with time). (Bottke et al., 2006; Daniel J Scheeres, 2016; Yu, 2016)
cover these perturbations in more detail.

With so many sources of uncertainty (i.e., the density distribution, position relative
to the density distribution, the outgassing of the small body), how can we build a
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collision-free trajectory? Fundamentally, we need a way to estimate the dynamics
using data from the perception system (namely data that includes images, LIDAR,
RADAR, and accelerometer measurements), as noted in Figure 1.2. Since the
gravity field is the most prominent part of the dynamics, we will focus on estimating
this field. As in (Takahashi, 2013; Jones, 2010; Daniel J Scheeres, 2016), from here
on, we label the estimated gravity field as the gravity model. To enable safe and
autonomous spacecraft motion planning, the stochastic optimal controller (such as
Info-SNOC) requires an efficient approximate estimate of the gravity field with the
relevant positions that the trajectory may visit. The efficiency of the gravity model
reflects (1) a sufficiently accurate model and (2) a model that the optimizer can
evaluate sufficiently quickly. With the gravitymodel and the uncertainty information
built into the stochastic optimal control framework, we can combat the dangers of
uncertainties in the dynamics.

1.4 Core Problem: Developing an Efficient Gravity Model for Spacecraft
Control

What makes the gravitational field around small bodies (such as those in Figure 1.1)
so different than larger bodies? Unfortunately, the principal properties of preserving
the early solar system history and containing valuable resources that make small
bodies worthwhile mission targets also yield a complex gravity field. To better
understand the difficulty of small body gravity models, we need to contrast them
with large body gravity models.

Gravity Models for Large Bodies yield High Accuracy with Little Information
For large planet-scale or moon-scale bodies, efficient gravity models are readily
available in the extensive literature for motion planning and long-term trajectory
design between and around large bodies (Lo, 2002; Bate, Mueller, andWhite, 1971).
The spherical shape of the solar system bodies means that the first-order point mass
contribution dominates the dynamics. In many cases, the point mass term alone
sufficiently accurately approximates approach and proximity orbits. To account
for the body’s oblateness or asymmetry across the equator, only a few additional
spherical harmonics terms (i.e., �2 and �3, respectively) capture a significant amount
of the orbit perturbations for proximity maneuvers.
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Gravity Models for Small Bodies require Plentiful Information to Achieve Rea-
sonable Accuracy
For small bodies, determining the gravity model is significantly more challenging
than large planet-scale or moon-scale bodies. Without the large size to differentiate
their interior nor enable significant resurfacing, small bodies retain their history of
planetesimal collisions in the protoplanetary disk (Patterson, 1956; Amelin et al.,
2002). The chaotic history of collisions means that the small bodies are often not
circular or even elliptical. They have a broad range in densities from 1 gram per
cubic centimeter (stony asteroids like 10 Hygiea) to 4 g/cc (stony-iron asteroids like
16 Psyche) to 8 g/cc (pure iron) (Walsh, 2018; Weiss and Elkins-Tanton, 2013).
But, most critically, the density distribution need not be uniform as seen in pallasite
meteorites or the asteroid 101955 Bennu (Walsh, 2018; D. J. Scheeres et al., 2020).
With a small size, modest changes in the interior density distribution of the asteroid
necessarily notably change the gravitational field close to the body.

Without a significant number of missions to a diverse set of small bodies, the
planetary science and aerospace communities do not have empirical evidence for
how small body density distributions and gravitational fields vary throughout the
solar system, across asteroid spectral classes, or within asteroid families (Weiss and
Elkins-Tanton, 2013). Investigating ways of determining the small body’s gravity
field and handling the estimated model in an efficient framework remains an active
field of research (Oguri and JayWMcMahon, 2020; Daniel J. Scheeres andMarzari,
2003; B.Hockman, Reid, et al., 2017; B.Hockman and Pavone, 2017; B. J. Hockman
et al., 2017).

A Cyclic Problem
The crux of the issue of developing a gravity model is its cyclic nature; it is a
chicken-and-egg problem. We need a high-fidelity gravity model to plan a safe
trajectory, but we simultaneously need to visit the asteroid on a safe trajectory to
estimate the high-fidelity gravity model (Figure 1.3).

As with many cyclic problems, one can simultaneously tackle both sides of the cycle
(safe trajectory planning and gravity model development) to address the chicken-
and-egg complication. Current methods combine visual imagery and RADAR
from Earth with visual imagery, LIDAR, and RADAR from the spacecraft (Daniel
J Scheeres, 2016). Most commonly, engineers on Earth combine the data from
different angles with stereo-photoclinometry (D. J. Scheeres et al., 2020). We
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Figure 1.3: Graphic of the cyclic problem. Fundamentally, we need a gravity model
to safely visit the small body, but we concurrently need to safely visit the small body
to produce a gravity model. Consider the case where we fail to have an accurate
gravity model. Then the spacecraft may believe it is on a safe trajectory when its
true trajectory results in collision. On the flip side, consider the case where we
fail to visit the small body. Then, we can only make coarse approximations of the
gravity field (such as a constant-density assumption), which may not be accurate.

start with a point mass model to generate a safe approach trajectory far from the
small body’s surface. In orbit, we use the spacecraft’s perception data to refine
the gravity model. However, the Earth-in-the-loop strategy has three problems:
(1) the perception data downlink (i.e., high-resolution images, LIDAR, RADAR,
and accelerometer measurements) costs considerable communications strain, (2) the
latency from the asteroid belt and beyond to Earth is on the order of minutes to hours,
and (3) the state-of-the-art gravity shape models (such as those in blue in Figure 1.2)
are computationally expensive to use and increasingly expensive with a more refined
model.
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1.5 Contributions of the Thesis: New Methods in Trajectory-Only Learned
Dynamics

This thesis will leverage recent developments in learning frameworks (such as
Neural Networks) to learn the gravity dynamics during flight (Nakka, Hönig, et
al., 2021; Gao and Liao, 2019; Song, Cheng, and Gong, 2019; Cheng et al.,
2020). Specifically, we seek to explore the extent to which learning frameworks
can effectively approximate the gravity field dynamics with data from recent
trajectories.

As the spacecraft gets closer to the small body, the magnitude of the perturbation
increases, and it becomes easier to estimate the gravity field from the spacecraft’s on-
board accelerometers. As the gravity model improves, the spacecraft can transition
to proximity maneuvers closer to the asteroid while maintaining spacecraft safety.
The onboard learning strategy combats the problems above: (1) the perception data
does not need to be downlinked to Earth since the learning framework can be run
on board, (2) the perception to motion planning latency is small since the algorithm
is run on board, and (3) the internal learning framework handles the gravity model
at a constant evaluation complexity.

The Info-SNOC algorithm opens the door for learning-based methods in spacecraft
motion planning. The most far-reaching learning architecture would be to learn the
dynamics onlywith data from prior trajectories since this would enable safe travel to
even the most unknown objects. So in this thesis, we want to explore this uncommon
strategy in contrast to (Martin and Schaub, 2020; Song, Cheng, and Gong, 2019;
Cheng et al., 2020; Peng and Bai, 2021) that sample points densely near the body
regardless of preceding trajectories.

We split the thesis into five research objectives (Chapter 2). In chapters 3-5, we
present trade-offs, rationales, and discussion to contextualize this research within
physical systems. Moreover, the physics engine developed for this thesis is versatile
and can be readily applied to future learned gravity model work. In chapters 6-
8, we present the results of the three learning frameworks that we developed and
examined. From the lessons learned in this thesis, we present a thorough list of
recommendations to future researchers that also seek to combine complementary
research across aerospace engineering, planetary science, and robotics (Chapter 9.
Lastly, we close the thesis with a brief conclusion in Chapter 10.
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C h a p t e r 2

OBJECTIVES

Our overarching goal is to investigate the extent to which learning frameworks
effectively approximate the gravity field dynamics with data from recent tra-
jectories. From this goal, we distill five objectives and provide the rationale below.

1. Develop a computationally efficient physics engine to build training data
and test learning frameworks. Ensure that this framework can readily
adapt to future learning frameworks and architectures

The first objective provides the critical software back-end for the last three
objectives and enables future research. A versatile integrator takes either true
dynamics for data generation or learned dynamics for evaluation. The physics
engine simulates the spacecraft dynamics in orbit of the small body and the
predicted trajectory from the learned dynamics. This objective is addressed
in chapter 3.

2. Analyze the trajectory design method in realizing a particular science
mission criterion

In the second objective, the aim is to fit the research into the bigger picture of
small body exploration. Specifically, the recent OSIRIS-REx mission to the
asteroid 101955 Bennu serves as a timely and realistic benchmark mission to
contextualize the thesis (B. Williams et al., 2018; Berry et al., 2013). With
this context, we gauge where learned dynamics are most valuable in the orbits.
Moreover, the mission context provides requirements that the learning-based
methods from objectives 3-5 would have on the overall spacecraft system.
This objective is addressed in chapter 4.

3. Compare and contrast a set of multi-task multi-variate Gaussian Process
Model learning frameworks

Gaussian Process Models would be particularly well suited to stochastic op-
timal control, conditional on computational efficiency and accuracy. The
stochastic part of the controller relies on covariance information of the space-
craft state and in the learned dynamics. Themathematical overview is detailed
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in chapter 5. The Gaussian Process Model natively provides this covariance
information (Rasmussen and C. K. I. Williams, 2006). Moreover, work by
(Gao and Liao, 2019) suggests that Gaussian Process Regression may be
suited for gravity field estimation. Hence, we start with the Gaussian Process
Model as the first of three learning frameworks. This objective is addressed
in chapter 6.

4. Compare and contrast a Neural Network framework to the multi-task
multi-variate Gaussian Process Model framework

To improve the computational efficiency, we then consider a Neural Network
in the fourth objective. The trade-off for quicker evaluation is that the Neural
Network does not natively provide covariance information. This objective is
addressed in chapter 7.

5. Compare and contrast a Physics-Informed Neural Network to the previ-
ous frameworks

The Neural Network in objective 4 goes hand-in-hand with the Physics-
Informed Neural Network in objective 5. The physics-informed variant addi-
tionally encodes the gravity field’s conservative field properties (Eq. 1.2) into
the architecture. This objective is addressed in chapter 8.

With these five objectives, we achieve the overarching goal “investigate the extent
to which learning frameworks effectively approximate the gravity field dynamics
with data from recent trajectories." Objective 1 provides the back-end support for
objectives 3-5 and a testing framework, objective 2 provides a reference to evaluate
the efficiency performance, and the three different approaches in objectives 3-5
provide some breadth in learning frameworks.
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C h a p t e r 3

PHYSICS ENGINE FOR TRAJECTORY-ONLY LEARNED
DYNAMICS

To develop any learning-based model, we require training data. Some robotics
applications can access training data directly from field-based work. For example,
one might drive a car for many thousands of miles to develop an inventory of
high-fidelity sensor data, on-board driving data, and performance evaluation data.
However, with such a limited number of missions to small bodies, as of yet, such
data is not yet accessible. Instead, we want to simulate what a spacecraft might
experience when in orbit around a small body.

3.1 Physics Engine Architecture
The physics engine has two key parts: the integrator and the dynamics model. We
use a standard 4-th order Runge-Kutta integrator throughout all cases, though this is
easily interchanged via the Python SciPy library or equivalently in other languages
(such as DifferentialEquations.jl in Julia). On the other hand, the dynamics model
is not easily available off the shelf. We have two types of dynamics models: (1)
the reference or true dynamics model and (2) the learned dynamics model. Since
we are concerned with isolating the effect of gravity, these dynamics models are
equivalently gravity models.

Under the hood, the physics engine operates as follows. First, we build the training
dataset (Figure 3.1, left). Given an initial state (G0, E0), a trajectory length (C), and
the true gravity model (represented as a spherical harmonics expansion for this
thesis), a Runge-Kutta integrator solves the vector ordinary differential equation
initial value problem to produce a true propagated trajectory. Second, we provide
the propagated true trajectory as a training set to the relevant learning framework
(red dotted arrow in Figure 3.1). Namely, the learning framework has an R3 position
input for an R3 acceleration output, just like the true gravity model. The timestamp
and the velocity are not provided since the gravity field is a conservative field as
noted in Section 1.3. Third, we replace the true gravity model with the learned
gravity model (right). Running the Runge-Kutta integrator again, we produce a
predicted propagated trajectory.
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Figure 3.1: Physics Engine Code Base Architecture. We use the true gravity model
to build the training trajectory dataset (left side and green boxes). After training the
learned model (dashed red arrow), we arrive at the trained learned gravity model
(red). We then use the learned gravity model to build the predicted trajectory dataset
(right side and red boxes). The test point between pointwise direct model outputs
are labeled "A" and the test point between trajectory outputs are labeled "B"

To compare the true and learned models, we have two test points (labelled A and
B in Figure 3.1). At A, we conduct a pointwise comparison between the models.
Namely, at a given position G, we compare the output acceleration of the true gravity
model 0(G) to the predicted acceleration of the learned gravity model 0̂(G). At B,
we conduct a trajectory propagation comparison between the models. Namely, at a
given initial state and trajectory length, we propagate the trajectory forward. We then
compare the true propagated trajectory (namely G(C)) to the predicted propagated
trajectory (namely Ĝ(C)).

3.2 Gravity Model Trade-Offs
The core of the physics engine is a small body gravity field to simulate the dynamics
of the spacecraft. As noted in section 1.4, accurately modeling a small body’s
gravitational field is an active area of research in planetary science and aerospace
engineering (B. Hockman and Pavone, 2017; B. Hockman, Reid, et al., 2017;
Daniel J. Scheeres and Marzari, 2003; D J Scheeres, Mcmahon, et al., 2019; D J
Scheeres, J. McMahon, et al., 2019; Takahashi, 2013). For the physics engine back-
end, we need an established non-learning gravity model to produce the trajectory
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Table 3.1: Trade-off table for gravity model choices

Gravity
Model

Model Variant Computation
Complexity

Availability Realism

Spherical
Harmonics

Zonal Only $ (<) At small < At large <

Spherical
Harmonics

Zonal and Tesseral $ (<) Not Often At moderate <

Polyhedron Constant Density $ (=2),
$ (E)

Readily At moderate =

Polyhedron Multi-Density $ (=2),
$ (E)

Not Often At moderate =

Finite
Elements

Cubic or Spherical $ (=3) Manual
Conversion

At moderate =

Finite
Elements

Tetrahedral $ (=3) Manual
Conversion

At moderate =

The green boxes indicate the best case in a given column. The orange boxes are the
medium case and the red boxes are worst case conditions. Unfortunately, the gravity
models that are the most realistic are generally not readily available.

data for the learning-based methods. We need high versatility (i.e., the ability
to quickly fabricate different models to test the learning framework performance),
quick evaluation to produce training data, and parameter availability to compare
to real world objects, where applicable. Three primary methods include Spherical
Harmonics Expansions, Polyhedron Models, and Finite Element Approximations.
The trade-offs are summarized in Table 3.1 and explained in the paragraphs below.

As noted in Section 1.4, for large bodies, the spherical harmonics expansion is the
method of choice. The spherical harmonics provide high accuracy with only a few
terms. Moreover, since the expansion yields only a single additional expression
per additional term (<), this method has a linear and generally low computational
complexity. For small bodies, higher-order terms in the expansion are still prominent
and should be included. While the computational complexity is maintained (since
it is still a linear increase in the number of steps per number of included terms), the
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accuracy is less reliable for small bodies, especially for irregularly shaped bodies
(B. Hockman and Pavone, 2017) or binary bodies (Daniel J Scheeres, 2016). If
we orient the Cartesian axes along the rotation axis of the small body and the
body is sufficiently symmetric (such as the asteroid 101955 Bennu), the zonal
spherical harmonic terms are generally the most prominent in the expansion. But,
for completely asymmetric asteroids or tumbling asteroids, the zonal terms are not
enough. We would have to include the tesseral and sectoral terms. This distinction
is further discussed in Appendix A. Often in the literature, only the zonal terms are
estimated, as in (D. J. Scheeres et al., 2020). In some cases, the tesseral terms are
also estimated, albeit often from shape models rather than direct measurements, as
in (Takahashi, 2013). Lastly, the spherical harmonics expansion is only valid outside
of the circumscribing sphere (also known as the Brillouin sphere, see Chapter 4 for
more details). Inside of the sphere, the series does not converge (Robert A. Werner
and Daniel J. Scheeres, 1997; Martin and Schaub, 2020). In summary, the zonal
spherical harmonics expansion has linear computational complexity, is available for
select asteroids, and requires many terms (about 8-12) for realism.

For small body scientific research, many in the field have turned to polyhedron
models. These shape models are the community’s highest fidelity data products for
small body shapes and approximate gravity fields (namely, using a constant density
assumption). NASA’s Planetary Data System Small Body Node hosts a large “Shape
Models of Asteroids, Comets, and Satellites" database including high-resolution
shape models from spacecraft missions and lower-resolution shape models of Near-
Earth Asteroids from ground-based radio science (Davis et al., 2021). Often,
stereophotoclinometry with optical and radar imagery is the primary method for
generating the shape model from spacecraft flybys or orbits as in (D. J. Scheeres
et al., 2020). The shape model is not, however, a density distribution model. As
mentioned in Section 1.4, the missing piece of the density distribution is critical to
understanding the gravity field. In the literature, the polyhedron model is often used
under a constant density assumption which is too strong of an assumption in most
cases (Section 1.4). When the assumption breaks, this leads to a biased estimator
of the true gravity field. Recent work in (Takahashi, 2013), explores extending the
shape model to a multi-density model. While this method improves the gravity
model overall, it has large errors at the density boundaries, is difficult to estimate,
and not readily available.

In addition to issues in modeling the density distribution, both polyhedral model
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versions (i.e., the constant density and multi-density versions) have a large compu-
tational load. For every added vertex, we add multiple edges and multiple faces.
These all increase linearly with the number of points. Specifically, for E vertices, we
have 2(E − 2) faces and 3(E − 2) edges (Daniel J Scheeres, 2016). But, to evaluate
the potential, we need to calculate the position difference from edge to spacecraft
(®G4) and face to spececraft (®G 5 ). Thereafter, we determine the normal components
of each face and form a matrix product. This quickly increases the computation time
because we have to evaluate the distance (®G4 and ®G 5 ) from scratch each time. Plus,
we then need to reevaluate the matrix product and series. The primary calculation
is in equation 3.1. The full mathematical formalism and derivation can be found
in (Robert A. Werner and Daniel J. Scheeres, 1997) and summarized in (Daniel J
Scheeres, 2016).

* (®G) = �d
2

©«
∑

4 ∈ edges
®G4 · E4 · ®G4 !4 −

∑
5 ∈ faces

®G 5 · F 5 · ®G 5 l 5
ª®¬ (3.1)

where � is the gravitational constant, d is the density, !4 scales the term by the
potential of a wire with the relevant dimensions, and l 5 scales the term by the
potential of a face with the relevant dimensions. The matrices E4 and F 5 express
the orientation of the edge 4 or face 5 , respectively.

Producing a model with three times the resolution requires nine times the number of
faces (e.g., starting with a square, subdividing the sides in 3 yields 9 new squares).
In the multi-density model, we have an additional metric of depth 3 into the body.
Then, producing a multi-density model with three times the resolution requires 93
times the number of faces. Hence, we get an overall $ (E) number of evaluations
and an $ (=2) increase in the number of faces per resolution parameter =. With
thousands of points for high fidelity models, this method becomes impractical for
trajectory planning. To mitigate this problem, the gravity field is often sampled
at prescribed intervals and interpolated during planning (B. Hockman and Pavone,
2017). In summary, the shape model method is a promising method for high
versatility gravity models, but the large computational load is a serious problem for
onboard processing on real missions.

The last technique is a finite element method (FEM) or Riemann Sum approach for
gravitational contexts as in (Park, Robert A Werner, and Bhaskaran, 2010). FEM
is a well-studied field within mechanical engineering and is promising in terms
of realism. However, at current, without an instrument to determine the density
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of the asteroid interior, the Riemann Sum method or FEM-type method can only
achieve an accuracy as good as the polyhedron methods. Moreover, voxel-based
or tetrahedral-based asteroid models are not available and would require a manual
conversion from a polyhedron model. Lastly, a naive Riemann Sum approach would
require the cube of the number of voxels where we want to refine the model. This
baseline approach is prohibitively computational complex.

Hence, for the purposes of this thesis, the zonal spherical harmonics expansion
is the right fit (Table 3.1). First, the zonal spherical harmonics expansion is the
most versatile option. We can quickly fabricate new models by changing only a
few parameters (namely, we update < constants). In contrast, to fabricate a new
polyhedron model, we would need to update E ∼ 103 vertices. To fabricate a new
FEM model, we would need even larger updates. Second, since the number of
harmonics terms (< ∼ 10) for the spherical harmonics expansion is much smaller
than the number of vertices (E ∼ 103) of the polyhedral model (and E is much smaller
than the voxels needed for a FEMmodel), the spherical harmonics expansion ismuch
more computationally efficient. Moreover, to produce a more detailed spherical
harmonics model, we simply add an additional harmonics term (i.e., the complexity
scales as $ (<)). This outperforms the polyhedron and finite element methods
which must produce a finer mesh for a more detailed model. In the worst case, this
scales as$ (=2) for the polyhedron models and$ (=3) for the finite element methods.
The spherical harmonics is even more computationally efficient with more detailed
models. Though, we also must keep in mind that we only get the accuracy up to the
point where the expansion loses validity: the coefficients are negligible, the orbit is
inside the Brillouin circumscribing sphere, or we need missing tesseral or sectoral
terms (see Chapter 4 for more details). Lastly, we have available parameters for the
zonal harmonics expansion, but not the full zonal, tesseral, and sectoral expansion.
Therefore, the zonal spherical harmonics expansion is the right fit for the physics
back-end of the project: highly versatile, computationally favorable, sufficiently
realistic, and decently available.

3.3 Zonal Spherical Harmonics
Following the trade-offs above, this thesis will use the zonal spherical harmonics
expansion as the back-end gravity model in the physics engine. To use the expansion
with the integrator, we require a mathematical description of the zonal spherical
harmonics dynamics.
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(a) �2 Normalized Anomaly (b) �3 Normalized Anomaly

(c) �4 Normalized Anomaly (d) �5 Normalized Anomaly

Figure 3.2: Side view of normalized �= term anomaly. For each subfigure, the values
are rescaled between -1 and 1 to illustrate the most contrast (see shared legend in the
top right). Values near -1 (deep red) correspond to a negative anomaly: low-density
regions or lack of material. Values near 1 (deep blue) correspond to a positive
anomaly: high-density regions or excess material. The even harmonics (such as
�2 and �4) are symmetric about the equator. The odd harmonics (such as �3 and
�4) are symmetric in absolute value but flipped about the equator. For example, �3
shows a negative anomaly band at mid latitudes in the north (orange region) and a
positive anomaly band of the same magnitude in the south (blue region). Similarly,
the poles are the same direction (namely positive anomaly) in the even harmonics
(deep blue regions) but are the opposite direction (namely positive anomaly in the
north and negative anomaly in the south) in the odd harmonics (deep blue and deep
red regions, respectively).
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For mathematical convenience, the expansion is split into the point mass term and
the zonal harmonics terms. The point mass term is presented in equation 3.2.

®0 =
®�6A0E, ?>8=C

<B

=
`

A2 (−Â) =
−`®A
A3 (3.2)

where �6A0E, ?>8=C is the force of gravity of the point mass, <B is the satellite mass, `
is the central body’s Gravitational Parameter (i.e., �" where � is the Gravitational
Constant and " is the mass of the central body), A is the radius magnitude, Â is
the radius unit vector, and ®A is the radius vector. The zonal harmonics terms are
presented in equations 3.3 - 3.5.
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where  is given by equation 3.6, (x, y, z) are the Cartesian coordinates, and %= is
the n-th degree Legendre % Polynomial.

 = `�̃= (= + 1)'=A−(=+2) (3.6)

where �̃= is the dimensionless =-th Zonal Coefficient and '= is the normalizing radius
of the central body. The even spherical harmonics terms (e.g., �2) are symmetric
about the equator whereas the odd harmonics (e.g., �3) terms describe asymmetric
bulges (Figure 3.2). The full derivation of the acceleration from the zonal spherical
harmonics terms is presented in Appendix A. These coefficient terms are recovered
via multiple techniques, though regression and filtering techniques are common in
the mission post-processing (Jones, 2010).

3.4 Physics Engine Equations of Motion
Equipped with the point mass term in equation 3.2 and the zonal terms in equa-
tions 3.3 - 3.5, we can write the spacecraft’s equations of motion.∑

®� = <B ®0 (3.7)
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Splitting up the terms in the series by Cartesian direction yields equation 3.11.
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]
+
®)
<B

(3.10)

®0 =
(
−`G
|A |3
+

#I∑
==2

[
0G,=,zonal

]
+ )G
<B

)
Ĝ
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Hence, we convert this second-order vector ordinary differential equation into a
system of first-order differential equations with the state vector as the stack of
position and velocity.
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(3.12)

While this is a highly nonlinear dynamics equation, the Runge-Kutta integrator can
still efficiently and accurately solve the initial value problem.
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C h a p t e r 4

SMALL BODIES THROUGH THE LENS OF ASTEROID
101955 BENNU

The recent OSIRIS-REx mission visited the asteroid 101955 Bennu and will return
samples to Earth in 2023. In terms of proximity maneuvers and sample collection,
101955 Bennu is a great target. As a carbonaceous asteroid, we can probe scientific
questions for one of the largest asteroid spectral groups. On a near-Earth orbit, we
design lower fuel trajectories. As a nearly rotationally and equatorially symmetric
small body, we can accurately apply the zonal spherical harmonics expansion (D. J.
Scheeres et al., 2020).

In chapter 3, we showed that a zonal spherical harmonics expansion optimized our
design for the back-end reference gravity model. With the OSIRIS-REx mission
to 101955 Bennu, we have the necessary �2 to �5 parameters to build a fifth-order
expansion of the gravity model. But, as noted in chapter 3, the spherical harmonics
expansion is only valid between the Hill sphere on the upper end and the Brillouin
sphere on the lower end. Outside of this region, the spherical harmonics can be
used, but the accuracy will suffer (Robert A. Werner and Daniel J. Scheeres, 1997;
Takahashi, 2013; Takahashi and D. J. Scheeres, 2014). In this chapter, we seek
to more formally investigate these bounds in the limits of validity and demonstrate
their implications for small body missions, especially from the perspective of the
physics engine and trajectory-only learned dynamics.

4.1 Upper Bound on Validity: The Hill Sphere
The Hill sphere represents the sphere whereby the gravitation influence of the
secondary (e.g., an asteroid) begins to overtake the gravitation influence of the
primary (e.g., the sun). The radius that parameterizes this sphere is given in
equation 4.1.

A� ≈ 0(1 − 4) 3

√
<

3"
(4.1)

where 0 and 4 are the semi-major axis and eccentricity, respectively, of the sec-
ondary’s orbit with respect to its orbit around the primary. Following, < is the
mass of the secondary, and " is the mass of the primary. The Hill sphere is an
upper bound since other perturbations, such as solar radiation pressure will fur-
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ther decrease the upper bound radius where the secondary’s gravitational influence
exceeds that of the primary.

For reference, we have plotted the Hill sphere radii for different solar system bod-
ies using data from Wolfram Alpha (Figure 4.1). (Note that the Sun’s mass is
1.989 × 1030 kg). Most notably, 4 Vesta has a mass about 109 times larger than
101955 Bennu with a much smaller eccentricity. As such, 101955 Bennu’s Hill ra-
dius is very small. A linear regression on the presented data yields a slope estimate
of 0.3288 ± 0.0155 in log-log space (?-value of 2.6 × 10−8). At essentially a third,
this makes the power law in equation 4.1 where the mass < varies much more than
the semimajor axis 0 or the eccentricity 4. Namely, Earth has 0(1 − 4) = 0.98 AU,
67P/Churyumov–Gerasimenko has 0(1 − 4) = 1.24 AU, and 101955 Bennu has
0(1 − 4) = 0.90 AU.

4.2 Lower Bound on Validity: The Brillouin sphere
The Brillouin sphere represents a mathematical shift whereas the Hill sphere rep-
resents a physical shift between the gravitational dominance of the sun and the
secondary (e.g., Earth or 101955 Bennu). The spherical harmonics expansion is
fundamentally a convenient series expansion to solve Laplace’s equation (Eq. 1.2).
The spherical harmonics expansion is only valid when the position of the spacecraft
is outside the smallest sphere that fully encloses the primary in the reference coordi-
nate frame. In the small body literature, this smallest sphere is the Brillouin sphere.
Once we cross into this sphere, the series does not converge because it is not meant
to converge in this region. Instead, we could use a different series expansion, such
as in (Takahashi, 2013).

Objects that have smaller Hill spheres also have smaller Brillouin spheres. Quantum
mechanics predominantly governs the density ofmaterials and concentrates densities
between 1 gram per cubic centimeter and 10 grams per cubic centimeter, especially
in a planetary science context. While Earth’s Brillouin sphere radius (its equatorial
radius) is 6738 km, 101955 Bennu’s Brillouin sphere radius (also its equatorial
radius) is a mere 0.28-0.29 km.

In contrast to real life, we can form arbitrarily denser objects in simulation to lower
the Brillouin sphere radius and ensure convergence. The physics engine from this
thesis does not include the object shape or size. As such, the physics engine is
completely unaware of the small bodies Brillouin sphere except for the purposes of
normalizing the units (see Appendix C). Thus, the spherical harmonics expansion
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Figure 4.1: Comparison of Hill sphere radii between larger planet sized objects
and small bodies. As fairly large terrestrial bodies, Venus, Earth, and Mars are
separated from the other objects. Mercury, the last terrestrial planet is separated
from the rest with a similar Hill Radius to 1 Ceres (a dwarf planet and the largest
asteroid belt object). 4 Vesta is the second largest asteroid belt object. 433 Eros,
101955 Bennu, and 25143 Itokama are 3 small body targets from past missions.
67P/Churyumov–Gerasimenko is a Jupiter family comet. The other small bodies
fromFigure 1.1 are not included since their masses are not well known. The apparent
power-law relation is presented in equation 4.1.

in the physics engine is defined everywhere except the origin.

4.3 Zonal Harmonic Dominance within the Region of Validity
Within the region of validity, the point term dominates even near the surface. At
the Hill sphere radius, the potential is at its smallest (within the region of validity).
Since the terms of the spherical harmonics expansion drop off as 1

A=+1
(Appendix A),

the point mass is the only meaningful contribution. As we get closer to the body, the
higher-order harmonics become more relevant. We can more intuitively compare
the contribution of each term in the spherical harmonics expansion to the specific
potential at the Hill sphere radius. In particular, the contribution of the =-th term in
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the series is given in equation 4.2.

D= (A, \) =
−�̃=`'=%0

= (sin(\))
A=+1

(4.2)

The potential at the Hill sphere is from the point mass term at the Hill Radius
(Eq. 4.3).

D� =
−`
A�

(4.3)

With the point mass potential at the Hill sphere, we can form a dimensionless ratio
between the =-th term in the series (D=) and the Hill sphere (D�), as in equation 4.4.

D=

D�
=
�̃='

=A�%
0
= (sin(\))

A=+1
(4.4)

To visually represent this relation, we form a polar plot showing a contour where
the =-th term in the series (D=) is a specified small fraction the Hill sphere (D�).
Namely, D=

Dℎ
= W.

D=

D�
= W =

�̃='
=A�%

0
= (sin(\))

A=+1
(4.5)

A=+1 =
�̃='

=A�%
0
= (sin(\))
W

(4.6)

A =

(
�̃='

=A�%
0
= (sin(\))
W

) 1
=+1

(4.7)

We can now plugin values for 101955 Bennu given in Table 4.1 with data from
(D. J. Scheeres et al., 2020). More detailed plots of the spherical harmonics and the
relevant drop-off in the =-th component are also detailed in (D. J. Scheeres et al.,
2020).

Plotting the radius at which a given =-th harmonic is 10% of the potential energy
of the point mass term at the Hill sphere (|W | = 10%) yields Figure 4.2. The
absolute value accounts for the flip between positive and negative values (Figure 3.2).
Matching (Daniel J Scheeres, 2016), the �2 term far exceeds the impact of the other
terms in the harmonics expansion. Even then, the �2 term is only 10 % of the Hill
sphere potential when it is with merely 3 times the bounding radius. At a distance
A = 3', the point mass term is 35 times (3500%) the Hill sphere potential for the
asteroid 101955 Bennu.

Culminating from these results and analysis, setting up a learning framework that
learns both the point mass term and the spherical harmonics terms is quite different
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Table 4.1: 101955 Bennu gravity field and size parameters

Property Value
Brillouin sphere radius (') 290 m
Gravitational parameter (`) 4.89 m3 s−2

�̃2 1.93 × 10−2

�̃3 −1.22 × 10−3

�̃4 −6.50 × 10−3

�̃5 6.73 × 10−3

The Brillouin sphere radius bounds the asteroid. In combination with the gravita-
tional parameter (`), we use the Brillouin sphere radius to normalize each of the
spherical harmonics terms (see Appendix C). Table is adapted from (D. J. Scheeres
et al., 2020).

Figure 4.2: Radius as a function of co-latitude \ where the specific potential of
the =-th harmonic term is 10% of the specific potential at the Hill Radius. Within
each contour, the impact of the term increases as |W |=+1. Recall that the spherical
harmonics are not valid within the bounding radius. For Bennu and similar asteroids,
the harmonics are only appreciable in close proximity to the surface.
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than learning only one of the two. If the spacecraft’s orbit is outside a radius two
times the small body’s Brillouin sphere radius, it will be very difficult to learn
or estimate the higher-order terms. Moreover, for the stochastic optimal control
problem, the uncertainty in the potential and acceleration is much higher closer
to the surface. Therefore, to improve the gravity model to enable landing at the
surface we would likely require higher eccentricity orbits. By lowering the perigee,
we can sequentially learn the gravity field in proximity to the small body without
committing to a low circular orbit that renders the entire orbit in a high uncertainty
zone.
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C h a p t e r 5

METHODS FOR TRAJECTORY-ONLY LEARNED DYNAMICS
WITHIN STOCHASTIC OPTIMAL CONTROL

To set the context for the learning-basedmethods to estimate the gravity field, we start
with identifying the gravity model within the stochastic optimal control framework.
As presented in (Nakka, Liu, et al., 2020), the stochastic optimal control framework
minimizes the expectation of a cost function over the state and control (Eq. 5.1)
subject to a set of constraints. The primary constraint is the dynamics constraint
(Eq. 5.2), which ensures that the equation is dynamically feasible (i.e., it obeys the
relevant laws of physics). The next constraint (Eq. 5.3) describes a chance constraint
with respect to the state of the system along the trajectory. We include the controls
constraint equation 5.4 to check that the controls are mechanically feasible (i.e., the
controller is not asking the spacecraft to exceed its mechanical thrust or pointing
capabilities). The last constraint (Eq. 5.5) fixes the boundaries of the trajectory (i.e.,
the trajectory starts at the spacecraft’s current state and ends at the destination state).

�∗ = min
G(C), D̄(C)

E

[∫ C 5

C0

� (G(C), D̄(C))3C + � 5 (G(C), D̄(C))
]

(5.1)

subject to ¤G(C) = 5 (G(C), D̄(C)) + 6̂(G(C), D̄(C)) (5.2)

Pr(G(C) ∈ F ) ≥ 1 − n, ∀C ∈
[
C0, C 5

]
(5.3)

D̄(C) ∈ U ∀C ∈
[
C0, C 5

]
(5.4)

G (C0) = G0 E
(
G
(
C 5

) )
= `G 5 (5.5)

where G(C) and D̄(C) are the state and control trajectories, respectively. �∗ is the
optimal cost, � is a function that penalizes the state and control trajectories based
on a user-defined metric (e.g., distance away from a baseline trajectory), and � 5
functions similarly to �, but places an additional cost at the endpoint. In the Info-
SNOC framework, we specifically choose a cost functionwhere we can tune between
an information-seeking trajectory and a fuel optimal cost. The expectation operator
E is linear and positive. ¤G(C) is the time derivative of the state trajectory, which we
express as two functions 5 and 6̂. The function 5 is the known part of the dynamics
and the function 6̂ is a learned approximation of 6. Essentially, in reality, we have
¤G = 5 (G, D) + 6(G, D), but 6 is unknown to the controller, so our best approximation
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is ¤G = 5 (G, D) + 6̂(G, D). The expression Pr(G(C) ∈ F ) expresses the probability that
the state G(C) is within a safe set F . The user chooses n small enough to express
confidence about the safety of the trajectory. The safe set for obstacle avoidance
(e.g., not crashing into the small body) can be described as a disjunctive convex
set as in (Blackmore, Ono, and B. C. Williams, 2011) to enable computational
efficiency. Lastly, the set U is the set of mechanically feasible controls. The set
includes restrictions on thrust angle, thrust magnitude, and pointing constraints).
Similar to collision constraints, we can losslessly convexify most thrust constraints
as in (Behçet and Blackmore, 2011).

For this thesis, the most important part is the dynamics constraint (Eq. 5.2). For
spacecraft control, the gravity model is not known beforehand. Hence, the true
gravity field is 6 in the aforementioned framework with the gravity model as 6̂. The
conceptual split between 6 and 6̂ is directly incorporated into the physics engine
architecture (Chapter 3, especially Figure 3.1). Info-SNOC’s ability to handle
learned dynamics within the stochastic optimal control framework means that we
can choose a learning-based approximation framework for the gravity model.

5.1 Methodological Consistencies across Learning Frameworks
Chiefly, wemust develop an overall learning framework architecture thatmatches the
top-level goal of trajectory-only learning. From the learning framework perspective,
we start with a training data set from past trajectories (for more details on data
generation and the physics engine, please see Chapter 3). With the training data, the
learning framework develops a model that approximates the underlying dynamics
that created the training data. For this thesis, we are isolating the gravity model and
treating it as completely unknown. Therefore, we do not have any “known" part
of the dynamics (mathematically 5 (G(C), D̄(C)) = 0). In reality, we would include
terms such as average orientation-dependent solar radiation pressure. Moreover,
we are assuming that we are on a coasting orbit and are not applying any thrust
(mathematically 6(G(C), D̄(C)) → 6(G(C)) and 6̂(G(C), D̄(C)) → 6̂(G(C))). This leaves
us with

¤G = 6(G) (5.6)

In contrast, we can use the trained model to propagate the orbit with

¤G = 6̂(G) (5.7)

as would be done within the Info-SNOC framework. Third, we evaluate the learning
frameworks with two methods: (1) the accuracy of the trained dynamics model
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evaluated in the acceleration space and (2) the accuracy of the propagated trajectory
evaluated in the position space. We do not need to explicitly test the generalizability
of the learned dynamics outside the region near the trained trajectories since the error
build-up in the propagated trajectories moves the gravity model evaluation outside
the trained region, though this can be done in future work via a test trajectory formed
from a different initial condition than the training trajectories.

5.2 Methodological Differences across Learning Frameworks
The Gaussian Process Model is advantageous in its ability to handle uncertainty and
noise in the system. Moreover, when we tried the Gaussian Process Model with low
noise (or no noise) data, we discovered that the GPyTorch Gaussian Process Model
solver meets numerical errors. It is currently hypothesized that this low error causes
a singular or near singular matrix in the solver. The result is that the optimizer’s
update step is inaccurate, and the model performance suffers.

Instead of low noise data, we mimic online spacecraft applications which will have
uncertainty. Specifically, most spacecraft will have larger uncertainty in state than
acceleration since the state is predicted (as in (Bhaskaran et al., 2011; Lorenz et al.,
2017)) while the acceleration is measured. Hence, we introduce noise on the state
as 0 = 0(G+n), where 0 is the acceleration, G is the position, and n is Gaussian error.
Alternatively, we could consider a hypothetical where the noise on the acceleration
is larger than the state. Then, the noise could be added to the output as 0 = 0(G) + n ,
which is more common in learning applications. Lastly, we could add both. In all
cases, the error is exogenous to have accurate regressions.

In contrast, as implemented in this thesis, the Neural Network and the Physics-
Informed Neural Network do not provide uncertainty information and are not es-
pecially robust to noise. For these cases, we substantially decrease the noise on
the trajectory to reflect that the Neural Network and the Physics-Informed Neural
Network are not intended for these noisy cases.

The next big difference is the input and output of the Neural Networks. TheGaussian
Process Model and Neural Network must learn the acceleration ®0 as a function of
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position ®G (i.e., 6̂ : R3 → R3) as:

®0 = ®0(®G) (5.8)

®0 =

0G (G, H, I)
0H (G, H, I)
0I (G, H, I

 (5.9)

In contrast, the Physics-Informed Neural Network learns the potential * = * (®G)
(Martin and Schaub, 2020). This strategy then changes the cost function to represent
the underlying conservative relationship of the gravity field (Eq. 5.10).

®0 = −∇* (5.10)

Unlike the previous learning architectures where the system operates as 5 : R3 →
R3, the PINN framework is 5 : R3 → R. Then, to recover the accelerations
(®0), (Martin and Schaub, 2020) use the auto-differentiability of the network. The
resulting cost function (�) is the mean-squared error loss between the measured
accelerations (®01) and the auto-differentiated potential (∇*) as per equation 5.11.

� (Θ) = 1
# 5

# 5∑
8=1
| ®08 − ∇*̂ (G8 |Θ) |2 (5.11)

The weights (Θ) are updated with gradient descent. The key advantage is that the
conservative relationship of the gravity field explicitly links together the components
of the acceleration vector (namely 0G = ¥G, 0H = ¥H, and 0I = ¥I, in Cartesian
coordinates). To augment the cost function of equation 5.11 with the typical mean-
squared error loss, we would have the cost function given by equation 5.12

� (Θ) = 1
# 5

# 5∑
8=1
|*̂ (G8 |Θ) − *̂ (G8 |Θ) |2 (5.12)

This cost function requires knowledge of the potential function* beforehand. Cur-
rently, there is no sensor to directlymeasure the potential (*). However, it is possible
to estimate* from the acceleration using the Gradient Theorem (Eq. 5.13).

∫ ®A1

®A0

®0(®A) · 3®A =
∫ ®A1

®A0

∇* (®A) · 3®A = * (®A1) −* (®A0) (5.13)
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Since the spacecraft navigation system estimates ®0(®A) over the trajectory, it is rea-
sonable that the navigation system could estimate * (®A (C)). Fortunately, since the
acceleration is the deliverable to the planning system, the reference point* (®A0) can
be set arbitrarily. Mathematically, we estimate* (®A (C)) via equation 5.14.

* (®A (C)) = � +* (®A0) +
∫ ®A (C)

®A0

®0(®A) · 3®A (5.14)

The PINN learns *̂ to approximate *, as given in equation 5.14. When the PINN
evaluates the acceleration via ®0 = −∇* (Eq. 5.10), the constant offsets (� and
* (®A0)) vanish.

The last difference between the frameworks is continuity. The Gaussian Process
Model (as implemented) produces a smooth function. However, the Neural Net-
work and Physics-Informed Neural Networks are not guaranteed to produce smooth
functions. We tackle the continuity condition head-on with Lipschitz continuity and
spectral normalization.

Lipschitz continuity applies to higher dimensional spaces and reduces to epsilon-
delta continuity for real-valued functions. Namely, for two inputs ®0 and ®1, the
difference in the output 5 ( ®0) and 5 (®1) is bounded as per equation 5.15.

| | 5 ( ®0) − 5 (®1) | | ≤  ! | | ®0 − ®1 | | (5.15)

The minimum constant  ! to satisfy the inequality is the Lipschitz constant (Cos-
grove, 2018). If the learned dynamics can satisfy the Lipschitz continuity condition,
a numerical integrator (e.g., a Runge-Kutta scheme as employed in the physics
engine per Figure 3.1) can more quickly and accurately propagate the dynamics
forward. Moreover, Lipschitz continuity is critical to ensuring safety guarantees in
the trajectory planning and model predictive control phases.

A typical Neural Networkwill notmeet the Lipschitz continuity condition in general.
However, recent work across machine learning applications has introduced spectral
normalization (Cosgrove, 2018). This technique controls theweights of a given layer
during the training process to ensure that the Neural Network and, equivalently, the
Physics-Informed Neural Network meet the Lipschitz continuity condition.
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C h a p t e r 6

GAUSSIAN PROCESS MODEL FRAMEWORKS

Well suited to handle noise and uncertainty, Gaussian Process Model frameworks
are promising solutions for learned dynamics within stochastic optimal control. In
building a new method for trajectory-only learned dynamics, the Gaussian Process
Model will take data from a noisy sampling of a past trajectory and learn a gravity
model. The uncertainty in the spacecraft state is often larger than the uncertainty
in the acceleration (as in (Bhaskaran et al., 2011; Lorenz et al., 2017)). Hence, we
introduce noise on the state as 0 = 0(G + n), where 0 is the acceleration, G is the
position, and n is Gaussian error (Figure 6.1). We interrogate howwell the Gaussian
Process Model can predict the acceleration 0.

6.1 Base Orbits
As detailed in Appendix C, the learning frameworks (including theGaussian Process
Model frameworks) train on a dimensionless differential equation. We select the
random initial point for the integrator from a user-specifiedKeplerian orbital element
range (the initial point is based on the Keplerian osculating orbit, but the orbit itself
is not Keplerian due to the higher-order terms). For our primary batch of base orbits,
we select 0̃ ∈ [1.5, 2.0] for the semi-major axis, 4 ∈ [0.2, 0.8] for the eccentricity,
and the full defined range for the inclination, the longitude of the ascending node,
the argument of periapsis, and the true anomaly. The orbital element ranges are
selected such that the orbit is close enough to the body that the higher-order terms in
the expansion (e.g., �4 and �5) play a noticeable role (See Chapter 4 and specifically
Figure 4.2). Moreover, a higher eccentricity allows the spacecraft to probe the
gravity model closer to the surface and better match expected operations. Four
orbits are chosen for training and an additional orbit is chosen for testing (Fig. 6.2).
The orbits are propagated for four Keplerian periods and each orbit has roughly
ten thousand data points each in R10 (for time R, position R3, velocity R3, and
acceleration R3).

6.2 Gaussian Process Model Training and Evaluation
The model trains on the aforementioned data as 0 = 0(G + n) (Section 5.2). As
is common for Gaussian Process Models, we use an exact marginal log-likelihood
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Figure 6.1: A comparison of true position trajectory (solid line) and noisy training
position trajectory (translucent line). Each trajectory is split into Cartesian coordi-
nates G, H, and I, and displayed for all four periods. Note that the true trajectories
are displayed in three dimensions in Figure 6.2.

loss function and a radial basis function kernel (Rasmussen and C. K. I. Williams,
2006). For all of the training orbits, the loss quickly falls before rising and settling in
100 epochs (Fig. 6.3). Oftentimes, when numerical issues arise the loss increases.
However, the loss increase is not sufficient to note a numerical issue. Namely, the
relationship is one-directional.

To evaluate the quality of learned dynamicsmost directly, the acceleration prediction
is compared to the true acceleration along the orbit. More precisely, we take the
true trajectory (without noise) and feed the position at each discretized step through
the learned dynamics. We then compare the output acceleration from the learned
model to the true acceleration at each point along the orbit.

To visualize the acceleration change over the course of the trajectory, the acceleration
vectors for the true accelerations and predicted accelerations are plotted in three-
dimensional space (Fig. 6.4 and 6.5). Namely, the Gaussian Process Model is
functioning as R3 → R3, but the trajectory maps time (R) to position (R3). Hence,
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Figure 6.2: Three-dimensional plot of the training (blue, orange, green, and red)
and testing (purple) trajectories in dimensionless position space. The trajectories
are propagated for four Keplerian periods. The average radius of the underlying
body is shown in a translucent black. None of the orbits intersect this sphere of
average radius. The black circles mark the initial positions of the trajectories. The
black triangles mark the final positions of the trajectories. Due to the non-uniform
gravity field, the orbits change shape. As such, the initial and final positions do not
overlap perfectly.

Figure 6.3: Loss curve over the training process. The colors of the curves correspond
to the orbit colors in Figure 6.2.
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in the acceleration trajectory plots, we are parametrically plotting ®0(®G(C)) : R →
R3 rather than ®0(®G) : R3 → R3 since the latter has too many dimensions for
plotting. Since these learned dynamics are determined in dimensionless units (see
Appendix C), the plots are generated in dimensionless units. To convert back to SI
units, we scale all lengths by '2/` (hence the shape is identical). The error between
the true and predicted acceleration is shown in Figures 6.4 and 6.5. This corresponds
to test point A in the physics engine (see Chapter 3, specifically Figure 3.1).
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(a) Training Set 0, Acceleration
Trajectory (b) Error in Prediction for Training Set 0

(c) Training Set 1, Acceleration
Trajectory (d) Error in Prediction for Training Set 1

Figure 6.4: Acceleration trajectories and respective errors for the first two of the
four training orbits closer to the body. For (a) and (c), the blue curve is the true
acceleration along the trajectory and the orange curve is the predicted acceleration.
Subfigures (b) and (d) correspond to the error at each timestep calculated as a
pointwise ;2−Norm between the curves in (a) and (c), respectively. The black
circles mark the initial positions of the trajectories. The black triangles mark the
final positions of the trajectories. Matching with Figure 6.2, (a) and (b) correspond
to training set 0 (the blue orbit in Figure 6.2). Likewise, (c) and (d) correspond to
training set 1 (the orange curve in Figure 6.2).
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(a) Training Set 2, Acceleration
Trajectory (b) Error in Prediction for Training Set 2

(c) Training Set 3, Acceleration
Trajectory (d) Error in Prediction for Training Set 3

Figure 6.5: Acceleration trajectories and respective errors for the last two of the
four training orbits closer to the body. For (a) and (c), the blue curve is the true
acceleration along the trajectory and the orange curve is the predicted acceleration.
Subfigures (b) and (d) correspond to the error at each timestep calculated as a
pointwise ;2−Norm between the curves in (a) and (c), respectively. The black
circles mark the initial positions of the trajectories. The black triangles mark the
final positions of the trajectories. Matching with Figure 6.2, (a) and (b) correspond
to training set 2 (the green orbit in Figure 6.2). Likewise, (c) and (d) correspond to
training set 3 (the red curve in Figure 6.2).
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(a) Base Orbits (b) Loss

Figure 6.6: The base orbits (a) include four training orbits (blue, orange, green, and
red) and one test orbit (purple). The black circles mark the initial positions of the
trajectories. The black triangles mark the final positions of the trajectories. The
green dot represents the origin. The loss (b) drops and settles. The colors of the
orbits match the colors in the loss plot. The blue orbit does not converge after 100
epochs. Notice that the blue orbit is highly perturbed, making it difficult for the
Gaussian Process Model to understand the dynamics and generalize.

Comparison and Contrast to training with Less Data, Less Noise, and Closer
to the Body
The pipeline is repeated with less data, less noise, and closer to the small body. With
less data, the model trains and evaluates more quickly. Closer to the small body,
the orbits are more perturbed. Mirroring the analysis above, new training orbits are
generated and trained. In this case, all of the orbits are propagated for the same
time length yielding four thousand data points (each in R3). The loss now drops
significantly and settles without rising except for the most perturbed orbit (Fig. 6.6).

Following the same evaluation as before, the acceleration trajectory displays the
comparison between the true acceleration and the predicted acceleration along the
trajectory (Fig. 6.7 and 6.8). This again corresponds to test point A in the physics
engine (see Chapter 3, specifically Figure 3.1). Notice that the predictions below are
notably better than those shown in Figures 6.4 and 6.5. This can be predominantly
attributed to the reduced noise and better convergence within 100 epochs. This
comparison is discussed in Table 6.1, where we include additional combinations of
data volume and noise levels.
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(a) Training Set 0, Acceleration
Trajectory (b) Error in Prediction for Training Set 0

(c) Training Set 1, Acceleration
Trajectory (d) Error in Prediction for Training Set 1

Figure 6.7: Acceleration trajectories and respective errors for the first two of the
four training orbits closer to the body. For (a) and (c), the blue curve is the true
acceleration along the trajectory and the orange curve is the predicted acceleration.
Subfigures (b) and (d) correspond to the error at each timestep calculated as a
pointwise ;2−Norm between the curves in (a) and (c), respectively. The black
circles mark the initial positions of the trajectories. The black triangles mark the
final positions of the trajectories. Matching with Figure 6.6, (a) and (b) correspond
to training set 0 (the blue orbit in Figure 6.6). Likewise, (c) and (d) correspond to
training set 1 (the orange curve in Figure 6.6).
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(a) Training Set 2, Acceleration
Trajectory (b) Error in Prediction for Training Set 2

(c) Training Set 3, Acceleration
Trajectory (d) Error in Prediction for Training Set 3

Figure 6.8: Acceleration trajectories and respective errors for the last two of the
four training orbits closer to the body. For (a) and (c), the blue curve is the true
acceleration along the trajectory and the orange curve is the predicted acceleration.
Subfigures (b) and (d) correspond to the error at each timestep calculated as a
pointwise ;2−Norm between the curves in (a) and (c), respectively. The black
circles mark the initial positions of the trajectories. The black triangles mark the
final positions of the trajectories. Matching with Figure 6.6, (a) and (b) correspond
to training set 2 (the green orbit in Figure 6.6). Likewise, (c) and (d) correspond to
training set 3 (the red curve in Figure 6.6).
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Trajectory Propagation with Learned Dynamics
Lastly, to test out the learned dynamics in context, the trajectories (in state) are
propagated forward in time from the initial condition of each respective training set.
To compare against the full true trajectories shown in Figure 6.6, the dynamics are
propagated for the same duration as the reference trajectories. This corresponds to
test point B in the physics engine (see Chapter 3, specifically Figure 3.1).

This long horizon propagation is outside the normal planning length and represents
the extreme of the use-case for the learned dynamics. In a short horizon controller,
the trajectory is sufficiently close to the true trajectory to maintain orbit and glean
reasonable predictions. Recalling back to the zonal harmonic dominance within the
region of validity (see Chapter 4), the point mass term should dominate even close to
the body. While the Gaussian Process Model is fairly accurate in reflecting the point
mass term near the training data (i.e., roughKeplerian shapes), themodel completely
loses this insight outside of the training data domain. Without a mechanism to
regularize this insight, the model quickly diverges.

Optimal Gaussian Process Model Parameters
Table 6.1 describes the synthesized trade-offs after testing the GP dynamics under
multiple settings. Above, the first setting is the “Moderate Noise" for “Large Data
Volume" and yields inaccurate predictions. The second setting is the “Low Noise"
for “Moderate Data Volume" and yields fairly good predictions.

Note that one can truncate or sample the input trajectory data to adjust the data
volume during flight. On the other hand, the noise level is not adjustable. Instead,
the fidelity of the navigation system sets the noise level. Sensor fusion from on-
board accelerometers and terrain relative navigation techniques may provide low
noise estimates of the state and acceleration.
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(a) Training Set 0, Propagated
State Trajectory

(b) Training Set 1, Propagated
State Trajectory

(c) Training Set 2, Propagated
State Trajectory

(d) Training Set 3, Propagated
State Trajectory

Figure 6.9: Propagated state trajectory showing the position along the trajectory in
R3. The blue curve is the true position along the trajectory and the orange curve is
the predicted position. The black circles mark the initial positions of the trajectories
where both trajectories begin. The black triangles mark the final positions of the
trajectories. Matching with Figure 6.6, the top left subfigure (a) corresponds to
training set 0 (blue curve in Figure 6.6). Likewise, the top right subfigure (b) is
training set 1 (orange curve), the bottom left subfigure (c) is training set 2 (green
curve), and the bottom right subfigure (d) is training set 3 (red curve).
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Table 6.1: Trade-off table for Gaussian Process Model settings

Noise Low Data Volume Moderate Data
Volume

Large Data Volume

(∼ 102 data points) (∼ 103 data points) (∼ 104 data points)

Low
Noise

Modest Predictions Good Predictions Numerical
limitations

Very low
computation time

Fair computation
time

Moderate
Noise

Inaccurate
Predictions

Reasonable
Predictions

Inaccurate
Predictions

Very low
computation time

Fair computation
time

High computation
time

Comparison of Gaussian Process Model performance across data volume (i.e., the
number of data points in the training data) and noise level (i.e., the noise added to the
true trajectory training data. The green box (moderate data volumes at low noise)
corresponds to the best trade-off given the results in this thesis. Such a case is likely
best suited to short horizon control rather than long horizon planning. Yellow boxes
correspond to settings that are okay, but not as good. Orange boxes correspond to
settings that are not recommended. The red box corresponds to limitations such as
computational load that would be detrimental to spacecraft operations. A deeper
look at this trade-off is left to future work and would more precisely define the
precision and computation time contours.

6.3 Comparison of Gaussian Process Model Across Different Harmonics
Next, we test the robustness of the Gaussian Process Model to different terms in the
zonal harmonics. If the Gaussian Process Model was brittle to higher order terms,
then we would need much higher term expansions in future work. On the other
hand, if the Gaussian Process Model was adaptable to higher order terms, then a
short expansion would be sufficient to test the learning performance. To do this,
we repeat the analysis above (moderate data volumes and low noise) with different
gravity models.

In the first experiment, consider a body where the point mass term and a single
spherical harmonic (e.g., only the point mass term and the �3 term) perfectly repre-
sent the body’s gravity field (Fig. 6.10). As before, the GP must learn the dynamics
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(a) �2 Only (b) �3 Only (c) �4 Only (d) �5 Only

(e) �2 Only (f) �2 and �3 (g) �2 to �4 (h) �2 to �5

Figure 6.10: Side view of normalized �= term anomalies as quarter spheres for the
first test case in the top row (a-d) and second test case in the bottom row (e-h).
For each subfigure, the values are rescaled between -1 and 1 to illustrate the most
contrast (see shared legend in the top right). Values near -1 (deep red) correspond
to a negative anomaly: low-density regions or lack of material. Values near 1 (deep
blue) correspond to a positive anomaly: high-density regions or excess material.
The first row is a quarter sphere version of Figure 3.2. To construct the second
row, we add plots from the top row from left to right. For example, subfigure (g)
expresses �2 to �4; so we sum figures (a), (b), and (c).
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and predict the accelerations. Across the first four zonal spherical harmonics terms
(�2 to �5), the resulting error is roughly the same (Fig. 6.11a). Hence, for the same
coefficient value, the GP has roughly equivalent success at approximating zonal
spherical harmonic terms.

In the second experiment, consider a body where the point mass term and a small
set of spherical harmonic perfectly represent the body’s gravity field. For example,
the first gravity model sums the point mass and �2 terms. The second case sums the
point mass, �2, and �3 terms. The third and fourth cases follow this pattern to include
�4 and �5. Every added term has the same coefficient value (sign and magnitude).
Again, the GP must learn the dynamics and predict the accelerations. Across the
four gravity models, the resulting error is roughly the same or slightly decreases
when more terms are added (Fig. 6.11b). Hence, for the same coefficient value, the
GP has roughly equivalent success at approximating each of the four gravity models.
Since the additional terms are all of the same sign and magnitude, they smooth out
the equatorial region and have a large difference between the equator and pole. Since
trajectory 2 is more equatorial, this smoothening in the latter cases is advantageous.
In contrast, trajectory 1 is more polar, so the model with the point mass term and the
first four zonal spherical harmonics terms (�2 through �5) becomes more difficult to
learn.

Combining the insight from both experiments, we conclude that the base gravity
model is representative of other gravitymodels, especially zonal spherical harmonics
models.

6.4 Remaining Gap after Gaussian Process Model Trade-Offs
An ideal learning framework would improve for lower noise and more data points
(towards the top right of Table 6.1). Meanwhile, this framework would train and
evaluate quickly. While the Gaussian Process Model framework improves for lower
noise (up to a limit where numerical difficulties arise when no noise is present), it
cannot support large data volumes (though this finding goes against (Gao and Liao,
2019)). As the data volumes increase, the training and evaluation time becomes
prohibitively long. For example, the large data volume case can take the greater
part of a day to train and evaluate the dynamics. The moderate data volume case
takes several minutes (about 10 minutes) to train and evaluate the dynamics. While
the moderate data volume case is more reasonable, it is not sufficient for on-board
situations. Lastly, for long-term planning, the model must generalize to unexplored
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(a) Varying gravity model based on individ-
ual spherical harmonics terms

(b) Varying gravity model with increasing
number of spherical harmonics terms

Figure 6.11: Error across trajectories for the two experiments with different gravity
models. In the first experiment (a), the GP learns four gravity models based on the
point mass term and a single additional spherical harmonic term. In the second
experiment (b), the GP learns four gravity models based on the point mass term and
an increasing number of spherical harmonics. In both experiments, the variation
between different trajectories (i.e., different initial conditions) is larger than the
variation across gravity models. Moreover, the error is not normally distributed.
Some regions of a trajectory have much higher error than others in a “patchy" sense
rather than a unimodal spread (for example, see Figures 6.4, 6.5, 6.7, and 6.8).

states. However, the Gaussian Process Model fails to generalize well beyond the
input trajectory.

Therefore, the Gaussian Process Model is promising for noisy or highly uncertain
situations and short-term planning. However, both the lack of generalization and
the long computation time notably hinder the Gaussian Process Model performance
for long-term planning, especially on-board the spacecraft.
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C h a p t e r 7

NEURAL NETWORK FRAMEWORKS

The primary motivation for the Neural Network is to ensure fast evaluation times
after the network has trained on large data volumes. While the Gaussian Process
Model evaluation time is dependent on the number of data points, theNeuralNetwork
evaluation time is constant with respect to the number of data points. Underneath
the hood, the Gaussian Process Model uses the data matrix directly in the evaluation
step. On the other hand, the Neural Network simply computes the weights and the
activation functions (namely the rectified linear unit, ReLU) during the evaluation.
The sizes of the weights are fixed beforehand in the Neural Network architecture.

7.1 Neural Network Training and Evaluation
To more clearly visualize the impact of noise and spectral normalization, we train
the model under three test cases (Table 7.1). For all of the test cases, we use the
same orbits as Figure 6.2.

The first test case is approximating noisy data without spectral normalization (Fig-
ure 7.1). The predicted accelerations do not accurately match the true accelerations.
Moreover, the predicted accelerations are not continuous (i.e., a small change in

Table 7.1: Neural Network training cases to illustrate the underlying limitations and
the impact of spectral normalization

Test Case Noisy Data Spectral Normalization
1 Yes (Noisy) No (No spectral normalization)
2 Yes (Noisy) Yes (Spectral normalization included)
3 No (No Noise) Yes (Spectral normalization included)

We have three test cases where we “switch" the noisy data and spectral nor-
malization on or off. Test case two would be the ideal case where we han-
dle noise and continuity simultaneously. Test case one serves as a compar-
ison without the spectral normalization. Test case three serves as a com-
parison without the noise. The last combination (no noise and no spec-
tral normalization) is not included since omitting spectral normalization would
drop the Lipschitz continuity guarantee without any noticeable improvements.
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(a) Training Set 0 (b) Training Set 1

(c) Training Set 2 (d) Training Set 3

Figure 7.1: Test Case 1: Neural Network training for noisy data without the spectral
normalization. The Neural Network predicted accelerations (orange) do not accu-
rately approximate the true accelerations (blue). Since the spectral normalization is
not included, the output does not maintain Lipschitz continuity.

input position ®G yields a large change in acceleration). This matches the theoretical
note that a Neural Network output is not guaranteed to be Lipschitz continuous.

The second test case is approximating noisy data with spectral normalization (Fig-
ure 7.2). The predicted accelerations are worse in this test case. The Neural Network
almost entirely predicts zero acceleration. This matches the theoretical note that
spectral normalization is forcing a Lipschitz continuous function. As an example
consider an input position ®G1. The true dynamics would have ®0(®G1), which is con-
tinuous. But, with noise, the training set has ®0(®G1) + ®n1, where ®n1 is the error. Then,
a small change in position (i.e., ®G2 = ®G1 + X) yields ®0( ®G2) + ®n2 0 ®0(®G1 + X) + ®n1. That
is, we lose continuity since the noise is jagged.
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(a) Training Set 0 (b) Training Set 1

(c) Training Set 2 (d) Training Set 3

Figure 7.2: Test Case 2: Neural Network training for noisy data with the spectral
normalization. Since the noise is large (e.g., Figure 6.1), the inputs and outputs
themselves do not maintain Lipschitz continuity. Nevertheless, spectral normaliza-
tion tries to maintain Lipschitz continuity. The Neural Network thereby predicts
accelerations (shown in orange) that are either uniformly zero (training set 0 and 2)
or fall on a line (training set 1 and 3). The predicted accelerations (orange) do not
accurately approximate the true accelerations (blue). The key takeaway is that the
inputs need to be sufficiently smooth (e.g., filtered or more precise) for the spectral
normalization technique to make sense.
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(a) Training Set 0 (b) Training Set 1

(c) Training Set 2 (d) Training Set 3

Figure 7.3: Test Case 3: Neural Network training for filtered data with the spectral
normalization. With the reduced noise, the Neural Network provides a fairly good
approximation (orange) of the true accelerations (blue). Even without the Physics-
Informed learning (next section), the Neural Network with spectral normalization is
able to approximate the dynamics about as good as the best test cases of the Gaussian
Process Model. As with the Gaussian Process Model, the Neural Network does not
capture the full dynamics.

The third test case is approximating filter data with spectral normalization (Fig-
ure 7.3). The filtered data has no noise and is smooth. Here, we get a much
better result. The Neural Network produces a continuous function (as the spectral
normalization enforces) that moderately matches the true data.
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7.2 Comparison and Contrast between the Neural Network and Gaussian
Process Models

We can provide a contrast between the first set of the Gaussian Process Models (i.e.,
Figures 6.4 and 6.5) and the Neural Networks (Figures 7.1-7.3). Namely, we used
the same orbits for training the first set of Gaussian Process Models as the Neural
Networks. However, we must remember two caveats: (1) the Gaussian Process
Model provides useful covariance data for stochastic optimal control that the Neural
Network is not built to provide, and (2) the first set of Gaussian Process Models
trained on noisy data whereas only the first two test cases of the Neural Network
trained on noisy data.

With this in mind, the Gaussian Process Model significantly outperforms the Neural
Network in cases where there is noise. Namely, in Figures 6.4 and 6.5, the Gaussian
Process Model’s predicted acceleration does not always match the true acceleration,
and the error is fairly large. However, the first two cases of the Neural Networks
produced highly unfavorable results. In both of these cases, deploying such as
Neural Network on a spacecraft would be disastrous since the results would be
inaccurate and the Neural Network would fail to learn the underlying dynamics even
with more data. Therefore, the Gaussian Process Model is the preferred option for
situations with large noise.

If we enter a regime where the noise is very low, the conclusion flips: the Neural
Network mostly outperforms the Gaussian Process Model. In Figure 7.3, the Neural
Network’s predicted accelerations nicely fall within the range of true accelerations
and are comfortably continuous (test 3). As such, the Neural Network produces a
more accurate model. However, the Neural Network in test 3 preferentially produces
acceleration trajectories that do not capture the full variability in the dynamics. This
is most clearly observed in subfigure (a) of Figure 7.3. In contrast, the Gaussian
Process Model does seem to capture more of the variability, while not as accurate
in general (see subfigure (a) of Figure 6.4 and subfigure (a) of Figure 6.5).

The error statistics from the Neural Network framework is much higher than that
predicted in (Martin and Schaub, 2020; Cheng et al., 2020; Song, Cheng, and Gong,
2019). To a large extent, we can attribute the poorer performance to a difference
in methods. Effectively, prior works formulate the problem as an interpolation
problem whereas we have created an extrapolation problem. A neural network
will necessarily preform better in the interpolation problem since it has optimized
its approximation on the training domain. Please see Chapter 9 for more details.
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To a lesser extent, we can attribute the poorer performance to a difference in data
volumes. Specifically, prior work uses 102 to 104 times as many data points. In
this analysis, we kept the moderate data volumes to ensure a fair comparison with
the Gaussian Process Models. By switching the approach and including higher data
volumes, we believe that the Neural Network will be able to achieve much more
accurate results.
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C h a p t e r 8

PHYSICS-INFORMED NEURAL NETWORK FRAMEWORKS

Following the work in (Martin and Schaub, 2020), the Physics-Informed Neural
Network framework builds in the conservative nature of gravitational field directly
into the learning framework. From theGaussian ProcessModel section, we observed
how the predicted propagated trajectories diverge due to the inability for the model
to generalize the point mass term dominance outside of the training data. Since
the conservative property is built into the Physics-Informed Neural Network, we
can help regularize the framework output to combat the divergence observed with
the Gaussian Process Model. From the Neural Network section, we demonstrated
how the low noise case with spectral normalization can provide smooth and fairly
accurate results. Since a Physics-Informed Neural Network is fundamentally a
subset of the larger family of Neural Networks, Physics-Informed Neural Network
can also benefit from lower noise, large data volumes, and spectral normalization.

8.1 Physics-Informed Neural Network Training and Evaluation
Physics-Informed Neural Networks similar to those in (Martin and Schaub, 2020)
focus on learning the potential * rather than the acceleration ®0. Hence, to evaluate
the Physics-Informed Neural Network, we critically need to evaluate the fit of* (®G).
Whereas before we had acceleration trajectory plots (since the learning framework
output was ®0 : R3 → R3), we now have a one-dimensional plot (since the learning
framework output is * : R3 → R). First, the base orbit and loss are shown in
Figure 8.1. The loss seems to converge more quickly than the Gaussian Process
Model and Neural Network cases. The comparison of the true potential to the
predicted acceleration along with the associated error is shown in Figure 8.2. Note
that the Physics-Informed Neural Network also includes spectral normalization and
we assume filtered data (i.e., no noise). In this sense, test 3 of the Neural Network
is the most similar framework.

Unfortunately, the Physics-Informed Neural Network (as implemented) does regress
the potential function well enough to produce meaningful accelerations. Namely,
when we calculate the gradients with autograd in pytorch using ®0 = −∇* (as in
Eq. 5.10), we then arrive at the acceleration plots in Figure 8.3 where the predicted
accelerations do not closely match the true accelerations.
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(a) Base Orbits (b) Loss

Figure 8.1: Similar to Figure 6.3, the base orbits (a) include four training orbits
(blue, orange, green, and red) and one test orbit (purple). The black circles mark
the initial positions of the trajectories where both trajectories begin. The black
triangles mark the final positions of the trajectories. The translucent black sphere
dot represents the small body and is centered on the origin. The loss (b) drops and
settles. The colors of the orbits match the colors in the loss plot. The green and
orange trajectories converge to a similar loss. The red trajectory converges to a loss
that is close to the green and orange trajectory, but not as low. The blue orbit is
closest to the body. While it seems to converge on its own, the loss value is higher
than the other orbits.

8.2 Comparison and Contrast between the Physics-Informed Neural Network
and Other Learning Frameworks

Overall, the Gaussian Process Model and the Neural Networks outperform the
Physics-Informed Neural Network. In particular, the Physics-Informed Neural Net-
work’s predicted accelerations (Figure 8.3) do much more poorly than the most
similar method: test case 3 of the Neural Network (Figure 7.3). It also does more
poorly than the Gaussian Process Model (Figures 6.4 and 6.5). An interesting com-
parison note is that the hyperbolic tangent function (i.e., tanh) produced smoother
accelerations than the rectified linear unit (i.e., ReLU) in the Physics-Informed Neu-
ral Network. We did not observe this disparity between activation functions trend in
the Neural Network case. Note that all the Neural Network plots (Figures 7.1-7.3)
show results with a rectified linear unit activation function.

With a look at all three frameworks (Gaussian Process Model, Neural Network, and
Physics-Informed Neural Network), we can determine which framework is best for
which application (assuming a Trajectory-Only approach). If we are in a situation
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(a) Training Set 0 and Associated Error (b) Training Set 1 and Associated Error

(c) Training Set 2 and Associated Error (d) Training Set 3 and Associated Error

Figure 8.2: Potential trajectories and respective errors for all four training orbits
closer to the body. For the upper plots in each subfigure, the blue curve is the true
acceleration along the trajectory and the orange curve is the predicted acceleration.
The lower plots in each subfigure are the error at each timestep calculated as a
pointwise ;2−Norm between the curves in the upper part. Matching with Figure 8.1,
subfigure (a) corresponds to training set 0 (the blue orbit in Figure 8.1). Likewise,
subfigure (b) corresponds to training set 1 (the orange orbit in Figure 8.1), subfig-
ure (c) corresponds to training set 2 (the green orbit), and subfigure (d) corresponds
to training set 3 (the red orbit).
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(a) Training Set 0 (b) Training Set 1

(c) Training Set 2 (d) Training Set 3

Figure 8.3: Acceleration trajectories from Physics-Informed Neural Network learn-
ing framework. The black circles mark the initial positions of the trajectories where
both trajectories begin. The black triangles mark the final positions of the trajecto-
ries. The numbering matches Figures 8.1 and 8.2.

with high uncertainty or high noise, then the Gaussian Process Model is the best of
the three frameworks. It natively handles the error and can provide error estimates
for the stochastic optimal controller. If we are able to smooth the data or reduce the
noise, then the Neural Network framework becomes the best option. This could be
especially useful for a longer term trajectory planner or for usingmany trajectories in
the learning step. Lastly, the Physics-Informed Neural Network is promising based
on (Martin and Schaub, 2020), but it does not work well with the Trajectory-Only
strategy from this thesis. Specifically, the gradient step is quite sensitive to the switch
from an extrapolation problem (as in this thesis) to an interpolation problem (as in
(Martin and Schaub, 2020)). Please see chapter 9 for more information. All-in-all,
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the Physics-Informed Neural Network has not shown great results as implemented
in this thesis, but it is promising from a theoretical standpoint.
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C h a p t e r 9

RECOMMENDATIONS FOR FUTURE LEARNED GRAVITY
MODELS RESEARCH

We believe that we can learn from the lessons in this thesis to produce a more fruitful
problem formulation in the future. In the current trajectory-only set-up, the learning
framework is fundamentally faced with an extrapolation problem (Figure 9.1). In
this thesis, we developed a trajectory-only perspective on the training data. In
particular, for all the cases, we use four periods worth of data (hence, we have
four intersections onto the plane or four blue points in Figure 9.1 left panel). The
trajectories only sample a very narrow region of positions. Consider if we probe a
new position near the trajectories or even the same input position, but without the
noise (shown as the red X).The point is not actually within the training domain. So,
we have to extrapolate to determine the acceleration at the new point (i.e., the red
X is not in the light blue band). Without more structure to the problem, we should
not expect the learning framework to generalize in this way. With this logic, we
have two options (1) reformulate the problem as an interpolation or (2) embed more
structure into the Neural Network.

To reformulate the problem as an interpolation, we would more closely follow work
from (Gao andLiao, 2019; Song, Cheng, andGong, 2019; Cheng et al., 2020; Martin
and Schaub, 2020). Namely, we start with a base model such as a constant density
polyhedron model that we would generate on approach via stereophotoclinometry.
This is shown as the middle panel in Figure 9.1 where the green points denote
samplings of the offline constant density polyhedron model. If we probe a new
position (i.e., the red X), the new point is well within the training domain (i.e., the
red X is within the light green region). These points may be biased, but the learning
problem is now an interpolation problem. We would then use a learning framework
to more efficiently represent the model such as a Gaussian Process Model as in (Gao
and Liao, 2019), a Neural Network as in (Song, Cheng, and Gong, 2019; Cheng et
al., 2020), or a Physics-Informed Neural Network as in (Martin and Schaub, 2020).
Suppose we mix the novel strategy from this thesis with the dense interpolation that
is used more frequently in the literature (right panel of Figure 9.1). The novelty is to
incorporate the trajectory data into the data set with higher preference than the base
model. We start with the offline, possible biased baseline (green points). As we orbit
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Figure 9.1: Graphical representation between the trajectory-only extrapolation case
(left panel), dense interpolation case (middle panel), and recommendation for future
work (right panel). For visualization, we display a two-dimensional schematic. This
is conceptually equivalent to placing a dot every time a trajectory crosses a specified
plane (as is done in a Poincaré Section). In all the panels, we illustrate the underlying
density distribution of the small body as a color gradient where blue corresponds to
high density regions and red corresponds to low density regions (as in Figure 1.3).

the small bodywe obtain lower uncertainty andmore accurate data (blue points). We
can update the model with the more accurate points to reach a compromise: (1) we
have interpolation throughout and (2) the model reduces the bias with more orbits.
In the former consideration, we have reformulated the trajectory-only problem as
an interpolation problem since the learning framework always probes a point that
is interior to the training regime (the union of green and blue shaded regions). For
a trajectory with sufficient coverage, the learning framework provides an unbiased
estimate of the gravity field since it is using the measured acceleration data from the
perception system (recall that the constant density polyhedron is a biased estimator
as noted in Section 3.2) and the perception data is given higher priority. To the
author’s best knowledge, this would be a novel problem formulation.

We could also reformulate the problem with more structure. This can take many
flavors. One option would be to split the problem into multiple parts. One estimator
might estimate the total mass of the body (and hence the point mass term), another
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might estimate the moment of inertia (and hence the �2 term), and then the final
estimator would only have to estimate the higher-order effects.

A different option would be to build a data-driven adapted polyhedron model. That
is, we start at a constant density polyhedron. Since most small bodies do not
have a constant density, there will bias between the predictions from the constant
density polyhedron and the accelerometer measurements (as noted in Section 3.2).
The learning framework then has to produce the nearest constant density mesh
that accurately represents the gravity field. This method is advantageous since the
result is interpretable and the trained model can generalize well to different small
bodies. To interpret the result, we would compare the shape polyhedron to the
gravity model polyhedron. When the gravity model polyhedron is interior to the
shape polyhedron, we have a negativity gravitational anomaly (i.e., the material
is less dense than expected, so we need a smaller volume of material to achieve
the measured field for the same density). When the gravity model polyhedron is
exterior to the shape polyhedron, we have a positive gravitational anomaly (i.e., the
material is denser than expected). Lastly, a perfect fit would mean that the small
body is indeed of constant density. The trained model can also generalize well
across small bodies since the learning framework is determining how best to change
a mesh subject to new data as opposed to learning the gravity field of a single body.
The main issue with this method is that it does not overcome the computational
complexity issues of the polyhedral model.

A third optionwould focus on the entire trajectory propagation rather than estimating
the dynamics. For example, we could build a Physics-Informed Neural Network
that encodes the conservation of kinetic and potential energy rather than the concept
that the gravity field is a conservative field. In such a case, we would pass both
position and velocity to the Physics-Informed Neural Network and its task would be
to determine the position and velocity at a later timestamp.

For each of these reformulation strategies, we can still take lessons from this the-
sis. First, a spacecraft integrator with a spherical harmonics gravity provides a
highly versatile, computationally favorable, sufficiently realistic, and decently avail-
able physics engine back-end to develop training data (Table 3.1). Second, low
noise, moderate data volume Gaussian Process Models are suitably accurate, robust,
and informative gravity models for short-horizon planning (Table 6.1). Moreover,
Gaussian Process Models can conveniently fit within the stochastic optimal control
structure since they provide covariance information, produce smooth functions, and
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evaluate points within a reasonable time (for low to moderate data volumes). Third,
for low noise or low uncertainty cases, Neural Networks with spectral normaliza-
tion can produce accurate and continuous models (Figure 7.3). Therefore, there
is significant algorithmic design space to develop new learning-based small-body
gravity models that can smoothly integrate into stochastic optimal control learning
frameworks.
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C h a p t e r 10

CONCLUDING REMARKS

Our overarching goal was to investigate the extent to which learning frameworks
effectively approximate the gravity field dynamics with data from recent trajectories.
Overall, the Gaussian Process Model provides the most attractive learning frame-
work for cases of high uncertainty, as we would expect for small body missions
(Figure 6.4-6.9). However, numerical limitations and significant computational
time for large data volumes remain challenges for incorporating the Gaussian Pro-
cess Model framework on spacecraft, especially at low noise. If the noise can be
effectively filtered to produce a smooth signal, the Neural Network approach with
spectral normalization appears promising. For the Neural Network, we can include
larger datasets and maintain low evaluation times compared to the Gaussian Pro-
cess Model. Although the Physics-Informed Neural Network appears theoretically
promising, the problem formulation in this thesis is not able to reach the performance
that one would theoretically expect.

All-in-all, we introduced a newmethod in trajectory-only learned dynamics that adds
to our ability to conduct proximity maneuvers around small bodies. To tackle the
dangers of uncertainty in the gravity dynamics, we formulated our learning-based
method with the intention of combining it with stochastic optimal control (namely
Information-Cost Stochastic Nonlinear Optimal Control). From the lessons learned
in this thesis, we developed an inventory of ideas and recommendations to guide
future research. Whether from scientific, economic, or humanitarian motives, we
believe that this thesis provides a valuable contribution in reaching our goal of safe
landings and missions to small bodies in our solar system.
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A p p e n d i x A

DERIVATION OF ACCELERATIONS FROM ZONAL
SPHERICAL HARMONICS

A.1 Gravitational Potential and Preliminaries
The specific energy potential characterizes the geopotential of a body per equa-
tion A.1.

D =
−`
A︸︷︷︸

Point Mass

+
#I∑
==2

�=%
0
= (sin(\))
A=+1︸                ︷︷                ︸

Zonal Terms

+
#C∑
==2

=∑
<=1

%<= (sin(\)) (�<= cos(<q) + (<= sin(<q)
A=+1︸                                                         ︷︷                                                         ︸

Tesseral Terms
(A.1)

The form of the non-dimensional constants are detailed below (Bate, Mueller, and
White, 1971):

�̃= =
−�=
`'=

, �̃<= =
−�<=
`'=

, and (̃<= =
−(<=
`'=

Note that ` (the central body’s Gravitational Parameter) has units of m3 s−2 and
D has units of m2 s−2 which is a energy per mass. To recover the energy (*),
* = D<B can be used where <B is the spacecraft mass. Generally, the point mass
contribution is the largest and the easiest to measure. For many asteroids, this point
mass contribution can be estimated from Earth. For spherical bodies or bodies that
are nearly symmetric about the equator, the zonal terms are the next most prominent.
Often in the literature, the zonal terms are reported and not the tesseral terms (such
as in (D. J. Scheeres et al., 2020)). Investigation into the best representation of the
gravity model of a small body is an active research area and is beyond the scope of
this thesis (Section 3.2). Since the focus of this thesis is more on the planning and
control problem, the zonal terms are sufficiently available and realistic to verify the
results of this thesis.

While the potential is conveniently written in the form of equation A.1, it is not
sufficient for the integrator (if a symplectic integrator was used, one might leave
the equation as is). Instead, it is necessary to (1) derive the acceleration from the
potential and (2) convert from spherical coordinates to Cartesian coordinates.
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A.2 Acceleration from Gravitational Potential
Note that just as force is the negative gradient of the potential energy, acceleration
is the negative gradient of the specific potential energy by Newton’s second law. To
get the acceleration, the derivative of specific potential energy is taken with respect
to (A, \, q). Namely ®0 = −∇D yields:

0A = −
(
mD

mA

)
(A.2)

0\ =
−1
A

(
mD

m\

)
(A.3)

0q =
−1

A sin \

(
mD

mq

)
(A.4)

Notice that without the tesseral terms, D is not a function of q. Moreover, the point
mass term simply yields the traditional equation for the gravity of a point mass

®0 =
®�6A0E
<B

=
`

A2 (−Â) =
−`®A
A3 (A.5)

This now leaves the zonal terms. The radial term is simple and yields

0A = −[`�̃=%0
= (sin \)]'=

(
3

3A

(
A−(=+1)

))
(A.6)

0A = −[`�̃=%0
= (sin \)]'=

(
−(= + 1)A−(=+2)

)
(A.7)

The more difficult derivative is in \ which includes the Legendre % polynomials.
To simplify the derivations we need two recurrence relations of the Legendre %
polynomials (the second is known as Bonnet’s recurrence formula):

3%=+1(G)
3G

= (= + 1)%= (G) + G
3%= (G)
3G

(A.8)

(= + 1)%=+1(G) = (2= + 1)G%= (G) − =%=−1(G) (A.9)

Expanding, this is rewritten as the expression below (see proof in Appendix B)
3%= (G)
3G
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(= + 1)%=+1(G) − (= + 1)G%= (G)

G2 − 1
(A.10)

Using chain rule and equation A.10 yields:
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To simplify the expressions, notice that there is a common term:

 = `�̃= (= + 1)'=A−(=+2) (A.13)

Using  , the final results for the zonal term in spherical coordinates are

0A =  %= (sin \) (A.14)

0\ =  sec(\) [%=+1(sin \) − (sin \)%= (sin \)] (A.15)

0q = 0 (A.16)

A.3 Cartesian Conversion
The variable transform defined below converts back to Cartesian coordinates, where
the q̂ contribution is implicitly assumed to be zero since the equation does not vary
in the q̂ direction:

Ĝ = Â cos(\) cos(q) − \̂ cos(q) sin(\) (A.17)

Ĥ = Â cos(\) sin(q) − \̂ sin(q) sin(\) (A.18)

Î = Â sin(\) + \̂ cos(\) (A.19)

Next, based on a common coordinate system with I pointing towards the north pole,
the below trigonometric identities provide the Cartesian expressions needed for the
coordinate transformation.

sin(\) = I

|A | (A.20)

cos(\) =
√
G2 + H2

|A | (A.21)

tan(\) = I√
G2 + H2

=
I
√
G2 + H2

|A |2 − I2 (A.22)

sin(q) = G√
G2 + H2

(A.23)

cos(q) = H√
G2 + H2

(A.24)

After further algebra transforming equations A.14 - A.16 via equations A.17 - A.19
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and simplifying with equations A.20 - A.24, the final expressions are

0G =
 G

|A |2 − I2
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I
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(A.25)

0H = 0G
H
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(A.26)

0I =  %=+1

(
I

|A |

)
(A.27)

Notice the persistent singularity in equations A.25 - A.27 at the poles (i.e., G = H = 0
and A → I). Either by evaluating the limit or by symmetry about q, we have 0G = 0,
0H = 0. and 0I =  , where %= (1) = 1 simplifies 0I, by definition of the Legendre
polynomial.
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A p p e n d i x B

LEGENDRE POLYNOMIAL RECURRENCE RELATION
DERIVATION

We want to prove the following:

3%= (G)
3G

=
(= + 1)%=+1(G) − (= + 1)G%= (G)

G2 − 1

Using only the below two recurrence relations:
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(= + 1)%=+1(G) = (2= + 1)G%= (G) − =%=−1(G) (B.2)

Proof. First, we differentiate Bonnet’s recurrence formula,
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Applying the first recurrence relation and simplifying the left-hand side yields
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Which simplifies the whole expression from equation B.4 as
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Now we write the first recurrence relation in terms of
3%= (G)
3G
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Offsetting the indices by one yields:
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Substituting equation B.9 back into equation B.7, yields:
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Our last intermediate step is to reorder Bonnet’s relation:

(= + 1)%=+1(G) = (2= + 1)G%= (G) − =%=−1(G) (B.14)

(= + 1)%=+1(G) − (= + 1)G%= (G) = =G%= (G) − =%=−1(G) (B.15)

Combining equation B.13 with equation B.15 yields the desired result.
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A p p e n d i x C

DIMENSIONAL ANALYSIS: BUCKINGHAM PI THEOREM

C.1 Overview
Recall that the Gaussian Process Model must estimate the acceleration (0) as a
function of position (A). Note that the true dynamics are only a function of position
(not velocity or time) since we are assuming that solar radiation and solar gravita-
tional perturbations are considered separate from this framework. To avoid matrix
ill-conditioning under the hood of the Gaussian Process Model, the function output
(0) should be on the same order as the input (A) and near unity. As a result, it is
convenient to solve dimensionless equations and train the Gaussian Process Model
with dimensionless quantities 0̃ and Ã.

C.2 Dimensionless Expressions in the Lowest Order System
Using Buckingham Pi Theorem, we seek to identify the dimensionless groups of
the dynamics. We consider the set-up where 0 ∝ 5 (�, ", A) where � is the
Gravitational constant, " is the mass of the primary, and A is the position. The
dimension matrix is hence:

0 � " A

Mass 0 -1 1 0
Length 1 3 0 1
Time -2 -2 0 0

The null space is the vector (1,−1,−1, 2), which corresponds to:

1 ∝ 0A2

�"
(C.1)

or more naturally,
0 ∝ �"

A2 (C.2)

as is expected for the point mass term in the gravitational expansion. A variant
of this normalization will be used to make the differential equation dimensionless
in the next section. It is critical to note that this normalization is immediate from
Buckingham Pi theorem. Similarly, we can consider the instantaneous Keplerian
period g:4?; with the set-up g:4?; ∝ 5 (�, ", A). The dimension matrix is hence:
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g:4?; � " A

Mass 0 -1 1 0
Length 0 3 0 1
Time 1 -2 0 0

The null space is the vector (−2,−1,−1, 3), which corresponds to:

1 ∝ A3

g2
:4?;

�"
(C.3)

or more naturally

g:4?; ∝
√

A3

�"
(C.4)

as is expected for the Keplerian period. From the full Keplerian derivation, the
proportionality constant is 2c.

C.3 Dimensionless Differential Equation
Recall from the methods section, that we have a dynamical system described by:
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Without loss of generality, we can focus on the Ĝ direction. Specifically:
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where
0G,=,zonal =

 G

|A |2 − I2

[
|A |%=

(
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)
− I%=+1

(
I

|A |
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(C.7)

and  is given by Eq. C.8

 = `�̃= (= + 1)'=A−(=+2) (C.8)

where (G, H, I) are the Cartesian coordinates, and %= is the n-th degree Legendre %
Polynomial. This formulation of motivates three key insights. First, the parameter
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` = �" (i.e., the gravitation parameter of the primary) appears in every term of
the dynamics, except for the control thrust. Second, expressing the position in
units of the average radius (') of the body allows us to eliminate ' throughout
and simplify the terms of the spherical harmonics expansion. Third, notice that
" and ' are intrinsic properties of the primary body. Even if they are not well
constrained prior to flight, fixing these values and using them for normalization
provides a necessary method for comparing gravity models across bodies, prevents
numerical ill-conditioning, and more naturally captures the scale of the problem.

Applying the normalization to ` = �" , we arrive at

−G
|A |3
+

#I∑
==2

[
�̃= (= + 1)'=A−(=+2)G

|A |2 − I2

[
|A |%=

(
I

|A |

)
− I%=+1

(
I

|A |

)] ]
+ )G

`<B

=
0G

`
=

0G

�"

(C.9)

Next we apply the normalization of Ã = A
'
(or equivalently A = Ã'). Recognizing '

is constant (namely so that |' | = '), we arrive at:
0G

`
=
)G

`<B

− G̃'

|Ã' |3

+
#I∑
==2

[
�̃= (= + 1)'= (Ã')−(=+2) G̃'

|Ã' |2 − ( Ĩ')2

[
|Ã' | %=

(
Ĩ'

|Ã' |

)
− Ĩ' %=+1

(
Ĩ'

|Ã' |

)] ]
(C.10)

0G

`
=
)G

`<B

− G̃

'2 |Ã |3

+
#I∑
==2

[
�̃= (= + 1)'−2Ã −(=+2) G̃'

'2 (
|Ã |2 − ( Ĩ)2

) [
|Ã |' %=

(
Ĩ

|Ã |

)
− Ĩ' %=+1

(
Ĩ

|Ã |

)] ]
(C.11)

0G

`
=
)G

`<B

− G̃

'2 |Ã |3

+ 1
'2

#I∑
==2

[
�̃= (= + 1)Ã −(=+2)G
|Ã |2 − ( Ĩ)2

[
|Ã | %=

(
Ĩ

|Ã |

)
− Ĩ %=+1

(
Ĩ

|Ã |

)] ]
(C.12)

0̃G =
0G'

2

`
=
)G'

2

`<B

− G̃

|Ã |3

+
#I∑
==2

[
�̃= (= + 1)Ã −(=+2)G
|Ã |2 − ( Ĩ)2

[
|Ã | %=

(
Ĩ

|Ã |

)
− Ĩ %=+1

(
Ĩ

|Ã |

)] ]
(C.13)

notice that the form 0̃G =
0G'

2

`
matches the form of equation C.1 where we take

A → ' as the normalizing constant (we cannot scale to A since it is a variable). This
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intuitively means that we scale the acceleration by the point mass acceleration at the
average radius '. Since the parameter  is shared across each of 0G , 0H, and 0I, we
label (for convenience in computation),  ̃ defined via equation C.15.

 ̃ =
 '2

`
= �̃= (= + 1)'(=+2)A−(=+2) (C.14)

 ̃ = �̃= (= + 1)
(
'

A

)=+2
= �̃= (= + 1)Ã −(=+2) (C.15)

Then, the dimensionless thrust is )̃G =
)G'

2

`
to yield to yield

0̃G =
)̃G

<B

− G̃

|Ã |3
+

#I∑
==2

[
0̃G,=,zonal

]
(C.16)

Where 0̃G,=,zonal is simplified via equation C.15 to

0̃G,=,zonal =
 ̃G̃

|Ã |2 − Ĩ2

[
|Ã |%=

(
Ĩ

|Ã |

)
− Ĩ%=+1

(
Ĩ

|Ã |

)]
(C.17)

Notice that Ã is usually between 1 (at the average radius) and 100 (roughly the Hill
sphere limit, depending on mass of the object). Then, the velocities are generally
between 0.01 and 10. The accelerations are generally between 0.001 and 10. Hence,
we prevent ill-conditioning since the position, velocity, and acceleration data are of
similar magnitude and near unity.

C.4 Summary and Key Takeaways
The following conversionsmove between dimensionless quantities and the otherwise
base scientific units (Table C.1).
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Table C.1: Conversion table between dimensionless quantities (each has a tilde) and
quantities with dimensions

Quantity Expression Explanation

Acceleration 0̃ = 0
'2

`
The acceleration felt at the space-
craft per the acceleration at the av-
erage radius of a point mass body.

Velocity Ẽ = E

√
'

`
The spacecraft velocity per the ve-
locity of circular orbit about a point
mass at the average radius of the
body. Equivalently, the normalized
position per unit of normalized time.

Position Ã =
A

'
The spacecraft position per average
radius of the body.

Period (Keplerian) g̃:4?; = g

(
2c

√
`

A3

)
The instantaneous orbital period per
period of a Keplerian orbit about a
point mass. Note the equation is
written in terms of A as a variable,
rather than ' which is a constant.

Time C̃ = C

√
`

'3 The time elapsed per the time to
complete one radian of a circular
Keplerian orbit at the average radius
of a point mass body. (g̃:4?;/2c for
A → ')


