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ABSTRACT 

I have studied hadronic decays of the Z boson that are accompanied by isolated 

and energetic photon radiation from one of the primary quarks , Z ~ qq, . This study 

enables me to measure the electroweak couplings and charges separately for up-type 

and down-type quarks. 

I have measured the fraction of hadronic Z decays that contain a photon radiated 

by a primary quark to be 

BR(Z ~ qq, ) = (2.85 ± 0.14) x 10-3 , 

BR(Z ~ qq) 

where I required that the photon have an energy between 8 GeV and 44 GeV and be 

accompanied by less than 100 MeV of hadronic energy within a 20° cone about its 

direction. Both the statistical and systematic errors in this result are smaller than 

those of comparable previous results. 

I have calculated the energy distribution of isolated final-state radiation at next-to

lowest order, 0( a 5 a ), and performed a fit of this prediction to my measured energy 

distribution to obtain a constraint on the quark couplings. I have combined this 

constraint with a second constraint that I have derived from the 13 measurements 

of cross sections and charge asymmetries at the Z peak. By assuming the Standard 

Model quark charges, I have measured the couplings of up- and down-type quarks to 

the Z boson, c = 4 (g" 2 + gA 2
) , to be 

Cu = 1.11 ± 0.17 and Cd = 1.52 ± 0.11 . 

The experimental errors in this result are smaller than those of comparable previous 

measurements. By parameterizing cu and Cc1 in terms of the quark charges, I have 

measured these charges to be 



ABSTRACT V 

This is the first such measurement of the quark charges at 1EP. The quark electroweak 

couplings and charges that I have measured are consistent with the Standard Model. 

I have selected a. sample of events containing isolated and energetic photons from 

2. 76 million hadronic Z decays recorded by the 13 detector between 1991 and 1994. I 

have analyzed this sample to determine the energy distribution of isolated photons ra

diated by a primary quark by subtracting initial-state bremsstrahlung and hadronic 

background, and by applying acceptance and detector corrections. The hadronic 

background, which consists mostly of decays of isolated neutral pions into photons, is 

underestimated by existing Monte Carlo models. I have used a new technique of ana

lyzing shower shapes in the 13 electromagnetic calorimeter to study this background 

directly using data. The discrepancies between data and Monte Carlo predictions 

that I have observed have implications for detecting the Higgs decay, H-----+ ,,, at the 

next generation of high-energy experiments at the 1HC. 
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CHAPTER 1 

INTRODUCTION AND OVERVIEW 

In this thesis, I study hadronic decays of the Z boson in which a photon is radiated 

by one of the primary quarks, Z ~ qq, ( see Figure 1. 1). l'viy motivation for this study 

is to measure the couplings of quarks to the Z boson and to the photon. 

y 

Figure 1.1: Diagram of the reaction e+e- ~ qq, that I study in this thesis. 

The data that I will describe were collected between 1991 and 1994 from electron

positron annihilations into Z bosons at 91 GeV. These reactions \Vere produced by 

the LEP accelerator and recorded by the 13 detector. The Z bosons produced at 

LEP can decay into leptons or hadrons (which originate from a primary qq pair). 

The specific final state that I study in this thesis consists of hadrons together ,~.;ith 

an energetic and isolated photon. 

In the Standard Model, there are two types of quarks, which I refer to as up-type 

and down-type , and their interactions with Z bosons and photons can be described 

using four coupling parameters (see Figure 1.2): cu and Cc1 are the couplings to Z 
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bosons, and Q/ and Q/ are the couplings to photons. 13 has measured the inclu

sive rate of Z decays into quarks , r(Z -----+ qq) ; this measurement constrains a linear 

combination of the quark couplings 

where the factors 2 and 3 count the numbers of up- and down-type quarks that a Z 

can decay into. In this thesis , I measure the exclusive rate of hadronic Z decays that 

are accompanied by final-state radiation , r(Z -----+ qq, ), and thus constrain a different 

linear combination 

By combining these constraints , I am able to determine the values of the quark 

couplings. 

(b) Z➔qqy 

z z 

Figure 1.2: Diagrams for two Z decay processes whose rates constrain the 
quark couplings to the Z boson and the photon: inclusive decays into quarks 
(a) , and exclusive decays that are accompanied by a radiated photon (b). 

I have organized this thesis in three parts. In the first part ( Chapters 2- 4) , I give 

an overview of the theoretical and experimental context of my work. In the second 

part ( Chapters 5- 7 and Appendix A), I describe my original contributions to the 

study of final-state radiation in hadronic Z decays. In the last part ( Chapter 8) , I 
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describe how I combine my experimental and theoretical results to measure the quark 

couplings. Below, I give a brief outline of each chapter. 

In Chapter 2, I describe the Standard IVIodel of particle physics, concentrating on 

the electroweak and strong interactions that are relevant to this thesis. Chapter 3 

covers the LEP accelerator and the L3 detector in general , and in Chapter 4, I provide 

a more detailed description of the L3 electromagnetic calorimeter, which is the main 

component of the detector that I have used. 

In Chapter 5, I present the methods that I have used to select a sample of events 

that is enriched in final-state radiation. As part of this work , I have developed 

new techniques for discriminating between single and overlapping photons in the 

detector and I provide details of this approach in Appendix A. Chapter 6 covers 

the data analysis that I perform on my selected events, which involves estimating 

and subtracting irreducible background contributions, and correcting for the limited 

efficiency and acceptance of the detector. 

In Chapter 7, I discuss theoretical models of final-state radiation, and in partic

ular , I describe the next-to-lowest order, O(a5 a) , matrix-element calculation that I 

have performed. I compare theory with data in Chapter 8, in order to measure the 

couplings of up- and down-type quarks to the Z boson and the photon. Finally, in 

Chapter 9 I summarize the main results of this thesis and compare them with results 

from other experiments. 
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CHAPTER 2 

STANDARD MODEL PHYSICS 

In this thesis I examine hadronic decays of the Z boson accompanied by hard 

photon radiation from the final-state quarks. This process involves electromagnetic, 

weak, and strong interactions. Our present understanding of these interactions and 

of the fundamental particles of nature is embodied in the Standard Model of particle 

physics. In this chapter I first introduce the key theoretical concepts underlying the 

Standard Model, and then describe the specific formulation of the electroweak and 

strong sectors, focusing on aspects relevant to this thesis. 

Much of the development of the Standard l\!Iodel is due to the insight that the 

laws governing a system can be deduced from its symmetries. A complementary 

aspect - central to the success of the Standard Model - is that states satisfying 

the fundamental equations of the theory need not obey the symmetries inherent in 

the equations. A symmetry of a physical system can be described by generalized 

coordinate transformations that do not change its equations of motion; the set of 

these transformations has the mathematical structure of a group. Symmetries can 

be classified according to whether their corresponding symmetry groups are finite or 

infinite (discrete/continuous) , whether or not group elements commute ( abelian/non

abelian), whether the transformations act in Lorentz space or upon internal degrees 

of freedom (geometrical/internal), and whether the transformations are constant or 

varying in space-time (global/local). The most convenient method for studying sym

metries of a field theory is the Lagrangian formalism , based on a functional £( ¢, a,A>) 
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of the fields </>( x //) , which is related to the classical action S by 

This Lagrangian density (for convenience referred to simply as the Lagrangian) sat

isfies a least action principle which leads to the equations of motion 

a.c a.c 
a<1> = 8µ a (oµ</>) 

For every continuous symmetry of the Lagrangian ( or equivalently, the equations 

of motion) there is a corresponding conservation law[l]; for example, symmetry under 

space-time translations corresponds to energy-momentum conservation. The program 

for generating the interactions between the fundamental constituents of the Standard 

Model consists of generalizing global internal symmetries of the Lagrangian for a 

free particle as local symmetries (gauge transformations), and identifying the extra 

terms that must be added to the free-particle Lagrangian to achieve local symmetry 

as interactions involving a new field (gauge bosons). Interactions are between source 

fields (fermions) and gauge bosons and, in the case of non-abelian symmetries, also 

among gauge bosons. 

The gauge bosons associated with new gauge fields cannot be massive as this would 

entail an additional term in the Lagrangian which is not gauge invariant . Massive 

gauge bosons in a theory are introduced via spontaneously broken symmetries that 

are exact for the Lagrangian, but are not respected by the vacuum state. Symmetry 

breaking occurs in a system having a degenerate set of possible vacuum states, where 

the degeneracy reflects the unbroken symmetry, and is a consequence of the fact 

that nature must pick a unique physical vacuum. The equations of motion expressed 

in terms of states coupled to the physical vacuum manifest additional massless fields 

( Goldstone bosons) associated with the degrees of freedom of the broken symmetry[2]. 

However, these Goldstone bosons do not appear in the resulting particle spectrum; the 

combined effect of the Goldstone and massless gauge boson fields is exactly equivalent 
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to a set of gauge bosons which acquire mass via the interactions of the massless bosons 

(this is known as the Higgs mechanism)[3]. 

2.1 Electroweak Interactions 

In this section, I describe the electroweak sector of the Standard Model , ·which pro

vides a unified description of the electromagnetic and weak interactions of quarks and 

leptons. Although weak and electromagnetic phenomena are not obviously related 

at low energies, their unification is motivated by the observation of charged weak 

currents which suggests that interactions can occur between the mediators of these 

forces. 

The internal symmetries used to build the electroweak theory are known as weak 

hypercharge with generator lr and based on the abelian U(l) group, and weak isospin 

with generators I= U+, L , h) and based on the non-abelian group SU(2)[4- 6]. The 

source fields of the electroweak sector are grouped into families of leptons and quarks 

and a single family of scalar bosons1, and form left-handed iso-doublets and right

handed iso-singlets characterized by the quantum numbers I = III, hand lr (see table 

2.1). The Lagrangian for a non-interacting theory with the source fields described 

above has an internal global symmetry with the group structure SU(2) 0 U(l). Re

quiring that the corresponding local symmetry be spontaneously broken results in 

a particle spectrum with an additional weak-isospin triplet of vector gauge bosons 

w± ,Z; a photon; and a scalar Higgs boson H0
. All charged leptons and the ·w± ,Z,H0 

bosons acquire mass from the spontaneous symmetry breaking through the Higgs 

mechanism. Although the physical vacuum does not have SU(2) 0 U(l) symmetry, 

it does have a manifest U(l) symmetry corresponding to the linear combination of 

1This is the minimal Higgs content required for spontaneous symmetry breaking and leads to the 
Minimal Standard Model; however, consistent theories with additional Higgs fields are also possible. 
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generators 
1 . 

Q=h+ 21 , 

which results in conservation of electric charge and a massless photon. 

Families I h 1· Q 

(:} (:,l CJ 1/2 -1/2 -1 -1 

1/2 +1/2 -1 0 

eR µR TR 0 0 -2 -1 

(;} ( ; ) L G,)L 
1/2 +1/2 1/3 +2/3 
1/2 -1/2 1/3 -1/3 

UR CR tR 0 0 4/3 +2/3 
d' R 

I 
SR b' R 0 0 4/3 -1/3 

( :: ) L 

1/2 +1/2 1 +1 

1/2 -1/2 1 0 

Table 2.1: Quantum numbers for the source fields of the electroweak sector 
of the Standard l\fodel. 

7 

The phenomenology of hadronic weak interactions dictates that quark mass eigen

states are not electroweak eigenstates. With an appropriate choice of quark state 

phases , the Cabibbo mixing [7) between eigenstates can be restricted to the dovm

type (h = -1/2) quarks of each family 

where U is a unitary matrix[8 , 9). With more than two quark families , U will in 

general include complex elements, and thus explicitly violate invariance under the 

combined discrete symmetries of charge conjugation ( C) and parity ( P) [10, 11]. 

The best-developed tool for the calculation of electroweak observables is pertur

bation theory, in which the expansion parameters are the coupling strengths of the 

gauge bosons. Terms in a perturbative expansion can be represented as Feynman 

diagrams that depict the topological flow of fermions and bosons through space-t ime 
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as lines , and interactions as vertices. The set of allowed vertices and the rules for us

ing them are determined by corresponding terms in the Lagrangian ( see Figure 2 .1); 

each vertex introduces a gauge coupling so that the perturbative expansion is simply 

an expansion in the number of vertices in the diagram. The gauge couplings and 

fermion masses appearing in the Lagrangian are free parameters of the theory, but 

may be expressed in terms of measurable observables, and thus may by determined 

experimentally. At a finite order in perturbation theory, this procedure is not exact 

due to missing higher-order contributions whose size in general decreases as further 

orders are taken into account. 

:rZ,y f1rw 
f2 

:>---Ho 

:rZ,y W,Z> Ho', 

- - - Ho ' ' 0 .,>----H 
., 

Ho,.-
., 

W,Z 

WXW,Z,y 0 Ho', .,, Ho W,Z><,H ' 
., 

' 
., 

' ., 
X ., 

' ., 
' 

w z '-H0 Ho,.-
., 

' ', HO W W,Z,y 
' 

Figure 2.1: Interaction vertices of the electroweak sector of the Standard 
Model. The diagrams represent topological structure only and any assign
ment of lines to the initial and final states of the interaction is allowed. f 
denotes any fermion; f1 , f2 denote the members of a weak-isospin doublet of 
fermions. 

Beyond lowest order in perturbation theory, it is necessary to consider diagrams 

including closed loops. Such loops are associated with an unconstrained internal 

4-momentum which must be integrated out , and lead to logarithmic ultraviolet di

vergences in the perturbative expansion. It is a general feature of spontaneously 
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broken gauge field theories that such divergences can be consistently handled at each 

order of perturbation theory by replacing the bare wave-functions , gauge couplings, 

and propagators of the Lagrangian with renormalized quantities , which introduces 

appropriate canceling singularities[12, 13]. There is some arbitrariness in the choice 

of renormalization scheme; while all schemes lead to the same results when all orders 

are included in the perturbation expansion, finite-order calculations have a resid

ual renormalization-scheme dependence. The renormalization program suffers from 

anomalies[l4 , 15] which are associated with loop contributions that violate classical 

conservation laws; one of these - the axial anomaly - is conveniently resolved by 

requiring that the number of quark and lepton families be the same. 

2.1.1 Electron-Positron Reactions 

I now focus on the initial state consisting of an electron and positron, which is relevant 

to the subjects covered in this thesis. The lowest-order reaction diagrams are shown 

in Figure 2.2 and result in final states consisting of a particle anti-particle pair , xx, 

satisfying the kinematic constraint 

The lowest-order diagrams are naturally divided into two classes according to whether 

the virtual propagator is produced by annihilation of the initial state ( s-channel, 

Figure 2.2 ( a-f)) or by emission and re-absorption by the initial state ( t-channel, 

Figure 2.2 (g-k)). 

The relevant center-of-mass energy to the \:\'Ork described here is m 2 '.:::::' 91.2 GeV, 

where the allowed final states include pairs of all fermions except the t-quark, and 

the production of pairs of massive bosons (Z,\i\T± ,H0 ) is kinematically forbidden. Dia

grams involving a virtual H0 propagator are strongly suppressed due to the smallness 

of the H0 coupling to light fermions , and can be neglected. 
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e+>:<t+ 
e- (a) f 

e+>:<y 
e- (:) V 

e+>=<w+ 
e- (c) w-

e+ Z 

6->:<Ho 
e+ t+ 

e->::<f 
e+ WZ 

e->::<w:z 
e+ ✓ H0 e+)fe+ e+~y >HO/ e- ;,; <,,',H0 e- (ht v e- (g) e-

e+XZ/y e+ w+ e+ e+ 

e-:fw-
~ 

: Ho 

e- (i) e Z/y e-~e-

Figure 2.2: Lowest-order Feynman diagrams for electron-positron reactions. 
The initial state of each diagram is on the left-hand side, and the final state is 
on the right-hand side. f+ , f- denote a charged fermion and its anti-particle. 

2.1.1.1 The Reaction e+e- --+ ff 

I now concentrate on the final state consisting of a fermion anti-fermion pair, ff, 

produced via s-channel exchange of a photon or Z boson, which is relevant to the work 

described here. I do not consider the production of e+e- or vJJe pairs since these can 

also be produced via t-channel exchange diagrams. The differential cross section for 

the production of ff pairs in collisions of unpolarized e+ , e- beams corresponding to 

the lowest-order s-channel diagrams (Figure 2. 2 ( a, b)) is 
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where 

Fi(s) = Q;Q; + 2QeQfg~,g;, Rex(s) + (g~,2 + g~ 2 )(g~,
2 + g~

2
) lx(s)l 2 

F2(s) = 2QeQ[g~g~ Re x(s) + 4 g~,g~g~.g~ lx(s)l2 
l s 

x( s) = 4 . 2 e 2 e . 2 ·, r sin IV cos IV s - mz + imz z 

~ r a ( r 2 r 2) r z = ~ Nc-rnz g\' + gA . 
f 
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The vector and axial couplings are given by (h refers to the quantum numbers of the 

left-handed state) 

f Jf gA = 3 ' 

N~. is the color factor ( with a value of 1 for leptons, and a value of 3 for quarks) and 0 

is the angle between the incoming e- and the outgoing fermion in the center-of-mass 

frame of the reaction. Terms due to the mass of the final-state fermion are 0( m~ / s) 

and can be neglected for the allowed fermions at vs '.:::::'. m 2 (below the threshold for tt 

production). The free parameters in the lowest-order cross section whose values must 

be determined experimentally are the electromagnetic fine-structure constant2 a '.:::::'. 

1/128, the weak mixing angle sin2 0i,v '.:::::'. 0.231, and the Z boson mass m 2 '.:::::'. 91.2 GeV. 

The total cross section for the production of ff pairs is defined as 

-J da- ( + - -) er a ( s) = dO dO e e ---+ ff , 

and is given to lowest order by 

( ) 8 0:2 f ( ) eras = --NcF1 s , 
3 4s 

which is plotted in Figure 2.3 for qq production. The cross section is dominated 

by resonant Z exchange near vs = m 2 , and by non-resonant r exchange at other 

energies. The dependence of the differential cross section on the polar angle is shown 

2 This is the value that would be determined by comparing a measurement with the lowest-order 
calculation. At higher orders, the value 0:(m 2 ) ::: 1/128 arises from the evolution of the running 
coupling from 0:(m,.)::: 1/137.04[16]. 
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at lowest order in Figure 2.4 for qq production at ys = m 2 , m 2 ± r z. The energy

dependent asymmetry between forward and backward production is a feature of Z 

exchange and can be quantified as 

where 
{7r/2 dCJ 

CJp(s) = Jo dO dO ' 

The asymmetry is given to lowest order by 

3 ci f F2(s) 
AFB(s) = 4 4s Ne Fi(s) ' 

which is shown in Figure 2.5 for various final states. 

-.c 
C: -a 
C" 

i 
Q) 

+ 
Q) -0 

10 

1 

-1 
10 

2/y exchange 

Z exchange 

yexchange 

20 30 40 50 60 70 80 90 1 00 11 0 120 

✓s (GeV) 

Figure 2.3: Total cross section for qq production as a function of collision 
energy, calculated to lowest order. The individual contributions of Z and , 
exchange are shown with dashed and dotted curves. 

Calculation of higher-order corrections to the lowest-order results given above 

requires a choice of renormalization scheme to regulate ultraviolet divergences. A 
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Figure 2.4: Polar angle dependence of the differential cross section for qq 
production, calculated to lowest order, at collision energies near m 2 . The 
curves for each energy are normalized to the total cross section at that energy. 
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convenient scheme for electroweak calculations is on-shell renormalization in which 

poles are located at the measured physical particle masses. The free parameters in 

this scheme are [ 1 7] 

e , mr , rn2 , mw , rnH , 

which have been directly measured except for mt, mH; and the lowest-order expres

sions for the gauge couplings are promoted to definitions to be used at all orders 

e2 1 
(t=:-'.::::'.---

41r 137.04 

2 
. 2 _ rn",._,. 

sm 0,,17 = 1 - -
2
- . 

rn2 

The on-shell renormalized one-loop corrections to ff production separate natu

rally into electromagnetic and non-electromagnetic ( weak) corrections. The electro

magnetic corrections are due to diagrams with additional photons, either radiated 

or in loops , and are numerically the most important. Near Js = m 2 , the largest 

corrections are due to photon radiation from the initial state, which occurs with a 
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Figure 2.5: Forward-backward asymmetry for different final states in e+e
s-channel scattering, calculated to lowest order, as a function of collision 
energy VS· 

probability proportional to 
er(s - 2E,vs) 

er( s) 

14 

and is thus sensitive to the rapid variation of er( s) near the Z resonance. The 

weak one-loop corrections are numerically small and depend on the value of the 

unknown parameter mH. The leading weak corrections are conveniently introduced 

into lowest-order calculations with a set of substitution rules known as the improved 

Born approximation[18]. These rules parameterize the electromagnetic coupling, a , 

the Z width , r z , and the vector and axial couplings, gf, and g~, as functions of the 
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center-of-mass energy, VS, according to 

a 
a ----+ ----

1 - ~a(s) 
s 

fz----+ -2rz 
mz 

l ----+ vPJ7J (11 - 2 ~r(s) Qr sin2 0w) 

g.~ ----+ /pJ7) Ii ' 

where the functions ~a(s), pr(s), and ~r(s) incorporate the weak corrections. 

15 

Near vs = m 2 , all light fermions can be treated universally, and it is customary 

to introduce energy-independent effective weak correction factors 

Pr( s) ----+ Peff = p( mz) 

which lead to effective vector and axial coupling constants g~.ff, g:ff, and an effective 

weak mixing angle, 01v, via 

. 2-0 - . 20 
Sln iv = ~eff Sln w . 

Figure 2.6 shows the energy dependence of the total cross section for producing qq 

pairs near the Z resonance, comparing calculations at lowest order, using the improved 

Born approximation, and including all calculated corrections. 

2.2 Strong Interaction Physics 

This section describes the strong sector of the Standard Model, which governs interac

tions between quarks and gluons ( collectively called partons), believed to be the fun

damental constituents of hadrons. Although partons and the strong color charge[20] 

are not directly observable, their existence can be inferred from the phenomenol

ogy of hadronic interactions, including the partial decay width of neutral pions into 

photons[21) and the hadronic production cross section in e+e- annihilation[22-24]. 
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Figure 2.6: Total cross section for qq production as a function of collision en
ergy, calculated with different levels of higher-order corrections. The lowest
order curve is calculated with a '.:::::'. 1/128. The curve with all corrections was 
calculated with the program ZFITTER[19]. 
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The gauge theory of quark and gluon interactions is known as Quantum Chromo

dynamics ( QCD) [25- 30], and is based on an exact internal symmetry with non-abelian 

SU(3) group structure. The theory represents quarks as color triplets (labeled as 

red, green, and blue) and generalization of the global SU(3) symmetry of the free

quark theory to a local symmetry introduces a color octet of massless bosons (gluons) 

that mediate the color force. Gluons carry color charge themselves ( each gluon being 

labeled by two colors) and are thus self-interacting. Figure 2. 7 shows the fundamental 

vertices associated with terms in the QCD Lagrangian. 

The usefulness of a finite-order perturbative calculation depends on the size of 

the expansion parameter. To lowest order, the QCD gauge coupling, a 5 , is constant 

and a free parameter of the theory. When higher-order corrections are included, it 

is necessary to choose a renormalization scheme for the regularization of ultraviolet 
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g~ 

g 

Figure 2. 7: Interaction vertices of the strong sector of the Standard Model. 
The diagrams represent topological structure only and any assignment of 
lines to the initial and final states of the interaction is allowed. 
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divergences. The on-shell scheme used in electroweak calculations is not appropriate 

for QCD where there are no natural physical mass scales. Instead it is convenient to 

use the modified minimal subtraction scheme ( denoted MS) in which all renormalized 

quantities are defined at a common arbitrary scale µ. In this scheme the expansion 

parameter becomes the effective gauge coupling et5 (µ,) whose scale dependence is given 

implicitly by the renormalization group equation 

28Cts 2~ k 
µ fj2 = -Cts ~ Pkets · 

µ, k=O 

The first three {3-coefficients have been calculated[31-33] (/30 , /31 are renormalization

scheme independent, /32 is given in the MS scheme) 

/3 
_ 33 - 2n1 o-

127f 

/3 
_ 153 - 19n1 

1 - 241r2 

77139 - 15099n1 + 325n} 
132 = 34561r3 

= 0.610 

= 0.245 

= 0.091, 

where n 1 is the number of active flavors and numerical values are for nf = 5 appro

priate forµ, '.:::'. mz. Figure 2.8 shows the µ 2-evolution ( running) of the strong coupling 

at different orders of perturbation theory, and makes apparent the convergence of the 

perturbative expansion. 

The running of et5 is given explicitly at leading order by 
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Figure 2.8: Evolution of a 5 (µ) from a 5 (rnz) = 0.12 different approximations 
to the renormalization group equation, with n f = 5. 

which decreases with increasing µ for n1 :::; 16. This behavior is opposite to the 

analogous running of the electromagnetic coupling which increases with increasing 

µ. This trend reflects two important properties of QCD: asymptotic freedom[28- 30] 

and confinement[34, 35]. Asymptotic freedom occurs at large energy scales (short dis

tances), where the strong coupling is small, and partons behave as quasi-free objects 

whose interactions can be computed perturbatively. Confinement occurs at small 

energy scales (large distances) , where the strong coupling is large and induces con

fining forces that bind partons into colorless hadrons and forbids the existence of free 

quarks or gluons. It is customary to denote the scale that characterizes the onset of 

confinement as 

A = µ6 exp [ /3 ~ ~ ) ] 
oas µo 

Calculating QCD observables in perturbation theory presents several obstacles 

that are not present in corresponding electroweak calculations. A fundamental issue 
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is the relationship between the parton production that a calculation describes and the 

production of hadrons that an experiment can detect. Although the QCD Lagrangian 

does in principle define this relationship, it is not known how to generate quantitative 

predictions on this basis, and phenomenological models must be used instead. An

other fundamental problem is that a fixed order perturbative calculation depends on 

the renormalization scale, µ,. It is intuitively reasonable that µ should be chosen on 

the basis of the natural energy scales of a problem, and indeed this effectively includes 

a class of corrections at all orders. The arbitrariness in the details of this choice, how

ever, can lead to sizable numerical uncertainties. A significant technical obstacle is 

the rapid proliferation of diagrams at each order due to the gluon self-coupling, which 

currently limits most calculations to second order. This is further aggravated by the 

large size of the strong coupling at presently accessible energy scales, which limits the 

precision of low-order calculations and our ability to test the theory. 

2.2.1 Hadronic Z Decays 

I now consider the production of hadrons in electron-positron collisions near fa= m 2 , 

for which the dominant process is s-channel Z exchange with subsequent Z decay into 

a quark-antiquark pair. The calculation of QCD observables in e+e- collisions is 

easier than for collisions involving initial-state hadrons since the perturbative hard

scattering sub-system is well-defined. An advantage of large center-of-mass energies, 

Js '.::::'. m 2 , is that individual events are characterized by narrmv jets of hadrons that 

can be identified with the partons of the hard-scattering final state. 

Figure 2.9 shows a schematic view of a hadronic Z decay and its conventional 

decomposition into phases. Although the transitions between these phases are con

tinuous and thus must be chosen arbitrarily, this scheme offers a useful framework 

for integrating the different methods of calculation available. The first phase, Figure 

2.9( a), is the production of a primary quark-antiquark pair, viewed as an essentially 

electroweak phenomenon; the second phase, Figure 2.9(b ), covers the evolution of the 
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primary qq pair under perturbative QCD , and is dominated by gluon radiation; the 

third phase, Figure 2.9( c), represents the transition from partons to hadrons; and the 

final phase, Figure 2.9(d), consists of the decay chains of unstable hadrons. Although 

all phases are in principle described by the Standard Model, only phenomenological 

models are presently able to treat the last two phases. 

(a) (b) (c) (d) 

Figure 2.9: Schematic view of a hadronic Z decay, decomposed into phases: 
( a) represents the electroweak production of a quark-antiquark pair, (b) rep
resents the perturbative QCD evolution, ( c) represents the transition from 
partons to hadrons, and ( d) represents the decays of unstable hadrons. 

The are several types of observables relevant to hadronic Z decays. The first class 

contains fully inclusive observables that place no restrictions on the final state, and 

thus allow an unambiguous interpretation of the partonic calculation since all partons 

must produce hadrons. Observables in this class are related to the total hadronic cross 

section, for which QCD corrections can be calculated at the same level of precision 

as electroweak corrections, but which are not sensitive tests of QCD due to the small 

size (fe-w percent) of QCD corrections. 

Non-inclusive observables describe the distribution of hadrons in the final state, 
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and can be classified as essentially perturbative or non-perturbative. In the first case, 

a perturbative calculation using partons is used, and the non-perturbative phases 

(Figure 2.9( c,d)) are expected to introduce only small corrections. This requires that 

the perturbative observable can be consistently evaluated for both hadrons and par

tons, and that it reflects features of the hadronic distribution that are present in the 

underlying parton distribution. Examples of perturbative observables are jet differ

ential cross sections and event-shape variables. In the second case, non-perturbative 

effects do not represent small corrections and must be explicitly taken into account. 

Examples of non-perturbative observables are the number of hadrons in the final state 

and the correlations between identical hadrons. 

Diagrams for Z decay into quarks and gluons up to 0( a 5 ) are shown in Figure 

2.10 and correspond to the perturbative expansions 

80" I 2 
1

2 

8
<I>

2 
ex Mo + a5 M2 + 0( a 5 ) 

= IMol 2 + as (MoM2 + MoM2) + 0(a;) 

80" I 1/2M + 0( 3/2) 12 
8<I>

3 
ex as 1 as 

= as IM112 + 0(a;) 

k>4 
- ' 

where <Pn parameterizes n-particle phase space, and quarks and gluons are consid

ered to be experimentally indistinguishable. After renormalization of the ultraviolet 

divergences associated with loops, the total cross sections for different partonic final 

states 

- j d;r... 00" - ~ k (k) 
O"n = '±'n O<Pn - ~ QsO"n 

k=n-2 

are still individually divergent. These remaining infrared singularities are associated 

with real or virtual emission of soft and collinear gluons, but cancel at each order k, 
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so that the sum 
k+2 

L (J"~k) 

n =2 

is finite. Infrared divergences are due to the masslessness of the gluon, and also occur 

for photons in the electroweak sector. A sufficiently inclusive observable that does 

not upset this cancelation of soft and collinear divergences at each order is known 

as infrared safe. This is equivalent to the condition that the observable does not 

distinguish between an isolated quark and a quark accompanied by vanishingly soft 

and collinear gluons. 

(a) Mo 

Figure 2.10: Feynman diagrams for hadronic Z decay giving contributions up 
to O(a5 ). Diagrams (a) and (c) have the final state qq and are zeroth and 
second order respectively. Diagram (b) has the final state qqg and is first 
order. 
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CHAPTER 3 

THE L3 DETECTOR AT LEP 

The work described in this thesis is based on e+e- collisions recorded by the L3 

detector at LEP. The 13 detector was designed and constructed by an international 

collaboration, that presently includes 452 physicists from 43 institutes. In this chapter 

I describe the LEP collider facility, the components of the 13 detector , the trigger 

and data-acquisition systems, and the 13 measurement of luminosity. 

3.1 The Large Electron-Positron Facility 

The Large Electron-Positron facility (LEP) is operated by the European Center for 

Particle Physics (CERN) located near Geneva, Switzerland (see Figure 3.1). LEP 

is an e+e- accelerator and storage ring with four interaction points, which are in

strumented by the ALEPH[36], DELPHI[37), 13[38) and OPAL[39) detectors. Since 

its commissioning in 1989, LEP has operated with beam energies near 46 GeV, ex

ploiting the large event rate at the Z resonance; by the end of 1996 LEP will enter 

a new phase, LEP II, with beam energies from 83 GeV to about 95 GeV, above the 

threshold for w+w- pair production. 

Figure 3.2 shows the stages of the LEP injection system. Electrons from a filament 

are accelerated to 200 MeV in a linear accelerator (LIN AC) and directed at a tungsten 

target to produce positrons. These positrons together with electrons from a second 

filament are accelerated to 600 MeV by a second LIN AC and then injected into 

the electron-positron accumulator (EPA), which condenses the beams into compact 



3.1 THE LARGE ELECTRON-POSITRON FACILITY 

t-----11 km 

Jura 

France 

Airport 

Figure 3.1: Map of the region near Geneva, Switzerland, showing the location 
of LEP, and the PS and SPS stages of the LEP injection system. 
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bunches through synchrotron radiation damping. The bunches are accelerated in 

the converted proton synchrotron (PS) and super proton synchrotron (SPS) to 3.5 

and then 20 Ge\! respectively, after which they are ready for injection into the main 

LEP ring. The maximum current that can be injected into LEP is presently limited 

to ~ 0.8 mA per bunch, by instabilities generated from the coupling between the 

transverse modes of the two beams[40]. 

After injection at 20 GeV , LEP accelerates the electron and positron beams to 46 

GeV and then operates as a storage ring with collisions at the four interaction points. 

LEP has a total length of 27 km and is divided into eight curved and eight straight 

sectors. Each curved sector consists of a lattice of focusing and bending magnets that 

maintain the bunches in precise orbits during acceleration and storage. Energy for 
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Figure 3.2: Schematic diagram showing the layout of the LEP injection sys
tem. The final PS and SPS stages are also used simultaneously for accelera
tion of protons, anti-protons, and heavy-ions. 
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acceleration and for compensation of the losses due to synchrotron radiation ( about 

120 Me\! per turn) is provided by 120 copper cavities, excited at radio frequencies 

and distributed in two of the straight sectors. The higher energies of LEP II will 

require 176 (240) additional superconducting cavities to reach energies of 90 GeV 

(95 Ge\!) per beam. Some of these cavities are already installed and are being used 

during 1995. The maximum current that can be stored during collisions in LEP is 

presently limited to '.::::'. 0.35 mA per bunch by beam-beam interactions, which cause 

the transverse area of the beam to increase in proportion \\Tith the bunch current, 

eventually interfering with the physical aperture[40]. 

The rate of collisions at the interaction points is proportional to the LEP lumi-
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nosity 
kl2 t· 

L= . 
41re2CJxCJy 

where k is the number of bunches per beam, I is the current per bunch, f '.'.:::'. 11.4 kHz 

is the rotation frequency, and CJx, O"y are the transverse beam sizes. In practice, the 

most effective way to increase the luminosity is to increase the number of bunches. 

Between 1989 and 1991 , 1EP operated with 4 bunches per beam. Between 1992 

and 1994, the optics were upgraded to use a Pretzel scheme[41], in which there are 

8 bunches per beam, a lower bunch current, and an overall increase of 50% in the 

average luminosity[40]. During 1995, 1EP has been commissioning a further upgrade 

to bunch trains[42] ,vhich will eventually provide the higher luminosity required at 

1EP II. This ne,,· scheme is similar to the original four-bunch scheme, but with each 

bunch nmv replaced by three bunchlets closely spaced over about 750 nanoseconds. 

The current highest luminosity achieved this year is just over 2.0 x 1031 s- 1 cm-2 . 

Figure 3.3 shows the integrated luminosity recorded for physics at the 13 interac

tion point during each year between 1991 and 1994, as well as during the first part 

of 1995 (until the end of August). The luminosity recorded by 13 is about 80% of 

the luminosity delivered by 1EP with the remaining 20% being lost due to occasional 

high-background conditions, data-acquisition dead time, and problems with individ

ual detector and readout components. The improvement in luminosity achieved us

ing bunch trains is not yet reflected in the integrated luminosity for 1995 because 

of problems with the radio-frequency and injector systems that are currently under 

investigation. 

The most important 1EP operating parameter for physics studies is the beam 

energy. The most precise absolute energy calibration of 1EP involves applying a pe

riodic radial perturbation to transversely polarized beams, by sweeping the frequency 

of the acceleration cavities, and determining the perturbation frequency that causes 

the largest depolarization[43]. This method fixes the beam energy to better than 

1 l'vfeV, but it is time consuming and cannot be done during collisions and thus is 
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Figure 3.3: Luminosity available for physics at the L3 interaction point, 
integrated over each of the years 1991- 95, as a function of the day of the 
year (1- 365 ). Note that LEP running during each year typically starts at 
the beginning of rvlay and continues until the middle of November. The 
luminosity shown for 1995 is for the first part of the year , between May and 
August. 

27 

only performed every 1-2 weeks. Between these resonant depolarization calibrations, 

the beam energy drifts by ~ 1.5 IVleV /hour due to tidal deformations of LEP that 

are predictable and now routinely corrected for[44], and by ~ 1 MeV /hour by other 

effects that are not presently understood 1 . Occasional jumps of ~ 20 MeV have also 

been observed and are being investigated. 

1 Recently a. correlation between these non-tidal drifts and the level of the local water table has 
been established, which could be corrected for in the future. 
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3.2 The L3 Detector 

13 is one of four detectors recording data from electron-positron collisions at 1EP. 

The 13 design emphasizes precise measurements of photons, electrons, and muons; 

and is complementary to the other experiments which have more extensive inner 

tracking at the expense of less precise calorimetry and muon spectroscopy. Figure 3.4 

shuws a perspective cut-away view of the detector, which is 14 m long and 16 m wide. 

Subdetectors are arranged in layers of increasing size surrounding the interaction 

point; all inner detectors are contained in a long tube (see Figure 3.5), which in 

turn supports the outer muon detectors and maintains the overall alignment of the 

detector. The entire detector is surrounded by a 0.5 T solenoidal magnet. In 1994, 

additional 1.5 T toroidal magnets were added to the main magnet doors. 

The 13 coordinate system, which is used throughout this thesis, has its origin at 

the nominal interaction point; its z axis is aligned with 1EP beam in 13, ·with positive 

values in the direction of the electron beam; its x axis is in the horizontal plane, with 

positive values towards the center of 1EP; and its y axis is in the vertical plane, with 

positive values in the upwards direction (see axes in Figure 3.4). Polar angles in the 

13 coordinate system are measured from the positive z axis ( 0 = 0°) and take values 

in the range 0° ~ 0 ~ 180°. Azimuthal angles are measured in the x - y plane, from 

the positive x axis (¢ = 0°) towards the positive y axis(¢= 90°) , and take values in 

the range 0° ~ ¢ ~ 360°. 

The 13 detector relies primarily on two complementary methods of particle detec

tion: tracking and calorimetry. Tracking detectors locate points along the trajectories 

of charged particles, which are curved in the 13 magnetic field and thus provide in

formation on particle charge and momentum. Calorimeters measure energy deposits 

in a segmented absorbing medium, and thus provide information on the energy of 

both charged and neutral particles and allmv identification of different types of par

ticle with characteristic patterns of energy deposits. In this section I briefly describe 
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Figure 3.5: Inner detectors of 13 viewed in the y- z plane. The interaction 
point is near the bottom left corner. Detectors are symmetric with respect 
to reflection in the x and y axes, and rotation about the z axis. The flare 
shown in the LEP beampipe exists only on the +z side. 
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the sensitive components of the L3 detector during 1994, in order of distance from 

the interaction point. In the next chapter I describe in more detail the electromag

netic calorimeter, which is the subdetector that is used most extensively for the work 

described in this thesis. 

3.2.1 Microvertex Detector 

The innermost L3 component is the silicon microvertex detector (S1\1D), located just 

outside the 1EP beampipe ( the original radius of the beam pipe in 13 was 9 cm; in 

1991 , a smaller beampipe of radius 5.3 cm was installed, making room for the SMD). 

The SMD is 35.5 cm long and consists of two radial layers of double-sided silicon-strip 

detectors arranged into ladders at 6 cm and 8 cm from the z axis, and covering the 

polar angles 22°-158° (45] (see Figure 3.6). The outer silicon surface of each ladder is 

read out at 50 µm intervals for x-y coordinate measurements with a nominal intrinsic 

resolution of 5 µm, and the inner surface is readout at 150 µm ( central region) or 200 

µm (forward regions) intervals for z coordinate measurements with a nominal intrinsic 

resolution of 10 µm. The design resolutions for reconstructed track parameters are 

0.3 mrad in </J, and 1 mrad in 0. The SIVID was installed in 13 at the beginning of 

1993, but was not fully exploited for physics analysis during this year due to initial 

technical problems. The SMD has been fully functional since 1994, but is not used 

for the work described here. 

3.2.2 Central Tracking Detector 

Outside the SMD is the central tracking detector, consisting of a time-expansion 

chamber (TEC) surrounded by z-chambers and forward-tracking chambers (FTCs) 

(see Figure 3.5). This detector is used to reconstruct charged particle trajectories in 

the central region of L3, to provide measurements of particle charge and momentum, 

and to reconstruct secondary vertices from decays in flight. 
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Figure 3.6: Perspective view of the 13 silicon microvertex detector, showing 
the arrangement of the 11 inner and 13 outer ladders into layers. 

3.2.2.1 Time-Expansion Chamber 

32 

The time-expansion chamber (TEC) occupies the volume between 8.5 cm < r < 

47 cm and lzl < 63 cm, and detects ionization produced by the passage of charged 

particles through a gas mixture consisting of 80% CO2 and 20% iso-C4H10 at 1.2 bar. 

Radial field-shaping cathode wire planes divide the TEC volume into 12 inner and 

24 outer sectors, each of which is subdivided by a radial plane of mixed anode sense 

wires and additional cathode wires (see Figure 3.7). Planes of closely-spaced grid 

wires on either side of each anode plane establish a homogeneous low electric field in 

most of the sector, with a small high-field region near the anode plane. Secondary 

ionization particles produced along a charged track drift slowly (:::: 6µm/ns) in the 

low-field region towards the high-field region, where they produce further ionization 

particles in an avalanche that amplifies the original ionization signal ( this is the time 
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expansion principle). The timing of the ionization signal measured at each anode 

determines the distance to the track along a line perpendicular to the anode plane, 

with an average resolution :::: 50 µm ( the ambiguity between a track that is to the 

left or the right of the anode plane is resolved by matching between inner and outer 

sectors, and by pickup wires within the outer sector grid planes). 

0 
0 

0 
0 

0 0 

0 
0 0 0 

00 0 0 

0 00 

00 0 0 

o-/ 
0 

o · 
000 00 

0 0 
O O 0 

0 

00 0 0 0 

0 

0 
0 

0 
0 

0 

0 
0 

0 
0 

0 

4cm 

: ' · . .... ·., °o 

~ \ \ \ \ \ : \ \ 0 

~~o 
0~ ~ 

0 
0 0 
0 0 
0 0 
0 0 
0 0 

~ Inner Sector ~ 
000000000000000 

0 

0 
0 

~ Outer Sector 
000000000000000000000000000000000000000001 

Figure 3.7: Diagram of several TEC drift cells viewed in the x-y plane. 
Field-shaping cathode wires are shown as hollmv circles, anode sense wires 
are shown as crosses, and grid wire planes are shown as thin solid lines. 
Dashed lines show the drift of ionization produced along a charged particle 
trajectory (heavy solid line). 

Inner sectors have 8 anodes and outer sectors have 54 anodes , providing a maxi

mum of 62 coordinate measurements in the x - y plane, between 10.5 cm < r < 31.7 

cm. Fitting a circular arc to these coordinates measured along a particle 's trajectory 

determines its transverse momentum, Pr, with a resolution of a(l/pr) = 0.018/GeV. 

Two anodes in each inner sector and 9 anodes in each outer sector are read out at both 

ends ( charge division mode) and provide additional information on the z coordinate 

of a track with a resolution of :::: 2 cm. 
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3.2.2.2 Z Chambers 

Two layers of chambers surrounding the cylindrical outer surface of the TEC are 

used for precise measurements of track z coordinates. The z chambers occupy the 

volume between 96 cm < r < 98 cm and lzl < 51 cm1 and cover the polar angles 

45° < 0 < 135°. Each chamber is filled with a gas mixture of 20% CO2 and 80% 

argon and operates in drift mode. Ionization signals are read out from cathode strips 

aligned at 0°, 90° , and ±70.1 ° with respect to the z axis ; which combine to locate the 

z coordinate of an isolated track with a resolution of 320 µm. 

3.2.2.3 Forward Tracking Chambers 

Two layers of forward tracking chambers (FT Cs) cover the end of the TEC and 

measure precise track x - y coordinates at fixed I z 1- The FTCs cover the polar angles 

9.5° < 0 (180° - 0) < 37.5°. Each chamber is filled with a gas mixture of 38.5% 

ethane and 61.5% argon and operates in drift mode. Ionization signals are read out 

from anode wires aligned at 5° and 95° with respect to the x axis, which combine to 

locate the x and y coordinates of an isolated track with a average resolution of 150 

µ,m. The FTCs were installed at the beginning of 1991. 

3.2.3 Electromagnetic Calorimeter 

The electromagnetic calorimeter (ECAL) consists of a barrel and two endcaps com

posed of bismuth germanate crystals, which enclose the outer surfaces of the central 

tracking detector (see Figure 3.5). The analysis described in this thesis uses primarily 

this subdetector, and thus it is described in detail in Chapter 4. Here I describe the 

related subsystems: the active lead rings and the electromagnetic calorimeter gap 

filler. 
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3.2.3.1 Active Lead Ring 

The active lead ring (ALR) covers the forward angular regions 4.5° < 0, 180° - 0 < 

8.8°, between the coverage of the ECAL endcaps and the luminosity monitors. The 

ALR is located at 108.0 cm < lzl < 118.4 cm, just behind the ECAL endcaps (see 

Figure 3.5). The A.LR consists of 3 layers of 18.5 mm thick lead followed by 10 

mm thick plastic scintillator. Each layer of scintillator is divided into 16 azimuthal 

segments which are individually read out by photo-diodes, and successive layers are 

rotated by one third of a segment. The ALR determines the ¢ coordinate of isolated 

particles with a resolution of ~ 1.3°. The ALR ,;\.ras installed at the beginning of 

1993, replacing a passive lead ring in the same position that was used to protect the 

central tracking detector from LEP radiation. At the beginning of 1995, the A.LR was 

upgraded to also measure polar angles and thus improve its ability to trigger events 

due to two-photon processes. 

3.2.3.2 Gap Filler 

There is presently a gap of 7.4 cm between the ECAL barrel and endcaps, due to the 

space requirements of the central tracking detector for the end flanges and readout. 

At the end of 1995, this gap will be instrumented with blocks of lead threaded with 

plastic scintillating fibers, resulting in improved total energy resolution and hermetic

ity which will enhance the detector's sensitivity to supersymmetric physics. 

3.2.4 Scintillation Counters 

The scintillation counters line the narrow gap between the electromagnetic and hadr

onic calorimeters (see Figure 3.5), and are designed for precise measurement of the 

relative timing of particles traversing the detector. The primary purpose of the scin

tillation counters is to discriminate between cosmic ray muons that pass near the L3 

origin, causing scintillation signals ~ 5.3 ns apart, and di-muon events originating 
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from the L3 origin, causing nearly coincident scintillation signals. 

The scintillation counters are arranged in a cylindrical barrel of 30 strips 290 cm 

long, and covers 98% of 360° in ¢. Each strip is a 1 cm thick plastic scintillator, read 

out at both ends by an adiabatic light guide coupled to a photomultiplier tube. The 

relative timing resolution of the scintillators is better than 1 ns. At the beginning of 

1995, two endcap disks of 16 scintillator sectors were added at izl = 103 cm, to match 

the new forward-backward muon chambers. 

3.2.5 Hadron Calorimeter 

The hadron calorimeter (HCAL) surrounds the ECAL, and is designed to measure the 

energy of hadrons , which typically deposit only a fraction of their energy in the ECAL. 

Particles traversing the HCAL gradually lose their energy through nuclear interactions 

with layers of depleted uranium and brass absorber, initiating showers of low energy 

particles that are detected in layers of proportional wire chambers interspersed with 

the absorber. The HCAL consists of a barrel covering 35° < 0 < 145° and two 

endcaps that extend the coverage to 5.5° < 0 < 174.5° (see Figure 3.5). 

The HCAL barrel is divided into 16 modules in ¢ and 9 modules in z (see Fig

ure 3.5). Each module consists of radially stacked alternating layers of 5 mm thick 

depleted uranium absorber, and 5.6 mm thick brass wire chambers. \Vire chambers 

are filled with a gas mixture of 20% CO2 and 80% argon and operate in propor

tional mode. Successive chambers are aligned with wires perpendicular to each other; 

wires are grouped for readout into projective towers with 6.¢ '.::::'. 2.5°, ~ z '.::::'. 6 cm, 

b,.r '.::::'. 8 cm. A particle originating from the interaction point traverses 3.5-5.5 nuclear 

interaction lengths in passing through the H CAL barrel. 

The HCAL endcaps are each divided into 6 modules making up 3 rings (see Figure 

3.5). Each module has a similar construction to a barrel module , except that layers lie 

in the x - y plane, and successive wire chambers have wires aligned at 22.5°. Endcap 

wire chambers are grouped for readout into projective towers with ~¢ '.::::'. 22.5° and 
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!:i0 '.:::::'. 1 °. A particle originating from the interaction point traverses 6- 7 nuclear 

interaction lengths in passing through the HCAL endcaps. 

3.2.5.1 Muon Filter 

The muon filter surrounds the cylindrical outer surface of the HCAL barrel , and fills 

the remaining space inside the support tube (see Figure 3.5). The muon filter is 

designed to ensure that hadrons are completely absorbed inside the support tube , 

so that only muons and neutrinos pass through to the muon chambers (in addition 

to a very small rate of hadronic punch through). The muon filter is divided into 8 

segments, and operates on a similar principle to the HCAL. Each octant is 139 cm 

in length, and consists of 6 layers of 1 cm thick brass absorber, interleaved with 5 

layers of wire chambers, and followed by 5 layers of 1.5 cm thick brass absorber fitted 

to the curved contour of the inside of the support tube. All chambers have wires 

aligned with the z axis , and 3 layers of each octant are read out in charge-division 

mode with a resulting z coordinate resolution of 3- 5 cm. The muon filter thickness 

corresponds to 1.03 nuclear interaction lengths; the support tube material contributes 

an additional 0.52 nuclear interaction lengths. 

3.2.6 Muon Chambers 

The central muon chambers occupy the space between the support tube and the 

magnet, and are designed for precise tracking of high-momentum muons. The radius 

of curvature in the x -y plane of a 45 GeV muon trajectory at 0 = 90° is '.:::::'. 300 m , so 

a large lever arm is required for good momentum resolution. The central chambers 

are arranged in octants of 3 layers each, located just outside the support tube (MI) , 

just inside the magnet (MO) , and half-way between these positions (MM) (see Figure 

3.4). The remaining volume between the support tube and the magnet is filled with 

air and is not instrumented. 
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Each octant layer consists of precisely-located "P" drift chambers (2 each in 

MO,l\Hvl layers; 1 each in MI layers) for measuring track coordinates in the x - y 

plane, and Z drift chambers ( 4 each in MO layers, 2 each in lVII layers) for measuring 

track z coordinates. P (Z) chambers are filled with a gas mixture of 38.5% (8.5%) 

ethane and 61.5% (91.5%) argon and operate in drift mode with an average drift 

velocity of 50µm/ns (30µ,m/ns). The MI and MO P-chambers measure coordinates 

along a track with 16 anode sense wires each; MM P-chambers measure with 24 anode 

sense wires each. Each P-chamber sense wire measures an x - y coordinate with a 

resolution of 110-250 µm, depending on the distance to the anode plane. The internal 

alignment between planes of an octant is maintained to within 30 µm by a sophis

ticated opto-mechanical system, resulting in a combined octant resolution for track 

sagitta measurements of better than 30 µm, equivalent to a transverse momentum 

resolution of a(pT)/pT '.::::'. 2%. Z chambers are arranged in double layers above and 

belmv each 1\10 and lVII P chamber. Z chambers in each double layer are offset by 

half a drift cell, and each measure a track z coordinate at a single anode sense wire, 

with a resolution of '.::::'. 500 µm. 

3.2.6.1 Forward-Backward Chambers 

The central muon chambers measure track coordinates in all 3 layers over the region 

43° < 0 < 137°. The forward-backward chambers are designed to extend this coverage 

to 22° < 0 < 158°, with 3 additional layers mounted on the magnet doors on either 

side of the interaction point (see Figure 3.8). Each layer consists of 16 non-overlapping 

chambers filled with a P chamber gas mixture, and instrumented with 4 anode sense 

wires per cell with an average resolution of 200 µm. Momentum determination in the 

region 36° < 0 < 43° is based on the measurement of curvature in the solenoidal field, 

using the two inner central chambers and the inner forward-backward chamber, and 

has a resolution a(pT) / Pr that degrades with 0 from 2-20%. In the region 22° < 0 < 

36°, momentum is determined from the curvature in the toroidal magnet door field, 
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using the 3 layers of forward-backward chambers. The momentum resolution in this 

region is limited by multiple scattering in the 1 m thick magnet doors to dPr) :::: 

20%, for p < 100 GeV. In 1994, half of the forward-backward chambers were installed: 

covering z < 0, x < 0 and z > 0, x > 0. The remaining chambers were installed 

at the end of 1994 and the completed system has been fully operational since the 

beginning of 1995. 

Magnet door .,,,,,,,,,,.,,, . 

F/8 Inner Chamber 

F/8 Middle Chamber 

F/8 Outer Chamber 

Figure 3.8: Cutaway perspective viev.r of a magnet door, showing the position 
of the forward-bachvard muon chambers. 
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3.2. 7 Luminosity Monitors 

The luminosity monitors (LUMis) are located close the the LEP beampipe, 265- 280 

cm on either side of the interaction point (see Figure 3.5). The LUMis are designed 

to detect electrons from small-angle e+e- ---+ e+e-('-y) (Bhabha) scattering, which 

is strongly peaked and relatively free of background in the forward and backward 

regions, and provides the benchmark process for determining the luminosity at 13 

(see Section 3.3). 

The L UMis consist of tracking and calorimeter subsystems, covering the regions 

31-62 mrad from the z axis on either side of the interaction point. L UMI tracking is 

presently provided by silicon detectors (SL UlVI) covering 6.8 cm < r < 15.4 cm ,,,hich 

were installed in 1993, replacing the original wire chambers used from 1989-91 (see 

Figure 3.9). Each SLUM consists of 3 layers of 16 partially overlapping ·wafers, for a 

total of 4096 readout strips. Two layers measure r coordinates with strips 0.5- 1.875 

mm wide, and 1 layer measures ¢ coordinates ,vith strips 0.375° wide. Each LUlVII 

calorimeter consists of 304 BGO crystals grouped into 8 rings aligned with the z axis, 

and arranged in a cylinder between 6.8 cm < r < 18 cm. The crystals are 26 cm long, 

1.5 cm thick in the radial direction, and 1.5- 3 cm thick in the azimuthal direction. 

Since the electrons and positrons measured by the LUMis are produced at very 

small polar angles, they traverse a large amount of material as they leave the LEP 

beam pipe, and can be absorbed or deflected. During the installation of the SL UlVI 

in 1993, a modification to the LEP beampipe on the +z side was performed that 

reduces the amount of material in the central acceptance of the L UIVII ( see Figure 

3.5); the same modification could not be performed on the - z side since it ,;\.rould 

interfere with access to the SMD. 
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Figure 3.9: Perspective view of the luminosity monitor silicon tracking de
tector, with a cutout showing a silicon wafer. 

3.2.8 Trigger and Data Acquisition 

41 

The rate of bunch-bunch crossings at 13 (with 8 bunches in each beam) is 91 kHz, 

however most crossings do not result in a hard e+e- collision. Since the readout 

and storage technology limits the rate at which the detector can be fully read out 

to about 10 Hz, a trigger is required to select those bunch-bunch crossings that 

should be recorded. Backgrounds to genuine hard e+e- collisions include scattering 

of a bunch particle from a molecule of residual gas in the beampipe , cosmic rays, 

and electronic noise. The data-acquisition system is designed to collect together 

and store the data from different subdetectors as a single event , when a trigger is 

generated. The combined trigger and data-acquisition systems (see Figure 3.10) use 
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sufficient parallelism and buffering to ensure that events are only missed during the 

time required for a full detector digitization of a previously triggered event ('.::::'. 500µs), 

leading to a dead time of a few percent. 

3.2.8.1 First-Level Trigger 

The trigger is implemented in 3 layers of increasing complexity (see Figure 3.10). 

The first-level trigger is divided into independent triggers for the TEC[46], calorime

ters[47], muon chambers, scintillators, and luminosity monitor , each of which must 

make a decision to accept or reject an event within the 11 µs before the next bunch

bunch crossing. The combined rate of first-level triggers varies between 5-15 Hz; 

TEC and luminosity trigger rates are correlated with the instantaneous luminosity, 

calorimeter and muon chamber trigger rates are dominated by electronic noise levels, 

and scintillator trigger rates reflect cosmic ray fluxes. Values in parentheses belmv 

are typical for the beginning of a LEP fill , when the luminosity is highest. 

The TEC trigger('.::::'. 5.5 Hz) samples the outer 14 sense wires of each sector, vvith a 

coarse 2-bit digitization of drift time resulting in a 96 (¢) x 14 (r) bit pattern which is 

compared against stored patterns corresponding to realistic track configurations. The 

calorimetric triggers ( '.::::'. 3.0 Hz) are based on 896 coarse-granularity analog sum signals 

digitized at 10-bit precision, dividing the ECAL into 32 (cf>) x 16 (0) segments and 

the HCAL into front and back layers with 16 (¢) x 11/13 (0) segments. Calorimeter 

triggers are generated for total energies above preset thresholds, and for localized 

clusters of large energy deposits. The muon chamber trigger (~ 1.0 Hz) records 1-

bit hits for adjacent pairs of P and Z chamber sense wires, and identifies drift cells 

with genuine track segments by comparing the number of hits in each cell with a 

preset threshold. Triggers are generated for patterns of cells with track segments 

that correspond to realistic configurations for 1 or 2 muons originating frorn the 

interaction point. The scintillator ( ~ 0.5 Hz) trigger records one bit for a signal above 

a preset threshold within 30 ns of the bunch-bunch crossing time, for each of the 30 
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Figure 3.10: Diagram of the 13 trigger and data-acquisition system, showing 
the relationship between different elements. Arrows denote the flmv of data 
and trigger decisions. 
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barrel scintillators. Triggers are generated for a high multiplicity and for a back-to

back coincidence. The luminosity trigger ( ~ 4.0 Hz) uses analog sums dividing the 

luminosity calorimeter into 16 ¢ segments, and selects Bhabha candidate events based 

on energy thresholds and matching between the detectors at ±z. 

3.2.8.2 Second-Level Trigger 

The second-level trigger[48, 49) combines the fast digitizations used by the individual 

first-level triggers together with the first-level decisions , to make a second-level de

cision within 5 ms. The second-level trigger automatically accepts events with more 

than one first-level trigger (not including scintillator triggers). Events are rejected by 

the second-level trigger on the basis of a more detailed calorimetric and track analysis, 

and the matching between tracks, calorimeters, and scintillators. The second-level 

trigger is implemented with 3 bit-slice microprocessors handling events in parallel, 

and achieves an overall rejection of single first-level trigger events of ~ 50%. 

3.2.8.3 Event Builder 

The event builder[50) collects together the full digitizations and fast trigger digitiza

tions of an event from each subdetector. It consists of a layer of subdetector event 

builders that operate in parallel to collect together all data for each subdetector 

separately, followed by a central event builder that accumulates data from each sub

detector's event builder and the level two trigger. The central and subdetector event 

builders are each implemented as separate FASTBUS crates, communicating via dual 

ported memories. The typical size of an event after normal online data reduction is 

~ 20 kilobytes. 

3.2.8.4 Third-Level Trigger 

The third-level trigger[51] performs the last level of filtering in the trigger system, 

and makes decisions based on the full data present in the event builder. The trig-
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ger consists of 4 VAX workstations simultaneously analyzing separate events , and a 

transputer-based interface to the central event builder. The third-level trigger rejects 

about 50% of the events accepted by the second-level trigger, resulting in an event 

storage rate of 1- 4 Hz. 

3.3 L3 Luminosity Measurement 

The measurement of the luminosity in the 13 experiment provides the normalization 

for the rates of all observed processes. Although each experiment receives approxi

mately one quarter of the LEP luminosity, precise physics analyses require constant 

monitoring of the instantaneous luminosity at each interaction point. The bench

mark process for luminosity monitoring by each experiment is Bhabha scattering, 

which occurs with a high rate and is relatively free of background at small angles to 

the z axis. 

Bhabha events are selected in 13 with the first-level luminosity trigger, followed by 

offiine reconstruction of the energy (Ei) and direction (0i, <Pi) of electron candidates 

in each monitor, which must satisfy 

max(E1, E2) > 0.8 · Ebeam , min(E1, E2) > 0.4 · Ebeam 

l</>i - 90°1 > 11.25° , icPi - 210°1 > 11.25° 

l</>1 - ch - 180°1 < 10° 

32 mrad < 0i < 54 mrad . 

Figure 3.11 shows the good agreement between LUMI data collected in 1993 (\vith the 

SLUM installed) and the predictions of the BHLUMI Monte-Carlo program[52- 55] 

for the polar angle distribution of reconstructed Bhabha events. 

After selection of Nb Bhabha events, the luminosity is determined as L = Nb/ ab, 

where ab is the cross section for Bhabha scattering integrated over the L UMI fiducial 

volume. The cross section has been determined by detailed Monte-Carlo simulation 
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of the detector, using the BHLUMI and BABAMC[56, 57] event generators, resulting 

in f7b '.::::'.'. 70.5 nb. The total error in the luminosity measurement is presently 0.2%, 

which is dominated by a 0.16% contribution from the theoretical uncertainty in the 

cross section[58). 



3.3 L3 LUMINOSITY MEASUREMENT 

106 .---.--.----.....--.--.--....-.....--.---.----,---,-.,......,,........,.---,---,--.--......... ___ 

Theta distribution -Z 

c.l.) 104 

t .+,j 

s::: 
Q) 

> 
U.J Cut Cut 
~ 103 0 
~ Theta distribution +Z Q) 

..0 e • Data 
::::3 z 105 r--1MCBHLUMI 

t t 
• Cut Cut 

103 ......... _...__.,_...__..___.__.__._...._..___.____.___.__._ ____ ............................ ...__ ............................. 

0.020 0.030 0.040 0.050 0.060 0.070 

0 (radians) 

Figure 3.11: Polar angle distribution of Bhabha events in the luminosity 
monitors. Data are in good agreement with the predictions of the BH
L UMI Monte-Carlo. The difference between ±z is due to a flare in the 
LEP beampipe that only exists at +z. 
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CHAPTER 4 

THE L3 ELECTROMAGNETIC 

CALORIMETER 

The work that I describe in this thesis relies heavily on the electromagnetic 

calorimeter (ECAL) of the L3 detector, which is designed to precisely measure the 

energy and direction of photons and electrons from 100 MeV to 100 GeV. In this 

chapter, I describe the properties of the scintillating crystals used for the calorimeter, 

the geometry and construction of the calorimeter, its data-acquisition system, and 

the methods of physics reconstruction that are applied to calorimeter data. 

4.1 Bismuth Germanate 

The L3 electromagnetic calorimeter is composed of the dense inorganic crystal scintil

lator bismuth germanate, Bi4Ge3O12 (BGO). Photons and electrons traversing BGO 

undergo electromagnetic interactions, producing secondary photons and electrons 

that also interact in a chain reaction leading to an electromagnetic shower (see Figure 

4.l(a) ). The dominant processes for electrons and photons with energies much greater 

than 10 MeV are bremsstrahlung 

and pair creation 
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where (N) denotes the influence of a nuclear Coulomb field. Since high-energy photons 

and electrons generate the same chain of reactions with different initial reactions , they 

produce showers that are practically indistinguishable. 
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Figure 4.1: Development of electromagnetic showers in BGO. Sub-figure (a) 
shows a typical shower initiated by a 5 GeV photon incident from the left 
side; photons are shown as dashed lines, electrons and positrons as solid 
lines (only particles with E > 10 MeV are shown). Sub-figures (b) and (c) 
show the distribution of average energy deposition from a 5 GeV photon, in 
longitudinal and transverse projections respectively. 

When the energy of an electron in a shower falls below 10 MeV, it loses its remain

ing energy primarily by ionization of the surrounding BGO. Ionization of the BGO 

creates excitations in the crystal lattice, with a lifetime of about 0.35 µs , that decay 

to produce scintillation photons with a wavelength spectrum peaked near 480 nm. 

The amount of scintillation light produced is proportional to the energy deposited 
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('.:::'. 2.8 x 103 ,/MeV), making BGO a useful material for calorimetry. For precise en

ergy measurements, variations in the scintillation light yield due to both temperature 

(-1.55% / °C at 25°) and radiation damage must be monitored and corrected for. 

The essentially stochastic development of an electromagnetic shower can be char

acterized by the radiation length and the Moliere radius, which are intrinsic properties 

of the showering material. The radiation length, X 0 , is the longitudinal distance over 

which a high-energy electron loses 1/e '.:::'. 37% of its energy by bremsstrahlung. The 

Moliere radius, Rti1 , is the radius of the cylinder around the primary particle direction 

in ,\rhich 90% of the particle's energy is deposited. Table 4.1 compares the properties 

of BGO with those of other inorganic scintillators being used in present experiments 

or planned for future experiments. 

Bi4Ge3O12 Nal(Tl) Csl(Tl) CeF3 PbWO4 
Density (g/cm3) 7.13 3.67 4.51 6.16 8.28 
Radiation length (cm) 1.12 2.59 1.86 1.68 0.85 
Moliere radius ( cm) 2.4 4.5 3.8 2.63 2.19 
Peak emission wavelength (nm) 480 410 565 300 420- 450 
Relative light yield 1 7.7 2.7 0.54 0.05 
Temperature coefficient (%/°C) -1.55 0.22 0.1 0.14 -1.9 

Table 4.1: Properties of BGO compared with those of other inorganic scintil
lators being used in present experiments or planned for future experiments. 

4.2 Detector Geometry and Construction 

The ECAL consists of 10734 BGO crystals forming a barrel and two endcaps, as 

shown in Figure 4.2. Crystals are all 24 cm long and have trapezoidal front and back 

faces with dimensions of approximately 2 cmx2 cm and 3 cmx3 cm respectively (see 

Figure 4.3). Crystals are tapered and aligned with their long axis pointing towards the 

interaction point. This arrangement provides many (10-20) samples of the transverse 
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development of an electromagnetic shower, but no longitudinal sampling. Material 

traversed by particles before entering the ECAL can cause scattering and conversion, 

which lead to a loss of energy resolution and in the ability to identify particles. The 

material in front of the ECAL barrel region amounts to 0.3-0.4 radiation lengths 

and is due mostly to the TEC and the ECAL inner support structure; in the endcap 

regions, the material in front amounts to 0. 7- 0.8 radiation lengths and is due mostly to 

the TEC end flanges (see Figure 4.4). The extra material in front of the endcaps does 

not lead to a significant deterioration of the energy resolution, since the additional 

scattering and conversion are concentrated in a region just in front of the endcap 

crystals. 

4.2.1 Electromagnetic Calorimeter Barrel 

The barrel is divided into two halves at the x-y plane, to allow any crystal to be 

exposed to a test beam passing through the geometric center. Each half barrel covers 

42.3° < 0 (180° - 0) < 90° with 24 crystals, and 0° < </> < 360° with 160 crystals, for a 

total of 3840 crystals. There are 24 different crystal shapes in the barrel, correspond

ing to different 0 positions, with their front and rear face dimensions determined by 

the constraints of constant front face area (4.14 cm2
), adjacency, and projective ge

ometry (see Figure 4.3). Each crystal subtends angles with respect to the interaction 

point of~¢= 2.25° and 1.5° < ~0 < 2.2° with 6.0 ex: sin 0. 

Each barrel crystal is contained in a separate cell of a 200- 250 µm-thick carbon 

fiber composite structure, and kept in position with pressure applied from behind by 

a spring-loaded screw. Cell walls and clearances account for about 2.1% of the solid 

angle coverage of the barrel. To minimize the loss of efficiency due to this inactive 

space, each of the 160 ¢-slices of 24 crystals are rotated by 10 mrad in ¢, to aim 

at a position 5 mm away from the interaction point. An analogous tilt in 0 is not 

necessary because of a spread l~zl '.::::'. 2 cm in the position of LEP collisions relative 

to the nominal interaction point. The overall support of a half barrel is provided by 
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Figure 4.2: Vie,v of the ECAL in the y-z plane, showing the geometry of 
the barrel and endcaps and the arrangement of crystals. The beampipe 
and target in the bottom left are the final stages of the RFQ accelerator 
calibration system developed by Caltech. The ECAL is symmetric about the 
z, axis except for holes on both sides for the RFQ beampipe. 
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a carbon fiber composite and acrylic foam sandwich structure consisting of a 10 mm 

thick cylindrical inner tube, with steps on its outer surface matching the front face 

of each crystal, and a 5 mm thick conical shell supporting the length of the outer 

crystals (see Figure 4.2). There is a 0.5 mm thick steel membrane reinforcing the 

surfaces where the two half barrels join. 
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Figure 4.3: Drawing of four crystals, viewed from the interaction point, show
ing the range of different front and back face shapes. From left to right the 
shapes correspond to the outer barrel crystals ( 0 = 90°, 43°) and the outer 
endcap crystals ( 0 = 36°, 10°). The shapes of the front and back faces are 
dra,vn to scale. 

4.2.2 Electromagnetic Calorimeter Endcaps 
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Each endcap is divided into two halves at the y-z plane, to allow easy installation 

and removal without sacrificing small-angle coverage. The endcaps cover 9.9° < 

0 ( 180° - 0) < 36.8° with 17 crystals grouped into 6 crowns; each half endcap is 

also divided into 16 cp sectors (see Figure 4.5). The number of crystals covering 

0° < c/> < 360° in each crown varies from 128 in the outer crown to 48 in the inner 

crown, with a reduction of one crystal per ¢ sector between crowns. Each crown 

consists of 3 rings of crystals in 0, except for the inner crown which has only 2 rings. 

Nine crystals at ¢ = 270° and 0 (360° - 0) '.::::'. 16° are removed from each endcap 

to create a hole for the final section of beampipe of an RFQ calibration system, 

resulting in a total of 1527 crystals per endcap. There are 17 different shapes of 

endcap crystals, corresponding to the different 0 positions, with front and rear face 

dimensions determined by the constraints of adjacency and projective geometry, and 

by choosing !l0 ex sin 0 • ,6,.cp (see Figure 4.3). Each crystal subtends angles with 

respect to the interaction point of 2.25° < /1¢ < 7.5° and 1.68° < 110 < 1.87°. 

The crystals in each half endcap are supported by a carbon fiber composite cell 

structure similar to that used in the barrel. This dead material together with clear-
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Figure 4.4: Plot of the amount of material in front of the ECAL, measured 
in radiation lengths, as a function of the polar angle. Different layers show 
the contributions of various inner detector elements. Periodic variations in 
the amount of ECAL support material are due to steps used to support the 
individual crystals. 
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ances represents about 2.1 % of the solid angle coverage of the endcaps. To avoid a 

corresponding loss of efficiency, all crystals are displaced away from the interaction 

point by l.6.zl = 2.08 mm, and also tilted in cp by 10 mrad as in the barrel. The 

overall support of a half endcap is provided by a carbon fiber composite structure 

consisting of a 10 mm thick disk matching the front faces of each crystal, and a 5 

mm thick conical shell supporting the length of the outer crystals (see Figure 4.2). 

The endcaps were installed at the beginning of 1991, and are presently located in a 

position displaced 12.8 cm along the z axis from their nominal position due to the 

space requirements of the central tracking detector. In this configuration, particles 



4.2 DETECTOR GEOMETRY AND CONSTRUCTION 

Figure 4.5: Diagram of an endcap ¢ sector viewed in the r-¢ plane, showing 
the arrangement of crystals into 6 crowns (heavy outlines). A full endcap 
consists of 16 such sectors. Numbers along the top of the sector (25-41) 
correspond to the theta identifiers for each of the 17 theta rings in an endcap. 
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originating from the interaction point enter endcap crystals at angles offset from the 

crystal's long axis by 2.1°-5.4°. 

4.2.3 BGO Crystals 

BGO Crystals for the ECAL and luminosity monitors were produced by the Shanghai 

Institute of Ceramics in China using a modified Bridgeman method. Each crystal was 

cut and polished to within -300 - 0 µm of its nominal shape, and was required to meet 

minimum standards of optical transmission and light output. Good energy resolution 

and linear energy response requires that the efficiency for collecting scintillation light 

is nearly independent of where in a crystal it is produced. The factors affecting 

light collection efficiency are the crystal shape that determines angles of internal 

reflection, the intrinsic absorption coefficient that reduces the transmission efficiency, 
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and the crystal surface treatment that determines losses and diffuse components of 

internal reflection. The efficiency for collecting light at the rear face of a polished 

crystal decreases strongly ( up to 50%) with distance from the rear face. After coating 

crystals with a 40-50 µm thick layer of high reflectivity NE560 paint, the maximum 

variations were approximately 5%. During production, several batches of crystals 

were evaluated for radiation hardness. After exposure to a dose of 103 rad ( the worst 

case scenario of a LEP beam accident would result in a dose of about 10 rad) the light 

output immediately dropped by 40%, and then fully recovered spontaneously at room 

temperature after one month. Some crystals positioned close to the LEP beam were 

produced with Europium doping, which was found to accelerate the natural recovery 

process from radiation damage without reducing light output. 

4.3 Data-Acquisition System 

The ECAL data-acquisition system provides analog and digital signals proportional to 

the amount of scintillation light collected in each crystal ( which is in turn proportional 

to the energy deposited). The system consists of a front end that converts scintillation 

light into an analog electronic pulse height, followed by an analog to digital converter 

(ADC), and a four-level hierarchical readout network that collects together digital 

signals from the 11000 crystals into a single record for each event. 

Each crystal is assigned a unique identifier in the 13 data-acquisition framework of 

the form 20RTTPPP, where the initial 20 denotes an ECAL element and is usually 

dropped when the context is clear, R denotes the ECAL region ( the half barrel and 

endcap are labeled 1 and 3 respectively at z > 0, and 2 and 4 respectively at z < 0), 

TT denotes the theta position of a crystal (01-24 in the barrel and 25- 41 in the 

endcaps), and PPP denotes the phi position (001-160 in the barrel, and 001-128 in 

the endcaps). 
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4.3.1 Front End Electronics 

Both the tapering of crystals and the space constraints favor collection of scintillation 

light at the crystal's rear face. This is accomplished with a pair of 1.5 cm2 Hama

matsu S2662 silicon photodiodes glued to the rear face and read out as a single unit. 

Photodiodes have the advantages over conventional photomultiplier tubes of being 

insensitive to the 13 magnetic field, and of making efficient use of the available space. 

Scintillation photons traversing the depletion region of a photodiode produce an 

electron-hole pair with a quantum efficiency of about 70%. This pair drifts apart 

in the electric field of a 15 V reverse bias, resulting in a current of about 0.2 fC 

(1200 electrons) per MeV of deposited energy. This current is much smaller than 

the equivalent current from a photomultiplier tube and must be amplified before 

digitization. The chain of front end electronics shown in Figure 4.6 starts with a 

charge-sensitive preamplifier that is mounted directly behind each crystal and AC 

coupled to the pair of photodiodes connected in parallel. The preamplifier output 

pulse has a 300 ns rise time and an 800 µs exponential decay time, with a peak 

voltage proportional to the total charge collected in the photodiode. The preamplifier 

is followed by a pole-zero shaping circuit that differentiates the long preamplifier 

output pulse to produce a short pulse with a decay time of 1.1 JLS. 

After shaping, the signal from each crystal is split into three separate signals 

which are then processed by the first-level trigger, and by two independent pulse 

height analyses optimized for small (low energy chain) and large (high energy chain) 

signals respectively. The low energy chain is amplified with a gain of 32 relative to the 

high energy chain, after which the two chains are processed identically. The signal in 

each chain is first integrated and then the amount of integrated signal is stored as a 

DC level with a sample and hold circuit. The stored DC level is further amplified in 

two stages each with a gain of four, resulting in a total of six levels of amplification 

for the two chains as shown in Table 4.2. 
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Figure 4.6: Schematic of the ECAL first-level readout showing the front end 
electronics and analog to digital converter for a single crystal. 

4.3.2 Analog to Digital Conversion 
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The analog to digital converter (ADC) for each crystal 's collected light signal is de

signed to provide accurate measurements over a wide dynamic range ( 10 MeV-100 

GeV) at a minimum cost. This is achieved with a two step digitization supervised 

by dedicated Hitachi 6305 microprocessor for each crystal (see Figure 4.6). The first 

step of the digitization is to choose the level of amplification that provides the largest 

unsaturated signal, where a saturated signal is defined as being larger than 7 /8 of 

the full scale output of the digital-to-analog converter (DAC). The next step is to 

use a successive approximation algorithm to find the DAC input value for which the 

corresponding DAC output level is as close as possible to the amplified crystal signal. 
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Voltage Energy 
Comp. Amp. Min. Value Max. Value Min. Value Max. Value 

1 xl 4 µV 18 mV 0.1 MeV 0.4 GeV 
2 x4 18 µV 74 mV 0.4 MeV 1.5 GeV 
3 x16 71 µV 290 mV 1.5 MeV 6 GeV 
4 x32 0.15 mV 0.6 V 3 MeV 12 GeV 
5 x128 0.6 mV 2.5 V 12 MeV 50 GeV 
6 x512 2.4 mV 10\! 50 MeV 200 GeV 
7 leakage current 
8 identification / supply voltage / temperature sensor 

Table 4.2: Summary of input signals to the ECAL first-level readout com
parators. The first six comparator inputs correspond to different levels of 
amplification of a crystal's light output signal, for which the approximate 
voltage and energy ranges of sensitivity are given, as well as the amplifica
tion factor relative to the pole zero output level. 
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The result is a 12-bit digitization which, together with the 9-bit (1:512) selectable 

gain, corresponds to an effective dynamic range of 21 bits. The 4: 1 scaling between 

different levels of amplification ensures that all signals above about 350 MeV are dig

itized with at least 10 significant bits, out of the possible 12 bits, which results in 

a digitization accuracy of at least 0.1 %. The digitization accuracy for signals below 

about 350 MeV is given by the comparator 1 least count, which is about 0.1 MeV. 

The time required for digitization is 220 µs, and the linearity of the ADC response is 

better than 1 %. 

The two additional comparators in each crystal's front end electronics are used to 

digitize both the photodiode leakage current and one of 12 control signals that monitor 

power supply voltages, temperature sensors, and board identification resistors. In 

addition to supervising signal digitization, each crystal's microprocessor applies a 

programmable scaling to the analog first-level trigger signal, and interfaces with the 

upper levels of the readout. 
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4.3.3 Readout Network 

The readout network for the ECAL data acquisition is designed to collect together the 

data from individual crystals (both L UMI and ECAL) into records for each event. 

The system is implemented with four hierarchical levels, with data buffering and 

computing capability distributed throughout the network (see Figure 4.7). The lowest 

level in the readout network consists of groups of first-level microprocessors organized 

into token-passing rings: each ring covers 60 crystals in the barrel or 48 crystals in 

an endcap (see Figure 4.8). During normal data-taking, thresholds for each crystal 

are downloaded to the first-level microprocessors and data are only passed on to 

higher levels if they exceed this threshold ( sparse scan mode). The time required to 

transmit the ECAL data for an event from the first to the second level is determined by 

the ring containing the largest number of crystals with data above threshold. Each 

crystal's first-level microprocessor requires 96 µs to transmit its data, or 18 µs to 

signal that its data is below threshold. The processing time taken for error checking, 

data formatting, and threshold testing does not contribute to the overall transfer time 

since each first-level module can buffer data for up to 41 events, and performs these 

tasks while another module is transmitting. 

The next layer of the ECAL readout network consists of 13 VME crates, each 

containing 16 second-level modules and one third-level module. All modules are 

commercially available Mizar single-board computers based on a Motorola M68010 

microprocessor, each with 512K bytes of memory. Each second-level module com

municates with a first-level token ring, collecting together the data from up to 60 

crystals in its memory. When all 16 second-level modules in a crate have stored the 

data for an event, the third-level module transfers the combined data to the next layer 

of the readout network. Second-level modules buffer up to several hundred events, 

and perform error checking and data reformatting. Third-level modules act only as 

data movers, with no buffering and minimal processing. 

The final layer of the ECAL readout network consists of 13 first-in first-out (FIFO) 
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Figure 4. 7: Schematic of the ECAL readout network, showing the hierarchical 
organization into four levels. 
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Figure 4.8: Readout map for one side of the ECAL, consisting of a half barrel 
and an endcap, showing crystals in a schematic r-cp projection. The outer 
radius corresponds to barrel crystals with theta identifier of 1 at 0 = 90° , and 
the inner radius corresponds to endcap crystals with theta identifier of 41 at 
0 = 9.9°. Numbers around the outer radius correspond to the phi identifiers 
of crystals in the barrel. Heavy outlines show the grouping of crystals into 
first-level readout rings. Shaded crystals in the bottom left quadrant mark 
the position of front- and back-face temperature sensors (which are repeated 
in all quadrants). 
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memory modules distributed among 5 VME crates. Each FIFO is filled with the data 

for up to 960 crystals transmitted by a level three module. When the complete data 

for an event is available, a crate master in each VME crate supervises its transfer into 

the 13 event builder. 

4.3.4 Temperature Control and Monitoring 

The sensitivity of BGO light yield to temperature (-1.55% / °C at 25°) makes care

ful control and monitoring of crystal temperature necessary in order to achieve and 

maintain good energy resolution. Temperature control is provided by active ther

mal shields consisting of brass screens to which copper pipes carrying a silicon-based 

coolant are soldered. Shields are used to dissipate the heat generated by preamplifiers 

(0.2 W per channel) and first-level boards (2 W per channel), and to prevent heat 

transfer from the ECAL to other subdetectors. 

Temperature monitoring is provided by 1792 AD590 sensors positioned on the 

front and back faces of one in 12 crystals (see Figure 4.8). Temperature sensor data 

is digitized by the first-level modules, using comparator 8 (see Table 4.2), and is read 

out in the same way as crystal light output data. 

4.4 Physics Reconstruction 

Physics reconstruction consists of transforming the raw data for an event into physi

cally meaningful units, and then applying pattern recognition algorithms to identify 

the basic objects of a physics analysis. Reconstruction of ECAL data involves first 

transforming each crystal's raw ADC signal to an energy value, then analyzing en

ergy deposits to identify clusters that are characteristic of single particles, and finally 

correlating ECAL energy clusters with tracks and clusters in other subdetectors. 
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4.4.1 Energy Reconstruction 

The transformation of a crystars raw ADC signal to an energy value takes account 

of the changing scintillation response of each crystal, due to temperature variations 

and intrinsic losses associated with aging and radiation damage. The transformation 

is given by 

with variables as given in Table 4.3. The amplifier gains and biases for each channel's 

comparator are very stable and essentially constant. ADC pedestal values, crystal 

temperatures, and relative light response coefficients are measured during special cal

ibration runs between data collecting runs, typically once every eight hours. Absolute 

energy calibration constants for each crystal have been determined at least once: con

stants for barrels crystals ,vere determined using 2, 10, and 50 GeV electrons in CERN 

test beams during 1987 and 1988; constants for endcap crystals were determined us

ing 45 GeV electrons from Bhabha scattering, Z ~ e+e-(r), after installation in 13 

in 1991. In the future, absolute calibrations will be determined in situ using an RFQ 

accelerator system developed by Caltech [ 59-61]. 

The correction for temperature variations in a crystal's light yield involves ad

justing each crystal's signal to an equivalent signal at the reference temperature 

T0 = 18°C, to which the absolute calibration constants have also been adjusted. 

The temperature correction from T to To is parameterized with a linear interpolation 

between a crystal's front face (T1) and back face (Tb) temperatures 

where "' = 1.55% is the temperature coefficient of BGO, and c = 0.273 is the in

terpolation coefficient along the crystal's length. Since only one crystal in 12 is 

instrumented with temperature sensors (see Figure 4.8), temperatures for the other 

crystals are determined using fits to sensor values. 
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typical 
value 

0-50 GeV 
0-4095 ADC 

3.7-4.5 µV / ADC 
-130-0 JLV 

1-6 mV 
16- 30 keV / µV 

0.97-1.01 
0.85-1.00 

description 
crystal energy deposit 
raw ADC signal 
amplifier gain 
amplifier bias 

ADC pedestal 
absolute energy calibration 
temperature correction function 
relative light response 

Table 4.3: Variables used in the reconstruction of crystal energies. The index 
i refers to a readout channel and the index j refers to a comparator (1-6) 
within a readout channel. t,T denote the time and crystal temperature during 
data acquisition; t0 specifies the time that the absolute energy calibration was 
performed; T0 = l8°C is the chosen reference temperature. 

4.4.2 Particle Reconstruction 
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The ECAL measures the energy loss of particles traversing BGO, in samples corre

sponding to the individual crystals. Different types of particles lose energy by different 

mechanisms and produce different patterns of energy deposition. The design of the 

ECAL is optimized for photons and electrons which can be precisely reconstructed 

because they generate characteristic electromagnetic showers with little variation. 

Hadrons in BGO lose their energy through nuclear interactions which result in dif

fuse deposits with large fluctuations. Muons do not interact strongly in ECAL and 

produce small signals that are almost independent of their energy ( about 220 MeV 

for a muon traversing the full length of a crystal). 

The first step in particle reconstruction is to identify connected regions of crystals, 

referred to as geometrical clusters, corresponding to the areas of activity ( due to 

one or more particles) in the ECAL. Geometrical clusters are formed by assigning 

crystals with energy greater than 10 l'vleV into groups, where each crystal in a group 

is adjacent to at least one other crystal in the group. Clusters with a total energy of 
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less than 40 MeV are not considered. The definition of adjacency is straightforward 

in the barrel region and includes diagonal connectivity ( each crystal is adjacent to 8 

others), however some care is required in the endcap regions where crystals are not 

aligned in c/J across different crowns (see Figure 4.5). Clusters are allowed to span the 

break between the two half barrels, but not the gap between the barrel and endcap 

regions. 

The second step of reconstruction is to identify energy deposits due to individual 

particles within a geometrical cluster. These are referred to as bumps and are formed 

by first identifying local maxima ( bump crystals) within a geometrical cluster and 

then associating each crystal in a geometrical cluster to the nearest such maximum in 

the same cluster. Bump crystals are required to have energy greater than 40 MeV and 

also greater than the energies of the 8 neighboring crystals ( using the same definition 

of adjacency as for geometrical clusters). The distance measure used to assign non

bump crystals to their nearest bump crystal is roughly equivalent to the 3-dimensional 

distance between the crystal centers. If two bump crystals are equidistant from a non

bump crystal, the non-bump crystal is assigned to the most energetic one of the two. 

Reconstruction of the energy of the particle that originated a bump assumes that 

the particle was an electron or a photon, and is based on the quantities 

where the sums range over crystals in 3 x 3 and 5 x 5 matrices centered on the bump 

crystal, also including those crystals which are assigned to a different bump. Figure 

4.9 shows the distributions of S9 and S25 , for 5 and 25 GeV photons simulated in the 

detector. The extra width of the S9 distribution, as compared with S25, is due to 

the greater sensitivity of S9 to energy leakage effects. This effect can be corrected for 

since the leakage from a 3 x 3 matrix of crystals is correlated with the ratio Si/ Sg 

(S1 is the energy of the central bump crystal), which is sensitive to variations in the 

particle impact parameter over the face of a crystal (see Figure 4.10). The corrected 
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sum-of-9 energy is defined as 

where c1 (0) and c2 (0) are coefficients chosen to unfold the effect shown in Figure 4.10, 

with an overall normalization giving (S9 ) ~ E,. Figure 4.9 shows the distributions 

of S9 for 5 and 25 GeV photons simulated in the detector. The correlation in Figure 

4.10 is relatively weak for 5 GeV photons, and as a result the improvement in S9 
over S9 is small. At higher energies however, the correlation between S9 and Si/ S9 

is stronger, and results in a S9 that is slightly better than S25 . 
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Figure 4.9: Distributions of the reconstructed energy variables S9 , S25 , and 
S9 for 5 GeV (a) and 25 GeV (b) photons simulated in the detector. 
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Figure 4.10: Correlation between the reconstructed energy S9 and the ratio 
Si/ S9 , for 5 GeV (a) and 25 GeV (b) photons simulated in the detector. 
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CHAPTER 5 

EVENT SELECTION 

The physics process that I study in this thesis is Z -+ qq,: the hadronic decay of 

a Z boson accompanied by a photon radiated from one of the primary quarks. The 

dominant backgrounds to this final-state radiation (FSR) process are from neutral 

hadrons decaying into multi-photon states (mostly 1r
0 -+ TY), and, to a smaller extent, 

from photons radiated by the e+e- initial state (ISR). In this chapter, I describe the 

methods that I have used to select a sample of events that is enriched in FSR. In the 

next chapter, I describe how I analyze the selected events, accounting for irreducible 

background contributions and detector effects and estimating uncertainties. 

I select events by first choosing hadronic Z decays, and then by further selecting 

events that contain at least one candidate FSR photon. In the following sections, I 

describe both of these steps in more detail. I suppress neutral hadronic background 

from the final event sample by imposing energy and isolation requirements for photon 

candidates, and by a detailed study of the patterns of the energy deposited in the 

ECAL. I suppress ISR by restricting my attention to events with vs '.::::'. m 2 , and by 

rejecting photon candidates in the most forward and backward regions of the detector. 

In this chapter, I use the JETSET[62, 63) and HERWIG[64, 65) Monte Carlo mod

els of hadronic Z decay for comparisons with 13 data. Events generated using both of 

these models were simulated in the 13 detector with the SIL3 program, and then 

reconstructed using the REL3 program. SIL3 is a detector simulation based on 

GEANT[66, 67) Version 3.16, and REL3 is the standard 13 reconstruction program 

used to interpret both real and simulated raw data. The physics performance of JET-
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SET has been more extensively studied than that of HER\VIG, and a much larger 

number of JETSET events have been simulated in the L3 detector. For these reasons, 

and also because HERWIG does not include ISR, I consider JETSET as the primary 

Monte Carlo for comparisons with L3 data. In all plots showing comparisons of data 

with Monte Carlo, I normalize the Monte Carlo predictions to the same number of 

selected hadronic Z decays as observed in data. 

5.1 Selection of Hadronic Z Decays 

The first step of my analysis is to select a sample of hadronic Z decays. Hadronic 

decays are characterized by a large number of both charged and neutral particles 

and are thus easily distinguished from other Z decay modes (Figure 5.1 shows a 

typical hadronic decay recorded in the L3 detector). I further require that events be 

recorded at fa'.::: m 2 , and during running periods when the relevant components of 

the detector and data-acquisition system were functioning normally. 

5.1.1 Online Trigger 

In order for a hadronic Z decay to be recorded, it must first be selected by the 

online trigger system (see Section 3.2.8). Hadronic events are identified by the logical 

OR of the first-level energy, scintillator, and TEC triggers, which have efficiencies of 

99.93%, 95%, and 95% respectively. The energy trigger requires either a total energy 

in the calorimeters of at least 25 GeV, or a minimum energy in the central region 

42° < 0 < 138° of 15 GeV (ECAL+ HCAL) or 8 GeV (ECAL only). The scintillator 

trigger requires a coincidence of at least 5 scintillator hits during a 30 ns interval, 

which must extend over an azimuthal angular region of at least 90°. The TEC trigger 

requires that at least two tracks are identified with a maximum acollinearity of 60°. 

The hadronic event trigger requires that an event be selected by at least one of the 

first-level triggers described above. Higher levels of the trigger system filter events 
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to reject those due to electronic noise, beam-gas interactions, and cosmic rays. The 

overall efficiency for selecting genuine hadronic Z decays with the online trigger is 

greater than 99.9%. 

5.1.2 Selection of Events Produced at the Z Resonance Peak 

I require that events be recorded at a center-of-mass energy on the peak of the Z 

resonance, which I define as 

91.0 GeV < vs < 91.5 GeV , 

where vs is determined from the operating parameters of the LEP accelerator. This 

requirement suppresses initial-state bremsstrahlung (see Section 7.1), and thus also 

minimizes the interference between photons radiated by the initial- and final-states, 

allowing a meaningful distinction to be made between these two sources. 

Figure 5.2(a) shows the distribution of the integrated luminosity recorded by the 

L3 detector at different center-of-mass energies, between 1991 and 1994. Figure 5.2(b) 

shows the corresponding number of hadronic events recorded in the on-peak range 

of energies. The general LEP strategy has been to run on peak during 1992 and 

1994, and to scan in energy during 1991 and 1993; as a result, the number of on

peak events collected during 1993 was lower than during the previous year, despite 

a significant improvement in luminosity. 91.5% of the hadronic event sample-and 

81.3% of the luminosity-recorded between 1991 and 1994 is on-peak. The weighted 

average center-of-mass energy of the on-peak events that I have selected, calculated 

using weights proportional to the number of hadronic events, is ( ft) = 91.248 GeV. 

5.1.3 Detector and Data-Acquisition Status 

In order to control systematic uncertainties related to the performance of the detector 

and the data-acquisition system, I only use events recorded during running periods in 
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which the relevant systems were operating normally. The important detectors for this 

analysis are the hadron calorimeter ( for hadronic event selection), the electromagnetic 

calorimeter ( for hadronic event selection and photon candidate selection), and the 

central tracking chamber (for neutral bump selection). In addition, I require that the 

luminosity monitors, the global data-acquisition system, and the energy trigger were 

operating normally for events to be included in my analysis. 

I filter events with detector and data-acquisition problems at three levels: by 

rejecting all events taken during bad runs, by rejecting individual events within a 

normal run, and by rejecting individual photon candidates within an otherwise good 

event (I describe the filtering of photon candidates in Section 5.2.1). A run is a 

series of events taken during part of a single fill of LEP. For the first level of filtering, 

I define a run to be bad when one or more of the systems listed above was not operating 

normally, as recorded in the online databases or as determined by subsequent analysis. 

In addition, I reject runs for which the fraction of selected hadronic events with less 

than four TEC tracks is larger than 20%, since it is unlikely that the TEC was 

operating normally during such a period. The effect of bad runs on the available 

data sample from each year is summarized in Table 5.1. There is a general trend of 

improvement in reliability since 1991, and conditions in 1993 were particularly good. 

Within a good run, I apply a second level of filtering that consists of identifying 

and rejecting events in which the ECAL readout has excessive noise. These events 

are typically due to large fluctuations in the positions of the pedestals for a group 

of crystals that share a common power supply, which are induced by pickup from 

external sources. Figure 5.3 shows a typical event of this class. I identify noisy BGO 

events using cuts on the number of crystals, Nery, assigned to each bump in an event. 

For an event to be considered good, I require that it contain no more than four bumps 

with Nery > 30, and that no bump in the event have 

Nery > 35 + 3.5 X Ebmp , 
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Year 1991 1992 1993 1994 TOTAL 

On-peak Runs 1076 2264 1884 4948 10172 
Bad Runs 20.8% 17.3% 6.5% 11.7% 13.0% 
On-peak Lumi (pb- 1

) 8.6 22.7 15.5 49.9 96.7 
Bad Lumi 15.0% 9.5% 2.0% 6.2% 7.1% 
Good Runs (events) 310K 793K 509K 1649K 3261K 
Noisy BGO Events 2.6% 3.3% 0.4% 0.05% 1.1% 

Table 5.1: Summary of detector and data-acquisition status for each of the 
years 1991-94. The first two rows give the total number of on-peak runs for 
each year and the fraction of these that I consider bad. The next two rows 
give the total luminosity recorded on-peak during each year and the fraction 
of this that I consider bad. The last two rows give the number of events in 
the QQ stream (see Figure 5.5) of good runs on peak and the fraction of 
these that I reject for having excessive BGO noise. 
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where Ebmp is the bump's energy in GeV. Figure 5.4 shows the two-dimensional 

distributions of Nery and Ebmp for bumps in data and Monte Carlo events. The Monte 

Carlo simulation does not account for the effects that lead to noisy BGO events, and 

the fraction of Monte Carlo events rejected with the cuts described above is less than 

0.001 %. Table 5.1 summarizes the effect of noisy BGO events on the available data 

sample: noise conditions have generally improved since 1991. A new method for 

recovering information from noisy BGO events has recently been developed but it 

must be applied to raw data during data reconstruction. This method has so far only 

been applied to the data collected during 1994, and this is the reason for the much 

smaller fraction of events cut during this year. 

As a final level of filtering, I reject certain photon candidates in selected hadronic 

events because of local problems with the BGO and TEC. I describe this filtering in 

more detail in Section 5.2.1. 
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Figure 5.1: A typical hadronic Z decay recorded by the L3 detector, and 
displayed in the plane perpendicular to the beam axis. The central segmented 
region of the figure shows tracks reconstructed in the TEC as arcs originating 
near the nominal vertex. The outer segmented region shows HCAL energy 
deposits as squares whose size is proportional to the energy deposited. Energy 
deposits in the ECAL are shown as towers for each crystal, whose height is 
proportional to the crystal energy. In this projection, barrel crystals appear 
in the region between the TEC and the HCAL, and endcap crystals are 
superimposed over the TEC region. 
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Figure 5.2: Center-of-mass energy distributions of 13 events recorded be
tween 1991 and 1994. Figure (a) shows the integrated luminosity recorded 
for all energies, on a logarithmic scale, with dashed vertical lines marking 
the range of energies defined to be on peak. Figure (b) shows the number of 
hadronic events recorded in the on-peak range of energies, on a linear scale. 
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L I 

Figure 5.3: Display of a hadronic Z decay event in which excessive ECAL 
noise is present. The noise is evident as a rectangular region of crystals, all 
registering a small energy. The event is displayed in the y-z plane, and shows 
only the TEC and ECAL regions. 

76 



5.1 SELECTION OF HADRONIC Z DECAYS 77 

(/) 

ca 
+-' 
(/) 

C" 
(.) -0 
i.... 
Q) 
.0 
E 
::, 
z 

(/) 

ca 
+-' 
(/) 

C" 
(.) -0 
i.... 
Q) 
.0 
E 
::, 
z 

(/) 

ca 
+-' 
(/) 

C" 
(.) -0 
i.... 
Q) 
.0 
E 
::, 
z 

100 , 100 , MCqq , , MC 't+'t-, e+e-qq , , , , , 
80 , 80 , , , , , , , , , , , a D C = C , 
60 , ,. D C C C C 60 , , ,· □ C, C, □ , C □ C C , D 0 □ Cl D D D D D D D , 

□ □ 0 C, 

, ,. C □ D D D D D D D D , , C 0 □ D D D D D D D D D , C D D D D D D D D D D D D D , C 0 D D D D D D D D D D D 

40 -,a D D D D D D D D D D D D D D D 40 , D D D D D D D D D D D D D D 
□ D D D D D D D D D D D D D D D D D D D D D D D D D D D D 
D D □ DDDDD D D CJ D D D □ D D D D CJ D D D D D D D D 
CJDDDDCJDD D D D D D D D D D DD D D D D D D D D D 

DDDDDDDD D D D D D D D D 0 DD DD D CJ D D D D D D 

20 DDDD □ DDDD D D D D D D D 0 a 20 D DODD D D D D D D 

□□□□□ DD □ D D D □ C D DDDDD D D D D □ □ □ C C D 

□□□ ODD □ D D D D □ C □□ DD D □ □ □ = 
□□□ DD D DD D C, 0 C C -
DD D Cl 0 C D D D Cl C 

0 D C 0 
0 10 20 30 0 10 20 30 

100 C, , 100 D D D , 
D , 1991 D C ,· 1992 D , D C ., , ,. , 

80 D , 80 i, 
, 

, ,. 
, , D C 

.,, 
D D C - , 

D , •, D 

D , a ~ • D a D 

60 ; , . 60 D, D C D C C = C C , . , D = = C C C C C C C , □ C C 0 □ 0 0 0 c:, .., D C 0 C C 0 □ □ D °" C 
C C 0 □ □ □ C, □ C, 

D '• - C C 0 C, D ,b C □ □ D D D CJ CJ 

-r' C C 0 D D D D D D D D D ? □ 0 D D D D D D D D D D D 

40 □, □ 0 C, D D D D D D D D D D CJ D D 40 □, □ D CJ D D D D D D D D D D D D D 
D D CJ D D D D D D D D D D CJ D D D D D D D D D CJ D D D D D D D D D 
D D D D D CJ D CJ D D D D D D D D D D D D D D CJ D CJ D D D D D D 

ODD □□□ D D D D D D D D D D D DDDDDDDD D D D D D D D D 

DDDDDD D D D D D D D CJ D DDDDDDDD D D D D D D D 

20 □□□ DODD D D D D D 20 D □□□ DDDDD D D D D D 

00000 □□ D D D D C, C □□□□ DDDDD D D D D C, 0 

□□□□ DD D Cl 0 C D □□□□ DD D D D 

□□ DD D □□ DD D D C C 

OD • I ODD 

0 0 D D 0 

0 10 20 30 0 10 20 30 
100 , 100 , 

, , 1993 , , 1994 , , , , 
80 , , 80 , , ., , , , ·, . ·, a , , a a C D a a 

60 C, . , . 
D D C C D D D C D 60 D -, . C C C C C C , 

D C C C C c:, 0 
, 

D D = C C C, □ ,· ,· 
D ., D C C C, 0 0 0 0 C, C, C □ ., C C C, C, D Cl □ Cl D 

a ,. C C □ Cl D D Cl □ D ,c C 0 D D D D D D D D D , 
? D 0 D D D D D D D D D D D 0 ,, , 0 0 D D D D D D D D D D D D D D 

40 o, □ 0 □ D D D D D D D D D D D D D 40 □ ,c C, D D D D D D D D D D D D D D D 
D D D D D D D D D D D D D D D D D D D D CJ D D D D D D D D D 

D D D D D DD D D D D D D D D D D D D D DD DD D D D D D D D D D 
DDDDDDD D D D D D D D D DDDDDDDD D D D D D D D D D 

DDDDDDD D D D D D D D D DDDDDDDD D D D D D D D D D 

20 DD □□ DDDD D D D D D D D 20 D □ D□□ DDDD D D D D D D 

□□□□□□ DD D D DDDDDDDDD D D D D □ 0 

□□□ DOD D D C, □ C D D □□□□ DD D D D 

□□□ DD □ODD D D C D -
OD C D ODD 

0 D D 0 0 D D 0 

0 10 20 30 0 10 20 30 

Bump Energy (GeV) Bump Energy (GeV) 

Figure 5.4: Two-dimensional distributions of Nery and Ebmp for bumps in 
Monte Carlo events generated with different final states, and for bumps 
recorded between 1991 and 1994 in good events of the QQ stream (see Figure 
5.5). The cut Nery > 35+3.5 x Ebmp is shown as a dashed line. The size of the 
boxes that are plotted is proportional to the logarithm of the corresponding 
number of bumps. 
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5.1.4 Offiine Selection 

Figure 5.5 gives a schematic overview of the flow of data from the 13 online system to 

a standard physics analysis. The most important step for my analysis occurs during 

the first pass of REL3 reconstruction, where each event is assigned to one or more 

physics split streams in order to simplify subsequent analyses. The relevant stream 

for hadronic Z decay events is the QQ stream. The criteria that are used during 

reconstruction to assign events to this stream are essentially a looser version of the 

selection cuts that I use in my analysis, and so they have a negligible effect on my 

analysis and I do not describe them further. 

I select hadronic Z decay events from the QQ stream with two complementary 

approaches: in the first approach, I use information from reconstructed energy clusters 

in the calorimeters, and in the second, information from reconstructed tracks. In this 

analysis, I prefer the first method since it is efficient over a larger fiducial volume, 

and I reserve the track-based method as an independent check and for estimating 

systematic uncertainties associated with the event selection (see Section 6.3). 

In both the track-based and calorimeter-based selection schemes, a set of energy 

vectors , { .Ei}, is first reconstructed for each event, and these are then used to evaluate 

the total visible energy 
N 

E vis = I: I.Eil , 

and the longitudinal and perpendicular components of the m1ssmg energy vector 

needed to balance the visible energy 

E11 = lz-~EI 

EJ_ = ✓(i: . 6.£)2 + (y. 6.E)2 . 

In the calorimeter-based selection scheme, energy vectors are reconstructed from 

individual clusters in the electromagnetic calorimeter, and associated with additional 
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clusters in the hadronic calorimeter that have a similar direction. The direction 

of an energy vector is determined from the energy-weighted center-of-gravity of the 

individual calorimeter deposits, and its magnitude is given by 

Ei = L gjEi,j ' 
j 

where Ei,j are the raw energies of the clusters associated with an energy vector and 

the g-.factors, gj, are chosen to optimize the resolution for the total visible energy Evis 

(see Figure 5.6). Typical values for the g-factors lead to the reconstructed energies 

1.4 X EEC + 1.2 X EHc for 42° < 0 (180° - 0) < 90° 

1.7 X EEc + 1.1 X EHc for 18° < 0 (180° - 0) < 42° , 

1. 7 X EEc + 1.4 x EHc for 10° < 0 (180° - 0) < 18° 

where the subscripts EC and HC denote the raw energies measured in the electromag

netic and hadronic calorimeters respectively, and the ranges of polar angles correspond 

to detector regions having different amounts of material. Vectors with a reconstructed 

energy of less than 100 MeV are dropped from the final list. In the case of a cluster 

due to a photon or an electron, the g-factors significantly overestimate the particle 

energy. This is not a serious problem for most hadronic event analyses; however, since 

I am selecting a sample of events enriched in energetic photons, I force Ei = EEc for 

electromagnetic-like bumps, which I define as those with S9/ S~5 > 0.95 (see Section 

4.4.2). 

The cuts for selecting hadronic Z decays with the calorimeter-based method are 

Evis 
0.6 < fr. < 1.4 , 

yS 
__§_ < 0.4 
Evis 

E1_ 
-E _ < 0.4 , N ~ 13 , 

vis 

where vs is the nominal center-of-mass energy determined by LEP. The distribu

tions of each variable, with the other three cuts applied, are shown in Figs. 5.6-5.9. 

Each distribution is plotted with both linear and logarithmic scales, and shows the 

comparison of L3 data with the cummulative (i.e., stacked one on top of the other 
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so that the combined histogram can be directly compared with data) Monte Carlo 

predictions for different Z decay modes. I use the JETSET Monte Carlo to calculate 

the dominant decay into hadrons, Z ~ qq(,), the KORALZ[68] Monte Carlo for tau 

decays, Z ---+ T+T-, and the DIAG36[69] Monte Carlo1 for the two-photon process 

Z ~ e+e-qq. 

Small discrepancies between data and Monte Carlo predictions in the distributions 

of Figures 5.6-5.9 are mostly due to missing backgrounds in the Monte Carlo models, 

such as cosmic rays and beam-gas interactions, and to incomplete simulation of time

dependent variations of the detector response, such as those induced by readout 

noise and dead channels. These discrepancies are negligible for the level of precision 

required here2 . 

Energy vectors for the track-based selection are determined from the momentum 

and direction of reconstructed tracks , with energies calculated assuming a 7T"± mass. 

Tracks with momentum transverse to the incoming beams of less than 100 MeV are 

ignored. The selection cuts using the track-based method are 

E-
0.15 < Ji E 

_II< 0.75 
Evis 

E1_ 
~ <0.75 

vis 
N ?_ 5 

and are chosen to be looser than the corresponding calorimeter-based cuts because 

of a lower efficiency for reconstructing tracks and a poorer resolution for determining 

track energies. An additional selection cut is applied based on the distribution of track 

azimuthal angles in an event: the differences in azimuthal angle between azimuthally 

adjacent pairs of tracks are computed and the second largest of these differences must 

be at most 170°. This cut eliminates events consisting of two back-to-back narrow 

clusters of tracks, which are characteristic of Z ---+ T+T- decays. 

1Since the DIAG36 Monte Carlo prediction for the absolute rate of hadronic two-photon events 
is unreliable, I fix its normalization from the data in Figure 5.6, using the region Buis/ vs < 0.3. 

2The 13 analysis of hadronic lineshape[70] includes corrections for most of these effects, and 
obtains a systematic uncertainty on the selection efficiency of ±0.10%. 
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5.1.5 Summary 

Table 5.2 summarizes the hadronic event selection statistics for data collected between 

1991 and 1994. The total number of selected events using the calorimeter-based 

method is 2760K. The relative contributions from each year are 9%(91), 24%(92), 

16%(93) , and 51 %(94). Including data from 1990 would add approximately 5% more 

events, but since the BGO endcaps were not installed during this period, I have not 

done so. 

Year 1991 1992 1993 1994 TOTAL 
QQ Stream Events 302K 767K 508K 1649K 3224K 
Track Selected 214K 577K 395K 1235K 2421K 

71.0% 75.3% 77.8% 74.9% 75.1% 
Cal or. Selected 255K 656K 442K 1407K 2760K 

84.5% 85.6% 87.0% 85.4% 85.6% 

Table 5.2: Summary of hadronic event selection statistics for data collected 
during 1991- 94. The first rmv gives the number of good events in the QQ 
reconstruction stream for each year. The next two rows give the number and 
fraction ( of the first row) of events selected using the track-based selection. 
The last two rows give the number and fraction of events selected using the 
calorimeter-based selection. 

Table 5.3 summarizes the selection statistics for different simulated Monte Carlo 

processes. I estimate the efficiency of the calorimeter-based selection by taking the 

average of the results that I obtain with JETSET and HERWIG, finding 

Chad = 97.88 ± 0.06 ± 0.38 % , 

where the first error is the combined statistical uncertainty, and the second error is 

the systematic uncertainty estimated as half the difference between the efficiencies 

predicted by the two models. The dominant background using the calorimeter-based 

selection is from Z -+ 7+7- events in which both taus decay hadronically. Since the 

expected total background contribution to the final sample is less than 0.25%, I do 

not consider it further. 
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Cross Event Calorimeter 
Process Section Generator Events Track Selected Selected 
z-+ qq 30.5 nb JETSET 2182K 88.2% (88.2%) 98.3% (98.3%) 

HERWIG 730K 87.4% (87.4%) 97.5% (97.5%) 
Z-+ T+T- 1.5 nb KORALZ 84K 1.0% (0.05%) 4.2% (0.21 %) 
Z-+ e+e-qq 2.8 nb DIAG36 ll0K 2.4% (0.22%) 0.5% (0.05%) 

Table 5.3: Summary of hadronic event selection statistics for Monte Carlo 
samples of different processes. All events are generated at vs = 91.25 GeV 
and simulated in the 13 detector. The selected fractions in parentheses are 
normalized to the hadronic cross section and represent the relative contribu
tions of each process to the final selected event sample. 

5.2 Selection of Photon Candidates 

After selecting a sample of hadronic Z decays, I identify candidate FSR photons in 

these events, and then keep only those events with at least one such candidate. I select 

candidates from the reconstructed ECAL bumps in an event that are not associated 

with any charged track (I refer to such bumps as neutral bumps). 

The main source of photons in hadronic events is the decay of neutral mesons 

( typically 1r0 -+ ,, ) ; however, in this analysis I am primarily interested in the much 

smaller contribution from photons radiated by a primary quark. In order to obtain a 

high-purity sample of these FSR photons, I require that photon candidates 

• be isolated from other particles in the event in a cone of opening angle O:iso = 

10°- 25° (see Section 5.2.3), 

• satisfy minimum and maximum energy requirements , 8 GeV < E1 < 44 GeV 

(see Section 5.2.4) , 

• be within a restricted fiducial volume, 45° < 0-y < 135° or 17.5° < 0-y (180° -

01 ) < 35° (see Section 5.2.5), 

and 
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• have a pattern of ECAL energy deposits consistent with those expected for a 

single photon, p1 > 0.1 (see Section 5.2.6). 

The fiducial volume cut is primarily to reduce the background from photons radiated 

by the e+ e- initial state; the remaining cuts serve mostly to reject hadronic back

ground. Figure 5.10 shows an event with a very energetic photon satisfying these 

requirements. In the following sections I describe each of these cuts in greater detail. 

In Figures 5.12, 5.13, and 5.14, which appear below, I show the distributions of 

each of the three variables on which I cut to select candidates ( E1 , 01 , and p1 ) when 

the other two cuts are applied. I compare 13 data with the predictions of the JETSET 

1\fonte Carlo, showing the individual JETSET contributions from FSR photons, ISR 

photons, and hadronic background. The different Monte Carlo contributions are 

shown cummulatively in these Figures so that the combined histograms can be directly 

compared with the data points. 

Nearly all of the predicted hadronic background is from neutral hadron decays into 

photons, but there is a small charged background of 2%-3% consisting of electrons, 

which are not rejected by a shower-shape analysis, and charged pions. The neutral 

hadronic background is primarily 1r0 (70%-90%, depending on the isolation require

ment) with smaller contributions from rJ, Ks, and KL. Figure 6.1 in the next chapter 

shows the predicted energy distributions for the main components of the hadronic 

background. 

5.2.1 Detector and Data-Acquisition Status 

In Section 5.1.3, I described the filtering that I apply to runs and events in order to 

control systematic uncertainties related to the performance of the detector and of the 

data-acquisition system. In this section, I describe an additional level of filtering that 

I apply to individual bumps in an event, based on the local performance of the TEC 

and the ECAL. 
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For each photon candidate bump, I require that all the crystals in the central 

3 x 3 matrix of of a bump were operating normally and register a non-zero energy, 

and that the adjacent TEC sectors were also operating normally. The first of these 

requirements is necessary to ensure consistent performance of the shower shape anal

ysis described in Section 5.2.6, and the second to ensure efficient association between 

tracks and bumps as described in Section 5.2.2. As described below, I consider three 

types of problems that can affect the performance of these selection requirements: 

dead ECAL readout rings, isolated hot or dead BGO crystals, and dead TEC half

sectors. Table 5.4 summarizes the deadtime due to each of these effects for data 

collected between 1991 and 1994, and Figure 5.11 shows the azimuthal-angle depen-

dence of the deadtime. 

Year 1991 1992 1993 1994 TOTAL 
Bad Rings 0.7% 2.4% 3.1% 1.6% 1.9% 
Bad Crystals 7.7% 9.2% 7.8% 7.7% 8.1% 
Bad Sectors 13.7% 4.6% 0.6% 4.4% 4.7% 
Overall 22.1% 16.2% 11.5% 13.8% 14.8% 

Table 5.4: Summary of the average deadtimes due to dead ECAL rings, 
isolated hot or dead BGO crystals, and dead TEC sectors, during each of the 
years 1991- 94. The last column gives the weighted average deadtimes for the 
four years, calculated using weights proportional to the number of selected 
hadronic events in each year. 

The first type of problem I consider is related to the first level of the ECAL readout 

which consists of 192 rings (see Section 4.3.3). Each year, a small number-between 

one and five-of these rings do not provide any data for the crystals they read out: 

I refer to these rings as dead. The second type of problem I consider is the effect of 

isolated crystals that are either excessively noisy ( hot) or do not provide any data 

( dead). Both dead rings and hot or dead crystals cause bumps to be rejected by killing 

crystals in their central 3 x 3 matrices. The overall deadtime from these problems 

is 1.9% for dead rings and 8.1 % for bad crystals. Note that the actual fraction of 
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Physics 
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Databases 
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Physics analysis 

Figure 5.5: Schematic diagram of the flow of L3 data from the online trigger 
and data-acquisition system (shown at the top), to standard physics analyses 
( shown at the bottom). Events recorded online are split into physics streams 
after the first pass of REL3 reconstruction, one of which is the QQ stream 
that I use for my analysis. 
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Figure 5.6: Distribution of the visible energy, after all other selection cuts 
have been applied. The visible energy is calculated with the calorimeter 
method, and displayed with linear and logarithmic vertical scales. 
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is calculated with the calorimeter method, and displayed with linear and 
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Figure 5.10: Hadronic Z decay with a very energetic photon candidate il
lustrating the selection criteria used in this analysis. The candidate is not 
associated with any charged tracks and is isolated from other particles in the 
event. The event is displayed in the plane perpendicular to the beam axis. 

90 



5.2 SELECTION OF PHOTON CANDIDATES 

Q) 

E 
:.:. 

1991 
TEC Sectors □ 

BGO Crystals ~ 
ECAL Rings ffl 

-g 40 
Q) 

0 

;g-
~ 
Q) 

E 
:.:. 
"'C 
co 
Q) 

0 

30 

20 

10 

o~~ 

0 
30-----------

100 200 300 

25 

20 

15 

10 

5 

0 
0 

1993 

100 

TEC Sectors D 
BGO Crystals ~ 

ECAL Rings m 

200 300 

50 

40 

30 

20 

10 

25 

20 

15 

10 

5 

0 
0 

1994 

100 

100 

200 300 

TEC Sectors □ 
BGO Crystals ~ 

ECAL Rings -

200 300 

91 

Azimuthal Angle (deg) Azimuthal Angle (deg) 

Figure 5.11: Azimuthal distributions of TEC and ECAL dead times causing 
photon candidates to be rejected, during each of the years 1991-94. Note the 
different vertical scales for each year. 



5.2 SELECTION OF PHOTON CANDIDATES 92 

crystals which are bad . is less than 1 %, but that each isolated bad crystal also kills 

bumps centered on the neighboring eight crystals in a 3 x 3 matrix. 

The selection of neutral bumps described in Section 5.2.2 requires that both the 

track and the bump that are due to a single charged particle can be efficiently as

sociated with each other. This association is complicated by the fact that the high

voltage power supplies to each TEC half-sector (24 inner half-sectors and 48 outer 

half-sectors) can turn off and on again on short timescales. When the high-voltage 

to a half-sector is turned off, it does not record any tracks so all bumps adjacent to 

the half-sector appear to be neutral (I refer to such a half-sector as being dead). In 

order to monitor this problem, I use standard files that describe the status of each 

half-sector during four minute intervals, and which are compiled from high voltage 

control information stored in the online databases and from analysis of track occu

pancy in hadronic events. vVhen a half-sector is dead for a fraction of a four-minute 

interval, it is flagged as dead for the entire interval. 

For a bump whose energy-weighted center-of-gravity is located at (0, ¢), I require 

that the adjacent inner TEC half-sectors be active if 0 < 35° or 0 > 145°, and that 

the adjacent outer TEC half-sectors be active if 25° < 0 < 155°. I define the adjacent 

inner and outer TEC half-sectors to a bump by matching in¢, and then taking a single 

half-sector if the bump is located its central half-region, away from the boundaries, 

or otherwise a pair of neighboring half-sectors. When a bump is adjacent to a dead 

TEC sector, I remove it from the final event sample. The overall deadtime from TEC 

high-voltage problems is 4. 7%. 

The detector and data-acquisition problems that I describe above are not included 

in the detector simulation I use, so I apply efficiency corrections to the Monte Carlo 

simulated events to account for their effects. This approach then allows direct compar

ison of distributions obtained from data and Monte Carlo events. I apply corrections 

to a Monte Carlo event by randomly assigning it a year between 1991 and 1994, using 

weights proportional to the number of selected hadronic events, and then applying 
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year- and azimuthal-angle-dependent corrections which I obtain from data. 

5.2.2 Selection of Neutral Bumps 

In order to reject bumps due to charged particles, I require that photon candidate 

bumps have no associated reconstructed TEC tracks in an event. The matching 

between bumps and tracks is performed as part of the standard across-L3 (AXL3) 

reconstruction, where each bump can be associated with several tracks, but a track 

is associated with at most one bump. Matching is performed primarily in the plane 

transverse to the beam, by extrapolating a track's arc to the estimated position of 

a bump's shower maximum, and then measuring the azimuthal separation j.6.¢j at 

this radius. When the polar angle of a track can be constrained, matching is also 

performed in 0; however, since track 0 coordinates are usually determined to a much 

lower precision than the corresponding ¢ coordinates, this information serves mostly 

to reduce combinatorics leading to accidental matches. 

5.2.3 Selection of Isolated Bumps 

I evaluate the isolation of a photon candidate bump by summing the energy of any 

other bumps that lie in a cone of half-angle aiso around the candidate, and then 

requiring that the total energy be less than some maximum value Eiso 

E( O:jso) = L 0( In, · fti I < cos Giso) · Ei ::; Eiso . 

i=h 

I calculate the angles between bumps using direction vectors fti which point from the 

L3 origin to the energy-weighted center-of-gravity of a bump. I estimate the energy 

Ei of a bump appearing within an isolation cone using the sum of the energies of 

the crystals assigned to the bump. In my analysis, I consider four different isolation 

requirements: O:iso = 10°, 15°, 20°, and 25°. For the maximum energy allowed in a 

cone, I choose the smallest possible value, Eiso = 40 MeV ( the standard L3 recon

struction drops any bump with less energy than this value). This amount of energy 
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is large enough relative to the typical readout noise of 1-2 MeV per crystal to be 

reliably measured, and small enough relative to the energy of photon candidates for 

clean pattern recognition in the shower-shape analysis. 

Note that even when a photon candidate appears isolated in the detector, it can 

still be accompanied by particles whose total energy is greater than 40 MeV due to 

two main effects: first , hadrons typically do not deposit all of their energy in the 

ECAL, and second, charged particles that are produced within the isolation cone 

can be curved by the 13 magnetic field and deposit their energy outside of the cone. 

The second of these effects can also cause a genuinely isolated photon to appear non

isolated, when a charged particle trajectory is bent within its isolation cone. I have 

studied these effects using JETS ET Monte Carlo events simulated in the L3 detector , 

and I find that they are small. The actual total energy accompanying bumps that 

appear isolated in the detector is less than 40 MeV (400 MeV) for 97.7% (99.9%) of 

the bumps selected with aiso = 10° and for 90.0% (99.1%) of the bumps selected with 

O'.iso = 250_ 

5.2.4 Photon Energy Cut 

I estimate the energy of photon candidates with the corrected sum-of-9 energy S9 
of the corresponding bump (see section 4.4.2). Figure 5.12 shows the energy distri

butions of candidates selected with all other candidate selection cuts applied. The 

predicted contributions from both ISR and hadronic background are more strongly 

peaked at low energies than the FSR contribution, so I apply a minimum energy cut 

to improve the purity of the final sample. There is a secondary peak in both the 

ISR and hadronic background contributions at high energies, due to the dynamics 

of the underlying processes. There is also a slight disagreement at energies near 45 

GeV due to the fact that the data is recorded over a range of beam energies while 

the Monte Carlo events are generated at a fixed energy. In order to suppress this 

energetic background and to allow comparison between data and Monte Carlo, I also 
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apply a maximum energy cut. The final photon candidate energy requirement is 

8 GeV < E, < 44 GeV . 

There is a discrepancy between the observed rate of photon candidates and Monte 

Carlo predictions which is largest for less isolated candidates. In Section 5.2.6, below, 

I investigate the origin of this discrepancy. 

5.2.5 Fiducial Volume Cut 

I restrict the fiducial volume of photon candidates using a cut on their polar angle, 

0,. I estimate 0, for a candidate from the position of the energy-weighted center-of

gravity of the corresponding bump, with respect to the 13 origin. The electromagnetic 

calorimeter covers the region 10° ~ 0, ~ 170°, with gaps at approximately 40° 

and 140° between the barrel and endcap regions. Figure 5.13 shows the polar angle 

distribution of photon candidates selected with all other cuts applied. The predicted 

contributions from both ISR and hadronic background are strongly peaked in the 

forward and backward directions. In the case of ISR, this peaking is due to the 

dynamics of the e+e- ~ e+e-('y) process. In the case of the hadronic background, it 

is due to the large solid angle subtended by individual crystals near the beampipe, 

resulting in a lower efficiency for rejecting overlapping Ko ~ TY decays with a shower

shape analysis. The hadronic background contribution is also larger near the gap 

between the barrel and endcap regions, particularly for smaller values of the isolation 

angle O'.iso· This effect is due to the inefficiency of the isolation cut in this region, 

which is proportional to the fraction of the isolation cone that overlaps the gap. In 

order to improve the purity of the final sample, I restrict photon candidates to the 

fiducial volume 

The discrepancy between data and J\fonte Carlo predictions mentioned in Section 

5.2.4 is again evident in Figure 5.13. In addition to being larger for less isolated 
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Figure 5.12: Energy distributions of photon candidates, ,vith dashed lines 
showing the final energy cut : 8 GeV < K r < 44 GeV. The figures correspond 
to the isolation requirements aiso = 10° (10), 15° (b) , 20° (c), and 25° (d). 
The Monte Carlo predictions were calculated using JETSET. 
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candidates, the discrepancy is also larger in the barrel than in the endcap regions 

of the ECAL. Note that the detector and data-acquisition problems described in 

Section 5.2.1 introduce small effects which are non-uniform in polar angle, and these 

deviations are reflected in Figure 5.13 as well. 

5.2.6 Shower-Shape Analysis 

The pattern of individual crystal energies in a bump provides a transverse sampling of 

the shower that develops when a particle passes through the electromagnetic calorime

ter (see section 4.1 ). In the case of electrons and photons, the resulting shower has 

a characteristic shape that does not depend strongly on the particle energy in the 

range E ~ 1-50 GeV. Therefore, it is in principle possible to distinguish between 

the shower generated by a single photon, and the overlapping showers from almost 

collinear photons ( e.g. from the decay of an energetic 1r
0
). In practice, this approach 

is limited by how coarsely showers are sampled, which is in turn determined by the 

crystal transverse dimensions. With fewer samplings of the calorimeter response , it 

is more difficult to disentangle the effects of varying photon impact parameter and 

overlapping showers (see Figure A.1 of Appendix A). 

To analyze shower shapes in this thesis, I have developed a 1r
0 

/ 1 discriminator 

based on an artificial neural network, which I call NNDISC. A detailed description 

of the development and performance of this method is provided in Appendix A; here 

I only describe aspects relating my analysis. The NND ISC method has better 1r
0 

rejection than previous methods, and is the first that can be used in both the barrel 

and endcap regions. 

The discriminator provides a value between zero and one , which I refer to as P,, 

based on input values derived from the energies of the central 5 x 5 matrix of crystals of 

a bump. The distribution of P, is ideally flat for bumps due to an isolated photon, so 

that applying a cut on the minimum value of p, has an energy-independent efficiency 

for selecting isolated photons equal to 1 - p,. The distribution of p1 for bumps due 
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to an isolated hadron is peaked near zero, so that a cut on the minimum value of P, 

results in an enriched sample of bumps due to a single photon. Hadronic decays into 

photons that are either well-separated or almost collinear are not rejected by a shower

shape analysis. The first of these configurations occurs mostly at low energies, and so 

is suppressed with a minimum energy requirement for photon candidates. The second 

configuration occurs most frequently at high energies and constitutes an irreducible 

source of background (I discuss the estimation and subtraction of this background in 

Section 6.1.2). 

Figure 5.14 shows the distributions of p, for photon candidates selected with all 

other cuts applied. The predicted contributions from FSR and ISR are indistinguish

able in these distributions , since they both consist of genuine single photons , and 

are approximately uniformly distributed across the full range of p,. The predicted 

hadronic background contribution is strongly peaked at values of Vr near zero, but 

also has a component covering the full range of p1 , which decreases for larger val

ues of p,. In order to reject hadronic background from the final sample, I impose a 

shower-shape cut of 

p, > 0.1, 

and I expect the efficiency of this cut to be 90% for FSR photons. 

The large differences between the predicted p, distributions of ISR and FSR, and 

of hadronic background, make it possible to compare data and Monte Carlo separately 

for these two types of contribution. By comparing data and Monte Carlo in the region 

p1 > 0.1 of Figure 5.14, I find that JETSET underestimates the contribution of ISR 

and FSR by 10%-30%, and that this discrepancy is larger for less isolated photons. 

By comparing in the region of p, near zero, I find that JETSET underestimates the 

hadronic background contribution by 20%-100%, and that this discrepancy is larger 

for more isolated photons. If I assume that the amount of hadronic background with 

small values of p1 is representative of the amount with higher values, then I expect 

similar discrepancies for the hadronic contribution to the final photon candidate sam-
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ple. This assumption is reasonable for hadrons decaying into overlapping photons, 

since the main effect that determines the value of P, is the kinematics of the decay, 

which I expect to be reliably described by the Monte Carlo. 

5.2. 7 Summary 

Table 5.5 summarizes the number of photon candidates selected when each of the cuts 

described above is applied in turn. The observed rate of photon candidates selected 

per hadronic event (J in Table 5.5) is larger than predicted by the Monte Carlo 

JETSET and HERWIG. This discrepancy varies between 29%- 15% for JETS ET and 

7%- 3% for HERWIG, and is larger for less isolated bumps. If the JETSET ISR 

prediction is added to the HERWIG prediction, which does not include ISR, then the 

agreement between data and HERWIG is improved. I select a total of 11785 photon 

candidates with an isolation of at least 10° from data collected between 1991 and 

1994. In the analysis which I describe in the next chapter, I focus on the final energy 

distributions of photon candidates, selected with four isolation requirements, which 

are shown in Figure 5.15. Table 5.6 gives the numbers of candidates that I select as 

a function of energy and isolation, which correspond to the contents of each of the 

bins of Figure 5.15. 

Among the events in which I have selected a photon candidate isolated by at 

least 10°, there are 34 events with two such photon candidates. Figure 5.16 shows 

a display of one of these events, recorded during 1994. There is no evidence of a 

peak in the distribution of the photon-pair invariant masses in these events, within 

statistical uncertainties. Figure 5.17 shows this distribution for the larger sample of 

221 events which I obtain by relaxing the minimum energy requirement from 8 GeV to 

3 GeV. The Monte Carlo predictions for the number of events with a pair of photon 

candidates having E, > 8 GeV are 12 ± 4 (JETSET) and 30 ± 9 (HERWIG). 
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Selection Cut L3 DATA JETSET HERWIG 

Oiso = 10° N 103 
· f 103 . f 103 . .f 

Energy 33519 10.277 ± 0.056 8.781 ± 0.063 10.208 ± 0.092 
Fid.Volume 30729 9.422 ± 0.054 8.011 ± 0.061 9.230 ± 0.087 
Shwr.Shape 11785 3.613 ± 0.033 2.802 ± 0.036 3.388 ± 0.053 
DATA/MC 1.290 ± 0.020 1.066 ± 0.019 
Oiso = 15° 
Energy 11967 3.669 ± 0.034 3.033 ± 0.037 3.549 ± 0.054 
Fid.Volume 10870 3.333 ± 0.032 2.753 ± 0.036 3.213 ± 0.052 
Shwr.Shape 6927 2.124 ± 0.026 1.794 ± 0.029 2.071 ± 0.041 
DATA/MC 1.184 ± 0.024 1.026 ± 0.024 
Oiso = 200 
Energy 7563 2.319 ± 0.027 1.963 ± 0.030 2.231 ± 0.043 
Fid.Volume 6871 2.107 ± 0.025 1.802 ± 0.029 2.049 ± 0.041 
Shwr.Shape 5224 1.602 ± 0.022 1.398 ± 0.025 1.558 ± 0.036 
DATA/MC 1.145 ± 0.026 1.028 ± 0.028 
Oiso = 25° 
Energy 5551 1.702 ± 0.023 1.459 ± 0.026 1.628 ± 0.037 
Fid.Volume 5074 1.556 ± 0.022 1.353 ± 0.025 1.510 ± 0.035 
Shwr.Shape 4166 1.277 ± 0.020 1.115 ± 0.023 1.218 ± 0.032 
DATA/MC 1.145 ± 0.029 1.048 ± 0.032 

Table 5.5: Summary of photon candidate selection cuts giving, for different 
isolation cuts, the total number N of candidates selected after successive 
cuts are applied (for 13 DATA) and the fraction f = N/Nhad (for 13 DATA, 
JETSET, and HERWIG) where Nhad is the number of selected hadronic 
events. The last row of each section gives the ratios between the values of 
f for data and Monte Carlo events , for the two Monte Carlo models. All of 
the errors given are statistical uncertainties. 

101 



5.2 SELECTION OF PHOTON CANDIDATES 

Isolation Cut ( O:iso): 

Energy 100 15° 20° 25° 
8-12 GeV 3048 1739 1301 1005 

12-16 GeV 1821 1077 796 629 
16-20 GeV 1574 920 672 514 
20- 24 GeV 1284 719 551 439 
24-28 GeV 1109 615 476 384 
28- 32 Ge\! 928 534 394 328 
32-36 GeV 823 467 351 274 
36-40 GeV 700 459 330 272 
40-44 GeV 498 397 353 321 
TOTAL 11785 6927 5224 4166 

Table 5.6: Summary of the number of photon candidates selected in different 
energy intervals (rows) and using different isolation requirements (columns). 
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Figure 5.14: Distributions of the 1r
0 /, discriminator photon probability P, 

for photon candidates, with a dashed line showing the final cut: P, > 0.1. 
The figures correspond to the isolation requirements O'.iso = 10° (a) , 15° (b ), 
20° ( c), and 25° ( d). The Monte Carlo predictions were calculated using 
JETSET. 
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Figure 5.15: Final energy distributions of photon candidates selected with 
different isolation requirements: aiso = 10° (10), 15° (b), 20° (c), and 25° 
(d). The Monte Carlo predictions were calculated using JETSET. 



5.2 SELECTION OF PHOTON CANDIDATES 

Figure 5.16: Hadronic Z decay recorded during 1994 in which two isolated and 
energetic FSR photon candidates have been selected. The event is displayed 
in the plane perpendicular to the beam axis. The energies of the two photon 
candidates are 29.6 GeV and 10.7 GeV, and their invariant mass is 24.3 GeV. 
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Figure 5.17: Invariant mass distribution of the photon candidate pairs se
lected with By > 3 GeV and O:iso = 10°. Between 1991 and 1994, 221 events 
containing such a pair of candidates were recorded. 
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CHAPTER 6 

DATA ANALYSIS 

In the prev10us chapter , I described how I select an event sample that has a 

high proportion of photons produced by final-state radiation (FSR). In this chapter, 

I describe how I analyze that sample, obtaining FSR energy distributions that can 

be compared directly with theoretical models. I also discuss how I estimate the 

uncertainties in these measured distributions. 

1\!Iy sample of FSR photon candidates includes some irreducible background from 

both initial-state radiation (ISR) and hadrons (mostly 1r
0 -+ ff decays). Since these 

contributions are not described by the theoretical calculations that I wish to compare 

with ( see Chapter 7), the first step of my analysis is to estimate these backgrounds and 

then subtract them. Next , I apply corrections for the limited efficiency and acceptance 

of my event selection, in order to obtain energy distributions corresponding to what 

an ideal detector would measure. Finally, I estimate the statistical and systematic 

uncertainties in my results. In the following sections, I describe each of these steps 

in more detail. 

6.1 Background Subtraction 

My photon candidate selection scheme rejects as much of the ISR and hadronic back

grounds as possible, while retaining as much FSR as possible. However, some back

grounds, which cannot be distinguished from genuine FSR on an event-by-event basis, 

remains in the final sample. I refer to this background as irreducible, and must sub-
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tract its contribution to my FSR sample statistically. The irreducible ISR background 

arises because photons from ISR and FSR are fundamentally indistinguishable. The 

irreducible hadronic background is mostly due to neutral hadron decays into nearly

collinear photons, and to a smaller extent, decays into well-separated photons of 

which only one is observed in the detector. The first of these decay configurations is 

important for hadron energies larger than about 5 GeV, and is irreducible because 

the finite granularity of the calorimeter makes it impossible to resolve the overlap

ping signals from the two photons. The second configuration is most important for 

low-energy hadrons and is irreducible because the single detected photon cannot be 

distinguished from an FSR photon. 

6.1.1 Initial-State Radiation 

Although it is not possible to distinguish between photons radiated from the initial 

(e+e-) and final (qq) states on an event-by-event basis, the ISR contribution to any 

distribution is well-defined when the interference between these two processes is suf

ficiently small, as is the case at the Z peak. ISR is theoretically well-understood, 

and can be calculated to high precision for leptonic final states such as µ+ µ-,. For 

hadronic final states, however, the influences of QCD corrections and isolation re

quirements must be accounted for , and limit the overall precision of a calculation. 

J estimate the JSR background contribution to my photon candidate sample using 

the JETSET[62, 63] Monte Carlo. JETSET models JSR with an 0( a) approximation 

and improved Born-level corrections to the Z lineshape (see Section 2.1.1.1), and is 

the only model that can generate ISR in the context of realistic hadronic final states. 

(The HERWIG[64, 65] Monte Carlo does not describe ISR). To estimate the theoret

ical uncertainty in the JETSET prediction, I compare it with the prediction of the 

KORALZ[68] Monte Carlo. KORALZ includes the effects of higher-order electroweak 

corrections to the Z lineshape; however, it does not describe the QCD evolution of 

the primary qq pair from the Z decay. I perform the comparison at the particle level, 
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without accounting for the effects of the 13 detector (which I expect to be small); 

my estimate of the overall uncertainty in the JETSET ISR prediction is 15%. Table 

6.1 summarizes the JETSET predictions for the number of ISR photons in my can

didate sample as a function of both energy and isolation. Note that the statistical 

uncertainties that I calculate are larger than the square roots of the corresponding 

numbers of events since the sample of Monte Carlo events that I am using is smaller 

than my data sample. The fraction of ISR in the sample varies from 2.6% ( Ctiso = 

10°) to 5.1 % (aiso = 25°). The dominant uncertainty in my ISR background estimate 

is the theoretical accuracy of JETSET. 

Isolation Cut ( Ctiso): 

Energy 100 15° 20° 25° 
8-12 GeV 142± 13 126± 13 107± 12 88±11 

12-16 GeV 59± 9 54± 8 46± 8 44± 8 
16-20 GeV 15± 4 14± 4 14± 4 12± 4 
20-24 GeV 18± 5 18± 5 15± 4 15± 4 
24-28 GeV 9± 3 6± 3 5± 3 5± 3 
28-32 GeV 8± 3 6± 3 6± 3 6± 3 
32- 36 GeV 10± 4 10± 4 8± 3 5± 3 
36-40 GeV 13± 4 12± 4 12± 4 10± 4 
40-44 GeV 31± 6 31± 6 28± 6 27± 6 
TOTAL 305± 20 278± 19 242± 18 212± 17 

±46 ±42 ±36 ±32 

Table 6.1: Summary of the expected ISR contributions to the photon can
didate sample, in different intervals of candidate energy and for different 
isolation requirements. The errors given are statistical uncertainties, except 
in the final row, where the second error given is the estimated theoretical 
uncertainty. 

6.1.2 Hadronic Background 

In a typical hadronic Z decay, most of the photons present are the decay products 

of neutral hadrons. These photons are usually of low energy and are not isolated, 
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but, because of their high rate , they present a potentially large background to the 

much smaller signal that I expect from FSR. The main component of this background 

present in my photon candidate sample is the lightest neutral hadron, 1r0 , decaying 

into two photons. I also expect smaller contributions from the decays of other neutral 

hadrons into photons (mostly 77, Ks, and KL), and from charged hadrons decaying 

into e± and 1r±. Figure 6.1 shows the predicted energy distributions of the different 

sources of hadronic background to my photon candidate samples, calculated using 

the JETSET Monte Carlo ( JETS ET and HERWIG are in good agreement as to the 

relative proportions of the different contributions). 

The main cuts that I use to eliminate hadronic background are a minimum energy 

requirement and an isolation requirement. While these cuts are effective, they also 

select a region of phase space that is not well-understood in hadronization models, 

so I can not assume that the l\fonte Carlo predictions of the irreducible hadronic 

background are reliable. In order to minimize sensitivity to this problem, I study the 

hadronic background directly with data, using a background-enriched sample that 

I select from neutral bumps with the same isolation, energy, and fiducial volume 

cuts as the photon candidate sample, but with a shower shape cut p, ~ 0.05 that 

rejects 95% of genuine isolated photons. I refer to the bumps in this anti-tagged 

sample as hadron candidates. Table 6.2 summarizes the selection statistics for the 

hadron candidate sample, and Figure 6.2 shows its energy distributions. There is a 

large discrepancy between the measured rates of hadron candidates and the JETSET 

predictions. 

In order to study hadronic backgrounds , I divide my photon- and hadron candidate 

samples into sub-samples , which I denote by Si and S i respectively, according to 

the candidate energies ( the index i labels the different energy intervals that I use). 

Below, I also refer to the larger sample that I select using only energy, isolation, 

and fiducial-volume cuts , but without any conditions on the shower-shape variable P, 

( which therefore includes both Si and Si) , ,,,hich I denote by SI. I express the actual 
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Selection Cut 13 DATA JETSET HERWIG 

O'.iso = 100 N 103 . f 103
. f 103

. f 
Hadr.Sel. 17744 5.440 ± 0.041 4.930 ± 0.048 5.483 ± 0.067 
DATA/MC 1.103 ± 0.013 0.992 ± 0.014 
O'.iso = 15° 
Hadr.Sel. 3541 1.086 ± 0.018 0.844 ± 0.020 0.992 ± 0.029 
DATA/MC 1.287 ± 0.037 1.094 ± 0.037 
O'.iso = 20° 
Hadr.Sel. 1421 0.436 ± 0.012 0.323 ± 0.012 0.407 ± 0.018 
DATA/MC 1.349 ± 0.062 1.071 ± 0.056 
O'.iso = 25° 
Hadr.Sel. 753 0.231 ± 0.008 0.177 ± 0.009 0.229 ± 0.014 
DATA/MC 1.302 ± 0.081 1.010 ± 0.071 

Table 6.2: Summary of the hadronic background selection for different iso
lation requirements. The first row in each section gives the number N of 
hadron candidates selected (for 13 DATA) and the fraction f = N / Nhad (for 
13 DATA, JETSET, and HERWIG) where Niiact is the number of selected 
hadronic events. The second row gives the ratios between the values off for 
data and Monte Carlo events, for the two Monte Carlo models. All of the 
errors are statistical uncertainties. 

110 
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Figure 6.1: Predicted energy distributions of the main components of the 
hadronic background present in the final photon candidate sample. The 
different plots correspond to the isolation requirements: Ctiso = 10° (a) , 15° 
(b) , 20° (c), and 25° (d). 
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Figure 6.2: Energy distributions of hadron candidates in the hadronic-back
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cuts as the photon candidate sample, but with p1 ~ 0.05. The different plots 
correspond to the isolation requirements: Eiso = 40 MeV, and aiso = 10° (a) , 
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hadronic-background contribution, HAD-;, to each sub-sample Si as the product of a 

correction factor, ci, and the lVIonte Carlo prediction of this background contribution, 

HAD(MC) 
z ' 

I compute the correction factors from the actual number, Ni, of hadron candidates 

in Si, and from the Monte Carlo predictions of the contributions to this sub-sample, 
--(MC') --(MC) --(MC') 

which I refer to as ISRi . , FSRi . , and HADi . , 

N · - ISR(MC) - FSR'.lv!C) 
z z z 

Ci= --(MC) 

HADi 

Each correction factor thus measures the ratio of the hadronic contribution to Si in 

the data to the value predicted by :t\/Ionte Carlo. Ideally, I would like to know this 

ratio for the photon candidate sub-sample, Si. I argue belm:v that the ratio is in 

fact the same for the two sub-samples. Figure 6.3 shows the correction factors that 

I obtain using JETSET and HER\iVIG 1
. The corrections are generally greater than 

one, and larger for more isolated candidates and for candidates with energies between 

28 Ge\! and 40 GeV. 

The two processes responsible for my hadronic background are the production 

of neutral hadrons and the decay of these hadrons into photons. Although I do 

not necessarily expect Monte Carlo predictions for production to be reliable, decay is 

straightforward and I expect it to be correctly described. Therefore, in estimating the 

actual hadronic background, I only use T\fonte Carlo predictions for hadrons to cal

culate decay-dependent quantities, and I extract the values of production-dependent 

quantities from data. 

The dominant hadronic background in my photon candidate sample is from neu

tral hadrons decaying into overlapping photons. The energy and isolation of these 

background candidates are the same as those of the decaying hadron, and so depend 

mostlv on how this hadron was produced and not on how it decays. In contrast, the 

1 Since HERWIG does not implement ISR, I use the JETSET ISR predictions for both models. 
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Figure 6.3: Energy dependence of the hadronic-background correction fac
tors , ci, calculated with JETSET (points) and HERvVIG (shaded regions). 
The errors shown are the combined statistical uncertainties ( the HERWIG 
errors are indicated by the width of the shaded regions). The different plots 
correspond to the isolation requirements Cl'iso = 10° (a), 15° (b ), 20° ( c), and 
25° (d). 
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value of the shower-shape variable, P,, depends mostly on how the hadron decays 

and not on how it was produced. Since it is the value of p, that determines which 

of the two samples, Si or Si, a candidate is assigned to, and since these two samples 

share common hadron-production characteristics ( energy and isolation), the relative 

number of hadronic candidates in the tvm samples 

HAD\MC)/HAD~MC) 
z z ' 

depends mainly on decay characteristics. Therefore, I can reliably estimate this ratio, 

which appears in the expression for HADi, from Monte Carlo events. 

Equivalently, if I compare the distributions of p,, between data and Monte Carlo, 

for the sample SI (which includes both Si and Si), then I expect their shapes to 

agree but their normalizations to differ. I base this expectation on the fact that 

the hadron-production degrees of freedom are sufficiently constrained in SI that the 

shapes of the p, distributions mainly reflect hadron-decay degrees of freedom. As 

a result, the correction factor ci completely specifies the disagreement between data 

and Monte Carlo within SI, and it can be measured using candidates from Si and 

then applied to distributions obtained from Si. 

The accuracy of the value of HADi that I obtain is limited by two systematic 

uncertainties: the reliability of the Monte Carlo predictions for ISRi and FSRi that 

I use, and the influence of the hadron production process upon the value of p,. I 

account for the first of these uncertainties by assigning errors of 15 % and 30% to ISRi 

and FS~, respectively. I choose the value of 15% based on my earlier comparison 

between JETSET and KORALZ ISR predictions (see Section 6.1.1) and the value of 

30% based on the discrepancy between the numbers of photon candidates ( which are 

mostly FSR) that I select from data and Monte Carlo (see Section 5.2.6). The second 

uncertainty arises because soft particles that are produced in neighborhood of a can

didate can alter the apparent shape of its shower, and thus its value of p,. I estimate 

the size of this effect by comparing the background estimates that I obtain using 
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JETSET and HERWIG: these two models incorporate different physics assumptions 

into their hadronization models , and consequently, have different predictions for the 

production of soft particles. Figure 6.4 shows this comparison, and demonstrates the 

good agreement between the two models. For my final hadronic-background estimate, 

I take the average of the values of HADi that I obtain using JETSET and HERWIG. 

Table 6.3 summarizes these final estimates as a function of both energy and isolation. 

The fraction of hadronic background in the photon candidate sample varies from 28% 

(aiso = 10°) to 6% (aiso = 25°). 

Isolation Cut ( O:iso): 
Energy 100 15° 20° 25° 
8- 12 GeV 758±31± 9 148±16± 8 55±10±13 20± 6±10 

12-16 GeV 373±22± 1 95±13± 8 31± 7± 1 16± 5± 0 
16-20 GeV 356±22± 11 80±11±12 22± 6±12 8± 3± 6 
20- 24 GeV 333±22± 33 69±10±24 34± 8±17 14± 6±11 
24- 28 GeV 327±22± 13 77±11± 3 41±10± 2 17± 6± 3 
28- 32 GeV 367±26± 3 132±18±11 68±14± 9 42±13± 7 
32- 36 GeV 320±24± 21 112±15±12 56±12±17 49±15±24 
36-40 GeV 324±26± 63 162±21±20 71±14±13 40±12±18 
40- 44 GeV 142±15± 17 90±12±17 52±10±12 41± 9± 6 
TOTAL 3300±71±124 965±44±94 429±31±96 247±28±70 

Table 6.3: Summary of the expected hadronic background contributions to 
the photon candidate sample, in different intervals of candidate energy, and 
for different isolation requirements. The errors given are statistical and sys
tematic uncertainties, respectively. 

6.1.3 Reconstructed Resonances 

The corrections factors that I obtained above are surprisingly large, especially for 

JETS ET. In order to cross-check this apparently significant discrepancy between data 

and l\fonte Carlo, I have studied isolated 1r
0 and r; production by reconstructing their 

decays into two photons. This method has the advantage that the yield of a resonance 
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Figure 6.4: Corrected hadronic-background energy distributions obtained 
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can be determined directly from data, without any need to use Monte Carlo events, 

but has the disadvantage that the reconstruction efficiency decreases rapidly with the 

energy of the decaying particle. 

In order to avoid confusion between the photon candidates in my main analysis 

and the photons that I select for this study as candidates for reconstruction, I refer 

to the latter as decay candidates. I select decay candidates from bumps reconstructed 

in the ECAL, and require that they have an energy ( S~ of the bump) of at least 450 

MeV and be separated from the nearest reconstructed track in the event by 1~¢1 > 15 

mrad in the plane transverse to the beam (see Section 5.2.2). In an event with at least 

two such decay candidates, I consider all possible pairs as reconstruction candidates. 

I compute the energy and direction of a reconstruction candidate by taking the 

sum of the energies and momentum vectors of its constituent decay candidates. I 

compute its isolation in the same way as for a photon candidate. Figure 6.5 shows 

the invariant-mass distributions of the reconstruction candidates with energies larger 

than 3 GeV that I select with the same isolation and fiducial-volume cuts as for photon 

candidates. \Vith an isolation requirement of aiso = 10° , the rate of reconstructed 

resonances is slightly smaller than is predicted by Monte Carlo; with aiso = 25°, the 

rate is much larger than predicted. There are small offsets between the positions of 

the 'TJ peak in data and Monte Carlo: these are primarily due to the non-linearity of 

the ECAL response at low energies, which I have not corrected for, but do not affect 

the determination of resonance yields and so do not concern me here. 

In order to study the energy dependence of the discrepancy between data and 

Monte Carlo in Figure 6.5, I compare the yields of reconstruction candidates in the 

1r
0 and T/ peaks for different intervals of reconstruction-candidate energy between 

3 GeV and 8 GeV ( the upper limit of 8 GeV is determined by the reconstruction 

efficiency, which decreases rapidly with energy). In each energy interval, I fill separate 

histograms of the 1r
0 and rJ peak regions, which I define to be the ranges 

1r
0 

: 80 MeV S mn < 300 MeV and, 7/ : 400 lVIeV S mn < 700 Me\! . 
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I choose histogram bins of equal size in Xn = log( mn) to improve the separation of 

the background and ?To contributions below the ?To peak[71). 

After filling each histogram, I estimate the yield of its associated resonance with 

a fit to a function, F = S + B, which describes separate (resonant) signal and (non

resonant) background contributions. I use a Gaussian in m,, to describe the signal 

contribution 

N [ 1 (m,1 - m0 )

2

] S(mn) = ~a exp -2 a ' 

and a quadratic in x 11 to describe the background contribution 

Figure 6.6 shows some examples of these fits for different energy intervals and isolation 

requirements. I use the MINUIT[72) package to perform the fits. 

I define the resonance yield, lJ (?To) or lj ( T/), for each histogram as 

where Ns+B is the number of reconstruction candidates in the invariant-mass interval 

lm11 - m0 1 < 3a, and N 8 is the amount of background in the same interval that I 

compute by integrating B(xn) over the same interval (the index j labels the intervals 

of hadron energy that I use). In order to compare with the correction factors, Ci, that 

I obtained above, I compute the ratios 

1J ( 7/) 
and Cj ( T/) = .r(MC) ( ) 

1 j 7J 

between data and Monte Carlo yields for both resonances. Table 6.4 gives the values 

of these ratios that I obtain using four energy intervals spanning the range between 

3 GeV and 8 GeV. For both Monte Carlo models, the discrepancy between data and 

Monte Carlo increases with energy, and is larger for more isolated resonances. The 

discrepancy is also generally larger for 7/ than for 1r
0

, and the differences between 

cj ( 1r0 ) and cj ( TJ) are larger for HERWIG than for JETSET. 
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Isolation Cut ( O:iso): 

Energy 100 15° 20° 25° 
JETSET 1r

0 

3.0- 3.5 GeV 0.91±0.01 1.05±0.02 1.26±0.04 1.56±0.08 
3.5-4.0 GeV 0.88±0.02 1.13±0.03 1.42±0.06 1.72±0.12 
4.0-5.0 GeV 1.00±0.02 1.28±0.03 1.73±0.08 2.22±0.17 
5.0-8.0 GeV 1.02±0.02 1.41±0.05 1.97±0.13 2.61±0.29 

JETSET r; 
3.0-3.5 GeV 0.93±0.10 0.94±0.09 1.49±0.19 1.60±0.23 
3.5- 4.0 GeV 0.89±0.10 1.03±0.11 1.51±0.20 1.61±0.31 
4.0-5.0 GeV 0.93±0.09 1.55±0.16 2.21±0.32 3.04±0.63 
5.0-8.0 GeV 1.26±0.11 1.55±0.19 2.21±0.36 2.74±0.61 

HERWIG 1r0 

3.0- 3.5 GeV 0.81±0.01 0.87±0.02 1.03±0.04 1.36±0.08 
3.5-4.0 GeV 0.82±0.02 0.94±0.03 1.30±0.07 1.65±0.14 
4.0-5.0 Ge\/ 0.91±0.02 1.05±0.03 1.33±0.07 1.83±0.17 
5.0-8.0 GeV 0.89±0.02 1.25±0.05 1.68±0.13 2.44±0.36 

HERvVIG r; 
3.0-3.5 GeV 0.98±0.13 1.10±0.14 1.36±0.19 1.88±0.36 
3.5- 4.0 Ge\/ 1.11±0.16 1.48±0.23 1.68±0.30 1.23±0.27 
4.0-5.0 GeV 1.13±0.14 1.39±0.18 1.90±0.30 2.58±0.69 
5.0-8.0 Ge\/ 1.79±0.23 1.99±0.34 2.02±0.41 3.02±1.08 

Table 6.4: Ratios between the yields obtained from data and Monte Carlo 
of reconstructed 1r

0 and r; resonances. The first two sections are calculated 
using the JETSET Monte Carlo, and the last two using HERWIG. 

120 

In order to compare the values of cj(1r0
) and c1(r;) with the correction factors, 

ci, that I obtained in the previous section, I have recomputed the ci between 3 GeV 

and 10 GeV using energy intervals one GeV wide. I show this comparison in Figures 

6.7 (JETSET) and 6.8 (HERWIG). There is good overall agreement between the 

ratios which I measure using decays into well-separated photons, and those which I 

measure using decays into almost-collinear photons. This agreement is equally good 

for JETSET and HERWIG. This result provides further evidence that the corrected 

hadronic background contributions that I obtained above are reliable. 
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Figure 6.5: Invariant mass distributions of reconstructed photon pairs se
lected with different isolation requirements: O'.iso = 10° (a), 15° (b), 20° (c), 
and 25° (d). The two peaks correspond to the 1r0 (m--y, '.::::'. 135 MeV) and T/ 
(mn '.::::'. 547 MeV) resonances. 
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Figure 6.6: Examples of some fits for the yields of reconstructed 1r0 and 
rJ decays into two photons. Figures (a-f) show the 1r0 resonances obtained 
with 10° isolation (a,b, and c) and 25° isolation (d,e, and f), in three different 
energy intervals: 3.5 GeV-4 GeV (a,d), 4 GeV-5 GeV (b,e), and 5 GeV-8 GeV 
( c,f). Figures (g-1) show the corresponding plots for rJ resonances. 
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Figure 6.7: Comparison of the discrepancies between the observed rates of 
isolated hadronic background and the predictions of JETSET, obtained with 
two different methods. The four figures show, for different isolation require
ments, the ratios (DATA/MC) obtained for the reconstructed yields of 1r

0 

( solid data points) and T/ (hollow data points), and for the rates of neutral 
hadron decays into overlapping photons ( shaded regions). 
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ments, the ratios (DATA/MC) obtained for the reconstructed yields of Ko 
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hadron decays into overlapping photons ( shaded regions). 
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6.1.4 Summary 

Figure 6.9 shows the photon candidate energy distributions that I measure, together 

with my final estimates of the background contributions. The ISR contribution is con

centrated at low energies, with a small secondary peak at energies Ky ~ fa /2, and 

is almost independent of the isolation requirement. In contrast, the hadronic contri

bution decreases rapidly with the isolation requirement, and has a nearly flat energy 

distribution. I calculate final FSR energy distributions for the different isolation 

requirements by subtracting the estimated backgrounds from the photon candidate 

data. Table 6.5 gives a summary of these estimated contributions and of the final 

FSR samples. The FSR purity of the photon candidate samples varies from 69% ( O'.iso 

= 10°) to 89% (niso = 25°). 

ltiso = 10° O'.iso = 150 ltiso = 200 ltiso = 25° 
DATA 11785 6927 5224 4166 

-ISR 2.6% 4.0% 4.6% 5.1% 
±0.2% ± 0.4% ±0.3% ± 0.6% ±0.3% ± 0.7% ±0.4% ± 0.8% 

-HAD 28.0% 13.9% 8.2% 5.9% 
±0.6% ± 1.1% ±0.6% ± 1.4% ±0.6% ± 1.8% ±0.7% ± 1.7% 

=FSR 69.4% 82.1% 87.2% 89.0% 
±1.1% ± 1.4% ±1.4% ± 2.0% ±1.5% ± 2.5% ±1.7% ± 2.5% 

Table 6.5: Summary of the estimated background contributions to the pho
ton candidate samples selected with different isolation requirements, and of 
the final background-corrected FSR samples. The two errors given for each 
quantity are statistical and systematic uncertainties. 

6.2 Acceptance and Efficiency Corrections 

As the final step in preparing distributions that can be compared directly with theo

retical models, I correct for the limited acceptance and efficiency of my event selection. 

In particular, I unfold the effects of my fiducial-volume, shower-shape, and hadronic-
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Figure 6.9: Energy distributions of photon candidates together with the final 
estimates of the background contributions. The figures correspond to the 
different isolation requirements O'.iso = 10° (a), 15° (b) , 20° (c) , and 25° 
( d). The errors shown for the data are statistical uncertainties, and for 
the combined background, are statistical ( error bars) and systematic ( dotted 
boxes) uncertainties. 
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event-selection cuts and I correct for the inefficiencies of my neutral-bump selection. 

Finally, I obtain the energy distribution of isolated FSR that an ideal detector would 

measure. 

I refer to the actual FSR energy distributions that I measure after background 

subtraction as detector-level, and the corresponding distributions that would be mea

sured by an ideal detector as particle-level (and denote these with a tilde). The most 

general transformation of a binned distribution {yi} from particle level to detector 

level is given by 

Yi= I: mi{Yj , 
j 

where the coefficient miJ gives the fraction of the events which are in bin j at the 

particle level that are expected to appear in bin i at the detector level. The values 

of mij are generally obtained by a simulation of the effects of the detector on Monte

Carlo generated events. Off-diagonal coefficients ( i -1- j) measure the amount of 

bin-to-bin migration between the particle and detector levels. 

Figure 6.10 shows the distribution of the difference between the energies of FSR 

photon candidates measured on the particle and detector levels, which I obtain by 

simulating the effects of the 13 detector on Monte-Carlo generated events. The spread 

in this difference is independent of the isolation requirement , and is small enough that 

bin-to-bin migration is negligible for the bin width of 4 GeV that I use2 . Therefore, I 

neglect the off-diagonal coefficients of the general transformation, above, and use for 

my transformation from detector to particle level the equation 

where Ei = mii is the overall efficiency of my event selection for FSR photons with 

energies in bin i. I refer to this correction procedure as bin-by-bin unfolding. The 

distributions in Figure 6.10 are offset from zero by about 80 MeV. Since this offset is 

much less than the bin width I have chosen, I do not make any correction for it. 

2 The bin-to-bin migration would be negligible with a bin width as small as 1 GeV. I choose the 
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Figure 6.10: Distribution of the difference between the energy of a photon 
candidate at the particle level ( taken directly from the Monte Carlo gen
erator) and measured by the detector using the corrected sum-of-9 energy. 
The normalized distributions for candidates selected with different isolation 
requirements are superimposed. 

I define my bin-by-bin correction coefficients to be 

DETi 
Ci= GENi ' 

128 

where GENi is number of FSR photons whose energies fall in the i-th bin and that 

I select at the particle level, and DETi is the number of FSR photon candidates in 

the same energy bin that I select at the detector level. The cuts that I apply at the 

particle level define what my final unfolded distributions measure. Since these cuts 

must be defined in terms of particle four-vectors, they cannot include those photon 

candidate selection cuts that depend intrinsically on the detector response. This 

restriction means, for example, that it is not meaningful to apply a shower-shape cut 

at the particle level, but that cuts on the photon energy and direction can be applied 

at particle level. In order to minimize the sensitivity of the detector corrections to 

larger bin width of 4 GeV in order to reduce the statistical fluctuations in each bin. 
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ambiguities in the Monte Carlo description of FSR, the particle-level cuts should 

select a sample of FSR that is representative of my photon candidate sample. This 

second restriction means, for example, that an isolation cut should be applied at the 

particle level, since otherwise, the accuracy of the unfolding of the isolation cut will 

depend on an accurate Monte Carlo description of non-isolated FSR. 

I select FSR at the particle level using the same energy and isolation cuts that I 

apply to select photon candidates. Since the total energy of the particles within the 

isolation cone of a photon is generally larger than the corresponding total energy of 

bumps, I use Eiso = 100 MeV at the particle level ( the tilde distinguishes between 

the particle-level and detector-level parameters) in order to approximately match the 

value Eiso = 40 MeV that I use at the detector level (see Section 5.2.3). Figure 6.11 

shows the efficiencies, ci, that I obtain using these particle-level cuts. There is good 

agreement between JETSET and HERWIG, and the efficiencies are independent of 

energy within statistical errors. I calculate the final correction coefficients, 1 / ci, by 

taking the average of the coefficients that I obtain with JETSET and HERWIG, and 

I estimate the systematic uncertainty of my unfolding procedure by comparing the 

results I obtain by using either JETSET or HERWIG. 

The event-selection criteria that my bin-by-bin unfolding corrects for are 

• the shower-shape cut , p1 > 0.1 (see Section 5.2.6) , 

• the requirements for selecting a good neutral bump, which include the effects 

of detector problems (see Section 5.2.1) and of accidental matches with a track 

(see Section 5.2.2), 

• the hadronic Z decay selection cuts (see Section 5.1.4), 

and 

• the fiducial-volume cut, 45° < 01 < 135° or 17.5° < 01 (180° - 01 ) < 35° 

(see Section 5.2.5). 
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Figure 6.11: Event-selection efficiencies as a function of energy for different 
isolation requirements, obtained with JETSET ( data points) and HERWIG 
( shaded regions). The horizontal dashed lines correspond to the energy
averaged efficiencies given in Table 6.6. The errors shown are combined 
statistical uncertainties. 
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I have determined the efficiencies of these cuts separately, and I find that in all cases, 

there is good agreement between JETSET and HERWIG, and that the efficiencies 

are independent of energy within statistical errors. Table 6.6 summarizes the energy

averaged efficiencies that I calculate for each of the selection criteria listed above. 

The largest contribution to the inefficiency of my event selection arises from my 

requirement that an isolated FSR photon produce a good neutral bump, and this 

inefficiency is mostly due to detector problems (see Section 5.2.1). The efficiency of 

my shower-shape cut agrees with the value of 90% that I expect (see Section 5.2.6). 

My efficiency for selecting hadronic Z decays that contain an isolated and energetic 

FSR photon is consistent with the value that I obtained in Section 5.1.5 for the 

inclusive hadronic event sample. 

Correction For 
Shwr. Shape 

Neutral Bump 
Hadr. Event 
Fiducial Vol. 

All FSR 
u-type FSR 
d-type FSR 

90.4±1.1% 
78.5±0.9% 
99.1±1.0% 
82.3±0.9% 
57.8±0.7% 
57.8±0.9% 
57.8±1.3% 

Isolation Cut ( O'.iso): 

15° 20° 
90.9±1.3% 91.5±1.4% 
76.4±1.0% 75.4±1.1 % 
99.0±1.2% 99.0±1.3% 
82.5±1.0% 83.0±1.1% 
56.7±0.8% 56.7±0.9% 
56.5±1.0% 56.6±1.1% 
57.2±1.4% 57.0±1.6% 

25° 
91.3±1.6% 
74.3±1.2% 
98.9±1.4% 
83.1±1.2% 
55.8±1.0% 
55.6±1.2% 
56.2±1.7% 

Table 6.6: Energy-averaged efficiencies of the different aspects of my event 
selection described in the text. The values given are the averages of the values 
obtained using JETSET and HERWIG. The errors given are the combined 
statistical uncertainties. The last two rows give the overall efficiencies for 
FSR photons radiated by an up- or down-type quark, respectively. 

In Chapter 8, I will use the unfolded energy distributions that I calculate here to 

determine parameters which are sensitive to the relative proportions of FSR photons 

radiated from up- and down-type quarks. Therefore, it is important to check whether 

the event selection and data analysis that I am using introduces any bias into these 

proportions. More precisely, if the efficiencies of my selection for FSR photons radi-
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ated by a primary up- or down-type quark pair are cu and cd, respectively, then the 

unfolding coefficient I will calculate is 

where fu and fct are the relative proportions of up- and down-type quarks at the 

particle level in the Monte Carlo model Uu + fd = 1). Therefore, if cu and cct are not 

equal, and the Monte Carlo values of fu and fd are not correct, then the unfolding will 

bias the proportions of up- and down-type quark contributions. In order to study this 

problem, I have calculated the separate efficiencies, cu and cd, using both JETSET 

and HERWIG (see the last two rows of Table 6.6 and Figure 6.12). I find that cu = cct 

for both models, within statistical uncertainties, so that I do not expect any bias in 

my results. 

By applying the acceptance and efficiency corrections that I describe above, I 

obtain FSR energy distributions whose normalizations measure the total number of 

FSR photons that would be recorded by an ideal detector between 1991 and 1994. In 

order to compare with theoretical models, I multiply these distributions by 1 / Nhad, 

so that they measure the number of FSR photons per hadronic Z decay. I estimate 

the number of hadronic Z decays corresponding to the data collected between 1991 

and 1994 using 

where Nsel is the number of selected hadronic events given in Table 5.2 and Chad is 

the estimated hadronic event selection efficiency given in Section 5.1.5. The addi

tional errors introduced by this procedure from the uncertainties on Ehad and Nsel are 

negligible. 
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Figure 6.12: Comparison of the efficiencies of my event selection with different 
isolation requirements, obtained using different combinations of flavors for 
the quark radiating an FSR photon: up-type quarks (solid data points), 
down-type quarks (hollow data points), and all quarks (shaded regions). The 
horizontal dashed lines correspond to the overall correction coefficients given 
in Table 6.6. The errors given are combined statistical uncertainties. 
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6.3 Analysis Uncertainties 

The final isolated FSR energy distributions that I obtain should not depend on the 

details of my event selection and data analysis, within the uncertainties that I assign. 

In this section, I describe the possible sources of error that I consider, and how I 

calculate the uncertainties in my results. 

The final rate of isolated FSR per hadronic Z decay, Ri, that I calculate in each 

energy bin, labeled by the index i, is 

( 
(MC) (MC)) 1 1 R- = N- - ISR- - c· · HAD- · - · -z z z z z N, 

ci had 

where Ni is the number of photon candidates that I select in energy bin i ( see Section 

5.2), ISRtc) is my estimate of the ISR background (see Section 6.1.1), ci · HADf'1c) 

is my estimate of the hadronic background (see Section 6.1.2), and ci is the analysis 

efficiency that I calculate (see Section 6.2). 

I use standard techniques[73] to calculate the statistical uncertainties in Ri, which 

are due to the number of events in the data and Monte Carlo event samples that I 

am using, obtaining 

where I use the notation bx for the statistical error in x. The largest contributions 

to these uncertainties are from the number of photon candidates that I select from 

data ( fJNi) and the number of events in the Monte Carlo event samples that I use to 

calculate acceptance and efficiency corrections ( &i). 

I estimate the sensitivity of my results to any Monte Carlo model inaccuracies by 

observing how the results change when I use different models or rescale the predictions 

of one model. In particular, I have studied the systematic effects on my results of the 

following changes in my analysis (I define R = Li ~): 
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• increasing ( decreasing) the values of ISRt1
cl and ISRtc) in each energy bin by 

15%, which decreases (increases) the value of R, 

• increasing ( decreasing) the value of FSRt
1
c) in each bin by 30%, which increases 

(decreases) the value of R, 

• using JETSET (HERWIG) to estimate the hadronic background, which de

creases (increases) the value of R, 

• using JETSET (HERWIG) to estimate the acceptance and efficiency correc

tions, which decreases (increases) the value of R, 

and 

• using JETSET (HERWIG) to estimate Nhad for rescaling the results, which 

increases (decreases) the value of R. 

I estimate the overall systematic error in my results from all of these effects by re

peating my analysis using first, the set of changes that each increase the value of R, 

obtaining values Rt, and then, the set of changes that each decrease R, obtaining 

R;. Finally, I assign a systematic error on the value of Ri of 

and on the value of R of 

The largest contributions to these uncertainties is from my subtraction of hadronic 

background. The errors on the total FSR rate due to any possible Monte Carlo bias, 

6.Rmc, are between 2.6% and 3.5%. 

I estimate the sensitivity of my results to the event selection that I use by repeating 

my analysis with the following changes: 
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• using the track-based hadronic event selection, instead of the calorimeter-based 

method (see Section 5.1.4), 

• using only the barrel region of the detector ( 45° < 0 < 135°), instead of also 

including the endcap regions (see Section 5.2.5), 

• changing the detector-level maximum allowed energy within an isolation cone 

from 40 MeV to 100 MeV (see Section 5.2.3), 

• using data from either 1994 only or from 1991-93 only, 

• either removing the shower-shape cut which I use to select photon candidates, 

or else tightening the cut from p1 > 0.1 to p1 > 0.45 (see Section 5.2.6), 

and 

• relaxing the shower-shape cut which I use to select hadron candidates from 

p1 ~ 0.05 to p1 ~ 0.45 (see Section 6.1.2). 

Each of these changes influences the FSR purity and efficiency of my analysis: for 

example, the changes in the shower-shape cut for selecting photon candidates that I 

consider vary the purity (efficiency) for Ctiso = 10° between 40% and 78% ( 64 % and 

38%). Figure 6.13 shows the variations in the isolated FSR rates that I observe. 

The largest variations in Figure 6.13 are from changing the hadronic event selec

tion method from calorimeter-based to track-based, and changing the shower-shape 

cut that I use to select photon candidates. I consider that the first of these variations 

overestimates the systematic uncertainty due to my event selection since I have not 

corrected for TEC problems that influence the track-based method. In my standard 

analysis, these problems only affect my selection of neutral bumps, and I have cor

rected for them in this case (see Section 5.2.2). I assign a systematic error due to 

my event selection equal to half of the difference between the results that I obtain by 
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either removing the shower-shape cut that I use to select photon candidates, or else 

tightening the cut to p'Y > 0.45 , 

and 

!::,.Rsel = ~ L { R;(no p7 cut) - R;(p7 > 0.45)} • 
i 

I do not consider tightening the shower-shape cut further since this would reduce 

the predicted hadronic background in my photon candidate sample to a level where 

my method of estimating the actual hadronic background is excessively sensitive to 

statistical fluctuations. The errors on the total FSR rate due to my event selection, 

t:,.Rsel, are between 2.2% and 3.6%. 

I assign overall systematic errors on my results by combining in quadrature the 

errors that I estimate due to Monte Carlo biases and to my event selection 

Table 6. 7 summarizes the final statistical and systematic uncertainties on R that I 

calculate, and the contributions to these errors from from each step of my analysis. 

The statistical uncertainty varies between 2.0% and 2.6%, and the systematic un

certainty varies between 4.1 % and 4.5%. The combined statistical and systematic 

uncertainty is between 4. 7% and 5.0% and does not depend strongly on the isolation 

cut. 

6.4 Summary of Analysis Results 

Table 6.8 gives rates of isolated FSR photons that I calculate as a function of both 

the photon energy and the isolation requirement, after subtracting irreducible back

ground, applying acceptance and efficiency corrections, and renormalizing to the num

ber of hadronic Z decays. These results are also plotted in Figure 6.14. I measure the 
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Step 
Evt.Sel. 
ISR Sub. 
HAD Sub. 
Eff.Cor. 
Rescale 
Total 

C:Xiso = 10° 
±1.3 ± 3.6% 
±0.2 ± 0.6% 
±0.9 ± 1.5% 
±1.2 ± 0.2% 
±0.0 ± 0.4% 
±2.0 ± 4.5% 

±1.5 ± 2.2% 
±0.3 ± 0.7% 
±0.8 ± 1.6% 
±1.4 ± 0.8% 
±0.0 ± 0.4% 
±2.2 ± 4.1% 

C:Xiso = 200 
±1.6 ± 2.5% 
±0.4 ± 0.8% 
±0.7 ± 2.1 % 
±1.6 ± 0.3% 
±0.0 ± 0.4% 
±2.4 ± 4.3% 

aiso = 25° 
±1.7 ± 2.8% 
±0.5 ± 0.9% 
±0.7 ± 1.9% 
±1.7 ± 0.1% 
±0.0 ± 0.4% 
±2.6 ± 4.3% 

Table 6. 7: Summary of the estimated fractional errors in the total rates of 
isolated FSR, R, due to different analysis steps. Each row gives the contribu
tions of statistical ( first error) and systematic ( second error) uncertainties for 
one step of my analysis. The last row gives the combined total uncertainties. 
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total rate of isolated final-state radiation with energy between 8 GeV and 44 GeV to 

be 

BR(Z ----+ qq,y) = R = 
BR(Z ----+ qq) 

5.02 ± 0.lO(stat) ± 0.22(syst) x 10-3 
aiso = 10° 

3.56 ± 0.08(stat) ± 0.15(syst) x 10-3 
aiso = 15° 

2.85 ± 0.07(stat) ± 0.12(syst) x 10-3 
aiso = 20° 

2.36 ± 0.06(stat) ± 0.l0(syst) x 10-3 aiso = 25° 

where I define isolation by requiring that the total hadronic energy within a cone of 

half-angle aiso about the photon direction be less than 100 MeV. This is one of the 

main results of this thesis. 
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Isolation Cut ( CTiso): 

Energy 10° 15° 20° 25° 
8-12 GeV 1397± 54± 61 975±41± 11 750±35± 21 608±32± 19 

12-16 GeV 851± 39± 74 572±29± 29 456±26± 22 367±23± 19 
16-20 GeV 766± 39± 12 541±30± 31 413±25± 21 326±22± 23 
20-24 GeV 551± 33± 47 380±24± 28 291±20± 12 249±19± 2 
24-28 GeV 423± 28± 35 300±21± 5 245±18± 5 204±16± 8 
28-32 GeV 323± 28± 10 245±22± 23 201±19± 19 176±18± 14 
32-36 GeV 282± 26± 11 200±19± 7 168±16± 10 129±16± 17 
36-40 GeV 224± 26± 49 176±21± 24 156±18± 18 143±16± 11 
40-44 GeV 198± 21± 20 170±19± 20 166±18± 22 158±17± 4 
TOTAL 5016±102±224 3560±78±147 2847±67±122 2360±62±101 

Table 6.8: Summary of the final FSR rates that I calculate as a function of 
energy, after background subtraction, acceptance and efficiency corrections, 
and normalization to the number of hadronic Z decays. The rates are ex
pressed as number of isolated FSR photons per million hadronic Z decays. 
The errors given are statistical and systematic uncertainties, respectively. 
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FSR Rate I 103 Hadronic Z Decays FSR Rate I 103 Hadronic Z Decays 

Figure 6.13: Summary of the isolated FSR rates obtained with different 
changes to the event selection. The top point in each plot shows the results 
obtained with the standard selection, and the dotted vertical lines show the 
central values of the standard selection. The error bars on each point are 
combined statistical uncertainties. The widths of the shaded vertical bands 
show the combined systematic errors, .6.R, that I assign. 
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Figure 6.14: Energy distributions of isolated FSR, after background subtrac
tion, acceptance and efficiency corrections, and normalization to the number 
of hadronic Z decays. The error bars show the combined statistical uncer
tainties and the dotted boxes show the combined systematic uncertainties. 
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CHAPTER 7 

THEORETICAL MODELS 

In the prev10us chapter, I described ho-w I measured the energy distributions 

of the isolated photons that are radiated by primary quarks in hadronic Z decays , 

Z ~ qq')' . In this chapter, I consider how to treat this final-state radiation (FSR) 

process theoretically. In particular, I describe ho-w I calculate the energy distributions 

that correspond to the ones I measure. In the next chapter, I will compare my 

experimental results with these theoretical predictions in order to determine the values 

of the up- and down-type quark couplings to the Z boson (c\ and c\ 1) and to the photon 

( Q u 2 and Q d 
2

) , and to evaluate the accuracy of different theoretical methods. 

Theoretical models of final-state radiation were first formulated[? 4) in the con

text of low-energy e+e- reactions where photon exchange rather than Z exchange 

dominates. However , experimental studies at these energies[75-78) lvere limited by a 

large background from initial-state radiation (ISR). Since 1989, it has been possible 

to perform more detailed studies of FSR at the Z resonance where ISR is suppressed 

and the event rate is high. These new studies required a ne,\· generation of theoretical 

models. The first such model[79) was based on a next-to-lowest order matrix-element 

calculation. Comparisons[80, 81] between this calculation and data revealed that a 

successful model must implement photon isolation in a way that matches the experi

mental cuts as closely as possible. Since this first calculation, several new models have 

been described[82- 85) that are all based on the same matrix-element approach but 

that offer different schemes for isolating a photon. My original calculation is described 

in Reference [83] and is the basis of the results obtained in Reference [86). Below, 
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I describe the calculation that I have performed for this thesis which is specifically 

matched to the experimental cuts that I apply here. 

My general approach to describing final-state radiation theoretically is to treat 

the process e+ e- ~ hadrons + , as consisting of the following independent steps, 

which I show schematically in Figure 7.1: 

• the annihilation of an initial e+e- pair into a Z boson , possibly including radi

ation of an initial-state bremsstrahlung photon, and the decay of this Z boson 

into a primary qq pair, 

• the perturbative evolution of the primary qq pair, in which an FSR photon is 

radiated, as well as gluons which can themselves radiate other gluons , 

and 

• the non-perturbative evolution of the quarks and gluons into hadrons, some of 

which will decay into multi-photon states. 

I refer to these phases of evolution as electroweak, perturbative, and non-perturbative, 

respectively, and describe them in more detail in the following sections. In the previ

ous chapter, I described how I subtract the contributions of ISR (see Section 6.1.1) 

and hadronic background (see Section 6.1.2) from the distributions that I measure. 

In this chapter, I focus on the description of FSR. 

In this chapter, as in the previous chapter, I define the isolation of a photon at 

the particle level (instead of at the detector level) using a cut, Eiso, on the maximum 

total energy of particles allowed within a cone of half-angle aiso about the photon 

direction. In the following sections, I generally consider the value of Eiso = 100 lVIeV 

to be fixed, and so I do not explicitly include it as a variable in the expressions I 

give. Where I give results that depend on the center-of-mass energy, fa, I use the 

weighted average from the events that I use in my data analysis , ( vs) = 91.248 GeV. 
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Figure 7.1: A schematic diagram of the process e+e- ~ hadrons+1, showing 
the three different phases of evolution. The sources of photons shm:vn are 
initial-state radiation (ISR) , final-state radiation (FSR) , and hadron decays 
( 7ro). 
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The first step towards producing an FSR photon is the electroweak reaction e+ e- ~ 

Z ~ qq(,) , which I show schematically on the left-hand side of Figure 7.1. I have 

already described this process in Section 2.1.1.1, so here I only review its main features 

and introduce the terminology that I will use in later sections. 

In order to treat the production of a primary qq pair and its subsequent evolution 

independently, I neglect the interference between photons radiated by the initial and 

final states. This simplification is justified at the Z resonance , since energetic ISR is 

strongly suppressed there , and thus, so is the interference between energetic ISR and 

energetic FSR. ISR is suppressed because the probability that an electron emits a 

photon before annihilating is proportional to the ratio of the e+e- annihilation cross 
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sections after and before emitting the photon 

a( s · (1 - x,, )) 
a(s) 
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where x,, = 2E,,/ vs is the scaled energy of the ISR photon. At the Z resonance, 

this probability decreases rapidly with increasing E,, because of the decreasing cross 

section, a( mz · ( 1 - x,,)) , below the resonance peak. 

I express the energy distribution of isolated FSR from each quark flavor as the 

product of an electroweak factor, D"qq(s), and a second factor , fq(Js,aiso,E,,), which 

describes the subsequent evolution of the primary qq pair 

da 
dE ( s, C:Xiso , E,,) = 

')' 

L D"qq(s) X fq( VS, C:X iso , E,, ) . 
q=u ,d,c,s,b 

At the peak of the Z resonance, the electroweak factor can be calculated to high 

accuracy using the improved Born approximation (see Section 2.1.1.1) 

where GF '.:::'. 1.166392 x 10-5 Gev-2 is the Fermi constant, whose value is measured 

from muon decays[73], and Ne = 3 is the number of colors in QCD. The parame

ters ce and c\ that appear in this expression are the effective couplings of electrons 

and quarks, respectively, to the Z boson; they are related to the vector- and axial

couplings, gr, and ?J:4 (see Section 2.1.1.1), by 

- _ (-f 2 -f 2) 
Cr = 4 g, , + gA 

I use the term effective here to indicate that these parameters do not correspond to 

the bare couplings of the Standard :Model Lagrangian, but rather, they also include 

the effects of higher-order virtual corrections renormalized at the Z-mass scale. 

Taking the expression for O"qq(s), above , to be the defining relationship between 

the effective couplings and the cross section allows a determination of those couplings 

to be made from a measurement of the cross section. This approach relies on only 
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minimal assumptions about the underlying theory, and is one that I follow in the next 

chapter. Alternatively, by using the framework of the Standard Model, the effective 

couplings can all be derived from two flavor-independent parameters, sin2 Bw and Peff, 

according to 

This approach has the advantage that the values of the quark couplings can be pre

dicted using the values of sin2 0"'. and Peff which are determined from the forward

backward asymmetries of Z decay into leptons (see, for example, Reference [70]). 

In the next chapter , I will compare this prediction with my results. I ,vill also use 

the relationship between the electroweak parameters, sin2 01,.,,. and Peff , and the quark 

charges, Qq, in order to determine the values of the quark charges. 

The bare couplings of quarks to the Z boson - those that appear in the Standard 

Model Lagrangian and which I denote cq - only depend on the charge of a quark, so 

that Cu = Cs and cd = Cc = cb. In principle, however, the higher-order corrections that 

are incorporated into the effective couplings introduce flavor-dependent effects. In 

practice, these effects are negligible except for the heaviest accessible flavor , bottom, 

for which the vertex corrections involving a virtual top quark must be taken into 

account. The effect of a heavy top quark, calculated at leading order in the top

quark mass , can be expressed using an overall correction factor which is applied to 

the b-quark effective coupling[18] , cb = ( 1 - ~Pb)cd, with 

A top quark mass1 of mt = 180 GeV yields a value of cb that is 1.35% smaller than 

the value of ed. Finally, the set of five effective quark couplings can, to a good 

approximation, be parameterized using only two independent couplings, cu and cd: 

1 I use the weighted average of the recent top-quark masses determined by the CDF Collaboration, 
176 ± 13 GeV [87], and the D0 Collaboration, 199 ± 30 GeV [88], obtaining mt = 180 ± 12 GeV. 
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I refer to the quarks with charge +2/3 (-1/3) as up-type ( down-type) , and I refer to 

cu and cd as the up- and down-type couplings, respectively. 

The expression I use for the isolated FSR energy distribution depends on the 

parameters of the primary qq pair through the factor cq. Therefore, the total cross 

section for hadronic Z decays is obtained from this expression by replacing cq with 

the summed contributions from each accessible flavor, 2cu + (3 - .6.pb)cd, and the 

remaining electroweak contributions are the same. I exploit this fact by rescaling to 

the total hadronic cross section, 

which simplifies the calculation that follows. Note that the only electroweak param

eters in this expression are the quark couplings to the Z boson, (\. Therefore, by 

choosing this normalization for both my measured distributions and my calculation, 

and then comparing these, I am able to measure a constraint on the quark coupling 

parameters without reference to any other electroweak parameters (such as the Z 

boson mass or width). 

Since the experimental energy distributions that I measure, Ri (see Section 6.3), 

are binned, the actual quantities that I will calculate for comparison are the integrals 

over each bin 
1 

~ = r + (3 - ~ t L "i\ x Ri,i . 
Cu Pb Cd 

q 

I define the contribution from each quark flavor as 

and I calculate these contributions using vs = 91.248 GeV, O'.iso = 10°-25°, and 

~E = 4 GeV. I use the notation IR to denote those quantities that I calculate, to 

distinguish them from those that I measure , and I do not explicitly indicate the 

dependence of ~ and lRq,i on O'.iso. 
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7.2 Perturbative Processes 

The second step that I consider in FSR production is the perturbative evolution of a 

primary qq pair. The main process in this evolution is gluon radiation, from both the 

primary quarks and from previously radiated gluons. A photon can also be emitted 

from a primary quark - this is the process that I refer to as final-state radiation -

but it occurs less frequently than gluon emission because the quark-photon coupling, 

Q~a, is small compared with the quark-gluon coupling, Cpa5 . 

While the coupling strengths for photon and gluon radiation differ, the dynamics 

are similar: the radiated particle is typically of lm:v energy and produced at a small 

angle with respect to the quark. Therefore, most of the photons radiated by a quark do 

not meet the minimum energy and isolation requirements that I apply in my analysis, 

and so the process that I study experimentally is suppressed relative to inclusive FSR 

production. However, when a quark does radiate an energetic and isolated photon, 

it is most likely that it does so before radiating any energetic gluons , to which it 

would have lost energy. As a result , I expect that energetic gluon radiation is not an 

important effect in the production of isolated and energetic FSR. 

My goal is to perform a perturbative calculation of the function ]q , which I defined 

in Section 7.1, and the associated binned quantities, ~,i· The contributions to these 

calculations that I consider are the emission of a single photon, which results in an 

overall factor of Q~a/(21r), and the emission of both real and virtual gluons, which 

are associated with factors proportional to the strong coupling, a 5 . A complete 

perturbative calculation of fq that includes these contributions can be expanded in 

powers of a: 5 and a logarithm, L = logy, as 

Q2a oo 2n 

f q = 2~ L L Cn,k · a~ · L k , 

n=O k=0 

which is shown schematically in Figure 7.2 (I define the variable y , which is associated 

with gluon radiation, in Section 7.2.2). I consider two complementary approaches for 

systematically generating this expansion: rovv-wise and column-wise. 
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Figure 7.2: Schematic representation of the terms in a perturbative QCD 
expansion. The rows correspond to orders of a matrix-element expansion, 
with expansion parameter as. The columns correspond to orders of a leading
logarithm expansion, with expansion parameter 1/ L. 
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Adding together the terms in each row, k, of Figure 7.2 yields the contribution to fq 

that is proportional to a~. Since the strong coupling is a small parameter ( as ::: 0.1), 

the successive contributions from the rows k = 1, 2, ... provide a series of improving 

approximations to f q. I refer to this as the matrix-element approach for calculating 

f q, and I refer to the first approximation ( k = l) as the lowest order (LO), the second 

(k = 2) as the next-to-lowest order (NLO), and so on. I describe this approach in 

more detail in Section 7.2.1, below. For some observables, the value of the logarithm, 

L =logy, can be large. If Lis too large (L » 1 ), a perturbative expansion no longer 

converges and the observable is not perturbatively calculable. However, for a range of 

moderately large values, 1 ~ L ~ a;- 112
, the matrix-element approach converges, but 

slowly, and it is necessary to use 1/ L as an expansion parameter instead of as. This 

approach, which I refer to as the leading-logarithm method, consists of taking the 

successive contributions from the columns of Figure 7.2 as a series of approximations 

to fq• I describe this method in more detail in Section 7.2.2. There, I also argue that 

the leading-logarithm method is less appropriate than the matrix-element method for 

calculating the energy distribution of isolated FSR. 
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7.2.1 Matrix-Element Calculations 

In this section, I describe how I calculate the energy distribution of isolated FSR 

using a matrix-element method. First, I derive the calculation at lowest order, which 

is O(a), and then I describe how I extend this calculation to next-to-lowest order, 

which is 0( a 5 a). For the lowest-order calculation, I first assume that the radiating 

quark is massless, and then I calculate the corrections due to finite mass effects. 

7.2.1.1 FSR Production at Lowest Order 

The differential cross section that describes the annihilation of an e+e- pair into a Z 

boson, and then the subsequent Z decay into a final state evolving from a primary qq 

pair, can be written 

- l L Hµv · dn"--dO" qq - 2 µv '±' , 
s- m 2 

where the tensors Lµv and Hµv describe the initial- and final-state currents, respec-

tively, and d<I> describes the phase space available to the final state. Averaging out 

all angular correlations between the initial and final states, and normalizing to the 

the total cross section, reduces the cross section to 

The final-state current from a qq pair, together with a radiated photon, is described, 

at lowest order, by the tensor 

Hµv = L (h'{ + h';i) ·(ht+ h~)* , 
pol 

where the summation is over all polarization states of the final-state particles, and 

the hf are the currents associated with the diagrams of Figure 7.3 

hf = 
2 

(~"~ k) U(q1, >-1) 'Y,, (m - f/2 - f) ¢'(A) v(q2, >-2) 

h~ = 
2 

(~q\) U(q1, >-1) ¢* (A) (m + 41 + f )'YI' v(q2, A2) . 
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The phase space for the three-body decay is 

1 1 
d<P = -( )3 r;, dE1dE2 

21r 8ys 
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where E 1 and E 2 are the quark and anti-quark energies respectively, measured in the 

Z decay rest frame. 

k,A 

k,A 

Figure 7.3: Lowest-order diagrams for the process Z -----+ qq,', showing the 
labeling used in the text for the momenta ( q1 , q2 , k) and spins ( A 1 , A2 , A) of 
the quark, anti-quark, and photon respectively. 

The cross section is expressed most compactly in terms of dimensionless scaled 

energies, which I define for the quark and antiquark as 

2E1 
X 1 = r;:. = 1 - 2 ( q2 . k) Is ' 

yS 

and for the photon as 

In addition, it is convenient to define a scaled quark mass , µ 2 

angular variable t = min(t1, t2), where 

2m~/ s, and the 
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The lowest-order differential cross section for FSR production from a quark with 

charge Qq and scaled mass µ, in terms of the scaled quark energies, is then 

1 da(Lo) Q~a { Xi + .i:~ 

O"qq dx 1dx2 = 21r (1 - x1)(l - x 2) 

2 [ 1 1 ] 
- µ (3 - X1 - X2) (1 - X1)2 + (1 - X2)2 

4[ 1 1 2 ]} 
-µ (1 - x 1)2 + (1 - x2) 2 + (1 - x1)(l - x2) ' 

where I use the superscript (LO) to denote a quantity that is calculated at lowest or

der, 0( a), in perturbation theory. The kinematically-allowed phase space is described 

by 

and is shown in Figure 7.4. The cross section diverges when either x1 -"7 1 or x 2 -"7 1. 

7.2.1.2 Lowest-Order Energy Distributions for Massless Quarks 

In this section1 I calculate the energy distribution of isolated FSR from massless 

quarks using the cross section I calculated in the previous section. Since the lowest

order calculation does not describe a realistic hadronic final state, the experimental 

photon isolation requirement must be reinterpreted in terms of the quark final state: 

I define isolation here by requiring that no quark be present in a cone of half-angle 

O:'iso around the photon direction 

t 2:: to = (1 - COS O:iso)/2 . 

Figure 7.4 shows the effect this cutoff has on the allowed phase space for isolated FSR 

emission. The cut regulates most of the singular behavior of the cross section, except 

when x, -"7 0 (x1 -"7 1 and x 2 -"7 1) and tx1 -"7 1 (xi -"7 0 and Xj -"7 1 ). 

The lowest-order differential cross section for FSR production from a massless 

quark with charge Qq, in terms of the variables x 1 and t, is 

aqq dx1 dt 

Q~a { (1 - x,)2 + (1 + tx;) 2 
- 4tx1 (1 - tx, + tx;)} 

1r tx1 (1 - t)(l - tx, )2 



7. 2 P ERTURBATIVE PROCESSES 

Figure 7.4: Lowest-order phase space for the decay Z ~ qq')'. The left-hand 
diagram shows the phase space in terms of the scaled quark-energies x 1 and 
x 2 . The right-hand diagram shows the phase space in terms of the scaled 
photon energy x 1 and the angular variable t. The regions of phase space 
where the matrix element diverges are indicated with hatched areas. The 
kinematically allowed regions for massless quarks are indicated with solid 
outlines. Dotted lines show the additional constraints for a massive quark ( a 
value of mq = 10 GeV was chosen for clarity). The isolation constraint t ~ t0 

is indicated with dashed lines ( a value of Ctiso = 60° was chosen for clarity). 
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I obtain the isolated FSR energy distribution by integrating out the angular variable 

t from the lower cutoff tmin = t0 up to the kinematic limit tmax = 1/ (2 - x 1 ) 

which yields 

1 da-(LO) Q~a { 
2 

+ 
2 

1 - x1 2 - 2x1 + x; 
1 

1 - t0 } 
---=-- X - ---+-----· og----
O"qq dx"f 1r 

1 l-t0x1 x1 to(l-x1 ) 

With a further integration of the isolated FSR energy distribution over an energy 

interval Xmin < x'Y < Xmax, I obtain 

1
Xmax 1 da-(LO) Q2 Ct 

- -- dx1 = -
2

q [F(xmax, to) - F(xmin, to)] , 
a- - dx 1r 

Xmin qq "/ 
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with 

4 [ 1 - to ] [ 1 - to ] 2 F(x, t0 ) = - 1 - t 0 - t0 log(--) x + 1 + log(--) x 
to to t0 

1 - to ( 1 - to) + 4 log(--) logx + 4 - 2- log(l - t0x) 
to t0 

1 + 2(x - 4)(x· - 2) + (x - 3)(1 - x) log(l - .r) + 4 Li2 (x) , 

where the dilogarithm function, Li2 (x), is given by 

L. ( )= tlogll-zld =~xk 
12 x Jo z z ~ k2 . 

O k=l 

This energy distribution is related to the function , fq , which I defined in Section 

7.1, by 

fq( y's, O'.iso , E,-y) = 
2 1 

VS aqq { 

da(LO) } 

dx
7 

+ 0(µ 2a) + O(asa) @ { non-perturbative effects} , 

and is thus a lowest-order approximation to this function. Similarly, the energy 

integral that I perform provides lowest-order approximations to the binned quantities, 

~,i, which are 

where I define xi = 2Ed vs and .6.x = 2.6.E / VS· Since the contributions to~ from 

each quark flavor are the same when all quarks are considered to be massless, ~ is 

given at lowest order by 

JR;LOl = 2C.,Q:
2 
+ (3 ~ 6pb)=dQd 

2 JR;,~7 J . 

2cu + (3 - .6,pb)Cd 

In Figure 7.5(a), I show my lowest-order approximation to ./q as a function of both 

energy and isolation, and I also superimpose my binned predictions of IR~~? l. In Figure 

7.5(b), I show the integral of fq over the range 8 GeV < E, < 44 GeV, which I use for 

my data analysis, as a function of the isolation cut, O'.iso· I performed my calculations 

with the overall scale factor, Q~a/(27r), set to one, so that my results do not depend 

on the type of quark or on the values of any coupling constants. 



7 .2 PERTURBATIVE PROCESSES 155 

Q) 9 ..... 
a.iso = 100 -co 

8 30 a: D 
a: 7 

a.iso = 250 - -
Cl) ,7 25 u. 
"'O 6 
Q) 20 ..... 
co 5 0 

.!!!. 4 15 
0 
...J 3 10 

2 

1 5 

0 
10 20 30 40 10 15 20 25 30 

Photon Energy, Er (GeV) Photon Isolation, cxiso (deg) 

Figure 7.5: Isolated FSR rates for a single quark flavor calculated at lowest 
order, and shown as functions of the photon energy for two different isolations 
(a), and the photon isolation for 8 GeV < E, < 44 GeV (b). In (a), I 
compare the differential energy distributions, 6.E · Jt0 l, (smooth curves) 
,vith the binned distributions, JR~~?) (histograms). The results were obtained 
by dividing out the overall factor, Q~a/(27r) (see Figures 7.19 and 7.20 for 
results that include all couplings). 

7.2.1.3 Lowest-Order Corrections for Quark Masses 

In this section, I consider how quark masses change the results that I presented above . 

I will express the effects of quark mass on the energy distribution of isolated FSR as 

a correction factor that I apply to the distribution I calculate for a massless quarks. 

Since it is not technically feasible to calculate quark-mass effects explicitly at higher 

orders, I will use my lowest-order correction to estimate the size of these effects at 

higher orders. 

Mass corrections in perturbative calculations generally arise from restrictions on 

the phase space available to the final state, and from additional terms in the matrix 

element proportional to powers of JL. The expressions above for the dimensionless 

variables x1 , x2 , x,, and t are still valid for massive quarks, and so the three-body 
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phase-space factor, d<P, does not change. However, the phase-space limits are reduced 

- as Figure 7.4 shows - so the isolated FSR rate is lower at higher photon energies. 

For the calculation I will perform, it is convenient to divide phase space into two 

regions (see Figure 7.6), according to whether the range of allowed values for x 1 and 

x2 at a fixed value of x, is determined by the isolation cut (region A) or by the 

kinematic boundary ( region B). The boundary between these two regions occurs at 

, 1 - 2mq/vs 
x, = 1 - 2t0mq/ vs · 

In region A, it is most convenient to use the variables x, and t; in region B, the 

variables x 1 and x2 are most convenient. 

The FSR energy distribution that I calculate for region A depends on the isolation 

cut that I apply, t 2 t0 . The interpretation of this cut is slightly modified when quark 

masses are taken into account, since 

t· _ 1 - /3i cos ei,, _ 1 - cos ei,, + o( !!... )2 . 
2 

- 2 - 2 Xi 

This correction increases the probability that a photon is considered to be isolated 

when the nearest quark is very soft ( Ei -+ mq), and therefore approximately incor

porates the experimental requirement that the energy within an isolation cone be 

above some minimum value. In region B, the energy distribution is independent of 

the isolation cut t0 , but depends instead on a parameter, d0 , through the kinematic 

constraint 

with 

do = 2 ( 1 - V2 µ) . 

Below, I give the results of my calculation of the lowest-order differential energy 

distribution, including quark-mass effects, in the form 

dO"(Lo) [ da A ( ) da~ ] ( , ) 
dx, (x,, lXiso, µ) = dx, x,, to + dx, (x, , to,µ) · 8 x,,, < x, 

[
dO"B da~ ] , + dx, (x,, d0 ) + dx, (x,, do,µ) · 8(x, 2:: x,) , 
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0 ~--------------' 
0 

Figure 7.6: Division of the lowest-order phase space for decay Z -+ qq, 
into two regions for the purposes of calculating the energy distribution of 
isolated FSR produced by massive quarks. The left-hand diagram shows the 
phase space in terms of the scaled quark energies x1 and x 2 • The right-hand 
diagram shows the phase space in terms of the scaled photon energy x, and 
the angular variable t. The kinematically allowed regions for massive quarks 
are indicated with solid outlines ( a value of mq = 10 GeV was chosen for 
clarity). The isolation constraint t ~ t0 is indicated with dashed lines (a 
value of aiso = 60° was chosen for clarity) and the phase space that is cut 
is indicated as a dashed area. Dotted lines indicate the boundary between 
regions A and B. 

157 

where the theta functions select the expressions appropriate for either region A or re

gion B. The first term in each large bracket represents the contribution of the massless 

lowest-order matrix element ( and so only depends on quark masses through changes 

in the available phase space), and the second (primed) term represents the contri

butions of the mass-dependent corrections to the lowest-order matrix element. I use 

a similar decomposition for the function, F(x, aiso, µ), which I obtain by integrating 

this differential energy distribution. 

By performing the energy integral of the matrix element for massless quarks in 
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region A, I obtain the same results as in the previous section, 

l da A l da(LOJ 
- -,-(:i:1 , to)=-----= -d-(x1 , to) and, FA(x, t 0 ) = F(x, t 0 ), 
CJqq dx1 Clqq x1 

since neither the integrand nor the integration limits depend on the quark mass. 

Performing the energy integration on the massless matrix element in region B gives 

_l_ da8 (x,.,,, do) = Q~a { 2 - 2x,, + x; do } 
' x log do - 2x,, + X1 - do ' 

Clqq dx1 1r 

and 

3 do do 
FB(x, d0 ) = - 4x + -x(x - d0 ) + x(x - 4) log d + -(do - 8) log(2x - d0 ) 

2 2x - 0 4 
2x 2x 

+4logd0 logx-4log(2x-do)log do -4Li2(l- do)• 

The additional mass-dependent terms in the lowest-order matrix element give a 

negative contribution, that is, they reduce the isolated FSR rate. Performing the 

integration of these terms, I obtain, in region A 

l da~( ) Q~a{ 2 (l+x1 )(l-t0x1 )(l-2t0x1 ) 
--x,,,t0 ,µ =--- µ 
Clqq dx,, 1r (1 - to)to(l - x,,)x1 

4 [ 2 1 - x1 2 - x,, l 2 1 1 - t0 ] } +µ -1+----------+----+- og--- , 
x,, x 1 (l-t0 ) x 1 (l-x1 ) t 0 x 1 (l-x1 ) x 1 t0 (l-x1 ) 

and, in region B 

_l_ da~ (x"f, do,µ)=_ Q~a { 4µ 2 (do - x1 )(1 + x 1 ) 

CTqq dx,, 1r d0 (2x1 - d0 ) 

4 [ d0 - x l h do - :r,,] } + 4µ ----- + - atan --- . 
d0 (2x1 - d0 ) x 1 x,, 

Performing a further energy integration of these energy distributions, I obtain, in 

region A 

F~(x, to,µ)= -µ2 [ tox2 - 4 (1 - to) log(l - x) + 2(~ - 2to? logx] 
1 - to to to l - to 

- µ4 { 2
tox - 2 (

1 
- to) log(l - x) + 4Li2(x) 

1 - to to 

+ ( 2 
) [1 - 2t0 + 2t0 ( 1 - t0 ) log 

1 
- to] log :i:} , 

t 0 l - t 0 to 
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and, in region B 

F~(x , d0 , µ) = -µ 2 
[ 2x(d~: 

2
) - 2~: + (2 + d0 ) log(2x - do)] 

4 [ x do do - µ 2log(2x - d0 ) - 4- + 8atanh(l - -) log-
do x x 

do do 2 do . do ] -4 log(l - -) log-+ 2 log - - 4112(-) 
2x x x 2x 

A comparison of the lowest-order energy distributions that I have calculated, with 

and without quark masses taken into account, reveals the following general features: 

• both the reduction in phase space due to quark masses and the additional terms 

in the matrix element proportional to mass reduce the rate of isolated FSR, 

• the reduction in the rate is greater for photons that are more energetic or less 

isolated, 

and 

• the dominant effect of nonzero quark masses is proportional to µ2
, so that, to 

a good approximation, quark-mass corrections scale with m~. 

I also note that when x, ---+ 1 or O:iso ---+ 0, the negative contributions from the 

mass-dependent terms diverge faster than the positive contributions from the mass

independent terms. As a result, the net lowest-order cross section eventually takes on 

negative values for sufficiently energetic and isolated photons. This behavior signals 

that a lowest-order calculation of mass corrections is not reliable over the full range 

of photon energy and isolation. 

In order to evaluate the expressions that I give above, I must specify the values of 

the quark masses. These values are not well defined, since they can not be measured 

directly. Instead, quark masses must be determined from hadron properties, and 

thus depend on exactly how they are defined in relation to these properties. The 

s-quark mass has been estimated[73] to be between 100 MeV and 300 MeV, from 
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the mass differences between strange and non-strange hadrons. The mass ratios, 

mu/md and ms/md, have been extracted from the pion and kaon masses masses using 

chiral symmetry[73], and give a u-quark mass between 2 MeV and 8 MeV, and a 

d-quark mass between 5 MeV and 15 MeV. The c-quark mass has been estimated 

from charmonium and D-meson masses, using I'vIS perturbation theory, to be between 

1.0 GeV and 1.6 GeV. The b-quark mass has been estimated from bottomonium 

and B-meson masses, using similar techniques, to be between 4.1 GeV and 4.5 Ge\!. 

The top-quark mass has recently been estimated by both the CDF[87) and D0[88) 

collaborations from T-meson masses, and their combined result is 180 ± 12 GeV; 

however, the t quark is not kinematically accessible at LEP. 

I express the lowest-order energy distribution, with mass effects included, as the 

product of the lowest-order distribution for massless quarks that I derived in the 

previous section and a mass correction factor 

dO'(LO) dO'(LO) 

-d--(x,, O'.iso, µ) = -d--(x,, O'.iso) X [l - l\{(x,, O'.iso, µ)] 
x, x, 

The value of l\J(x,, Oiso, µ) is then positive, since mass corrections reduce the FSR 

rate, and increases with increasing photon energy or decreasing photon isolation. In 

Figure 7. 7, I show the value of 1\1 as a function of both energy and isolation for two 

quark masses: 1 GeV, which is the lower limit of the estimated c-quark mass, and 4.5 

GeV, which is the upper limit of the b-quark mass. I observe that the scaling of mass 

corrections with m~ is a good approximation for all of the accessible quark flavors 

when the photon energy is below 41 GeV ( the scaling approximation improves with 

decreasing mass, so it is sufficient to verify it for the heaviest quarks). The breakdown 

of scaling for b quarks above 41 GeV is due to the transition from region A to region 

B, and arises because the mass correction in region B is independent of the isolation 

cut. The results in Figure 7.7 show that the mass corrections due to light quarks (u, 

d, or s) are negligible. Using a quark mass of 300 MeV and requiring 10° isolation 

( these choices provide an upper bound on the size of light-quark mass corrections to 
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my calculation), the correction reaches a maximum value of 2% at 44 GeV, and the 

overall correction to the total rate of isolated FSR between 8 GeV and 44 GeV is less 

than 0.2%. 

X 
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Figure 7. 7: The dependence of the scaled lowest-order mass correction, 
(1 GeV /mq) 2 x l\1(x, , O'.iso , µ), on photon energy and isolation. Solid lines 
give the corrections for a quark mass of 4.5 GeV, and dashed lines for a mass 
of 1 GeV. The four curves are, from top to bottom, for the isolation cuts O:iso 

= 10°, 15°, 20°, and 25°. 

Figure 7.8 shows the total rate of isolated FSR, with energies between 8 GeV 

and 44 GeV, that I calculate as a function of the isolation cut, for different quark 

masses. The mass corrections are small for the light quarks, as well as for the c 

quark, in the range of isolation cuts that I use in my experimental analysis. The rate 

of isolated FSR from b quarks that I calculate diverges from the rates that I calculate 

for other quarks for isolation cuts less than about 20°. I interpret this behavior as 

a breakdown of the lowest-order approximation that I am using, and I consider my 

calculated b-quark mass corrections to be unreliable for O:iso ~ 20°. 

In order to compare my full theoretical prediction, including the effects of finite 

quark mass, with my experimental results, I express my lowest-order calculation of 
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Figure 7.8: Rates of isolated FSR calculated at lowest-order and shown as a 
function of the isolation, O:iso, including mass effects for three different quark 
masses: zero (solid curve), 1 GeV (dashed curve), and 4.5 GeV (dotted curve). 
The results were obtained by dividing out the overall factor, Q~a/(2n-). 
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~,i as the product of the result I obtain with a massless calculation, ~~~f), and a 

mass correction factor which scales explicitly with quark mass 

(I use the notational convention that when a quark-mass dependence is not explicitly 

shown for a quantity, then the quantity is calculated assuming zero mass.) In Figure 

7.9, I show the dependence of Jyfi on the photon energy interval, labeled by the index 

i, and the isolation cut, CXiso· 

When I add together the contributions to the isolated FSR energy distribution 

from the five accessible quark flavors, I assume that the light quarks (u, d, and s) 

have zero mass, and thus obtain 

JR;w> = (2 - m~M;)"c.,Q.,2 ~ (2 + (1 - ~PbJ(l - m~M;))cdQ/ JR~~f> . 
2cu + (3 - 6pb)cd 

Since the mass correction, Aii, that I calculate is a function of energy, this expression 
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no longer has the simple form of an electroweak factor multiplied by the energy 

distribution of FSR from a single quark flavor. However, the overall effect of quark

mass corrections is small in the range of isolations, Ctiso ~ 20°, where I can calculate 

them reliably. Therefore, I introduce an average mass correction, (Af), that does not 

depend on energy 
JR(LO ) • J\,J

U\11) = L q,z (LO) z 

. lRq,i 

The values of this average correction that I calculate are 

2.05 %/GeV2 
Ctiso = 10° 

1.07 %/GeV2 
Ctiso = 150 

(AI)= 
0.68 %/GeV2 

Ctiso = 200 

0.49 %/GeV2 
Ctiso = 250 

Replacing the energy-dependent correction, Ali , in the expression for ~LOJ , above , 

with the average correction, (Af), and neglecting terms proportional to 6.pb · (A1) , I 

obtain 
~LO) = (2 - m~ (A1) )cuQu 2 + (3 - 6.pb - m~ (111) )cdQ/ R(L?) . 

2cll + (3 - ~Pb)cd q,z 

7.2.1.4 Higher-Order Corrections 

At higher orders in perturbation theory, the lowest-order diagrams of Figure 7.3 are 

modified with additional particles, which can either appear in the final state or form 

internal loops. Because of the large value of the strong coupling cx5 , the most impor

tant corrections are associated with diagrams having additional gluons. Corrections 

from diagrams with additional photons or other particles are much smaller, and I do 

not consider them here. The· complexity of a QCD calculation increases very rapidly 

with increasing order , and so in practice, only a few orders can be calculated. Here, 

I extend my lowest-order, O(cx), calculation by one order in the strong coupling, to 
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obtain a next-to-lowest-order, O(a5 a), prediction for the isolated FSR energy distri

bution. 

Below, I use the notation da-(NLo) / dx'Y for the 0( a 5 a) contribution to the isolated 

FSR energy distribution, and I refer to it as both the next-to-lowest-order contribution 

and the leading-order QCD correction. By combining this contribution with the 

lowest-order contribution that I calculated in the previous sections, I obtain a more 

accurate approximation to f q, of the form 

f q ( VS, aiso , E'Y) = 
2 1 { da-(LO) - da-(NLO) } { } 

VS O"qq dx--y + dx'Y + O(a;a) @ non-perturbative effects , 

and a corresponding approximation to the binned quantities, lRq,i, of the form 

The leading-order QCD corrections to isolated FSR production correspond to 
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diagrams with one additional gluon, which can either appear in the final state (see 

Figure 7.10) or else form a loop between quark lines (see Figure 7.11). I refer to the 

O(a5 a) matrix elements for producing the final states qqg, and qq, as M 4 and M 3 , 

respectively. The NLO contribution to isolated FSR production is given by 

where d<I>n represents n-body phase space and 8n implements photon energy and 

isolation cuts for an n-body final state. 

Figure 7.10: Leading-order QCD diagrams for the process Z--+ qqg,', which 
contribute to the matrix element M 4 . The complete set of diagrams also 
includes the permutation q ~ q. 

Since the perturbative descriptions of gluon and photon radiation from quarks 

differ only by coupling constants, the matrix elements M 3 and M 4 can be deduced 

from the corresponding O(a;) matrix elements for the process e+e- --+ qqg(g), 

which have already been calculated[89-91]. I obtain M 3 and M 4 from the results 

given for massless quarks in Reference [91] by setting the color factor Ne to zero, in 

order to eliminate contributions from the triple-gluon vertex, and by performing the 

substitution 

( 
O's)2 2 a a s CF - --+ N s · Q - · CF- , 
21r q 21r 21r 

which converts one ( qqg) vertex into a ( qq,) vertex, and cancels the symmetrization 

factor l/Ns for identical bosons in the O(a;) calculation[82) (Ns = l and 2 for the 
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Figure 7 .11: Leading-order QCD diagrams for the process Z ~ qq--y, which 
contribute to the matrix element M 3 . The complete set of diagrams also 
includes the permutation q ~ q. 

qq--y and qqg, final states, respectively). 
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After averaging over angular correlations between the initial and final states, the 

massless four-body phase space is described by five parameters which are convention

ally chosen from the set of six scaled invariant masses 

_ (Pi+Pj)2 
Y·ij = , 

s 

with i > j. The scaled energies xi = 2Ed vs and the angular variables tij = (1 -

cos 0ij) /2 are related to the scaled invariant masses by 

t .. _ Yi j 
ZJ - ' 

Xi X j 

where I use the notation Yijk = Yij + Yik + Yjk· The phase-space limits are determined 

by the constraints O ::; Yij ::; 1 and the conservation equation 

LYij = 1. 
i>j 
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The 0( a 5 a) contributions from the qq,1 and qqg, final states are individually 

divergent , but combine to give a finite result. In order to obtain numerical results , it 

is convenient to first isolate the singularities from each contribution and then cancel 

them analytically. Divergences in the 0( a 5 a) qqg, matrix element, M 4 , are due 

to configurations in which the gluon is either very soft, or else , is almost collinear 

with the quark or anti-quark. In both of these configurations, the gluon is essentially 

unresolved, and so a general strategy for canceling singularities is to define physical 

cross sections (which I denote with a tilde) in terms of resolved-particle final states, 

which are then individually finite. 

The choice of finite physical cross sections is not unique and introduces a renor

malization scheme uncertainty into the results of a calculation. I use the method of 

Reference [91], where the matrix element for the qqg, final state is expressed as a 

sum of single-pole terms that are related to each other by permutations of the particle 

labels 

and where P remains finite when a single Yij ~ 0. In order to extract the singular 

contribution from qqg,1 final states, unresolved gluons are defined with explicit phase

space cuts of Yqg < Yo and Yem < Yo for the first and second terms given above. The 

corresponding poles in Yq, and Yq, are regulated by the photon energy and isolation 

requirements, and so do not need to be explicitly cut. For small values of Yqg, the 

leading singular behavior of M 4 is due to the 1/yqg pole-term and is given by 

where 
Yqq 

'V=------
1 - Yqqg - Yqg 

The factor da<LOl(x1 , x 2 ) appearing above is the lowest-order cross section evaluated 

with the effective three-body variables, x 1 and x2 , that I obtain by considering the 
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quark and gluon together as a single particle. The mapping of degenerate four

particle configurations with an unresolved gluon into three-particle phase-space is 

only well-defined up to terms proportional to Yqg < y0 . However, by choosing Yo to 

be sufficiently small, this uncertainty is numerically insignificant. I choose a mapping 

that does not alter the photon energy 

In the limit Yqg -----+ 0, the four-particle phase space factor reduces into a product 

of the unresolved gluon phase space and a three-particle phase space factor 

so that the singular contribution from M 4 can be evaluated analytically by integrating 

over the unresolved gluon degrees of freedom. Performing this integration yields an 

expression in terms of three-body variables 

where the extra factor of two accounts for the permutation q ~ q. The pole terms 

of this singular contribution exactly cancel the pole terms of the virtual corrections 

at each point in the qqry phase space, so that the physical cross sections are given by 

and 

For small values of y0 , the physical cross sections asymptotically approach 
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and so are individually very sensitive to the value of the cutoff parameter y0 . However, 

their sum is independent of the cutoff value. 

The functions 8 3 and 8 4 , introduced above, implement cuts on photon isolation 

and energy, and so should be defined to match the corresponding experimental cuts 

as closely as possible. In the previous section, I defined the cuts for the qq, final 

state as 

and so an obvious extension to the qqg1 final state is 

This choice is in fact not possible since it restricts the gluon phase space sufficiently 

to modify the leading behavior of dci4 (y0 ) and thus introduces a y0-dependence into 

the sum dci3 (Yo) + dci4 (Yo). 

In order to obtain a QCD correction that is independent of the cutoff parameter, 

8 4 must allow gluons up to some energy, E', within the isolation cone of the photon, 

where x' = 2E' / Js. This approach treats quarks and gluons differently and thus 

does not match the experimental isolation requirement. Therefore, I also allow soft 

quarks within the isolation cone by using 

84 =8(x,, > xo) · (1 - 8(tq > t0 ) · 8(:r:q < x')) · 

(1 - 8(tcf > t 0) • 8(xq < x')) · (1 - 8(tg > t0) • 8(xg < x')) 

The additional contributions to dci4 that are due to soft quarks within the photon 

isolation cone diverge as x,, ~ l, so I require a cut on the maximum photon energy 

in order to use this isolation scheme. I already apply such a cut in my experimental 

selection. Note that the final isolation scheme that I choose still does not exactly 

match my experimental scheme, since I analytically remove regions of four-body phase 
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space where Yqg ~ y0 . Therefore, I treat any soft gluons or quarks in an isolation cone 

differently in my calculation depending on their invariant masses with other partons 

in the event. 

Since an analytic calculation of the 0( a 5 a) corrections is not technically feasible 

with my choice of isolation scheme, I evaluate the corrections using the VEGAS[92] 

1\fonte Carlo integration algorithm. I calculate the value of each JR~~iLO ) as the sum of 

the contributions from the three- and four-body physical cross sections. Since these 

contributions are separately divergent as the cutoff parameter, y0 , approaches zero, 

decreasing the value of this cutoff involves a cancelation between larger values, and 

thus results in a larger numerical uncertainty in the result. Increasing the cutoff, 

however, increases the theoretical error in the result due to missing sub-leading con

tributions in my calculation, which are proportional to the cutoff. The final choice of 

value for y0 is a compromise between these two sources of error. 

Figure 7 .12 shows the corrections that I calculate, in different energy intervals 

and for different isolations, as a function of the cutoff parameter. I choose the value 

y0 = 10-6 as a suitable compromise between the effects that I described above, and I 

use this value to calculate the results that I present below. I use a value of E' = 100 

MeV for the maximum energy of a soft particle allowed within an isolation cone. 

Although this value matches the value of the cut , Eiso , that I use in my analysis, the 

effects of these cuts are different since they are applied to different final states ( quarks 

and gluons, or hadrons). This difference is due to non-perturbative processes, which 

I will consider further in section 7.3. 

Figure 7.13 shows the final binned O(a5 a) corrections to the isolated FSR energy 

distribution that I calculate. The corrections are generally negative , since gluon 

radiation reduces the energy of a quark that might later radiate a photon and increases 

the number of particles in the final state: both of these effects reduce the probability 

that a photon is energetic and isolated. The corrections are largest for less energetic 

photons. 
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Figure 7.12: Dependence of the O(a5 a) QCD corrections to the isolated FSR 
energy distribution for a single quark flavor on the infrared cutoff parameter, 
y0 . The results were obtained by dividing out the overall factor, Cpa5 /(21r) · 
a/(21r), and by using a soft-parton cutoff, E', of 100 l\!IeV. 

The QCD corrections that I show in Figure 7.13 are calculated by dividing out 

the overall factor, Cpa5 /(21r) · a/(27r). However, for a realistic calculation that can 

be compared with data, the values of the couplings, a 5 and a, must be specified. 

Since these couplings are free parameters in the Standard Model, they must be de

termined by comparing experimental results with theoretical predictions. In the case 

of the quark-photon coupling, a, this comparison is straightforward and provides 

an unambiguous and precise result, O:'. ~ 1/137.036[73). However, in the case of the 

quark-gluon coupling, a 5 , the necessary QCD calculations are difficult to perform and 

require significant approximations. As a result, the values of a 5 that are obtained 

using these approximate calculations are effective values: they differ from the true 

value - the value that would be obtained from a comparison with an ideal complete 

calculation - in a way that approximately compensates for the theoretical approxi

mations that were used. Therefore, in order to best describe my experimental results, 

my 0( 0:'. 5 a) calculation requires an effective value for 0:'. 5 , which will, in general, differ 
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Figure 7.13: QCD corrections to the binned isolated FSR energy distribution 
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from the true value. However, since I have no a priori knowledge of how this best 

effective value for my calculation differs from the true value, I take instead the best 

estimate of the true value of a 5 that is available. For this best estimate, I take the 

value a 5 = 0.124 ± 0.009(93], which was obtained by comparing global event shape 

distributions, measured by L3 in hadronic Z decays, with the predictions of a calcula

tion that combines 0( a;) matrix elements with some leading-logarithm corrections. 

Note that the error of ±0.009 that is quoted on this value is an estimate of how much 

this value might differ from the true value of a 5 • However, the difference between 

this result and the best effective value for my calculation could be larger than this 

error. 
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7.2.2 Leading-Logarithm Calculations 

In this section, I describe the leading-logarithm approach to calculating the energy 

distribution of isolated FSR. The advantage of this approach is that it includes the 

main effects of gluon radiation to all orders in the strong coupling, and thus provides 

a good description of QCD corrections. I will show that the disadvantage of this ap

proach is that it does not necessarily give a good description of isolated and energetic 

photon radiation from a quark. 

The logarithms, L = logy, that appear in the perturbative expansion of fq (see 

Figure 7.2) represent the leading singular behavior, 1/y, of the cross section caused by 

soft and collinear radiation (y -+ 0). Because quarks couple more strongly to gluons 

than to photons, this radiation consists mostly of gluons; however, the final states 

that I am interested in calculating must also contain at least one radiated photon. 

Each radiated gluon or photon that is either soft or collinear contributes one factor 

of L, and radiation that is both soft and collinear contributes a factor of L 2
. I define 

the variable y as the combined scaled invariant mass of the radiated particle (gluon 

or photon) and the radiating particle (quark or gluon), although other definitions are 

also possible. 

The leading-logarithmic contributions to FSR production are proportional to 

a~·L2k, and thus correspond to diagrams without internal loops and in ·which every ra

diated gluon or photon is both soft and collinear. Therefore, in the leading-logarithm 

approximation (LLA), the quark and anti-quark of a primary qq pair evolve inde

pendently through a sequence of soft and collinear branching processes, a -+ be, as 

shown schematically in Figure 7.14. Since the LLA describes the radiation at each 

branch using an approximation that incorporates the leading singular behavior of the 

cross section, it is not necessarily a good approximation for radiation that is either 

hard or isolated. In particular, I do not expect the LLA to provide a good description 

of the isolated and energetic photon radiation that I study experimentally. For this 

reason, I consider the matrix-element approach to calculating FSR production, which 
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I described in the previous section, to be more reliable than the leading-logarithm 

approach, which I describe here. 

q➔qy q➔qg 

(t1 ,Z1) (t3 ,Z3) 
to -------.,-----------L-----------.----------~ 

q➔qg 

(t2,Z2) 

Figure 7.14: A schematic diagram of the leading-logarithm-approximation 
evolution of the primary quark ( or anti-quark) produced from a Z decay. 

The kinematics at each branch of the LLA evolution, shown in Figure 7.14, are 

parameterized using two variables, ti and zi . In the limit of soft and collinear kinemat

ics, the variable t = log(Q2 /Q5) can be identified with the virtuality of the primary 

quark (or anti-quark): its initial value is set by the hard scattering scale, Q2 '.:::'. m~ , 

and then its value decreases at each subsequent branch 

as the primary quark becomes less virtual, Q2 
-----+ 0. In the same soft and collinear 

limit , the variable z corresponds to the energy sharing between the decay products 

of each branch, and takes on values near zero when the radiated particle is soft. The 

exact definitions of the branching variables, t and z, are somewhat arbitrary: different 

choices agree in the soft and collinear limit , but yield numerically different results. 

The LLA cross section for FSR production is given by the sum of the quark and 
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anti-quark contributions 

da-(LLA) = d (LLA) + d i_LLA) 
(J"q 0-q ' 

whose separate contributions are in turn obtained by multiplying together contribu

tions from each branch 

The functions Pa-bc(z) are the Altarelli-Parisi splitting kernels[94] and depend on the 

type of branch that occurs. The q -+ qg and q-+ q1 kernels differ only by an overall 

factor, and are given by 

P._,, (z) = Cpa5 1 + (1- z)
2 

q qg 27r z 
and P. _,, (z) = Q~a 1 + (1 - z)2 

q q, 27r z 

The g -+ gg kernel is given by 

P, (z) = Neas (1 - z(l - z))
2 

g-gg 21r z(l - z) 

The LLA factors associated with each branch are divergent when either ti or Zi 

approaches zero. Therefore, it is necessary to apply cutoffs on both the decreasing 

sequence of virtualities at each branch, ti > t 0 , as well as on the minimum value of the 

energy sharing at each branch, z > z0 . The first of these cutoffs can be interpreted 

as setting the scale, A, at which non-perturbative effects must be considered, t0 '.:::'. 

log(A2 /Q5). The second cutoff regulates the infrared divergence of the matrix element 

and so plays a role analogous to that of the parameter y0 , which I described in Section 

7.2.1. 

7 .2.2.1 Parton-Shower Programs 

In this section, I describe how an LLA calculation can be performed using a Monte 

Carlo program. I consider two such programs in particular - JETSET[62 , 63), and 

HERvVIG [64, 65) - and I describe their predictions for isolated FSR production. 
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Since, in the LL.A, branchings are independent of one another ( except for the 

requirement of decreasing virtuality) , there are no quantum-mechanical interference 

effects and the dynamics of the process can be described using probabilities. As a 

result , a LL.A calculation can be performed by averaging over an ensemble of events 

that are generated according to appropriate probability distributions. This method 

is an example of a Monte Carlo event generator, and I refer to programs that use this 

method as parton-shower programs. 

The necessary probability distributions for a parton-shower program are given by 

the Altarelli-Parisi splitting kernels, given above, and the Sudakov form factor[95] 

S(to , t) = exp {- { ~;' / dz Pa-bc(z)} , 

which expresses the probability that a parton evolves from an initial virtuality, t0 , 

to a lower value, t, without branching. A Monte Carlo implementation of the LL.A 

consists of generating events in which the primary quark and anti-quark each evolve 

separately by a sequence of branches, with the values of ti and zi at each branch 

chosen according to these probability distributions. 

There is some freedom in the exact definitions of the branching variables and of 

the cutoffs in these variables , and, as a result, different parton-shower programs yield 

different predictions. These differences are formally of next-to-leading order in the 

LLA and so are only numerically significant when calculating observables for which 

the LL.A is not a good approximation. Below, I show that these differences are large 

when calculating the energy distribution of isolated FSR. I use the parton-shower 

programs JETSET and HERWIG for these calculations, although other programs are 

available that also implement FSR[96 , 97). JETSET and HERWIG both use 

but implement different choices for the virtuality: 

JETSET: HERWIG: t = Pb· Pc 
- z(l-z) 
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An important feature of both JETSET and HERvVIG , which influences their pre

dictions of isolated FSR production, is that they reweight the first branch of both 

the primary quark and anti-quark in order to approximately reproduce the appro

priate lowest-order matrix element at that branch ( 0( cr5 ) in the case of an initial 

q ~ qg branch, or 0( er) for an initial q ~ q, branch). As a result, this first branch 

is not generated according to the LLA, but rather, according to a hybrid matrix

element / leading-logarithm method. Figure 7.15 shows a comparison of the energy 

distributions of isolated FSR predicted by JETSET and HER\VIG with the results of 

my 0( cr5 cr) matrix-element calculation, and reveals that ,vhile HERWIG is in good 

agreement with the matrix-element calculation, JETSET and HERWIG are not in 

agreement with each other. I take this disagreement between the two parton-shower 

programs as an indication that the description of isolated FSR production in the LLA 

is sensitive to subleading effects. Because of this sensitivity, the LLA is not appro

priate for describing the type of events that I study experimentally. I attribute the 

good agreement between HER\VIG and my matrix-element calculation to a fortuitous 

choice of branching variables and to the procedure of reweighting the first branch that 

HER\VIG implements. 

Although parton-shower programs are not suitable for describing the actual pro

cess of photon radiation from a quark, I expect them to provide a reliable description 

of the QCD corrections to this process. Therefore, it is interesting to compare the cor

rections, IR:iLO), that I calculated in Section 7. 2.1 , using the 0( cr5 a) matrix element, 

with a similar correction calculated in the LLA, which I refer to as IR~~t). In order 

to make this comparison, I select a sample of events that are generated according to 

an effective lowest order for the LLA which approximately corresponds to the lowest 

order of my matrix-element calculation. I define this set to consist of events in which 

a photon is radiated at one of the first branches, and I measure the energy distri bu

t ions of isolated FSR in these events using two different methods. First , I ignore all 

other subsequent branches, so that the final state consists of a qq pair together with 



7.2 PERTURBATIVE PROCESSES 178 

~ 1600 ~-(~! JETSET, aiso = 10° 1000 (b) JETSET, aiso = 25° 

-.:;j" First Branch D First Branch D 
-1400 Later Branches ES':! 

800 
Later Branches ES':! 

Cl) O(asa), as= 0.124 - - O(asa), as= 0.124 - -
~1200 

I 
i...: I 

-g1000 600 - - - I 

I I 
(0 800 I - - - , 0 
-r- 400 - 600 
Cl) I 

C: I - - - I 
0 400 - 200 0 
.c: 
a.. 200 
a: 
Cf) 0 0 u. 

10 20 30 40 10 20 30 40 

> 1000 
~1600 
-.:;j" First Branch D First Branch □ 
-1400 Later Branches ES':! 

800 
Later Branches ES':! 

Cl) O(asa), as= 0.124 - - O(asa), as= 0.124 - -
~1200 
i...: 
-g 1000 600 
I 

(0 800 
0 
-r- 400 - 600 
Cl) 
C: 
0 400 - 200 0 
.c: 
a.. 200 
a: 
Cf) 0 0 u. 

10 20 30 40 10 20 30 40 

Photon Energy, E..., (GeV) Photon Energy, Ev (GeV) 

Figure 7.15: Energy distributions of isolated FSR predicted by the parton
shower programs JETSET (a,b) and HERWIG (c,d). Figures (a) and (c) 
are the predictions with an isolation cut of aiso = 10°, and Figures (b) and 
( d) are the predictions for O'.iso = 25°. The unfilled areas of each histogram 
are the predicted contributions from photons that are radiated at the first 
branch of the primary quark or anti-quark. The hatched areas are the pre
dicted contributions from all later branches. The solid histogram shows the 
combined contributions from all branches. The dashed histogram shows the 
predictions of my O(a5 0'.) calculation, which I obtain with a 5 = 0.124 and 
using Standard Model quark couplings. 
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a radiated photon, and measure the photon isolation from the quark and anti-quark 

only, obtaining a binned energy distribution which I refer to as IR~l,~). Then, I include 

all the particles that are radiated in subsequent branches when I measure photon 

isolation, and I obtain a second binned energy distribution for these events which I 

refer to as IR~ltqcd). Finally, I define the LLA QCD correction, which I will use to 

compare with the matrix-element QCD correction, as 

JR(l~+qcd) _ JR( l~) 
JR(LLA) = q,z q,z X JR(LO) 

q,z - JR(lo) q,z , 

q,z 

where IR~~fl is the lowest-order matrix-element distribution that I calculated in Section 

7.2.1. 

Figure 7.16 shows a comparison of the QCD corrections that I obtain using the 

matrix-element and leading-logarithm methods. I use two different values of as in 

order to calculate the matrix-element QCD correction, IRriLO). The first of these 

values is my best estimate of the true value, as :::: 0.124. The second value that I use 

is an optimized effective value, of 1, that I determine by minimizing the differences 

between IRriLO) and of IR~~t) for each value of aiso· These values then approximately 

incorporate the effect of missing higher orders in my calculation. The effective values 

that I obtain with this method are: 

0.040 aiso = 10° 

otff = 
0.068 aiso = 15° 

s 

0.098 aiso = 20° 

0.122 aiso = 25° 

A large difference between the effective and true values indicates that higher-order 

corrections are important. Thus, I conclude that the effect of the higher-order QCD 

corrections that I do not calculate is important for G'.iso = 10°, but can be neglected, 

to a good approximation, for aiso = 25°. In Figure 7.17, I show the difference between 

the NLO and LLA corrections that I obtain with aiso = 10° and 25°, using the effective 
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Figure 7.16: Comparison of the QCD corrections to isolated FSR produc
tion calculated using a parton-shower program ( solid line) and an 0( a 5 a) 
matrix-element calculation ( dashed and dotted lines). The dashed lines are 
calculated using a fixed value of the strong coupling, a 5 = 0.124. The dotted 
lines are calculated using a value of a 5 that best matches the parton-shower 
result for each value of the isolation cut, O'.iso· 
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o:5 for the NLO calculation. These differences reveal that for a given isolation cut, 

the missing higher-order corrections are most important at high photon energies. I 

estimate that for photon energies between 8 GeV and 32 GeV and using an isolation 

cut of O:iso = 25° (10°), the error in my NLO calculation due to missing higher-order 

corrections is approximately 5% (25%). 

10 

CX.iso = 1 Oo 

CX.iso = 250 

15 20 25 

-----~ 
I 

30 35 40 
Photon Energy, E

1 
(GeV) 

Figure 7 .17: Estimated systematic uncertainty in the NLO QCD corrections 
that I calculate due to missing higher-order contributions. The solid ( dashed) 
line shows the relative error, ~JR~~iLo) /JR~~iLo), that I calculate with O:iso = 
10° (25°) where LllR( N_LO) = I (JR(N_Lo) - JR(L~A) I and I calculate JR(N_LO) using 

' q,i q ,i q ,i q ,i 

Cts = o:~ff. 

7.3 Non-Perturbative Processes 

In the previous section, I have described how I calculate the energy distribution of 

isolated FSR. using perturbation theory. In this section, I first outline a theoretical 

framework for extending this calculation to include non-perturbative effects , and then, 

I estimate the size of these effects using phenomenological models. 
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According to the factorization theorem, perturbative and non-perturbative effects 

can be calculated separately and then combined with a convolution to obtain a phys

ical cross section. For the energy distribution of isolated FSR, this factorization is 

given by 

da 

dE-y 

where D-y/p is the fragmentation .function that describes the non-perturbative pro

duction of an isolated photon from a parton, p, with a fraction z of p's energy, 

and dCJ / dE-y is the perturbatively-calculated cross section for producing an isolated 

parton p with an energy of EP. The separation between the perturbative and non

perturbative contributions in this framework is parameterized by a factorization scale, 

µ f. Since this separation is not precisely defined, the choice of the factorization scale 

is arbitrary and this arbitrariness introduces an uncertainty into an approximate cal

culation. However, in an ideal complete calculation that made no approximations, 

the scale-dependencies of the individual contributions would cancel, and the resulting 

physical cross section would be independent of µ f. 

In the factorization, above, the photon isolation requirement is implemented sep

arately in the calculations of the perturbative and non-perturbative contributions. 

Therefore, using this factorization implies that when a parton, p, ( which is either a 

photon itself or else fragments into one) is isolated with respect to the other partons 

in the event, then the only hadrons which might destroy this isolation are those that 

are produced from p itself. This condition is not strictly satisfied, however, since 

hadrons that are produced by the fragmentation of other partons can also appear in 

the isolation cone of p, but I expect that this is a small effect for the range of isolation 

cone sizes that I study experimentally. 

The energy distribution that I calculated with perturbation theory in Section 7.2 

can be recovered from the factorized expression that I give above by defining the 
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fragmentation functions to be 

D,;,(z) = c5(1 - z) and, for p # ,, D,;p(z) = 0 . 

Therefore, non-perturbative effects (within the theoretical framework that I describe 

here) are due to the differences between these trivial fragmentation functions and 

the actual fragmentation functions. The actual fragmentation functions cannot be 

calculated with presently available techniques, and so require experimental input in 

order to be determined. Since this experimental input is not currently available, the 

theoretical framework that I have outlined here does not yield quantitative predictions 

of the non-perturbative contributions to my calculation. Therefore, I now turn to 

phenomenological fragmentation models. 

7.3.1 Fragmentation Models 

Although the present theoretical understanding of non-perturbative phenomena does 

not yield quantitative predictions, several phenomenological models of the fragmen

tation process have been developed that do. These models do not provide much 

insight into the theoretical aspects of hadronization but they are able to reproduce 

experimental results with relatively few parameters(98]. 

In order to estimate the non-perturbative contributions to my matrix-element 

calculation, I use the LUND string-fragmentation model[62, 63] and the HERvVIG 

cluster-fragmentation model(64, 65]. I express the effect of non-perturbative contri

butions as a correction factor, Hi, that I apply to my perturbative calculation 

m> · = [ffi.(Lo) + R<N_LO) + O(ci a)] x H· 
.u.'>q,z q,i q,i s i · 

13 has compared the distributions of global event shape variables, measured in 

hadronic Z decays, with the predictions of several different combinations of a pertur

bative calculation with a fragmentation model[98). For each of these combinations, 

we determined optimized values of the model parameters. In Table 7.1, I summarize 
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the optimized fragmentation-model parameters that we obtained for the combination 

of the JETSET O(a; ) matrix-element model with the string-fragmentation model (I 

refer to this as the LUND+ME combination) , and for the combination of the HER

WIG parton-shower model with the cluster-fragmentation model (I refer to this as 

the CLUS+PS combination). Two string-fragmentation model parameters, which I 

refer to as a q and b, were used to tune the predictions of the LUND+ ME combina

tion in order to best describe experimental results. The first parameter, aq , is the 

width of the Gaussian transverse-momentum distribution for primary hadrons. The 

parameters, a and b, describe the distribution of longitudinal momenta for primary 

hadrons according to the Lund symmetric fragmentation function 

!( ) (1 - z )a [ b(p} + m 2
)] 

z ex --- exp ----- . 
z z 

(The value of a was held fixed at 0.5 during the tuning process.) The CL US+ PS 

combination was tuned using only one fragmentation-model parameter, which I refer 

to as A1max. This parameter determines the maximum allowed mass of a cluster that 

is made from two quarks whose combined mass is A112 , according to the constraint 

A1Jzus < A{/rwx + Aff 2 · 

Model Model Default Tuned 
Combination Parameter Value Value 
LUND+ME aq 0.35 Ge\! 0.50 GeV 

b 0.90 Gev-2 0.42 Gev- 2 

CLUS+PS Afmax 3.35 3.00 

Table 7.1: Optimized values of parameters for the string- and cluster
fragmentation models, which were determined by tuning different combina
tions of a perturbative model (ME or PS) and a non-perturbative model 
(LUND or CLUS) in order to best describe the distributions of global 
hadronic event shapes. 

The LUND+ ME and CL US+ PS combinations involve significantly different per

turbative final states. With the LUND+ME combination, the string-fragmentation 
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model is applied to a final state containing at most four particles. With the CL US+ PS 

combination, the cluster-fragmentation model is applied to a final state that consists 

of 10-20 particles. For this reason, I expect that the string-fragmentation model, 

with the LUND+ ME tuned parameters, is the the most appropriate for calculating 

the non-perturbative corrections to my calculation, which - like the JETSET ME 

model - involves final states of at most four particles. I also calculate these correc

tions using the cluster-fragmentation model, with the CLUS+PS tuned parameters. 

I take the difference between the corrections that I obtain with these two models as 

an estimate of sensitivity of my corrections to the details of a particular model. 

My method for calculating the hadronization corrections, Hi, is to randomly gen

erate FSR events according to the 0( a) matrix element, and then apply one of the 

fragmentation models that I have described. First, I generate events in which the 

photon has an energy between 8 GeV and 44 GeV and is isolated from the quark and 

anti-quark by at least 5°. (I use a minimum isolation of 5°, rather than my usual 

10°, in order to account for events that are more isolated after hadronization than 

before.) Next, I apply a fragmentation model that converts the quark and anti-quark 

into hadrons. Finally, I calculate the energy distributions of those photons which 

are isolated with respect to the hadrons in the event, obtaining binned rates which I 

refer to as IR~~{oi. I define the binned hadronization correction as the ratio between 

the hadron-level energy distribution that I obtain and the lowest-order energy dis

tribution that I calculate with the same matrix element as I used to generate my 

events 

In Figure 7.18, I compare the corrections that I obtain using the string- and cluster

fragmentation models. The corrections are large; however, there is good agreement 

between the two models. Since these models are based on significantly different theo

retical assumptions and use parameters that are tuned for very different perturbative 

final states, I consider that my estimated corrections are reliable. 
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Figure 7.18: Hadronization corrections, Hi, to the energy distribution of 
isolated FSR. The corrections were obtained with the string-fragmentation 
model (solid histogram) using LUND+ME tuned parameters, and with the 
cluster-fragmentation model ( dashed histogram) using CLUS+ PS tuned pa
rameters. 
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7.4 Summary and Discussion of Uncertainties 

In this chapter, I have described how I treat the production of isolated FSR theo

retically, in terms of three independent phases: an electroweak phase, a perturbative 

phase, and a non-perturbative phase. My goal has been to calculate the binned en

ergy distributions, R, that I will compare with my experimental results in the next 

chapter. 

In Section 7.1, I argued that, to a good approximation, my calculation can be 

separated into an electroweak factor that depends on the quark couplings and a second 

factor that describes the evolution of a primary qq pair. In Section 7.2, I described two 

complementary methods for calculating how a primary qq pair evolves in perturbation 

theory. I argued that the matrix-element method is the more appropriate of these 

two methods for my calculation, and in Section 7.2.1, I described the matrix-element 

calculation that I have performed including terms up to O(o5 o) and quark-mass 

effects. In Section 7.3, I first described a theoretical framework for including non

perturbative effects in my calculation, and then I calculated the size of these effects 

using two fragmentation models. 

The final form of the binned energy distributions that I calculate, and which I will 

use in the next chapter to compare with my experimental results, is 

where I define the quark-coupling factor 

C _ = (2 - m} (Alf) )c\Q/ + (3 - !:lpb - m~ (Ai) )c\1Q/ 
qq-r - 2c\1 + (3 - .6.pb)cd 

In Figure 7.19, I show these distributions for different isolation cuts , which I calculate 

using values of Cqq,y that I obtain in the framework of the Standard Model (see Section 

8.1.2). For comparison, I also show the different approximations to~ that I calculate 

by first setting Hi to one (which gives the O(o5 o) approximation) and then, also 

setting o 5 to zero (which gives the O(cr) approximation). In Figure 7.20, I show my 
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predictions for the total rate of isolated FSR 

i=l 

together with the same two approximations for comparison. 

The main theoretical uncertainties in the FSR energy distributions that I calculate 

are from 

• my estimate of quark-mass effects , which is unreliable for small isolation cuts, 

• the uncertainty in the value of o:5 that I use to calculate ~NLO), 

• the effect of missing higher-order contributions in perturbation theory, which 

are 0(µ 2o:5 a) and O(a~a), 

and, 

• my estimate of the non-perturbative corrections, Hi , which I calculate with a 

phenomenological model. 

The first of these uncertainties is difficult to quantify, but can be avoided by using 

an isolation cut of at least 20° (see Section 7.2.1.3). For smaller isolation cuts, the 

value of the b-quark correction: rn~ (Al) , can be truncated to avoid introducing a 

large unphysical effect ( this is the approach that I use in Section 8.1.2). The second 

and third uncertainties are related since, to some extent, an adjustment of the value 

of o:5 that I use can compensate for the effect of missing higher orders (see Section 

7.2.1.4). Therefore, I estimate the uncertainty due to both of these effects by varying 

the value of a 5 . The range of o:5 values that I consider is between 

where a !ff is the optimized effective value that I determined in Section 7.2.2.1 , and 

~a:5 = 0.018 is twice the error on the value, a 5 = 0.124, that is quoted in Reference 
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[93]. I estimate the uncertainty due to the factors, Hi, that I apply, by using two 

different models to calculate these factors (see Section 7.3). For my best estimate of 

Hi, I use the values that I obtain with the LUND+ME model, 

H . = H~UND+l\1E 
z - z • 

I assign a theoretical uncertainty on this estimate equal to half of the difference 

between the LUND+ME and CLUS+PS corrections 

The uncertainties that I calculate by varying a 5 and the hadronization corrections 

are indicated by the size of the bands that I show in Figures 7.19 and 7.20. 
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Figure 7.19: Energy distributions of isolated FSR calculated using different 
theoretical approximations. The matrix-element perturbative predictions are 
shown as a solid histogram (lowest order) and a hatched region ( next-to
lowest order). The size of the hatched region is the theoretical uncertainty 
that I estimate by varying o:5 . The final prediction, which includes non
perturbative effects, is shown as a shaded region . The size of this shaded 
region is the theoretical uncertainty that I estimate by varying a 5 and by us
ing different fragmentation models. These results were obtained using values 
of the quark couplings that I calculate in the Standard Model (see Section 
8.1). 
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Figure 7.20: Rates of isolated FSR with energies between 8 GeV and 44 GeV, 
as a function of the isolation cut, calculated using different theoretical ap
proximations. The matrix-element perturbative predictions are shown as a 
solid curve (lowest order) and a hatched region (next-to-lowest order). The 
size of the hatched region is the theoretical uncertainty that I estimate by 
varying a 5 . The final prediction, which includes non-perturbative effects, is 
shown as a shaded region. The size of this shaded region is the theoretical 
uncertainty that I estimate by varying a 5 and by using different fragmenta
tion models. These results were obtained using values of the quark couplings 
that I calculate in the Standard Model ( see Section 8.1). 
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CHAPTER 8 

RESULTS 

In this chapter, I measure the couplings of up-type and down-type quarks to the Z 

boson and to the photon. I do so by combining two independent constraints on these 

couplings. A measurement of the inclusive rate of hadronic Z decays1 (see Figure 

8 .1 (a)) constrains the combination 

A measurement of the fraction of hadronic Z decays that are accompanied by final

state radiation ( see Figure 8.1 (b)), constrains the combination 

In this chapter, I first review the 13 measurement of the Z lineshape parameters, 

and derive the relationship between Cqq and these parameters. Next, I compare my 

experimental results from Chapter 6 with my theoretical predictions from Chapter 7, 

and thus measure Cqq--y- Finally, I combine the two constraints on the quark couplings, 

using two alternative sets of assumptions, in order to determine their values. The 

method that I use to obtain the quark-Z couplings was first proposed in Reference 

[99]. 

1 Inclusive hadronic Z decays include those decays that accompanied by a photon, but this FSR 
contribution is negligible since it is suppressed by a factor of n/ (21r) ~ 0.1 %. 
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Figure 8.1: Diagrams for the two Z decay processes that I use to constrain the 
quark couplings to the Z boson and the photon: inclusive decays into quarks 
(a) , and exclusive decays into quarks that are accompanied by a radiated 
photon (b). 

8.1 Lineshape Constraints 

193 

In this section, I derive constraints on the quark couplings from cross sections and 

asymmetries measured at the Z peak (I refer to these as lineshape measurements). 

First, I review the five-parameter fit that L3 has performed to its lineshape data. 

Then, I calculate the constraint Cqq on the couplings using the results of this fit. 

Finally, I calculate the Standard Model values of the couplings, cu and cd , and of 

the constraint, Cqq, , in order to compare with the results that I obtain later in this 

chapter. 

8.1.1 Lineshape Fit 

L3 has measured the leptonic and hadronic cross sections and the leptonic forward

backward charge asymmetries at the Z peak, using 117.8 pb- 1 of data collected during 

1990-94 [58]. In order to extract the electroweak parameters of Z decay, we perform a 

fit of this lineshape data to a model , ZFITTER[l9], that assumes lepton universality 

but otherwise makes a minimum of assumptions about the underlying theory. The 
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five parameters of this fit are chosen to be as uncorrelated as possible. They are the 

Z mass and total width, m 2 and r z, the Born-level peak hadronic cross section, 

127r f ffhacl 
CThad = -2 -f2 ' 

mz z 

the ratio of the hadronic to the leptonic partial widths, Re = f 11ac1/f t, and the leptonic 

forward-backward charge asymmetry at s = m~, AtB" The results of the fit are[58] 

mz = 91.1936 ± 0.0036 GeV , r z = 2.5022 ± 0.0054 GeV , 

CThad = 41.483 ± 0.108 nb , Re = 20.812 ± 0.076 , A~8 = 0.0186 ± 0.0030 , 

and the correlations between these parameters2 are given in Table 8.1. In Figure 8.2, I 

shmv our measured hadronic cross sections at different center-of-mass energies. I also 

superimpose the resonance curve that ZFITTER predicts using the fitted parameter 

values. There is good agreement between our lineshape measurements and the fit. 

fz CThad Re 4e 
~ FB 

Tnz +.053 -.068 -.019 +.086 
fz -.317 -.038 +.000 
CThad +.148 +.004 
Re -.008 

Table 8.1: Matrix of the correlation coefficients between the five parameters 
used in the lineshape fit to the hadronic and leptonic cross sections and the 
leptonic asymmetries. 

8.1.2 Derived Parameters 

In the Improved Born Approximation (see Section 2.1.1.1), the partial width for a Z 

to decay into hadrons is related to the the effective quark electroweak couplings, c\ 

and cc1, by 

2 All of the errors that I quote on quantities that are derived from lineshape parameters take 
account of these correlations. 
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Figure 8.2: L3's measured cross sections at different center-of-mass energies 
for the reaction e+e- ~ Z -+ hadrons (data points) and the fitted model 
( solid curve) generated by ZFITTER. The lower part of the figure shows the 
ratios between the measured and fitted values on an expanded scale. 
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where Ne= 3 is the number of colors in QCD, and GF::: 1.166392 x 10-5 GeV- 2 [73] 

is the Fermi constant. The term bqco incorporates QCD final-state corrections, and 

has been calculated[lO0] using a series expansion in the strong coupling, a 5 , to be 

I substitute the value of a 5 that we obtained from fits to global event-shape distri

butions measured in hadronic Z decays3, a 5 = 0.124 ± 0.009[93], and obtain 

bqco = ( 4.34 ± 0.30) % . 
3 I use the value of as obtained from hadronic event shapes, rather than the value a s = 0.127 ± 

0.008 that is obtained from the hadronic width of the Z [58], since this first value is uncorrelated 
with the lineshape-fit parameters that I am using. 
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The parameter ~Pb incorporates bb vertex corrections that involve a heavy top quark 

(see Section 7.1), and is approximately 1.35% for a top quark mass of 180 GeV [87, 88). 

A measurement of r1iac1 constrains the values of the quark couplings to the Z boson, 

c\ and Cc1. I express this constraint as 

and calculate its value using 

C _ = rhad 241rJ2° 1 
qq - . 

m~ NcG F l + bQcD 

The hadronic partial width is not one of the five parameters of our lineshape fit, but 

it is related to these parameters by 

f = ( O"hadRe) 
112 

f zmz 
h~ 121r he 

Thus, the coupling constraint, Cqq, can be expressed in terms of the lineshape fit 

parameters as 

C 
__ _!i (961rcrhactRe) 112 

qq -
m~ NcG F(l + 8Qco)hc · 

I substitute the fitted parameter values into this expression, and obtain 

Cqq = 6.886 ± 0.020 . 

In the Standard Model, the couplings of quarks and leptons to the Z boson are 

related to the two universal parameters, sin2 01,v and Peff, according to 

In the following, when I refer to a result as being obtained within the framework of 

the Standard :Model - I use the superscript (S1\1) to denote such results - I am 

assuming that this relationship holds, and that the quark charges are Qu = +2/3 and 

Qc1 = -1/3. As an example, the constraint that I obtained above was not obtained 

within the framework of the Standard Model. 
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The effective electroweak mixing angle, sin2 Bw, and the effective ratio of the 

neutral to charged weak current couplings, Peff, are related to the lineshape parameters 

by 
1/2 

sin27J. = ~ _ ! . (3-2A~ 8 - ✓9-12A~8 ) 
i1, 4 4 2 .4e ' 

~ FB 

and 
- (3 + ✓9 - 12A~B)r z (87rO-had) 1/2 

Peff - t:. G 2 . 
nc Fmz 3Re 

I substitute the fitted values of the lineshape parameters into these expressions, and 

obtain4 

. 2-
sm 0w = 0.2302 ± 0.0016 and Peff = 1.007 ± 0.003 . 

In Table 8.2, I give the correlations that I calculate between the three parameters: 

sin2 Bw, Peff, and Cqq· If I assume the framework of the Standard Model, then, using 

the values of sin2 Bw and Peff that I obtained above, I calculate 

c}sMJ = 1.1574 ± 0.0039 and cd (SM) = 1.4911 ± 0.0044 . 

+.006 
Peff 

+.149 
+.345 

Table 8.2: Matrix of correlation coefficients between three parameters that I 
derive from the five-parameter lineshape fit. 

In Section 8.2, I place a second constraint on the quark couplings which I refer to 

as Cqq,,- This constraint is expressed in terms of the couplings as 

C _ = (2 - m,; (J\!I) )cuQ/ + (3 - 6.pb - m~ (A1) )cdQ/ 
qq')' 2cu + (3 - ~Pb)cd ' 

4The values that I obtain here are not exactly the same as those given in Reference [58], sin2 Bw = 
0.2302 ± 0.0016 and Peff = 1.005 ± 0.003, since the measurements of the tau polarization and the 
forward-backward asymmetry in bb events were also taken into account there. 
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where rnc and mb are the c- and b-quark masses, respectively, and (l\I) is the mass 

correction that I calculated in Section 7.2.1.3. I will measure the value of Cqq'Y by 

comparing my experimental results on isolated FSR with my theoretical predictions, 

not assuming the framework of the Standard Model in doing so. For comparison 

with this result, I now calculate Cqq"f within the framework of the Standard Model. I 

use the central values of the estimated quark masses that are given in Reference[73), 

which are me = 1.3 GeV and mb = 4.3 GeV. Finally, I obtain5 

0.2187 O:'.iso = 100 

0.2200 O:'.iso = 150 
c(~M) = 

QQ'Y 
0.2211 O:'.iso = 200 

0.2222 O:'.iso = 25° 

The errors in these values are negligible since most of the error in the numerator and 

denominator of the expression for Cqq"f is correlated and thus cancels in their ratio. 

8.2 Comparison of Data with Theory 

In this section, I compare the isolated FSR energy distributions that I measured in 

Chapter 6 with the predictions for these distributions that I calculated in Chapter 

7. First, I perform this comparison using the values of the quark couplings that 

I calculate within the framework of the Standard Model. Then, I consider these 

couplings to be free parameters and I use fits to measure the constraint, Cqq"f, on 

their values. 
5 Since the b-quark mass correction that I calculate is not reliable for O'.iso ;S 20°, I truncate the 

value of m~ (Af) at a maximum value of 15%. This procedure increases the value of C~~;> that I 
calculate with O'.iso = 10° (15°) by 2.5% (-0.5%). 
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8.2.1 Standard Model Comparison 

In this section, I compare my experimental results with the theoretical predictions 

that I calculate within the framework of the Standard Model. I calculate these 

predictions using my 0( a 5 a) matrix-element calculation that also includes non

perturbative corrections. For completeness, I also compare with the predictions of 

the JETSET[62, 63] and HERvVIG[64, 65] Monte Carlo programs, which both com

bine a parton-shower model with a fragmentation model, although I do not consider 

that these programs are appropriate for describing FSR. 

I refer to the rate of isolated FSR that I measure in an energy bin, i, as Ri 

(see Section 6.3). I express my matrix-element prediction of this rate, within the 

framework of the Standard Model, as 

where ~Lo) and ~NLO) are the O(a) and O(a5 a) contributions that I calculate 

(see Section 7.2), and Hi incorporates non-perturbative corrections (see Section 7.3). 

I estimate the theoretical uncertainty in this prediction by varying the value of a 5 

that I use to calculate ~NLo) and by comparing different methods for estimating the 

correction factors, Hi (see Section 7.3.1). 

Figure 8.3 shows the comparison of my measured FSR energy distributions with 

the matrix-element and Monte Carlo predictions. Figure 8.4 shows the same compar

ison for the total rate of isolated FSR with energies between 8 GeV and 44 GeV, as 

a function of the isolation cut. There is good overall agreement between my experi

mental results and my Standard Model matrix-element predictions. This agreement 

appears slightly worse with an isolation cut of O:'iso = 10°, although this discrepancy 

may be due to heavy-quark mass corrections which I can not calculate reliably at O:'iso 

= 10°, and which are not included in my theoretical error estimate. The JETSET and 

HERvVIG Monte Carlo programs both predict a lower rate of isolated FSR than I ob

serve. More significantly, there is a large discrepancy between the predictions of these 
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two programs. I attribute this disagreement to the fact that the leading-logarithm 

approximation, which both programs use for their perturbative calculations, is not 

appropriate for describing isolated FSR production. 

8.2.2 Fitted Comparisons 

In this section, I do not assume the framework of the Standard Model, so that the 

values of the quark couplings are unconstrained. With this approach, Cqq, and a 5 

become free parameters of my matrix-element prediction, 

which I can determine using a fit to my measured distributions, Ri. I perform two 

types of fits: first, I allow both Cqq, and a 5 to vary freely, and then, I constrain a 5 

and allow only Cqq, to vary. The two-parameter fit allows me to test the consistency 

of the QCD corrections that I calculate. The one-parameter fit provides the best 

measurement of Cqq--y. 

I define a chi-square function for fitting my predictions, ~, to my experimental 

results, Ri, as 

where 8Ri are the statistical errors of my data analysis (see Section 6.3). For the 

two-parameter fit, I simultaneously minimize this chi-square with respect to Cqq--y and 

a 5 . For the one-parameter fit, I minimize the chi-square with respect to Cqq--y only, 

holding a 5 fixed. I define the fitted parameter values as the location of these minima 

2 (C(FIT) ) _ 2 or X qq, , as = Xmin , 

and study the statistical errors in these fitted values using contours of constant chi

square[73] 
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Figure 8.3: Comparison of my measured isolated FSR energy distributions 
with the predictions of different theoretical models. The measured distribu
tions are shown as data points with statistical errors. My matrix-element 
prediction is shown as a shaded region whose size indicates the estimated 
theoretical uncertainty. The HERWIG and JETSET predictions are shown 
as dashed and dotted histograms, respectively. 
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The energy distribution that I measure for each isolation cut has nine bins. There

fore , the one- and two-parameter fits that I perform to each distribution have eight 

and seven degrees of freedom , respectively. The distributions that I measure using 

different isolation cuts are correlated and as a result , so are the fitted parameters that 

I obtain from them. 

8.2.2.1 Two-Parameter Fits 

In this section, I describe the fits that I perform using two free parameters: Cqq,, 

and a 5 • The first of these parameters influences the normalization of the predicted 

energy distribution but not its shape. The second parameter influences both its 

normalization and its shape. The results of these fits , using different isolation cuts, 

are summarized in Table 8.3. Figure 8.5 shows a comparison of my measured energy 

distributions with the predictions that I calculate using the fitted parameters. Figure 

8.6 shows the contours of the 68% and 90% statistical-error regions in Cqq,, and a 5 • 

aiso 
c(~IT) 

991 
(X(FIT) 

s X~in/DF 
100 0.294 0.253 16.7 /7 
15° 0.279 0.285 16.2/7 
20° 0.281 0.293 9.6/7 
25° 0.216 0.123 13.7 /7 

Table 8.3: Results of two-parameter fits to the energy distributions of isolated 
FSR with different isolation cuts. Note that my chi-square only includes 
statistical errors and so does not measure the overall goodness of the fits. 

The fitted energy distributions are in good agreement with my measurements, 

within the statistical errors of my data analysis. The fitted parameter values that 

I obtain using different isolation cuts are consistent with each other, within statis

tical uncertainties, except for aiso = 10°. This consistency check indicates that my 

calculation correctly predicts the evolution of the FSR energy distribution between 

25° and 15°, but becomes less reliable at smaller isolation cuts. The fitted parameter 
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Figure 8.5: Comparison of my measured isolated FSR energy distributions 
( data points showing statistical errors) with the predictions that I calculate 
using fitted parameter values. The solid and dashed histograms are calculated 
using the two- and one-parameter fit results, respectively. 
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fitted values of the parameters are shown with a filled circle. The Standard 
Model values of the parameters are shown with an asterisk. Note the different 
scales used for each plot. 
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values are only consistent with the Standard Model ( within statistical uncertainties) 

for Ctiso = 25°. The discrepancy at lower Ctiso indicates a systematic problem with 

the two-parameter model that I am using rather than an incompatibility between the 

measurements and the Standard Model. In particular, in order to perform the fit 

with a 5 a free parameter, I assume that with an appropriate choice of this parame

ter, my 0( a 5 a) calculation correctly describes the QCD corrections to the energy 

distribution. However, this assumption is only valid if the higher-order corrections 

that I do not calculate are negligible. In Section 7.2.2.1, I compared two methods for 

estimating QCD corrections: the 0( a 5 a) matrix element and a leading-logarithm 

approximation. I concluded that higher-order QCD corrections are important with 

a 10° isolation cut, but can, to a good approximation, be neglected with a 25° cut. 

This conclusion is reinforced by the good agreement between the fitted and Standard 

Model values of Cqq,, and a 5 with aiso = 25°. In Section 7.2.2.1, I also concluded 

that the QCD corrections that I calculate are less reliable at high energies. I have 

repeated my two-parameter fits using only energy bins between 8 GeV and 30 GeV. 

The parameter values that I obtain from these restricted fits are in better agreement 

with the Standard Model. 

The statistical-error regions that I show in Figure 8.6 span large intervals of Cqq,, 

and a 5 because there is a strong positive correlation between the effects of these 

parameters: an increase in Cqq,, can be compensated by an increase in a 5 • Because 

of this correlation, a fit that makes no a priori assumptions about the value of a 5 

yields a large uncertainty in the value of Cqq,,. Therefore, in order to measure Cqq,, as 

accurately as possible, I now turn to a one-parameter fit in which I use the value of 

a 5 determined by other measurements. 

8.2.2.2 One-Parameter Fits 

In this section, I describe the fits that I perform by allowing the quark coupling fac

tor Cqq, to vary, but fixing the value of the strong coupling, a 5 • To obtain my best 
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estimate of the value of Cqq--y, I fit using as = 0.124[93]. In addition to the statistical 

errors on Cqq--y that I calculate from the chi-square, I estimate experimental and the

oretical systematic uncertainties. I estimate the experimental systematic errors by 

repeating the fit using the two limit distributions that I measure, Rt and R;, instead 

of the central-value distribution,~' and by changing the shower-shape cut that I use 

to select photon candidates (see Section 6.3). I estimate the theoretical systematic 

errors by varying the value of as and the hadronization corrections, Hi, that I use 

in my calculation. The extreme values of as that I use are a~in and a~ax which I 

defined in Section 7.4. The extreme sets of hadronization corrections that I use are 

Hi + ~Hi and Hi - ~Hi, where ~Hi is the theoretical uncertainty that I defined 

in Section 7.4. The results of my one-parameter fits are summarized in Table 8.4. 

Figure 8.5 shows a comparison of my measured energy distributions with the fitted 

energy distributions. 

The largest systematic errors that I calculate are due to the uncertainties of my 

calculation. I combine the variations that I observe by changing as or the corrections, 

Hi, into a single asymmetric theoretical error by taking the maximum deviation for 

both of these effects, separately for the upper and lower errors. With an isolation cut 

of aiso = 10°, the uncertainty due to missing higher-order QCD corrections dominates; 

with aiso = 25°, the uncertainty due to the non-perturbative corrections dominates. 

I calculate a symmetric experimental systematic error by adding in quadrature the 

average variations that I observe by replacing Ri with either Rt or R;, and by 

changing my shower-shape cut. Finally, I obtain 

0.249 ± 0.005 ± 0.012 ~ ~:~~l aiso = 10° 

0.222 ± 0.005 ± 0.008 ~ ~:~~~ Oiso = 15° 

0.217 ± 0.005 ± 0.008 ~ ~:~~~ aiso = 20° 

0.217 ± 0.005 ± 0.008 ~~:~i~ aiso = 25° 

where the errors are statistical and systematic experimental uncertainties and theo-
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Isolation Cut: 100 15° 20° 25° 
Central-value fit 

c(~IT) 
qq')' 0.249 0.222 0.217 0.217 

oc<~IT) 
qq, ±0.005 ±0.005 ±0.005 ±0.005 

X~in/DF 34.6/8 28.3/8 14.8/8 13.7 /8 
Systematic error fits 

Ri ~ Rt +0.007 +0.008 +0.008 +0.007 

Ri ~ R"; -0.006 -0.007 -0.008 -0.007 

p,, > 0.45 -0.011 +0.002 +0.004 +0.003 

no p,, cut +0.010 -0.002 -0.003 -0.005 
a ~ amax s s +0.006 +0.005 +0.006 +0.006 
a ~ amin s s -0.024 -0.015 -0.008 -0.006 

Hi~ Hi - Di.Hi +0.007 +0.012 +0.016 +0.020 

Hi ~ Hi+ .6.Hi -0.006 -0.011 -0.014 -0.017 

Standard Model predictions 
c(~M) 

qq, 0.219 0.220 0.221 0.222 

Table 8.4: Results of one-parameter fits to the energy distributions of isolated 
FSR ·with different isolation cuts. The first section of the table gives the 
fitted values, statistical errors, and minimum chi-squares that I obtain with 
my central-value fit. The next section gives the systematic shifts in the fitted 
values that occur when changing the experimental or theoretical input to the 
fit. The final section repeats the Standard 1\!Iodel values that I calculated in 
Section 8.1.2. 

retical uncertainties, respectively. 
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In order to determine the quark couplings, I would like to use a single value of Cqch 

that represents my best estimate based on the results of my one-parameter fits. The 

results that I obtain using different isolation cuts are in good agreement with each 

other, within the errors that I assign; however, since the measured distributions with 

different isolation cuts are strongly correlated, so are the fit results. Therefore, there is 

little advantage to combining the results that I obtain with different isolation cuts, and 

so instead, I choose the results for a single isolation cut. The factors that I consider in 
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making this choice are the minimum chi-square values and theoretical uncertainties 

for different isolation cuts. I define my chi-square using statistical errors only, so 

its minimum value measures the goodness of fit within statistical uncertainties. The 

minimum values that I obtain are considerably larger for aiso = 10° and 15° than for 

aiso = 20° and 25°. This trend indicates that systematic effects are more important 

for smaller isolation cuts , and so, based on the minimum chi-square values, I prefer 

to use Ctiso = 20° or 25°. Of these two, I choose aiso = 20° because it has the smaller 

theoretical uncertainty. l'v1y best estimate of Cqq, is therefore 

Cqq, = 0.217 ± 0.005 ± 0.008 ± 0.015 , 

where the errors are statistical and systematic experimental uncertainties and theo

retical uncertainties , respectively, and I use a symmetric error to describe the average 

theoretical uncertainty. 

8.3 Determination of Quark Coupling Constants 

In the previous sections, I have determined the values of two constraints, Cqq and Cqq,, 

on the quark couplings to the Z boson and the photon. In this section, I describe 

how I combine these constraints under different assumptions in order to determine 

the values of these couplings. 

In Section 8.1.2, I derived the value 

Cqq = 6.886 ± 0.020 

from the L3 lineshape-fit parameters. This result constrains the quark-Z couplings, 

c0 and cd , according to 

Cqq = Nu · Cu + Nd · Cc1 • 

The coefficients Nu = 2 and Nd = 3 - .6.pb count the number of up- and down-type 

quarks that are kinematically accessible at ft '.::::'. 91 GeV ( .6.pb '.::::'. 1.3% incorporates 

top-quark corrections to bb production). 
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In Section 8.2.2.2, I measured the value (with errors combined in quadrature) 

Cqq,, = 0.217 ± 0.018 , 

by fitting my measured FSR energy distribution with Oiso = 20° to my theoretical 

prediction for this distribution. This result constrains the quark couplings to the Z 

boson, cu and cd, and the photon, Q/ and Q/, according to 

The coefficients :Fu and :Fd are similar to Nu and Nd, but include the additional 

suppression factors for c and b quarks that I calculated in Section 7.2.1.3. They are 

given by 

The two constraints, Cqq and Cqq,,, are functions of four parameters: cu, cd, Q u 
2

, and 

Q /. Therefore, it is not possible to simultaneously solve for all of these parameters. 

Instead, I make two alternative sets of assumptions in order to first, solve for cu and 

cd, and then, solve for Q} and Q /. 

8.3.1 Quark Couplings to the Z Boson 

In order to determine the quark couplings, cu and cd, I assume the Standard Model 

quark charges, 

Qu = +2/3 and Qd = -1/3, 

but I do not make any assumptions about the relationship between cu and cd and the 

parameters sin2 0w and Peff · I express the constraints on cu and cd that I use as 

where I define 
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and 

In Figure 8. 7, I show the 68% confidence-level contours in c\ and cd that correspond 

to each of these constraints. 
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Figure 8. 7: Constraints on the effective couplings of up- and down-type 
quarks to the Z boson, cu and cd, obtained from the relative rate of isolated 
and energetic FSR in hadronic Z decays ( shaded region), and from lineshape 
fits (outlined region). The values of cu and cd determined in the framework 
of the Standard Model are shown as an asterisk. 
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Substituting the values of Cqq and Cqq,, into these expressions, I calculate c\ = 1.1095 

and cd = 1.5158. In order to estimate the uncertainties in the couplings, I define a 

combined chi-square for the simultaneous constraints 

where 6.6.qq and 6~qq,, are the errors on the individual constraints that I derive from 

the errors on Cqq and Cqq,,. Figure 8.8 shows the 68% and 90% two-parameter error 

regions that I calculate using contours of x2 (cu, cc1) = .6x2 (X~in is equal to zero 

since the constraints can be solved exactly). I set ~x2 equal to 2.28 and 4.61 for the 

68% and 90% confidence-level contours, respectively. I define the one-parameter error 

bounds on cu (cd) by locating the the minimum and maximum values of cu (cd) on the 

x2 = 1 contour[73]. I find that these errors are, to a good approximation, symmetric. 

Finally, I determine the up- and down-type quark couplings to the Z boson to be 

cu = 1.11 ± 0.17 and cc1 = 1.52 ± 0.11 . 

This is one of the main results of this thesis. These values are consistent with the 

Standard Model values that I calculated above 

c/sM) = 1.1574 ± 0.0039 and c/sM) = 1.4911 ± 0.0044. 

8.3.2 Quark Couplings to the Photon 

In order to determine the quark couplings to the photon, Q} and Q/, I assume that 

their couplings to the Z boson, cu and Cc1 , are given by 

Cq = Peff [ 1 + ( 1 - 4 IQ q I sin 2 0 w ) 
2

] , 

using the Standard Model values of sin2 0..,,.,. and Peff that I calculated above. I express 

the constraints on Q u and Q c1 that I use as 
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Figure 8.8: One- and two-parameter error regions in cu and ed. The two
parameter regions are defined as the areas contained within contours of con
stant chi-square, x2(cu , cd) = ~x2

, with ~x2 = 2.28 (4.61) for the 68% (90%) 
confidence-level errors. The one-parameter errors are defined by the bound
ing box of the x2 = 1 contour. The fitted values of cu and cd are shown with 
a filled circle, and their Standard Model values are shown with an asterisk. 
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where I define 

and 

These constraints do not depend on the signs of the quark charges, and so by com

bining them, I am only able to determine their magnitudes, !Qui and IQ<ll• In Figure 

8.9, I show the 68% confidence-level contours in 3IQul and 3IQ<ll that correspond to 

each of the constraints. I express my results in terms of three times the charge mag

nitudes so that the corresponding Standard Model values are integers: 3IQu I = 2 and 

By solving the simultaneous non-linear equations for the quark charges, above, I 

obtain two solutions: 

or 

The second of these solutions is not compatible with the results of Reference [101] (see 

Section 9.2.3) so I do not consider it further. In order to estimate the uncertainties 

in values that I obtain from the first solution, I define a combined chi-square for the 

simultaneous constraints 
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where X~q(Qu, Qd) and X~q,(Qu, Q<l) are the chi-squares of the individual constraints, 

d 2_ (Q Q ) = [~qq,(Qu, Qd)] 
2 

an Xqq, u' d - 6 ~ -qq, 

and K, '.:::::'. 0.25% is the correlation coefficient between the values of ~qcf and ~qq, that I 

derive from the values given in Table 8.2. I calculate two-parameter error regions and 

one-parameter asymmetric errors using the same methods that I described in Section 

8.3.1. 

Finally, I determine the up- and down-type quark couplings to the photon to be 

This is one of the main results of this thesis. These values are consistent with the 

Standard Model values 
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CHAPTER 9 

SUMMARY AND CONCLUSIONS 

In this chapter, I briefly summarize the main results of this thesis and compare 

them with results from other experiments. I conclude with an outlook on the future 

potential of isolated hard photon studies. 

9.1 Summary of Results 

In Chapter 5, I described a selection of events containing isolated and energetic pho

ton candidates using data recorded between 1991 and 1994 by the L3 detector. In 

Chapter 6, I analyzed these candidates to measure the energy distribution of photons 

radiated by a primary quark, Z --+ qq,. I found that the main irreducible background 

is from decays of neutral hadrons (mostly 1r
0 --+ TY) and that this background is not 

correctly described by Monte Carlo models. I developed a new method of analyz

ing electromagnetic shower shapes to study this background directly using data (see 

Appendix A). 

I measured the total rate of isolated final-state radiation (FSR) with energy be

tween 8 GeV and 44 GeV to be 

BR(Z--+ qq,) 
BR(Z--+ qq) 

5.02 ± O.lO(stat) ± 0.22(syst) x 10-3 aiso = 10° 

3.56 ± 0.08(stat) ± 0.15(syst) x 10-3 aiso = 15° 

2.85 ± 0.07(stat) ± 0.12(syst) x 10-3 aiso = 20° 

2.36 ± 0.06(stat) ± O. lO(syst) x 10-3 aiso = 25° 
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where I define isolation by requiring that the total hadronic energy within a cone of 

half-angle CXiso about the photon direction be less than 100 MeV. 

In Chapter 7, I described how I calculate the energy distributions corresponding to 

those that I measure. In Chapter 8, I compared my experimental results with my the

oretical predictions. I found good agreement between them using the Standard lVIodel 

quark couplings. I performed fits of my prediction to my measured distributions, in 

order to constrain the values of the quark couplings without assuming the framework 

of the Standard Model. I combined this constraint with a second constraint that I 

derived from the Z lineshape in order to solve for the quark couplings. 

By assuming the Standard Model quark charges, I determined the values of the 

quark couplings to the Z boson to be 

c\. = 1.11 ± 0.17 and cd = 1.52 ± 0.11 . 

By assuming the Standard Model relationship between the couplings, c\ and cd, and 

the electroweak parameters, sin2 0w and Peff, I determined the absolute values of the 

quark charges to be 

These results are consistent with the Standard Model. 

9.2 Comparison with Other Results 

9.2.1 Studies of Final-State Radiation at LEP 

The four experiments operating at the LEP accelerator - ALEPH, DELPHI, 13, 

and OPAL - have all studied isolated FSR and published descriptions of their work. 

Below, I briefly describe the most recent results of each experiment and com pare them 

with my results. I express errors as combined statistical and systematic experimental 

uncertainties, respectively. When the quoted errors do not follow this convention, 
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I have calculated them myself based on the information provided in the references. 

Each of the four experiments uses some form of shower-shape analysis in their studies; 

however, these methods depend on the details of the different detectors, so I do not 

discuss them below. In Table 9.1, I summarize the selection cuts and results of the 

most recent LEP analyses, and compare them with those of this thesis. 

ALEPH DELPHI 13 OPAL I Thesis 

Event Sample Analyzed 
Years 1989 - 91 1991 - 93 1990 - 91 1990 - 91 1991 - 94 
Hadr Evts 448K 1484K 324K 353K 2760K 

Photon Candidate Selection Cuts 
Energy (E,) > 5 GeV > 5.5 GeV > 5 GeV > 7.5 GeV > 8 GeV 
Fid Vol (0,) > 18° > 25° > 45° > 44° > 17.5° 
Isol Cone ( O'.iso) 20° 20° 15° 15° 20° 
Isol Energy ( Eiso) 500 MeV 500 Me\! 500 MeV 250 lVIeV 40 Me\! 
Jet Isolation O'.j > 40° Y,,1 > 0.02 O'.j > 20° Y,,1 > 0.06 -

Y,,1 > 0.06 
Selection Statistics 

Photon Cand 569 3147 3202 541 5224 
Cand/103 Had Evt 1.3 2.1 9.9 1.5 1.9 

Hadronic Background 
Fraction 11% 17% 33% 6% 8% 
DATA/MC 1.5 - 2.5 0.8 - 1.6 1.9 1.0 - 2.2 

Errors on Corrected Total Rate 
Statistical 4.9% 3.7% 5.8% 4.9% 2.3% 
Systematic 5.9% 6.7% 7.7% 6.8% 4.3% 
Combined 7.7% 7.7% 9.6% 8.4% 4.9% 

Table 9.1: Summary of the photon candidate event selections and the most 
recent FSR results of the four LEP experiments, compared with those of this 
thesis. The information listed under 13 describes our original study. The 
results listed under OPAL do not include their analysis of 1992 data[102] 
since they do not quote an FSR rate using this data. 

ALEPH[36] have analyzed 448K hadronic Z decays collected between 1989 and 

1991 [103, 104]. They select photon candidates with energies larger than 5 GeV and 

polar angles between 18.2° and 161.8°. They also require that candidates have a 
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transverse energy, E-y · sin 01 , that is larger than 5 GeV. They use an isolation scheme 

similar to that which I described in Section 5.2.3, with aiso = 20° and Eiso = 500 MeV. 

In addition, they require that the candidate be isolated from the reconstructed jets in 

the event (the photon is not included in the reconstruction). The angle between each 

jet and the candidate, aj, must be larger than 40° and the scaled invariant mass of 

each jet together with the candidate, y1 ,j = m;,j/ s, must be larger than some value 

Ycut which they vary between 0.005 and 0.2. ALEPH select 569 photon candidates 

with Ycut = 0.06, and estimate that 6% of these are due to hadronic background. They 

find that the Monte Carlo prediction of this hadronic background underestimates the 

actual rate by a factor of 2.5 (1.5) for energies between 5 GeV and 10 GeV (10 GeV 

and 15 GeV). After applying acceptance and detector corrections, ALEPH measure 

the rate of isolated FSR using their cuts to be[104] 

BR(Z ~ qq,) _3 
BR(Z ~ qq) = 1.56 ± 0.08(stat) ± 0.09(syst) x 10 . 

ALEPH have not quoted results on the quark couplings. 

The DELPHI[37] collaboration have analyzed 1484K hadronic Z decays collected 

between 1991 and 1993[105, 106]. They select photon candidates with energies larger 

than 5.5 GeV and within the fiducial volume, 25° < 01 < 155°. They require that 

the total hadronic energy within a 20° cone about the candidate be less than 500 

MeV. DELPHI select 3147 candidates and estimate that 17% of these are due to 

hadronic background. They also apply a jet isolation requirement, similar to that 

used by ALEPH, of Y,,j > Ycut with Ycut between 0.01 and 0.2. They find that the 

Monte Carlo predictions of this background underestimate the actual rate by a factor 

that varies from 1.6 at 5.5 GeV to 0.75 at 45.5 GeV. After applying acceptance and 

detector corrections, DELPHI determine a constraint on the quark couplings that is 

proportional to the rate of isolated FSR that they measure using Ycut = 0.02(106) 

Seu+ 3cd = 11.71 ± 0.43(stat) ± 0.78(syst) ± 0.56(theor). 
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They combine this constraint with a lineshape constraint , obtaining[106) 

0 91 +o.25 d 1 62 +o.24 
Cu = · - 0.36 an Cd = · - 0.17 · 

In the first L3 study of FSR, we analyzed 320K hadronic Z decays collected be

tween 1990 and 1991[86, 107). (I was involved in this earlier analysis, particularly 

the original determination of the quark couplings[86), but I do not describe it in this 

thesis.) We selected photon candidates with energies larger than 5 GeV and within 

the fiducial volume, 45° < 01 < 135°. vVe required that the hadronic energy within a 

15° cone about the candidate be less than 500 MeV and that candidates be isolated 

from the nearest jet by Oj > 20°. We selected 3202 candidates and estimated that 

33% of these were from hadronic background. We found that Monte Carlo predic

tions underestimate this background by a factor of 1. 9. After applying acceptance 

and detector corrections, we determined the rate of isolated FSR using our cuts to 

be[107) 
BR(Z ~ qq, ) -3 
BR(Z ~ qq) = 5.2 ± 0.3(stat) ± 0.4(syst) x 10 . 

We also determined the quark couplings to the Z boson to be[86) 

cu = 0.92 ± 0.22 and cd = 1.63 ± 0.15 . 

OPAL[39) have analyzed 353K hadronic Z decays collected between 1990 and 

1991 [80, 81, 108, 109). In Reference [102), they extend this analysis to include data 

collected in 1992; however, the results that they give there are in terms of normalized 

distributions and so do not contain information about the rate of isolated FSR or the 

quark couplings. OPAL select photon candidates with energies larger than 8 GeV 

and polar angles between 44° and 136°. They require that a 15° cone about the 

candidate contain no electromagnetic cluster with energy greater than 250 MeV or 

track with transverse momentum greater than 250 JVIeV. They also require isolation 

from jets by y1 ,j > Ycut with Y cut between 0.005 and 0.2. They select 541 candidates 

from the data they collected between 1990 and 1991 and estimate that 6% of these 
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are due to hadronic background. After applying acceptance and detector corrections, 

OPAL determine a constraint on the quark couplings that is proportional to the rate 

of isolated FSR that they measure using Ycut = 0.06(109] 

8cu + 3cd = 12.36 ± 0.6l(stat) ± 0.84(syst) ± 0.29(theor). 

They combine this constraint with a lineshape constraint , obtaining[109] 

Cu = 0.94 ± 0.18 and cd = 1.62 ± 0.12. 

The main differences between the event selections used by earlier studies and the 

selection that I described in Chapter 5 are in the choice of the photon candidate 

isolation scheme. In particular, I have chosen a value of the maximum calorimeter 

energy allowed within the isolation cone, Eiso = 40 MeV, that is lower than was used 

in previous studies, and I do not require isolation with respect to jets. The reason that 

I use a lower value of Eiso is that such a low value can be reliably measured using the 

13 electromagnetic calorimeter and significantly reduces the hadronic background. In 

our original study, we chose a larger value, Eiso = 500 MeV, because the 13 detector 

simulation did not correctly simulate the calorimeter response to low-energy secondary 

particles in hadron showers. This simulation problem has now been corrected. After 

applying my tighter isolation cut, using Eiso = 40 MeV, I find that an additional 

cut on the angle to the nearest jet does not improve the purity of my sample. For 

this reason, and also because jet isolation would require more complicated theoretical 

calculations, I do not require that my photon candidates be isolated with respect to 

jets. 

The measurements of the rate of isolated FSR obtained by different experiments 

and in this thesis cannot be directly compared since they reflect different choices of 

energy and isolation cuts. However , the relative errors on these measurements can be 

compared ( see the bottom of Table 9.1). Both the statistical and systematic experi

mental errors of my measurement are smaller than those of previous measurements. 
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My statistical error is smaller because I have analyzed a larger sample of hadronic Z 

decays. It is difficult to make direct comparisons of the systematic errors reported 

by different experiments. However, the improvement in the systematic error that I 

obtain compared with the original L3 analysis ( 4.3% instead of 7. 7%) is mostly due to 

the ne,v method of shower-shape analysis that I have developed (see Appendix A) . In 

Figure 9.1, I show a comparison of the different measurements of c\ and cd reported 

by DELPHI[106], L3[86], and OPAL[109] with the results that I obtain in this thesis. 

The errors on these couplings include large theoretical uncertainties in addition to the 

experimental uncertainties on the measured FSR rate. The previous measurements 

of cu and cd are individually consistent with the Standard Model. However, there is 

some evidence that they have a common systematic offset that is not present in my 

results. None of the previous studies of final-state radiation at LEP have determined 

the values of the quark charges. 

9.2.2 Measurement of the bb Partial Width 

L3 have measured[ll0] the ratio, Rb , of the partial decay widths of a Z into b hadrons 1 

f(Z -* bb), and into all hadrons, r(Z-* qq), 

Rb= r(Z-* bb) 
f(Z-* qq) 

We select bb events usmg a multidimensional analysis that relies on the general 

properties of these events and therefore does not require a high-momentum lepton 

tag. We have analyzed 238K events recorded during 1991, and obtain[ll0] 

Rb= 0.222 ± 0.003(stat) ± 0.007(syst) . 

The value of Rb can be expressed in terms of the quark couplings to the Z boson, 

using my notation of Section 7 .1, as 
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DELPHI 

L3 0 

0 OPAL 0 

• THESIS • 
SM S M 

0.4 0.6 0.8 1 1.2 1.4 
up-type quark coupling, cu 

1.3 1.4 1.5 1.6 1.7 1.8 1.9 
down-type quark coupling, cd 

Figure 9.1: Comparison of the different measurements of the effective quark 
couplings to the Z boson, c\ and cd , obtained by the LEP experiments and 
in this thesis. The error bars show combined experimental and theoretical 
uncertainties. The vertical dashed lines show the Standard Model values. 

In Figure 9.2, I superimpose this constraint on cu and cd over the 68% confidence 

level contours in cd and cd that I calculated in Section 8.3.1. There is good agreement 

between my results and the 13 measurement of Rb. 

9.2.3 Measurements of Quark Charges 

Many measurements have been performed that constrain the values of the quark 

charges. They are generally in agreement with the Standard Model values. For 

example, the ratio 
a( e+e- ------+ hadrons) 

R=-------
- cr(e+e- ------+ r------+ µ+µ-) 

has been measured as a function of the e+e- center-of-mass energy, vs (for a review, 

see Reference [73]). Although resonance effects are important at a quark threshold, 

vs '.::::'. 4m~ , the value of R in the continuum regions between thresholds is approxi-
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Figure 9. 2: Comparison between the 68 % confidence-level contours of c\ 
and cd that I calculate and the constraint on these parameters from the L3 
measurement of Rb. 

mately given by 

R( vs)~ Ne I:q Q~ , 
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where Ne= 3 is the number of colors in QCD and the sum is over the kinematically 

accessible quarks (mci < /s/2). Therefore, the change in the continuum value of R 

across a threshold measures the absolute value of the charge of the corresponding 

quark. Measurements of R above and below the c-quark and b-quark thresholds 

provide strong experimental evidence that the quark charges are approximately equal 

to their Standard Model values. 

l\1easurements of inelastic neutrino-nucleon reactions provide another example of 

a constraint on the quark charges[lOl, 111- 114]. To a good approximation, the jets 

of hadrons produced in these reactions originate from a single flavor of quark. For 
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example, the dominant process in v N reactions is w- exchange which converts a 

u quark from the nucleon into an outgoing d quark. Therefore, inelastic neutrino

nucleon reactions provide a high-purity sample of hadron jets originating from a single 

quark flavor. A method for estimating the charge of this quark is to first measure 

the net charge of the hadrons in each of these jets, and then to compute the average 

value of these jet charges. An analysis of vn and vp interactions recorded by the 

BEBC bubble chamber determined the value of the average jet charge for a sample 

of d-quark enriched jets to be[IOl] 

(Q) = -0.38 ± 0.09 . 

This value agrees with the Standard Model d-quark charge, Qd = -1/3. 

Although the approximate values of the quark charges are experimentally well 

established, fractional charges are a fundamental prediction of the Standard Model 

and thus deserve to be extensively tested. The measurement of the charges that I 

describe in this thesis is the first such measurement performed at LEP. 

9.3 Outlook 

The shower-shape analysis techniques that I have developed to discriminate between 

overlapping 1r0 ~ 11 decays and single photons have application to many analyses 

that involve energetic photons in hadronic events. These techniques have recently 

been adopted by 13 to search for inclusive charmless radiative b-decays[115) (b ~ 

s,), to study event-shape variables at reduced center-of-mass energies[116), and to 

search for the decays of new scalar bosons into photons[107). A method based on 

my techniques has also been proposed[l 17} for the crystal calorimeter of the CMS 

detector that will operate at the LHC collider. 

The current plan for future LEP operations calls for an upgrade of its center

of-mass energy to above the threshold for w+w- pair production by the end of 
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1996. At these energies, the rate of hadronic Z decays will be negligible. Before 

this upgrade, 13 will record approximately one million additional hadronic events at 

the Z peak, resulting in a final sample of approximately four million events. The 

ultimate reduction in the statistical error that could be achieved using my analysis 

is therefore from the present value of 2.4% to about 2% (assuming a corresponding 

increase in Monte Carlo statistics). Since the contribution of statistical uncertainties 

to the errors on my results is already small, this analysis would not benefit greatly 

from additional data. 

The failure I observe of Monte Carlo models to describe isolated and energetic 

neutral hadron production has implications for the next generation of high-energy 

experiments at the Large Hadron Collider (LHC). In particular, these hadrons are a 

potentially large background to Higgs decay into two photons[l 18]. By extrapolating 

the discrepancies between data and Monte Carlo predictions in e+e- collisions at 91 

GeV, I estimate that the hadronic background to a search for H ~ ,, decays at the 

LHC will be a factor of 1.5-2.5 larger than currently available 1\fonte Carlo models 

predict[l 19). 
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APPENDIX A 

SHOWER-SHAPE ANALYSIS 

In this appendix, I describe the methods that I have developed to analyze the 

patterns of energy deposited in the ECAL by electromagnetically showering parti

cles. I refer to these patterns as shower shapes. A shower-shape analysis consists of 

examining the local response of the electromagnetic calorimeter, and can yield infor

mation about the type of particle ( or particles) responsible for the observed energy 

deposits, as well as about quantities such as the energy and direction of those parti

cle( s). Since this analysis only uses information about the local detector response, it 

is complementary to other methods based on global event characteristics. 

My motivation for developing these methods is the need to discriminate between 

bumps that are due to single and multiple photons. This shower-shape analysis pro

vides an important tool for selecting single photons in hadronic events, with minimal 

contamination from neutral hadrons decaying into overlapping multi-photon states; 

it can also be applied effectively to related problems, such as electron identification. 

I have optimized the analysis for particle classification since the performance of the 

standard parameter estimation techniques, such as the corrected sum-of-9 for energy 

determination and the energy-weighted center-of-gravity for angle determination, is 

sufficient for most purposes. 

In the following sections, I first define the variables that I have chosen to char

acterize a shower, then I describe the development of an artificial neural-network 

discriminator which uses those variables, and finally I discuss the performance of the 

discriminator. In the last section, I summarize the usage of a Fortran package that 
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implements the discriminator. 

A.1 Shower-Shape Variables 

A shower-shape variable is a quantity that is derived from the crystal energies in a 

bump and that is sensitive to the differences between single and overlapping photon 

showers. The electromagnetic shower generated by a single photon is approximately 

axially symmetric about the incident photon's direction, as shown in Figures A.1 ( a, b). 

When the showers from two photons overlap, their combined energy deposit is a 

superposition of the energy deposits of the individual photons, with an offset between 

them as shown in Figures A.l(c ,d). The resulting shower shape is no longer axially 

symmetric and thus it can, in principle, be distinguished from the shower shape of a 

single photon. The general strategy for choosing shower-shape variables is therefore 

to identify quantities that measure the "roundness" of the energy deposits in a bump. 

However, quantifying this roundness can be technically difficult, because the angular 

segmentation of the ECAL is coarse with respect to the characteristic transverse size 

of a shower. As a result, geometric effects can obscure the roundness of the shower 

from a single photon when it is incident near the edge of a crystal (see Figure A.l (b) ). 

Variables that are sensitive to the presence of other nearby particles are less useful 

for analyzing hadronic events. I find that requiring variables to be calculated using 

only the central 5 x 5 matrix of crystals in a bump minimizes this sensitivity. 

A simple and effective class of shower-shape variables consists of ratios of crystal 

energy sums, Sinner/(Sinner + Souter) , which measure how much of the total energy 

deposited in a region is concentrated in an inner central region. These ratios are 

typically larger for single-photon showers than for multiple-overlapping-photon show

ers, and are reasonably insensitive to geometrical effects since they use crystal-energy 

sums rather than individual crystal energies. I select the following three shower-shape 
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variables based on energy ratios 

where S1 is the largest crystal energy in a bump, S9 (S25 ) is the sum of energies for 

the surrounding 3 x 3 ( 5 x 5) matrix of crystals, and S4 is the largest of the four 

possible 2 x 2 crystal energy sums that include the most energetic crystal. Figure A.2 

shows a comparison of the distributions of these variables for isolated single photons 

and isolated neutral pions decaying into overlapping photons, at two different incident 

particle energies. 

A second class of shower-shape variables is based on a moment analysis of the 

crystal energies in a 5 x 5 matrix, Eu,v, where u and v are the local crystal coordinates 

for a bump. I first calculate the energy-weighted means, (Ei), and covariances, (E;) 

and (EiEj), and then define two variables corresponding to the widths of the crystal 

energy distributions in the u and v projections 

I also calculate the eigenvalues of the covariance matrix 

which are related to the lengths of the principal axes of the crystal energy distribution, 

and then define 

which measures the eccentricity of the energy distribution. Figure A.3 shows a com

parison of the distributions of these variables for isolated photons and neutral pions. 

Figures A.2 and A.3 shm~: distributions of shower-shape variables for bumps in the 

barrel region of the ECAL. The same variables can also be effectively used to analyze 

bumps in the endcap regions, where the crystal geometry is more irregular. Figure 

A.4 shows a comparison between the distributions in the barrel and in the endcaps. 
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Figure A.1: Examples of the shower shapes generated by single photons (a,b) 
and by neutral hadrons decaying into pairs of photons ( c,d). The left-hand 
plot of each figure shows the actual distribution of energy deposits while 
the right-hand figure shows the corresponding crystal energies. In (a), the 
incident photon is centered on the crystal matrix and the resulting crystal 
energies have the same axial symmetry as the underlying energy deposits. 
In (b), the photon is incident near the edge of a crystal and the resulting 
crystal energies are no longer axially symmetric. In ( c) , the photons from a 
hadron decay are easily resolved in the left-hand plot but result in a single 
reconstructed bump because of the coarse ECAL granularity. In ( d) , the two 
photons are almost collinear and the resulting crystal energies are almost 
indistinguishable from those due to a single photon as shown in (b). 

232 
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Figure A.2: Distributions of three shower-shape variables based on energy 
ratios, for isolated photons and isolated neutral pions decaying into over
lapping photons at 5 GeV ( a ,c,e) and 25 GeV (b,d,f). These results were 
obtained using simulations of single particles incident upon the barrel region 
of the ECAL. . 
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Figure A.3: Distributions of three shower-shape variables based on a moment 
analysis, for isolated photons and isolated neutral pions decaying into over
lapping photons at 5 GeV (a,c,e) and 25 GeV (b,d,f) . Plots (a) and (b) show 
the distributions of CJu, which are essentially identical to those of av; plots 
(c) and (d) show the corresponding two-dimensional distributions of CJu and 
CJv, These results were obtained using simulations of single particles incident 
upon the barrel region of the ECAL. 
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The good agreement between the two regions: especially at high energies, confirms 

that the chosen variables are not sensitive to effects associated with any particular 

crystal geometry. 

A.2 Development of a Shower-Shape Discrimina

tor 

Although several of the variables introduced in the previous section provide adequate 

separation between single- and multiple-photon bumps at low energies, no single vari

able is effective at high energies. Therefore, in order to exploit correlations between 

variables, and to improve upon the performance of a one-dimensional cut, I seek a 

multidimensional discriminator function , F(x) with x = xi, whose value is near one 

(zero) for single- (multiple-) photon bumps. 

Simulated events, for which both the shower-shape variables and the target dis

criminator value (zero or one depending on the particle type) are known, provide 

suitable input with which to build a discriminator function. A general approach 

is to assume some parametric form F ( x; p) for the function, and then find a set of 

parameters p that minimizes the classification error 

µ 

where the sum is taken over the simulated events, which I refer to as the training 

sample. There are many ways to solve this generalized fitting problem; I have cho

sen to use an artificial neural-network (ANN) approach[l20]. This method has the 

advantage of making minimal assumptions about the functional form of F; however, 

the large number of parameters it introduces necessitates large training samples. 
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A.2.1 Artificial Neural-Network Approach 

The ANN approach to developing effective discriminator functions is loosely based on 

an analogy with the learning process in biological neurons 1 and borrows some of the 

terminology of this field. Although there are many variations on the ANN approach, 

I have restricted my attention to the most straightforward implementation, based on 

a feed-forward network using back-propagation learning[121]. 

A feed-forward ANN consists of NL layers of nz nodes each, with links connecting 

each node in a layer to every node in the adjacent layers (see Figure A.5). I refer 

to the first and last layers as the input and output layers , respectively, and to the 

intermediate layers as hidden layers. The parameters of an ANN are the weights WiJ 

associated with each link; there are a total of 

NL 

Nw = L nz . nz-1 
l=2 

such parameters. For the shower-shape discriminator, I have chosen a network con

sisting of three layers , with 10 nodes in the input layer, 20 nodes in the hidden layer, 

and one node in the output layer, which gives a total of 220 parameters. Adding 

extra hidden layers or extra nodes within a hidden layer, slows down the learning 

process because of the additional parameters to be determined, and does not improve 

the discriminator's performance. 

In order to evaluate the discriminator function associated with a network, nodes 

in the input layer are first assigned values corresponding to an input pattern, Yi = x i, 

and then these values are propagated to nodes in the inner layers according to 

where the summation for each node is taken over the nodes in the previous layer. After 

iterating this procedure for each layer of the network, the discriminator function value 

is given by the value of the single node in the output layer. I use the standard choice 
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for the activation function[l20] 

J(t) = 1 + tanh(t) = 1 
2 1 + e-2t ' 

which is responsible for the non-linearity of the network response (see Figure A.6). 

Learning in the network is achieved by using the back-propagation algorithm, in which 

the weights are periodically updated to reduce the classification error according to 

_, _, 8£2 
w ~ w - TJ aw , 

where TJ is the learning parameter[l20] and controls the rate at which parameters are 

adjusted. 

A.2.2 Network Training 

To generate training samples, I simulate single photons and neutral pions using the 

standard L3 detector simulation package, SIL3, which is based on GEANT[66, 67] 

Version 3.16, and takes account of the effects of material in front of the ECAL, the L3 

magnetic field, and readout noise. I generate single particles with a vertex position 

that is smeared according to realistic LEP beam spot dimensions (ax = 160µm, 

<Jy = l0µm, and <Jz = 6.5mm), and with a random direction uniformly distributed in 

¢ and cos 0. I only record events in which exactly one ECAL bump is reconstructed 

and for which at least half of the particle's energy is contained within a 3 x 3 matrix 

of crystals. I randomly select the type of particle for each event (photon or neutral 

pion) to obtain an even mix after event selection. I generate samples of approximately 

ten-thousand events each, at three different energies (5, 15, and 25 GeV), for both the 

barrel and endcap regions of the ECAL; this provides a total of six training samples. 

For each event, I use the six shower-shape variables (x1 , ... , x 6 ) that I defined in 

Section A.I as the first six of the ten net,vork inputs. For the seventh input, I use 

the scaled polar angle of the bump in the event 
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where 0i is the theta index (1 ~ 0i ~ 41) of the central crystal of the bump, and 0min 

and 0max are the limits for this index in the barrel or endcap region. Finally, I define 

the remaining three inputs to be 

where Ei are the sorted energies in the central 5 x 5 matrix of crystals 

Inputs of this last type are not genuine shower-shape variables since they have essen

tially no discrimination power on their own; however, I find empirically that using 

three such variables optimizes the network 's performance. 

For network training, I use the JETNET 3.0 package[120]. I use the default values 

of all of the parameters, except for the learning rate , TJ , for which I use the value 0.05. 

I perform training separately for each of the six simulated samples, which yields 

six independent sets of parameters for the same network architecture. I divide each 

sample into ( two thirds) training patterns and ( one third) test patterns, and I perform 

1000 (barrel) or 2000 ( endcap) iterations through the training patterns in each sample 

in order to obtain the final network parameters. An important aspect of a network's 

performance is its ability to generalize to independent samples drawn from the same 

population as the training sample. In order to ensure that the network training does 

not focus on accidental features of the training patterns, I apply Gaussian smearing 

to each crystal's nominal energy, using an RMS width of 

a-(E) = 10% · E + 10 MeV. 

Note that this amount of smearing is much larger than the typical readout noise, which 

is 1-2 MeV per crystal, and so does not represent a realistic effect. However , I find 

that applying a large smearing has a small effect on the ultimate learning ability of 

the network, since after many training cycles the network effectively averages out the 
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smearing, but more importantly, slmvs down the initial rate of learning and improves 

the generalization performance. During training, I periodically monitor the network 's 

generalization ability by comparing the network 's discrimination performance on the 

independent training and test samples. Figure A. 7 shows the evolution of these 

performances during the training of the three barrel networks, and demonstrates 

good generalization ability. 

As shown in Figure A.7, the networks ' ability to reject 1r
0 's in simulated events 

increases rapidly at first and then more slowly. However, during the phase of slow 

learning, the network eventually learns to recognize features of the simulated events 

that are not present in real events , and as a result , its performance for data deteri

orates with further training cycles. I have chosen the number of training cycles for 

determining each of the six final network parameter sets in order to balance these two 

effects. 

A.3 Performance of the Shower-Shape Discrimi

nator 

Figure A.8 shows a comparison of the performance of the three different network 

parameter sets in the two regions of the ECAL, for simulated single-particle events 

of different energies. Each parameter set performs best for events whose energy is 

near to the energy of the training sample on which it is based. Therefore, I define 

the discriminator function value for a bump as the network output value obtained 

with a parameter set that best matches the hump's energy and the region in which 

it was recorded. For the energy matching, I assume that the bump is due to a single 

photon, in which case the bump's corrected sum-of-9 energy, si, is a good estimate 

of the photon energy. I use the 5 GeV parameter set if S8 '.S 5 GeV, the 15 GeV set 

if 5 GeV < S9 :S 17 Ge\!, and otherwise the 25 Ge\! set. The results in Figure A.8 

suggest that using an additional set of parameters trained at 35 GeV would improve 
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the discriminator 's performance at high energies; however, I have tested this approach 

but find no improvement. Figure A.9 shows a comparison of the performance of the 

final discriminator with other methods that have been used for shower-shape analyses 

of L3 data. The new discriminator has better 1r
0 rejection than other methods in the 

barrel region , and is the only method that can be applied in the endcap region. 

Figure A.10 shows a comparison of the final discriminator output distributions 

for simulated photons and neutral pions of 5 GeV, 15 GeV, and 25 GeV. Since 

the discriminator chooses network parameters for each bump based on an estimated 

photon energy, the output distribution near an energy threshold is a superposition 

of the distributions from the two networks. This effect is particularly evident in the 

distributions for 5 GeV pions shown in Figure A.lO(a,b), where correlations between 

the discriminator output value and the estimated photon energy generate a complex 

structure. 

A.3.1 Discriminator Output Processing 

While the procedure outlined above effectively combines the advantages of the dif

ferent network parameter sets obtained from training at different energies, it also 

introduces discontinuities in the network response across energy thresholds. As a 

result, a cut applied at a fixed value on the discriminator output has an efficiency 

versus energy that changes abruptly at 5 GeV and 17 GeV. To overcome this prob

lem, I convert the raw discriminator output value into the probability, which I denote 

P,, of obtaining an output value less than the actual output value, given the set of 

network parameters that were used and assuming that the bump is due to a single 

photon. More precisely, if dP(y, E,)/dy is the normalized probability distribution of 

network output values y for an isolated photon of energy E,; then the value of P, 

for a bump whose estimated equivalent photon energy is E, and whose discriminator 
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Figure A.4: Comparison of the distributions of the shower-shape variables 
x 1 = SifSg (a,b), X4 = au (c,d), and x 6 =>.+/>.._in the barrel and endcap 
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Figure A.8: Comparison of the network performance using parameters ob
tained from training at different energies (5 ,15, and 25 GeV) and in different 
regions (barrel or endcaps) , as a function of particle energy. Results are 
expressed in terms of the fraction of overlapping 1r

0 
----"? ,r decays that are 

rejected with a cut chosen at each energy to accept 90% of single photons. 
Plots show the performance in the barrel (a) and endcap (b) regions. Results 
are determined from single particle ( 1r

0 or r) events simulated in the detector. 
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Figure A.9: Performance of the ANN discriminator (NNDISC) as a function 
of particle energy, expressed in terms of the fraction of overlapping n-0 ~ rr 
decays that are rejected with a cut chosen at each energy to accept 90% of 
single photons. Plots show the performance in the barrel (a) and endcap 
(b) regions. In the barrel region, the performance of previous shower-shape 
analysis methods (ECNNET, CPARAM) are also shown for comparison. Re
sults are determined from single particle ( n-0 or , ) events simulated in the 
detector. 
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Figure A.IO: Distributions of discriminator output values for isolated single 
particles in the barrel ( a,c,e) and endcap (b,d,f) regions, and at 5 GeV ( a, b), 
15 GeV ( c,d), and 25 GeV ( e,f). The vertical scale is logarithmic. 
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output value is y , is given by 

p,,(y , E,, ) = 1Y : (y', E-, )dy'. 

The resulting distribution of p1 is then ideally flat for bumps due to isolated single 

photons, dP / dp1 = 1, and peaked near zero for bumps due to multiple overlapping 

photons. Therefore, applying a fixed cut on the maximum value of p1 has an efficiency 

for genuine isolated single photons that is independent of the photon energy, and 

equal to 1 - pT The efficiency for neutral pions is still energy-dependent, but varies 

smoothly across energy thresholds. 

In order to obtain the conversion between raw discriminator output values and the 

probability p1 , I measure the probability distributions dP / dy using radiative Bhabha 

events from the reaction e+e- -+ e+e-,. These events are independent from the 

training and test samples described above, and can be selected from both data and 

Monte Carlo. I select radiative Bhabha events by requiring that they contain at least 

three reconstructed ECAL bumps that have corrected sum-of-9 energies (S9) greater 

than 1 GeV and that are isolated from each other by at least 15°. I classify the bumps 

in an event as either electrons or photons depending on whether they have a matching 

TEC track in azimuthal angle, using matching criteria that vary with the polar angle. 

Figure A.11 shows a comparison of the energy distributions of photon and electron 

bumps in events selected from data and from Monte Carlo simulations based on the 

BHAGENE3[122] generator. The discrepancies between the data and Monte Carlo 

distributions reflect differences between the preselections used for data events and 

the generator-level cuts applied to Monte Carlo events, and do not affect the analysis 

described below, in which data and Monte Carlo events are only compared within 

narrow energy intervals. 

In order to increase the available statistics for the full energy range, I use both 

photon and electron bumps. I divide the energy range from 1- 4 7 GeV into 30 in

tervals of unequal sizes (varying between 1 and 2 GeV) , which are chosen to give 
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Figure A.11: Energy distributions of photon bumps (a) and electron bumps 
(b) selected in radiative Bhabha events, comparing results obtained from L3 
data (points) and the BHAGENE Monte Carlo (histogram). 

approximately the same total number of photon and electron bumps in each inter

val. In each energy interval and for each ECAL region, I obtain the distributions of 

the discriminator output values for data and Monte Carlo events. Figure A.12 shows 

these distributions in three different energy ranges ( which combine several intervals in 

order to improve statistics) , and demonstrates that the agreement between data and 

Monte Carlo is good at low energies but reveals that the agreement becomes worse at 

higher energies. The discrepancies between data and Monte Carlo are mostly due to 

inaccuracies in the simulation of the ECAL response, which result in network training 

bumps that have slightly different characteristics than real bumps. Since these dis

crepancies are small at low and intermediate energies, which are the most important 

for 1r0 /, separation, I calculate p, separately for data and Monte Carlo events, so 

that by construction, the distributions of p, are in agreement. 

Figure A.13 shows the distributions of the photon probabilities for simulated single 

particle (photon or neutral pion) events, in the barrel and endcap regions, and for 
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three different energies. As expected, the distributions for genuine isolated photons 

are flat at all three energies, and the distributions for overlapping neutral pion decays 

are peaked near one, and do not display the complicated structure evident in Figure 

A.10. 

A.4 Shower-Shape Discriminator Usage 

I have prepared a software package implementing the ANN described in this appendix, 

which I refer to as NNDISC. The current version of NNDISC, which I have used 

to prepare the results presented in this appendix, is Vl.01. The complete NNDISC 

package is available within the APL3 package of the standard L3 software distribution 

for versions after V200. The NNDISC package consists of three Fortran files and 

provides two levels of interface: 

apdisc.f 
nndisc.f 
nndata.f 

an interface using the L3 analysis framework, 
a low-level interface independent of the L3 framework, 
data describing network parameters and efficiencies. 

The usage of the low-level interface to the NNDISC package is 

CALL NNDISC(ECRY,IDNT,MCFLAG,OUTNN,PROB) 

with input parameters 

REAL ECRY(25) 

INTEGER IDNT 

LOGICAL MCFLAG 

and output parameters 

REAL OUTNN,PROB 

The parameter MCFLAG should be set to . TRUE. for bumps taken from Monte Carlo 

events, and otherwise set to . FALSE. The parameter IDNT should be set to the software 
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identifier of the central crystal of the bump, which is of the form 20RTTPPP and 

specifies the region containing the crystal (1 ::;R::; 4) and the crystal's polar angle 

(01 ::;TT::; 41) and azimuthal angle (001 ::;PPP::; 160) position in that region (the 

initial 20 is common to all ECAL crystals and is optional). The array ECRY should 

be initialized with the 25 energies (in GeV) of the central 5 x 5 matrix of crystals 

for a bump, using the crystal ordering convention of the ECL3 routine ECNEIG. The 

entry in ECRY for any crystal for which no energy is available should be zero. Note 

that missing crystals , especially in the central 3 x 3 matrix of a bump, significantly 

degrade the performance of the network. Therefore, NNDISC should only be used for 

bumps in which none of the central 3 x 3 crystals are either "hot" or "dead" . Also, 

it is important to include the effects of bad crystals in Monte Carlo simulated events. 

On return, the NNDISC subroutine provides the values of the raw discriminator output 

as OUTNN and the probability of obtaining a smaller value for a genuine single photon 

bump, p'"'f, as PROB. Both these output values will be between zero and one. 

The APDISC interface implements a layer above the NNDISC interface and is in

tended to be more convenient to use in the standard L3 analysis framework. The 

usage is 

CALL APDISC(LB,OUTNN,PROB,ISTAT) 

with input parameter 

INTEGER LB 

and output parameters 

REAL OUTNN,PROB 

INTEGER !STAT 

The output parameters OUTNN and PROB have the same meaning as given above. The 

parameter LB should be set to the offset of a valid EBMP bank in ZEBRA[123] memory. 

The return value !STAT is used to signal the possible error conditions 
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ISTAT=O 
ISTAT=1 
ISTAT=2 
ISTAT=3 

no errors detected-normal completion, 
missing crystals in the central 3 x 3 matrix, 
invalid ZEBRA links detected, 
unable to initialize crystal map. 
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When APDISC returns the status ISTAT=1 , the values of OUTNN and PROB are still mean

ingful; however, the performance of the discriminator is degraded, and the agreement 

between data and Monte Carlo depends on an accurate simulation of bad crystals. 
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Figure A.12: Comparison of the discriminator output value distributions 
for photon and electron bumps selected in radiative Bhabha events. Plots 
correspond to the barrel ( a,c,e) and endcap (b,d ,f) regions, and to three 
energy intervals: 1-2 GeV (a,b), 10-12 GeV (c,d) , and 44-45 GeV (e,f). 
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Figure A.13: Distributions of photon probabilities, P,, for isolated single 
particles in the barrel ( a ,c,e) and end cap (b,d,f) regions, and at 5 GeV ( a, b), 
15 GeV (c,d), and 25 GeV (e,f). The vertical scale is logarithmic. 
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