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ABSTRACT

We ha&e measured, using the Caltech 1.5-GeV electron synchrotron,
the cross section for yp = pr(n —yy) at 0° and 1800 in the energy
range 0.7 to 1.1 GeV. Two totally-absorbing lead glass Cherenkov
counters detected boéh photons from the decay n — 7y, while the recoil
. proton went undetected. Eta events produced a peak in the di-photon
energy spectrum of the two counters. Approximately 100,000 eta events
were identified using a background subtraction procedure.

The energy of the incident photon was not well resolﬁédméxperi-
mentally, which made the cross section evaluation difficult. One
method of evaluation localizes the incident photon energy artificislly
by forming appropriate linear combinations of the physical measurements.
An alternate method parametrizes the cross section as a smooth function
of energy and fits the physically measured yield of eta events. The
two ﬁethods agree tolerably well.

A significaﬁt departure from angular isotropy in the cross
seétion is observed starting at about 0.8 GeV, with the backward cross
section dominating the forward cioss section. We interpret this
fesult, plus reéent'measufements of the recoill proton polarization,
in the framework of a simple resonahce model. Tentative upper limits
- are set for the contributions of the states Pll(1460) and 811(1710)

to the amplitude for eta photoproduction.
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1. -INTRCDUCTION

This experiment on the forward and backward cross section of

the proéess

7P = P1 ,

performed at the Caltech 1.5 GeV electron synchrotron, was motivated
by increasing interest in the angular structure of the cross section
in the resonance region of that reaction. Prior to the start of the

(25,8)

experiment, other experiments had resolved no definite deviation
from isotropy in the cross section, although such might well be expected
on the basis of interference between various resonanceé. Interest in
this point has since been heightened by a recent measurement of the
recoii proton polarization in this process.(l) That experiment
detected interference effects, albeit through a different bilinesr
combination of ﬁhe interfering amplitudes, and a deviation from
isotropy was predicted. The present experiment measured the cfoss
section for center of mass angles localized about 0° and 1800, for
laboratory energies from threshold (~0.71 GeV) to about 1.1 GeV.
Before considering the resonance picture in eta photoproduction from.
protons, let us recéll the situation as known from other reactions.

A vealth of information about nucleon isobars has emerged
from s phase shift analyses. Thé quantum numbers of these isobars,
along with the masses and partisl widths, are the objects of a

continuing theoretical and experimental investigation. For infor-

‘mation on the nucleon electromagnetic current, one must turn to



. photopfoduction or electroproduction experiments, since the radiative
‘decaye'ef nucleon isobars are sufficiently rare so as to escape most
attempts at airect observation. Of the photoproduction experiments,
the‘most’accessible is pion photoproduction. For that reaction, a
fairly consistent resonance picture can be formulated, but only in a
highly non-unigue fashion.<13) The dominant resonances in pion photo-
production are the P33(1238), D13(1556), and the Fls(lssa), the so-
called first, second, and third resonances. A lively theoretical
interest has centered on the radiative decay widths (or photoexci-
tation amplitudes) of these and other resonances. Left very ﬁﬁeh

in doubt by pion photoproduction are the photoexcitation widths of

certain I = 1/2, J = 1/2 isobars, such as

Pll(14eo)
sll(lsso)
sll(1710)

Pll(l780) .

Let us see why eta photoproduction is a potentially better probe for
these isobars. . ‘

Eta photop roduction, ﬁnlike pion photoproduction, singles out
I= 1/2 iscobars in the intermediate state. This follows from isospin
conservation at the final vertex. At the initial vertex, the photon
may interact with either the isoscaler or isovector part of the

nucleonvelectrOmagneticvcurrent, but the isovector coupling to I = 3/2



states vanishes in eta photoproduction. The amplitudes fof-éta photo-
produétion from p:otons and neutrons are'simply the sum and difference
of the isoscélar and isovector amplitudes. Denoting the isoscalar
and isovector amplitudes by AS and AV respectively, the eta photo-

production amplitudes are

%Mm -»pn) = ’\/% (a% - ")
A{yn —>‘nn) = V% (A% +4Y) .

Experimentally, the cross section for eta photoproduction
from protons shows an uncomplicated energy structure, as seen in
Figure 1.1 There is a large peak above threshold, above which is
a dip and a flat, broad peak centered at about 1.2 GeV. The angular
dependence (notAshown in Figure 1.1) appears to be consistent with

isotropic, with a hint of a forward dip at higher energies.(lé) The

recoil proton polafization is sizable near 900, as shown in Figure 1.2. —-

As expected, the observed features of eta photoproduction are
satisfactorily accounted for with e small number of isobar terms.
Cood descriptions of the cross section are reported with the isobars
811(1550) and Pll(l780),(4) which also appear to suffice when the

~polarization daté are included.(l) The apparent absence of certain
isobars is not surprising. Little or no contribution from the
_ D13(1556)vis expected, on several grounds. For one, an angular

nomentum barrier of the fofm a 2h+l = qS suppresses the D wave part
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6
- of the amplitude just above threshold. For another, as Yellin points
| (5)

out, the interference between this resonance and any S or P wave

is exﬁected to be suppresséd by virtue of the fact that the Di3(1536)
(also the F15(1688)) is prodﬁcéd primarily in the J = 3/2 state.(l3)
.The Fi5(1688) is a prominent feature in 7N elastic scattering and in
pion'photoproduction. In w—p -+ nn, however, one can only place an upper
limit of ~0.3 yb for an enhancement at 1688 Mev.(33) We can relate that

result to eta photoproduction by writing

+
glyp+np) = o(mnan~+np)

(]

olyp + ) 0(ﬂ+n > 1 n) N (1.2)
: Fl5 part of ¢

and using isospin arguments on the right-hand side to relate numerator

and denominator with the F15 parts of o(m p + nn) and o(nv p~+ T p),
. P (13,20) . <
respectively. Putting in numbers, we find that o(yp » np)F ~v 1 ub
‘ 15
is the upper limit for an enhancement at 1688 Mev in eta photoproduction,

comparéd with an observed total cross section of ¢2.5 ub (ef. Figure 1.1).
We mey arrive at esséntially‘the same conclusion using SU(3) arguments an@
experimental data on the partial widths of the F15(1688) and its JP = (5/2)+
octet partners, A(1815), Z(lQhO),band (tentatively) 2(2030). For example,
the ratio of the éouplings (F

¥n) to (Fi Nw) is, from SU(3) Clebsch-Gordon

15 5
coefficients, (3 - ha)2/3, where_a/(l - a) is the D/F ratio for coupling the
(5/2)" octet to the (1/2)" and 0~ baryon and meson octets.(sg) The coupling
- ) N +
(Flan) vanishes if o = 3/h. It is interesting to note that the (5/2)

. : +
octet is the first Regge recurrence of the (1/2) octet, and SU(6) con-

v . + -
siderations yield o = 3/5 for coupling (1/2) +to (1/2)" and © .(3h) In a



6.1

‘systeméfic\sfudy of the known partial widths in the (5/2)+ octet, where

| kinematical factors are accounted for in & reasonable way, Tripp et al. find
a = O;EG (with an error of 1 0.1) in good agreement with all known partial
widths except the IT decay ofv2(19h0),(35) In a later study, Flaminio et
al..find»a = 0.40 in good agreement with all known partial widths, where

the IT decay of I(1940) had been re—measured.(39) According to that

' n
more recent study, I‘(F15 > l\Tn)/I‘(Fl5 +~ Nm) = 1 Mev/73 Mev. This gives us
that ‘

olyp +nop)| . 1 N

- = — = 0.02,
S (yp ~ ™ n) 2/3(73)
FlS
' + N
and, using 25 ub for GF (yp ~ n),(l3) GF (yp = np) = 0.5 ub or about
15 15

20% of the total cross. section at the Fl5 peak.(compared with the upper

limit of about 40% obtained using Eq. (1.1)). From this evidence, and from

the fact that the cross section is at a relative minimum at the F15 mass

(photon energy of about 1.0 Gev), we feel justified in neglecting the F15

contribufion to eta photoproduction.

Two interesting questions are left open by the possibility of
observing the Pll(lh60) and the 811(1710) in eta photoproduction. Pion
(7) (8,9)

photoproduction and other reactions have falled to conclusively

turn up the Pll(lh60) "Roper resonance," which was first identified in

TN phase shift_analyses.(lo)

Although the peak of this resonance is
probably below the threshold for eta photoproduction, the tail of the
peak should interfere with the 811(1550) above threshold, producing a

sharp deviation from isotropy in the cross section. A similarly sharp

deviation from isotropy would be expected of interference between the



T
_ ‘Sll(l'?lo‘) and the P.,(1780). Although the S.,(1710) is predicted to be not
photoexcitable in thé non—relativistic quark model,(ll) configuration mixing
‘betweeﬁvthis state and'theisll(lSSO) could lead to some phogoexcitation of
the former, notwithstanding the guark model selection rule.

| As seen in Figure 1.2, the recoil proton-polarization at 90o is
sizable in the energy region spapned'by the 811(1550) and the Pll(1780).
This could oniy result from an admixture of opposite parity (although not
necessarily resonant) amplitudes, most likely P wave in the region of the
811(1550) and S wave in the region of the Pll(1780). However, there is as
ye£ no firm indication for the presence of either the Pll(lh60) or the
811(1710), since interference between the 811(1550) and the Pli(1780) alone

(1)

may plausibly account for the observed polarization. The roles of the
Pll(lh60) and the 811(1710) in eta photoproduction can only be clarified
with the aid of information from other interference-sensitive experiments,
such as the present one on the cross section anisotropy. There are obvious .
inplications of the observation or non-observation of these states in
photoexcitation experiments for their proper assignments in terms of mo&els

for baryon spectroscdpy.' We will briefly touch on these points in the

Discussion section below.



"2. EXPERIMENTAL METHOD

The goal i1s to measure the differential cross section for the
reaction
7P = PN

for center of mass production angles near OO and 180O and for energies
between threshold (0.709 GeV) and about 1.l GeV. The method is to

detect only the final state eta meson by its 38% decay mode

N =7y (2.1)
using two photon telescopes in coincidence. The recoil proton is not
detected, for 1t traveis along the beam line in 0° or 1800 photo-
production and is not easily separated from the primary photon beam.
Moreover, in o° photoproduction the proton may fail to escape from
the liquid hydrogen target for lack of energy.

The experimental layout is shown in Figure 2.1. The synchro-
tron aécelerates a circulating beam of electrons which collides with
an internal tantalum target, producing a bremsstrahlung photon bean.
The photon beam, which emerges f:om the synchrotron through s mylar
wihdow, is collimated, scraped, and swept before reaching the target
in the experimental area. Further downstream, the beam is monitored
by an ion chamber and finally absorbed in a beam catcher. The photon
beanm éndvits monitoring are more fully described in Section 6.1; the
hydrogen target in:Secﬁion 6.2,

For the deﬁection of the final state 2.1, two photon tele-

‘scopes are arranged symmetrically with respect to the beam line in
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10

: a hérizdntal plane. - The telescopes are mounted on trolleys which
ride a circular rail centered on the target. Each telescope, as
jdescribéa moré fully in Section 6.3, consists of é defining lead
aperture, a veto counter, and a totally absorbing Cherenkov shower
counfer. Each shower counter consists of a large block of lead glass
to which seven phototubes are attached. Energy calibration is
performed in a monenergetic electron beam, and an energy reference
point is retained with the aid of a radioactive source and scintil~
lator affixed to each lead glass block. Care was taken to optimize
the photostatistical resolution for the combined signal of the seven
phototubes; the light source for this optimization consisted of
light emitting diodes attached to the lead glass.

. Each shower counter is in anticoincidence with a veto counter
which is biased on minimum-ionizing particles. The veto counter,
located behind the lead aperture, is shielded from soft electrons
by a layer of-l/2 inch lucite. Photons failling to pass through the
aperture, entering the 1.25 inch lead wall instead, most likely convert
in the lead and cause a veto signal. A "gamma" or possible photon
is defined as an unvetoed shower which surmounts a bias of about
100 MeV. An "event" or possible eta decay is defined as the coin-
cidence of two gammas in the two telescopes. The time between the
gammas 1s recorded, so that the final coincideﬁce requirement may be
set in the data analysis. For each event, the time difference between
showers énd the two, shower energies (rather, the corresponding digitized

pulse heights) aré recorded on magnetic tape under the supervision of
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Toa PDP-S'computer. The eiectronic layout is shown schematiqally in
Figure 2. 2. The scaiers indicated in that figure were useful in
monitoriﬁg the progress of the experiment, and the scaler totals were
recorded at the end of each run. The on-line computer, when it was
not Busy, drove an oscilloscope display which was most valuable in
assessing the current status of the experiment and the quality of

the accumulated daté. ‘Section 6.4 describes the experimental running
procedure and explains the oscilloscope displays as reproduced in
Figure 2.3 .

The symmetrical arrangement of the telescopes insures maximum
eta detection efficiency. The angle 60 between the downstream beam
line and the center of either telescope aperture, measured from the
center of the target,was varied in steps over the range 350 to 97.50.
The value of 90 indicates whether forward or backward eta production
will dominate in the sample of etas collected, changing from forward
to backward as 90 increases. There is no sharp dividing line, but for
90 near 650, threshoid produétion is fgvored ané all production angles
contribute. The detection efficiency is a rather slowly varying
function of k, ‘the incident photon energy, for k above the minimum
kinematically permitted value (which is determined by GO). The maxi-
mum value of k is the synchrotron endpoint energy, EO. The poor
experimental resolution in k is éffset by the use of many settings of
Eo in conjunction with eo. This usage of EO necessitated a less uncertain
calibfation of the ‘synchrotron than previously existed. It proved
~ possible to calibiate by'usiﬁg the data from this experiment taken

near thréshold; we return to this point in Section 6. 9.
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. Tsble 2.1 lists the settings of 60 and Eo, the amount of beam allocated

(in e@uiyglent quanta), and the estimated number of eta events detected.
To the extent that we measure the four-momentum of each of
the two photons from eta decay, we measure the four momentum of the
eta. This ideally permits the identificatlon of eta events by
invariant mass and the determination of the reaction kinematics,
assuming that the undetected recoil particle is a proton. Tor
example, we could calculate the energy of the incident photon,
starting from the two shower energies and the geometry of the counters.
In practice, the kinematical resolution is such as to permit oniy the
identification of etas on a statistical basis, using the distribution
of shower energies to subtréct the expected contamination of back-
ground events. We use the geometry of the counters to calculate the
efficiency for eta detectlon irrespective of decay photon energies.
The cross section is unfolded from the eta yields, using the detection
efficiency, in two different ways.. The more conventipnal way is a
generalization of the method of synchrotron endpoint subtraction,
and the other way involves fitting the cross section to a smooth
curve. Both techniques are elabpréted in Section 3.6, after the
method for counting eta events has been introduced, and the results
are presented in Section 4.
A test performed early in the experiment dramatically

illusﬁrates the price of not detecting the recoil proton. The photon
telescopes and a‘témpofary pxoton detector weré arréyged as shown in

A

. - Figure 2. 4. Data were then taken both with and without a proton
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TABLE 2.1

TABLE OF EXPERIMENTAL SETTINGS

. 800

o = Angle between beam line and either shower counter, in degrees.
EO = Nominal synchrotron endpoint energy, in MeV.
Q = Number of equivalent quanta (x 1013).
N = Number of eta events.
(cont.)
QO EO Q N QO EO Q N
35 1150 2.59 283 75 825 1.88 4695
37 1025 2.09 90 75 900 0.35 1069
37 1100 2.06 203 80 775 1.32 1468
40 720 0.37 1 80 800 1.58 1779
40 900 1.39 2176 80 825 2.31 3377
40 925 0.26 33 85 | 800 1l.74 593
40 950 1.90 236 85 . 825 1.54 874
40 1020 0.20 287 85 850 1.85 1382
45 825 1.73 3786 85 875 1.95 1915
45 850 2.05 5558 90 "~ 800 0.27 191
50 775 2.62 5150 90 1020 0.62 275
50 800 3.31 5282 93 1025 1.00 444
S0 825 1.09 3780 93 1100 0.92 435
55 710 1.60 365 95 770 1.14 123
55 725 1.72 1516 95 1020 1.12 232
55 750 2.10 4503 95 1100 3.84 466
55 775 2.34 7448 97 1160 0.34 48
55 800 1.18 4779 87 1175 0.986 70
60 - 730 0.86 1794 ' ‘ '
60 750 1.81 3759
60 800 0.46 349
65 690 1.80 0
65 700 - 2.30 . 258~
65 710 1.75 1723
65 725 1.50 2421
65 750 1.68 4495
65 775 1.58 4868 -
.65 - 800 - 1.53 4716
70 730 0.09 123
70 730 1.67 3518
75 - 7125 1.27 538
75 740 - 0.50 510
75 750 - 1.91 2162
75 775 1.56 2744
75 3.73 8601
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in coincidence with the two photons. The difference was immediately
seen in the on-line di5pla;y, operating in the mode which binned the
geometric mean of the pulsé heights representing two photons. This
quéntity scales like the two-photon invariant mass (see Section 3.2).
Figure 2. 5a shows the reconstructed mass spectrum for the data taken
without a proton coincidence: ‘a peak at the eta mass is superposed
on the background (which is cut off at low mass by the shower counter
pulsé height biases). Compare this with Figure 2. 5b, for which a
proton coincidence was required: the background is now heavily
suppressed. This test, incidentally, was valuable inverifying that
eta events were responsible for the observed mass peak.

The test described above provides an opportunity to check that
the cross section measurement made with the proton counter in co-
incidence is roughly consistent with the mea..surer_nents made without a
proton coincidence. Rather than unfold the cross section, which will
be a Weighted a.%rera.ge over the incident photon energy from threshold
to the eﬁdpoint energy of 820 Mev, we compare the eta yields and de-
tection efficiencies for the runs taken both with and Without the proton
coincidence requirement.‘ The most uncertain input is the solid angle
subtended by the proton counter, as seen at the hydrogen target. We
guess that the proton counter was a 4'' x 8' detector located 40' from
the target, but these numbers are subject to the vagaries of memory.
We havekmade a crude estimate of the detection efficiency with the
proton coincidence, and we find that it is a factor of (15 £ 5) less than
the efficie‘ncy without the proton coincidence. On the other hand, the

yield of eta events drops by a factor of (14 + 2) when the proton
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coincidence is demanded. Thus, we have equality, to within 40%, be-
tween the weighted values of the cross section measured with and
‘without’ fhe _p‘roton coincidence. The weighting factor for the cross
section, as a function of incident photon energy, is not identical in
the i:wo cases, but ‘che difference in cross section normalization is
not expected to be resolvable in this crude analysis. Finally, it was
checked that, Withoutia proton coincidence, the unsymmetrical setting
of the photon telescopes (Figure 2.4) produced an eta yield consistent
with a 30% drop in detection efficiency from the case of a symmetrical

setting with the same opening angle between the telescopes.

The problem of background subtraction is discussed in detail
in the next Section. For an idea of the magnitude of the background
contamination, for detection of only the two photons from eta decay,
we present here the ratio R = (foreground/all events) for events with
two-photon invariant mass located in the vicinity of the eta mass. The
following table lists R for events lying within 1.5 and 3. 0 standard
deviations of the eta mass peak, for representative kinematic settings

defined by the half-opening angle 60 and the endpoint energy Eo:

60 | Eo_ ‘ R(l.50) R(3.00)
40 900 0. 80 0.57
55 800 | 0. 86 0.79
60 750 - 0. 86 0. 74
75 800 | 0. 88 0. 74
85. o 850 | 0. 77 0.58

90 900 0.7 0.59
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3. DATA ANALYSIS

The object of the data analysis is to extricate the differential

cross section for the process
7p =0 (- 77)

from the experimental data produced by the two photon telescopes. We
first outline the major features of the analysis and then treat

certain aspects in detail.

3.1 General

For each setting of the telescope geometry and synchrotron
endpoint energy where data were taken, there is a set of events to
Ee anaiyzed for eta content. Each event contains information on the

two shower energies, E. and E2’ and on the time at which one shower

1
occurred relative to the other. The timing information is useful

in excludingvéé many‘accidental coincidences as possibie withoﬁt
excluding real coinéidences. The (El’ E2) distribution of events
will contain a number of eventq from two-photon eta decays as well as
a background of events from other sources. Figure 3.1 1is a per-
spective view of the‘(El, E2) spectrum for g setting which produces

a promiﬁent eta peak. The eta peak is the relative maximum at the
frontrright in‘Figure 3.1 , and the background is the steep slope
on which the eta peak isvlocated. The spectrum is seen to cut off
vfor eithervEl qr-Eé

electronic biases on the shower counter signals.

below certain values; this is the effect of the
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A central problem in counting etas is the extrapolation of
the spéét:um of background events into the region of the eta péak.
We do not atteﬁpt to predict the background from contributing
processes; but rather we fit the background empirically. An un-

correlated term in El and E2 happens to fit the background quite

well, provided that we‘exclude events with both El and E2 small, as
shown .in Section 3.3 . The (El, E2) spectrum is then fitted by the
sum of an uncorrelated term and a term describing the eta peak. The
term which simulates the eta peak is constructed from the expected
distribution of photon energies for eta decays and a parametriiea
version of the responses of the shower counters to photons. We

use the Monte Carlo efficiency program and é trial differential cross
section to generate the‘expected distribution of photon energies.
The background and eta peak terms are adjusted until the sum of the
terms best fits the observed (El, E2) spectrum, and the number of
etas in the sample is estimated to be the volume of the simulated
eta peak. The fitting method is maximum likelihood, modified to
compensate for intrinsic bias.

The trial cross section is heeded to fix only the shape of
thé simulated eta‘peak, since the normalization of that peak is one
of the adjustable parameters. The influence of the cross section
on the peak shape is small, relative to the energy resolution of
the shower'counters, and our results are almost independent of rea-
sonable errors in the frial cross section. We explore this point

| quantitatively in Section 6.10 .
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The responses of the shower counters to photons, i.e., the
calibration and resolution of each counter, enter in the simulated
efa peak'as deécribgd in Section 3. 4. Our parametrization of these
responses introduces two calibration factors (one for each counter)
and oﬁe resolution constant (assumed to be common to both counters).
The shower counter responses were measured with the aid of a nearly
monoenergetic positron beam (Section 6. 3); however, we allow the
. associated parameters to participate in the search for a maximum
likelihood fit to the photoproduction data containing an eté peak.
Inveffect, we independently measure these parameters using the a
observed eta peak, and the two methods of measurement are in fair
agreement for the two calibration factors. However, there is an
unmistakeable disagreement for the energy resoclution constant: the
eta peek in forward photoproduction is less well resolved than we
would expect from the results of the electron beam measurements. In
Section 3.5 we advance possible reasons for the disagreement; at
any rate, the electroﬁ beam méasurements are not imposed on the
problem of fitting the observed eta peak. Wherever it is not
feasible to determine the parameteré from the fitting, e.g. when
the eta peak is overwhelmingly obscured by the background, the
parameters are gently "guided" toward values extrapolated from well-
determined cases, as described in Section 3.5 .

' Figures 3.1 through 3.5 depict the elements of the fitting
procedure outlined sbove. Figure 3.1 is the observed (El’ Eg)
spectrum for onejexperimental setting. TFigure 3.2 1s the uncor-

" related term describing the background, and Figure 3.3 is the
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‘simﬁlated eta peak.  (Note: The truncation at the 200 counts level,
seen in Figures 3.1 and 3.2 , is a feature of the plotting only.)
Sdbtracﬁing the background term from the dbservedidata, Figure 3.2
from 3. 1 , produces Figure 3. 4 . There we see a series of low
energy spikes and, at higher energies, the experimentally observed
ets peak. The low energy spikes are located in a region of the

(El’ E2) plane which was excluded from the fitting (for reasons
explained in Section 3. 3); the fit has been extrapolated into the
omitted region in producing these Figures. Finally, subtracting the
simulated eta peak from the cbserved eta peak, Figure 3.3 from 3.4 ,
produces 3. 5 .. The omitted region aside, a good fit is visually
indicated by the lack of structure in the residue of Figure 3.5 .

. The number of etas for each setting, corrected for empty
target contribution and electronic dead time, is converted to an eta
yield, i.e., the number of etas per unit of integrated beam energy.
Each setting is associated with an eta yileld and a resolﬁtion function
(the detection efficiency aé a function of energy and production angle),
and ﬁhe cross section emerges from g study of yields and resolution
function over all settings. S. J. Yellin has developed two methods
for unfolding the cross section,.and both have been applied to this
experiment. Oné method generalizes the notion of endpoint subtraction,
and the results appear in the coﬁventional format of a cross section
point. The other method, dubbed the "black box" by its perpetrator,
fits thevcross section to a smooth curve with an unusual set of
criteria for thevbést fit, aé explained in Section 3. 6 . The output

,of both-methods is displayed in Section 4.
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. 3.2 Preliminary Data Processing

‘The shower counters produced signals which were pulse height
-analyzed and digitally recorded on magnetic tape. Denote the

digitized‘pulse heights ey and e, for shower counters 1 and 2,

respectively, and let t denote the digitized signal representing

12

the time difference between shower signals. The built-in criteris

for an event restricted the range of t12 as well as the minimum

values for e and ese The Nuclear Data pulse height analyzer deter-

mined the maximum values for el and e2.

Figure 3.6 shows the t12 spectrum (EQE calibrated in tiﬁe .
units), of all events of a representative run. The large peak is
due to true coincidencés, and the rest of the spectrum is due to
accidental coincidences. For an idea of the time scale, the true
coincidence peak has a full width at half maximum of 5 ns, and the
total range covered is about 40 ns. The smaller peak, above the
true coincidence peak and be;OW'the cutoff at high tlE’ is only the

effect of gross nonlinearity in the © scale near the upper cutoff.

12
The ultimate value of the timing informetion (tle) is that
we may set a strict coincidence requirement within the data. To
this end, it is desirable to optimize the timing resolution.
Electronic drift was alleviated by the use of fiducial events, which
15 , and e2). A

propefty of electronic discriminators called "slewing,'

furnishes a reference point for t., (as well as for e

' which causes
the timing to depeﬁd on the pulse heights involved, had to be con=-

sidered. We minimized'slewing in the hardware by using zero-crossing
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"discrimihators(el)

at strategic points in the fast logic, labeled
"ZCD" in the diagram of Figure 2.2. Additionally, it proved'
possible to réduce slewing in the data, as described in Section 6. 5.

The final coincidence requirement is set on the basis of the
eta content of the data. (The procedure for determining eta content
is explained in the following Sections, although we mention the
results here for the sake of continuity.) We divided the data into
several bins in t12 and determined the number of eta events in each
bin, as seen in Figure 3.7 for one case. The smooth curve is a
gaussian fit, and the arrows indicate where the coincidence redﬁire-
ment was set, taken as the points at 6.5 standard deviations from
the mean of the gaussian fit. Unless otherwise noted, we assume

that only eﬁents with t. . within that range are under consideration.

12

Consider the distribution of the shower counter pulse

heights e, and e Because the counters are symmetrically oriented

1 2°

about the beam, the spectrum of events in ey alone is expected to

be similar to the spectrum in e, alone; the discriminator biases may

2

be set at different values, however. At the point where the dis-
criminator first allows signals to pass, there is a rapid rise in

thé spectrum, as seen for e, in Figure 3.8 . The spectrum peaks

1
gbove that point, and where the discriminator finally permits all
signals to pass, we see a sharply decreasing spectrum. Eta events
appeaf as a very broad shoulder in this spectrum.

The fiducial events are used to correct e, and e, for elec-

1l 2
tronic drift of the kind which changes the calibration by an additive
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"conﬁtant. The scale factor, i.e., the electronic gain, was stable
to better ﬁhan one percent over a day. The pulse height analyzing
_éystem ié‘linéar to within a few percent, at leasf over the range
of pulse heights finally accepted.

| The pulse heights e and e, correspond to shower energiles
El and E2, respectively, although the final calibration depends on
the results of fitting the eta peak. The calibration procedure
described in Section 6.3A proved inadequate. We were able to improve
that procedure by reassigning the equivalent shower energy for each
source-scintillator, after making an initial determination of the
eta peak parameters (Section 3.5 ). The final calibration is deter-
mined by the final values of the eta peak parameters; however, El
and E2 are assumed to denote the values at the intermediate stage of
calibration, i.e., the method of Section 8.3A after source-scintil-
lator energy reassignments.

We have occasion to refer to the invariant mass of the two-

photon system, which>is baléuldble from the photon energies, Eyl

and E72, and the opening angle between the photons, 977 (all measured

in the same frame). The inyariantimass, M&y, is given by

M_ = 2sin(e, /2) W E_E _ .
7Y sin( 77/ ) yl “7r2

For E7l and E72 we substitute the measured shower energiles El and E2,
respectively, and for (977/2) we substitute the counter opening angle

Go defined in Section 2. Experimentally, then:
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M., = 2 sin @ A/El E, . - (3.1)

Figure 3.9 shows the spectrum of Myy’ calculated from Equation 3.1

for the same datd as appeared in the e, spectrum of Figure 3.8.

1

3.3 Background Fitting

Consider the distribution of El and EE’

energies for the two photon telescopes. It is in this distribution

the measured shower

that we seek to resolve eta events from non-eta or "background"
events. We first reduce this distribution to a finite matrix,

N(ip, 1), where

1, = integer part of (El/EO)

i, = integer part of (E2/2O) ,
for El and E2.expressed in MeV. N(il’ 12) is the number of counts
in the bin lebelled by 1, and 1.

Consider the physical processes which might contribute
significantly to the structure of N. The process under investigation,
eta photoproduction and two-photon eta decay, produces a peak in a

region characterized by large values for i, and i2, on the order of

1
15. A similar peak at much lower Values, on the order of 3, would

be seen from:

. o
7P =px ) (3.2)
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exéept‘that biases in the electronics cut off counts for either i or

i, less than about 5. Still, a number of such events may have been

' ‘detvecte.ci, and in p.rinciple we could estimate the expected number
from the cross se‘ction for (3.2) and the corresponding detection
effiéiency. In practice, there are some serious uncertainties in

the detection efficiency near the energy cutoffs (see Section 6..7).

We can only surmisekthat some events from single n° detection are
present where both i, and i, are near cutoff, The process dominating

the background is believed to be

'yp—;p‘rro =© »

bsyy , (3.3)
7Y | |

where each telescope detects only one photon, and the two photons

that are detected come from separate o decays. Because the final

state detection for such events is so kinematically incomplete, we -

expect that il‘and i, will bg relatively independent.

The resonances contributing to reaction (3. 3) are of some
interest to the background subtraction problem. In particular, we
are taking measurements in the rAegion of the D13(1536) and F15(1688),
which are highly inélastic resonances with contributions to the reac.-

e (36, 37, 38) That reaction is dominated by the

tion yp-~>p
. . . . ++ - o _+ (o}
formation of the intermediate states 4 w, A" 7, andp p (where
2% ot is suppressed by isospin and possibly dynamical factors). Pro-
duction of p p0 is primarily diffractive, becoming the dominant con-

tribution at higher eﬁergies, while Aw production proceeds via one-

pion-exchange (OPE) and via the D, ;(1536) and F,(1688) resonances
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in the direct channel. In the case of ¥p —» p w° -rro, there can be no

o]

contribution from either p vpo production or OPE production of N ’

‘ .leaving' bnly resonant production of AT 7° (plus aﬁy non-resonant
contribution). It is therefore reasonable to expect a strong energy
depéndence of the background in this experiment from the otherwise
negligible D13(1536) and F15(1688). These states could show up in
the cross séction fesults, but only if there is a sizable systematic
error in the background subtraction methods. Statistical errors
are properly accounted for and propagated through the analysis to the
final cross section results. Empirically, the background is roughly
a 30% contamination in the vicinity of the eta peak. The subtraction
procedure is probably free from systematic error to at least one part
in ten, so that the residué.l background contamination is reduced to a
statistically indiscernible level.

Experimentally, the matrix N indeed contains a peak from .

eta events (see Figure 3.1). However, if eta events are absent,

N has no peak exceét the tfivial one resulting from the electronic
biaées; above the cutoffs, the number of counts decreases with either
iy ori,. Figure 3. 10 presents Nvfor a run in which the synchrotron
eﬁdpoint energy was about 5 MeV below the threshold for eta photo—l
production. Close examination of this matrix shows that the shape
of the spectrum is decoupled in i, and i,, except that too many

counts appear in the lower left-hand corner, where both il and iz
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~ are near cutoff. A technique for displaying this structure is
introduced below; it forms the nucleus of the background fitting
program.

We ascribe the observed decoupling in i, and i,., for the

_ 1 2’
background, to the predominance of events of the type (3.3). We are
less certain about the origin of the observed "enhancement' above the
decoupled spectrum where both il and i2 are small. The enhancement
may be the result of single 7° detection, or it may be that the
incomplete detection of the 2 ﬂo final state is not as independent
in il and 12 as supposed -- neither possibility has been system-
atically investigated. We are able to show, however, that the en-
hancement is relatively localized, and that a term decoupled in il
and 12 fits the background well, except in the region of the enhance-
ment, which we therefore exclude from the fitting. What follows is
an attempt to show that the enhancement is localizable, at least
for the below-threshold data invoked above, after a brief detour to
develop a minimal sef of mafhematical tools.

There is a simple and beautiful technique for "factoring"
any spectrum into a product of lower-order spectra and normalizing
that product to the parent'spectrum. The result, it can be shown,
is a maximum likelihood type of fit which is decoupled in the in-

dividual varisbles. For example, let us "factor” N(il, i2) over the

set of bins defined by

(il, ;2) eR .
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' We call R the "background region.” The simplest region is a rectan-

gular block of bins:

n et il v
IA IN
[N [
A A
+ P

For a rectangular background region, the factorized fit is written
F(i., 1) = TT N (i)N,(1,)
1’ "2 122

By Nl(il), we mean the spectrum of events in il alone, for all events
within R; similarly for Ng(ig)' T is Just the total number of counts

in R. Explicitly,

U
Zz
Nl(ll) = ‘L N(ll, n)
N=21
5
U
Ny(ip) = &g Nm, i)
m=1
1
U U
1 >
T=p g M@ = ) g N
U'F'-ll n=l2

The matrix F is normalized to N within every row and column indepen-
dently. Therefore, the difference matrix (N - F) is normalized to
zero in every row. and column independently. We say that N is

"uncorrelated"'if (N - F) has no systematic structure.
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Suppose that N is the sum of an uncorrelated spectrum and s
localized peak. Then (N-F) will be positive in the vicinity of the
peak, and elséwhere there will be smaller positivé and negative "images"
of the peé.k in order to satisfy the normalization requirement. The

pattern in (N-F) will look like:

%+_+
' -® -
+ - +
[ ,—o

1

for a peak (circled above) centrally located in the background region.
We anticipate a peak in the lower left-hand corner of the background

region (above cutoffs), in which case the pattern would look like:

| @ f - (3.4)
;—-—t ——————
!
|~

where the dotted lines indicate the cutoffs.

The matrix N displayed in Figure 3.10, for the below-threshold
run, produces the vpattern (5.4») in (N-F), as seen in Figure 3.11 . Here
the background region includes all the bins displayed; of course, only
'Ehe datyg gbove the cutoffs contri'bufe to F. To the extent that (N-F)

deviates systematically from zero, it is incorrect to characterize the

. background as an uncorrelated spectrum. Of greatest concern is the

background in the region populated by eta events, when such events are
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Figure 3.11 The Matrix (N-F)(il, 12)
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" kinematically allowed. This region is centered at relatively large

1

- values of i
in Figure 3;ll; the background ils overestimated in this region. If

and i, , on the order of 15. From pattern (3.4), observed
eta events were present, their number would be underestimated.

| Empirically, we observed that the systematic pattern in (N-F)
vanishes as the background region is altered so as to exclude events
with both il and i2 small (near the cutoffs). From studies of this
kind, we were led to introduce a mass cut on the background region. For
this purpose, we associated a mass to each (il’ie) bin, using Equation 3;1
to express the two-photon invariant mass for an event at the center of
that bin. In addition, we excluded events having either il or i2 near
cutoff, where the detection efficiency is poorly known (Section 6.7).

In order to demonstrate that a mass cut on the background region

suffices to eliminate the observed pattern in (N-F), a more sophisti-
cated formalism for generating F is required. This is presented in
Section 6.6 ; we may present here the results of applying that formalism
to the belOWhthreshoid run. .Figure 3.12 displays N as before, except
thatrthe bins excluded from the background region are indicated as
those within the closed border. This is a mass cut of 240 MeV; the
resulting (N-F) appears as in Figure 3.13. Note that within the back-
ground region, the previous pattern of correlation is not discernible.
What appears for (N-F) in the excluded bins ha; the nature of an
extrapolation, since F may be evaluated there (even though the data

there did not contribute to F). Pattern (3.4 )has become
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vhere the excluded region is indicated by shading.

The true test of any background description is in the estimsted
number of eta events. We return to the background fitting from that
point of view in Section 6.10, where the estimated number of etas is
examined with respect to reasonable changes in the fitting method,
including changes in the boundary of the background region.

The quality of the fit is also informative. All indicators
point to the conclusion that the background fitting, as outlined above,
is g good description of the background in the vicinity of the eta

peak. We turn now to a description of that -peak.

3.4 Foreground Fitting

A term describing the (B, E,) distribution of eta events,
i.e., the foreground, is required in the background fitting, as
explained in Section 6. 6. The same term also serves to estimate the
nunber of etas, by way of an adjﬁstable normalization parameter. Let
Y(il, 12) dencte the (il, i2) spectrum of this term, where we suppress
writing the normalization parameter. Additionél parameters are neededL'
to describe the responses of the shower counters to incident photons.
This section outlines the steps in constructing Y(il, 12) from the
- following ingrediénts:' The ﬁonte Carlo calculation for the detection

efficieﬁéy, described in Section 6.7 ; a trial differential cross



46

" section; and a parametrized version of the shower counter responses.
- The starting point in constrﬁcting the matrix Y is a series
~of simulated eta events produced by the Monte Carlo calculation. ZEach

such event carries the information

kX = incident primary photon energy
g% = center-of-mass angle

Eyl’ E,),2 = eta decay photon energies
€ =

statistical weight of event (detection efficiency).

There is an important distinction between the actual photon energies,

EVl and E72’ and the measured shower energies, El and E2. By analogy

with the binned quantities i. and i

1 5 2 define
i, = dinteger part of (E71/2O)
and i = integer part of (E72/20) ,

for E7l and E72 éxpressed in MeV. The expected number of events

described by_lndlceg 171 and 172 , denoted Y7<lyl’ 172), is calculable

from
Eo
do . . .
i i = . ——— * ¥ .
Y7(171,172) = cfdni &k == (k, ©%) Ny(k, Eo) e(k, O%; 1,0 172)
o
where ’ do/aq = trial differential cross section
Ny = primary photon energy spectrum
k = threshold energy (~.7 GeV)
EO = éynchrotron endpoint energy

= constant
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. For a trial cross section, we chose & term with a "flat" 6% dependence
‘and a k dependence which roughly follows the world data for the cross
,eection;‘ As Showniin Section é.lO, our final results are not strongly
dependent on the ekact form of this term. (Our methods are in principle
not dependent on a prior knowledge of the cross section, because we
might have "bootstrapped" the cross section by an iterative technique,
requiring the outpuf to be consistent with the input.)

Consider the distribution of the shower energies, E. and E

1 2’

produced by eta decays constrained to have fixed values for Eyl and

5 * If El and E2 were perfectly calibrated quantities, their mean

rglues would be_Eyl and E72 , respectively. The factors k1 and k2 are

E
7

ntroduced to describe a possible calibration error, as follows:

E

k) (E)) Y1

k2(E2) = Eyz .

We assumevthat the variances of E, and E, scale directly with energy,

1 2
and we write (see Section 6.3B):
2 2
RN
L2 2
ke kp o (By) = Eoo s

vhere we assume that one resolution factor, ke , suffices to describe
both counters. (In reality, the two counters were nearly matched in
resolution. ) The'(El,rEe) spectrum, denoted Y(E, E,), will have the

form
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T(E),E,)

i

e {4 00, ) %6208y + (5,812 %(E,)1 )

1 2 2
exp {-5 k, [(kE - Eyl) /E71 + (kB - E72) /Eye]} ,

temporarily suppressing the question of normalization. In terms of

energy-binned quantities,
cos 0y 1 Y- Y-
¥(ip,1,) = exp {5k, L1 L 0%+ (el 1) /172]} .

This is the expected (il’ 12) spectrum produced by eta events charac-

terized by fixed values of 1 . and i .. For eta events with i . and
~ 7l y2 7l

distributed in the spectrum Yy(i 2), the expected (il, 12)

ty2 71! by

spectrum is

Ypi) = kL 0,0
Y2
. (3.5)

1 . . 2/, . . 2.
X exp {-5 ke[(klll- 171) /171‘+ (k212- 172) /172]}

where K is a normalization factor. Denote the volume under'Y, i.e., the

nunber of eta events, by Tn . K is then given by

K = qulkeke/(g" Z : Y‘y(iyl’iyz)‘\} 1 i,5) - (3.6)

171?172
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Eqs. 3.5 and 3.6 .express Y(il,'ia) initerms of the Monte Carlov
,Spethum_Yy(?yl’ iyz) apd the four parameters Tn’,kl’ Ko and'ke. The
. goal of the foreground and background fitting is to determine Tﬂ’
whil¢ the parameters kl, k2, and ke are quantities associlated with the
calibration and resolution of the shower counters. We find that the
calibration and resolution measurements described in Section 6.3 are
in conflict with the best values of kl’ kz,land ke which emerge from
the fitting program discussed in Section 3.5 . Faced with this
conflict, we allow the best values of the fitting program to stand;

in effect, we measure kl,

of eta events. -

3.5 Cormbined Background and Foreground Fitting

The background is described by an uncorrelated spectrum,
Fl(il) Fe(i2), and the foreground is described by the Monte Carlo
simulated eta peak,'Y(il, i2; Tn, kl’ k2, ke). The sum of these two
terms is used to describe the matrix of counts, N(il, i2), where the

free parameters are Tﬂ’ k ke, and each element of the vectors

1’ k2’
Fl and F2. The strictly correct fitting method would vary all thesé
frée parameters simultaneously, but we divide the fitting into two
parts: -we determine the background parameters with the foreground
parameters held fixed, and vice versa. We alternate between back-
ground fitting'and foreground fitting, using the results of one as

“input for the other, until further iterations lead to an acceptable

level of change in the estimated number of eta events, Tn. This
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', Section is a discussion of that fitting program, including the

correction for intrinsic bias and the need for occasional external
- guidance of the fitting parameters.
Section 6.6 presents the mathematical details of a maximum

likelihood determination of the background when the fitting model is
F(ll,le) = Fl(ll)Fz(lg) + Y(ll,lz; Tn’kl’k2’ke) s

where Y is considered a constant term. This fit applies to a certain
set of (il, 12) bins called the "background region," R. This region
is chosen so as to exclude events of too low invariant mass as well

as those near the il and i2 cutoffs, as described previously in
Section 3.3 . We now introduce an "eta cut" on R, i.e., we exclude
from Rvevents in the immediate vicinity of the eta pezk. The back-
ground is necessarily an extrapolation within the ekcluded part. This
pfovides a degrée of separation of the background and foreground
fitting prdblems, which is desirable from any of several viewpbints.
For one, the background‘determination is less influenced by errors

in the foreground description; for another, the background term is

not given an opportunity to participate in describing eta events. The
convergénce of our £wo—part fitting method is also more rapid and
definite with an eta cut on R. In the following sketch, R is the

unshaded region of the (il, 12) plane:
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2 /%%
Vit
|1‘*’

The boundary of the eta cut was fixed on the basis of the matrix Y,

i.e,, the simulated eta peak, after an initial determination of the
free parameters in Y. The bins in the eta cut are those for which
the value of Y is more than 20% of its maximum value, with one excep-
tion: certain bins located just above the boundary of R and pg;allel

to it, were reserved to R even 1f the value of Y there was more than

20% maximum. (This was necessary to avoid the background indeterminacy
problem mentioned in Section 6.6 .)

The eta peak parameters, Tﬂ’ kl,‘k2, and ke are determined
using a computer program called SODVEKgS) This is a minimum chi-
squared fitting package, although our usage converts it to a maximum
likelihood fitting program._ For this problem, the background is
considered aiconstaht term, and the fitting i1s confined to a set of
bins that we call the "etalregion," denoted Rn. We fixed the boundary
Ovaﬂ using the 10% level line of Y, with no exception ﬁ;de for any
bins reserved to R. In most cases, ‘there was a sufficiently clear
eta peak in the spectrumvN(il, 12) that the eta peak parameters could
be determined’ﬁithout difficulty.' Recall that kl and k2 are associated

with the energy calibration of shower counters 1 and 2, respectively.

Referring to Section 6.3A, k, and k, may be considered correction

2
factors for the energy calibration of the corresponding Bi-207 Auger
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. electron peak in the scintillator spectrum (ES). An initial deter-

.minatiOQ_of 31 and»k2 was the basis for a reassignment of thoée source-
- scintillator equivalent shower energies. In succeeding passes, kl and
k2 were determined to be near unity to within 5% for most runs, and
no subsequent recalibration was performed. The energy calibration,

since it is locally corrected within each run via k., and k2, may differ

1
from run to run. However, we desired an approximate calibration in
order to calculate the invariant mass from Elvand E2, for the purpose
of applying the mass cut to the background region.

The parameter ke is associated with the energy resolutié;;
assumed to be identical for each shower counter. From Section 6.3B,
using the positron beém, ke is expected to be near 0.35 MeV-l for
either counter. From the fitting, using the methods described sbove,
the best value for ke was not constant from run to run, but rather
it showed a variation with the shower counter opening angle. This
variation ranged from about 0.15 at an opening angle of 40° to0-0.25
at 900, with typical statistical errors of 0.03. This is at variance
with the notion that ke is a constant, and the discrepancy with the
positron beam value is particularly severe for small counter opening
angles. This indicates that the energy resolution is not as good as.
expected from phototube statistics alone, although we are at a loss
+to pinpoint the source of the additional fluctuations. Of all mech-
anisms considered to explain this situation, the most plausible was

that soft photons were sufficiently abundant that the phototube

~signals were contaminated with an almost continuous noise. (This
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\hypotheéis could have been easily checked during the experiment, had
we knoﬁn_of the prdblem.) The dependence on shower counter oéening
-angle is seen, in this view, to be connected more with the counting
rates than with the geometry of the counters. A superficial study,
however, revealed no evidence for a counting rate dependence of ke

for a given counter geometry. In any case, we do not impose the
positron beam measurements on ke’ since the data quite definitely
indicate the inapplicability of those measurements in the fitting
problem. In Section 6.10, we describe a teét which indicates that

& negligible error is made by letting ke describe an additionai‘
broadening of the eta peak beyond that expected from phototube sta-
tisties alone. |

The eta peak was occasionally so obscured by the background

that the SOLVE program was unable to determine values for the eta
pesk parameters. When this occurred, we manually intervened by
"guiding" SOLVE toward plausible values of the parameters. This, of
course, amounts to biasing the outcome, although the alternative is

to abandon the data, which is unacceptable. We adopted a scheme which
applies an adjustable degree of‘pressure on the parameters to converge
toﬁard predetermined values. For each parameter, we add an extra
artificial point. For that point, the parameter itself is required

to fit its predetermined value, subject to a predetermined weighting
factof. vThat ﬁeighting factor, which controls the pressure, was chosen
‘on the basis of how well the’parameter in question was determined from

other runs.
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The intrinsic bias of the fitting method, apart from the

‘deliﬁérate bias described above, had to be considered. In geﬁeral,

a fit will be biased if the free parameters do not enter linearly.
Our conception of a fitting "bias" is the following. The experimental
data determine a fit. That fit may be used to generate artificial
data at the same points as the experimental data, if the form of the
statistical fluctuations are known (e.g., Poisson statistics). The
artificial data may then be fitted. On the average, the fit to the
which constitutes a bias. This definition lends itself to a co&ﬁuter
method for blas compensation. TFor our work, however, the bias was
compensated using an approximate analytical expression developed by
S. J. Ye]_lin(5 ). The expression gave that the number of etas, Tn,

was overestimated by typically 0.5%. Similarly, k, and k, wvere
wrongly estimated by a negligible amount, but ke was overestimated by
around 5% in most cases. The latter is analogous to the systematic
error in estimating the variance of a distribution, when one divides

the sum of the squared deviations by N rather than by (N-1), where N

is the number in the distribution.

3.8 Cross Section Evaluation

The following is an outline of the steps leading from the
estimated number of eta events to the cross section. Sub-Section A
relates the cross section to the eta "yield," which is defined as the

number of eta events ?roduced by one unit of integrated photon energy
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“ from the primary beam. TIwo different paths to the cross section,
both 6f them developed by Sf J. Yellin, are described in Sub-Sections
B and C, and fhe results appear in Section 4.

when the incident photon energy, k, is rnot well resolved, as
in this experiment, it is conventional to extricate the cross section
using the well-known technique of endpoint subtraction. The method
of Sub-Section B is an extension of that technique, in which the
geometry of the photon telescopes, characterized by the beam-to-
telescope angle, is considered on an equal footing with the synchro-
section at more or less locaglized values of k and 6%, where 0% is
the eta center of mass production angle. |

‘Sub-Section C describes a fit to the cross section, parameter-
ized as a smooth function of k and a finite power series in (cos 0%).
This method has the disadvantage that the cross section is not
measured at separated points in k and 6%, but it is more powerful in
measuring the (cos é*) ﬁomeﬁts of the cross section.

The calibration of the synchrotron endpoint energy is important
to any evaluation of the cross section which uses the data produced
byvthis,experiment. 'Since‘there existed conflicting measurements of'
the energy calibration c0nstan£ for the Caltech synchrotron, we
attempted to resolve that question using data taken just above
threshold: This had to be done prior to fitting all the data. Section

‘6.9 describes that-program in more detail.
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A. General Consilderations

For each experimental run, the estimated number of eta
. events has béen produced using the previously described background-
forgground fitting program. We convert this number to an eta yield,
dividing by the total beam energy for the run, using the beam monitor-
ing system described in Section 6.1. The individual eta yields are

then corrected for electronic dead time and empty target contribution,

as described in Section 6.8 . Finally, we combine the eta yields for
runs which had the same experimental configuration, producing the
experimental eta yield, YiXp , for each distinct configuratioh:erhis
guantity bears a statistical weight, described by the standard
deviation, cixP ’ whiéh uses the results of the foreground fitting
package SOLVE.

Associated with each Y:Xp and GEXP is a resolution function,

R, defined as

R (x, 0%; EO, o) =T NpNy(k,Eo) e(k, 6%; E_, )
where
EO = . synchrotron endpoint energy
GO = -angle between beam line and either photon telescope
‘F = branching ratio for (n - 77)/(n - all) = 0.375% 0.016(20)
Np =. number of protons ber unit area in target
N? = density 6f incident photons in k, normalized to one

unit of integrated beam energy

€ = ‘detection efficiency.
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‘ The detéction efficiency calculation is outlined in Section 6.7, and

the bremsstrahlung photon energy spectrum is calculatedvusing'the

computer program BPAK I, vwritten by F. B. Wblvertongez) From the

cross section and the resolution function, we may calculate the
expected value of the eta yileld, Ygalc , corresponding to the values

of Eo and GO. That calculation uses the relationship

+1 E
YBC - on [ d(cos o%)  © ax &% (x,0%) R (k,0%; E, 0 ) ,
Tl -l k dﬂ (e} ()
0
T(3.7)
where

do ) ) i
T = differential cross section
ko = +threshold energy in k -

The comparison between Ycalc

and Y:Xp , over all experimental con-
figurations (lsbelled by E_ and 90), is the basis for extricating the
cross section.‘ This would be a simple operation if the resolution
function were sharbly localized in k and 0%, While the 9% localization
is good (on the basis of the typical rate of change of the cross
section in 0%), the k localization is not sufficiently favorable for

a pointbe-point,exﬁraction of the cross section. One approach to

alc .
expression,

this problem is to take linear combinations of the Ys
Eq. 3.7, with respect to the various experimentagl configurations.
Certain linear combinations of the resolution functions will be well

localized in k,.aﬁd the cross section may then sensibly be taken out-

side the integrand in Eq, 3.7. As might be expected, the number of
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useful‘linear combinations is less than the number of experimental
configurations. This approach is described in Sub-Section B below.

. Alternatively, Ygalc

may be compared with Y:XP using a parameterized
cross section in Eq. 3.7 , and the cross section measurement becomes

g fitting problem: This is the approach of Sub-Section C.

B. Method of Linear Combinations

| We take linear combinations of the relation for Ysalc,
Eq. 3. 7, with respect to the various experimental configurations
lgbelled by EO and GO. In the endpoint subtraction technique,..one
takes linear combinations with respect to the synchrotron endpoint,
Eo; we extend that technique to include QO. For convenience, denote
an experimental configuration by the index 1 instead of by EO and GO.
Then the eta yields comprise a vector with respect to i, denoted
§§XP and ?ﬁalc » and similarly for the resolution functions, E.

Expressing the coefficients of the linear coﬁbination by the vector

Eﬁ we have_that

+1 E
T, op [ q(eos o%) [ © ax X (k, 6%) TR (k,0%) .
N -1 X ag

o}

. K ) K3 ) . 0 _9 '_)
Define the cross section, averaged over the resolution function a+R

by (do/an)_, . Then

a . .
g0 ' ;'?%alc ,
(a?{ )__> = +l M E — — ° (3;8)
a = 2 [Td(cos 6%) [TO &-R(k,o%)
-1, k

e}
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" One replaces ?ﬁalc by YﬁXP in Eg. 3.8 in order to measure the
Cross Section. |

The theory for optimizing the resolution by manipulating =
has been developed by S. J. Yellin and enbodied in a computer program
called BLUBOX.( 5) That program was applied independently to two
sﬁbsets of the data, defined by whether eta production was localized
to 0° or 1800, with some overlap for the data which were not well

localized in 6%. The results are shown in Section 4.

C. Method of Parametrization
As an alternative to locallizing the cross section measure-

ment in k and 6%, one may parametrize the cross section in those
variables and seek a good fit between the calculated and experimental

yields. We take the following parametrization for the cross section:

M
do. n
1o} (k, G*) = Z Un(k) cos o¥% .

n=0

The functions cn(k) are determined by the exotic criteria described
belowx We are primarily interested in the first (cos 6%) moment of
the cross section, since that moment is a measure of the interference
between S and P waves (see Section 5). Thus, our primary interest
is in determihing co(k) and ol(k)Afor the cross section parametrized
by

do (k,.g*) = E (k) + o.(k) cos &% .

dn1 o 1

For this~fonm, we can define a cross section asymmetry
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dg ;. a :

| & (5,0%) - 52 (x, 180°) oy (x)

Alk) = F7 oy do ov - T my ¢
) (k,07) + o) (k, 1807) : o]

One would like  reasonably smooth functions of k for the cross section.
Intuitively, a function is "smooth" if its second derivative is small
in absolute value. Consider the functional I(dd/dﬂ), defined by
k 2 o2
doy _ 1 ) dg
I(aﬁ' s fao [ "a&k [— == (k,0)] ’
k

ak2 aQ
o

vhere ko is the threshold energy and k. is the highest endpoint energy

1
used in the experiment. The absolute minimum of this functional is
Zero, which occurs when (do/an) is linear in k. ‘Suppose, however,
that (dc/dﬂ) is required to satisfy some constraint in terms of the
calculated eta yields; the minimization of I may not be so trivial
in that case. A natural type of constraint is one in terms of
chi-squared,»which is written
. (Yexp _ Ycalc)Q}

L] 1
X7 = Z
i (cixP)e

i
i

where the index i labels'the experimental configurations. The fitting
program BIKBOX (for "Black Box"), written by S. J. Yellinf 5) mini-
mizes I with respect to'(dc/dﬂ), subject to the constraint X2 = constant.
vIn the calculus,df;variations, those criteria suffice to determine

(dc/dﬂ)_uniquely. The only arbitrary parameter is the constant to
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‘which‘the value of Xe-is conétrained, dénoted C. One might expect
that a4reasonable choice fof'c is the number of degrees of freedom
‘in the fit, but that number is not well defined for this fitting
method. There is no unambiguous rule by which to choose C; one must
simply examine s family of solutions for various C. There is an in-
formative tradeoff between C and the value of I. The solution behaves
more erratically as a function of k when C is small. At the other
extreme, the solution becomes linear in k for a certain value of C,
and higher values of C cannot be reached. The results of using this
fitting program on the experimental data, using the cross section

parametrization described sbove, are shown in Section 4.
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4. RESULTS

Two different methods for evaluating the cross section were
introducéd in Section 3.6. The results are presented in this Section,
although it is seen that the "method of parametrization” is somewhat
unsatisfactory in its present formulation. From attempts to salvage
that potentially more powerful method, the cross section results are
also presented in a hybrid form which borrows from both the "method
of parametrization" and the "method of linear combinations."

Table 4.1 presents the results from the method of lineafh
combinations. As mentioned in Section 3.6B, this method was applied
separately to two subsets of the experimental data, determined
according to whether eta production was predominantly in the forward
or backward directions, hence the "forward" and "backward" categories
in Table 4.1. (The method might have been generalized to simulta-
neously measure the sum and difference of the forwardﬁgnd backward
cross sections, however.)

It should be stressed that the cross section values of Teble 4.1
are weighted averages of those cross section values obtainable from
thé individuai measurements of the eta yleld. It is therefore
statistically possible for the reported value to be negative, which
actually occurs in the case of the point for forward production near
970 MéV._ The error on that point, however, makes the reported value
‘easily consistent'ﬁith‘a sma;l positive value for the physical cross

section. The reported errors are from the diagonal elements of the
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_covariahée matrix, which we do not present here. The errors do not
reflect'gny of the possible systematic effects dis;ussed in
Section 6.10. 'we return to the question of systematic uncertainties
nearrthe éonclusion of this Section.

The cross section evaluation makes use of the branching ratio
for eta decay into two photons, taken as 0.375+0.16 from reference 20.

For convenience, we also tabulate the cross section with this factor

)
aQ’lyy °

entries in Table 4.1 are the mean values of the photon energy and

suppressed; this entry of Table 4.1 is denoted ( Other

cos ©%, where 6% is the center-of-mass eta production angle, aioﬁg
with the errors on both quantities. These, of course, refer to linear
combinations of the résolution in the various experimental configu-
rations, corresponding to the particular weighted average reported as
the cross section.

The cross section points in Table 4.1 are displayed in Figure
4.1, where the smooth curves will be explained below. The "forward"
points are labelled ¢ (OO),'with the understanding that although the

experimental resolution peaks at OO, the average value of 6% will be

greater than 0°, with similar comments for the "backward" points.
T&Ble 4,1 lists the average values for cos 6%, Note that only the
top of the error flag appears for the "forward" point near 970 MeV,
since the central value of that point is negative.

In the method of parametrization, the cross section is para-

metrized as
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%% (k,.O*)r =-‘ao(k) + ol(k) cos O% o (4.1)

where k is the photon energy and 0% is the center-of-mass eta pro-
duction angle. We actually determine co(k) and cl(k) with the thresh-
0ld factor (q*/k*) factored out,‘where q* and k¥ are respectively, the
center-of-mass momenta of the eta meson and incident photon. This
relieves the fitting program from describing the rapid energy vari-
ation of the cross section near threshold, concentrating instead on
the energy dependence of the squared amplitude. When the cross
section is parametrized as above, the experimental eta yield data
are not separaﬁed into "forward" and "backward" categories. If,
however, the cross section were parametrized as simply co(k), then
such a éeparation would be necessary in order to measure the forward
and backward cross sections independently, Jjust as in the method of
linear combinations. When we apply the simple co(k) parametrization
to the same "forward" and "backward" data which went into the ﬁethod
of linear combinations, then we obtain the solutions for co(k) shown
in Figure 4.1 by the smooth curves. ZEach pair of curves represents
the "error envelope" of the corresponding solution. The "forward"
and "backward"-soiuﬁions are seen to be in fairly good agreement
with thebdiscrete cross section points which emerge from the method
df linear coﬁbinations. The errof envelopes'are represented by
dashed lines above llOO‘MEV to indicate that the physical méasure-
ments of the croséisection do not sensibly extend into that region.

Returning to the parametrization (4.1), co(k) and cl(k) have
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' been detérmined for a family of values for Xa. (As explained in
Sectioﬂ‘3.6c, one does not know unequivocally what value to take for
X2, since the ﬁumber of degrees of freedom is undefined for this
fitting method.)  For 24 linear combinations of the experimental data
(not to be confused with those of the method of linear combinations),
the value of X2 has been fixed variously at 60, 20, and 4 to obtain
the solutions displayed in Figures 4.2, 4.3, and 4.4 respectively.

In those figures, the scales for co(k) and cl(k) are labelled
%(U(Oo) + o(180°)) and %(U(OO) - 9(180°)) respectively.

Several points will be noted about the solutions for UO(RS”
and cl(k). There are effectively 24 'points"being fitted, and there
is an unspecified but presumably positive number of degrees of
freedom. The case of\X2 = B0 represents a weak X2 constraint, and
the resulting solutions, Figure 4.2, are relatively smooth functions
of photon energy. For X2 = 20, the solutions shown in Figure 4.3
fit the experimental data better at the expense of smoothness. The
solutions for X2 = 4,‘Figufe 4.4, fit the experimental dats even
better, but the energy dependence is wildly erratic. Although the
solutions for X2 = 20 are probably closer to the ideal fit in terms
of X2 per degfee of ‘freedom, we feel that the solutions for X2 = 60 '
more reliably estimate the physical cross section.

The solutions have been permitted to assume physically meaning-
less negative values for’the cross section. In the case of the solu-
tions for X2 = 60,  this occurs in the vicinity of 1000 Mev. This

did not occur for the separate "forward" and "backward" solutions



69

2.0 r - - — .
- o
(a)
=
1.50 - i
> '
i ]
— I ; -
o /
OCO> /
= 100t l/ 4
b /
- I / |
e} /
b /
— 0.50 [~ / -}
~lev /
/ -
o3 / // s
P
P
AT
00555 700 500 ' 1100 1300 1500
PHOTON ENERGY (MEV)
0.50 T L T Ll T ’l L)
I,
" ) 1
j (v)
0.30 F
'5, 30 //
> L /
X ' /,
— I -
g 0.10 . /
@ /
5 _
A -Daof L |
ry ’
e I : ‘
5 '
—(N gl 4
'0‘5%00 760 ’ 960 ! uéo * 130Ln 1500

Figure 4.2 . Error Envelope of (a) co(k) and (b) cl(k), x2 = 60.

PHOTON ENERGY (MEV)



70

2.00 v T : " T v 7 T v
/ .
)
b , ’
] (a) i
— I
{ 1,50 L / :
n ll
2 I
— ) r ’ 1
5 /
?ﬁ 1.00 |- II ]
b / ,’
il Iy
o o i 7 b
e I/
b I/
‘_c.\l/ 0.50 | / // E
-~ . /
/
L / T
00505 ! _ 700 ' 960 ) 1160 ' 1360 ' 1500

PHOTON ENERGY (MEV)

0.50 r
! /I
L i 4
—~ oJ0f | II J
w
> | ! / |
2 Iy
= o.a0f I .
oo ‘ [
@ ']
= —
b I
L. .00} .
— -0. {
[+]
L, B I ]
—Jeu
-0.30 |-
0-5855 _ ’ 700 ' 500 ' 1100 * 1350’ ' 1500

PHOTON ENERGY (MEV)

Figure 4.3 - 'Error'Envelolpe of (a) cro(k) and (b) cl(k), x2 = 20.



'12— [0 (0°)+ o (180°)] (,ub/sr)v

[0 (0°)-0 (180°)] (peb/sr)

1
2

71

i 2.00 T T T T T / L) L}
]
' .
i ,’ (a) 1
l .
ol ,' _
.
|
- , _
]
]
1.00 l‘ b
|
]
I ll |
/ /’
0.50 - / ,/ J
/ ll
L I
i i
/I
{
o’asoo 760 ' 950 1160 : 1300 1500
PHOTON ENERGY {MEV)
0.50° ; . .
i (b)
0.30 F i
0.0 /\ .
\j o -
/
-0.10 II \‘ _
) AN
i . [ i
{
: 1
-0.30 F » : “ .
1
L ) | i
l
~ |
~0-545 ‘ 700 — 300 ' 1100 1300 ~1500
PHOTON ENERGY (MEV)
Enveldpe of (a) cro(k) and (b) cl(k), X = 4.

Figure 4.4 Error



72

)‘disﬁlayéd in Figure 4.1 for the term oo(k) alone. Those solutions
were dbtained with a relatively weak X2 requirement in order to be
comparable wiﬁh the-X2 = 60 solution for both oo(k) and ol(k). (The
"forward" solution, Figure 4.la, was obtained with X2 = 45 for 12
‘input data. The "backward" solution, Figure 4.1b, had %% = 45 for
13 input data.) Although we do not display them here, the solutions
for co(k) alone also assume negative values near 1000 MeV for more
stringent Xe requirements. It appears that the input dats are not
sufficiently dense near and above 1000 MeV to determine both Go(k)
X2 requirement.  We thus take the solutions for co(k) alone, with a
weak X2 requirement, aé best representing the method of parametrization.
Table 4.2 lists the separate "forward" and "backward" solutions
for co(k) at 10-MeV intervals, along with the errors and certain other
quantities which are explained below. From Figure 4.1, one notices
immediately that the errors on co(k) are smaller than the errors on
the discrete points-ﬁrodﬁced by the method of linear combinations.
The reason is that the solutions for co(k) have an intrinsic resis-
tance to change, the degree of which is controlled by the
setting of %2. . Recall that the threshold behévior of co(k) is
externally constrained, so that the solution has an especially high
resistance to change near threshold. One should refer to the dis-
crete points for a less method-dependent idea of the cross section
‘error. We are forced to turn to the discrete points for information

on <cos 9¥%> and'the error, Acos 6%. The reported values for those
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(quantities in Table 4.2 were obtalned from the discrete points
,(Cf' Table 4. l) by linear interpolation in k.

- For each value of k, we have the value of o_ (k) for two values
of <cos G*>, which amounts to two points of the full angular distri-
bﬁtion. Those two points determine a straight line, parametrized

here as og(k) + &z(k) cos ©%. This is a non-simultaneous version

of the solution for o_ and o, in the parametrization co(k) + cl(k)cose*,
and it is presented in Table 4.2 under the heading " Hybrid ¢_and al."

Figure 4.5 displays og and &? after maeking the following small cosmetic
alteration. DNear threshold, the interpolated values for <cos 9*;%5re |

not meaningful, since the resolution there becomes & flat function of

cos 6%, We have somewhat arbitrarily imposed the conditions

‘Torward <cos O¥>

v
-
O
u

. Backward <cos 0*> < -0.5

which affect cg and'c§ only between threshold and about 735 MeV.

The cross section errors presented here are statistical only
and do not reflect any of the systematic uncertainties discussed in
Secﬁion 6.10. bThe overall systematic uncerteinty was estimated as
8 percent, most of which applies equally to forward and backward
measurements of the cross section. Up to 2 percent of this uncertainty,
it was-estimated, affects forward and backward ﬁeasurements in opposite

directions. This implies that, in the parametrization co(k) + gl(k)cos o%,

the systematic'uncertaihty on Go is approximately 6 percent. The sys-
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“ temétic'uncertainty on oy is-approximately 6 percent plus 2 percent of
the value for Oy To apply this information; we say that the cross
 section'§alués in Tdble 4.1 bear a systematic uncértainty of the same
magnitude as a statistical standard deviation. As for % and 0., @s
représented by the "hybrid'results, we say that cg is also about as
uncertain as a statistical standard deviation, while the uncertainty
in cg is at most>0.02 ub/sr, which, by comparison with statistical .
errors, is negligible above, say, 825 MeV.

A final note sbout the method of linear combinations is in
order. The originator of that evaluation program, S. J. Yellin, gives
less weight to .that method than we have given it here, on the basis
of the greater effort‘that went into the development of the method of
parametrization.(s) The hybrid form of the results is our attempt to
combine the most reliable features of both methéds. The basic cross
section values for the hybrid results are taken from the separate
forward and backward solutions for db(k) alone, which agree rather .
well with the discréte poinfs from the method of linear combinations,
with possibly one exception. The forward point near 970 MeV, with
a value of (-0.04 = 0.07), is about three standard deviations from
the value of (0.17 % 0.04) for the forward o, at 970 MeV. On the

grounds that it is more relisble, we take the value for o, as the

more nearly correct estimate.



78

S. DISCUSSION

Our méasurements of the cross section at forward and backward
angles shov a significant departure from angular isotrdpy, starting
at about 0.8 GeV and persisting to the highest energies covered by
this experiment (about 1.1 GeV). Isotropy prevails between threshold
and gbout 0.8 GeV. The departure from isotropy consistently favors
the backward cross section over the forward cross section. To quote
a typical figure, the backward cross section.dominates the forward by
about’(SO + 15) percent at 0.9 GeV. We interpret our results in a
simple phenomenological model below. First, however, we wish to

briefly compare our data with those from previous experiments.

5.1 Comparison with Previous Measurements

As mentioned in the Introduction, no firm evidence for a de-
parture from isotropy has been reported prior to this experiment. To
give substance to this statement, we have taken the liberty of fitting
certain world data witﬁ a cross section of the form do(k) + cl(k) cos o%,
where k is the photon energy in the laboratory frame and 6% is the
center-of-mass production anglé. (Note that Go and Ul are half the
sum and difference, respectively, of the forward and backward cross
_sections.) The fesults of this experiment are conveniently expressed
as smooth functions of k for the terums do and Ul, as determined in
the "hybrid” formulation (Section 4). The results of previous experi-

ments are more 10gically présented by fitting the distribution of cos 6%,

theréby-determining 9, and oy for only those values of k where angular

.
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distributions exist. The bottom frame of Figure 5.1 shows the com-
pariébn{ vhere the pair of smooth curves represents the one-standard-
deviation liﬁits for the measurement of cl(k) in this experiment.

The data‘points shown there were obtained by fitting the angular dis-

(2,28) Orsay,<3) and Stanford.<6) It is

tributions tsken at Frascati,
clear that the errors on the data taken prior to this experiment are
too large to say that there is agreement with our data, but we note
that the highest-energy Frascati point, at 0.85 GeV, is 1.5 standard
deviations from isotropy and in the same direction as our result. In
using the Orsay data, we omitted the forward-most measurementsﬂét
0.835 and 0.865 GeV, since the reported cross section there is too
low and too high, respectively, for credibility. Finally, we compare
our result for co(k) directly with various world‘data;at intermediate
angles. (In our parametrization, the cross section at 90o is Just
oo.) This is shown in the top frame of Figure S.1 The agreement here

is sufficiently definite to give us a measure of confidence in our

result for cl.

5.2 Phenomenological Analysis

We wish to describe the data from this experiment, along with
certain other data on eta photoproduction, using a simple "isobar
‘model.” We circumvent the difficulties involved in the cross section
evaluation (Section 4) by fitting directly to the measurements of
the eta‘yield. Regrettably, we cannot present here the enormous amount
of efficienéy data needed to reproduce our fits to the eta yield.

We have .checked, however, that fitting the cross section data of
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‘_ Section 4 gives results which closely agree with those reported here.

The additional data which we con51der are measurements of the recoil
proton polarlzatlon( ) and cross section measurements at intermediate
angles and somewhat higher energies than were covered by the experi-

nt;(26’27) For the most part, we limit our attention to photon
energies between threshold and 1.1 GeV, or between about 1.5 and 1.7
GeV in the center-of-mass energy. We will see that the best descrip-
tion for data below 1.l GeV does not extrapolate well to higher energy.
We briefly describe a fit which does extend to higher energy
tolerably well.

A. Scope of the Analysis
We have mentioned the sources of our input data, and now we

outline the framework of the iscbar model. We restrict our consider-
ation to the I = 1/2, J = 1/2 states Pll(1460), sll(lsso), Sll(l710),
and Pll<l780)' “We neglect higher partial-wave resonances for the
reasons given in the Introduction. We avail ourselves of the Born
approximation for the proten pole in the s and u channels (n exchange
is excluded), including both electric and magnetic couplings explicitly.
We include no process which contributes in the t channel, since pion
ekchange is forbidden and higher-mass | meson exchange (e.g. p,
w, B) should be important only at higher energies than we consider
here. Finally, we include highly empirical terms for the non-resonant

background in both the s and Py partial waves.

11

Our strategy is to seek as simple a description as possible,

starting from the states 811(1550) and P (1780) alone, represented
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'&by Ereiﬁ—Wigner terﬁs‘with relatively real coefficients.  We then seek
to impfove the description by making use of the other ingrediehts of
our modei, naﬁely, the states Pll(léso) and Sll(lflo), the Born
approximation, the background terms, and complex coefficients for the
Breit-Wigner terms.

We are dealing with an inelastic, coupled-channel type of
regction, in which fhe important channel sl is accessible at all
energies above threshold. Our description, however, extends only to
eta photoproductipn, or to.just one off-diagonal element of the full
T-matrix. Let us outline what would be involved in a more combiéte
treatment, one which satisfies unitarity (and time-reversal symmmetry) .
The appropriate frameﬁork for such a treatment is the K-matrix formalism
of nuclear physics, as adapted for elementery particle physics'along

(29) (7)

the lines described by Dalitz. Chau, Dombey, and Moorhouse
discuss a K-matrix formalism containing the channels nlN, 1N, and 9N,
where fhe'channel YN is in the nature of a perturbation on--the K-matrix
for the channels énd nN-alone, and where the three channels are
considered sufficient to saturate unitarity in the medium-energy range
of the analysis. Davies and Moorhouse, in a treatment confined to the
physical channels s and 1N, siﬁulate inelastic multiparticle processes
with a twonody pseudo-channel oN, where the pseudo-meson ¢ is somewhat
arbitrarily chosen to have a mass of 390 MeV.(SO)
K-matrix phenomenology necessarily involves the introduction of

many free parameters to describe a limited amount of data for the

various elastic and inelastic reactions involved. Even with the
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‘constraints provided by unitarity and time-reversal symmetry, and
ignoring_the matrix element for yN ;97N on the basis of interéction
strength, only tentative and non-unique descriptions may be reached
in presenﬁ K-matrix analyses. Our approach, treating only eta photo-
production, probably affords as good a description of our data as one

can reasonably expect at this time.

B. Formalism
We use a helicity formalism for the eta photoproduction
amplitude. In terms of the conventional parity-conserving helig;ty
amplitudes Hi’(i =1, +.., 4),the angular distributions for the cross
secfion, dc/d(i(e*), and the recoil proton polarization in the direction

of ¥ x q, P(6%), are given by(ls)

do _ 1 g* 2
@ () = 3w I I
i=1
' _do q* *
and P(.G*)a—g— (e%) = - = In (HlHS* + H2H4) .

We are primarily interested in the S1q and 128 partial waves, which
correspond to electric and magnetic dipcle transitions, respectively.
If higher partial wéves can be ignored, then the cross section and

recoil proton polarization are given by
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AT 4 s g¥* 2 -y '
= (%) = = ([s-lll + [plll - 2 Re (sJ:| pll*) cos 9%)
and
.\ do ' _g* ‘ ; .
Plo*) 32 (o*) = e ( 0 + 2 Im(sl:L pll*) sin 6%).

(5.1)
The proton pole, of course, brings in higher partial waves. As we
will see, however, the Born approximation is of limited usefulness to

our analysis and is explicitly omitted from many of our fits.

Resonanées are represented by Breit-Wigner terms of the varilety
uéed by Walker.(ls)' The amplitude, A, as a function of center-of-mass

energy, W, is given by

L L L
' k4 2 W T2 1‘72
AW) = A() (D) (s.2)
‘ ’ W «W -1W T o
o}
where .
r = PO £(q, a4 £y X)s
I‘,), = FO fy (k) kO, J.),: X):

where fand f’y are given by

, ' (12 + X2 \ 4
~ 24+1 (o)
f (Q: qoa Z, X) = (%‘") “'é'_é—)
- _ o} \ a + X

and
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' . \ -k 237 .o
f.), (k: ko: J,),).X) = ('1'{'(;‘)

All'energy and momenta above are center-of-mass quantities, and the
zero-subscripted quantities denote the values at resonance peak.

A(Wb) is an adjustable complex parameter. We give X the value 250 MeV.
For 511 resonances, 4 = 0, while for Pyq resonances, f = lirand in

either case, the total photon angular momentum is j7 = 1. PO is
the total width. The energy dependence of T in the denominator of (5-2)W
is inappropriate for an inelastic reaction near threshold. As a simple

ansatz, we replace I' in the denominator by

T

1l

' 7T T
PT] f(Q: qo) Z, X) + PTC f(q_ » 9y Z, X) >

with D = T_+ T_ ,
o 1 7

where qﬁ is the momentum in the nll channel. It remains to choose
values for Pn and Pﬂ for each resonance which appears in our model,
making the aﬁproximation that ﬁhe channels =N and 7N saturate
unitarity. Since 6ur modification has little impsct for resonances
with peaks far from threshold, we set I‘Tt = 0 for both 811(1710) and

- (20)
Pll(l780). We set T = 0.5 Fn for sll(lsso),

and we empirically
set I"t = 5.0 Pﬂ for Pll(l460). Ip the case of a resonance peak
below threshold, such as for Pll(l460), we have to take qo —9i|q0|,
.and we rewrité :

2 .2\
-qC + X

' _ 241
£(q, qO’ EE) X) = (T%"T) 5 3 .
. ' . ]

g +X
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The highly empirical term for the non-resonant background in

the fth partial wave is given by

k q 1
v 00 . 5
(B?-Ckground)‘e = B.@ {"E‘d— (g, qo: £, X) f},(k; ko: J7,: X)} 2,

where Bz is an adjustable complex parameter. The resonance values for
a and k_ are arbitrarily taken from 811(1550) or Pll(l780)’ depending
on whether £ is O or 1, respectively.

In our expressions for the Born approximation, the eta-nucleon
coupling constant, Gﬂ’ is an adjustable parameter. From the SUBW

quark model, G_ is related to the pion-nucleon coupling constant, Gﬁ,

according to<31)

0.35 .

aqﬂsq)
0

oqé?
g

Numerically,.G¥ has the value (14.4 % 0.4).(24) We will see that the
best fité are obtained with considerably smaller values for Gn/Gﬂ
than that predicted by‘the quark model.
C. Numerical Results

The framework for our results has been outlined ébéve. The
free pafameters are the complex coefficients A(W&) for each resonance,
‘the quantity Qn fbr the Born approximation, and the complex background
coefficients Bo and Bi{ The "masses" and total widths of the reso-

nances were taken as
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Resonance W (GeV) T, (GeV)
sll( 1550) 1.550 0.130
Pll( 1780) 1.780 0.250
Pll( 1460) 1.460 0.240
sll( 17;0) 1.710 4 0.250

Table 5.1 presents the results of minimizing X2 for various
conbinations of the resonances and other terms. TFor convenience, we
refer to the solutions according to the number assigned them inmthe
left-most column. A quantity is underlined when the corresponding
parameter was not allowed to vary, or the quantity is omitted alto-
gether if the fixed value of the inactive parameter was trivially
zero. We report the value for A(Wb) invunits of (gb/sr)% , where the
guantity in parentheses is the phase angle of A(Wb), relative to that

1
for 811(1550). The units of B_ and B, are also (Wo/sr)2 .

1

Before discussing the individual solutions, a few comments on

X~ are in order. The right-most column lists X2 per degree of

2
af

and if those errors are accurately estimated, then ng ~ 1 for a

freedom, denoted X . If only random statistical errors are involved,
good fit. However, it appears that all parties contributing data to
our fits are guilty of inaccurately estimating their errors, and
systematic effects are typically not included. Thus, we attach no
absolute significance to the value of ng here, but rather we use

that quantity in compéring solutions.
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We now consider the solutions represented in Table 5.1. We
assumé';hat sll(lsso) dominates the amplitude just above threshold,
and we furthér assume that the broad peak in the cross section at
higher ehergies is most likely the effect of Pll(l780). For a first
’ solution, then, we try a model containing only those two states,
using relatively real coefficients for the Breit-Wigner terms. The

value of Xg for this solution (solution 1 of Table 5.1) establishes

f
a reference point for the other solutions. We now consider various
ways of improving the fit. The most obvious first step is to allow
a freely varying relative phase for the two Breit-Wig?er coeffiéients,
and the result (solution 2) is a distinct drop in the’value of ng .
The best value for the phase angle, as returned by the Xg-minimization
computer program, is (31 + 3) degrees. For the rest of the solutions
involving the Pll(l780), we fix its phase angle (relative to sll(lsso))
to that value.  As we will see, this simple two-state model, with a
specific relative phase, provides gbout as good a fit to the data as
we were able to attéin here.

| The Born term proved to be relatively useless for improving the
fit. Solution 3 was the combination of 811(1550) and the Born term,
with Pll(l780)‘temporarily suppressed. The best value for Gﬂ/Gﬂ was'
found to be -0.007, compared with the SU6W.prediction of 0.35. The
value for ng is higher than before, showing that the Born term is
a poér replacenent for Pll(l780). When we tried the Born term in
addition to both the Sll(15§0) and Pll(l780), the best value for GU/G“

was 0.02, and the fit showed a rather small improvement (solution 4).
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We then tried bringing in the states Pll(1460) and 511(1710),
_ again ﬁith‘no clear evidence for an improvement on the basic mddel of
sll(lsso) and_Pll(l780) with a relative phase angle of 31 degrees.
The resulté are solutions 5, 6, and 7 for the admixture of Pll(1460),
solutions 8, 9, and 10 for sll(1710). In each case, we tried values
of 00, 600 and 120° for the phase angle of the state being introduced.
In the case of Pll(l780), the largest admixture was obtained with a
phase angle of 120°, for which A(W_) hed a best value of -0.12. The
largest admixture of 511(1710) was 0.03, obtained with a phase angle
of o°. “
Solutions 11 and 12 sre the results of allowing the background
terms to vary. The amount of each background in the fit is described

by the complex parameters BO and B When we added the S-wave back-

1
ground alone, solution 11, the best value for BO was negligible in
absolute value (compared with the resonance parameters‘A(Wb)), and the
quality of the fit was unaffected. When we added the P-wave back-
ground alone, or both S- and P-wave backgrounds, the X2-minimization
program could find no solution. A solution was found only vhen Pll(lYBO)
was taken out of the fit. Thus, solution 12 is the result for 811(1550)
and the P-wave baékground. The best value for Bl is comparable in
absolute value with the typical value of A(wg) for P11(1780)’ and the

fit shows a small improvement.
| So far, we have restricted our attention to developing a fit in

the photon energy’range from threshold to 1.1 GeV, without regard to

how the fit eXtrapolatés to higher energy, where there is a broad peak
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" in the éross section (cf.,Figure 5.la). We have assumed that that

‘peak‘isva consequence of the resonance Pll(1780),>but we have not used
the cross seétion data in the vicinity of the peak to determine the
amount of the Pll(l780) term which appears in our fit. That burden

has fallen instead on the data of this experiment and those of the
recoil proton polarization measurements, via Egs. (5.1). The amount

of Pll(l780) in our fit is actually insufficient, by about a factor

of 5 in the cross section, to satisfactorily describe the cross section
above l.1 GeV. When we include higher-energy data in our fit, the
amount of Pll(l780) increases to s plausible level, but the fitrstill
does not describe the broad pesk satisfactorily, and the problem may

be traced to the sign of the S interference term in the cross

117711
section. Solution 13 in Table 5.2 represents one attempt to formulate
a fit which extrapolates well to higher energy, using the three states
sll(lsso), Pll(l780) and sll(17io). The relative phase between the
two Sll states has been adjusted to give destructive interference in
the,sll wave over as broad an energy range as possible, leaving the
Pll(l780) to describe the broad peak in the cross seétion, and the

v and p,_ waves is minimized.

‘ 11 11
Although we have used the Sll(l710), other mechanisms could account

troublesome interference between s

for the presence of less s..-wave in the tail of the Breit-Wigner peak

11
‘describing the Sll(lSSO), including a different type of Breit-Wigner
term.

Figure 5.2 ‘shows, in three frames, the quantities co(k), cl(k),

and P(90°) formerly defined (Section 5.1), for solutions 2 and 13. The
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. former solution is representative of the best fit obtainable with a
two-state model, and the latter represents a step in the direétion of
:fitting cross section data at energies above 1.1 GeV in a three-state

model.

5.3 Conclusions

The simple resonance model containing the states 811(1550) and
Pll(l780) may furnish an adequate description of eta photoproduction
in the photon energy region from threshold to 1.1 GeV, but our results
show that a relative phase angle of about 30 degrees between those
resonances is required for an optimum description. In the context
of‘that model,‘with the restriction to photon energy below 1.1 GeV,
we find little in the way of evidence for either Pll(1460) or Sll(l710).
The exfrapolation to higher energy, however, réquires the addition of

some mechanism, such as another Sl resonance, to modify the inter-

1

ference effects in the cross section due to the presence of both 819
and Py partial waves. To recall a point mentioned in the Introduction,
the.Sll(l7lO) is forbidden in the non-relativistic quark model, unless
there is mixing between that state and the sll(lsso),.

There is an obvious need for additional measurements, particu-
larly for complete éngular distributions of the cross section at
photon energies above 1 GeV. Recoil proton polarizaﬁion data are also
.needed to completely determine the photoproduction amplitude in the
Sll and pll partial waves. Information from polarized target and

polarized photon Beam experiments should prove rewarding, especially

if the amplitude is richer in higher partial waves than anticipated.v



95

6. APPENDIX

6.1 Primafy Photon Beam; Beam Monitoring

Elecﬁrons accelerated within the synchrotron collide with an
internal target made of 1/32 inch tantalum (Z = 73), and the
brémsstrahlung photon beam leaves the synchrotron through a 105.5
inch straight section of vacuum pipe capped with a mylar window at
the exit port. As seen in Figure 2.1, the emerging beam first
encounters the primary collimabtor, which has a diameter of 0.347 inch..
and nominally confines the beam divergence to an angular radius of‘

‘ 1.5 mr. The beam halo is attenuated downstream by scrapers, and
two l-kg permanent magnets sweep charged particles out of the beam
“and into the 4 inch lead wall containing the final scraper. The
beam suffers an insignificant degree of absorption in the hydrogen
target and continues through to the ion chamber and beam catcher
where it is finally absorbed. The lead wall in front of the beam
catcher is a backscatter shield and has a liberal aperture for the
beam. The bean ﬁiameter at the center of the target is{dbout 0.8 inch,
and comfortably fits inside the 1.5 iﬁches diameter of the mylar cup
containing the ;iquid hydrogen.

The elements of the besm monitoring system are: the ion
chamber; a current integrator, and associated with it, a precision
pulser; énd‘a quantameter (for calibration purposes). The current
integrator scaled the integrated beam energy in units called BIP's

(Beam Tntegrator Pulses):
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1BIP 2 1.2 x 1070 Mev .

Each‘timé.a BIP was registered, the PDP-5 computer inserted a special
marker in the data. Independently, a mechanical scaler totaled the
nunber of BIP's and ended the run at a preset number of BIP's.

A‘gas mixture of 90% Ne and 10% He inside the ion chamber
is irradiated and partially ionized by the photon beam, and a 15 Kw/m
electric field inside the chamber induces a measurable current in
the closed path connecting the chamber electrodes. A Littauer type

(15)

current integrator measured the charge of ionization, which is

proportional to the total energy of the beam. Before each run, the
integrator was calibrated by recording its response to a number of
pulses from the pfécision pulser, allowing us to convert BIP's to
coulombs of charge. The relation between charge of ionization and
integrated beam.energy depends on properties of the ion chamber. Let
UI denote‘the integrated energy per unit charge for the ion chamber:

UI depends on photon'energy, which we may indicate by writing UI(EO),

where EO is the synchrotron endpoint energy. As described below, we
experimentally measured U_ for several endpoint energies by comparison

I
, . (18)
with a Wilson type quantameter .

Unlike an ion chamber, the
guantameter calibration constant, UQ’ is virtually independent of
photon energy and has the advantége of being known theoretically at
least as well és experimentally(l7).

The ion chanber was. removed from the experiment occasionally

and taken to another area of the synchrotron for calibration against

“the "South Beam" quantameter there. The photon beam passed through a
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'phin ﬁall ion chamber and, further downstream, a lead apertﬁ?e. Qur
,procedure involved locating either the ion chamber or the quantameter
.squarely 5éhindAthe lead aperture; we used the thinAwall ion chamber
to deliver the same amount of integrated beam energy to either device.
We irradiated each device separately and measured the charge produced,
using the same current integrator each time. For equal amounts of
integrated beam energy, the ratio of the charges, qQ/qI, is the
inverse of the ratio of the calibration constants, or UI/UQ'
Figure 6.1 shows the results from one calibration session, where

the ratio UI/UQ is plotted versus Eo'

Gas leakage from the ion chanber made it necessary to replenish
the gas mixture every four or five months. The pressure was delib-
erately maintained above atmospheric pressure to minimize contam-
ination and to monitor the leakage. The time dependence of UI/UQ
was checked by taking measurements, as described above, both before
and after each lon chamber refilling. Let t_ denote the time of
refilling. Lineariziﬁg4UI/UQ in both the time, t, and the endpoint

energy, E_, for t <t < (to of next refilling):
‘UI(EO,t)/UQ = A(E, - 0.9 GeV) + B(t - to) + C,

where

[
il

1.5 / Gev

&
i

-0.0010 / day.
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C is a constant characteristic of the time period between refillings:

*

t C
2/20/69 10.60
3/3/69 10.62
5/15/69 10.42

11/13/69 10.48

We use the theoretical value for UQ, which is, for the South

Beam quantameter at standard temperature and pressure,(l7)

1

UgTP = (4.80  0.15) x 10™® Mev/coul )

The actual temperature and pressure for the quantameter were observed
to be 25.8°C and 677 mm Hg (on November 11, 1969). The corrected

value of UQ,,and the one we used in calibrating the ion chamber, is

L STP
%

. ] /T STP
Q p/T

(5.78 = 0.18) x 10%

]

8 MeV/coul .

Let us now trace the steps in converting the number of BIP's,
denoted B, to_thercorrespondingiamount of integrated beam energy, W.
The latter is needed in any cross section measurement. The first step
is to convert B to ion chamber charge, using the results of the current
integrator calibration. Before each run, the current integrator was

 temporarily disconnected from the ion chamber and reconnected to a
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. precision pulser; The standard prochure was to record the number of
‘BIP'évperuced by exactly 200 pulses, each pulse Qf which carfied a

" charge of 503.75 x lO-lO coulomb. Denoting the number of BIP's thus

produced‘as B2OO’ we have the following expression for the ion chamber

charge, d1s in terms of the corresponding number of BIP's, B:

-10
Q; = (200)(503.75 x 10 )B/Bzoo coul.

The next step is to convert qI to qq, the charge expected for the
quantameter in the same experimental configuration. This follows from

the above parametrization for UI(Eo’t)/UQ :
o = alagfa) = ag@(E,0)/0) -

Finally, qQ is converted to integrated beam energy via the theoretical

value for UQ. Collecting the above results, the integrated beam energy

W, as a function of BQOO’ Eo’ and t, is expressed in terms of B as
follows: '
W(Bzoo’ E, t) = UQqQ
U.(E_,%)
= (5.78 £ .18) x 10™® (F5-2—)200 x 503.75x10™B/B,, | MeV.

a -

6.2 The Hydrogen Target

Two diétinct types of targét design were used in the course
of the experiment. The earlier one was a simple type in which LH2
(liquid hydrogen)‘is fed into the appendix from below and allowed to

boil there at atmospheric pressure. An automatic cycling system
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‘ kepf the appendix filled. Later on, a closed system, condensing
‘type target suitable for hydrogen or deuterium was installed. -

vThe construction df the original target is shown schematically
in Figure 6.2 . The appendix, made of 0.005 inch clear mylar, is
6.050 inches long and 1.5 inches in diameter. The outer casing is
made of 1/16 inch aluminum with 0.005 inch wylar beam windows. The
space exterior to the appendix is pumped down to gbout 10 millimicrons
pressure, while the appendix interior is atvatmospheric pressure.
Surrounding the appendix, with cutouts for the beam, is an aluminized
mylar heat shield mgintained at a temperature of 90°k by conduction
with a LN, (1iquid nitrogen) jacket located sbove the appendix. In

operation, LH, is forced up into the appendix by gaseous nitrogen at

2
about two pounds overpressure. When the LH2 fills the appendix and
reaches a péint on the appendix stem where a resistor is attached,
the feed valﬁe for the gaseous nitrogen is automatically closed.

The condensing target construction is shown in Figure 6.3.
The length of the appendix was initially €.639 inches, but was soon
chahged to 6.390 inches. It was later changed to 3.270 inches in
order to improve kinematical resolution (at the expense of counting
rate). Otherwise, the construction of the appendix, outer casing,
LN2 jacket and heat shield are the same as in the pressure fed target.
The new features are a central cbndensing tube which attaches t6 the

top of the appendix and an LH, jacket which surrounds the condensing

2
tube. Gaseous hydrogen is introduced under pressure into the
condensing tube, ¢condensation proceeds on the tube wall, and the

condenséte collects in the appendix. To speed condensation, the
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: boiling'point of the LH2 inside the Jacket is lowered slightly by
| pumping down its vapof pressure. The filling time is abou£ 20 minutes.
The aluminum outer casing had two cutouts for the beam windows,
each 2 inches in diameter, and a 1 inch diameter cutout for the 30°
line surveying window. A photon from eta decay, unless it passed
through one of these mylar windows, had to penetrate the 1/16 inch
aluminum casing; for normal incidence, this amounts to about 0.018
radiation length.

The primary photon beam passed through four layers of 0.005
inch mylar, two layers from the appendix and two from the target beam
windows. Each layer in +the appendix, however, had been pressure
formed and presented a thickness of about 0.003 mylar to the beam.

The total empty target matter in the beam represents about 4% of the

total number of nucleons presented to the beam by the filled target.

6.3 The Photon Telescopes

Each photonitelescope consists of a lead aperture, veto counter
and Cherenkov shower counter arranged as in Figure 2.1 . The lead
apertures had a vertical width of 8 inches, and the horizontal width
was variable. The horizontal width was variously 7 inches and 3.5
inches, and the thickness of the lead was 1.25 inches. The veto
counter was made from 1/2 inch scintillator, in front of which was a
1/2 inch lucite shield to absorb soft electrons. The veto counter
was in back of, and overlapped, the lead aperture, so that most photons
vhich converted in the lead would be vetoed. The shower counter was

positioned squarely behind the aperture and veto counter. The entire
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"uniﬁ was mounted on a trolley ﬁhich could be rolled on a circular rail.
An aluminum platform éupported the telescopes. The trolleys had
'ﬁointerswattaéhed tb them wﬁich could he aligned ﬁith marks on the
platform. |

Each shower counter is constructed as shown in Figure 6.4.
Two 14X14X6 inch blocks are joined with RIV compound to make &
14X14X12 inch block. - The RTV does not provide an optical match, so
that the joined blocks are optically distinct, but the combined photo-
tube signal is rather insensitive to shower origin over the face of
the block: a test of this point revealed less than 5% variation of
mean shower pulse height for normal incidence. Seven XPL040 photo-
tubes, each 5 inches in useful diameter, are joined to the back surface
of the block using RIV compound, arranged as in Figure 6.5. Each
phototube is shielded from‘stray magnetic fields with a jacket of
Netic and Conetic metals. The soft iron box housing the lead glass
provides additional magnetic shielding, although it was found neceséary
to wrap the box with:dbout 40 windings of 0.020 inch transformer
laminations.

A. Cslibration

The energy calibration of the two shower counters was

performed in andther areg of the experimental hall, using & momentum-

selected positron beam located there.<18)

The positrons were pair-
produced at an asuxiliary outlet of the synchrotron's "South Beam,"
and a magnetic spectrometer defined a beam with a momentum width of

gbout 3. A final defining counter restricted the beam spatially to
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Figure 6.5 Phototube Arrangement in Shower Counter
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al cm2 cross section, and the shower counter to be calibrated was
placed immediately dowvnstream. For each shower counter, the signals
from the seven'phototubes were passively averasged, and the averaged
signal was pulse height analyzed. About lO4 counts were collected
for each qf various settings of the positron energy (controlled by
the magnet current).‘ The mean pulse height is plotted against the
energy in Figure 6.6, where the straight line is a linear fit to the
data.

We desired a secondary energy standard to retain the results
of the positron beam calibrgtion. Thus, a light source was con-m
structed by attaching a Bi-207 radiocactive source to a small cube of
scintillator material.b One source-scintillator was fashioned for each
shower counter and glued to the front surface of the lead glass,
straddling the Jjoint line of the two smaller lead glass blocks. It
was necessary, of course, to locate the source—scintiilator in the
shadow of the lead aperture.. When a shower counter was triggered on
its own internal light, the pulse height spectrum was dominated by
the source-scintillator, as seen in Figure 6.7 . The peak in that
spectrum, caused by Auger electrons; served as a secondary energy
stahdard by compariscon with positron-induced showers; the light outpuﬁ
is comparable to a 200-MeV shower.

Let Es-denote the shower energy which corresponds to the Auger
peak, and let ué denote the corresponding mean pulse height. We

express the linear fit seen in Figure 6.6 by writing

E, o (B, -E) w/ug + E (6.1)
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_where

E+ = 7positron energy

L = mean pulse height

E = constant. -
o]

ES was determined to be 170 MeV for one counter and 215 MeV for the
other, but different values were obtained in different calibration
sessions. The "energy pedestal," E,» suffered similar fluctuations

in repeated measurements, but a value of 10 MeV was typlcal. Since
incident photons produce showers quite similar to those of positrons,
Eq. 6.1 provided a tentative calibration for the pulse heights
obtained in the experiments, where E+ is replaced by the photon energy,
Ey. Before each run, the value for Hy Was measured for each counter
by examining the source-scintillgtor spectrum.

The calibration described above proved inadequate for any
sensible data_anélysis. As described in Section 3.5 , it proved
possible to re-determine values for ES within the data analysié; these
came out as 150 MeV for 6ne counter and 175 for the other, with errors
of about S MeV.

B. Resolution

The energy resolution of the shower counters was examined
using the positroﬁ'beam, although the 3% momentum width of that beam
ﬁust be taken‘into account. Let n, denote the mean number éf photo-
electrons, surmed over the seven phototubes of a shower counter. As

explained below, the averaged signal for the seven phototubes will

behave like that of a single phototube with n, photoelectrons, provided
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that the individual phototube gains are equalized. By "gain" we mean
the constant which converts the number of photoelectrons to & pulse
height. Dendting the gain by g and the mean pulSe height by u, we

have that

o= en, - ' (6.2)

If the number of photoelectrons were distributed in a Poisson spectrum
from random phototube fluctuations, then the variance of the pulse

height, 02, would he given by

g = g n s (6.3)
and the following relation would obtain:

" 2
® = n, -

Figure 6.8 is a plot of (p/c)g against positron energy. The shower
counters were so designed that n, should be proportional to incident

particle energy(lg)

, but Figure 6.8 shows a marked deviation from that
rule., However, Eq; 6.3 neglects the finite beam momentum width. This

width, denoted cp/p, modifies the expression for the variance to read

2 2 2 2
o = gn, + u (GP/P) ’
and
(52 - o .
o 1+ ne(cp/P)

Since we believe.thét n, is proportional to energy, we write
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' vhere E+ is the positron energy. Not trusting the figure of 3% for
_ the momentum width, we sought to measure both k, and (ap/p)2 by
fitting the data of Figure 6.8 with the above parametrization for

(u/c)z. The results were, for shower counters "1" and "2",

1 2
k, (Mev'l) 0.352 0.344
op/p 0.035 0.040

These values for ke do not suffice to describe the observed resolution
of eta events, as explained in Section 3.5. Assuming that one value

describes both shower counters, we determine ke'within the data analysis.

C. Gain Matching
For each shower counter, the signals of the seven phototubes
were averaged>into one signal for pulse height analysis. As shown below,
the resolution of thé averéged signal is optimized by equalizing the
individual phototube gains, & process we refer to as gain matching.

The light source for gain matching was a set of light-emitting
diodes connected in éeries and driven by an SKL: type fast pulser. Each
shower counter had such a string of light-emitting diodes taped to the
front surface of the lead glass. The gain matching procedure involved
analyzing the pulse height spectrum of each phototube individually and
‘adjusting the voltaée of that phototube until the gain was near .a

desired common value. The PDP-5 computér asslsted in this task.
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 We matched the gains at the rate of about once a week, and the photo-
tubes were sufficiently stable that only minof voltage corrections
were necelssary.‘
The following argument is due to S. J. Yellin(5 ): consider

the vectors A and B, defined by

A, = o,
i i

By = mylog

where subscript i denotes the ith individual phototube for one shower

counter (non-subscripted quantities refer to the summed signal). Thus,

AA = 20.2 =c:2
. 1
i
BB = = (u./o )2 = I n
. i’ 71 . e,
i i 7i
A'B = Z.. IJ-:.L = “- .
i
Using Schwartz's inequality,
(A-B)2 < A% 5% ,
or _ | p.2 < 022 n,
i i
2
&)y < Z n,
g i % : (6.4)

The number of photoélectrons is independent of the phototube voltage,

so that the right side of 6.4 is & constant. The equality holds
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' .vwhen vectors A and B are parallel, for which case (u/c)2 is maximum
and equal to the total number of photoelectrons, as for a single

phototube. This occurs when

A. = aB,
1 1
M
or 6. = Q ——
1 o.
1
2
94
—_—=a ,
Hy

where & is any constant. But, from Eqé. 6.2 and 6.3, (Gz/p)i

th phototube. Therefore, the individual

is just the gain of the i
gains must be set to some common value in order that the sumed (or

averaged) phototube signal have optimum resolution, for which case

W) = En, . (6.5)
i i
The light-output_width of the light-emitting diédes was unknown,
"but an indirect measure was afforded by checking Eq. 6.5 after the
gains had been matched: TFor one such check, the number of photo-
electrons was 154 for the left-hand side and 160 for the right-hand

side.

6.4 Operating Procedure

-Before beginning a dats collection run, the synchrotron was
adjusted to operate at the desired endpoint energy, and then the shower
counters were moved to the desired angle with respect to the beam line.

Polaroid film was exposed by the synchrotron beam at a point downstream
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"of tﬁe hydrogen target, in order to check that the maximum photon
intensity (the "hot spot") was properly centered within the beam
énvelope; If’necessary, the internal radiator waé re-oriented by
remote control in order to center the hot spot.

The current integrator which messured the ion chamber charge
was calibrated by measuring its response to a known amount of charge.
The phototube voltages for the shower counters were set to values
determined from the most recent gain measurement session, and the veto
counter voltages were set to values from the most recent observation
of the veto counter spectra. The various electronic bias adjustments
were similarly set and the transistor power supplies were adjusted to
standard voltages. The pulse height analyzing system was calibrated
in a two-part procedure. First, an SKL fast pulser was operated so
as to generate a number of artificial events (‘fiducial" events) for
two settings of the SKL oubput voltage, and the mean pulse heights for
the two settings were recorded for both channels of the Nuclear Data
pulse height analyzef. Secdnd, the source-scintillator pulse height
specﬁrum was exhibited for each shower counter in turn, and the pulse
height associated with the Auger electron peak in that spectrum was
recorded.

The PDP-5 computer assisted in the above pulse height measure-
ments, and the results became part of the first record to be trans-
ferred to magnetic tape for the run in question. Further information
for the first record was automatically requested by the computer, and

it was supplied mahually through a teletype. That information included
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"the integrator calibration, the endpoint energy, the shower-counter-
to-beézn;line angle, the date and time, and any comments. After it
had written tﬁe first record on tape, the computer was started in the
data‘colléction mode, all scalers were set to zero, and the synchrotron
was started. Data collection began as soon as one unit of beam (one
"BIP") had been registered.

The synchrotron produced a square lel type of dump lasting
about 60 ms or 120 ms, depending on whether the cycle rate was 2/sec
or l/sec, respectively. When the endpoint energy was less than about
900 MeV, the shorter dump was used, while the longer dump was used at
higher energies. The beam intensity typically varied by a factor of
two from one dump to another. The peak intensity was controlled by
the synchrotron tuning, and it was necessary 0 de-tune the synchrotron
for some runs, when the counting rate was especially high. The dump
occassionally developed undesirable spikes, resulting in events with
especially large pulse heights. The experimental apparatus for
detecting two-gamma events was gated on a signal which encompassed
the period of the dump.

The PDP-5 computer was programmed to remotely fire the SKL
pulser, so as to inject a fiducial event into the electronics, every
time a preset number of gates had been registered. Such an event
always preceded the build-up of the dump, so as not to contribute to
the dead time. Fiducial events were tagged as such by the computer,
by switching on an‘unused bit of the word containing the time differ-

ence pulse height. In a table of pulse heights collected experimentally,
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"the fiducial events stand out in the tagged time difference by
displéying only minpr changes in each of the three pulse heights which
define an eveﬁt. Each time another unit of beam was registered, the
PDP-5 inserted a special marker in the collected data at that point;
these markers‘similarly stand out in a table of pulse heights, by
having special unchanging values for each of ‘the three pulse heights.
The computer data buffer had room for a certain number of events,
variously 340 and 210, and when the buffer became filled, 1t was
transferred to magnetic tape and cleared for refiiling.

When the computer was not busy with incoming data, it calculated
points for an oscilloscope display. Three pictures taken from actual
running are reproduced in Figure 2. 3 .  The top two pictures are pulse
height tables, where the index runs from left to right, for those events
currently contained in the data buffer. The bottom picture is a four-
in-one histogram display for the three pulse heights in each event plus
the geometric mean of the two pulse heights representing the shower
energies. The laxtef guantity scales like the two-photon invariant
mass, and eta events are visible in this spectrum as a peak (see
Figure 3.9). The top picture is a pulse height table for the time
difference. The pulse height values cluster at about half way along
the ordinate for true coincidences, while accidental coincidences are
scattered over the ordinate. The very tight cluster near the top is
due to the fiducial events. About half way between these clusters is
a ‘tenuous cluster of five points, caused by the special beam unit

markers. The middie picture is a pulse height table for one of the
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o shoﬁer counter signals, with similar but obscured features as the time
difference table above. The-histograms in the bottom picture display,
‘from leff to'right; the geometric mean of the shower signals, the time
difference, the shower signal for one counter, and the-same signal for
the‘other counter.

fhe oscilloscope displays were valuable in spotting equipment
failures, and it was most helpful to have an on-line display which
exhibited the eta mass peak. The displays, as well as the scalers,
were given spot checks throughout a run, and a Polaroild picture of the
histogram display was taken at the end of the run.

At the end of a run, the computer transferred its data buffer
t0 magnetic tape and requested certain information through the teletype.
That information, which was written on tape as the final record of the

run, included the scaler readings, the date and time, and any comments.

6.5 Timing Optimization

As mentioned in Secﬁion 3.2, zero-crossing discriminators were
used at strategic points in the electronies to minimize discriminator
"slewing" in the time difference measurement system. We might have
compensated for the residual slewing by direct measurement, but this‘
was not done. Instead, we deduced, and compensated for, the amount
.of residual slewing using the déta produced by the two shower counters.:
The slewing-compensated timing spectrum shows a narrower coincidence
peak, aé seen in Figure 6.9 for the uncompensated data of Figure 6-9&.

We now explain how the slewing correction is made.
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, Slewing makes the timing pulse height, tlz' dependent on the

shower7¢0unter pulse heights, ey and e,, as follows:

_ (true) .
t, = by + T(eg, e2) .

The matrix T, which describes the effect of slewing, separates in e

and e2i

T(ep, ep) = Ti(e)) + Tyley) (6.6)

where the vectors Tl and T2

arms of the circuitry which produces the time difference signal (see

describe the slewing in the individual

the electronics block diagram, Figure 2.2 ). The matrix T was experi-

mentally measured by examining the t. ., spectrum for events with fixed

12

values of ey a.nd.e2 (actually, e and e, after a coarser binning);

the maximum in the tl2 spectrum was studied as a function of ey and €y

Denote the value of 't,, &t maximum by TexP(el, e2). We fit TP by a

term of the form (6.6), where each element of vectors T, and T, is &

free variable; we minimize S, where S is given by

5 = ¥ Wepey) (1P(epe,) - T(e) - Tye))?
€58, :

where the weightingrfactor, N(el, e2), is the number of events in the
(el, e2) bin. Minimizing S with respect to each element of T and T

1 2

independently, leads to the coupled conditions
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2. N(ep,m)(T¥P(e ,n) - Ty(n))

n
L Wlepm)

Tl(el) =
| ’ (6.7)

g; N(m,ez)(TexP(m,eE) - Tl(m)) N

Tg(ez) ) % N(@:eg)

The solutions for Tl and T2 are not unique with respect to the trivial

transformation
. - T +C

T, - T, -C,

where C is a constant. Approximate solutions for Tl and T2 were

obtained by iterating Egs. 6.7 starting from a trial guess. This
approach is very similar to, and was in fact motivated by, the back-
ground fitting method described in Section 3.3. Figure 6.10 displays

the results for Tl and T2 (the "slewing functions") in a typical case,

where the abscissa is either el or e2 after calibration in terms of

the corresponding photon energies.

6.6 Maximum Likelihood Method

In this section, the simpie "gpectrum factoring" technique
introduced in Sectién 3.3 is extended to apply to a wider class of
fitting régions than the simple rectangular region employed there.
"It is shown that‘this approach amounts to a maximum likelihood descrip-

tion in terms of binned quantities. Finally, the maximum likelihood
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- formulation is augmented with a term describing eta events, for
fitting-data containing a mixt;ure of background and eta events. To
begin, we consider the problem of describing background data alone.

For the set of bins defined by
(il’ i2)€ R,

we wish to describe the matrix N(il, i2) with another matrix, F(il, i2),

defined by

F(il, 12) = Fl(il) F2(i2) .

The vectors Fl and F2 are to be determined by some fitting criterion.
Suppose that F is required to be normalized to.N within each row and
column independently, consistent with the region R. To express this

idea more precisely, consider the following subsets of R:

I

{ni (il,n)e R}

{ml (m,ia)e R} .

R(il)

R(1,)

For each i, such that R(il) is not empty, normalization within R(il)

requires that

T OF(i,m) = F(i) Y F) = ¥ Ny, Ru)f {of
neR(il) ' neR(il) neR(il)

Similarly, normalization within R(i2) requires ‘that
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L Flmiy) = Fy(i,) ¥ Fym) = 5 N(miy), R(1,) £ {0} .

meR(iz) | | | meR(iE) meR(iQ)

These are coupled relations for Fl and Fz, or at least for those

elements of Fl,and F2 which correspond to non-empty sub-regions of R.

One way to find Fl and F2 is by iteration of those relations, rewritten

as

& T(Ep,m) (6.8a)
neR(iy)

Fy(n)
neR(il)

Fl(il)

S N(m,i)
. meR(ie) _
Folip) T Rm .. (6.6b)
meR(ie)

For example, one may start with a trial guess for F,. Then (6.8a)

2

furnishesva guess for'Fl. This guess for Fl mey be used to improve

. the guess for F, using (6.8b) and so on. The solution will not be

2

unique, but the product of Fl and F2, i.e., F, will be unique.

Instead of a normslization requirement, suppose that F is
to represent the expectation value for N, bin by bin. Then Fl and F2
which maximize the likelihood of this description can be found. From

the Poisson distribution, the probebility, P, that an experiment will

produce N, as it actually appeared within the region R, is given by
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e;F(m’n)[F(m,n)] N(m,n)

N(m,n)!

(m,n)eR

o~Fy (m) Fp(n) [F,(m) Fyn)] N(m,n)

- T _ (6.9)
' (m,n)eR N(m,n)!
The value of Fl(il) which maximizes P is determined by
3 {N(il,'n) }
- - F(n)| = 0 (6.10a)
neR(i, ) F(E) 2 "
and the value of F2(i2) which maximizes P is determined by
3 {N—-(—T(m’ig) <>] (5.100)
- - F.(n = 0 . 6.10b
mer(1,) T2t 1

The above relations in Fl and F2 are seen to be formally equivalent
to those of the normalization approach, Egs. 6.8.

Either of the above approaches, normalization or maximum
likelihood, is sultable for describing the matrix N(il, 12) if N
contains only aﬁ uncorrelated background spectrum. Suppose, however,

that there is an eta peak in the spectrum of N, and that a term to

describe that peak, denoted Y(il, ia), is added to F:

F(il',iz) = Fl(il)Fz(ig) + Y(il,iz)
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' The problem of finding Fl and F2, vhere Y is considered a constant term,
distingﬁishes the normalization_ approach from the maximum likelihood

approach; 'I'he4 normalization approach amounts to fitting (Fl F2) to

(N - Y); the maximum likelihood approach, while more complicated,

furnishes the better description. The expression for P, Ed. 6.9,

becomes

p = T elFaliy) Fplip) +¥(ip,35)]
(m,n)eR

[Fl(il) Fz(iz) + Y(il,ig)]N(il’iz)

NS
N(ll,le).

and the relations in F. and F,, Egs. 6.10, become

L 2
N<ll;n) F (n) ‘
nze:R(ll (:F (1 ) F (n) -+ Y(ll,n) - Fz(n)} =0
» (6.11)
e meR(ig) F]_(m) F2(i2) + Y(m,i2 - Flgm) = 0 .

-

Thevpresevnce of the eta term, Y(il, 12), makes it impossible to isolate
Fl and F2 in the manner of Egs. 6.8. However, it is still feasible
to iterate these relations as a way of finding F, and Fz.' Simple

1
manipulation of Egs. 6.1l leads to
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: N(il,n) Fe(ii) Fe(n)

nlh) - 'nze:R(i y F1(iy) Fpln) + ¥(4y,n)
Lo Fm)
neR(il)
| (6.12)
N(m,ie) Fl(m) Fz(ig)
Foliy) = n%R(ih) Fy(m) Fy(iy) + Y(m,iy)
i F, @)
meR(iz)

Actually, this "simple manipulation" has an important effect on the
solutions. TFor example, one must stipulate that the solution of

Egs. 6.11 may not allow F to be negative, since F is an expectation
value. On the other hand, if one begins‘with-pbsitive Fl and F2 in
Egs. 6.12, then F will automatically be restricted from being negative.

One may verify that, had F been defined as

Ry, 1) = F(E) F(5y)

the result for F would coincide with that obtained from iteration of
Egs. 8,12 after starting‘with a non-negative initial gueés for either’
Fl or F2; This‘point is almost trivial when Y identically vanishes,
since then no restriction is needed to keep F non-negative.

- From the point of view of the background fitting problem, the
eta events are seen as g kind of unwanted "background". The term
Y(il, 12) is introduced in the above formalism for the purpose of

. effectively subtracting the unwanted "background" of eta events from
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: N(ii, i2). Another type of event which logically belongs ip this
category is the accidental coincidence, which so far has not been
distinguiéhed'from £he true béckground. If we~know the spectrum of
accidental coincidehces, denoted A(il, ie), then we should replace Y
with‘(Y + A) in every formula above. We cbtained an estimate of A,
and made fhat.replacement, following the procedure outlined below.

We obtain an essentially pure sample of acciden@gl coincidences
by selecting events with t12 values far from the coincidence peak (see
Figure 3.6). The (il, i2) spectrum of such events, denoted Ao(il, 12),
is "smoothed" by fitting it with a term of the form Al(il)Az(iE)’ using
precisely the fitting methods developed sbove. This term is then
normalized to TA’

survived the timing cut and appear in N. The result is our estimate

the expected number of accidental coincidences which

for A(il, i2>' The estimation of TA involves an extrapolation of the
tl2 spectrum of accidental coincidences into the region of the coin-
cidence peak, which led us to perform a special test. The signal from
one showef counter was delayéd by 100 ns, which is the period for one
orbit of the electron beam in the synchrotron. (Electron "bunching"
in the synchrotron increases the probability for an accidental coin-
cidence at multiples,of 25 ns, since there were four bunches in the

orbit.) The & spectra obtained for such a test, performed on two

12
different occasions, appear in Figure 6.11. The top spectrum shows a
clear peak at the expected place, and this structure is expected for
accidental coincidences in the undelayed t12 spectrum, Figure 3.6.

However, the botﬁom spectrum'in Figure 6.11l, produced by the same test

performéd.later in the experiment, has a markedly suppressed peak.
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* Faced with these conflicting results, we elected to extrapolate the
t12 spectrum into the region of the coincidence peak, using linear
‘interpolation‘between the bands on either side of the coincidence peak.

This provides a dubious estimate of T,, although it is shown in

Section 3.7 that the estimated number of etas is practically insensitive

to this quantity.

6.7 Efficiency Calculation

This is an outline of the Monte Carlo type computer program
which estimates the detection efficiency. The results are used at
two levels in the data analysis: in the description of the (El, E2)
distribution of eta events, Section 3.4 ; and in the cross section
unfolding, Section 3.6 . Sub-Section A below details the more exotic
features of the Monte Carlo calculation, while B describes an entirely
different, closed form type of calculation. The latter is only
approximately valid, asymptotically approaching the true efficiency
as the incident photbn ehergy iﬁcreases. The results of this method
are in good agreement with those of the Monte Carlo method for photon

energies well above threshold.

A. Monte Carlo Calculation
The Monte Carlo type computer program simulates eta photo-
production and subsequent two-photon eta decay for fixed Values of the
energy. The detection efficiency is estimated as the fraction of all
simulations corresﬁonding to successful two-photon detection. Cor-

rections are made for the occasional conversion of an eta decay photon



133

- in the target outer casing, in the wall of a lead aperture, or in a
erto counter or its lucite shield. The mylar windows of the aluminum
'target caeing are taken inte account in the conversion probability.
The efficiency calculation is, of course, specific to the geometry of
the terget and the photon telescopes. For each target-telescope con-
figuration' of‘the experiment, the efficiency calculation must be
carried out so as to cover the range of incident photon energies from
threshold to the highest endpoint energy used. Figure 6,12 is a
perspective view of the efficiency for a shower-counter-to-beam angle
of 500; mapped as a function of the incident photon energy-and the
cosine of the center of mass angle.

The simulation does not ge-so far as to fluctuate the decay
photon energies according to the shower counter energy resolutions,
nor is any account made of the electronic biases on the shower counter
signals. The finite energy resolution of the shower counters is taken
into account in the parametrization described in Section 3.4. As for
the electrenic biases, the a@propriate discriminators had not been
calibrated in terms of response probsbility as a function of pulse
height. This point, which directly affects only the eta peak simulation\
(not the cross eectiqn unfolding), led to the introduction of artificial
pulse height biases which overrode the electronic biases, as mentioned
in Section 3.3.

Each simulated event is characterized by an origin in the
hydrogen target, two angles describing the eta motion, and two more

angles describing the two—phofon eta decay. The latter set of angles

-are carefully restricted to a useful range containing all possible two-
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 photon detections, in order to reduce the computer running time. The
targetvorigin was varied over the irradiated volume of the hydfogen,
and the angleé of the eta motion were varied over a full sphere; however,
the Monte Carlo randomness in these parameters was modified by a delib-
erate biag, again for the purpose of reducing computer time. As
explained below, this bias was kept out of the efficiency estimation
by assigning & statistical weight to each simulated event.

Consider a function of one variable, f£(x), for which we desire

an estimate of the mean, ¥, defined as

5 -
F o= (b-a)™t [oxax . (6.13)

This problem arises in the efficiency calculation, where f represents
the detéction probability and x represents the various free parameters
and kinematical varisbles. TFor simplicity, we consider only one
variable. The Mbnte Carlo approach is to estimate f as the average

value of f over a set of randomly-chosen x. We denote this average

value by fN,;where N is the number of rendom choices of xX. Explicitly,
- 1 N
i=1

where it is understood that the X, are randomly chosen on the interval
(a,b). This type of estimation is less subject to systematic error
than ﬁethods which depend on an equally-spaced set of x; e.g. Simpson's
rule, especiallvahén thefe are several variables. The expectation

value of EN’ over all possible outcomes for the set of N choices of x,



136

~is just T, independent of N. The quality of the estimate, on the other

hand, improves as N increases. The variance of f _is giVen by

N
2
ce(f‘N) = G—N—@-) | (6.15)

2,
where ¢ (f) is the variance of f, which may be estimated as

N
AT Fr Loty - T2
i=1

The Monte Carlo method described above is somewhat inefficient.
The choice of X is random, even though f is more interesting where it
is large than where it is small., Suppose that the choice of x is
systematically biased, such that the prdbdbility of a choice falling
in the interval (%, x + dx) is p(x)dx (normalized to unity over the

entire range available). The expectation value of f

fN’ calculated as

in Eq. 6.14, is written as

\ L b
- : -1
<f> = [ p(x)f(x)ax = (b-a) " [ s(x)f(x)dx,
a a
where g(x) is defined to be (b-a) times p(x). This expression reduces
to f, Eq. 6.13, only when g(x) = 1. However, suppose that we take

(f/g) as the quantity to be averaged over N bilased-random choices of X,

i.e., consider the expectation value of (f7g)N . It is

: : b
<@oy> = G-I a0 S8 e - 2,
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'where
N
(Fe)y, = 5 & £(x)/e(x) ,
i=1

independent of N. It ig now understood that the X, are chosen in
accordance with the probability épectrum described by g. What is a
good choice for g? Intuitively, g should follow f for an optimum
estimaﬁe. This is confirmed by the expression for the variance of the
estimate, Eq. 6.15, which becomes Nt 62(£/g). This vanishes when g
is proportional to f. We do not g priori know £, but the evaluation
of £ at various x adds information to our picture of f. We may then
choose g to be any non-zero approximation to f.

The biased-random type of Monte Carlo method described above
was eﬂboaied in the computer program for calculating the detection
efficiency. The function g(x) is in the nature of a statistical weight
for each simulatéd eta event. The program occasionally pauses to re-
calculate g on the bgsis of & smoothed version of the spectrum §f f.
One may easily show that g may be "refreshed" at any point in the
calculation without altering the expectation value of the result, viz. f.
(A word of advice to would-be users of this method: g should be smoother
and broadér than the current estimate for £.) This method was applied
to three of seven possible Monte Carlo variables; namely, the event
ofigin in the target along the beam line only (the lateral displacement
was directly randomized), and the two angles describing the motion of
the eta. The two aﬁgles describing the two-photon eta decay were

directly-randomiied within a restricted solid angle, which amounts to
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' using a step-function type of g.

B. Approximate, Cloééd Form Method
A useful check on the Monte Carlo efficiency calculation

was furnished bj the closed form type of calculation described below.
This method suffers from an integrable singularity in the expression
for the infinitesimal contribution to the efficiency, but the error
introduced by the singulariﬁy decreases as one moves away from thresh-
old in energy. At greater than about 100 MeV above threshold, the
results of this calculation are in excellent agreement with those of
the Monte Carlo calculation.

| The method involves calculating the efficiency in closed form
for pairs of point counters and a point target, This expression 1s
then integrated over all pairs of point counters and all points of
the hydrogen target. In practice, each finite counter was divided
into & finite nﬁmber of smaller counters, and the integral was
approximated by a sum.

Consider the detection efficiency for a pair of point counters,
for a point target, as depicted in Figure 6.1l3a . Constrain the two
photons from an eta decay to enter apertues of infinitesimal solid
angle, dnl and dQE' AThis cpnstrains»the eta momentum vector to one
of two possible directions, given the energy of the eta. However, at
é certain energy, these two direcﬁions coalesce. This happens when
B = cos (977/2), w?ere.ﬁ is the eta velocity and 977 is the two-photon
opening angle. Below that energy, it is impossible to satisfy the

constraint on fhe two photon directions.
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Figure 6.13 Geometry of Hypothetical Point Counters, as Seen in the
‘Laboratory Frame (a) and the Eta Rest Frame (b)
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Suppose that we are above the critical energy for detection
with the_point counters. In the eta center of mass frame, the point
counters "appear" (to photons) as collinear with the point target, as

shown in Figure 6.13b . The solid angles dQ., and dQ, are transformed

1 2

into dﬂi,and dﬂé . Let us calculate the probability for successful

detection when the eta momentum is randomly chosen from an infin-

itesimal range of momenta perpendicular to the direction of the

counter-target collinearity. Denoting this range of momenta by

—
d2 pL, it is easily shown that the probability for successful detection

is
toant 2
a0 4o (M_/2)
P = 2 1
2 2-
124 , a D,
where Mﬂ = eta mass.

Next, we relate d2§l to the eta momentum in the center of masé
frame. If the eta energy is fixed, then the center of mass eta
momentum; 5&, is constrained to a spherical Surface. An infinitesimal
range of allowed momenta, d2§¥, will be perpendicular to ;& . Now
transform to the eta rest frame, where the range (512;)e is preserved
by virtué of being transverse momentum. The plane of c12'356 , however,
need ot be parallel with that of d°p . Demote the dihedral angle

betveen these planes by X. It follows that

a% = |cos x| .

4

Therefore, if ;& is randomly chosen ' in the range d2§&, then the
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' probebility for a successful detection is

o 2
dQ; aal, (Mn/e)
P =
7Y =

| cos x[aeﬁk

The prdbability that an ets of fixed energy will randomly have its

momentum vector in the range defined by dEE* is

2,
%
p = 2P

T el

Thus, the probability that an eta of fixed energy will be successfully
detected by the point counters is

Mﬁ an) aay
P=P P _ = (6.16)
N men® 9% %eos x|

with the proviso that the fixed energy be above that allowed for any
detection. Below that energy, P vanishes. The critical energy for
detection corresponds to X = 900, which is a singular point in the
expression for P.
| 1 1
Ope may now relate dﬂl d92 to dﬂl dﬂa and the angle 977,
and cos2 X may be related to the eta center of mass quantities 7n*
and Bﬂ* and the center of mass opening angle, 977* « We get that
! dar = sin%(e_/2) do. o
, Lo vy 1

2 2
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' - 2 k2 s =2 s
and ¢Q§2X = (7: B;) (7%~ - sin (9;7/2)) .

These expressions allow one to evaluate P, Eq. 6.16 , in terms of
easily calculable quantities. Then the efficiency, for fixed energy

and a point target, is the integral of P over all dQ. and d92 of

1
the finite counters. Finally, one may integrate over the finite

target..

6.8 Electronic Dead Time, Empty Target Corrections

We discuss here certain small corrections to the eta yieldg.
Eta events were occasionally lost because of the finite recovery time
of electronic elements of the fast logic (Figure 2.2), and we estimate
the loss as that due to the 1.5 ms recovery time of the Nuclear Data
multi-channel pulse height analyzer. This losé was monitored by way
of a scaler whichbcounted the number of mastér triggers, which is
also the number of times the Nuclear Data was gated. The number of
gates acceptéd bj the Nuclear Data appears as the number of events
on magnetic tape, ahd the fraction of all gates not accepted, called
the "dead time" and denoted here as f, is readily calculated. The
instantaneous dead time may be independenély estimated from the Nuclear

N

Data recovery time, = D’ and the time rate of the incoming gates, R.

The relation is

R may be estimated using the fiducial events as time markers, since a

"fiducial event was generated at multiples of the time duration of one
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" beam duﬁp. (Typically, there were 24 beam dumps between fiducial
evente;)_ From a knowledge of the dump time, and from cdunting the
‘number of events between fiducial events on magnetic tape, one may
estimate R. We tested this estimate by calculating ?ND from Eg. 6,17,
using the scaler-measured loss rate for f. For most runs, the ™D
thus calculated came out gbout 2 £ 1 ms, more or less as expected.

For certain rums, however, the calculation gawe a value which was too
large by up to a factor of 50. After reviewing this problem thoroughly,
we concluded that the probable cause was erratic behavior in the scaler
counting the number of master triggers. Thus, the scaler loss"rate

is a somewhat unreliable estimator of the dead ‘time, although in most
cases it appeared reasonsble. Our estimation of R is also unreliable
if the beam was especially unstable in intensity over the number of
dumps between fiducial events. We used the scaler loss rate for the
dead time correction to the eta yield, except that runs for which

the dead time estimate was greater than 10% were rejected.

There was another source of dead time, one which was not care-
fully monitored, in the anticoincidence signals generated by the veto
counters: Eta events might have been accidently vetoed. This is a
potentially serious effect for the cross sectlon asymmetry, since
forward photoproduction is associated with higher counting rates and
therefore higher accidental veto rates. We neglected to record the
veto counter rates, which are necessary for a direct estimation of
the accidental vetb rates. There are some circumstantial bits of

evidence, howeter, which indicate that the problem was not serious.
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"Work done early in the experiment establishes that the veto counter
rates wére typically 30 timés the corresponding shower countef rates.
"Assuming that this ratio holds later in the experiment, we estimated
the accidental veto rate for all runs. The largest estimate thus
obtained was 2%, and a typical estimate was 0.5%. As further evidence,
wé have analyzed a run for which the soft-electron lucite shield was
inadvertantly missing from its place in front of one of the veto
counters. The eta yleld for that run was almost identical with that
for other runs at the same kinematical setting and with the lucite
shields in place, even though the unshielded veto counter was séaling
at many times its normal rate. We cannot, however, improve the other
estimate of this effect directly, since the eta yilelds in this case
were resolved to within only 10%. We summarizé by guessing that the
accidental veto rate is at most a 2% effect ih the eta yields, and

we explicitly assume that the effect is negligible.

A correction must be made for eta photoproduction from the
complex nuclei of the empty target material in the beam. This amounts
to about 0.016 inches of mylar (see Section 6.2) or about 4% of the
+total nunmber of nucleons when the target is filled with liquid hydro-
gen. This correction was based on an estimate of the eta yields for
both the empty and full targets, using the Monte Carlo detection
efficiency, a trial cross section, and the relation for the estimated
eta yield (Eq. 3.7). The detection efficiency was specislly cal-
culated for the,emﬁty targét,configuration, with the approximation

that mylar is equivalent ‘o liquid hydrogen at the same density of
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nucleons per unit area. Any attempt to estimate the sbsoluté empty
.target correction is overly dependent on the trial cross section,
50 we'corrected in the ratio of the empty to full target estimated

yields.

6.9 Synchfotron Endpoint Calibration

| The synchrotrdn électron energy, which is the bremsstrahlung
endpoint energy, was regulated and nominally measured using a system
which measured the synchrotron magnetic field. The true endpoint
energy was given as the product of a calibration constant and thef
nominal endpoint energy. Thiessen(25) gives this calibration constant
as 1.021 = 0.003, based on a precise measurement of the integrated
output of the pickup coil located in the synchrotron's magnetic field.
Other, unofficial values for this constant preferred 1.015. The exact
value was significant in this experiment, since the endpoint energy
defined the upper end of the photon energy range accepted by the
apﬁaratus.

. We were able to independently measure the endpoint calibration
constant using data taken just above the threshold for eta photo-
production. The fitting program BLKBOX (Section 3.6C) was applied
to those data for which.the endpoint energy was between 710 and 750
MeV. The usual threshold phase sjace factor was suppressed in the
fitting. If‘we assume that S wave dominates near threshold, then the
squared ambliﬁude_may be non-zero at threshold. The fitting program

sought the smoothest fit to the squared amplitude for various choices

- of the endpoint calibration constant. X2 was fixed to the value
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'corresponaing to & linear fit, which maekes the fitting program
:rgughlyvéquivalent to a line fitting program. The best fit occﬁrred
for a calibration constant of 1.021, which is that reported by
Thiessen. ‘The resolution in our measurement.was seen by examining
the fits for calibration constants of 1.018 and 1.024, shown in
Figure 6.14 along with the fit for 1.021l. Our resolution is seen to
be roughly comparsble with that of Thiessen, and our central value

agrees with his.

6.10 BError Analysis

This discussion of the errors is divided into three parts.
Sub-Section A describés a number of tests applied to the background-
foreground fitting procedure. That method estimates the number of
eta events for each experimental run, and that estimate is uncertain
to the extent that it changes with respect to reasonable alterations
in the fitting method. Sub-Section B discusses other uncertainties
in the number of eta events and in the integrated beam energy. These
uncertainties, together with those of the background-foreground
fitting,give one an idea of the uncertainty in the eta yield, defingd
as the number of eta events per unit of integrated beam enérgy. The'
eta yield is the input to the cross section evaluation programs dis-
cussed in Section 3.8. Sub-Section C discusses systematic error in
the crdss'section evaluation.

A. Backgpound¥Foreground Fitting Method

There are a number of quasi-arbitrary features of the back-
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ground-foreground fitting method, such as the boundaries’of‘the back-~
ground énd,etalregions, the trial cross section used in generafing
the foreground term, the width of the energy bins, ete. All such
features Qere fixed according to our best common-sense picture of the
fitting problem, but there is ample room for variation of the method
within that picture. We singled out three experimental runs fdr an
intensive study of the fitting method. These runs were selected to
represent photoproduction at forward, intermédiate, and backward
angles. We label these runs 1, 2, and 3, respectively. 1In terms of
the angle between either photon telescope and the downstream beaﬁ
line, GO, and the synchrotron endpoint energy, Eo’ the three runs

are characterized by:

Run QO, degrees Eo’ MeV
1 45 850
2 | : 55 800
3 80 775

The fitting method produces an estimate for the number of eta events,
denoted Tﬂ, and the'estimated statistical error, i.e., the standard
deviation, denoted cn. When we apaly?ed runs 1, 2, and 3 in exactli
ﬁhe same mannef as all runs had been analyzéd preparatory to the

cross section evaluation, we cbtained the following results for T

and o_:
M
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Run Tn dﬂ
1 764 36
2 1561 51
3 789 39

Denote the above values for Tﬂ by Tz . VWe express changes in Tq due
to changes in the fitting method by the quantity A, defined as

S

A = _I\__a___’l (6.17)

n

Additionally, we consider certain goodness-of-fit indicators. As
explained in Section 3.5, the description of the experimental data
is divided into backgrbund and foreground fitting problems, with the
results of one serving as input for the other. We calculate goodness-
of-fit indicators for the background and foreground fitting separately.
The type of indicator we use is the number of standard deviations by
which_x2 deviates froﬁ,its.expected value. This quantity is denoted
FG and BG for foreground and background fitting, respectively. (For
an exact definition of these quantities, see reference 5, Appendix E.)
Note well that we do not express changes in FG or BG, but rather we
express these quantities directly for each distinct élteration of
the fitting method._ |

For reference, a number is associated with each test of the
fitting méthod. The corresponding numbered paragraph below explains

the nature of the test; and the correspondinglrow of Teble 6.1
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(.presents the results of the test in terms of A, FG, and BG.. The
unalteféd‘fitting method 1s associated with the number Zero. Wé
consider [A] z‘l to be a serious change in the number of eta events.
Similarly; when either FG or BG is greater than about 2, the quality
of the fit is poor and warrants attention. For most of the cases
discussed below, FG and BG indicated good fits and were consequently
not mentioned.

(O) This is the case of the unaltered fitting method. By
definition, Eq. 6. , A = 0. Good fits are indicated by FG and BG.

(1) The background fitting is carried out over a domain of
events called the "background region." That region excludes events
near the eta peak viabthe so-called "eta cut" (see Section 3.5).

For the first test, the eta cut was eliminated, i.e., no events near
the eta peak were excluded from the background fitting. As seen in
Table 6.1, this. test had a negligible effect on A, and FG and BG

are practically undisturbed from their values for the unaltered fit-
ting method.

(2) The background_region excludes events with too low invari-
ant masses via a "mass cut" (see Section 3.4). The boundary of the
maés cut was normally 240 MeV, but for this test it was 280 MeV.
Briefly, the purpose of the mass cut is to exclude the observed
enhancement in the background at low masses. If the enhancement
were nbt sufficiently excluded, then raising the mass cut boundary
should cause the estimated number of eta events to decrease, i.e.,

A would be negativé. Although.A.is moderately negative at a value

of -0.51 for run 1, the value is +0.13 for kinematically similar
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run 2. We feel that no systematic effect has been demonstrated by
these vélues for A. The idehtically zero A for run 3 reéuires some
explénation. - The mass cut competes with artificial biasses on the
separate shower energies in excluding events, ahd in some cases the
artificial biases override the mass cut, as in run 3.

(3) For this test, the artificial energy biases on shower
energies El and E2 were relaxed (see Section 3.4). Thus, additional
events‘near the discriminator cutoffs were added to the background
and foreground fitting problems. The original purpose of the arti-’
ficial energy biases was to obviate a correction to the foreground
term for the discriminator cutoffs. This test ostensibly reveals
the consequences of fitting the data near the discriminator cutoffs
withoutvmaking the requisite correction to therforeground term. From
Table 6.1, A is small for runs 1 and 2, but large (at 0.96) for run 3.
This result prompted a closer examination, from which it was learned
that the artificial energy biases were in the role of the mass cut
by excluding events.in the background enhancement, especially for runs
which favored backward photoproduction. This was not the intended
role of the energy biases, and we were fortunate that the energy
biases were required for obviating the foregound correction.

(4) The eta cut was enlarged in a specific way for this test.
EVentsrsituatedvdbove the eta peak in both El and E2 were excluded
from the background region. The enlarged eta cut thus excluded
events near the.eté peak as well as events above the eta peak. The

effect of this change vas negligible in‘all indicators.
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(5) The foreground fitting is carried out over a domain of
eyents called the "éta region," the boundary of which is defined
ﬁéing the foreéround term itself, as described in Section 3.5. For
this test;the eta region was enlarged to include all events except
those exc;uded by the mass cut and the artificial energy biases.
The effect on A is moderste, and the sign of the effect appears to
be correlated with whether the run is forward or backward photo-
production, insofar as runs 1, 2, and 3 are statistically represen-
tative of such & correlation. To check this point, we applied the
same test to a number of additional runs. The results for those”
additional runs is not presented here, but we mention that the
supposed correlation was not borne out. Thus; we take the magnitude
of A to be significant for this test.

(6) Only events with the time difference signal sufficiently
close to exact coincidence are accepted for background-fqreground
fitting. The "timing cut" described in Section 3.2 excludes other
events. For this teét,the timing cut was relaxed, so that many more
accidental coincidences were included. The estimated number of
accidental coincidences, denoted T,, was automatically increased
(see Section 676). ‘The effect on A is moderate, but it is probably
unreasonable to require that the»fitting descriﬁe a large nunber of
additional events in the nature of accidental coincidences. A more
reasoﬁable test is described below.

(7) For this test, the estimated number of accidental coin-

cidences, TA’ was manually set to zero, overriding an automatic part
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- of the fitting program. In effect, the background fitting now "sees"
the acdidental coincidences previously estimated to be TA in ﬁuﬁber{
"It is reasonable to require that the background term describe this
number of accidental coincidences, since the estimate for TA is
dubious (Section 6.6). The effect on A is negligible and justifies
using the dubious estimate. Although the timing cut was unaltered
in this test, the net effect is similar to that of the previous test
of the timing cut. That test, however, unrealistically admitted a
largé number of accidental coincidences, while the present test deals
with only those accidental coincidences admitted normally via the
timing cut. If we therefore accept the present test as the definitive
one on the guestion of accidental coincidences, then we have shown
that our treatment of the same, in terms of TA; is entirelynédequate.

(8) As discussed in Section 3.4, a trial cross section is
incorporated in the foreground term. We used an isotropic version of
the world dafa on the cross section, with the understanding that a
version consistent'with our measured cross section could be later
substituted, 1f necessary, in order to make our measurements indepen-
dent of world data. To show that such a subétitution is unnecessary,
the trial cross secfion energy dependence was temporarily replaced by
a "flat" function of photon energy. The fitting is virtually in-
sensitive to such a change, as seen in Table 6.1, and we are Jjustified
in not reéuiring the trial cross section to be consistent with the

measured cross section in a detailed way.

(9) The Monte Carlo efficiency calculation (Section 6.7) is
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: usedvin generating the foreground term in the manner described in
Section 3.4. Statistical fluqtuations on the Monte Carlo calculation
thus afféét the foréground term, although the numbér of successfully
simulated eta events was designed to be adequate for any foreground
term.‘ To confirm that the statistics were indeed adequate, the fore-~
ground tefm was artificially fluctuated in accordance with the
expected Monte Carlo fluctuations. The negligible effect on fitting
~runs 1, 2, and 3, seen in Table 6.1, resulted from using the arti-
ficially fluctuated foreground terms.

(10) As discussed in Section 3.4, the foreground term embodies
certain assumptions about the responses of the shower counters with
fespect to the energy of an incident photoh.' One such assumption is
that the apparent number of photoelectrons varies linearly with inci-
dent photon energy, denoted Ey. The slope of that energy dependence,
assumed to intersect the origin, is the adjustable parameter ke in
the foreground term. One expects ke to be a constant descriptive of
the shower counters,lfut iﬁ fact, ke exhibits a dependence on the
‘laboiatory configuration of the shower counters. Thét dependence
-emerges from adjusting ke to fit the experimentally produced eta ‘
peaks via the foreground fitting. One possibility is that the
apparent number of_photoelectrons is not truly linear‘in Ey' To first
order, one possible departure frém linearity in energy may be approxi-
mated as a shift ﬁlthexxﬁntjn.Ey where the linear fit extrapolates
to zero apparent photoelectrons, preserving the assumed linearity
7characterized bj'the quantiti ke. The intersection with the Ey axis

'is‘ordinarily at E7 = 0, but for this test the intersection point was
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: ‘at Ey = =200 MeV. As seen in Table 6.1, such a change hadlpractically
no effect on the fitting results. Thus, quite apart from the reason
for any'departure from linearity, or for the dependence of ke on
shower counter éonfiguration, only a negligible error is made with the
assuﬁption of linearity.

(il) As first explained in Section 3.3, the shower counter

energies El and E2 are divided into 20-MeV bins to produce the integers

il and 12. For this test, the energy bin width was changed to 40 MeV.
In retrospect, such a change is probably too drastiec, since the shower
counter energy resolution is 6n the order of 40 MeV at only 500 MeV
incident photon energy. The resulting A, Table 6.1, nevertheless
‘indicates only a moderate effect on the estimated number éf etas. The
quality of the fits, as indicated by the quantities FG and BG, shows a
noticeable deterioration.

(12) This test and the following one deal with the departure

of the background from a strictly uncorrelated spectrum in El and E2.

Rather than confinihg our consideration toc the well-studied enhancement
of the background at low masses, we considered a "long-range" departure

from an uncorrelated spectrum. As discussed in Section 6.6, the back-

ground is described.by the term Fl(ll)F2(12), where 1) and i, are the

energy bin indices of the shower energies El and E2. Denote the mean

value of E, by (El) , and the standard deviation of E, by G(El), and

1

similarly for E_.. The simplest type of correlated spectrum which one

2

can write in terms-of'Fl and F2 is
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(5, - (5))(E, - (£,))
5(E,) o(E,) s (6.18)

F,F, (L +a

where o is a constant. The correlation coefficient for such a épectrum,
- over any rectangular set of (il, 12) bins, is just 0. This is one
example of a possible long-range type of correlation. Our test of
the fitting involved creating artificial data incorporating exactly
such a long-range correlation, then fitting that data with the
ordinary fitting method with its uncorrelated background term. The
eta peak was included in the artificial data, and the number of counts
in each (il, 12) bin was fluctuated according to Poisson statisties.
Aparﬁ from the éérrelation described by the quantity «, the artificial
data were modeled after the experimental data for runs 1, 2, and 3.
The preéent test is actualiy a control, in the,sense that O was set
to zero, while the following test had ¢ = 0.l. As seen in Table 6.1,
this control test shows good foreground and background fits, and the
A indicates dnly that the artificial data were patterned after the
experimental data réasonébly well in the number of ets events. The
following test completes the discussion by pointing out the effects
of taking o as 0.1,

(13) As explained above, this test and test 12 involve fitting
artificially generated data using the deliberately correlated term
(6.18) for the background. A 10% long-range correlation (& = 0.1)
appeared in the data for this test, whereas test 12, as a control,
had an uncorrelated:background. The artificial data were fluctuated

—independently for test 12 and 13, so that any systematic difference
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- betﬁeen the two tests willvbe~modulated,by ordinary statistical
variation. In Table 6.1 we see pronounced differences between
tests 12'énd 13, which rules but statistical variation as the csause
of those differencés. There is a marked increase in A for all three
runs; accompanied by a severe deterioration of the quality of the
fits, espécially the background fits. It is safe to say that a 10%
long-range background correlation is inconsistent with the observed
high quality of the background fits to the experimental data. This
is fortunate, because the large A for this test represents an intol-
erable systematic error. We do not hazard a guess for sn upper limit
on the long-range background correlation, but rather we assume that
it is negligible. In passing, we mention that the long-range |
correlation was measured (via the correlation coefficient) for the
below-threshold. experimental data, and no evidence of long-range

correlation could be detected within statistical error.

B.  Uncertainties in the Eta Yield

| The eta yield is defined as the number of eta events, Tﬂ’
divided by the integrated beam energy, W. We have previously
enumergted systematic uncertaintieé in the background-foreground
fiﬁting method. .Here we review those uncertainties along with the
corrections discussed in Section 6.8. We also estimate the size of
the errors in the measurement of W, finishing with an idea of the
uncertainties in the eta yield. Sub-Section C below<;ompletes the -

error analysis by -discussing the uncertainties in the cross section

evaluation.
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( The background-foregrqund fitting process produces an estimate for
the nﬁﬁper of eta eyents, Tn,‘as well as an estimgte for the statis-
" .tical error oﬁ Tn,_denoted an. We have assumed that the estimate for
Uﬂ is accﬁrate, but that eassumption is subject to experimental
‘verificatjon., We may divide a set of events into several subsets

and apply the fitﬁing method to each subsets individually, and the
observed fluctuation in Tn over the subsetsvallows an independent
determination of Uﬂ' In addition, the sum of Tﬂ over the subsets
should be equal to Tn for fhe undivided set of events. In order to
check these points, we have divided each of the previously studied
runs, denoted 1, 2, and 3, into ten equal sub-runs. Table 6.2 lists
the values for Tﬂ and Uﬂ returned by the fitting program for each of
the sub-runs. Below this information is listed the sum of T and the
Pythagorean sum of Uﬂ’ followed by the values obtained by fitting the
undivided runs, denoted Tﬁ and og. Finally, we express the difference
between T end 'I‘TO] by A, as defined in Eq. 6.17. The values for A
show that the fitting method is reasonably independent of the size

of ﬁhe sample of events, even though the sign of A is negative for
each of the runs. As fof the indeﬁendent check on the estimate for
on; we calculéte.an‘experimental value for Uﬂ’ denoted GEXP, from the
fluctuation of Tn,over_the sub-runs. This should be compared with
-the rootfmean—square value for gﬂ, denoted Uzms . The values for

these'quantities are:
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TABLE 6.2

RESULTS OF FITTING SUB~-DIVIDED RUNS

Subset Run 1 Run 2 Run 3
- Number 4 'I‘.q GT] _TT] OTI Tﬂ UT]
1 85.40  12.17 145.62  15.36 72.59  10.24
2 81.23  10.74 163.44  15.18 64.03  10.66
3 75.56  10.32 158.67  15.58 90.87  12.65
4 64.99 9.44 182.87  17.16 80.23  10.85
5 73.57  10.17 146.44  14.28 76.30 12,47
6 76.89  11.19 152.57  14.85 75.13  11.95
7 62.56  10.37 . 134.14  14.55 83.84  10.83
8  99.50  11.54 149.69  13.95 91.53  11.92
9 63.85  10.62 146.77  16.88 69.03  11.26
10 77.32  11.06 162.32  15.04 75.39  11.08
Totals* 760.87 3410  1542.53  48.42 778.94  37.17
(Tﬁ:az) 763.68  36.10 1561.07  50.67 789.10  39.18

A -0-08 ) "Oo 36 ‘ "00 26

*Pythagorean sum, for qﬂ
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e rms
Run o Xp o]

1 13.4 15.3
11.2 10.8
3 8.9 1l.8
We regard this as evidence that the estimate for on returned by the
fitting program is believable.

- It remains to find an'estimate, however crude, for the systematic
uncertainty associated with the fitting process. This subject was the
motivation for the special tests described in Sub-Section A above.
Those tests are not entirely independent of each other, nor do they
encdmpass all conceivable tests, but they give a fair idea of the
uncertainty involved. Certain of those tests, however, should prob-
ably be'disregarded, on the grounds that a reaéonable range of
variation in thé Titting method was exceeded. In test 3, for example,
the artificial energy bailses were relaxed,>deliberately violating the
reasons for infrdducing those biases. Test 6 should be considered as
having been supplanﬁed by test 7. The energy bin widening in test 1l
was excessive, as was the amount of "long-range correlation” intro-
duced in tests 12 and 13. We therefore discount the results of these
tests. It is 1ﬁpor£ant to note that, of the remaining tests, the
values for A appeared to be statisticélly independent of whether the
run involved forward or backward photoproduction (alt@pugh the
statistics are poor for'only three runs).

For a crudé estimate of the systematic uncertainty in the

- fitting method, we take the Pythagoreah sum of A over tests 1, 2, 4,
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5, 7, 8, 9, 10. From Table 6.1, we get values of 0.61, 0.32, and
0.52 fbr_runs 1, 2, and 3 respectively, for a run-averaged value of
0.48. In woras, then, the systematic uncertainty is sbout half as
great as the statistical standard deviation. We wish~to express this
finding as a fractional uncertainty in the number of eta events. TFor
this purpose, we have calculated the average statistical error over
all runs of the experiment, and the result is between 5 and 8 percent, .
depending on how one weights the individual runs. Teking the upper
figure, we may say that the fitting method estimates the number of
eta events with a 4 percent uncertainty, of a kind which affects
forward and backward photoproduction equally and in the same direction.
Section 6.8 discussed corrections to the number of eta events
(or, equivalently, to the eta yield)from the electronic dead time and
the empty target contribution. The dead time correction was uncertain
for two reasons. First, a.crucial scaler was apparently malfunction~
ing in an unpredictable fashion, and, second, the feto scalers were
not systematically‘fecorded. However, the explicitly calculated dead
time correction was usually on the order of 1 percent, and the unknown
veto dead time was estimated tovbe less than 2 percent. From this,
wevassume that the uncertainty in the dead time correction is about
1 percent, of a kind which may gffect forward and backward photo-
produétion differently, causing the forward cross section to be slightly
underestimated. The empty target contribution was typically 5 per-
cent, and we estimate.an uncertainty of 1 percent in thet correction

(from the assﬁmption that mylar is equivalent to liquid hydrogen for
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the same density of nucleons per unit area).
We turn now to uncertainties in the beam energy measurement
(cf. Section 6.1). The theoretical value for U, is (5.78 t 0.18),

Q
(17) .
The uncertainty from all other sources

or 3 percent uncertain.
in the beam monitoring system is taken as 1 percent, coming primarily
from the calibration of the ion chamber against the qunatameter (ef.
Figure 6.1). : -

Finally, the uncertainty in the ets yield may be estimated
from the gbove considerations. (Recall that the eta yield is defined
as the number of eta events per unit of integrated beam energy.) The

i

results are expressed as follows:

Source of Uncertainty Contribution to Eta Contribution to Forward-
Yield, Percent Backward Eta Yield
Difference, Percent

Fitting method 4 . ?_l
Dead time correction 1 ' : 0
Empty target correé- - 1 ' 0
tion

Value for UQ 3 0
Beam Monitoring . ' 1 ' 0
Absolute sum , o | 10 ' 1l

Pythagorean -sum . 5 1

Thus, the eta yieid is uncertain by as much as 10 percent, or 5 percent

~ if there was no conspiracy among the contributing sources of uncer-
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' _tainty. Ve emphasize that only the dead time correction is considered

likely to affect forward and backward photoproduction differehtly.

C. Uncertainties in the Cross Section Evaluation
Section 3.8A describes the elements of the cross section
evaluation. We now consider the systematic uncertainties involved,
which, together with the previously enumerated uncertainties in the
eta yield, lead to an idesa of the total uncertainty in the cross
section results presented in Section 4.

The branching ratio for two-photon ets decay, denoted I', has
been taken as (0.375 % 0.016) from reference 20, for a 4 percent
uncertainty . The number of protons per unit area in the hydrogen
target, denoted Np, is probsbly known to better than 0.5 percent, which
we negiect. The bremsstrahlung photon energy'spectrum, denoted'Ny,
is known to dboﬁt 1 percent, except near the endpoint where it is
uncertain by about 5 percent; we take the overall uncertainty as 2
percent. ~ We take the uncertainty in ﬁhe endpoint energy as negligible.
The Monte Carlo defection efficiency, denoted €, contributes a purely
statistical error of from 1 to 3 percent to the cross section.

Geometrical errors were serious enough to warrant our special
attention. The position of the hydrogen target was first deduced
from the results of surveying sessiohs, until it was learned that
certain corrections had been overlooked. Fortunately, we had tsken
a redundant set of target position measurements using a plumb bob
attached to the.téfget. Those measurements, which we finally accepted,

- were uncertain by about 0.l inches in the target position along the
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" beam line. This translates to roughly a 1 percent uncertainty in

the forward-backward cross section difference. A related geometrical
error was preéent in the.positioning of the showef counters, which

- was also uncertain by gbout 0.1 inches. This amounts to roughly a

1 percenﬁ statistical error on the cross section, without regard to
forward or backward photoproduction. Both kinds of geometrical error
logically belong in the uncertainty in the detection efficiency, which
we therefore take as 4 percent.

We now collect our previous estimates of the uncertainties
involved, taking the eta yield uncertainty as 5 percent, 1 percent of
which affects the forward-backward cross section difference directly.

.Thus, the overall uncertainty in the cross section; apart from

statistical error on the eta yields, is:

Source of Uncertainty Contribution to Cross Contribution to Forward-

Section, Percent Backward
' ' Cross Section Difference,
Percent

Eta Yield 5 1
Branching ratio 4 -0
Bremsstrahlung spec- ' 2 ' 0
tTrum '

Detection Efficiency 4 1
Absolute sum A 15 2

Pythagorean sum : 8 . 2
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