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ABSTRACT

Many wall-bounded flows of practical relevance are turbulent, including the flows
past airplanes and ships. The turbulent motions enhance momentum mixing and, as a
result, the drag force on the engineering surface increases, for transportation vessels
typically by at least a factor of two compared to laminar flow. Turbulent flow control
aimed at drag reduction therefore has the potential to deliver enormous energetic
and economic savings, but many challenges remain despite active research for well
over a century. The present thesis aims to contribute towards two open questions of
the field: first, what are suitable controller design tools for high Reynolds number
flows? And second, how does actuation through closed-loop wall transpiration
change the flow physics? We investigate aspects of these questions through direct
numerical simulation (DNS) and modal analyses of an example control scheme,
which is applied to a low Reynolds number turbulent channel flow. The controller
is a generalization of the opposition control scheme, and introduces a phase shift
between the Fourier transformed sensor measurement and actuator response.

The first part of the thesis demonstrates that a low-order model based on the resolvent
framework is able to approximate the drag reduction results of DNS over the entire
parameter space considered. The model is about two orders of magnitude cheaper
to evaluate than DNS at low Reynolds numbers, and we present a strategy based
on subsampling of the wave number space and analytical scaling laws that enables
model-based flow control design at technologically relevant Reynolds numbers.
The second part of the thesis shows that the physics of the controlled flow can be
understood from two distinct families of spatial scales, termed streamwise-elongated
and spanwise-elongated scales, respectively. Wall transpiration with streamwise-
elongated scales attenuates or amplifies the near-wall cycle and therefore leads
to drag reduction or increase, depending on the phase shift. In contrast, wall
transpiration with spanwise-elongated scales only leads to drag increase, which
occurs at positive phase shifts and is due to the appearance of spanwise rollers
which largely enhance momentum mixing. Both patterns are robust features of
flows with closed-loop wall transpiration, and the present study offers a simple
explanation of their origin in terms of phase relations at distinct spatial scales. The
findings of this study may set the stage for a unifying framework for various forms
of wall transpiration, and implications for future flow control design are discussed.
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1

C h a p t e r 1

INTRODUCTION

The present study concerns fluid flow in one of the simplest configurations possible:
an incompressible, isothermal flow of a Newtonian fluid with constant properties
(density 𝜌 and kinematic viscosity 𝜈) past a solid bounding surface. The qualitative
behavior of such flows depends on a single dimensionless group of problem-specific
parameters Re = 𝑈𝐿/𝜈, where 𝑈 and 𝐿 are characteristic velocity and length scales
of the problem at hand. The dimensionless number Re is called the Reynolds
number, after Osborne Reynolds, who observed in a series of dye experiments in
a glass pipe that the nature of the flow undergoes a fundamental change as Re
increases. In his own words (Reynolds, 1883):

The internal motion of water assumes one or other of two broadly
distinguishable forms - either the elements of the fluid follow one an-
other along lines of motion which lead in the most direct manner to
their destination, or they eddy about in sinuous paths the most indirect
possible.

A modern analogue to Reynolds’ famous sketches of the streamlined and sinuous
flow pattern (figs. 3 to 5 in Reynolds (1883)) is shown in figs. 1.1a and 1.1b. These
display the cross-section of a channel flow, where fluid flows from left to right
between two parallel plates located at the top and bottom. The color represents the
instantaneous fluid velocity in the mean flow direction (we will refer to this velocity
component as the streamwise velocity 𝑢 hereafter), and warmer colors indicate
higher velocity. The flow field at low Re is shown in fig. 1.1a and corresponds to
what Reynolds described as streamlined flow pattern. The velocity is independent
of the wall-parallel coordinate and varies smoothly in the wall-normal direction.
One could think of it as layers of constant velocity stacked upon each other, which
is why this flow state is called “laminar flow” in modern terminology (from Latin
lamina “plate, layer”). At sufficiently large values of Re, the flow pattern changes
fundamentally, and the layered structure of the flow is lost, as can be seen from
fig. 1.1b. This is what Reynolds described as sinuous motion: a disordered velocity
field, marked by strong spatial and temporal fluctuations. In modern terminology,
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flow direction −→

(a) laminar

flow direction −→

(b) turbulent

Figure 1.1: Example streamwise velocity fields of a channel flow.

this flow state is called “turbulent,” from Latin turbulentus “agitated, tempestuous,”
but also “making trouble” (which accurately describes the effect these flows have had
on generations of scientists). Laminar flows can only be realized under very specific
conditions, and almost all flows of practical importance are therefore turbulent.

The presence of a solid surface has profound implications for a turbulent flow. The
first one is that the boundary imposes a length scale on the flow, which limits the
maximum size of the turbulent flow structures. In the example of fig. 1.1b, the
channel height (i.e. the distance between the two plates) limits the size of the largest
flow structures. If we denote the channel half-height by ℎ, we can therefore say
that the largest turbulent motions scale with ℎ. The second implication is that the
boundary imposes constraints on the motion of fluid elements adjacent to it. For a
solid surface, the velocity normal to it must be continuous across the fluid interface.
This is a purely kinematical constraint and results in the “no-through” or “no-
penetration” boundary condition for the vertical velocity. To a good approximation,
the tangential velocity components are also continuous across the interface (see
e.g. Batchelor, 2000, chapter 1.9 for an in-depth discussion of this topic). This
is a molecular effect and the resulting boundary condition is known as “no-slip”
condition in the literature. Due to the no-slip condition, the fluid velocity has to
decrease from a finite value in say the core of the channel to zero at the wall,
which results in a monotonic velocity gradient or shear, at least in an average sense.
The mean shear acts as an energy source for the turbulent velocity fluctuations, so
that they self-sustain in wall-bounded flows despite the ever-present dissipation by
molecular viscosity.

The turbulent fluctuations themselves feed back on the mean velocity profile, which
can be seen from comparing figs. 1.1a and 1.1b. The laminar and turbulent flow are
constructed such that they transport the same amount of mass, and equal colors imply
equal velocity in both plots. The visual comparison of the instantaneous flow fields
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Figure 1.2: Example streamwise mean velocity profiles 𝑢 normalized by the laminar
centerline velocity (𝑈𝑐)lam.

suggests that the laminar flow moves slower than its turbulent counterpart close to
the wall, but flows faster in the channel center. These observations also hold in a
statistical sense, which can be seen from the averaged velocity profiles in fig. 1.2,
and are a consequence of turbulent mixing. Turbulent motions greatly enhance
molecular mixing of transported quantities, such as momentum, and therefore lead
to a more uniform velocity profile across the channel. The flow still has to satisfy the
no-slip condition, and the velocity gradient of the turbulent flow is therefore much
larger in the near-wall region. This has far-reaching consequences for engineering
applications, because the mean wall-shear stress 𝜏𝑤 (drag force per unit area) is
proportional to the mean velocity gradient at the wall. The transition from a laminar
to a turbulent flow goes therefore hand in hand with a significant increase in drag on
the surface, which may be a ship hull, pipeline, or airplane fuselage. For example,
Marusic, Mathis, and Hutchins (2010) estimate that 50% of the total drag force
exerted on an airplane is due to turbulence (i.e. due to the steeper velocity gradient
at the wall), and that fraction is even bigger for large oil tankers. The environmental
and economic implications of better understanding and ultimately reducing turbulent
fluctuations near solid surfaces can therefore not be overstated.

Finally, the turbulent flow state is also marked by a wide range of active spatial
and temporal flow scales. We have already encountered one of them, the channel
half-height, which is an example for a so-called outer flow scale that limits the
largest flow motions. Another set of scales, so-called inner or viscous scales, can
be defined from the flow in the near-wall region, where viscosity is most important.
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The friction velocity is defined in terms of the wall shear stress 𝑢𝜏 = (𝜏𝑤/𝜌)1/2, and
can further be used to construct a viscous length scale 𝑙𝑣 = 𝜈/𝑢𝜏. Flow quantities
normalized with 𝑢𝜏 and 𝑙𝑣 are usually denoted with a superscript +. The viscous
length characterizes the smallest dynamically relevant flow structures, and we can
therefore say that they scale with 𝜈/𝑢𝜏. The ratio between outer (largest) and inner
(smallest) scales defines a Reynolds number Re𝜏 = 𝑢𝜏ℎ/𝜈, which is commonly
referred to as friction Reynolds number. Many industrial applications operate in the
regime 103 ≤ Re𝜏 ≤ 106 (see e.g. Smits and Marusic, 2013), and scientific endeavors
should therefore focus on turbulent flows at high Reynolds numbers. However,
this regime is extremely challenging, if not impossible, to study experimentally
or numerically with current capabilities. This can be best understood from the
channel example, where the largest scale ℎ is fixed by the geometry. Therefore,
as Re𝜏 increases, the viscous scale decreases and becomes increasingly difficult to
measure experimentally or resolve numerically. Even for the simplest geometries,
accurate numerical simulations lag about two orders of magnitude in Re𝜏 behind
experimental capabilities, which in turn lag behind industrial applications.

The present thesis concerns a particular aspect of wall-bounded turbulent flows,
namely control for drag reduction, and will study this problem by means of direct
numerical simulation (DNS) and low-order models. Control is applied by replacing
the no-through condition at the wall with a nonzero wall-normal vertical velocity, a
configuration also known as wall transpiration. The controller operates in closed-
loop, which means that the vertical wall velocity is a function of the flow state. In
order to provide the necessary background for our study, we summarize the most
relevant literature results in the following sections. Section 1.1 gives an overview of
the statistical and structural features of wall-bounded flows, which have motivated
many of the previous flow control approaches summarized in section 1.2. We
then review low-order modeling techniques for both canonical and controlled wall-
bounded flows (section 1.3) and close this chapter with an outline of the specific
thesis objectives and organization (section 1.4). The review generally subsumes the
canonical wall-bounded flows channel, pipe, and zero-pressure-gradient boundary
layer. There is broad consensus that all three flows behave qualitatively similarly,
but it is important to keep in mind that quantitative differences between internal
(channel, pipe) and external (boundary layer) flows exist, in particular at large scales
(see Monty et al., 2009, for more details). We will therefore differentiate between
geometries where necessary.
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1.1 Structure of Wall-Bounded Turbulent Flows
Even though instantaneous snapshots of wall-bounded turbulent flows are much
more disordered than their laminar counterparts, these flows are not devoid of
structure. In a statistical sense, the structure manifests itself in robust averages, and
we have already encountered an example statistical flow quantity in fig. 1.2, where
we discussed the turbulent mean velocity profile. For internal flows (and boundary
layers under the parallel flow assumption), statistical flow quantities only depend
on the wall-normal coordinate (denoted by 𝑦) and typically scale with different
characteristic lengths in different wall-normal regions. The location-dependent
scaling reflects the overall structure of the flow, which is typically divided into
distinct wall-normal layers derived from the properties of the mean velocity profile.

One important conclusion from the earlier discussion of boundary conditions and
turbulent mixing is that the effect of viscosity is largest in the near-wall flow region.
As the Reynolds number increases, the flow region dominated by viscosity becomes
ever smaller, but remains finite since the no-slip condition has to be enforced even
in the limit of very large Re𝜏. These observations suggest that at sufficiently large
Reynolds numbers, the mean velocity profile should exhibit a viscosity-dominated
region that scales with 𝑙𝑣 (which in an internal flow decreases with increasing Re𝜏),
and a turbulent fluctuation dominated core/outer region that scales with ℎ. In-
between there is a region where both scalings apply and it can be shown in various
ways that the scaling overlap implies a logarithmic dependence of the mean velocity
profile on the distance from the wall (see e.g. Tennekes and Lumley, 1972, for a
detailed discussion). The structure of the mean profile implies a layer structure for
the flow itself, which consists of three different regions that are parametrized by
their distance from the wall: an inner region, which extends from the wall to about
𝑦+ ≤ 30, where viscosity dominates and flow quantities typically scale with inner
scales, a core or outer region located at 𝑦/ℎ > 0.2, where viscosity is negligible and
flow quantities scale with outer scales, and an inertial or overlap region in-between,
where both scalings apply. There is some scatter in the literature regarding the
approximate bounds for each region, and the values above are taken from Klewicki
et al. (2007). The classical segmentation of the flow outlined above is deemed
sufficient for the purpose of the present study, but we note that recent work proposed
an alternative layer structure based on the mean force balance, with implications for
the layer localization and velocity scaling (Klewicki et al., 2007).
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Wall-bounded turbulent flows also exhibit structure in a spatial and temporal sense.
The seminal work of Kline et al. (1967) revealed the persistent presence of well-
organized low-speed streaks very close to the wall, and subsequent research efforts
over the past decades have shown that so-called coherent structures (i.e. fluid
motions that have coherence over a spatial region and last for a reasonable period of
time) exist throughout the flow. The coherent structures near the wall (say 𝑦+ < 70,
which includes the inner and parts of the overlap region) are usually referred to
as near-wall cycle and consist of the aforementioned streaks and quasi-streamwise
vortices. Not surprisingly, these structures scale in viscous units, and it is generally
accepted that the streaks are about 100𝑙𝑣 wide and 1000𝑙𝑣 long. The streamwise
vortices are somewhat shorter and their typical length is around 100𝑙𝑣 (see e.g.
the review by Panton, 2001). The term cycle is appropriate because the vortices
and streaks are connected by a self-replicating dynamical process: the streamwise
vortices redistribute streamwise momentum, which leads to spanwise fluctuations
in the streamwise velocity, i.e. the streaks. A linear instability of the streaky
base flow leads to perturbation growth and eventually streak breakdown. Nonlinear
interactions of the post-breakdown flow regenerate streamwise vortices, and the
cycle begins anew (see e.g. Waleffe, 1997; Schoppa and Hussain, 2002). The near-
wall cycle is autonomous, in the sense that it sustains itself even if the core flow is
artificially removed (Jiménez and Pinelli, 1999), and it is the most energetic flow
feature at low Re𝜏. The near-wall cycle persists with increasing Reynolds number,
but its overall energetic contribution to the flow decreases (Hutchins and Marusic,
2007a).

The consensus in the community about flow structures in the logarithmic and core
region is less firm. This is at least partially owed to the fact that the investigation of
these regions require sufficiently high Reynolds numbers, which makes experiments
and simulations challenging. A thorough review of all the flow features observed in
the logarithmic and outer region over the past decades is beyond the scope of this
introduction, and we instead focus on the structures which have an imprint in the
streamwise energy spectra. At large enough Reynolds numbers, long meandering
velocity streaks appear in the logarithmic region, which are denoted very large
scale motions (VLSMs) in internal flows and superstructures in external flows. The
prefix super indicates that these structures are longer than the outer length ℎ, and
their spectral signature depends on the wall-normal location and flow geometry.
In internal flows, the VLSM length increases with distance from the wall and
can reach up to 14 ≤ 𝜆𝑥/ℎ ≤ 20 in the core flow, where 𝜆𝑥 is the streamwise
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wavelength (Guala, Hommema, and Adrian, 2006; Del Álamo et al., 2004; Monty
et al., 2009). On the other hand, superstructures in external flows are only found in
the logarithmic region and are somewhat shorter compared to the VLSMs. Their
spectral peak occurs at 𝜆𝑥/ℎ ≈ 6, but instantaneous meandering structures may be
significantly longer (Hutchins and Marusic, 2007a). The VLSM and superstructures
carry a significant amount of turbulent kinetic energy and Reynolds stress (Guala,
Hommema, and Adrian, 2006), and have an imprint in the near-wall region. A
series of recent work has shown that the very large scale motions have an amplitude
modulation effect on the near wall cycle (Hutchins and Marusic, 2007b; Mathis,
Hutchins, and Marusic, 2009): a negative large-scale excursion reduces the velocity
gradient at the wall, which weakens turbulence production and reduces the intensity
of the near-wall cycle, while a positive large-scale excursion has the opposite effect.
This amplitude modulation effect seems to become important above Re𝜏 ≈ 2000,
and becomes stronger with increasing Reynolds number (Mathis, Hutchins, and
Marusic, 2009). The near-wall cycle is therefore autonomous in the sense described
earlier, but not independent of the flow in the logarithmic and core region. Finally,
we note that the streamwise velocity spectra indicate another energetically important
family of scales. They are characterized by a streamwise wavelength of 𝜆𝑥/ℎ ≈ 2−3,
and are usually referred to as very large scale motions (LSMs) (Adrian, Meinhart,
and Tomkins, 2000). LSMs occur in internal and external flows throughout the
logarithmic and outer layer, but their imprint is more pronounced in the outer flow,
where the VLSMs and superstructures weaken (Monty et al., 2009).

Many numerical simulations, and to a lesser extent experiments, are limited to
low Reynolds numbers. The above discussion shows that numerical studies have
inherent limitations which arise from the insufficient scale separation. For example,
the present study will consider a turbulent channel flow at Re𝜏 = 180, which implies
that the inner region (𝑦+ ≤ 30) occupies about 17% of the channel half-height and
the streak length (𝜆+𝑥 ≈ 1000) is of the same order as ℎ. Moreover, the amplitude
modulation effect of the VLSMs is absent in this flow regime. Low Reynolds
number studies are therefore helpful to understand the near-wall dynamics, but it is
important to keep in mind that flows at technologically relevant Re𝜏 exhibit much
richer physics, and observations at low Reynolds number may not hold at larger Re𝜏
(and vice-versa).
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1.2 Turbulent Flow Control
Enhanced mixing due to turbulent flow motions is undesired in most engineering
applications, and a natural question is whether detrimental effects can be removed
or at least reduced by providing a suitable perturbation to the flow. This is a control
problem, and defines the broad field of turbulent flow control. The control objective
depends on the problem at hand, and for the purpose of this study, we focus on
control to reduce the turbulent drag contribution. We therefore limit the following
review to the drag reduction problem as well and further narrow the scope to control
schemes that have a clear physical interpretation and provide the control input at or
close to the wall. As we will see, almost all such control schemes target the near-wall
cycle and aim to disrupt or at least weaken it with their control input. Most of the
studies are conducted through DNS of low Reynolds number flows, and the above
comments about missing scale separation should therefore be kept in mind.

Broadly speaking, one can differentiate between active control schemes, where the
actuators require power input, and passive schemes, where the actuators do not need
external power supply. For active schemes, a a further distinction can be made
between closed-loop control, where the actuator input depends on the flow state,
and open-loop control, where the actuator input is predetermined and independent
of the flow state. The current study builds on a well-established active closed-loop
control scheme known as opposition control (Choi, Moin, and Kim, 1994). We will
therefore first review the literature results on opposition control, and subsequently
introduce other closed-loop control approaches of relevance. We omit active open-
loop techniques, but will discuss a few passive control methods, which will be
important for later comparison.

1.2.1 Active Closed-Loop Control
The idea at the heart of opposition control is to reduce turbulent drag by detecting the
quasi-streamwise vortices of the near-wall cycle and suppressing their momentum
mixing. To this end, the control scheme measures the wall-normal velocity 𝑣 at a
detection plane located at a distance 𝑦𝑑 above the wall (denoted by 𝑦𝑤) and generates
blowing and suction with opposite sign and scaled by a factor 𝐴𝑑 at the wall

𝑣(𝑦𝑤) = −𝐴𝑑𝑣(𝑦𝑑). (1.1)

A schematic of this scheme is shown in fig. 1.3. Previous DNS studies of turbulent
channel (Choi, Moin, and Kim, 1994) and pipe flow (Fukagata and Kasagi, 2002)
at Re𝜏 ≈ 180 show that opposition control with 𝐴𝑑 = 1 can reduce drag by up to
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Figure 1.3: Schematic of opposition control. The dashed purple line indicates the
sensor location (𝑦𝑑) and the gray shaded area denotes the wall (𝑦𝑤). The arrows
indicate the sensor measurement (purple) and actuator response (red). The pressure
regions outline the conceptual model of Xu, Rempfer, and Lumley (2003).

25%. The control effectiveness strongly depends on the sensor location, and the
largest drag reduction (DR for short) occurs around 𝑦+

𝑑
= 15 (Hammond, Bewley,

and Moin, 1998; Chung and Talha, 2011), which roughly coincides with the center
of the streamwise vortices (𝑦+ ≈ 20 on average, see Kim, Moin, and Moser, 1987).
Less drag reduction is achieved if the sensors are located below or slightly above
𝑦+ = 15, and the control scheme results in drag increase if 𝑦+

𝑑
> 23 (Choi, Moin,

and Kim, 1994; Chung and Talha, 2011). The range of sensor locations leading to
drag reduction can be increased by reducing 𝐴𝑑 (Chung and Talha, 2011), and the
maximum DR can be increased by either using upstream sensor information (Lee,
2015), or adding an integral term to the control law (Kim and Choi, 2017). The
control scheme is sensitive to the spanwise alignment of the sensor measurement
and control input, and a spanwise misalignment of more than 10 𝑙𝑣 results in drag
increase (Chung and Sung, 2003). The effectiveness of the control scheme depends
on the Reynolds number and decreases with increasing Re𝜏. For example, the
maximum DR drops from approximately 25% at Re𝜏 = 180 to 18% at Re𝜏 = 1000
(Chang, Collis, and Ramakrishnan, 2002; Deng, Huang, and Xu, 2016). The
deterioration with increasing Reynolds number can possibly be explained in terms
of a decreasing ratio between outward shift of the mean velocity profile and the
centerline velocity, analogous to patterned surfaces (Spalart and McLean, 2011;
García-Mayoral, Gómez-de-Segura, and Fairhall, 2019). The data of Deng, Huang,
and Xu (2016) provide some support for this argument, but the authors are not aware
of a systematic validation in the context of opposition control.
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The opposition control scheme requires flow measurements inside the flow field,
which is not feasible in practical applications. One approach to mitigate this limita-
tion is to formally retain the opposition control law (1.1), but estimate the velocity
field at the sensor location from wall quantities, for example through a Taylor series
approximation (Choi, Moin, and Kim, 1994), a convolutional neural network (Park
and Choi, 2020), or a spectral linear stochastic estimation (Samie et al., 2020).
Accurate estimation of the near-wall flow state from wall variables requires span-
wise alignment between the wall measurement and the surrogate sensor location
within the flow. For example, the correlation between the wall-shear stress and the
streamwise velocity at 𝑦+ = 15 vanishes for spanwise separations larger than 20 𝑙𝑣
(Samie et al., 2020), which is reminiscent of the sensitivity of opposition control
to spanwise misalignment. It seems plausible that the sensitivity of the estimation
and control problem to spanwise shifts are related, and ultimately a consequence of
the relatively small diameter (20 − 50 𝑙𝑣) of the quasi-streamwise vortices (Samie
et al., 2020). Of course, the estimation and control problem are independent and
one could use general estimation techniques as well (among many others Chevalier
et al., 2006; Encinar and Jiménez, 2019). A different approach is to abandon the
opposition control law and base the actuation input directly on wall quantities. In
most cases, the goal remains to detect the quasi-streamwise vortices and to counter-
act them with wall transpiration, but the detection of the vortices is now based on
their wall signature. Examples of such schemes are the suboptimal control laws of
Lee, Kim, and Choi (1998), which use the second spanwise derivative of the wall
pressure or the spanwise derivative of the spanwise shear to inform the blowing and
suction and result in 16% and 22% DR, respectively (Re𝜏 = 110). It is also interest-
ing that the control input of suboptimal control with spanwise shear is remarkably
similar to a neural network control architecture based on the same quantity (Lee,
Kim, Babcock, et al., 1997). A different view on wall-based control can be obtained
from the vorticity field, and Koumoutsakos (1999) showed that a manipulation of
the wall-vorticity flux through blowing and suction can result in DR as large as 40%
at low Reynolds numbers.

A fundamental challenge of opposition control, and in fact of any control scheme that
acts on the near-wall region, is the Reynolds number scaling of the targeted structures
and the resulting resolution requirements for the control hardware. As mentioned
earlier, the structures of the near-wall cycle scale in inner units, which decrease as Re𝜏
increases. The viscous length and time scales at technologically relevant Reynolds
numbers are microscopic (O(𝜇𝑚) and O(𝜇𝑠), respectively), which poses severe
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challenges for the practical realization of control hardware (Abbassi et al., 2017). A
handful of studies raise hope that control of the near-wall region is feasible even if
the actuation input is limited to significantly larger (and more practical) length scales
(Choi, Moin, and Kim, 1994; Schoppa and Hussain, 1998). However, it is important
to point out that these studies were conducted at relatively low Reynolds numbers
as well. Another promising approach to avoid the resolution problem is to abandon
the near-wall region all-together and target the flow in the log-region instead. The
experimental and numerical challenges associated with higher Reynolds number
flows have rendered such studies impossible until recently, but first ideas have now
been explored, even if with limited success (e.g. Abbassi et al., 2017; Ibrahim,
Guseva, and Garcia-Mayoral, 2020). The lesser known dynamics of the log region
complicate the formulation of effective control objectives, and the larger distance
from the wall complicates wall-based actuation. In addition, the cost of DNS at
moderate Reynolds numbers still precludes exploration of large parameter spaces
for control design.

1.2.2 Passive Control
Passive control techniques are easier to implement in practice than active closed-
loop schemes, because they do not require flow information and do not involve
moving parts. However, they trade simplicity for effectiveness in the sense that the
achievable drag reduction is typically lower than with active schemes.

An important class of passive control strategies are carefully patterned surfaces, so-
called riblets. The riblet geometry is typically aligned with the streamwise direction
so as to not obstruct the mean flow, and a well-defined spanwise shape (rectangle,
triangle, etc.) provides resistance to the near-wall cross-flow. Riblets have been
tested in numerical simulations and experiments, with maximum DR of the order
10% (among many e.g. Walsh and Lindemann, 1984; Choi, Moin, and Kim, 1993;
Bechert et al., 1997; García-Mayoral and Jiménez, 2011). The performance of riblets
strongly depends on the details of their geometry, but a robust feature is the initial
occurrence of a so-called viscous regime in which drag reduction increases with
riblet size, up to a geometry-dependent optimum size after which the performance
deteriorates and eventually results in a drag increase. The breakdown of the viscous
regime seems to be associated to some extent with the failure of large riblets to
inhibit the quasi-streamwise vortices, and to a larger extent with the appearance
of spanwise coherent rollers above the riblet tops (Choi, Moin, and Kim, 1993;
García-Mayoral and Jiménez, 2011; Chavarin and Luhar, 2020).



12

A similar drag reduction mechanism is observed for a range of anisotropic permeable
materials. Specifically, a material with large streamwise and small spanwise perme-
ability provides little obstruction to the streamwise mean flow, but suppresses the
cross-flow in the near-wall region, very analogous to the riblet geometry. A recent
DNS study showed that suitably designed anisotropic materials can reduce drag
by up to 25% at low Reynolds numbers (Gómez-de-Segura and García-Mayoral,
2019). For equal spanwise and wall-normal permeabilities, which are chosen to be
proportional to but much smaller than the streamwise permeability, the DR initially
increases linearly with permeability (analogous to the viscous regime of riblets),
until it reaches a maximum and then deteriorates. The deterioration coincides with
the appearance of spanwise rollers (Gómez-de-Segura and García-Mayoral, 2019),
again analogous to flow over riblets. The appearance of spanwise rollers seems to
be related to the relaxation of the impermeability condition, since similar rollers
are also observed in isotropic permeable materials and porous materials, which
are permeable only in the wall-normal direction (Jiménez, Uhlmann, et al., 2001;
Breugem, Boersma, and Uittenbogaard, 2006; Efstathiou and Luhar, 2018). Both
cases result in a large drag increase as well.

We conclude the discussion of passive control techniques with a short review of
compliant walls, which are flexible surfaces that deform under and modify the sur-
rounding flow. Their design parameter space is quite large, and tested configurations
include spring-damper supported plates, which are purely driven by wall pressure
(e.g. Xu, Rempfer, and Lumley, 2003), and anisotropic compliant walls, which are
driven by wall pressure as well as wall-shear stress fluctuations (e.g. Koumoutsakos,
1999). The literature results are inconclusive as to whether compliant walls can
achieve turbulent drag reduction (Lee, Fisher, and Schwarz, 1993; Xu, Rempfer,
and Lumley, 2003; Fukagata, Kern, et al., 2008; Kim and Choi, 2014), but a few
observations are fairly robust and will be interesting for later comparison. Stiff walls
are not able to modify the turbulent flow and do therefore not lead to a significant
drag change (Xu, Rempfer, and Lumley, 2003; Kim and Choi, 2014). Soft walls on
the other hand are susceptible to a resonance mechanism between the flexible wall
and the flow, which leads to downstream traveling spanwise-constant wall deforma-
tions. The near-wall flow changes significantly under this type of deformation and
results in a pronounced form and skin friction drag increase (Kim and Choi, 2014).
While somewhat reminiscent of the spanwise rollers discussed in the context of
riblets and permeable walls, it is important to keep in mind that these deformations
are a function of the flow and the wall material properties. Another interesting
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aspect is the conjectured drag reduction mechanism of purely pressure driven com-
pliant walls: unlike riblets or porous surfaces, which reduce drag by obstructing
the cross flow, it is believed that such deformable surfaces reduce drag by inducing
a wall-normal velocity above the wall which then counteracts the streamwise vor-
tices, analogous to the opposition control scheme. This interpretation is supported
by Kang and Choi (2000), who showed that drag reduction with compliant walls
is possible if their deformation is based on the opposition control or suboptimal
control law instead of pressure. However, the inconclusive literature results on
drag reduction indicate that it is difficult to reproduce a similar control effect if the
wall deformation is based on the wall pressure. Xu, Rempfer, and Lumley (2003)
attribute the difficulty to an inherently different phase relation between wall velocity
and pressure in both control scenarios. A quasi-streamwise vortex likely creates a
high wall pressure in the downwash region and a low wall pressure in the upwash
region, see fig. 1.3. Under opposition control, the downwash is countered with a
positive wall-normal velocity, so that pressure and wall-normal velocity are both
positive, or in-phase (the same is true with opposite sign in the upwash region). On
the other hand, most compliant walls depress below the high pressure region and
induce a negative wall-normal velocity, so that pressure and vertical velocity have
opposite sign and are out-of-phase. One would therefore have to design a compliant
wall that induces a positive wall-normal velocity in high pressure regions instead,
but this does not seem to be possible and may indicate a fundamental limitation for
this type of compliant wall (Xu, Rempfer, and Lumley, 2003).

1.3 Low-Order Modeling
The robustness and energetic importance of coherent structures raises hopes that
perhaps they are elemental building blocks of turbulence, whose superposition gives
rise to the complex flow patterns observed in the real world. A natural question to
ask then is whether one can formulate a simplified flow model that reproduces these
elemental building blocks and, in extension, the key physical mechanisms of the flow.
The discovery of coherent structures, new mathematical tools, and an unprecedented
amount of experimental and numerical data have spurred enormous interest in the
area of low-order flow modeling for well over the last decade. Broadly speaking,
low-order models can be classified into data-driven approaches, which aim to extract
important flow features and build models from flow data alone, and equation-based
approaches, which aim to derive models from the governing equations themselves.
The distinction is not sharp in the sense that some of the data-driven and equation-
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based approaches are formally related, at least under certain assumptions, and the
combination of both approaches can often lead to synergies. In this study we will
utilize low-order models for flow control design, and by the very nature of the
problem we will not have data about the controlled flow available. We therefore
limit our approach and this review to the equation-based models, which require
minimal data input. The first part of the review addresses low-order models for
canonical (uncontrolled) flows, while the second part summarizes literature results
about low-order models for flow control.

1.3.1 Canonical Flows
Research efforts over the past 25 years have shown that linear mechanisms play a key
role in the transition to turbulence (among others Trefethen et al., 1993; Jovanović
and Bamieh, 2005) and in the dynamics of fully-developed wall-bounded turbulent
flows (for example Kim and Lim, 2000). Most of the equation-based low-order
models aim to shed light on these linear mechanisms through an analysis of the
linearized Navier-Stokes operator. Formally, the governing equations are linearized
about a turbulent mean velocity profile, and either the natural (unforced) or forced
response of the resulting system are analyzed (Schmid, 2007). Canonical turbulent
mean profiles are thought to be linearly stable (Reynolds and Tiederman, 1967),
so that the first class of problems focuses on the transient growth characteristics of
the linearized Navier-Stokes operator. Various studies have shown that the optimal
perturbations to the transient problem resemble the streaky flow motions in the near-
wall and logarithmic region (Butler and Farrell, 1993; Del Álamo et al., 2004). Even
though these results reproduce important features of wall-bounded turbulent flows,
the conceptual link between the optimal initial value problem and the turbulent
steady state is not necessarily obvious. A second class of problems therefore
considers the response of the linearized system to continuous forcing, which can
either be stochastic (e.g. Hwang and Cossu, 2010) or have specific frequency content
(Zare, Jovanović, and Georgiou, 2017).

Of particular importance for this study is the resolvent interpretation of the forced
linearized Navier-Stokes system, which identifies the nonlinear terms as intrinsic
forcing and seeks modes (basis functions) that are most amplified by the linear
dynamics (McKeon and Sharma, 2010). Past studies have shown that this framework
is able to reproduce many of the key structural and statistical features of wall-
bounded turbulent flows (e.g. McKeon and Sharma, 2010; Sharma and McKeon,
2013; Moarref, Jovanović, et al., 2014). The resolvent basis can be improved by
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accounting for some nonlinearity, for example through the incorporation of an eddy
viscosity (e.g. Morra, Semeraro, et al., 2019; Symon, Illingworth, and Marusic,
2021; Pickering et al., 2021) or a subset of nonlinear interactions in case of a
periodic mean flow (Padovan, Otto, and Rowley, 2020). An interesting special case
is the resolvent operator of turbulent channel flow, which along the lines of modal
stability analysis can be split into an Orr-Sommerfeld and Squire operator. The
decomposition also results in an improved resolvent basis and hints at a competition
between the contribution of the Orr-Sommerfeld and Squire modes (Rosenberg and
McKeon, 2019; McMullen, Rosenberg, and McKeon, 2020).

1.3.2 Controlled Flows
The large cost of DNS, which limits numerical studies to low Reynolds numbers
and often precludes the exploration of large parameter spaces, motivates the use
of low-order models for flow control. In particular, low-order models may enable
analysis and synthesis controllers at technologically relevant Reynolds numbers,
which are currently not tractable with DNS.

The insight that linear mechanisms play a key role in wall-bounded turbulence
has popularized the use of linear system theory for turbulent flow control, and the
approaches can again be classified based on whether they study the natural or forced
response of the system. For example, Lim and Kim (2004) used a singular value
analysis to assess the effect of opposition control on optimal initial disturbances to
the linearized Navier-Stokes equations. In agreement with previous DNS results,
their analysis shows that the growth of the disturbances, which is interpreted as
a proxy for turbulence intensity, decreases for a narrow range of sensor locations
𝑦+
𝑑

and increases if the sensor is located too far away from the wall. In a similar
manner, Duque-Daza et al. (2012) used the linearized Navier-Stokes equations to
study how streamwise-traveling waves of spanwise wall velocity affect the energy
amplification of initial perturbations that resemble elongated streamwise vortices.
Their results indicate a strong correlation between the change in energy amplification
of the initial perturbation, and the drag reduction observed in DNS for traveling
waves of various frequencies and wavelengths. With regards to the forced response,
the resolvent approach has recently been extended to various control configurations,
which include opposition control (Luhar, Sharma, and McKeon, 2014b), suboptimal
control (Nakashima, Fukagata, and Luhar, 2017), compliant walls (Luhar, Sharma,
and McKeon, 2015), riblets (Chavarin and Luhar, 2020), and permeable walls
(Chavarin, Gómez-de-Segura, et al., 2021). Typically, these studies consider the
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control effect on individual resolvent modes and show that the amplification changes
at energetically important wave number combinations follow the drag reduction
trends that were already known from DNS.

Studies that evaluate resolvent-based control designs in DNS are scarce and remain
inconclusive for wall-bounded flows. For example, Kawagoe et al. (2019) used the
resolvent formulation to design a modified version of the suboptimal control law,
but the agreement between resolvent and DNS was mixed: the study considered two
modified controllers, and while the resolvent was able to correctly predict the DNS
flow response for one of them, the approximation was poor in the other case. We also
note that the resolvent framework has been used to design control for other classes
of flows, such as airfoils (Yeh and Taira, 2019) or open-cavity flows (Leclercq et al.,
2019).

1.4 Thesis Objectives and Outline
The above discussion shows that the flow control problem is far from being solved,
even after decades of active research. For example, the study and design of flow
control schemes at technologically relevant Reynolds numbers remains an open
challenge. Direct numerical simulations have become an indispensable tool for the
development of flow control approaches at low Re𝜏, but our current DNS capabilities
are well below the technologically relevant Reynolds number regime. The literature
data show that the flow physics become significantly more complex with increasing
Re𝜏, and it may not come as a surprise that the performance of control schemes
developed at low Reynolds numbers typically deteriorate with Re𝜏. The control
design problem can therefore not be reduced to the low Reynold number regime
accessible by DNS. A first step towards control at high Reynolds numbers would
therefore be the development of novel design tools that capture the essential flow
physics in this flow regime. Of course, these tools have to be computationally
tractable to be of any use, and ideally they would be cheap to evaluate, which
enables large parameter sweeps in the design process.

Other open questions exist even in the low Reynolds number regime. The discussion
of active and passive control approaches showed that many schemes rely on some
form of wall transpiration for actuation. This is strictly speaking true for opposition
control, but the notion of wall transpiration applies at least conceptually to a much
broader class of schemes. For example, if one considers a wall-parallel plane located
at the riblet tops or at the interface with a permeable substrate as a surrogate domain
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boundary, then the notion of wall transpiration also applies to these configurations.
The literature results suggest that control through wall transpiration can attenuate
the near-wall cycle and achieve drag reduction for some controller parameters or
surface geometries. However, for different parameters, the control schemes trigger
large spanwise rollers, which produce a significant drag increase. It remains unclear
if these different control strategies leading similar phenomena can be subsumed
under a unifying wall-transpiration framework, or if they have to be considered
separate problems.

The goal of the present thesis is to contribute towards the two aforementioned open
questions, which can be summarized succinctly as follows: i) what are suitable
controller design tools for high Reynolds number flows? ii) how does actuation
through closed-loop wall transpiration change the flow physics? We will study these
questions through a combination of direct numerical simulations and modal analyses.
The starting point is previous work by Luhar, Sharma, and McKeon (2014b), who
used resolvent analysis to study opposition control in a turbulent pipe flow. Their
analysis suggests that the controller performance can be increased if a phase shift
is introduced between the Fourier transformed sensor measurement and actuator
response, but this model prediction has not been validated in DNS yet. The first
part of the study contributes to the first question and assesses whether the resolvent
framework is a suitable tool for flow control design by example of this generalized
opposition control scheme (which we will denote varying-phase opposition control
hereafter). Specifically, we repeat the pipe flow calculations of Luhar, Sharma, and
McKeon (2014b) for a channel geometry and compare the resolvent drag reduction
prediction for a wide range of parameters with DNS calculations. The DNS results
will show that the phase shift between the sensor measurement and actuator response
encodes how the flow responds to the wall transpiration. Depending on the phase
shift, the wall transpiration can suppress or amplify the near-wall cycle, or it can
trigger spanwise rollers. These patterns are reminiscent of the flow response to
passive control. The second part of the study will concern question number two and
demonstrate that these flow patterns can be understood as the response of individual
scales to various phase shifts.

The thesis is structured as follows: Chapter 2 gives a formal problem definition and
introduces the methods used in this study. The assessment of the resolvent model for
flow control design at low Reynolds numbers along with an analytical scaling that
enables cheap evaluation of the model at high Re𝜏 are presented in Chapter 3. We
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then switch gears and analyze how individual scales respond to wall transpiration
with phase shifts in two steps: Chapter 4 gives an overview of the structural and
spectral features of a few select controlled flows, and Chapter 5 outlines the physical
mechanisms that underlie the observed behavior. Chapter 6 presents some evidence
that the drag changes can be understood from a pressure perspective, and Chapter 7
summarizes the findings and outlines future research directions.



19

C h a p t e r 2

METHODS

The thesis objectives outlined in the previous section will be studied with a combi-
nation of direct numerical simulation and modal analyses of a low Reynolds number
turbulent channel flow. The present chapter formally introduces these methods
and further outlines statistical tools to analyze flow data. We start the discussion
with an overview of the relevant governing equations and a mathematical problem
statement (section 2.1). We then outline the framework to solve the governing equa-
tions numerically (section 2.2), and discuss statistical tools to analyze the flow data
(section 2.3). The modal analysis techniques are introduced last in section 2.4.

2.1 Mathematical Problem Formulation
This section provides a mathematical problem statement and summarizes important
analytical results and techniques. We start the discussion with an overview of
the governing equations (section 2.1.1), and description of the channel geometry
(section 2.1.2). Relevant analytical results for turbulent channel flow are summarized
in section 2.1.3, and the Fourier transforms, which will be used heavily in this study,
are defined in section 2.1.4.

2.1.1 Governing Equations
This study concerns the incompressible flow of a Newtonian fluid. The equations
governing the fluid flow can be obtained from the conservation laws of mass and
momentum, which result in a set of partial differential equations (PDEs for short)
known as Naiver-Stokes equations (abbreviated as NSE hereafter)

𝜕𝒖

𝜕𝑡
+ 𝒖 · ∇𝒖 = −∇𝑝 + 1

Re
∇2𝒖 (2.1a)

∇ · 𝒖 = 0 (2.1b)

with appropriate initial and boundary conditions. Bold symbols in eq. (2.1) denote
vector quantities, while plain symbols represent scalars: 𝒖 = [𝑢1, 𝑢2, 𝑢3] is the
velocity vector, 𝑡 denotes time, and 𝑝 is pressure. It is important to note that velocity
and pressure themselves are not conserved quantities, and are therefore commonly
referred to as “primitive variables.” All physical quantities in eq. (2.1) are made
dimensionless with a reference length scale 𝐿 and velocity scale 𝑈, which together
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with the kinematic viscosity 𝜈 of the fluid define the Reynolds number Re = 𝑈𝐿/𝜈.
The Reynolds number parametrizes the family of solutions for a given boundary
geometry and initial condition, in the sense that any combination of 𝑈, 𝐿, and 𝜈

that gives rise to the same Re is described by the same nondimensional solution
(see e.g. Batchelor, 2000, Chapter 4.7 for more details). The appropriate choice of
reference length and velocity scale is problem-dependent and will be specified in
section 2.1.2.

The NSE can also be expressed in terms of other flow variables. For example, taking
the curl of eq. (2.1a) gives the NSE in vorticity form

𝜕𝝎

𝜕𝑡
− ∇ × (𝒖 × 𝝎)︸   ︷︷   ︸

=𝑯

=
1

Re
∇2𝝎 (2.2)

where 𝝎 = ∇ × 𝒖 = [𝜔1, 𝜔2, 𝜔3] is the vorticity vector, and ∇ × 𝑯 subsumes the
advection and vortex stretching term. Note that the pressure does not appear in the
vorticity formulation, which indicates that the pressure in incompressible flow is not
a thermodynamic quantity that contributes to the evolution of the flow field. Instead,
it is an implicit dynamic variable that adjusts itself such that the flow is divergence-
free at all times. The nature of pressure complicates the numerical solution of
the NSE in primitive variables (see Canuto et al., 1988, chapter 7 for details),
and pressure-free vorticity formulations are therefore advantageous for numerical
purposes. However, the presence of boundaries poses a challenge for the vorticity
formulation, because boundary conditions are typically expressed in terms of the
velocity field, not the vorticity field. Several approaches for translating the velocity
boundary conditions to vorticity exist and a summary can be found in Cottet and
Koumoutsakos (2000) (Chapter 6).

The most straight-forward approach is to recast eq. (2.2) into the so-called velocity-
vorticity form, which is well-known from the stability literature (see e.g. Schmid
and Henningson, 2001, Chapter 3) To this end, we retain the second component of
eq. (2.2) and take a linear combination of derivatives of the first and third component.
The linear combination can be recast into a fourth order equation for 𝑢2, and for a
Cartesian coordinate system 𝒙 = [𝑥1, 𝑥2, 𝑥3], the final result reads

𝜕

𝜕𝑡
𝜔2 =

𝜕𝐻1
𝜕𝑥3

− 𝜕𝐻3
𝜕𝑥1

+ 1
Re

∇2𝜔2

𝜕

𝜕𝑡
∇2𝑢2 = − 𝜕

𝜕𝑥2

(
𝜕𝐻1
𝜕𝑥1

+ 𝜕𝐻3
𝜕𝑥3

)
+

(
𝜕2

𝜕𝑥2
1
+ 𝜕2

𝜕𝑥2
3

)
𝐻2 +

1
Re

∇4𝑢2.

(2.3)
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It will be shown in section 2.2.1 that boundary conditions for 𝑢2 and 𝜔2 at a solid
wall are readily available. Further note that the remaining velocity and vorticity
components can be obtained from the incompressibility constraint (2.1b) and the
definition of 𝜔2 once the wall-normal velocity and vorticity are known.

As mentioned earlier, the pressure is not required to determine the evolution of the
vorticity field and does not appear in eqs. (2.2) and (2.3). However, the pressure
can be recovered from a separate equation, known as the pressure Poisson equation,
which is obtained by taking the divergence of eq. (2.1a)

∇2𝑝 = −∇ · (𝒖 · ∇𝒖) . (2.4)

Note that the equation is forced by the (known) velocity field and is time-independent,
which reflects the nature of pressure as a dynamic variable that adjusts itself instan-
taneously. The pressure Poisson equation has to be supplied with appropriate
boundary conditions, which are obtained by evaluating the momentum equation at
the domain boundary. A more detailed description of the boundary conditions will
be given in the following section.

2.1.2 Geometry
The governing equations of the previous section are usually studied in a particular
domain, and throughout this study, we consider a channel geometry, which is shown
in fig. 2.1. In this configuration, a fluid flows between two parallel plates, which are
represented by the shaded rectangles and which are spaced 2ℎ apart. As mentioned
earlier, ℎ is usually referred to as channel half-height and is one of the characteristic
length scales of this geometry. The flow is driven by a possibly time-dependent pres-
sure gradient, which aligns with one of the wall-parallel directions. That direction
is referred to as streamwise direction, while the wall-parallel direction perpendic-
ular to it is dubbed the spanwise direction. Theoretical studies typically assume
infinitely large plates, while computational studies use finite plates and periodic
boundary conditions to mimic the infinite extent. The present study is computa-
tional, so that the channel domain is finite with streamwise and spanwise length 𝐿𝑥

and 𝐿𝑧, respectively. We use a Cartesian coordinate system with coordinate vector
𝒙 = [𝑥, 𝑦, 𝑧] = [𝑥1, 𝑥2, 𝑥3], which contains the streamwise (𝑥, 𝑥1), wall-normal
(𝑦, 𝑥2), and spanwise (𝑧, 𝑥3) directions. The corresponding velocity and vorticity
vectors are 𝒖 = [𝑢, 𝑣, 𝑤] = [𝑢1, 𝑢2, 𝑢3] and 𝝎 = [𝜔𝑥 , 𝜔𝑦, 𝜔𝑧] = [𝜔1, 𝜔2, 𝜔3], re-
spectively. The origin of the coordinate system is at the channel center, so that the
walls are located at 𝑦𝑤/ℎ = ±1.
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Figure 2.1: Definition of the channel geometry used in this study. The streamwise,
wall-normal, and spanwise coordinate are denoted by 𝑥, 𝑦, and 𝑧, respectively.

The geometry also imposes boundary conditions on the flow field, which will be
discussed next. We first consider the velocity boundary conditions and then turn
our attention to the pressure field. The boundary conditions for the velocity field
are periodic in the streamwise and spanwise direction

𝒖(𝑥 + 𝐿𝑥 , 𝑦, 𝑧, 𝑡) = 𝒖(𝑥, 𝑦, 𝑧, 𝑡)
𝒖(𝑥, 𝑦, 𝑧 + 𝐿𝑧, 𝑡) = 𝒖(𝑥, 𝑦, 𝑧, 𝑡)

(2.5)

to mimic the infinite extent of the plates. The fluid motion in the vertical direc-
tion is constrained by the presence of the wall, which is much more restricting in
comparison. The wall-parallel velocities obey the no-slip condition

𝑢(𝑥, 𝑦𝑤, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦𝑤, 𝑧, 𝑡) = 0, (2.6)

and a general Dirichlet boundary condition is prescribed for the vertical velocity at
the wall

𝑣(𝑥, 𝑦𝑤, 𝑧, 𝑡) = 𝑔(𝒙, 𝑡, 𝒖). (2.7)

Equation (2.7) recovers the no-through condition of a canonical channel flow if
𝑔(𝒙, 𝑡, 𝒖) = 0. However, the bulk of this study will concern flows with 𝑔(𝒙, 𝑡, 𝒖) ≠ 0,
which physically means that the no-through condition is replaced with some form
of wall transpiration. We are particularly interested in the case of closed-loop
wall transpiration, where 𝑣(𝑦𝑤) depends on the flow state 𝒖. An example for this
type of boundary condition is the opposition control law discussed in eq. (1.1).
The closed-loop boundary conditions of interest in this study will be introduced in
section 3.2.

The boundary conditions for the pressure field are more subtle and require careful
consideration. The pressure is not periodic in the streamwise direction due to the
mean gradient that drives the flow. In addition, it will be shown later that the
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instantaneous spanwise pressure gradient in a numerical simulation may be nonzero
as well, so that the pressure field is not periodic in the spanwise direction either.
The analytical results presented in section 2.1.3 will clarify the 𝑥 and 𝑧 dependence
of the pressure field and allow the definition of appropriate boundary conditions
in these directions. However, we note that the pressure gradient is periodic in the
streamwise and spanwise direction, which follows from eq. (2.5) and a subtraction
of the momentum equations evaluated at 𝑥𝑖 and 𝑥𝑖+𝐿𝑖, where 𝑖 = {𝑥, 𝑧}. A boundary
condition for the pressure at the wall can be derived from the momentum equation.
The wall-normal component of eq. (2.1a) gives a Neumann boundary condition for
the pressure field, while a linear combination of the tangential components results in
a Dirichlet boundary condition (after a Fourier transform in 𝑥 and 𝑧). We follow the
vast majority of the literature and use the Neumann condition, which in the presence
of wall transpiration reads

𝜕𝑝

𝜕𝑦
(𝑦𝑤) =

1
Re

∇2𝑣(𝑦𝑤) −
𝜕𝑣

𝜕𝑡
(𝑦𝑤)

=
1

Re

(
𝜕𝜔𝑧

𝜕𝑥
(𝑦𝑤) −

𝜕𝜔𝑥

𝜕𝑧
(𝑦𝑤)

)
− 𝜕𝑣

𝜕𝑡
(𝑦𝑤).

(2.8)

Note that in the absence of wall transpiration, i.e. 𝑣(𝑦𝑤) = 0, eq. (2.8) recovers the
boundary condition of the canonical channel (see e.g. Kim, 1989)

𝜕𝑝

𝜕𝑦
(𝑦𝑤) =

1
Re

𝜕2𝑣

𝜕𝑦2 (𝑦𝑤). (2.9)

It is important to point out that the solution of the Dirichlet and Neumann problem
may be different (Moin and Kim, 1980). Whether this is true for the flows considered
in this study has not been analyzed yet and should be addressed in future work.

We next summarize very briefly the characteristics of the known NSE solutions
(analytical or numerical) for the canonical channel flow. An analytical, so-called
laminar solution can be found in the idealized scenario of steady, two-dimensional
flow with no streamwise variation. This is the solution shown earlier in fig. 1.1a.
The streamwise velocity is the only nonzero component of this laminar solution and
has a parabolic profile in the wall-normal direction. The laminar solution becomes
linearly unstable at Re𝑐 = 𝑈𝑐ℎ/𝜈 ≈ 5772, where 𝑈𝑐 = 𝑢(𝑦 = 0) is the velocity
at the centerline of the channel (Orszag, 1971). We note that transition may also
occur subcritically, since the linearized NSE for channel flow are non-normal, which
implies that substantial energy amplification can occur even in the linearly stable
flow regime (see e.g. Schmid and Brandt, 2014). The details of the transition process
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are not relevant for this study; the important point is that both transition scenarios
in general result in a turbulent flow, characterized by an unsteady three-dimensional
flow field with a broad range of spatial and temporal scales (see fig. 1.1b). This is
the flow state that is typically observed in experiments (e.g. Laufer, 1948; Schultz
and Flack, 2013) and numerical simulations (e.g. Kim, Moin, and Moser, 1987; Lee
and Moser, 2015) at large enough Reynolds numbers. We note that special nonlinear
solutions, whose complexity falls in-between the laminar and turbulent state, can
be computed numerically. They are usually referred to as exact coherent states
and are important for the dynamical system interpretation of turbulence. However,
they are unstable at sufficiently large Reynolds numbers, and it is thus unlikely that
they can be realized in an experiment or time-marching simulation (see Kawahara,
Uhlmann, and Veen, 2012, for more details). The present study only concerns the
fully turbulent regime, and the other flow states will not be considered subsequently.

We conclude this section with a discussion of the characteristic velocity and length
scales for a turbulent channel flow. We have already encountered the channel half-
height ℎ, which is the length scale imposed by the geometry, and the centerline
velocity 𝑈𝑐, which characterizes the velocity field in the core flow region. Together
they define the centerline Reynolds number Re𝑐. However, the turbulent flow field
varies in space and time, so that the centerline velocity has to be defined in a statistical
sense. To this end, we introduce various averages, which will be used throughout this
study to define statistical flow quantities. In this context, the symbol 〈 𝑓 〉 denotes
the average of an arbitrary flow quantity 𝑓 (𝑥, 𝑦, 𝑧, 𝑡), and the terms average and
mean are used interchangeably. A frequently used average is the wall-parallel mean,
which is defined as

〈 𝑓 〉𝑥,𝑧 (𝑦, 𝑡) =
1

𝐿𝑥𝐿𝑧

∫ 𝐿𝑥

0

∫ 𝐿𝑧

0
𝑓 (𝑥, 𝑦, 𝑧, 𝑡) d𝑥 d𝑧. (2.10)

Note that we indicate the averaged coordinates in the subscript to the angular brack-
ets. Similarly, one can average a flow quantity in time

〈 𝑓 〉𝑡 (𝑥, 𝑦, 𝑧) = lim
𝑇→∞

1
𝑇

∫ 𝑡0+𝑇

𝑡0

𝑓 (𝑥, 𝑦, 𝑧, 𝑡) d𝑡. (2.11)

The temporal mean is used most often in conjunction with the wall-parallel average,
and their concatenation is the spatio-temporal mean

𝑓 (𝑦) = 〈 𝑓 〉𝑥,𝑧,𝑡 (𝑦). (2.12)

For notational compactness, we follow the literature convention and denote the
spatio-temporal mean with an overbar.
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The appropriate notion of 𝑈𝑐 in the turbulent channel flow is now given by the
spatio-temporal mean at the centerline

𝑈𝑐 = 𝑢(𝑦 = 0). (2.13)

Note that averaging is implied for statistical velocity and length scales, so that we
omit the angular brackets or the overbar for compactness, unless they are needed to
distinguish different types of averages. Another commonly used velocity scale is the
bulk velocity 𝑈𝑏, which quantifies the instantaneous mass flux through the channel.
It is obtained by integrating 〈𝑢〉𝑥,𝑧 in the wall-normal direction

𝑈𝑏 (𝑡) =
1
2

∫ 1

−1
〈𝑢〉𝑥,𝑧 d

( 𝑦
ℎ

)
. (2.14)

The bulk velocity can be used to define the bulk Reynolds number Re𝑏 = 2𝑈𝑏ℎ/𝜈,
which will be shown to be particularly relevant for numerical simulations. Note that
the definition of the bulk Reynolds number has an additional factor of two compared
to Re𝑐. Finally, the viscous or inner scales introduced earlier are based on the mean
wall-shear stress 𝜏𝑤

𝜏𝑤 =
1

Re
d𝑢
d𝑦

(𝑦𝑤). (2.15)

Note that the time-averaged wall-shear stress is denoted by an overbar, so that it
can be distinguished from its instantaneous counterpart. The friction velocity 𝑢𝜏 is
defined as

𝑢𝜏 =
√︁
𝜏𝑤 (2.16)

where the possibly somewhat unfamiliar definition without fluid density is a conse-
quence of the normalization, and the viscous length scale 𝑙𝑣 is given by

𝑙𝑣 = 𝜈/𝑢𝜏 . (2.17)

Variables normalized with the viscous length and velocity scale are denoted by a
superscript +, as already mentioned in the Introduction. The friction velocity (or,
equivalently 𝑙𝑣) together with the channel half-height define the friction Reynolds
number Re𝜏 = 𝑢𝜏ℎ/𝜈. Note that the wall-shear stress and viscous scales are statistical
quantities.

2.1.3 Analytical Results
We next consider a few analytical results for turbulent channel flow that will be
important for the subsequent discussion. These results follow from the governing
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equations and the averages defined in eqs. (2.10) to (2.12). Interested readers may
also refer to Chapter 5 of Tennekes and Lumley (1972) for more details about the
derivation and an in-depth discussion of the material.

We first consider the velocity-vorticity formulation of the NSE in eq. (2.3) and
derive an analytical expression for the (instantaneous) spatial mean of the two state
variables 𝑣 and 𝜔𝑦. The definition of the wall-normal vorticity

𝜔𝑦 =
𝜕𝑢

𝜕𝑧
− 𝜕𝑤

𝜕𝑥
(2.18)

together with the periodic boundary conditions of the velocity field in 𝑥 and 𝑧 imply
that the wall-parallel mean of 𝜔𝑦 is identically zero at all wall-normal locations and
times

〈𝜔𝑦〉𝑥,𝑧 (𝑦, 𝑡) = 0. (2.19)

Similarly, an integration of the continuity equation (2.1b) in the wall-parallel direc-
tions reveals that the (instantaneous) mean vertical velocity is constant across the
channel

𝜕〈𝑣〉𝑥,𝑧
𝜕𝑦

= 0. (2.20)

The constant is set by the boundary condition eq. (2.7), as can be seen by integrating
the above equation from the wall to a wall-normal location inside the flow

〈𝑣〉𝑥,𝑧 (𝑦, 𝑡) = 〈𝑣〉𝑥,𝑧 (𝑦𝑤, 𝑡) = 0. (2.21)

The constant is zero for a no-through wall, but nonzero values would be possible in
case of wall-transpiration, the only constraint being that the values at the top and
bottom wall are identical. A nonzero constant would imply a mean mass flux in the
wall-normal direction, which is undesired for the purpose of the present study. We
therefore explicitly set the constant to zero even in the case of wall transpiration, as
indicated by the last equality of eq. (2.21).

Next, we consider the wall-normal component of the momentum equation (2.1a),
which can give some insight into the pressure field. After averaging in the streamwise
and spanwise direction, the equation reads

𝜕

𝜕𝑦
〈𝑣𝑣〉𝑥,𝑧 (𝑦, 𝑡) = − 𝜕

𝜕𝑦
〈𝑝〉𝑥,𝑧 (𝑦, 𝑡) (2.22)

where eq. (2.21) is required to see that the time-derivative and viscous term drop out.
It is important to note that the 𝑦-derivative of eq. (2.22) recovers the wall-parallel
mean of the pressure Poisson equation (2.4), so that the two averaged equations are
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redundant. The indefinite integral of eq. (2.22) introduces a yet to be determined
function 𝜁 , which can depend on all coordinates except 𝑦

〈𝑝〉𝑥,𝑧 (𝑦, 𝑡) = −〈𝑣𝑣〉𝑥,𝑧 (𝑦, 𝑡) + 𝜁 (𝑥, 𝑧, 𝑡). (2.23)

The function 𝜁 is constrained by the streamwise and spanwise mean momentum
equations, in which it has to produce the mean pressure gradients. A suitable form
is

𝜁 (𝑥, 𝑧, 𝑡) = Π𝑥 (𝑡)𝑥 + Π𝑧 (𝑡)𝑧 + 𝑝0(𝑡) (2.24)

where Π𝑥 and Π𝑧 are the mean streamwise and spanwise pressure gradients, which
are at most a function of time, and 𝑝0(𝑡) is an (undetermined) background pressure.
Note that any 𝑝0 added to a permissible pressure field produces another pressure
field that satisfies all governing equations and boundary conditions. The reason for
this is that the NSE only constrain the pressure gradient, not the pressure itself. As
a consequence, the pressure Poisson equation is ill-posed and 𝑝0 has to be fixed to
obtain a unique solution. Further note that Π𝑥 and Π𝑧 are time-dependent in the
above equations, and an overbar will be used to denote their time averages. The full
pressure field is therefore given by

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝0(𝑡) − 〈𝑣𝑣〉𝑥,𝑧 (𝑦, 𝑡) + Π𝑥 (𝑡)𝑥 + Π𝑧 (𝑡)𝑧 + 𝑝′(𝑥, 𝑦, 𝑧, 𝑡). (2.25)

The pressure fluctuations 𝑝′ have zero wall-parallel mean (any non-zero contribution
could be absorbed into 𝑝0) and are typically modeled as periodic in 𝑥 and 𝑧 (see e.g.
Kim, 1989).

Finally, we consider the streamwise momentum equation, which will give further in-
sight into the stress profile across the channel. Averaging the streamwise component
of eq. (2.1a) in 𝑥, 𝑧 and using eq. (2.25) gives

𝜕

𝜕𝑡
〈𝑢〉𝑥,𝑧 (𝑦, 𝑡) +

𝜕

𝜕𝑦
〈𝑢𝑣〉𝑥,𝑧 (𝑦, 𝑡) = −Π𝑥 (𝑡) +

1
Re

.
𝜕2

𝜕𝑦2 〈𝑢〉𝑥,𝑧 (𝑦, 𝑡) (2.26)

If the bulk velocity (or equivalently mass flux) of the channel is held constant,
which will be the case for the numerical simulations considered in this study, then
the integral of eq. (2.26) from the wall to the centerline shows that the mean pressure
gradient is balanced by the mean wall-shear stress at any instant in time

1
Re

𝜕〈𝑢〉𝑥,𝑧
𝜕𝑦

(𝑡)
����
𝑦/ℎ=−1︸                    ︷︷                    ︸

=𝜏𝑤 (𝑡)

= −Π𝑥 (𝑡). (2.27)
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Note that 𝜏𝑤 above denotes the time-dependent wall-shear stress (no overbar). The
instantaneous balance between 𝜏𝑤 and Π𝑥 also holds in the presence of control, as
long as the mean Reynolds stress at the wall is zero at all times, which will be true
for all flow configurations considered in this study. The time average of eq. (2.26)
is given by

d
d𝑦

𝑢𝑣(𝑦) = −Π𝑥 +
1

Re
d2𝑢

d𝑦2 (𝑦) (2.28)

and its integral from the wall to an arbitrary wall-normal location in the flow reveals
that the total stress varies linearly across the channel

1
Re

d𝑢
d𝑦

(𝑦) − 𝑢𝑣(𝑦) = −𝜏𝑤𝑦. (2.29)

The slope is given by the time-averaged wall-shear stress, which is a consequence of
eq. (2.27). The definition of the friction velocity, eq. (2.16), further implies that the
total stress profiles for different Re𝜏 collapse if 𝑢𝜏 is used as characteristic velocity
scale

1
Re𝜏

d𝑢+
d𝑦

(𝑦) − 𝑢+𝑣+(𝑦) = −𝑦. (2.30)

2.1.4 Fourier Domain Representation
Besides the physical-domain representation, we will often turn to a Fourier decom-
position in the wall-parallel coordinates to numerically solve the governing equations
and analyze the results. The forward Fourier transform of a generic flow quantity 𝑓

in the streamwise and spanwise direction is defined as

𝑓 (𝑙, 𝑚, 𝑦, 𝑡) = 1
𝐿𝑥𝐿𝑧

∫ 𝐿𝑥

0

∫ 𝐿𝑧

0
𝑓 (𝑥, 𝑧, 𝑦, 𝑡) 𝑒−𝑖

(
𝑙 2𝜋
𝐿𝑥

𝑥+𝑚 2𝜋
𝐿𝑧

𝑧

)
d𝑥 d𝑧 (2.31)

where we have reordered the coordinates to highlight the transformed directions.
Fourier coefficients and other complex quantities will be labeled with a superscript
hat from now on, in order to distinguish them from their physical-domain and real
counterparts. Recall that the domain is periodic in 𝑥 and 𝑧, with period 𝐿𝑥 and
𝐿𝑧, respectively. The periodicity restricts the streamwise (𝑘𝑥) and spanwise wave
number (𝑘𝑧) to integer multiples of the fundamental wave number, 𝑘𝑥 = 𝑙 (2𝜋/𝐿𝑥),
𝑘𝑧 = 𝑚 (2𝜋/𝐿𝑧) with {𝑙, 𝑚} ∈ Z. A single Fourier mode can be characterized by its
streamwise and spanwise indices [𝑙, 𝑚], its spatial wave number vector 𝜿 = [𝑘𝑥 , 𝑘𝑧],
or its spatial wavelength vector 𝝀 = [𝜆𝑥 , 𝜆𝑧], where 𝜆𝑖 = 2𝜋/𝑘𝑖 for 𝑖 = {𝑥, 𝑧}. All
three descriptors are equivalent and will be used interchangeably. Note that the
Fourier coefficient at a particular wave number combination is a function of the
wall-normal coordinate and time.
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The inverse transform is given by the Fourier series

𝑓 (𝑥, 𝑧, 𝑦, 𝑡) =
∞∑︁

𝑙=−∞

∞∑︁
𝑚=−∞

𝑓 (𝑙, 𝑚, 𝑦, 𝑡) 𝑒𝑖
(
𝑙 2𝜋
𝐿𝑥

𝑥+𝑚 2𝜋
𝐿𝑧

𝑧

)
. (2.32)

The discrete nature of the inverse transform is also a consequence of the spatial
periodicity, which reduces the integral of the general Fourier transform to a sum.

We will occasionally also transform the time coordinate to Fourier domain, in par-
ticular in the context of modal analyses, which will be introduced in section 2.4. The
temporal coordinate lacks periodicity and therefore transforms differently than the
spatial directions. The missing periodicity implies a continuous temporal frequency
𝜔, and necessitates to use the general (integral) form of the Fourier transform. The
forward transform is defined as

𝑓 (𝜔, 𝑥, 𝑦, 𝑧) = 1
2𝜋

∫ ∞

−∞
𝑓 (𝑡, 𝑥, 𝑦, 𝑧) 𝑒𝑖𝜔𝑡 d𝑡 (2.33)

and includes the normalization factor 1/(2𝜋). The corresponding backwards trans-
form is given by

𝑓 (𝑡, 𝑥, 𝑦, 𝑧) =
∫ ∞

−∞
𝑓 (𝜔, 𝑥, 𝑦, 𝑧) 𝑒−𝑖𝜔𝑡 d𝜔. (2.34)

As written in eqs. (2.33) and (2.34), the temporal transform is applied in isolation.
However, the temporal transform is only used in conjunction with the spatial trans-
forms in this study, and only in the context of modal analyses. A quantity that has
been transformed in all three coordinates will be characterized by the wave number
triplet 𝒌 = [𝑘𝑥 , 𝑘𝑧, 𝜔] = [𝜿, 𝜔]. If 𝑘𝑥 ≠ 0 we will occasionally also characterize the
Fourier coefficient in terms of wave speed 𝑐 = 𝜔/𝑘𝑥 rather than 𝜔. Note that the
Fourier coefficients at each 𝒌 are a function of the wall-normal coordinate only. It
is also important to point out that the sign convention of the complex exponential is
different for the spatial and temporal transforms. This is a deliberate choice, so that
Fourier modes with positive 𝑘𝑥 and 𝜔 can be interpreted as downstream propagating
structures with positive wave speed 𝑐 = 𝜔/𝑘𝑥 .

An important property of the Fourier transform of real-valued functions is an in-
duced symmetry in wave number space, which is usually referred to as Hermitian
symmetry. It relates the Fourier coefficients at negative wave numbers to the co-
efficients at the corresponding positive wave numbers and follows directly from
the definition of the transform. For example, applying the spatial transform to an



30

arbitrary real-valued function 𝑓 (𝑥, 𝑦, 𝑧, 𝑡) and comparing the Fourier coefficients at
𝜿 = [𝑘𝑥 , 𝑘𝑧] and −𝜿 reveals that

𝑓 (−𝜿) = 𝑓 ∗(𝜿). (2.35)

This symmetry is not particular to 𝜿 and applies to any transform coordinate,
including time. It also holds for any number of transformed directions, as long
as 𝜿 in eq. (2.35) is replaced with the corresponding wave number vector. Flow
quantities like velocity or pressure are real-valued functions in the physical domain
and their Fourier transforms are therefore Hermitian symmetric.

2.2 Direct Numerical Simulation
The majority of the data presented in this study are obtained from direct numerical
simulation (DNS) of the full nonlinear NSE in a channel domain. DNS resolves all
dynamically relevant scales of the flow and therefore provides a numerical solution
of the NSE without further modeling assumptions. Two different numerical solvers
are used in this study and introduced in this section. The first one integrates the
velocity-vorticity form of the NSE in time, and is described in section 2.2.1. A
second solver is used to recover the pressure field in postprocessing, and its details
are given in section 2.2.2.

2.2.1 Navier-Stokes Solver
We first outline the solver for the Navier-Stokes equations, which is based on the
code framework developed by Flores and Jiménez (2006). The numerical method
follows the formulation of Kim, Moin, and Moser (1987) and solves the NSE in the
velocity-vorticity form of eq. (2.3) by integrating the wall-normal vorticity and the
Laplacian of the vertical velocity in time.

We start the discussion with the discretization of the three spatial coordinates and
time. The periodic wall-parallel directions (𝑥 and 𝑧) are discretized by means of a
spectral Fourier-Galerkin method, and the nonlinear term 𝑯 in eq. (2.3) is evaluated
pseudospectrally. The pseudospectral evaluation can be summarized as follows: use
a discrete inverse Fourier transform to recover 𝒖 and 𝝎 in physical space, evaluate
𝑯 by point-wise multiplication, and transform the result back to Fourier domain.
This must be done carefully in order to prevent aliasing and the code framework
uses a method known as the 3/2-rule to dealise the transforms. The basic idea of this
approach is to evaluate the discrete Fourier transforms on a finer grid and zero-pad
the missing wave numbers, which cancels the aliasing error. Interested readers may
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refer to Canuto et al. (1988) (Chapter 3) for more details. The wall-normal direction
is discretized by a finite difference method based on a sinusoidal mesh with a grid
stretching factor to control the clustering of grid points near the wall (see e.g. Lee
and Moser, 2015). Compact finite difference schemes with five point stencils are
used to discretize the wall-normal derivatives on this mesh. The first derivative
operator has fourth-order accuracy and is optimized to reduce phase errors at high
wave numbers (see Flores and Jiménez, 2006, for details). The second derivative
operator on the other hand has sixth-order accuracy, but no phase error optimization
is done in this case. It should be noted that the fourth order equation (2.3) for 𝑣
can be split into two second order equations for ∇2𝑣 and 𝑣, respectively, so that
𝑦-derivatives of order higher than two are not required. Finally, a third-order low-
storage Runge-Kutta scheme is used to advance the solution in time. The nonlinear
terms are treated explicitly, while the viscous terms are integrated implicitly, and
the time step size is adjusted based on a Courant-Friedrichs-Lewy (CFL) condition
to ensure numerical stability.

It is important to point out that the wall-parallel mean of eq. (2.3) does not carry any
information. Recall that 〈𝑣〉𝑥,𝑧 = 〈𝜔𝑦〉𝑥,𝑧 = 0 due to eqs. (2.19) and (2.21), and the
streamwise and spanwise derivatives that otherwise allow to back out the missing
flow variables all vanish. A different strategy is therefore required to advance
the mean flow in time, and the DNS instead integrates the mean streamwise and
spanwise momentum equation, which can be written in term of 𝑯 as well

𝜕

𝜕𝑡
〈𝑢〉𝑥,𝑧 + 〈𝑤𝜔𝑦〉𝑥,𝑧 − 〈𝑣𝜔𝑧〉𝑥,𝑧 = −Π𝑥 +

1
Re

𝜕2

𝜕𝑦2 〈𝑢〉𝑥,𝑧

𝜕

𝜕𝑡
〈𝑤〉𝑥,𝑧 + 〈𝑣𝜔𝑥〉𝑥,𝑧 − 〈𝑢𝜔𝑦〉𝑥,𝑧 = −Π𝑧 +

1
Re

𝜕2

𝜕𝑦2 〈𝑤〉𝑥,𝑧 .
(2.36)

Note that the equation for 〈𝑣〉𝑥,𝑧 need not be integrated, because it is identically zero.
Equation (2.36) is also important because it illustrates how the mean flow is driven.
Recall from our earlier discussion that the mean pressure gradientsΠ𝑥 andΠ𝑧 induce
the mean flow, and they have to be chosen therefore as part of the simulation setup.
Two options are common in the literature: the first option is to fix the pressure
gradient to a constant, for example Π𝑥 = 𝐶 and Π𝑧 = 0. This configuration is known
as “fixed pressure gradient” for obvious reasons and implies a constant wall-shear
stress (recall eq. (2.27)) and Re𝜏, but a time-dependent bulk velocity (mass flux).
The other option is to fix the bulk velocity, which is known as the “fixed mass flux”
configuration, and implies a time-dependent mean pressure gradient and wall-shear
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stress. The present code framework is driven by a fixed mass flux, so that

𝑈𝑏 = 𝐶 ≠ 0

𝑊𝑏 = 0.
(2.37)

Above, 𝐶 is a suitable constant and 𝑊𝑏 is defined analogous to eq. (2.14). The DNS
setup is therefore best characterized by its bulk Reynolds number, which remains
constant over time. For all simulations in this study, we use Re𝑏 = 5600, which
results in an Re𝜏 ≈ 180 for the canonical flow configuration. Note that the Re𝜏
based on the instantaneous wall-shear stress is time-dependent, just like the mean
pressure gradient, and the above value is a temporal average. Further note that the
instantaneous spanwise pressure gradient may be nonzero in order to balance the
Reynolds stresses and enforce 𝑊𝑏 = 0. However, Π𝑧 tends to zero in a time-average
sense.

Next, we revisit the discussion of boundary conditions in the context of the DNS
code framework. As outlined in Kim, Moin, and Moser (1987), the solution of the
NSE in velocity-vorticity form requires boundary conditions for 𝑣, 𝜕𝑣/𝜕𝑦, and 𝜔𝑦.
The boundary conditions for 𝜔𝑦 follow from its definition (see eq. (2.18)) and the
no-slip condition in eq. (2.6)

𝜔𝑦 (𝑦𝑤) =
𝜕

𝜕𝑧
𝑢(𝑦𝑤)︸︷︷︸

=0

− 𝜕

𝜕𝑥
𝑤(𝑦𝑤)︸ ︷︷ ︸

=0

= 0. (2.38)

Similarly, the boundary condition for 𝜕𝑣/𝜕𝑦 can be obtained from the continuity
equation (2.1b) and the no-slip condition

𝜕

𝜕𝑦
𝑣(𝑦𝑤) = −

©«
𝜕

𝜕𝑥
𝑢(𝑦𝑤)︸︷︷︸

=0

+ 𝜕

𝜕𝑧
𝑤(𝑦𝑤)︸ ︷︷ ︸

=0

ª®®¬ = 0. (2.39)

Note that both boundary conditions are zero even in the presence of wall transpira-
tion. The appropriate boundary condition for 𝑣 was already discussed and is given
by eq. (2.7). Further note that the mean flow equations have to be supplied with
boundary conditions as well. Those are no-slip, i.e. 〈𝑢〉𝑥,𝑧 (𝑦𝑤) = 〈𝑤〉𝑥,𝑧 (𝑦𝑤) = 0.

We close this section with a discussion of the discretization parameters of the DNS.
These are chosen to match the domain size and resolution of previous numerical
simulations such as Flores and Jiménez (2006) and Lee and Moser (2015). The size
of the computational domain in the streamwise and spanwise direction is 𝐿𝑥 = 4𝜋ℎ
and 𝐿𝑧 = 2𝜋ℎ, respectively, and 𝑁𝑥 = 𝑁𝑧 = 256 Fourier modes are used in these
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directions. This corresponds to a resolution of Δ𝑥+ ≈ 8.8 and Δ𝑧+ ≈ 4.4 in terms
of Fourier modes before dealiasing at the nominal Re𝜏 = 180 of the canonical
flow. A sinusoidal grid with 𝑁𝑦 = 172 points is used in the wall-normal direction,
which gives a resolution of Δ𝑦+min ≈ 0.37 at the wall and Δ𝑦+max ≈ 3.09 at the
channel center. The adequacy of these settings for flows with and without wall
transpiration will be confirmed in section 3.3.2. The actuator spectra of fig. 4.4 will
further show that the most energetic control scales are typically shorter than or equal
to the fundamental wavelength, which suggests that the computational domain is
sufficiently large for the purpose of this study. All simulations are started from a
fully-developed turbulent flow field at Re𝜏 = 180 and statistics are collected over at
least 10 eddy turnover times (ℎ/𝑢𝜏) once a statistically steady state is reached.

2.2.2 Pressure Solver
Next, we discuss the solver for the pressure Poisson equation (2.4). Recall that the
pressure is not required to advance the solution in velocity-vorticity formulation,
and the code framework of section 2.2.1 does therefore not solve for 𝑝. However,
the pressure is still of interest in this study, as will be shown in Chapter 6, and is
therefore recovered in postprocessing. A separate Poisson solver was written to this
end. The details are given below, but it should be noted that this is an early version
with a crude wall-normal discretization that should be improved in the future.

Before introducing the numerical method, it is instructive to revisit the expression
for the full pressure field, eq. (2.25), and illustrate its relation to the pressure Poisson
equation. Taking the Laplacian of eq. (2.25) reveals that only two terms enter the
Poisson equation

∇2𝑝 = − 𝜕2

𝜕2𝑦
〈𝑣𝑣〉𝑥,𝑧 + ∇2𝑝′. (2.40)

The absence of the mean pressure gradient terms Π𝑥 and Π𝑧 is consistent with
our earlier observation that these terms are determined by the mean momentum
equations. The first term in eq. (2.40) can be added to the right-hand side and the
pressure Poisson equation therefore only governs the fluctuations

∇2𝑝′ = −∇ · (𝒖 · ∇𝒖) + 𝜕2

𝜕2𝑦
〈𝑣𝑣〉𝑥,𝑧 . (2.41)

The wall-parallel mean of eq. (2.41) is trivially satisfied and reflects its equivalence
with the wall-normal mean momentum equation, whose information is already
incorporated in the expression for 𝑝. Since the pressure fluctuations are assumed
to be periodic, eq. (2.41) is best solved using Fourier transforms, which has further
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implications. First, the additional term on the right-hand side is constant in 𝑥 and 𝑧,
and after a Fourier transform only contributes to the equation for the mode 𝜿 = 0.
Second, it will be shown in eq. (2.46) that the equation for 𝜿 = 0 corresponds to
the wall-parallel mean of the Poisson equation, which does not have to be solved
since it is trivially satisfied. In other words, the Fourier-transformed pressure
Poisson equation for the fluctuations is no different from the original formulation
of eq. (2.4), except that the mode 𝜿 = 0 does not have to be solved for. The
following discussion therefore only regards the fluctuations, and we drop the prime
for notational convenience.

We next consider the numerical discretization. Again, the pressure fluctuations
are periodic in 𝑥 and 𝑧, and we therefore discretize the streamwise and spanwise
direction with the same pseudospectral Fourier Galerkin method used in the NSE
solver. The nonlinear forcing term in eq. (2.41) is evaluated in physical domain,
and the 3/2-rule is used to dealise the discrete Fourier transforms. The stretched
sinusoidal mesh of the NSE solver is used in the wall-normal direction and the
second derivative operator in 𝑦 is approximated by a central finite difference scheme
with three point stencil, which at each 𝜿 ≠ 0 reads

d2

d𝑦2 𝑝(𝑦 𝑗 ) ≈ 𝐴 𝑗 𝑝(𝑦 𝑗−1) + 𝐵 𝑗 𝑝(𝑦 𝑗 ) + 𝐶 𝑗 𝑝(𝑦 𝑗+1) (2.42)

where {𝑦 𝑗 }
𝑁𝑦−1
𝑗=0 denotes the wall-normal grid. The coefficients are given by

𝐴 𝑗 =
2

Δ𝑦 𝑗 (Δ𝑦 𝑗 + Δ𝑦 𝑗+1)

𝐵 𝑗 = − 2
Δ𝑦 𝑗Δ𝑦 𝑗+1

𝐶 𝑗 =
2

Δ𝑦 𝑗+1(Δ𝑦 𝑗 + Δ𝑦 𝑗+1)

(2.43)

where Δ𝑦 𝑗 = 𝑦 𝑗 − 𝑦 𝑗−1. Note that the coefficients are different at each mesh point,
since the grid is non-uniform. The local truncation error of this scheme is O(Δ𝑦 𝑗 )
for a non-uniform mesh, which improves to O(Δ𝑦2) for the special case of a uniform
grid.

The mesh points on the wall, 𝑦0 and 𝑦𝑁𝑦−1, require special attention, because one
function value in each stencil is not available (𝑝(𝑦−1) and 𝑝(𝑦𝑁𝑦

), respectively). A
standard approach for finite difference methods with Neumann boundary data is to
introduce so-called ghost points outside of the domain, and use the Neumann data to
approximate the function value at the ghost points. Once those function values are
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known, the interior stencil can also be used at the boundaries. In the present case,
we need two ghost points, 𝑦−1 and 𝑦𝑁𝑦

, i.e. one for each wall. The ghost points are
created symmetrically about the walls so that, for example, 𝑦0 − 𝑦−1 = 𝑦1 − 𝑦0. The
function values at the ghost points are then approximated as

𝑝(𝑦−1) = 𝑝(𝑦1) − 2Δ𝑦1
d𝑝
d𝑦

(𝑦0) + O(Δ𝑦3
1)

𝑝(𝑦𝑁𝑦
) = 𝑝(𝑦𝑁𝑦−2) + 2Δ𝑦𝑁𝑦−1

d𝑝
d𝑦

(𝑦𝑁𝑦−1) + O(Δ𝑦3
𝑁𝑦−1).

(2.44)

Applying the interior scheme and using the ghost points gives the following approx-
imation at the domain boundaries

d2𝑝

d𝑦2 (𝑦0) ≈ 𝐵0𝑝(𝑦0) + (𝐴0 + 𝐶0)𝑝(𝑦1) −
2

Δ𝑦1

d𝑝
d𝑦

(𝑦0)

d2𝑝

d𝑦2 (𝑦𝑁𝑦−1) ≈ (𝐴𝑁𝑦−1 + 𝐶𝑁𝑦−1)𝑝(𝑦𝑁𝑦−2) + 𝐵𝑁𝑦−1𝑝(𝑦𝑁−1) +
2

Δ𝑦𝑁𝑦−1

d𝑝
d𝑦

(𝑦𝑁𝑦−1)

(2.45)
with 𝐴 𝑗 , 𝐵 𝑗 , and 𝐶 𝑗 according to eq. (2.43), and the pressure boundary conditions
from eq. (2.8). Note that the local truncation error of this approximation is also
O(Δ𝑦 𝑗 ).

Section 6.2 will show that the current solver reproduces literature data of canonical
channel flow and is appropriate for postprocessing purposes. However, a more
accurate solver would be preferable, especially if the pressure were no longer a
passive variable. An example for this scenario would be if the pressure were used
to inform the wall transpiration.

2.3 Statistical Analysis
After describing the numerical solvers to generate flow data, we introduce the
statistical tools to analyze them. Sections 2.3.1 and 2.3.2 outline different averages,
which define the first and second order flow statistics. The spatial power spectra,
which will be used to quantify how much each scale contributes to the second order
moments, are defined in section 2.3.3. The symbols 𝑓 and 𝑔 are used throughout
this section as placeholder for any component of the velocity vector 𝒖 or pressure.
It is also important to keep in mind that fully-developed turbulent channel flow
is statistically homogeneous in 𝑥 and 𝑧, and stationary in time. Furthermore, the
channel is statistically symmetric about the centerline and averaging over symmetric
planes in 𝑦 is implied in all definitions.
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2.3.1 Averages
We start the discussion by introducing various spatial and temporal averages, which
represent the first order flow statistics. Recall that the terms mean and average are
used interchangeably.

We first consider two different spatial averages. The first one, the wall-parallel mean
〈 𝑓 〉𝑥,𝑧, was already defined in eq. (2.10). It is important to note that the spatial mean
corresponds to the (spatial) Fourier coefficient at the wave number combination
[𝑙 = 0, 𝑚 = 0]

〈 𝑓 〉𝑥,𝑧 (𝑦, 𝑡) = 𝑓 (𝑙 = 0, 𝑚 = 0, 𝑦, 𝑡) (2.46)

which follows from a comparison of eqs. (2.10) and (2.31). A second type of
spatial average will be used for periodic quantities, which are characterized by their
wavelength 𝜆𝑥 . If more than one wavelength occurs in the flow domain, an average
over all wavelengths can be computed, which is usually referred to as phase average

〈 𝑓 〉𝜆𝑥
(𝑥, 𝑦, 𝑧, 𝑡) = 1

𝑁𝜆

𝑁𝜆−1∑︁
𝑗=0

𝑓 (𝑥 + 𝑗𝜆𝑥 , 𝑦, 𝑧, 𝑡) (2.47)

where 𝑁𝜆 = 𝐿𝑥/𝜆𝑥𝑐 is the number of wavelengths in the flow domain. As written
above, the phase average is taken in the streamwise direction, but the same procedure
could be applied to the spanwise direction. Note that the phase average is still a
function of all coordinates, but the averaged one is restricted to a single wavelength,
i.e. 𝑥 ∈ [0, 𝜆𝑥] above.

Flow quantities are often also averaged in time. The temporal average 〈 𝑓 〉𝑡 was
defined in eq. (2.11), and we note that there is again a relation to the (temporal)
Fourier coefficients

〈 𝑓 〉𝑡 (𝑥, 𝑦, 𝑧) = 𝑓 (𝜔 = 0, 𝑥, 𝑦, 𝑧). (2.48)

Finally, the spatio-temporal mean 𝑓 is obtained by averaging in the wall-parallel
directions and time. The definition is given in eq. (2.12) and the relation to the
(spatial and temporal) Fourier coefficients is in this case

𝑓 (𝑦) = 𝑓 (𝑙 = 0, 𝑚 = 0, 𝜔 = 0, 𝑦). (2.49)

The spatio-temporal mean is used to define the so-called Reynolds decomposition,
which is commonly used in turbulence research to express a flow quantity as a sum
of a mean, which only depends on the wall-normal coordinate, and fluctuations
about that mean

𝑓 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑓 (𝑦) + 𝑓 ′(𝑥, 𝑦, 𝑧, 𝑡). (2.50)

Note that the fluctuations have no spatio-temporal mean by construction.
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2.3.2 Variance and Root-Mean-Square Deviation
Next, we consider averages of products like 𝑓 𝑔, which will introduce the notion of
variance and root-mean-square deviation to quantify the fluctuations about the mean.
The definition of spatial and temporal averages given in eqs. (2.10) to (2.12) also
apply to quadratic products. However, expressing averages of quadratic products
in terms of their Fourier coefficients is more complicated, because a multiplication
in physical domain implies a convolution in Fourier space. The relation between
quadratic averages and Fourier coefficients is known as Parseval’s theorem, and for
the spatial wave number reads

〈 𝑓 𝑔〉𝑥,𝑧 (𝑦, 𝑡) =
∞∑︁

𝑙=−∞

∞∑︁
𝑚=−∞

𝑓 (𝑙, 𝑚, 𝑦, 𝑡)�̂�(−𝑙,−𝑚, 𝑦, 𝑡)

=

∞∑︁
𝑚=−∞

<
{
𝑓 (𝑙 = 0, 𝑚, 𝑦, 𝑡) �̂�∗(𝑙 = 0, 𝑚, 𝑦, 𝑡)

}
+

∞∑︁
𝑙=1

∞∑︁
𝑚=−∞

2<
{
𝑓 (𝑙, 𝑚, 𝑦, 𝑡) �̂�∗(𝑙, 𝑚, 𝑦, 𝑡)

}
(2.51)

where<{ 𝑓 } denotes the real part of the complex quantity 𝑓 , and the second equality
holds because of Hermitian symmetry, eq. (2.35). A similar relation holds for the
time average

〈 𝑓 𝑔〉𝑡 (𝑥, 𝑦, 𝑧) =
∫ ∞

−∞
𝑓 (𝜔, 𝑥, 𝑦, 𝑧) �̂�(−𝜔, 𝑥, 𝑦, 𝑧) d𝜔

=

∫ ∞

0
2<

{
𝑓 (𝜔, 𝑥, 𝑦, 𝑧) �̂�∗(𝜔, 𝑥, 𝑦, 𝑧)

}
d𝜔,

(2.52)

but now involves an integral, because the temporal frequency is continuous. The two
relations can also be combined to express the spatio-temporal mean as a convolution
integral of the form

𝑓 𝑔(𝑦) =
∞∑︁

𝑙=−∞

∞∑︁
𝑚=−∞

∫ ∞

−∞
𝑓 (𝒌, 𝑦)�̂�∗(𝒌, 𝑦) d𝜔, (2.53)

and a reduction to a subset of the wave number space analogous to the above cases
is outlined in appendix B for the special case of modal analysis approximations.

The spatio-temporal mean of the product 𝑓 ′𝑔′ corresponds to the covariance, which
follows from the definition of the Reynolds decomposition

𝑓 ′𝑔′(𝑦) = 𝑓 𝑔(𝑦) − 𝑓 (𝑦) 𝑔(𝑦). (2.54)
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Note that eq. (2.54) reduces to the variance in the special case 𝑓 = 𝑔. Another
comment regards the terminology in the turbulence literature. A common scenario
in the analysis of turbulent flows is that 𝑓 and 𝑔 are both velocity components, in
which case the variance and covariance are usually referred to as Reynolds stresses.
The fluctuations of a single flow variable about its mean can also be quantified in
terms of the root-mean square deviation (abbreviated as rms and sometimes called
standard deviation), which is closely related to the variance

𝑓rms(𝑦) =
(
𝑓 ′ 𝑓 ′(𝑦)

)1/2
=

(
𝑓 2(𝑦) −

(
𝑓 (𝑦)

)2
)1/2

. (2.55)

The root-mean square of velocity components is also called turbulence intensity in
the literature.

2.3.3 Spectra
The statistical tools introduced so far allow quantification of flow variables in terms
of a spatio-temporal mean and fluctuations about that mean. Next, we define the
spatial power (co-)spectrum, which can be used to quantify how much each scale
contributes to the (co-)variance.

The starting point for the discussion is Parseval’s theorem for the spatial Fourier
coefficients. After taking the time average of eq. (2.51) and defining

Φ̃ 𝑓 𝑔 (𝑙, 𝑚, 𝑦) =

<

{
〈 𝑓 (𝑙 = 0, 𝑚, 𝑦)�̂�(𝑙 = 0, 𝑚, 𝑦)〉𝑡

}
if 𝑙 = 0

2<
{
〈 𝑓 (𝑙, 𝑚, 𝑦)�̂�∗(𝑙, 𝑚, 𝑦)〉𝑡

}
else,

(2.56)

we can write the spatio-temporal mean of the product 𝑓 𝑔 as

𝑓 𝑔(𝑦) = 𝑓 (𝑦)𝑔(𝑦) + 𝑓 ′𝑔′(𝑦) =
∞∑︁
𝑙=0

∞∑︁
𝑚=−∞

Φ̃ 𝑓 𝑔 (𝑙, 𝑚, 𝑦). (2.57)

One can think of Φ̃ 𝑓 𝑔 (𝑙, 𝑚, 𝑦) as a density of 𝑓 𝑔 in wavenumber space. If the
absolute value of Φ̃ 𝑓 𝑔 is large, then the wavenumber combination [𝑙, 𝑚] contributes
significantly to the spatio-temporal mean. Conversely, if the absolute value of Φ̃ 𝑓 𝑔

is small, then the contribution of that wavenumber combination is negligible. If
𝑓 = 𝑔, then Φ̃ 𝑓 𝑓 is called the (two-sided) time-averaged spatial power spectrum
of 𝑓 . The power spectrum at each wavenumber is proportional to 〈| 𝑓 (𝑙, 𝑚) |2〉𝑡 ,
and Φ̃ 𝑓 𝑓 is therefore non-negative. If 𝑓 ≠ 𝑔, then Φ̃ 𝑓 𝑔 is called the (two-sided)
time-averaged spatial co-spectrum of 𝑓 and 𝑔. The co-spectrum can attain positive
or negative values, depending on the relative phase of 𝑓 and �̂� at each wavenumber



39

combination. Note that both Φ̃ 𝑓 𝑓 and Φ̃ 𝑓 𝑔 are functions of the wavenumbers, but
are real-valued quantities (therefore they have no superscript hat).

The two-sided spectra of eq. (2.56) are defined over the half-plane 𝑙 ≥ 0. Since the
±𝑧 direction in a turbulent channel flow are indistinguishable in a statistical sense,
it is common practice to fold the 𝑚 < 0 part of the spectrum onto the 𝑚 > 0 part.
In other words, we introduce the new quantity for 𝑚 ≥ 0

Φ 𝑓 𝑔 (𝑙, 𝑚, 𝑦) =

Φ̃ 𝑓 𝑔 (𝑙, 𝑚, 𝑦) if 𝑚 = 0

Φ̃ 𝑓 𝑔 (𝑙, 𝑚, 𝑦) + Φ̃ 𝑓 𝑔 (𝑙,−𝑚, 𝑦) else
(2.58)

which allows to express the spatio-temporal mean of 𝑓 𝑔 as

𝑓 𝑔(𝑦) = 𝑓 (𝑦)𝑔(𝑦) + 𝑓 ′𝑔′(𝑦) =
∞∑︁
𝑙=0

∞∑︁
𝑚=0

Φ 𝑓 𝑔 (𝑙, 𝑚, 𝑦). (2.59)

The function Φ 𝑓 𝑔 (𝑙, 𝑚, 𝑦) is the one-sided time-averaged cospectrum of 𝑓 and 𝑔,
and is preferred over the two-sided spectrum in the literature. The present study
will therefore only report one-sided time-averaged spectra and simply refer to them
as cospectrum ( 𝑓 ≠ 𝑔) and spectrum ( 𝑓 = 𝑔), respectively. One special case of
eq. (2.59) is important to point out: if either 𝑓 = 0 or 𝑔 = 0, then the spectrum sums
to the covariance 𝑓 ′𝑔′.

2.4 Modal Analysis
Besides the DNS introduced in section 2.2, which is used to solve the full nonlinear
NSE numerically, we will make frequent use of modal analyses to elucidate linear
mechanisms that underlie or at least contribute to the flow phenomena observed in
DNS. Specifically, we will use two equation-driven modal analysis techniques, the
temporal eigenspectrum and resolvent analysis, which are described in more detail
in this section.

The starting point for both techniques is a Reynolds decomposition of the NSE in
primitive variables, which allows to split eq. (2.1) into an equation for the spatio-
temporal mean and an equation for the fluctuations about that mean. The streamwise
velocity 𝑢(𝑦) is the only nonzero mean component in the present channel flow
configuration, and is governed by eq. (2.28). For both modal analyses, we will
assume that the mean velocity profile is known, for example from an experiment, a
numerical simulation, or an eddy-viscosity approximation. More details about the
generation and selection of the mean velocity profiles will be given in section 2.4.2.
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The problem then reduces to the turbulent fluctuations, which are governed by

𝜕𝒖′

𝜕𝑡
= −𝑢 𝜕𝒖

′

𝜕𝑥
+ 1

Re
∇2𝒖′ − 𝑣′

d𝑢
d𝑦

𝒆𝑥 − ∇𝑝′ + 𝒖′ · ∇𝒖′ − 𝒖′ · ∇𝒖′︸                 ︷︷                 ︸
= �̃� (𝒖′)

∇ · 𝒖′ = 0

(2.60)

where 𝒆𝑥 is the unit vector in the streamwise direction. The fluctuation equations
have to be supplied with appropriate initial and boundary conditions, which are
identical to the ones described in section 2.1.2. Note that the spatio-temporal mean
of eq. (2.60) is trivially satisfied, which is to be expected since the fluctuations have
zero mean by construction. For notational convenience, we drop the superscript
prime from here on and introduce the symbol �̃� = [ 𝑓𝑢, 𝑓𝑣, 𝑓𝑤] for the nonlinear
terms (in the fluctuations) on the right-hand-side.

Both modal analysis techniques rely on a Fourier-domain representation in (at least)
the streamwise and spanwise direction, so that we transform eq. (2.60) in 𝑥 and 𝑧,
and rewrite it at each spatial wave number pair 𝜿 as

𝜕

𝜕𝑡
𝑴�̂�(𝑦, 𝑡) = 𝑳(𝜿) �̂�(𝑦, 𝑡) + �̂� ( �̂�) (2.61)

where �̂� = (�̂�, �̂�, �̂�, 𝑝) and �̂� = [ 𝑓𝑢, 𝑓𝑣, 𝑓𝑤, 0] denote the state vector and nonlinear
advection terms, respectively, 𝑴 is a weight matrix to enforce the right-hand side
of the continuity equation

𝑴 =

©«

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

ª®®®®®®®®¬
(2.62)

𝑳 is the linearized Navier-Stokes operator

𝑳 =

©«

−𝑖𝑘𝑥𝑢 + Δ
Re −d𝑢

d𝑦 0 −𝑖𝑘𝑥

0 −𝑖𝑘𝑥𝑢 + Δ
Re 0 − d

d𝑦

0 0 −𝑖𝑘𝑥𝑢 + Δ
Re −𝑖𝑘𝑧

−𝑖𝑘𝑥 − d
d𝑦 −𝑖𝑘𝑧 0

ª®®®®®®®®¬
(2.63)

and Δ = d2/d𝑦2− 𝑘2
𝑥 − 𝑘2

𝑧 is the Laplacian. It is important to point out that eq. (2.61)
is an exact representation of the full nonlinear fluctuation equations. This particular
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formulation is instructive, because it highlights that the nonlinear advection terms
can be interpreted as an intrinsic forcing to the remaining linear dynamics of the
NSE, which is the view put forward by McKeon and Sharma (2010). The two modal
analysis techniques introduced subsequently will approximate the flow state �̂� based
on an analysis of the linear operators in eq. (2.61). The challenge is that the forcing
�̂� depends nonlinearly on �̂� as well, which at first seems to obstruct further progress.
However, previous studies (e.g. McKeon and Sharma, 2010; Sharma and McKeon,
2013; Luhar, Sharma, and McKeon, 2014b) suggest that significant physical insight
can be gained from eq. (2.61) if the nonlinear forcing term is modeled, so that it
becomes independent of �̂�, i.e by approximation of the action of the operator. Each
modal analysis technique considered subsequently is based on a different forcing
model: the temporal eigenspectrum will analyze eq. (2.61) under the assumption
�̂� = 0, while resolvent analysis will model �̂� as the harmonic forcing that is most
amplified by the remaining linear terms.

2.4.1 Interpretation of Modal Analyses
The abundance of modal analysis techniques can easily obscure what aspect of the
flow state �̂� each method models. Before formally introducing the two modal analysis
techniques considered in this study, we therefore provide an intuitive understanding
of what each of them tries to achieve. To this end, we consider a variation of
eq. (2.61), given by

d
d𝑡
�̂�(𝑡) = 𝑳(𝜿) �̂�(𝑡) + �̂� (𝑡). (2.64)

In this form, the weight matrix is absent, which prevents difficulties associated with
the rank deficiency of 𝑴. One could formally eliminate 𝑴 from eq. (2.61) by
transforming from primitive variables to velocity-vorticity form, so that this is not a
significant modification. Of course, the operator 𝑳 and vectors �̂�, �̂� would change
under such a transformation as well, but the details of these objects are not relevant
for the purpose of this discussion. We further reduced the system of PDEs (2.61) to
a system of ordinary differential equations (ODEs, eq.(2.64)), which can be easily
achieved by discretizing the wall-normal coordinate. The one significant difference
between eqs. (2.61) and (2.64) is that the forcing �̂� is assumed to be independent
of �̂� in the latter. This assumption is necessary in order to apply tools from ODE
theory to the system (2.64), which will lead to an expression that enables an intuitive
interpretation of the two modal analysis techniques.
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Under the above assumptions, we can find an analytical expression for the solution
of eq. (2.64) at each 𝜿

�̂�(𝑡) = 𝑒𝑳(𝜿)𝑡 �̂�0 +
∫ 𝑡

0
𝑒𝑳(𝜿) (𝑡−𝜏) �̂� (𝜏) d𝜏 (2.65)

where 𝑒𝑳(𝜿)𝑡 is the matrix exponential and �̂�0 denotes the initial condition (see e.g.
the review by Jovanović, 2021). The first term in eq. (2.65) represents the natural
response of the system in the absence of external forcing (note that �̂� does not appear
in this expression). In contrast, the second term describes the response of the system
due to the external forcing �̂� .

The natural response is fully determined by the temporal eigenspectrum of the lin-
earized Navier-Stokes operator 𝑳. Its temporal eigenvalues are complex and the
amplitude of the associated eigenmodes can therefore grow, decay, or remain con-
stant over time. If all eigenvalues at a particular 𝜿 are damped, then the natural
response of that Fourier mode decays over a sufficiently long time horizon. More-
over, the natural response does not contribute to the long-term dynamics of the
system if all eigenvalues at all 𝜿 are damped. On the other hand, if at least one
eigenvalue at a particular 𝜿 is neutral or amplified, then the natural response does
not decay. In particular, Fourier modes with amplified eigenvalues grow over time
and the natural response of the system eventually diverges. In the context of modal
analyses, we will utilize the temporal eigenspectrum of 𝑳 to characterize the flow
response in the absence of intrinsic nonlinear forcing. The details of this analysis
and a discussion of the implications will be given in section 2.4.3. It is important
to emphasize that the above conclusions apply to the linear system (2.64). Caution
is required when drawing conclusions about the NSE from the eigenspectrum of 𝑳,
because the former is intrinsically nonlinear. Implications of the nonlinearity for
the interpretation of the eigenspectrum will also be discussed in section 2.4.3.

Next, we consider the forced response of the linear system, and limit our analysis to
the case of damped temporal eigenvalues of 𝑳. In this scenario, the natural response
decays, and the system enters a steady-state response under a given forcing. We are
in particular interested in harmonic forcing of the form �̂� (𝜏) ∝ 𝑒−𝑖𝜔𝜏, where 𝜔 ∈ R
is a real frequency. The Fourier transform can then be utilized to rewrite the forced
response in eq. (2.65) as (see e.g. review by Jovanović, 2021)

�̂�(𝜔) = (−𝑖𝜔𝑰 − 𝑳(𝜿))−1︸                ︷︷                ︸
H(𝒌)

�̂� (𝜔). (2.66)
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The operator H(𝒌) that maps the forcing to the state vector is called the resolvent
operator. The second modal analysis technique used in this study aims to derive
an efficient basis for �̂� from a singular value decomposition of the operator H(𝒌).
This basis can then be used to study the flow response of the forced (i.e. modeled
nonlinear) system under various control configurations. The details of this analysis
will be introduced in section 2.4.4.

It is important to note the different temporal behavior implied in the eigenspec-
trum and resolvent analysis. The frequencies (eigenvalues) of the eigenspectrum
are complex, which can lead to temporal growth, decay, or limit cycle behavior.
In contrast, resolvent analysis only considers real frequencies and all modes are
therefore neutrally stable. The steady state response described by eq. (2.66) is only
meaningful if all eigenvalues of the temporal eigenspectrum are damped, so that the
natural response decays. The notion of a steady state forced response does not exist
if the natural response diverges, and the resolvent is not defined if 𝑳 has neutrally
stable eigenvalues, because (−𝑖𝜔𝑰 − 𝑳) is singular at those frequencies. It is also
important to emphasize that while the above discussion assumed the forcing vector
to be independent of �̂�, this is not a prerequisite of the resolvent framework. The
resolvent operator can equally be defined for the full nonlinear system (2.61), which
will be done in section 2.4.4.

2.4.2 Discretization and Mean Profile Selection
The previous section shows that the definition of the temporal eigenspectrum and
the resolvent operator are based on spatial differential operators, which have to be
discretized for numerical evaluation. Before introducing the two modal analyses
in detail, we therefore describe the discretization of 𝑳, which is identical for both
frameworks.

The spatial Fourier transforms implied in eq. (2.61) provide a natural discretization
in 𝑥 and 𝑧, and the streamwise and spanwise wave numbers are again constrained to
be integer multiples of the fundamental wave number imposed by the domain size.
The wall-normal coordinate is discretized by the Chebyshev collocation method
described in Weideman and Reddy (2000), and the collocation points can be chosen
to correspond to the DNS grid points up to the grid stretching factor. It should be
emphasized that the discretized operators incorporate boundary conditions, which
are no-slip for the streamwise and spanwise velocity fluctuations (see eq. (2.6)) and
Dirichlet boundary conditions for 𝑣 according to eq. (2.7). A change in boundary
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conditions therefore alters the linear operators, which in turn modifies the temporal
eigenspectrum of 𝑳 and singular value decomposition of H .

It is further important to point out that the effect of control enters the modal analyses
in two places. First, the no-through boundary condition is relaxed to allow wall
transpiration. This can be interpreted as a linear effect of control, which only acts
on the wave number combination currently under consideration and which does
not require a priori knowledge of the controlled flow. Second, the turbulent mean
profile underlying the linearized Navier-Stokes operator 𝑳 changes when control
is applied. This is a nonlinear effect: changes at individual wave numbers alter
the mean Reynolds stress, which in turn changes the mean velocity profile through
eq. (2.28). A priori knowledge of the controlled flow, namely the modified mean
profile, is required to incorporate this effect into the modal analyses.

For both, the temporal eigenspectrum and resolvent analysis of controlled flows,
we will consider two problem formulations of increasing complexity: the first one
considers the modal analysis about an uncontrolled turbulent mean, but replaces the
no-through boundary condition with a nonzero closed-loop wall transpiration. In
other words, this first formulation incorporates the change in boundary condition,
but neglects changes in the mean. This is a model assumption, with the intention to
understand what the minimum required information is to approximate the behavior
of the full nonlinear system. The uncontrolled turbulent mean is approximated by the
semi-empirical eddy viscosity model proposed by Reynolds and Tiederman (1967),
with parameters 𝛼 = 25.4 (constant in the Van Driest wall law) and 𝜅 = 0.426 (con-
stant in the von Kármán logarithmic law). Of course, the uncontrolled mean profiles
could also be obtained from DNS, but the eddy viscosity approach is advantageous
because it can be easily extended to regimes where DNS or experimental data are not
available. The second formulation considers the modal analysis about the controlled
turbulent mean with control boundary conditions. That is, the second formulation
incorporates both the linear and nonlinear effect of control. The controlled mean
profiles are obtained from a DNS with matching transpiration boundary conditions.
It is worth noting that the eddy viscosity is only used to approximate the uncontrolled
mean profile. It is not incorporated in the linearized Navier-Stokes operator L when
formulating either of the modal analyses. In other words, higher-order effects due
to the nonlinear interactions of the fluctuations are neglected in the modal analyses.
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2.4.3 Temporal Eigenspectrum
We now introduce the details of the first modal analysis techniques, the temporal
eigenspectrum. Formally, the temporal eigenspectrum is derived by linearizing the
fluctuation equations about the turbulent mean 𝑢(𝑦), which is equivalent to setting
�̂� (�̂�) = 0 in eq. (2.61), and making a normal mode ansatz �̂�(𝑦, 𝑡) = �̂�(𝑦)𝑒−𝑖�̂�𝑡 with
complex frequency �̂� = 𝜔𝑟 + 𝑖𝜔𝑖 and {𝜔𝑟 , 𝜔𝑖} ∈ R. Equation (2.61) then reduces to
a temporal eigenvalue problem of the form

𝑳(𝜿) �̂� = −𝑖�̂�𝑴�̂� (2.67)

with 𝑳 and 𝑴 according to eqs. (2.62) and (2.63), respectively. Equation (2.67)
employs the sign convention of the stability literature so that temporal amplification
corresponds to 𝜔𝑖 > 0, and results will often be presented in terms of complex wave
speed 𝑐 = �̂�/𝑘𝑥 = 𝑐𝑟 + 𝑖𝑐𝑖 instead of temporal frequency.

The temporal eigenvalue problem is formulated in primitive variables, and the weight
matrix 𝑴 is singular due the continuity equation, which leads to spurious numerical
eigenvalues. Following Jiménez, Uhlmann, et al., 2001 we label eigenvalues as
spurious if their value changes significantly for a small change in grid resolution,
and spurious eigenvalues are discarded in the analysis. This method was validated
against the results of Orszag (1971) for a laminar base profile and excellent agreement
was found for 𝑁𝑦 = 201 collocation points.

Further recall that the eddy viscosity is not incorporated in 𝑳 to model the effect
of Reynolds stresses. An interpretation of eq. (2.67) as stability analysis of the
turbulent mean is therefore not valid, even if it looks formally equivalent. Instead,
one should think of eq. (2.67) as an eigenvalue problem for 𝑳, which characterizes
the natural response of the unforced (linearized) NSE, as discussed in section 2.4.1.
However, caution is required when drawing conclusions about the full NSE from
the eigenvalues of 𝑳, because the former are inherently nonlinear. In particular, the
interpretation of amplified eigenvalues about a well-defined turbulent mean profile
is challenging due to the discrepancy between the diverging natural response of the
linearized equation and the stable nonlinear system. The neglected nonlinearity may
have a stabilizing effect in the former, but we will not further address this question
here. Damped eigenvalues are less problematic to interpret and indicate that the
corresponding eigenmodes of the unforced system are not relevant for the long-term
dynamics of the full nonlinear flow.
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The boundary conditions are enforced in eq. (2.67) by replacing the linearized
fluctuation equations at the wall with the boundary conditions described in eqs. (2.6)
and (2.7). A change in boundary condition therefore alters the temporal eigenvalue
problem, and our main focus will be on analyzing how the eigenvalues change under
closed-loop wall transpiration.

2.4.4 Resolvent Analysis
The second modal analysis used in this study is the resolvent approach of McKeon
and Sharma (2010). Under the resolvent formulation, the nonlinear term is viewed
as intrinsic forcing to the remaining linear dynamics (see eq. (2.61)), and the goal is
to characterize the forced flow response, which corresponds to the turbulent steady
state. To this end, a low-order approximation of the flow state �̂� is sought by
identifying an efficient basis from the resolvent operator.

Formally, we wish to identify in each dimension the basis whose first 𝑁 functions
capture most kinetic energy |𝒖 |2 of the flow under an L2-norm. It can be shown
analytically that the Fourier basis is the optimal one in the statistically homoge-
neous streamwise and spanwise directions and in the stationary temporal coordinate
(Holmes, Lumley, and Berkooz, 1996). We therefore start the model development
by applying a Fourier transform in those coordinates. Recall that the streamwise
and spanwise direction are already transformed in eq. (2.61), so that we only need
to apply a transform in time. The forced response can then be written as

�̂�(𝑦) = (−𝑖𝜔𝑴 − 𝑳(𝜿))−1︸                  ︷︷                  ︸
H(𝒌)

�̂� ( �̂�, 𝑦) (2.68)

where H(𝒌) is the resolvent operator, which in contrast to eq. (2.66) includes the
mass matrix, and is given by

H(𝒌) =

©«

−𝑖𝜔 + 𝑖𝑘𝑥𝑢 − Δ
Re𝜏

d𝑢
d𝑦 0 𝑖𝑘𝑥

0 −𝑖𝜔 + 𝑖𝑘𝑥𝑢 − Δ
Re𝜏 0 d

d𝑦

0 0 −𝑖𝜔 + 𝑖𝑘𝑥𝑢 − Δ
Re𝜏 𝑖𝑘𝑧

𝑖𝑘𝑥
d
d𝑦 𝑖𝑘𝑧 0

ª®®®®®®®®¬

−1

.

(2.69)

The optimal basis in the remaining wall-normal direction is obtained from a singular
value decomposition of the discretized resolvent operator, and the method described
in Luhar, Sharma, and McKeon (2014a) is used to enforce an energy norm within
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Figure 2.2: The twenty largest singular values 𝜎𝑗 of the canonical channel flow
resolvent operator at the wave number combination [𝜆+𝑥 = 2262, 𝜆+𝑧 = 103, 𝑐+ = 10].

the primitive variable formulation. The singular value decomposition returns an
ordered basis pair {�̂� 𝑗 , �̂� 𝑗 }, which can be used to rewrite eq. (2.68) at each 𝒌

�̂�(𝑦) = H(𝒌) �̂� (𝒒, 𝑦) =
∞∑︁
𝑗=1

𝜎𝑗 �̂� 𝑗 (𝑦)
〈
�̂� 𝑗 (𝑦), �̂� (�̂�, 𝑦)

〉
(2.70)

where 𝜎1 ≥ 𝜎2 ≥ · · · > 0 denote the singular values (gains) of H , �̂� 𝑗 =

[�̂� 𝑗 , �̂� 𝑗 , �̂� 𝑗 , 𝑝 𝑗 ] and �̂� 𝑗 = [ 𝑓𝑢 𝑗 , 𝑓𝑣 𝑗 , 𝑓𝑤 𝑗 , 0] are, respectively, the left and right sin-
gular vectors (wall-normal basis functions) associated with 𝜎𝑗 and 〈·, ·〉 denotes the
L2-inner product in the wall-normal direction for vector-valued functions. We will
refer to the left singular vectors �̂� 𝑗 as resolvent modes hereafter. The basis elements
are ranked in order of descending gain, 𝜎𝑗 , and the singular values come in pairs of
equal or at least same order of magnitude values, as can be seen from fig. 2.2. This
is a peculiarity of the channel geometry and reflects its statistical symmetry about
the centerline. The paired singular vectors are not unique (any linear combination
of them is also a permissible singular vector) and an additional constraint is required
to ensure uniqueness. Following Moarref, Sharma, et al. (2013), we therefore im-
pose an additional wall-normal symmetry constraint on the paired singular vectors,
which results in distinct wall-normal symmetries of the resolvent modes: �̂� 𝑗 , �̂� 𝑗

and 𝑝 𝑗 of the first paired mode are even, while �̂� 𝑗 is odd in 𝑦. The symmetries of
all components are inverted for the second mode of the pair. It is important to point
out that eq. (2.70) is still an exact representation of the fluctuation equations. In
particular, the nonlinearity is retained in �̂� (�̂�), unlike in section 2.4.1.
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Previous work has shown that the resolvent operator at each 𝒌 is low-rank (among
others McKeon and Sharma, 2010; Moarref, Sharma, et al., 2013), and owing to
the particular choice of bases the low-rank nature is reflected in expansion (2.70):
typically, the first two singular values are an order of magnitude larger than the
remaining ones, which is shown in fig. 2.2 for the mode [𝜆+𝑥 = 2262, 𝜆+𝑧 = 103, 𝑐+ =

10]. It can therefore be assumed that the flow is reasonably approximated by just
the first two terms of the expansion. Since almost all singular values are paired
and the corresponding singular vectors only differ in their wall-normal symmetry,
it is often possible to simplify further and just consider the first singular value and
vector, which gives a so-called rank-1 approximation of the operator at each 𝒌

�̂�(𝑦) ≈ 𝜎1 �̂�1(𝑦)
〈
�̂�1(𝑦), �̂� (�̂�, 𝑦)

〉
(2.71)

It will be shown in section 3.4.2 and appendix C that a rank-1 approximation is
indeed sufficient for the purpose of this study.

While the singular values and vectors can be calculated directly from the resolvent,
the nonlinear forcing �̂� (�̂�) depends on the flow state �̂�, which creates a circular
dependence. To make further progress, we therefore have to model �̂� ( �̂�). It is
well-known that the resolvent operator is a very selective amplifier (McKeon and
Sharma, 2010) and it is therefore reasonable to assume that the exact form of
forcing is irrelevant as long as the real flow contains some forcing in the dominant
directions. Note, however, that there is an increasing body of work devoted to
determining and modeling the shape of the forcing to accurately reconstruct the
flow field (Moarref, Jovanović, et al., 2014; Zare, Jovanović, and Georgiou, 2017;
Towne, Schmidt, and Colonius, 2018; McMullen, Rosenberg, and McKeon, 2020;
Morra, Semeraro, et al., 2019; Morra, Nogueira, et al., 2021). In the present study,
we seek the simplest representation of the forcing that captures the control trends
for this system, and therefore we use the so-called rank-1, broadband forcing model
〈�̂�1(𝑦), �̂� ( �̂�, 𝑦)〉 = 1 instead of the more complex models mentioned above. It is
important to emphasize that the resolvent formulation of the NSE with broadband
forcing is not a linearization in the sense of small perturbations relative to a fixed
point solution. A linearization would set �̂� (�̂�) = 0 (as was done for the temporal
eigenspectrum), while the rank-1 broadband forcing assumption employed here
explicitly retains the nonlinearity and models it as �̂� (𝒒, 𝑦) = �̂�1(𝑦) at all 𝒌. The
resulting rank-1 broadband forcing approximation of the NSE at 𝒌 is given by

�̂�(𝑦) ≈ 𝜎1�̂�1(𝑦) (2.72)
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and will be referred to as “resolvent analysis” or “resolvent model” hereafter. We
note that this framework was developed in a series of previous publications (McKeon
and Sharma, 2010; Moarref, Sharma, et al., 2013; Luhar, Sharma, and McKeon,
2014b), and we validated the present resolvent implementation against results re-
ported therein. Excellent agreement in singular values and vectors was found for
𝑁𝑦 = 172 collocation points.

The resolvent operator includes boundary conditions, which are enforced by replac-
ing the forced fluctuation equations at the wall with eqs. (2.6) and (2.7). A change
in boundary conditions therefore alters the resolvent operator, and our focus will
be on analyzing how the singular values and vectors change under closed-loop wall
transpiration. The analysis will either focus on individual wave number triplets, or
on mean flow quantities, which can be obtained by summing over resolvent modes
at different 𝒌. Interested readers may also refer to Luhar, Sharma, and McKeon
(2014b) for an in-depth discussion of the shape and control response of individual
resolvent modes.

It is also important to point out that we excluded the mean velocity equation from the
model development, because 𝑢(𝑦) was assumed to be known. The resolvent model
is therefore not constrained to satisfy the mean momentum equation. In other words,
the mean Reynolds stress resulting from a superposition of resolvent modes is not
necessarily compatible with the mean velocity profile in H , some implications of
which will be discussed in section 3.4.
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C h a p t e r 3

LOW-ORDER MODELS FOR FLOW CONTROL

Portions of this chapter have been previously published in:

Toedtli, S., Luhar, M., and McKeon, B. (2019). “Predicting the response of turbulent
channel flow to varying-phase opposition control: Resolvent analysis as a tool for
flow control design”. In: Physical Review Fluids 4 (7), p. 073905. doi: 10.1103/
PhysRevFluids.4.073905.

The literature review in the Introduction showed that turbulent flow control remains
a challenging open problem of immense practical importance. Even though the
Navier-Stokes equations provide a very accurate model for many fluid systems of
practical interest, they are so complex that even their most basic mathematical
properties remain inscrutable and their numerical solutions are only feasible for
simple geometries and Reynolds numbers well below the technologically relevant
regime (Rowley and Dawson, 2017). These challenges limit the usefulness of the
NSE for controller design and motivate the development of approximate low-order
flow models. The present chapter evaluates the capabilities of one such low-order
flow model, which will be referred to as resolvent model hereafter and which is
based on the eponymous linear analysis introduced earlier in section 2.4.4. The
evaluation is done by the example of the so-called varying-phase opposition control
scheme, which is introduced in section 3.2 and applied to a turbulent channel flow
at Re𝜏 = 180, based on 𝑢𝜏 of the uncontrolled flow. We first conduct a DNS study
to evaluate the drag reduction for varying-phase opposition control with different
controller parameters (section 3.3). The resolvent model is then used to compute
an approximation of the drag reduction over the same parameter range and its
capabilities are judged based on the overall agreement between model and DNS
drag reduction. These results are presented in section 3.4, together with a strategy
to evaluate the resolvent model at technologically relevant Re𝜏.

3.1 Prologue: Symmetries in Fourier Domain
Before introducing the control scheme, we revisit the wave number symmetries
introduced in section 2.1.4 specifically for the DNS and resolvent model. As will
be shown, the resolvent model with broadband forcing has an additional symmetry,

https://doi.org/10.1103/PhysRevFluids.4.073905
https://doi.org/10.1103/PhysRevFluids.4.073905
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which is an important aspect to keep in mind whenever the resolvent model is
linked to DNS or experiments. In the present case, the additional symmetry will
have implications for the formulation of the control scheme, as will be shown in
section 3.2.

A first wave number symmetry, the so-called Hermitian symmetry, was already
introduced in eq. (2.35). Recall that it follows from the properties of the Fourier
transform for real-valued quantities (like velocity or pressure) and holds for any num-
ber of transformed directions. The symmetry is therefore present in both, DNS data
and the resolvent model, but has to be defined with respect to a different wave num-
ber vector, since the resolvent framework also transforms time. For DNS, Hermitian
symmetry applies to the spatial wave numbers at each instant in time and at each wall-
normal location. For example, the velocity vector satisfies �̂�(−𝜿, 𝑦, 𝑡) = �̂�∗(𝜿, 𝑦, 𝑡).
The wave number vector for resolvent modes, 𝒌 = [𝑘𝑥 , 𝑘𝑧, 𝜔], additionally in-
cludes the temporal frequency, and the corresponding relation for resolvent modes
is �̂�(−𝒌, 𝑦) = �̂�∗(𝒌, 𝑦).

Relation (2.35) is the only (instantaneous) symmetry present in the DNS. The
resolvent model on the other hand has an additional symmetry, which relates 𝒌 =

[𝑘𝑥 , 𝑘𝑧, 𝜔] and �̃� = [𝑘𝑥 ,−𝑘𝑧, 𝜔], and which follows from the structure of the
resolvent operator and the broadband forcing assumption. To see this, consider the
resolvent operator H as defined in eq. (2.69) at �̃�. The only difference to H(𝒌) is
a sign change in the off-diagonal terms of the last two rows, which can be absorbed
into the velocity and forcing vector. This allows reformulating the forcing-response
relation at �̃� in terms of the resolvent operator H(𝒌)

©«

𝑢( �̃�, 𝑦)

𝑣( �̃�, 𝑦)

−𝑤( �̃�, 𝑦)

𝑝( �̃�, 𝑦)

ª®®®®®®®®¬︸        ︷︷        ︸
=�̂�† ( �̃�,𝑦)

= H(𝒌)

©«

𝑓𝑢 ( �̃�, 𝑦)

𝑓𝑣 ( �̃�, 𝑦)

− 𝑓𝑤 ( �̃�, 𝑦)

0

ª®®®®®®®®¬︸         ︷︷         ︸
= �̂�

† ( �̃�,𝑦)

. (3.1)

In general, �̂� †( �̃�, 𝑦) ≠ �̂� (𝒌, 𝑦), and the velocity and pressure response �̂�†( �̃�, 𝑦) may
be different from �̂�(𝒌, 𝑦). However, the rank-1 broadband forcing assumption sets
�̂�
†( �̃�, 𝑦) = �̂� (𝒌, 𝑦) = �̂�1(𝒌, 𝑦), which induces the additional symmetry

�̂�†( �̃�, 𝑦) = �̂�(𝒌, 𝑦). (3.2)
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In the resolvent framework, this holds for any temporal frequency 𝜔. We note that
relation (3.2) holds in DNS for the special case 𝜔 = 0, at least approximately if
a finite time interval is considered. This is because the channel geometry has no
preferential orientation in the spanwise direction, which implies that modes with 𝒌

and �̃� should be equal in a time-average (𝜔 = 0) sense.

Recall that the Fourier coefficients are complex numbers and can be represented in
terms of a magnitude and a phase. The symmetries have implications for the physical
interpretation of the Fourier coefficient phase. As will be shown next by example
of the wall-normal velocity component, the phase in the resolvent framework has
a clear physical interpretation, while the interpretation of the phase in DNS data
is more complicated because of the missing second symmetry. We first consider
the rank-1 resolvent approximation, and write the Fourier coefficient at a fixed 𝑦 in
terms of magnitude and phase, i.e. �̂�1(𝒌, 𝑦) = 𝐴1𝑒

𝑖𝜙1 with {𝐴1, 𝜙1} ∈ R. Due to the
additional symmetry (3.2), we also have �̂�1( �̃�, 𝑦) = 𝐴1𝑒

𝑖𝜙1 . Summing �̂�(𝒌), �̂�( �̃�)
and their complex conjugates results in a physical-domain structure 𝑣RES

𝒌
given by

𝑣RES
𝒌 (𝑥, 𝑦, 𝑧, 𝑡) = 4𝐴1 cos(𝑘𝑥𝑥 − 𝜔𝑡 + 𝜙1) cos(𝑘𝑧𝑧) (3.3)

where the factor 4 results from Hermitian symmetry and the trigonometric sum-to-
product identity. Further note that eq. (3.3) corresponds to a building block of the
inverse spatial Fourier transform (2.32). Due to the symmetries, the phase of the
Fourier coefficient only enters the first term, and a nonzero 𝜙1 can be interpreted as
a streamwise or temporal shift of the structure. Conversely, the spanwise position
of the structure is not affected by a change in 𝜙1.

On the other hand, the instantaneous DNS Fourier coefficients at 𝜿 = [𝑘𝑥 , 𝑘𝑧] are
not related to �̃� = [𝑘𝑥 ,−𝑘𝑧]. For example, �̂�( �̃�, 𝑡, 𝑦) ≠ �̂�(𝜿, 𝑡, 𝑦), and the missing
symmetry in 𝑘𝑧 complicates the physical interpretation of the phase. Similarly to
before, we write the DNS Fourier coefficients of 𝑣 at a fixed 𝑦 in terms of magnitude
and phase, i.e. �̂�(𝜿, 𝑡, 𝑦) = 𝐴1𝑒

𝑖𝜙1 and �̂�( �̃�, 𝑡, 𝑦) = 𝐴2𝑒
𝑖𝜙2 , where {𝐴1, 𝐴2, 𝜙1, 𝜙2} ∈

R. Summing �̂�(𝜿), �̂�( �̃�), and their complex conjugates results again in a physical-
domain structure 𝑣DNS

𝜿 which can also be interpreted as a building block of the
spatial inverse Fourier transform

𝑣DNS
𝜿 (𝑥, 𝑦, 𝑧, 𝑡) = 4𝐴1 cos

(
𝑘𝑥𝑥 +

𝜙1 + 𝜙2
2

)
cos

(
𝑘𝑧𝑧 +

𝜙1 − 𝜙2
2

)
+ 2(𝐴2 − 𝐴1) cos(𝑘𝑥𝑥 − 𝑘𝑧𝑧 + 𝜙2) ,

(3.4)

where we can assume 𝐴2 > 𝐴1 without loss of generality. The first term, for which
𝑥 and 𝑧 factor into different trigonometric functions, is the equivalent of 𝑣RES

𝒌
. The
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phase of the Fourier coefficients, 𝜙1 and 𝜙2, have a clear physical interpretation
for this structure: if the mean of the two phases changes, the structure is shifted
in streamwise direction. If their difference changes, the structure is shifted in the
spanwise direction. However, the missing symmetry in 𝑘𝑧 introduces an additional
term with mixed arguments in 𝑥 and 𝑧, which has no counterpart in eq. (3.3). The
phase has no clear physical interpretation for this term, because the argument is
mixed, so that a change in 𝜙2 can correspond to a streamwise or spanwise shift. We
will refer to the second term in eq. (3.4) as “oblique wave” hereafter, even if it does
not necessarily have a well-defined wave speed. It is also important to point out that
eq. (3.4) is a generalization of eq. (3.3), and the latter can be recovered by setting
𝐴2 = 𝐴1 and 𝜙2 = 𝜙1 (i.e. by enforcing the additional symmetry).

3.2 Control Scheme
Next we introduce the control scheme, which provides the foundation for the present
and the following chapters. The controller is a generalization of the well-known
opposition control scheme, which was introduced in eq. (1.1) and which we will
occasionally denote “classical opposition control” to make the distinction clear. In
contrast to the original formulation by Choi, Moin, and Kim (1994), who defined
the control law for points in physical space, we define the control law for individual
Fourier modes. This allows the controller gain �̂�𝑑 to be complex (note the superscript
hat), so that it not only has an amplitude | �̂�𝑑 |, but also a phase ∠ �̂�𝑑 . We will term
the generalized Fourier domain scheme “varying-phase opposition control,” and
refer to ∠ �̂�𝑑 as “phase shift” from here on. The significance of the amplitude has
been studied in the past and is reasonably well understood (see e.g. Chung and
Talha, 2011; Luhar, Sharma, and McKeon, 2014b). We will therefore assign a fixed
value to | �̂�𝑑 | and focus on understanding the role of the phase shift. As will be
shown, a nonzero ∠ �̂�𝑑 changes the phase of individual Fourier modes and has an
interpretation in the physical domain, which is tied to the symmetries of the Fourier
coefficients discussed in section 3.1. The control law is therefore a good example
for the importance of these symmetries, and we will have to formulate two slightly
different controllers for the resolvent model and DNS to ensure that we study the
same physical phenomena in both cases. We first introduce the formulation for the
resolvent model and then present the definition for DNS.
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3.2.1 Resolvent Model
Varying phase opposition control was first introduced by Luhar, Sharma, and McK-
eon (2014b) in the context of a resolvent analysis of turbulent pipe flow. They
defined the control law as

�̂�(𝒌, 𝑦𝑤) = −�̂�𝑑 (𝒌)�̂�(𝒌, 𝑦𝑑). (3.5)

In general, the controller gain can be a function of the wave number vector, con-
strained only by Hermitian symmetry. This gives the scheme great flexibility, but
also introduces a plethora of tuning parameters. To reduce the complexity of the
controller, we consider a special case of eq. (3.5), where we fix | �̂�𝑑 | = 1 and set ∠ �̂�𝑑

to a (nonzero) constant in wave number space. The exception are the streamwise-
constant modes, for which ∠ �̂�𝑑 = 0. A justification for this choice will be given
subsequently. The resulting control scheme is given by

�̂�(𝒌, 𝑦𝑤) = −�̂�RES
𝑑 (𝒌)�̂�(𝒌, 𝑦𝑑)

�̂�RES
𝑑 (𝒌) =


0 if 𝑘𝑥 = 𝑘𝑧 = 0

1 if 𝑘𝑥 = 0, 𝑘𝑧 ≠ 0

𝑒𝑖𝜙 if 𝑘𝑥 > 0

(3.6)

and the superscript RES labels the gain for the resolvent model, which is slightly
different from its DNS counterpart. We will refer to eq. (3.6) as the varying-phase
opposition control law for the resolvent model from here on and note that a similar
scheme was used by Luhar, Sharma, and McKeon (2014b) in their section 3.6. The
control scheme (3.6) only has two parameters: the sensor location 𝑦𝑑 and the phase
shift �̂�𝑑 = 𝜙. Note that the definition of 𝐴RES

𝑑
does not include an expression for

𝑘𝑥 < 0. This is because the actuator input for 𝑘𝑥 < 0 is fully determined by 𝑣(𝑦𝑤)
at 𝑘𝑥 ≥ 0 and Hermitian symmetry.

It is instructive to write eq. (3.6) in terms of the magnitude and phase of the Fourier
coefficients. The magnitude part is trivial and states that the sensor measurement
and actuator response are equal in magnitude. The phase part, which can be written
as

∠�̂�(𝒌, 𝑦𝑤) = ∠�̂�(𝒌, 𝑦𝑑) + 𝜋 + ∠ �̂�𝑑 (3.7)

is more insightful. This form of eq. (3.6) shows that the control law takes the phase
of the sensor measurement, adds 𝜋 (sign inversion) and a possible phase shift ∠ �̂�𝑑

to determine the phase of the actuator input. Note that the phase shift ∠ �̂�𝑑 = 𝜙 is



55

0 1/2 1 3/2 2

x/λx

yw

yd

vRES
k (x, yd, z, t)

vRES
k (x, yw, z, t)

(a) ∠ �̂�𝑑 = 0

0 1/2 1 3/2 2

x/λx

yw

yd

vRES
k (x, yd, z, t)

vRES
k (x, yw, z, t)
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Figure 3.1: Interpretation of the phase shift in physical domain. Figure 3.1a shows
classical opposition control with no additional phase shift, while fig. 3.1b displays
varying-phase opposition control with a negative phase shift. In both figures, the
black curve denotes an example sensor measurement of structure 𝑣RES

𝒌
defined in

eq. (3.3), and the red curve is the corresponding actuator response. The shaded
gray area indicates the wall and the dashed horizontal line is the sensor location.
The vertical lines draw out an example sensor signal maximum and corresponding
actuator signal minimum to aid the comparison. The figure shows the situation for
fixed 𝑧 and 𝑡, but conceptually applies at all spanwise locations and times.

constant in 𝒌 and therefore preserves the wave number symmetries of section 3.1,
so that the relation �̂�( �̃�, 𝑦) = �̂�(𝒌, 𝑦) also holds in the controlled case.

The persistence of the wave number symmetries gives the phase shift a clear physical
interpretation. To see this, assume �̂�(𝒌, 𝑦𝑑) = 𝐴1𝑒

𝑖𝜙1 . The sensor measurement in
physical space then consists of building blocks according to eq. (3.3) with 𝑦 replaced
by 𝑦𝑑 . The actuation consists of the same structures with identical magnitude, but
the phase shift changes the argument of the first term in eq. (3.3). For 𝑘𝑥 ≠ 0, we
can write

𝑣RES
𝒌 (𝑥, 𝑦𝑤, 𝑧, 𝑡) = −4𝐴1 cos

(
𝑘𝑥

(
𝑥 + ∠ �̂�𝑑

𝑘𝑥

)
− 𝜔𝑡 + 𝜙1

)
cos (𝑘𝑧𝑧) (3.8)

where we expressed the 𝜋 phase difference in eq. (3.7) as a sign inversion. In other
words, the phase shift between sensor measurement and actuator response in Fourier
domain corresponds to a scale-dependent streamwise shift in physical domain. A
visualization of eq. (3.8) for two different phase shifts is shown in fig. 3.1. Figure 3.1a
on the left shows the spatial relation between sensor measurement and actuator
response of 𝑣𝒌 for classical opposition control, which corresponds to ∠ �̂�𝑑 = 0. In
this case the two structures only differ by their sign, and the maxima of the sensor
signal align with the minima of the actuator response as indicated by the dashed
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vertical line. On the other hand, the sensor signal and actuator response not only
differ by a sign, but are offset in the streamwise direction if ∠ �̂�𝑑 ≠ 0. Figure 3.1b
illustrates the situation for an example negative phase shift ∠ �̂�𝑑 = −𝜋/2. The
actuator signal leads the sensor measurement in the streamwise direction in case
of a negative phase shift and in this particular case the lead amounts to a quarter
wavelength. Contrary, a positive phase shift corresponds to a streamwise lag of
the actuator response. The physical interpretation of the phase shift shows that
control with eq. (3.6) is related to the work of Lee (2015), who studied opposition
control with streamwise shifts between sensor measurement and actuator response.
The two controllers are different in that the current one applies a constant shift in
Fourier domain, which corresponds to a scale-dependent shift in physical space (see
eq. (3.8)), while Lee’s scheme applies a constant shift in physical domain, which
corresponds to a scale-dependent phase shift in Fourier domain.

The physical interpretation also motivates the special treatment of the 𝑘𝑥 = 0
modes in eq. (3.6). The interpretation of the phase shift as a displacement in the
streamwise direction is by definition lost for streamwise-constant modes. If the
temporal frequency content is accessible, as in resolvent analysis, the phase shift at
𝑘𝑥 = 0 could be interpreted as a temporal lead or lag, which is the point of view
taken by Luhar, Sharma, and McKeon (2014b). However, the frequency content is
not easily accessible in real time in an experiment or DNS and individual temporal
frequencies can not be controlled at present in these settings. The notion of a
temporal shift is therefore problematic for the DNS, and consequently no phase shift
is applied to 𝑘𝑥 = 0. For consistency between the two frameworks, we impose
this constraint also for the resolvent model in eq. (3.6). Finally, the zero gain for
𝑘𝑥 = 𝑘𝑧 = 0 follows from eq. (2.21) and is a consequence of continuity in the
periodic channel domain.

The discussion thus far has focused on the change in boundary condition due to
control. It is important to keep in mind that the resolvent framework also requires
a mean velocity profile as input. Control can alter the mean velocity nonlinearly,
and this effect can possibly be accounted for in the model by choosing a different,
controlled mean profile. Unless stated otherwise, we will not pursue this approach
here and instead formulate the resolvent model about the eddy viscosity approxima-
tion of the uncontrolled mean, which corresponds to the first problem formulation
of section 2.4.2. Some implications of the mean flow choice will be discussed in
section 3.4.5
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3.2.2 DNS
The varying-phase opposition control scheme has not been formulated for DNS be-
fore, and we thus need to derive a suitable form first. A straight-forward but some-
what naive approach would be to apply the resolvent model control law eq. (3.6)
directly to DNS. The problem with this formulation arises from the missing symme-
try in 𝑘𝑧, which introduces additional physics that were not present in the resolvent
model. To see this, suppose that �̂�(𝜿, 𝑦𝑑 , 𝑡) = 𝐴1𝑒

𝑖𝜙1 and �̂�( �̃�, 𝑦𝑑 , 𝑡) = 𝐴2𝑒
𝑖𝜙2 , with

𝐴2 > 𝐴1. The sensor signal in physical space then consists of building blocks of
the form eq. (3.4), with 𝑦 replaced by 𝑦𝑑 . Applying the control law (3.6) to DNS
would change the phase of the Fourier coefficients at 𝜿 and �̃� by ∠ �̂�𝑑 and result in
physical-domain structures of the form

𝑣DNS
𝜿 (𝑥, 𝑦𝑤, 𝑧, 𝑡) = 4𝐴1 cos

(
𝑘𝑥

(
𝑥 + ∠ �̂�𝑑

𝑘𝑥

)
+ 𝜙1 + 𝜙2

2

)
cos

(
𝑘𝑧𝑧 +

𝜙1 − 𝜙2
2

)
+ 2(𝐴2 − 𝐴1) cos(𝑘𝑥𝑥 − 𝑘𝑧𝑧 + 𝜙2 + ∠ �̂�𝑑)

(3.9)

for 𝑘𝑥 ≠ 0. The phase shift results in a scale-dependent streamwise shift of the
first term, as desired. However, note that the phase shift also enters the oblique
wave, which has a mixed argument in 𝑥 and 𝑧, and implies that the actuator signal is
shifted in the streamwise and spanwise direction. The oblique wave thus forbids to
interpret ∠ �̂�𝑑 as a streamwise-only shift. Previous work has shown that spanwise
misalignment between the sensor measurement and actuator input can lead to large
drag increase (Chung and Sung, 2003). It is therefore possible that the resolvent
model and DNS respond very differently to the control law eq. (3.6), just because
the resolvent model is not rich enough to capture all the physics of the real flow. In
order to exclude the detrimental effect of spanwise shifts and enable a meaningful
comparison with the resolvent model, we wish to eliminate the oblique wave from
the control input. This can be achieved by modifying the control gain �̂�𝑑 , so that
the resulting control input satisfies 𝐴1 = 𝐴2, which is equivalent to |�̂�(𝜿, 𝑦𝑤, 𝑡) | =
|�̂�( �̃�, 𝑦𝑤, 𝑡) |. Note that the phase of the Fourier coefficients remain unconstrained,
so that this is a weaker constraint than the 𝑘𝑧 symmetry in the resolvent.

The resulting varying-phase opposition control scheme for DNS, that preserves the
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interpretation of ∠ �̂�𝑑 as streamwise-only spatial shifts, is given by

�̂�(𝜿, 𝑡, 𝑦𝑤) = −�̂�DNS
𝑑 (𝜿)�̂�(𝜿, 𝑡 − Δ𝑡, 𝑦𝑑)

�̂�DNS
𝑑 (𝜿) =



0 if 𝑘𝑥 = 𝑘𝑧 = 0

1 if 𝑘𝑥 = 0, 𝑘𝑧 ≠ 0 .

𝑒𝑖𝜙 if 𝑘𝑥 > 0, 𝑘𝑧 = 0
min( |�̂�(𝜿,𝑡−Δ𝑡,𝑦𝑑) |,|�̂�( �̃�,𝑡−Δ𝑡,𝑦𝑑) |)

|�̂�(𝜿,𝑡−Δ𝑡,𝑦𝑑) | 𝑒𝑖𝜙 if 𝑘𝑥 > 0, 𝑘𝑧 ≠ 0

(3.10)

Analogous to the resolvent case, �̂�DNS
𝑑

only specifies the controller gain for 𝑘𝑥 ≥ 0,
since the gains for 𝑘𝑥 < 0 are determined by Hermitian symmetry. The particular
values of �̂�𝑑 are explained as follows. Continuity dictates that control should not
induce any mean wall-normal velocity (see eq. (2.21)) so that the gain is zero if
𝑘𝑥 = 𝑘𝑧 = 0. The other Fourier modes with 𝑘𝑥 = 0 have no streamwise dependence,
so that any phase shift would lead to a spanwise shift, by definition. The gain for
modes [𝑘𝑥 > 0, 𝑘𝑧 ≠ 0] is therefore equal to one, which is identical to classical
opposition control. On the other hand, the gain for spanwise-constant modes (𝑘𝑧 = 0)
is equivalent to the resolvent model. This is a special case, because �̃� = 𝜿 for these
modes and a streamwise-only shift is guaranteed by Hermitian symmetry. Finally,
the entry for 𝑘𝑥 > 0, 𝑘𝑧 ≠ 0 enforces |�̂�(𝜿, 𝑦𝑤, 𝑡) | = |�̂�( �̃�, 𝑦𝑤, 𝑡) |, so that the oblique
wave in eq. (3.9) cancels out. As written, the controller assigns the smaller of
|�̂�(𝜿, 𝑦𝑤)) | and |�̂�( �̃�, 𝑦𝑤)) | to both modes, so that the control signal is less energetic
than the sensor measurement. Another valid option would be to formulate the control
input based on the larger of the two amplitudes, but a larger control magnitude is not
desirable in general. Note that either choice leaves the oblique wave uncontrolled.
Furthermore, the DNS control law is a generalization of the resolvent formulation
and recovers the latter if |�̂�(𝜿, 𝑦𝑑 , 𝑡) | = |�̂�( �̃�, 𝑦𝑑 , 𝑡) |.

It is important to point out that there is a time delay of one time step between the
sensor measurement and the actuator response in eq. (3.10), because the actuation
is implemented as Dirichlet boundary condition. The time delay is equivalent to
an additional frequency-dependent phase 𝑒𝑖𝜔Δ𝑡 in Fourier domain, which is not
represented in the resolvent model. The time step in the DNS varies subject to a
CFL condition, but is of the order Δ𝑡𝑢𝜏/ℎ = O(1e−3). The phase error introduced
to the structures of the near-wall cycle, which are expected to dominate the control
signal and can be characterized by 𝜆+𝑥 ≈ 1000, 𝑐+ ≈ 10 − 12 (Luhar, Sharma, and
McKeon, 2014b), is 𝜔Δ𝑡 ≈ 𝜋/450. This is two orders of magnitude smaller than the
phase shifts induced by the controller and it can therefore be expected that the phase
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error due to the time delay is negligible. Simulations with smaller Δ𝑡 and therefore
smaller phase errors were performed to validate this assumption and it was indeed
confirmed that the drag reduction obtained for smaller Δ𝑡 changed by less than 1%.

3.3 Direct Numerical Simulation
We first study varying-phase opposition control by means of DNS and compute
the drag reduction for various sensor locations and phase shifts. These DNS data
provide the ground truth to which we will subsequently compare the resolvent
model predictions. All computations were carried out with the numerical method
described section 2.2, and control is applied to a channel flow at Re𝑏 = 5600, which
corresponds to Re𝜏 = 180 in the uncontrolled configuration. We first introduce the
drag reduction measure (section 3.3.1) and outline a few select test cases to validate
the DNS framework against literature data (section 3.3.2). The drag reduction results
and some aspects of the controlled flows are reported in section 3.3.3.

3.3.1 DNS: Drag Reduction Measure
We start the discussion of DNS results with the definition of an appropriate drag
reduction measure. The flow is driven by a fixed mass flux (see discussion in
section 2.2), which is purposely kept constant when control is applied, so that the
controlled flows and the uncontrolled reference flow have the same bulk Reynolds
number. In this configuration, the mean pressure gradient required to induce the
fixed mass flux changes based on the flow state. A decrease of the mean pressure
gradient magnitude relative to the uncontrolled flow is the desirable control outcome,
because it implies less power input to induce the same mass flux. Conversely, an
increase in mean pressure gradient magnitude is undesirable, because it implies a
larger power input to produce the same mass flux. A common definition of drag
reduction for constant mass flux simulations is therefore based on the relative change
in mean pressure gradient

Δ𝜏 = 1 −

(
Π𝑥

)
𝑐(

Π𝑥

)
0

(3.11)

where Δ𝜏 denotes drag reduction and Π𝑥 is the time-averaged mean pressure gra-
dient. From here on, the subscript 0 will denote uncontrolled quantities, while a
subscript 𝑐 is used to label controlled variables. A positive value of Δ𝜏 implies drag
reduction (DR for short), while a negative value indicates drag increase (abbreviated
as DI).
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Recall from eq. (2.27) that the mean pressure gradient is balanced by the wall-shear
stress, so that drag reduction can equivalently be written in terms of 𝜏𝑤

Δ𝜏 = 1 − (𝜏𝑤)𝑐
(𝜏𝑤)0

= 1 −
(
Re2

𝜏

)
𝑐(

Re2
𝜏

)
0

(3.12)

and the last equality follows from the definition of 𝑢𝜏 and Re𝜏. A drag reduction can
therefore also be thought of as a decrease in wall-shear stress or Re𝜏. Additional
insight into the generation of wall stresses, and into the mechanisms of drag reduc-
tion, can be obtained from various decompositions of the normalized skin friction
coefficient. One of these decompositions, which is commonly named FIK identity
after its inventors Fukagata, Iwamoto, and Kasagi (2002), is of particular relevance
for the present study. It allows to express Δ𝜏 in terms of a weighted integral of the
mean Reynolds stress (see Appendix A)

Δ𝜏 =

∫ 1
−1

( 𝑦
ℎ

) [(
𝑢′𝑣′

)
0
−

(
𝑢′𝑣′

)
𝑐

]
d
( 𝑦
ℎ

)
Re𝑏
Re2 +

∫ 1
−1

( 𝑦
ℎ

) (
𝑢′𝑣′

)
0

d
( 𝑦
ℎ

) (3.13)

where Re is the Reynolds number based on the velocity scale used to nondimen-
sionalize the Reynolds stresses. This expression is particularly amenable to modal
analyses, because the mean Reynolds stress can be computed on a mode-by-mode
basis. Other decompositions may offer greater physical insight, but are less suited
for modal analyses (see e.g. Renard and Deck, 2016). Here we only note that the
denominator of eq. (3.13) is a sum of a laminar contribution (first term), which is
fully determined by the mean velocity profile, and a turbulent contribution (second
term), which is fully determined by the weighted integral of the Reynolds stress.

From here on, we will use the term “drag reduction” to refer to Δ𝜏 as defined in
eqs. (3.11) to (3.13). It is important to emphasize that all three definitions are
equivalent and can be derived from each other by analytic manipulations of the
governing equations. This definition of drag reduction is fairly standard in the
literature and has in particular been used in previous opposition control studies
(see e.g. Choi, Moin, and Kim, 1994; Chung and Talha, 2011). However, other
definitions are possible and well-defined as well. For example, another approach is
to quantify drag reduction in terms of an outward shift of the mean velocity profile
(Ibrahim, Guseva, and Garcia-Mayoral, 2020). This choice is motivated by the total
stress equation (2.29), which indicates that a decrease in local Reynolds stress leads
to an increase in mean velocity gradient and therefore to an outward shift of 𝑢.
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(a) Uncontrolled flow
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Figure 3.2: Validation of DNS framework. Figure 3.2a compares the Reynolds
stress profile of the uncontrolled flow as a function of the wall-normal coordinate.
The solid black line is data from the present DNS, the blue dash-dotted line is data
from Lee and Moser (2015). Figure 3.2b shows the time history of drag change
under classical opposition control with various sensor locations 𝑦𝑑 . Figure 3.2a
reproduced from Toedtli, Luhar, and McKeon (2019). © 2019 American Physical
Society.

Finally, it should be noted that the present study considers drag reduction due to
active control, which implies that the actuators do work on the system. The definition
of Δ𝜏 neglects the power input of the actuation and is therefore not a measure of
net energy savings. Related to that, the definition of drag reduction in terms of the
mean pressure gradient alone cannot distinguish between mean flux contribution
(pumping) and turbulence reduction due to control (Hoepffner and Fukagata, 2009).
However, throughout Chapters 3 to 5, we use drag reduction only to delineate distinct
flow regimes, for which we deem the above definition sufficient. Control efficiency
considerations will be presented separately in section 6.4.

3.3.2 DNS: Validation
Prior to simulating flows under varying-phase opposition control, we validate results
of the present code framework against literature data. Two validation cases are
presented: First, a simulation of an uncontrolled channel flow at Re𝜏 = 180, which
will also be the reference flow to drag reduction. And second, a simulation of
classical opposition control with sensors located at various distances from the wall.
The main goal of this validation case is to ensure the adequacy of the grid parameters
in the presence of wall transpiration.
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The statistics of the uncontrolled flow are compared to the data of Lee and Moser
(2015), and fig. 3.2a shows an example comparison of the mean uv-Reynolds
stresses. The two curves show excellent agreement over the entire channel height
and the same was found for all other flow statistics available for comparison, which
confirms the adequacy of the numerical parameters to simulate uncontrolled flows.

The literature data are more sparse when it comes to controlled flows. In particular,
the statistics are not available from online databases, which limits the comparison
of controlled flows to more qualitative aspects. Previous studies have shown that the
DR of classical opposition control strongly depends on the sensor location (Choi,
Moin, and Kim, 1994; Hammond, Bewley, and Moin, 1998; Chung and Talha,
2011), and reported the time history as well as time-averaged values of Δ𝜏. The
control response for various sensor locations is therefore a good test to validate the
numerical framework. Figure 3.2b shows the time history of the instantaneous drag
reduction for a range of sensor locations. All controlled runs are started from the
same uncontrolled flow field at 𝑡 = 0 and run for the same number of time steps. A
constant number of time steps leads to a different simulated physical time in each
case. This is because the actuation magnitude changes with 𝑦𝑑 and a larger wall
transpiration magnitude requires smaller timesteps to satisfy the CFL condition. It
is apparent that sensors located close to the wall (𝑦+

𝑑
≤ 20) lead to drag reduction,

while control with 𝑦+
𝑑
= 25 leads to a drag increase. These qualitative trends agree

with literature results. For example, compare fig. 3.2b with fig. 2 of Choi, Moin,
and Kim (1994) or fig. 2 of Chung and Talha (2011), which all show the same
trends. A maximum drag reduction of 23.4% occurs for sensor located at 𝑦+

𝑑
= 15,

which agrees with results reported by Hammond, Bewley, and Moin (1998) and
Chung and Talha (2011), who both found a maximum DR of 25% at the same
sensor location. The good agreement of the classical opposition control results
confirm that the numerical parameters are appropriate for the study of flows with
wall transpiration as well. For later comparison, it is important to keep in mind
that classical opposition control also acts on the oblique wave in eq. (3.9). This is a
key difference to varying-phase opposition control, which leaves the oblique wave
uncontrolled. Some implications of this difference in control setup will be discussed
in section 3.3.3.

Finally, it should be pointed out that Re𝜏, and therefore also the grid resolution in
inner units, change when control is applied. The resolution increases if the drag
is decreased and vice-versa and runs with Re𝜏 > 245 may be considered slightly
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under-resolved. We conducted a grid convergence study in order to rule out any
grid effects in the DNS results of varying-phase opposition control. We simulated
a drag-reducing (𝑦+

𝑑
= 15, ∠ �̂�𝑑 = −𝜋/4) and a drag-increasing (𝑦+

𝑑
= 15, ∠ �̂�𝑑 =

𝜋/2) configuration with higher resolution (𝑁𝑥 = 512, 𝑁𝑦 = 272, 𝑁𝑧 = 512), and
confirmed that the flow statistics did not change.

3.3.3 DNS: Drag Reduction Behavior
After validating the code framework for known flow configurations, we now consider
varying-phase opposition control and investigate the DR behavior for various sensor
locations and phase shifts. To this end, we performed a total of 50 DNS runs
covering five sensor locations, 𝑦+

𝑑
= [5, 10, 15, 20, 25], and ten phase shifts, ∠ �̂�𝑑 ∈

[−3𝜋/4, +3𝜋/4]. Note that ∠ �̂�𝑑 is 2𝜋-periodic, so that the above settings cover
the entire range except for ∠ �̂�𝑑 = ±𝜋. A 𝜋 phase shift corresponds to a sign
inversion and leads to in-phase control, where 𝑣(𝑦𝑤) = 𝑣(𝑦𝑑). Previous studies
have shown that in-phase opposition control leads to significant drag increase (Choi,
Moin, and Kim, 1994), so that we do not consider this scenario further. Two of
the tested configurations, namely control with ∠ �̂�𝑑 = 3𝜋/4 and sensors located at
𝑦+
𝑑
= [20, 25], lead to the largest drag increase and diverged before a statistically

steady state was reached. The cause was not further investigated, because the DR
trend could already be estimated from the partially completed runs, but it is possible
that the grid resolution was insufficient in these cases. The maximum drag increase
observed in all successfully completed runs was assigned to these two control
cases, which is a lower bound for the effective drag increase. The raw data were
then interpolated using bilinear splines to produce the DR map of fig. 3.3. Bright
shading (positive numbers) represent drag reduction, while dark shading (negative
numbers) indicate drag increase and the solid black lines outline a few select contour
levels.

Figure 3.3 indicates that the DR behavior is a function of the sensor location and
phase shift. A closer inspection further reveals that the relevance of each parameter
varies across the tested configurations. For example, many contour lines in the range
−3𝜋/8 ≤ ∠ �̂�𝑑 ≤ 𝜋/8 are close to horizontal, which indicates a weak dependence
of the drag reduction on the phase shift. On the other hand, the contours outside of
this range become more vertical, which suggests that the phase shift becomes more
important in this parameter region.
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Figure 3.3: Contour map showing the DNS drag reduction of varying-phase oppo-
sition control as a function of the sensor location 𝑦+

𝑑
and phase shift ∠ �̂�𝑑 . Positive

numbers (light colors) indicate drag reduction, while negative numbers (dark colors)
represent drag increase. Note that the color scale is nonlinear in order to highlight
the region of drag reduction. The dashed vertical line denotes ∠ �̂�𝑑 = 0, which
is closely related to classical opposition control. Figure after Toedtli, Luhar, and
McKeon (2019) and Toedtli, Yu, and McKeon (2020).

We first discuss the effect of the sensor location for a fixed phase shift, which
corresponds to vertical lines in fig. 3.3. The effect of the sensor location is strongest
for −𝜋/2 ≤ ∠ �̂�𝑑 ≤ 𝜋/4, which includes the region with almost horizontal contour
lines. In this region, the drag reduction initially increases as the sensors move
away from the wall, reaches a maximum around 𝑦+

𝑑
≈ 15, and then decreases as

the sensors move further out. The optimal sensor location of 𝑦+
𝑑
= 15 is consistent

with classical opposition control results, as can be confirmed from fig. 3.2b or e.g.
Chung and Talha (2011). The importance of the sensor location tapers off for large
negative (∠ �̂�𝑑 < −𝜋/2) and positive phase shifts (∠ �̂�𝑑 > 𝜋/4), and in both cases
the drag increases as soon as the sensors move away from the wall.

Next, we consider the effect of the phase shift at a fixed sensor location, which
corresponds to horizontal lines in fig. 3.3. The trend is quite uniform for all tested
sensor locations. Going from negative to positive phase shifts, we initially observe
a drag increase, followed by a region of drag reduction and another subsequent
drag increase. Slightly negative phase shifts seem to be optimal, and a maximum
drag reduction of 21% is achieved with ∠ �̂�𝑑 = −𝜋/4 and 𝑦+

𝑑
= 15. The largest

drag increases are observed for large positive phase shifts. In some of these cases,



65

drag increases by more than 400% or, equivalently, Re𝜏 increases by more than
a factor of two. These findings are all consistent with related literature results.
Lee (2015) showed that upstream sensor information increases the maximum DR of
opposition control, while downstream sensor information decreases it. As explained
in section 3.2.1, ∠ �̂�𝑑 < 0 corresponds to a downstream shift of the actuator, which
can also be interpreted as the actuator using upstream sensor information. Similarly,
∠ �̂�𝑑 > 0, which corresponds to an upstream shift of the actuator, is equivalent to
using downstream sensor information. The results of both studies agree qualitatively,
but it is important to emphasize again that the nature of the streamwise shift is
different in each case. Another comparison can be made to the study of Kim and
Choi (2017), which showed that the maximum drag reduction of opposition control
can be increased by adding an integral term to the control law. For a linear system, a
proportional-integral controller is equivalent to a proportional controller with phase
shift, so that the two approaches would be identical. Since the flow dynamics are
nonlinear, the equivalence does not hold exactly, but a recent study on control of
vortex shedding in a low Reynolds number cylinder flow suggests that a proportional-
integral and proportional controller with phase shift lead to a similar response, at
least in the flow regime considered therein (Son, Jeon, and Choi, 2011). The present
study suggests that the two controllers are also related for a low Reynolds number
turbulent channel flow, because the addition of a phase shift to the controller gain
and an integral term to the control law both improve the drag reduction.

Further note that the controller with ∠ �̂�𝑑 = 0, which corresponds to the dotted
vertical line in fig. 3.3, is closely related to the original opposition control scheme.
The two control laws are identical except for the oblique wave in eq. (3.9), which is
controlled in the original scheme, but left uncontrolled under the present formulation.
The qualitative drag reduction trends of the two schemes are very similar, as can be
seen by comparing figs. 3.2b and 3.3. In both cases, the drag reduction increases
as the sensors move away from the wall, and reaches a maximum around 𝑦+

𝑑
=

15. From there on, the drag reduction decreases with increasing sensor distance.
However, the maximum DR is significantly different in both cases. The varying-
phase opposition control scheme achieves a maximum drag reduction of 17%, while
the original scheme with sensors located at the same location reduces drag by 23%.
The difference indicates that the oblique waves play an important role in the drag
characteristics of the controlled flow, but this aspect is not further investigated here.
We only note that the role of the oblique waves could be studied by an alternative
control scheme, which only generates the second term of eq. (3.9) as control input.
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Figure 3.4: Flow statistics of two example controlled flows with sensors located at
𝑦+
𝑑
= 15 and different phase shifts. Figure 3.4a compares the mean Reynolds stress

profiles with the uncontrolled flow and fig. 3.4b displays the streamwise and wall-
normal turbulence intensities of controller ∠ �̂�𝑑 = −𝜋/4. The dotted black vertical
line denotes the sensor location, while the dashed blue vertical line indicates the
location of the minimum in the 𝑣rms profile. Figure 3.4a after Toedtli, Luhar, and
McKeon (2019).

Finally, we consider a few select Reynolds stress profiles to illustrate the connection
between mean Reynolds stresses and drag reduction (3.13). Figure 3.4a compares
the mean Reynolds stress of the uncontrolled flow with two example controlled
flows with sensors located at 𝑦+

𝑑
= 15 and ∠ �̂�𝑑 = [−𝜋/4, 𝜋/2]. All profiles are

normalized with the uncontrolled friction velocity, so that the weighted area between
the uncontrolled and controlled curve corresponds to the numerator in eq. (3.13).
Control with ∠ �̂�𝑑 = −𝜋/4 reduces the Reynolds stresses and therefore leads to
drag reduction. On the other hand, control with a positive phase shift increases the
Reynolds stresses, which implies drag increase. It is interesting to note that the flow
changes under this normalization are not confined to the sensor location, which is
indicated by the dotted black vertical line. The prominent change in the core flow
is the modified slope of the profiles, which reflects the change in wall-shear stress
under control. The mean shear in the core is negligible, so that the slope of the
𝑢𝑣-curve is essentially 𝜏𝑤 (see eq. (2.29)). The normalization of fig. 3.4a with (𝑢𝜏)0

is therefore appropriate to visually interpret the DR, but eq. (2.30) shows that all
curves would collapse in the core flow if the actual (𝑢𝜏)𝑐 were used instead. The
control effect on the outer flow can therefore be fully attributed to the wall-shear
stress, which is also consistent with Townsend’s outer-layer-similarity hypothesis
(Townsend, 1956).
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The profile of the drag-reduced flow further shows an interesting feature in the
near-wall region. There is a clearly distinguishable local minimum close to the wall,
which roughly occurs at the dashed blue vertical line and which is not observed in
the uncontrolled and drag-increased configuration. A possible connection between
the local minimum and drag reduction is supported by eq. (3.13), which shows
that reductions of Reynolds stress in the near-wall region have most importance
in the weighted integral. The origin of the local minimum can be understood by
considering the profiles of the 𝑢 and 𝑣 turbulence intensities shown in fig. 3.4b.
The distinguishing feature of all controlled flows is that the vertical velocity can be
non-zero at the wall, which is apparent from a statistical point of view in fig. 3.4b.
Starting from a non-zero 𝑣rms(𝑦𝑤), the profile initially decreases with distance from
the wall and has a local minimum, whose location is indicated by the dashed blue
vertical line in fig. 3.4b. The location of the 𝑣rms minimum is also plotted in
fig. 3.4a to highlight a potential connection between the minima in both profiles.
The streamwise turbulence intensity on the other hand is zero at the wall due to the
no-slip condition, and increases monotonically throughout the near-wall region. It
is interesting to note that the 𝑢rms-profile has an outward shift at the location of the
minimum in 𝑣rms. Since the Reynolds stress is a combination of both quantities, it
is subject to the competing effect of the increasing 𝑢rms and the decreasing 𝑣rms in
the near-wall region. The matching location of the minima in 𝑣rms and 𝑢𝑣 suggest
that the dip in the wall-normal intensity profile indeed causes the minimum in the
Reynolds stress. The significance of the 𝑣rms-minimum will be further explored in
section 4.4, and it will be shown that the drag-increasing controller ∠ �̂�𝑑 = 𝜋/2 has
such a local minimum as well, but it does not translate to 𝑢𝑣, as can be seen from
fig. 3.4a.

3.4 Resolvent Model
After studying the properties of varying-phase opposition control by means of DNS,
we now switch our approach and use the resolvent model instead. We first generalize
the drag reduction measure in order to account for model errors (section 3.4.1) and
present model calculations for an uncontrolled flow at Re𝜏 = 180 to get a sense for
the model characteristics (section 3.4.2). The initial calculations have the same wave
number resolution as DNS, which allows a meaningful comparison, but makes the
model similarly expensive to evaluate. Section 3.4.3 outlines a subsampling strategy
to speed up the model calculations, which will be used in subsequent sections of
this chapter. The drag reduction of varying-phase opposition control for various
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sensor locations and phase shifts obtained from the resolvent model is presented
in section 3.4.4. The role of the mean velocity profile is analyzed in section 3.4.5
and section 3.4.6 outlines how known scaling relations can be used to efficiently
evaluate the model at high Reynolds numbers.

3.4.1 Resolvent: Drag Reduction Measure
Before introducing the details of the resolvent model, we have to revisit the drag
reduction measure and generalize the DNS expression in order to account for model
errors. The starting point for the discussion is the drag reduction definition given in
eq. (3.13), but keep in mind that all definitions in section 3.3.1 are equivalent and
any of the other ones could be used as well. Equation (3.13) is preferred because
the mean Reynolds stress can be computed from contributions of individual Fourier
modes, which themselves can be approximated by resolvent modes. The challenge
in applying eq. (3.13) to the resolvent model stems from the denominator, which
consists of two parts. A laminar contribution (first part), which is fully determined by
the mean velocity profile, and a turbulent contribution (second part), which is fully
determined by the weighted integral of the Reynolds stresses (Fukagata, Iwamoto,
and Kasagi, 2002). In the real flow, the mean velocity and Reynolds stresses that
underlie each term are connected through the mean momentum equation (2.28). The
resolvent model on the other hand is not constrained to satisfy the mean momentum
equation (recall the discussion in section 2.4.4), so that the mean velocity and
Reynolds stress do not necessarily balance each other. In fact, it will be shown in
section 3.4.2 that the model Reynolds stress under a broadband forcing assumption
is orders of magnitude larger than in the real flow. The resolvent model can therefore
not predict the correct relative magnitude of each term in the denominator, and a
direct application of eq. (3.13) would not return a meaningful result.

As outlined in Appendix A, the DR expression can be recast into an appropriate form
that accounts for model errors such as the mismatch between the model Reynolds
stresses and the mean velocity profile. The final expression reads

Δ𝜏 =

∫ 1
−1

𝑦

ℎ

[
(𝑢′𝑣′)0 − (𝑢′𝑣′)𝑐
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where the superscript DNS labels a quantity that is obtained from DNS and which
therefore satisfies the mean momentum equation. Depending on the context, quan-
tities without superscript can originate from DNS or the resolvent model, and they
may not satisfy the mean momentum equation. The term 𝑇1(𝑦𝑑 , ∠ �̂�𝑑) represents the
turbulent DR predicted by the model under consideration (resolvent or DNS) and
as such depends on the sensor location and the phase shift. The second term 𝑇2 is
the ratio of the turbulent drag to the total drag in the real uncontrolled flow, which
is a constant for fixed Re𝑏. The product 𝑇1𝑇2 represents the total change in wall
shear stress (or equivalently drag), possibly subject to model errors represented by
the following two terms. 𝑇3(𝑦𝑑 , ∠ �̂�𝑑) is the model error in turbulent DR, which is
a function of the control parameters, and the constant 𝑇4 is the model error in the
uncontrolled Reynolds stress profile. Note that 𝑇3 = 𝑇4 = 1 for DNS data, so that
the definition of eq. (3.13) is recovered.

DNS data allows to evaluate all terms of eq. (3.14), while the resolvent model alone
can only quantify 𝑇1, which solely depends on model data, and 𝑇2, which can be
obtained from the input (Re𝜏)0 and the eddy-viscosity approximation of the mean
profile. The model errors 𝑇3 and 𝑇4 can only be evaluated if higher fidelity data are
available as well. In other words, the resolvent model alone can only estimate the
change in mean wall shear stress up to a model error

Δ�̃� = 𝑇1(𝑦𝑑 , ∠ �̂�𝑑) 𝑇2 =
Δ𝜏

𝑇3(𝑦𝑑 , ∠ �̂�𝑑) 𝑇4
(3.15)

and we will report Δ�̃� instead of the true change in wall shear stress when presenting
resolvent data. In order to compare different control configurations it can be advan-
tageous to normalize the model drag reduction by a reference value, for example the
maximum DR (Δ�̃�max for short)

𝜉 =
Δ�̃�

Δ�̃�max
=

Δ𝜏

Δ𝜏max

𝑇3(𝑦𝑑,max, ∠ �̂�𝑑,max)
𝑇3(𝑦𝑑 , ∠ �̂�𝑑)

. (3.16)

This allows the elimination of 𝑇4, the model error in the uncontrolled profile.

3.4.2 Resolvent: Baseline Model
In order to evaluate Δ�̃�, we need to compute the model Reynolds stress for the
uncontrolled flow and each control configuration of interest. This section outlines the
calculation of the model Reynolds stresses, characterizes the resulting uncontrolled
profile, and compares it with the true one, which will give a sense for the model
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error of the uncontrolled flow, 𝑇4. The controlled configurations and resulting drag
reduction will be discussed subsequently in section 3.4.4.

The resolvent framework described in section 2.4.4 returns an approximation of the
Fourier coefficients at each wave number triplet 𝒌. The resolvent modes can be
connected to the mean Reynolds stress by first writing the latter in terms of Fourier
coefficients

𝑢′𝑣′(𝑦) =
∞∑︁

𝑙=−∞

∞∑︁
𝑚=−∞

∫ ∞

−∞
�̂�(𝒌, 𝑦) �̂�∗(𝒌, 𝑦) d𝜔 (3.17)

which follows from eq. (2.53). The Fourier coefficients at each 𝒌 can subsequently
be approximated by resolvent modes up to a suitable order. Figure 2.2 has shown
that the first two singular values are typically an order of magnitude larger than the
following ones, which suggests a rank-2 approximation of the resolvent. Under a
rank-2 broadband forcing approximation, the integrand in eq. (3.17) becomes

�̂�(𝒌, 𝑦)�̂�∗(𝒌, 𝑦) ≈𝜎2
1 �̂�1(𝒌, 𝑦)�̂�∗1(𝒌, 𝑦) + 𝜎1𝜎2�̂�1(𝒌, 𝑦)�̂�∗2(𝒌, 𝑦)

+ 𝜎1𝜎2�̂�2(𝒌, 𝑦)�̂�∗1(𝒌, 𝑦) + 𝜎2
2 �̂�2(𝒌, 𝑦)�̂�∗2(𝒌, 𝑦).

(3.18)

Recall from the discussion about the wall-normal symmetry of resolvent modes
(section 2.4.4) that if the singular values are paired, then the first and second
resolvent modes are equal in magnitude, but opposite in wall-normal symmetry. In
particular, �̂�1 and �̂�2 are even functions of 𝑦, while �̂�2 and �̂�1 are odd. The cross-
terms (𝜎1𝜎2�̂�1�̂�

∗
2 and𝜎1𝜎2�̂�2�̂�

∗
1) are therefore even and their 𝑦-weighted wall-normal

integral vanishes. Consequently, they do not contribute to Δ�̃�. The diagonal terms
(𝜎2

1 �̂�1�̂�
∗
1 and 𝜎2

2 �̂�2�̂�
∗
2) are equal and odd in 𝑦, so that they contribute equally to Δ�̃�.

The only difference between a rank-1 and rank-2 approximation is therefore a factor
of two. This factor appears in the nominator and denominator of the first term in
eq. (3.14) and cancels, which makes a rank-1 and rank-2 approximation equivalent.
Recall that almost all singular values are paired, so that the above statement is true
for almost all resolvent modes. It can therefore be expected that Δ�̃� resulting from
rank-1 and rank-2 model is almost identical and this has indeed been confirmed in
numerical experiments (data not shown). For the purpose of this chapter, it thus
suffices to consider a rank-1 approximation, as anticipated in section 2.4.4

The expression for the model Reynolds stress can be simplified by taking advantage
of the resolvent wave number symmetries. As shown in Appendix B, eq. (3.17) can
be rewritten as

𝑢′𝑣′(𝑦) =
∞∑︁
𝑙=0

∞∑︁
𝑚=0

∫ ∞

−∞
𝐵𝑙𝑚 𝜎2

1<{�̂�1(𝒌, 𝑦)�̂�∗1(𝒌, 𝑦)} d𝜔 (3.19)
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baseline model subsampled model

𝑘𝑥 𝑘𝑥ℎ = 𝑙/2, 𝑙 ∈ [0, 84]
𝑘𝑥ℎ = [0, 0.5, . . . , 5, 7.5,

10, 20, 31, 42]

𝑘𝑧 𝑘𝑧ℎ = 𝑚, 𝑚 ∈ [0, 84]
𝑘𝑧ℎ = [0, 1, . . . , 10, 12, 14, 16, 20,

25, 30, 40, . . . , 70, 84]
𝑐

(for 𝑘𝑥 ≠ 0)
{𝑐+

𝑖
= 𝑢+(𝑦𝑖)}

𝑁𝑦/2
𝑖=1 {𝑐+

𝑖
= 𝑢+(𝑦2𝑖−1)}

𝑁𝑦/4+1
𝑖=1

𝜔

(for 𝑘𝑥 = 0)
Δ𝜔ℎ/(𝑢𝜏)0 =


0.01 for |𝜔ℎ/(𝑢𝜏)0 | ≤ 0.25
0.05 for 0.25 < |𝜔ℎ/(𝑢𝜏)0 | ≤ 0.5
0.25 for 0.5 < |𝜔ℎ/(𝑢𝜏)0 | ≤ 3.5

Table 3.1: Resolution of the baseline and subsampled resolvent model in wave
number space.

where

𝐵𝑙𝑚 =


1 if 𝑙 = 𝑚 = 0

2 if either 𝑙 = 0 or 𝑚 = 0

4 else

. (3.20)

In practice, the sums have to be truncated and the integral has to be discretized and
evaluated over a finite interval of temporal frequencies. The same truncation as in the
DNS is used whenever possible, so that model errors due to resolution discrepancies
can be ruled out and a meaningful comparison can be made. This choice has
the additional benefit that minimal empirical knowledge is required to select an
appropriate model resolution. In this spirit, the model resolves the same streamwise
and spanwise wavenumbers as the DNS (after dealiasing), which are specified in
table 3.1. Note that the wave numbers are integer multiples of the fundamental wave
number corresponding to the domain sizes 𝐿𝑥 = 4𝜋ℎ and 𝐿𝑧 = 2𝜋ℎ, respectively. In
the wall-normal direction the resolvent operator is discretized on a set of 𝑁𝑦 = 172
Chebyshev collocation points so that the grid of the model and the DNS are identical
up to a stretching factor described in Lee and Moser (2015).

The only coordinate requiring additional empirical knowledge for parameter selec-
tion is the temporal frequency. The continuous range of frequencies resolved in the
DNS is too large to be handled reasonably by the numerical framework of the model,
and furthermore the DNS does not provide a well-defined sampling rate because
the timestep changes subject to a CFL condition. However, there is compelling
empirical evidence that the temporal frequency content of each Fourier mode is
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Figure 3.5: Effect of wave speed on the mean Reynolds stress contribution of
individual resolvent modes. The figure shows the 𝑢𝑣 contribution of resolvent
modes characterized by 𝑘𝑥ℎ = 5.5, 𝑘𝑧ℎ = 2 and wave speeds 𝑐+ = [8, 10, 12, 24]
with darker colors indicating faster wave speeds. The dashed vertical lines indicate
the critical layer of each mode. Reproduced from Toedtli, Luhar, and McKeon
(2019). © 2019 American Physical Society.

approximately sparse, so that the entire frequency spectrum does not need to be
resolved. As summarized by Bourguignon et al. (2014), the dominant temporal
frequencies at 𝑘𝑥 ≠ 0 can be parametrized by the wave speed 𝑐 = 𝜔/𝑘𝑥 and fall in
between the empirical range 10 𝑢𝜏 ≤ 𝑐 ≤ 𝑈𝑐. This suggests picking the temporal
frequency vector 𝜔 at each 𝑘𝑥 such that at least the range 10 𝑢𝜏 ≤ 𝜔/𝑘𝑥 ≤ 𝑈𝑐 can
be resolved. For reasons that will become clear shortly, we use the slightly more
conservative range 0 ≤ 𝜔/𝑘𝑥 ≤ 𝑈𝑐 in this study. Note that the range of wave speeds
is kept constant across all 𝒌, so that the corresponding temporal frequencies change
for different 𝑘𝑥 .

An appropriate sampling rate in 𝑐 can be derived from the wall-normal localization
of the resolvent modes. Figure 3.5 shows that the mean Reynolds stress contribution
of a single resolvent mode is localized around its critical layer, i.e. around the wall-
normal location 𝑦𝑐 where its wave speed equals the local mean velocity 𝑐 ≈ 𝑢(𝑦𝑐).
Conversely, one can say that the dominant contribution to the Reynolds stress at
a fixed 𝑦 comes from modes whose critical layer 𝑦𝑐 correspond to that 𝑦. The
discretization of the wall-normal coordinate naturally samples the mean velocity
profile and defines the critical wave speeds resolved by the grid. From the previous
argument we expect that the dominant Reynolds stress contribution at each gridpoint
𝑦𝑖 is given by modes with wave speed 𝑐 = 𝑢(𝑦𝑖). This suggests that the sampled wave
speeds should correspond to the discretized mean velocity profile, and justifies the
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resolved wave speeds in the left column of table 3.1. Note that empirical knowledge
is required to justify this range of 𝜔, but no empirical knowledge is required to
evaluate it. The temporal frequency vector is fully determined by the given mean
velocity profile and wall-normal grid.

The exception to the above discussion are streamwise constant modes (𝑘𝑥 = 0). For
such modes, the wave speed 𝑐 is not defined and a different, for now empirical,
approach is needed to determine an appropriate frequency vector. The amplification
of streamwise constant modes peaks at 𝜔 = 0 and drops off very quickly and
symmetrically as 𝜔 moves away from the origin. For example, the maximum 𝜎1

across all 𝑘𝑧 drops from 𝜎1 = 696 at 𝜔 = 0 to 𝜎1 = 2 at 𝜔ℎ/(𝑢𝜏)0 = ±3.5 and
further decreases as |𝜔| increases (data not shown in the interest of brevity). Recall
that the Reynolds stress contribution depends on the square of the singular value and
therefore contributions beyond 𝜔ℎ/(𝑢𝜏)0 = ±3.5 can be neglected. We thus restrict
the temporal frequency vector of 𝑘𝑥 = 0 to −3.5 ≤ 𝜔ℎ/(𝑢𝜏)0 ≤ 3.5, and sample as
indicated in table 3.1.

It was verified that the results do not depend on the particular choice of 𝑐 or 𝜔. The
mean Reynolds stress only varies minimally if the bandwidth of 𝜔 is increased or
if the sampling frequency Δ𝜔 is changed. For reasons that will become more clear
in section 3.4.3, we will refer to the resolvent model with parameters according to
the left column in table 3.1 as baseline model. Also, for future reference, it is worth
mentioning that one baseline model run costs around 160 core hours at the time of
writing. This is similarly expensive as a single DNS run at Re𝜏 = 180, which took
about 120 core hours.

The Reynolds stress profile predicted by the baseline model for an uncontrolled
channel flow at Re𝜏 = 180 is shown as dash-dotted blue line in fig. 3.6. The model
baseline resolves all dynamically relevant spatial and temporal scales, and can
therefore be considered a resolvent model calculation at DNS resolution. However,
it is apparent from the figure that the model profile does not match the true Reynolds
stress. The model largely overpredicts the peak magnitude, as can be seen from a
comparison of the y-axes in figs. 3.2a and 3.6. Moreover, the modeled profile peaks
closer to the wall than the real one and exhibits a plateau between −0.75 ≤ 𝑦/ℎ <

−0.4 instead of a near-linear decrease. Recall that the model is not constrained to
satisfy the mean momentum equation, since we neglected the latter in the model
development. Yet it is interesting to note that the modeled Reynolds stress exhibits
a near-linear decrease in the outer flow, as indicated by the gray line in fig. 3.6. But
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Figure 3.6: Uncontrolled mean Reynolds stress profiles computed with two different
resolvent models. The blue dashed curve shows the baseline model, while the black
curve denotes the subsampled model. The gray curve is a linear fit to the model
Reynolds stress in the core flow. Reproduced from Toedtli, Luhar, and McKeon
(2019). © 2019 American Physical Society.

in agreement with the overpredicted magnitude of the Reynolds stress, the slope
is steeper than what one would expect from an analysis of the mean momentum
equation.

The features of fig. 3.6 can also be compared to results from a similar study of a
turbulent pipe flow by Luhar, Sharma, and McKeon (2014b). The mean Reynolds
stress profiles of both studies agree qualitatively and the only difference to the pipe
flow result is the heavier tail in the outer channel (𝑦/ℎ > −0.5), which can be
ascribed to the streamwise constant (𝑘𝑥 = 0) modes with zero temporal frequency
and low spanwise wave numbers. These dominant streamwise constant modes peak
close to the channel center and have the largest singular values of all resolved
wave numbers. Under the broadband forcing assumption, their contributions have
a strong footprint on the integrated Reynolds stress profile, and therefore give rise
to the observed heavy tail. The role of the 𝑘𝑥 = 0 modes within the resolvent
framework remains to be fully understood and an in-depth analysis is beyond the
scope of this investigation, but we would like to point out that largest amplification
occurring for streamwise constant modes is reminiscent of transient growth, where
streamwise constant vortices are well-known to be the optimal perturbations (Butler
and Farrell, 1992).
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Given that the resolvent model is not constrained to satisfy the mean momentum
equation and the numerous model assumptions, in particular the broadband forcing,
the observed deviations between model and DNS profile may not be surprising. But
in view of recent work on more complex forcing models that approximate the correct
flow statistics (e.g. Moarref, Jovanović, et al., 2014; Zare, Jovanović, and Georgiou,
2017; Towne, Schmidt, and Colonius, 2018; McMullen, Rosenberg, and McKeon,
2020; Morra, Nogueira, et al., 2021), one may ask whether a rank-1 model with
broadband forcing is still adequate. However, the key point not to forget in a control
context is this: a useful control-oriented model mainly needs to capture the relation
between inputs and outputs, it need not produce the correct flow statistics of the
system (Kim and Bewley, 2007). In this spirit the goal should be to find the simplest
possible model that is able to approximate the response of the full nonlinear system
to control, and in this sense, the broadband forcing assumption is preferred over the
aforementioned more complex models. Furthermore, unlike the other models, the
broadband forcing assumption does not require flow data as input, which minimizes
the dependency on empirical data.

3.4.3 Resolvent: Subsampling in Wavenumber Space
The baseline model presented in the previous section is the appropriate starting
point for comparison with DNS, but its evaluation is computationally too expensive
for practical applications that may require extensive parameter studies or controller
design at higher Re𝜏. An analysis of the mean Reynolds stress contribution of
individual resolvent modes reveals that their contribution varies smoothly over at
least parts of the wave numbers. This observation suggests that the resolvent model
can subsample the wave number space to reduce the number of resolved scales and
the computational cost. This approach has already been used in previous studies
(for example Moarref, Sharma, et al., 2013; Luhar, Sharma, and McKeon, 2014b),
but without formal justification. The goal of this section is to demonstrate that
subsampling is indeed appropriate.

As can be seen from fig. 3.5, the mean Reynolds stress contribution of a single
mode is localized around the critical layer 𝑦𝑐 and therefore its wall-normal profile
is mainly determined by the wave speed 𝑐. The wall-normal profiles for different 𝑐
look very similar and the location of their peak moves slowly away from the wall as
the wave speed increases. This suggests that not all the wave speeds resolved in the
baseline model are required to capture the wall-normal shape of the mean Reynolds
stress profile, since resolvent modes with similar wave speeds largely overlap in
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Figure 3.7: Effect of streamwise wave number on the mean Reynolds stress con-
tribution of individual resolvent modes. The figure shows the resolvent modes
𝑘𝑥ℎ = [5, 5.5, 6, 6.5], 𝑘𝑧ℎ = 2 and 𝑐+ = 10, with darker colors indicating smaller
wave numbers. The dashed vertical line indicates the critical layer, which is identi-
cal for all modes. Reproduced from Toedtli, Luhar, and McKeon (2019). © 2019
American Physical Society.

𝑦. Figure 3.7 further shows the mean Reynolds stress contribution for modes with
various 𝑘𝑥 at fixed 𝑘𝑧 and 𝑐. It is again apparent that the wall-normal localization
of the modes is determined by the wave speed. Furthermore, it can be seen that the
wall-normal profiles look very similar for various 𝑘𝑥 and that the peak magnitude
slowly decreases as 𝑘𝑥 increases. This observation holds for all sufficiently large
streamwise and spanwise wave numbers (𝑘𝑥ℎ ' 5, 𝑘𝑧ℎ ' 10) and suggests that the
spatial wave numbers can be subsampled as well as the wave speeds.

Based on these insights, the wave number space is subsampled as indicated in the
right column of table 3.1. This corresponds to a reduction from 85×85×86 (baseline)
to 16 × 22 × 44 (subsampled model) resolved wave numbers. The missing wave
numbers are linearly interpolated and 𝜔 is not subsampled if 𝑘𝑥 = 0. The resulting
Reynolds stress profile of the uncontrolled flow is shown as solid black line in fig. 3.6.
The good agreement with the baseline model (dash-dotted blue line) confirms that
the wave number space can indeed be sampled very sparsely. The subsampled
model only resolves about 2% of the wave numbers of the baseline, which reduces
the computational time to 2 core hours, i.e. almost two orders of magnitude less
compared to DNS. This is cheap enough to allow, for example, extensive parameter
searches for controller design. Furthermore, the memory requirements and operation
count of the subsampled model are small enough so that it can be run on an off-the-
shelf laptop and no high-performance computing facilities are required to evaluate
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Figure 3.8: Contour maps showing the resolvent model drag reduction as a function
of sensor location 𝑦+

𝑑
and phase shift ∠ �̂�𝑑 . Figure 3.8a shows the absolute drag

reduction Δ�̃�, while fig. 3.8b displays 𝜉 = Δ�̃�/Δ�̃�max. The black lines draw out
equivalent contour levels in each figure and the dotted red lines indicate the corre-
sponding 𝜉-contours of the DNS data shown in fig. 3.3. The dashed vertical line in
fig. 3.8a denotes ∠ �̂�𝑑 = 0, which is closely related to opposition control. Note that
the color scale is nonlinear to highlight the region of drag reduction. Figure 3.8a
reproduced from Toedtli, Luhar, and McKeon (2019). Figure 3.8b after Toedtli,
Luhar, and McKeon (2019). © 2019 American Physical Society.

it. Motivated by the results of this section, we will use the subsampled model
for all resolvent calculations hereafter, and we will make all comparisons between
subsampled resolvent model and DNS.

3.4.4 Resolvent: Drag Reduction Behavior
Now that we have defined a suitable drag reduction measure for the resolvent model
and identified an appropriate resolution that also enables efficient model evaluation,
we repeat the parameter study for varying-phase opposition control with the subsam-
pled resolvent model. Again, five sensor locations 𝑦+

𝑑
= [5, 10, 15, 20, 25] and ten

phase shifts ∠ �̂�𝑑 ∈ [−3𝜋/4, +3𝜋/4] are evaluated and the raw data are interpolated
using bilinear splines to create a smooth drag reduction map. The capabilities of the
resolvent model for controller design are then assessed from the agreement between
the model and DNS drag reduction map.

Figure 3.8a shows Δ�̃�, which is the drag reduction measure compromised by the
model error terms𝑇3 and𝑇4. It is apparent that the resolvent model reproduces trends
previously observed in DNS. For example, a small negative phase shift improves
the drag reduction and the maximum DR occurs at 𝑦+

𝑑
≈ 10 − 15 and ∠ �̂�𝑑 = −𝜋/4.
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On the other hand, large negative phase shifts are detrimental for drag reduction
and so are positive shifts of any magnitude. The qualitative agreement between
resolvent model and DNS can be better illustrated by overlaying contour levels of
the normalized drag reduction 𝜉, which is shown in fig. 3.8b. The normalization is
required to account for the different drag reduction magnitude in both frameworks,
which will be discussed subsequently. A comparison of the contour lines shows that
the resolvent model is capable of approximating the response of the full nonlinear
system over a large range of the parameter space. In particular, the DNS and
resolvent model contours of 𝜉 collapse for positive phase shifts over the entire range
of tested sensor locations. The agreement is lesser for ∠ �̂�𝑑 < 0, especially for large
negative phase shifts. However, the resolvent model is still able to capture the trend
of the DNS results reasonably well and it can in particular capture the location of
the maximum drag reduction.

The collapse of the 𝜉-contour lines for positive phase shifts allows to draw conclu-
sions about the model error in turbulent DR, denoted 𝑇3(𝑦𝑑 , ∠ �̂�𝑑), in this parameter
regime. First, the definition of 𝜉 according to eq. (3.16) implies that the ratio
𝑇3,max/𝑇3 must be approximately one for all positive phase shifts. Further note that
𝑇3,max is a constant, so that 𝑇3 ≈ const for ∠ �̂�𝑑 > 0 as well. On the other hand,
the error 𝑇3 changes with 𝑦𝑑 and ∠ �̂�𝑑 for negative phase shifts. The ratio 𝑇3,max/𝑇3

is still of order one, but Δ�̃�/�̃�max > Δ𝜏/𝜏max, which indicates that 𝑇3 decreases for
more negative phase shifts. It also changes sign in parts of the parameter space,
which indicates that the model expects drag reduction in regions where the DNS
produces drag increase.

The parameter-dependent qualitative agreement also highlights an important aspect
of the forcing model selection. The good agreement between the resolvent model,
which uses the simplistic broadband forcing, and the DNS for ∠ �̂�𝑑 > 0 suggests
that a positive phase amplifies all modes in spectral space. In this scenario, the error
arising from the broadband forcing assumption cancels in the ratio𝑇3,max/𝑇3, and the
contour levels collapse as observed. On the other hand, the disagreement for ∠ �̂�𝑑 < 0
suggests that the control effect for negative phases is mixed in spectral space, so
that the model error from the broadband forcing assumption does not cancel. It has
been shown by Luhar, Sharma, and McKeon (2014b) that the broadband forcing
puts too much weight on modes which are further suppressed by a negative phase
shift. This is consistent with a decrease of𝑇3 in this part of the parameter space. The
discrepancy between DNS and resolvent model for these parameter combinations
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shows that the more mixed the effect of control in spectral space is, the more careful
one has to be with the selection of forcing model. However, in this regard the
resolvent model with broadband forcing can always be used as a first order design to
estimate how mixed the response is and a more refined forcing model can be added
in a second step if needed.

The discussion thus far was qualitative, and we next discuss quantitative aspects. A
comparison between figs. 3.3 and 3.8a shows that the resolvent model underestimates
the drag reduction over the entire parameter range. For example, the resolvent model
predicts a maximum DR of 5% at 𝑦+

𝑑
= 15 and ∠ �̂�𝑑 = −𝜋/4, while a 21% DR

results at the same parameter combination in the DNS. Similarly, the drag increase
at positive and large negative phase shifts is less pronounced in the resolvent model.
We can therefore conclude that the model error terms 𝑇3(𝑦+𝑑 , ∠ �̂�𝑑) 𝑇4 > 1 for all
parameters considered. These errors have a geometric interpretation in the Reynolds
stress profiles of fig. 3.4a (DNS) and fig. 3.9 (resolvent model), which can thus be
used to estimate their order of magnitude. Note that multiple Reynolds stress profiles
are shown in both figures. The focus for now is on the black and blue line in fig. 3.4a
and the thin and thick black line in fig. 3.9, respectively. In each figure, these two
curves outline the 𝑢𝑣 profile of the uncontrolled and an example controlled flow
(𝑦+

𝑑
= 15, ∠ �̂�𝑑 = −𝜋/4). The model error in the uncontrolled profile, i.e. term 𝑇4,

is the ratio between the weighted area under the thin black curve in fig. 3.9 and the
black curve in fig. 3.4a. A comparison of both ordinates shows that 𝑇4 � 1. The
model error in turbulent drag reduction, 𝑇3(𝑦𝑑 , ∠ �̂�𝑑), is the ratio of the weighted
area between the black and blue curve of fig. 3.4a and the weighted area between
the thin and thick black line in fig. 3.9. Here, the different order of magnitudes of
the ordinates implies 𝑇3 � 1. Both terms are dominated by the model contribution,
which in𝑇3 appears in the denominator and in𝑇4 in the numerator. This suggests that
the broadband forcing could be rescaled by a constant factor, which would cancel
out in the DR measure (3.14) and bring both terms closer to order one.

3.4.5 Resolvent: Role of the Mean Velocity Profile
Figure 3.9 further provides an interesting insight into the role of the mean velocity
profile in the controlled flow. As can be seen from comparing the thin (uncontrolled)
and thick (example controlled flow) black curves, the control effect in the resolvent
model is localized around the sensor location (𝑦+

𝑑
≈ 15, indicated by the vertical

line), where an attenuation as well as a slight outward shift of the peak can be
observed. In particular, it is interesting to note that the two profiles collapse beyond
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Figure 3.9: Reynolds stress profiles of the uncontrolled and an example controlled
flow (𝑦+

𝑑
= 15, ∠ �̂�𝑑 = −𝜋/4). The black curves are computed from a resolvent

analysis about the uncontrolled mean and the thin line outlines the uncontrolled
profile, while the thick line shows the Reynolds stresses of the controlled flow. The
green curves are obtained from a resolvent analysis about the controlled DNS mean
and the thin and thick line again outline the uncontrolled and controlled flow in terms
of boundary conditions. The vertical line indicates the sensor location. Figure after
Toedtli, Luhar, and McKeon (2019).

𝑦/ℎ ≈ −0.8, which indicates that the core flow remains unaffected by control.
From the perspective of the resolvent model, the Reynolds stress in the core flow is
produced by fast moving modes with no velocity signature close to the wall (Luhar,
Sharma, and McKeon, 2014b), so that these modes cannot be detected by the sensor
and therefore remain uncontrolled. Furthermore, recall that the uncontrolled mean
profile is used to formulate the resolvent operator, so that the core flow feels the same
𝜏𝑤 as in the uncontrolled case. From the resolvent perspective there is therefore
really no difference in the core region between the uncontrolled and the controlled
case and it is no surprise that the two profiles coincide.

The DNS data in fig. 3.4a on the other hand present a different picture for the core
flow. A comparison of the uncontrolled (black line) and the controlled (blue line
for ∠ �̂�𝑑 = −𝜋/4) profile shows that the Reynolds stress decreases throughout the
channel, similar to the results reported by Choi, Moin, and Kim (1994). As explained
earlier, the tilting of the DNS profile in the core flow can be ascribed to the change in
wall-shear stress and is determined by the mean momentum equation. The resolvent
model does not satisfy the mean momentum equation, so that a similar analysis is not
meaningful, but ideas like Townsend’s outer-layer similarity hypothesis (Townsend,
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1956) also suggest that changes in the core flow are mainly due to changes in 𝜏𝑤,
without relying on the mean momentum equation. One therefore may speculate that
the change in the outer flow can be captured in the resolvent model if a controlled
mean with different 𝜏𝑤 is used in the resolvent operator.

To test this hypothesis, we constructed the resolvent operator with the controlled
DNS mean velocity profile and repeated the model prediction for the example
controlled flow (𝑦+

𝑑
= 15, ∠ �̂�𝑑 = −𝜋/4). The resulting Reynolds stress profile is

shown as thick green line in fig. 3.9. The thin green line shows the Reynolds stress
profile with controlled mean but no-slip boundary conditions, to illustrate which
changes are due to the change in mean and which ones are due to the boundary
conditions. It is apparent that the change in mean profile alters the shape of the
uncontrolled Reynolds stress profile throughout the channel. The near-wall peak is
further increased and the Reynolds stresses decrease above 𝑦/ℎ = −0.8. The effect of
control is again limited to the sensor location, and both green curves collapse above
𝑦/ℎ = −0.8. A comparison between the uncontrolled profile with uncontrolled
mean (thin black line) and the controlled profile with controlled mean (thick green
line) illustrates that a change in mean profile and boundary condition can reproduce
the control effect in the entire channel. This supports the hypothesis that the change
in the outer flow is indeed mainly due to the change in 𝜏𝑤. In addition, the predicted
DR increases from 5% (uncontrolled mean) to 10% (controlled mean), which is
closer to the DNS value of 21%. This suggests that the modeling errors 𝑇3𝑇4 also
decrease when the controlled mean is used. Finally, note that the resolvent model
is able to capture the local minimum of 𝑢𝑣 in the near-wall region, especially if the
controlled mean is used.

3.4.6 Resolvent: Reynolds Number Scaling
The results thus far outline how the resolvent model can be used for controller
design in internal flows and suggest that it can approximate the DR of the real
flow for our example controller at (Re𝜏)0 = 180. At these low Reynolds numbers,
the (subsampled) resolvent model is almost two orders of magnitude cheaper to
evaluate than DNS. However, DNS is still feasible and relatively cheap at these low
Reynolds numbers, so that the value of the resolvent model may not be immediately
apparent. As mentioned in the Introduction, the ultimate goal is to develop tools
that allow controller design for internal flows at technologically relevant Reynolds
numbers, which are currently not tractable with DNS. This is where the resolvent
model has most potential in the future, because it can be applied relatively easily to
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high Reynolds number flows. This section outlines two approaches to evaluate the
resolvent model at technologically relevant Re𝜏.

Two aspects of the model are central for its applicability to high Reynolds numbers.
First, the smooth variation of the Reynolds stress profile in at least parts of the wave
number space, which allows subsampling the model as described in section 3.4.3.
As was shown for Re𝜏 = 180, the contributions of high wave numbers decay
quickly, which makes the incorporation of additional high wave numbers cheap as
Re𝜏 increases. The results presented here and in Moarref, Sharma, et al. (2013)
show that this approach is well-justified and allows the model to easily handle
flows at Re𝜏 = O(104). In a naive approach, one could proceed at these higher
Reynolds number in the same way as we did in this section. Use the eddy viscosity
to obtain an approximation of the mean velocity profile, compute the resolvent
modes at individual wave number triplets, and subsample the wave number space
to efficiently compute the mean Reynolds stress profile. Enough resolution is still
required in the wall-normal direction to resolve all features of the resolvent modes
and this is particularly challenging in the near-wall region where structures scale
with viscous units. These resolution requirements may still be practical at moderate
Reynolds number, but they become prohibitive at large Re𝜏 and a different approach
is required.

This is where the second key aspect of the resolvent model comes in. Moarref,
Sharma, et al. (2013) derived scaling laws for different classes of resolvent modes
(categorized based on their wave speed) from the properties of the resolvent operator
alone. This allows to compute resolvent modes at a low Reynolds number, where
resolution requirements in 𝑦 are mild, and use the scaling laws to obtain the singular
values and vectors at arbitrary high Reynolds numbers. The remainder of this
section explores whether the scaling laws also apply to controlled flows, which
would greatly simplify the applicability of the model to high Re𝜏. The validation is
based on two model calculations at higher Reynolds numbers: Re𝜏 = 6000, which
is approximately the upper end of available experimental (Schultz and Flack, 2013)
and DNS (Lee and Moser, 2015; Yamamoto and Tsuji, 2018) data, and Re𝜏 = 30000,
which is well above current DNS and experimental capabilities and at the lower end
of the technologically relevant Reynolds numbers (Smits and Marusic, 2013). To
illustrate our point, we select the so-called inner class of resolvent modes, which
scales in viscous units (Moarref, Sharma, et al., 2013), and is therefore the most
challenging to calculate with the naive approach described above. It has been
verified that the scaling laws apply to the other classes of modes as well.
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(a) Re𝜏 = 180 (b) Re𝜏 = 6, 000

(c) Re𝜏 = 30, 000 (d) rescaled profiles

Figure 3.10: Mean Reynolds stress contribution of an example resolvent mode
characterized by 𝜆+𝑥 = 1000, 𝜆+𝑧 = 100, and 𝑐+ = 10. Figures 3.10a to 3.10c show
the profile normalized by the uncontrolled wall-shear stress at different Reynolds
numbers, while fig. 3.10d displays the same data rescaled according to the scaling
law of Moarref, Sharma, et al. (2013). In all figures, the solid line shows the profile
of the uncontrolled flow, while the dotted line displays the profile of an example
control configuration (𝑦+

𝑑
= 10 and ∠ �̂�𝑑 = −𝜋/4). Reproduced from Toedtli, Luhar,

and McKeon (2019). © 2019 American Physical Society.

Figures 3.10a to 3.10c show the mean Reynolds stress contribution of a single
resolvent mode characterized by 𝜆+𝑥 = 1000, 𝜆+𝑧 = 100 and 𝑐+ = 10, where the
solid and dotted line represent the uncontrolled and an example controlled flow
(𝑦+

𝑑
= 10, ∠ �̂�𝑑 = −𝜋/4), respectively. Note that this mode belongs to the inner class

according to the classification by Moarref, Sharma, et al. (2013). These resolvent
modes are computed using the naive approach, i.e.they are computed with sufficient
resolution at the indicated Reynolds numbers. To obtain DNS resolution, one would
require 𝑁𝑦 = 172, 1700 and 8500 grid points in the wall-normal direction (with an
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appropriate grid stretching factor in the high Re𝜏 cases), respectively. However,
the singular values are already converged for 𝑁𝑦 = 90, 130, and 300, respectively.
We therefore used somewhat coarser grids with 𝑁𝑦 = 172, 800, 1230 (without grid
stretching to ensure sufficient resolution in the near-wall region) to produce the
results shown in Figures 3.10a to 3.10c. It can first be observed that the energy
content of the near-wall structure decreases as the Reynolds number increases.
Moreover, the plots suggest that the shape of the uncontrolled and the controlled
structure remains unchanged. The last panel, fig. 3.10d, confirms that the mean
Reynolds stress contributions indeed follow the scaling law proposed by Moarref,
Sharma, et al. (2013), since all the profiles collapse when scaled appropriately. The
scaling does therefore not only hold in the uncontrolled flow, which was already
known, but also in the controlled flow. This is a key property of the model, which
supersedes the naive approach by far. There is no need to compute the resolvent
modes at high Re𝜏. All one has to do is compute the resolvent modes at low
Reynolds number, which is cheap, and then use the known scaling laws to obtain
their contribution at an arbitrary high Re𝜏.

We close this section with two comments. First, it should be pointed out that
the scaling laws assume the presence of a logarithmic region in the mean velocity
profile (Moarref, Sharma, et al., 2013). The empirical results of fig. 3.10d show
good agreement between all the profiles, but strictly speaking at least Re𝜏 = 180 is
too low to argue for the existence of a logarithmic region. In fact, there is a slight
deviation between the Re𝜏 = 180 profile and the two other ones which may be a
Reynolds number effect, even if small. One may therefore consider a slightly higher
Re𝜏 when generating the profiles for scaling. Second, there is a small subset of
wave number combinations that do not belong to any similarity class (see (Moarref,
Sharma, et al., 2013) for details). Depending on their significance in the resolvent
model, these modes may have to be computed explicitly at high Reynolds numbers.
Note, however, that when combined with the subsampling strategy, this is only
required for very few modes.

3.5 Chapter Summary
The present chapter introduced a variant of the opposition control scheme dubbed
varying-phase opposition control. It is formulated for individual Fourier modes and
introduces a phase shift between sensor measurements and actuator response. The
phase shifts in Fourier domain can be thought of as scale-dependent streamwise
shifts of the actuation relative to the sensor measurement, and in a linear system the
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phase shift would be equivalent to an additional differential or integral term of the
control law.

Direct numerical simulations showed that the drag reduction of varying-phase op-
position control strongly depends on both control parameters considered, the sensor
location 𝑦+

𝑑
and the phase shift ∠ �̂�𝑑 . There is an optimal sensor location at 𝑦+

𝑑
≈ 15,

which agrees well with literature data of opposition control (e.g. Hammond, Bew-
ley, and Moin, 1998; Chung and Talha, 2011). Furthermore, slightly negative phase
shifts lead to optimal drag reduction, with maximum DR occurring at ∠ �̂�𝑑 = −𝜋/4,
while large negative or positive phase shifts lead to drag increase.

The varying-phase opposition control scheme served as a benchmark problem to
evaluate the capabilities of a resolvent model for controller design. The model
is constructed with the simplest assumptions possible: the resolvent is formulated
about an eddy viscosity approximation of the uncontrolled mean profile and trun-
cated at rank-1, and the nonlinear weighting terms are modeled with a broadband
forcing assumption. Great care was taken to ensure that the resolvent model resolves
the same spatial and temporal scales as the DNS and represents the same physics,
so that a meaningful comparison could be made. The mean momentum equation
and FIK identity were used to derive an analytical expression for the conventional
drag reduction measure, enriched with model error terms that have a clear phys-
ical interpretation and can be quantified if high-fidelity data are available. The
Reynolds stress contribution of individual resolvent modes, which are required to
evaluate the drag reduction, varies smoothly in wave number space, which allows
coarse subsampling. Indeed, a subsampled model, which only resolves 2% of the
original wave numbers, is able to recover the fully-resolved model Reynolds stress
profile at a fraction of the computational cost. A comparison between the model
and DNS drag reduction calculations of varying-phase opposition control show that
the model is able to approximate the behavior of the full nonlinear system over the
entire parameter range considered, and confirms that the model is a suitable tool
for controller design. There are quantitative differences between the model and the
DNS regarding the maximum drag reduction, which can mainly be ascribed to the
broadband forcing assumption. The uncontrolled mean velocity profile is sufficient
to predict the trend of the nonlinear system, but cannot reproduce control changes in
the outer flow. These changes are only represented in the model if the true controlled
mean is used to construct the resolvent operator.
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The resolvent model is about two orders of magnitude cheaper to evaluate than DNS
at Re𝜏 = 180 and the savings increase with increasing Reynolds number. Impor-
tantly, the controlled resolvent modes follow known scaling laws of the canonical
flow, which is a key advantage of the model. One can compute the resolvent modes
at relatively low Reynolds numbers, which is cheap due to the mild resolution re-
quirements in the wall-normal direction, and then scale the modes to arbitrary high
Reynolds numbers without having to actually evaluate the resolvent operator. The
validation at low Reynolds number and the scaling laws suggest that the model is
suitable to design controllers at technologically relevant Re𝜏.
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C h a p t e r 4

STRUCTURAL AND SPECTRAL FEATURES OF
CONTROLLED FLOWS

Portions of this chapter have been previously published in1:

Toedtli, S., Yu, C., and McKeon, B. (2019). “Structural and spectral analysis of
varying-phase opposition control in turbulent channel flow”. In: Proceedings of
TSFP 11.

Toedtli, S., Yu, C., and McKeon, B. (2020). “On the origin of drag increase in
varying-phase opposition control”. In: International Journal of Heat and Fluid
Flow 85, p. 108651. doi: 10.1016/j.ijheatfluidflow.2020.108651.

The results of the previous chapter suggest that the drag reduction attainable by
varying-phase opposition control strongly depends on the phase of the controller
gain ∠ �̂�𝑑 and the sensor location 𝑦𝑑 . We have further shown that the resolvent
model is able to approximate the response of the full nonlinear system to control
over the considered parameter range. From a resolvent perspective, control with a
given ∠ �̂�𝑑 and 𝑦𝑑 changes the singular values and associated singular vectors, which
leads to a change in mean Reynolds stress and ultimately drag. However, it remains
unclear how control alters the real flow to bring about changes in flow structure
and drag. The goal of this and the following chapter is therefore to elucidate the
mechanisms that underlie the drag reduction map in fig. 3.3. The analysis is done in
two parts. The present chapter is observational and characterizes DNS data of four
example controlled flows, two that lead to drag reduction and two that result in drag
increase. The subsequent chapter is theoretical and uses DNS and modal analyses
of a simplified control problem to explain the characteristics of the example flows
and the structure of the drag reduction map.

4.1 Prologue: Opposition Control Objective and Drag Reduction
Before describing the selection of the example controlled flows, it is instructive
to review two concepts that will be important for the following discussion: the
objective of the opposition control scheme and drag reduction. At first, it may seem

1C. Yu laid the groundwork for the visualizations presented in this chapter during a Summer
Undergraduate Research Fellowship (SURF) in our group.

https://doi.org/10.1016/j.ijheatfluidflow.2020.108651
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surprising that the two are not the same, and it will be shown that the two concepts
are indeed related. Yet, many of the results reported in this and the following chapter
only allow to draw conclusions for either the drag reduction or the opposition control
objective, so that it is important to distinguish between the two.

As pointed out by Kim and Choi (2017), the opposition control scheme can be
considered a proportional controller, which seeks to drive the wall-normal velocity
fluctuations at the sensor location to zero. To see this, we define the control objective
as 𝑑 = 𝑣(𝑦𝑑) = 0. The control error, which quantifies the deviation between the
control objective and the system state, becomes 𝑒 = 𝑑 − 𝑣(𝑦𝑑) = −𝑣(𝑦𝑑). In other
words, the control error corresponds to the sensor measurement with inverted sign.
The actuator input under opposition control 𝑣(𝑦𝑤) is then proportional to the control
error

𝑣(𝑦𝑤) = 𝐴𝑑 𝑒 = −𝐴𝑑 𝑣(𝑦𝑑) (4.1)

with proportionality constant 𝐴𝑑 . Note that the last expression recovers the control
law defined in eq. (1.1). In order to decide whether the controller achieves its
control objective, we thus have to interrogate the wall-normal velocity at the sensor
location. As for any turbulent flow quantity, a statistical measure is required to make
a meaningful statement. The mean wall-normal velocity 〈𝑣〉𝑥,𝑧 (𝑦, 𝑡) is identically
zero at all wall-normal locations and times (see eq. (2.21)) and does not provide
useful information. The appropriate statistical measure is therefore the variance of
the wall-normal velocity at the sensor location, 𝑣′𝑣′(𝑦𝑑). Equation (2.55) implies
that we can equally consider the root-mean-square (rms) fluctuation 𝑣rms(𝑦𝑑), and
we will often switch back and forth between the two metrics to quantify the control
error. In terms of rms fluctuations, the controller achieves its objective, at least
partially, if

Δ𝑣rms(𝑦𝑑) = (𝑣rms)0 (𝑦𝑑) − (𝑣rms)𝑐 (𝑦𝑑) > 0 (4.2)

where as before the subscript 0 and 𝑐 label the uncontrolled and controlled flow,
respectively. It is important to note that the control objective is a local measure.
For example, the control objective would still be met if (𝑣rms)𝑐 decreased around
the sensor plane relative to the uncontrolled case, but increased everywhere else.
The terminology “opposition control objective” may be somewhat ambiguous and
confusing in the current context. We will therefore refer to the formal control
objective outlined above as “fluctuation suppression” from here on.

The primary goal of opposition control, even if not formally part of the control law
and objective, is drag reduction. There is a significant leap between fluctuation
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suppression and drag reduction, which can be best illustrated by revisiting the last
form of the drag reduction definition in eq. (3.13). The drag decreases if Δ𝜏 > 0,
which is achieved if the numerator is positive, i.e.∫ 1

−1

𝑦

ℎ

[(
𝑢′𝑣′

)
0
−

(
𝑢′𝑣′

)
𝑐

]
d
( 𝑦
ℎ

)
> 0. (4.3)

The integral expression makes clear that drag reduction is a global quantity, in
contrast to fluctuation suppression which is purely local. In addition, drag reduction
not only depends on 𝑣, but also on the streamwise velocity and its relative phase to
the wall-normal velocity. One can thus, at least in theory, imagine scenarios where
opposition control successfully suppresses fluctuations, but fails to reduce drag, or
vice-versa. For example, control may lead to a local decrease of 𝑣rms around 𝑦𝑑

and an increase everywhere else. In this case, the controller successfully suppresses
fluctuations, but may lead to a drag increase. Conversely, the drag may decrease
even if the fluctuations at the sensor location remain unchanged or increase. Such a
scenario would for example be possible if control altered the relative phase between
𝑢 and 𝑣.

Even though it is not obvious from the formal definitions, previous studies suggest
that fluctuation suppression and drag reduction are correlated, at least in an integral
sense and when control is applied in the near wall region (see, for example, the dis-
cussions in Choi, Moin, and Kim, 1994; Chung and Talha, 2011). The link between
the two concepts is the flow structure in the near-wall region. The quasi-streamwise
vortices that populate the near-wall region efficiently mix momentum by transport-
ing low-speed fluid away from the wall and bringing high-speed fluid from further
out towards the wall (Robinson, 1991). If the sensors of the opposition control
scheme pick up the wall-normal velocity associated with the quasi-streamwise vor-
tices, then suppressing 𝑣rms(𝑦𝑑) is equivalent to suppressing their motions. Weaker
quasi-streamwise vortices lead to less momentum mixing, which results in a gentler
mean velocity gradient at the wall and therefore drag reduction (Choi, Moin, and
Kim, 1994).

The results in this chapter will confirm that the two concepts are correlated in an
average sense. The distinction will be more important in the following chapter when
we analyze the effect of control on individual spatial scales. In general, we will
build on the results of Chapter 3 and use the drag reduction as starting point for our
discussion. We will analyze fluctuation suppression where it provides additional
insights.



90

−3/4 −1/2 −1/4 0 1/4 1/2 3/4

6 Âd/π
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Figure 4.1: Contour map showing the drag reduction of varying-phase opposition
control as a function of the sensor location 𝑦+

𝑑
and phase shift ∠ �̂�𝑑 . Positive numbers

(light colors) indicate drag reduction, while negative numbers (dark colors) represent
drag increase. Note that the color scale is nonlinear in order to highlight the region
of drag reduction. The dotted horizontal line denotes the sensor location 𝑦+

𝑑
= 15

and the filled circles along this line indicate the example controllers considered
subsequently. The dashed vertical line denotes ∠ �̂�𝑑 = 0, which is closely related to
classical opposition control. Figure after Toedtli, Yu, and McKeon (2020).

4.2 Selection of Example Controlled Flows
Figure 4.1 shows again the DNS drag reduction map of fig. 3.3. Its properties have
been discussed in detail in section 3.3.3, and we just restate the main observation,
which is that the drag reduction strongly depends on both the sensor location and
the phase shift.

The dependence of drag reduction on the sensor location for classical opposition
control, which roughly corresponds to the dashed vertical line along ∠ �̂�𝑑 = 0 in
fig. 4.1, has been studied extensively in the literature. The general consensus is
that effective drag reduction occurs if the sensor location roughly coincides with
the center of the quasi-streamwise vortices (Hammond, Bewley, and Moin, 1998;
Chung and Sung, 2003). In contrast, the control scheme fails to inhibit momentum
mixing if the sensors are located too far above the vortex center, and for sensors
located above 𝑦+

𝑑
≈ 23, control even enhances momentum transport and leads to

drag increase (Hammond, Bewley, and Moin, 1998; Chung and Talha, 2011). These
observations are consistent with a previous resolvent analysis study, which suggest
that more modes are amplified under control as the sensors move further away from
the wall (Luhar, Sharma, and McKeon, 2014b).
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The drag change under varying-phase opposition control for ∠ �̂�𝑑 = 0 agrees well
with the aforementioned literature results. As discussed in section 3.3.3, the depen-
dence on the phase shift is rather weak for −3𝜋/8 ≤ ∠ �̂�𝑑 ≤ 𝜋/8, and it thus seems
reasonable to assume that the drag change with increasing 𝑦𝑑 in this parameter range
is due to the mechanisms reported in the literature. For phase shifts outside of this
parameter range, the dependence on the sensor location is weak, which suggests that
this part of the drag reduction map is driven by phase shifts.

Since the dependence of DR on the sensor location can be explained by mechanisms
reported in the literature, we focus our attention for the remainder of the following
two chapters on the effect of the phase shift, which has not been explored so far.
To reduce the parameter space, we fix the sensor location at 𝑦+

𝑑
= 15 and only vary

∠ �̂�𝑑 between −3𝜋/4 and +3𝜋/4, which corresponds to the dotted orange horizontal
line in fig. 4.1. We choose this particular sensor location because it contains all
features of the drag reduction map, including the maximum DR. Controllers with
−𝜋/2 ≤ ∠ �̂�𝑑 ≤ +𝜋/8 lead to drag reduction, with a (global) maximum DR for
∠ �̂�𝑑 = −𝜋/4. Large positive and negative phase shifts on the other hand lead
to drag increase (abbreviated as DI). In particular, we will study four example
controllers, which are indicated by the filled orange circles in fig. 4.1. From the
drag-reducing regime, we will consider the controllers with ∠ �̂�𝑑 = −𝜋/4 (21% DR,
corresponds to maximum DR) and ∠ �̂�𝑑 = 0 (17% DR, closely related to classical
opposition control). A comparison between the two will provide insights into why
a slightly negative phase shift leads to more drag reduction. For convenience,
we will refer to these two controllers together as the “drag-reducing” controllers
from here on. From the drag-increasing regime, we will analyze the controllers
with ∠ �̂�𝑑 = −3𝜋/4 (110% DI) and ∠ �̂�𝑑 = +𝜋/2 (180% DI), and we will term the
two controllers together the “drag-increasing” controllers. The goal of analyzing
these two controllers is to understand what mechanisms cause the drag increase
and whether these mechanisms are different for positive and negative phase shifts.
For convenience, we will refer to individual controllers by their phase shift, e.g.
∠ �̂�𝑑 = −𝜋/4. The sensor location 𝑦+

𝑑
= 15 is implied and will be omitted.

4.3 Flow Structure
We start our analysis and comparison of the controlled flows with visualizations of
instantaneous flow fields. The intent of this discussion is to develop an intuition for
how the flow changes under various control conditions. Representative structural
features of the four example controlled flows are shown in fig. 4.2. Each row
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represents a different controller in order of increasing phase shift, starting at the top
with ∠ �̂�𝑑 = −3𝜋/4. The left column displays volume renderings of vortical flow
structures, which are identified by means of the 𝜆2-criterion (Jeong and Hussain,
1995). The threshold in all figures is𝜆2ℎ

2/(𝑢𝜏)2
0 = −940, the absolute value of which

corresponds to approximately 5% of the typical maximum of |𝜆2 | in an uncontrolled
channel flow at the same Reynolds number. In the drag-reducing cases, figs. 4.2c
and 4.2e, the vortical activity is confined to the near-wall region and individual
vortices are discernible. It is interesting to note that the vortical structure in both
figures looks similar, which suggests that the flow structure at maximum DR is
not significantly different from classical opposition control. On the other hand, the
drag-increasing configurations shown in figs. 4.2a and 4.2g look quite different. In
both cases, the vortical activity is strongly enhanced and vortices are found not only
in proximity of the wall, but throughout the channel. Most vortical activity is found
for ∠ �̂�𝑑 = +𝜋/2, which is also the controller that leads to the largest drag increase.
Comparing across all example controllers confirms the intuition that there is less
vortical activity in drag-reduced flows and more in drag-increased configurations.
It is interesting to observe that the wall-based actuation does not only change the
structure of the flow in proximity of the wall, but throughout the channel, at least
for the drag-increasing controllers.

The second column of fig. 4.2 shows instantaneous snapshots of the actuation at the
wall. The velocities are made dimensionless with the centerline velocity (𝑈𝑐)0 of the
uncontrolled flow at Re𝜏 ≈ 180 and red regions indicate positive 𝑣 (blowing), while
blue regions represent negative 𝑣 (suction). Example instantaneous control inputs for
the drag-reducing controllers are shown in figs. 4.2d and 4.2f. The actuator response
of both drag-reducing configurations looks again very similar. The wall actuation is
dominated by a few spatial scales, which give rise to streamwise elongated streaky
regions of positive and negative 𝑣. Typically, a region of positive 𝑣 is surrounded on
both sides in the spanwise direction by regions of negative 𝑣 and vice-versa. One
may speculate that the spatial structure of the control signal is the imprint of the
streamwise vortices detected at the sensor location and the subsequent statistical
analysis will support this hypothesis.

The actuator response of the drag-increasing controllers is shown in figs. 4.2b
and 4.2h. It is interesting to note that both control inputs are about an order of
magnitude larger compared to the drag-reducing cases (note the different color
scales), but the larger input results in drag increase rather than drag reduction. This
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Figure 4.2: Representative instantaneous flow structure and actuator input. Each
row corresponds to a different phase shift, with sensors located at 𝑦+

𝑑
= 15 in all

cases. Figures 4.2a, 4.2c, 4.2e and 4.2g show a volume rendering of instantaneous
𝜆2 isosurfaces seen from the plane 𝑧/ℎ = 0. The threshold used in all figures is
𝜆2ℎ

2/(𝑢𝜏)2
0 = −940. Figures 4.2b, 4.2d, 4.2f and 4.2h display a snapshot of the

actuation at the wall, 𝑣(𝑥, 𝑦𝑤, 𝑧). Note that the color scale in figs. 4.2b and 4.2h
is different from the one in figs. 4.2d and 4.2f. In all cases, the color scales are
saturated (indicated by the arrows at both ends) to make the flow structure more
apparent. Figure after Toedtli, Yu, and McKeon (2020).
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suggests that the sensor measurement and actuator response lock-on and that their
feedback with large negative or positive phase shift drives the flow to a new state
of enhanced turbulence. This hypothesis will later be supported by the analysis in
Chapter 5.

The spatial structure of the actuator response for ∠ �̂�𝑑 = −3𝜋/4 is similar to the drag-
reducing cases. It consists of elongated regions of positive and negative wall-normal
velocity, but the structures are somewhat shorter and more slender compared to the
drag-reducing configurations, and the signal looks more multi-scale overall. The
actuator response for ∠ �̂�𝑑 = +𝜋/2 exhibits quite different characteristics. Instead of
the streaky structure typical for the previous cases, we observe a more unorganized
control input. The streamwise coherence of the velocity signal is largely lost, but
some organization is vaguely perceptible, with structures inclined with respect to
the streamwise direction or even oriented along the span.

4.4 Wall-Normal Velocity Fluctuations
The characterization of flow structure thus far was based on instantaneous flow
fields, but it is important to keep in mind that the actuation, and therefore also the
flow structure, may be time-dependent. A time-series analysis shows that the spatial
localization and amplitude of the control signal indeed change over time. In the
following two sections, we thus analyze the flow structure from a statistical point of
view, in order to validate whether the observed features persist over extended periods
of time. We start the statistical analysis by looking at the wall-normal rms velocity
fluctuations. As discussed in section 4.1, this flow diagnostic indicates whether the
controller has achieved its objective. It further allows to quantify the actuator input
at the wall and helps illustrate a few basic characteristics of the control scheme.

The wall-normal velocity fluctuations of the example controlled flows are shown
in fig. 4.3, along with the profile of the uncontrolled flow. The first observation is
that the two drag-reducing controllers reduce 𝑣rms at the sensor location and beyond
relative to the uncontrolled flow, while the drag-increasing controllers increase 𝑣rms.
In other words, the drag-reducing controllers achieve the control objective partially,
because the wall-normal velocity fluctuations are smaller than in the uncontrolled
case, but larger than zero. The drag-increasing controllers increase 𝑣rms at the sensor
location by more than a factor of two and do not achieve the control objective.
Fluctuation suppression and drag reduction therefore correlate for all four example
flows.
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Figure 4.3: Wall-normal rms velocity profile as a function of the wall-normal coor-
dinate. Each profile corresponds to a different phase shift ∠ �̂�𝑑 . Solid lines denote
profiles of drag-reducing controllers, while dashed lines outline drag-increasing
configurations. The dotted line outlines the profile of the uncontrolled fluctuations
and the horizontal line corresponds to the sensor location 𝑦+

𝑑
= 15.

Each controlled profile in fig. 4.3 shows a local minimum of 𝑣rms between the wall
and the sensor plane. In the scenarios where control successfully reduces drag,
the location of the minimum is usually referred to as a “virtual wall” (Hammond,
Bewley, and Moin, 1998). The much reduced wall-normal velocity fluctuations at
that plane inhibit momentum transfer in the wall-normal direction, and therefore
shield the flow region below from high-speed fluid. Figure 4.3 shows that the drag-
reducing controllers establish a virtual wall half-way between the sensor location
and the physical wall, which agrees with previous DNS studies (for example Choi,
Moin, and Kim, 1994; Hammond, Bewley, and Moin, 1998). The location of the
virtual wall may be somewhat surprising, because the previous discussion about
fluctuation suppression would suggest that the minimum should occur at the sensor
location. A possible explanation for the location mismatch is that a proportional
controller generates actuator inputs that are not large enough to reach all the way to
the sensor location. The addition of an integral term to the control law increases the
actuator input, since it is no longer solely proportional to 𝑣rms(𝑦𝑑), and can push the
virtual wall outwards to the sensor plane (Kim and Choi, 2017). It is interesting to
note that the profile of the drag-increasing controllers also exhibits a local minimum
between the sensor plane and the wall. The wall-normal velocity fluctuations at the
minimum location are still much larger than in the uncontrolled case, which indicates
that they do not inhibit momentum transfer and that an interpretation of them as
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virtual walls is not appropriate. It is also apparent that the minima of 𝑣rms for the
drag-increasing controllers occur closer to the wall compared to the drag-reducing
controllers. A possible explanation for the location of the minimum for controller
∠ �̂�𝑑 = +𝜋/2 will be given in section 5.4.3.

Figure 4.3 also allows to statistically quantify the control input, which corresponds
to 𝑣rms(𝑦+𝑤) = 𝑣rms(0). The previous comments about the wall-normal velocity
fluctuations at the sensor plane also apply to the actuator, since the two are directly
related by the control law. For classical opposition control the fluctuation intensity
at the sensor and actuator would be identical, because the sensor measurement and
actuator response only differ by a sign. Figure 4.3 shows that the fluctuation intensity
at the wall is smaller than at the sensor location in case of varying-phase opposition
control. This is a consequence of the additional symmetry constraint in Fourier
domain. Recall that the control law eq. (3.10) selects the smaller of |�̂�(𝑘𝑥 , 𝑘𝑧, 𝑦𝑑) |
and |�̂�(𝑘𝑥 ,−𝑘𝑧, 𝑦𝑑) | to generate the actuator response. This constraint ensures that
phase shifts in Fourier domain correspond to streamwise shifts in physical domain
(see discussion in section 3.2.2 for details). As a consequence, the magnitude of
the control input is typically smaller than the magnitude of the sensor measurement
and an oblique wave at the sensor location, namely the last term in eq. (3.4),
remains uncontrolled. The wall-normal velocity fluctuations at the sensor location
can be significantly larger than at the actuator, which can be seen for example
from the profile for ∠ �̂�𝑑 = +𝜋/2. The difference suggests that the oblique waves are
instantaneously quite energetic, even if they must average to zero in order to preserve
the statistical symmetry of the channel in 𝑧. We also note that the exception to the
above discussion are modes with 𝑘𝑥 = 0 or 𝑘𝑧 = 0, for which the control amplitude
is equal to the sensor measurement (see eq. (3.10)). However, the discussion in this
and the following chapter will show that the slight difference in amplitude does not
affect the qualitative behavior of these scales.

When comparing the drag-reducing controllers, it is interesting to note that 𝑣rms at
the sensor location and at the wall is smaller for the controller ∠ �̂�𝑑 = −𝜋/4 than
∠ �̂�𝑑 = 0. Further recall that controller ∠ �̂�𝑑 = −𝜋/4 leads to the maximum drag
reduction, and it does so using the smallest control input among the four example
flows. The control input of the drag-increasing controllers is significantly larger
compared to the drag-reducing ones, which confirms the instantaneous observations
of the previous section in a statistical sense. It should be emphasized that this
discussion regards velocity input, not power. Power and efficiency considerations
will be further discussed in section 6.4.
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4.5 Actuation Spectra
The two previous sections have shown that the structure of drag-increased and drag-
reduced flows is quite different. In particular, the wall-normal velocity fluctuations at
the sensor plane (control error) and at the wall (actuator input) are much larger in the
drag-increasing configurations. The instantaneous snapshots of the actuator signal
further suggest that different spatial scales are active for different ∠ �̂�𝑑 . The goal of
the present section is to analyze which scales contribute most to the actuator input
from a statistical point of view. This will also allow quantification of the robustness
of the instantaneous control signal characteristics described in section 4.3.

We will use the time-averaged power spectrum of the actuator input Φ𝑣𝑣 (𝑦𝑤), shown
in fig. 4.4, to characterize the most energetic scales. Recall that Φ𝑣𝑣 is related to 𝑣′𝑣′

and 𝑣rms through eq. (2.59), which visually means that the sum over each spectrum
in fig. 4.4 is equal to the square of 𝑣rms(𝑦𝑤) of the corresponding profile in fig. 4.3.
The spectrum can thus be thought of as a density of 𝑣rms in wave number space
at a fixed wall-normal location: scales that are more energetic in the spectrum
contribute more to the wall-normal velocity fluctuations at that 𝑦. In this sense, the
time-averaged power spectrum is the appropriate diagnostic to characterize the most
energetic scales of the actuator input.

Each plot in fig. 4.4 shows Φ𝑣𝑣 (𝑦𝑤) of a different controller, in order of increasing
phase shift and starting with ∠ �̂�𝑑 = −3𝜋/4 at the top left. Unless stated otherwise,
the friction velocity of the uncontrolled flow (𝑢𝜏)0 is used to rescale velocities
and lengths to inner units. The spectra are shown as a function of wavelength to
facilitate comparison with well-known flow structures, and the wavelengths 𝜆+𝑥 < 45
and 𝜆+𝑧 < 28 are omitted in fig. 4.4. This choice was motivated by the observation
that the actuator input at these small wavelengths is almost zero. It should further
be noted that the color scale in each plot is different, except for figs. 4.4b and 4.4c.
Since each spectrum sums to the square of the corresponding 𝑣rms, this reflects the
different magnitude of the actuator inputs observed in fig. 4.3.

We first turn our attention to the drag-reducing configurations shown in figs. 4.4b
and 4.4c. Both spectra are dominated by long and relatively slender structures,
which confirms the earlier characterization of the instantaneous control input from
a statistical point of view. Each spectrum has a global maximum, which is indicated
by the green open square in fig. 4.4 and characterized in table 4.1. We also report
the peak location normalized by the controlled viscous length scale for comparison,
and label this normalization with an additional subscript tilde, e.g. �̃�+𝑥 = 𝜆𝑥 (𝑢𝜏)𝑐/𝜈.
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(a) ∠ �̂�𝑑 = −3𝜋/4 (b) ∠ �̂�𝑑 = −𝜋/4

(c) ∠ �̂�𝑑 = 0 (d) ∠ �̂�𝑑 = +𝜋/2

Figure 4.4: Time-averaged spatial power spectrum Φ𝑣𝑣/(𝑢𝜏)2
0 of the actuator input

𝑣(𝑦𝑤) as a function of the streamwise (𝜆+𝑥 ) and spanwise (𝜆+𝑧 ) wavelength. In all
cases the sensors are located at 𝑦+

𝑑
= 15 and each figure shows the spectrum for a

different phase shift ∠ �̂�𝑑 . The green open square indicates the most energetic spatial
scale of the control input, which is characterized in table 4.1. Note that the color
scale is different in each figure. Figure after Toedtli, Yu, and McKeon (2020).

∠ �̂�𝑑

Most energetic scale
𝜆+ = 𝜆 (𝑢𝜏)0 /𝜈 �̃�+ = 𝜆 (𝑢𝜏)𝑐 /𝜈

−3𝜋/4
[
𝜆+𝑥 ≈ 2262, 𝜆+𝑧 ≈ 87

] [
�̃�+𝑥 ≈ 3278, �̃�+𝑧 ≈ 126

]
−𝜋/4

[
𝜆+𝑥 ≈ 2262, 𝜆+𝑧 ≈ 103

] [
�̃�+𝑥 ≈ 2000, �̃�+𝑧 ≈ 91

]
0

[
𝜆+𝑥 → ∞, 𝜆+𝑧 ≈ 126

] [
�̃�+𝑥 → ∞, �̃�+𝑧 ≈ 114

]
+𝜋/2

[
𝜆+𝑥 ≈ 174, 𝜆+𝑧 → ∞

] [
�̃�+𝑥 ≈ 290, �̃�+𝑧 → ∞

]
Table 4.1: Most energetic spatial scale of Φ𝑣𝑣 (𝑦𝑤)for various phase shifts. The
entries in the second column characterize the scale in terms of the uncontrolled
viscous length and correspond to the green open squares in fig. 4.4. The third
column uses the viscous length of the controlled flow to normalize the peak location.
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In both cases, the scales are reminiscent of the near-wall cycle and support the
hypothesis that the distinct spatial structure of the control signal is an imprint of the
quasi-streamwise vortices. It is interesting to note that scales with 150 ≤ 𝜆+𝑥 ≤ 800
are more energetic for ∠ �̂�𝑑 = 0 than ∠ �̂�𝑑 = −𝜋/4. This is most apparent for large
spanwise widths, but the observation applies to all scales with 𝜆+𝑧 > 40. Recall from
fig. 4.3 that the controller ∠ �̂�𝑑 = 0 induces somewhat larger velocity fluctuations
at the wall than controller ∠ �̂�𝑑 = −𝜋/4. Taking the difference between the two
spectra shows that the additional energy in the velocity fluctuations for ∠ �̂�𝑑 = 0 is
associated with the aforementioned region in spectral space.

Next, we consider the drag-increasing configurations in figs. 4.4a and 4.4d. It is
apparent that the structure of the two spectra is quite different. The spectrum of
the actuator ∠ �̂�𝑑 = −3𝜋/4 is similar to the drag-reducing configurations, but the
scales are much more energetic, as can be seen by comparing the color scales. The
actuation is dominated by large streamwise scales, with somewhat more activity
in smaller scales compared to the drag-reduced flows. This is consistent with
the earlier observations about the instantaneous control input. The peak for this
spectrum occurs at wavelengths that are again reminiscent of the near-wall cycle, at
least when normalized with the uncontrolled viscous length scale. As can be seen
from table 4.1, the difference between 𝜆+ and �̃�+ is more pronounced in this case,
because the change in Re𝜏 is much larger in the drag-increasing than in the drag-
reducing configurations. The spectrum for ∠ �̂�𝑑 = +𝜋/2 looks remarkably different
from the ones discussed previously. It is apparent that the control input is dominated
by structures that are relatively short in the streamwise direction, but wide in the
span. In fact, the signature of the near-wall cycle is not apparent and instead the
region around 𝜆+𝑥 ≈ 170, which was vaguely perceptible in some of the other spectra,
is now very energetic. The spectrum confirms the earlier visual observations, which
suggested that the actuation signal is less coherent in the streamwise direction, but
shows some organization along the span.

We close this section by mentioning once again that the wall-normal velocity at
the wall is related to 𝑣 at the sensor location through the varying-phase opposition
control law, eq. (3.10). The power spectrum of the actuation is therefore also a proxy
for the spectrum of 𝑣 at 𝑦𝑑 and for the near-wall region in general. The qualitative
features of the spectra shown in fig. 4.4 persist until at least 𝑦+

𝑑
= 31, which is the last

plane at which spectra were accumulated during the DNS runs. It therefore seems
that the structure of the controlled flows does not change much within the near-wall
region.
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4.6 Conclusion: Two Families of Scales
The present chapter characterized the structure of controlled flows from an instanta-
neous and a statistical point of view by example of four controllers with identical 𝑦𝑑 ,
but different ∠ �̂�𝑑 . The two example drag-reducing controllers attenuate the wall-
normal velocity fluctuations in the near-wall region compared to the uncontrolled
case, and their control input shows an imprint of the near-wall cycle structures. The
two example drag-increasing controllers have a much larger control input compared
to the drag-reducing configurations, but rather than attenuating the wall-normal ve-
locity fluctuations, they amplify 𝑣rms in the near-wall region. The scales contributing
to the control input are quite different for each of the drag-increasing examples. The
most energetic control scales for large negative phase shifts are similar to the drag-
reducing configurations and are reminiscent of near-wall cycle structures. On the
other hand, the most energetic spatial scales for large positive phase shifts are much
shorter and wider and do not resemble near-wall cycle structures at all.

The picture that emerges from the present analysis is that of two important families of
scales. Streamwise-elongated scales, which are reminiscent of the near-wall cycle
and dominate the control input for −3𝜋/4 ≤ ∠ �̂�𝑑 ≤ 0, and spanwise-elongated
scales, which are most active for ∠ �̂�𝑑 > 0. Each family comprises a range of scales,
which can be loosely defined from the spectra in fig. 4.4 as scales that lie close to
each other in spectral space and behave similarly under various ∠ �̂�𝑑 . This raises
hopes that the drag reduction behavior of varying-phase opposition control can be
understood by considering an example scale of each family and such an analysis
will be done in the following chapter.
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C h a p t e r 5

MECHANISMS OF DRAG CHANGE

Portions of this chapter have been previously published in:

Toedtli, S., Yu, C., and McKeon, B. (2019). “Structural and spectral analysis of
varying-phase opposition control in turbulent channel flow”. In: Proceedings of
TSFP 11.

Toedtli, S., Yu, C., and McKeon, B. (2020). “On the origin of drag increase in
varying-phase opposition control”. In: International Journal of Heat and Fluid
Flow 85, p. 108651. doi: 10.1016/j.ijheatfluidflow.2020.108651.

The observations of the previous chapter suggest that two regions in spectral space,
dubbed streamwise-elongated and spanwise-elongated scales, respectively, deter-
mine the drag reduction behavior of varying-phase opposition control for various
phase shifts. The problem of understanding the drag reduction map, fig. 4.1, there-
fore may reduce to understanding the response of the two spectral regions to control.

The control response of individual spatial scales, which we characterize as Fourier
modes with a wave number vector 𝜿 = [𝑘𝑥 , 𝑘𝑧] and which may belong to one of
the two families, is composed of two parts. First, each scale responds to the change
in boundary condition. This is a linear effect, because the boundary condition acts
on each wave number individually and contains information from only that 𝜿. And
second, each scale responds to changes that control induces at other scales. This is
a nonlinear mechanism, and can be considered a secondary effect in the sense that
at least one scale has to be modified by the boundary condition for the nonlinear
mechanism to kick in. The goal of the present chapter is to understand whether
the linear boundary condition effect alone is sufficient to characterize the control
response of the streamwise-elongated and spanwise-elongated scales.

Following our previous approach, we fix the sensor location at 𝑦+
𝑑
= 15 and allow the

phase shift to vary, so that ∠ �̂�𝑑 ∈ [−3𝜋/4, 3𝜋/4]. With this restriction, changes in
boundary condition are limited to changes in phase shift, and our problem reduces to
analyzing the response of individual scales to changes in ∠ �̂�𝑑 . In order to isolate the
effect of the boundary condition, we seek to minimize the nonlinear interactions of
controlled scales. This can be achieved by restricting control to a small set of wave

https://doi.org/10.1016/j.ijheatfluidflow.2020.108651
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numbers, which cannot feed back on each other directly, and leaving all other spatial
scales uncontrolled. We will refer to such controllers as “scale-restricted” and they
will be used in this chapter to analyze the response of the streamwise-elongated and
spanwise-elongated structures to control with various ∠ �̂�𝑑 .

The analysis of scale-restricted controllers will be based on a mix of direct numerical
simulations and modal analyses. The DNS are used to study the response of the real
flow to scale-restricted control, and nonlinear interactions are still present in this
case. The controlled scales are the only ones to feel the boundary condition (i.e.
linear) effect of control, while all scales feel the secondary (i.e. nonlinear) effect.
This includes the controlled scales, but since they cannot feed back on each other, the
nonlinear effect will be shown to be weak. On the other hand, modal analyses allow
to fully single out the linear mechanism, because the nonlinear secondary effect only
enters through the mean flow and forcing, which can both be chosen as part of the
problem formulation. The modal analyses can thus provide further evidence that
linear mechanisms relate the scale response to ∠ �̂�𝑑 . In addition, the linear analyses
can characterize the amplification mechanisms by relating the behavior of each scale
family to properties of the temporal eigenspectra and pseudospectra.

5.1 Prologue: Scale-by-Scale Fluctuation Suppression
Before introducing the scale-restricted controllers, it is instructive to revisit the
concepts of fluctuation suppression and drag reduction from a scale-by-scale per-
spective, and the former will be mainly quantified in terms of 𝑣′𝑣′ rather than 𝑣rms

(see discussion in section 4.1). The discussion and results in Chapter 4 have shown
that the two concepts are distinct, but often correlated. Fluctuation suppression
is a local measure in 𝑦, which depends on 𝑣′𝑣′ at the sensor location, while drag
reduction is a global measure in 𝑦, which depends on a weighted integral of 𝑢′𝑣′ in
the vertical direction. It is important to note that despite their different nature in the
wall-normal direction, both quantities are average measures in wave number space.
To see this, consider Parseval’s theorem (2.51), which shows that the spatial average
of quadratic quantities implied in 𝑢′𝑣′ or 𝑣′𝑣′, corresponds to the sum over all wave
numbers.

The analysis in the present chapter will consider controllers that only act on a small
set of wave numbers and leave all the others uncontrolled. Average measures in
wave number space remain important also in this setting to quantify the overall
change of the flow. But they are only informative if the response of the controlled
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scales is strong enough to significantly change the mean Reynolds stresses. In some
cases, control may alter the scales it acts on, but the changes are weak in a mean
sense and not detectable through the diagnostics developed in section 4.1. And even
if the modification of the controlled scales is reflected in the mean, it may be more
insightful to consider the effect of control on each scale individually. This suggests
refining the notion of scale suppression and drag reduction to a scale-by-scale basis.

Ideally, one would keep track of four quantities when analyzing the scale-restricted
controllers: scale suppression and drag reduction for individual Fourier modes,
and averaged in wave number space. Since this chapter presents DNS and modal
analysis data, the diagnostics would have to be formulated and evaluated for each
frameworks, which quickly leads to a confusing multitude of statistics. To make the
analysis more tractable, we limit the discussion to drag reduction when looking at
mean quantities, and to fluctuation suppression when looking at the effect of control
on a scale-by-scale basis. The results of Chapter 4 suggest that mean drag reduction
and scale suppression correlate for the parameter range considered here, so that it
is reasonable to assume that a decrease (increase) in mean drag goes hand in hand
with a decrease (increase) of 𝑣′𝑣′ at the sensor location. The same correlation has
not yet been verified for scale-by-scale diagnostics, so that one cannot necessarily
relate a decrease (increase) in scale-by-scale fluctuation contribution to a decrease
(increase) in scale-by-scale drag contribution. However, such a correlation seems
well-supported if the integral drag change and scale fluctuation contribution point
in the same direction. For example, if both the mean drag and scale-by-scale
fluctuation contribution decrease under scale-restricted control, then it is likely that
the mean drag contribution of the controlled scales also decreases. If the mean drag
contribution remains unchanged, then the correlation is more speculative, even if it
may be intuitive. We have chosen fluctuation suppression over drag reduction as a
scale-by-scale diagnostic, because the former is related to the power spectra of the
wall-normal velocity at the sensor location, as will be shown next. The discussion
of fluctuation suppression therefore naturally includes an analysis of the near-wall
flow structure, while drag reduction as an integral measure in 𝑦 does not.

The goal for the remainder of this section is to derive a statistical measure to
quantify the scale-by-scale fluctuation suppression in DNS and resolvent analysis.
A similar approach could be used to define a scale-by-scale drag contribution, but
the derivation is omitted here since this diagnostic is not reported. The starting point
is the definition of the mean fluctuation suppression, eq. (4.2), but now expressed in
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terms of 𝑣′𝑣′ rather than 𝑣rms. Using eq. (2.51), we can write the scale suppression
in terms of time-averaged Fourier coefficients

Δ𝑣′𝑣′(𝑦𝑑) =
(
𝑣′𝑣′

)
0
(𝑦𝑑) −

(
𝑣′𝑣′

)
𝑐
(𝑦𝑑)

=

∞∑︁
𝑙=−∞

∞∑︁
𝑚=−∞

〈
|�̂� |20

〉
𝑡
(𝑙, 𝑚, 𝑦𝑑) −

〈
|�̂� |2𝑐

〉
𝑡
(𝑙, 𝑚, 𝑦𝑑).

(5.1)

The difference at each wave number can be positive or negative, and we recall
that Δ𝑣′𝑣′ is the desired outcome. If the difference at a particular wave number
combination is positive, then that scale contributes to mean fluctuation suppression,
and we denote that scale “suppressed under control.” Conversely, if the difference at
a particular wave number combination is negative, then that scale amplifies the mean
fluctuation, and we denote that scale “amplified under control.” These will be our
notions of scale-by-scale fluctuation suppression. In the following, we bring eq. (5.1)
into forms that are suitable to evaluate with DNS data or resolvent calculations.

5.1.1 DNS Formulation
For DNS, it is most convenient to express the scale suppression in terms of the time-
averaged power spectrum at the sensor location, Φ𝑣𝑣 (𝑙, 𝑚, 𝑦𝑑). Using eqs. (2.56)
and (2.59), we can rewrite eq. (5.1) as

Δ𝑣′𝑣′(𝑦𝑑) =
∞∑︁
𝑙=0

∞∑︁
𝑚=0

(Φ𝑣𝑣)0 (𝑦𝑑) − (Φ𝑣𝑣)𝑐 (𝑦𝑑)

=

∞∑︁
𝑙=0

∞∑︁
𝑚=0

ΔΦ𝑣𝑣 (𝑦𝑑)
(Φ𝑣𝑣)0 (𝑦𝑑)

(Φ𝑣𝑣)0 (𝑦𝑑)
(5.2)

where
ΔΦ𝑣𝑣 (𝑦𝑑)
(Φ𝑣𝑣)0(𝑦𝑑)

= 1 − (Φ𝑣𝑣)𝑐 (𝑦𝑑)
(Φ𝑣𝑣)0 (𝑦𝑑)

(5.3)

and we omitted the dependence of the spectrum on the streamwise and spanwise
wave number for compactness. Recall that the notion of scale suppression or
amplification depends on the sign of the corresponding term in eq. (5.2), each of
which is the product of two factors. The factor (Φ𝑣𝑣)0 is non-negative and describes
the overall energetic importance of that scale in the uncontrolled flow. The other
factor, ΔΦ𝑣𝑣/(Φ𝑣𝑣)0, can be positive or negative and determines the sign of the
product. In order to decide whether a particular scale is amplified or suppressed,
it is thus sufficient to consider ΔΦ𝑣𝑣/(Φ𝑣𝑣)0. The interpretation of its sign and
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magnitude are as follows

ΔΦ𝑣𝑣

(Φ𝑣𝑣)0
∈


[0, 1] scale is suppressed (more positive is better)

(−∞, 0) scale is amplified (more negative is worse).
(5.4)

5.1.2 Resolvent Analysis Formulation
Next, we derive a suitable expression for resolvent analysis. An important formal
difference between DNS and resolvent analysis is their treatment of the temporal
coordinate. In contrast to DNS, the resolvent framework operates with temporal
frequencies, which implies an additional dimension in Fourier domain. A single
scale in the resolvent sense is therefore characterized by a wave number triplet
𝒌 = [𝑘𝑥 , 𝑘𝑧, 𝜔], with the temporal frequency 𝜔 as additional descriptor. This
also means that the resolvent framework refines the notion of scale suppression to
contributions of individual temporal frequencies.

In order to find a suitable definition for scale suppression, we first need to express
𝑣′𝑣′ as a function of wave numbers and temporal frequencies. Using eq. (2.53), we
can write

𝑣′𝑣′(𝑦) =
∞∑︁

𝑙=−∞

∞∑︁
𝑚=−∞

∫ ∞

−∞
|�̂� |2(𝑙, 𝑚, 𝑦, 𝜔) d𝜔. (5.5)

The individual Fourier modes �̂�(𝑙, 𝑚, 𝑦, 𝜔) can now be approximated by resolvent
modes up to a desired order. As shown in Appendix C, the scale suppression for a
rank-1 broadband forcing resolvent model can be written as

Δ𝑣′𝑣′(𝑦𝑑) =
∞∑︁
𝑙=0

∞∑︁
𝑚=0

∫ ∞

−∞

(
𝐵𝑙𝑚 𝜎2

1 |𝑣1 |2(𝑦𝑑)
)

0
−

(
𝐵𝑙𝑚 𝜎2

1 |𝑣1 |2(𝑦𝑑)
)
𝑐

d𝜔

=

∞∑︁
𝑙=0

∞∑︁
𝑚=0

𝐵𝑙𝑚

∫ ∞

−∞

Δ
(
𝜎2

1 |�̂�1 |2(𝑦𝑑)
)(

𝜎2
1 |�̂�1 |2(𝑦𝑑)

)
0

(
𝜎2

1 |�̂�1 |2(𝑦𝑑)
)

0
d𝜔

(5.6)

where
Δ

(
𝜎2

1 |�̂�1 |2(𝑦𝑑)
)(

𝜎2
1 |�̂�1 |2(𝑦𝑑)

)
0

= 1 −
(
𝜎2

1 |�̂�1 |2(𝑦𝑑)
)
𝑐(

𝜎2
1 |�̂�1 |2(𝑦𝑑)

)
0

(5.7)

and

𝐵𝑙𝑚 =


1 if 𝑙 = 𝑚 = 0

2 if either 𝑙 = 0 or 𝑚 = 0

4 else

. (5.8)

Further note that we have omitted the dependence on 𝒌 for compactness. The notion
of scale suppression again depends on the sign of each term, whose structure is very
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analogous to the DNS formulation. The factor
(
𝜎2

1 |�̂�1 |2
)
0 is non-negative and de-

scribes the energetic importance of that scale under a broadband forcing assumption.
The sign of each term is therefore determined by the factor Δ

(
𝜎1 |�̂�1 |2

)
/
(
𝜎2

1 |�̂�1 |2
)
0,

and it is sufficient to consider its value in order to determine if a scale is amplified
or suppressed

Δ
(
𝜎2

1 |�̂�1 |2
)(

𝜎2
1 |�̂�1 |2

)
0

∈

[0, 1] scale is suppressed (more positive is better)

(−∞, 0) scale is amplified (more negative is worse).
(5.9)

In order to make the distinction between frequency-dependent resolvent scales and
time-averaged DNS scales clear, we will usually refer to eq. (5.9) as “resolvent mode
suppression.” A comparison between eqs. (5.2) and (5.6) further shows that the two
definitions are related by

ΔΦ𝑣𝑣 ≈ 𝐵𝑙𝑚

∫ ∞

−∞
Δ

(
𝜎2

1 |�̂�1 |2
)

d𝜔 = 𝐵𝑙𝑚 𝑘𝑥

∫ ∞

−∞
Δ

(
𝜎2

1 |�̂�1 |2
)

d𝑐. (5.10)

The approximate equality indicates that a rank-1 broadband forcing resolvent ap-
proximation does not reproduce the true statistics. The last equality only holds if
𝑘𝑥 ≠ 0, so that the wave speed 𝑐 = 𝜔/𝑘𝑥 is well-defined. The parametrization in
terms of wave speed is advantageous, because the energetic content of the real flow
is limited to a narrow band of 𝑐 (Bourguignon et al., 2014), which allows to restrict
the range of wave speeds to consider (see section 3.4.2). Our analysis will consider
spatial scales with 𝑘𝑥 ≠ 0 and we will therefore report resolvent mode suppression
as a function of wave speed rather than temporal frequency.

When studying the spanwise-elongated scales, we will also work with an approxi-
mation to eq. (5.7), which is given by

Δ𝜎2
1(

𝜎2
1

)
0

= 1 −
(
𝜎2

1
)
𝑐(

𝜎2
1

)
0

(5.11)

and does not account for changes in singular vectors due to control. The approxi-
mation is useful because it emphasizes the behavior of the singular values, which
will be shown to be the main driver for amplification of spanwise-elongated scales.
It should be pointed out that the approximation qualitatively reproduces the trends
of eq. (5.7) for the cases considered and that the interpretation of Δ𝜎2

1 /
(
𝜎2

1
)
0 is

analogous to eq. (5.9).



107

5.2 Scale-Restricted Control
After alluding to them for several times, we now finally define the scale-restricted
controllers. Again, the general idea is to only control a small number of spatial
scales and leave all others uncontrolled. Individual spatial scales are characterized
as Fourier modes and identified by means of their spatial wave number vector
𝜿 = [𝑘𝑥 , 𝑘𝑧]. We will denote the controlled scales by 𝜿𝑐, which can refer to
an individual scale or a set of scales, depending on the context. If 𝜿𝑐 contains
more than two spatial scales, we require them to not be triadically consistent, i.e.
𝜿1 + 𝜿2 ≠ 𝜿3 for any triplets in 𝜿𝑐. This requirement ensures that the controlled
scales cannot feed back on each other and minimizes the secondary (nonlinear)
control effect for scales in 𝜿𝑐. The scale-restricted controllers now simply apply
varying-phase opposition control to the scales in 𝜿𝑐, and leave all other spatial scales
uncontrolled. The scale restriction corresponds to a modified controller gain �̂�𝑑,𝜿

�̂�𝑑,𝜿 =


�̂�𝑑 if 𝜿 ∈ 𝜿𝑐

0 else
(5.12)

where �̂�𝑑 without subscript 𝜿 is the gain according to eq. (3.6) and eq. (3.10) for
resolvent and DNS, respectively. If 𝜿𝑐 contains a single spatial scale, for example
𝜿𝑐 = {[𝑘𝑥ℎ = 6.5, 𝑘𝑧ℎ = 0]}, we will refer to the control law as “single scale
control,” or SS control for short. If 𝜿𝑐 contains all spanwise scales at a single
streamwise wave number, for example 𝜿𝑐 = {[𝑘𝑥ℎ = 0.5, 𝑘𝑧]}, we will refer to the
control law as “single wave number control,” or SW control for short.

5.2.1 Scale Selection
The control scales 𝜿𝑐 are an additional parameter of the scale-restricted scheme,
besides the sensor location 𝑦𝑑 and phase shift ∠ �̂�𝑑 that it inherits from varying-phase
opposition control. The selection of the control scale is guided by the observations
of Chapter 4, which suggest choosing scales that belong to either the streamwise-
elongated or spanwise-elongated family. In order to separate their effects, we
consider a scale-restricted controller for each family in isolation. The selection of
𝜿𝑐 within each family of scales is somewhat arbitrary, but ideally the control scales
are energetic enough, so that their effect is detectable in the flow in a mean sense. In
order to identify energetic scales, we revisit the actuation spectra of varying-phase
opposition control in fig. 4.4 and outline the scale selection for each family below.
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5.2.2 Example Streamwise-Elongated Scale
The streamwise-elongated scales are active for ∠ �̂�𝑑 ≤ 0, and one of the main
aspects we hope to understand from this family is the drag reduction behavior for
negative phase shifts. We therefore consider the actuation spectrum at ∠ �̂�𝑑 =

−𝜋/4 (maximum DR), show in fig. 4.4b, to select 𝜿𝑐. Based on the requirement
that control should lead to as large of a flow response as possible, we select the
most energetic scale, which we identified in table 4.1, and which occurs at 𝝀𝑠 =[
𝜆+𝑥𝑠 ≈ 2262, 𝜆+𝑧𝑠 ≈ 103

]
. The subscript s labels the example streamwise-elongated

scale from here on and is shorthand for “streak,” which characterizes the spatial
shape of the actuation associated with this scale (see e.g. fig. 4.2d). The scale
can equivalently be characterized in terms of its wave numbers normalized by the
channel half-height, which corresponds to 𝜿𝑠 = [𝑘𝑥𝑠ℎ = 0.5, 𝑘𝑧𝑠ℎ = 11]. The first
scale-restricted controller of the streamwise-elongated family is a SS controller
defined by

𝜿𝑐 = {𝜿𝑠 = [𝑘𝑥𝑠ℎ = 0.5, 𝑘𝑧𝑠ℎ = 11]}. (5.13)

Section 5.3.1 will show that the flow response to control with 𝜿𝑠 is rather weak,
so that the drag does not change significantly. We therefore consider an additional
controller which acts on all spanwise scales at 𝑘𝑥𝑠ℎ = 0.5, and which we will denote
by {𝜿}𝑘𝑥𝑠 . The control scales for this case are given by

𝜿𝑐 =
{
{𝜿}𝑘𝑥𝑠 = [𝑘𝑥𝑠ℎ = 0.5, 𝑘𝑧]

}
(5.14)

and this corresponds to a SW controller by our earlier name convention. Note
that all control scales share the same streamwise wave number, which makes them
triadically inconsistent.

5.2.3 Example Spanwise-Elongated Scale
The spanwise-elongated scales are particularly active at large positive phase shifts,
and we thus consider the actuation spectrum for ∠ �̂�𝑑 = +𝜋/2, shown in fig. 4.4d, to
select 𝜿𝑐. A wide range of spanwise-elongated scales centered around 𝜆+𝑥 ≈ 174 con-
tributes to the control signal at this phase shift. Following the same approach as for
the streamwise-elongated family, we choose the most energetic scale, which corre-
sponds to 𝝀𝑟 =

[
𝜆+𝑥𝑟 ≈ 174, 𝜆+𝑧𝑟 → ∞

]
or, equivalently, 𝜿𝑟 = [𝑘𝑥𝑟ℎ = 6.5, 𝑘𝑧𝑟ℎ = 0].

The subscript r labels the example spanwise-elongated scale from here on and is
shorthand for “roller,” since this scale will later be shown to induce spanwise rollers
for a range of phase shifts. The scale-restricted controllers of the spanwise-elongated
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family only act on this one scale so that

𝜿𝑐 = {𝜿𝑟 = [𝑘𝑥𝑟ℎ = 6.5, 𝑘𝑧𝑟ℎ = 0]}. (5.15)

Note that this corresponds to a single scale controller by our earlier name convention.

5.3 Response of Streamwise-Elongated Scales to Control
This section explores the response of streamwise-elongated scales to varying-
phase opposition control with various ∠ �̂�𝑑 . The analysis is based on the two
scale-restricted controllers introduced earlier: the SS controller with 𝜿𝑠 defined in
eq. (5.13), and the SW controller with {𝜿}𝑘𝑥𝑠 defined in eq. (5.14). The sensors are
fixed at 𝑦+

𝑑
= 15 and the phase shift is varied from −3𝜋/4 to 3𝜋/4. The first two

parts of the analysis use DNS data to characterize mean drag reduction and scale
suppression, and the following two parts use modal analyses to explore the temporal
eigenspectrum and analyze resolvent mode suppression.

5.3.1 Streamwise-Elongated Scales: DNS Drag Reduction
We start the discussion by considering the drag reduction of the scale-restricted
controllers. The green open squares in fig. 5.1 represent the drag reduction under
single scale control with 𝜿𝑠. Note that the figure has two ordinates with different
colors, one on the left and one on the right. Each ordinate quantifies the drag
reduction for the curve with the same color, and the green ordinate on the left is the
relevant one for SS control. Recall from the definition of DR in eqs. (3.11) to (3.13)
that a positive value (symbol above the black horizontal in fig. 5.1) corresponds to
drag reduction, while a negative value (symbol below the black horizontal) indicates
drag increase. It is apparent from fig. 5.1 that the DR is a function of the phase
shift. The most pronounced flow response occurs for ∠ �̂�𝑑 = +3𝜋/4, which leads
to a 12% drag increase. A smaller drag increase of about 1% can also be observed
for ∠ �̂�𝑑 = −3𝜋/4. The drag changes for the remaining phase shifts are smaller, and
while fig. 5.1 may hint at a slight drag decrease for −𝜋/4 ≤ ∠ �̂�𝑑 ≤ +𝜋/4, these
differences are not large enough to be statistically significant.

It is somewhat surprising that the strongest flow response occurs for large positive
phase shifts. The streamwise-elongated scales were not particularly pronounced in
the actuation spectrum for ∠ �̂�𝑑 = +𝜋/2 shown in fig. 4.4d, and the same observation
holds for the corresponding spectrum at ∠ �̂�𝑑 = +3𝜋/4 (data not shown). Even so,
the drag reduction trends from fig. 5.1 indicate that the streamwise-elongated scales
contribute to drag increase at large positive phase shifts. An interpretation consistent
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Figure 5.1: Drag reduction of varying-phase opposition control with sensors located
at 𝑦+

𝑑
= 15 as a function of the phase shift ∠ �̂�𝑑 . The green open squares show SS

control with 𝜿𝑠, while the blue diamonds indicate SW control with {𝜿}𝑘𝑥𝑠 . Each
curve has its own ordinate, which can be identified by the matching text color, and
its own scale.

with the spectrum and fig. 5.1 is that streamwise-elongated scales do contribute to
drag increase, but to a much smaller extent than the spanwise-elongated scales, so
that their imprint in the spectrum is not very prominent. The slight drag increase
for ∠ �̂�𝑑 = −3𝜋/4 on the other hand is consistent with the actuation spectrum in
fig. 4.4a, which showed that the streamwise-elongated scales are the most energetic
and therefore likely drive the flow response in this parameter range. The drag
changes for −𝜋/2 ≤ ∠ �̂�𝑑 ≤ +𝜋/2 are within the statistical uncertainty and should
not be used to draw further conclusions. An explanation for why the drag change in
this regime is so weak will be given in section 5.3.2.

We first reconsider whether control with the single scale 𝜿𝑠 is adequate for our
purposes. The study of scale-restricted controllers is most insightful if the simplified
controllers reproduce the drag trend of the full scheme in at least parts of the
parameter space. This is because matching trends suggest that linear mechanisms
that link phase shift to scale response are at least partially responsible for the drag
change in varying-phase opposition control. We chose the streamwise-elongated
scales mainly to understand the drag reduction for slightly negative phase shifts, but
the flow response in precisely this parameter range is too weak to establish a trend.

In order to clarify whether linear mechanisms at the streamwise-elongated scales are
significant for the behavior of the full control scheme in the range −𝜋/2 ≤ ∠ �̂�𝑑 ≤
+𝜋/2, we can add more scales from the streamwise-elongated family to the restricted
controller. Adding more scales increases the magnitude of the control input and
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possibly leads to a stronger mean flow response. The streamwise-elongated family
consists of a range of scales located close to 𝜿𝑠 in spectral space, as can be seen
from fig. 4.4b. Ideally, the additional scales should also be energetic for control with
∠ �̂�𝑑 = −𝜋/4 and triadically inconsistent, so that they cannot feed back on each other.
The most energetic scales in fig. 4.4b all occur at 𝑘𝑥ℎ = 𝑘𝑥𝑠ℎ = 0.5, which suggests
controlling all spanwise wave numbers at this particular 𝑘𝑥 . This corresponds to
the single wave number controller with scales {𝜿}𝑘𝑥𝑠 defined in eq. (5.14). It is
important to point out that even though the SW controller acts on all spanwise wave
numbers at a given 𝑘𝑥 , this only corresponds to approximately 1% of all Fourier
modes.

The drag reduction behavior of the SW controller is shown as blue curve in fig. 5.1,
and the DR is quantified by the blue ordinate on the right. Note that the scale
of the ordinate is larger by a factor of four, which confirms that adding more
control scales increases the flow response and indicates that the drag changes are
statistically significant over the entire parameter range. It is apparent that the SS and
SW controller have similar trends, which confirms that all scales in {𝜿}𝑘𝑥𝑠 respond
similarly to control, even if there is a weak dependence in 𝑘𝑧, since the two curves
are not just offset by a constant factor. For SW control, we observe drag reduction
for −𝜋/4 ≤ ∠ �̂�𝑑 ≤ +𝜋/4, with a maximum DR of 5% at ∠ �̂�𝑑 = 0. Large negative
or positive phase shifts again increase the drag. A maximum drag increase of 56%
occurs at ∠ �̂�𝑑 = +3𝜋/4, while the increase at ∠ �̂�𝑑 = −3𝜋/4 is only about half as
large.

Since the drag changes for SW control are statistically significant, we can now relate
the response of the streamwise-elongated family to the drag change of the full control
scheme. Figure 5.2 compares the drag reduction of the two control schemes as a
function of the phase shift. It is important to point out again that each curve has its
own ordinate, with the one on the left axis corresponding to varying-phase opposition
control and the one on the right to SW control. The qualitative behavior of the two
curves matches well, which suggests that the response of streamwise-elongated
scales to ∠ �̂�𝑑 is relevant for the behavior of varying-phase opposition control over
the entire parameter range. The relevance of the streamwise-elongated scales for
∠ �̂�𝑑 ≤ 0 could already be inferred from the spectra in fig. 4.4, but the matching
trend for positive phase shifts reinforces the earlier observation that these scales also
contribute to the drag increase, even if their imprint in the actuation spectrum is
weak. One interesting difference to note between the two curves is the symmetry
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Figure 5.2: Drag reduction of varying-phase opposition control with sensors located
at 𝑦+

𝑑
= 15 as a function of the phase shift ∠ �̂�𝑑 . The blue open diamonds denote SW

control with {𝜿}𝑘𝑥𝑠 , while the orange circles show varying-phase opposition control
with all scales and correspond to the orange line in fig. 4.1. Note that each curve
has its own ordinate, which can be identified by the matching text color, and its own
scale.

about ∠ �̂�𝑑 = 0. The maximum DR for SW control occurs at ∠ �̂�𝑑 = 0, and the curve
is approximately symmetric for small phase shifts. On the other hand, the maximum
DR for varying-phase opposition control occurs at ∠ �̂�𝑑 = −𝜋/4, and there is no
apparent symmetry about zero phase shift. In fact, varying-phase opposition control
increases drag at ∠ �̂�𝑑 = +𝜋/4, while the SW scheme still achieves drag reduction.
The streamwise-elongated scales in isolation can therefore not explain why a slightly
negative phase shift leads to maximum drag reduction in varying-phase opposition
control. The analysis in section 5.5.1 will show that one has to include the spanwise-
elongated scales to understand this aspect. The other notable difference occurs at
∠ �̂�𝑑 = −𝜋/2, where the single wave number scheme leads to a slight drag increase,
while the full scheme can achieve a drag reduction. The difference at this phase shift
has not yet been fully investigated, but is likely due to a heterogeneous (i.e. weakly
wave number dependent) response of the streamwise-elongated scales at this phase
shift.

It is important to emphasize again the relevance of qualitative versus quantitative
agreement between the drag reduction curves in figs. 5.1 and 5.2. The drag reduction
trends do not match quantitatively, which is reflected in the need for two ordinates
in each plot. The drag change under varying-phase opposition control is about a
factor of seven larger compared to SW control. And the drag change under single
wave number control in turn is about a factor of four larger compared to SS control.
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Recall that the scale-restricted controllers only act on a small subset of the Fourier
modes, so that these quantitative differences are expected. They simply indicate that
scales other than 𝑘𝑥 = 𝑘𝑥𝑠 contribute to the drag change. The important observation
here is the generally good qualitative agreement between the curves, which suggests
that the streamwise-elongated family contributes to the control response of the flow.
Since we minimized the nonlinear interactions between controlled scales, we can
make an even stronger statement and directly relate the response of the streamwise-
elonagted scales, and in extension the DR of varying-phase opposition control, to
changes in ∠ �̂�𝑑 . Furthermore, fig. 5.1 suggests that 𝜿𝑠 is a suitable representative
of the streamwise-elongated family and will be used instead of {𝜿}𝑘𝑥𝑠 whenever the
study of a single scale in isolation is advantageous.

5.3.2 Streamwise-Elongated Scales: DNS Scale Suppression
The previous section considered the drag change and confirmed that the streamwise-
elongated scales determine at least a part of the flow response to varying-phase
opposition control. The drag change is an average measure in wave number space,
and we next turn our attention to the effect of control on individual scales. For
the reasons given in section 5.1, this discussion is focused on scale suppression.
Recall that the quantification of scale suppression for DNS data is based on the
power spectrum of the wall-normal velocity at the sensor plane. We will therefore
first discuss a few example controlled spectra, which also allows to analyze the flow
structure under scale-restricted control.

Figure 5.3 shows the power spectrum of the wall-normal velocity Φ𝑣𝑣 at the sensor
location of the uncontrolled flow (top) and two example SW controllers (bottom).
The spectra are shown as a function of wave number and the range 𝑘𝑥ℎ > 5, and
𝑘𝑧ℎ > 30 are omitted. The close-up view helps highlight the important changes
to the flow, but it should be noted that the omitted wave numbers carry a non-
negligible amount of energy, especially in fig. 5.3b. Figure 5.3a shows the spectrum
of the uncontrolled flow, with respect to which we define scale suppression. If a
controlled scale is less energetic than in fig. 5.3a, we say the scale is suppressed.
In contrast, if a scale is more energetic, we say the scale is amplified. The most
energetic spatial scales in the wall-normal velocity signal of the uncontrolled flow at
𝑦+ = 15 are located around [𝑘𝑥ℎ = 0.5, 𝑘𝑧ℎ = 11]. Single wave number control with
{𝜿}𝑘𝑥𝑠 targets this region in spectral space and acts on all spanwise wave numbers
at 𝑘𝑥ℎ = 0.5, which are indicated by the vertical blue line. Figures 5.3b and 5.3c
show the corresponding spectra for two example SW controllers with various phase
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Figure 5.3: Time-averaged power spectrum Φ𝑣𝑣/
(
𝑢2
𝜏

)
0 of the wall-normal velocity

at the sensor location 𝑦+
𝑑
= 15 as a function of the streamwise (𝑘𝑥) and spanwise

wave number (𝑘𝑧). Figure 5.3a shows the spectrum of the uncontrolled flow, while
figs. 5.3b and 5.3c show controlled spectra for different phase shifts ∠ �̂�𝑑 . The
blue vertical line in each figure indicates the control scales {𝜿}𝑘𝑥𝑠 to aid the visual
comparison of the figures. Note that the color scale in fig. 5.3b is saturated, so that
the same color scale can be used in each figure.

shifts. The figure on the bottom left shows control with ∠ �̂�𝑑 = −3𝜋/4, which leads
to a 27% drag increase, while the figure on the bottom right shows the controller
with ∠ �̂�𝑑 = −𝜋/4, which decreases drag by 4%. The shape of the controlled spectra
is quite similar to the uncontrolled one, which indicates that control may damp or
amplify certain scales, but does not fundamentally alter the flow structure.

The control scales in the drag-increasing configuration of fig. 5.3b are signifi-
cantly amplified, in particular for 9 ≤ 𝑘𝑧ℎ ≤ 16. In other words, control of the
streamwise-elongated scales with large negative phase shifts does not achieve the
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control objective. The spectra together with the mean drag increase further sug-
gest that the controlled scales are at least partially responsible for the DI. It is also
interesting to note that other scales, like the ones along 𝑘𝑥ℎ = 1.0, become more
energetic, even though they are not controlled. These scales highlight the potential
importance of secondary, nonlinear control effects. The scales 𝑘𝑥ℎ = 1.0 are the first
harmonic of the control input, and can receive energy from the self-interaction of
the controlled scales. It is quite conceivable that these scales also contribute to the
drag increase. We note that the difference between the controlled and uncontrolled
spectrum could be used to quantify nonlinear effects, and to understand how the
control input propagates through the nonlinear flow, but this aspect is not further
investigated in the present study. We also note that the control spectra for large
positive phase shifts look similar to fig. 5.3b, but the scale amplification is more
pronounced (data not shown). This suggests that the drag increase mechanism for
large positive phase shifts is identical and relies on amplification of the controlled
scales.

On the other hand, the drag-reducing configuration suppresses the control scales, as
can be seen from fig. 5.3c. The change is most pronounced for 9 ≤ 𝑘𝑧ℎ ≤ 16, and
a saddle appears in this part of the spectrum. The control scales still contain some
energy, which indicates that the controller achieves its goal only partially. These
observations apply to all drag-reducing phase shifts, and together with the mean
drag change, they suggest that suppression of the controlled scales is the main drag
reduction mechanism. Uncontrolled scales may be slightly attenuated as well, but
the nonlinear effects seem less strong than in the drag-increasing case.

The observations thus far were qualitative, and in the following, we will make
quantitative statements about scale suppression for the entire range of phase shifts.
This is best done for a single scale, and we therefore turn from the SW controller
back to the SS controller with 𝜿𝑠. Figure 5.4 shows the suppression of the control
scale 𝜿𝑠 as a function of ∠ �̂�𝑑 . Recall that scale suppression occurs for positive
values (symbols above the black line) with a maximum value of one, which means
that the controller annihilates the fluctuation contribution of that scale completely.
On the other hand, negative values (symbols below the black line) indicate scale
amplification and more negative values mean that control amplifies the scale more
strongly.

Scale suppression occurs for −𝜋/2 ≤ ∠ �̂�𝑑 ≤ +𝜋/4, while smaller and larger phase
shifts result in scale amplification. The controller achieves its control objective in
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Figure 5.4: Suppression of scale 𝜿𝑠 for SS control with that same scale and sensors
located at 𝑦+

𝑑
= 15 for various phase shifts ∠ �̂�𝑑 . Note that a portion of the ordinate

is cut out to accommodate the strong scale amplification for ∠ �̂�𝑑 = +3𝜋/4. The
black horizontal line delineates the region of scale suppression (above) and scale
amplification (below).

the scale-suppressing range only partially, and the largest attenuation of about 50%
occurs at ∠ �̂�𝑑 = −𝜋/4 and ∠ �̂�𝑑 = 0. The largest scale amplification is observed for
∠ �̂�𝑑 = +3𝜋/4 and corresponds to 630%. The amplification curve is not symmetric
about ∠ �̂�𝑑 = 0, and positive phase shifts lead to larger scale amplification than
negative ones. A similar bias was already apparent in the drag reduction curves of
fig. 5.1.

The control scale 𝜿𝑠 is the most energetic scale in the uncontrolled flow at 𝑦+
𝑑
= 15

and accounts for about 0.84% of the 𝑣′𝑣′ Reynolds stress at that 𝑦. Even so, the scale
suppression is not strong enough to change the flow response in a mean sense and
induce a statistically significant drag change, as can be seen by comparing figs. 5.1
and 5.4. Interestingly, a weak mean drag increase is perceivable for ∠ �̂�𝑑 = −3𝜋/4,
even if the scale amplification is of the same order of magnitude. The reason for this
difference has not been investigated in detail. But fig. 5.3 suggests that a possible
explanation may be the stronger nonlinear effects in case of scale amplification,
which energize scales beyond 𝜿𝑠, and thus lead to a stronger control response.
The strongest scale amplification at ∠ �̂�𝑑 = +3𝜋/4 also coincides with the most
pronounced drag increase.

Figure 5.3 suggests that the control response of most spanwise scales at 𝑘𝑥𝑠 is
similar to that of 𝜿𝑠. We can therefore also compare the scale suppression trends of
𝜿𝑠 with the drag reduction of SW control, which acts on all {𝜿}𝑘𝑥𝑠 . The overall good
correlation between scale suppression and drag reduction support the hypothesis that
the mean flow response is at least partially driven by changes at the control scales.
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The one exception is, just as in the previous section, ∠ �̂�𝑑 = −𝜋/2, which presents an
interesting edge case. Figure 5.4 shows that 𝜿𝑠 is suppressed quite effectively, but the
drag under SW control increases, while a drag decrease results under varying-phase
opposition control (fig. 5.2). These differences suggest that the control response
of the streamwise-elongated family at ∠ �̂�𝑑 = −𝜋/2 is heterogeneous, which is
confirmed by Φ𝑣𝑣 (𝑦𝑑) under the SW control at this phase shift (data not shown).
Conclusions from 𝜿𝑠 and {𝜿}𝑘𝑥𝑠 about the entire streamwise-elongated family at this
phase shift should therefore be considered with some skepticism.

Figure 5.4 further shows why a mean drag reduction is less likely observed under
single scale control than a drag increase. In the best case scenario, control can
suppress the one scale it acts on completely and remove its mean Reynolds stress
contribution from the flow. The example of 𝜿𝑠 shows that any single spatial scale
contributes at most around 1% to the Reynolds stress components, at least at a fixed
𝑦, so that the resulting change is small. In addition, the controller does typically
not suppress the scale completely (see fig. 5.4), so that the resulting mean change
to the flow is negligible. Of course, control could affect other scales nonlinearly,
but the spectrum in fig. 5.3c suggests that nonlinear effects are weak in case of
scale suppression. From this perspective, it is not surprising that SS control did
not change the mean flow for the scale-suppressing regime and that multiple scales
had to be included in order to observe drag reduction. On the other hand, scale
amplification is not bounded. A scale can become much more energetic than in its
uncontrolled state, as the example of ∠ �̂�𝑑 = 3𝜋/4 with an amplification of 630%
shows. The mean flow response in case of scale amplification can therefore be much
more pronounced, as we observed in fig. 5.1. In addition, the spectrum in fig. 5.3b
shows that nonlinear effects lead to amplification of uncontrolled scales as well.

5.3.3 Streamwise-Elongated Scales: Temporal Eigenspectrum
The previous analysis of DNS data showed that the response of streamwise-elongated
scales to phase shifts is mixed. Large positive or negative phase shifts lead to scale
amplification and a significant mean drag increase under SS and SW control. Smaller
phase shifts result in scale suppression, but the mean flow response is weak in this
case. Drag reduction is therefore only observed under SW control. Overall, the
drag reduction trends suggest that the streamwise-elongated scales contribute to the
flow response to varying-phase opposition control at least partially. We also noted
nonlinear effects in the DNS, in particular we observed uncontrolled scales becoming
more energetic when the scales {𝜿}𝑘𝑥𝑠 were amplified under control. We now switch
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gears and use tools from modal analysis rather than DNS to interrogate the behavior
of the streamwise-elongated scales. Per the discussion in the chapter introduction,
modal analyses allow full isolation of linear mechanisms and can provide further
evidence that the scales respond primarily to their boundary condition. The modal
analyses follow the approach of the DNS and consider the single scale controller
with 𝜿𝑠 as a representative for the streamwise-elongated scales. The sensors are
again fixed at 𝑦+

𝑑
= 15, so that the phase shift ∠ �̂�𝑑 is the only free control parameter.

The current section analyzes SS control by means of the temporal eigenspectrum
(natural system response), while the following section considers resolvent analyses
(forced system response).

The main objective of this section is to understand how the temporal eigenvalues
move in the complex plane as a function of the phase shift and whether there is a
correlation between the location of the eigenvalues and scale suppression or drag
change in DNS. We will use the eddy viscosity approximation of the uncontrolled
mean profile as linearization point and incorporate the effect of control only through
a change in boundary conditions (this corresponds to the first problem formulation
of section 2.4). As pointed out earlier, this is a model assumption made in order to
minimize the dependence on empirical mean profile data. The change in mean due
to SS control with 𝜿𝑠 is insignificant (recall that the largest drag change is 12%),
so that the effect of the mean profile is limited anyways in this part of the study.
Implications of the mean profile choice in case of stronger control effects will be
discussed in section 5.4.4. It is worth pointing out that our approach is similar
to the analysis of Jiménez, Uhlmann, et al. (2001) of flow over porous surfaces.
However, in contrast to their analysis, we use the eddy viscosity only to approximate
the mean profile and do not incorporate it into the eigenvalue problem to model
the effect of the Reynolds stresses. An interpretation of the following analysis as
stability problem about the turbulent mean is not valid. Instead, one should think
of the temporal eigenvalues as governing the long-term response of the unforced
linearized Navier-Stokes system (see discussion in section 2.4.1).

Example temporal spectra for the scale 𝜿𝑠 are shown in fig. 5.5 for two different
phase shifts of the controller. Figure 5.5a is the eigenspectrum for ∠ �̂�𝑑 = −3𝜋/4,
which is a drag-increasing configuration, while fig. 5.5b shows ∠ �̂�𝑑 = −𝜋/4, which
resulted in drag reduction, at least when all spanwise scales at 𝑘𝑥𝑠 were controlled.
The spectra are shown in terms of wave speed 𝑐 = �̂�/𝑘𝑥 , where the complex �̂� are
the temporal eigenvalues. The real part 𝑐𝑟 corresponds to the phase speed of the
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mode, while the imaginary part 𝑐𝑖 is the growth rate and 𝑐𝑖 > 0 means amplification.
The phase speed and growth rate are normalized with the centerline velocity of the
uncontrolled mean flow (𝑈𝑐)0.

The spectrum has a branch structure reminiscent of laminar Poiseuille flow (e.g.
Schmid and Henningson, 2001, Ch. 3), and following the nomenclature of the
stability literature, we dub the left branch (𝑐𝑟 → 0) “wall modes” and the right
branch (𝑐𝑟 → (𝑈𝑐)0) “center modes.” The wall modes come in pairs of (almost)
equal eigenvalues which are indistinguishable from each other in figs. 5.5a and 5.5b.
It is possible to construct symmetric and anti-symmetric eigenvectors for paired
�̂�, since any linear combination of the corresponding eigenvectors is again a valid
eigenvector. In other words, the paired wall modes only differ in their wall-normal
symmetry, and we therefore refer to these paired eigenvalues as a single eigenvalue
for simplicity. The other branches do not have two coincident eigenvalues, but they
each still have eigenvalues that lie close to each other in the complex plane. The
eigenmodes associated with two close eigenvalues share similarities with the Orr-
Sommerfeld and Squire modes known from the stability literature (e.g. Schmid and
Henningson, 2001, Ch. 3): one eigenmode only has a nonzero 𝑢 and 𝑤 component,
and resembles the unforced Squire modes, while the other has nonzero entries
for all velocity components as well as pressure, and resembles the Orr-Sommerfeld
modes, including the contribution from the forced Squire equation. This partitioning
of modes is not enforced in the formulation, but naturally results from the solution
of the eigenproblem in primitive variables. It should be noted, however, that the
analogy is approximate, because the two modes have slightly different eigenvalues.

All eigenvalues in fig. 5.5a have a negative imaginary part, which indicates that the
eigenmodes for ∠ �̂�𝑑 = −3𝜋/4 decay over a sufficiently long time horizon and have
no significance for the long-term dynamics of the flow. The most unstable eigenvalue
is a center mode with wave speed 𝑐 = 0.99 − 0.09𝑖. Also note that the wall modes
only consist of two paired modes here, both of which are damped. Changing the
phase shift to ∠ �̂�𝑑 = −𝜋/4 barely alters the structure of the eigenspectrum, as can be
seen by comparing figs. 5.5a and 5.5b. The most apparent change occurs for one of
the wall modes, highlighted by the yellow circle, whose phase speed decreases and
amplification remains approximately constant as the phase shift increases. The other
wall mode does not change with ∠ �̂�𝑑 and neither do many of the modes on the other
branches. The robustness of the eigenvalue location to changes in phase shift can
be best understood from a physical perspective: only eigenmodes with substantial
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(a) ∠ �̂�𝑑 = −3𝜋/4 (b) ∠ �̂�𝑑 = −𝜋/4

Figure 5.5: Temporal eigenspectrum of single scale control with 𝜿𝑠 as a function of
wave speed. Figure 5.5a shows the eigenspectrum of a drag-increasing configuration,
while fig. 5.5b is a drag-reducing controller, at least when all spanwise scales at
𝑘𝑥𝑠 are controlled. The yellow circles track the location of the wall mode that is
most affected by the change in phase shift and the dashed horizontal delineates the
regions of damped (below) and amplified (above) eigenvalues.

nonzero 𝑣 at 𝑦𝑑 can be detected by the sensors and acted upon by the actuators.
The eigenvalues associated with such modes can be shifted in the complex plane
by changing ∠ �̂�𝑑 . In contrast, eigenmodes with a zero (very small) wall-normal
velocity at 𝑦𝑑 are not (hardly) detected by the sensors and are therefore not (very
little) affected by control. For example, the wall mode unaffected by control is a
Squire mode according to our earlier classification. It has no 𝑣 component and
does therefore not change with ∠ �̂�𝑑 . The modes of the other branches are localized
around their critical layers (i.e. the location where their phase speed matches the
mean velocity), which occur far away from the wall due to the large 𝑐𝑟 . Their
wall-normal velocity signature at the sensor location is, if present at all, very weak
and so is their dependence on the phase shift.

Similar calculations can be repeated for the other phase shifts of interest, and lead
to the same conclusion. The wall mode identified above moves in the complex
plane as a function of the phase shift and approaches lower phase speeds as ∠ �̂�𝑑

increases. Its amplification increases slightly to a maximum of 𝑐𝑖 = −0.14𝑖 at
∠ �̂�𝑑 = −3𝜋/4, but it clearly remains damped over the entire parameter range. The
other modes vary minimally as a function of phase shift, and the center mode
at 𝑐 = 0.99 − 0.09𝑖 remains the most amplified one for all configurations. These
observations indicate that the unforced linearized dynamics of 𝜿𝑠 are not significantly
affected by changes in the phase shift. The eigenvalues are damped for all phase
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shifts and the corresponding eigenmodes decay over a sufficiently long time horizon,
so that the eigenmodes have no significance for the long-term control response of
the streamwise-elongated family.

5.3.4 Streamwise-Elongated Scales: Resolvent Analysis
Since the temporal eigenvalues of the linearized Navier-Stokes operator are damped
for all phase shifts, the contributions of its eigenvectors decay over a sufficiently long
time horizon. The long-term scale response is therefore governed by the response
of the forced linearized Navier-Stokes system, which is characterized in this section
by means of a resolvent analysis. Recall that the resolvent framework operates in
temporal frequency domain, so that the following analysis will consider individual
temporal frequencies at 𝜿𝑠.

In contrast to the previous section, all resolvent modes are neutrally stable and
do not grow or decay in time. The frequency 𝜔 and wave speed 𝑐 = 𝜔/𝑘𝑥 are
therefore purely real (note that there is no superscript hat) and describe the oscillation
frequency and propagation speed of the mode, respectively. For resolvent modes,
we use the terms wave speed and phase speed interchangeably, and prefer the former
to avoid confusion with the phase shift. The goal of this section is to analyze if the
suppression of individual resolvent modes, defined earlier in eq. (5.7), is linked to
changes in ∠ �̂�𝑑 . Since the uncontrolled and controlled mean profiles do not differ
significantly, we formulate the resolvent about the eddy viscosity approximation of
the uncontrolled mean profile and incorporate the effects of control only through
a change in boundary conditions. This again corresponds to the first problem
formulation of section 2.4.

Figure 5.6 shows various aspects of scale suppression as a function of the wave speed
and phase shift. The top panel shows the scale suppression ΔΦ𝑣𝑣/(Φ𝑣𝑣)0 computed
from DNS data as a function of the phase shift and corresponds to fig. 5.4. The large
panel on the bottom left shows Δ

(
𝜎2

1 |�̂�1 |2
)
/
(
𝜎2

1 |�̂�1 |2
)
0, which is the resolvent mode

suppression metric derived in eq. (5.7), as a function of 𝑐 and ∠ �̂�𝑑 . Finally, the panel
on the bottom right shows the uncontrolled mode weight under a broadband forcing
assumption as a function of the wave speed. These three panels are closely related,
which is best explained by considering the dotted vertical line in the bottom left
panel of fig. 5.6. The product of the values along this line and the panel on the right
equals the resolvent mode suppression metric at each wave speed, Δ

(
𝜎2

1 |�̂�1 |2
)
. The

integral of this product along the line (which corresponds to an integral in 𝑐) returns
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Figure 5.6: Suppression of scale 𝜿𝑠 as a function of the wave speed 𝑐 and phase
shift ∠ �̂�𝑑 . The top panel shows the DNS scale suppression as a function of ∠ �̂�𝑑

and corresponds to fig. 5.4. The panel on the bottom left displays the suppression
Δ

(
𝜎2

1 |�̂�1 |2
)
/
(
𝜎2

1 |�̂�1 |2
)
0 of resolvent modes as a function of 𝑐 and ∠ �̂�𝑑 . The bottom

right panel shows the uncontrolled mode weight at 𝑦𝑑 under a broadband forcing
assumption as a function of the phase speed 𝑐. The solid black line in the top and
bottom left panel delineate the regions of scale suppression and amplification, while
the dotted vertical line outlines the suppression of resolvent modes for the example
controller ∠ �̂�𝑑 = 𝜋/2. The red dashed line in the bottom panels indicates the critical
phase speed, defined as the uncontrolled mean velocity at the sensor location. Note
that the color scale of the bottom left contour plot is saturated (indicated by the
triangle at the end) to highlight the region of scale suppression.

the time-averaged resolvent mode suppression, which can then be compared to the
DNS metric in the panel above. The comparison between the integrated resolvent
scale suppression and the DNS metric is essentially the visual representation of
eq. (5.10). When comparing the two plots, we look for qualitative similarities, not
quantitative agreement. Recall that the resolvent is not constrained to reproduce
flow statistics, and instead uses a simple broadband forcing model. It is therefore
expected that the DNS and resolvent mode suppression do not match quantitatively.
The qualitative agreement is of interest because it will allow to relate the DNS
results to linear mechanisms encoded in the resolvent. If scale 𝜿𝑠 is suppressed
(amplified) in DNS and suppression (amplification) of the corresponding resolvent
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modes is observed over a significant range of wave speeds, then the modal analysis
provides further evidence for a linear scale suppression (amplification) mechanism
due to control. How important each region of phase speed is in the mean sense
can only be partially answered here, because the nonlinear weights are not known
explicitly. However, recall our earlier discussion in Chapter 3, which showed that
the details of the forcing model only matter if the scale response is mixed in spectral
space. This is also true for the following analysis. Further note that fig. 5.6 only
shows phase speeds in the range 0 ≤ 𝑐 ≤ (𝑈𝑐)0, while the integral in eq. (5.10) is
over all phase speeds. The restriction to this range of phase speeds is justified by
the results in Chapter 3 and earlier studies, which showed that the singular values in
the resolvent operator and energetic content in the real flow drop off rapidly outside
this range (Bourguignon et al., 2014).

Figure 5.6 shows that all resolvent modes are suppressed for −𝜋/2 ≤ ∠ �̂�𝑑 ≤ 𝜋/4.
The suppression is strongest around ∠ �̂�𝑑 = 0, and decreases almost symmetrically
for increasing |∠ �̂�𝑑 |, except for large phase shifts and large wave speeds. The
resolvent mode suppression is in good agreement with DNS data, which report a
maximum suppression around ∠ �̂�𝑑 = 0 and also indicate a degradation for increasing
|∠ �̂�𝑑 |. In contrast, we observe that all resolvent modes are amplified at ∠ �̂�𝑑 =

+3𝜋/4. Note that the color scale of the contour plot is saturated, which indicates
that the resolvent mode amplification for large 𝑐 is significantly larger than the
maximum reported value. This is consistent with the DNS data, which report the
most pronounced scale amplification at this phase shift. There is further a region
of mixed response for ∠ �̂�𝑑 = −3𝜋/4 and ∠ �̂�𝑑 = +𝜋/2, where control can lead to
resolvent mode amplification or suppression, depending on the wave speed of the
mode. These two phase shifts are examples for where the details of the forcing
model matter if one wants to predict whether scale amplification or suppression
occurs in the full nonlinear system. The DNS data agree with our crude model in
the sense that DNS scale amplification is weakest at these two phase shifts, which
is consistent with competing amplification behavior across 𝑐. Overall, the resolvent
mode suppression agrees remarkably well with DNS data and provides further
evidence that the response of streamwise-elongated scales to control is dominated
by the change in boundary condition. The linear mechanism that relates scale
suppression to ∠ �̂�𝑑 seems to be well captured in the resolvent.

In addition, we would like to draw the reader’s attention to two aspects of fig. 5.6
that shed some light on previous DNS observations. First, recall that we identified
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∠ �̂�𝑑 = −𝜋/2 as an interesting edge case, where some spanwise scales at 𝑘𝑥𝑠 are
amplified, while others are damped. As can be seen from fig. 5.6, the boundary
between amplification and suppression is close to this phase shift for a wide range
of wave speeds. It is plausible that the boundary depends on 𝑘𝑧 and small variations
would result in scale suppression for some 𝑘𝑧 and scale amplification for others,
thus leading to the mixed response. The same observation is true for ∠ �̂�𝑑 = +𝜋/2,
but this case is less relevant because it will be shown that the streamwise-elongated
family only plays a secondary role in this parameter range.

The second aspect regards an apparent change in the resolvent mode response around
the wave speed that corresponds to the mean velocity at the sensor location, which
is indicated by the dashed red line. Consider for example ∠ �̂�𝑑 = +𝜋/2, which
corresponds to the dotted vertical line in fig. 5.6. Modes moving slower than
𝑈0(𝑦𝑑) are suppressed, while modes moving faster are amplified under control. The
opposite holds for ∠ �̂�𝑑 = −3𝜋/4. A similar change in behavior can be observed in
the range −𝜋/2 ≤ ∠ �̂�𝑑 ≤ 𝜋/4: within this range, the most effective damping for
modes with 𝑐 ≤ 𝑈0(𝑦𝑑) occurs at ∠ �̂�𝑑 = 0, while faster moving modes are most
damped for slightly negative phase shifts. These response changes are not tied to
the sensor location, but occur because resolvent modes switch from “attached” to
“critical” behavior around 𝑐+ = 10. The terms were coined by Luhar, Sharma, and
McKeon (2014b), who binned resolvent modes into two groups based on their wave
speed. So-called attached modes move at approximately 𝑐+ < 10, have a footprint
at the wall, and peak at the same wall-normal location, irrespective of wave speed.
The other class of modes is termed critical modes. They move at 𝑐+ > 10 and
peak at their respective critical layer, which is a function of 𝑐. The partition of
these modes is not sharp and there is overlap between the two classes of modes,
but 𝑐+ = 10 can roughly be taken as the divide between them. Luhar, Sharma, and
McKeon (2014b) further showed that attached modes are best suppressed by classical
opposition control, or ∠ �̂�𝑑 = 0, while critical modes need a slightly negative phase
shift to maximize suppression. The transition from attached to critical is therefore
what underlies the change in scale response. The fact that this change occurs at
the critical speed of the sensor location seems to be a mere coincidence, since the
uncontrolled mean velocity at the sensor location corresponds to 𝑈+(𝑦𝑑) ≈ 10 and
therefore coincides with the divide. Further, recall that the DNS drag reduction and
scale suppression curves for SW control with streamwise-elongated scales were not
symmetric about ∠ �̂�𝑑 = 0 for large phase shifts. Figure 5.6 suggests that the critical
modes are responsible for the lack of symmetry. While the response of the attached
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modes is approximately symmetric, the critical modes favor negative phase shifts.
Their preference for negative phase shifts leads to less scale amplification and drag
increase for large negative ∠ �̂�𝑑 compared to large positive ones.

Finally, we connect the resolvent observations to the eigenspectra of section 5.3.3.
As mentioned in section 2.4.4 and shown in fig. 5.6, the control boundary conditions
change the singular values and singular vectors of the resolvent, which ultimately
results in mode amplification or suppression. With regards to the singular values, two
mechanisms can lead to large gains (e.g. Symon, Rosenberg, et al., 2018): resonance,
which occurs when an eigenvalue of the linearized Navier-Stokes operator is close
to the neutral stability axis, and pseudoresonance, which is related to the non-
orthogonality of the eigenvectors of the linearized NSE. The relative importance of
these two mechanisms in wall-bounded flows depend on multiple factors, including
the spatial wave number and wave speed of the mode as well as its wall-normal
localization. It is further possible that control with various ∠ �̂�𝑑 alters the relative
importance of the two mechanisms, which can contribute to the observed changes
in singular values. Since the movement of the eigenvalues in the complex plane is
known from section 5.3.3, we can give a partial answer on how resonance changes
under control. The example streamwise-elongated scale 𝜿𝑠 is characteristic for
near-wall cycle structures at this Re𝜏, and it has been shown for the uncontrolled
case that the relatively large singular values at these wave numbers are due to the
pseudoresonant mechanism (Symon, Rosenberg, et al., 2018). We further know
from fig. 5.5 that the eigenvalues are insensitive to changes in ∠ �̂�𝑑 , so that the
resonant mechanism does not become more important with control. It can thus be
speculated that the changes in singular values and scale amplification in fig. 5.6 are
due to a more pronounced pseudoresonance mechanism.

5.3.5 Streamwise-Elongated Scales: Summary
We close this section with a brief summary of the most important observations thus
far. The matching drag change trends between varying-phase opposition control
and SW control with {𝜿}𝑘𝑥𝑠 confirm that the streamwise-elongated scales shape the
control response of the flow over the entire parameter range, at least partially. Control
of the streamwise-elongated scales leads to drag reduction for −𝜋/4 ≤ ∠ �̂�𝑑 ≤ 𝜋/4
and drag increase for phase shifts outside this regime. The control response is not
symmetric about ∠ �̂�𝑑 = 0, especially for large phase shifts, because fast-moving
(so-called critical) modes identified by resolvent analysis prefer negative phase shifts
over positive ones and bias the curve. A combination of DNS and modal analysis
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provides strong evidence that the control response of the streamwise-elongated
scales is due to the change in boundary condition and therefore essentially a linear
effect. A change in ∠ �̂�𝑑 at one scale primarily changes the amplification of that
scale, which translates into a mean drag change provided that the scale response is
strong enough. The resolvent operator encodes this linear mechanism and simplified
models based on its singular values and vectors reproduce DNS trends quite well.
On the other hand, the temporal eigenspectrum has no significance for the control
response of the streamwise-elongated family. We further observed a fundamental
difference between scale suppression and scale amplification, which is not specific
to the streamwise-elongated family, but applies in general. A scale can at best be
annihilated by control, which leads to small changes in a mean sense. It is therefore
difficult to obtain a substantial drag reduction by targeting a single scale alone. On
the other hand, there is no bound on how strongly a scale is amplified by control.
The drag can therefore increase substantially even if only a single scale is controlled.

5.4 Response of Spanwise-Elongated Scales to Control
Next, we explore the control response of the other scale family, the spanwise-
elongated structures. The analysis is based on the scale-restricted controller intro-
duced in eq. (5.15), which acts on the single scale 𝜿𝑟 = [𝑘𝑥𝑟ℎ = 6.5, 𝑘𝑧𝑟ℎ = 0]. All
control configurations considered in this section have sensors located at 𝑦+

𝑑
= 15 and

the phase shift ∠ �̂�𝑑 is varied between −3𝜋/4 and 3𝜋/4. The approach is identical
to section 5.3 and involves DNS and modal analysis. As will be shown, the eigen-
spectrum is more important for control with spanwise-elongated scales, and we will
discuss this aspect in more depth compared to the previous section. In particular,
we will compare the spatial structure of eigenmodes with phase-averaged DNS flow
fields, which is an aspect that we did not explore for the streamwise-elongated scales.

5.4.1 Spanwise-Elongated Scales: DNS Drag Reduction
We start the discussion by considering the mean drag reduction, shown in fig. 5.7.
The green open squares show the DR of SS control with 𝜿𝑟 as a function of ∠ �̂�𝑑 . For
reference, the figure also shows the DR obtained under varying-phase opposition
control as orange circles. This line corresponds to the cross-section of fig. 4.1 along
the horizontal 𝑦+

𝑑
= 15. It is apparent from the figure that the drag change due to SS

control is a strong function of ∠ �̂�𝑑 , and that the trends are similar to control with
all scales in parts of the parameter regime. The mean flow response is strong for
∠ �̂�𝑑 ≥ 𝜋/2, but much weaker for smaller phase shifts, and it is difficult to conclude
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Figure 5.7: Drag reduction of varying-phase opposition control with sensors located
at 𝑦+

𝑑
= 15 as a function of the phase shift ∠ �̂�𝑑 . The orange circles denote control

with all scales and correspond to the orange line in fig. 4.1. The green open squares
represent single-scale control with 𝜿𝑟 . The inset shows a magnification of the DR
due to single scale control for the range −3𝜋/4 ≤ ∠ �̂�𝑑 ≤ +𝜋/4. Figure after Toedtli,
Yu, and McKeon (2020).

whether there is any change at all due to the scale of the ordinate. The inset therefore
shows a magnification of the DR for ∠ �̂�𝑑 ≤ 𝜋/4, and it becomes clear that there is
indeed no statistically significant change for ∠ �̂�𝑑 ≤ 0. An analysis of the control
input for this regime further shows that the control scale is virtually inactive. In the
absence of a significant control input, the flow is no different from an uncontrolled
one and it is no surprise that the drag remains unchanged. The discussion of the
streamwise-elongated scales showed that the mean effect of single scale controllers
can be weak, especially in the drag-reducing regime, and that a clearer picture of the
drag trend can be obtained if the control signal strength is increased by including
more scales. Figure 4.4d shows that the most energetic scales of the spanwise-
elongated family occur at 𝑘𝑥ℎ = 6.5 (𝜆+𝑥 ≈ 170) for a phase shift of +𝜋/2. Following
the reasoning of section 5.3.1, we can construct a single wave number controller
by including all spanwise scales at 𝑘𝑥ℎ = 6.5 and repeat the control experiments
for −3𝜋/4 ≤ ∠ �̂�𝑑 ≤ 0. However, the SW controller does not lead to a statistically
significant drag change either, and suggests that the spanwise-elonated scales truly
are of secondary importance in this parameter regime. This is consistent with
our earlier observations of the control spectra in fig. 4.4, which suggested that the
streamwise-elongated scales are most active at these phase shifts. An explanation
for the weak flow response to control with the spanwise-elongated scales for these
∠ �̂�𝑑 will be given in section 5.4.2.
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In contrast, SS control with 𝜿𝑟 can significantly increase the drag for positive ∠ �̂�𝑑 . A
small positive phase shift only leads to a slight increase in drag, as can be seen from
the inset at ∠ �̂�𝑑 = +𝜋/4. The drag increase becomes more pronounced for larger
positive phase shifts, analogous to the trends of varying-phase opposition control.
For example, single-scale control with ∠ �̂�𝑑 = +𝜋/2 leads to a 82% drag increase,
notably through control of a single spatial length scale only. At the same phase
shift, the varying-phase opposition control scheme, which acts on all spatial scales,
increases drag by 180%. The matching DR behavior suggests that single-scale
control with 𝜿𝑟 is a suitable model to understand at least parts of the mechanism
that lead to drag increase at positive phase shifts. We say parts of the mechanisms,
because the streamwise-elongated scales were shown to contribute to drag increase
in this regime as well. However, note the different order of magnitude of the drag
increase: SS control with the streamwise-elongated scale 𝜿𝑠 leads to a 12% drag
increase at ∠ �̂�𝑑 = 3𝜋/4 (fig. 5.1), while SS control with 𝜿𝑟 increases the drag
by more than 190%. The spanwise-elongated scales therefore dominate the flow
response in this parameter regime, which is consistent with the actuator spectrum
fig. 4.4d.

It is also important to keep in mind that 𝜿𝑟 is a representative for the family of
spanwise-elongated scales. The observations from figs. 4.4d and 5.7 suggest that
the other scales of this family follow the behavior of 𝜿𝑟 and also contribute to drag
increase. This hypothesis is supported by an additional control experiment, in which
varying-phase opposition control with ∠ �̂�𝑑 = +𝜋/2 was applied to all scales except
[𝑘𝑥𝑟ℎ = 6.5, 𝑘𝑧ℎ]. Note that this controller excluded 𝜿𝑟 and all other spanwise wave
numbers at 𝑘𝑥𝑟 . This configuration resulted in a 170 % drag increase, which is
comparable to control with all scales and confirms that the observations are not a
peculiarity of 𝜿𝑟 .

5.4.2 Spanwise-Elongated Scales: DNS Scale Suppression
After considering the change in drag, which is an average measure in wave number
space, we turn our attention to the control effect on a single scale, 𝜿𝑟 . As before, the
discussion focuses on scale suppression, and we first discuss a few example spectra
of controlled flows before quantifying the suppression of 𝜿𝑟 for various phase shifts.

Figure 5.8 shows the power spectrum of the wall-normal velocity Φ𝑣𝑣 at the sensor
location for various flows as a function of wave number. Note that the wave numbers
𝑘𝑥ℎ > 20 and 𝑘𝑧ℎ > 40 are omitted, because these scales are not energetic at this
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wall-normal location. Figure 5.8a shows the power spectrum of the uncontrolled
flow, with respect to which we define scale amplification. The portion within the blue
rectangle was already shown in fig. 5.3a, and a brief discussion of the uncontrolled
spectrum can be found in section 5.3.2. Figures 5.8b and 5.8c on the other hand are
two example spectra for SS control with 𝜿𝑟 , which is indicated by the green open
square, and different phase shifts.

Figure 5.8b on the bottom left shows the spectrum for ∠ �̂�𝑑 = −𝜋/4, which did not
lead to a significant drag change. Consistent with that, the imprint of the control
scale is not discernible in the spectrum. In fact, a comparison between figs. 5.8a
and 5.8b shows that the spectrum of ∠ �̂�𝑑 = −𝜋/4 is visually not distinguishable from
the uncontrolled one over the entire range of wave numbers shown. The unchanged
flow structure provides further evidence that control at this phase shift is very weak
and does not alter the flow at all.

The spectrum for ∠ �̂�𝑑 = +𝜋/2, which resulted in a large drag increase, is shown in
fig. 5.8c on the bottom right. Note that the color scale of this figure is logarithmic,
and its limits are different from the ones in figs. 5.8a and 5.8b. It is apparent that
the wall-normal velocity at the sensor location is dominated by the control scale
𝜿𝑟 (indicated by the green open square), which is significantly more energetic than
in the uncontrolled case. In other words, control with ∠ �̂�𝑑 = +𝜋/2 amplifies the
control scale rather than suppressing it. It is interesting to note that scales different
from 𝜿𝑟 are active as well, even if much weaker. In particular, note that the harmonic
of the control signal, i.e. [𝑘𝑥ℎ = 13, 𝑘𝑧 = 0] is the second most energetic scale. The
presence of the harmonic is a consequence of the quadratic nonlinearity, which
allows the control signal to interact with itself to transfer energy across scales,
and illustrates the possible importance of nonlinear interactions when all scales are
controlled. It is also worth noting that the signature of the near-wall cycle is very
weak in fig. 5.8c, which suggests that control with ∠ �̂�𝑑 = +𝜋/2 fundamentally alters
the flow structure close to the wall.

The discussion so far focused on the spectra and showed that the control scale is not
discernible in case of ∠ �̂�𝑑 = −𝜋/4 and very energetic for ∠ �̂�𝑑 = +𝜋/2. We next
quantify the scale suppression of 𝜿𝑟 according to eq. (5.3) over the entire range of
phase shifts. This comparison is shown in fig. 5.9. Recall that a positive value of
ΔΦ𝑣𝑣/(Φ𝑣𝑣)0 indicates scale suppression, and a value of one corresponds to the best
case where control completely suppresses any contribution of 𝜿𝑟 to 𝑣′𝑣′. A negative
value on the other hand indicates that control amplifies the scale, and more negative
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Figure 5.8: Time-averaged power spectrum Φ𝑣𝑣/(𝑢2
𝜏)0 of the wall-normal velocity

at the sensor location 𝑦+
𝑑
= 15 as a function of the streamwise (𝑘𝑥) and spanwise

wave number (𝑘𝑧). Figure 5.8a shows the spectrum of the uncontrolled flow, while
figs. 5.8b and 5.8c show controlled spectra for different phase shifts. Nonlinear
effects seem to be strong at ∠ �̂�𝑑 = +𝜋/2, since scales far away from the control
scale have been amplified. The blue rectangle in fig. 5.8a outlines the portion of the
uncontrolled spectrum shown in fig. 5.3a, and the green open squares in figs. 5.8b
and 5.8c indicate the control scale. The color scale in fig. 5.8c is different from
figs. 5.8a and 5.8b. In particular, note that it is logarithmic and saturated at both
ends. Figure 5.8c reproduced from Toedtli, Yu, and McKeon (2020). © 2020
Elsevier Inc.

values indicate larger amplification. The ordinate in fig. 5.9 is logarithmic, which
implies that the scale amplification changes order of magnitude as the phase shift is
varied. Further note the inset graph, which shows a magnification of ΔΦ𝑣𝑣/(Φ𝑣𝑣)0

for the range −3𝜋/4 ≤ ∠ �̂�𝑑 ≤ 0 for which the scale amplification is of order one.

The most apparent feature of fig. 5.9 is the strong scale amplification for posi-
tive phase shifts. For example, 𝜿𝑟 is amplified by more than a factor of 103 for
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Figure 5.9: Suppression of scale 𝜿𝑟 for SS control with that same scale and sensors
located at 𝑦+

𝑑
= 15 for various phase shifts ∠ �̂�𝑑 . Note that the ordinate of the main

graph is in symmetric logarithmic scale (i.e. logarithmic in both the positive and
negative directions from the origin, and linear around zero). The inset shows a
magnification of the scale suppression for the range −3𝜋/4 ≤ ∠ �̂�𝑑 ≤ 0 in linear
scale.

∠ �̂�𝑑 = +𝜋/2, which again confirms that scale amplification can be significantly
larger than the maximum scale suppression. Since the mean drag and scale am-
plification both increase significantly for positive phase shifts, it is reasonable to
infer that the drag contribution of 𝜿𝑟 increases as well. In fact, the amplification
is so strong that 𝜿𝑟 is likely the main driver of the drag increase, which is further
supported by the spectrum in fig. 5.8c. Figure 5.9 further shows that control with
−3𝜋/4 ≤ ∠ �̂�𝑑 ≤ −𝜋/4 suppresses the control scale. However, the missing imprint
of 𝜿𝑟 in fig. 5.8b together with the scale suppression at this phase shift should not be
taken as an indicator that control suppresses this scale completely. As can be seen
from fig. 5.8a, the control scale is weak in the uncontrolled flow to start with and
accounts for less than 0.02% of 𝑣′𝑣′ at the sensor location. Control in this phase shift
regime does attenuate the scale, but it contains so little energy in the uncontrolled
flow that the suppression does not translate into a mean drag reduction. In fact, all
spanwise wave numbers at 𝑘𝑥𝑟 have a negligible energy content, which is why the
single wave number controller did not lead to a mean flow response either. The last
interesting observation is the slight amplification of the control scale for ∠ �̂�𝑑 = 0,
but the flow response in this case is weak as well, so that no statistically significant
drag change is observed.
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5.4.3 Spanwise-Elongated Scales: DNS Flow Structure
The picture that emerges for 𝜿𝑟 , and more generally for the spanwise-elongated
family, is that of a mixed response to phase shifts. These scales are inactive for
negative phase shifts, but can be amplified enormously for ∠ �̂�𝑑 > 0. The scale
amplification goes hand in hand with an increase in drag, which can be as large
as 80%, even if only a single spatial scale is controlled. The spectrum in fig. 5.8c
further shows that the flow structure in the near-wall region is on average very
different for drag-increased and uncontrolled flows. The spectral representation
of the flow structure is quite abstract and challenging to translate into a physical
picture. In order to get a better idea of what the structure of drag-increased flows
looks like, we explore a representative instantaneous flow field for SS control with
𝜿𝑟 and ∠ �̂�𝑑 = +𝜋/2.

The SS control input is periodic in 𝑥 with wavelength 𝜆𝑥𝑟 = 2𝜋/𝑘𝑥𝑟 , and constant in
𝑧. Instantaneous flow fields can thus be phase-averaged over 𝜆𝑥𝑟 in the streamwise
direction and averaged in the spanwise direction to remove local fluctuations. The
phase average is defined in eq. (2.47) and quantities obtained from this averaging
procedure in 𝑥 and 𝑧 are denoted by a subscript 𝜆𝑥𝑟,𝑧. For example, 〈𝑢〉𝜆𝑥𝑟 ,𝑧 is the
phase and spanwise averaged streamwise velocity. A representative instantaneous
flow structure that results from this averaging procedure is shown in fig. 5.10a as
a function of the streamwise and wall-normal coordinate. The shading indicates
the mean-subtracted spanwise vorticity, while the arrows outline the local mean-
subtracted in-plane velocity field and the dashed line denotes the sensor location.

It is worth pointing out that the physical interpretation of the positive phase shift is
very apparent in this figure. For example, compare the streamwise location of the
largest negative sensor measurement (𝑥/𝜆𝑥𝑟 ≈ 0.45) and the largest positive control
input (𝑥/𝜆𝑥𝑟 ≈ 0.2). The actuator input lags the sensor measurement by about a
quarter of a wavelength, in agreement with the earlier interpretation of a +𝜋/2 phase
shift. Moving on to the features of the flow field, we observe a number of interesting
properties. The control input generates a pair of counter-rotating spanwise rollers
in immediate proximity of the wall (𝑦+ ≤ 5). The imprint of these rollers can be
seen in both the spanwise vorticity field and the velocity vectors. An additional
pair of vortices with opposite sense of rotation is visible further away from the
wall (𝑦+ ≈ 20) and large streamwise velocity fluctuations are induced in the flow
region between the two pairs. The flow also has two stagnation points in this region
(indicated by the star symbols), which delimit ejection (above the yellow region
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Figure 5.10: Characteristic structure of the drag-increased flow for single scale
control with 𝜿𝑟 and positive phase shift. Figure 5.10a shows a phase and spanwise
averaged flow field of SS control, while fig. 5.10b shows the spatial structure of the
amplified eigenmode as a function of the streamwise and wall-normal coordinate.
The shading indicates the mean-subtracted spanwise vorticity, the arrows outline the
mean-subtracted local in-plane velocity field and the star symbols denote stagnation
points. In both cases, the sensors are located at 𝑦+

𝑑
= 15 (indicated by the dashed

horizontal line) and the phase shift is ∠ �̂�𝑑 = +𝜋/2. Note that the color scale is
saturated at both ends to highlight features away from the wall. Reproduced from
Toedtli, Yu, and McKeon (2020). © 2020 Elsevier Inc.

of positive 〈𝜔𝑧〉𝜆𝑥𝑟 ,𝑧
at the wall) and sweep-like events (above the blue region of

negative 〈𝜔𝑧〉𝜆𝑥𝑟 ,𝑧
at the wall) in the flow. These sweep and ejection motions enhance

momentum mixing in the wall-normal direction and lead to a fuller mean velocity
profile close to the wall. It is therefore likely that the drag increase is tightly linked
to the presence of the spanwise rollers. Actuators drawing high momentum fluid
close to the wall have also been observed by Hammond, Bewley, and Moin (1998).
They analyzed the flow structure of classical opposition control with sensors located
above the center of the streamwise vortices, which also results in drag increase.
The flow structure of fig. 5.10a bears some resemblance with their fig. 4a, even
if the alignment of sensor measurement, actuator response, and stagnation point is
different.

It is also interesting to note that the wall-normal location of the stagnation points
(𝑦+ ≈ 5) coincides with the location of the minimum in the 𝑣rms profile in fig. 4.3.
This observation suggests that the minima of 𝑣rms are associated with local stagna-
tion points, where the actuator input annihilates the motion detected at the sensor
location. The presence of the stagnation point itself is not a guarantee for fluctuation
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suppression or drag reduction, as this example demonstrates. The various degrees of
drag reduction achieved with different phase shifts rather suggests that the stream-
wise arrangement of the sensor measurement, actuator response, and stagnation
point is important.

5.4.4 Spanwise-Elongated Scales: Temporal Eigenspectrum
We now change our approach and use tools from modal analysis rather than DNS
data to interrogate the behavior of the spanwise-elongated scales. Our goal is again
to isolate the linear mechanisms that relate ∠ �̂�𝑑 to the scale response, so that the
observations from the previous sections can be linked directly to the change in
boundary condition. The modal analyses follow the approach of the DNS study
and consider the single scale controller with 𝜿𝑟 and sensors fixed at 𝑦+

𝑑
= 15. The

current section analyzes the response of the spanwise-elongated family by means
of the temporal eigenspectrum, while the following section focuses on resolvent
analysis.

The main goal of this section is to understand how the temporal eigenvalues move in
the complex plane as a function of the phase shift and whether there is a correlation
between the observation of drag increase in the DNS and amplified eigenvalues
in the eigenspectrum. Unless stated otherwise, we will use the eddy viscosity
approximation of the uncontrolled mean profile as linearization point and incorporate
the effect of control only through a change in boundary conditions (this corresponds
to the first problem formulation of section 2.4).

An example temporal eigenspectrum for ∠ �̂�𝑑 = +𝜋/2 is shown in fig. 5.11a in terms
of wave speed. Recall that the real part 𝑐𝑟 describes the phase speed of the mode,
while the imaginary part 𝑐𝑖 is the growth rate and 𝑐𝑖 > 0 means amplification.
The phase speed and growth rate are normalized with the centerline velocity of the
uncontrolled mean flow (𝑈𝑐)0. The spectrum has a three-branch structure, similar
to the ones in fig. 5.5, and following our earlier nomenclature, we term the left
branch (𝑐𝑟 → 0) wall modes. The wall modes come again in pairs of (almost) equal
eigenvalues, which are indistinguishable from each other in fig. 5.11a, so that we
can construct symmetric and anti-symmetric eigenvectors. For simplicity, we refer
to these paired eigenvalues again as a single eigenvalue. It is interesting to note that
the other branches do not have paired eigenvalues, analogous to section 5.3.3.

The location of the eigenvalues in the complex plane is in general a function of
the phase shift. However, not all eigenvalues are equally sensitive to changes in
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= 15, ∠ �̂�𝑑 = +𝜋/2 (b) Root locus of amplified mode

Figure 5.11: Temporal eigenspectrum of single-scale control with 𝜿𝑟 . Figure 5.11a
shows the temporal eigenvalues for the controlled flow with 𝑦+

𝑑
= 15, ∠ �̂�𝑑 = +𝜋/2,

and fig. 5.11b shows the root locus of the amplified eigenvalue for various phase
shifts. The red circle locates the amplified eigenvalue of ∠ �̂�𝑑 = +𝜋/2 in the
complex plane (fig. 5.11a) and in the root locus plot (fig. 5.11b). The eigenspectrum
of fig. 5.11a and the black curve in fig. 5.11b are computed about an eddy viscosity
approximation of the uncontrolled mean velocity profile, while the actual DNS mean
is used to generate the gray curve in fig. 5.11b. The arrows in fig. 5.11b indicate the
movement of the amplified eigenvalue for increasing ∠ �̂�𝑑 , and markers are placed
at phase increases of 𝜋/4 along each curve. In both plots, the dashed horizontal
delineates the amplified (above) and damped (below) half-plane. Reproduced from
Toedtli, Yu, and McKeon (2020). © 2020 Elsevier Inc.

∠ �̂�𝑑 , and only a subset of eigenvalues can be shifted significantly by adjusting the
phase shift. Once again, only eigenmodes with substantial nonzero 𝑣 at 𝑦𝑑 can be
detected by the sensors and acted upon by the actuators. The eigenvalues associated
with such modes can be shifted in the complex plane by changing ∠ �̂�𝑑 . In contrast,
eigenmodes with a zero (very small) wall-normal velocity at 𝑦𝑑 are not (hardly)
detected by the sensors and are therefore not (very little) affected by control. The
eigenvalues associated with such modes do not change as SS control is applied and
are not affected by changes in ∠ �̂�𝑑 . The most sensitive eigenvalues are two wall
modes and while one of them stays in the damped lower half plane for all ∠ �̂�𝑑 ,
the other one approaches the real axis, and eventually becomes amplified. The
remaining wall modes and the eigenvalues of the other branches do not change
significantly under control.

Recall that the phase shift in Fig. 5.11a is ∠ �̂�𝑑 = +𝜋/2, which resulted in substantial
drag increase in the DNS of SS control. It is interesting to note that the eigenspectrum
has a single amplified eigenvalue (highlighted with the red circle), while all others are
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damped. This raises the question whether there is a correlation between the presence
of amplified eigenvalues in the eigenspectrum and drag increase in the DNS. The
calculation of the eigenspectrum can be repeated for different phase shifts and a
scan through ∠ �̂�𝑑 ∈ [−3𝜋/4, +3𝜋/4] reveals two recurring configurations: either
one eigenvalue is amplified and all others are damped (as in Fig. 5.11a), or all the
eigenvalues are damped. The amplified eigenvalue at any phase shift, if present,
corresponds to one of the two sensitive wall modes mentioned earlier (the one that
approaches and eventually crosses the real axis and is highlighted in red in Fig.
5.11a). It is therefore sufficient to track this one eigenvalue as a function of ∠ �̂�𝑑 ,
and we refer to this eigenvalue as the “amplified eigenvalue” hereafter, even if it
does not have a positive imaginary part for all phase shifts.

Figure 5.11b shows the location of the amplified eigenvalue in the complex plane
as a function of the phase shift ∠ �̂�𝑑 . We first focus on the black curve with circular
markers, which shows the root locus of the amplified eigenvalue for eigenspectra
computed about the uncontrolled mean (eddy viscosity approximation). The curve
is traversed from the bottom right to the top left as the phase shift increases. In
other words, the phase speed of the amplified eigenvalue decreases, while the
growth rate increases with increasing ∠ �̂�𝑑 . The mode is damped for ∠ �̂�𝑑 < +𝜋/4,
approximately neutrally stable for ∠ �̂�𝑑 = +𝜋/4 and amplified for ∠ �̂�𝑑 > +𝜋/4. The
dependence of amplification characteristic on phase shift agrees remarkably well
with the DR behavior observed in the DNS (fig. 5.7): the drag remains unchanged
for ∠ �̂�𝑑 < +𝜋/4 (all eigenvalues damped), increases slightly for ∠ �̂�𝑑 = +𝜋/4
(one neutrally stable eigenvalue), and increases substantially for ∠ �̂�𝑑 > +𝜋/4 (one
amplified eigenvalue).

Before looking at the spatial structure of the amplified eigenmode, it is worth
examining the significance of the mean profile for the eigenspectrum calculation.
The analysis so far has considered the eigenspectra about an uncontrolled mean, but
the same procedure can be repeated with the actual DNS mean (this corresponds
to the second problem formulation in section 2.4). The qualitative characteristics
discussed earlier also apply to the spectra computed about the DNS mean: the spectra
have a three-branch structure, and at most one amplified eigenvalue at any given ∠ �̂�𝑑 .
The root locus of the amplified eigenvalue about the DNS mean as a function of phase
shift is shown as gray curve with square markers in fig. 5.11b. The curve is traversed
from bottom right to top left as the phase increases, that is, the phase speed decreases
and amplification increases (except for the last data point) with increasing ∠ �̂�𝑑 . The
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black and gray curve have the same amplification characteristics, which suggests
that the uncontrolled mean is sufficient to approximate the qualitative behavior of the
full nonlinear system, in agreement with the results in Chapter 3. It further indicates
that the change in eigenvalue is a direct consequence of the change in boundary
condition, and not a consequence of nonlinear mechanisms encoded in the mean.
The only significant difference between the two root loci occurs at ∠ �̂�𝑑 = +3𝜋/4.
The uncontrolled mean produces the largest amplification at this phase shift, while
the eigenvalue about the DNS mean is only slightly above neutrally stable. Recall
that ∠ �̂�𝑑 = +3𝜋/4 leads to the largest drag increase in the DNS and consequently the
resulting mean profile is quite different from the uncontrolled one. The mismatch
of the two eigenvalues is therefore not really surprising and confirms the intuition
that the simplified model works better the closer the uncontrolled eddy viscosity
mean is to the true controlled one. The attenuation of the most unstable mode
about the controlled mean at ∠ �̂�𝑑 = +3𝜋/4 suggests an eventual weakening of this
amplification mechanism with increasing phase shift. Due to the periodicity of ∠ �̂�𝑑 ,
this is consistent with figs. 4.4a and 5.7 which show that the spanwise-elongated
modes are not active at ∠ �̂�𝑑 = −3𝜋/4 = +5𝜋/4 and suggests that their amplification
mechanism turns off somewhere between ∠ �̂�𝑑 = +3𝜋/4 and ∠ �̂�𝑑 = +5𝜋/4.

The correlation between drag increase observed in DNS and amplification of eigen-
values in the eigenspectrum suggests that the amplified eigenmode may play an
important role in the dynamics of drag-increased flows. To further validate this
hypothesis, we compare the spatial structure of the amplified eigenmode with the
phase-averaged DNS flow field of fig. 5.10a. Figure 5.10b shows the spatial struc-
ture of the amplified eigenmode for ∠ �̂�𝑑 = +𝜋/2 as a function of the streamwise and
wall-normal coordinate. The shading indicates the spanwise vorticity 𝜔𝑧, while the
arrows outline the in-plane velocity components 𝑢 and 𝑣. The flow structure shows
two pairs of spanwise rollers, one pair at the wall and one centered around the sensor
location 𝑦𝑑 , which is indicated by the dashed horizontal line. The in-plane velocity
field has two stagnation points (indicated by the star symbols) and illustrates ejection
(above the yellow region of positive 𝜔𝑧 at the wall) and sweep (above the blue region
of negative 𝜔𝑧 at the wall) motions in the near-wall region. The spatial structure
of the eigenmode is strikingly similar to the phase-averaged DNS flow field shown
in fig. 5.10a in terms of both the features and their localization in the wall-normal
direction. It is worth pointing out that the magnitude of the spanwise vorticity is
different in both plots. However, we have not attempted to weight the eigenmode to
match the DNS data, i.e. the unweighted velocity and vorticity fields are plotted as
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obtained from the eigenvalue problem. The good agreement between the two flow
fields further supports the hypothesis that the amplified eigenmode is important for
the dynamics of the full nonlinear system in the drag-increased regime.

5.4.5 Spanwise-Elongated Scales: Resolvent Analysis
The previous section showed a strong correlation between the presence of an am-
plified eigenvalue in the temporal eigenspectrum and drag increase in DNS of
single-scale control with 𝜿𝑟 . In addition, the phase-averaged DNS flow field very
closely resembles the structure of the amplified eigenmode. These observations
suggest that the response of 𝜿𝑟 to control with ∠ �̂�𝑑 ≥ +𝜋/4 is dominated by the
amplified eigenvalue. Recall that 𝜿𝑟 is a representative for the spanwise-elongated
family of scales. This region in spectral space is not energetic in the uncontrolled
flow, but dominates the wall-normal velocity spectra in the near-wall region for large
positive phase shifts. The strong amplification suggests that the response of the en-
tire spanwise-elongated family to control with ∠ �̂�𝑑 ≥ +𝜋/4 is due to the presence
of amplified eigenvalues in the temporal eigenspectrum, analogous to 𝜿𝑟 .

On the other hand, all eigenvalues are damped for ∠ �̂�𝑑 ≤ 0, which means that the
eigenmodes decay exponentially and have no significance for the long-term control
response of 𝜿𝑟 . The linear response in this parameter range is therefore described
by the resolvent. The goal of this section is to analyze whether the suppression of
individual resolvent modes, as defined in eq. (5.7), is linked to changes in the phase
shift. It is important to note that the resolvent is not meaningful if the temporal
eigenspectrum has neutrally stable or amplified eigenvalues, so that the following
analysis is restricted to ∠ �̂�𝑑 ≤ 0. Based on the results of the previous section,
which showed that the uncontrolled mean is sufficient to capture the qualitative
behavior of the system, we formulate the resolvent operator about the uncontrolled
mean velocity profile (eddy viscosity approximation). Recall that resolvent analysis
operates in the temporal frequency domain and assumes neutrally stable modes that
do not grow or decay in time. The temporal frequency and wave speed are therefore
purely real, and analogous to section 5.3.4, we will use the terms wave speed and
phase speed interchangeably in the context of resolvent modes.

Figure 5.12 shows various aspects of scale suppression as a function of wave speed
and phase shift. The top panel shows the scale suppression ΔΦ𝑣𝑣/(Φ𝑣𝑣)0 computed
from DNS data for −3𝜋/4 ≤ ∠ �̂�𝑑 ≤ 0 and corresponds to the small inset in fig. 5.9.
The large panel on the bottom left shows Δ𝜎2

1 /
(
𝜎2

1
)
0, which is the approximation
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Figure 5.12: Suppression of scale 𝜿𝑟 as a function of the wave speed 𝑐 and phase
shift ∠ �̂�𝑑 . The top panel shows the DNS scale suppression over the range −3𝜋/4 ≤
∠ �̂�𝑑 ≤ 0 and corresponds to the inset of fig. 5.9. The panel on the bottom left
displays the approximate resolvent mode suppression Δ𝜎1/

(
(𝜎1)2)

0 as a function
of 𝑐 and ∠ �̂�𝑑 , while the bottom right panel shows the uncontrolled singular values(
𝜎2

1
)
0 as a function of the wave speed. The solid black line in the top and bottom

left panel delineate the regions of scale suppression and amplification, while the
dashed red line indicates phase speed of the most amplified eigenvalue shown in
fig. 5.11b. The dotted vertical line illustrates the suppression of resolvent modes for
the example controller ∠ �̂�𝑑 = −𝜋/4. Note that the color scale of the contour plot is
saturated.

of resolvent mode suppression derived in eq. (5.11), as a function of 𝑐 and ∠ �̂�𝑑 .
Recall that the approximate metric is only based on the singular values and does not
account for changes in the singular vectors due to control. The reason for presenting
the approximation of the scale suppression will be given at the end of this section.
Finally, the panel on the bottom right shows the uncontrolled singular values as a
function of the wave speed. These three panels are related in the same way as for the
streamwise-elongated scales, even if the approximation for the resolvent modes is
reported. As a reminder for how to read this figure, consider the dotted vertical line
in the bottom left panel of fig. 5.12. The product of the values along this line and
the panel on the right equals the approximate resolvent mode suppression, Δ𝜎2

1 (𝑐),
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which is a function of wave speed. The integral of this product along the line (which
is an integral in 𝑐) corresponds to the time-averaged resolvent scale suppression,
which can be compared to the DNS metric in the panel above. Analogous to
section 5.3.4, we look for quantitative agreement between resolvent and DNS scale
suppression, which we interpret as evidence for a linear mechanism that relates scale
suppression to the phase shift.

A first interesting aspect of fig. 5.12 is the magnitude of the singular values in the
uncontrolled flow, shown in the bottom right panel. The singular values are almost
zero for 𝑐 < 0.75 (𝑈𝑐)0, and even though they increase in magnitude with 𝑐, they are
fairly small in comparison. For example, fig. 2.2 indicates that (𝜎1)0 of the mode
[𝜆+𝑥 = 2262, 𝜆+𝑧 = 103, 𝑐+ = 10] is more than a factor of three larger, and contributes
almost an order of magnitude more energy than the most energetic mode at 𝜿𝑟 under
the broadband forcing assumption. As explained earlier, the singular values alone
do not describe the energy content of the real flow, but the small 𝜎1 are consistent
with the DNS spectra, which showed that 𝜿𝑟 is not energetic in uncontrolled flows.

The panel on the bottom left shows that slow-moving resolvent modes (𝑐 < 0.5 (𝑈𝑐)0)
are suppressed by control with all phase shifts, while faster moving modes are mostly
amplified. There is a region of strong local amplification, which becomes more pro-
nounced as the phase shift approaches zero. Note that the color scale is saturated,
which means that the amplification in this region is much stronger than indicated by
the color. The comparison to DNS data is insofar challenging as the resolvent mode
response is mixed across wave speeds. This makes it difficult to decide whether the
resolvent would predict a net amplification or suppression. But despite this diffi-
culty, we can detect qualitative similarities between the two panels. The DNS data
indicates a scale amplification at ∠ �̂�𝑑 = 0, which is where the strong amplification
occurs in the resolvent. For the other phase shifts, the resolvent scale suppression at
a fixed 𝑐 is fairly uniform, and similarly the DNS scale suppression is about constant
in this parameter region. These matching trends provide evidence that the response
of 𝜿𝑟 is linearly linked to changes in phase shift.

It is also interesting to note that the imprint of critical and attached modes, which
was very pronounced in fig. 5.6, is not apparent here. Instead, the contour plot
is dominated by the localized strong amplification around ∠ �̂�𝑑 = 0. In order to
understand the origin of this large change in singular values, we have to connect
the resolvent analysis to the eigenspectrum of the previous section. Recall that
the temporal eigenspectrum of 𝜿𝑟 has one eigenmode that approaches the neutrally
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stable axis, and eventually becomes amplified as ∠ �̂�𝑑 increases. The phase speed
of this eigenvalue at each ∠ �̂�𝑑 was discussed in fig. 5.11b and is overlaid in this
plot as red dashed line. The forcing frequencies of the resolvent along this line are
the ones that have the smallest distance to the eigenvalue, and it is apparent that the
amplification at those frequencies is largest. This phenomenon can be ascribed to
the second mechanism that leads to large resolvent gains, termed resonance (Symon,
Rosenberg, et al., 2018). It occurs if the eigenspectrum has one eigenvalue that is
much closer to the neutral axis than all the others. These observations suggest that the
behavior of the spanwise-elongated scales is fully determined by the eigenspectrum.
The previous section showed that the amplified eigenvalue dominates the flow for
∠ �̂�𝑑 ≥ 𝜋/4. And the current section shows that the resonance due to the proximity
of the eigenvalue is the only significant amplification mechanism for the parameter
range with damped eigenvalues. In particular, it is interesting to note that the
transition from scale suppression to amplification occurs around ∠ �̂�𝑑 = 0, where
the resonance mechanism is strongest.

Finally, we should also comment about the choice of resolvent scale suppression
metric. As mentioned earlier, we reported the approximation Δ𝜎2

1 /
(
𝜎2

1
)
0 in this

section, which does not account for the changes in singular vectors due to control.
We preferred this metric because the resonance mechanism uncovered in this section
is a property of the singular values themselves, and can therefore be seen more
cleanly if the influence of the singular vectors is omitted.

5.4.6 Spanwise-Elongated Scales: Summary
We close this section with a brief summary of the most important observations about
the spanwise-elongated scales and their representative 𝜿𝑟 . An analysis of the actuator
spectra and drag reduction suggests that these scales are inactive for negative phase
shifts and do not contribute to the behavior of varying-phase opposition control in
this parameter regime. However, very strong amplification of spanwise-elongated
scales and drag increase occur for positive phase shifts. The control response
of 𝜿𝑟 is therefore not symmetric about ∠ �̂�𝑑 = 0. The eigenspectrum shows an
amplified eigenvalue for all parameter combinations that lead to drag increase, and
the DNS flow structure under single scale control with 𝜿𝑟 is very similar to the
amplified eigenvalue. Furthermore, resolvent mode amplification occurs because of
a resonance, which is observed when this one eigenvalue approaches the neutrally
stable axis. The DNS and modal analyses provide strong evidence that the control
response of 𝜿𝑟 is directly linked to its boundary condition by a linear mechanism.
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This linear mechanism is fully driven by the eigenspectrum of the linearized Navier-
Stokes operator.

5.5 Chapter Summary
The previous sections have explored and characterized the response of the streamwise-
elongated and the spanwise-elongated scales to control with different phase shifts.
In both cases, the changes in amplification and drag can be attributed to a linear
response of each scale to the boundary condition. The response is linear in the sense
that each scale reacts to the change in its own boundary condition, rather than to
changes occurring at other scales. The mechanisms that underlie the response of
each scale are encoded in the unforced or forced linearized Navier-Stokes operator,
but they are different in nature for each family. The amplification of the spanwise-
elongated scales is driven by the presence of an eigenvalue that approaches the
neurally stable axis and eventually becomes amplified as the phase shift increases.
On the other hand, the eigenvalues of the streamwise-elongated scales do not move
in the complex plane as a function of the phase shift, and the response of this family
is instead driven by a pseudoresonance mechanism. The goal of this section is to
consider both families of scales together and use the previous insights to explain the
topography of the drag reduction map in fig. 4.1. We will also compare the flow
response under various control configurations to results in the literature to highlight
the fundamental significance of these two families for flows with wall transpiration.

5.5.1 Topography of the Drag Reduction Map
We start the discussion by comparing the drag reduction obtained under varying-
phase opposition control with all scales to the scale-restricted controllers. Following
the approach of the previous sections, we focus on the effect of the phase shift and
only consider the sensor location 𝑦+

𝑑
= 15. Figure 5.13 summarizes the drag

reduction for various controllers as a function of ∠ �̂�𝑑 . The orange circles denote
the drag reduction under varying-phase opposition control with all scales, which
corresponds to the horizontal line in fig. 4.1. The green squares show the drag
change under single scale control with the spanwise-elongated example scale 𝜿𝑟 ,
which was shown earlier in fig. 5.7. The small inset displays a magnification of this
curve for the parameter range −3𝜋/4 ≤ ∠ �̂�𝑑 ≤ 𝜋/4, where the drag change is less
pronounced. The blue diamonds finally show the drag change under single wave
number control with the example streamwise-elongated scales {𝜿}𝑘𝑥𝑠 , which was
discussed in fig. 5.2. It is important to note that the figure has two ordinates. The
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Figure 5.13: Drag reduction under varying-phase opposition control as a function
of the phase shift ∠ �̂�𝑑 . The orange circles denote varying-phase opposition control
with all scales and correspond to the orange horizontal line in fig. 4.1. The blue
line shows the drag reduction for single wave number control with {𝜿}𝑘𝑥𝑠 , while the
green line denotes the drag change for single-scale control with 𝜿𝑟 . The inset shows a
magnification of the DR due to control with 𝜿𝑟 for the range −3𝜋/4 ≤ ∠ �̂�𝑑 ≤ +𝜋/4.
Note that there are two ordinates on the main figure. The one on the left quantifies
the drag reduction for the orange and green curve, while the ordinate on the right
indicates the DR for the blue curve. In all cases, the sensors are located at 𝑦+

𝑑
= 15.

black ordinate on the left is the relevant one for varying-phase opposition control
(orange line) and SS control with 𝜿𝑟 (green line). The drag reduction for SW
control with {𝜿}𝑘𝑥𝑠 is quantified by the blue ordinate on the right. Recall from our
previous discussions that positive values represent drag reduction, while negative
values indicate drag increase.

We first compare the drag change magnitude of each curve, which allows identifica-
tion of dominant scale families in different parts of the parameter space. The SS con-
troller with 𝜿𝑟 does not lead to a statistically significant change in drag for ∠ �̂�𝑑 ≤ 0,
but control with this single scale can increase the drag by 82% (∠ �̂�𝑑 = +𝜋/2) or
more for large positive phase shifts. Compared to this, the streamwise-elongated
scales lead to much smaller drag changes. Recall from section 5.3.1 that control
with the single scale 𝜿𝑠 did not lead to a statistically significant drag change for most
phase shifts, and we had to increase the control input to all spanwise scales to obtain
the blue curve in fig. 5.13. The single wave number controller acts on 169 Fourier
modes instead of one, but only achieves drag reductions of the order of 8% and drag
increases of a bit less than 60%. This shows that the amplification and ultimately
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drag increase due to an amplified eigenvalue of the unforced linearized NSE (𝜿𝑟) is
much more pronounced than drag increase due to amplified singular values in the
resolvent ({𝜿}𝑘𝑥𝑠 ). As a consequence, the flow response to control with all scales
and ∠ �̂�𝑑 > 𝜋/4 is dominated by the spanwise-elongated family (i.e. by the amplified
eigenvalues). The streamwise-elongated scales contribute to drag increase in this
parameter regime as well, but their role is minor and their imprint is therefore not
apparent in the spectrum of fig. 4.4d. On the other hand, the amplification changes
of both families for ∠ �̂�𝑑 ≤ 0 are determined by the singular values of the resolvent,
so that their magnitude is comparable. The streamwise-elongated scales are much
more energetic in the uncontrolled flow, so that that their singular value change has
a more pronounced effect on the mean flow compared to the same change of the
spanwise-elongated scales. The streamwise-elongated family therefore dominates
the parameter range ∠ �̂�𝑑 ≤ 0, and their imprint is most visible in the actuator spectra
figs. 4.4a to 4.4c.

The drag reduction of varying-phase opposition control with all scales is now
a superposition of the response of the two families, and each dominates in its
phase shift range identified above. For ∠ �̂�𝑑 ≤ 0, the streamwise-elongated family
dominates, which results in drag increase for ∠ �̂�𝑑 = −3𝜋/4, followed by a region
of drag reduction for −𝜋/2 ≤ ∠ �̂�𝑑 ≤ 0. The difference between the orange and the
blue curve at ∠ �̂�𝑑 = −𝜋/2 is likely because of the wave number dependent response
of the streamwise-elongated scales at this phase shift, as explained in section 5.3.
As the phase shift increases, the amplified eigenvalue of the spanwise-elongated
family approaches the neutral axis and the scales become more energetic. They start
dominating the flow response at ∠ �̂�𝑑 = +𝜋/4 and drive the drag increase for larger
phase shifts. The asymmetry of the drag reduction profile can also be explained
by the two scale families. The response of the streamwise-elongated family is
fairly symmetric about ∠ �̂�𝑑 = 0 and the symmetry only breaks for large |∠ �̂�𝑑 |,
because critical modes prefer negative phase shifts. On the other hand, the response
of the spanwise-elongated family is not symmetric at all, because of the selective
appearance of the amplified eigenvalue. The influence of the spanwise-elongated
family therefore breaks the symmetry of the overall flow response, even at small
phase shifts.

Finally, we consider the phase shift ∠ �̂�𝑑 = 0, which represents an interesting edge
case. From the DR curve of the streamwise-elongated scales, one would expect that
varying-phase opposition control should produce the largest drag reduction at this
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Figure 5.14: Difference of the time-averaged actuator spectra Φ𝑣𝑣 (𝑦𝑤) at ∠ �̂�𝑑 = 0
(fig. 4.4c) and ∠ �̂�𝑑 = −𝜋/4 (fig. 4.4b) as a function of the streamwise (𝜆𝑥) and
spanwise wavelength (𝜆𝑧).

phase shift. But instead, the drag reduction is slightly lower than at ∠ �̂�𝑑 = −𝜋/4.
The SS controller with 𝜿𝑟 and the SW controller with [𝑘𝑥ℎ = 6.5, 𝑘𝑧 = 0] do both
not produce a significant drag increase at ∠ �̂�𝑑 = 0, which raises the question what
else could cause the deterioration. Possibly, the resonance mechanism identified
for the spanwise-elongated scales around ∠ �̂�𝑑 = 0 still causes the deterioration, but
at scales somewhat different than 𝜿𝑟 . Recall that 𝜿𝑟 only accounts for 0.02% of
the vv Reynolds stress at the sensor location, so that an amplification by a small
factor does not result in a detectable mean change. However, if similar resonance
mechanisms are present at more energetic scales of the spanwise-elongated family,
they could conceivably cause the observed deterioration. If this reasoning applies,
then the deterioration can be interpreted as an early warning for the catastrophic
drag increase that takes place for slightly larger phase shifts when the eigenvalues
cross over the neutral axis. Some evidence for this interpretation can be obtained
by considering the difference of the actuation spectra at ∠ �̂�𝑑 = 0 and ∠ �̂�𝑑 = −𝜋/4,
which were discussed in fig. 4.4c and fig. 4.4b, respectively. Their difference is
shown in fig. 5.14, now again as a function of wavelength in order to facilitate the
comparison to the original actuator spectra. A positive value in fig. 5.14 indicates
that the controller inputs more energy at ∠ �̂�𝑑 = 0 than at ∠ �̂�𝑑 = −𝜋/4, and the
opposite meaning applies for negative values. The interpretation of the figure is
challenging, because a larger control input has different implications depending
on which family a scale belongs to. It is also apparent that there is some overlap
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between the families, so that the attribution is not always unique. Yet, one apparent
feature is the more pronounced control input for spanwise-elongated scales centered
around 𝜆+𝑥 = 300. These scales are expected to follow the trends of 𝜿𝑟 , so that this
additional control input will lead to further scale amplification due to the resonance
mechanism shown in fig. 5.12. Provided that some of these scales are energetic
enough, the scale amplification could translate into drag increase, and thus cause
the overall deterioration of the controller performance. However, these conclusions
are speculative and need further confirmation. It should be noted that the control
input for the streamwise-elongated scales also changes between the two phase shifts.
In particular, the actuator input for {𝜿}𝑘𝑥𝑠 decreases, which may also lead to a
deterioration in control performance. In conclusion, the location of the maximum
DR at ∠ �̂�𝑑 = −𝜋/4 as well as the reason for the slight deterioration in control
performance at ∠ �̂�𝑑 = 0 seem related to the interplay between the two scale families
but the details of the deterioration still have to be clarified.

5.5.2 Comparison to Other Flows
The previous section suggests that the overall drag change of varying-phase oppo-
sition control results from the response of two different families of scales. For a
fixed 𝑦𝑑 , the phase shift ∠ �̂�𝑑 controls which family of scales is dominant, and the
spanwise-elongated family only becomes important for positive phase shifts. The
goal of this section is to look for imprints of these scale families in flows with other
forms of wall transpiration, which can help clarify their robustness and importance
in such configurations.

The most comprehensive comparison can be made with the study of García-Mayoral
and Jiménez (2011), who investigate the breakdown of the so-called viscous regime
in a channel flow with rectangular riblets. For this flow geometry, the notion of wall
transpiration applies to a wall-parallel plane located at the riblet tops, where the riblet
grooves allow for a nonzero wall-normal velocity into or out of the plane. Beyond
the viscous regime, the drag reduction due to riblets decreases with increasing riblet
peak-to-peak distance and ultimately becomes a drag increase. The breakdown of
the viscous regime and the following drag-increase coincides with the appearance
of short and wide structures, characterized by 𝜆+𝑥 ≈ 150 and 𝜆+𝑧 & 50, above the
riblet tops. These structures carry substantial Reynolds stresses and are therefore
identified as the root-cause of the drag degradation. The scales that cause the viscous
breakdown are similar to the energetic wavelengths of the spanwise-elongated family,
which can be roughly characterized by 𝜆+𝑥 ≈ 170 and 𝜆+𝑧 & 40 (with a peak at



147

𝜆+𝑧 → ∞) from fig. 4.4d and table 4.1. In fact, the actuator input (𝑣) of the
controller with ∠ �̂�𝑑 = +𝜋/2 and the wall-normal velocity above the riblet tops have
a strikingly similar spectral content, as can be seen by comparing fig. 4.4d with fig.
8d of García-Mayoral and Jiménez (2011). The spanwise coherent structures above
the riblets can be characterized as spanwise rollers centered around 𝑦+ ≈ 10 − 15,
which is reminiscent of the flow structure shown in fig. 5.10a, even if the number of
rollers is different. The similarities suggest that the structures causing the viscous
breakdown are related to the spanwise-elongated scales that cause the drag increase
in varying-phase opposition control.

Another qualitative analogy can be established between the streamwise-elongated
scales and the flow response of near-wall cycle scales to riblets. A recent resolvent
study by Chavarin and Luhar (2020) showed that the viscous regime and optimal
spacing of rectangular riblets can be well approximated by considering the response
of a near-wall resolvent mode [𝜆+𝑥 = 1000, 𝜆+𝑧 = 100, 𝑐+ = 10] to various riblet
spacings. In the viscous regime, the resolvent mode is increasingly suppressed
with increasing riblet spacing, until the optimal spacing is reached. The singular
value of the resolvent mode then starts increasing with riblet spacing and eventually
leads to a drag increase. The resolvent calculations suggest that the near-wall cycle
modes also contribute to the drag increase past the viscous breakdown, but their
contribution is weaker compared to the spanwise rollers that dominate this regime.
By our categorization of modes, the near-wall cycle mode would belong to the
streamwise-elongated family of scales. Its response to various riblet spacings is
reminiscent of the control response of the streamwise-elongated family to various
phase shifts.

The behavior of varying-phase opposition control for positive phase shifts, where
the spanwise rollers are dominant, can further be compared to a variety of other
flows. Spanwise rollers have also been reported for flow over plant canopies (Finni-
gan, 2000), permeable (Breugem, Boersma, and Uittenbogaard, 2006; Efstathiou
and Luhar, 2018; Gómez-de-Segura and García-Mayoral, 2019), and porous walls
(Jiménez, Uhlmann, et al., 2001). In all cases, the appearance of the rollers is cor-
related with a significant change in flow structure and increase in drag, analogous
to varying-phase opposition control with positive ∠ �̂�𝑑 . Spanwise coherent waves
in combination with drag increase are also observed in turbulent flows over soft
compliant walls. However, this case is somewhat different from the previous ones
in that the drag increase and spanwise waves are attributed to a resonance of the
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compliant wall under forcing of the flow (Kim and Choi, 2014). In other words,
drag increase and formation of spanwise structures in this case do not only depend
on the flow, but also on the material properties of the compliant wall.

The literature results mentioned above suggest that the mixed response of streamwise-
elongated scales to control and the appearance of spanwise rollers are not a partic-
ularity of the present control scheme, but a robust feature of turbulent flows with
some form of wall transpiration. In particular, the presence of spanwise rollers in
drag-increased configurations seems to be a robust feature. There are quantitative
differences, like the wavelength or wall-normal extent of the rollers, but it is in-
triguing that very different forms of wall-transpiration (active vs. passive, feedback
vs. open-loop, etc.) all lead to essentially the same phenomenon. It is also in-
teresting that modal analyses of all these flows provide insights into the formation
of the rollers and the structure of the flow. For example, modal analyses of flow
over riblets can predict the riblet peak-to-peak distance at which the viscous regime
breaks down (García-Mayoral and Jiménez, 2011), or approximately reproduce the
streamwise length scale and convection velocity of the spanwise rollers (Chavarin
and Luhar, 2020).

At its core, the varying-phase opposition control scheme is a way to prescribe wall-
transpiration based on templates that occur naturally in the flow, namely �̂�(𝑦𝑑), and
to change the relative phase between transpiration and background flow at will by
altering ∠ �̂�𝑑 . A range of phase shifts for transpiration with 𝜿𝑟 results in the same
dynamical effect like a porous wall or a riblet past the viscous breakdown, at least
phenomenologically. Another choice of phase shift with transpiration at 𝜿𝑠 damps
the streamwise-elongated scales and leads to a similar flow response like a riblet in
the viscous regime. In some sense, the phase shift ∠ �̂�𝑑 is a knob that can be turned
to reproduce, in isolation or superimposed, flow patterns that have been observed
in other flows with wall transpiration. This suggests that the two families of scales
together with the phase shift provide essential building blocks to study the physics
of flows with wall-transpiration.

Compared to the other flow configurations, the varying-phase opposition control
scheme has two advantages when it comes to studying the flow physics: first, the
boundary condition can be changed on a scale-by-scale basis over a wide range of
parameters. One can therefore tune the boundary condition to investigate a specific
aspect of the problem. This gives the scheme more flexibility than say a porous
or compliant wall, which are characterized by a few material parameters that act
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uniformly on all spatial scales. Second, the flow phenomena of varying-phase
opposition control are linear responses to boundary conditions at that same wave
number. For example, the spanwise rollers induced by single scale control with
𝜿𝑟 occur because of boundary condition changes at that same 𝜿𝑟 . The direct link
between boundary perturbation and scale response enables to analyze scales and
phenomena in isolation. This is different for example from riblets, whose geometry
offers similar design flexibility, but which interact with the flow in a complex way
to trigger the observed responses. For instance, the riblets of García-Mayoral and
Jiménez (2011) are streamwise constant and are characterized by their spanwise
spacing and shape. It is not obvious what the link between this geometry and the
suppression of near-wall cycle structures or the appearance of spanwise rollers is.
This complicates even linear analyses of these flows, which have to include some
nonlinear interactions to reproduce important flow phenomena (e.g. Chavarin and
Luhar, 2020), or rely on simplifying assumptions about the flow in the riblet groves
to produces a geometry-dependent boundary condition for all scales (e.g. linear
stability analysis in García-Mayoral and Jiménez, 2011).
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C h a p t e r 6

PRESSURE CONSIDERATIONS

The results of the previous section show that the drag reduction characteristics
of varying-phase opposition control and the presence of associated flow features
are determined by phase relations at distinct spatial scales. For one set of scales,
one can attenuate or amplify the near-wall cycle as a function of the phase shift,
while for another set of scales, one can trigger the spanwise rollers for certain
∠ �̂�𝑑 . At least phenomenologically the interplay of near-wall cycle and spanwise
rollers is a robust feature of flows with wall transpiration, and their correlation with
phase shifts suggests that the latter may have a more fundamental meaning. If one
thinks of varying-phase opposition control as simply providing a template for wall
transpiration (i.e. the sensor measurement), then the phase shift changes the relation
of the template relative to the background flow (in a relative phase or streamwise
localization sense depending on the point of view). A natural question that arises
from this line of thinking is whether one can elucidate the link between the shifted
template and the background flow that underlies the observed phenomena. Of course
there is no guarantee that a simple link exists, but if it did, it would raise hopes that
all of the closed-loop wall transpiration configurations (to which we also count the
passive control techniques with similar flow responses) can be reduced to a single
problem. This chapter investigates whether the wall pressure is the link between
wall transpiration and background flow.

6.1 Evidence for Velocity-Pressure Phase Relations in the Literature
Perhaps the most fundamental difference between flows with and without wall
transpiration is the number of nonzero flow quantities at the wall. In the canonical
case, the no-slip and no-through condition forces all velocity components to zero at
the wall, so that the wall pressure is the only nonzero flow quantity. Of course the
velocity gradients are nonzero as well, but this discussion focuses on the value of
the primitive variables themselves, not their gradients. In contrast, a flow with wall
transpiration has two non-zero wall quantities, the pressure and the vertical velocity.
It is therefore quite intuitive that the relation between the wall pressure and the
transpiration may be an important aspect of such flows. This was first appreciated
by Xu, Rempfer, and Lumley (2003), who argued that a purely pressure-driven
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compliant wall cannot reduce drag, because the induced velocity does not have the
correct phase relative to the pressure field surrounding it. The reasoning behind this
argument is that such compliant walls depress below high (i.e. positive) pressure
regions, which results in a negative vertical velocity in the near-wall region and
an out-of-phase relation between 𝑣 and 𝑝. This is contrary to observations of
drag-reducing active control schemes like opposition control, which likely induce
positive vertical velocities in regions of high pressure (see the idealized sketch of
fig. 1.3), so that 𝑣 and 𝑝 are in phase. In our terminology of the previous chapter,
the suppression of quasi-streamwise vortices is associated with the streamwise-
elongated scales, and the observations by Xu, Rempfer, and Lumley (2003) suggest
that the velocity-pressure phase relation may be relevant for their control response.

The possible relevance of velocity-pressure phase relations is further supported by
literature results on flow over porous and permeable walls (e.g. Jiménez, Uhlmann,
et al., 2001; Efstathiou and Luhar, 2018; Gómez-de-Segura and García-Mayoral,
2019). These configurations typically relax the no-through condition and introduce
a wall transpiration with a fixed velocity-pressure phase relation. For example, the
transpiration boundary condition of a porous wall can be modeled as (Jiménez,
Uhlmann, et al., 2001)

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = −𝛽 𝑝′(𝑥, 𝑦, 𝑧, 𝑡) (6.1)

where 𝛽 ≥ 0 is a material parameter and 𝑝′ denotes the pressure fluctuations above
the background pressure and mean gradients. By construction, these flows result
in an out-of-phase relation between the wall transpiration and pressure, and result
in drag increase for large enough 𝛽, thus supporting the argument of Xu, Rempfer,
and Lumley (2003). The drag increase goes hand in hand with the appearance of
spanwise rollers, which were associated with the spanwise-elongated scales in the
previous chapter. The observations thus suggest that the velocity-pressure phase
relation may be an important parameter for their behavior as well.

6.2 Validation of the Pressure Solver
The observations summarized in the previous section motivate an analysis of the
control response of streamwise-elongated and spanwise-elongated scales from a
pressure point of view. The DNS framework used in this study solves the Navier-
Stokes equations in velocity-vorticity form (see section 2.2.1 for details), and does
therefore not compute the pressure field as part of the solution. However, the pressure
can be recovered in postprocessing, and to do so, we wrote a separate pressure
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Figure 6.1: Validation of the pressure solver. Figure 6.1a compares the rms pressure
profile and fig. 6.1b shows the velocity pressure covariance. The black line is data
from the present solver, the dashed blue line is data from Lee and Moser (2015).

solver which is described in detail in section 2.2.2. Before analyzing controlled
configurations, we validated the solver against literature data of canonical turbulent
channel flows, and this section gives a brief summary of the results.

In analogy to the NSE solver, one would ideally validate the pressure solver for
configurations with no-through walls and transpiration. The latter were not available
for comparison, so that the validation is limited to the canonical flow. However, we
note that the only change due to wall transpiration is an additional acceleration term
in the Neumann boundary data (2.8) and one may therefore expect that even the
canonical configuration provides an extensive test case for the solver. Figures 6.1a
and 6.1b compare the rms pressure fluctuation profile and the 𝑣′𝑝′ covariance of
a canonical channel flow at Re𝜏 = 180 with the data of Lee and Moser (2015).
Excellent agreement is found for both quantities and throughout the channel domain,
and gives confidence in the capabilities of the solver.

6.3 Evidence for Velocity-Pressure Phase Relations in Varying-Phase Oppo-
sition Control

We now turn our attention to the controlled configurations and consider a few select
flows of particular interest.1 Following the approach of Chapters 4 and 5, we consider
varying-phase opposition control with sensors located at 𝑦+

𝑑
= 15 and focus on the

effect of the phase shift. In particular, we are interested in the controller with ∠ �̂�𝑑 =

−𝜋/4 (maximum drag reduction, flow response dominated by streamwise-elongated
1The figures presented in this chapter are based on work done by D. Castillo during a Summer

Undergraduate Research Fellowship (SURF) and subsequent senior thesis in our group.
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Figure 6.2: Velocity pressure correlation coefficient for various controlled flows.
The phase shifts are specified in the plot, and the sensors are located at 𝑦+

𝑑
= 15

(indicated by the horizontal line) in all cases. Note that two control configurations
are shown for ∠ �̂�𝑑 = +𝜋/2: control with the single scale 𝜿𝑟 and control with all
spatial scales. The dotted line denotes the correlation coefficient of the uncontrolled
flow.

scales) and ∠ �̂�𝑑 = +𝜋/2 (significant drag increase mainly driven by spanwise-
elongated scales). The discussion of the drag-reducing configuration is based on
control with all scales, while the drag-increasing configuration is explored by means
of control with all scales and with the single scale 𝜿𝑟 defined in eq. (5.15). The SS
control with 𝜿𝑟 at ∠ �̂�𝑑 = +𝜋/2 is particularly insightful because the properties of its
flow field have been explored in section 5.4.3.

We start the analysis with the correlation coefficient between the vertical velocity and
pressure, which is shown in fig. 6.2 as a function of the wall-normal coordinate. In
this specific case, the correlation coefficient is preferred over the covariance, because
it eliminates differences in transpiration (see fig. 4.3) and pressure magnitude (data
not shown) across the controlled flows, which simplifies the comparison. To aid
the interpretation of the correlation coefficients, the figure further indicates the
correlation in the uncontrolled flow (dotted line) and the sensor location (solid
horizontal line). We note that an idealized out-of-phase control (e.g. porous wall)
would result in a correlation coefficient of −1.0 at the wall, while an idealized
in-phase control would correspond to a correlation coefficient of 1.0

A first observation is that all controllers change the phase relation in the near-wall
region, and the modifications persist well past the sensor location up to 𝑦+ ≈ 40.
Further away from the wall, the correlation in the controlled flows is no different
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from the uncontrolled case (data not shown, but note the collapse of the profiles
around 𝑦+ = 40), so that the changes to the phase relation can be characterized as
distinct, but local.

In order to connect fig. 6.2 with a physical picture, it is instructive to first consider the
SS controller with ∠ �̂�𝑑 = +𝜋/2. This configuration leads to a negative correlation
between velocity and pressure in the near wall region and reaches a value of −0.68
at the wall. Since velocity and pressure are strongly correlated and out-of-phase,
the transpiration resembles a porous wall on average. This can be seen physically
from the phase-averaged flow field of fig. 5.10a: close to the wall, the spanwise
rollers centered around 𝑦+ ≈ 20 induce a downwash (high pressure) region, which
is roughly confined by the two stagnation points (i.e. 0.3 ≤ 𝑥/𝜆𝑥𝑟 ≤ 0.8), and an
upwash (low pressure) region further upstream and downstream. On average, the
wall transpiration is negative below the high pressure region and positive below
the low pressure region, which illustrates that SS control with 𝜿𝑟 and ∠ �̂�𝑑 = +𝜋/2
has indeed a similar effect to a porous wall. However, note that transpiration and
pressure are slightly offset in the streamwise direction, which likely reduces the
correlation between the two quantities, which is consistent with fig. 6.2.

Control of all scales with ∠ �̂�𝑑 = +𝜋/2 also leads to a negative correlation coefficient
at the wall, even if the correlation reduces to −0.27. The decrease can likely be
attributed to the activity of other scales (recall the many energetic scales in the
actuation spectrum of fig. 4.4d), which will be explored subsequently. On the
other hand, control with all scales and ∠ �̂�𝑑 = −𝜋/4 leads to a positive correlation
coefficient in the near wall region (𝑣′𝑝′/(𝑣rms𝑝rms) = 0.32 at the wall). All these
observations are consistent with the hypothesis that negative v-p phase relations
correlate with drag increase, while positive v-p phase relations correlate with drag
reduction.

Figure 6.2 further suggests that the phase relation varies across 𝜿, because the
correlation of controller ∠ �̂�𝑑 = +𝜋/2 decreases when more scales are controlled.
To shed light on this aspect, we next consider the velocity pressure co-spectra Φ𝑣𝑝

shown in fig. 6.3a for ∠ �̂�𝑑 = −𝜋/4 and fig. 6.3 for ∠ �̂�𝑑 = +𝜋/2, which provide
information about the sign and magnitude of the correlation at each scale. Note
that both shown configurations control all spatial scales. The cospectrum for the
single-scale controller is omitted, because it only has a single nonzero entry at 𝜿𝑟 .
For reference, the co-spectra also include contours of the corresponding actuator
signal (15% and 30% of the maximum actuator input, respectively), to draw the
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(b) ∠ �̂�𝑑 = +𝜋/2

Figure 6.3: Velocity pressure cospectrum Φ𝑣𝑝 for two example controllers as a
function of the streamwise and spanwise wave number. Control is applied to all
spatial scales, and the dotted lines denote the contour levels of 15% and 30% of the
maximum actuator input Φ𝑣𝑣 shown in figs. 4.4b and 4.4d, respectively. Note that
the color scale is different in each figure.

attention to the most important control scales. The wave numbers 𝑘𝑥ℎ > 20 and
𝑘𝑧ℎ > 40 are omitted in these figures, since the actuator input is much smaller at
these wave numbers.

We first consider the drag-reducing controller ∠ �̂�𝑑 = −𝜋/4, whose cospectrum is
shown in fig. 6.3a. In this case, the covariance is non-negative, and the largest
contribution comes from the streamwise-elongated scales, which also dominate the
actuator input. However, it is interesting to observe that the two contour maps are
slightly offset. A range of long and wide scales, which do not have a significant
imprint in the actuator spectrum, contribute to the covariance, and must therefore
be associated with energetic wall pressure modes.

In comparison, the v-p cospectrum of the drag increasing controller ∠ �̂�𝑑 = +𝜋/2
shown in fig. 6.3b is more complex (note the different color scale). The most active
area in spectral space is centered around the spanwise-elongated scales, and their
contributions are all negative, consistent with the observations for the SS controller.
Similarly to the previous case, the contribution decreases away from the most active
scales of the actuator, but interestingly, the sign of the covariance changes in parts
of the wave number space (yellow region). The sign change occurs along an almost
straight line (i.e. fixed aspect ratio of scales), but it is yet to be determined if this has
a significance. In any case, the scales of the streamwise-elongated family are still
positively correlated to the pressure, even at this phase shift. It remains unclear if this
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correlation is due to the flow structure generated by the spanwise-elongated scales
or if it is a characteristic of the streamwise-elongated family, and future single-scale
control experiments are needed to clarify this aspect. The mixed v-p phase relation
in spectral space certainly leads to a decrease of the overall correlation, which is
consistent with the observations of fig. 6.2.

Despite these insights, it is important to point out the fundamental limitation of
cospectra with regards to elucidating the v-p phase relations. In order to put our
hypothesis about the correlation between velocity-pressure phase relation and drag
reduction to test, we need to interrogate the time-averaged phase difference between
𝑣 and 𝑝 at each 𝜿. The sign information contained in the cospectrum encodes some
of this information, but in a rather crude way. All one can infer from fig. 6.3 is
whether the absolute value of the phase difference between 𝑣 and 𝑝 is larger or
smaller than 𝜋/2 in an average sense, which is weighted by the time-dependent
magnitude of the Fourier coefficients. The cospectrum can therefore not provide
a measure for how strong a phase relation between �̂� and 𝑝 is at a specific 𝜿. To
illustrate this point, assume that the entry in the cospectrum at a given 𝜿 is large.
This large entry can have two possible origins: a strong phase relation (so that the
cos function returns a value close to one), or large amplitudes of �̂� and 𝑝 at that
scale. A different, purely phase based metric is needed to clarify the role of the
velocity-pressure relations, and this is subject of ongoing work.

6.4 Energy Aspects
The velocity-pressure phase relations also have implications for the energy budget
of the flow, which will be explored in this section. It will be shown that the kinetic
energy equation includes expressions for the work done by the wall transpiration,
so that this analysis also lends itself to analyze efficiency aspects of varying-phase
opposition control.

The (nondimensional) kinetic energy of the flow at any instant in time is defined as
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and an evolution equation for 𝐸𝑘 can be obtained from the integral of the dot product
between the velocity vector and the NSE eq. (2.1). Often times, the kinetic energy
equation of the mean flow and the fluctuations are considered separately, but for
the purpose of this study, it will be advantageous to consider the energy of the full
velocity field. Even so, it is advantageous to split the instantaneous velocity field
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into a wall-parallel mean 〈𝒖〉(𝑦, 𝑡) and fluctuations 𝒖′(𝒙, 𝑡) about that mean, and
write the total kinetic energy equation in terms of these quantities. The resulting
expression reads
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where the first term represents the work done by the pressure gradient to drive the
bulk flow, the second and third terms are the work done by the wall transpiration, and
the last term represents the viscous dissipation. The work done by the transpiration
has two terms, one that quantifies kinetic energy input (first term) and one that
quantifies pressure work (second term).

The average power input of the pressure gradient can be estimated from the time-
average of the first term
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Analogously, one can take the time-average of the second and third term to estimate
the ideal power input of the actuation
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It is important to note that each term is signed, which implies the assumption that the
actuators can gain energy from the flow, for example when the terms at the bottom
wall are negative. A more conservative estimate could preclude work done by the
flow on the actuators and estimate the average power input based on the absolute
value. There is an interesting connection between the kinetic energy equation and the
velocity-pressure phase relations discussed earlier. The second term of the actuator
input is proportional to the correlation coefficient of fig. 6.2, and also corresponds to
the sum over the cospectra of fig. 6.3. From our discussion in the previous section,
it is now apparent that this term corresponds to an energy sink of the flow in case of
the drag-increasing controllers with ∠ �̂�𝑑 = +𝜋/2, and an energy source of the flow
for the drag-reducing controller with ∠ �̂�𝑑 = −𝜋/4.

The work considerations further allow quantification of efficiency for a fixed mass
flux flow. To this end, we first define the mean power saved as the difference between
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the pressure gradient work in the uncontrolled and the controlled configuration

Δ𝑊PG = −2
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We can then define a control efficiency 𝜂 as power saved per control input

𝜂 =
Δ𝑊PG
𝑊act

. (6.7)

An evaluation of the balance between the pressure and kinetic energy term of
the actuator work and the control efficiency for various control configurations is
currently underway.

6.5 Chapter Summary
This chapter outlined an early analysis aimed at understanding whether the control
response of streamwise-elongated and spanwise-elongated scales can be understood
in terms of scale-by-scale phase relations between wall pressure and transpiration.
This possible link was motivated by literature results on compliant and porous
walls, which suggest that the attenuation of the near-wall cycle correlates with an
in-phase relation of 𝑣 and 𝑝 (compliant wall), while the appearance of spanwise
rollers is observed for out-of-phase relations (porous walls). To investigate this
hypothesis, we developed and validated a solver to recover the pressure field, which
is not required to march the Navier-Stokes equations in time and is therefore not
computed, during postprocessing. The present results indicate that an out-of-phase
relation between 𝑣 and 𝑝 correlates with drag increase, while an in-phase relation is
associated with drag reduction. Further diagnostics and data from scale-restricted
control configurations are needed to fully understand this aspect and both are subject
of ongoing work. A confirmation of a robust relation between the velocity-pressure
phase relation and drag reduction would further enable to control the two families
of scales based on wall data only, which would be an important step towards the
practical implementation of the control scheme. The pressure field also allows
quantification of power savings and actuation efficiency, which is currently underway
as well.
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C h a p t e r 7

CONCLUSIONS AND FUTURE WORK

Even after decades of active research, turbulent flow control for drag reduction
remains an open problem of enormous practical relevance. Some of the challenges
arise because we currently lack tools to analyze and design flow controllers at
technologically relevant Reynolds numbers. Other challenges arise because the
introduction of an actuator signal fundamentally changes the flow dynamics, and
our understanding of these modified flows lags significantly behind the canonical
configurations. In this context, the two open questions of particular interest for this
thesis can be summarized as follows: what are suitable controller design tools for
high Reynolds number flows? And how does actuation through closed-loop wall
transpiration change the flow physics? The thesis contributed to those questions
through direct numerical simulation and modal analyses of an example control
scheme, dubbed varying-phase opposition control, which was applied to a turbulent
channel flow at Re𝜏 = 180.

7.1 Summary
Varying-phase opposition control is a generalization of the well-known opposition
control scheme (Choi, Moin, and Kim, 1994), and introduces a phase shift ∠ �̂�𝑑

between the Fourier transformed sensor measurement �̂�(𝑦𝑑) and the actuation at
the wall �̂�(𝑦𝑤). The DNS results of Chapter 3 showed that the drag reduction
(DR) under varying-phase opposition control strongly depends on both the sensor
location and the phase shift. The role of the sensor location has been clarified
in a series of past publications (Choi, Moin, and Kim, 1994; Hammond, Bewley,
and Moin, 1998; Chung and Talha, 2011; Luhar, Sharma, and McKeon, 2014b),
and there is compelling evidence that the optimal sensor location roughly coincides
with the center of the quasi-streamwise vortices, so that this aspect was not further
considered. The DNS data also showed that varying-phase opposition control with
a small negative ∠ �̂�𝑑 leads to maximum DR, while a positive or large negative phase
shift deteriorates the control performance and eventually leads to a drag increase.

Before exploring the role of the phase shift, we assessed in Chapter 3 whether a
low-order model based on the resolvent framework is capable of approximating the
DNS drag reduction trends. Even though the resolvent model was constructed with
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the simplest assumptions possible (uncontrolled mean profile, rank-1 approxima-
tion, broadband forcing), it captured the DNS drag reduction trend over the entire
parameter space considered. At Re𝜏 = 180, the resolvent model was about two
orders of magnitude cheaper to evaluate than DNS. But more importantly, unlike
DNS, the resolvent model is not limited to low Reynolds numbers, and we outlined
a strategy based on sparse subsampling of the wave number space and analytical
scalings of the resolvent modes (Moarref, Sharma, et al., 2013), which enabled a
cheap model evaluation at technologically relevant Reynolds numbers. Chapter 3
therefore contributed to the first open question and demonstrated that the resolvent
framework can be a suitable flow control design tool at large Re𝜏.

The remainder of the thesis analyzed the role of the phase shift in varying-phase op-
position control, which is closely related to the second open question. A comparison
of DNS data for ∠ �̂�𝑑 ∈ [−3𝜋/4, 3𝜋/4] showed that the structural and spectral fea-
tures of controlled flows change as a function of the phase shift (Chapter 4). For neg-
ative ∠ �̂�𝑑 (which can lead to drag reduction or increase), the flow structure was remi-
niscent of the canonical case and the controller signal was dominated by length scales
that are typically associated with the near-wall cycle. In contrast, the flow structure at
positive ∠ �̂�𝑑 (which lead to drag increase) looked remarkably different and the con-
troller was most active at spanwise-constant scales. These observations suggested
that the physics of varying-phase opposition control can be understood by consider-
ing the flow response of two distinct families of scales, termed streamwise-elongated
and spanwise-elongated scales. At the present Re𝜏 = 180, these families were lo-
calized in spectral space around the wave number pair 𝜿𝑠 = [𝑘𝑥𝑠ℎ = 0.5, 𝑘𝑧𝑠ℎ = 11]
(streamwise-elongated) and 𝜿𝑟 = [𝑘𝑥𝑟ℎ = 6.5, 𝑘𝑧𝑟ℎ = 0] (spanwise-elongated),
respectively.

We then conducted a series of direct numerical simulations to study the response
of each scale family to control with various ∠ �̂�𝑑 (chapter 5). In order to establish a
clear link between phase shift and scale response, nonlinear effects were minimized
as much as possible by controlling either a single Fourier mode in isolation (single
scale control) or a subset of wave numbers (single wave number control), which
cannot directly feed back on each other (i.e. they are not triadically consistent). The
streamwise-elongated scales were active at all phase shifts, and the attainable drag
reduction was found to be almost symmetric about ∠ �̂�𝑑 = 0. Control with small
positive or negative phase shifts suppressed the streamwise-elongated scales and
lead to drag reduction, while large positive or negative phase shifts further amplified
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these scales, which resulted in a drag increase. These trends correlate with the
ones of varying-phase opposition control, which suggested that the streamwise-
elongated family shapes the drag reduction of the full scheme at least partially. A
modal analysis further revealed that the temporal eigenvalues of the streamwise-
elongated scales are damped for all phase shifts, and the amplification trends with
∠ �̂�𝑑 could be well approximated by a resolvent analysis. In contrast, the spanwise-
elongated scales were only energetic for positive ∠ �̂�𝑑 , and control in this parameter
regime always lead to a strong scale amplification and drag increase. The trends for
positive phase shifts correlated with ones of varying-phase opposition control, which
suggested that the spanwise-elongated family contributes to the drag reduction in
this parameter regime as well. The onset of the drag increase correlated well with
the appearance of an amplified eigenvalue in the temporal eigenspectrum, and the
phase averaged DNS flow field was indistinguishable from the associated eigenmode,
which suggested that the control response of the spanwise-elongated scales was fully
described by the eigenspectrum. The overall drag reduction behavior of varying-
phase opposition control was then shown to correlate with the superposition of the
control response of these two families. The spanwise-constant scales are inactive
for negative phase shifts investigated here, so that this parameter regime is fully
determined by the streamwise-elongated scales. On the other hand, both scale
families contribute to the flow response at positive ∠ �̂�𝑑 , but the contribution of
the spanwise-elongated scales is dominant. The resulting flow response to varying-
phase opposition control is asymmetric about ∠ �̂�𝑑 = 0, mostly because of the
spanwise-elongated scales. Chapter 5 therefore contributed to the second question
and provided further evidence that flows with closed-loop wall transpiration exhibit
different physics compared to the canonical case. The transpiration can interact with
the near-wall cycle and either weaken or amplify it (streamwise-elongated scales).
In addition, the transpiration can trigger spanwise rollers which are absent in the
canonical flow (spanwise elongated scales). These rollers provide an additional (or
alternative if the near-wall cycle is damped) mechanism for momentum mixing, and
are therefore correlated with drag increase. An analysis of the wall pressure data
further suggests that in-phase v-p configurations correlate with drag reduction, while
out-of-phase velocity-pressure configurations are associated with drag increase.
These findings are consistent with the conceptual model of Xu, Rempfer, and Lumley
(2003) for compliant walls, and implications for the scale-by-scale control response
are subject of ongoing investigations.
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7.2 High-Level Perspective
The above results suggest a few high-level conclusions regarding the two open
questions. With regards to modal analyses, a robust observation throughout this
study was that the uncontrolled mean is sufficient to approximate the behavior of
the nonlinear system to control. This is good news, because it implies that the
eddy viscosity approximation of the uncontrolled mean provides a suitable flow
state about which the low-order models can be formulated. In particular, the eddy
viscosity approximation allows to extend these models to flow regimes for which
no empirical data are available. There is likely a limit to the validity of this
simplification, but it is currently not clear at what flow perturbation magnitude the
uncontrolled mean ceases to be appropriate. The present study raises some hopes
that the modal analyses are fairly robust, since the uncontrolled mean provided a
good approximation even for control configurations which doubled Re𝜏.

Another important conclusion for both questions can be drawn from the analysis
of the temporal eigenspectrum. The mean profile of a canonical turbulent channel
flow is thought to be linearly stable (Reynolds and Tiederman, 1967), but previous
studies have shown that the relaxation of the no-through condition can destabilize
the eigenvalues (Jiménez, Uhlmann, et al., 2001; García-Mayoral and Jiménez,
2011). The present study analyzed the relaxation of the no-through condition from
the perspective of the temporal eigenspectrum, which does not include an eddy
viscosity in the linearized operator and which describes the natural response of
the system rather than the stability of the mean flow. The temporal eigenspectrum
was shown to contain amplified eigenvalues for certain wave number combinations
and phase shifts, very analogous to the aforementioned stability analyses. This
comes with implications for the flow physics, which will be discussed later, and
for resolvent-based low-order models for flow control. Since the resolvent operator
characterizes the steady-state response of the system, it is only meaningful if the
natural system response decays, i.e. if there are no amplified eigenvalues in the
temporal eigenspectrum. A first step for resolvent-based control design should
therefore be to analyze the temporal eigenspectrum under the control boundary
conditions (e.g. wall transpiration). We were not yet aware of the large eigenvalue
changes under wall transpiration with different phase shifts when we did the analysis
of Chapter 3, and did therefore not do the preliminary eigenspectrum check. In
light of Chapter 5, the integrated resolvent results for positive phase shifts (where
amplified eigenvalues were shown to exist) should be considered with some caution.
The resolvent model likely misses the influence of the spanwise-elongated family
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for positive phase shifts, but still reproduces the correct trend, because it captures
the drag increase due to the streamwise-elongated scales.

In terms of flow physics, there is growing evidence that closed-loop wall transpira-
tion (or passive schemes that can be interpreted as such) lead to flow phenomena
that are not observed in canonical flows. In particular, there seem to be two recur-
ring scenarios: first, the transpiration attenuates or amplifies the near-wall cycle,
and second, the transpiration can trigger spanwise-coherent rollers (among others
Jiménez, Uhlmann, et al., 2001; Breugem, Boersma, and Uittenbogaard, 2006;
García-Mayoral and Jiménez, 2011; Kim and Choi, 2014; Gómez-de-Segura and
García-Mayoral, 2019; Chavarin and Luhar, 2020). In the passive control cases, the
flow perturbation is set by the geometry or a few material parameters, and it is often
difficult to track how the change in boundary condition affects individual scales.
This is apparent in the linear analyses of these configurations, which often rely on
assumptions about the flow close to the surface to arrive at a scale-dependent bound-
ary condition (e.g. García-Mayoral and Jiménez, 2011), or need to account for a
subset of nonlinear interactions (e.g. Chavarin and Luhar, 2020). The varying-phase
opposition control scheme reproduces the same flow patterns, and offers a different,
perhaps more fundamental perspective on their origin. In contrast to the passive
methods, the flow response of varying-phase opposition control depends linearly
on the phase shift, and the flow phenomena can be triggered by considering scales
in isolation and choosing an appropriate ∠ �̂�𝑑 . In a more abstract interpretation,
the varying-phase opposition control scheme provides a means to selecting a flow
structure that naturally occurs in the flow (this is the sensor measurement �̂�(𝑦𝑑)),
and applying a shifted version of it at the wall (this is the actuator input �̂�(𝑦𝑤)). It is
these shifted templates that give rise to the additional physics of flows with closed-
loop wall transpiration. This provides a possibly more fundamental description of
such flows, in particular in conjunction with the wall pressure field. The pressure
considerations of Chapter 6 suggest that the phase difference between wall pressure
and transpiration is an important parameter of such flows, as conjectured earlier by
Xu, Rempfer, and Lumley (2003).

With an eye towards practical applications, the results of the present thesis suggest
that the spanwise-elongated scales do not reduce drag, but only increase it. These
scales are best left uncontrolled (or measures should be put in place to ensure that
they are not excited), since control can only make things worse. Exclusion of the
deteriorating scales can help reduce the spatial resolution requirements of controllers
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even in the drag-reducing regime, and especially with regards to small streamwise
scales. For example, the scale 𝜿𝑟 , which can be left uncontrolled, is the smallest
energetic scale over the considered parameter range. In this context, the temporal
eigenspectrum can serve as a computationally cheap tool to identify scales to be
excluded, which are the ones with amplified eigenvalues.

7.3 Future Work
More work is needed to conclusively answer the two questions formulated at the
beginning of this chapter, and ideally different perspectives can provide comple-
mentary pieces to the puzzle. Below we outline a few future research directions
that can further contribute to these open questions from the perspective taken in this
thesis.

Chapter 3 showed that the broadband-forcing resolvent model is capable of approx-
imating the DNS drag reduction trends at low Reynolds numbers. Moreover, the
results confirmed that the known scaling laws of the uncontrolled resolvent operator
also hold in the presence of wall transpiration, which enabled an efficient evaluation
of the resolvent at high Re𝜏. One aspect that the present study did not investigate is
the performance of the broadband forcing assumption at higher Reynolds numbers,
where the large scale influence on the near-wall region becomes more important.
It is possible that the broadband forcing assumption is still adequate also in this
flow regime, at least to first order. However, if the nonlinear amplitude modulation
changes the relation between control input and flow response at leading order, then
it has to be incorporated in the resolvent model, where it would enter the forcing
term. Possible approaches to account for scale interactions have been reported in
the literature and include addition of an eddy viscosity to the resolvent operator to
model the Reynolds stresses (e.g. Morra, Semeraro, et al., 2019), or replacement of
the broadband forcing with more sophisticated models (e.g. Moarref, Sharma, et al.,
2013; McMullen, Rosenberg, and McKeon, 2020; Morra, Nogueira, et al., 2021).
However, these studies focused on reconstruction of flow statistics, which is a more
stringent requirement than needed for flow control purposes. An interesting future
avenue would therefore be to explore what the simplest possible model of scale
interactions is in a controls context, where one is mainly concerned about capturing
the relation between control input and flow response.

In addition, it would be interesting to consider varying-phase opposition control from
the perspective of the Orr-Sommerfeld and Squire decomposed resolvent (Rosenberg
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and McKeon, 2019). In this framework, the control boundary condition, which
was shown to drive the flow response, only enters the Orr-Sommerfeld operator.
It is therefore likely that closed-loop wall transpiration has implications for the
competition mechanism between Orr-Sommerfeld and Squire modes (Rosenberg
and McKeon, 2019; McMullen, Rosenberg, and McKeon, 2020), and it would be
interesting to investigate those in detail.

With regards to the flow physics of wall transpiration, it would further be important
to understand if the spanwise-elongated scales remain important at higher Reynolds
number. A recent experimental investigation of porous walls found evidence for
their existence at Re𝜏 ≈ 1700 (Efstathiou and Luhar, 2018), and it is possible that
they persist well past that regime. To clarify this question, it may be sufficient to
look at the temporal eigenspectrum, since the appearance of the spanwise rollers
correlates with the presence of an amplified eigenvalue. However, the scaling of the
rollers has to be investigated first in order to inform the wave number selection for
the eigenspectrum. Finally, the correlation between drag reduction and the velocity
pressure phase relation may be useful to devise future wall-based control schemes.
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A p p e n d i x A

DERIVATION OF INTEGRAL DRAG REDUCTION MEASURES

This appendix outlines the derivation of the DNS and resolvent model integral
drag reduction measure defined in eqs. (3.13) and (3.14), respectively. It will be
important to distinguish between dimensional and dimensionless quantities in the
derivation, and we therefore label the former with a tilde hereafter to make the
distinction clear. We further follow the approach of Fukagata, Iwamoto, and Kasagi
(2002) and nondimensionalize all length scales with the channel half-height ℎ̃, and
use twice the bulk velocity �̃�𝑏 to make velocity scales dimensionless. For example,
the vertical coordinate and streamwise velocity are nondimensionalized as follows

𝑦 =
�̃�

ℎ̃

𝑢 =
�̃�

2�̃�𝑏

.

(A.1)

This choice of reference velocity scale has the advantage that the nondimensional
bulk velocity 𝑈𝑏 simplifies to

𝑈𝑏 =
1
2

∫ 1

−1
𝑢(𝑦) d𝑦 =

1
2

(A.2)

which follows from rescaling eq. (2.14).

The starting point of the derivation is the result of Fukagata, Iwamoto, and Kasagi
(2002), which can be used to express the friction coefficient 𝑐 𝑓 in terms of a laminar
and turbulent contribution

𝑐 𝑓 =
�̃�𝑤

1
2 �̃��̃�𝑏

=
12
Re𝑏

+ 12
∫ 1

−1
𝑦 (𝑢′𝑣′) d𝑦. (A.3)

Note that we have adjusted the expression to the coordinate system used in this study.
We now combine eqs. (3.12) and (A.3) to obtain

Δ𝜏 =

∫ 1
−1 𝑦

[
(𝑢′𝑣′)DNS

0 − (𝑢′𝑣′)DNS
𝑐

]
d𝑦

1
Re𝑏 +

∫ 1
−1 𝑦 (𝑢′𝑣′)

DNS
0 d𝑦

(A.4)

where the laminar contribution in the numerator drops out, because the mass flux is
held constant when control is applied. To recover the DNS drag reduction measure
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(3.13), we can rescale the velocities in eq. (A.4) with a desired reference velocity �̃�

by multiplying the numerator and denominator by (Re𝑏/Re)2, where Re = �̃� ℎ̃/�̃�.

Next, we derive the drag reduction measure for the resolvent model, eq. (3.14). Note
that we have introduced the superscript DNS in eq. (A.4) to label Reynolds stresses
that satisfy the mean momentum equation. This is a given when working with
DNS data, but Reynolds stresses obtained from the resolvent model may not satisfy
the mean momentum equation. Model Reynolds stresses do therefore not have a
superscript, to make the distinction clear. We next introduce a product of additional
terms, whose numerator and denominator represent the model turbulent drag re-
duction, DNS turbulent drag contribution, and model turbulent drag contribution,
respectively

1 =

∫ 1
−1 𝑦

[
(𝑢′𝑣′)0 − (𝑢′𝑣′)𝑐

]
d𝑦∫ 1

−1 𝑦
[
(𝑢′𝑣′)0 − (𝑢′𝑣′)𝑐

]
d𝑦

×
∫ 1
−1 𝑦 (𝑢′𝑣′)

DNS
0 d𝑦∫ 1

−1 𝑦 (𝑢′𝑣′)
DNS
0 d𝑦

×
∫ 1
−1 𝑦 (𝑢′𝑣′)0 d𝑦∫ 1
−1 𝑦 (𝑢′𝑣′)0 d𝑦

.

(A.5)

Note that the numerator and denominator of each fraction cancel. The product
therefore evaluates to one and can be multiplied to the right-hand-side of eq. (A.4)
without altering its value. After rearranging numerators and denominators, we
obtain

Δ𝜏 =

∫ 1
−1 𝑦

[
(𝑢′𝑣′)0 − (𝑢′𝑣′)𝑐

]
d𝑦∫ 1

−1 𝑦 (𝑢′𝑣′)0 d𝑦︸                              ︷︷                              ︸
=𝑇1 (𝑦𝑑 ,∠ �̂�𝑑)

×
∫ 1
−1 𝑦 (𝑢′𝑣′)

DNS
0 d𝑦

1
Re𝑏 +

∫ 1
−1 𝑦 (𝑢′𝑣′)

DNS
0 d𝑦︸                         ︷︷                         ︸

=𝑇2

×
∫ 1
−1 𝑦

[
(𝑢′𝑣′)DNS

0 − (𝑢′𝑣′)DNS
𝑐

]
d𝑦∫ 1

−1 𝑦
[
(𝑢′𝑣′)0 − (𝑢′𝑣′)𝑐

]
d𝑦︸                                     ︷︷                                     ︸

=𝑇3 (𝑦𝑑 ,∠ �̂�𝑑)

×
∫ 1
−1 𝑦 (𝑢′𝑣′)0 d𝑦∫ 1

−1 𝑦 (𝑢′𝑣′)
DNS
0 d𝑦︸                 ︷︷                 ︸

=𝑇4

(A.6)

where we labeled the terms analogous to eq. (3.14). It is apparent that the terms 𝑇1,
𝑇3 and 𝑇4 are already in their final form, and we only need to manipulate 𝑇2 further.

The Reynolds stresses in the numerator and denominator of 𝑇2 both satisfy the mean
momentum equation, so that we can use eqs. (2.16) and (2.29) to rewrite them as

(𝑢′𝑣′)DNS
0 = (𝑢2

𝜏)0 𝑦 +
1

Re𝑏
d𝑢
d𝑦

. (A.7)



177

We now define and evaluate the weighted wall-normal integral of eq. (A.7)

𝐼 =

∫ 1

−1
𝑦(𝑢′𝑣′)DNS

0 d𝑦 =

∫ 1

−1
𝑦

[
(𝑢2

𝜏)0 𝑦 +
1

Re𝑏
d𝑢
d𝑦

]
d𝑦 =

2
3
(𝑢2

𝜏)0 −
1

Re𝑏
(A.8)

where the last equality follows from eq. (A.2). We can use 𝐼 to rewrite 𝑇2 as

𝑇2 =
𝐼

1
Re𝑏 + 𝐼

= 1 − 3
2

1
Re𝑏 (𝑢2

𝜏)0
(A.9)

which is already quite close to eq. (3.14). The final step is to bring this expression
into a form that only depends on the friction Reynolds number of the uncontrolled
flow and Re𝑏. The key for this final step is the definition of the Reynolds number
and the normalization with twice the bulk velocity, which imply that

(Re𝜏)0 =
(�̃�𝜏)0 ℎ̃

�̃�
= (𝑢𝜏)0

2�̃�𝑏 ℎ̃

�̃�
= (𝑢𝜏)0 Re𝑏 . (A.10)

With this expression, we can rewrite 𝑇2 as

𝑇2 = 1 − 3
2

Re𝑏
(Re2

𝜏)0
(A.11)

which together with eq. (A.6) leads to the resolvent model drag reduction definition
of eq. (3.14).

It is important to point out that the normalization with the bulk velocity is only
required to derive eq. (A.11). The Reynolds stresses in eq. (3.14) can be normalized
by an arbitrary velocity scale once the above form of𝑇2 is found. The only constraint
is that the same reference velocity is used in the numerator and denominator, so that
the conversion factors cancel.
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A p p e n d i x B

SIMPLIFICATION OF THE CONVOLUTION INTEGRAL FOR
RESOLVENT MODES

This appendix derives the simplified convolution integral of eq. (3.17), which can be
used to compute mean Reynolds stresses in the resolvent framework. The derivation
relies on the additional symmetry of the resolvent modes in wavenumber space,
eq. (3.2), and is therefore only valid under the broadband forcing assumption. In
addition, the form given below only applies to the diagonal terms (𝑢𝑢, 𝑣𝑣, 𝑤𝑤) and
the 𝑢𝑣 entry of the Reynolds stress tensor. Quadratic quantities involving the first
power of 𝑤 have to be considered separately, because of the sign inversion implied
in eq. (3.2). This aspect is not considered further below since 𝑢𝑤 and 𝑣𝑤 are not of
interest in this study. We also note that the following derivation is valid for resolvent
approximations at any rank, as long as the broadband forcing assumption is invoked.

The starting point for the derivation is Parseval’s theorem (2.53), which we restate
below in terms of the streamwise and wall-normal velocity

𝑢𝑣(𝑦) =
∞∑︁

𝑙=−∞

∞∑︁
𝑚=−∞

∫ ∞

−∞
�̂�(𝒌, 𝑦) �̂�∗(𝒌, 𝑦) d𝜔. (B.1)

Using Hermitian symmetry, we can rewrite eq. (B.1) as

𝑢𝑣(𝑦) =
∞∑︁
𝑙=1

∞∑︁
𝑚=1

∫ ∞

−∞
2
(
<{�̂�(𝒌, 𝑦) �̂�∗(𝒌, 𝑦)} + <

{
�̂�( �̃�, 𝑦) �̂�∗( �̃�, 𝑦)

})
d𝜔

+
∞∑︁
𝑙=1

∫ ∞

−∞
2<{�̂�(𝑙, 𝑚 = 0, 𝜔, 𝑦) �̂�∗(𝑙, 𝑚 = 0, 𝜔, 𝑦)} d𝜔

+
∞∑︁
𝑚=1

∫ ∞

−∞
2<{�̂�(𝑙 = 0, 𝑚, 𝜔, 𝑦) �̂�∗(𝑙 = 0, 𝑚, 𝜔, 𝑦)} d𝜔

+
∫ ∞

−∞
<{�̂�(𝑙 = 0, 𝑚 = 0, 𝜔, 𝑦) �̂�∗(𝑙 = 0, 𝑚 = 0, 𝜔, 𝑦)} d𝜔

(B.2)

where we used the identity <{�̂��̂�∗} = <{�̂�∗�̂�} to derive the last term in eq. (B.2).
Now we use the additional wave number symmetry of the resolvent under broadband
forcing, i.e. �̂�( �̃�, 𝑦) = �̂�(𝒌, 𝑦) and �̂�( �̃�, 𝑦) = �̂�(𝒌, 𝑦), to see that the two terms in the
first integral of eq. (B.2) are equal. For convenience, we introduce the wave number
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dependent coefficient

𝐵𝑙𝑚 =


1 if 𝑙 = 𝑚 = 0

2 if either 𝑙 = 0 or 𝑚 = 0

4 else

(B.3)

which can be used to rewrite eq. (B.2) compactly as

𝑢𝑣(𝑦) =
∞∑︁
𝑙=0

∞∑︁
𝑚=0

∫ ∞

−∞
𝐵𝑙𝑚 <{�̂�(𝒌, 𝑦) �̂�∗(𝒌, 𝑦)} d𝜔. (B.4)

We note that expression (B.4) with 𝐵𝑙𝑚 according to eq. (B.3) is also valid if 𝑢 = 𝑣.
Furthermore, under a rank-1 approximation, we have �̂� = 𝜎1�̂�1 and �̂� = 𝜎1�̂�1, which
recovers eq. (3.19).
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A p p e n d i x C

RESOLVENT SCALE SUPPRESSION METRIC

This appendix outlines the derivation of the resolvent scale suppression metric (5.6)
under a broadband forcing assumption. We first simplify the expression for the 𝑣𝑣

Reynolds stress, eq. (5.5), by using the result from appendix B

𝑣′𝑣′ =
∞∑︁
𝑙=0

∞∑︁
𝑚=0

∫ ∞

−∞
𝐵𝑙𝑚 |�̂�(𝒌, 𝑦) |2 d𝜔. (C.1)

We next show that a rank-1 approximation is sufficient for the scale suppression
metric. To see this, first suppose that each Fourier coefficient in eq. (C.1) is
represented by a rank-2 approximation with broadband forcing

|�̂�(𝒌, 𝑦) |2 =𝜎2
1 (𝒌) |�̂�1(𝒌, 𝑦) |2 + 𝜎2

2 (𝒌) |�̂�2(𝒌, 𝑦) |2

+ 2𝜎1(𝒌)𝜎2(𝒌)<
{
�̂�1(𝒌, 𝑦)�̂�∗2(𝒌, 𝑦)

}
.

(C.2)

Recall from section 2.4.4 that almost all resolvent modes are paired (𝜎1 = 𝜎2), and
that the singular vectors of paired modes only differ in their wall-normal symmetry
(�̂�1 is an odd function of 𝑦, while �̂�2 is even). For paired modes, the first two terms in
eq. (C.2) are equal and even in 𝑦, while the last term is an odd function. Analogous
to the DNS spectra, we average eq. (C.1) across symmetric planes in the bottom and
top half of the channel, which results in the following expression for paired modes

〈|�̂�(𝒌, 𝑦) |2〉𝑦 = 2𝜎2
1 |�̂�1(𝒌, 𝑦) |2. (C.3)

Note that the last term of eq. (C.2) cancels because of the odd symmetry. As can be
seen from eq. (C.3), the only difference between a rank-1 and rank-2 approximation
for paired modes is a constant factor, which can be absorbed into 𝐵𝑙𝑚 and does
therefore not enter the scale suppression metric. A rank-1 approximation is thus
appropriate for paired modes, and since almost all modes are paired, it is sufficient to
consider a rank-1 approximation of the resolvent as well (this is the same argument
as in section 3.4.2).
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The scale suppression metric (5.6) now follows from eqs. (5.1) and (C.1), and a
rank-1 approximation

Δ𝑣′𝑣′ =
(
𝑣′𝑣′

)
0
(𝑦𝑑) −

(
𝑣′𝑣′

)
𝑐
(𝑦𝑑)

=

∞∑︁
𝑙=0

∞∑︁
𝑚=0

∫ ∞

−∞
𝐵𝑙𝑚

(
𝜎2

1 (𝒌) |�̂�1 |2(𝒌, 𝑦𝑑)
)

0
− 𝐵𝑙𝑚

(
𝜎2

1 (𝒌) |�̂�1 |2(𝒌, 𝑦𝑑)
)
𝑐
d𝜔.

(C.4)
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