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ABSTRACT

The notions of feedback and feedforward information processing gained prominence
under cybernetics, an early movement at the dawn of computer science and theoretical
neuroscience. Negative feedback processing corrects errors, whereas feedforward
processing makes predictions, thereby preemptively reducing errors. A key insight
of cybernetics was that such processes can be applied to both perception, or state
estimation, and control, or action selection. The remnants of this insight are found
in many modern areas, including predictive coding in neuroscience and deep latent
variable models in machine learning. This thesis draws on feedback and feedforward
ideas developed within predictive coding, adapting them to improve machine learning
techniques for perception (Part II) and control (Part III). Upon establishing these
conceptual connections, in Part IV, we traverse this bridge, from machine learning
back to neuroscience, arriving at new perspectives on the correspondences between
these fields.
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approximate posterior estimate (� ) to arrive at the optimum (F ). . . . 47

3.6 Amortized vs. Gradient-Based Optimization.Average ELBO over
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local maxima. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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4.1 Variational Filtering Inference. The diagram shows �ltering infer-

ence within a sequential latent variable model, as outlined in Algo-

rithm 2. The central gray region depicts inference optimization at step

C, initialized at or near the corresponding prior (white),?\ ¹zCjxŸC–zŸCº.

Sampling from the approximate posterior (blue) generates the con-

ditional likelihood (green),?\ ¹xCjxŸC–z� Cº, which is evaluated at the

observation (gray),xC, to calculate the prediction error. This term is

combined with the KL divergence between the approximate posterior

and prior, yielding the step ELBO (red),L C (Eq. 4.7). Inference

optimization (E-step) involves �nding the approximate posterior that

maximizes the step ELBO terms. . . . . . . . . . . . . . . . . . . . 61

4.2 Filtering Inference Models for VRNN, SRNN, SVG, and AVF.

Each diagram shows the computational graph for inferring the approx-

imate posterior parameters,� @, at stepC. Previously proposed methods
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requires the local inference gradient. . . . . . . . . . . . . . . . . . . 65

4.3 Prediction-Update Visualization. Test data (top), output predictions

(middle), and updated reconstructions (bottom) for TIMIT using

SRNN with AVF. Sequences run from left to right. The predictions

made by the model already contain the general structure of the data.

AVF explicitly updates the approximate posterior from the prior

prediction, focusing on inferencecorrectionsrather than re-estimation. 66

4.4 Improvement with Inference Iterations. Results are shown on the

TIMIT validation set using VRNN with AVF.(a) Average negative

ELBO per step with varying numbers of inference iterations during

training. Additional iterations result in improved performance.(b)

Average relative ELBO improvement from the initial (prior) estimate

at each inference iteration for a single model. Empirically, each

successive iteration provides diminishing additional improvement. . . 68

5.1 Redundancy Reduction. (a) Conditional densities for?¹G2jG1º. (b)

The marginal,?¹G2º di�ers from the conditional densities, thus,

I ¹ G1; G2º ¡ 0. (c) In the normalized space ofH, the corresponding

densities?¹H2jH1º are identical.(d) The marginal?¹H2º is identical

to the conditionals, soI¹ H1; H2º = 0• Thus, in this case, a conditional

a�ne transform removed the dependencies. . . . . . . . . . . . . . . 78
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5.2 Model Diagrams. (a) An autoregressive �ow pre-processes a data

sequence,x1:) , to produce a new sequence,y1:) , with reduced temporal

dependencies. This simpli�es dynamics modeling for a higher-level

sequential latent variable model,?\ ¹y1:) –z1:) º. Empty diamond

nodes represent deterministic dependencies, not recurrent states.
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rectangles represent convolutional layers (see Appendix). The three
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has been largely removed.Bottom: The noise values (solid) are

modeled using a base distribution (dashed and shaded) provided by a

higher-level model. By removing temporal redundancy from the data

sequence, the autoregressive �ow simpli�es dynamics modeling. . . . 81
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VideoFlow + AF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Decreased Temporal Correlation. (a) A�ne autoregressive �ows
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6.1 Amortized Policy Optimization. (a) 2D visualization of policy
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optimal estimate, resulting in anamortization gapin performance.

An iterative amortized policy network �nds an improved estimate.

(b) Diagrams of direct and iterative amortized policy optimization.

Larger circles denote distributions, and smaller red circles denote

terms in the objective,J . Dashed arrows denote amortized opti-
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C h a p t e r 1

INTRODUCTION

This thesis operates at multiple levels. At the lowest level, this thesis presents two

core techniques for improving probabilistic modeling, applied to both state estimation,

or perception, and action selection, orcontrol. At a higher level, this thesis forti�es a

bridge between neuroscience and machine learning through the theory of predictive

coding. And at a higher level still, this thesis is an attempt to help re-integrate the

concepts and framework ofcyberneticsback into the current scienti�c discourse.

1.1 Cybernetics

The �eld of cybernetics (Wiener, 1948; Ashby, 1956) was an agglomeration of

various disciplines, encompassing aspects of what would become computer science,

neuroscience, control theory, and the social sciences. Despite their diversity, a

common theme uni�ed these interdisciplinary investigations:feedback. Broadly,

feedback is the process offeeding the output of a systembackinto the system itself.

Such processes come in two �avors, with positive feedback amplifying a signal and

negative feedback attenuating a signal. Negative feedback is particularly useful in

engineering applications (Astrom and R. M. Murray, 2008), where it can reduce

the error between two signals. A related concept is that offeedforwardprocesses,

which attempt to predict a signal, preemptively reducing error. These ideas around

information processing formed the basis of cybernetics' formulation of perception

and control, both in biological and non-biological systems, in terms of feedback and

feedforward processes.

Perception and control, though seemingly disparate concepts, are intimately related.

In both cases, given a model of how the corresponding variable (states or actions)

a�ects observed outcomes, one can 1)inferan estimate of the variable that would result

in an observation, and 2)learn an improved model to better predict observations.

Inference and learning, by minimizing prediction errors, are negative feedback

processes, while the model itself, formulated across time, may involve feedforward

processes. Cybernetics formalized these techniques using probabilistic models,

i.e., models that estimate the likelihood of random outcomes, and variational

calculus, an optimization technique for estimating functions, including probability

distributions (Wiener, 1948). By using these techniques to evaluate and minimize
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error signals, such systems can exhibit goal-directed, orteleological, behavior, in

which desired outcomes appear to drive action. This provided a novel perspective

in understanding how goal-directed behavior can arise in biological organisms

composed of ordinary matter (Rosenblueth, Wiener, and Bigelow, 1943), as well as

a path toward constructing more capable machines.

With these new techniques and unifying perspectives, cybernetics helped usher in a

new era of interdisciplinary research, aiming to establish common computational

principles underlying both biological and non-biological systems. At this intersection

came the �rst computational models of neuron function (McCulloch and Pitts, 1943;

Rosenblatt, 1958), a formal de�nition of information (Wiener, 1942; Shannon, 1948)

(with connections to neural systems (Barlow, 1961)), and algorithms for negative

feedback perception and control (MacKay, 1956; Kalman, 1960). While further

advances continued in these directions (see Prieto et al. (2016) and references therein),

the �eld of cybernetics disbanded due to a variety of conspiring factors (Conway and

Siegelman, 2006), with the new techniques and ideas surviving in the o�shoots of

theoretical neuroscience, machine learning, control theory, etc. Figure 1.1 outlines

the progression of a subset of these ideas that are relevant to this thesis.

1.2 Neuroscience and Machine Learning, Convergence and Divergence

As the descendant �elds of cybernetics progressed in their respective areas, a renewed

dialogue formed between neuroscience and machine learning in the 1980s�1990s.

Neuroscientists, bolstered by new physiological and functional analyses, began

making traction in studying neural systems in probabilistic and information-theoretic

terms (Laughlin, 1981; Srinivasan, Laughlin, and Dubs, 1982; Barlow, 1989;

Bialek et al., 1991). In machine learning, improvements in probabilistic modeling

(Pearl, 1986) and arti�cial neural networks (Rumelhart, Hinton, and Williams, 1986)

combined with ideas from statistical mechanics (Hop�eld, 1982; Ackley, Hinton,

and Sejnowski, 1985) to yield new classes of models and training techniques. This

convergence of ideas, primarily centered around perception, resulted in new theories

of neural processing and improvements in their mathematical underpinnings.

In particular, the notion ofpredictive codingemerged within neuroscience (Srini-

vasan, Laughlin, and Dubs, 1982; Rao and Ballard, 1999). In its most general

form, predictive coding postulates that neural circuits are fundamentally engaged

in estimating probabilistic models of other neural activity and the surrounding

environment, with feedback and feedforward processes playing a central role. These
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models were initially formulated in early sensory areas, e.g., retina (Srinivasan,

Laughlin, and Dubs, 1982) and thalamus (Dong and Atick, 1995), using feedforward

processes to predict future neural activity. Similar notions were also extended

to higher-level sensory processing in neocortex. In a series of papers by David

Mumford (Mumford, 1991; Mumford, 1992), top-down neural projections (from

higher-level to lower-level sensory areas) were hypothesized to convey hierarchical

sensory predictions, whereas bottom-up neural projections were hypothesized to

convey prediction errors. Through a negative feedback process, these errors would

then update state estimates. These ideas were formalized and analyzed by Rao and

Ballard, 1999, formulating a simpli�ed arti�cial neural network model of images,

reminiscent of a Kalman �lter (Kalman, 1960).

Feedback and feedforward processes also featured prominently in machine learning.

Indeed, the primary training algorithm for arti�cial neural networks, backpropagation

(Rumelhart, Hinton, and Williams, 1986), literallyfeeds(propagates) the output

prediction errorsbackthrough the network, i.e., negative feedback. During this period,

the technique of variational inference was rediscovered within machine learning

(Hinton and Van Camp, 1993; Neal and Hinton, 1998), recasting approximate

probabilistic inference using variational calculus. This technique proved essential in

formulating the Helmholtz machine (Dayan, Hinton, et al., 1995; Dayan and Hinton,

1996), a hierarchical probabilistic model parameterized by arti�cial neural networks.

Similar advances were made in autoregressive probabilistic models (Frey, Hinton,

and Dayan, 1996; Y. Bengio and S. Bengio, 2000), using arti�cial neural networks

to form sequential feedforward predictions, as well as new classes of invertible

probabilistic models (Comon, 1994; Parra, Deco, and Miesbach, 1995; Deco and

Brauer, 1995; Bell and Sejnowski, 1997). Unfortunately, as the �eld moved toward

simpler, more tractable models in the late 1990s, funding became scarce, and the

resulting chill of an �AI winter� slowed progress in these areas.

These new ideas regarding variational inference and probabilistic models, particularly

the Helmholtz machine (Dayan, Hinton, et al., 1995), in�uenced predictive coding.

Speci�cally, Karl Friston utilized variational inference to formulate hierarchical

dynamical models of neocortex (Friston, 2005; Friston, 2008). In line with Mumford's

proposal (Mumford, 1992), these models contain multiple levels of variables, with

each level attempting to predict its future activity (feedforward) as well as the

activity at lower levels, closer to the input data. Through variational inference,

prediction errors across levels facilitate updating higher-level estimates (negative
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Figure 1.1:Conceptual Overview. The concepts put forth by cybernetics permeated
the modern �elds of theoretical neuroscience (left), machine learning (center), and
control theory (right). The graph attempts to identify key concepts and several
relevant works in these areas, although the graph can barely begin to capture the full
breadth and depth of prior work, as well as the overlap between control theory and
theoretical neuroscience. At the bottom of the graph, we have coarsely labeled how
Parts II & III of this thesis �t into the conceptual landscape.

feedback). Such models have incorporated many aspects of neuroscience, including

local learning rules (Friston, 2005) and attention (Spratling, 2008; Feldman and

Friston, 2010; Kanai et al., 2015), and have been coarsely compared with neural

circuits (Bastos et al., 2012; Keller and Mrsic-Flogel, 2018; Walsh et al., 2020).

While predictive coding and other forms of Bayesian brain theories have become

increasingly popular (Doya et al., 2007; Friston, 2009; Clark, 2013), empirically

testing these normative models remains challenging. This is partially due to the

di�culty of distinguishing between the large number of speci�c design choices and

the more general theoretical claims of probabilistic learning and inference (S. J.

Gershman, 2019). Further, because these models have been limited to simpli�ed

implementations, often without learned parameters, it has been di�cult to bridge the

gap to the complexity of biological neural systems.
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