Learned Feedback & Feedforward
Perception & Control

Thesis by
Joseph L. Marino

In Partial Fulfillment of the Requirements for the
Degree of
Doctor of Philosophy

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2021
Defended May 21, 2021

© 2021

Joseph L. Marino
ORCID: 0000-0001-6387-8062

All rights reserved

ii

To my father, Steve, and my grandmother, Elizabeth.

iii

iv

ACKNOWLEDGEMENTS

To the late Jerry Pine, thank you for allowing me into the Caltech community.

To my advisors, Yisong Yue and Pietro Perona, thank you for your guidance,

encouragement, and compassion.
To my collaborators, thank your for your dedication and insights.

To the vision lab, Steve Branson, Bo Chen, Ron Appel, Eyrun Eyjolfsdottir, Krzysztof
Chalupka, David Hall, Mason McGill, Matteo Ruggero Ronchi, Grant Van Horn,
Serim Ryou, Alvita Tran, Oisin Mac Aodha, Cristina Segalin, Tony Zhang, Sara
Beery, Eli Cole, Jennifer Sun, and Neehar Kondapaneni: thank you for all of the

wonderful memories.

To the Yue Crew, thank you for broadening my perspectives. Special thanks to my
fellow former physicists Jeremy Bernstein and Uriah Israel.

To my CNS cohort, Yang Liu and Koichiro Kajikawa, thank you for your friendship.
To IMPLICIT, thank you for the improvisational space to explore ideas.
To all of the other friends, thank you for making my time at Caltech memorable.

To the Hairy Chests, Matteo Ruggero Ronchi and Alessandro Zocca, thank you for
the adventures and support. Our Italian coffee breaks were a highlight of the day.

To my family, thank you for your love.

ABSTRACT

The notions of feedback and feedforward information processing gained prominence
under cybernetics, an early movement at the dawn of computer science and theoretical
neuroscience. Negative feedback processing corrects errors, whereas feedforward
processing makes predictions, thereby preemptively reducing errors. A key insight
of cybernetics was that such processes can be applied to both perception, or state
estimation, and control, or action selection. The remnants of this insight are found
in many modern areas, including predictive coding in neuroscience and deep latent
variable models in machine learning. This thesis draws on feedback and feedforward
ideas developed within predictive coding, adapting them to improve machine learning
techniques for perception (Part IT) and control (Part IIT). Upon establishing these
conceptual connections, in Part IV, we traverse this bridge, from machine learning

back to neuroscience, arriving at new perspectives on the correspondences between
these fields.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

Yang, Ruihan, Yibo Yang, Joseph Marino, and Stephan Mandt (2021). “Hierarchical
Autoregressive Modeling for Neural Video Compression”. In: International
Conference on Learning Representations. URL: https://openreview.net/
pdf?i1d=TK_6nNb_C74g.

J.M. participated in the conception of the project and the writing of the manuscript.

Guerra, Alex and Joseph Marino (2020). “Sequential Autoregressive Flow-Based
Policies”. In: ICML workshop on Invertible Neural Networks, Normalizing Flows,
and Explicit Likelihood Models.

J.M. participated in the conception of the project, conducting experiments, and
the writing of the manuscript.

Marino, Joseph, Lei Chen, Jiawei He, and Stephan Mandt (2020). “Improving
Sequential Latent Variable Models with Autoregressive Flows”. In: Symposium
on Advances in Approximate Bayesian Inference, pp. 1-16. urL: http: //
proceedings.mlr.press/v118/marino20a.html.

J.M. participated in the conception of the project, implementation, analysis, and
the writing of the manuscript.

Marino, Joseph, Alexandre Piché, Alessandro Davide Ialongo, and Yisong Yue
(2020). “Iterative Amortized Policy Optimization”. In: Preprint. urL: https:
//arxiv.org/abs/2010.10670.

J.M. participated in the conception of the project, conducting experiments, and
the writing of the manuscript.

He, Jiawei, Yu Gong, Joseph Marino, Greg Mori, and Andreas Lehrmann (2019).
“Variational autoencoders with jointly optimized latent dependency structure”.
In: International Conference on Learning Representations. URL: https: //
openreview.net/pdf?id=SJgsCjCqt7.

J.M. participated in the conception of the project, derivations, analysis, and writing
of the manuscript.

Marino, Joseph (2019). “Predictive Coding, Variational Autoencoders, and Biological
Connections”. In: NeurlPS Workshop on Real Neurons and Hidden Units. URL:
https://openreview.net/forum?id=SyeumQYUUH.

J.M. participated in the conception of the project and the writing of the manuscript.

Marino, Joseph, Alexandre Piché, and Yisong Yue (2019). “On the Design of Varia-
tional RL Algorithms”. In: NeurIPS Workshop on Deep Reinforcement Learning.
URL:https://drive.google.com/file/d/10hBOAS_naGNgSNG8plkgElnc9HRmMYde/
view?usp=drivesdk.
J.M. participated in the conception of the project, conducting experiments, and
the writing of the manuscript.

https://openreview.net/pdf?id=TK_6nNb_C7q
https://openreview.net/pdf?id=TK_6nNb_C7q
http://proceedings.mlr.press/v118/marino20a.html
http://proceedings.mlr.press/v118/marino20a.html
https://arxiv.org/abs/2010.10670
https://arxiv.org/abs/2010.10670
https://openreview.net/pdf?id=SJgsCjCqt7
https://openreview.net/pdf?id=SJgsCjCqt7
https://openreview.net/forum?id=SyeumQYUUH
https://drive.google.com/file/d/10hB0AS_naGNgSNG8p1kqElnc9HRmMYde/view?usp=drivesdk
https://drive.google.com/file/d/10hB0AS_naGNgSNG8p1kqElnc9HRmMYde/view?usp=drivesdk

vii

He, Jiawei, Andreas Lehrmann, Joseph Marino, Greg Mori, and Leonid Sigal (2018).
“Probabilistic video generation using holistic attribute control”. In: Proceedings
of the European Conference on Computer Vision (ECCV), pp. 452—467. URL:
http://openaccess.thecvf.com/content_ ECCV_2018/html/Jiawei_
He_Probabilistic_Video_Generation_ECCV_2018_paper.html.

J.M. participated in the conception of the project, derivations, baseline comparisons,
and the writing of the manuscript.

Marino, Joseph, Milan Cvitkovic, and Yisong Yue (2018). “A general method for
amortizing variational filtering”. In: Advances in Neural Information Processing
Systems, pp. 7857-7868. urL: http://papers.nips.cc/paper/8011-a-
general -method- for-amortizing-variational-filtering.

J.M. participated in the conception of the project, implementation, analysis, and
the writing of the manuscript.

Marino, Joseph, Yisong Yue, and Stephan Mandt (2018). “Iterative Amortized
Inference”. In: International Conference on Machine Learning, pp. 3403-3412.
URL: http://proceedings.mlr.press/v80/marinol8a.html.

J.M. participated in the conception of the project, implementation, analysis, and
the writing of the manuscript.

http://openaccess.thecvf.com/content_ECCV_2018/html/Jiawei_He_Probabilistic_Video_Generation_ECCV_2018_paper.html
http://openaccess.thecvf.com/content_ECCV_2018/html/Jiawei_He_Probabilistic_Video_Generation_ECCV_2018_paper.html
http://papers.nips.cc/paper/8011-a-general-method-for-amortizing-variational-filtering
http://papers.nips.cc/paper/8011-a-general-method-for-amortizing-variational-filtering
http://proceedings.mlr.press/v80/marino18a.html

viii

TABLE OF CONTENTS
[Acknowledgements|o Lo iv
BBSIac v v o e v
[Published Content and Contributions| vi
Table of Contents| vii
[List of Illustrations| X
Listof Tablesl Xxi
IL__Introductionl 1
(Chapter I: Introduction| o L. 2
(1. Cybernetics|. e 2
[1.2° Neuroscience and Machine Learning, Convergence and Divergence| . 3
(1.3 Predictive Coding Meets Machine Learning|. 7
(.4 _The Future of Feedback & Feedforward 8
(Chapter II: Background| 0., 15
RI Introduction] 15
2.2 Probabilistic Modelsl L 15
2.3 Variational Inference|o oL, 23
2.4 Discussion| 30
I Perception| 37
[Chapter III: Iterative Amortized Inference| 38
3.1 Introductionl 38
[3.2 Issues with Direct Inference Models|. 39
3.3 Tterative Amortized Inferencel 42
3.4 [terative Inference in Latent Gaussian Models|. 44
3.5 Experiments| 47
3.6 Discussion| 52
(Chapter IV: Amortized Variational Filtering| 56
4.1 Introductionl o o 56
4.2 Background oo 57
#.3 Variational Filtering|, 60
4.4 Experiments| 64
BS5 Discussion]o 70
4.6 Appendix: Filtering ELBO Derivation| 70
(Chapter V: Improving Sequential Latent Variable Models with Autoregressive |
CFIOWS . . o o oo 76

ix

5.2 Method 77
[5.3 Experiments| 80
0.4 Discussionlo 86
[5.5 Appendix: ELBO Derivation| 86
111 Control 90
(Chapter VI: Iterative Amortized Policy Optimization| 91
6.1 Introductionl 91
[6.2 Background| oo 93
[6.3 Iterative Amortized Policy Optimization| 98
[6.4 Experiments| 102
6.5 Discussionl 108
[Chapter VII: Sequential Autoregressive Flow-Based Policies| 114
[/.1 Introductionl 114
[7.2 Autoregressive Flow-Based Policies| 115
[/.3 Experiments| 117
(/4 Discussion| 121

[V Discussion| 124

[Chapter VIII: Connections to Predictive Coding & Neuroscience| 125
(8.1 Introductionl 125
[8.2 Predictive Coding|, 125
8.3 Connections| 135
[8.4 Correspondences|. o 137
8.5 Discussionl L 148

[Chapter IX: Conclusion| 158
0.1 Iterative Estimation| 158
[9.2 Combining Generative Perception & Control| 160
[9.3 Controlling Perception| 163

[9.4 Bridging Neuroscience and Machine Learning] 169

Number

LIST OF ILLUSTRATIONS

1.1

Conceptual Overview. The concepts put forth by cybernetics per-

meated the modern fields of theoretical neuroscience (left), machine

learning (center), and control theory (right). The graph attempts

to identify key concepts and several relevant works in these areas,

although the graph can barely begin to capture the full breadth and

depth of prior work, as well as the overlap between control theory

and theoretical neuroscience. At the bottom of the graph, we have

coarsely labeled how Parts|ll| & [[II] of this thesis fit into the conceptual

landscape.|

2.1

Maximum Likelihood Estimation. A data distribution, pga, pro-

duces samples, x, of a random variable X. Maximum likelihood

estimation attempts to fit a model distribution, pg, to the empirical

distribution of samples by maximizing the log-likelihood of data

samples under the model (Eq.[2.3).

2.2

Dependency Structures. Circles denote random variables, with

gray denoting observed variables and white denoting latent variables.

Arrows denote probabilistic conditional dependencies. From left to

right: autoregressive model (Eqgs.[2.5| & [2.6)), latent variable model

(Eq.[2.7), hierarchical Tatent variable model (Eq.[2.10), autoregressive

or sequential latent variable model (Eqg.[2.11]). For clarity, we have

drawn a subset of the possible dependencies in the final model.|. . . .

18

2.3

Model Parameterization & Computation Graph. The diagram

depicts a simplified computation graph for a deep autoregressive

distribution at each step, while gray circles again denote the (distri-

bution of) data observations. Smaller red circles denote each of the

log-likelihood terms in the objective. Gradients w.r.t. these terms

are backpropagated through the networks parameterizing the model’s

distribution parameters (red dotted lines).|

Xi

[2.4 ELBO Computation Graphs. (a) Basic computation graph for

| —tional ik Outlined circles d TSbuG Sall l

red circles denote terms in the ELBO objective. Arrows, again, denote

conditional dependencies. This notation can be used to express (b)

hierarchical and (c) sequential models with various model dependencies.| 25

2.5

Stochastic Gradient Estimation. (a) Variational inference with

parametric approximate posteriors requires optimizing £ w.r.t. the

distribution parameters, A. This often requires estimating stochastic

gradients (red dotted lines). (b) The score function estimator (Eq.[2.26])

1s applicable to any distribution, but suffers from high variance. Note:

the solid red arrow denotes the per-sample objective, /(X, z; 6). (c)

The pathwise derivative estimator (Eq.[2.27/), in contrast, has lower

variance, but is less widely applicable.|.

2.6

Variational Autoencoder (VAE). VAEs combine direct amortization

(Eq.2.28)) and the pathwise derivative estimator (Eq.[2.27] top) with

Gaussian approximate posteriors to train deep latent variable models.

In the model diagram (center), the amortized inference model (left)

acts as an encoder, with the conditional likelihood (right) acting as a

decoder. Each are parameterized by deep networks.|

3.1

The Amortization Gap. Optimization surface of L (in nats) for a

2-D latent Gaussian model and an MNIST data example. Shown

on the plots are the optimal estimate (%), the output of a direct

inference model (4), and an optimization trajectory of gradient ascent

(e), mnitialized at the blue square at (0,0). The plot on the right shows

an enlarged view near the optimum. Gradient-based optimization

outperforms the direct inference model, exhibiting an amortization

gap in performance: L(k) > L(e)> L(4)]

40

3.2

Lack of Prior Information. Naive direct inference models, encoding

only observations, cannot account for conditional priors in structured

latent variable models. These arise in hierarchical (left) and sequential

(right) latent variable models. For instance, in hierarchical models,

bottom-up approximate posteriors at intermediate levels cannot ac-

count for conditional “top-down” priors which result from sampling

higher-level latent variables.|

41

3.3

Iterative Amortized Inference. Computation graph for a latent

variable model with iterative amortized inference. Red dots, denoting

errors or gradients from the ELBO objective, are used to update the

current estimate of the approximate posterior parameters, A. Using

the pathwise derivative estimator, one can update the inference model

parameters, ¢, learning to efficiently perform iterative inference.| . . .

43

3.4

Automatic Top-Down Inference. Bottom-up direct amortized infer-

ence cannot account for conditional priors, whereas iterative amortized

inference automatically accounts for these priors through gradients or

EITOIS. . . v v v e e e e e e e e

3.5

Iterative Amortized Inference Optimization. Optimization trajec-

tory on L (in nats) for an iterative inference model with a 2D latent

Gaussian model for a particular MNIST example. The estimate is

initialized at (0, 0) (cyan square), and the iterative inference model

adaptively adjusts inference update step sizes to iteratively refine the

approximate posterior estimate (4) to arrive at the optimum (%).. . .

3.6

Amortized vs. Gradient-Based Optimization. Average EL.LBO over

MNIST validation set during inference optimization as a function of

(a) inference iterations and (b) inference wall-clock time. Iterative

amortized inference converges faster than gradient-based optimizers to

better estimates, remaining stable over hundreds of iterations, despite

only being trained with 16 inference iterations.|

3.7

Reconstructions Over Inference Iterations. During inference (left

to right), reconstruction means become gradually sharper, more closely

resembling data examples (right).|

3.8

Reduced Gradient Magnitudes. Gradient magnitudes (vertical axis)

over inference iterations (indexed by color on right) during training

(horizontal axis) on RCV1. Approximate posterior mean gradient

magnitudes decrease over inference iterations as estimates approach

3.9

Hyperparameter Comparison. ELLBO for direct and iterative infer-

ence models on binarized MNIST for (a) additional inference iterations

during training and (b) additional samples. Iterative inference models

improve significantly with both quantities.|.

51

Variational Filtering Inference. The diagram shows filtering infer-

ence within a sequential latent variable model, as outlined in Algo-

rithm[2| The central gray region depicts inference optimization at step

t, initialized at or near the corresponding prior (white), pg(z;|X<;, Z<;).

Sampling from the approximate posterior (blue) generates the con-

ditional likelihood (green), po(X;|X<;, Z<;), Which is evaluated at the

observation (gray), X,, to calculate the prediction error. This term is

combined with the KL divergence between the approximate posterior

and prior, yielding the step ELBO (red), £, (Eq. 4.7). Inference

optimization (E-step) involves finding the approximate posterior that

maximizes the step ELBO terms.|

. iltering Inference Models for R R , an

Each diagram shows the computational graph for inferring the approx-

imate posterior parameters, A7, at step . Previously proposed methods

rely on hand-crafted architectures of observations, hidden states, and

latent variables. AVF is a simple, general filtering procedure that only

requires the local inference gradient.|.

4.3

Prediction-Update Visualization. Test data (top), output predictions

(middle), and updated reconstructions (bottom) for TIMIT using

SRNN with AVE. Sequences run from left to right. The predictions

made by the model already contain the general structure of the data.

AVF explicitly updates the approximate posterior from the prior

prediction, focusing on inference corrections rather than re-estimation.| 66

4.4

Improvement with Inference Iterations. Results are shown on the

TIMIT validation set using VRNN with AVF. (a) Average negative

ELBO per step with varying numbers of inference iterations during

training. Additional iterations result in improved performance. (b)

Average relative ELBO improvement from the initial (prior) estimate

at each inference iteration for a single model. Empirically, each

successive iteration provides diminishing additional improvement.| . .

5.1

Redundancy Reduction. (a) Conditional densities for p(x2(x;). (b)

The marginal, p(x;) differs from the conditional densities, thus,

1 (x1;x2) > 0. (c) In the normalized space of y, the corresponding

densities p(y,|y;) are identical. (d) The marginal p(y,) is identical

to the conditionals, so J (yy; y») = 0. Thus, in this case, a conditional

affine transform removed the dependencies.|

Xiv

5.2

Model Diagrams. (a) An autoregressive flow pre-processes a data

sequence, X .1, to produce a new sequence, y;.r, with reduced temporal

dependencies. This simplifies dynamics modeling for a higher-level

sequential latent variable model, po(yi.7,Zi.7). Empty diamond

nodes represent deterministic dependencies, not recurrent states.

(b) Diagram of the autoregressive flow architecture. Blank white

rectangles represent convolutional layers (see Appendix). The three

stacks of convolutional layers within the blue region are shared. cat

5.3

Sequence Modeling with Autoregressive Flows. Top: Pixel val-

ues (solid) for a particular pixel location in a video sequence. An

autoregressive flow models the pixel sequence using an affine shift

(dashed) and scale (shaded), acting as a frame of reference. Middle:

Frames of the data sequence (top) and the resulting “noise™ (bottom)

from applying the shift and scale. The redundant, static background

has been largely removed. Bottom: The noise values (solid) are

modeled using a base distribution (dashed and shaded) provided by a

higher-level model. By removing temporal redundancy from the data

sequence, the autoregressive flow simplifies dynamics modeling.|. . .

54

Flow Visualization for SLVM + 1-AF on Moving MNIST (left) and

KTH Actions (right).|

3.5

Improved Generated Samples. Random samples generated from

(a) VideoFlow and (b) VideoFlow + AF, each conditioned on the first

3 frames. Using AF produces more coherent samples. The robot arm

blurs for VideoFlow in samples 1 and 4 (red), but does not blur for

VideoFlow + AEl

5.6

Decreased Temporal Correlation. (a) Affine autoregressive flows

result in sequences, y;.7, with decreased temporal correlation, corry,

as compared with that of the original data, corry. (b) For SLVM +

1-AF, corry decreases during training on KTH Actions.|

5.7

Improved Generalization. The low-level reference frame improves

generalization to unseen sequences. Train and test negative log-

likelihood bound histograms for (a) SLVM and (b) SLVM + 1-AF on

KTH Actions. (¢) The generalization gap for SLVM + 1-AF remains

small for varying amounts of KTH training data, while it becomes

worse in the low-data regime for SLVM.|.

XV

6.1

Amortized Policy Optimization. (a) 2D visualization of policy

optimization. A direct amortized policy network fails to output an

optimal estimate, resulting in an amortization gap in performance.

An iterative amortized policy network finds an improved estimate.

(b) Diagrams of direct and iterative amortized policy optimization.

Larger circles denote distributions, and smaller red circles denote

terms in the objective, /. Dashed arrows denote amortized opti-

mizers. [terative amortization uses gradient-based feedback during

optimization, whereas direct amortization doesnot.|.

95

6.2

Estimating Multiple Policy Modes. Unlike direct amortization,

which is restricted to a single estimate, the stochasticity of iterative

optimization allows iterative amortization to effectively sample from

multiple high-value modes in the action space. This capability is

shown for a particular state in Ant-v2, showing multiple optimization

runs across two action dimensions (Left). Each colored square denotes

an initialization. The optimizer finds both modes, with the assigned

density plotted on the Right. This capability provides increased

flexibility in action exploration.|

6.3

Mitigating Value Overestimation. Using the same value estimation

setup (5 = 1), shown on Ant-v2, iterative policy optimization results

in (a) higher value overestimation bias and (b) a more rapidly changing

policy as compared with direct policy optimization. Increasing

helps to mitigate these issues by further penalizing variance in the

6.4

Policy Optimization. Visualization over time steps of (a) one di-

mension of the policy distribution and (b) the improvement in the

objective, A/, across policy optimization iterations.|

6.5

Performance Comparison. Iterative amortized policy optimization

performs comparably with or better than direct amortized policies

across a range of MuJoCo environments. Performance curves show

6.6

Amortization Gap. Estimated amortization gaps per step for direct

and iterative amortized policy optimization. Iterative amortization

achieves comparable or lower gaps across environments. Gaps are

estimated using stochastic gradient-based optimization over 100 ran-

6.7

Additional Performance Comparison. Results are shown on the

remaining MuJoCo environments from OpenAl gym. Performance

es show the mean and + standard deviation ove andom seed

Multiple Policy Modes. (a) Histogram of distances between policy

means () across optimization runs (i and j) over seeds and states

on Walker2d-v2 at 3 million environment steps. For the state with

the largest distance, (b) shows the projected optimization surface on

each pair of action dimensions, and (c) shows the policy density for

10 optimization runs.|

105

Varying Iterations During Training. Performance of iterative amor-

tized policy optimization for varying numbers of iterations during

training. Increasing the number of iterations generally results in

improvements. Curves show the mean and + standard deviation over

[6.10 Amortization Gap of Varying Iterations During Training. Corre-

sponding amortization gaps for varying numbers of iterations during

training. We generally see that increasing the number of iterations

generally reduces the amortizationgap.|

6.11

Comparison with Iterative Optimizers. Average estimated ob-

jective over policy optimization iterations, comparing with Adam

(Kingma and Ba, 2014) and CEM (Rubinstein and Kroese, 2013)).

These iterative optimizers require over an order of magnitude more it-

erations to reach comparable performance with iterative amortization,

making them impractical in many applications.|

6.12

Optimizing Model-Based Value Estimates. (a) Performance com-

parison of direct and iterative amortization using model-based value

estimates. (b) Planned trajectories over policy optimization iterations.

(c) The corresponding estimated objective increases over iterations.

(d) Zero-shot transfer of iterative amortization from model-free (MF)

to model-based (MB) estimates.|

108

Xvii

/.1 Autoregressive Flow-Based Policy. An autoregressive flow-based

policy converts samples from a base distribution, 74 (u,[s;), using an

a;. l'he affine transform (top) acts as a feedforward policy, purely

|
|
affine transform with parameters 3y(a-,;) and dg(a-,), into actions, |
|
|
|

acts as a feedback policy. Each are parameterized by a separate deep

network, with parameters 6 and ¢, respectively.| 116

/.2 Performance Comparison, 2x256 (Default) Policy Network. Com- |

parison between SAC and ARSAC with an action window of 5 time |

I
I
I
I
| conditioned on previous actions, whereas the base distribution (bottom)
I
I
I
I
I

steps across dm_control suite environments. Each curve shows the |

[7.3 Humanoid Performance Comparison, 2 X 256 (Default) Policy |

| Network. Comparison between SAC and ARSAC with varying action |
| window sizes on humanoid tasks from dm_control suite. Fach |
jati , 119
| 7.4 Performance Comparison, 1 X 32 Policy Network. Comparison |
| between SAC and ARSAC with an action window of 5 time steps |

[across dm_control suite environments. Each curve shows the mean |

[7.5 Policy Visualization & Distillation. Left: Visualization of the base |

| distribution and autoregressive flow for various action dimensions |

| across various environments. Right: Visualization after policy |

8.1 Spatiotemporal Predictive Coding. (a) Spatial predictive coding

models and removes spatial dependencies. In the domain of natural

image contains highlighted edges (right). (b) Temporal predictive

1mages, one version of linear predictive coding is ZCA whitening, |

coding models and removes temporal dependencies. In the domain of

I
I
I
| which yields center-surround filters (left). As a result, the whitened
I
I
I

natural video, this tends to remove static backgrounds.| 127

Xviii

8.2

Brain Anatomy & Cortical Circuitry. Left: Sensory inputs enter

first-order relays in thalamus from sensory organs. Thalamus forms

reciprocal connections with neocortex. Neocortex consists of hierar-

chies of cortical areas, with both forward and backward connections.

Right: Neocortex is composed of six layers (I-VI), with specific

neuron classes and connections at each layer. The simplified schematic

depicts two cortical columns. Black and red circles represent excita-

tory and inhibitory neurons respectively, with arrows denoting major

connections. This basic circuit motif is repeated with slight variations

throughout neocortex.|

8.3

Hierarchical Predictive Coding. The diagram shows the basic

computation graph for a Gaussian latent variable model with MAP

inference. The insets show the weighted error calculation for the

latent (left) and observed (right) variables.|

8.4

Hierarchical Predictive Coding & VAEs. Computation diagrams

for (a) hierarchical predictive coding, (b) VAE with direct amortized

inference, and (¢) VAE with iterative amortized inference (Chapter|3)).

JT denotes the transposed Jacobian matrix of the generative model’s

conditional likelihood. Red dotted lines denote gradients, and black

dashed lines denote amortized inference. Hierarchical predictive

coding and VAEs are highly similar in both their model formulation

and inference approach.| o o 0oL

8.5

Pyramidal Neurons & Deep Networks. Connecting deep latent

variable models with predictive coding places deep networks (bottom)

in correspondence with the dendrites of pyramidal neurons (top). This

1s in contrast with conventional one-to-one analogies of biological

and artificial neurons, suggesting a larger role for non-linear dendritic

computation and alternative correspondences for backpropagation.| . .

8.6

Pyramidal Neurons & Amortization. In predictive coding, infer-

ence updating is implemented using forward pyramidal neurons in

cortex, taking prediction errors as input. In deep latent variable

models, iterative amortized inference plays a similar role, continuing

the analogy of pyramidal neurons and deep networks. Interestingly,

this suggests a separation of processing in apical and basal dendrites,

incorporating errors from the current and lower latent level,|

Xix

8.7

Backpropagation. Placing deep networks in correspondence with

pyramidal neuron dendrites suggests an alternative perspective on the

biological-plausibility of backpropagation. In deep latent variable

models, backpropagation is only performed across variables that are

directly connected through a conditional probability (left). From

the perspective presented here, this corresponds to learning within

pyramidal neurons. One possible implementation may be through

backpropagating action potentials, perhaps combined with other

neuromodulatory inputs (right)|,

8.8

Computational Schematic of the Visual Pathway. Interpreting

the early visual pathway from the perspective of a latent variable

model, we can assign computational functions to retina, LGN, and

cortex. Retina and LGN are interpreted as implementing normalizing

tlows, i.e. spatiotemporal predictive coding, reducing spatial and

temporal redundancy in the visual input. LGN also serves as the

lowest level for hierarchical predictions, which are computed through

backward connections in cortex. Using prediction errors throughout

the hierarchy, forward cortical connections update latent estimates.|.

. 145

8.9

Adding & Removing Dependencies with Normalizing Flows. Nor-

malizing flows provides a general mathematical framework for re-

moving (left) or adding (right) probabilistic dependencies. Using

lateral interactions, one can move between a normalized (top) or

un-normalized (bottom) space. Normalized spaces have benefits for

compression, whereas un-normalized spaces are more expressive.

Neural systems may employ these transforms for sensory and motor

Processing.|

147

9.1

Thesis Summary. Graphical representations of perception (a—c) and

control (d—e) using feedback (a, b, d) and feedforward (c, e) processes.|159

9.2

Combining Generative Perception & Control. Graphical represen-

tation combining generative perception (Part|ll) and control (Part|III)).

Internal perceptual latent variables are a hierarchical variable in the

control policy. Importantly, the agent maximizes the task-relevant

information gain from the environment’s state observation, rather than

the conditional log-likelihood.|

162

9.3

State Distributions & Rewards. A quadratic reward function, r(S),

can be equivalently expressed as a Gaussian desired state distribution,

Pa(S)] o

9.4

Comparator Circuit. Using the error between the current state and

the input reference signal (or setpoint), a compensator-effector function

updates the output control. The feedback takeofl function converts this

control output into the current state. An ideal compensator-effector

minimizes the discrepancy between the current state and the reference

signal. Adapted from Wiener, 1948

XXi

LIST OF TABLES

Number Page
[1.1 Thesis Organization.| 8
[3.1 Negative Log-Likelihood on binarized MNIST (in nats) for direct |
[anditerative amortized inference] 52
[3.2 Negative Log-Likelihood on CIFAR-10 (in bits/dim.) tor direct and |
[iterative amortized inference] 52

3.3 Perplexity on RCV1 for direct and iterative amortized inference.[. . . 52

4.1 Average negative ELBO per step (in nats) on the TIMIT speech

dataset for SRNN and VRNN with the respective originally proposed

filtering procedures (baselines) and with AVE| 69

4.2 Average negative ELBO per step (in nats per dimension) on the

KTH Actions video dataset for SVG with the originally proposed

filtering procedure (baseline) and with AVE|. 69

datasets for SRNN with and without AVE. Results from Fraccaro,

S. K. Sgnderby, et al., 2016|are provided for comparison, however,

our model implementation differs in several aspects (see Marino,

Cvitkovic, and Yue,2018).| 69

5.1 Quantitative Comparison. Average test and (train) negative log-

likelihood in nats per dimension for Moving MNIST, BAIR Robot

Pushing, and KTH Actions. Lower values are better.| 85

I
I
I
I
I
I
I
[4.3 Average negative ELBO per step (in nats) on polyphonic music
I
I
I
I
I
I
I
I

8.1 Proposed Neural Correspondences of Hierarchical Predictive Coding.| 133

Part I

Introduction

Chapter 1

INTRODUCTION

This thesis operates at multiple levels. At the lowest level, this thesis presents two
core techniques for improving probabilistic modeling, applied to both state estimation,
or perception, and action selection, or control. At a higher level, this thesis fortifies a
bridge between neuroscience and machine learning through the theory of predictive
coding. And at a higher level still, this thesis is an attempt to help re-integrate the

concepts and framework of cybernetics back into the current scientific discourse.

1.1 Cybernetics

The field of cybernetics (Wiener, |1948; Ashby, |1956) was an agglomeration of
various disciplines, encompassing aspects of what would become computer science,
neuroscience, control theory, and the social sciences. Despite their diversity, a
common theme unified these interdisciplinary investigations: feedback. Broadly,
feedback is the process of feeding the output of a system back into the system itself.
Such processes come in two flavors, with positive feedback amplifying a signal and
negative feedback attenuating a signal. Negative feedback is particularly useful in
engineering applications (Astrom and R. M. Murray, 2008)), where it can reduce
the error between two signals. A related concept is that of feedforward processes,
which attempt to predict a signal, preemptively reducing error. These ideas around
information processing formed the basis of cybernetics’ formulation of perception
and control, both in biological and non-biological systems, in terms of feedback and

feedforward processes.

Perception and control, though seemingly disparate concepts, are intimately related.
In both cases, given a model of how the corresponding variable (states or actions)
affects observed outcomes, one can 1) infer an estimate of the variable that would result
in an observation, and 2) learn an improved model to better predict observations.
Inference and learning, by minimizing prediction errors, are negative feedback
processes, while the model itself, formulated across time, may involve feedforward
processes. Cybernetics formalized these techniques using probabilistic models,
i.e., models that estimate the likelihood of random outcomes, and variational
calculus, an optimization technique for estimating functions, including probability

distributions (Wiener, |1948). By using these techniques to evaluate and minimize

3

error signals, such systems can exhibit goal-directed, or teleological, behavior, in
which desired outcomes appear to drive action. This provided a novel perspective
in understanding how goal-directed behavior can arise in biological organisms
composed of ordinary matter (Rosenblueth, Wiener, and Bigelow, |1943), as well as

a path toward constructing more capable machines.

With these new techniques and unifying perspectives, cybernetics helped usher in a
new era of interdisciplinary research, aiming to establish common computational
principles underlying both biological and non-biological systems. At this intersection
came the first computational models of neuron function (McCulloch and Pitts, |1943;
Rosenblatt, [1958]), a formal definition of information (Wiener, [1942}; Shannon, [1948)
(with connections to neural systems (Barlow, 1961)), and algorithms for negative
feedback perception and control (MacKay, 1956; Kalman, |1960). While further
advances continued in these directions (see Prieto et al. (2016) and references therein),
the field of cybernetics disbanded due to a variety of conspiring factors (Conway and
Siegelman, 2006)), with the new techniques and ideas surviving in the offshoots of
theoretical neuroscience, machine learning, control theory, etc. Figure [I.T] outlines

the progression of a subset of these ideas that are relevant to this thesis.

1.2 Neuroscience and Machine Learning, Convergence and Divergence

As the descendant fields of cybernetics progressed in their respective areas, a renewed
dialogue formed between neuroscience and machine learning in the 1980s—1990s.
Neuroscientists, bolstered by new physiological and functional analyses, began
making traction in studying neural systems in probabilistic and information-theoretic
terms (Laughlin, [1981; Srinivasan, Laughlin, and Dubs, 1982; Barlow, |1989;
Bialek et al.,|1991). In machine learning, improvements in probabilistic modeling
(Pearl, |1986)) and artificial neural networks (Rumelhart, Hinton, and Williams, |1986)
combined with ideas from statistical mechanics (Hopfield, |1982; Ackley, Hinton,
and Sejnowski, 1985) to yield new classes of models and training techniques. This
convergence of ideas, primarily centered around perception, resulted in new theories

of neural processing and improvements in their mathematical underpinnings.

In particular, the notion of predictive coding emerged within neuroscience (Srini-
vasan, Laughlin, and Dubs, [1982; Rao and Ballard, [1999). In its most general
form, predictive coding postulates that neural circuits are fundamentally engaged
in estimating probabilistic models of other neural activity and the surrounding

environment, with feedback and feedforward processes playing a central role. These

4

models were initially formulated in early sensory areas, e.g., retina (Srinivasan,
Laughlin, and Dubs, [1982) and thalamus (Dong and Atick, |1995)), using feedforward
processes to predict future neural activity. Similar notions were also extended
to higher-level sensory processing in neocortex. In a series of papers by David
Mumford (Mumford, 1991; Mumford, 1992)), top-down neural projections (from
higher-level to lower-level sensory areas) were hypothesized to convey hierarchical
sensory predictions, whereas bottom-up neural projections were hypothesized to
convey prediction errors. Through a negative feedback process, these errors would
then update state estimates. These ideas were formalized and analyzed by Rao and
Ballard, 1999, formulating a simplified artificial neural network model of images,

reminiscent of a Kalman filter (Kalman, [1960).

Feedback and feedforward processes also featured prominently in machine learning.
Indeed, the primary training algorithm for artificial neural networks, backpropagation
(Rumelhart, Hinton, and Williams, [1986), literally feeds (propagates) the output
prediction errors back through the network, i.e., negative feedback. During this period,
the technique of variational inference was rediscovered within machine learning
(Hinton and Van Camp, |1993; Neal and Hinton, [1998)), recasting approximate
probabilistic inference using variational calculus. This technique proved essential in
formulating the Helmholtz machine (Dayan, Hinton, et al., 1995; Dayan and Hinton,
1996), a hierarchical probabilistic model parameterized by artificial neural networks.
Similar advances were made in autoregressive probabilistic models (Frey, Hinton,
and Dayan, 1996; Y. Bengio and S. Bengio, [2000), using artificial neural networks
to form sequential feedforward predictions, as well as new classes of invertible
probabilistic models (Comon, |1994}; Parra, Deco, and Miesbach, [1995; Deco and
Brauer, |1995; Bell and Sejnowski, [1997). Unfortunately, as the field moved toward
simpler, more tractable models in the late 1990s, funding became scarce, and the

resulting chill of an “Al winter” slowed progress in these areas.

These new ideas regarding variational inference and probabilistic models, particularly
the Helmholtz machine (Dayan, Hinton, et al.,|1995)), influenced predictive coding.
Specifically, Karl Friston utilized variational inference to formulate hierarchical
dynamical models of neocortex (Friston, 2005} Friston, 2008). In line with Mumford’s
proposal (Mumford, [1992), these models contain multiple levels of variables, with
each level attempting to predict its future activity (feedforward) as well as the
activity at lower levels, closer to the input data. Through variational inference,

prediction errors across levels facilitate updating higher-level estimates (negative

Cybernetics
Liﬂfal’u old| Wiener, 1942, 1948

McCulloch & Pitts, 1943 \

Information

:
—= r] Shannon, 1948
Ashby, 1952 \

Perceptron

Rosenblatt, 1958

Information in
Neuroscience

Barlow, 1961, 1989
Bialek et al., 1991

Feedback
Perception & Control

MacKay, 1956
Kalman, 1960

Perceptual
Control
Powers, 1973 m Pmbabilistic Models

St Mot
Werbos, 1974

A(kh y et al., 1985
Rumelhart et al., 1986 Pearl, 1986

Spatiotemporal
C

Srinivasan et al., 1982
Dong & Atick, 1995

Reinforcement
Learning

Sutton & Barto, 1998

Hinton & Van Camp, 1993
Neal & Hinton, 1998

B , 1992
Olshausen & F;le 1996

Dman et al., 1995

Tnve mbh

Comon, 1994
Parra et al., 1995

Control as
Deco & Bratter, 1995 Lo

Fre; 5 199¢
Bengio & Bes ngm 2000 Bell & Sejnowski, 1997\ \Toussaint & Storkey, 2006

Hierarchical
Predictive Coding

Rao & Ballard, 1999 van den Oord et al., 2016 Todorov, 2008
Theoretical Machine Control
Neuroscience Learning Theory
Free E; &
Active Tnforence

Friston, 2005, 2009

Mnih et al., 2013

Normalizing Flows] RL as Inference

Lofieth i @y 20, Z0 Abdolmaleki ot al., 2018

/ me 2018
Part 11 \ m

Flow-Based Models

Kingma 2014
Rezende ct al., 2014

Figure 1.1: Conceptual Overview. The concepts put forth by cybernetics permeated
the modern fields of theoretical neuroscience (left), machine learning (center), and
control theory (right). The graph attempts to identify key concepts and several
relevant works in these areas, although the graph can barely begin to capture the full
breadth and depth of prior work, as well as the overlap between control theory and
theoretical neuroscience. At the bottom of the graph, we have coarsely labeled how
Parts @ & m of this thesis fit into the conceptual landscape.

feedback). Such models have incorporated many aspects of neuroscience, including
local learning rules (Friston, 2005)) and attention (Spratling, 2008; Feldman and
Friston, 2010; Kanai et al., 2015), and have been coarsely compared with neural
circuits (Bastos et al., 2012; Keller and Mrsic-Flogel, 2018; Walsh et al., 2020).
While predictive coding and other forms of Bayesian brain theories have become
increasingly popular (Doya et al., [2007; Friston, 2009; Clark, 2013)), empirically
testing these normative models remains challenging. This is partially due to the
difficulty of distinguishing between the large number of specific design choices and
the more general theoretical claims of probabilistic learning and inference (S. J.
Gershman, 2019). Further, because these models have been limited to simplified
implementations, often without learned parameters, it has been difficult to bridge the

gap to the complexity of biological neural systems.

6

The Al winter thawed in the early 2010s, brought on by advances in parallel computing
as well as standardized datasets (Deng et al., 2009; Krizhevsky and Hinton, 2009))
and environments (Todorov, Erez, and Tassa, [2012; Bellemare et al.,[2013)). In this
new era of deep learning (LeCun, Y. Bengio, and Hinton, 2015; Schmidhuber, 2015)),
i.e., artificial neural networks with multiple layers, a flourishing of ideas emerged
around probabilistic modeling. Building off of previous work, more expressive
classes of deep hierarchical (Gregor et al.,2014; Mnih and Gregor, [2014; Kingma
and Welling, |2014; Rezende, Mohamed, and Wierstra, |[2014), autoregressive (Uria,
I. Murray, and Larochelle, 2014 Oord, Kalchbrenner, and Kavukcuoglu, 2016)),
and invertible (Dinh, Krueger, and Y. Bengio, 2015; Dinh, Sohl-Dickstein, and
S. Bengio, 2017) probabilistic models were developed. Of particular importance is a
class of models known as variational autoencoders (VAEs) (Kingma and Welling,
2014} Rezende, Mohamed, and Wierstra, 2014, which, as we discuss in Chapter@,
bear a close resemblance to hierarchical predictive coding models. Despite this
similarity, the machine learning community remains largely oblivious to the progress
in predictive coding that occurred during the Al winter and vice versa. Bridging this

divide is one of the primary motivations for this thesis (Section [I.3).

The discussion in this section, both in neuroscience and machine learning, has
centered on probabilistic modeling and inference for perception. However, as noted
earlier, these techniques can be equally applied to control. This connection was re-
established in the various fields that descended from cybernetics, particularly machine
learning (Dayan and Hinton, |1997; Attias, 2003), control theory (Toussaint and
Storkey, 2006}, Todorov, 2008)), and theoretical neuroscience (Friston, Daunizeau, and
Kiebel, 2009; Botvinick and Toussaint,[2012). While these approaches differ in their
exact formulations, they have a similar theme: “observing” desired outcomes, then
using a probabilistic model to infer corresponding actions. Friston and colleagues
have worked toward connecting predictive coding with control through a framework
referred to as active inference (Friston, Daunizeau, and Kiebel, 2009} Friston,
FitzGerald, et al., 2017). Modern machine learning, in contrast, often formulates
control through a framework known as reinforcement learning (RL) as inference
(Levine, 2018). Although these frameworks are not strictly equivalent (Millidge

et al., 2020), they share many mathematical concepts.

Machine learning and neuroscience have diverged in many ways over the past two
decades, however, the fundamental ideas emphasized by cybernetics, i.e., probabilistic

modeling and inference for perception and control, remain the focus of both fields.

7

It is unclear whether these fields will independently arrive at similar solutions for
building and understanding, respectively, autonomous agents. However, given the
similarity of ideas separately housed within each field, it seems likely that bridging

these divides will help to once again facilitate cross-pollination and progress.

1.3 Predictive Coding Meets Machine Learning

This thesis is, in large part, an attempt to fortify a bridge between machine learning
and neuroscience by translating the ideas of predictive coding into deep probabilistic
models. While the present work provides unique contributions, many of the insights
were inspired by previous works at this intersection. In particular, Broeke, 2016
outlines the relationship between hierarchical probabilistic models in predictive
coding and deep learning. Likewise, Lotter, Kreiman, and Cox, [2017|implement
basic predictive coding techniques in deep probabilistic models, later comparing
these models with neural phenomena (Lotter, Kreiman, and Cox, |[2018). This thesis

draws upon these ideas and many others, formalizing and extending them.

Concretely, this thesis takes the negative feedback and feedforward techniques
developed in predictive coding and applies them in machine learning using the
mathematics of amortization (S. Gershman and Goodman, 2014) and normalizing
flows (Rezende and Mohamed, 2015; Kingma, Salimans, et al.,2016), respectively.
Briefly, amortization facilitates efficiently updating estimates to minimize prediction
errors (Chapters E], E], and @), i.e., (negative) feedback, whereas normalizing flows,
in our formulation, provide a mechanism for improving predictions across time
(Chapters[S|and[7)), i.e., feedforward. These techniques, which are both learned from
data, are demonstrated in the contexts of perception (Part[[l) and control (Part[ITI). An
outline of the thesis content is provided in Table[I.I] A broad conceptual overview

of the inspirations for this thesis is also provided in Figure [I.1]

While the construction of this conceptual bridge has proceeded unidirectionally
from neuroscience toward machine learning, the insights developed in this process
have striking implications in the reverse direction. In Chapter [§ we discuss these
implications in depth. In short, traversing the bridge from machine learning, back
through predictive coding, to neuroscience provides new perspectives regarding
the correspondence between biological and artificial neural networks, as well as
computational aspects of normalization in neural circuits (Carandini and Heeger,
2012). Though this discussion is more speculative in nature than the technical

contributions of this thesis, it provides multiple lines of inquiry for future cross-

Table 1.1: Thesis Organization.

| Perception (Partlll) | Control (Part

Feedback Chapters [3| & 4| Chapter|6
Feedforward Chapter |5 Chapter |7

pollination efforts.

1.4 The Future of Feedback & Feedforward

The distance between neuroscience and machine learning is to be expected, given
their differing aims and system constraints. A perfect convergence of these fields is
neither essential nor necessarily beneficial. Yet, the ideas set forth by cybernetics
three quarters of a century ago, namely perception and control through feedback and
feedforward processing, are alive and well in both fields. This thesis works toward
uniting these areas, developing the ideas of cybernetics with modern computational
tools. The result is a set of basic techniques for probabilistic modeling and inference
based on feedback and feedforward principles, applicable to both perception and

control.

However, scientific research, by its very nature, is constrained to simplified settings,
where complex phenomena can be studied in isolation. The real work remains to be
done in both integrating these ideas into a cohesive embodied system, as discussed
in Chapter O as well as pushing these ideas and others to their limits to build
and understand bigger, more expressive systems. If we take the correspondences
in Chapter [] seriously, biological systems still contain orders of magnitude more
parameters than current machine learning models, likely with many more unforeseen
complexities. If we hope to build more capable autonomous systems or understand
neural processing in computational terms, a closer collaboration between these fields
may prove fruitful. Indeed, these discussions are already bearing fruit: Richards
and colleagues, inspired in part by the predictive coding-based machine learning
models of Lotter, Kreiman, and Cox, 2017, have identified top-down predictions and
bottom-up error signals in separate dendritic compartments of neocortical pyramidal
neurons (Gillon et al., [2021). In this way, the exploration of predictive coding
ideas in machine learning has helped neuroscientists pose more targeted scientific

hypotheses.

Neuroscience and machine learning may never return to the close collaboration

envisaged under cybernetics. Nevertheless, a mutually beneficial dialogue can be

9

maintained by tying these fields together around their unifying concepts, such as
feedback and feedforward perception and control. Considering systems in these
cybernetic terms could help us move beyond the foggy notions of biological and
artificial intelligence. Instead, we can understand organisms and autonomous systems
from a more firmly-grounded scientific and engineering perspective, in terms of
feedback and feedforward computational processing, homeostatic objectives, and
ultimately their physical embodiment of complexity and information. This thesis is a

step in that direction.

References

Ackley, David H, Geoffrey E Hinton, and Terrence J Sejnowski (1985). “A learning
algorithm for Boltzmann machines”. In: Cognitive science 9.1, pp. 147-169.

Ashby, W Ross (1956). An Introduction to Cybernetics. Chapman and Hall.

Astrom, Karl Johan and Richard M Murray (2008). Feedback Systems: An Introduction
for Scientists and Engineers. Princeton University Press.

Attias, Hagai (2003). “Planning by probabilistic inference.” In: AISTATS. Citeseer.

Barlow, Horace B (1961). “The coding of sensory messages”. In: Current problems
in animal behavior.

— (1989). “Unsupervised learning”. In: Neural computation 1.3, pp. 295-311.

Bastos, Andre Moraes et al. (2012). “Canonical microcircuits for predictive coding”.
In: Neuron 76.4, pp. 695-711.

Bell, Anthony J and Terrence J Sejnowski (1997). “The “independent components”
of natural scenes are edge filters”. In: Vision research 37.23, pp. 3327-3338.

Bellemare, Marc G et al. (2013). “The arcade learning environment: An evaluation
platform for general agents”. In: Journal of Artificial Intelligence Research 47,
pp- 253-279.

Bengio, Yoshua and Samy Bengio (2000). “Modeling high-dimensional discrete data
with multi-layer neural networks”. In: Advances in Neural Information Processing
Systems, pp. 400—406.

Bialek, William et al. (1991). “Reading a neural code”. In: Science 252.5014,
pp. 1854-1857.

Botvinick, Matthew and Marc Toussaint (2012). “Planning as inference”. In: Trends
in cognitive sciences 16.10, pp. 485-488.

Broeke, Gerben van den (2016). “What auto-encoders could learn from brains”.
MA thesis. Aalto University.

Carandini, Matteo and David J Heeger (2012). “Normalization as a canonical neural
computation”. In: Nature Reviews Neuroscience 13.1, pp. 51-62.

10

Clark, Andy (2013). “Whatever next? Predictive brains, situated agents, and the
future of cognitive science”. In: Behavioral and Brain Sciences 36.3, pp. 181-204.

Comon, Pierre (1994). “Independent component analysis, a new concept?” In: Signal
processing 36.3, pp. 287-314.

Conway, Flo and Jim Siegelman (2006). Dark hero of the information age: In search
of Norbert Wiener, the father of cybernetics. Basic Books.

Dayan, Peter and Geoftrey E Hinton (1996). “Varieties of Helmholtz machine”. In:
Neural Networks 9.8, pp. 1385-1403.

— (1997). “Using expectation-maximization for reinforcement learning”. In: Neural
Computation 9.2, pp. 271-278.

Dayan, Peter, Geoffrey E Hinton, et al. (1995). “The helmholtz machine”. In: Neural
computation 7.5, pp. 889-904.

Deco, Gustavo and Wilfried Brauer (1995). “Higher order statistical decorrelation
without information loss”. In: Advances in Neural Information Processing Systems,

pp- 247-254.

Deng, Jia et al. (2009). “Imagenet: A large-scale hierarchical image database”. In:

2009 IEEE conference on computer vision and pattern recognition. leee, pp. 248—
255.

Dinh, Laurent, David Krueger, and Yoshua Bengio (2015). “Nice: Non-linear
independent components estimation”. In: International Conference on Learning
Representations.

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio (2017). “Density estimation
using real nvp”. In: International Conference on Learning Representations.

Dong, Dawei W and Joseph J Atick (1995). “Temporal decorrelation: a theory of
lagged and nonlagged responses in the lateral geniculate nucleus”. In: Network:
Computation in Neural Systems 6.2, pp. 159-178.

Doya, Kenji et al. (2007). Bayesian brain: Probabilistic approaches to neural coding.
MIT press.

Feldman, Harriet and Karl Friston (2010). “Attention, uncertainty, and free-energy”.
In: Frontiers in human neuroscience 4.

Frey, Brendan J, Geoffrey E Hinton, and Peter Dayan (1996). “Does the wake-sleep
algorithm produce good density estimators?” In: Advances in neural information
processing systems, pp. 661-667.

Friston, Karl (2005). “A theory of cortical responses”. In: Philosophical Transactions
of the Royal Society of London B: Biological Sciences 360.1456, pp. 815-836.

— (2008). “Hierarchical models in the brain”. In: PLoS computational biology 4.11,
el1000211.

11

Friston, Karl (2009). “The free-energy principle: a rough guide to the brain?” In:
Trends in cognitive sciences 13.7, pp. 293-301.

Friston, Karl, Jean Daunizeau, and Stefan J Kiebel (2009). “Reinforcement learning
or active inference?” In: PloS one 4.7, e6421.

Friston, Karl, Thomas FitzGerald, et al. (2017). “Active inference: a process theory”.
In: Neural computation 29.1, pp. 1-49.

Gershman, Samuel J (2019). “What does the free energy principle tell us about the
brain?” In: arXiv preprint arXiv:1901.07945.

Gershman, Samuel and Noah Goodman (2014). “Amortized inference in probabilistic
reasoning”. In: Proceedings of the Cognitive Science Society. Vol. 36. 36.

Gillon, Colleen J et al. (2021). “Learning from unexpected events in the neocortical
microcircuit”. In: bioRxiv.

Gregor, Karol et al. (2014). “Deep autoregressive networks”. In: Proceedings of the
International Conference on Machine Learning (ICML), pp. 1242—1250.

Hinton, Geoffrey E and Drew Van Camp (1993). “Keeping the neural networks
simple by minimizing the description length of the weights”. In: Proceedings of
the sixth annual conference on Computational learning theory. ACM, pp. 5-13.

Hopfield, John J (1982). “Neural networks and physical systems with emergent
collective computational abilities”. In: Proceedings of the national academy of
sciences 79.8, pp. 2554-2558.

Kalman, Rudolph Emil (1960). “A new approach to linear filtering and prediction
problems”. In: Journal of Basic Engineering 82.1, pp. 35-45.

Kanai, Ryota et al. (2015). “Cerebral hierarchies: predictive processing, precision
and the pulvinar”. In: Phil. Trans. R. Soc. B 370.1668, p. 20140169.

Keller, Georg B and Thomas D Mrsic-Flogel (2018). “Predictive processing: a
canonical cortical computation”. In: Neuron 100.2, pp. 424-435.

Kingma, Durk P, Tim Salimans, et al. (2016). “Improved variational inference
with inverse autoregressive flow”. In: Advances in neural information processing
systems, pp. 4743-4751.

Kingma, Durk P and Max Welling (2014). “Stochastic gradient VB and the variational
auto-encoder”. In: Proceedings of the International Conference on Learning
Representations.

Krizhevsky, Alex and Geoffrey E Hinton (2009). “Learning multiple layers of features
from tiny images”. In:

Laughlin, Simon (1981). “A simple coding procedure enhances a neuron’s information
capacity”. In: Zeitschrift fiir Naturforschung ¢ 36.9-10, pp. 910-912.

LeCun, Yann, Yoshua Bengio, and Geoffrey E Hinton (2015). “Deep learning”. In:
nature 521.7553, pp. 436—444.

12

Levine, Sergey (2018). “Reinforcement Learning and Control as Probabilistic
Inference: Tutorial and Review”. In: arXiv preprint arXiv:1805.00909.

Lotter, William, Gabriel Kreiman, and David Cox (2017). “Deep predictive coding
networks for video prediction and unsupervised learning”. In: International
Conference on Learning Representations.

— (2018). “A neural network trained to predict future video frames mimics critical
properties of biological neuronal responses and perception”. In: arXiv preprint
arXiv:1805.10734.

MacKay, D M (1956). “The epistemological problem for automata”. In: Automata
studies, pp. 235-252.

McCulloch, Warren S and Walter Pitts (1943). “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical biophysics 5.4,
pp. 115-133.

Millidge, Beren et al. (2020). “On the Relationship Between Active Inference and
Control as Inference”. In: arXiv preprint arXiv:2006.12964.

Mnih, Andriy and Karol Gregor (2014). “Neural Variational Inference and Learning
in Belief Networks”. In: International Conference on Machine Learning, pp. 1791—
1799.

Mumford, David (1991). “On the computational architecture of the neocortex”. In:
Biological cybernetics 65.2, pp. 135-145.

— (1992). “On the computational architecture of the neocortex”. In: Biological
cybernetics 66.3, pp. 241-251.

Neal, Radford M and Geoftrey E Hinton (1998). “A view of the EM algorithm that
justifies incremental, sparse, and other variants”. In: Learning in graphical models.
Springer, pp. 355-368.

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu (2016). “Pixel
Recurrent Neural Networks”. In: International Conference on Machine Learning,
pp- 1747-1756.

Parra, Lucas, Gustavo Deco, and Stefan Miesbach (1995). “Redundancy reduction
with information-preserving nonlinear maps”. In: Network: Computation in Neural
Systems 6.1, pp. 61-72.

Pearl, Judea (1986). “Fusion, propagation, and structuring in belief networks”. In:
Artificial Intelligence 29.3, pp. 241-288.

Prieto, Alberto et al. (2016). “Neural networks: An overview of early research,
current frameworks and new challenges”. In: Neurocomputing 214, pp. 242-268.

Rao, Rajesh PN and Dana H Ballard (1999). “Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects.” In: Nature
neuroscience 2.1.

13

Rezende, Danilo Jimenez and Shakir Mohamed (2015). “Variational Inference
with Normalizing Flows”. In: International Conference on Machine Learning,
pp- 1530-1538.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic
backpropagation and approximate inference in deep generative models”. In:
Proceedings of the International Conference on Machine Learning, pp. 1278-

1286.

Rosenblatt, Frank (1958). “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65.6, p. 386.

Rosenblueth, Arturo, Norbert Wiener, and Julian Bigelow (1943). “Behavior, purpose
and teleology”. In: Philosophy of science 10.1, pp. 18-24.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1986). “Learning
representations by back-propagating errors.” In: Nature.

Schmidhuber, Jirgen (2015). “Deep learning in neural networks: An overview”. In:
Neural networks 61, pp. 85-117.

Shannon, Claude E (1948). “A mathematical theory of communication”. In: The Bell
system technical journal 27.3, pp. 379-423.

Spratling, Michael W (2008). “Reconciling predictive coding and biased competition
models of cortical function”. In: Frontiers in computational neuroscience 2, p. 4.

Srinivasan, Mandyam Veerambudi, Simon Laughlin, and Andreas Dubs (1982).
“Predictive coding: a fresh view of inhibition in the retina”. In: Proceedings of the
Royal Society of London. Series B. Biological Sciences 216.1205, pp. 427-459.

Todorov, Emanuel (2008). “General duality between optimal control and estimation”.
In: Decision and Control, 2008. CDC 2008. 47th IEEE Conference on. IEEE,
pp- 4286—-4292.

Todorov, Emanuel, Tom Erez, and Yuval Tassa (2012). “Mujoco: A physics engine for
model-based control”. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, pp. 5026-5033.

Toussaint, Marc and Amos Storkey (2006). “Probabilistic inference for solving
discrete and continuous state Markov Decision Processes”. In: Proceedings of the
23rd international conference on Machine learning. ACM, pp. 945-952.

Uria, Benigno, Iain Murray, and Hugo Larochelle (2014). “A deep and tractable
density estimator”. In: International Conference on Machine Learning, pp. 467—
475.

Walsh, Kevin S et al. (2020). “Evaluating the neurophysiological evidence for
predictive processing as a model of perception”. In: Annals of the New York
Academy of Sciences 1464.1, p. 242.

Wiener, Norbert (1942). The Interpolation, Extrapolation and Smoothing of Station-
ary Time Series. NDRC Report.

14

Wiener, Norbert (1948). Cybernetics or Control and Communication in the Animal
and the Machine. MIT press.

15
Chapter 2

BACKGROUND

2.1 Introduction

This chapter presents the mathematical concepts underlying the technical contribu-
tions developed throughout this thesis. For clarity, the material is presented using
the notation for state estimation (Part[[I), and we delay presenting the concepts more
specifically related to action selection until Part[[TI]

2.2 Probabilistic Models

Set-Up: Probability Distributions & Maximum Likelihood

Consider a random variable, X € RY with a corresponding distribution, pgaa(X),
defining the probability of observing each possible observation, X = x. We will
use the shorthand notation pga.(X) to denote the probability pgan(X = x). This
distribution is the result of an underlying data generation process, e.g. the emission
and scattering of photons. While we do not have direct access to pgata, We can sample

observations, X ~ pgata (X), yielding an empirical distribution, pgaa(X).

Often, we wish to model pga,, for instance, to predict or compress observations
of X. We refer to this model as py(x), with parameters §. A natural approach
for estimating the model involves minimizing some divergence measure between
Pdata(X) and pg(x) with respect to the model parameters, . The Kullback Leibler

(KL) divergence, denoted Dy, is a common choice of divergence measure:

6" « argmin Dk (Paaa(X)lpo (X)), 2.1)
0" — argmin Ex.py,, (x) [10g Paaia(X) —log po(x)], (2.2)
0" « arg max Ex~paaa(x) [10g Po(X)] . (2.3)

Here, E denotes the expectation operator. We have gone from Eq. [2.1]to Eq.[2.2]using
the definition of the KL divergence. Because pga.(X) does not depend on 6, we can
omit it from the optimization, expressing the equivalent maximization in Eq. [2.3]
This is the standard maximum log-likelihood objective, which is found throughout
machine learning and probabilistic modeling (Murphy, |2012; Goodfellow, Y. Bengio,
and Courville, 2016). In practice, we do not have access to pgaa(X) and must instead

approximate the objective using data samples, i.e. using pgae(X). With x() as the i

16

P Pdata (X)
& X pdata(x)

po(x)

X

Figure 2.1: Maximum Likelihood Estimation. A data distribution, pga,, produces
samples, x, of a random variable X. Maximum likelihood estimation attempts to fit
a model distribution, pg, to the empirical distribution of samples by maximizing the
log-likelihood of data samples under the model (Eq. @)

observation sample out of N total samples, we can approximate the objective as the

following empirical average:

N
1 i
EX"‘Pdata(X) [log p@(x)] ~ EX"’ﬁdata(X) [log pG(X)] = N Z log pQ(X()) (24)
i=1

In summary, we can frame probabilistic modeling as the process of maximizing the
log-likelihood, log py(x), of data observations under our model. A diagram of this
setup is shown in Figure[2.1]

Model Formulation

Formulating a probabilistic model involves considering the dependency structure
of the model and the parameterization of these dependencies. As with all models,
there is a bias-variance decomposition of modeling error. Without considering a
sufficiently flexible dependency structure and parameterization, the model will be
inherently limited, i.e. biased, in its capacity to accurately model the data. Yet, with
an overly expressive model, containing many dependencies and parameters, there
is a risk of overfitting to the training examples, the outcome of a model with high

variance.

17

Dependency Structure

The dependency structure of a probabilistic model is the set of conditional depen-
dencies between variables. One common form of dependency structure is that of
autoregression (Frey, G. E. Hinton, and Dayan, 1996; Y. Bengio and S. Bengio,
2000), which utilizes the chain rule of probability to model dependencies between

variables:
M

po(x) = npe(xﬂxq)- (2.5)

j=1
Here, we have induced an arbitrary ordering over the M dimensions of x, allowing
us to factor the joint distribution over dimensions, pg(x), into a product of M
conditional distributions, each conditioned on the previous dimensions, x ;. Slightly
abusing notation, at j = 1, we have py(x;|x<;) = pg(x1). A natural use-case for this
dependency structure arises in modeling sequential data, where time provides an

ordering over a sequence of T observed variables, x;.7:

T
poxir) = | | potxilx<r). (2.6)
t=1

Although such models are conventionally formulated in forward temporal order,
this is truly a modeling assumption. Likewise, while the chain rule of probability
dictates that we must consider all previous variables, there may be cases where it is
safe to assume conditional independence outside of some window. In the extreme

case, in which we only consider pairwise dependencies, we arrive at a Markov chain:
T
po(x1.7) = [1,2; Po(Xe[X1-1).

Autoregressive models are also referred to as “fully-visible” models (Frey, G. E.
Hinton, and Dayan, (1996), as dependencies are only explicitly modeled between
observed variables. However, we can also model such dependencies by introducing
latent variables, denoted as Z. Formally, a latent variable model is defined by the

joint distribution
po(x,2) = po(x|z) pe(2), (2.7)

where pg(x]|z) is the conditional likelihood and py(z) is the prior. Again, we have
used the shorthand notation py(x, z) to denote py(X = x, Z = z). Introducing latent
variables is one of, if not, the primary technique for increasing the flexibility of a
probabilistic model. This is because evaluating the probability of an observation
now requires marginalizing over the latent variables. If Z is a continuous variable,

this involves integration, pg(x) = / po(x,z)dz, and if Z is discrete, this involves

18

o030

Figure 2.2: Dependency Structures. Circles denote random variables, with gray
denoting observed variables and white denoting latent variables. Arrows denote
probabilistic conditional dependencies. From left to right: autoregressive model
(Egs. [2.5| & [2.6)), latent variable model (Eq. [2.7), hierarchical latent variable model
(Eq. 2.10)), autoregressive or sequential latent variable model (Eq.[2.T1). For clarity,
we have drawn a subset of the possible dependencies in the final model.

summation, pg(x) =), pe(X, z). In either case, we have

Po(X) =Ezep,z) [Po(x|2)], (2.8)

which illustrates that py(x) is a mixture distribution, with each mixture component,
po(x|z), weighted according to py(z). Thus, even when restricting py(x|z) to simple
distribution forms, such as Gaussian distributions, py(x) can take on flexible forms
that do not have closed form analytical expressions. In this way, Z can implicitly
model dependencies in X, assigning higher probability to particular regions of the

observation space.

However, increasing flexibility through latent variables comes with increasing
computational overhead. In general, marginalizing over Z is not analytically tractable,
particularly with continuous latent variables or complex conditional likelihoods.
This requires us to either 1) adopt approximation techniques, which we discuss in
Section [2.3] or 2) restrict the form of the model to ensure computationally tractable
evaluation of py(x). This latter approach is the basis of flow-based models (Tabak
and Turner, 2013 Rippel and Adams, |2013; Dinh, Krueger, and Y. Bengio, [2015),
which define the conditional dependency between X and Z in terms of an invertible

transform, x = fy(z) and z = fe_l (x). We can then express py(x) using the change

0x
det (E)

of variables formula:
-1

po(x) = po(z) , (2.9)

19
where % is the Jacobian of the transform and det(-) denotes matrix determinant.

-1
9
The term ‘det (a—’z‘)

from Z to X, conserving probability mass in the transform. Flow-based models,

can be interpreted as the local scaling of space when moving

also referred to as normalizing flows (Rezende and Mohamed, [2015]), are the basis
of the classical technique of independent components analysis (ICA) (Bell and
Sejnowski, |1997; Hyvirinen and Oja, 2000) and non-linear generalizations (S. S.
Chen and Gopinath, 2001} Laparra, Camps-Valls, and Malo, [2011). As such, these
models can serve as a general-purpose mechanism for adding and removing statistical
dependencies between variables. Although flow-based models avoid the intractability
of marginalization, their requirement of invertibility may be overly restrictive or
undesirable in some contexts (Cornish et al., [2020). And while the change of
variables formula can also be applied to non-invertible transforms (Cvitkovic and
Koliander, |2019), it raises computational intractabilities. This motivates the use of

approximate techniques for training latent variables models (Section[2.3).

While we have presented autoregression and latent variables separately, these
techniques can, in fact, be combined in numerous ways to model dependencies. For
instance, one can create hierarchical latent variable models (Dayan et al., 1993)),
incorporating autoregressive dependencies between latent variables. Considering L
levels of latent variables, Z1L = [Zl, e, ZL] , we can express the joint distribution

as
L

po(x,2"1) = po(x|z"1) | | po(2'2). (2.10)
=1

From this perspective, hierarchical latent variable models are a repeated application of
the latent variables technique in order to create increasingly complex empirical priors
(Efron and Morris, |[1973)). We can also consider incorporating latent variables within
sequential (autoregressive) probabilistic models, giving rise to sequential latent
variable models. Considering a single level of latent variables in a corresponding

sequence, Z;.7, we generally have the following joint distribution:

T

po(X1.7,Z1.7) = n Po(X¢|X<r, Z<1) po (24 |X <t 2<1), (2.11)
t=1

where we have again assumed a forward sequential ordering. By restricting the
dependency structure and distribution forms in sequential latent variable models, we
recover familiar special cases, such as hidden Markov models or linear Gaussian
state-space models (Murphy, 2012). Beyond hierarchical and sequential latent

variable models, there are a variety of other ways to combine autoregression and

20

latent variables (Gulrajani et al., [2017; Razavi, Aaron van den Oord, and Vinyals,
2019). The remaining chapters focus on hierarchical (Eq. [2.10) and sequential
(Eq. [2.T1) latent variable models, though models with more flexible hierarchical,
sequential, and spatial dependencies will be required to advance the frontier of

probabilistic modeling.

Parameterizing the Model

In the previous section, we discussed the dependency structure of probabilistic
models. The probability distributions that define these dependencies are ultimately
functions. In this section, we discuss possible forms that these functions may take.
We restrict our focus here to parametric distributions, which are defined by one or
more distribution parameters. The canonical example is the Gaussian (or Normal)
distribution, N (x; i, o), which is defined by a mean, y, and variance, o-2. This
can be extended to the multivariate setting, where x € RM is modeled with a mean

vector, p, and covariance matrix, X, with the probability density written as

1

NG w.B) = mM2 det(z) 12

-1
p 7(x—u>T2‘1<x—u) : (2.12)

For convenience, we may also consider diagonal covariance matrices, X = diag(o?),
simplifying the parameterization and resulting calculations. In particular, the special
case where X = I, the M X M identity matrix, the log-density, up to a constant,

becomes the familiar mean squared error,

1
log N(x; p, I) = _EHX - N||§ + const. (2.13)

With a parametric distribution, conditional dependencies are mediated by the
distribution parameters, which are functions of the conditioning variables. For
example, we can express an autoregressive Gaussian distribution (of the form
in Eq. through conditional densities, pg(x;|x<;) = N(x;; po(x<;)), 0'92(x<]~)),
where pg and o'g are functions taking x.; as input. A similar form applies to
autoregressive models on sequences of vector inputs (Eq. [2.6), with pg(x/|x<,) =
N (x;; po(X<;), Xg(X<;)). Likewise, in a latent variable model (Eq. , we can
express a Gaussian conditional likelihood as py(x|z) = N (x; pg(z), Xg(z)). Note
that in the above examples, we have overloaded notation, simply using a subscript 6
for all functions. In practice, while it is not uncommon to share parameters across

functions, this is ultimately a modeling choice.

21

The functions supplying each of the distribution parameters can range in complexity,
from constant to highly non-linear. Classical modeling techniques often employ
linear functions. For instance, in a latent variable model, we could parameterize the

mean as a linear function of z:
po(z) = Wz + b, (2.14)

where W is a matrix of weights and b is a bias vector. Models of this form underlie
factor analysis, probabilistic principal components analysis (Tipping and Bishop,
1999), independent components analysis (Bell and Sejnowski, 1997; Hyvérinen and
Oja, 2000), and sparse coding (Olshausen and Field, |1996). Linear autoregressive
models are also the basis of many classical time-series models and are common across
fields that use statistical methods. While linear models are relatively computationally
efficient, they are often too limited to accurately model complex data distributions,

e.g. those found in natural images or audio.

Recent improvements in deep learning (Goodfellow, Y. Bengio, and Courville, |[2016)
have provided probabilistic models with a more expressive class of non-linear func-
tions, improving their modeling capacity. In these models, the distribution parameters
are parameterized with deep networks, which are then trained by backpropagating
(Rumelhart, G. E. Hinton, and Williams, 1986) the gradient of the log-likelihood
objective, VgEy 5, [log pa(x)], back through the layers of the network. Typically,
this is estimated using a mini-batch of data examples, rather than the full empirical
distribution as in Eq. [2.4] Deep autoregressive models and deep latent variable
models have enabled recent advances across an array of areas, including speech
(Graves, 2013; Adron van den Oord et al., 2016), natural language (Sutskever,
Vinyals, and Le, 2014} Radford et al., 2019), images (Razavi, Aaron van den Oord,
and Vinyals, 2019), video (Kumar et al., 2020), reinforcement learning (Chua et al.,
2018; Ha and Schmidhuber, |2018) and many others.

We visualize a simplified probabilistic computation graph for a deep autoregressive
model in Figure[2.3] This diagram translates the autoregressive dependency structure
from Figure[2.2] which only depicts the variables and their dependencies in the model,
into a more detailed visualization, breaking the variables into their corresponding
distributions and terms in the log-likelihood objective. Here, green circles denote the
conditional likelihood at each step, containing a Gaussian mean and standard deviation,
which are parameterized by a deep network. The log-likelihood, log pg(x;|X<;),

evaluated at the data observation, X; ~ pdaa(X/|X<;) (gray circle), provides the

22

il
4) 00000
0000

000

pe(Xt|X<t) IOgPQ(Xt‘X<t) Xt ™~ Pdata

Figure 2.3: Model Parameterization & Computation Graph. The diagram depicts
a simplified computation graph for a deep autoregressive Gaussian model. Green
circles denote the conditional likelihood distribution at each step, while gray circles
again denote the (distribution of) data observations. Smaller red circles denote
each of the log-likelihood terms in the objective. Gradients w.r.t. these terms
are backpropagated through the networks parameterizing the model’s distribution
parameters (red dotted lines).

objective (red dot). The gradient of this objective w.r.t. the network parameters
is calculated through backpropagation (red dotted line). This general depiction of
dependencies, distributions, and log-probabilities (or differences of log-probabilities)

is used throughout this thesis to describe the various computational setups.

Purely autoregressive models (without latent variables) have proven useful in many
domains, often obtaining better log-likelihoods as compared with latent variable
models. However, there are a number of reasons to prefer latent variable models
in some contexts. First, autoregressive sampling is inherently sequential, and this
linear computational scaling becomes costly in high-dimensional domains. Second,
latent variables provide a representational space for downstream tasks, compression,
and overall data analysis. Finally, latent variables provide added flexibility, which is
particularly useful for modeling continuous random variables with relatively simple,
e.g. Gaussian, conditional distributions. For these reasons, we require methods for
handling the latent marginalization in Eq. Variational inference is one such
method.

23

2.3 Variational Inference

Derivation

As we saw in the previous section, training latent variable models through maximum
likelihood requires evaluating log pg(x). However, particularly with continuous latent
variables, evaluating py(x) = / po(X,z)dz is generally computationally intractable.
This problem is only exacerbated in deep latent variable models, where computing
po(z) and py(x|z) is more expensive. Thus, we require some technique for tractably

estimating log py(x) without resorting to exact marginalization.

Variational inference (G. E. Hinton and Van Camp, |1993} Jordan et al., |1998)
approaches this problem by introducing an approximate posterior distribution,
q(z|x), which provides a tractable lower bound, £(x; ¢, 6) < log py(x), on the
log-likelihood. This lower bound is variously referred to as the evidence lower bound
(ELBO), variational lower bound, and the negative free energy. By tightening and
maximizing the ELBO w.r.t. the model parameters, 6, we can approximate maximum

likelihood training while avoiding marginalization.

We can interpret variational inference as converting probabilistic inference into
an optimization problem. Given a family of distributions, Q, e.g., Gaussian, non-
parametric, etc., variational inference attempts to find the distribution, ¢ € Q, that

minimizes Dk (q(z|X)||pa(2[X)):

q(z|x) < arg min Dxu1.(q(zlx)[|pe(z]x)), (2.15)
where py(z|x) is the posterior distribution,
X, Z
paalx) = 2282 (2.16)
po(x)

Because pg(z|x) includes the intractable py(x), we cannot minimize the KL diver-

gence in Eq.[2.15]directly. Instead, we can rewrite this as

Dx1(q(z]x)||pe(z]X)) = By (z)x) [log g(z|x) — log pg(z[x)] (2.17)
Po(X,2)
= Byeg(aly) [log q(z|x) - log (ﬁ)] (2.18)
= Epq(zx) [l0g q(z|x) —log pg(x,2)] +log pe(x) (2.19)
= —L(x;q,0) +log ps(x). (2.20)
In Eq. we have defined L(x; g, 0), as
L(X:q,0) = E;y(gx) [log pe(x,z) —log q(z|x)] (2.21)

= Eyqaiv [log po(x]2)] — Dxr(q(zl%)||pe(2)). (2.22)

24

Algorithm 1 Variational Expectation Maximization (EM)

1: Input: model py(x,z), data examples XV, . .., XM ~ pgaa(X)

2: while 6 not converged do

3: forx =x, x™ do

4 q(z|x) « argmax, L(X;q,0) > inference (E-step)
5 end for

6: 0 «— arg maxgy % Zf\il L(xD;q,0) > learning (M-step)
7. end while

Rearranging terms in Eq.[2.20, we have

log po(x) = L(x;4,6) + Dxr(q(z|x)||po(z]x)). (2.23)

Because KL divergence is non-negative, we see that £(x; g, 6) < log py(x), with
equality when ¢(z|x) = pg(z|x). As the LHS of Eq. does not depend on
q(z|x), maximizing L(xX; g, 0) w.r.t. ¢ implicitly minimizes Dy (g (z|x)||pe(z|X))
w.r.t. g. Together, these statements imply that maximizing £(x; g,) w.r.t. g tightens
the lower bound on log pg(x). With this tightened lower bound, we can then
maximize £(x; g, 6) w.r.t. 6. This alternating optimization process is referred to
as the variational expectation maximization (EM) algorithm (Dempster, Laird, and
Rubin, [1977; Neal and G. E. Hinton, [1998) (Algorithm [I), consisting of approximate
inference (E-step) and learning (M-step). While Algorithm [I] iterates over the
entire data set between parameter updates, one can instead perform inference for a
mini-batch of data examples and perform stochastic gradient ascent on 6 (Hoffman
et al., 2013). This version of the algorithm, referred to as stochastic variational

inference (SVI), is used in practice to train deep latent variable models.

Interpreting the ELBO

The primary motivation for variational inference is in providing a tractable lower
bound for model training. In the process, however, we are left with an approxi-
mate posterior distribution, ¢g(z|x). To gain insight into this distribution and the

approximate inference procedure, we can rewrite the ELBO as

L(x:4,0) = Bz g(alx) [log po(x|2) +log pe(z) —log q(z[x)] . (2.24)

Each of the terms in the objective guides the optimization of ¢(z|x). The first term
quantifies the agreement with the data, i.e., reconstruction: sampling z from ¢, we
want to assign high log-probability to the observation, x. The second term quantifies

the agreement with the prior prediction: sampling z from ¢, we want to have high

o o
. pe(2) 5 o
: I
a(zlx)
@ —Eq {l()g., e] ?
q(z[x) l } - J
po(x|z) O O (A
S E, [log o (x}2)] I
~ " X~ paaa(X) o)
A\ 6 J A\ 6 J AN J
(a) Computation Graph (b) Hierarchical (c) Sequential

Figure 2.4: ELBO Computation Graphs. (a) Basic computation graph for varia-
tional inference. Outlined circles denote distributions. Smaller red circles denote
terms in the ELBO objective. Arrows, again, denote conditional dependencies. This
notation can be used to express (b) hierarchical and (c¢) sequential models with
various model dependencies.

log-probability under the prior. The final term is the entropy of ¢(z|x), quantifying
the spread or uncertainty of the distribution. Maximizing this term encourages g (z|x)
to remain maximally uncertain, all else being equal (Jaynes, |1957). Often, the final
two terms are combined, as in Eq. with Dky (q(z|x)||pg(z)) interpreted as a
form of “regularization,” penalizing deviations of ¢(z|x) from pgy(z).

This KL divergence term has been the focus of recent investigations. In particular,

one can interpret the ELBO as a Lagrangian, with Lagrange multiplier g = 1:

L(x:4,0) =Bz galx [log po(x]2)] - BDxL(q(z|X)||pe(2)). (2.25)

Thus, the ELBO can be seen as expressing a constrained optimization problem, with
the regularizing constraint on Dy (g(z|x)||pe(z)) mediated by 8. In models with
flexible, e.g., autoregressive, conditional likelihoods, the model may not utilize z, in
which case the KL term results in a local maximum at ¢(z|x) = py(z). This is the
so-called “dying units” problem (Bowman et al., 2016), in which the latent variables
are effectively unused. A common approach is to anneal 8 from 0 — 1 during the
course of training (Bowman et al., 2016; Sgnderby et al., 2016), though alternative
schemes exist (Kingma, Salimans, et al.,[2016; X. Chen et al., 2017). We can also
dynamically adjust 5 to maintain a particular KL or conditional likelihood constraint
(Rezende and Viola, 2018). And by setting 8 > 1 we can over-regularize ¢(z|x),
and with an independent prior, this can yield more disentangled latent variables
(Higgins et al., 2017; Burgess et al., [2018). In these latter cases, where 8 # 1,
L(x;q,0) is no longer a valid lower bound on log pg(x). Alemi et al.,[2018 provide

26

an information-theoretic framework to make sense of these ideas, identifying the
connection between the two terms in the ELBO (Eq. [2.25) and the concepts of
distortion and rate respectively. In short, adjusting S8 allows one to target particular
rate-distortion trade-offs, which, in turn, result in bounds on the mutual information
between X and Z. This perspective allows one to consider latent variable models
that achieve varying compression rates in complex, natural data domains, such as

images (Ballé, Laparra, and Simoncelli, 2017) and video (Lombardo et al., 2019).

As with autoregressive models (Figure [2.3]), we can represent latent variable models
and the ELBO objective as a computation graph, again breaking the dependency
structure graphs from Figure 2.2)into separate distributions and terms in the objective.
In Figure [2.4] we illustrate examples of these graphs. Each variable contains a red
circle, denoting a term in the ELBO objective. In comparison with the fully-observed
autoregressive model, we now have an additional objective term for the latent variable,
corresponding to the KL divergence. This graphical representation also allows us

to visualize the variational objective for more complex hierarchical and sequential

models (Figures [2.4b| & [2.4c)).

Inference Optimization

In deriving variational inference and variational EM, we described inference opti-
mization, the E-step, as the process of maximizing £(x; g,) w.r.t. the distribution
q(z|x). The fact that probability distributions are functions makes £(x; ¢, 0) a
functional and makes inference optimization a variational calculus problem. One
could solve this optimization problem using a variety of techniques, ranging from
gradient-free, e.g., evolution strategies, to first-order gradient-based, e.g., black-
box variational inference (Ranganath, Gerrish, and Blei, 2014), to second-order
gradient-based, e.g., the Laplace approximation (Friston et al.,[2007; Park, C. Kim,
and G. Kim, 2019). Despite this range, first-order gradient-based techniques are
most common in practice; when combined with amortization (see below), they can
result in exceedingly efficient optimization. For this reason, we exclusively focus
on first-order techniques in the following chapters, which we now describe in more
detail.

With a parametric ¢g(z|x), first-order inference optimization entails calculating the
gradients of £(x; g, 8) w.r.t. the distribution parameters of ¢, which we refer to as
A. For instance, if g(z|x) = N(z; pg, diag(a‘é)), ie, A= [p,q, aq], then we must
calculate V,, £ and V5 L. We can consider the ELBO as an example of a stochastic

27

~ a
O
o
v
3
@)
_ J
(a) Inference (b) Score Function (c) Pathwise Derivative

Figure 2.5: Stochastic Gradient Estimation. (a) Variational inference with para-
metric approximate posteriors requires optimizing £ w.r.t. the distribution parameters,
A. This often requires estimating stochastic gradients (red dotted lines). (b) The
score function estimator (Eq. is applicable to any distribution, but suffers from
high variance. Note: the solid red arrow denotes the per-sample objective, /(x, z; 0).
(c) The pathwise derivative estimator (Eq. , in contrast, has lower variance, but
is less widely applicable.

computation graph (Schulman et al., 2015)), containing the stochastic sampling
operation z ~ ¢(z|x). Unfortunately, stochastic sampling is non-differentiable,
preventing us from simply differentiating through the chain A — z — £. Schulman
et al., 2015 highlight two stochastic gradient estimators to tackle this issue: the
score function estimator (Glynn, |1990; Williams, |1992; Fu, 2006)) and the pathwise
derivative estimator (Kingma and Welling, 2014; Rezende, Mohamed, and Wierstra,
2014 Titsias and Lazaro-Gredilla, 2014)), each of which allows us to calculate

stochastic estimates of Vy L.

The score function estimator, sometimes referred to as the REINFORCE estimator
(Williams, 1992), is generally applicable to any parametric distribution. With ¢ (z|x)
denoting the dependence of g on A, as well as £(x;¢q,6) = B,y zx) [[(X,2;0)],

the score function estimator allows us to express VL as

V)\EZ~qA(Z|X) [Z(X’ z 9)] = Ez~q)\(z|x) [V)\ lOg Q)\(le)l(x’ Z; 9)] . (226)

While the score function estimator is unbiased and can be successfully utilized for
variational inference (Gregor et al., 2014; Ranganath, Gerrish, and Blei, 2014; Mnih
and Gregor, 2014; Mnih and Rezende, |2016)), in practice, it requires considerable
tuning and computation, owing to its empirically high variance. Alternatively,
the pathwise derivative estimator, sometimes referred to as the reparameterization

estimator (Kingma and Welling, 2014)), when applicable, allows us to obtain unbiased

28

gradient estimates with considerably lower variance. This is accomplished by
reparameterizing z in terms of an auxiliary random variable, enabling differentiation
through stochastic sampling. The most common example is reparameterizing
z ~ N(z; pg, diag(ag)) as z = , + € © gy, where € ~ N(¢€;0,I) and © denotes
element-wise multiplication. More generally, for some deterministic function g, if
we can express Z = g(\, €) with € ~ p(e), then the pathwise derivative estimator

allows us to express V)L as

VAEz~q)\(z|x) [l(X, Z, 9)] = Ee~p(e) [V)\Z(X, g(>\, 6); 9)] . (227)

With these stochastic gradient estimators in hand, we can perform stochastic gradient-
based optimization of L(x; g,) w.r.t. A (Ranganath, Gerrish, and Blei, 2014):
estimating V£ by sampling z (or €) and updating A using stochastic gradient
ascent. Unfortunately, a naive implementation of this inference optimization (E-
step) procedure scales poorly to large models and data sets. This is because many
gradient steps must be performed per example, just to provide one estimate of
L(x; g, 0) for M-step optimization. More sophisticated approaches cache previous
estimates of A for each example to initialize future inference optimization. However,
beyond the additional memory overhead, this approach still requires tuning the
inference optimizer’s learning rate and is not applicable to online learning settings.
In order to apply variational inference more broadly, we require a simple technique
for dramatically improving the efficiency of inference optimization. Amortization
(Gershman and Goodman, [2014), a form of meta-optimization, offers a viable

solution.

Amortized Variational Inference

Amortization, in a generic sense, refers to spreading out costs. In amortized inference,
these “costs” are the computational costs of performing inference optimization.
Thus, rather than separately optimizing A for each data example, we amortize this
optimization cost using a learned optimizer, i.e., an inference model. By using
this meta-optimization procedure, we can perform inference optimization far more
efficiently for each example, with a negligible cost for learning the inference model.
The concept of inference models is deeply embedded with deep latent variable
models, popularized by the Helmholtz Machine (Dayan et al., 1995)), which was
formulated as an autoencoder (Ballard, 1987). Formally, in such setups, the inference

model is a direct mapping from x to A:

A — fo(x), (2.28)

29

4 N\
4 O
1 ° \ 4
000 , 000
0000 s 0000
00000 0 00000
N @
' 0 v

Figure 2.6: Variational Autoencoder (VAE). VAEs combine direct amortization
(Eq. 2.28) and the pathwise derivative estimator (Eq. top) with Gaussian
approximate posteriors to train deep latent variable models. In the model diagram
(center), the amortized inference model (left) acts as an encoder, with the conditional
likelihood (right) acting as a decoder. Each are parameterized by deep networks.

where f; is a model (deep network) with parameters ¢. Conventionally, we denote
the approximate posterior as g4(z|X) to denote the parameterization by ¢. Now,
rather than optimizing A using gradient-based techniques, we periodically update
¢ using Vy L = %%, thereby letting f4 learn to optimize A. This procedure is
incredibly simple, as we only need to tune the learning rate for ¢, and efficient, as we
have an estimate of A after only one forward pass through f5. Amortization is also
widely applicable: if we can estimate VL using stochastic gradient estimation (see

above), we can continue differentiating through the chain¢ - A -z — L.

When direct amortization is combined with the pathwise derivative estimator in deep
latent variable models, the resulting setup is referred to as a variational autoencoder
(VAE) (Kingma and Welling, 2014} Rezende, Mohamed, and Wierstra, 2014). In this
autoencoder interpretation, g4(z|X) is an encoder, z is the latent code, and py(x|z)
is a decoder. A computation graph is shown in Figure[2.6] This direct encoding
scheme seems intuitively obvious: in the same way that py(x|z) directly maps z to a
distribution over X, g4(z|x) directly maps x to a distribution over z. Indeed, with
perfect knowledge of py(x,z), fs could act as a lookup table, precisely mapping
each x to the corresponding optimal A. However, as we discuss in Chapter 3] there

are a number of subtle issues that can arise with direct amortization, forming one of

30

the primary motivations for the following chapters.

2.4 Discussion

In this chapter, we have reviewed the basic considerations in formulating and training
probabilistic models. We started by introducing the maximum log-likelihood (or
minimum KL divergence) framework for model training, which involves maximizing
Ex~pu(x) [10g pg(x)] w.r.t. the model parameters, §. The model is formulated in
terms of the dependency structure between variables, the distribution families, and
the functional form of the distribution parameters. Each of these constitute design

choices, which are often selected in light of known structure in the data.

In improving the expressive capacity of the model, we discussed two primary methods
for adding dependency structure to the model, autoregression and latent variables, as
well as combinations of the two. While we presented these ideas separately, there
is, in fact, a link between these two forms of dependency structure. In particular,
Kingma, Salimans, et al., 2016/ noted that we can express sampling from a Gaussian

autoregressive model in both an autoregressive form:
xj ~ N(xj; o (x<)), o7 (x<))), (2.29)
as well as in the form of an affine flow-based latent variable model:

xj = po(x<j) + og(x<j) - 25, (2.30)

where z; ~ N (z 30, 1) is an auxiliary latent variable. Note that Eq. is the
reparameterization trick (from the pathwise derivative estimator) applied to the
Gaussian autoregressive sampling in Eq.[2.29 To train an autoregressive model, we
can analytically evaluate the log-density directly via Eq. Alternatively, we can
evaluate the log-density by performing “inference,” inverting the affine transform:

Xy ,uﬁ(x<j)

K oo(x<)) ’ 231

and then evaluating the log-density of z; under pg(z) = N'(0, 1) and the log-scaling
factor of the transform, log oy(x<;). With this scheme, we exactly recover the
Gaussian density definition in Eq.[2.12] This case of equivalence between particular
classes of autoregressive models and (flow-based) latent variable models suggests that,
rather than considering various model classes as entirely distinct, we can consider
the general computational principles of probability, with various models making

trade-offs in terms of tractability, expressive capacity, computational efficiency, etc.

31

This chapter has not exhaustively covered the breadth of probabilistic modeling
techniques that exist in the literature, instead focusing on the subset of ideas
relevant to this thesis. It is worth mentioning that a variety of techniques have
been recently developed or have gained renewed interest. For instance, implicit
latent variable models (Mohamed and Lakshminarayanan, 2016), such as generative
adversarial networks (Goodfellow, Pouget-Abadie, et al., 2014) and generative
stochastic networks (Y. Bengio, Laufer, et al., 2014), are formulated in terms of
a sampling procedure, avoiding the need to explicitly define py(x). Energy-based
models (LeCun et al.,|[2006; Salakhutdinov and G. Hinton, 2009; Du and Mordatch,
2019) similarly offer a more flexible form, parameterizing an energy function over
the space of x, which is then converted into a Boltzmann distribution. Score function
models (Hyvirinen and Dayan, 2005; Vincent, [2011; Song and Ermon, [2019)
avoid directly parameterizing the energy function, instead estimating a gradient
field to sample from the data distribution. Finally, a variety of contrastive learning
procedures have been recently developed (Gutmann and Hyvirinen, 2010; Mnih and
Kavukcuoglu, 2013} A. v. d. Oord, Li, and Vinyals, 2018]), providing an alternative,
“self-supervised” technique for modeling data while avoiding explicit data density

estimation.

These ideas may seem hopelessly diverse, however, they are all tied to concepts in
probabilistic modeling (and by extension, information theory), as well as learning,
inference, and optimization more generally. Indeed, as with the example of flow-based
latent variable models and autoregressive models discussed above, many modeling
approaches can be interpreted as related or special cases of each other, or even
combined in new and interesting ways (Rezende and Mohamed, 2015; Makhzani
et al., 2015; Agrawal and Dukkipati, 2016). Thus, the advances in probabilistic
modeling and inference presented in this thesis should not be viewed in isolation, as

their applicability may cross the blurred boundaries between different approaches.

References

Agrawal, Siddharth and Ambedkar Dukkipati (2016). “Deep Variational Inference
Without Pixel-Wise Reconstruction”. In: arXiv preprint arXiv:1611.05209.

Alemi, Alexander et al. (2018). “Fixing a Broken ELBO”. In: International Conference
on Machine Learning, pp. 159-168.

Ballard, Dana H (1987). “Modular Learning in Neural Networks.” In: AAAI, pp. 279—
284.

32

Ballé, Johannes, Valero Laparra, and Eero P Simoncelli (2017). “End-to-end opti-
mized image compression”. In: International Conference on Learning Representa-
tions.

Bell, Anthony J and Terrence J Sejnowski (1997). “The “independent components”
of natural scenes are edge filters”. In: Vision research 37.23, pp. 3327-3338.

Bengio, Yoshua and Samy Bengio (2000). “Modeling high-dimensional discrete data
with multi-layer neural networks”. In: Advances in Neural Information Processing
Systems, pp. 400—406.

Bengio, Yoshua, Eric Laufer, et al. (2014). “Deep generative stochastic networks
trainable by backprop”. In: International Conference on Machine Learning. PMLR,
pp- 226-234.

Bowman, Samuel R et al. (2016). “Generating Sentences from a Continuous Space”.
In: CoNLL 2016, p. 10.

Burgess, Christopher P et al. (2018). “Understanding disentangling in 5-VAE”. In:
arXiv preprint arXiv:1804.03599.

Chen, Scott Saobing and Ramesh A Gopinath (2001). “Gaussianization”. In: Advances
in neural information processing systems, pp. 423-429.

Chen, Xietal. (2017). “Variational Lossy Autoencoder”. In: International Conference
on Learning Representations.

Chua, Kurtland et al. (2018). “Deep reinforcement learning in a handful of trials using
probabilistic dynamics models”. In: Advances in Neural Information Processing
Systems, pp. 4754—4765.

Cornish, Rob et al. (2020). “Relaxing bijectivity constraints with continuously
indexed normalising flows”. In: International Conference on Machine Learning.

Cvitkovic, Milan and Giinther Koliander (2019). “Minimal Achievable Sufficient
Statistic Learning”. In: International Conference on Machine Learning, pp. 1465—
1474.

Dayan, Peter et al. (1995). “The helmholtz machine”. In: Neural computation 7.5,
pp- 889-904.

Dempster, Arthur P, Nan M Laird, and Donald B Rubin (1977). “Maximum likelihood
from incomplete data via the EM algorithm”. In: Journal of the royal statistical
society. Series B (methodological), pp. 1-38.

Dinh, Laurent, David Krueger, and Yoshua Bengio (2015). “Nice: Non-linear
independent components estimation”. In: International Conference on Learning
Representations.

Du, Yilun and Igor Mordatch (2019). “Implicit Generation and Modeling with Energy
Based Models”. In: Advances in Neural Information Processing Systems. Vol. 32.
Curran Associates, Inc.

33

Efron, Bradley and Carl Morris (1973). “Stein’s estimation rule and its competi-
tors—an empirical Bayes approach”. In: Journal of the American Statistical
Association 68.341, pp. 117-130.

Frey, Brendan J, Geoffrey E Hinton, and Peter Dayan (1996). “Does the wake-sleep
algorithm produce good density estimators?” In: Advances in neural information
processing systems, pp. 661-667.

Friston, Karl et al. (2007). “Variational free energy and the Laplace approximation”.
In: Neuroimage 34.1, pp. 220-234.

Fu, Michael C (2006). “Gradient estimation”. In: Handbooks in operations research
and management science 13, pp. 575-616.

Gershman, Samuel and Noah Goodman (2014). “Amortized inference in probabilistic
reasoning”. In: Proceedings of the Cognitive Science Society. Vol. 36. 36.

Glynn, Peter W (1990). “Likelihood ratio gradient estimation for stochastic systems”.
In: Communications of the ACM 33.10, pp. 75-84.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT
press.

Goodfellow, Ian, Jean Pouget-Abadie, et al. (2014). “Generative Adversarial Nets”.
In: Advances in Neural Information Processing Systems 27, pp. 2672-2680.

Graves, Alex (2013). “Generating sequences with recurrent neural networks”. In:
arXiv preprint arXiv:1308.0850.

Gregor, Karol et al. (2014). “Deep autoregressive networks”. In: Proceedings of the
International Conference on Machine Learning (ICML), pp. 1242—-1250.

Gulrajani, Ishaan et al. (2017). “Pixelvae: A latent variable model for natural images”.
In: International Conference on Learning Representations.

Gutmann, Michael and Aapo Hyvirinen (2010). “Noise-contrastive estimation: A
new estimation principle for unnormalized statistical models”. In: Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics.

JMLR Workshop and Conference Proceedings, pp. 297-304.

Ha, David and Jiirgen Schmidhuber (2018). “Recurrent world models facilitate policy
evolution”. In: Advances in Neural Information Processing Systems, pp. 2450—
2462.

Higgins, Irina et al. (2017). “beta-vae: Learning basic visual concepts with a con-
strained variational framework™. In: Proceedings of the International Conference
on Learning Representations (ICLR).

Hinton, Geofirey E and Drew Van Camp (1993). “Keeping the neural networks
simple by minimizing the description length of the weights”. In: Proceedings of
the sixth annual conference on Computational learning theory. ACM, pp. 5-13.

34

Hoffman, Matthew D et al. (2013). “Stochastic variational inference”. In: The Journal
of Machine Learning Research 14.1, pp. 1303-1347.

Hyvirinen, Aapo and Peter Dayan (2005). “Estimation of non-normalized statistical
models by score matching.” In: Journal of Machine Learning Research 6.4.

Hyviérinen, Aapo and Erkki Oja (2000). “Independent component analysis: algorithms
and applications”. In: Neural networks 13.4-5, pp. 411-430.

Jaynes, Edwin T (1957). “Information theory and statistical mechanics”. In: Physical
review 106.4, p. 620.

Jordan, Michael I et al. (1998). “An introduction to variational methods for graphical
models”. In: NATO ASI SERIES D BEHAVIOURAL AND SOCIAL SCIENCES 89,
pp- 105-162.

Kingma, Durk P, Tim Salimans, et al. (2016). “Improved variational inference

with inverse autoregressive flow”. In: Advances in neural information processing
systems, pp. 4743-4751.

Kingma, Durk P and Max Welling (2014). “Stochastic gradient VB and the variational
auto-encoder”. In: Proceedings of the International Conference on Learning
Representations.

Kumar, Manoj et al. (2020). “VideoFlow: A Flow-Based Generative Model for
Video”. In: International Conference on Learning Representations.

Laparra, Valero, Gustavo Camps-Valls, and Jesis Malo (2011). “Iterative gaussian-
ization: from ICA to random rotations”. In: IEEE transactions on neural networks
22.4, pp. 537-549.

LeCun, Yann et al. (2006). “A tutorial on energy-based learning”. In: Predicting
structured data 1.0.

Lombardo, Salvator et al. (2019). “Deep Generative Video Compression”. In:
Advances in Neural Information Processing Systems, pp. 9283-9294.

Makhzani, Alireza et al. (2015). “Adversarial autoencoders”. In: arXiv preprint
arXiv:1511.05644.

Mnih, Andriy and Karol Gregor (2014). “Neural Variational Inference and Learning
in Belief Networks”. In: International Conference on Machine Learning, pp. 1791—
1799.

Mnih, Andriy and Koray Kavukcuoglu (2013). “Learning word embeddings efficiently
with noise-contrastive estimation”. In: Advances in neural information processing
systems 26, pp. 2265-2273.

Mnih, Andriy and Danilo Jimenez Rezende (2016). “Variational Inference for Monte
Carlo Objectives”. In: International Conference on Machine Learning, pp. 2188—
2196.

35

Mohamed, Shakir and Balaji Lakshminarayanan (2016). “Learning in implicit
generative models”. In: arXiv preprint arXiv:1610.03483.

Murphy, Kevin P (2012). Machine learning: a probabilistic perspective. MIT press.

Neal, Radford M and Geofirey E Hinton (1998). “A view of the EM algorithm that
justifies incremental, sparse, and other variants”. In: Learning in graphical models.
Springer, pp. 355-368.

Olshausen, Bruno A and David J Field (1996). “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images”. In: Nature 381.6583,
p. 607.

Oord, Aaron van den, Yazhe Li, and Oriol Vinyals (2018). “Representation learning
with contrastive predictive coding”. In: arXiv preprint arXiv:1807.03748.

Oord, Adron van den et al. (2016). “WaveNet: A Generative Model for Raw Audio”.
In: 9th ISCA Speech Synthesis Workshop, pp. 125-125.

Park, Yookoon, Chris Kim, and Gunhee Kim (2019). “Variational Laplace Autoen-
coders”. In: International Conference on Machine Learning, pp. 5032-5041.

Radford, Alec et al. (2019). “Language Models are Unsupervised Multitask Learners”.
In:

Ranganath, Rajesh, Sean Gerrish, and David Blei (2014). “Black box variational in-
ference”. In: Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS), pp. 814-822.

Razavi, Ali, Aaron van den Oord, and Oriol Vinyals (2019). “Generating diverse high-
fidelity images with vg-vae-2”. In: Advances in Neural Information Processing
Systems, pp. 14866—14876.

Rezende, Danilo Jimenez and Shakir Mohamed (2015). “Variational Inference
with Normalizing Flows”. In: International Conference on Machine Learning,
pp- 1530-1538.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic
backpropagation and approximate inference in deep generative models”. In:

Proceedings of the International Conference on Machine Learning, pp. 1278—
1286.

Rezende, Danilo Jimenez and Fabio Viola (2018). “Taming VAEs”. In: arXiv preprint
arXiv:1810.00597.

Rippel, Oren and Ryan Prescott Adams (2013). “High-dimensional probability
estimation with deep density models”. In: arXiv preprint arXiv:1302.5125.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1986). “Learning
representations by back-propagating errors.” In: Nature.

Salakhutdinov, Ruslan and Geoffrey Hinton (2009). “Deep boltzmann machines”. In:
Artificial intelligence and statistics. PMLR, pp. 448-455.

36

Schulman, John et al. (2015). “Gradient estimation using stochastic computation
graphs”. In: Advances in Neural Information Processing Systems, pp. 3528-3536.

Senderby, Casper Kaae et al. (2016). “Ladder variational autoencoders”. In: Advances
in Neural Information Processing Systems (NIPS), pp. 3738-3746.

Song, Yang and Stefano Ermon (2019). “Generative modeling by estimating gradients
of the data distribution”. In: arXiv preprint arXiv:1907.05600.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014). “Sequence to sequence learning
with neural networks”. In: Advances in neural information processing systems,
pp- 3104-3112.

Tabak, Esteban G and Cristina V Turner (2013). “A family of nonparametric density
estimation algorithms”. In: Communications on Pure and Applied Mathematics
66.2, pp. 145-164.

Tipping, Michael E and Christopher M Bishop (1999). “Probabilistic principal com-
ponent analysis”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 61.3, pp. 611-622.

Titsias, Michalis and Miguel Lazaro-Gredilla (2014). “Doubly stochastic variational
Bayes for non-conjugate inference”. In: International conference on machine
learning, pp. 1971-1979.

Vincent, Pascal (2011). “A connection between score matching and denoising
autoencoders”. In: Neural computation 23.7, pp. 1661-1674.

Williams, Ronald J (1992). “Simple statistical gradient-following algorithms for
connectionist reinforcement learning”. In: Reinforcement Learning. Springer,
pp- 5-32.

Part 11

Perception

37

38
Chapter 3

ITERATIVE AMORTIZED INFERENCE

eO

~

2'}

0¢0

learned negative feedback (static) perception

Marino, Joseph, Yisong Yue, and Stephan Mandt (2018). “Iterative Amortized
Inference”. In: International Conference on Machine Learning, pp. 3403-3412.
URL: http://proceedings.mlr.press/v80/marinol8a.html.

3.1 Introduction

In Chapter [2] we described latent variable models, pg(X, z) = pg(x|z)pg(z), defined
over observed variables, x, and latent variables, z. If we take the observed variables
to be some form of sensory observation, e.g., visual, audio, or tactile input, then we
can reasonably describe the compressed representation in z as a state estimate. That
is, if we treat pg (X, z) as an internal “forward model” of the environment generating
the observations, i.e., the generative process, then z corresponds to the underlying
state of the environment. Note that this does not necessarily correspond to the
actual state of the environment; indeed, z may not be interpretable at all. Given an
observation, we will refer to the process of state estimation, i.e., inferring pg(z|x) or
some approximation ¢(z|x), as perception. As noted in Chapter 2] this is generally
computationally intractable, as it requires marginalizing over z. For this reason, we
described the technique of variational inference (Section [2.3)), formulating inference
as optimization. Finally, we noted that the concept of amortization has proven
essential in efficiently performing variational inference in deep generative models,
most notably in variational autoencoders (Kingma and Welling, 2014} Rezende,
Mohamed, and Wierstra, 2014).

http://proceedings.mlr.press/v80/marino18a.html

39

However, while amortization has dramatically improved the efficiency of variational
inference, the direct inference models (or “encoders”) typically employed raise their
own issues (see Section [3.2). This chapter attempts to overcome these issues by
introducing a more flexible and general amortization technique referred to as iterative
amortized inference. Broadly, rather than framing variational inference as a direct
mapping from observations to approximate posterior estimates, we use gradients
or errors to iteratively update these estimates. In this way, inference once again
becomes an iterative optimization algorithm, using negative feedback to minimize
errors or gradient magnitudes, but now with the efficiency of amortization. This idea
was inspired by (hierarchical) predictive coding (Mumford, |1992; Rao and Ballard,
1999; Friston, 2005), which uses weighted errors to perform inference. In turn,
these works borrowed heavily from classical Bayesian inference techniques, such as
Kalman filtering (Kalman, |1960), which performs exact probabilistic inference using

prediction errors. More recent works, discussed below, have pursued similar ideas.

3.2 Issues with Direct Inference Models

The Amortization Gap

Variational inference reformulates inference as the maximization of £ w.r.t. g(z|x),
constituting the expectation step of the variational EM algorithm (Algorithm [T)).
In general, this is a difficult non-convex optimization problem, typically requiring
a lengthy iterative estimation procedure (Ranganath, Gerrish, and Blei, [2014).
Yet, direct inference models attempt to perform this optimization through a direct,
discriminative mapping from data observations to approximate posterior parameters.
Of course, generative models can adapt to accommodate sub-optimal approximate
posteriors. Nevertheless, the possible limitations of a direct inference mapping
applied to this difficult optimization procedure may result in sub-optimal estimates,

limiting model performance.

We demonstrate this concept in Figure [3.1by visualizing the optimization surface of
L defined by a 2D latent Gaussian model and a particular binarized MNIST (LeCun
et al., [1998)) data example. To visualize the approximate posterior, we use a point
estimate, g(z|x) = 6(p,), where p, = (u1, 42) is the estimate and ¢ is the Dirac
delta function. See Appendix C.1 for details. Shown on the plot are the optimal
(maximum a posteriori or MAP) estimate, the estimate from a direct inference model,
and an optimization trajectory of gradient ascent. The inference model is unable to
achieve the optimum, but manages to output a reasonable estimate in one forward

pass. Gradient ascent requires many iterations and is sensitive to step-size, but

40

0.5 7
13 -@ G%'adient ‘.—\scent "
’ Direct Inference Model 7
0.0 % Global Maximum
—14
4
—0.51 [%
g ~15 S
Q
—1.0 .\\\
—1.6 o
—1.57 * &
\
\ —1.7
205, -1.0 -09 -08 -0.7 —06

M1

Figure 3.1: The Amortization Gap. Optimization surface of £ (in nats) for a
2-D latent Gaussian model and an MNIST data example. Shown on the plots
are the optimal estimate (%), the output of a direct inference model (¢), and an
optimization trajectory of gradient ascent (e), initialized at the blue square at (0,0).
The plot on the right shows an enlarged view near the optimum. Gradient-based
optimization outperforms the direct inference model, exhibiting an amortization gap

in performance: £(%) > L(e) > L(4).

through the iterative estimation procedure, ultimately arrives at a better final estimate.
The inability of inference models to reach optimal approximate posterior estimates,
as typically compared with gradient-based methods, creates an amortization gap
(Krishnan, Liang, and Hoffman, 2018} Cremer, Li, and Duvenaud, 2018]), which
impairs model performance. This is because, within the same parametric distribution
family, a sub-optimal amortized approximate posterior, g4, creates a looser ELBO

than the optimal approximate posterior, denoted ¢.:
log po(x) > L(X;q.,0) > L(X;q4,0).

The difference between L(X; q., #) and L(X; g4, 6) is precisely the amortization gap
(Cremer, Li, and Duvenaud, 2018). Additional latent dimensions and more complex

data or models could further exacerbate this gap.

Lack of Prior Information

An altogether distinct issue with direct inference models concerns their lack of prior
information. Naive formulations of direct inference models consider a direct mapping
from observations, X, to the parameters of the approximate posterior (Eq.[2.28). With
a constant prior, e.g., pg(z) = N(z;0,1) in conventional VAEs (Kingma and Welling,
2014), such a direct mapping is sufficient to estimate the optimal approximate

posterior within the class of diagonal distributions. However, in structured models,

41

[
20
e
1)

Figure 3.2: Lack of Prior Information. Naive direct inference models, encoding
only observations, cannot account for conditional priors in structured latent variable
models. These arise in hierarchical (left) and sequential (right) latent variable
models. For instance, in hierarchical models, bottom-up approximate posteriors at
intermediate levels cannot account for conditional “top-down” priors which result
from sampling higher-level latent variables.

e.g., hierarchical or autoregressive, the situation is more complicated. This is because
the prior is now conditional, dependent on samples from upstream (parent) latent
variables. If the inference model is only conditioned on the observation, it does not
have access to the previously sampled latent variables and therefore cannot account

for the conditional prior.

For instance, consider a hierarchical latent variable model with following prior:

L
pa(@™) = | | pa(12*™).
=1

A naive direct inference model, i.e., only encoding observations, corresponds to the

following approximate posterior factorization:

L
q5(2" %) = | | g2 5.
£=1
Plugging these factorizations into the ELBO, we have

L(x6,9) = By, 1) [log pa(x12"")] = Dxi(g4(2""1%)|Ipa(2""))

q9(2°|%)

L
_ 1:L\] _
=By, @1 [log ps(x|z'")] ZE%(Z&W) log o (20|20 1iL)

=1

{+1:L

The prior at each level depends on z while the approximate posterior does not.

Thus, at best, a naive direct inference model can only model the marginal prior,

42

po(z%), unable to capture the structured latent dependencies. This limitation was
hinted at by Dayan et al., 1995, noting that “the top-down generative model plays no
direct role” in inference, but that “such effects are important in real perception.” A
solution to this issue was proposed by Sgnderby et al., 2016 and Salimans, 2016,
reusing parts of the generative model during inference. Note that the same issue
arises in sequential latent variable models, where naive direct inference models
do not have access to latent prior estimates. A similar solution is used in these
situations, often using recurrent networks to condition on past latent variables and
observations (Chung et al., 2015). While these solutions work empirically, they

require hand-crafting the inference procedure.

3.3 Iterative Amortized Inference

Learning to Iteratively Optimize

While direct inference networks have provided significant benefits in computational
efficiency for performing approximate inference, such models can be inaccurate
and require additional considerations in structured models (Section [3.2). Dayan
et al., 1995/ put forth one possible solution: “using iterative recognition, in which
the generative and recognition activations interact to produce the final activity of
a unit.” Thus, to improve upon the direct inference model paradigm, we pose the
following question: can we retain the computational efficiency of inference models
while incorporating more powerful and general iterative estimation capabilities?
Our proposed solution is a new class of inference models, capable of learning how
to update approximate posterior estimates by encoding gradients or errors. Due to
the iterative nature of these models, we refer to them as iterative inference models.
Through an analysis with latent Gaussian models, we show that iterative inference
models generalize direct inference models (Section [3.4)) and naturally are capable of

performing structured variational inference (Section [3.4] & Chapter H)).

Our approach relates to learning to learn (Andrychowicz et al., [2016), where an
optimizer model learns to optimize the parameters of an optimizee model. The
optimizer receives the optimizee’s parameter gradients and outputs updates to these
parameters to improve the optimizee’s loss. The optimizer itself can be learned due
to the differentiable computation graph. Such models can adaptively adjust step
sizes, potentially outperforming conventional optimizers. For inference optimization,
previous works have combined direct inference models with gradient updates (Hjelm
et al.,[2016; Krishnan, Liang, and Hoffman, |2018}; Kim et al., 2018), however, these

works do not learn to iteratively optimize. Putzky and Welling, [2017 use recurrent

43

r ~N
O
o -,
ﬂIA
"
@)
_ Y,

Figure 3.3: Iterative Amortized Inference. Computation graph for a latent variable
model with iterative amortized inference. Red dots, denoting errors or gradients
from the ELBO objective, are used to update the current estimate of the approximate
posterior parameters, A. Using the pathwise derivative estimator, one can update the
inference model parameters, ¢, learning to efficiently perform iterative inference.

inference models for MAP estimation of denoised images in linear models. We
propose a single method for learning to perform variational inference, generally
applicable to latent variable models. Our work extends techniques for learning to

optimize along several directions, discussed in Section [3.4]

Iterative Inference Models

Following the notation from Chapter 2] we denote an iterative amortized inference
model as f; with parameters ¢. If we consider the case of a single data example,
X, and corresponding approximate posterior distribution parameter estimate, A, the

basic form of an iterative amortized inference model is given as:
A — fo(VaL,A), (3.1

where we have used the shorthand £ = £(x; 6, q). Iterative inference models take
in the current estimate of A, as well as the inference gradient, V£, and output an
updated estimate of A. As with direct inference models, iterative inference model
parameters are updated using estimates of V4L, obtained through the pathwise
derivative estimator (Kingma and Welling, 2014; Rezende, Mohamed, and Wierstra,
2014) or the score function estimator (Gregor, Danihelka, Mnih, et al., [2014;
Ranganath, Gerrish, and Blei, 2014). While we consider other forms of iterative
inference models in Section[3.4] note that Eq.[3.1]is a generalization of basic stochastic

gradient-based optimization. For instance, one special case is

A— A+aVyL,

44

however, Eq.[3.T]also contains more general non-linear updates (Andrychowicz et al.,
2016). Figure[3.3|displays a simplified computation graph of the inference procedure.
We discuss more specific design choices in Section [3.5

3.4 [Iterative Inference in Latent Gaussian Models

Latent Gaussian models are used in both VAEs (Kingma and Welling, 2014;
Rezende, Mohamed, and Wierstra,|2014)) and hierarchical predictive coding (Rao and
Ballard, [1999; Friston, [2005]), so we focus on iterative amortized inference in these
models. Latent Gaussian models have Gaussian prior densities over latent variables:
p(z) = N(z; pp, diag 012,) While the approximate posterior can be any probability
density, it is typically also chosen as Gaussian: g(z|x) = N(z; p,, diag 0'5). With
this choice, A = [uq, O'q]. We can express Eq. for this setup as:

(14 74] = Fs(Viay £V, L. g,), (3.2)

In Marino, Yue, and Mandt, 2018, we derive the gradients V“qﬁ and VaqL
for the cases where py(x|z) takes a Gaussian and Bernoulli form, though any
output distribution can be used. Generally, these gradients are composed of 1)
errors, expressing the mismatch in distributions, and 2) Jacobian matrices, which
invert the generative mappings. For instance, assuming a Gaussian output density,

p(x|z) = N (x; px, diag o2), the gradient for Mg is
Vi, L=J"ex— &g (3.3)

where the Jacobian, J, and observed and latent errors, €4 and &,, are defined as

0
J = By gaio [ﬁ] , (3.4)

Ex = Ez~q(z|x) 5 > (3.5)

€z EEz~q(z|x) - > |- (36)

Here, we have assumed gy is a function of z and o7 is a global parameter. The
gradient V5 L is composed of similar terms as well as an additional term penalizing

approximate posterior entropy. Inspecting and understanding the composition of the

! Although the prior is typically a standard Normal density, we use this prior form for generality.

45

))
@) @)
° .-‘-,
'.
l" l'
. '
D 4 \
;0 .0
h ° - -,
I 4. L4
[y J; .
[5
vy .
P 4 I‘
RY©) .0
“‘6 A J
0]

|
|

(a) Direct (b) Iterative

Figure 3.4: Automatic Top-Down Inference. Bottom-up direct amortized infer-
ence cannot account for conditional priors, whereas iterative amortized inference
automatically accounts for these priors through gradients or errors.

gradients reveals the forces pushing the approximate posterior toward agreement
with the data, through ey, and agreement with the prior, through &,. In other words,
inference is as much a “top-down” process as it is a “bottom-up” process, and the

optimal combination of these terms is given by the approximate posterior gradients.

Interpreting Top-Down Inference
Naive direct inference models, which only encode the data, lack the top-down prior
information encapsulated in ,. For instance, in a chain-structured hierarchical latent
variable model (Figure left), the gradient of uf}, the approximate posterior mean
at layer ¢, is

VuL=1Te" e (3.7)

where J¢ is the Jacobian of the generative mapping at layer £ and €! is defined
similarly to Eq. The error €/ depends on the top-down prior at layer ¢, which,
unlike the single-level case, varies across data examples. Thus, a purely bottom-up
inference procedure will struggle to optimize, and therefore utilize, the conditional
prior. Iterative inference models, which rely on approximate posterior gradients,

naturally account for both bottom-up and top-down influences (Figure [3.4).

Approximating Approximate Posterior Derivatives

In the formulation of iterative inference models given in Eq. [3.1] inference optimiza-
tion is restricted to first-order approximate posterior derivatives. Thus, it may require
many inference iterations to reach reasonable approximate posterior estimates. Rather

than calculate costly higher-order derivatives, we can take a different approach.

46

Approximate posterior derivatives (e.g., Eq.[3.3] and higher-order derivatives) are
essentially defined by the errors at the current estimate, as the other factors, such
as the Jacobian matrices, are internal to the model. Thus, the errors provide more
general information about the curvature beyond the gradient. As iterative inference
models already learn to perform approximate posterior updates, it is natural to ask
whether the errors provide a sufficient signal for faster inference optimization. In
other words, we may be able to offload approximate posterior derivative calculation
onto the inference model, yielding a model that requires fewer inference iterations

while maintaining or possibly improving computational efficiency.

Comparing with Eq.[3.2] the form of this new iterative inference model is

[1g, 04| — folexs €0 114, 0). (3.8)

In Section [3.5] we empirically find that models of this form converge to better
solutions than gradient-encoding models when given fewer inference iterations. It
is also worth noting that this error encoding scheme is similar to DRAW (Gregor,
Danihelka, Graves, et al.,2015)). However, in addition to architectural differences in
the generative model, DRAW and later extensions (Gregor, Besse, et al., 2016)) do
not include top-down errors nor error weighting. This encoding form is also similar
to PredNet (Lotter, Kreiman, and Cox, |[2017), which is also inspired by predictive

coding, but is not strictly formulated in terms of variational inference.

Generalizing Direct Inference Models
Under certain assumptions on single-level latent Gaussian models, iterative inference
models of the form in Section [3.4] generalize direct inference models. First, note that

ex (Eq.[3.9) is an affine transformation of x:
ex = Ax+Db, 3.9

where
A = By [(diagop)™], (3.10)
b = —Eyx) [”—’2‘] : 3.11)
(oa

X

Making the reasonable assumption that the initial approximate posterior and prior
are both constant, then in expectation, A, b, and €, are constant across all data
examples at the initial inference iteration. Using proper weight initialization and

input normalization, it is equivalent to input x or an affine transformation of x into a

77 =SSN T7 AN .
1.0 P\%Uf -4 Iterative Inference Model ’ —200
’ "~ % Global Maximum ‘
\ —0.30
05 —300
R} i
~0.35 i
é\: 0.0 \’ —400
—0.40 :’
05 —300
—0.45 I
10 » oo
—0.5 \\‘
—0.5 0.0 0.5 1.0 1.5 2.0 '0925 1.30 1.35 1.40 1.45
H1 H1 =700

Figure 3.5: Iterative Amortized Inference Optimization. Optimization trajectory
on L (in nats) for an iterative inference model with a 2D latent Gaussian model
for a particular MNIST example. The estimate is initialized at (0, 0) (cyan square),
and the iterative inference model adaptively adjusts inference update step sizes to
iteratively refine the approximate posterior estimate (4) to arrive at the optimum (¥).

fully-connected neural network. Therefore, in this case, direct inference models are
equivalent to the special case of a one-step iterative inference model. Thus, we can
interpret standard inference models as learning a map of local curvature around a
fixed approximate posterior estimate. Iterative inference models, in contrast, learn to

traverse the optimization landscape more generally.

3.5 Experiments

Setup

Data Using latent Gaussian models, we empirically evaluate iterative amortized
inference on image and text data. For images, we use MNIST (LeCun et al.,
1998), Omniglot (Lake, Salakhutdinov, and Tenenbaum, 2013)), Street View House
Numbers (SVHN) (Netzer et al.,[2011)), and CIFAR-10 (Krizhevsky and Hinton,
2009). MNIST and Omniglot are dynamically binarized and modeled with Bernoulli
conditional likelihoods, and SVHN and CIFAR-10 are modeled with Gaussian
conditional likelihoods, using the procedure from (Gregor, Besse, et al., .
For text, we use RCV1 (Lewis et al., 2004), with word count data modeled with a

multinomial output.

Models Unlike direct inference models, which deal with a fixed input domain,
approximate posterior parameters, errors, and inference gradients change throughout

inference and learning. We found it beneficial to separately normalize each input

48

using layer normalization (Ba, Kiros, and Hinton, 2016). We also found it useful,
though not necessary, to input the data observation (Figure [3.9a)). For comparison
with direct amortization, all experiments use feedforward networks, though recurrent
networks may yield improved performance (Andrychowicz et al., 2016). For the
output, we use a gated (“highway” (Srivastava, Greff, and Schmidhuber, 2015))
update:

X g() @A+ (1-g4() ©84(), (3.12)

where g4(-) € [0,1] is the gate and Jd4(-) is the update, both of which are out-
put by the iterative inference model, and ® denotes element-wise multiplication.
We estimate V4L using the pathwise derivative estimator, averaging over infer-
ence iterations. Reported values of L are estimated using 1 latent sample, and
reported values of log p(x) and perplexity (Tables & are estimated
using 5, 000 importance-weighted samples. Additional experiment details can be
found in Marino, Yue, and Mandt, 2018, and accompanying code can be found at

github.com/joelouismarino/iterative_inference.

Approximate Inference Optimization

We start by demonstrating the inference optimization capabilities of iterative inference
models. These models indeed learn to perform inference optimization through an
adaptive iterative estimation procedure, with the results highlighting the unique
aspects of iterative amortization as compared with direct amortization. We show that
iterative inference models utilize multiple inference iterations rather than collapsing

to static, one-step encoders.

2D Visualization As in Section we directly visualize iterative amortized
inference optimization in a 2D latent Gaussian model trained on MNIST with a
point estimate approximate posterior. Model architectures are identical to those
used in Section [3.2] with additional details found in Marino, Yue, and Mandt, 2018
Figure [3.5shows a 16-step inference optimization trajectory taken by the iterative
inference model for a particular example. The model adaptively adjusts inference
update step sizes to navigate the optimization surface, quickly arriving and remaining
at a near-optimal estimate. This is in contrast of other iterative inference optimization
schemes, e.g., Krishnan, Liang, and Hoffman, 2018 and Kim et al., 2018, which

must tune the step size for gradient-based optimizers.

https://github.com/joelouismarino/iterative_inference

49

— SGD

Q —— SGD
—5001 [—— SGD + Momentum =5001 | —— SGD + Momentum

—— RMSProp [—— RMSProp
AdaM —600

Iterative Inference Model (VL)

AdaM
Iterative Inference Model (V5L)

0 50 100 150 200 250 300 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Inference Iterations Time (s)

(a) Iterations (b) Wall Clock Time

Figure 3.6: Amortized vs. Gradient-Based Optimization. Average ELBO over
MNIST validation set during inference optimization as a function of (a) inference
iterations and (b) inference wall-clock time. Iterative amortized inference converges
faster than gradient-based optimizers to better estimates, remaining stable over
hundreds of iterations, despite only being trained with 16 inference iterations.

ELBO During Inference To compare iterative amortization with gradient-based
optimizers, we can quantify and compare optimization performance through the
ELBO. In Figure [3.6] we plot the average ELBO on the MNIST validation set during
inference for each optimizer, comparing in terms of iterations (Figure [3.6a) and
wall clock time (Figure[3.6b). On average, iterative amortized inference converges
significantly faster to better estimates than gradient-based optimizers. Note that,
in this case, the inference model has less information than the optimizers; it only
has access to the local gradient, whereas the optimizers use momentum and similar
terms. Also note that the model’s final estimates are empirically stable over 100s of

iterations, despite only being trained using 16 inference iterations.

Reconstructions Iterative amortized inference optimization can also be visualized
through image reconstructions. We demonstrate this for each dataset in Figure[3.7] As
the reconstruction term is typically the dominant term in £, the output reconstructions
improve in terms of visual quality during inference optimization (left to right), more

closely resembling x (far right of each figure).

Gradient Magnitudes During inference optimization, iterative inference models
attempt to find local maxima. The gradient magnitudes of the ELBO w.r.t. the
approximate posterior parameters, i.e., V£, should thus decrease during inference.
In Figure [3.8] we plot these gradient magnitudes over inference iterations (each
curve) throughout training for a model trained on RCV1. We find that the gradient
magnitudes do, indeed, decrease during inference, with diminishing reduction at

Figure 3.7: Reconstructions Over Inference Iterations. During inference (left to
right), reconstruction means become gradually sharper, more closely resembling
data examples (right).

x1074

O 20 -2
e -3
=) -y B
- =N
=t - &
=] — 3
S 10 g O
° 8
+~ 10
| 110
5} =
. 125
el 133
S 14
O 4 15

=

10 100
Epoch
Figure 3.8: Reduced Gradient Magnitudes. Gradient magnitudes (vertical axis)
over inference iterations (indexed by color on right) during training (horizontal axis)

on RCV1. Approximate posterior mean gradient magnitudes decrease over inference
iterations as estimates approach local maxima.

later iterations.

Additional Inference Iterations & Latent Samples

We highlight two sources that enable iterative inference models to further improve
performance: additional 1) inference iterations and 2) latent samples. Additional
inference iterations allow the inference model to further refine approximate posterior
estimates. We demonstrate this on binarized MNIST, using inference models that
encode approximate posterior gradients (VL) or errors (&y, €;), with or without the
data (x). These inference models are trained with 2, 5, 10, and 16 inference iterations.

The model architecture is identical in each case, the only difference being the number

51

—85 —84.0
o I I R U p——" —-—- Standard Inference Model (x)
—86 1 B G — —84.5 .
I e S - o0 —«—- Iterative Inference Model (VAL, X)
—87 [gz===T 1 == 85
88— B B N N R) !
a it & e
£ 80+ i -
E] -
N g
Q —90 < e
91 DU v et N e Jt
—921 T Ses o SSHETem s i '
t - VaL.x o -
—931 H - £y, E4 X —815
i
s 1 _] il
N 5 10 16 8.0 5 10 20
Inference Iterations During Training Approx. Posterior Samples During Training
(a) (b)

Figure 3.9: Hyperparameter Comparison. ELBO for direct and iterative inference
models on binarized MNIST for (a) additional inference iterations during training
and (b) additional samples. Iterative inference models improve significantly with
both quantities.

of input weights. Note that the small size of z relative to x gives the gradient encoding
model (V) fewer input parameters than the direct inference model (solid black
line). The other inference models have more input parameters. Results are shown
in Figure where we observe improved performance with increasing inference
iterations. With enough iterations, each iterative inference model outperforms the
direct inference model. As discussed in Section [3.4] encoding errors approximates

higher-order derivatives, which helps when training with fewer inference iterations.

Additional approximate posterior samples provide more precise (lower variance)
gradient and error estimates, potentially allowing an iterative inference model to
output improved updates. To verify this, we train direct and iterative inference
models on binarized MNIST using 1, 5, 10, and 20 approximate posterior samples.
Here, iterative inference models encode the data, x, and approximate posterior
gradients, V5 L, for 5 iterations. Results are shown in Figure[3.9b] Iterative inference
models improve by more than 1 nat with additional samples, further widening the

improvement over the comparable direct inference model.

Comparison with Direct Amortized Inference

We now compare the resulting log-likelihood performance between direct and
iterative amortized inference on binarized MNIST, CIFAR-10, and RCV1. Inference
model architectures are identical across each comparison, again, with the exception
of input parameters. Further details are found in Marino, Yue, and Mandt, 2018|
Tables [3.1 & [3.2] report estimated negative log-likelihood performance on binarized
MNIST and CIFAR-10 respectively. Table[3.3|reports estimated perplexity on RCV1.

Table 3.1: Negative Log-Likelihood on
binarized MNIST (in nats) for direct and

52

Table 3.2: Negative Log-Likelihood on
CIFAR-10 (in bits/dim.) for direct and

iterative amortized inference. iterative amortized inference.

—log p(x) —log p(x)
Single-Level Single-Level
Direct 84.14 = 0.02 Direct 5.823 £ 0.001
Iterative 83.84 = 0.05 Iterative 5.64 +0.03
Hierarchical Hierarchical
Direct 82.63 +£0.01 Direct 5.565 = 0.002
Iterative 82.457 + 0.001 Iterative 5.456 + 0.005

Table 3.3: Perplexity on RCV1 for direct and iterative amortized inference.

Perplexity <
Krishnan, Liang, and Hoffman (2018) 331
Direct 323 +£3 377.4+0.5
Iterative 285.0+0.1 314 + 1

Briefly, Perplexity, P, is defined as

P = exp (—l Z L logp(x(i))) ,
N — 1
where N is the number of data examples and n; is the total number of word counts in
document i. On each dataset and model, iterative amortized inference outperforms
direct amortization. This holds for both single-level and hierarchical (2 level)
models. We observe larger improvements on the high-dimensional RCV1 dataset,
consistent with Krishnan, Liang, and Hoffman, 2018, Because the generative model
architectures are kept fixed, performance improvements demonstrate improvements

in the inference procedure.

3.6 Discussion

In this chapter, we introduced iterative amortized inference, which learns to refine
inference estimates by encoding approximate posterior gradients or errors, i.e., learned
negative feedback perception. This inference procedure is inspired by hierarchical
predictive coding (Rao and Ballard, 1999; Friston, [2005), which uses Gaussian
errors to perform gradient-based variational inference. On several benchmark
datasets of images and text, we have demonstrated that iterative amortized inference
empirically outperforms direct amortization, while retaining the efficiency benefits of

amortization over gradient-based optimization. In latent Gaussian models, iterative

53

amortized inference generalizes and extends direct amortization, and by naturally
accounting for priors through gradients or errors, these models provide insight
and justification for top-down inference. This chapter has focused exclusively on
performing inference in static latent variable models. In the following chapter, we
apply this inference technique to sequential latent variable models, where we devise

a general-purpose filtering procedure centered around prediction and updating.

References

Andrychowicz, Marcin et al. (2016). “Learning to learn by gradient descent by
gradient descent”. In: Advances in Neural Information Processing Systems (NIPS),
pp- 3981-3989.

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E Hinton (2016). “Layer normaliza-
tion”. In: arXiv preprint arXiv: 1607.06450.

Chung, Junyoung et al. (2015). “A recurrent latent variable model for sequential
data”. In: Advances in neural information processing systems, pp. 2980-2988.

Cremer, Chris, Xuechen Li, and David Duvenaud (2018). “Inference Suboptimality
in Variational Autoencoders”. In: International Conference on Machine Learning,
pp- 1078-1086.

Dayan, Peter et al. (1995). “The helmholtz machine”. In: Neural computation 7.5,
pp- 889-904.

Friston, Karl (2005). “A theory of cortical responses”. In: Philosophical Transactions
of the Royal Society of London B: Biological Sciences 360.1456, pp. 815-836.

Gregor, Karol, Frederic Besse, et al. (2016). “Towards conceptual compression”. In:
Advances In Neural Information Processing Systems (NIPS), pp. 3549-3557.

Gregor, Karol, Ivo Danihelka, Alex Graves, et al. (2015). “DRAW: A recurrent neural
network for image generation”. In: Proceedings of the International Conference
on Machine Learning (ICML), pp. 1462-1471.

Gregor, Karol, Ivo Danihelka, Andriy Mnih, et al. (2014). “Deep autoregressive
networks”. In: Proceedings of the International Conference on Machine Learning
(ICML), pp. 1242-1250.

Hjelm, Devon et al. (2016). “Iterative refinement of the approximate posterior for

directed belief networks”. In: Advances in Neural Information Processing Systems
(NIPS), pp. 4691-4699.

Kalman, Rudolph Emil (1960). “A new approach to linear filtering and prediction
problems”. In: Journal of Basic Engineering 82.1, pp. 35-45.

Kim, Yoon et al. (2018). “Semi-Amortized Variational Autoencoders”. In: Proceed-
ings of the International Conference on Machine Learning (ICML).

54

Kingma, Durk P and Max Welling (2014). “Stochastic gradient VB and the variational
auto-encoder”. In: Proceedings of the International Conference on Learning
Representations.

Krishnan, Rahul G, Dawen Liang, and Matthew Hoffman (2018). “On the challenges
of learning with inference networks on sparse, high-dimensional data”. In: Pro-
ceedings of the International Conference on Artificial Intelligence and Statistics
(AISTATS), pp. 143-151.

Krizhevsky, Alex and Geoffrey E Hinton (2009). “Learning multiple layers of features
from tiny images”. In:

Lake, Brenden M, Ruslan R Salakhutdinov, and Josh Tenenbaum (2013). “One-shot
learning by inverting a compositional causal process”. In: Advances in Neural
Information Processing Systems (NIPS), pp. 2526-2534.

LeCun, Yannetal. (1998). “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11, pp. 2278-2324.

Lewis, David D et al. (2004). “Rcvl: A new benchmark collection for text cat-

egorization research”. In: The Journal of Machine Learning Research 5.Apr,
pp- 361-397.

Lotter, William, Gabriel Kreiman, and David Cox (2017). “Deep predictive coding
networks for video prediction and unsupervised learning”. In: International
Conference on Learning Representations.

Marino, Joseph, Yisong Yue, and Stephan Mandt (2018). “Iterative Amortized
Inference”. In: International Conference on Machine Learning, pp. 3403-3412.
URL: http://proceedings.mlr.press/v80/marinol8a.html.

Mumford, David (1992). “On the computational architecture of the neocortex”. In:
Biological cybernetics 66.3, pp. 241-251.

Netzer, Yuval et al. (2011). “Reading digits in natural images with unsupervised
feature learning”. In: NIPS workshop on deep learning and unsupervised feature
learning.

Putzky, Patrick and Max Welling (2017). “Recurrent inference machines for solving
inverse problems”. In: arXiv preprint arXiv: 1706.04008.

Ranganath, Rajesh, Sean Gerrish, and David Blei (2014). “Black box variational in-
ference”. In: Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS), pp. 814-822.

Rao, Rajesh PN and Dana H Ballard (1999). “Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects.” In: Nature
neuroscience 2.1.

http://proceedings.mlr.press/v80/marino18a.html

55

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic
backpropagation and approximate inference in deep generative models”. In:

Proceedings of the International Conference on Machine Learning, pp. 1278—
1286.

Salimans, Tim (2016). “A structured variational auto-encoder for learning deep
hierarchies of sparse features”. In: arXiv preprint arXiv:1602.08734.

Senderby, Casper Kaae et al. (2016). “Ladder variational autoencoders”. In: Advances
in Neural Information Processing Systems (NIPS), pp. 3738-3746.

Srivastava, Rupesh K, Klaus Greff, and Jiirgen Schmidhuber (2015). “Training very
deep networks”. In: Advances in neural information processing systems (NIPS),

pp. 2377-2385.

56
Chapter 4

AMORTIZED VARIATIONAL FILTERING

learned negative feedback (dynamic) perception

Marino, Joseph, Milan Cvitkovic, and Yisong Yue (2018). “A general method for
amortizing variational filtering”. In: Advances in Neural Information Processing
Systems, pp. 7857-7868. urL: http://papers.nips.cc/paper/8011-a-
general-method-for-amortizing-variational-filtering.

4.1 Introduction

Chapter [3]introduced iterative amortized inference, a technique for accurately and
efficiently performing inference optimization using gradients or errors. While
inference in this setup is iterative, the models themselves were formulated in static
settings, e.g., images. Many data sources, in contrast, contain sequential structure,
e.g., video, audio, or proprioceptive kinematics. This structure can be exploited to
improve modeling performance and enable prediction of future observations. Thus,
we require techniques for formulating deep sequential latent variable models, as well

as inference techniques that enable their training.

In this chapter, we extend iterative amortized inference to perform filtering in
deep sequential latent variable models, providing a general-purpose algorithm for
performing approximate Bayesian filtering. We first formulate variational EM in
the filtering setting, i.e., conditioning only on past and current variables. We then
describe an instantiation of this algorithm, implementing inference optimization
at each step with iterative amortized inference. The resulting inference method,

amortized variational filtering (AVF), is generally applicable to sequential latent

http://papers.nips.cc/paper/8011-a-general-method-for-amortizing-variational-filtering
http://papers.nips.cc/paper/8011-a-general-method-for-amortizing-variational-filtering

57

variable models, while retaining the efficiency of amortization. We demonstrate
this generality by applying AVF to three previously proposed deep sequential latent
variable models across three data domains: audio, video, and MIDI music. In
comparison with the custom inference models proposed for each generative model,
we show that our single method, AVF, matches or outperforms log-likelihood
performance in each case, with further improvement resulting from additional
inference iterations. Thus, AVF provides a conceptually simple, generally applicable,

and powerful filtering inference procedure.

4.2 Background

Sequential Latent Variable Models

Here, we briefly review sequential latent variable models (SLVMs). A sequence of
T observations, X;.7, can be modeled using a SLVM, py(X;.7, Z1.7), which models
the joint distribution between x;.7 and a sequence of latent variables, z.7, with
parameters 6. It is typically assumed that py(x;.7,Z;.7) can be factorized into
conditional joint distributions at each step, pg(X;, Z;|X<;, Z<;), Which are conditioned
on preceding variables. This results in the following autoregressive form:

T

T
po(X1.7,21.7) = Hpe(xt’ztlx<taz<1‘) = l—[P@(Xz|X<z,Zsz)P9(Zt|X<t,Z<z)- 4.1)
=1 t=1

po(X¢|X<s, Z<;) is the observation model, and py(z;|X<;, Z;) is the latent dynamics
model, both of which can be arbitrary functions of their conditioning variables.
However, while Eq. provides the general form of a SLVM, further assumptions
about the dependency structure, e.g., Markov, or functional forms, e.g., linear, are

often necessary for tractable inference and learning.

Variational Inference

Given a model and a set of observations, we typically want to infer the posterior
for each sequence, py(z;.7|X1.7), and learn the model parameters, 6. Inference can
be performed online or offline through Bayesian filtering or smoothing respectively
(Sarkkd, 2013)), and learning can be performed through maximum likelihood estima-
tion. Unfortunately, inference and learning are intractable for all but the simplest,
e.g., linear, model classes. For non-linear functions, which are present in deep
latent variable models, we must resort to approximate inference. As introduced in
Chapter variational inference (Jordan et al., 1998), framed in the sequential setting,
reformulates inference as optimization by introducing an approximate posterior,

q(z1.7|X1.7), then minimizing the KL divergence to the true posterior, pg(zi.r|X1.7).

58

To avoid evaluating pg(z;.7|X1.7), one can express the KL divergence as

Dx1.(q(z1.7|x1.7)||po(z1:7|X1.7)) = log pe(X1.7) — L(X1.73 6,), 4.2)

where, again, L is the evidence lower bound (ELBO), defined as

4.3)

Po(X1.7,21.7)
L(x1:7:0,9) = Eq(z,01x.1) [105% —] :

q(z1.7|X1:7)
In Eq. log pg(x1.7) is independent of ¢(z;.7|xi.7), SO one can minimize the
KL divergence to the true posterior, thereby performing approximate inference, by
maximizing £ w.r.t. ¢(z1.7|x1.7). Further, as KL divergence is non-negative, Eq.
implies that the ELBO lower bounds the log-likelihood. Therefore, upon maximizing
L w.rt. q(z1.7]X1.7), one can use the gradient VgL to learn the model parameters.
These two optimization procedures are respectively the expectation and maximization
steps of the variational EM algorithm (Neal and Hinton, |1998)), which alternate
until convergence. To scale this algorithm, stochastic gradients can be used for both
inference (Ranganath, Gerrish, and Blei, 2014) and learning (Hoffman et al.,|[2013).

As we have noted, performing inference using gradient-based optimization can
be computationally inefficient, potentially requiring many inference iterations. To
increase efficiency, we can use amortization (Gershman and Goodman, 2014).
However, direct inference models (Kingma and Welling, 2014; Rezende, Mohamed,
and Wierstra, 2014}, only receiving the data as input, are unable to account for
conditional (empirical) priors, which occur with structured latent variables. Such
priors arise in the latent dynamics of SLVMs, forming priors across time steps. As
with “top-down” inference in hierarchical latent variable models (C. K. Sgnderby
et al., 2016), many previous works use recurrent inference models in SLVMs, e.g.,
Chung, Kastner, et al., 2015, to encode previous observations and latent samples.
However, in this case, the inference model must effectively re-learn the latent

dynamics, possibly introducing inaccuracies into the inference scheme.

Related Work

Many deterministic deep sequential models have been proposed for sequence data
(Chung, Gulcehre, et al., 2014; N. Srivastava, Mansimov, and Salakhudinov, 2015;
Lotter, Kreiman, and Cox, 2017; Finn, Goodfellow, and Levine, 2016). While
these models often capture many aspects of the data, they cannot account for the
uncertainty inherent in many domains, typically arising from partial observability

of the environment. By averaging over multi-modal distributions, these models

59

often produce samples in regions of low probability, e.g., blurry video frames. This
inadequacy necessitates moving to models with stochastic latent variables, which can

better model uncertainty to accurately capture the distribution of possible sequences.

Amortized variational inference (Kingma and Welling, 2014; Rezende, Mohamed,
and Wierstra, 2014) has enabled many recently proposed probabilistic deep sequential
latent variable models, with applications to video (Walker et al., 2016} Karl et al.,
2017; Xue et al.,[2016; Johnson et al.,[2016; Gemici et al.,[2017}; Fraccaro, Kamronn,
et al.,2017; Babaeizadeh et al., 2018; Denton and Fergus, |2018}; Li and Mandt, [2018;,
He et al., 2018), speech (Chung, Kastner, et al., [2015; Fraccaro, S. K. Sgnderby,
et al., 2016; Goyal et al.,|2017; Hsu, Zhang, and Glass, |2017; Li and Mandt, 2018)),
handwriting (Chung, Kastner, et al.,|2015), music (Fraccaro, S. K. Sgnderby, et al.,
2016), etc. While these models differ in their functional mappings, most fall within
the general form of Eq.[4.1] Crucially, simply encoding the observation at each step is
insufficient to accurately perform approximate inference, as the prior can vary across
steps. Thus, with each model, a hand-crafted amortized inference procedure has been
proposed. For instance, many filtering inference methods re-use various components
of the generative model (Chung, Kastner, et al., 2015; Fraccaro, S. K. Sgnderby,
et al.,|2016; Gemici et al., 2017; Denton and Fergus, 2018)), while some methods
introduce separate recurrent neural networks into the filtering procedure (Bayer and
Osendorfer, 2014} Denton and Fergus, |2018) or encode the previous latent sample
(Karl et al., 2017). Specifying an amortized filtering method has been an engineering

effort, as we have lacked a general-purpose method.

The variational filtering EM algorithm (Section 4.3)) precisely specifies the inference
optimization procedure implied by performing filtering inference on the sequential
variational objective (Eq.d.3)). The main insight from this analysis is that, having
drawn approximate posterior samples at previous steps, inference becomes a tempo-
rally localized optimization, depending only on the current prior and observation.
This suggests a general approach that explicitly performs inference optimization
at each step, replacing the current collection of custom filtering methods. When
the approximate posterior at each step is initialized at the corresponding prior, this
approach entails a Bayesian prediction-update loop, with the update composed of a

gradient (or error) signal.

Perhaps the closest technique in the probabilistic modeling literature is the “residual”
inference method from Fraccaro, S. K. Sgnderby, et al., 2016, which updates the

approximate posterior mean from the prior. Similar ideas have been proposed

60

on an empirical basis for deterministic models (Lotter, Kreiman, and Cox, [2017;
Henaff, Zhao, and LeCun, 2017)). PredNet (Lotter, Kreiman, and Cox, 2017) is
a deterministic model that encodes prediction errors to perform inference. Like
our method, this approach is inspired by hierarchical predictive coding (Rao and
Ballard, (1999 Friston, [2005). Predictive coding, in turn, is an approximation to
classical Bayesian filtering (Sédrkka, [2013), which updates the posterior from the
prior using the log-likelihood (error) of the prediction. For linear Gaussian models,
this manifests as the Kalman filter (Kalman, 1960), which uses prediction errors to

perform exact inference.

Finally, several recent works have used particle filtering in conjunction with amortized
inference to provide a tighter bound on the log-likelihood for sequential models
(Maddison et al., [2017; Naesseth et al., 2018} Le et al., [2018). The techniques
developed here can also be applied to this setting, providing an improved method for

estimating the proposal distribution.

4.3 Variational Filtering

Variational Filtering Expectation Maximization (EM)

In the filtering setting, the approximate posterior at each step is conditioned only on
information from past and present variables, enabling online approximate inference.
This implies a structured approximate posterior, in which ¢(z;.r|x;.r) factorizes

across steps as
T
g(zrlxir) = | | a(@lxe,2<). (4.4)
=1

Note that the conditioning variables in each term of ¢ denote an indirect dependence
that arises through inference optimization and does not necessarily constitute a direct
functional mapping. Under a filtering approximate posterior, the ELBO can be

expressed as

T T
‘E = Z Eﬂ',;ll q(Z7|X<7,2<7) [Ll] = Z Lt’ (45)

=1 t=1

(derived in Appendix {.6) where L, is the step ELBO, defined as

p@(xt’ztlx<t9z<f)] ’ (4.6)

.£ =E <t-Z<t lo
t q(2¢|X <12)[g q(Z,|X5;,Z<z)

and we have also defined f, as the ™ term in the summation. Note that with a
single step, the filtering ELBO reduces to the first step ELBO, thereby recovering

the case of a static latent variable model. As in this setting, the step ELBO can be

61

t—1

Figure 4.1: Variational Filtering Inference. The diagram shows filtering inference
within a sequential latent variable model, as outlined in Algorithm[2] The central gray
region depicts inference optimization at step ¢, initialized at or near the corresponding
prior (white), pg(z:|x<;,Z<;). Sampling from the approximate posterior (blue)
generates the conditional likelihood (green), pg(X;|X<;, Z<;), Which is evaluated at
the observation (gray), x;, to calculate the prediction error. This term is combined
with the KL divergence between the approximate posterior and prior, yielding the
step ELBO (red), £; (Eq.[.7). Inference optimization (E-step) involves finding the
approximate posterior that maximizes the step ELBO terms.

re-expressed as a reconstruction term and a KL divergence term:

L =Byzx.20) [log po (X¢|X<s, Z<r)] — DkL(q(%|X<t, 2<1)||po(2:|X<s, 2<1)).
4.7)
The filtering ELBO in Eq.[4.5]is the sum of these step ELBO terms, each of which is
evaluated according to expectations over past latent sequences. To perform filtering
variational inference, we must find the set of T terms in ¢(z;.7|X;.7) that maximize

the filtering ELBO summation.

We now describe the variational filtering EM algorithm, given in Algorithm [2]
and depicted in Figure which optimizes Eq. This algorithm sequentially
optimizes each of the approximate posterior terms to perform filtering inference.

Consider the approximate posterior at step ¢, q(z;|X<;, Z<;). This term appears in L,

62
either directly or in expectations, in terms ¢ through T of the summation:

terms in which q(z;|x<;, Z<,) appears

L=L+Lo++ L+ L+ Lo+ -+ Lro + L. (4.8)

steps on which ¢(z;|x<,,Z<,) depends

However, the filtering setting dictates that the optimization of the approximate
posterior at each step can only condition on past and present variables, i.e., steps
1 through 7. Therefore, of the T terms in L, the only term through which we can

optimize q(z;|X<;, Z;) is the ™ term:

q"(2|x<1,2<,) = argmax Zt~ (4.9)
q(2e|X<r.2<r)

Optimizing f, requires evaluating expectations over previous approximate posteriors.
Again, because approximate posterior estimates cannot be influenced by future
variables, these past expectations remain fixed through the future. Thus, variational
filtering (the variational E-step) can be performed by sequentially maximizing each £;
w.r.t. q(z;|X<;, Z<;), holding the expectations over past variables fixed. Conveniently,
once the past expectations have been evaluated, inference optimization is entirely
defined by the ELBO at that step.

For simple models, such as linear Gaussian models, these expectations may be
computed exactly. However, in general, the expectations must be estimated through
Monte Carlo samples from ¢, with inference optimization carried out using stochastic
gradients (Ranganath, Gerrish, and Blei, 2014). As in the static setting, we can
initialize q(z;|X<;,Z<;) at (or near) the prior, pg(z;|X<;,Z;). This yields a simple
interpretation: starting with ¢ at the prior, we generate a prediction of the data
through the likelihood, py(x;|X<;, Z<;), to evaluate the current step ELBO. Using the
approximate posterior gradient, we then perform an inference update to the estimate
of g. This resembles classical Bayesian filtering, where the posterior is updated from
the prior prediction according to the likelihood of observations. Unlike the classical
setting, reconstruction and update steps are repeated until inference convergence.
This resembles the extended Kalman filter (Kalman, 1960; Murphy, 2012), but is

applicable to non-linear models with non-Gaussian distributions.

After inferring an optimal approximate posterior, learning (the variational M-step)
can be performed by maximizing the total filtering ELBO w.r.t. the model parameters,

6. As Eq.[.5]is a summation and differentiation is a linear operation, VoL is the

63

Algorithm 2 Variational Filtering Expectation Maximization

1: Input: observation sequence X;.7, model py(Xi.7,Z].7)

2: VoL =0 > parameter gradient
3: fort=1to T do

4: initialize q(z|x</, 2<;) > at/near pg(z;|X<;, Z<;)
500 L= EBygixaaan (L]

6: q(2:|X<r, 2<) = argmax, L, > inference (E-Step)
7: VoL «— Vg L+VyL,

8: end for

9: 0 =0+aVyL > learning (M-Step)

sum of contributions from each of these terms:
T
VoL=) Ve [En;;', g(arlxeriar) Ll |- (4.10)
=1

Parameter gradients can be estimated online by accumulating the result from each
term in the filtering ELBO. The parameters are then updated at the end of the
sequence. For large datasets, stochastic estimates of parameter gradients can be

obtained from a mini-batch of data examples (Hoffman et al., 2013).

Amortized Variational Filtering

Performing approximate inference optimization (Algorithm[2] Line 6) with traditional
techniques can be computationally costly, requiring many iterations of gradient
updates and hand-tuning of optimizer hyper-parameters. In online settings, with
large models and data sets, this may be impractical. An alternative approach
is to employ an amortized inference model, which can learn to maximize £,
w.r.t. q(z:/x<;,Z;) more efficiently at each step. Note that £, (Eq. contains
Po(Xt, t|X<r, 2<r) = po(X¢|X<s, Z<1) po(2:|X<s, 2<;). The prior, pg(z|X<;, 2<;), varies
across steps, constituting the latent dynamics. Direct inference models, which only
encode x;, do not have access to the prior and therefore cannot properly optimize
q(z;|X<;, Z<;). Many inference models in the sequential setting attempt to account for
this information by including hidden states (Chung, Kastner, et al., 2015} Fraccaro,
S. K. Sgnderby, et al., 2016; Denton and Fergus, 2018). However, given the
complexities of many generative models, it can be difficult to determine how to
properly route the necessary prior information into the inference model. As a result,

each SLVM has been proposed with an accompanying custom inference model.

We propose a simple and general alternative method for amortizing filtering in-

ference that is agnostic to the particular form of the generative model. Iterative

64

amortized inference (Chapter [3)) naturally accounts for the changing prior through the
approximate posterior gradients or errors. These models are thus a natural candidate
for performing inference at each step. Similar to Eq. when ¢(z;|X<;,Z<;) is a

parametric distribution with parameters A/, the inference update takes the form:
AJ <—f¢()\?,V)\?f[). 4.11)

We refer to this setup as amortized variational filtering (AVF). Again, Eq. offers
just one particular encoding form for an iterative inference model. For instance, x;
could be additionally encoded at each step. As noted in Chapter[3] in latent Gaussian
models, precision-weighted errors provide an alternative inference optimization
signal. There are two main benefits to using iterative inference models in the filtering

setting:

* The approximate posterior is updated from the prior, so model capacity is
utilized for inference corrections rather than re-estimating the latent dynamics

at each step.

* These inference models contain all of the terms necessary to perform inference
optimization, providing a simple model form that does not require any additional

hidden states or inputs.

In practice, these advantages permit the use of relatively simple iterative inference
models that can perform filtering inference efficiently and accurately. We demonstrate

this in the following section.

4.4 Experiments

We empirically evaluate amortized variational filtering using multiple deep se-
quential latent Gaussian model architectures on a variety of sequence datasets.
Specifically, we use AVF to train VRNN (Chung, Kastner, et al., 2015), SRNN
(Fraccaro, S. K. Sgnderby, et al., [2016), and SVG (Denton and Fergus, [2018])
on speech (Garofolo et al., 1993), music (Boulanger-Lewandowski, Bengio, and
Vincent, 2012), and video (Schuldt, Laptev, and Caputo, |2004) data. In each
setting, we compare AVF against the originally proposed filtering method for
the model. Diagrams of the filtering methods are shown in Figure d.2] Im-

plementations of the models are based on code provided by the respective au-

65

(a) VRNN (b) SRNN (c) SVG (d) AVF

Figure 4.2: Filtering Inference Models for VRNN, SRNN, SVG, and AVF. Each
diagram shows the computational graph for inferring the approximate posterior
parameters, A9, at step ¢t. Previously proposed methods rely on hand-crafted
architectures of observations, hidden states, and latent variables. AVF is a simple,
general filtering procedure that only requires the local inference gradient.

thors of VRNN]], SRNN? and SVGP| Accompanying code can be found online at
github.com/joelouismarino/amortized-variational-filtering.

Setup

Iterative inference models are implemented as specified in Eq. .11} encoding the
approximate posterior parameters and their gradients at each inference iteration at
each step. As in the static setting (Chapter [3]), we separately normalize each of the
inputs to the inference model using layer normalization (Ba, Kiros, and Hinton, 2016)
and use highway gating (Eq. [3.12)) for for each output (R. K. Srivastava, Greft, and
Schmidhuber, 20135)). The generative models that we evaluate contain non-spatial
latent variables, thus, we use fully-connected layers to parameterize the inference
models. Specifically, we use two-layer fully-connected networks with 1, 024 units per
layer, internal highway connections R. K. Srivastava, Greff, and Schmidhuber, 2015,
and ELU non-linearities Clevert, Unterthiner, and Hochreiter, 2015 Importantly,
minimal effort went into engineering the inference model architectures: across all
models and datasets, we utilize the same inference model architecture for AVF.
Further model and experiment details can be found in Marino, Cvitkovic, and Yue,
2018. Finally, we note that AVF is comparable in runtime to the baseline filtering
methods. For example, with our implementation of SRNN on TIMIT, AVF requires
13.1ms per time step, whereas the baseline method requires 15.6ms per time step.

AVF requires an additional decoding per step, but inference is local to the current

"https://github.com/jych/nips2015_vrnn
Zhttps://github.com/marcofraccaro/srnn
3https ://github.com/edenton/svg

https://github.com/joelouismarino/amortized-variational-filtering

66

Observation —WWW——%W“WWW’“%WW
Model Output
Iteration O

Model Output
Iteration 1

Figure 4.3: Prediction-Update Visualization. Test data (top), output predictions
(middle), and updated reconstructions (bottom) for TIMIT using SRNN with AVF.
Sequences run from left to right. The predictions made by the model already contain
the general structure of the data. AVF explicitly updates the approximate posterior
from the prior prediction, focusing on inference corrections rather than re-estimation.

time step, making backpropagation more efficient.

Speech Modeling

Models For speech modeling, we use VRNN and SRNN, attempting to keep the
model architectures consistent with the original implementations. The most notable
difference in our implementation occurs in SRNN, where we use an LSTM rather
than a GRU as the recurrent module. As in Fraccaro, S. K. Sgnderby, et al., 2016, we
anneal the KL divergence initially during training. In both models, we use a Gaussian
output density. Unlike Chung, Kastner, et al., 2015}; Fraccaro, S. K. Sgnderby, et al.,
2016; Goyal et al., 2017, which evaluate log densities, we evaluate and report log
probabilities by integrating the output density over the data discretization window,

as in modeling image pixels.

Data We train and evaluate on TIMIT (Garofolo et al.,|1993)), which consists of
audio recordings of 6,300 sentences spoken by 630 individuals. As performed in
Chung, Kastner, et al., 2015, we sample the audio waveforms at 16 kHz, split the
training and validation sets into half second clips, and group each sequence into bins
of 200 consecutive samples. Thus, each training and validation sequence consists of
40 model steps. Evaluation is performed on the full duration of each test sequence,

averaging roughly 3 seconds.

67

Music Modeling

Model We model polyphonic music using SRNN. The generative model architecture
is the same as in the speech modeling experiments, with changes in the number
of layers and units to match Fraccaro, S. K. Sgnderby, et al., 2016. To model the
binary music notes, we use a Bernoulli output distribution. Again, we anneal the KL,

divergence initially during training.

Data We use four datasets of polyphonic (MIDI) music (Boulanger-Lewandowski,
Bengio, and Vincent, 2012): Piano-midi.de, MuseData, JSB Chorales, and Notting-
ham. Each dataset contains between 100 and 1, 000 songs, with each song between
100 to 4, 000 steps. For training and validation, we break the sequences into clips of

length 25, and we test on the entire test sequences.

Video Modeling

Model Our implementation of SVG differs from the original model in that we
evaluate the conditional log-likelihood under a Gaussian output density rather than
mean squared output error. All other architecture details are identical to the original
model. However, Denton and Fergus, 2018/ down-weight the KL-divergence by a
factor of 1076 at all steps. We instead remove this factor to use the ELBO during
training and evaluation. As to be expected, this results in the model using the latent
variables to a lesser extent. We train and evaluate SVG using filtering inference at all
steps, rather than predicting multiple steps into the future, as in Denton and Fergus,
2018l

Data We train and evaluate SVG on KTH Actions (Schuldt, Laptev, and Caputo,
2004), which contains 760 train / 768 val / 863 test videos of people performing
various actions, each of which is between roughly 50 to 150 frames. Frames are
re-sized to 64 x 64. For training and validation, we split the data into clips of 20

frames.

Results

Additional Inference Iterations

The variational filtering EM algorithm involves inference optimization at each step
(Algorithm 2] Line 6). AVF optimizes each approximate posterior through a model
that learns to perform iterative updates (Eq.4.11)). Additional inference iterations

] 25
E 1v160 \“ :;: ’____.___-—.-—-——.—"—‘.'"".
g 5 20 el
~— \‘ 5 ,4
00115 \ < /
[SREEU RS E5|
n \ 6 !
g) =
21,140 8. =0
o e = |
e — !
A & 5|/
R 1,130 1 d ,'"
0
1 2 4 8 0 1 2 3 ! 5 6 7 8
Training Inference Iterations Inference Iteration
(a) (b)

Figure 4.4: Improvement with Inference Iterations. Results are shown on the
TIMIT validation set using VRNN with AVF. (a) Average negative ELBO per step
with varying numbers of inference iterations during training. Additional iterations
result in improved performance. (b) Average relative ELBO improvement from the
initial (prior) estimate at each inference iteration for a single model. Empirically,

each successive iteration provides diminishing additional improvement.

may lead to further improvement in performance (Marino, Yue, and Mandt, 2018)).
We explore this aspect on TIMIT using VRNN. In Figure [4.4a] we plot the average
negative ELBO per step on validation sequences for models trained with varying

numbers of inference iterations. Figure .4b|shows average relative improvement

over the prior estimate for a single model trained with 8 inference iterations. We
observe that training with additional inference iterations empirically leads to improved
performance (Figure [4.4a)), with each iteration providing diminishing improvement
during inference (Figure 4.4b)). This aspect is distinct from many baseline filtering

methods, which directly output the approximate posterior at each step.

We can also directly visualize inference improvement through the model output.
Figure [4.3]illustrates example reconstructions over inference iterations, using SRNN
on TIMIT. At the initial inference iteration, the approximate posterior is initialized
from the prior, resulting in an output prediction. The iterative inference model then
uses the approximate posterior gradients to update the estimate, improving the output

reconstruction.

Quantitative Comparison

Tables 4.1} [4.2] and 4.3 present quantitative comparisons of average negative filtering
ELBO per step (lower is better) between AVF and baseline filtering methods for

TIMIT, KTH Actions, and the polyphonic music datasets respectively. On TIMIT,

69

Table 4.1: Average negative ELBO Table 4.2: Average negative ELBO
per step (in nats) on the TIMIT speech per step (in nats per dimension) on the
dataset for SRNN and VRNN with the KTH Actions video dataset for SVG
respective originally proposed filtering with the originally proposed filtering

procedures (baselines) and with AVF. procedure (baseline) and with AVF.
| TIMIT | KTH Actions

VRNN SVG
baseline 1,082 baseline 3.69
AVF (1 Iter.) || 1,105 AVF (1 Iter.) 2.86
AVF (2 Iter.) || 1,071

SRNN
baseline 1,026
AVF (1 Iter.) || 1,024

Table 4.3: Average negative ELBO per step (in nats) on polyphonic music datasets
for SRNN with and without AVF. Results from Fraccaro, S. K. Sgnderby, et al., 2016
are provided for comparison, however, our model implementation differs in several
aspects (see Marino, Cvitkovic, and Yue, 2018)).

H Piano-midi.de ‘ MuseData ‘ JSB Chorales ‘ Nottingham

SRNN
baseline (Fraccaro et al., 2016) 8.20 6.28 4.74 2.94
baseline 8.19 6.27 6.92 3.19
AVF (1 Iter.) 8.12 5.99 6.97 3.13
AVF (5 Iter.) - - 6.77 -

training with AVF performs comparably to the baseline methods for both VRNN
and SRNN. We note that VRNN with AVF using 2 inference iterations resulted in a
final test performance of 1,071 nats per step, outperforming the baseline method.
Similar results are also observed on each of the polyphonic music datasets. Again,
increasing the number of inference iterations to 5 for AVF on JSB Chorales resulted
in a final test performance of 6.77 nats per step. AVF significantly improves the
performance of SVG on KTH Actions. We attribute this, likely, to the absence of
the KL down-weighting factor in our training objective as compared with (Denton
and Fergus, 2018)). This agrees with Kumar et al., 2020, who observe that many
recently proposed video models trained with proper log-likelihood objectives tend
to perform poorly. The baseline filtering procedure seems to struggle to a greater
degree than AVF. From comparing the results above, we see that AVF is a general
filtering procedure that performs well across multiple models and datasets, despite

using a relatively simple inference model structure. In the cases where single-

70

step AVF did not outperform the baseline inference procedure, we were able to
improve performance by simply increasing the number of inference iterations, with

no additional parameter overhead.

4.5 Discussion

This chapter introduced the variational filtering EM algorithm for performing
filtering inference in sequential latent variable models. Filtering variational inference
can be expressed as a sequence of optimization objectives, linked across steps
through previous latent samples. Using iterative amortized inference (Chapter [3))
to perform inference optimization, we arrived at an efficient implementation of the
algorithm: amortized variational filtering. This general filtering method scales to
large models and datasets. Numerous methods have been proposed for filtering
in deep sequential latent variable models, with each method hand—designed for
each model. The variational filtering EM algorithm provides a single framework
for analyzing and constructing these methods. Amortized variational filtering is a
simple, theoretically-motivated, and general filtering method that we have shown
performs on-par with or better than multiple existing state-of-the-art methods across

various data domains.

Unlike previous amortized filtering methods, AVF is formulated in terms of iterative
optimization at each time step. That is, AVF is initialized at each time step from the
prior and only optimizes the relevant objective terms at the current time step. As a
result, AVF does not need to re-estimate the latent dynamics, as in previous amortized
filtering methods. This prediction-update scheme is reminiscent of classical Bayesian
filtering techniques, such as Kalman filtering (Kalman, 1960), using prediction
errors to perform exact probabilistic inference in linear-Gaussian models. From
this perspective, AVF is thus a modern instantiation of the same negative feedback
principles for perception, harnessing the efficiency of amortization, combined with

the generality of variational inference.

4.6 Appendix: Filtering ELBO Derivation
This derivation largely follows that of Gemici et al., 2017 and is valid for any filtering
approximate posterior. From Eq. [4.3] we have the definition of the ELBO:

M} | (4.12)

L=E 7 1x.) |10
q(Z_T|X_T)[g Q(ZSTlxﬁT)

71

Plugging in the forms of the joint distribution (Eq. 4.1I) and approximate posterior

(Eq..4), we can write the term within the expectation as a sum:

[T
P (Xs, Zs| X<ty Zoy)
LB o 4.13
q(z<t |X<T) » g(D q(zt|xst,z<,))] (:
| L D(X¢, Z¢| X<ty Zy)
L =E Z.T|X< lo Lorm<h o (414)
q(z<r|X<1) ; g q(2|X<s, Z<y)
[T
L :Eq(ZST [x<T) Z Gl (415)
| =1

where the term C; is defined to simplify notation. We then expand the expectation:

T
G

=1

L=Ey@x) - - - Egarixar zor) (4.16)

There are T terms within the sum, but each C; only depends on the expectations up
to time ¢ because we only condition on past and present variables. This allows us to

write:

L =Ey(zx)) [C1]
+Egax) Eqmlx .z [C2]

+...
+Eq(2x) Bq(zalx o) - - - Baar | xer 2or) [CT] (4.17)
T
L ZZEqugAxg) [Ci] (4.18)
t=1
T
‘E = Z EH{rzl q(ZT|X§T,Z<‘r) [Ct] (419)
=1
T
L = Z El_[tf;ll q(z7|X<7,2<7) [Eq(ztlxﬁt’ZQ) [Cl]] ' (420)
=1
As in Section 4.2} we define £; as
L = Ey(a,x1,2) [Cr] (4.21)
Po(Xs, Ze|X<r, Zot)
L =Fyixoz.) |10 . 422
T T [& @lxer, 2 (422

This allows us to write Eq.[4.20]as

T
£=) Bt g 1411 (4.23)
=1

which agrees with Eq. #.5]

72
References

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E Hinton (2016). “Layer normaliza-
tion”. In: arXiv preprint arXiv: 1607.06450.

Babaeizadeh, Mohammad et al. (2018). “Stochastic Variational Video Prediction”.
In: International Conference on Learning Representations.

Bayer, Justin and Christian Osendorfer (2014). “Learning Stochastic Recurrent
Networks”. In: NeurIPS 2014 Workshop on Advances in Variational Inference.

Boulanger-Lewandowski, Nicolas, Yoshua Bengio, and Pascal Vincent (2012).
“Modeling temporal dependencies in high-dimensional sequences: Application to
polyphonic music generation and transcription”. In: International Conference on
Machine Learning.

Chung, Junyoung, Caglar Gulcehre, et al. (2014). “Empirical evaluation of gated recur-
rent neural networks on sequence modeling”. In: arXiv preprint arXiv:1412.3555.

Chung, Junyoung, Kyle Kastner, et al. (2015). “A recurrent latent variable model for
sequential data”. In: Advances in neural information processing systems, pp. 2980—
2988.

Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter (2015). “Fast and
accurate deep network learning by exponential linear units (elus)”. In: arXiv
preprint arXiv:1511.07289.

Denton, Emily and Rob Fergus (2018). “Stochastic Video Generation with a Learned
Prior”. In: International Conference on Machine Learning, pp. 1182—-1191.

Finn, Chelsea, lan Goodfellow, and Sergey Levine (2016). “Unsupervised learning for
physical interaction through video prediction”. In: Advances in Neural Information
Processing Systems.

Fraccaro, Marco, Simon Kamronn, et al. (2017). “A Disentangled Recognition and
Nonlinear Dynamics Model for Unsupervised Learning”. In: Advances in Neural
Information Processing Systems.

Fraccaro, Marco, Sgren Kaae Sgnderby, et al. (2016). “Sequential neural models
with stochastic layers”. In: Advances in neural information processing systems,

pp- 2199-2207.

Friston, Karl (2005). “A theory of cortical responses”. In: Philosophical Transactions
of the Royal Society of London B: Biological Sciences 360.1456, pp. 815-836.

Garofolo, J. S. et al. (1993). DARPA TIMIT Acoustic Phonetic Continuous Speech
Corpus.

Gemici, Mevlana et al. (2017). “Generative Temporal Models with Memory”. In:
arXiv preprint arXiv:1702.04649.

Gershman, Samuel and Noah Goodman (2014). “Amortized inference in probabilistic
reasoning”. In: Proceedings of the Cognitive Science Society. Vol. 36. 36.

73

Goyal, Anirudh et al. (2017). “Z-Forcing: Training Stochastic Recurrent Networks”.
In: Advances in Neural Information Processing Systems.

He, Jiawei, Andreas Lehrmann, Joseph Marino, Greg Mori, and Leonid Sigal (2018).
“Probabilistic video generation using holistic attribute control”. In: Proceedings
of the European Conference on Computer Vision (ECCV), pp. 452—467. URL:
http://openaccess.thecvf.com/content_ECCV_2018/html/Jiawei_
He_Probabilistic_Video_Generation_ECCV_2018_paper.html.

Henaff, Mikael, Junbo Zhao, and Yann LeCun (2017). “Prediction Under Uncertainty
with Error-Encoding Networks”. In: arXiv preprint arXiv:1711.04994.

Hoffman, Matthew D et al. (2013). “Stochastic variational inference”. In: The Journal
of Machine Learning Research 14.1, pp. 1303-1347.

Hsu, Wei-Ning, Yu Zhang, and James Glass (2017). “Unsupervised Learning
of Disentangled and Interpretable Representations from Sequential Data”. In:
Advances in Neural Information Processing Systems.

Johnson, Matthew et al. (2016). “Composing graphical models with neural net-
works for structured representations and fast inference”. In: Advances in Neural
Information Processing Systems.

Jordan, Michael I et al. (1998). “An introduction to variational methods for graphical
models”. In: NATO ASI SERIES D BEHAVIOURAL AND SOCIAL SCIENCES 89,
pp- 105-162.

Kalman, Rudolph Emil (1960). “A new approach to linear filtering and prediction
problems”. In: Journal of Basic Engineering 82.1, pp. 35-45.

Karl, Maximilian et al. (2017). “Deep variational Bayes filters: Unsupervised
learning of state space models from raw data”. In: Proceedings of the International
Conference on Learning Representations (ICLR).

Kingma, Durk P and Max Welling (2014). “Stochastic gradient VB and the variational
auto-encoder”. In: Proceedings of the International Conference on Learning
Representations.

Kumar, Manoj et al. (2020). “VideoFlow: A Flow-Based Generative Model for
Video”. In: International Conference on Learning Representations.

Le, Tuan Anh et al. (2018). “Auto-Encoding Sequential Monte Carlo”. In: Interna-
tional Conference on Learning Representations.

Li, Yingzhen and Stephan Mandt (2018). “A Deep Generative Model for Disentangled
Representations of Sequential Data”. In: International Conference on Machine
Learning.

Lotter, William, Gabriel Kreiman, and David Cox (2017). “Deep predictive coding
networks for video prediction and unsupervised learning”. In: International
Conference on Learning Representations.

http://openaccess.thecvf.com/content_ECCV_2018/html/Jiawei_He_Probabilistic_Video_Generation_ECCV_2018_paper.html
http://openaccess.thecvf.com/content_ECCV_2018/html/Jiawei_He_Probabilistic_Video_Generation_ECCV_2018_paper.html

74

Maddison, Chris J et al. (2017). “Filtering Variational Objectives”. In: Advances in
Neural Information Processing Systems.

Marino, Joseph, Milan Cvitkovic, and Yisong Yue (2018). “A general method for
amortizing variational filtering”. In: Advances in Neural Information Processing
Systems, pp. 7857-7868. urL: http://papers.nips.cc/paper/8011-a-
general -method- for-amortizing-variational-filtering.

Marino, Joseph, Yisong Yue, and Stephan Mandt (2018). “Iterative Amortized
Inference”. In: International Conference on Machine Learning, pp. 3403-3412.
URL: http://proceedings.mlr.press/v80/marinol8a.html.

Murphy, Kevin P (2012). Machine learning: a probabilistic perspective. MIT press.

Naesseth, Christian et al. (2018). “Variational Sequential Monte Carlo”. In: Interna-
tional Conference on Artificial Intelligence and Statistics.

Neal, Radford M and Geoffrey E Hinton (1998). “A view of the EM algorithm that
justifies incremental, sparse, and other variants”. In: Learning in graphical models.
Springer, pp. 355-368.

Ranganath, Rajesh, Sean Gerrish, and David Blei (2014). “Black box variational in-
ference”. In: Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS), pp. 814-822.

Rao, Rajesh PN and Dana H Ballard (1999). “Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects.” In: Nature
neuroscience 2.1.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic
backpropagation and approximate inference in deep generative models”. In:

Proceedings of the International Conference on Machine Learning, pp. 1278—
1286.

Sarkka, Simo (2013). Bayesian filtering and smoothing. Vol. 3. Cambridge University
Press.

Schuldt, Christian, Ivan Laptev, and Barbara Caputo (2004). “Recognizing hu-
man actions: a local SVM approach”. In: International Conference on Pattern
Recognition.

Senderby, Casper Kaae et al. (2016). “Ladder variational autoencoders”. In: Advances
in Neural Information Processing Systems (NIPS), pp. 3738-3746.

Srivastava, Nitish, Elman Mansimov, and Ruslan Salakhudinov (2015). “Unsuper-
vised learning of video representations using Istms”. In: International conference
on machine learning, pp. 843-852.

Srivastava, Rupesh K, Klaus Greff, and Jiirgen Schmidhuber (2015). “Training very
deep networks”. In: Advances in neural information processing systems (NIPS),
pp- 2377-2385.

http://papers.nips.cc/paper/8011-a-general-method-for-amortizing-variational-filtering
http://papers.nips.cc/paper/8011-a-general-method-for-amortizing-variational-filtering
http://proceedings.mlr.press/v80/marino18a.html

75

Walker, Jacob et al. (2016). “An uncertain future: Forecasting from static images
using variational autoencoders”. In: European Conference on Computer Vision.

Xue, Tianfan et al. (2016). “Visual dynamics: Probabilistic future frame synthesis

via cross convolutional networks”. In: Advances in Neural Information Processing
Systems (NIPS), pp. 91-99.

76
Chapter 5

IMPROVING SEQUENTIAL LATENT VARIABLE MODELS
WITH AUTOREGRESSIVE FLOWS

learned feedforward perception

Marino, Joseph, Lei Chen, Jiawei He, and Stephan Mandt (2020). “Improving
Sequential Latent Variable Models with Autoregressive Flows”. In: Symposium
on Advances in Approximate Bayesian Inference, pp. 1-16. urL: http: //
proceedings.mlr.press/v118/marino20a.html.

Yang, Ruihan, Yibo Yang, Joseph Marino, and Stephan Mandt (2021). “Hierarchical
Autoregressive Modeling for Neural Video Compression”. In: International

Conference on Learning Representations. urL: https://openreview.net/
pdf?id=TK_6nNb_C7q.

5.1 Introduction

The previous chapters explored the use of learned negative feedback to perform
inference in deep latent variable models. These methods attempt to reduce errors,
via variational inference optimization, as they arise. As we saw in Chapter E],
inference optimization can be augmented with prior predictions, providing a useful
initialization that preemptively reduces errors. However, these priors occur within
the latent space, which must be transformed into data-level predictions at each time

step. That is, the entire raw data input is constantly being newly predicted.

This chapter explores a complementary technique, incorporating predictions directly

at the data level, via the conditional likelihood, thereby completely bypassing inference

http://proceedings.mlr.press/v118/marino20a.html
http://proceedings.mlr.press/v118/marino20a.html
https://openreview.net/pdf?id=TK_6nNb_C7q
https://openreview.net/pdf?id=TK_6nNb_C7q

7

optimization. In this way, low-level predictions remove temporal redundancy from
the data, with latent variables, and therefore inference optimization, only reserved for
any remaining errors. We formulate this process as an autoregressive flow across time,
yielding a form of learned feedforward perception. Feedforward processing can be
seen as learning a frame of reference to assist in modeling the data by pre-processing
the input at each time step. This not only simplifies downstream dynamics modeling,
but, by modeling errors rather than the data itself, also has the effect of improving
generalization to unseen sequences. We demonstrate these improvements across

multiple benchmark video datasets.

5.2 Method
We start by motivating the use of autoregressive flows to reduce temporal dependen-
cies, thereby simplifying dynamics. We then show how this simple technique can be

incorporated within sequential latent variable models.

Motivation: Temporal Redundancy Reduction

Normalizing flows, while often utilized for density estimation, originated from data
pre-processing techniques (Friedman, |1987; Hyvérinen and Oja, 2000; S. S. Chen and
Gopinath, 2001), which remove dependencies between dimensions, i.e., redundancy
reduction (Barlow et al., |1961). Removing dependencies simplifies the resulting
probability distribution by restricting variation to individual dimensions, generally
simplifying downstream tasks (Laparra, Camps-Valls, and Malo, 2011). Normalizing
flows improve upon these procedures using flexible, non-linear functions (Deco and
Brauer, 1995; Dinh, Krueger, and Bengio, 2015)). While flows have been used for
spatial decorrelation (Agrawal and Dukkipati, [2016; Winkler et al.,|[2019) and with

other models (Huang et al., 2017), this capability remains under-explored.

Data sequences contain dependencies in time, for example, in the redundancy of
video pixels (Figure[5.3)), which are often highly predictable. These dependencies
define the dynamics of the data, with the degree of dependence quantified by the

multi-information,

I(xip) =) Hx) = H(xir), (5.1)

where H denotes entropy. Normalizing flows are capable of reducing redundancy,
arriving at a new sequence, y;.7, with 7 (y;.7) < I (x1.7), thereby reducing temporal
dependencies and simplifying dynamics. Thus, rather than fit the data distribution

directly, we can first simplify the dynamics by pre-processing sequences with a

78

Figure 5.1: Redundancy Reduction. (a) Conditional densities for p(x;|x;). (b)
The marginal, p(x;,) differs from the conditional densities, thus, 7 (x1;x2) > 0. (c)
In the normalized space of y, the corresponding densities p(y;|y) are identical. (d)
The marginal p(y,) is identical to the conditionals, so 7 (y{; y2) = 0. Thus, in this
case, a conditional affine transform removed the dependencies.

normalizing flow, then fit the resulting sequence. Through training, the flow will
attempt to remove redundancies to meet the modeling capacity of the higher-level

dynamics model, py(yi.7).

Example To visualize this procedure for an affine autoregressive flow, consider a
one-dimensional input over two time steps, x| and x,. For each value of x1, there is a
conditional density, p(x;|x;). Assume that these densities take one of two forms,
which are identical but shifted and scaled, shown in Figure Transforming these
densities through their conditional means, u; = E [x;|x;], and standard deviations,
o =E [(xz - y2)2|x1]1/2, creates a normalized space, y, = (xp — up) /0%, where

the conditional densities are identical. In this space, the multi-information is

T (y1:52) = Ep(y,.y,) [log p(y2ly1) —log p(y2)] =0,

whereas 7 (x1;x2) > 0. Indeed, if p(x;|x<;) is linear-Gaussian, inverting an affine
autoregressive flow exactly corresponds to Cholesky whitening (Pourahmadi, 2011}

Kingma, Salimans, et al.,[2016), removing all linear dependencies.

In the example above, u, and o> act as a frame of reference for estimating x,. More
generally, in the special case where py(x<;) = X;—; and o(x;) = 1, we recover
y: = X; —X;—1 = AX,. Modeling finite differences (or generalized coordinates (Friston,
2008)) is a well-established technique, (see, e.g., (Chua et al., 2018; Kumar et al.,

2020)), which is generalized by affine autoregressive flows.

Modeling Dynamics with Autoregressive Flows
We now discuss utilizing autoregressive flows to improve sequence modeling,

highlighting use cases for modeling dynamics in the data and latent spaces.

79

e

Sequential
Latent Variable
Model

o4(x<t)

=

cat |:|_. i:‘ e
an

Autoregressive Ho(X<t)

Flow

(Inference)

(a) (b)

Figure 5.2: Model Diagrams. (a) An autoregressive flow pre-processes a data
sequence, Xi.r, to produce a new sequence, yi.7, with reduced temporal dependencies.
This simplifies dynamics modeling for a higher-level sequential latent variable model,
po(y1.7,21.7). Empty diamond nodes represent deterministic dependencies, not
recurrent states. (b) Diagram of the autoregressive flow architecture. Blank white
rectangles represent convolutional layers (see Appendix). The three stacks of
convolutional layers within the blue region are shared. cat denotes channel-wise
concatenation.

Data Dynamics

The form of an affine autoregressive flow across sequences is given by

X, = po(X<t) + 09(X<t) O Y4, (5.2)
and its inverse
y = S poa) (5.3)
o9(X</)

which, again, are equivalent to a Gaussian autoregressive model wheny, ~ N (y;;0,I).
We can stack hierarchical chains of flows to improve the model capacity. Denoting
the shift and scale functions at the m™ transform as py' (+) and o' (-) respectively,

we then calculate y” using the inverse transform:

M A 1)

y =
' 0'31 (¥%; 1)

(5.4)

After the final (M™) transform, we can choose the form of the base distribution,
pg(yll‘{T), e.g., Gaussian. While we could attempt to model x;.; completely us-
ing stacked autoregressive flows, these models are limited to affine element-wise
transforms that maintain the data dimensionality. Due to this limited capacity,
purely flow-based models often require many transforms to be effective (Kingma
and Dhariwal, 2018)).

80

Instead, we can model the base distribution using an expressive sequential latent
variable model (SLVM), or, equivalently, we can augment the conditional likelihood
of a SLVM using autoregressive flows (Fig. [5.2a). Following the motivation from
Section[5.2] the flow can remove temporal dependencies, simplifying the modeling
task for the SLVM. With a single flow, the joint probability is

axir\[!
po(X1.1,21.7) = po(Y1.7> 21:T) det(a I'T) , (5.5
Yir
where the SLVM distribution is given by
po(Y1.7,2Z1.1) = 1—[Pe(Yt|Y<z,Zsz)Pe(Zz|Y<r,Z<z)~ (5.6)

=1

If the SLVM is itself a flow-based model, we can use maximum log-likelihood
training. If not, we can resort to variational inference (Chung et al., 2015; Fraccaro
et al.,[2016). We derive and discuss this procedure in Section[5.5]

Latent Dynamics

We can also consider simplifying latent dynamics modeling using autoregressive
flows in the latent prior. This is relevant in hierarchical SLVMs, such as VideoFlow
(Kumar et al., 2020), where each latent variable is modeled as a function of past and

higher-level latent variables. Using sz) to denote the latent variable at the £ level

(az;f>))
det [——

¢
6ut()

using the inverse transform

at time ¢, we can parameterize the prior as

), (¢ t
po(z123).27") =

<t’

(140 70y

<t>

pe(u, ; (5.7)

(0) (0)

where we convert zZ, into u,

u' = (29 = ap(2))) 1 8o ().

As noted previously, VideoFlow uses a special case of this procedure, setting
ag(zm) = z(f) and Bg(l(f)) = 1. Generalizing this procedure further simplifies

dynamics throughout the model.

5.3 Experiments

We demonstrate and evaluate the proposed technique on three benchmark video
datasets: Moving MNIST (Srivastava, Mansimov, and Salakhudinov, 2015), KTH
Actions (Schuldt, Laptev, and Caputo, 2004), and BAIR Robot Pushing (Ebert

l ' . ‘),"
: - /X] '
0 = ~r A

== Noise

—10 222z Base Dist.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Frame Number

Figure 5.3: Sequence Modeling with Autoregressive Flows. Top: Pixel values
(solid) for a particular pixel location in a video sequence. An autoregressive flow
models the pixel sequence using an affine shift (dashed) and scale (shaded), acting as
a frame of reference. Middle: Frames of the data sequence (top) and the resulting
“noise” (bottom) from applying the shift and scale. The redundant, static background
has been largely removed. Bottom: The noise values (solid) are modeled using a
base distribution (dashed and shaded) provided by a higher-level model. By removing
temporal redundancy from the data sequence, the autoregressive flow simplifies
dynamics modeling.

et al.,2017). Experimental setups are first described, followed by a set of empirical
analyses. Further details and additional results can be found in Marino, L. Chen,
et al., [2020.

Experimental Setup

For data space modeling, we compare four model classes: 1) standalone affine
autoregressive flows with one (1-AF) and 2) two (2-AF) transforms, 3) a sequential
latent variable model (SLVM), and 4) SLVM with flow-based pre-processing (SLVM
+ AF). As we are not proposing a specific architecture, but rather a general modeling
technique, the SLVM architecture is representative of recurrent convolutional video
models with a single latent level (Denton and Fergus, 2018; Ha and Schmidhuber,
2018; Hafner et al., 2019). Flows are implemented with convolutional networks,
taking in a fixed window of previous frames (Fig.[5.2b). These models allow us to
evaluate the benefits of temporal pre-processing (SLVM vs. SLVM + AF) and the
benefits of more expressive higher-level dynamics models (2-AF vs. SLVM + 1-AF).

To evaluate latent dynamics modeling with autoregressive flows, we use the

e

Figure 5.4: Flow Visualization for SLVM + 1-AF on Moving MNIST (left) and
KTH Actions (right).

tensor2tensor library (Vaswani et al., 2018) to compare 1) VideoFlow]]| and
2) the same model with affine autoregressive flow latent dynamics (VideoFlow +
AF). VideoFlow is significantly larger (3X more parameters) than the one-level
SLVM, allowing us to evaluate whether autoregressive flows are beneficial in this

high-capacity regime.

To enable a fairer comparison in our experiments, models with autoregressive flow
dynamics have comparable or fewer parameters than baseline counterparts. We note
that autoregressive dynamics adds only a constant computational cost per time-step,
and this computation can be parallelized for training and evaluation. Full architecture,
training, and analysis details can be found in Marino, L. Chen, et al., 2020. Finally,
as noted by Kumar et al. (Kumar et al., |2020), many previous works do not train
SLVMs with proper log-likelihood objectives. Our SLVM results are consistent with
previously reported log-likelihood values (Marino, Cvitkovic, and Yue, [2018)) for
the Stochastic Video Generation model (Denton and Fergus, 2018]) trained with a

log-likelihood bound objective.

Analyses

Visualization In Figure[5.3] we visualize the pre-processing procedure for SLVM
+ 1-AF on BAIR Robot Pushing. The plots show the RGB values for a pixel before
(top) and after (bottom) the transform. The noise sequence is nearly zero throughout,
despite large changes in the pixel value. We also see that the noise sequence (center,
lower) is invariant to the static background, capturing the moving robotic arm. At
some time steps (e.g., fourth frame), the autoregressive flow incorrectly predicts the

next frame, however, the higher-level SLVM compensates for this prediction error.

We also visualize each component of the flow. Figure [5.2b|illustrates this for SLVM

I'We used a smaller version of the original model architecture, with half of the flow depth, due to
GPU memory constraints.

83

SR N N R
R ‘_ £ ol |

i e s i, M i
i e e e e e e i

wﬁﬂﬁﬁ&ﬁ&&ﬂﬁﬁ&

- ‘\1 ik [+ 7
_ i‘ sl % t* * 5
(a) VideoFlow
£ Ee B B B B RS PSP (BS ES |
A 'g " [" ‘o K 5 % ¥ ‘ 3 H“ ,_ ‘ T | pr .q
4 4 t %

Hﬁﬁﬁﬂﬂlﬂl&ﬁﬁﬁ
@@Wﬁ@ﬁ@%@ﬁm&w
EEEEB?EEE&EQ¢

SR wSR wey]

(b) VideoFlow + AF

Figure 5.5: Improved Generated Samples. Random samples generated from (a)
VideoFlow and (b) VideoFlow + AF, each conditioned on the first 3 frames. Using
AF produces more coherent samples. The robot arm blurs for VideoFlow in samples
1 and 4 (red), but does not blur for VideoFlow + AF.

+ 1-AF on an input from BAIR Robot Pushing. We see that py captures the static
background, while o highlights regions of uncertainty. In Figure [5.4] and the
Appendix, we present visualizations on full sequences, where we see that different

models remove varying degrees of temporal structure.

Temporal Redundancy Reduction To quantify temporal redundancy reduction,
we estimate the empirical correlation (linear dependence) between frames, denoted
as corr, for the data and noise variables. This is an average normalized version of
the auto-covariance of each signal with a time delay of 1 time step. Specifically, we

estimate the temporal correlation as

HW.C

COMTy = s © ;{ E b N [&r 01 (i j K] (5.8)

84

1.0 1.0
E B corry S
=05 cory SLVM + 1-AF 5 0.5
2 0. oty SLV) y S
3 corry 1-AF
S
0.0 . 0'00 50,000
M-MNIST BAIR KTH Training Iterations
(a) (b)

Figure 5.6: Decreased Temporal Correlation. (a) Affine autoregressive flows
result in sequences, yi.r, with decreased temporal correlation, corry, as compared
with that of the original data, corry. (b) For SLVM + 1-AF, corry decreases during
training on KTH Actions.

where the term inside the expectation is

ik . i ik ..
(xtl./) _ /l(l,]yk))(xl(i{) — M(l’.]fk))

59
(o :0)? ©2)

‘fl,t+1(i’j’ k) =
Here, xt(i’j) denotes the image at location (i, j) and channel k at time ¢, /) is
the empirical mean of this dimension, and o */*¥) is the empirical standard deviation.
H, W, and C respectively denote the height, width, and number of channels of the
observations, and D denotes the dataset. We define an analogous expression fory,
denoted as corry. We evaluate corry and corry for SLVM + 1-AF and 1-AF, with
results shown in Figure[S.6a] In Figure [5.6b] we plot corry for SLVM + 1-AF during
training on KTH Actions. Flows decrease temporal correlation, and base distributions
without temporal structure (1-AF) yield comparatively more decorrelation. Temporal
redundancy is progressively removed throughout training. However, due to the
limited capacity of the flows, they are not capable of completely removing temporal
correlations on the more complex datasets, necessitating the use of higher-level

dynamics models.

Performance Comparison Table[5.I|reports average negative log-likelihood re-
sults. Standalone flow-based models perform surprisingly well. Increasing flow depth
from AF-1 to AF-2 generally results in improvement. SLVM + 1-AF outperforms
the baseline SLVM despite having fewer parameters. Incorporating autoregressive
flows into VideoFlow results in a modest but noticeable improvement, demonstrating
that removing spatial dependencies, through VideoFlow, and temporal dependencies,

through autoregressive flows, are complementary techniques.

85

Table 5.1: Quantitative Comparison. Average test and (train) negative log-
likelihood in nats per dimension for Moving MNIST, BAIR Robot Pushing, and
KTH Actions. Lower values are better.

M-MNIST BAIR KTH
1-AF 2.15 (2.06) 3.05 (2.98) 3.34 (2.95)
2-AF 2.13(2.04) 2.90 (2.76) 3.35(2.95)
SLVM <192(<£1.93) <357(£3.46) <4.63(<3.05
SLVM + 1-AF <186(<1.85) <235(<231) <239(<221)
VideoFlow - 1.53 (1.50) -
VideoFlow + AF - 1.50 (1.49) -
. | F 15 _
1.0 1.0 S L0 —— SLVM + AF
=i — SLVM
0.5 05 5 0.5
00 T 15 20 M - 6 8 = 0.5 1.0
NLL Bound NLL Bound Train Data Ratio
(a) SLVM (b) SLVM + 1-AF (c)

Figure 5.7: Improved Generalization. The low-level reference frame improves
generalization to unseen sequences. Train and test negative log-likelihood bound
histograms for (a) SLVM and (b) SLVM + 1-AF on KTH Actions. (¢) The
generalization gap for SLVM + 1-AF remains small for varying amounts of KTH
training data, while it becomes worse in the low-data regime for SLVM.

Improved Samples The quantitative improvement over VideoFlow is less dramatic,
as this is already a high-capacity model. However, qualitatively, we observe that
incorporating autoregressive flow dynamics improves sample quality (Figure [5.5]).
In these randomly selected samples, the robot arm occasionally becomes blurry for
VideoFlow (red boxes) but remains clear for VideoFlow + AF.

Improved Generalization Our temporal normalization technique also improves
generalization to unseen examples, a key benefit of normalization schemes, e.g.,
batch norm (loffe and Szegedy, 2015)). Intuitively, higher-level dynamics are often
preserved, whereas lower-level appearance is not. This is apparent on KTH Actions,
which contains a substantial degree of train-test mismatch (different identities and
activities). NLL histograms on KTH are shown in Figure [5.7] with greater overlap
for SLVM + 1-AF. We also train SLVM and SLVM + 1-AF on subsets of the KTH

Actions dataset. In Figure[5.7¢] we see that autoregressive flows enable generalization

86

even in the low-data regime, whereas SLVM becomes worse.

5.4 Discussion

This chapter introduced a technique for improving sequence modeling using au-
toregressive flows, yielding a learned form of feedforward processing. Learning a
frame of reference, parameterized by autoregressive transforms, reduces temporal
redundancy in input sequences, thereby simplifying downstream dynamics estima-
tion. Thus, rather than expanding the model, we can simplify the input to meet the
capacity of the model. We have analyzed and empirically shown how autoregressive
pre-processing in both the data and latent spaces can improve sequence modeling

performance and lead to improved sample quality and generalization.

This approach is distinct from previous works with normalizing flows on sequences,
yet contains connections to classical modeling and compression. Indeed, video
compression schemes use (“inter-frame”) predictions as a frame of reference to remove
temporal redundancy, enabling more efficient encoding (Oliver, 1952; Wiegand et al.,
2003). Inspired by these techniques, follow-up work by Yang et al.,|[2021| applied
sequential autoregressive flows to high-resolution video compression, demonstrating
that this not only generalizes existing methods, but also yields improved compression

performance.

5.5 Appendix: ELBO Derivation
Consider the model defined in Section 3.3, with the conditional likelihood parame-

terized with autoregressive flows. That is, we parameterize

X; = py(X<r) + 09(X<r) O s, (5.10)
yielding
0x; -
Po(Xe|X<r,2<) = po(¥ily<s, 2<,) |det W (5.11)
t
The joint distribution over all time steps is then given as
T
po(X1.7,21.7) = 1—[Po(Xt|X<r, Z<1) po(Z|X<s, 2<1) (5.12)
=1
T -1
0X;
= 1—[Po(yily<s» 2<) |det (W) Po(Z|X<s, Z<p). (5.13)
=1 !

87

To perform variational inference, we consider a filtering approximate posterior of the

form ;
g(zirlxin) = | | a(ulxe2<0). (5.14)
=1

We can then plug these expressions into the evidence lower bound:

L =By x0) 108 po(X1:7,21:7) — log q(z1.7|X1.7)] (5.15)
6Xt) -1
det | —
(aYt
T
—log (ﬂ q(z:|X<, z<,))] (5.16)
=1

0x;)
det|—11 |.
s (aYt]

(5.17)

T
=Ey@irixia) [log (1—[Po(Yily<s» Z<s) Po(Z:|X<;, Z<t))
t=1

—1lo
Po(Zi|X<s,241)

T
= Eqrixir) [Z log po(y:|y<i»2<) — log

=1

Finally, in the filtering setting, we can rewrite the expectation, bringing it inside of
the sum (see Gemici et al., 2017; Marino, Cvitkovic, and Yue, 2018)):

T
0x;
L= ZEQ(ZSI|XQ) g det ((9_)’1)]

=1
(5.18)
Because there exists a one-to-one mapping between X;.7 and y;.7, we can equivalently

-1lo
Po(Zi|X<s,21)

log po(y:ly<s, z</) — log

condition the approximate posterior and the prior onYy, i.e.

T
L= Z Eq(zaily<)

=1

lo
Po(Zi|y<i, <)

log po(y:|y<s, z</) — log

th)
det | —
s (aYt]

(5.19)

References

Agrawal, Siddharth and Ambedkar Dukkipati (2016). “Deep Variational Inference
Without Pixel-Wise Reconstruction”. In: arXiv preprint arXiv:1611.05209.

Barlow, Horace B et al. (1961). “Possible principles underlying the transformation of
sensory messages”. In: Sensory communication 1, pp. 217-234.

Chen, Scott Saobing and Ramesh A Gopinath (2001). “Gaussianization”. In: Advances
in neural information processing systems, pp. 423—429.

Chua, Kurtland et al. (2018). “Deep reinforcement learning in a handful of trials using
probabilistic dynamics models”. In: Advances in Neural Information Processing
Systems, pp. 4754-4765.

88

Chung, Junyoung et al. (2015). “A recurrent latent variable model for sequential
data”. In: Advances in neural information processing systems, pp. 2980-2988.

Deco, Gustavo and Wilfried Brauer (1995). “Higher order statistical decorrelation

without information loss”. In: Advances in Neural Information Processing Systems,
pp. 247-254.

Denton, Emily and Rob Fergus (2018). “Stochastic Video Generation with a Learned
Prior”. In: International Conference on Machine Learning, pp. 1182—-1191.

Dinh, Laurent, David Krueger, and Yoshua Bengio (2015). “Nice: Non-linear
independent components estimation”. In: International Conference on Learning
Representations.

Ebert, Frederik et al. (2017). “Self-Supervised Visual Planning with Temporal Skip
Connections”. In: Conference on Robot Learning.

Fraccaro, Marco et al. (2016). “Sequential neural models with stochastic layers”. In:
Advances in neural information processing systems, pp. 2199-2207.

Friedman, Jerome H (1987). “Exploratory projection pursuit”. In: Journal of the
American statistical association 82.397, pp. 249-266.

Friston, Karl (2008). “Hierarchical models in the brain”. In: PLoS computational
biology 4.11, ¢1000211.

Gemici, Mevlana et al. (2017). “Generative Temporal Models with Memory”. In:
arXiv preprint arXiv:1702.04649.

Ha, David and Jiirgen Schmidhuber (2018). “Recurrent world models facilitate policy
evolution”. In: Advances in Neural Information Processing Systems, pp. 2450—
2462.

Hafner, Danijar et al. (2019). “Learning Latent Dynamics for Planning from Pixels”.
In: International Conference on Machine Learning, pp. 2555-2565.

Huang, Chin-Wei et al. (2017). “Learnable explicit density for continuous latent
space and variational inference”. In: arXiv preprint arXiv:1710.02248.

Hyvirinen, Aapo and Erkki Oja (2000). “Independent component analysis: algorithms
and applications”. In: Neural networks 13.4-5, pp. 411-430.

lIoffe, Sergey and Christian Szegedy (2015). “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift”. In: International
Conference on Machine Learning, pp. 448—456.

Kingma, Durk P and Prafulla Dhariwal (2018). “Glow: Generative flow with
invertible 1x1 convolutions”. In: Advances in Neural Information Processing
Systems, pp. 10215-10224.

Kingma, Durk P, Tim Salimans, et al. (2016). “Improved variational inference
with inverse autoregressive flow”. In: Advances in neural information processing
systems, pp. 4743—-4751.

89

Kumar, Manoj et al. (2020). “VideoFlow: A Flow-Based Generative Model for
Video”. In: International Conference on Learning Representations.

Laparra, Valero, Gustavo Camps-Valls, and Jesis Malo (2011). “Iterative gaussian-
ization: from ICA to random rotations”. In: IEEE transactions on neural networks
22.4, pp. 537-549.

Marino, Joseph, Lei Chen, Jiawei He, and Stephan Mandt (2020). “Improving
Sequential Latent Variable Models with Autoregressive Flows”. In: Symposium
on Advances in Approximate Bayesian Inference, pp. 1-16. urL: http: //
proceedings.mlr.press/v118/marino20a.html.

Marino, Joseph, Milan Cvitkovic, and Yisong Yue (2018). “A general method for
amortizing variational filtering”. In: Advances in Neural Information Processing
Systems, pp. 7857-7868. urL: http://papers.nips.cc/paper/8011-a-
general-method-for-amortizing-variational-filtering.

Oliver, BM (1952). “Efficient coding”. In: The Bell System Technical Journal 31.4,
pp- 724-750.

Pourahmadi, Mohsen (2011). “Covariance estimation: The GLM and regularization
perspectives”. In: Statistical Science, pp. 369-387.

Schuldt, Christian, Ivan Laptev, and Barbara Caputo (2004). “Recognizing hu-
man actions: a local SVM approach”. In: International Conference on Pattern
Recognition.

Srivastava, Nitish, Elman Mansimov, and Ruslan Salakhudinov (2015). “Unsuper-
vised learning of video representations using Istms”. In: International conference
on machine learning, pp. 843-852.

Vaswani, Ashish et al. (2018). “Tensor2Tensor for Neural Machine Translation”. In:
CoRR abs/1803.07416. urL: http://arxiv.org/abs/1803.07416.

Wiegand, Thomas et al. (2003). “Overview of the H. 264/AVC video coding standard”.
In: IEEE Transactions on circuits and systems for video technology 13.7, pp. 560—
576.

Winkler, Christina et al. (2019). “Learning Likelihoods with Conditional Normalizing
Flows”. In: arXiv preprint arXiv:1912.00042.

Yang, Ruihan, Yibo Yang, Joseph Marino, and Stephan Mandt (2021). “Hierarchical
Autoregressive Modeling for Neural Video Compression”. In: International
Conference on Learning Representations. URL: https://openreview.net/
pdf?i1d=TK_6nNb_C74g.

http://proceedings.mlr.press/v118/marino20a.html
http://proceedings.mlr.press/v118/marino20a.html
http://papers.nips.cc/paper/8011-a-general-method-for-amortizing-variational-filtering
http://papers.nips.cc/paper/8011-a-general-method-for-amortizing-variational-filtering
http://arxiv.org/abs/1803.07416
https://openreview.net/pdf?id=TK_6nNb_C7q
https://openreview.net/pdf?id=TK_6nNb_C7q

Part 111

Control

90

91
Chapter 6

ITERATIVE AMORTIZED POLICY OPTIMIZATION

learned negative feedback control

Marino, Joseph, Alexandre Piché, and Yisong Yue (2019). “On the Design of Varia-
tional RL Algorithms”. In: NeurIPS Workshop on Deep Reinforcement Learning.
URL:https://drive.google.com/file/d/10hBOAS_naGNgSNG8plkgElnc9HRmMYde/
view?usp=drivesdk.

Marino, Joseph, Alexandre Piché, Alessandro Davide Ialongo, and Yisong Yue
(2020). “Iterative Amortized Policy Optimization”. In: Preprint. urL: https:
//arxiv.org/abs/2010.10670.

6.1 Introduction

Chapters [3] and [] investigated improved methods for perceptual inference using
learned negative feedback. In this chapter, we apply the same approach to control.
On the surface, perception and control may appear to be disparate settings; perception,
as we have framed it, involves an internal generative model, whereas control is
typically formulated with an agent in a pre-defined environment along with a reward
(or cost) function. Yet, by specifying the probabilistic computation graph implied by
the agent-environment interaction, and with an appropriate mathematical framing, we
can apply the techniques of probabilistic graphical models and variational inference
to control (Levine, |2018)). While the notion of framing control in terms of variational
calculus dates back to cybernetics (Wiener, 1948), it is only recently that this

connection with probabilistic inference has garnered renewed attention in the control

https://drive.google.com/file/d/10hB0AS_naGNgSNG8p1kqElnc9HRmMYde/view?usp=drivesdk
https://drive.google.com/file/d/10hB0AS_naGNgSNG8p1kqElnc9HRmMYde/view?usp=drivesdk
https://arxiv.org/abs/2010.10670
https://arxiv.org/abs/2010.10670

92

and reinforcement learning communities (Toussaint and Storkey, 2006; Todorov,
2008; Levine, [2018)).

In general, reinforcement learning (RL) algorithms involve policy evaluation and
policy optimization (Sutton and Barto, 2018)). Given a policy, one can estimate
the value for each state or state-action pair following that policy, and given a value
estimate, one can improve the policy to maximize the value. This latter procedure,
policy optimization, can be challenging in continuous control due to instability and
poor asymptotic performance. In deep RL, where policies over continuous actions
are often parameterized by deep networks, such issues are typically tackled using
regularization from previous policies (Schulman, Levine, et al., 2015; Schulman,
Wolski, et al., [2017) or by maximizing policy entropy (V. Mnih, Badia, et al.,
2016; Fox, Pakman, and Tishby, 2016)). These techniques can be interpreted as
variational inference (Levine, 2018]), using optimization to infer a policy that yields
high expected return while satisfying prior policy constraints. This smooths the

optimization landscape, improving stability and performance (Ahmed et al., 2019).

However, one subtlety arises: when used with entropy or KL regularization, policy
networks perform amortized optimization (Gershman and Goodman, 2014). That is,
rather than optimizing the action distribution, e.g., mean and variance, many deep
RL algorithms, such as soft actor-critic (SAC) (Haarnoja, Zhou, Abbeel, et al.,[2018;
Haarnoja, Zhou, Hartikainen, et al., 2018), instead optimize a network to output
these parameters, learning to optimize the policy. Typically, this is implemented
as a direct mapping from states to action distribution parameters. While such
direct amortization schemes have improved the efficiency of variational inference as
“encoder” networks (Kingma and Welling, [2014; Rezende, Mohamed, and Wierstra,
2014; A. Mnih and Gregor, 2014), they also suffer from several drawbacks: 1)
they tend to provide suboptimal estimates (Cremer, Li, and Duvenaud, [2018; Kim
et al., 2018; Marino, Yue, and Mandt, 2018)), yielding a so-called “amortization
gap” in performance (Cremer, Li, and Duvenaud, 2018), 2) they are restricted to a
single estimate (Greff et al., 2019), thereby limiting exploration, and 3) they cannot
generalize to new objectives, unlike, e.g., gradient-based (Henaff, Whitney, and

LeCun,|[2017) or gradient-free optimizers (Rubinstein and Kroese, 2013)).

Inspired by techniques and improvements from variational inference, we investigate
iterative amortized policy optimization. Iterative amortization (Chapter [3) uses
gradients or errors to iteratively update the parameters of a distribution. Unlike direct

amortization, which receives gradients only after outputting the distribution, iterative

93

amortization uses these gradients online, thereby learning to iteratively optimize. In
generative modeling settings, iterative amortization empirically outperforms direct
amortization (Chapters [3] & f) and can find multiple modes of the optimization
landscape (Greff et al., 2019). We evaluate iterative amortized policy optimization
on the suite of OpenAl gym MuJoCo environments (Todorov, Erez, and Tassa,
2012; Brockman et al., 2016), with performance improvements over direct amortized
policies, as well as more complex flow-based policies. We also demonstrate novel
benefits of this amortization technique: improved accuracy, providing multiple policy

estimates, and generalizing to new objectives.

6.2 Background

Preliminaries

We consider Markov decision processes (MDPs), where s, € S and a, € A are
the state and action at time 7, resulting in reward r; = r(s;,a;). Environment
state transitions are given by ;41 ~ penv(Si+1/Ss, @;), and the agent is defined by
a parametric distribution, pg(a;|s;), with parameters 6. The discounted sum of
rewards is denoted as R(7) = Y, ¥'r;, where y € (0, 1] is the discount factor, and

7T = (s1,4ay,...) is a trajectory. The distribution over trajectories is

T
p(v) = p(s1) | | penv(sislsi @) poaylsy), (6.1)

r=1
where the initial state is drawn from the distribution p(s;). The standard RL
objective consists of maximizing the expected discounted return, E,, ;) [R(7)]. For
convenience of presentation, we use the undiscounted setting (y = 1), though the

formulation can be applied with any valid .

KL-Regularized Reinforcement Learning

Various works have formulated RL, planning, and control problems in terms of
probabilistic inference (Dayan and Hinton, 1997; Attias, 2003; Verma and Rao,
2006} Toussaint and Storkey, [2006; Todorov, 2008; Botvinick and Toussaint, 2012;
Levine, |2018)). These approaches consider the agent-environment interaction as
a graphical model, then convert reward maximization into maximum marginal
likelihood estimation, learning and inferring a policy that results in maximal reward.
This conversion is accomplished by introducing one or more binary observed variables
(Cooper, |1988)), denoted as O, with

p(O0 =1|r) « exp (R(1) /@),

94

where « is a temperature hyper-parameter. These new variables are often referred to
as “optimality” variables (Levine, [2018). We would like to infer latent variables, 7,
and learn parameters, 6, that yield the maximum log-likelihood of optimality, i.e.,
log p(O = 1). Evaluating this likelihood requires marginalizing the joint distribution,
p(O=1)= / p(t,0 = 1)dr. This involves averaging over all trajectories, which is
intractable in high-dimensional spaces. Instead, we can use variational inference to

lower bound this objective, introducing a structured approximate posterior distribution:

T
7(710) = | | penv(sisilsi, a7 (ails;, 0). (6.2)

=1
This provides the following lower bound on the objective, log p(O = 1):

log/p((): 1|T)p(T)dT2/71(T|O)[10gp(021|7’)+10g ﬂ’(’r(g) dr (6.3)

=Ex[R(7)/a] = DxL(7(7]0)||lp(7)). (6.4)
Equivalently, we can multiply by «, defining the variational RL objective as
J (n,0) = Ex[R(7)] - aDxL(7(7]0) || p(7)). (6.5)

This objective consists of the expected return (i.e., the standard RL objective) and
a KL divergence between n(7|0O) and p(7). In terms of states and actions, this
objective is written as

T

j(ﬂ', 6) = Est,gtt:];renv Z ry — alog

t=1

n(a;ls;, 0)

. 6.6
po(asls;) (6.5

At a given timestep, ¢, one can optimize this objective by estimating the future terms
in the summation using a “soft” action-value (Q,) network (Haarnoja, H. Tang,
et al., 2017) or model (Piché et al., 2019). For instance, sampling s; ~ peny, slightly

abusing notation, we can write the objective at time ¢ as

J(7,0) =Ex [Qr(s,a,)] — aDxr(n(asls;, O)||pe(asls;)). (6.7)

Policy optimization in the KL-regularized setting corresponds to maximizing J
w.r.t. 7. We often consider parametric policies, in which 7 is defined by distribution

2

parameters, A, e.g., Gaussian mean, p, and variance, o-. In this case, policy

optimization corresponds to maximizing:
A« arg m)a‘lx g (m,0). (6.8)

Optionally, we can then also learn the policy prior parameters, 6 (Abdolmaleki et al.,
2018)).

95

33
i Er [Qr(st, ar)] @ ° «,
O <>“_ O Qnls,ay)
=) 333 }'
= S 5 ,0 @ 7y(arls:, 0)
= GE, [lo g (ag|sy,):| ° o % ®)
E po(atls:) | V| O polalse)
332 ! '
=05 Direct Policy Network
—e— [terative Policy Network 331 QO Penv (Sf ‘St, 1,&¢—1)
* Optimal Estimate
.y : = 330] K
=10 s o 0.5 . Direct Iterative
anh(p)
(a) (b)

Figure 6.1: Amortized Policy Optimization. (a) 2D visualization of policy opti-
mization. A direct amortized policy network fails to output an optimal estimate,
resulting in an amortization gap in performance. An iterative amortized policy
network finds an improved estimate. (b) Diagrams of direct and iterative amortized
policy optimization. Larger circles denote distributions, and smaller red circles
denote terms in the objective, J. Dashed arrows denote amortized optimizers.
Iterative amortization uses gradient-based feedback during optimization, whereas
direct amortization does not.

Entropy & KL Regularized Policy Networks Perform Direct Amortization

Policy-based approaches to RL typically do not directly optimize the action distri-
bution parameters, e.g., through gradient-based optimization. Instead, the action
distribution parameters are output by a function approximator (deep network), fy,
which is trained using deterministic (Silver et al., [2014; Lillicrap et al., 2016)) or
stochastic gradients (Williams, 1992 Heess et al., 2015). When combined with
entropy or KL regularization, this policy network is a form of amortized optimization
(Gershman and Goodman, 2014)), learning to estimate policies. Again, denoting the
action distribution parameters, e.g., mean and variance, as A, for a given state, s, we

can express this direct mapping as
A — fs(s), (direct amortization) (6.9)

denoting the corresponding policy as 74(als, O;). Thus, fs attempts to learn to
optimize Eq.[6.8] This setup is shown in Figure [6.1] (Right). Without entropy or
KL regularization, i.e., ms(als) = py(als), we can instead interpret the network
as directly integrating the LHS of Eq. [6.3] which is less efficient and more chal-
lenging. Regularization smooths the optimization landscape, yielding more stable

improvement and higher asymptotic performance (Ahmed et al., 2019).

Viewing policy networks as a form of direct amortized variational optimizer (Eq.[6.9)

allows us to see that they are similar to “encoder” networks in variational autoencoders

96

Algorithm 4 Iterative Amortization

Algorithm 3 Direct Amortization

Initialize ¢
for each environment step do

A — f¢(St)
a ~ ”¢(at|sz,0;)\)

Initialize ¢
for each environment step do
Initialize A
for each policy optimization it-
eration do

A f(ﬁ(sl’Aa V)\j)

St+1 ~ Penv(Se+1[S1,) end for
end for a; ~ my(asls;, O; A)
for each training step do St+1 ~ Penv(Se+1]S:, ar)
¢ —p+nVyT end for
end for for each training step do
¢ —d+nVedJ
end for

(VAEs) (Kingma and Welling, 2014; Rezende, Mohamed, and Wierstra, 2014).

However, there are several drawbacks to direct amortization.

Amortization Gap. Direct amortization results in suboptimal approximate pos-
terior estimates, with the resulting gap in the variational bound referred to as the
amortization gap (Cremer, Li, and Duvenaud, 2018). Thus, in the RL setting, an
amortized policy, 74, results in worse performance than the optimal policy within the
parametric policy class, denoted as 7. The amortization gap is the gap in following
inequality:

J(7m4,0) < J(7,0).

Because 7 is a variational bound on the RL objective, i.e., expected return, a looser
bound, due to amortization, prevents one from more completely optimizing this

objective.

This is shown in Figure [6.1] (Left)[T) where J is plotted over two dimensions of
the policy mean at a particular state in the MuJoCo environment Hopper-v2. The
estimate of a direct amortized policy (#) is suboptimal, far from the optimal estimate
(¥%). While the relative difference in the objective is relatively small, suboptimal
estimates prevent sampling and exploring high-value regions of the action-space.
That is, suboptimal estimates have only a minor impact on evaluation performance

(see Appendix B.4) but hinder effective data collection.

! Additional 2D plots are shown in Appendix Figure B.3.

97

Single Estimate. Direct amortization is limited to a single, static estimate. In
other words, if there are multiple high-value regions of the action-space, a uni-
modal (e.g., Gaussian) direct amortized policy is restricted to only one region,
thereby limiting exploration. Note that this is an additional restriction beyond
simply considering uni-modal distributions, as a generic optimization procedure may
arrive at multiple uni-modal estimates depending on initialization and stochastic
sampling (see Section[6.3). While multi-modal distributions reduce the severity of
this restriction (Y. Tang and Agrawal, 2018; Haarnoja, Hartikainen, et al., 2018), the

other limitations of direct amortization still persist.

Inability to Generalize Across Objectives. Direct amortization is a feedforward
procedure, receiving gradients from the objective only after estimation. This is
contrast to other forms of optimization, which receive gradients (feedback) during
estimation. Thus, unlike other optimizers, direct amortization is incapable of
generalizing to new objectives, e.g., if Q,(s,a) or py(als) change, which is a

desirable capability for adapting to new tasks or environments.

To improve upon this scheme and overcome these drawbacks, in Section[6.3] we turn
to iterative amortization (Chapter [3)), retaining the efficiency of amortization while

employing a more flexible iterative estimation procedure.

Related Work

Previous works have investigated methods for improving policy optimization. QT-Opt
(Kalashnikov et al., 2018]) uses the cross-entropy method (CEM) (Rubinstein and
Kroese, [2013), an iterative derivative-free optimizer, to optimize a Q-value estimator
for robotic grasping. CEM and related methods are also used in model-based RL
for performing model-predictive control (Nagabandi et al., 2018}; Chua et al., 2018;
Piché et al., 2019; Hafner et al.,|2019). Gradient-based policy optimization (Henaff,
Whitney, and LeCun, 2017 Srinivas et al., 2018; Bharadhwaj, Xie, and Shkurti,
2020), in contrast, is less common, however, gradient-based optimization can also
be combined with CEM (Amos and Yarats, 2020). Most policy-based methods use
direct amortization, either using a feedforward (Haarnoja, Zhou, Abbeel, et al., 2018))
or recurrent (Guez et al., 2019) network. Similar approaches have also been applied
to model-based value estimates (Byravan et al.,|2020;; Clavera, Y. Fu, and Abbeel,
2020; Amos, Stanton, et al.,[2020), as well as combining direct amortization with
model predictive control (Lee, Saigol, and Theodorou, 2019) and planning (Riviere

et al., 2020). A separate line of work has explored improving the policy distribution,

98

using normalizing flows (Haarnoja, Hartikainen, et al., 2018}, Y. Tang and Agrawal,
2018)) and latent variables (Tirumala et al.,|[2019). In principle, iterative amortization

can perform policy optimization in each of these settings.

Iterative amortized policy optimization is conceptually similar to negative feedback
control (Astrom and Murray, 2008)), using errors to update policy estimates. However,
while conventional feedback control methods are often restricted in their applicability,
e.g., linear systems and quadratic cost, iterative amortization is generally applicable
to any differentiable control objective. This is analogous to the generalization of
Kalman filtering (Kalman, [1960) to amortized variational filtering (Chapter [)) for

state estimation.

6.3 Iterative Amortized Policy Optimization

Formulation

Iterative amortized optimizers (Chapter [3)) utilize some form of error or gradient
to update the approximate posterior distribution parameters. While various forms
exist, we consider gradient-encoding models (Andrychowicz et al., 2016)) due to their
generality. Compared with direct amortization in Eq. [6.9] we use iterative amortized

optimizers of the general form

A — fo(s, A\, Vo), (6.10)

also shown in Figure (Right), where f; is a deep network and A are the policy
distribution parameters. For example, if 7 = N(a; i1, diag(o?)), then X = [, o].
Technically, s is redundant, as the state dependence is already captured in 7, but
this can empirically improve performance (Chapter [3). In practice, the update is
carried out using a “highway” gating operation (Hochreiter and Schmidhuber, 1997
Srivastava, Greff, and Schmidhuber, [2015). Denoting wy € [0, 1] as the gate and d4
as the update, both of which are output by f4, the gating operation is expressed as

A= wsOA+(1-wy) O dy, (6.11)

where © denotes elementwise multiplication. This update is typically run for
a fixed number of steps, and, as with a direct policy, the iterative optimizer is
trained using stochastic gradient estimates of V4., obtained through the pathwise
derivative estimator (Kingma and Welling, 2014; Rezende, Mohamed, and Wierstra,
2014; Heess et al., 2015). Because the gradients V J must be estimated online,
i.e., during policy optimization, this scheme requires some way of estimating J
online, e.g., through a parameterized Q-value network (V. Mnih, Kavukcuoglu, et al.,
2013 Lillicrap et al.,|2016) or a differentiable model (Heess et al., 2015).

99

Benefits of Iterative Amortization

Reduced Amortization Gap. Iterative amortized optimizers are more flexible
than their direct counterparts, incorporating feedback from the objective during
policy optimization (Algorithm), rather than only after optimization (Algorithm 3)).
Increased flexibility improves the accuracy of optimization, thereby tightening the
variational bound (Chapters [3| & [d). We see this flexibility in Figure [6.1] (Left),
where an iterative amortized policy network iteratively refines the policy estimate

(e), quickly arriving near the optimal estimate.

Multiple Estimates. Iterative amortization, by using stochastic gradients and
random initialization, can traverse the optimization landscape. As with any iterative
optimization scheme, this allows iterative amortization to obtain multiple valid
estimates, referred to as “multi-stability” in the perception literature (Greff et al.,
2019). We illustrate this capability across two action dimensions in Figure[6.2]for a
state in the Ant-v2 MuJoCo environment. Over multiple policy optimization runs,
iterative amortization finds multiple modes, sampling from two high-value regions
of the action space. This provides increased flexibility in action exploration, despite

only using a uni-modal policy distribution.

Generalization Across Objectives. Iterative amortization uses the gradients of
the objective during optimization, i.e., feedback, allowing it to potentially generalize
to new or updated objectives. We see this in Figure (Left), where iterative
amortization, despite being trained with a different value estimator, is capable
of generalizing to this new objective. We demonstrate this capability further in
Section[6.4] This opens the possibility of accurately and efficiently performing policy

optimization in new settings, e.g., a rapidly changing model or new tasks.

Consideration: Mitigating Value Overestimation

Why are more powerful policy optimizers typically not used in practice? As we now
describe, part of the issue stems from value overestimation. Model-free approaches
generally estimate Q, using function approximation and temporal difference learning.
However, this has the pitfall of value overestimation, i.e., positive bias in the estimate,
Q » (Thrun and Schwartz, 1993). This issue is tied to uncertainty in the value estimate,
though it is distinct from optimism under uncertainty. If the policy can exploit
regions of high uncertainty, the resulting target values will introduce positive bias

into the estimate. More flexible policy optimizers exacerbate the problem, exploiting

100

)

10.0 3
Opt. Run
O 75 1
5
)

= W N

Act. Dim. 2 Act. Dim. 6

Figure 6.2: Estimating Multiple Policy Modes. Unlike direct amortization, which
is restricted to a single estimate, the stochasticity of iterative optimization allows
iterative amortization to effectively sample from multiple high-value modes in the
action space. This capability is shown for a particular state in Ant-v2, showing
multiple optimization runs across two action dimensions (Left). Each colored
square denotes an initialization. The optimizer finds both modes, with the assigned
density plotted on the Right. This capability provides increased flexibility in action
exploration.

this uncertainty to a greater degree. Further, a rapidly changing policy increases the
difficulty of value estimation (Rajeswaran, Mordatch, and V. Kumar, 2020).

Various techniques have been proposed for mitigating value overestimation in deep
RL. The most prominent technique, double deep Q-network (Van Hasselt, Guez, and
Silver, [2016)) maintains two Q-value estimates (Van Hasselt, 2010), attempting to
decouple policy optimization from value estimation. Fujimoto, Hoof, and Meger,
apply and improve upon this technique for actor-critic settings, estimating the
target Q-value as the minimum of two Q-networks, Qy, and Qy,:

Qﬂ'(s9 a) = erllI% Ql//l'(s’ a)9

where ¢ denotes the “target” network parameters. As noted by Fujimoto, Hoof,
and Meger, this not only counteracts value overestimation, but also penalizes
high-variance value estimates, because the minimum decreases with the variance
of the estimate. Ciosek et al., noted that, for a bootstrapped ensemble of two

Q-networks, the minimum operation can be interpreted as estimating

0x(s,a) = pp(s,a) — Bog(s,a),

101

200 10°
direct, 8 =1
1501 —— terative, B=1 =
- [Hor: we R =951 2 \
S 100 iterative, 5 = 2.5 = 10 a A
\
N

2.0 2.5 3.0

(an\\Hﬂ],l)

2.0 2.5 3.0 0.0 0.5 1.0

.0 1.5 1.5
Million Steps Million Steps

(a) (b)
Figure 6.3: Mitigating Value Overestimation. Using the same value estimation
setup (8 = 1), shown on Ant-v2, iterative policy optimization results in (a) higher
value overestimation bias and (b) a more rapidly changing policy as compared with

direct policy optimization. Increasing 8 helps to mitigate these issues by further
penalizing variance in the value estimate.

with mean and standard deviation

1
MQ (S, a) = 5 Z Qlﬂ; (S7 a)a
i=1,2
1/2

1 2
co(s.a) = |5) (Qu(s.a) - ugls.a)) |
i=1,2
and § = 1. Thus, to further penalize high-variance value estimates, preventing
value overestimation, we can increase 5. For large 5, however, value estimates
become overly pessimistic, negatively impacting training. Thus, 8 reduces target

value variance at the cost of increased bias.

Due to the flexibility of iterative amortization, the default 8 = 1 results in increased
value bias (Figure[6.3a) and a more rapidly changing policy (Figure[6.3b) as compared
with direct amortization. Further penalizing high-variance target values with 5 = 2.5
reduces value overestimation and improves policy stability. For details, see Marino,
Piché, et al., 2020. Recent techniques for mitigating overestimation have been
proposed, such as adjusting the temperature, a (Fox, 2019). In offline RL, this issue
has been tackled through the action prior (Scott Fujimoto, David Meger, and Precup,
2019; A. Kumar, J. Fu, et al.,[2019; Wu, Tucker, and Nachum, [2019) or by altering
Q-network training (Agarwal, Schuurmans, and Norouzi, [2019; A. Kumar, Zhou,
et al., 2020). While such techniques could be used here, increasing 8 provides a

simple solution with no additional computational overhead.

102

Opt. Iter Opt. Iter

£ 0.5 1 10 1
a 2 S 2
z 00 3 = N .
Z-05 — —

5 0 — 5

0 5 10 15 20 25 0 5 10 15 20 25
Environment Time Step Environment Time Step
(a) Policy (b) Improvement

Figure 6.4: Policy Optimization. Visualization over time steps of (a) one dimension
of the policy distribution and (b) the improvement in the objective, A J, across
policy optimization iterations.

6.4 Experiments

Setup

To focus specifically on policy optimization, we implement iterative amortized policy
optimization using the setup of soft actor-critic (SAC) described by Haarnoja, Zhou,
Hartikainen, et al., 2018| This involves using two Q-networks, uniform action prior,
po(als) = U(-1,1), and an automatic tuning scheme for the temperature, a. In
our experiments, “direct” refers to direct amortized policy optimization employed
in SAC, i.e., a direct policy network, and “iterative” refers to iterative amortized
policy optimization. Both approaches use the same network architecture, adjusting
only the number of inputs and outputs to accommodate gradients, current policy
estimates, and gated updates (Sec. . Unless otherwise stated, we use 5 iterations
per time step for iterative amortization, as in Chapter (3| For additional details,
we refer to Marino, Piché, et al., 2020 and Haarnoja, Zhou, Abbeel, et al., 2018
Haarnoja, Zhou, Hartikainen, et al., 2018. Accompanying code is available at

github.com/joelouismarino/variational_rl.

Analysis

Visualizing Policy Optimization

In Figure [6.1] (Left), we visualize the trajectory of iterative amortized policy
optimization along two dimensions of the policy mean on a state from Hopper-v2.
Through iterative optimization, the network arrives near the optimum. Notably, this is
performed with a value function trained using a different, direct policy, demonstrating
generalization to other optimization landscapes. In Figure [0.4] we visualize iterative
refinement using a single action dimension from Ant-v2 across time steps. The

refinements in Figure give rise to the objective improvements in Figure [6.4b

https://github.com/joelouismarino/variational_rl

103

= 4000 T e E 8000
Z . Z 15000 Z 6000 E e)
E: ; iy | £ E: E s
g MY | < =1 : g R VIORT | 2 e
= oy 10000 "2 4000 Y o .
Z 2000 4 = = ¢ Z 4000 ff direct (SAC)
z | = s000| [= o000 | E direct + NF
E [E ‘ E E iterative
(S S o S S
0 I 2 3 0 1 2 3 0 I 2 3 0 I 2 3
Million Steps Million Steps Million Steps Million Steps
(a) Hopper-v2 (b) HalfCheetah-v2 (c) Walker2d-v2 (d) Ant-v2

Figure 6.5: Performance Comparison. Iterative amortized policy optimization
performs comparably with or better than direct amortized policies across a range of
MuJoCo environments. Performance curves show the mean and + standard deviation
over 5 random seeds.

R R R R
E E L E § | eaa A
g = \ Rdemma Rt g g)
Em L \/@QW Em 1|V Eu. ! m\ Em !
£ =T\ £ —— direct (SAC) =t =t iterative, 5 it
j /5 — direct + NF /5 /5 iterative, 10 it.
10 0 1 2 3 10~ 0 1 2 3 10~ 0 1 2 3 10 0 1 2
Million Steps Million Steps Million Steps Million Steps
(a) Hopper-v2 (b) HalfCheetah-v2 (c) Walker2d-v2 (d) Ant-v2

Figure 6.6: Amortization Gap. Estimated amortization gaps per step for direct and
iterative amortized policy optimization. Iterative amortization achieves comparable
or lower gaps across environments. Gaps are estimated using stochastic gradient-
based optimization over 100 random states. Curves show the mean and + standard
deviation over 5 random seeds.

Performance Comparison

We evaluate iterative amortized policy optimization on the suite of MuJoCo (Todorov,
Erez, and Tassa,|2012)) continuous control tasks from OpenAl gym (Brockman et al.,
2016). In Figures [6.5] & [6.7] we compare the cumulative reward, i.e., return, of
direct and iterative amortized policy optimization across environments. Each curve
shows the mean and + standard deviation of 5 random seeds. In all cases, iterative
amortized policy optimization matches or outperforms the baseline direct amortized
method, both in sample efficiency and final performance. Across environments,
iterative amortization also yields more consistent, i.e., lower variance, performance.
This suggests that iterative amortization is able to flexibly explore the optimization

landscape, consistently arriving at improved policy estimates.

Multiple Policy Modes

To better understand the exploration benefits of iterative amortization, we also compare
with direct amortization with a multi-modal policy distribution, formed using inverse

autoregressive flows (Kingma, Salimans, et al., 2016), a type of normalizing flow

o

Cumulative Reward
Cumulative Reward
Cumulative Reward
Lo
L
S u
8

—9
0 10 20 30 0 10 20 30 _U%.[i 0.2 0.4

Thousand Steps Thousand Steps Million Steps
(@) InvertedPendulum-v2 (b) InvertedDoublePendulum-v2 (C) Reacher-v2
150000 : e 6000

SRy o ad aS aaed
v

=
ve Reward

© e //Vf " 4000
= 2 100000|] Z
= 50 = . =
E E | — divect E 2000
E £ 50000 iterative E
O 0 O O 0 V
0 1 2 3 0 1 2 3 0 2 4 6 s 10
Million Steps Million Steps Million Steps
(d) Swimmer-v2 (e) HumanoidStandup-v2 (f) Humanoid-v2

Figure 6.7: Additional Performance Comparison. Results are shown on the
remaining MuJoCo environments from OpenAl gym. Performance curves show the
mean and =+ standard deviation over 5 random seeds.

(NF). Using a multi-modal policy reduces the performance deficiencies of direct
amortization on Hopper-v2 and Walker2d-v2, indicating that much of the benefit
of iterative amortization is due to lifting direct amortization’s restriction to a single,
uni-modal policy estimate. Yet, direct + NF still struggles on HalfCheetah-v2
compared with iterative amortization (Fig. [6.5b), suggesting that more complex,

multi-modal distributions are not the only consideration.

To confirm that iterative amortization has captured multiple policy modes, at the
end of training, we take Walker2d-v2 and histogram the distances between policy
means across separate runs of policy optimization per state (Fig. [0.8a)). For the state
with the largest distance, we plot 2D projections of the optimization objective across
action dimensions in Figure[6.8b] as well as the policy density across 10 optimization
runs (Fig. [6.8c). We see that a subset of states indeed still retain multiple policy

modes.

Amortization Gap

To evaluate policy optimization accuracy, we estimate per-step amortization gaps,
performing additional iterations of gradient ascent on / w.r.t. the policy parameters,
A = [p, o] (see Appendix A.3). To analyze generalization, we also evaluate the
iterative agents trained with 5 iterations for an additional 5 amortized iterations.

Results are shown in Figure [6.60 We emphasize that it is challenging to directly

105

Dim. 2 Dim. 3 Dim. 4 Dim. 5 Dim.

Dil“‘ 1' . ﬁ
Dil“. 2. !

L

Dim. 3-

=

Dim. 4
p 1.0 (l"j Dim. 5
[| tanh (p")— tanh (p\9)|]2
(@) (b)
| | 10
6_7(, 10 y 20 o ‘\ ‘ b
% Il \f, 2 Al sl i)
S / [I)
N \ \ | | I \
0 —J L\ == 0 &, 0l=~ i— U=
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
Dim. 1 Dim. 2 Dim. 3 Dim. 4 Dim. 5 Dim. 6
()

Figure 6.8: Multiple Policy Modes. (a) Histogram of distances between policy
means (pt) across optimization runs (i and j) over seeds and states on Walker2d-v2
at 3 million environment steps. For the state with the largest distance, (b) shows the
projected optimization surface on each pair of action dimensions, and (c¢) shows the
policy density for 10 optimization runs.

15000 Z 6000

=

A

— 10000

Rewarc

Rew

« 4000

2000 4000 — Liter.

2000 — 2iter

Cumulative Reward
Cumulative Rewarc

Cumulative
Cumulative

5 iter.

3 0 3 3

1 2
Million Steps

(a) Hopper-v2 (b) HalfCheetah-v2 (c) Walker2d-v2 (d) Ant-v2

1 2 1 2 1 2
Million Steps Million Steps Million Steps

Figure 6.9: Varying Iterations During Training. Performance of iterative amor-
tized policy optimization for varying numbers of iterations during training. Increasing
the number of iterations generally results in improvements. Curves show the mean
and + standard deviation over 5 random seeds.

compare amortization gaps across optimization schemes, as these involve different
value functions, and therefore different objectives. Likewise, we estimate the
amortization gap using the learned Q-networks, which may be biased (Figure [6.3).
Nevertheless, we find that iterative amortized policy optimization achieves, on
average, lower amortization gaps than direct amortization across all environments.
Additional amortized iterations at evaluation yield further estimated improvement,

demonstrating generalization beyond the optimization horizon used during training.

The amortization gaps are small relative to the objective, playing a negligible role
in evaluation performance. Rather, improved policy optimization is helpful for

training, allowing the agent to explore states where value estimates are highest. To

106
W

I

I 2 3 0 1 2 3 0 1 2 3 0 I 2
Million Steps Million Steps Million Steps Million Steps

(a) Hopper-v2 (b) HalfCheetah-v2 (c) Walker2d-v2 (d) Ant-v2

ation Gap

ation Gap

— 2ite

b__\\f\v;’f)wm&'v 2107\ — Liter. | Z10- 1%

5 iter.

Amortization Gap

Amortization Gap

Amortiz
Amortiz

"0

Figure 6.10: Amortization Gap of Varying Iterations During Training. Cor-
responding amortization gaps for varying numbers of iterations during training.
We generally see that increasing the number of iterations generally reduces the
amortization gap.

974l 500 - 3 [———
142 565
Sh Adam 450 S Ss60
270 — CEM
- — It. Amort 160 4o 555
0 100 200 0 100 200 0 100 200 0 100 200
Opt. Iteration Opt. Iteration Opt. Iteration Opt. Iteration
(a) Hopper-v2 (b) HalfCheetah-v2 (c) Walker2d-v2 (d) Ant-v2

Figure 6.11: Comparison with Iterative Optimizers. Average estimated objective
over policy optimization iterations, comparing with Adam (Kingma and Ba, |[2014)
and CEM (Rubinstein and Kroese, 2013). These iterative optimizers require over an
order of magnitude more iterations to reach comparable performance with iterative
amortization, making them impractical in many applications.

probe this further, we train iterative amortized policy optimization while varying the
number of iterations per step in {1, 2, 5}, yielding optimizers with varying degrees of
accuracy. Note that each optimizer is, in theory, capable of finding multiple modes. In
Figure we see that training with additional iterations improves performance and
optimization accuracy. Walker2d-v2 provides an interesting example. Even with a
single iteration, we see that iterative amortization outperforms direct amortization,
suggesting that multi-modality is the dominant factor for improved performance here.
Yet, 1 iteration is slightly worse compared with 2 and 5 iterations early in training,
both in terms of performance and optimization. As the amortization gap decreases
later in training, we see that the performance gap ultimately decreases. Further work
could help to analyze this process in even more detail. We stress that the exact form

of this relationship depends on the Q-value estimator and other factors.

Comparison with Iterative Optimizers
Iterative amortized policy optimization obtains the accuracy benefits of iterative
optimization while retaining the efficiency benefits of amortization. We now compare

iterative amortization with two popular iterative optimizers: Adam (Kingma and Ba,

107

2014)), a gradient-based optimizer, and cross-entropy method (CEM) (Rubinstein
and Kroese, 2013)), a gradient-free optimizer. We collect 100 states for each seed in
each environment from the model-free experiments. For each optimizer, we optimize
the variational objective, J, starting from the same initialization. Tuning the step
size, we found that 0.01 yielded the steepest improvement without diverging for both
Adam and CEM. Gradients are evaluated with 10 action samples. For CEM, we
sample 100 actions and fit a Gaussian mean and variance to the top 10 samples. This
is comparable with QT-Opt (Kalashnikov et al., 2018)), which draws 64 samples and
retains the top 6 samples.

The results, averaged across states and random seeds, are shown in Figure @
CEM (gradient-free) is less efficient than Adam (gradient-based), which is unsur-
prising, especially considering that Adam effectively approximates higher-order
curvature through momentum terms. However, Adam and CEM both require over an
order of magnitude more iterations to reach comparable performance with iterative
amortization. While iterative amortized policy optimization does not always obtain
asymptotically optimal estimates, we note that these networks were trained with only
5 iterations, yet continue to improve and remain stable far beyond this limit. Finally,
comparing wall clock time for each optimizer, iterative amortization is only roughly
1.25x% slower than CEM and 1.15x slower than Adam, making iterative amortization

still substantially more efficient.

Generalizing to Model-Based Values

Direct amortization is a purely feedforward process and is therefore incapable
of generalizing to new objectives. In contrast, because iterative amortization is
formulated through gradient-based feedback, such optimizers may be capable of
generalizing to new objective estimators. To demonstrate this capability further,
we apply iterative amortization with model-based value estimators, using a learned
deterministic model on HalfCheetah-v2 (see Appendix A.5). In Figure we
see that iterative amortization slightly outperforms direct amortization in this setting.
The resulting policy optimization procedure refines planned trajectories, shown for
a single state dimension in Figure [6.12b] yielding corresponding improvements
(Fig.[6.12c). We evaluate the generalizing capabilities in Figure[6.12d|by transferring
the policy optimizer from a model-free agent to a model-based agent. Iterative
amortization generalizes to these new value estimates, instantly recovering the

performance of the model-based agent. This highlights the opportunity for instantly

108

15000 0.1 =1 = 15000

Opt. Iter
1 580 Z
0.0 9 10000

50

warc

10000

— MF
— MB
---- MF — MB

State Dim. 2

5000

direct

Cumulative Reward

Cumulative Re

0 iterative 5 560

000 025 050 075 100 o1 2 3 4 5 0 1 2 3 4 5 000 025 050 075 100
Million Steps Model Rollout Step Opt. Iteration Million Steps

() (b) (c) (d)

Figure 6.12: Optimizing Model-Based Value Estimates. (a) Performance com-
parison of direct and iterative amortization using model-based value estimates. (b)
Planned trajectories over policy optimization iterations. (c¢) The corresponding
estimated objective increases over iterations. (d) Zero-shot transfer of iterative
amortization from model-free (MF) to model-based (MB) estimates.

incorporating new tasks, goals, or model estimates into policy optimization.

6.5 Discussion

In this chapter, we applied the technique of learned negative feedback to control,
arriving at iterative amortized policy optimization, a flexible and powerful policy
optimization technique. In so doing, we have highlighted several limitations of
direct amortization: 1) limited accuracy, as quantified by the amortization gap, 2)
restriction to a single estimate, limiting exploration, and 3) inability to generalize to
new objectives, limiting the transfer of these policy optimizers. As confirmed through
our empirical analysis on benchmark continuous control environments, iterative
amortization provides a step toward improving each of these restrictions, with ac-
companying improvements in performance over current direct amortization methods.
Thus, iterative amortization provides a drop-in replacement and improvement over

direct policy networks in deep reinforcement learning.

Although we have discussed three separate limitations of direct amortization, these
factors are highly interconnected. By broadening policy optimization to an iterative
procedure, we automatically obtain a potentially more accurate and general policy
optimizer, with the capability of obtaining multiple modes. While our analysis
suggests that the improved exploration resulting from multiple modes is the primary
factor affecting performance, future work could tease out these effects further and
assess the relative contributions of these improvements in additional environments.
We are hopeful that iterative amortized policy optimization, by providing a more
powerful, exploratory, and general optimizer, will enable a range of improved

reinforcement learning algorithms.

109
References

Abdolmaleki, Abbas et al. (2018). “Maximum a Posteriori Policy Optimisation”. In:
International Conference on Learning Representations.

Agarwal, Rishabh, Dale Schuurmans, and Mohammad Norouzi (2019). “An Op-
timistic Perspective on Offline Reinforcement Learning”. In: arXiv preprint
arXiv:1907.04543.

Ahmed, Zafarali et al. (2019). “Understanding the impact of entropy on policy
optimization”. In: International Conference on Machine Learning, pp. 151-160.

Amos, Brandon, Samuel Stanton, et al. (2020). “On the model-based stochas-
tic value gradient for continuous reinforcement learning”. In: arXiv preprint
arXiv:2008.12775.

Amos, Brandon and Denis Yarats (2020). “The differentiable cross-entropy method”.
In: International Conference on Machine Learning.

Andrychowicz, Marcin et al. (2016). “Learning to learn by gradient descent by
gradient descent”. In: Advances in Neural Information Processing Systems (NIPS),
pp- 3981-3989.

Astrom, Karl Johan and Richard M Murray (2008). Feedback Systems: An Introduction
for Scientists and Engineers. Princeton University Press.

Attias, Hagai (2003). “Planning by probabilistic inference.” In: AISTATS. Citeseer.

Bharadhwaj, Homanga, Kevin Xie, and Florian Shkurti (2020). “Model-Predictive
Planning via Cross-Entropy and Gradient-Based Optimization”. In: Learning for
Dynamics and Control, pp. 277-286.

Botvinick, Matthew and Marc Toussaint (2012). “Planning as inference”. In: Trends
in cognitive sciences 16.10, pp. 485-488.

Brockman, Greg et al. (2016). “Openai gym”. In: arXiv preprint arXiv:1606.01540.

Byravan, Arunkumar et al. (2020). “Imagined Value Gradients: Model-Based Policy
Optimization with Tranferable Latent Dynamics Models”. In: Conference on Robot
Learning, pp. 566—589.

Chua, Kurtland et al. (2018). “Deep reinforcement learning in a handful of trials using
probabilistic dynamics models”. In: Advances in Neural Information Processing
Systems, pp. 4754-4765.

Ciosek, Kamil et al. (2019). “Better exploration with optimistic actor critic”. In:
Advances in Neural Information Processing Systems, pp. 1787—1798.

Clavera, Ignasi, Yao Fu, and Pieter Abbeel (2020). “Model-Augmented Actor-
Critic: Backpropagating through Paths”. In: International Conference on Learning
Representations.

Cooper, Gregory F (1988). “A method for using belief networks as influence
diagrams”. In: Fourth Workshop on Uncertainty in Artificial Intelligence.

110

Cremer, Chris, Xuechen Li, and David Duvenaud (2018). “Inference Suboptimality
in Variational Autoencoders”. In: International Conference on Machine Learning,
pp- 1078-1086.

Dayan, Peter and Geoffrey E Hinton (1997). “Using expectation-maximization for
reinforcement learning”. In: Neural Computation 9.2, pp. 271-278.

Fox, Roy (2019). “Toward Provably Unbiased Temporal-Difference Value Estimation”.
In: Optimization Foundations for Reinforcement Learning Workshop at NeurlPS.

Fox, Roy, Ari Pakman, and Naftali Tishby (2016). “Taming the noise in reinforcement
learning via soft updates”. In: Proceedings of the Thirty-Second Conference on
Uncertainty in Artificial Intelligence. AUAI Press, pp. 202-211.

Fujimoto, S, H van Hoof, and D Meger (2018). “Addressing function approximation
error in actor-critic methods”. In: Proceedings of Machine Learning Research 80,
pp- 1587-1596.

Fujimoto, Scott, David Meger, and Doina Precup (2019). “Oft-policy deep reinforce-
ment learning without exploration”. In: International Conference on Machine
Learning, pp. 2052-2062.

Gershman, Samuel and Noah Goodman (2014). “Amortized inference in probabilistic
reasoning”. In: Proceedings of the Cognitive Science Society. Vol. 36. 36.

Greft, Klaus et al. (2019). “Multi-Object Representation Learning with Iterative Vari-
ational Inference”. In: International Conference on Machine Learning, pp. 2424—
2433.

Guez, Arthur et al. (2019). “An Investigation of Model-Free Planning”. In: Interna-
tional Conference on Machine Learning, pp. 2464-2473.

Haarnoja, Tuomas, Kristian Hartikainen, et al. (2018). “Latent Space Policies for
Hierarchical Reinforcement Learning”. In: International Conference on Machine
Learning, pp. 1846-1855.

Haarnoja, Tuomas, Haoran Tang, et al. (2017). “Reinforcement learning with deep
energy-based policies”. In: Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, pp. 1352—-1361.

Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, et al. (2018). “Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic
Actor”. In: International Conference on Machine Learning, pp. 1856—1865.

Haarnoja, Tuomas, Aurick Zhou, Kristian Hartikainen, et al. (2018). “Soft actor-critic
algorithms and applications”. In: arXiv preprint arXiv:1812.05905.

Hafner, Danijar et al. (2019). “Learning Latent Dynamics for Planning from Pixels”.
In: International Conference on Machine Learning, pp. 2555-2565.

Heess, Nicolas et al. (2015). “Learning continuous control policies by stochastic value
gradients”. In: Advances in Neural Information Processing Systems, pp. 2944—
2952.

111

Henaff, Mikael, William F Whitney, and Yann LeCun (2017). “Model-based planning
with discrete and continuous actions”. In: arXiv preprint arXiv:1705.07177.

Hochreiter, Sepp and Jiirgen Schmidhuber (1997). “Long short-term memory”. In:
Neural computation 9.8, pp. 1735-1780.

Kalashnikov, Dmitry et al. (2018). “Qt-opt: Scalable deep reinforcement learning for
vision-based robotic manipulation”. In: arXiv preprint arXiv:1806.10293.

Kalman, Rudolph Emil (1960). “A new approach to linear filtering and prediction
problems”. In: Journal of Basic Engineering 82.1, pp. 35-45.

Kim, Yoon et al. (2018). “Semi-Amortized Variational Autoencoders”. In: Proceed-
ings of the International Conference on Machine Learning (ICML).

Kingma, Durk P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv: 1412.6980.

Kingma, Durk P, Tim Salimans, et al. (2016). “Improved variational inference
with inverse autoregressive flow”. In: Advances in neural information processing
systems, pp. 4743—4751.

Kingma, Durk P and Max Welling (2014). “Stochastic gradient VB and the variational
auto-encoder”. In: Proceedings of the International Conference on Learning
Representations.

Kumar, Aviral, Justin Fu, et al. (2019). “Stabilizing off-policy g-learning via boot-
strapping error reduction”. In: Advances in Neural Information Processing Systems,
pp. 11784-11794.

Kumar, Aviral, Aurick Zhou, et al. (2020). “Conservative Q-Learning for Offline
Reinforcement Learning”. In: arXiv preprint arXiv:2006.04779.

Lee, Keuntaek, Kamil Saigol, and Evangelos A Theodorou (2019). “Safe end-to-end
imitation learning for model predictive control”. In: International Conference on
Robotics and Automation.

Levine, Sergey (2018). “Reinforcement Learning and Control as Probabilistic
Inference: Tutorial and Review”. In: arXiv preprint arXiv:1805.00909.

Lillicrap, Timothy P et al. (2016). “Continuous control with deep reinforcement
learning”. In: International Conference on Learning Representations.

Marino, Joseph, Alexandre Piché, Alessandro Davide Ialongo, and Yisong Yue
(2020). “Iterative Amortized Policy Optimization”. In: Preprint. urL: https:
//arxiv.org/abs/2010.10670.

Marino, Joseph, Yisong Yue, and Stephan Mandt (2018). “Iterative Amortized
Inference”. In: International Conference on Machine Learning, pp. 3403-3412.
URL: http://proceedings.mlr.press/v80/marinol8a.html.

Mnih, Andriy and Karol Gregor (2014). “Neural Variational Inference and Learning
in Belief Networks”. In: International Conference on Machine Learning, pp. 1791—
1799.

https://arxiv.org/abs/2010.10670
https://arxiv.org/abs/2010.10670
http://proceedings.mlr.press/v80/marino18a.html

112

Mnih, Volodymyr, Adria Puigdomenech Badia, et al. (2016). “Asynchronous methods
for deep reinforcement learning”. In: International conference on machine learning,
pp- 1928-1937.

Mnih, Volodymyr, Koray Kavukcuoglu, et al. (2013). “Playing Atari With Deep
Reinforcement Learning”. In: NIPS Deep Learning Workshop.

Nagabandi, Anusha et al. (2018). “Neural network dynamics for model-based deep
reinforcement learning with model-free fine-tuning”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp. 7559-7566.

Piché, Alexandre et al. (2019). “Probabilistic Planning with Sequential Monte
Carlo methods”. In: International Conference on Learning Representations. URL:
https://openreview.net/forum?id=ByetGnOcYX.

Rajeswaran, Aravind, Igor Mordatch, and Vikash Kumar (2020). “A Game Theo-
retic Framework for Model Based Reinforcement Learning”. In: arXiv preprint
arXiv:2004.07804.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic
backpropagation and approximate inference in deep generative models”. In:

Proceedings of the International Conference on Machine Learning, pp. 1278—
1286.

Riviere, Benjamin et al. (2020). “GLAS: Global-to-Local Safe Autonomy Synthesis
for Multi-Robot Motion Planning with End-to-End Learning”. In: IEEE Robotics
and Automation Letters 5.3, pp. 4249-4256.

Rubinstein, Reuven Y and Dirk P Kroese (2013). The cross-entropy method: a unified
approach to combinatorial optimization, Monte-Carlo simulation and machine
learning. Springer Science & Business Media.

Schulman, John, Sergey Levine, et al. (2015). “Trust region policy optimization”. In:
International Conference on Machine Learning, pp. 1889-1897.

Schulman, John, Filip Wolski, et al. (2017). “Proximal policy optimization algo-
rithms”. In: arXiv preprint arXiv:1707.06347.

Silver, David et al. (2014). “Deterministic Policy Gradient Algorithms”. In: Interna-
tional Conference on Machine Learning, pp. 387-395.

Srinivas, Aravind et al. (2018). “Universal Planning Networks: Learning Generaliz-
able Representations for Visuomotor Control”. In: International Conference on
Machine Learning, pp. 4732—-4741.

Srivastava, Rupesh K, Klaus Greff, and Jiirgen Schmidhuber (2015). “Training very
deep networks”. In: Advances in neural information processing systems (NIPS),
pp- 2377-2385.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An intro-
duction. MIT press.

https://openreview.net/forum?id=ByetGn0cYX

113

Tang, Yunhao and Shipra Agrawal (2018). “Boosting Trust Region Policy Optimiza-
tion by Normalizing Flows Policy”. In: arXiv preprint arXiv:1809.10326.

Thrun, Sebastian and Anton Schwartz (1993). “Issues in using function approximation
for reinforcement learning”. In: Proceedings of the 1993 Connectionist Models
Summer School Hillsdale, NJ. Lawrence Erlbaum.

Tirumala, Dhruva et al. (2019). “Exploiting Hierarchy for Learning and Transfer in
KL-regularized RL”. In: arXiv preprint arXiv:1903.07438.

Todorov, Emanuel (2008). “General duality between optimal control and estimation”.
In: Decision and Control, 2008. CDC 2008. 47th IEEE Conference on. IEEE,
pp. 4286—4292.

Todorov, Emanuel, Tom Erez, and Yuval Tassa (2012). “Mujoco: A physics engine for
model-based control”. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, pp. 5026-5033.

Toussaint, Marc and Amos Storkey (2006). “Probabilistic inference for solving
discrete and continuous state Markov Decision Processes”. In: Proceedings of the
23rd international conference on Machine learning. ACM, pp. 945-952.

Van Hasselt, Hado (2010). “Double Q-learning”. In: Advances in neural information
processing systems, pp. 2613-2621.

Van Hasselt, Hado, Arthur Guez, and David Silver (2016). “Deep reinforcement
learning with double g-learning”. In: Thirtieth AAAI conference on artificial
intelligence.

Verma, Deepak and Rajesh PN Rao (2006). “Goal-based imitation as probabilistic
inference over graphical models”. In: Advances in neural information processing
systems. Citeseer, pp. 1393-1400.

Wiener, Norbert (1948). Cybernetics or Control and Communication in the Animal
and the Machine. MIT press.

Williams, Ronald J (1992). “Simple statistical gradient-following algorithms for
connectionist reinforcement learning”. In: Reinforcement Learning. Springer,
pp. 5-32.

Wu, Yifan, George Tucker, and Ofir Nachum (2019). “Behavior regularized offline
reinforcement learning”. In: arXiv preprint arXiv:1911.11361.

114
Chapter 7

SEQUENTIAL AUTOREGRESSIVE FLOW-BASED POLICIES

X

Qe @

learned feedforward control

Guerra, Alex and Joseph Marino (2020). “Sequential Autoregressive Flow-Based
Policies”. In: ICML workshop on Invertible Neural Networks, Normalizing Flows,
and Explicit Likelihood Models.

7.1 Introduction

In this chapter, we complete the table outlined in Chapter |1} applying learned
feedforward processing to control. As opposed to purely feedback policies (Chapter
[6), which must optimize the control objective from scratch at each time step, we
consider policies with a feedforward component, predicting useful actions at future
time steps. This is loosely inspired by the hierarchical organization of animal motor
control (Merel, Botvinick, and Wayne, [2019), in which central pattern generator
circuits (Marder and Bucher, 2001) provide low-level dynamical motor primitives,
receiving transient top-down signals from higher-level motor areas (Shalit et al.,
2012). This improves computational efficiency and speed, as feedback optimization

(inference) is relied upon less and less as feedforward behavioral routines are learned.

In formulating learned feedforward control policies, we again consider sequential
autoregressive flows, as introduced in Chapter[5] Thus, the overall policy is composed
of a dynamical feedforward component, conditioned on previous actions, and a

feedback component, conditioned on the current state. We provide an initial set of

115

experiments exploring the use of these policies in continuous control environments,
demonstrating improvements in performance as well as the ability to distill purely

feedforward locomotion policies.

7.2 Autoregressive Flow-Based Policies

Basic Setup

We again consider the variational RL setup, as introduced in Chapter[6] As a brief
review, we consider a Markov decision process (MDP), in which, at time ¢, an agent
receives a state observation s; € S and takes action a; € A by sampling from a
policy distribution, 7. The agent then receives reward r(s;, a;) and the environment

transitions to the next state S;41 ~ Peny(Sr+1[Ss, ar).

By interpreting RL as variational inference (Ziebart, 2010; Levine, 2018)), we arrive

at a KL-regularized lower bound on the standard RL objective:

T
Zyt (r(st,az) — alog M)] (7.1)
t=1

j(ﬂ.) = }Epeanr p(at|sl)

where y € [0, 1) is the discount factor, « is a Lagrange multiplier controlling the
regularization weight, O is optimality (as introduced in the previous chapter), and
p(a;|s;) is an action prior. For simplicity, we again consider a uniform action prior
in this chapter (see Section for further discussion).

Soft actor-critic (SAC) (Haarnoja, Zhou, Abbeel, et al., 2018]) provides one instan-
tiation of this setup, learning a Q-network (critic) to estimate future terms in the
objective, and a direct amortized policy network (actor) to optimize the objective.
The critic is learned using temporal difference learning, with an ensemble of deep
networks (Fujimoto, Hoof, and Meger, 2018)), target value networks (Mnih et al.,
2015), and an experience replay buffer (Lin,|1992). SAC estimates the policy using a

deep network, denoted 74, which typically takes the form of a conditional Gaussian:

(s 0) = N (as: pry(s,), diag(o (s))).

In bounded action spaces, tanh is typically applied to the policy samples (Haarnoja,
Zhou, Abbeel, et al., 2018)). The policy network parameters, ¢, are optimized by
differentiating through the objective using the reparameterization gradient estimator
(Kingma and Welling, 2014; Rezende, Mohamed, and Wierstra, 2014).

Motivation
As noted in the previous chapter, performing policy optimization (inference) at

the current time step only requires access to an estimate of the objective (Eq.[7.1).

116

Figure 7.1: Autoregressive Flow-Based Policy. An autoregressive flow-based
policy converts samples from a base distribution, 74 (u;|s;), using an affine transform
with parameters 3g(a-;) and dy(a-,), into actions, a,. The affine transform (top)
acts as a feedforward policy, purely conditioned on previous actions, whereas the
base distribution (bottom) acts as a feedback policy. Each are parameterized by a
separate deep network, with parameters 6 and ¢, respectively.

However, in fully-observable MDPs with continuous action spaces, it is common to
use direct amortized policy networks, typically directly mapping the current state to
a distribution over actions, i.e., my(a,|s;, O). This is because s; provides a compact
description of the information necessary to perform policy optimization. Yet, this is
ultimately a design choice, and we are free to condition direct amortization on any

current or past variables: my(a/|s<;, a<;, O).

In this chapter, we specifically focus on conditioning on previous actions, parameter-
izing policies of the general form 74 (a;|s;, a<;, O). Although this may, at first, appear
to be an odd design choice, there are several possible benefits to parameterizing
policies with a feedforward component conditioned on previous actions. First, policy
optimization can be computationally costly; having a feedforward policy component
may reduce the computational burden on feedback optimization. Second, there
may be communication constraints or delays from high-level state information; a
feedforward policy may provide a reasonable control estimate quickly. Finally,
learning to perform feedback optimization can be challenging; a feedforward policy
provides a basis of dynamical motor primitives (Ijspeert, Nakanishi, and Schaal,

2002), which may simplify upstream control learning.

117

Formulation

We now describe adapting sequential autoregressive flows (Chapter[5) to the control
setting. To simplify notation, we omit the dependency on optimality, O, in the
description. We consider a policy composed of a state-dependent base distribution,
7y (w|s;), over alatent variable, u, and a dynamical affine autoregressive (feedforward)
component, defined by a shift, dg(a-;), and scale, By(a~;). To generate action a,

we sample the latent variable, u, ~ mg(u,|s;), then apply the affine transform,

a; = By(as) Ou +dp(as). (7.2)

With the change of variables, the action probability is then

l_.[:86‘,i(a<t)

where Sy is the i dimension of 3. As in SAC, we can also apply a final tanh

-1

7T¢,9(az|st,a<z) = 7T¢(u,|s,) s (7.3)

transform if the action space is bounded in [—1, 1]. In the implementation presented
here, the base distribution is a Gaussian, output by a deep network with parameters
¢, and, similarly, the affine transform parameters are output by a deep network with

parameters 6. The overall setup is shown in Figure

As we have noted multiple times throughout this thesis, if u, ~ N (u;;0, 1), then
the affine flow is equivalent to an autoregressive Gaussian model, as Eq. is the
Gaussian reparameterization trick (Kingma and Welling, |2014; Rezende, Mohamed,
and Wierstra, 2014). For more general base distributions, this serves as a technique
for adding temporal dependencies to output sequences, a;.7. Conversely, given a
sequence, a.r, the affine transform provides a mechanism for removing temporal
dependencies, i.e., 7 (u;.r) < Z(aj.r), as seen in Chapter [5] thereby simplifying
estimation in the space of uy.7.

7.3 Experiments

We incorporate the proposed autoregressive feedforward component within soft
actor-critic (SAC), which we refer to as autoregressive SAC (ARSAC). The affine
transform parameters in ARSAC are conditioned on a varying number of previous
actions, which we denote as, e.g., ARSAC-5 for 5 previous actions. Unless otherwise
stated, we adopt the default hyperparameters from Haarnoja, Zhou, Abbeel, et al.,
2018, as well as the automatic entropy-tuning scheme proposed in Haarnoja, Zhou,
Hartikainen, et al.,[2018. We evaluate ARSAC across a range of locomotion tasks in

environments from the dm_control suite (Tassa et al., [2020).

118

750
500

| — SAC
I ARSAC-5

—— SAC
ARSAC-5

AN
! ARSAC-5

— SAC
ARSAC-5

Cumulative Reward

Cumulative Reward

[i} 1 2 3 0 1 2 3 1 2 3 0 1 2 3

Million Steps Million Steps Million Steps Million Steps
(a) hopper hop (b) hopper stand (c) walker walk (d) walker run
= 1000 = 1000 ——r——— - 1000
— SAC g a Zinainl g .
ARSAC-5 g ™ // g™
£ soof | £ 500
*W’/‘AMN\\/L' 2 0l — sAC — sAC = — sAC
7 El ARSAC-5 ARSAC-5 El ARSAC-5
s 3
0% 1 2 3 0% I 2 3 0 I 2 3 0% I 2 3
Million Steps Million Steps Million Steps Million Steps
(e) swimmer swimmer6 (f) cheetah run (g) quadruped walk (h) quadruped run

1000 1000 . 1000
— SAC
750 ARSAC-5

SAC
ARSAC-5
AT]

Cumulative Reward
Cumulative Reward

250 / i L 250 M
ARSAC-S I
0% 2 I 0% P I 2 I
Million Steps Million Steps Million Steps
(i) humanoid stand (j) humanoid walk (k) humanoid run

Figure 7.2: Performance Comparison, 2 X 256 (Default) Policy Network. Com-
parison between SAC and ARSAC with an action window of 5 time steps across
dm_control suite environments. Each curve shows the mean and standard deviation
across 5 random seeds.

Performance Comparison

In Figure|/.2, we compare the cumulative reward of SAC and ARSAC-5 throughout
training, with 5 random seeds for each setup on each environment. On most
environments, ARSAC-5 performs roughly as well or better than SAC, with improved
sample efficiency and/or final performance. However, ARSAC-5 struggles on the
more difficult tasks, humanoid walk and humanoid run. In Figure[7.3] we present
performance results on these latter environments with varying autoregressive window
sizes. We see that changing the size improves performance, however, this is still not

able to bridge the performance gap on humanoid run.

We hypothesize that the autoregressive transform will have a larger impact when the
(state-dependent) base distribution is constrained in some way, either computationally
or through delays. To probe this aspect, we decrease the size of the base distribution
network, restricting the network to a single hidden layer with 32 units (the default
size is 2 hidden layers, each with 256 units). The results, on a subset of environments,
are shown in Figure[7.4] where we see that, indeed, the gap in performance slightly

increases.

119

1000
— SAC
ARSAC-3
—— ARSAC:S
—— ARSAC-10

Reward

I
Pt Vi and) ALY
0 2 1 0 2 1
Million Steps Million Steps

Cumulative Reward

Cumulative

(a) humanoid walk (b) humanoid run

Figure 7.3: Humanoid Performance Comparison, 2 x 256 (Default) Policy Net-
work. Comparison between SAC and ARSAC with varying action window sizes on
humanoid tasks from dm_control suite. Each curve shows the mean and standard
deviation across 5 random seeds.

1000 1000 1000
— SAC

ARSAC-5

ive Reward

tive Reward
tive Reward

Cumulat

AR AL
Y

Cumula

— SAC
ARSAC-5

Cumule

0 1 2
Million Steps

(a) hopper stand

0 1 2
Million Steps

(b) walker walk

2 75
£ 500
= aac
250 AC
ARSAC-5
/
3

0 1 2
Million Steps

(c) walker run

— 1000 — 1000 1000
EN et EN 2 | — sAC
g g i AT
£ 500 £ 500 £ 500
E 20 SAC E 250 Shtt E 20
E ARSAC-5 E ARSAC-5 E
0% I 2 3 0% I 2 3 7 I 2 3
Million Steps Million Steps Million Steps

(d) cheetah run (e) quadruped walk (f) quadruped run

Figure 7.4: Performance Comparison, 1 x 32 Policy Network. Comparison
between SAC and ARSAC with an action window of 5 time steps across dm_control
suite environments. Each curve shows the mean and standard deviation across 5
random seeds.

Policy Visualization & Feedforward Distillation

We now analyze the policy distributions learned by ARSAC. On the left side of
Figure we plot the base distribution, 7 (uls), as well as the autoregressive affine
transform, &y + By, and the actions (before applying the tanh transform). Arbitrarily,
we only select the first action dimension for purposes of visualization. We see that the
autoregressive flow contains relatively little temporal structure at the end of training.
This is not entirely surprising, as there is nothing in the objective that explicitly
requires the policy to be distilled into the autoregressive flow. Thus, while the flow
is beneficial for training, it may not necessarily automatically provide dynamical

“motor primitives,” part of the motivation for this approach.

To explore this capability, we attempt to distill the policy entirely into the affine

transform, arriving at a purely feedforward policy. We do so by restricting the base

120

5 25
) N

E - [

_5 95

) 09+ By - tanh~'(a) — §y 0y © tanh~!(a)
:{‘; 2.5 = =~ -, -~ - - o~ E 25
EN IR G AR VRl -
100 150 200 250 100 150 200 250
Step Step
(a) walker run, dim. 0 (b) walker run (dist.), dim. ©
@ O @ 2.5
20 200
= . ER
—9 —2.5
— By - tanh~!(a) — 6By - tanh~!(a)
E 250 - :.-.. - E 25
L 00] e e = 00 ,\]\/\/\M
ER Y R W £ 250\
100 150 200 250 100 150 200 250
Step Step
(c) cheetah run, dim. © (d) cheetah run (dist.), dim. ©
3 —
oo n v A A
% 0 3 0.0 «-WNV v \n
F 5 S _
-5 —-2.5
— &t By - tanh~!(a) — &t [y -+ tanh~!(a)
=00 Lo00 \[\N\[\N\/\[\F
8 IR T £-25
100 150 200 250 100 150 200 250
Step Step
(e) quadruped run, dim. ® (f) quadruped run (dist.), dim.
5 2.5

o n
2 | AN | 2 oo s A A
&0 & 25

tanh~!(a)

(3]
t

o

tanh~!(a)

|
o
ot

100 150 200 250 100 150 200 250
Step Step

(g) humanoid run, dim. © (h) humanoid run (dist.), dim.
Figure 7.5: Policy Visualization & Distillation. Left: Visualization of the base

distribution and autoregressive flow for various action dimensions across various
environments. Right: Visualization after policy distillation.

distribution, progressively penalizing the L2 norm of the mean (p14) and log-standard
deviation (log o), thereby bringing the base distribution toward a standard Gaussian,
N (u;0,1). The results are shown on the right side of Figure [7.5] where we see that

121

the flow now contains nearly all of the temporal structure. In other words, these

policies are effectively autoregressive Gaussian densities:

mo(arla<) = N(a;; 8g(ac,), diag(B5(a<))), (7.4)

almost entirely independent of the state, s. Comparing the left and right columns,
we see that the feedforward policies are more consistent overall, resulting from the
limited temporal window of the affine flow. Thus, the autoregressive nature of the
policy provides an inductive bias, resulting in policies with more regular rhythmic
structure. As will be described in Chapter [§] this may hold some connections
with central pattern generator circuits in biological neural systems, which produce

rhythmic patterns in the absence of any state input (Marder and Bucher, 2001]).

7.4 Discussion

This chapter has presented a formulation of learned feedforward control based
on sequential autoregressive flows. This approach decomposes the policy into a
feedforward component, purely conditioned on previous actions, and a feedback
component, conditioned on the current state, which are combined through an affine
(linear) transform. In the initial set of experiment presented here on locomotion tasks,
we have shown that such policies can outperform purely feedback-based counterparts.
This is somewhat unsurprising, considering that these flow-based policies condition
on additional variables and contain additional parameters. However, it is also
somewhat surprising, considering that, in these environments, the current state
is sufficient for estimating the optimal policy. This suggests that incorporating a
feedforward policy component is a useful inductive bias for these tasks, which is
reasonable, as they require periodic policies. Through qualitative analyses, we have
observed that this periodic structure is not ultimately preserved in the flow. However,
we have shown that it is feasible to distill the policy almost entirely into the flow. This
may be advantageous when computational costs or temporal delays prohibit excessive
amounts of feedback control. We also expect this approach to be more useful in
environments with relatively minimal amounts of stochasticity (like dm_control),
where state information can eventually be ignored. Future works may wish to
consider other forms of normalizing flows, e.g., non-affine flows, flows with multiple
transforms, or combining both spatial and temporal normalizing flows. We also
recommend exploring the use of the prior, p(a;|-), as the feedforward component, as
this will naturally preserve the dynamical structure of the policy. However, there are

added challenges associated with training the prior, which will need to be resolved

122

(Abdolmaleki et al., 2018). At the very least, our results show that feedforward
policies are practically possible, and exploring additional computational architectures

for policies is a fruitful direction for future research.

References

Abdolmaleki, Abbas et al. (2018). “Relative entropy regularized policy iteration”. In:
arXiv preprint arXiv:1812.02256.

Fujimoto, S, H van Hoof, and D Meger (2018). “Addressing function approximation
error in actor-critic methods”. In: Proceedings of Machine Learning Research 80,
pp. 1587-1596.

Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, et al. (2018). “Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic
Actor”. In: International Conference on Machine Learning, pp. 1856—1865.

Haarnoja, Tuomas, Aurick Zhou, Kristian Hartikainen, et al. (2018). “Soft actor-critic
algorithms and applications”. In: arXiv preprint arXiv:1812.05905.

Ijspeert, Auke Jan, Jun Nakanishi, and Stefan Schaal (2002). “Movement imitation
with nonlinear dynamical systems in humanoid robots”. In: Proceedings 2002 IEEE
International Conference on Robotics and Automation (Cat. No. 02CH37292).
Vol. 2. IEEE, pp. 1398-1403.

Kingma, Durk P and Max Welling (2014). “Stochastic gradient VB and the variational
auto-encoder”. In: Proceedings of the International Conference on Learning
Representations.

Levine, Sergey (2018). “Reinforcement Learning and Control as Probabilistic
Inference: Tutorial and Review”. In: arXiv preprint arXiv: 1805.00909.

Lin, Long-Ji (1992). “Self-improving reactive agents based on reinforcement learning,
planning and teaching”. In: Machine learning 8.3-4, pp. 293-321.

Marder, Eve and Dirk Bucher (2001). “Central pattern generators and the control of
rhythmic movements”. In: Current biology.

Merel, Josh, Matthew Botvinick, and Greg Wayne (2019). “Hierarchical motor
control in mammals and machines”. In: Nature Communications 10.1, pp. 1-12.

Mnih, Volodymyr et al. (2015). “Human-level control through deep reinforcement
learning”. In: Nature 518.7540, p. 529.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic
backpropagation and approximate inference in deep generative models”. In:
Proceedings of the International Conference on Machine Learning, pp. 1278—

1286.

Shalit, Uri et al. (2012). “Descending systems translate transient cortical commands
into a sustained muscle activation signal”. In: Cerebral cortex 22.8, pp. 1904—1914.

123

Tassa, Yuval et al. (2020). “dm_control: Software and tasks for continuous control”.
In: arXiv preprint arXiv:2006.12983.

Ziebart, Brian D (2010). “Modeling purposeful adaptive behavior with the principle
of maximum causal entropy”. PhD thesis. CMU.

Part IV

Discussion

124

125
Chapter 8

CONNECTIONS TO PREDICTIVE CODING & NEUROSCIENCE

Marino, Joseph (2019). “Predictive Coding, Variational Autoencoders, and Biological
Connections”. In: NeurlPS Workshop on Real Neurons and Hidden Units. URL:
https://openreview.net/forum?id=SyeumQYUUH.

8.1 Introduction

The previous chapters brought feedback and feedforward ideas from predictive
coding into the realm of machine learning. In this chapter, we more explicitly
identify these connections, implying surprising analogies between machine learning
and neuroscience. We start in Section [8.2] by describing predictive coding, its
hypothesized connections to neuroscience, and the empirical evidence for this overall
theory. In Section[8.3] we then connect the ideas developed in this thesis back to
their origins in predictive coding. By connecting these areas through this conceptual
bridge, we arrive at new perspectives on the possible correspondences between
machine learning and neuroscience (Section[8.4). These correspondences draw into
question fundamental assumptions on the analogy of biological and artificial neurons
(McCulloch and Pitts, |1943), with a host of implications for learning, inference,
inhibition, etc. Unlike the technical contributions in Parts [II| & this chapter is
more speculative, meant to serve as a starting point for further cross-pollination
between machine learning and neuroscience. Like the works of Broeke, 2016 and
Lotter, Kreiman, and Cox, 2018, we hope that these ideas will inspire future research

in exploring this promising paradigm.

8.2 Predictive Coding

Predictive coding, as described within neuroscience, can be divided into two separate
settings, spatiotemporal and hierarchical, corresponding to the two main forms of
structured probabilistic dependencies (Chapter [2)). We review each of these settings,
discussing previously hypothesized correspondences with neural anatomy. Finally,
we outline the current empirical support for predictive coding in neural systems,

highlighting the need for large-scale, testable models.

https://openreview.net/forum?id=SyeumQYUUH

126

Spatiotemporal Predictive Coding

Spatiotemporal predictive coding (Srinivasan, Laughlin, and Dubs, 1982), as the
name implies, involves forming predictions across spatial dimensions and temporal
sequences. These predictions then produce the resulting “code” as the prediction
error. Concretely, in the temporal setting, we can consider a Gaussian autoregressive
model, py, defined over observation sequences, Xi.7. The conditional probability at

time ¢ can be written as

Po(Xi|X<r) = N (X5 po(X<r), diag(o5 (x<1))).-

Introducing auxiliary variables, y, ~ N (0, I), we can use the reparameterization trick
to express X; = fg(X<;) + 0g(X<;) ©Y;, where © denotes element-wise multiplication.
Conversely, we can express the inverse, normalization or whiftening transform as

_ X — po(X<r)

i = Og (X<t)

An example of temporal normalization with video, adapted from Chapter [3] is

(8.1)

shown in Figure [8.1b Note that one special case of this transform involves setting
wo(x<;) = x,-1 and oy(x) = 1, in which case, y; = X, — X,_1, i.e. temporal
differences. For sequences that change slowly relative to the temporal step-size,
this is a reasonable assumption. As noted in Chapter[5] this inverse transform can
remove temporal redundancy in the input sequence. Thus, by Shannon’s source
coding theorem (Shannon, 1948)), we can encode or compress y;.r more efficiently
than x;.7. The benefit of this sequential predictive coding scheme was recognized
in the early days of information theory (Harrison, 1952} Oliver, [1952), forming the
basis of modern video (Wiegand et al., 2003)) and audio (Atal and Schroeder,|1979)

compression.

A similar process can also be applied within x; to remove spatial dependencies.
For instance, we could also apply an autoregressive affine transform over spatial
dimensions, predicting the i" dimension, Xis, as a function of previous spatial
dimensions, x;.;;. With linear functions, this corresponds to Cholesky whitening
(Pourahmadi, 201 1}; Kingma, Salimans, et al., 2016). However, this requires imposing
an arbitrary ordering over spatial dimensions. Perhaps a more reasonable approach
in the spatial setting is to learn a set of symmetric dependencies between dimensions.
Here, the linear case corresponds to ZCA whitening (Kessy, Lewin, and Strimmer,
2018)), shown in Figure In the natural image domain, both of these whitening
schemes generally result in center-surround spatial filters, extracting edges from the

input.

127

e

O

S

Tk 2R xR 7]
4 s .

Xt—3 Xt—2 Xt—1 Xt

(a) Spatial (b) Temporal

Figure 8.1: Spatiotemporal Predictive Coding. (a) Spatial predictive coding
models and removes spatial dependencies. In the domain of natural images, one
version of linear predictive coding is ZCA whitening, which yields center-surround
filters (left). As a result, the whitened image contains highlighted edges (right). (b)
Temporal predictive coding models and removes temporal dependencies. In the
domain of natural video, this tends to remove static backgrounds.

Srinivasan, Laughlin, and Dubs, |1982]investigated the principles of spatiotemporal
predictive coding in the retina, where compression is essential for transmission
through the optic nerve. Estimating the auto-correlation function of input sensory
signals, i.e. a linear prediction, they showed that spatiotemporal predictive coding
provides a reasonable fit to retinal ganglion cell recordings from flies, allowing the
retina’s output neurons to more fully utilize their dynamic range. It is now generally
accepted that retina, in part, performs stages of spatial and temporal normalization
through center-surround receptive fields and on-off responses (Hosoya, Baccus, and
Meister, 2005; Graham, Chandler, and Field, [2006; Pitkow and Meister, 2012
Palmer et al.,|2015). Dong and Atick, |1995| applied similar predictive coding ideas
to the thalamus, proposing an additional stage of temporal normalization. Likewise,
Friston’s use of generalized coordinates (K. Friston, 2008a)), i.e. modeling multiple
orders of temporal derivatives, can be approximated using finite temporal differences
through repeated application of predictive coding. That is, % ~ AX; = X; — X 1.
Thus, spatiotemporal predictive coding may be utilized at multiple stages of sensory

processing to remove redundancy (Y. Huang and Rao, 2011).

In neural circuits, spatiotemporal normalization often involves inhibitory interneurons
(Carandini and Heeger, 2012), carrying out operations similar to those in Eq. [8.1]
(though other mechanisms are also possible). For instance, retinal inhibitory

interactions take place between photoreceptors, via horizontal cells, and between

128

bipolar cells, via amacrine cells. This enables unpredicted motion to be computed,
e.g. an object moving relative to the background, using inhibitory interactions from
amacrine cells (Olveczky, Baccus, and Meister, 2003; Baccus et al., 2008)). Similar
inhibitory interactions are present in the lateral geniculate nucleus (LGN) in thalamus,
with interneurons inhibiting relay cells originating from retina (Sherman and Guillery,
2002). As mentioned above, this is thought to implement a form of temporal
normalization (Dong and Atick, [1995), removing, at least, linear dependencies
(Dan, Atick, and Reid, 1996). Inhibition via lateral inhibitory interactions is also a
prominent feature of neocortex, with distinct classes of local interneurons playing a
significant role in shaping the responses of principal pyramidal neurons (Isaacson
and Scanziani, 2011). While these distinct classes may serve separate computational
roles, part of this purpose appears to be for spatiotemporal normalization (Carandini
and Heeger, 2012). Finally, while we have focused largely on early stages of sensory
processing, inhibitory interneurons are also prevalent in other areas of neocortex,
as well as in central pattern generator (CPG) circuits (Marder and Bucher, 2001},
found in the spinal cord. These circuits are repsonsible for the rhythmic generation
of movement, such as locomotion. Thus, just as inhibitory interactions remove
spatiotemporal dependencies in early sensory areas, similar computational operations

can add spatiotemporal dependencies in motor activation.

Hierarchical Predictive Coding

The other main form of predictive coding, mathematically formulated by Rao and
Ballard, [1999; K. Friston, 2005, involves hierarchies of latent variables and, as such,
has been postulated as a model of hierarchical cortical processing. The neocortex
(Figure 8.2)) is a sheet-like structure involved in many aspects of sensory and motor
processing. It is composed of six layers (I-VI), containing particular classes of
neurons and connections. Across layers, neurons are arranged into columns, which
are engaged in related computations (Mountcastle, Berman, and Davies, |1955).
Columns interact locally via inhibitory interactions from interneurons while also
forming processing hierarchies through longer-range excitatory interactions from
pyramidal neurons. Particularly in earlier sensory areas, longer-range connections
are generally grouped into forward (up the hierarchy) and backward (down the
hierarchy) directions. Forward connections are traditionally thought to be driving
(evoking neural activity) (Girard and Bullier, |1989; Girard, Salin, and Bullier, 1991)).
Backward connections are traditionally thought to be modulatory, however, they have

also been shown be driving (Covic and Sherman, 2011}; De Pasquale and Sherman,

129

backward

sensory i\ =
input K

thalamus \ | neocortical microcircuit

Figure 8.2: Brain Anatomy & Cortical Circuitry. Left: Sensory inputs enter
first-order relays in thalamus from sensory organs. Thalamus forms reciprocal
connections with neocortex. Neocortex consists of hierarchies of cortical areas, with
both forward and backward connections. Right: Neocortex is composed of six layers
(I-V1), with specific neuron classes and connections at each layer. The simplified
schematic depicts two cortical columns. Black and red circles represent excitatory
and inhibitory neurons respectively, with arrows denoting major connections. This
basic circuit motif is repeated with slight variations throughout neocortex.

2011), which can be inverted through inhibition (H. S. Meyer et al., 2011). These
sets of connections, repeated with slight variations throughout neocortex, constitute a
canonical neocortical microcircuit (Douglas, Martin, and Whitteridge, |1989)), which
could suggest a single processing algorithm (Hawkins and Blakeslee, 2004), capable
of adapting to a variety of inputs (Sharma, Angelucci, and Sur, [2000).

In formulating a theory of neocortex, Mumford, 1992 proposed that thalamus acts as
an ‘active blackboard,” with the cortical hierarchy attempting to reconstruct or predict
the thalamic input and activity in areas throughout the hierarchy. Backward (top-
down) projections would convey predictions, while forward (bottom-up) projections
would use prediction errors to update the estimates throughout the hierarchy. Through
a dynamic process of activation, the entire system would settle to a consistent pattern
of activity, minimizing prediction error. Over longer periods of time, the model
parameters would be adjusted to yield improved predictions. In this way, cortex
would use negative feedback, both in inference and learning, to use and construct
a generative model of its inputs. This notion of generative state estimation dates
back (at least) to Helmholtz (Von Helmholtz, |1867), and the notion of correcting
predictions based on prediction errors is inline with concepts from cybernetics
(Wiener, |1948; MacKay, |1956), which influenced techniques like Kalman filtering
(Kalman, [1960), a ubiquitous Bayesian filtering algorithm.

A more complete mathematical formulation of this hierarchical predictive coding

130

model, with many similarities to Kalman filtering (see Rao, |1998)), was provided by
Rao and Ballard, 1999, with the generalization to variational inference provided by
K. Friston, 2005| To illustrate this setup, consider a simple model consisting of a
single level of continuous latent variables, z, modeling continuous data observations,

x. We will use Gaussian densities for each distribution and assume we have

po(xz) = N(x; f(Wz), diag(a2)), (8.2)
po(z) = N(z; py, diag(a)), (8.3)

where f is an element-wise function (e.g. logistic sigmoid, tanh, or the identity), W
is a weight matrix, p; is the constant prior mean, and o2 and o2 are constant vectors

of variances.

In the simplest approach to inference, we can find the maximum-a-posteriori (MAP)
estimate, i.e. estimate the z* which maximizes pg(z|x). While we cannot tractably

evaluate py(z|x) directly, we can use Bayes’ rule to write

*

Z" = arg max py(z|x)
z

arg max Po(X,2)
z po(x)

arg max py(X, z).
z

Thus, rather than evaluating the posterior distribution, py(z|x), we can perform this
maximization using the joint distribution, py(X,z) = py(x|z)pg(z), which we can
tractably evaluate. We can also replace the optimization over the probability distribu-
tion with an optimization over the log probability, since log(-) is a monotonically

increasing function and will not affect the optimization. We then have

z" = arg max [log pg(x|z) + log py(z)] .
= argmax [log N (x; f(Wz), diag(a3)) + log N (z; 5, diag(a;))] -

Each of the terms in this objective is a weighted squared error. For instance, the first

term is the weighted squared error in reconstructing the data observation:

1 2

2

_nx

x — f(Wz)

X

log N (x; f(Wz), diag(a2)) =

b

2

Lo
log(27) - - log |diag(a)| -

where ny is the dimensionality of x and || - ||§ denotes the squared L2 norm. Plugging

131

WT

Qe @—Z-&e0

_ _J

Figure 8.3: Hierarchical Predictive Coding. The diagram shows the basic compu-
tation graph for a Gaussian latent variable model with MAP inference. The insets
show the weighted error calculation for the latent (left) and observed (right) variables.

these terms into the objective and dropping terms that do not depend on z yields

. [—1 x — f(Wz) 2
Z- =argmax | — ||[———
z

Ox

2
2 2

Z— g

(o)

7 , (8.4)

2

= arg max £ (z; 6),
z

where we have defined the objective as £ (z; 6). For purposes of illustration, let us
assume that f(-) is the identity function, i.e. f(Wz) = Wz. We can then evaluate
the gradient of £ (z; 6) w.r.t. z, yielding

V., % (z;0) =WT (X_Wz) - Z_uz.

Ox 0y

The transposed weight matrix, W7, comes from differentiating Wz, and translates
the error in reconstruction into an update in z. If we define the following terms as

weighted errors:

Z_
EX-) £ZE “z’

Ox Oy

then we can re-write the gradient using these terms:

V. ZL(z;0) = WT& - &,. (8.5)

132

Thus, if we want to perform inference using gradient-based optimization, e.g.
z «— 2+ aV,Z(z;0), we need 1) the weighted errors, & and &, and 2) the
transposed weights, WT, or more generally, the Jacobian of the conditional likelihood
mean. This overall scheme is depicted in Figure 8.3] using the computational graph

format from previous chapters.

To learn the weight parameters, we can differentiate £ (z; 6) (Eq. w.r.t. W:

VwZ(z;0) = (X — Wz) z7

Ox

=&z27.

This gradient is the product of a local error term, &, and the latent variable, z,
possibly suggesting a biologically-plausible learning rule (Whittington and Bogacz,
2017).

Predictive coding identifies the conditional likelihood (Eq. [8.2)) with backward (or
top-down) cortical projections, whereas inference updating (Eq.[8.5) is identified with
forward (or bottom-up) cortical projections (K. Friston, [2005)). Such connections
are thought to be mediated by pyramidal neurons. Scaling this model up in size and
structure, each cortical column could contain the necessary computational elements
involved in predicting and estimating a latent variable. Interneurons within columns
could be involved in error calculation (§x and &;). Although we only discussed
diagonal covariance matrices (o2 and @2), interneurons involved in local lateral
inhibition could parameterize (the inverse of) full covariance matrices, i.e. Xx and X,.
This is an instance of spatial predictive coding, which we discussed in the previous
section. Note that these factors, which weight & and &, effectively modulate the
gain of each error term, possibly providing a form of “attention” (Feldman and

K. Friston, [2010). Possible neural correspondences are summarized in Table 8.1

Here, we have discussed a simplified model of hierarchical predictive coding, with a
single latent level and no dynamics. However, a full theory of hierarchical predictive
coding would include these additional aspects and others. Karl Friston has explored
various design choices throughout multiple papers (K. Friston et al., [2007; K.
Friston, [2008a; K. Friston, 2008b), yet the core aspects of probabilistic generative
modeling and variational inference remain largely the same. Further elaborating
and comparing these design choices will be essential for empirically validating the

details of hierarchical predictive coding.

133

Table 8.1: Proposed Neural Correspondences of Hierarchical Predictive Coding.

Neuroscience \ Predictive Coding
Top-Down Cortical Projections | Generative Model Conditional Mapping
Bottom-Up Cortical Projections Inference Updating
Lateral Inhibition Covariance Matrices
(Pyramidal) Neuron Activity Latent Variable Estimates & Errors
Cortical Column Corresponding Estimate & Error
Empirical Support

Empirically validating predictive coding in neural circuits is an active area of research.
This remains challenging, as it is difficult to disentangle the theory itself from the
wide array of possible design choices, e.g. distributions, parameterizations, etc.
(Gershman, 2019). Nevertheless, many of the core aspects of predictive coding do
appear to have some empirical support. We briefly outline some of these studies
here, but we refer the reader to the multiple review papers on the topic (Y. Huang
and Rao, 2011} Bastos, Usrey, et al., 2012; Clark, 2013} Keller and Mrsic-Flogel,
2018 Walsh et al., [2020).

Spatiotemporal As discussed above, various works have investigated spatiotem-
poral predictive coding in early sensory areas, primarily retina (Srinivasan, Laughlin,
and Dubs, |1982; Atick and Redlich, [1992)). This typically involves fitting retinal
ganglion cell responses to a spatial whitening (or decorrelation) process (Graham,
Chandler, and Field, 2006; Pitkow and Meister, 2012), which is dynamically adjusted
based on lighting conditions (Hosoya, Baccus, and Meister, 2005). Similar analyses
suggest that retina employs temporal predictive coding as well (Srinivasan, Laughlin,
and Dubs, [1982; Palmer et al., [2015). While the exact mathematical details of
these neural computations have not been fully characterized, the corresponding
models contain stages of linear decorrelating filters (e.g. center-surround) followed
by non-linearities. Importantly, non-linearities have been shown to be an essential
aspect in explaining retinal ganglion cell responses (Pitkow and Meister, 2012),
possibly inducing an added degree of sparsity (Graham, Chandler, and Field, 2006).
As previously noted, similar spatiotemporal predictive coding computations may be
found in thalamus (Dong and Atick, |1995) and cortex. While Dan, Atick, and Reid,
1996 provide some supporting evidence, such investigations are complicated by the

presence of backward and modulatory interactions.

134

Hierarchical Early work toward empirically validating hierarchical predictive
coding came from explaining extra-classical receptive field effects (Rao and Ballard,
1999; Rao and Sejnowski, 2002), whereby top-down processing in cortex can alter
classical visual receptive fields, suggesting that top-down influences play an important
role in sensory processing (Gilbert and Sigman, |2007). Likewise, temporal influences
have been demonstrated in the form of repetition suppression (Summerfield et al.,
2006), in which cortical activity diminishes in response to repeated, i.e. predictable,
stimuli. This effect may reflect the suppression of errors through improved predictions.
Predictive coding has also been postulated as an explanation of biphasic responses
in LGN (Jehee and Ballard, 2009), in which reversing the visual input with an
anti-correlated image results in a large neural response, presumably due to prediction
errors. Predictive signals have been documented in auditory (Wacongne et al.,[2011)
and visual (T. Meyer and Olson, |2011) processing. Activity seemingly corresponding
to prediction errors has also been observed in a variety of areas and contexts, including
visual flow in primary visual cortex in mice (Keller, Bonhoeffer, and Hiibener, 2012;
Zmarz and Keller, 2016)), auditory cortex in monkeys (Eliades and Wang, [2008)) and
rodents (Parras et al.,2017), and visual cortex in humans (S. O. Murray et al., 2002;
Alink et al.,|2010; Egner, Monti, and Summerfield, 2010). While further studies are
needed, it appears that sensory cortex is engaged in some form of hierarchical and
temporal prediction, with prediction error signals playing a key role in driving the

perceptual process.

The empirical evidence for spatiotemporal and hierarchical predictive coding is
suggestive, but given the complexity of neural systems, some aspects of the theory are
undoubtedly incorrect, incomplete, or under-specified. In particular, the complexity
of biological systems makes it is difficult to isolate and assess detailed aspects of
predictive coding. For instance, it appears that cortex calculates some form of
prediction error, but without access to fine-grained recordings of all relevant signals,
e.g. dendritic currents, neuromodulators, etc., it is difficult to determine the exact
computational form of the circuit. Thus, while general aspects of predictive coding
appear supported, we are unable to probe into the details of such models, making
predictive coding a largely normative theory. One of the purposes of this chapter,
and this thesis more broadly, has been to establish connections between predictive
coding and machine learning. Ideally, by building larger-scale models and training
them on similar sensory data, we can form more fine-grained empirical predictions
for biological neural systems. Building off of the example of Rao and Ballard, 1999,

Lotter, Kreiman, and Cox, 2018 provided another step in this direction, comparing

135

the responses of neural systems and their hierarchical predictive coding model. In
the current thesis, we have attempted to help further build the foundation for this

collaborative effort.

8.3 Connections
We now discuss the connections between the ideas developed in this thesis and their

inspirations from predictive coding.

Iterative Amortization

Iterative amortized inference (Chapter [3)) was inspired by the inference scheme
proposed by Rao and Ballard, 1999 and K. Friston, 2005, In these early formulations
of hierarchical predictive coding, approximate inference is performed using gradient-
based optimization of a point estimate of the latent variables. These works made
it clear that prediction (or reconstruction) errors drive both inference and learning
optimization, and this procedure can be readily extended to sequential settings (K.
Friston, 2008b). However, such procedures typically assume that the inference
gradients, supplied by forward connections, can be easily calculated, but the weights
of these forward connections are, in fact, the Jacobian of the backward connections
(Rao and Ballard, [1999) (Section[8.2). This is an example of the weight transport
problem (Grossberg, |1987), i.e. the weights of one set of connections (forward)
depends on the weights from another set of connections (backward). This is generally

regarded as not being biologically-plausible.

Amortization (Dayan et al., 1995) provides a simple solution to this problem: learn
to perform inference optimization. That is, rather than transporting the generative
weights to the inference connections, amortization learns a separate set of inference
weights, potentially using similar local learning rules (Y. Bengio, 2014} Lee et al.,
2015). Thus, despite criticism from K. Friston, 2018, amortization may offer a more
biologically-plausible account of inference. Further, as demonstrated in Chapters [3]
Ml and [6] by using non-linear functions, amortization is capable of automatically
adjusting update step sizes, yielding accurate estimates with exceedingly few inference
iterations. These substantial benefits in computational efficiency provide another
argument for amortization over the gradient-based schemes often employed in

predictive coding.

Iterative amortization is an example of the more general approach of negative
feedback. As noted at the beginning of this thesis, negative feedback was the core

concept of cybernetics, which went on to inspire predictive coding. While hierarchical

136

predictive coding has largely focused on perceptual inference in cortex, the principles
of negative feedback appear to apply more broadly to neural systems. Indeed, even
at the outset of cybernetics, it was clear that cerebellum plays a central role in
negative feedback control (Wiener, |1948). From more recent studies of cerebellum
and other cerebellum-like structures (Ito, 1998; Bell, 2001; Kennedy et al., 2014},
we are beginning to understand how such circuits correct sensorimotor prediction
errors. One prominent example is given by the Purkinje cells of the cerebellum,
which appear to take in error signals as inputs and output motor corrections. This
follows the general paradigm of iterative amortization, mapping errors to updates.
Casting these neural circuits in terms of amortization, i.e. learned negative feedback,
may provide insights into how such error-correcting mechanisms are learned from

experience.

Sequential Autoregressive Flows

The technique of sequential autoregressive flows (Chapter [5) was, in part, inspired
by the temporal normalization schemes from Srinivasan, Laughlin, and Dubs, 1982
and Dong and Atick, 1995, which are thought to occur in retina and first-order relays
of thalamus. Unlike these earlier works, which were limited to linear functions of
previous inputs, sequential autoregressive flows can utilize non-linear functions to
parameterize the normalizing affine transform. Likewise, because these feedforward
transforms are learned using the prediction errors on the normalized variables, they

can adapt to meet the demands or limitations of higher-level models (Figure [5.6a)).

A related technique is that of generalized coordinates (K. Friston, 2008a), decom-
posing a sequence into its temporal derivatives. Friston has suggested that this may
be a general modeling technique employed by neural circuits. As we have seen, a
simplified version of sequential autoregressive flows, using the previous variable as
the affine shift, extracts an approximation of temporal derivatives (Section[5.2). Thus,
given a short enough time step, At = t; — ty, sequential autoregressive flows provide

a technique for automatically learning an approximation of generalized coordinates.

In Chapter [7] we saw that the same technique can be applied to control, serving as a
low-level dynamical policy, i.e. a dynamical motor basis for control. While early
sensory processing and motor processing are often considered separately, we see that
spatiotemporal dependencies are central to both areas. Normalization (and its inverse)
plays a singular role in both cases, simplifying estimation for upstream models.

If normalization is truly a canonical neural computation (Carandini and Heeger,

137

2012), then similar temporal normalization operations may parameterize dynamics
estimation throughout cortex, operating in conjunction with spatial normalization.
We saw this in Chapter[5| where the modified VideoFlow model (Kumar et al.,2020)
utilized spatial normalization within time steps and femporal normalization across

time steps, demonstrating the utility of these complementary procedures.

We have exclusively investigated normalizing flows with affine transforms (Dinh,
Sohl-Dickstein, and S. Bengio, 2017)), due to their simplicity and their similarity
to proposed neural computations. Given their connection with Gaussian densities
and Gaussianization (Chen and Gopinath, 2001) (normalization is, ultimately, the
process of converting a data distribution into a standard Normal (Gaussian) density),
transforms of this form are prominent in the statistics literature (Friedman, |1987;
Kessy, Lewin, and Strimmer, 2018). However, the change of variables formula readily
applies to all invertible transforms, including non-affine transforms. This more
general perspective, afforded by normalizing flows, offers a method toward improving
spatiotemporal normalization in current models. Similarly, it suggests that neural
circuits may implement multiple computational forms of normalization transforms,
ranging from simple, affine or constant transforms to more complex, non-affine
transforms (Durkan et al., 2019). These may rely on computational mechanisms

within individual neurons as well as spatiotemporal interactions between neurons.

8.4 Correspondences

Having drawn connections between the machine learning approaches developed
in this thesis and their inspirations in predictive coding, we can now traverse this
bridge from machine learning, through predictive coding, to neuroscience. In this
section, we identify correspondences implied by this bridge. In particular, we explore
the consequences of two implied correspondences: 1) pyramidal neurons and deep
networks and 2) lateral inhibition and normalizing flows. These correspondences
should be interpreted at a functional level, potentially shedding new light on the
computational and learning mechanisms employed in biological neural circuits. In
certain aspects, these correspondences offer a substantial departure from the current
paradigm linking biological and artificial neural networks, providing an alternative

approach toward connecting these areas.

Hierarchical predictive coding and deep latent variable models, particularly variational
autoencoders (VAEs) (Kingma and Welling, 2014; Rezende, Mohamed, and Wierstra,

2014), are highly related in both their model formulations and inference approaches

138

4 I 4 N 4 I
O O O
::... [] ',0
;
"o . ® e
O} hO) O}
o J \ J o J
(a) Predictive Coding (b) VAE (Direct) (c) VAE (Iterative)

Figure 8.4: Hierarchical Predictive Coding & VAEs. Computation diagrams for
(a) hierarchical predictive coding, (b) VAE with direct amortized inference, and
(c) VAE with iterative amortized inference (Chapter[3). JT denotes the transposed
Jacobian matrix of the generative model’s conditional likelihood. Red dotted lines
denote gradients, and black dashed lines denote amortized inference. Hierarchical
predictive coding and VAEs are highly similar in both their model formulation and
inference approach.

(Figure [8.4)). Specifically,

* Model Formulation: Both areas focus on hierarchical latent Gaussian models
with non-linear dependencies between latent levels, as well as dependencies
within levels via covariance matrices (predictive coding) or normalizing flows
(VAEs). Note that a covariance matrix is computationally equivalent to an
affine normalizing flow with linear dependencies (Kingma, Salimans, et al.,
2016)).

 Inference: Both areas use variational inference, often with Gaussian approxi-
mate posteriors. While predictive coding employs gradient-based optimization
and VAEs employ amortized optimization, these are just different design

choices in solving the same inference optimization problem.

While previous works within predictive coding and deep latent variable models have
explored distinct design choices, e.g. in parameterizing dynamics, the two areas share
a common mathematical foundation, inherited from cybernetics and descendant

areas.

With this connection explicitly established, we can now identify the biological
correspondences implied by the connection from VAEs to predictive coding to

neuroscience. Looking at Table [8.1] we see that top-down and bottom-up cortical

139

projections, each mediated by pyramidal neurons, respectively parameterize the
generative model and inference updates. Mapping this onto VAEs implies that deep
(artificial) neural networks are in correspondence with pyramidal neuron dendrites
(Figure[8.5). This analogy is not perfect, as each output dimension of a deep network
shares parameters with the other outputs through previous layers. In this regard,
the analogy to pyramidal dendrites in cortex would specifically imply a separate
deep network per variable in a VAE. Or, conversely, a deep network corresponds
to a collection of pyramidal dendrites operating in parallel. Lateral inhibitory
interneurons, which parameterize the inverse covariance matrices at each latent level
in predictive coding, map onto normalizing flows. As mentioned above, normalizing
flows are a non-linear generalization of linear covariance matrices, suggesting the
possibility of non-linear normalization computations in cortex and elsewhere. These
correspondences are obviously quite coarse-grained, and many details are left to be
filled-in. However, they may provide a useful starting point for shifting the current
analogies between machine learning and neuroscience. Below, we explore some of

the consequences of these correspondences.

Pyramidal Neurons & Deep Networks

Non-linear Dendritic Computation Placing deep networks in correspondence
with pyramidal dendrites departs from the traditional one-to-one correspondence
of biological and artificial neurons (McCulloch and Pitts, |1943). This suggests that
(some) individual biological neurons may be better computationally described as
non-linear functions. Evidence from neuroscience supports this analogy. Early
work in simulations proposed that individual pyramidal neurons, through dendritic
processing, could operate as multi-layer artificial networks (Zador, Claiborne, and
Brown, |1992; Mel, 1992)). This was later supported by empirical findings that
hippocampal pyramidal dendrites act as computational ‘subunits,” yielding the
equivalent of a two-layer artificial network (Poirazi, Brannon, and Mel, 2003} Polsky,
Mel, and Schiller, 2004). More recently, Gidon et al., |2020| demonstrated that
individual L2/3 pyramidal neurons are capable of computing the XOR operation,
known for requiring non-linear processing (Minsky and Papert, 1969). This potential
correspondence between deep networks and pyramidal dendrites posits a substantial
role for dendritic computation (London and Héusser, 2005), moving beyond the
overly simplistic comparison of biological and artificial neurons. Further, rather
than assuming every neuron is equivalent, i.e. linear summation with non-linearity,

separate classes of neurons would represent distinct function classes, likely derived

140

pyramidal neuron

deep network

Figure 8.5: Pyramidal Neurons & Deep Networks. Connecting deep latent variable
models with predictive coding places deep networks (bottom) in correspondence with
the dendrites of pyramidal neurons (top). This is in contrast with conventional one-
to-one analogies of biological and artificial neurons, suggesting a larger role for non-
linear dendritic computation and alternative correspondences for backpropagation.

from their morphology. This places a greater emphasis on understanding neural

circuits instead of assuming a uniform network of identical computational elements.

Amortization It is feasible that similar hardware and mechanisms underlying
generative predictions could also perform inference updating, i.e. amortization. This is
the insight of deep latent variable models: deep networks can parameterize conditional
probabilities in both directions. The computational components are identical, with
different inputs and output targets. Building off of the correspondence of pyramidal
dendrites and deep networks, in cortex, we see particular classes of pyramidal neurons
with separate apical and basal dendrites. These segregated dendritic compartments
selectively take inputs from top-down and bottom-up pathways respectively (Bekkers,
2011; Guergiuev, Lillicrap, and Richards, 2016; Richards, 2019), thought to perform
separate computations. These pyramidal neurons could implement a form of iterative
amortized inference model (Chapter [3), separately processing top-down and bottom-
up error signals to update inference estimates (Figure [8.6). This agrees with the
conjecture from predictive coding that separate neurons in the forward pathway
perform inference updating. Amortization also resolves the weight-transport issue
from predictive coding, as separate inference weights are learned. While some

empirical evidence appears to support amortization (Yildirim et al., 2015; Dasgupta et

141

pyramidal neuron

Ca
R4

deep network

Figure 8.6: Pyramidal Neurons & Amortization. In predictive coding, inference
updating is implemented using forward pyramidal neurons in cortex, taking prediction
errors as input. In deep latent variable models, iterative amortized inference plays
a similar role, continuing the analogy of pyramidal neurons and deep networks.
Interestingly, this suggests a separation of processing in apical and basal dendrites,
incorporating errors from the current and lower latent level.

al.,2018)), we note that K. Friston, 2018 remains skeptical of its biological-plausibility.
Further experiments, particularly at the cortical circuit level, are needed to resolve
this question. For instance, amortization would require some form of stochastic
gradient estimation, e.g. reparameterization gradients (Chapter [2). Although all of
the necessary error signals are local to the amortized optimizer, the details remain

unclear.

Neural Oscillations Oscillations are a common feature of neural circuits, giving
rise to various frequency bands in the local field potential (LFP). These frequencies
are thought to arise from the synchronous activity of populations of neurons, such as
recurrent activity in hippocampus resulting in the theta frequency band (4—10 Hz).
Bastos, Vezoli, et al., 2015/ identify distinct frequency bands associated with forward
(gamma, 30-80 Hz) and backward (beta, 10-30 Hz) activity in neocortex. Likewise,
Walsh et al., 2020, reviewing the literature, note that violations of expectations,
i.e. large prediction errors, are associated with increased gamma amplitude, whereas
beta amplitude tends to increase in preparation for a predicted stimulus (Fujioka et al.,
2009). In agreement with hierarchical predictive coding, this supports the conjecture
that backward projections convey predictions, while forward projections perform

inference updating using prediction errors. If we consider the gamma and beta

142

XXX,

[voAvoAvoAvo Ao]

[oNoNoNoNONONONONO)
& % ¢

Figure 8.7: Backpropagation. Placing deep networks in correspondence with
pyramidal neuron dendrites suggests an alternative perspective on the biological-
plausibility of backpropagation. In deep latent variable models, backpropagation is
only performed across variables that are directly connected through a conditional
probability (left). From the perspective presented here, this corresponds to learning
within pyramidal neurons. One possible implementation may be through backprop-
agating action potentials, perhaps combined with other neuromodulatory inputs
(right).

frequency bands as distinct network-wide “clock rates’ associated with inference and
dynamics estimation, respectively, this suggests that cortex performs anywhere from
1-8 inference iterations per time step. Each time step would constitute 30—100 ms.
As seen with amortized variational filtering in Chapter [} as well iterative amortized
policy optimization in Chapter 6] even with a single inference iteration per time step,
amortization can yield reasonably accurate inference estimates. Note that direct
amortization (Dayan et al., |1995)) would suggest that these frequencies should be
identical, in disagreement with empirical observations. Gradient-based optimization,
in contrast, as suggested and employed by Rao and Ballard, |1999| and K. Friston,
2005, may not be sufficient to provide accurate inference estimates with so few
iterations. This may provide further support for the claim that forward pyramidal

neurons in cortex implement a form of iterative amortized inference.

Backpropagation Training deep networks at scale appears to require gradient-
based parameter optimization, i.e. backpropagation (Werbos, |1974;, Rumelhart,
Geoftrey E Hinton, and R. J. Williams, 1986). However, the biological plausibility
of backpropagation remains an open question (Lillicrap, Santoro, et al., |2020).
Critics argue that backpropagation requires non-local learning signals and other
techniques (Grossberg, |1987; Crick, |1989), whereas the brain relies largely on local
learning rules (Hebb, [1949; Markram et al., 1997}; Bi and Poo, |1998)). A number

143

of “biologically-plausible” formulations of backpropagation have been proposed
(Stork, |1989; Kording and Konig, 2001} Xie and Seung, 2003}; Geoffrey E. Hinton,
2007; Lillicrap, Cownden, et al., 2016), attempting to reconcile this disparity and
others. Yet, consensus is still lacking regarding the biological implementations
of these proposed techniques. From another perspective, the apparent biological
implausibility of backpropagation may instead be the result of incorrectly assuming

a one-to-one correspondence between biological and artificial neurons.

If deep networks are in correspondence with pyramidal dendrites, this suggests a
different perspective on the biological-plausibility of backpropagation. In hierarchical
latent variable models, prediction errors at each level of the latent hierarchy provide a
local learning signal (K. Friston, 2005; Y. Bengio, 2014} Lee et al., 2015; Whittington
and Bogacz, 2017). Thus, the global objective is decomposed into local errors, with
learning within each latent level performed through gradient-based optimization.
This is exemplified by deep latent variable models, which utilize backpropagation
within each latent level, but not (necessarily) across latent levels. Again, considering
the correspondence of pyramidal dendrites and deep networks, this suggests that
learning within pyramidal neurons may be more analogous to backpropagation
(Figure [8.7). Not surprisingly, one possible candidate is backpropagating action
potentials (G. J. Stuart and Sakmann, |1994; S. R. Williams and G. J. Stuart, 2000).
These occur in the dendrites of pyramidal neurons, actively propagating a signal
of neural activity back to synaptic inputs (G. Stuart et al., 1997 Brunner and
Szabadics, 2016). This results in the location-dependent influx of calcium, leading
to a variety of synaptic changes throughout the dendritic tree (Johenning et al., 2015).
Indeed, Schiess, Urbanczik, and Senn, 2016 recently investigated a computational
model of gradient backpropagation within dendritic trees. While many details remain
unclear, this overall perspective of backpropagation within neurons, rather than across
networks of neurons, offers a more biologically-plausible alternative; all signals
are local to the pyramidal neurons/dendrites within the cortical circuit. Given the
proposed theoretical role and empirical observations, this possible correspondence
between backpropagation and backpropagating action potentials warrants further

investigation.

Lateral Inhibition & Normalizing Flows
Sensory Input Normalization Sensory stimuli are highly redundant in both space
and time. Examples include luminance at neighboring photoreceptors or pressure on

adjacent mechanoreceptors, each of which tend to persist over time intervals. One

144

of the key computational roles of early sensory areas, e.g. retina, appears to be in
reducing these redundancies through normalization. In retina, such normalization
operations are carried out through lateral inhibition via horizontal and amacrine cells.
As a result, the transmitted output signals are less correlated (Graham, Chandler,
and Field, |2006; Pitkow and Meister, 2012). As we have discussed in this chapter
and elsewhere, normalization and prediction are inseparable, i.e. one must form
a prediction in order to normalize. Accordingly, previous works have framed
early sensory processing in terms of (spatiotemporal) predictive coding (Srinivasan,
Laughlin, and Dubs, [1982; Hosoya, Baccus, and Meister, 2005} Palmer et al., 2015).
This is often motivated in terms of increased sensitivity or efficiency (Srinivasan,
Laughlin, and Dubs, |1982; Atick and Redlich,|1990) due to redundancy reduction

(Barlow et al., |1961}; Barlow, Kaushal, and Mitchison, [1989), i.e. compression.

If we consider cortex as a hierarchical latent variable model of sensory inputs,
then early sensory areas are implicated in parameterizing the conditional likelihood.
The ubiquity of normalization operations in early sensory areas is suggestive of
normalization in a flow-based model. That is, early sensory areas may implement
the “inference” direction of a flow-based conditional likelihood (Siddharth Agrawal
and Dukkipati, 2016; Winkler et al., 2019). This would create a learned, normalized
space in which cortex makes predictions. In addition to the sensitivity and efficiency
arguments above, this could simplify downstream generative modeling and improve
generalization, as demonstrated in Chapter[5] Interestingly, Rao and Ballard, 1999
employ a similar whitening scheme on image inputs, presumably to imitate retina.
Normalizing flows offers a generalization of this idea to non-affine parameterizations
and multiple stages of normalization. Further, framing early sensory areas in terms
of normalizing flows connects these computations conceptually with the rest of the
cortical generative model, i.e. truly evaluating the data-level predictions of cortex
would require inverting the normalization of early sensory areas. While normalizing
flows may not provide a perfect description of early sensory processing (e.g. these
operations may not be completely invertible), this framework may help to unify many

disparate input normalization circuits.

Normalization in Thalamus & Cortex Normalization is also thought to be a
key aspect of first-order relays in thalamus, such as the lateral geniculate nucleus
(LGN). Dong and Atick, |1995 proposed that inhibition across time in LGN could
provide a mechanism for temporally decorrelating the input from retina, with some

supporting evidence provided by Dan, Atick, and Reid, 1996. Again, this can

145

retina a

spatiotemporal l
,-®

normalization
cortex

prediction,
error calculation

&

inference

thalamus (LGN)

temporal
normalization

&

error calculation

Figure 8.8: Computational Schematic of the Visual Pathway. Interpreting the
early visual pathway from the perspective of a latent variable model, we can assign
computational functions to retina, LGN, and cortex. Retina and LGN are interpreted
as implementing normalizing flows, i.e. spatiotemporal predictive coding, reducing
spatial and temporal redundancy in the visual input. LGN also serves as the
lowest level for hierarchical predictions, which are computed through backward
connections in cortex. Using prediction errors throughout the hierarchy, forward
cortical connections update latent estimates.

be considered as a form of temporal predictive coding (Srinivasan, Laughlin, and
Dubs, [1982)), removing easily predictable temporal information. Following the
interpretation above, normalization in thalamus may provide a second stage of
normalizing flow, further removing redundancy. In Chapter 5] we implemented this
general technique using autoregressive flows in deep latent variable models. There,
we saw that low-level temporal normalization removes static backgrounds, improving
modeling and generalization. Further work is needed to assess the functional form
(affine/non-affine) and types of dependencies (linear/non-linear) implemented in

first-order thalamic relays, though suggestions are given by Dong and Atick, |1995|

Normalization, via local lateral inhibition, is also found throughout cortex (King,
Zylberberg, and DeWeese, 2013)). K. Friston, 2005|suggested that lateral inhibition
plays the computational role of inverse covariance (precision) matrices, modeling
dependencies between dimensions within the same latent level of the hierarchy.
This corresponds to parameterizing approximate posteriors (Rezende and Mohamed,

2015; Kingma, Salimans, et al.,[2016)) and/or conditional priors (C.-W. Huang et al.,

146

2017) with (linear affine) normalizing flows[l] Again, note that normalizing flows
offers a more general mathematical framework for describing these normalization
computations. Further, predictive coding often assumes that these dependencies are
modeled using symmetric lateral weights (K. Friston, 2005). In contrast, normalizing
flows also permits non-symmetric schemes, e.g. using spatially autoregressive models
(Kingma, Salimans, et al., 2016)) or ensembles of such models (Uria, I. Murray, and
Larochelle,2014). In Chapter[5] we also applied normalizing flows across time in
hierarchical models to assist in parameterizing dynamics, discussing connections to
Friston’s notion of generalized coordinates (K. Friston, 2008a). Thus, multiple forms
of spatial and temporal normalization may occur within cortex, allowing cortical
columns to add and remove dependencies across space and time. Finally, multiple
works within predictive coding have explored the use of prediction precision as a
form of attention (Spratling, 2008; Feldman and K. Friston, [2010). Increasing the
precision of predictions modulates the gain of prediction errors in driving inference,
leading to more precise inferred estimates. This may prove to be a useful technique
in machine learning. The overall computational scheme, ignoring spatiotemporal

normalization in cortex for simplicity, is shown in Figure [8.8]

Motor Dependencies Much like sensory input areas, there is a striking degree of
low-level interneuron circuitry in motor output areas. A canonical example is central
pattern generator (CPG) circuits, which, through local excitation and inhibition, give
rise to coordinated muscle activation (Marder and Bucher, 2001). These circuits
provide a basis of “motor primitives,” allowing muscle activations to be carried out
in a lower-dimensional manifold rather than the entire combinatorial space. Given
the anatomical similarity of these circuits with normalization circuitry in sensory
areas, as well as the close relationship between adding (generation) and removing
(inference) dependencies in normalizing flows, it is possible that such low-level
motor circuits are implementing flow-based distributions. Under this scheme, spinal
circuits convert compressed, uncorrelated signals from higher-level motor areas into
correlated low-level muscle activation. Similar efficiency arguments from sensory
input areas (Atick and Redlich, [1990) are applicable to motor outputs, treating the
spinal cord as a communication channel. Further, spatiotemporal dependencies in
muscle activation may also improve the expressive capacity and generalization of

motor routines. Indeed, multiple works have investigated improving control policies

I'Specifically, Friston’s proposal corresponds to ZCA whitening (K. Friston, [2005), whereas those
within machine learning have explored Cholesky whitening (Kingma, Salimans, et al., 2016).

147

normalize

e R
@ Q9

¢

B]

_ _J

un-normalize

<&
<«

Figure 8.9: Adding & Removing Dependencies with Normalizing Flows. Nor-
malizing flows provides a general mathematical framework for removing (left) or
adding (right) probabilistic dependencies. Using lateral interactions, one can move
between a normalized (top) or un-normalized (bottom) space. Normalized spaces
have benefits for compression, whereas un-normalized spaces are more expressive.
Neural systems may employ these transforms for sensory and motor processing.

with normalizing flows across motor dimensions (Haarnoja et al., 2018} Tang and
Shipra Agrawal, 2018; Ward, Smofsky, and Bose, 2019), and in Chapter we
investigated incorporating flow-based motor dependencies across time. Consistent
with this setup, it has been empirically observed in neural systems that higher-level
motor areas output transient update signals, which are converted to lower-level
motor trajectories (Shalit et al., 2012). While these findings are encouraging, more
apparent benefits are likely to arise in high-dimensional action spaces, where the
curse of dimensionality (Chen and Gopinath, 2001) makes it essential to model
dependencies for effective exploration. For instance, current MuJoCo environments
from OpenAl gym (Todorov, Erez, and Tassa,|[2012; Brockman et al., 2016)) contain
<20 action dimensions, whereas it has been estimated that there are roughly 800
independent dimensions to human motor control (Powers, |1973). Operating and
learning efficiently in such large action spaces may require modeling spatiotemporal
dependencies through some form of hierarchical or flow-based decomposition.

148

8.5 Discussion

In this chapter, we connected the ideas presented in this thesis back to their origins
in predictive coding. The two core techniques developed in this thesis, iterative
amortized inference and sequential autoregressive flows, map onto aspects of
hierarchical and spatiotemporal predictive coding, respectively. By connecting these
techniques back to predictive coding, we arrived at a variety of possible implied

correspondences between machine learning and neuroscience. In particular,

* we identified the dendrites of pyramidal neurons as functionally analogous to

(nonlinear) deep networks, and

* we identified lateral inhibition as implementing normalizing flows.

Placing pyramidal neuron dendrites in correspondence with deep networks departs
from the traditional one-to-one analogy of biological and artificial neurons, raising a
host of questions regarding dendritic computation and learning via backpropagation.
Likewise, normalizing flows offers a more general framework for considering the
normalization computations carried out by lateral inhibitory interactions found within
multiple brain regions. We are hopeful that connecting these areas will provide new

insights for both machine learning and neuroscience.

For practical reasons, we primarily focused on perception in discussing predictive
coding and the ideas in this thesis. This is a result of the fact that predictive coding
was initially developed and studied in the context of generative models of sensory
inputs (Srinivasan, Laughlin, and Dubs, [1982; Rao and Ballard, 1999; K. Friston,
2005). However, if the cortical microcircuit implements a general-purpose modeling
and inference algorithm, we should expect similar computations to be applicable
to motor and prefrontal cortices. Over the past decade, Friston and colleagues
have developed a range of exciting ideas, interpreting motor control as a process of
proprioceptive prediction (Adams, Shipp, and K. J. Friston, 2013) and prefrontal
cortex as performing hierarchical goal inference (Pezzulo, Rigoli, and K. J. Friston,
2018). Such ideas can be seen as modern extensions of early ideas in cybernetics
(Wiener, |1948; MacKay, 1956; Powers, |1973)), using motor control to correct for
discrepancies (errors) between desired and actual outcomes. Indeed, as shown in
Part[IT]] the same perceptual modeling and inference techniques can be applied to
control. Nevertheless, as we discuss in the final chapter, further work is needed

within machine learning to unify perception and control under a single formulation.

149
References

Adams, Rick A, Stewart Shipp, and Karl J Friston (2013). “Predictions not commands:

active inference in the motor system”. In: Brain Structure and Function 218.3,
pp. 611-643.

Agrawal, Siddharth and Ambedkar Dukkipati (2016). “Deep Variational Inference
Without Pixel-Wise Reconstruction”. In: arXiv preprint arXiv:1611.05209.

Alink, Arjen et al. (2010). “Stimulus predictability reduces responses in primary
visual cortex”. In: Journal of Neuroscience 30.8, pp. 2960-2966.

Atal, B and M Schroeder (1979). “Predictive coding of speech signals and subjective
error criteria”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing
27.3, pp. 247-254.

Atick, Joseph J and A Norman Redlich (1990). “Towards a theory of early visual
processing”. In: Neural computation 2.3, pp. 308-320.

— (1992). “What does the retina know about natural scenes?” In: Neural computation
4.2, pp. 196-210.

Baccus, Stephen A et al. (2008). “A retinal circuit that computes object motion™. In:
Journal of Neuroscience 28.27, pp. 6807-6817.

Barlow, Horace B et al. (1961). “Possible principles underlying the transformation of
sensory messages”. In: Sensory communication 1, pp. 217-234.

Barlow, Horace B, Tej P Kaushal, and Graeme J Mitchison (1989). “Finding minimum
entropy codes”. In: Neural Computation 1.3, pp. 412-423.

Bastos, Andre Moraes, W Martin Usrey, et al. (2012). “Canonical microcircuits for
predictive coding”. In: Neuron 76.4, pp. 695-711.

Bastos, Andre Moraes, Julien Vezoli, et al. (2015). “Visual areas exert feedforward
and feedback influences through distinct frequency channels”. In: Neuron 85.2,
pp- 390-401.

Bekkers, John M (2011). “Pyramidal neurons”. In: Current Biology 21.24, R975.

Bell, Curtis C (2001). “Memory-based expectations in electrosensory systems”. In:
Current opinion in neurobiology 11.4, pp. 481-487.

Bengio, Yoshua (2014). “How auto-encoders could provide credit assignment in
deep networks via target propagation”. In: arXiv preprint arXiv: 1407.7906.

Bi, Guo-giang and Mu-ming Poo (1998). “Synaptic modifications in cultured hip-
pocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic
cell type”. In: Journal of neuroscience 18.24, pp. 10464—10472.

Brockman, Greg et al. (2016). “Openai gym”. In: arXiv preprint arXiv:1606.01540.

Broeke, Gerben van den (2016). “What auto-encoders could learn from brains”.
MA thesis. Aalto University.

150

Brunner, Janos and Janos Szabadics (2016). “Analogue modulation of back-propagating
action potentials enables dendritic hybrid signalling”. In: Nature communications
7, p. 13033.

Carandini, Matteo and David J Heeger (2012). “Normalization as a canonical neural
computation”. In: Nature Reviews Neuroscience 13.1, pp. 51-62.

Chen, Scott Saobing and Ramesh A Gopinath (2001). “Gaussianization”. In: Advances
in neural information processing systems, pp. 423—429.

Clark, Andy (2013). “Whatever next? Predictive brains, situated agents, and the
future of cognitive science”. In: Behavioral and Brain Sciences 36.3, pp. 181-204.

Covic, Elise N and S Murray Sherman (2011). “Synaptic properties of connections
between the primary and secondary auditory cortices in mice”. In: Cerebral Cortex
21.11, pp. 2425-2441.

Crick, Francis (1989). “The recent excitement about neural networks”. In: Nature
337.6203, pp. 129-132.

Dan, Yang, Joseph J Atick, and R Clay Reid (1996). “Efficient coding of natural
scenes in the lateral geniculate nucleus: experimental test of a computational
theory”. In: Journal of Neuroscience 16.10, pp. 3351-3362.

Dasgupta, Ishita et al. (2018). “Remembrance of inferences past: Amortization in
human hypothesis generation”. In: Cognition 178, pp. 67-81.

Dayan, Peter et al. (1995). “The helmholtz machine”. In: Neural computation 7.5,
pp. 889-904.

De Pasquale, Roberto and S Murray Sherman (2011). “Synaptic properties of
corticocortical connections between the primary and secondary visual cortical
areas in the mouse”. In: Journal of Neuroscience 31.46, pp. 16494—-16506.

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio (2017). “Density estimation
using real nvp”. In: International Conference on Learning Representations.

Dong, Dawei W and Joseph J Atick (1995). “Temporal decorrelation: a theory of
lagged and nonlagged responses in the lateral geniculate nucleus”. In: Network:
Computation in Neural Systems 6.2, pp. 159-178.

Douglas, Rodney J, Kevan AC Martin, and David Whitteridge (1989). “A canonical
microcircuit for neocortex”. In: Neural computation 1.4, pp. 480—488.

Durkan, Conor etal. (2019). “Neural Spline Flows”. In: arXiv preprint arXiv:1906.04032.

Egner, Tobias, Jim M Monti, and Christopher Summerfield (2010). “Expectation

and surprise determine neural population responses in the ventral visual stream”.
In: Journal of Neuroscience 30.49, pp. 16601-16608.

Eliades, Steven J and Xiaoqin Wang (2008). “Neural substrates of vocalization
feedback monitoring in primate auditory cortex”. In: Nature 453.7198, p. 1102.

151

Feldman, Harriet and Karl Friston (2010). “Attention, uncertainty, and free-energy”.
In: Frontiers in human neuroscience 4.

Friedman, Jerome H (1987). “Exploratory projection pursuit”. In: Journal of the
American statistical association 82.397, pp. 249-266.

Friston, Karl (2005). “A theory of cortical responses”. In: Philosophical Transactions
of the Royal Society of London B: Biological Sciences 360.1456, pp. 815-836.

— (2008a). “Hierarchical models in the brain”. In: PLoS computational biology 4.11,
e1000211.

— (2008b). “Variational filtering”. In: Neurolmage 41.3, pp. 747-766.

— (2018). “Does predictive coding have a future?” In: Nature neuroscience 21.8,
p- 1019.

Friston, Karl et al. (2007). “Variational free energy and the Laplace approximation”.
In: Neuroimage 34.1, pp. 220-234.

Fujioka, Takako et al. (2009). “Beta and gamma rhythms in human auditory cortex
during musical beat processing”. In: Annals of the New York Academy of Sciences
1169.1, pp. 89-92.

Gershman, Samuel J (2019). “What does the free energy principle tell us about the
brain?” In: arXiv preprint arXiv:1901.07945.

Gidon, Albert et al. (2020). “Dendritic action potentials and computation in human
layer 2/3 cortical neurons”. In: Science.

Gilbert, Charles D and Mariano Sigman (2007). “Brain states: top-down influences
in sensory processing”. In: Neuron 54.5, pp. 677-696.

Girard, Pascal and Jean Bullier (1989). “Visual activity in area V2 during reversible
inactivation of area 17 in the macaque monkey”. In: Journal of neurophysiology
62.6, pp. 1287-1302.

Girard, Pascal, PA Salin, and Jean Bullier (1991). “Visual activity in areas V3a and
V3 during reversible inactivation of area V1 in the macaque monkey”. In: Journal
of Neurophysiology 66.5, pp. 1493-1503.

Graham, Daniel J, Damon M Chandler, and David J Field (2006). “Can the theory
of “whitening” explain the center-surround properties of retinal ganglion cell
receptive fields?” In: Vision research 46.18, pp. 2901-2913.

Grossberg, Stephen (1987). “Competitive learning: From interactive activation to
adaptive resonance”. In: Cognitive science 11.1, pp. 23-63.

Guergiuev, Jordan, Timothy P Lillicrap, and Blake A Richards (2016). “Biolog-
ically feasible deep learning with segregated dendrites”. In: arXiv preprint
arXiv:1610.00161.

Haarnoja, Tuomas et al. (2018). “Latent Space Policies for Hierarchical Reinforcement
Learning”. In: International Conference on Machine Learning, pp. 1846—1855.

152

Harrison, CW (1952). “Experiments with linear prediction in television”. In: Bell
System Technical Journal 31.4, pp. 764-783.

Hawkins, Jeff and Sandra Blakeslee (2004). On intelligence: How a new understanding
of the brain will lead to the creation of truly intelligent machines. Macmillan.

Hebb, Donald O (1949). “The organization of behavior; a neuropsycholocigal theory.”
In: A Wiley Book in Clinical Psychology., pp. 62-78.

Hinton, Geoftrey E. (2007). “How to do backpropagation in a brain”. In: NeurIPS
Deep Learning Workshop.

Hosoya, Toshihiko, Stephen A Baccus, and Markus Meister (2005). “Dynamic
predictive coding by the retina”. In: Nature 436.7047, p. 71.

Huang, Chin-Wei et al. (2017). “Learnable explicit density for continuous latent
space and variational inference”. In: arXiv preprint arXiv:1710.02248.

Huang, Yanping and Rajesh PN Rao (2011). “Predictive coding”. In: Wiley Interdis-
ciplinary Reviews: Cognitive Science 2.5, pp. 580-593.

Isaacson, Jeffry S and Massimo Scanziani (2011). “How inhibition shapes cortical
activity”. In: Neuron 72.2, pp. 231-243.

Ito, Masao (1998). “Cerebellar learning in the vestibulo—ocular reflex”. In: Trends in
cognitive sciences 2.9, pp. 313-321.

Jehee, Janneke FM and Dana H Ballard (2009). “Predictive feedback can account for
biphasic responses in the lateral geniculate nucleus”. In: PLoS Comput Biol 5.5,
e1000373.

Johenning, Friedrich W et al. (2015). “Ryanodine receptor activation induces long-
term plasticity of spine calcium dynamics”. In: PLoS biology 13.6, €e1002181.

Kalman, Rudolph Emil (1960). “A new approach to linear filtering and prediction
problems”. In: Journal of Basic Engineering 82.1, pp. 35-45.

Keller, Georg B, Tobias Bonhoeffer, and Mark Hiibener (2012). “Sensorimotor
mismatch signals in primary visual cortex of the behaving mouse”. In: Neuron
74.5, pp. 809-815.

Keller, Georg B and Thomas D Mrsic-Flogel (2018). “Predictive processing: a
canonical cortical computation”. In: Neuron 100.2, pp. 424-435.

Kennedy, Annetal. (2014). “A temporal basis for predicting the sensory consequences
of motor commands in an electric fish”. In: Nature neuroscience 17.3, pp. 416-422.

Kessy, Agnan, Alex Lewin, and Korbinian Strimmer (2018). “Optimal whitening
and decorrelation”. In: The American Statistician 72.4, pp. 309-314.

King, Paul D, Joel Zylberberg, and Michael R DeWeese (2013). “Inhibitory interneu-
rons decorrelate excitatory cells to drive sparse code formation in a spiking model
of V1”. In: Journal of Neuroscience.

153

Kingma, Durk P, Tim Salimans, et al. (2016). “Improved variational inference
with inverse autoregressive flow”. In: Advances in neural information processing
systems, pp. 4743—-4751.

Kingma, Durk P and Max Welling (2014). “Stochastic gradient VB and the variational
auto-encoder”. In: Proceedings of the International Conference on Learning
Representations.

Kording, Konrad P and Peter Konig (2001). “Supervised and unsupervised learning
with two sites of synaptic integration”. In: Journal of computational neuroscience
11.3, pp. 207-215.

Kumar, Manoj et al. (2020). “VideoFlow: A Flow-Based Generative Model for
Video”. In: International Conference on Learning Representations.

Lee, Dong-Hyun et al. (2015). “Difference target propagation”. In: Joint european
conference on machine learning and knowledge discovery in databases. Springer,

pp. 498-515.

Lillicrap, Timothy P, Daniel Cownden, et al. (2016). “Random synaptic feedback
weights support error backpropagation for deep learning”. In: Nature communica-
tions 7, p. 13276.

Lillicrap, Timothy P, Adam Santoro, et al. (2020). “Backpropagation and the brain”.
In: Nature Reviews Neuroscience, pp. 1-12.

London, Michael and Michael Hausser (2005). “Dendritic computation”. In: Annu.
Rev. Neurosci. 28, pp. 503-532.

Lotter, William, Gabriel Kreiman, and David Cox (2018). “A neural network trained
to predict future video frames mimics critical properties of biological neuronal
responses and perception”. In: arXiv preprint arXiv:1805.10734.

MacKay, D M (1956). “The epistemological problem for automata”. In: Automata
studies, pp. 235-252.

Marder, Eve and Dirk Bucher (2001). “Central pattern generators and the control of
rhythmic movements”. In: Current biology.

Markram, Henry et al. (1997). “Regulation of synaptic efficacy by coincidence of
postsynaptic APs and EPSPs”. In: Science 275.5297, pp. 213-215.

McCulloch, Warren S and Walter Pitts (1943). “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical biophysics 5.4,
pp. 115-133.

Mel, Bartlett W (1992). “The clusteron: toward a simple abstraction for a complex
neuron”. In: Advances in neural information processing systems.

Meyer, Hanno S et al. (2011). “Inhibitory interneurons in a cortical column form hot
zones of inhibition in layers 2 and SA”. In: Proceedings of the National Academy
of Sciences 108.40, pp. 16807-16812.

154

Meyer, Travis and Carl R Olson (2011). “Statistical learning of visual transitions
in monkey inferotemporal cortex”. In: Proceedings of the National Academy of
Sciences 108.48, pp. 19401-19406.

Minsky, Marvin and Seymour Papert (1969). Perceptrons.

Mountcastle, VB, AL Berman, and PW Davies (1955). “Topographic organization
and modality representation in first somatic area of cat’s cerebral cortex by method
of single unit analysis”. In: Am J Physiol 183.464, p. 10.

Mumford, David (1992). “On the computational architecture of the neocortex”. In:
Biological cybernetics 66.3, pp. 241-251.

Murray, Scott O et al. (2002). “Shape perception reduces activity in human primary
visual cortex”. In: Proceedings of the National Academy of Sciences 99.23,
pp- 15164-15169.

Oliver, BM (1952). “Efficient coding”. In: The Bell System Technical Journal 31.4,
pp- 724-750.

Olveczky, Bence P, Stephen A Baccus, and Markus Meister (2003). “Segregation of
object and background motion in the retina”. In: Nature 423.6938, pp. 401-408.

Palmer, Stephanie E et al. (2015). “Predictive information in a sensory population”.
In: Proceedings of the National Academy of Sciences 112.22, pp. 6908—6913.

Parras, Gloria G et al. (2017). “Neurons along the auditory pathway exhibit a
hierarchical organization of prediction error”. In: Nature communications 8.1,
pp. 1-17.

Pezzulo, Giovanni, Francesco Rigoli, and Karl J Friston (2018). “Hierarchical active
inference: A theory of motivated control”. In: Trends in cognitive sciences 22.4,
pp- 294-306.

Pitkow, Xaq and Markus Meister (2012). “Decorrelation and efficient coding by
retinal ganglion cells”. In: Nature neuroscience 15.4, p. 628.

Poirazi, Panayiota, Terrence Brannon, and Bartlett W Mel (2003). “Pyramidal neuron
as two-layer neural network™. In: Neuron 37.6, pp. 989-999.

Polsky, Alon, Bartlett W Mel, and Jackie Schiller (2004). “Computational subunits
in thin dendrites of pyramidal cells”. In: Nature neuroscience 7.6, p. 621.

Pourahmadi, Mohsen (2011). “Covariance estimation: The GLM and regularization
perspectives”. In: Statistical Science, pp. 369-387.

Powers, William T (1973). Behavior: The control of perception. Aldine Chicago.

Rao, Rajesh PN (1998). “Correlates of attention in a model of dynamic visual
recognition”. In: Advances in neural information processing systems, pp. 80—86.

Rao, Rajesh PN and Dana H Ballard (1999). “Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects.” In: Nature
neuroscience 2.1.

155

Rao, Rajesh PN and Terrence J Sejnowski (2002). “Predictive Coding, Cortical
Feedback, and Spike-Timing Dependent Plasticity”. In: Probabilistic models of
the brain, p. 297.

Rezende, Danilo Jimenez and Shakir Mohamed (2015). “Variational Inference
with Normalizing Flows”. In: International Conference on Machine Learning,

pp. 1530-1538.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic
backpropagation and approximate inference in deep generative models”. In:
Proceedings of the International Conference on Machine Learning, pp. 1278-

1286.
Richards, Blake A (Sept. 6, 2019). personal communication.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1986). “Learning
representations by back-propagating errors.” In: Nature.

Schiess, Mathieu, Robert Urbanczik, and Walter Senn (2016). “Somato-dendritic
synaptic plasticity and error-backpropagation in active dendrites”. In: PLoS
computational biology 12.2, €1004638.

Shalit, Uri et al. (2012). “Descending systems translate transient cortical commands
into a sustained muscle activation signal”. In: Cerebral cortex 22.8, pp. 1904—1914.

Shannon, Claude E (1948). “A mathematical theory of communication”. In: The Bell
system technical journal 27.3, pp. 379-423.

Sharma, Jitendra, Alessandra Angelucci, and Mriganka Sur (2000). “Induction of
visual orientation modules in auditory cortex”. In: Nature 404.6780, p. 841.

Sherman, S Murray and RW Guillery (2002). “The role of the thalamus in the flow
of information to the cortex”. In: Philosophical Transactions of the Royal Society
of London. Series B: Biological Sciences 357.1428, pp. 1695-1708.

Spratling, Michael W (2008). “Reconciling predictive coding and biased competition
models of cortical function”. In: Frontiers in computational neuroscience 2, p. 4.

Srinivasan, Mandyam Veerambudi, Simon Laughlin, and Andreas Dubs (1982).
“Predictive coding: a fresh view of inhibition in the retina”. In: Proceedings of the
Royal Society of London. Series B. Biological Sciences 216.1205, pp. 427-459.

Stork, David G (1989). “Is backpropagation biologically plausible”. In: International
Joint Conference on Neural Networks. Vol. 2. IEEE Washington, DC, pp. 241-246.

Stuart, Greg J and Bert Sakmann (1994). “Active propagation of somatic action
potentials into neocortical pyramidal cell dendrites”. In: Nature 367.6458, p. 69.

Stuart, Greg et al. (1997). “Action potential initiation and backpropagation in neurons
of the mammalian CNS”. In: Trends in neurosciences 20.3, pp. 125-131.

Summerfield, Christopher et al. (2006). “Predictive codes for forthcoming perception
in the frontal cortex”. In: Science 314.5803, pp. 1311-1314.

156

Tang, Yunhao and Shipra Agrawal (2018). “Boosting Trust Region Policy Optimiza-
tion by Normalizing Flows Policy”. In: arXiv preprint arXiv:1809.10326.

Todorov, Emanuel, Tom Erez, and Yuval Tassa (2012). “Mujoco: A physics engine for
model-based control”. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, pp. 5026-5033.

Uria, Benigno, Iain Murray, and Hugo Larochelle (2014). “A deep and tractable
density estimator”. In: International Conference on Machine Learning, pp. 467—
475.

Von Helmbholtz, Hermann (1867). Handbuch der physiologischen Optik. Vol. 9. Voss.

Wacongne, Catherine et al. (2011). “Evidence for a hierarchy of predictions and
prediction errors in human cortex”. In: Proceedings of the National Academy of
Sciences 108.51, pp. 20754-20759.

Walsh, Kevin S et al. (2020). “Evaluating the neurophysiological evidence for
predictive processing as a model of perception”. In: Annals of the New York
Academy of Sciences 1464.1, p. 242.

Ward, Patrick Nadeem, Ariella Smofsky, and Avishek Joey Bose (2019). “Improving
Exploration in Soft-Actor-Critic with Normalizing Flows Policies”. In: ICML
Workshop on Invertible Neural Nets and Normalizing Flows.

Werbos, Paul (1974). “Beyond regression:" new tools for prediction and analysis in
the behavioral sciences”. In: Ph. D. dissertation, Harvard University.

Whittington, James CR and Rafal Bogacz (2017). “An approximation of the error
backpropagation algorithm in a predictive coding network with local hebbian
synaptic plasticity”. In: Neural computation.

Wiegand, Thomas et al. (2003). “Overview of the H. 264/AVC video coding standard”.
In: IEEE Transactions on circuits and systems for video technology 13.7, pp. 560—
576.

Wiener, Norbert (1948). Cybernetics or Control and Communication in the Animal
and the Machine. MIT press.

Williams, Stephen R and Greg J Stuart (2000). “Backpropagation of physiological
spike trains in neocortical pyramidal neurons: implications for temporal coding in
dendrites”. In: Journal of Neuroscience.

Winkler, Christina et al. (2019). “Learning Likelihoods with Conditional Normalizing
Flows”. In: arXiv preprint arXiv:1912.00042.

Xie, Xiaohui and H Sebastian Seung (2003). “Equivalence of backpropagation and
contrastive Hebbian learning in a layered network™. In: Neural computation 15.2,
pp- 441-454.

157

Yildirim, Ilker et al. (2015). “Efficient and robust analysis-by-synthesis in vision:
A computational framework, behavioral tests, and modeling neuronal represen-
tations”. In: Thirty-Seventh Annual Conference of the Cognitive Science Society.
Vol. 4.

Zador, Anthony M, Brenda J Claiborne, and Thomas H Brown (1992). “Nonlinear
pattern separation in single hippocampal neurons with active dendritic membrane”.
In: Advances in neural information processing systems, pp. 51-58.

Zmarz, Pawel and Georg B Keller (2016). “Mismatch receptive fields in mouse visual
cortex”. In: Neuron 92.4, pp. 766-772.

158
Chapter 9

CONCLUSION

Marino, Joseph and Yisong Yue (2019). “An Inference Perspective on Model-Based
Reinforcement Learning”. In: ICML Workshop on Generative Modeling and
Model-Based Reasoning for Robotics and Al. urL: https://drive.google.
com/open?id=1uclFdjHVkkEAaU6jz7aVrP3khGygkdKi.

This thesis has presented two core techniques for probabilistic modeling and inference,
iterative amortization and sequential autoregressive flows, applied to both perception
(Part[[I) and control (Part[[II). These techniques are modern incarnations of classical
feedback and feedforward ideas popularized and developed under cybernetics (Wiener,
1948}, Ashby,|1956). Importantly, these techniques are both learned, providing an
additional layer of optimization, i.e., negative feedback, for added efficiency and
efficacy. Thus, these ideas are both generally applicable to a range of perception and
control settings, as well as powerful, enabling performance improvements. Figure[9.]]
provides an overview of the contributions. In this chapter, we conclude this thesis by
examining the general themes developed in the preceding chapters and broadening

the discussion toward a synthesis of these ideas and the path ahead.

9.1 Iterative Estimation

The technical contributions of this thesis demonstrate the benefits of iterative estima-
tion, applied to both probabilistic modeling of dynamics (sequential autoregressive
flows; Chapters [5| & [7)) and variational inference (iterative amortization; Chap-
ters 3] &[6). We have already seen how iterative amortization provides updates to

inferred estimates of distribution parameters, A:
A — fo(AVyL).

In each case, we used a gated transform to parameterize this update, which is a

specialized version of a residual update:
A— A+AN 9.1

This had numerous benefits, including the ability to improve performance by

simply increasing the number of iterations, i.e., amount of computation, and the

https://drive.google.com/open?id=1uc1FdjHVkkEAaU6jz7aVrP3khGyqkdKi
https://drive.google.com/open?id=1uc1FdjHVkkEAaU6jz7aVrP3khGyqkdKi

159

(d) Ch. @ (e) Ch.

Figure 9.1: Thesis Summary. Graphical representations of perception (a—c) and
control (d—e) using feedback (a, b, d) and feedforward (c, e) processes.

ability to estimate multiple solutions (Greff et al.,|[2019). Iterative estimation also
allowed us to automatically adapt to new priors, as seen in sequential latent variable
models (Chapter [d)), and new conditional likelihoods, as seen in policy optimization

(Chapter|[6). Thus, this procedure is both more powerful and more general.

Switching settings, with sequential autoregressive flows on observations, X;.7, we
can consider the special case of parameterizing the shift at time ¢ as x;_; and the
scale as the vector 1. The normalized base distribution variable then becomes

X — X1

-1

= AXt_l.

y: =

Equivalently, if we are modeling y; = Ax;_; using a higher-level model for the base

distribution, the autoregressive generative model can be expressed as
Xt — Xt—l + AXI_]. (92)

In Chapters [5] & [7, we saw that this scheme simplified estimation, improving
performance in both cases. With conditional likelihood estimation (Chapter [5), we
also saw accompanying generalization improvements, resulting from the learned
normalization of inputs. We can interpret x,_; in Eq. [0.2] as a type of frame of

reference, providing an initial estimate of x;, which is then refined through Ax;_;.

160

While formulated from the differing perspectives of feedback and feedforward
processing, we see in Eqs. [0.1] & [9.2] that iterative amortization and sequential au-
toregressive flows ultimately involve similar iterative estimation schemes, estimating
changes from previous estimates. Iterative estimation is arguably the most generic
scheme for both optimization and prediction, as it simply asks, “should this variable
be larger or smaller?” In cases where variables change relatively smoothly, due to
the continuity of time or functional constraints, this is a useful inductive bias for
performing estimation. As we have shown in this thesis, the same mathematical prin-
ciples can be applied to both perception (Part[II) and control (Part|[II), highlighting
the generality of these iterative estimation schemes. This suggests a unified set of
relatively simple computational principles for performing a host of processes, an
alluring possibility given the seeming standardization of biological neural “hardware.”
Thus, considering the biological connections discussed in Chapter [§] top-down and
bottom-up cortical projections (mediated by pyramidal neurons) may use similar
computational principles, respectively computing changes in predictions and latent

estimates.

9.2 Combining Generative Perception & Control

As we have laid out each of these ideas separately, there is still work to be done
in combining these techniques to form a unified agent, combining both perception
and control. Importantly, this is not as simple as merely stitching together the
computation graphs for perception and control, e.g., Figures[9.1b|& [9.1d We can see
this by starting from the control-as-inference perspective (Levine, 2018), presented
in Chapter[6] and considering a hierarchical policy, with an internal latent variable, z.
Then, we can express the agent-environment interaction| as

T

po(sir,zir, arr) = p(s1) | | Peny(Sivilsi a0) po(zls<i 2o, <) po(als<s, 2<i).
t=1

Note that the distribution over z, i.e., pg(z/|S</, Z<;, a<;), is expressed as a direct
conditional mapping, rather than as an inverse generative mapping (as in Part [[I).
This is a result of the mathematical formulation of policy distributions and not a
design choice. However, we can use Bayes’ rule to re-express the posterior in terms
of a generative mapping

Po(StlS<tsZ<r, a<) po(2e|S<t, 2<1, a<;)

Po(SilS<t» 241, a;)

I'To simplify notation, we express the environment in terms of states, i.e., an MDP. However, an
additional mapping from states to observations could be used, yielding a POMDP, as in Marino and
Yue, 2019L

Po(Zi|S<t, 2o a4;) = (9.3)

161

Much like the perception generative models from Part[[l, the numerator in Eq.[9.3]is
the agent’s action-conditioned generative model, a joint distribution over internal
latent variables and state observations. However, we see that the denominator is
the marginal likelihood of the current observation, conditioned only on the past
variables. To see the implications of this term, we can continue with the control-
as-inference approach, introducing an approximate posterior, 7(7|Q), now over

T = [S1.7,Z1.7, 1.7]. At time step ¢, we have
penv(st+1 |Sl" al)ﬂ(ztlsﬁt’ Z<l‘7 a<l’ O)ﬂ-(atlsﬁt’ ZSh a<l” 0)9

where, as before, O denotes optimality. Plugging this into the variational objective

(and ignoring Lagrange factors for simplicity), we then have

Task Information Gain Internal KL
T reward
— o(S¢|S<s, Z<;s, @ 7(z:|S<;, Z<;, a4, O
j:Epeanr Z " +10gp (t| <t> L<t, <z)_ (r| <t»L<t, A<y,) (9.4)
Po(StlS<i, 2« a<) Po(Zi|S<s,Z<r,a)

t=1
ﬂ.(allsﬁl’ 2y, a<y, O)

—log
po(ar|S<;, 2<, a)

Action KL

The first and last term are the typical reward and action KL from the control-as-
inference formulation, modified for the hierarchical setting. The “Internal KL.” term

resembles the latent dynamics found within the generative models from Part|[I]

However, instead of just the conditional log-likelihood of the current state observation,
s;, we have a “Task Information Gain” term. This is the crucial difference from
simply combining the perception and control techniques from this thesis, which
would only yield the numerator in this term. Briefly, because z is sampled from 7,
which is optimized for the task (i.e., conditioned on Q), the information gain can be
thought of as the amount of task-relevant information extracted from the current state
observation. In other words, the agent is optimized to learn an internal model that
maximally extracts task-relevant information from the environment. This contrasts
with current approaches to model-based reinforcement learning with latent variable
models (Ha and Schmidhuber, [2018; Hafner et al., [2019), which learn to model
observations as well as possible, i.e., the simple combination of perception and control
techniques. Intuitively, by modeling everything, the agent’s model may neglect
less salient task-relevant information, resulting in poor performance. Similarly,
from an evolutionary perspective, organisms obtain no utility in modeling their

environment unless it can extract information relevant for survival and reproduction.

162

\§ J

Figure 9.2: Combining Generative Perception & Control. Graphical represen-
tation combining generative perception (Part and control (Part [[TI). Internal
perceptual latent variables are a hierarchical variable in the control policy. Impor-
tantly, the agent maximizes the task-relevant information gain from the environment’s
state observation, rather than the conditional log-likelihood.

Stepping back, this exercise also demonstrates that internal perceptual variables
may be reasonably considered as hierarchical variables in the control policy. This
echoes the “motor chauvinist” view from neuroscience (Wolpert, Ghahramani, and
Flanagan, 2001): the brain is ultimately concerned with control, with perception
simply a means of improving control. Interestingly, if we consider deeper hierarchies
of variables, there may not be a clear line between perception and control, supporting
the application of similar computational principles put forth in this thesis. For a

more in-depth derivation of this formulation, we refer to Marino and Yue, 2019,

In this section, we have attempted to combine perception and control by treating
perception as an initial stage of processing, providing an input to the control policy.
While we considered systems with only a single internal latent variable for perception,
one could, in theory, construct policies with many hierarchical levels. However,
even with many variables, this scheme is ultimately just a method for parameterizing
more complex policy distributions, interpreting intermediate variables as “perceptual
variables.” In this sense, we have a hierarchy of actions. In the next section, we
discuss an alternative approach toward combining perception and control, instead

using a hierarchy of rasks.

163
9.3 Controlling Perception

In a task hierarchy, each level receives a task (e.g., a goal) from the level above,
defined in the space of the perceptual representation at the current level. The level’s
“policy” attempts to satisfy this task by assigning tasks to the level below. In this way,
each level attempts to control its perception (Powers, 1973)), bringing the perceptual
state estimate toward the goal. The top level assigns sub-tasks to solve the overall
task, e.g., survival, and the lowest level outputs primitive actions to the environment.
By estimating and controlling perceptions at each level, the agent can control abstract
aspects of the environment, simplifying the process of solving the overall task over

larger spatiotemporal scales.

To a greater degree than in an action hierarchy, perception and control are intimately
linked in this formulation. That is, perception does not merely precede control.
Rather, the two processes are concurrent, with perception providing the basis for
estimating and evaluating control. In the RL literature, this setup is sometimes
referred to as feudal RL (Dayan and Hinton, |1993)), with several recent incarnations
(Vezhnevets et al.,[2017; Nachum et al., 2018a)). In the control theory literature, it is
sometimes referred to as hierarchical or cascaded control (Albus, Barbera, and Nagel,
1980). And in the cognitive science and neuroscience literature, this relates to ideas
of hierarchical cognitive control (Badre, 2008; Yin,|[2016). We now discuss several

aspects of this approach, as well as connections to concepts across various fields.

Task Specification with State Distributions

We require some method for defining the tasks throughout the hierarchy. To define
these tasks, we first step back and reconsider the general framing of tasks. In
Part[[TI} we utilized the control-as-inference formulation of reinforcement learning,
largely following the notation of Levine, 2018, This formulation, born out of
an effort to frame reinforcement learning (Sutton and Barto, 2018) in terms of
probabilistic inference, makes the somewhat unnatural move of introducing auxiliary
“optimality” variables (Cooper, 1988), O, which are set to 1 by construction. While
this mathematical trick provides a convenient framing of the policy optimization
problem in RL, one is still left with the difficult and opaque task of defining and
optimizing a reward function. Further, because the reward function is considered as
a fundamental element of the task formulation, one does not have direct access to the
underlying calculations inside the reward function when considering the probabilistic

modeling and inference procedure.

164

For instance, in Chapter[6] we adapted iterative amortized inference (Chapter [3)) for
policy optimization. In Chapter 3] in addition to gradient encoding models, which
use VL, we considered Gaussian priors and conditional likelihoods, allowing us
to define inference models that encode (prediction) errors, £ and &,. However, in
Chapter [6] because we were dealing with generic reward functions, we could only
consider gradient encoding models. While similar squared error terms appear within
the reward functions of the MuJoCo benchmark environments, these were effectively
hidden from us. By more explicitly considering the origin and calculation of reward
within the probabilistic modeling perspective, we may be able to devise more general
principles for specifying and performing tasks.

This thesis has focused, in part, on revitalizing ideas developed under cybernetics
using modern machine learning techniques. With its focus on both biological
and non-biological systems, cybernetics framed objectives in terms of homeostasis
(Cannon, |1929), or the maintenance of equilibria or “setpoints” on states (Ashby,
1952)). Rather than a reward function, an agent is given a desired setpoint or
goal state (e.g., a thermostat temperature), or more generally, a desired probability
distribution over state variables. Indeed, this perspective is still prevalent in the
control literature, where many reward and cost functions are defined in terms of
squared errors, i.e., Gaussian log-likelihoods, from setpoints. We can even further
generalize this notion to allostasis (Sterling, 1988), yielding desired distributions over
state trajectories. Thus, while Sutton and Barto, 2018|describe reward maximizing
agents as “qualitatively different from equilibrium-seeking systems,” given the proper
probabilistic framing, as discussed below, this distinction disappears. Defining tasks
first in terms of state or trajectory distributions, rather than (simply) in terms of
reward functions, could prove useful in building and understanding autonomous

systems, potentially leading to improved methods for specifying and solving tasks.

Task Specification

Distribution-defined tasks have the benefit of naturally lending themselves toward
probabilistic modeling and inference techniques. As discussed in Chapter [I] the
various descendent fields of cybernetics each formulated control problems in terms
of probabilistic inference. There is a rich line of work formulating planning (Attias,
2003} Botvinick and Toussaint, 2012; Piché et al., [2019)) and control (Toussaint
and Storkey, 2006}; Todorov, |2008; Hoffman et al., 2009} Toussaint, 2009; Rawlik,
Toussaint, and Vijayakumar, 2013) in terms of probabilistic inference. Within

neuroscience, Friston’s line of work on active inference (K. Friston, Daunizeau, and

165

Kiebel, 2009) similarly formulates control as the inference of actions to maximize
the (homeostatic) likelihood of states (Morville et al.,[2018). While each of these
formulations offers unique perspectives on the control problem, the commonality
is that many of these are formulated in terms of desired state distributions, which
then give rise to reward (or cost functions) as the resulting log-likelihood [’ In other
words, for a desired state distribution, p4(S), the reward, r, that an agent receives
in a particular state, s, is proportional to the log-likelihood of that state under the

desired state distribution,

r(s) oclogpa(S =s). 9.5)

For instance, a quadratic reward function between the current state and some setpoint,
s* i.e.,
_ 1 2
r(s) = =3lls = 57113

is equivalent to defining a Gaussian desired state distribution with mean s*:
pa(8) = N(S:57, 1), (9.6)

as shown in Figure[9.3] State distributions, rather than reward functions, may be a
more natural way to specify tasks. This could range from simple distributions, as in
the Gaussian case, to sharp distributions, such as a Dirac delta function for a particular
state, e.g., a solved Rubik’s cube. As discussed above, state distributions can also
be time-varying, i.e., allostatic, defined over state trajectories. This is essential in
situations where homeostatic variables need to change, e.g., blood pressure, to meet

environmental requirements (Sterling, 2012).

As a final note here, it is worth mentioning that the notion of “reward” itself is an
abstraction, a remnant of an earlier behaviorist paradigm. Although reward, as a
concept, has served as a useful tool for making progress in computational approaches
to control, we should not endow it with special status. At a more fundamental level,
the common characteristic of organisms, machines, and “intelligent” systems broadly
is their ability to perform work to alter the state of the environment (Levin et al.,
2011). Defining such systems in terms of distributions over states, rather than an

inferred scalar quantity (reward), perhaps offers a more congruent framing.

2Note that other formulations cast reward as the change in homeostatic log-likelihood (Keramati
and Gutkin, 2014).

166

log pa(S)

I

r(S)

-2 0 2 —2 0 2
State, S State, S

(a) (b)

Figure 9.3: State Distributions & Rewards. A quadratic reward function, r(S),
can be equivalently expressed as a Gaussian desired state distribution, p;(S).

Task Solving
The exponentiation interpretation above is highly similar to the control-as-inference

perspective (Cooper, |1988), where we defined the likelihood of optimality as

p(O =1) < exp(r(s)).

However, unlike control-as-inference, where the variable of interest is the abstractly-
defined “optimality,” the state distribution approach considers states directly, yielding
a more interpretable problem. The policy optimization objective then becomes the

following cross-entropy:

Eon(4)Es~pen (S)1a=a) [l0g pa(S =)], 9.7)

where, here, we have considered a single time step for simplicity. Unlike log-
optimality, the objective in Eq. has a simple interpretation: find a control policy
that puts the environment in states with high log-probability under the desired
distribution. In other words, make the environment state look more like your desires.
Further, if we extend Eq. to a KL divergence (Lee et al., 2019)), this provides
an additional state entropy term, encouraging maximum coverage over states, i.e.,

exploration and novelty-seeking.

Desired state distributions have the immediate benefit of exposing the calculation
of reward to the probabilistic formulation and inference technique. Considering the
Gaussian example in Eq. the task error, &, = s — s*, is no longer hidden inside
the black box of the reward function. Thus, through (iterative) amortization, we
could potentially perform policy optimization by inverting this state error to yield an
updated control policy. This is the idea behind negative feedback control techniques
(Astrom and Murray, 2008)), instantiated in so-called comparator circuits, a key
concept from cybernetics (Wiener, 1948; Ashby, [1956).

167

Subtractor

Input Compensator- Output

Effector

a)
O/

Error

Feedback
Takeoff

Figure 9.4: Comparator Circuit. Using the error between the current state and
the input reference signal (or setpoint), a compensator-effector function updates the
output control. The feedback takeoff function converts this control output into the
current state. An ideal compensator-effector minimizes the discrepancy between the
current state and the reference signal. Adapted from Wiener, |1948|

Comparator circuits (Figure consist of an input reference signal (or setpoint), a
compensator-effector function, a feedback takeoff function, and a control output. The
current state, given by the feedback takeoff function, is compared with the reference
signal. The error is then fed to the compensator-effector function, which adjusts the
control output to minimize this error (negative feedback). Broadly, we can identify
the input reference signal as the mean of a Gaussian desired state distribution (s*),
the compensator-effector function as a type of iterative inference model, and the
feedback takeoff function as the environment (or model). While the basic comparator
circuit neglects many of the underlying mathematical details and assumptions, it
nevertheless provides a useful example of feedback control that appears to fit nicely
with iterative amortization, and importantly, desired state distributions, where an

explicit error can be calculated.

Biological organisms contain negative feedback processes operating at multiple
scales, altering the internal state of the organism and the external environment. From
an evolutionary point of view, such homeostatic feedback control processes are
only useful insofar as they enable genetic propagation (Dawkins, [1976)). Thus, the
homeostatic desired state distribution is itself learned through evolution, translating
genetic survival into distributions over internal states (or trajectories). From this
perspective, nervous systems are merely an extension of this trend, enabling more
flexible forms of feedback over a range of time horizons. As argued by Damasio,
2019, this requires some method for estimating the (log) likelihood of current and

future states under the homeostatic distribution, which he identifies as feelings.

168

Hierarchical Control

The setup discussed thus far has only considered a single desired state distribution,
recapitulating the standard RL setup from an alternative mathematical perspective.
However, by framing tasks in terms of desired distributions, we can readily extend this
formulation to hierarchical setups, in which higher levels assign desired perceptual
distributions to lower levels (i.e., perceptual goals). These lower levels then assign
desired perceptual distributions to even lower levels (or actions), attempting to
maximize the likelihood of perceptions under the distribution from above. In this
way, each level operates semi-autonomously as an “agent,” performing tasks in
perceptual state-spaces that are increasingly coarse-grained over space and time.
These perceptual spaces could, in principle, be defined in terms of generative
mappings, as in Part [[IL Under this scheme, negative feedback and feedforward
perception and control processes would operate in tandem at each level, updating
perceptual estimates and goals, respectively.

The brain structures associated with homeostatic regulation are evolutionarily ancient,
located in the brain stem. More recent structures, such as the limbic system and cortex,
provide additional layers of regulation, estimating and controlling more abstract
external states. The pinnacle of this abstraction is located in prefrontal cortex, which
is hypothesized to infer a hierarchy of increasingly abstract high-value (goal) states
(Pezzulo, Rigoli, and K. J. Friston, 2018]). Through a descending hierarchy of
proprioceptive “predictions,” these goal states are translated into muscle tensions,
enacted in the spinal cord through (negative feedback) reflex arcs (Adams, Shipp,
and K. J. Friston, 2013). This cognitive control setup broadly agrees with perceptual
control theory (Powers, [1973)), which posits that actions are engaged in controlling a
hierarchy of perceptual estimates via negative feedback, with homeostatic variables
dictating the top of the hierarchy. This overall architecture has also been described

by Meystel and Albus, |1997|from a more control-theoretic perspective.

Although ideas on the relationship between feedback and the brain have existed
since the dawn of cybernetics (Rosenblueth, Wiener, and Bigelow, [1943; Ashby,
1952; Powers, |1973)), it is only through recent discoveries in neuroscience that a
more detailed picture of higher levels, outlined above, has started to emerge (Cools,
1985} Yin, 2014; Pezzulo and Cisek, 2016; Badre, |[2020). Through developments
in machine learning, in part advanced through this thesis, implementation of
these ideas may be on the horizon. However, while there has been progress

in goal-based reinforcement learning (Schaul et al., [2015; Andrychowicz et al.,

169

2017; Eysenbach, Salakhutdinov, and Levine, 2019) and goal hierarchies (Nachum
et al., 2018a; Nachum et al., 2018b)), substantial insights are still needed. For
instance, temporal abstraction (Sutton, Precup, and Singh, [1999), despite its agreed
upon importance, remains computationally elusive. Inspiration from neuroscience,
particularly regarding perceptual control, as opposed to the conventional dichotomy
of model-free and model-based control, may provide useful directions for progress.
We have purposefully left the formulation in this section somewhat vague, as many
details are left to be worked out. Yet, we feel strongly that this perspective, starting
from homeostasis and scaling up toward hierarchical perceptual control, is the most

promising path toward building capable systems and understanding the brain.

9.4 Bridging Neuroscience and Machine Learning

The approach taken in this thesis, applying ideas from neuroscience to machine
learning (and vice versa), is, unfortunately, fairly uncommon. If nothing else, we
hope that the reader has come to appreciate the connections between these fields,
first emphasized by cybernetics. The contributions within this thesis were inspired
by ideas from theoretical neuroscience, which, in turn, originated from information
theory, control theory, and cybernetics more broadly. Looking at the history of these
ideas, it becomes clear that there is a proven track record of making progress through
interaction between neuroscience and machine learning. Bridging these fields is

difficult, but it is a well-documented path toward further progress.

Indeed, there are multiple bridges between neuroscience and machine learning, each
operating at different scales or in different brain regions. In this thesis, we have
explored a circuit-level description for inspiration and correspondences, primarily
drawn from existing work in predictive coding (Srinivasan, Laughlin, and Dubs,
1982; Rao and Ballard, [1999). These circuits are far more complex than generic
neural network architectures, involving multiple objective terms, multiple functions,
and specific probabilistic computations. Yet, these models are entirely abstracted
away from ion currents, actions potentials, and neuromodulators. In our view, this is
a useful level of abstraction for describing the computational principles underlying
neural systems. Some previous works have attempted to compare similar learned
models with neural data (Lotter, Kreiman, and Cox, 2018)), however, additional work
is needed. By scaling up these models, our hope is that future researchers can explore

and test aspects of predictive coding in detail, alongside neuroscience experiments.

To conclude, we will briefly review the neuroscience implications of the ideas

170

presented in this thesis. Building on the cybernetic tradition, we have investigated
improved approaches to feedback and feedforward perception and control. While the
structure (or circuit architecture) of these approaches is predefined, the processes
themselves are learned from data. That is, we learn feedforward predictions
via autoregressive flows, and we learn negative feedback updates via iterative
amortization. This demonstrates that a limited set of computational operations,
combined appropriately, is capable of adapting to environment-specific perception and
control tasks. In a similar way, predefined neural circuit architectures, particularly in
cortex, are capable of adapting to the specific perceptual and control tasks encountered

by an organism during its lifetime.

Notably, in addition to the basic arithmetic operations for probabilistic computations,
e.g., subtraction for error and multiplication for precision-weighting, these approaches
rely on learned non-linear mappings, parameterized by deep networks. By identifying
the probabilistic computations as occurring across neurons, as in predictive coding,
the non-linear mappings are implicated in occurring within neurons. Importantly, this
interpretation hinges on implementing negative feedback (inference) optimization
using amortization. Thus, a significant portion of neurons may be devoted to learning
to optimize the perceptual and control estimates of other neural circuits. While this
idea has a long history (Rosenblueth, Wiener, and Bigelow, |1943)), amortization

provides a new lens for understanding how such corrective processes can be learned.

Much work remains to be done in formulating and understanding neural systems, and
biological systems generally, in computational terms. Humans, in particular, through
a complex array of perceptual and control processes, are capable of bringing about
wildly improbable, high-value environmental states. While it is tempting to think
that we are close to “solving intelligence,” we are still only scratching the surface of
basic engineering principles. Substantial work remains to be done in integrating and
scaling these systems. May we continue to look toward the complexity and wonder

of biological systems as a guiding source of inspiration.

References

Adams, Rick A, Stewart Shipp, and Karl J Friston (2013). “Predictions not commands:
active inference in the motor system”. In: Brain Structure and Function 218.3,
pp. 611-643.

Albus, James, Anthony J Barbera, and Roger N Nagel (1980). Theory and practice
of hierarchical control. National Bureau of Standards.

171

Andrychowicz, Marcin et al. (2017). “Hindsight experience replay”. In: Advances in
neural information processing systems, pp. 5048-5058.

Ashby, W Ross (1952). Design for a brain: The origin of adaptive behaviour.
— (1956). An Introduction to Cybernetics. Chapman and Hall.

Astrom, Karl Johan and Richard M Murray (2008). Feedback Systems: An Introduction
for Scientists and Engineers. Princeton University Press.

Attias, Hagai (2003). “Planning by probabilistic inference.” In: AISTATS. Citeseer.

Badre, David (2008). “Cognitive control, hierarchy, and the rostro—caudal organization
of the frontal lobes”. In: Trends in cognitive sciences 12.5, pp. 193-200.

— (2020). “On Task”. In: On Task. Princeton University Press.

Botvinick, Matthew and Marc Toussaint (2012). “Planning as inference”. In: Trends
in cognitive sciences 16.10, pp. 485-488.

Cannon, Walter B (1929). “Organization for physiological homeostasis”. In: Physio-
logical reviews 9.3, pp. 399—431.

Cools, AR (1985). “Brain and behavior: hierarchy of feedback systems and control
of input”. In: Perspectives in ethology. Springer, pp. 109-168.

Cooper, Gregory F (1988). “A method for using belief networks as influence
diagrams”. In: Fourth Workshop on Uncertainty in Artificial Intelligence.

Damasio, Antonio (2019). The strange order of things: Life, feeling, and the making
of cultures. Vintage.

Dawkins, Richard (1976). The selfish gene. Oxford university press.

Dayan, Peter and Geoffrey Hinton (1993). “Feudal reinforcement learning”. In:
Advances in Neural Information Processing Systems.

Eysenbach, Ben, Russ R Salakhutdinov, and Sergey Levine (2019). “Search on the
replay buffer: Bridging planning and reinforcement learning”. In: Advances in
Neural Information Processing Systems, pp. 15246—15257.

Friston, Karl, Jean Daunizeau, and Stefan J Kiebel (2009). “Reinforcement learning
or active inference?” In: PloS one 4.7, €6421.

Greft, Klaus et al. (2019). “Multi-Object Representation Learning with Iterative Vari-

ational Inference”. In: International Conference on Machine Learning, pp. 2424—
2433.

Ha, David and Jiirgen Schmidhuber (2018). “Recurrent world models facilitate policy
evolution”. In: Advances in Neural Information Processing Systems, pp. 2450—
2462.

Hafner, Danijar et al. (2019). “Learning Latent Dynamics for Planning from Pixels”.
In: International Conference on Machine Learning, pp. 2555-2565.

172

Hoffman, Matthew et al. (2009). “An expectation maximization algorithm for
continuous Markov decision processes with arbitrary reward”. In: Artificial
Intelligence and Statistics, pp. 232-239.

Keramati, Mehdi and Boris Gutkin (2014). “Homeostatic reinforcement learning for
integrating reward collection and physiological stability”. In: Elife 3, e04811.

Lee, Lisa et al. (2019). “Efficient exploration via state marginal matching”. In: arXiv
preprint arXiv:1906.05274.

Levin, Robert et al. (2011). Work meets life: exploring the integrative study of work
in living systems. MIT Press.

Levine, Sergey (2018). “Reinforcement Learning and Control as Probabilistic
Inference: Tutorial and Review”. In: arXiv preprint arXiv: 1805.00909.

Lotter, William, Gabriel Kreiman, and David Cox (2018). “A neural network trained
to predict future video frames mimics critical properties of biological neuronal
responses and perception”. In: arXiv preprint arXiv:1805.10734.

Marino, Joseph and Yisong Yue (2019). “An Inference Perspective on Model-Based
Reinforcement Learning”. In: ICML Workshop on Generative Modeling and
Model-Based Reasoning for Robotics and Al. urL: https://drive.google.
com/open?id=1uclFdjHVkkEAaU6jz7aVrP3khGygkdKi.

Meystel, Al M and James Albus (1997). “Intelligent Systems”. In: Architecture,
Designand Control.

Morville, Tobias et al. (2018). “The homeostatic logic of reward”. In: bioRxiv,
p. 242974,

Nachum, Ofir et al. (2018a). “Data-efficient hierarchical reinforcement learning”. In:
Advances in Neural Information Processing Systems, pp. 3307-3317.

— (2018Db). “Near-Optimal Representation Learning for Hierarchical Reinforcement
Learning”. In: International Conference on Learning Representations.

Pezzulo, Giovanni and Paul Cisek (2016). “Navigating the affordance landscape:
feedback control as a process model of behavior and cognition™. In: Trends in
cognitive sciences 20.6, pp. 414-424.

Pezzulo, Giovanni, Francesco Rigoli, and Karl J Friston (2018). “Hierarchical active
inference: A theory of motivated control”. In: Trends in cognitive sciences 22.4,
pp- 294-306.

Piché, Alexandre et al. (2019). “Probabilistic Planning with Sequential Monte
Carlo methods”. In: International Conference on Learning Representations. URL:
https://openreview.net/forum?id=ByetGnOcYX.

Powers, William T (1973). Behavior: The control of perception. Aldine Chicago.

Rao, Rajesh PN and Dana H Ballard (1999). “Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects.” In: Nature
neuroscience 2.1.

https://drive.google.com/open?id=1uc1FdjHVkkEAaU6jz7aVrP3khGyqkdKi
https://drive.google.com/open?id=1uc1FdjHVkkEAaU6jz7aVrP3khGyqkdKi
https://openreview.net/forum?id=ByetGn0cYX

173

Rawlik, Konrad, Marc Toussaint, and Sethu Vijayakumar (2013). “On stochastic
optimal control and reinforcement learning by approximate inference”. In: Twenty-
Third International Joint Conference on Artificial Intelligence.

Rosenblueth, Arturo, Norbert Wiener, and Julian Bigelow (1943). “Behavior, purpose
and teleology”. In: Philosophy of science 10.1, pp. 18-24.

Schaul, Tom et al. (2015). “Universal value function approximators”. In: International
conference on machine learning, pp. 1312—1320.

Srinivasan, Mandyam Veerambudi, Simon Laughlin, and Andreas Dubs (1982).
“Predictive coding: a fresh view of inhibition in the retina”. In: Proceedings of the
Royal Society of London. Series B. Biological Sciences 216.1205, pp. 427-459.

Sterling, Peter (1988). “Allostasis: a new paradigm to explain arousal pathology”. In:
Handbook of life stress, cognition and health.

— (2012). “Allostasis: a model of predictive regulation”. In: Physiology & behavior
106.1, pp. 5-15.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An intro-
duction. MIT press.

Sutton, Richard S, Doina Precup, and Satinder Singh (1999). “Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning”. In:
Artificial intelligence 112.1-2, pp. 181-211.

Todorov, Emanuel (2008). “General duality between optimal control and estimation”.
In: Decision and Control, 2008. CDC 2008. 47th IEEE Conference on. 1EEE,
pp- 4286-4292.

Toussaint, Marc (2009). “Robot trajectory optimization using approximate inference”.
In: International conference on machine learning, pp. 1049-1056.

Toussaint, Marc and Amos Storkey (2006). “Probabilistic inference for solving
discrete and continuous state Markov Decision Processes”. In: Proceedings of the
23rd international conference on Machine learning. ACM, pp. 945-952.

Vezhnevets, Alexander Sasha et al. (2017). “Feudal networks for hierarchical rein-
forcement learning”. In: International Conference on Machine Learning. PMLR,
pp- 3540-3549.

Wiener, Norbert (1948). Cybernetics or Control and Communication in the Animal
and the Machine. MIT press.

Wolpert, Daniel M, Zoubin Ghahramani, and J Randall Flanagan (2001). “Perspectives

and problems in motor learning”. In: Trends in cognitive sciences 5.11, pp. 487—
494.

Yin, Henry H (2014). “How basal ganglia outputs generate behavior”. In: Advances
in neuroscience.

174

Yin, Henry H (2016). “The basal ganglia and hierarchical control in voluntary
behavior”. In: The Basal Ganglia. Springer, pp. 513-566.

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Introduction
	Cybernetics
	Neuroscience and Machine Learning, Convergence and Divergence
	Predictive Coding Meets Machine Learning
	The Future of Feedback & Feedforward

	Background
	Introduction
	Probabilistic Models
	Variational Inference
	Discussion

	Perception
	Iterative Amortized Inference
	Introduction
	Issues with Direct Inference Models
	Iterative Amortized Inference
	Iterative Inference in Latent Gaussian Models
	Experiments
	Discussion

	Amortized Variational Filtering
	Introduction
	Background
	Variational Filtering
	Experiments
	Discussion
	Appendix: Filtering ELBO Derivation

	Improving Sequential Latent Variable Models with Autoregressive Flows
	Introduction
	Method
	Experiments
	Discussion
	Appendix: ELBO Derivation

	Control
	Iterative Amortized Policy Optimization
	Introduction
	Background
	Iterative Amortized Policy Optimization
	Experiments
	Discussion

	Sequential Autoregressive Flow-Based Policies
	Introduction
	Autoregressive Flow-Based Policies
	Experiments
	Discussion

	Discussion
	Connections to Predictive Coding & Neuroscience
	Introduction
	Predictive Coding
	Connections
	Correspondences
	Discussion

	Conclusion
	Iterative Estimation
	Combining Generative Perception & Control
	Controlling Perception
	Bridging Neuroscience and Machine Learning

