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ABSTRACT

Determining principles and conditions governing motion along faults is crucial for assess-
ing how earthquake ruptures start and how large they may ultimately become. This thesis
aims to shed light on the physics governing earthquake source processes by (i) developing
physics-based numerical models that combine geological observations and laboratory in-
sight with theoretical developments, and (ii) using these models to examine how different
physical mechanisms and conditions are reflected in a range of geophysical observations
taken together, from heat-flow constraints and seismologically determined properties of
earthquakes to geodetic inferences and earthquake frequency-magnitude statistics.

We examine the behavior and observable characteristics of numerically simulated sequences
of earthquakes and aseismic slip in fault models designed to reproduce well-known features
of mature faults that produce large destructive earthquakes. In part, the models are con-
sistent with the inferred low-stress, low-heat operation of mature faults, which host large
earthquakes at much lower levels of stress than their expected static strength. We explore two
potential explanations for such behavior, one that faults are indeed quasi-statically strong but
experience dramatic weakening during earthquakes, or that faults are persistently weak, e.g.,
due to fluid overpressure. We find that the two classes of fault models can, in principle, be
distinguished based on the amount of seismic energy radiated from earthquake ruptures. Dy-
namic ruptures in the form of self-healing pulses, which occur on quasi-statically strong but
dynamically weak faults, result in much larger radiated energy than inferred teleseismically
for megathrust events, whereas crack-like ruptures on persistently weak faults are consistent
with the seismological observations. The larger radiated energy of self-healing pulses is
similar to limited regional inferences for crustal strike-slip faults. Our results suggest that
re-evaluating estimates of radiated energy and static stress drop would provide substantial
insight into the driving physics of large earthquakes and the absolute stress conditions on
faults, with potential differences between tectonic settings.

The results also have significant implications for seismic hazard, since our modeling shows
that fault models that experience efficient dynamic weakening during ruptures tend to pre-
dominantly produce large earthquakes, at the expense of smaller earthquakes. Such behavior
is consistent with some mature fault segments, such as several segments of the San Andreas
Fault in California that have hosted large earthquakes but are currently nearly seismically
quiescent. These considerations can provide physical basis for improving earthquake early
warning systems. If mature faults in California are indeed governed by enhanced dynamic
weakening, then our results suggest that the likelihood of an earthquake on these faults
becoming substantially larger is much higher than typical expectations based on Gutenberg-
Richter statistics.

By considering average fault stress before simulated earthquake ruptures, we find that critical
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stress conditions for earthquake occurrence depend on the size and style of motion (e.g. the
degree of slip acceleration at the rupture front) during individual ruptures. In particular, the
stress conditions required to propagate large earthquake ruptures can be considerably lower
than those required for rupture nucleation, and standard notions of quasi-static fault strength
based on laboratory studies. Our results demonstrate that the critical stress for earthquake
occurrence is not governed by a simple condition such as a certain level of Coloumb stress,
as commonly used in studies of stress interactions among faults and earthquake aftershocks
patterns. More robust criteria for critical stress conditions would depend on the strength
evolution during dynamic rupture and can be explored in numerical simulations.

Finally, evaluating the predictive power of numerical earthquake models for future hazards
is a topic of great importance for physics-based seismic hazard assessment. Towards that
end, we investigate the sensitivity of outcomes from numerical simulations of sequences
of earthquakes and aseismic slip, including the long-term interaction of fault segments,
to choices in numerical discretization and treatment of inertial, wave-mediated effects. In
particular, we find that the rate of earthquake ruptures that manage to jump between two
fault segments, a parameter routinely used in seismic hazard studies, is highly sensitive to
numerical and physical modeling choices. These results suggest the need for developing
different parameterization of seismic hazard than currently used, a task for which numerical
modeling is well-suited.
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C h a p t e r 1

INTRODUCTION

Determining conditions that govern fault motion is a key goal for assessing potential societal

threats from large destructive earthquakes, as well as developing mitigation strategies for the

increasing prevalence of induced seismicity (Lee et al., 2019; McGarr et al., 2015). Several

recent great earthquakes have notably challenged our previous knowledge of where large

earthquake ruptures may occur and how large they may become. Such examples include the

2004 Mw 9.2 Sumatra-Andaman earthquake, which spread over at least 1200 kilometers to

become one of the largest ruptures ever recorded (Ishii et al., 2005; Subarya et al., 2006);

the 2011 Mw 9.0 Tohoku-oki earthquake, which produced exceptionally large displacement

in the shallow portion of the megathrust that was previously assumed to be stable, causing a

massive tsunami and catastrophic ecological disaster (Ide et al., 2011; Simons et al., 2011);

the 2013 Mw 8.3 Sea of Okhotsk earthquake, which became the largest deep earthquake

recorded, rupturing at least 600 kilometers below Earth’s surface, and producing a Mw 6.7

aftershock supershear rupture at comparable depths (Zhan et al., 2014); as well as the 2016

Mw 7.8 Kaikoura earthquake, which developed into a complex multi-fault rupture spanning

at least 21 fault segments (Hamling et al., 2017; Litchfield et al., 2018).

A significant limitation in studying the nature of great earthquakes is their infrequent oc-

currence. For example, the last major earthquakes greater than Mw 7.5 along the San

Andreas Fault were the 1857 Mw 7.9 Fort Tejon and 1906 Mw 7.9 San Francisco earth-

quakes, which both occurred before the age of modern instrumentation. Given the rarity of

large earthquakes, we ultimately must look to developing physics-based earthquake models

that combine available information from laboratory experiments and physics principals, and

are evaluated against modern observations and geologic records. While recent decades

have seen a massive revolution in field observations and laboratory techniques, interpreting

small-scale laboratory measurements and remote geophysical inferences on Earth’s surface
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in terms of properties of faults and potential future seismic hazards still remains a substantial

challenge.

This thesis presents an exploration of how physics-based modeling of earthquake source

processes can be used to study the relationship between different geophysical and geological

observations and local fault behavior, and thus how the collective insight from laboratory

and field studies can be used to constrain underlying fault physics and inform seismic hazard

assessment.

1.1 Classical models for earthquake source processes and evolution of fault stress

Fault constitutive relations that describe the evolution of shear resistance with fault motion

are essential ingredients of earthquake source modeling. When coupled with the elasto-

dynamic equations of motion, these relations provide insight into the growth and ultimate

arrest of ruptures.

Faults are often modeled as frictional interfaces, where the resistance to shear motion across

the fault is linearly proportional to the effective normal stress on the faultσ through a friction

coefficient f (Figure 1.1). Here, the effective stress principle is assumed with σ = (σ − p),

where σ is the normal stress and p is the pore fluid pressure within the shearing layer

(Terzaghi, 1923). A common conceptual model for frictional resistance is to consider a

block being pushed or pulled along an interface (Figure 1.1B). The block is originally stuck

with no motion until the applied force overcomes the static frictional strength, then sliding

continues at a fixed dynamic, or kinetic, friction level (Figure 1.1C). The static and dynamic

friction coefficients, fstatic and fdynamic respectively, are often considered material properties

of the interface, such that the difference between the static strength and dynamic resistance,

called the stress drop, is essentially fixed assuming constant effective normal stress. In such

a model, the block slips by the same amount during each failure event, with characteristic

timing under constant loading.
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However, even this relatively simple block model, which is often described as a single-

degree-of-freedom (SDOF) system, shows rich evolution of motion and hence shear resis-

tance when examined in detail in the laboratory (Ben-David, Cohen, & Fineberg, 2010;

Ben-David, Rubinstein, & Fineberg, 2010; Marone, 1998; Rubinstein et al., 2004). First,

the block begins to creep, then the motion may accelerate, often in a spatially nonuniform

way, and there is no set dynamic resistance level throughout different styles of motion (Ben-

David, Cohen, & Fineberg, 2010; Ben-David, Rubinstein, & Fineberg, 2010; Rubinstein et

al., 2004). Furthermore, the peak shear resistance reached by the block depends on how long

the block was in contact with the interface before the experiment, demonstrating interfacial

healing (Dieterich & Kilgore, 1994; Rubinstein et al., 2006).

While the ratio of average shear stress and normal stress along the block may be consistent

with typical quasi-static friction coefficients around 0.6–0.85 (aka "Byerlee friction"), the

ratio of the local shear stress to normal stress at various points along the interface may

exceed or be considerably lower than the expected quasi-static friction for no perceivable

slip (Ben-David, Cohen, & Fineberg, 2010; Byerlee, 1978). Such observations highlight the

difference between an SDOF system and a continuous object, like the actual physical block.

For an SDOF system, the entire object is considered to be rigid and experiencing the same

resistance and motion at the same time. For a continuum, the motion of individual particles

within the body can occur at different time scales, resulting in a rich evolution of average

shear resistance (e.g Hulikal, Bhattacharya, & Lapusta, 2015). The current state-of-the-art

understanding of frictional behavior is encapsulated in so-called rate-and-state friction laws

which highlight that the resistance to shear is not a fixed material property of the interface,

but depends on the rate of deformation and a number of state variables that describe contact

populations (Figure 1.1D-E; Dieterich, 1979; Marone, 1998; Ruina, 1983).
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Figure 1.1: Classical spring-slider model of fault friction. (A) Schematic continuum model
of a generic strike-slip fault segment where an earthquake rupture nucleates in a region
(red star) and propagates along the fault. (B) Single-degree of freedom (SDOF) model for
a block undergoing frictional sliding as it is continuously loaded through a spring. (C)
Evolution of shear stress and slip for the block throughout stick-slip events. The block
remains motionless with no slip for a period of time during which stress is brought up to
the static frictional strength through constant loading, then the frictional resistance drops
to the dynamic resistance level and slip occurs to unload the spring. (D-E) Laboratory
experiments that study the evolution of the shear resistance on rock surfaces and granular
layers at low sliding rates show more involved descriptions of frictional behavior where a
positive slip-rate jump is always accompanied by an increase in shear resistance, followed
by its evolution with characteristic slip. Moreover, the peak friction coefficient reached
upon a jump in slip rate depends on the preceding period of negligible motion, increasing
with longer hold times. These features have been combined into widely used rate-and-state
friction laws. Adapted from Marone (1998).
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In order to account for the spatio-temporal evolution of motion and stress during earthquake

ruptures, earthquake source processes are often considered in the framework of dynamic

fracture mechanics, where the rupture is considered as a dynamically propagating shear

crack or pulse (Figure 1.2; Freund, 1990; Heaton, 1990; Ida, 1972; Kanamori & Brodsky,

2004; Kanamori & Heaton, 2000; Kostrov & Das, 1988; Madariaga, 1976; Palmer & Rice,

1973; Rice, 1980, 2000; Rubin & Ampuero, 2005). Classical models from fracture mechan-

ics that assume a constant stress change on the crack surface are often used to determine

the average stress drop due to an earthquake rupture. By analogy to cohesive-zone relations

for Mode I opening cracks, slip-weakening friction laws have been commonly used to de-

scribe the dynamic decrease in shear resistance during sliding (Bouchon, 1997; Bouchon et

al., 1998; Cruz-Atienza et al., 2009; Gallovic et al., 2019; Ida, 1972; Ide & Takeo, 1997;

Kanamori & Brodsky, 2004; Kaneko et al., 2017; Kostrov & Das, 1988; Madariaga, 1976;

Olsen et al., 1997; Palmer & Rice, 1973). Linear slip weakening is one of the simplest and

most commonly used versions, in which the shear resistance decreases linearly with slip

from a peak of τpeak to a constant dynamic level τdyn achieved at slip of Dc (Fig. 1.3).

The breakdown energy G is associated with the evolution of shear resistance from the initial

shear stress τini to the peak shear resistance τpeak and then breakdown to the minimum

dynamic shear resistance τmin. It is a part of the overall energy partitioning for dynamic

ruptures, with the total strain energy change throughout the ruptured region (∆W) being

separated into the radiated energy ER, breakdown energy G, and other residual dissipated

energy (Kanamori & Rivera, 2013). The breakdown energy is analogous to fracture energy

from cohesive zonemodels of fracturemechanics (Freund, 1990; Palmer&Rice, 1973; Rice,

1980; Tinti et al., 2005) and hence it is thought to be relevant to rupture dynamics, e.g.,

rupture speed. For linear slip-weakening friction, it is given by G = (τpeak− τdyn)Dc/2. The

term "fracture energy," while initially associated with the creation of free surfaces during

tensile fracture, has been routinely used to refer broadly to inelastic dissipation relevant to

the crack-tip motion for both tensile and shear cracks, including contributions from off-fault

damage creation, plastic work, and frictional heat (e.g. Freund, 1990; Rice, 1980, 2006).

However, in this thesis we follow the work of Tinti et al. (2005) in referring to this quantity
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as the "breakdown" work, or energy, to further emphasize that G can incorporate various

physical sources of energy dissipation.

unfracturedshearing

Free surface

Cohesive zone
( encapsulate fracture energy )

lockedslipping

Residual resistance

pre-existing
 interface

Shear fracture Frictional ruptureA) B)

Encapsulate breakdown energy at rupture front

Figure 1.2: Analogy between shear fracture and frictional rupture. Consider an elastic body
undergoing far-field shear loading. (A) For shear fracture, shearing occurs within the crack
with unfractured material ahead of the crack tip. In cohesive-zone models of fracture, the
stress concentration ahead of the crack tip breaks down to a traction-free surface over a small
region called the cohesive zone, with the energy consumed to advance the crack tip called
the fracture energy. (B) For frictional rupture, we consider the difference between slipping
and locked regions of a pre-existing interface, with the stress concentration at the boundary
between the two. If the shear resistance breaks down to a fixed residual level within the
slipping region over a small enough region (small-scale yielding), then we can consider this
breakdown energy required to advance the rupture front analogous to fracture energy.

As observed for the block, more involved rate-and-state fault-constitutive laws are generally

required to explain a number of aspects of faulting behavior, most notably the restrengthen-

ing of faults in between earthquakes. A number of previous studies have used models on

rate-and-state faults to provide insight into a number of earthquake and slow slip observa-

tions, such as sequences of earthquakes on an actual fault segment and repeating earthquakes

(Barbot et al., 2012; T. Chen & Lapusta, 2009; Dieterich, 2007, and references therein).
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While incorporating a more involved dependence of shear resistance on long-term healing,

standardDieterich-Ruina rate-and-state friction has been shown to resemble linear slip weak-

ening during dynamic rupture (Cocco & Bizzarri, 2002; Lapusta & Liu, 2009; P. G. Okubo,

1989), providing further reinforcement of the notion that the breakdown of shear resistance

during dynamic rupture may be adequately described by linear slip-weakening behavior.
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Figure 1.3: Standard linear slip-weakening average stress vs slip diagram which represents
the standard energy partitioning of frictional ruptures. (A) The average shear stress is
assumed to increase from an initial to peak stress with no slip and then linearly decrease to a
dynamic resistance level over a critical slip distance Dc. The difference between the average
initial and final shear stress levels is called the static stress drop. The average stress vs. slip
diagram is used to represent the energy partitioning of the total strain energy change per unit
rupture area (dashed red trapezoid) into the breakdown energy (dark grey triangle), residual
dissipated energy per unit area (light gray rectangle), and radiated energy per unit area (blue
region). The additional dissipation associated with the initial strengthening outside of the
red trapezoid comes at expense of the radiated energy (white triangle inside the red-dashed
trapezoid). (B) The case of the initial stress equal to the peak stress. Note that this diagram
is an approximation even if the local behavior is governed by linear slip-weakening friction,
since different points of the rupture would have different slip, including near-zero slip close
to the rupture edges, and averaging over the dynamic rupture would produce a different
curve from the local behavior (Noda & Lapusta, 2012).

Two key assumptions for the analogy between between shear fracture and frictional ruptures

are that the breakdown of shear resistance is concentrated in a small region near the rupture

front (referred to as small-scale yielding) and that there exists a constant residual stress level

τdyn = τmin throughout the ruptured region during sliding (Figure 1.2; Freund, 1990; Palmer

& Rice, 1973). Implicit in these assumptions is that the rupture dynamics do not depend
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on the residual dissipated energy below the dynamic resistance level, and thus the absolute

levels of stress on the fault. In practice, at least part of this dissipated energy is converted to

heat, which can have profound effects on the evolution of shear resistance during rupture.

1.2 Assessing stress levels on faults

The absolute levels of stress on a fault dictate the maximum amount of stress, and hence me-

chanical potential energy, that may be released during earthquake ruptures, which translates

into both static surface deformation due to fault slip and strong shaking due to the radiation

of seismic waves during rapid motion. Determining the absolute level and controlling fac-

tors of the stress state on faults is a topic of many geological and geophysical investigations,

with profound implications for earthquake physics, seismic hazard assessment, and the role

of faulting in plate tectonics and geodynamics.

One of the most notable constraints on the stress state of faults is the abundance of field

observations suggesting that the average shear stress acting on mature plate boundary faults,

where the largest earthquakes typically occur, must be on the order of 20 MPa or less (Brune

et al., 1969; Fulton et al., 2013; Gao & Wang, 2014; Henyey & Wasserburg, 1971; Lachen-

bruch & Sass, 1980; Nankali, 2011; Rice, 2006; Sibson, 1975; Suppe, 2007; Tanikawa &

Shimamoto, 2009; Townend & Zoback, 2004). This is substantially lower than the expected

shear resistance of 100–200 MPa averaged over seismogenic depths where earthquakes oc-

cur, given rock overburden and hydrostatic pore fluid pressure, along with typical Byerlee

friction values measured in laboratory experiments. Such evidence includes the lack of a

substantial heat flow anomaly around mature faults that would be expected for fault slip at

100 MPa or more (Brune et al., 1969; Gao & Wang, 2014; Henyey & Wasserburg, 1971;

Lachenbruch & Sass, 1980; Nankali, 2011), inferences of steep angles between the principal

stress direction and fault plane (Townend & Zoback, 2004), analyses of the fault core ob-

tained by drilling through shallow parts of faults that have experienced major recent events,

including the 2011 Mw 9.0 Tohoku-oki event (Fulton et al., 2013; Tanikawa & Shimamoto,

2009), the geometry of thrust-belt wedges (Suppe, 2007), and the existence of long-lived

narrow shear zones that do not exhibit any evidence of melting (Rice, 2006; Sibson, 1975).
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Note that such evidence for apparent fault weakness pertains predominantly to mature plate

boundary faults, whereas some studies suggest that smaller, less mature active faults may

sustain the expected higher shear stresses given Byerlee friction values and overburden mi-

nus hydrostatic pore pressure (e.g. Townend & Zoback, 2000).

A relatively straightforward explanation for the low-stress operation of mature faults is

that they may be persistently weak (Figure 1.4), due to the presence of anomalously low

quasi-static friction coefficients and/or low effective normal stress from pervasive fluid over-

pressure (Bangs et al., 2009; Brown et al., 2003; Collettini et al., 2009; Faulkner et al., 2006;

Lockner et al., 2011). However, most materials with low quasi-static friction coefficients

(less than 0.5) under laboratory conditions tend to exhibit velocity-strengthening behavior

(Ikari et al., 2011), which would favor stable sliding and preclude spontaneous nucleation

of dynamic ruptures. Moreover, while evidence of substantial fluid overpressure has been

documented for some subduction zones (Bangs et al., 2009; Brown et al., 2003), there

remains much debate over the ubiquity of chronic near-lithostatic fluid overpressurization

along faults in other tectonic settings, such as continental faults, with borehole measure-

ments suggesting fluid pressure levels more consistent with hydrostatic conditions (Townend

& Zoback, 2000; Zoback et al., 2010).

An alternative hypothesis for explaining such low-stress, low-heat operation is that mature

faults are indeed strong at slow, quasi-static sliding rates but undergo considerable enhanced

dynamic weakening at seismic slip rates, which has been widely hypothesized in theoretical

studies and documented in laboratory experiments (Figure 1.4, dashed black line; Acosta

et al., 2018; Di Toro et al., 2011; Noda et al., 2009; Rice, 2006; Sibson, 1973; Tsutsumi &

Shimamoto, 1997; Wibberley et al., 2008). The standard rate-and-state laws are the most

established representation of fault shear resistance that we have for relatively low slip rates

from tectonic plate rates of 10−9 m/s to around 10−3 m/s (Dieterich, 1979; Ruina, 1983).

At higher slip rates, further enhanced dynamic weakening of fault frictional resistance can

occur due to a variety of physical mechamisms, for example, due to rapid shear heating.
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Quartz sandstone 18.7 MPa [Dieterich 1978]
Novaculite 5 MPa  [Di Toro et al. 2004]

Westerly granite 5 MPa [Di Toro et al. 2004]
Westerly granite 5 MPa [Di Toro et al. unpublished]

Aplite 5 MPa [Di Toro et al. unpublished]
Feldspar 5 MPa  [Di Toro et al. unpublished]
Feldspar1.3 MPa [Di Toro et al. unpublished]

Carrara marble <10 MPa [Han et al. 2007; Han et al. in prep]
Carrara marble 1.25 MPa [Di Toro unpublished]
Calcite gouge [Shimamoto and Logan 1981]

Dolomite marble 75 MPa [Weeks and Tullis 1985] 
Calcite gouge 100 MPa [Morrow et al. 2000]

Dolomite marble 7.2 MPa [Han et al. in prep]

Dolomite gouge [Shimamoto and Logan 1981]
Dolomite marble 12.2 MPa [Han et al. in prep]

Carrara marble 12-15 MPa [Han et al. 2007; Han et al. in prep]

Granite 2 MPa [Dieterich 1978]

Serpentinite 1.5 MPa [Hirose and Bystricky 2007]
Serpentinite 2.5 MPa [Hirose and Bystricky 2007]
Serpentinite 24.5 MPa [Hirose and Bystricky 2007]
Serpentinite 6.5 MPa [Hirose and Bystricky 2007]

Serpentinite 25 MPa gouge-present [Reinen et al. 1992]

Serpentinite 25 MPa bare surface [Reinen et al. 1992]
Serpentinite 15.5 MPa [Hirose and Bystricky 2007]

Clay-rich gouge 0.6 MPa [Mizoguchi et al. 2007]
Gabbro 15.5 MPa  [Nielsen et al. 2008] 

Tonalite 20 MPa [Di Toro et al. 2006b]
Peridotite 20 MPa [Di Toro et al. 2006b]

Persistently strong friction, f*  = 0.6,  (a - b) = 0.005 
Persistently weak friction, f*  = 0.12,  (a - b) = 0.005 
Quasi-statically strong, dynamically weak
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Figure 1.4: Field observations suggest that the average effective friction on mature faults
must be low (< 0.1). One explanation for this inferred low effective friction would be
that mature faults are persistently weak, such as from the presence of fault materials with
persistently low friction coefficients τ/(σ − p) (red). Faults may also be persistently weak
while having actual friction coefficients that are persistently high (> 0.2, blue), but require
substantial chronic fluid overpressure in order to maintain low effective fault friction. A
number of laboratory experiments indicate that the coefficient of friction for many materials
relevant to seismogenic faults is around 0.6-0.8 at low sliding rates, but drops dramatically
to lower values ( < 0.2 ) at higher slip rates relevant to seismic slip, consistent with the
notion of quasi-statically strong, but dynamically weak behavior (dashed black line).

One particular mechanism for such enhanced weakening is the thermal pressurization of

pore fluids, which occurs when pore fluids within the fault shearing layer heat up, expand,

and pressurize during dynamic rupture, reducing the effective normal stress, and therefore

shear resistance (Noda & Lapusta, 2010; Rice, 2006; Sibson, 1973). Other mechanisms

can act in the fault shear zone to produce similar enhanced weakening effects to thermal

pressurization, including the thermal decomposition of rocks (Han et al., 2007; Sulem &

Famin, 2009), macroscopic melting (Di Toro et al., 2004, 2011; Goldsby & Tullis, 2002),

elastohydrolubrication (Brodsky & Kanamori, 2001), and silica gel formation (Brodsky &

Kanamori, 2001; Di Toro et al., 2004; Goldsby & Tullis, 2002).
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Constraining the degree to which natural faults undergo enhanced dynamic weakening dur-

ing earthquake ruptures has substantial implications for assessing the stability of different

fault regions and the maximum extent to which a rupture may grow. Numerical models

have shown that the incorporation of thermally-activated enhanced weakening mechanisms

during dynamic rupture can have profound effects on the evolution of individual ruptures,

as well as the long-term behavior of fault segments, with the potential to make seemingly

stable creeping regions fail violently during earthquakes (Noda&Lapusta, 2013), and for the

deeper penetration of large ruptures, which may explain the seismic-quiescence of mature

faults that have historically hosted large earthquakes (Jiang & Lapusta, 2016).

The presence of enhanced dynamic weakening on natural faults has been questioned by

the expectation that enhanced weakening would produce much larger static stress drops

than typical values of 1 to 10 MPa inferred from earthquakes on natural faults (Allmann &

Shearer, 2009; Gao & Wang, 2014; Ye et al., 2016b). The expectation is based on a com-

mon assumption that the shear prestress over the entire rupture area should be near the static

strength of the fault while the final shear stress should be near the dynamic resistance of the

fault, resulting in a large static stress change (Figures 1.1C and 1.3B). However, a number of

numerical and laboratory studies have demonstrated that, once nucleated, dynamic ruptures

can propagate under regions with prestress conditions that are well below the expected static

strength, based on prescribed or measured quasi-static friction coefficients and confining

conditions (Dunham et al., 2011a; Fineberg & Bouchbinder, 2015; Gabriel et al., 2012;

Lu et al., 2010; Noda et al., 2009; Zheng & Rice, 1998). Indeed, numerical studies have

shown that models with enhanced weakening can be consistent with magnitude-invariant

static stress drops, despite the evolving dynamic resistance (Perry et al., 2020).

A substantial challenge in relating laboratory and field studies of average fault stress is the

discrepancy in scales and styles of motion involved (Figure 1.5). Typical laboratory friction

experiments study the rich evolution of shear resistance on relatively small, centimeter-scale

samples where relatively uniform motion may be imposed (e.g. Acosta et al., 2018; Di
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Toro et al., 2011; Dieterich, 1979; Goldsby & Tullis, 2011; Marone, 1998; Wibberley et al.,

2008). Such well-controlled experiments are invaluable for determining fault constitutive

relations under slow and fast sliding conditions, however special consideration is needed

when evaluating their implications for the slip and stress occuring at larger scales on natural

faults. The evolution of fault slip and stress during earthquake ruptures can be highly vari-

able as the rupture nucleates in one region and then propagates elsewhere along the fault.

Intermediate-scale experiments aim to capture some aspects of the spatially and temporally

varying motion during rupture generation and propagation (e.g. Gori et al., 2018; Ke et al.,

2018; McLaskey et al., 2014; Rubino et al., 2017; Yamashita et al., 2015), however their

interpretation still requires consideration of experimental conditions, such as loading con-

figuration, nucleation procedures, as well as the use of analog materials, which are dictated

in part by the size of the apparatus.

Many geophysical studies seek to shed light on fault physics and earthquake source processes

by measuring the motion on Earth’s surface and estimating earthquake source properties.

Seismological and geodetic measurements are routinely used to perform kinematic inver-

sions of earthquake source processes in order to illuminate complex finite-fault aspects of the

rupture process. In particular, numerous kinematic inversions suggest that large earthquakes

(Mw > 7) tend to propagate as slip pulses, skipping along the fault surface with only a small

portion of the rupture area slipping at a given time, like a wrinkle in a rug (e.g. K. Chen et

al., 2020; Galetzka et al., 2015; Heaton, 1990; Pritchard, Ji, & Simons, 2006; Subarya et al.,

2006; Ye et al., 2016b). However, the solutions to finite-fault earthquake source inversions

are non-unique and the resulting images can be sensitive to inherent smoothing as well as a

priori assumptions in the physics of the earthquake source and wave propagation (Bletery

et al., 2016; Duputel et al., 2015; Minson et al., 2013, 2014; Ragon & Simons, 2020; Ragon

et al., 2019).

Given the remote nature of surface measurements and the non-uniqueness in the source

inversion process, the most robust geophysical inferences typically represent single averaged
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source quantities, such as average static stress drop, radiated energy, radiation efficiency,

and average breakdown energy. The estimation of such quantities often relies on the use of

idealized rupture models, often inspired by dynamic fracture mechanics (Abercrombie &

Rice, 2005; Allmann & Shearer, 2009; Ide & Beroza, 2001; Rice, 2006; Viesca & Garagash,

2015; Ye et al., 2016b). The relationship between remote geophysical observations and the

actual local fault behavior at depth can therefore be model-dependent and is not directly

evident.

Figure 1.5: Wide range of scales spanning laboratory and field studies of fault stress.
(Left) Laboratory friction experiments study the evolution of shear resistance at low and
high velocities with relatively uniform motion applied over centimeter-scale samples. Such
experiments form the basis for fault constitutive equations (illustration of double direct
shear experiment courtesy of Chris Marone; high-speed rotary shear apparatus from Tullis
& Goldsby, 2003). (Center) Larger, intermediate-scale experiments on the order of 10s
of centimeters to meters study aspects of spatially-varying motion consistent with rupture
generation and propagation, sometimes using analog materials (Gori et al., 2018; Ke et al.,
2018). (Right) Field observations, including inversions of earthquake focal mechanisms and
heat flow measurements (e.g. Gao &Wang, 2014; Hardebeck, 2015), represent measures of
average stress over much larger areas of 100s of meters or kilometers).
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1.3 Overview

Improving our understanding of the evolution of shear stress on faults over periods of slow

and fast motion is crucial for assessing how earthquakes start, grow, and ultimately stop. Nu-

merical simulations of sequences of earthquakes and aseismic slip (SEAS) are well-suited

to explore the physical conditions governing these problems and their relation to a wide

range of geophysical observables, as they can resolve all styles of the deformation history on

faults. In this thesis, we utilize such SEAS simulations to examine how average fault stress,

seismologically-inferable rupture properties, and earthquake population statistics such as

frequency-magnitude statistics, relate to the heterogeneous motion and stress conditions

that naturally evolve in fault models with differing physical conditions. The particular goal

of this work is to examine how the characteristics of physical models for "weak" mature

faults are reflected in a range of geophysical observations, and thus how such observations

can be used to constrain the physical conditions on faults and potentially improve the pre-

dictive capabilities of earthquake models.

We begin in Chapter 2 by investigating how laboratory friction measurements and field

studies of fault stress can be reconciled by accounting for the scale- and motion-dependence

of average fault shear resistance. We study the stress conditions preceding simulated earth-

quake ruptures (aka prestress) of different sizes that spontaneously evolve in numerical

SEAS simulations on fault models with laboratory-derived rate-and-state friction and en-

hanced dynamic weakening due to thermal pressurization (TP) of pore fluids. We also

examine how such stress conditions vary in faults models with increasingly efficient dy-

namic weakening and the relation to the resulting complexity of earthquake sequences, in

terms of the variability of rupture sizes. Our modelling allows us to examine the implica-

tions of the laboratory-derived constitutive behaviors for the larger-scale behavior of faults,

and demonstrates the importance of accounting for finite-fault effects when relating mea-

surements from small-scale laboratory experiments to field observations.

In Chapters 3 and 4, we review the application of traditional fracture mechanics theory
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to frictional ruptures and discuss when such applications appear valid, and when they are

not, particularly in the presence of pore fluids and shear heating. In Chapter 3, we use

SEAS simulations including enhanced weakening due to TP to study how accounting for

thermo-hydro-mechanical processes during dynamic shear ruptures alters the underlying

assumptions between shear fracture and frictional ruptures. In particular, we examine how

both the average and local breakdown energy no longer reflect fixed material properties of

the fault, but depend on the amount of slip attained during rupture, as well as how that slip

is achieved through the history of slip rate and dynamic stress changes throughout rupture.

Chapter 4 examines the energy partitioning of simulated earthquake rupture scenarios of

different rupture style and their relation to competing theories for earthquake ruptures that

satisfy the well-known observations of 1–10MPa static stress drops and low-stress, low-heat

conditions along mature faults. In that regime, quasi-statically strong but dynamically weak

faults mainly host relatively sharp, self-healing pulse-like ruptures, with only a small portion

of the fault slipping at a given time, whereas persistentlyweak faults hostmilder ruptureswith

more spread-out slip, which are called crack-like. We demonstrate how notable differences

in the evolution of average stress throughout these different styles of rupture propagation

can be reflected in seismologically-observable properties, such as the relationship between

radiated energy, static stress drop, and seismic moment. We then compare the results of

our simulated ruptures with existing seismological estimates from large earthquakes from

different tectonic settings.

In Chapter 5, we expand on the exploration of the previous chapters to study the similarities

and differences among different measures of average fault stress associated with dynamic

rupture, their scaling with rupture size, dependence on earthquake rupture style, and their

relationship with seismologically inferable quantities. We also examine the significance

of rapid dynamic weakening and healing of shear resistance during ruptures, such as from

the diffusion of pore fluids for TP, in order to maintain relatively high interseismic stresses

while accommodating low dynamic resistance during earthquakes. Moreover, we demon-
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strate how seismological observations may be used to differentiate between mechanisms for

pulse-like rupture propagation and, together with shear-heating constraints, can in principle

can be used to constrain the average stress conditions on faults before, during and after large

ruptures.

Assessing the predictive power of numerical earthquakemodels for future hazards remains an

important topic of ongoing debate. In Chapter 6, we investigate the sensitivity of outcomes

from numerical SEAS simulations, including the long-term interaction of fault segments, to

choices in numerical discretization and treatment of inertial effects, using a simplified 2-D

crustal fault model with two co-planar segments separated by a creeping barrier. We use this

model to explore how conditions for adequate numerical resolution and convergence depend

on the physical assumptions and complexity of earthquake sequences, as well as on the

modeling outcome of interest. We particularly focus on the rate of earthquake ruptures that

manage to jump between the two fault segments, its sensitivity to numerical and physical

modeling choices, and whether reproducing comparable earthquake frequency-magnitude

statistics and static stress drops provides sufficient predictive power for the jump rate, a

quantity of interest to seismic hazard studies (Field, 2019).

Finally, Chapter 7 presents a different focus on induced seismicity and examines the im-

plications of the time-dependent diffusion of pore fluids for the poroelastic stresses and

seismicity resulting from fluid extraction (or injection) from (or into) a buried reservoir,

with particular relevance to energy resource practices. We perform a quantitative analysis of

the stresses surrounding a horizontal reservoir resulting from fluid extraction and diffusion

and examine how the the spatial pattern and magnitude of imposed stresses is controlled by

the ratio between the volumetric rate of fluid extraction and the reservoir diffusivity. We

further study the impact of the diffusion of pore fluids for the evolution of the perturbed

principle stress directions, with potential implications for interpreting temporal variations

in seismicity trends around producing regions.
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C h a p t e r 2

SCALE DEPENDENCE OF EARTHQUAKE RUPTURE PRESTRESS IN
MODELS WITH ENHANCED WEAKENING: IMPLICATIONS FOR EVENT

STATISTICS AND INFERENCES OF AVERAGE FAULT STRESS

This chapter has been adapted from:

Lambert, V., Lapusta, N., & Faulkner, D. (in review). Scale dependence of earthquake

rupture prestress in models with enhanced weakening: Implications for event statistics

and inferences of fault stress. Journal of Geophysical Research: Solid Earth. DOI:

10.1002/essoar.10506240.1.

2.1 Introduction

Recent numerical studies of earthquake sequences have shown that fault models incor-

porating some chronic fluid overpressure as well as mild-to-moderate enhanced dynamic

weakening due to the thermal pressurization of pore fluids are able to reproduce a range of

seismological observations (Perry et al., 2020), including reasonable static stress drops be-

tween 1–10 MPa nearly independent of earthquake magnitude, the seismologically inferred

increase in average breakdown energy with rupture size, and low heat flow as observed

around mature faults. The near magnitude-invariance of average static stress drop arises

in these fault models because enhanced dynamic weakening results in both lower average

prestress and lower average final shear stress for larger ruptures with larger slip, with the

average static stress drops being nearly magnitude-independent. These studies suggest that

distinguishing between the conditions required for rupture nucleation and propagation is

important for assessing the relationship between laboratory friction measurements, seismo-

logical observations and the absolute stress conditions on faults.

Here, we expand upon the set of models from Perry et al. (2020) to document the variability

of prestress on a fault that arises from the history of previous ruptures, and to study the
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relation between the size of dynamic rupture events and the average shear prestress over the

rupture area. We also examine how the complexity of earthquake sequences, in terms of

the variability of rupture size, differs with the efficiency of dynamic weakening. We study

these behaviors in the context of simulations of sequences of earthquakes and slow slip,

which allow the prestress conditions before earthquakes to be set by the loading conditions,

evolving fault shear resistance (including weakening and healing), and stress redistribution

by prior slip, as would occur on natural faults. Moreover, our simulations resolve the

spontaneous nucleation process with the natural acceleration of slow unsteady slip prior

to dynamic rupture. The constitutive relations for the evolving fault resistance and healing

adopted in ourmodels have been formulated as a result of a large body of laboratory, field and

theoretical work (e.g Di Toro et al., 2011; Dieterich, 1979; Rice, 2006; Ruina, 1983; Sibson,

1973; Wibberley et al., 2008). Indeed, laboratory experiments of fault shear resistance at

both slow and fast slip rates have been indispensible for our understanding of fault behavior

and for formulating fault models such as the ones used in this study. The modelling allows us

to examine the implications of the laboratory-derived constitutive behaviors for the larger-

scale behavior of faults, and we compare our inferences of average shear prestress from

relatively large-scale finite-fault modeling to field measurements of crustal stresses acting

on mature faults and small-scale laboratory measurements of the shear resistance of typical

fault materials.

2.2 Building on laboratory constraints to model larger-scale fault behavior

Laboratory experiments have been instrumental for exploring aspects of fault resistance dur-

ing both slow and fast sliding (10−9 m/s - 1 m/s, Figure 1.4). Experiments with slow sliding

velocities (< 10−3 m/s) are critical for formulating fault constitutive laws that form the basis

for understanding the nucleation of earthquake ruptures. High-velocity laboratory friction

experiments have demonstrated enhanced dynamic weakening of faults and elucidated a

range of mechanisms by which this dynamic weakening can occur (e.g. Acosta et al., 2018;

De Paola et al., 2015; Di Toro et al., 2011; Faulkner et al., 2011; Goldsby&Tullis, 2011; Han

et al., 2007; Wibberley et al., 2008). Most slow- and high-velocity experiments measure or

infer the relevant quantities –slip, slip rate, shear stress etc –averaged over the sample and ex-
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amine the evolution of shear resistance corresponding to a particular history of loading, such

as imposed variations in the displacement rate of the loading piston, and the particular fault

conditions (normal stress, temperature, pore fluid pressure, etc.). Some experimental studies

imposed the expected slidingmotion during earthquakes in order to directly relate laboratory

stress measurements to seismological quantities, such as static stress drop and breakdown

energy (e.g. Fukuyama&Mizoguchi, 2010; Nielsen et al., 2016; Sone & Shimamoto, 2009).

To understand the full implications of the evolution of shear resistance measured in small-

scale experiments for slip at larger scales along natural faults, they are synthesized into

mathematical formulations and used in numerical modeling, for the following reasons. Dur-

ing slipping events on a finite fault over scales of tens of meters to kilometres –much larger

than the experimental scale –the fault does not slip uniformly with a predetermined slip-rate

history. Rather, the slip event initiates on a portion of the fault and then spreads along the

fault, with varying slip-rate histories and final slips at different points along the fault. This is

captured in inversions of large earthquakes (e.g. Heaton, 1990; Simons et al., 2011; Tinti et

al., 2016; Ye et al., 2016a) and, to a degree, in larger-scale experiments, sometimes involving

analog materials (Lu et al., 2010; McLaskey et al., 2014; Rubino et al., 2017; Svetlizky &

Fineberg, 2014; Yamashita et al., 2015). In the process, the slip (1) transfers stress to the

more locked portions of the fault and (2) enters portions of the fault with different conditions

–such as levels of shear pre-stress, pore fluid pressure, etc –and potentially different friction

and hydraulic properties. Hence the resulting coupled evolution of shear resistance and slip

rate at different locations on the fault is often quite different and, through stress transfer,

strongly dependent on the entire slip process at all locations throughout the rupture. These

nonlinear and often dynamic feedback processes on the scales of tens of meters to kilometers

can currently be only captured through numerical modeling.

Many numerical models of earthquake source processes utilize insight from laboratory

experiments that indicate that the resistance to shear τ along a fault depends on the sliding

rateV and the quality and/or lifetime of the local contacts, typically parameterized by a state

variable θ with units of time, as well as on the effective normal stress σ = σ − p acting on
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the fault, with σ being the normal stress and p being the pore fluid pressure localized within

the shearing layer (Figure 1.1D-E, e.g. Dieterich, 1979; Marone, 1998). For continuum

problems involving frictional sliding, the motion within the continuum is governed by the

balance of linearmomentum, subject to the boundary condition that tractions are given by the

constitutive law of the interface. For frictional sliding without changes in the elastodynamic

normal stress, which is the case considered in this work, the boundary condition reduces to

the shear stress being equal to the shear resistance on the interface (y = 0):

τstress(x, y = 0, z; t) = τresistance(x, y = 0, z; t)

= f (V, θ)(σ − p). (2.1)

An important concept in the rate-and-state formulation of the friction coefficient f (V, θ) is

that the friction coefficient is not a fixed property of the interface but evolves over time,

facilitating the time-dependent changes of shear resistance and hence shear stress along the

fault during shear.

The most commonly used formulation of rate-and-state laws is the Dieterich-Ruina formu-

lation (Dieterich, 1979; Ruina, 1983):

f (V, θ) =
[

f∗ + a ln
V
V∗
+ b ln

θV∗
DRS

]
, (2.2)

where f∗ is a reference steady-state friction coefficient at the reference sliding rate V∗, DRS

is the characteristic slip distance, and a and b are the direct effect and evolution effect

parameters, respectively. Our fault models are governed by a form of the laboratory-

derived Dieterich-Ruina rate-and-state friction law regularized for zero and negative slip

rates (Lapusta et al., 2000; Noda & Lapusta, 2010). The evolution of the state variable can

be described by various evolution laws; we employ the aging law (Ruina, 1983):

Ûθ = 1 −
Vθ
DRS

, (2.3)

which describes evolution during sliding aswell as time-dependent healing in near-stationary

contact. In our models, the shear resistance and shear stress also change due to the evolution

of pore fluid pressure p.
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We conduct numerical simulations following the methodological developments of Lapusta

et al. (2000), Noda and Lapusta (2010) and Lambert et al. (2021) in order to solve the elas-

todynamic equations of motion with the fault boundary conditions, including the evolution

of pore fluid pressure and temperature on the fault coupled with off-fault diffusion. The

simulations solve for mode III slip on a 1-D fault embedded into a 2-D uniform, isotropic,

elastic medium (Figure 2.1). The potential types of slip on the fault include sequences of

earthquakes and aseismic slip (SEAS) and they are simulated in their entirety, including the

nucleation process, dynamic rupture propagation, postseismic slip that follows the event,

and interseismic period between seismic events that can last up to tens or hundreds of years

and host steady and transient slow slip (Figure 2.1).

The simulated fault in our models contains a 24-km-long segment with velocity-weakening

(VW) frictional properties where earthquake ruptures may nucleate and propagate, sur-

rounded by velocity-strengthening (VS) segments that inhibit rupture nucleation and prop-

agation. Our simulations include enhanced dynamic weakening due to the thermal pressur-

ization of pore fluids, which occurs when pore fluids within the fault shearing layer heat

up and pressurize during dynamic rupture, reducing the effective normal stress and shear

resistance (Noda & Lapusta, 2010; Rice, 2006; Sibson, 1973). Thermal pressurization is

one potential mechanism for enhanced weakening; qualitatively similar results should hold

for models with other types of enhanced dynamic weakening. We follow the thermal pres-

surization formulation of Noda and Lapusta (2010) (Appendix Section 2.10.1).

For the purpose of comparing local frictional behavior with the average prestress for dynamic

ruptures of varying sizes, we focus this study on simulated ruptures that arrest within the

VW region, where the friction properties are uniform with a quasi-static reference friction

of 0.6, consistent with many materials exhibiting VW behavior in laboratory experiments

(Ikari et al., 2011). We examine the evolution of the apparent friction coefficient, or the ratio

of the current shear stress τ to the interseismic drained effective normal stress (σ − pint),

where pint is the interseismic drained value of the pore pressure. The "drained" refers to the

effective stress with ambient pore pressure unaffected by slip processes such as dilatancy,

compaction, or thermal pressurization.
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Figure 2.1: Modeling of sequences of earthquakes and aseismic slip on a rate-and-state
fault with (A) a velocity-weakening (VW) seismogenic region surrounded by two velocity-
strengthening (VS) sections and (B) enhanced dynamic weakening due to the thermal
pressurization of pore fluids. The evolution of temperature and pore fluid pressure due
to shear heating and off-fault diffusion is computed throughout our simulations. (C) A short
section of the accumulated slip history in fault model TP3 (Table 2.2). Seismic events are
illustrated by red lines plotted every 0.5 s while aseismic slip is shown by black lines plotted
every 10 years. (D-G) Evolution of local slip rate with time and slip at points representative
of nucleation and typical rupture propagation behavior within a crack-like rupture (colored
blue in C). Points throughout rupture propagation (E & G) are initially locked and are driven
to rupture by the concentration of dynamic stresses at the rupture front, thus experiencing
more rapid acceleration of slip compared to points within the nucleation region (D & F).
(H-I) The difference in local slip rate history contributes to a difference in the evolution
of shear stress with slip. (H) Evolution of the apparent coefficient of friction τ/(σ − pint)
with slip in the nucleation region is consistent with the laboratory notion of quasi-statically
strong, dynamically weak behavior, with the apparent friction coefficient initially close to
the reference value of 0.6 and dropping to a low dynamic resistance below 0.2 with slip.
(I) Evolution of the apparent friction coefficient at points throughout rupture propagation
is more complicated as the scaled prestress can be much lower than the reference friction
before the arrival of the dynamic stress concentration.
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We examine fault models with varying levels of ambient fluid overpressure in terms of the

effective normal stress, as well as varying degrees of efficiency in enhanced weakening

due to thermal pressurization. The parameter values we have chosen (Tables 2.1 - 2.3) are

motivated by prior studies that have reproduced a range of seismological observations as

well as low-stress, low-heat operation of mature faults (Lambert et al., 2021; Perry et al.,

2020). The parameter values also facilitate our goal of examining ruptures in fault models

with a range of efficiency in enhanced dynamic weakening. We define the beginning and

end of dynamic rupture, tini and tfin respectively, as well as the ruptured area Ω, using a slip

velocity threshold (Vthresh = 0.01 m/s) for seismic slip, based on previous studies (Lambert

et al., 2021; Perry et al., 2020). Note that tini and tfin refer to the beginning and end of

the entire rupture event, which starts when one location on the fault reaches the threshold

velocity and ends when all points on the fault drop below the threshold velocity. In the

following, we use "rupture" to refer to such dynamic slip events, unless noted otherwise.

Further description of the numerical methodology can be found in the Appendix (Section

2.10.1)

2.3 Evolution of local slip and shear resistance and notions of failure

Our simulations capture the evolution of motion and shear stress across the fault over

sequences of earthquakes spanning several thousands of years (Figure 2.1C). The initial dis-

tributions of shear stress and other quantities such as the slip rate are assumed to be uniform

along most of the VW region of the fault at the start of our simulations, other than a small

region of initially high prestress near the VW-VS boundary to nucleate the first rupture in

the earthquake sequence. The distributions of shear stress and slip along the fault evolve to

become highly variable throughout periods of fast earthquake-producing slip as well as slow

aseismic slip and fault locking. Below we review how the rate-and-state friction framework

allows the model to represent both creeping, locked, and seismically slipping fault areas as

well as transitions between these different styles of slip.
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During dynamic rupture, the evolution of slip rate and shear stress can be particularly com-

plex and variable along the fault. At points where individual ruptures nucleate, the slip

rate gradually accelerates towards seismic slip rates and shear stress at the beginning of

rupture, tini, is relatively high, with the apparent friction coefficient τ/(σ − pint) close to

the quasi-static reference friction of 0.6. As seismic slip rates are reached, τ/(σ − pint)

drops substantially due to thermal pressurization of pore fluids in a manner qualitatively

consistent with the enhanced dynamic weakening observed in high-velocity laboratory fric-

tion experiments (Figure 2.1H). The evolution of slip rate and shear stress outside of the

nucleation region is even more complicated: The shear stress at tini, prior to the arrival of

the rupture front, can be much lower than the shear stress levels where the rupture nucleates,

then increases to a higher peak shear stress that reflects the interseismic fault healing and

rate-and-state direct effect and is achieved due to the dynamic stress concentration at the

rupture front, and then decreases due to weakening with seismic slip (Figure 2.1H vs. I).

Consistently, the slip rate rapidly increases to seismic values at the beginning of slip and

then decreases, as in a typical Yoffe-like behavior for dynamic ruptures (Figure 2.1G; e.g

Tinti et al., 2005). Thus, even with the uniform normal stress and uniform parameters of

the assumed friction and pore pressure equations within the seismogenic VW region, the

prestress conditions throughout the rupture area can be highly variable and, in part, substan-

tially different between regions of rupture nucleation and rupture propagation.

Note that the peak shear stress during dynamic rupture of fault locations outside the nucle-

ation zone can correspond to much higher apparent friction coefficient (e.g., 0.95 in Figure

2.1I) than the reference friction coefficient ( f∗ = 0.6 in this study). This is due to both

the direct effect at the rupture tip and the high, interseismically "healed" value of the state

variable θ, as discussed in Lambert and Lapusta (2020) (Chapter 3) and Appendix Section

2.10.1 (Equation 2.9). As follows from the first line of equation 2.9, the difference between

the peak friction coefficient and f∗ due to the direct effect of a ln(Vpeak/V∗) would be 0.14

to 0.16 for Vpeak = 1 to 10 m/s and other parameters of our model, with the rest due to the

much larger value of the "healed" state variable than that for sliding at the reference sliding
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rate.

The local evolution of shear stress throughout theVWseismogenic zone differs among points

based on the long-term history of motion, including both local slip as well as slip across the

entire fault. For example, a point at the center of the VW region (z = 0 km) in one of our

simulations (fault model TP 3 in Table 2.2, as shown in Figure 2.1C) experiences substantial

slip only during the largest earthquake ruptures that span the entire VW domain, resulting

in a relatively simple and quasi-repetitive pattern of stress accumulation and weakening

over sequences of earthquakes (Figure 2.2A & C). In contrast, another point in the VW

region closer to the VS boundary (z = -9.6 km) experiences different amounts of slip during

dynamic ruptures of varying size, resulting in a more complicated evolution of shear stress

with accumulating slip (Figure 2.2B & D).

In between individual earthquakes, the VS regions of the fault creep (i.e., slowly slip) with

the slip rate close to the prescribed tectonic plate rate, due to that rate being imposed on

the fault areas nearby, with occasional quasi-static accelerations due to post-seismic slip

(Figure 2.3, left column). The creep penetrates into the VW regions nearby, creating fault

areas prone to earthquake nucleation (Jiang & Lapusta, 2016; Michel et al., 2017) (Figure

2.3, right column). These points of the VW region close to the VS region (within one or

so nucleation length) are reloaded due to creep and post-seismic slip from previous rupture

within the VS regions. The loading rate at these points near the VS-VW boundary varies

over time depending on the rate of motion in the VS region, which in turn depends on the

previous history of co-seismic slip during dynamic ruptures in the VW region.

The slip rate and apparent friction at points close to the VW-VS boundary are typically

brought to near steady conditions around the loading plate rate, however both exhibit small

oscillations as these points continue to be loaded by creep in the VS region, resulting in fur-

ther acceleration, slip and weakening, and thus the transmission of stress further into the VW

region until a sufficiently large area is loaded to sustain rupture nucleation and acceleration
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Figure 2.2: Evolution of the local slip rate and apparent friction coefficient at points within
the velocity-weakening (VW) region with accumulating slip in fault model TP3 (Table
2.2). The stars denote instances in the earthquake sequence in Figure 2.1C, with pink stars
marking the initiation of the three large model-spanning ruptures, the blue and red stars
denoting the beginning and end of the moderate-sized rupture illustrated by blue contours,
respectively. The yellow stars denote small to moderate-sized ruptures occurring along the
VW-VS boundary at z = −12 km. (A & C) The point in the center of the VW region (z = 0
km) ruptures and experiences substantial slip only in large ruptures. The point exhibits an
increase in shear stress over time due to the stress transfer from smaller ruptures that do not
penetrate into the center of the VW region (such as the rupture colored blue in Fig. 2.1C).
(B & D) Points closer to the boundary between the VW and VS regions can rupture during
both smaller and large ruptures depending on the prestress conditions when ruptures arrive,
resulting in a more complicated evolution of shear stress with accumulating slip. For both
points in the VW region, the shear stress is brought to the peak stress and failure during
ruptures by the dynamic stresses at the rupture front.

to seismic slip rates (Figure 2.3E-G). This oscillatory behavior is consistent with predictions

from the stability analysis of a single degree-of-freedom spring-slider undergoing frictional

slip, where the amplitude of the oscillations is expected to grow as the spring stiffness

decreases below a critical stiffness value until (Gu et al., 1984). The effective stiffness of

the slipping fault zone in a continuum model is inversely proportional to the slipping zone

size (Rice & Ruina, 1983), decreasing with the increasing slipping region. Note that this

rate-and-state nucleation process has been used to explain the period-dependent response of
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Figure 2.3: Evolution of local slip rate, apparent friction, and state variable at points near
rupture nucleation between two model-spanning ruptures. The stars denote instances in the
earthquake sequence in Figure 2.1C, with pink stars marking the initiation of the first two
large model-spanning ruptures, the blue star denoting the beginning of the moderate-sized
rupture illustrated by blue contours and the yellow stars denoting smaller ruptures. (A)
Points within the VS region typically slip near the loading plate rate but can experience
transient accelerated slip during and following ruptures occurring within the VW region.
(B-D) The apparent friction coefficient and state variable in the VS region is typically near
steady state, except during accelerated slip. (E-F) Slow slip penetrates into the VW region,
driving points near the VW-VS boundary close to the loading slip rate, with the apparent
friction coefficient being close to the corresponding steady-state value fss(Vpl). The slip
rate and apparent friction exhibit small oscillations as the points near the VW-VS boundary
continue to be loaded by slow slip in the VS region, accelerate, andweaken, thus transmitting
stress further into the VW region until a sufficiently large region is loaded to sustain rupture
nucleation and acceleration to seismic slip rates. The loading rate of the VW region also
depends on the amount of accelerated slip in the VS due to previous ruptures (e.g. A & E
∼ 650 vs. 750 years). (G-H) Following dynamic rupture, the state variable heals close to
the steady-state value around the prescribed loading rate θss(Vpl) but continues to oscillate
along with the unsteady slip resulting from the penetration of creep into the VW region, as
seen in (E).



28

microseismicity to periodic stress perturbations in Nepal, where seismicity shows significant

variations in response to annual monsoon-induced stress variations but not to semidiurnal

tidal stresses of the same magnitude (Ader et al., 2014).

In contrast, much of the VW region further away from the VS regions is essentially locked,

which is expressed in the rate-and-state formulation as sliding at very low, but still non-zero,

slip rates that are many orders of magnitude smaller than the loading rate (Figure 2.4A-B).

This differential motion between the VS and VW regions loads points in the VW region

(Figure 2.4C-D), gradually increasing shear stress there (e.g., between 700 and 800 years

in Figure 2.4C). Note that the interseismic stressing rate is higher at locations closer to the

creeping regions than further away from it (Figures 2.4C vs. 2.4D vs. 2.3F), as one would

expect. At the same time, the essentially locked points within the VW region experience

time-dependent healing of the local shear resistance encapsulated in the increase of the

state variable θ (Figure 2.4E-F). One of the manifestations of this healing is that larger

interseismic increases in the state variable generally lead to higher peak shear stress during

dynamic rupture propagation (Chapter 3; Lambert & Lapusta, 2020). Despite the increase

in the state variable, its value is far below the steady-state one for the very low interseismic

slip rates, consistent with continuing healing prior to dynamic rupture (Figure 2.4G-H).

Depending on whether the local shear stressing rate (which increases the shear stress τ on

the left of equation 2.1) is larger or smaller than the rate of healing (expressed by the last, θ

term on the right hand side of equation 5.1), the local slip rate (that enters the second term

of equation 5.1) increases (as between 700 and 800 years in Figure 2.4A) or decreases, i.e.,

the fault is accelerating towards failure or becomes even more locked. However, most of the

locked points of the fault never accelerate close to failure interseismically; rather, they fail

due to stress concentrations from dynamic events, seen as vertical lines in Figure 2.4C-D.

We note that healing on natural faults, in the presence of fluids and depth-dependent elevated

temperatures, can be affected by a number of mechanisms that are not captured by the basic

state evolution equation (J. Chen et al., 2015a, 2015b; Tenthorey & Cox, 2006; Yasuhara
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Figure 2.4: Evolution of local slip rate, apparent friction, and state variable at points within
the VW region between two model-spanning ruptures. The stars denote instances in the
earthquake sequence in Figure 2.1C, with pink stars marking the initiation of the first two
large model-spanning ruptures, the blue star denoting the beginning of the moderate-sized
rupture illustrated by blue contours and the yellow stars denoting smaller ruptures. (A-B)
Points within the VW region are typically locked in between earthquake ruptures, sliding
at slip rates far below the loading plate rate. (C-D) Loading from the VS regions as well
as slip in neighboring ruptures leads to a time-dependent increase in shear stress. However,
the points are still near-locked when dynamic rupture arrives from elsewhere, bringing a
significant stress concentration and weakening on the timescale of the event which here
collapses onto a vertical line. (E-F) The evolution of the state variable shows increase in
the interseismic periods which encapsulate the fault healing and decrease to low values
during earthquake rupture. (G-H) The ratio of the current value of the state variable θ to the
steady-state value θss(V), corresponding to the current local slip rateV , is much smaller than
1 during the interseismic periods, indicating the continued healing of shear resistance prior
to rupture. As the slip rate rapidly accelerates during dynamic rupture, the state variable
temporarily exceeds the new much lower steady-state values corresponding to the dynamic
slip rate θss(Vdyn), then evolves to this lower steady-state value, and then falls to values
below steady-state during the interseismic periods, indicating fault healing.
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et al., 2005). Incorporating more realistic healing into shear resistance formulations and

numerical modelling is an important goal for future work. This can be done by modify-

ing the evolution of the state variable θ or adding other state variables that would encode

healing. Yet, qualitatively, additional healing mechanisms would have similar effects on the

simulations as the current rate-and-state healing, in that the healing would modify the peak

shear resistance and the subsequent evolution of the resistance based on the interseismic fault

state, potentially further amplifying differences in shear resistance evolution for different

points along the fault (e.g., nucleation points vs. locked points) that our simulations already

highlight.

The presence of time-dependent healing as well as persistent, potentially unperceivable,

slow (quasi-static) motion and its acceleration under variable levels of shear stress illus-

trate how the concepts of failure, and hence strength, are not easily defined for frictional

sliding. For realistic frictional interfaces, the precise value of a static friction coefficient

is ill-defined, since no interface loaded in shear is perfectly static; rather creep processes

occur at slow, unperceivable slip rates at any level of shear loading (Bhattacharya et al.,

2017; Dieterich & Kilgore, 1994) and/or over parts of the contacting interfaces (Ben-David,

Cohen, & Fineberg, 2010; Rubinstein et al., 2004, 2006). Hence the transition from locked

interfaces to detectable slip is always a gradual process (although it may be occurring faster

than the time scales of interest/observation in many applications). This reality is reflected in

lab-derived fault constitutive relations such as rate-and-state friction. Since failure typically

refers to the presence of irreversible or inelastic deformation, frictional interfaces may be

considered failing under any style or rate of motion, be it during slow steady sliding, transient

slow slip, or dynamic rupture. Therefore, any meaningful notion of strength first requires

definition of the failure of interest, e.g., reaching seismic slip rates of the order of 1 m/s.

Without such explicit definition, failure is then implicitly defined as transition from locked

to slipping and corresponds to sliding with a detectable velocity; for laboratory experiments

or observational studies, this would imply that whether the interface is locked or slipping

depends on the instrumental precision for detectable motion.
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In this study, we would like to compare the shear stress values required for aseismic slip

nucleation and for dynamic rupture propagation. During spontaneous aseismic slip nucle-

ation, the slip rates evolve from very low to seismic, passing in the process through the slip

rate equal to the tectonic loading rate Vpl. In the standard rate-and-state friction, at each

fixed sliding rate V , the friction coefficient eventually evolves to a steady-state value fss(V)

(equation 5.3; for very small slip rates, the regularized formulation of equation 2.11 needs

to be considered). Under slow loading, aseismic earthquake nucleation on a finite fault

is typically a gradual process, with many points within the nucleation zone being close to

the steady state (Figure 2.3; Kaneko & Lapusta, 2008; Rubin & Ampuero, 2005). While

the steady-state values of friction depend on the sliding rate, the dependence is relatively

minor at the low, quasi-static slip rates between the plate rate of approximately 10−9 m/s and

sub-seismic slip rates of < 10−3 m/s (Figure 1.4) which are relevant for fault creep and earth-

quake nucleation, and for which the standard rate-and-state formulation is (approximately)

valid. The product of this collection of steady-state quasi-static friction coefficients and the

interseismic drained effective stress gives the shear resistance of faults at sustained slow

sliding rates, which we call the steady-state quasi-static fault shear resistance (referred to in

short as local SSQS shear resistance). As the representative value of such local SSQS shear

resistance, we choose the shear resistance of the fault steadily creeping at the prescribed

long-term tectonic plate rate Vpl (which the fault would have long-term if it were slipping

stably), with the interseismic drained value of the pore pressure pint:

τ
Vpl
ss (z, t) = (σ − pint) fss(Vpl). (2.4)

In our models, τVpl
ss /(σ − pint) = 0.63 within the VW region. Note that choosing V∗ instead

of Vpl would result in a similar value of τVpl
ss /(σ − pint) = f∗ = 0.6.

In the following section, we compare this representative value of local SSQS shear resistance

to the spatial distribution of shear stress prior to dynamic ruptures in our simulations. Note

that the local SSQS shear resistance is similar to what is typically viewed as "frictional fault
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strength" in the sense of Byerlee (1978), i.e., this is the resistance that needs to be met for

noticeable quasi-static slip with the loading rate or another reference rate.

2.4 Larger ruptures associated with lower shear prestress over the rupture scale but

higher prestress over smaller scales near nucleation

The interseismic periods in between individual earthquake ruptures in our simulations vary

from months to decades, depending on the size of the rupture and the stress state resulting

from the history of prior slip along the fault. Our earthquake sequence simulations produce

a wide variety of rupture sizes due to heterogeneous prestress conditions along the fault that

spontaneously arise in our models.

Let us consider the evolution of slip and shear stress in representative simulated spontaneous

ruptures of increasing sizes within the same simulation (Figure 2.5). Over sequences of

rupture events, the shear stress conditions prior to and after individual dynamic ruptures

become spatially heterogeneous. This stress heterogeneity is due in part to the history of

spatially variable slip and local static stress drop produced in previous ruptures, as well as

stress relaxation and redistribution due to aseismic slip. In addition, while our simulated

fault models are loaded by a constant long-term loading rate of Vpl, the effective loading

conditions along the fault interface vary in space and time due to differences in slip rate

along the fault. Ruptures nucleate preferentially in regions with the highest shear prestress,

which in our models occur near the creeping regions as discussed in section 2.3 (Figure

2.5). The ruptures then propagate into the less stressed areas of the fault. Put another way,

the average prestress over the nucleation region is higher than the average prestress over the

entire ruptured region (Figure 2.7A vs. B), as we quantify in the following.

We compute the average shear prestress right before a dynamic rupture event over the entire

future rupture area (which we do as post-processing of data in our simulation). We also

compute the average shear prestress over the slow-slip nucleation zone, which we call the nu-

cleation stress. We compare these average shear stress measures with the local steady-state
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quasi-static (SSQS) fault shear resistance τVpl
ss , which is related to the local fault constitutive

properties during slow slip and given by Equation 2.4.

0

20

40

0

Rupture length / Theoretical nucleation size = 30.5

2
4
6

A) 

B) 

C) 

Rupture length / Theoretical nucleation size = 25.5

Rupture length / Theoretical nucleation size = 7.5

prestress
final stress

Local steady-state 
quasi-static strength

Sl
ip

 (m
)

Distance along fault (km)
0-5-10 5 10 15Sh

ea
r s

tre
ss

 (M
Pa

)

0

20

40

0
2
4
6

Sl
ip

 (m
)

Sh
ea

r s
tre

ss
 (M

Pa
)

0

20

40

0
2
4
6

Sl
ip

 (m
)

Sh
ea

r s
tre

ss
 (M

Pa
)

Distance along fault (km)
0-5-10 5 10 15

Distance along fault (km)
0-5-10 5 10 15

nucleation
region

nucleation
region

l

l

l

l

l

l

propagation

propagation

0

10

30

50

Sh
ea

r S
tre

ss
 (M

Pa
)

20

40

Slip (m)
1 2 3 40

z = 9.6 km

E)

0

2

6

10

Sl
ip

 R
at

e 
(m

/s
)

4

8

Time (s)

z = 9.6 km

D)

Fig. 5A
Fig. 5B
Fig. 5C

Vpeak 

Vpeak 

Vpeak 

τini 

τini 

1 2 3 40 5-1

Figure 2.5: Spatial distribution of slip (top) and prestress and final shear stress (bottom)
during three ruptures (A-C) with different rupture lengths in the same fault model (TP4
from Table 2.2). Slip contours are plotted every 0.25 s. The purple and gray shading
illustrates the extent of the nucleation and ruptured regions, respectively, over which the
prestress is averaged. While the ruptures nucleate in regions with stress levels near the local
steady-state quasi-static shear resistance (dashed orange line), larger ruptures propagate over
lower prestressed areas, resulting in lower average prestress and lower average coefficients
of friction τAini/[σ − pint]. The shear stress distribution for a typical moment during rupture
propagation is shown in black, demonstrating the stress concentration at the rupture front
that brings the fault stress to values comparable to the SSQS shear resistance. The peak
stress is even higher since the fault is initially dynamically stronger due to the rate-and-state
direct effect. (D-E) Significant differences in local evolution of slip and stress at the same
fault location (z = 9.6 km) for different ruptures that depend on the prestress conditions due
to previous slip events and the dynamic stress interactions during the individual ruptures.
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Averaging of spatially variable stress fields can be done in several different ways (Noda &

Lapusta, 2012; Noda et al., 2013). The simplest definition of the average shear prestress

over the rupture region Ω is the spatially averaged prestress τAini acting in the overall slip

direction at the beginning of the rupture tini, given by:

τAini =

∫
Ω
τ(z, tini)dz∫
Ω

dz
. (2.5)

We can similarly define the spatially averaged nucleation stress τAnucl within the nucleation

region. We define the nucleation region to be the fault segment between the expanding

stress fronts at the initiation of dynamic rupture; the size of the nucleation regions in our

simulations is comparable to the theoretical nucleation size estimate h∗RA of Rubin and

Ampuero (2005) (Equation 2.12, Figure 2.6).
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Figure 2.6: The measured nucleation sizes of the simulated ruptures (models RS1-2 and
TP1-4 from Tables 2.2-2.3) are comparable to the theoretical estimate h∗RA, within a factor
of 2.

Not surprisingly and consistent with prior studies, we find that the spatially averaged nucle-

ation stress τAnucl for our simulated ruptures is comparable to the local SSQS shear resistance

τ
Vpl
ss (Figure 2.7A). As a consequence, it does not significantly depend on the ultimate rup-

ture size or slip. Since the nucleation stress here is computed at the beginning of dynamic

rupture, it is then the shear stress within the nucleation zone at the end of the nucleation,

when parts of the zone slip with near-dynamic slip rates approaching 10−2 m/s. That is why

the nucleation stress is systematically slightly lower than the local SSQS shear resistance
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defined as the steady-state shear resistance to slip with the (lower) plate rate. The difference

between the nucleation stress and local SSQS shear resistance could be more substantial if

dynamic weakening were efficient enough to affect some portion of the earthquake nucle-

ation region (Segall & Rice, 2006).

In contrast, the spatially averaged prestress over the entire ruptured area τAini tends to de-

crease with the rupture size and increasingly deviate from the local SSQS shear resistance

and nucleation stress for increasingly efficient dynamic weakening (Figures 2.5 & 2.7B).

Such behavior is also true for another average prestress measure, the energy-based average

prestress τEini (Noda & Lapusta, 2012), which is the average shear prestress weighted by

the final slip of the rupture, and hence represents the average prestress associated with the

potency of the impending rupture:

τEini =

∫
Ω
τ(z, tini)δfin(z)dz∫
Ω
δfin(z)dz

(2.6)

where δfin(z) = δ(z, tfin) − δ(z, tini) is the final local slip accrued in the rupture. We denote

τE with a bar as it not only represents an average over space, but also requires knowledge

of the final slip of the rupture. τEini differs from the spatially-averaged prestress τAini over

the rupture area when the resulting slip distribution is not uniform. We find that τEini and

τAini for our simulated ruptures are comparable and vary similarly with the rupture size and

efficiency of dynamic weakening, with the values of τEini being slightly larger (Figure 2.8).

The finding that larger ruptures are associated with smaller average shear prestress over the

ruptured area may appear counterintuitive. Why do smaller ruptures not become larger if

they aremore favorably prestressed? To understand this behavior, let us consider the prestress

averaged over several fixed scales around the nucleation region for ruptures of different sizes.

We locate the VW-VS boundary next to which each of our simulated ruptures nucleate and

average the prestress along the VW region over fixed distances (1, 2, 4, 8, 12, and 16 km)

from the corresponding VW-VS boundary (Figure 2.9; shown for fault model TP4 from

Table 2.2). While the spatially-averaged prestress over the entire rupture length decreases

with increasing rupture size, we see that the prestress spatially-averaged over smaller fixed
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the final rupture size. (B) The spatially-averaged prestress τAini and average friction coefficient
τAini/(σ − pint) decrease with increasing rupture size; the effect is more pronounced with
increasing efficiency of weakening. The three ruptures shown in Figure 2.5 are denoted by
red stars.

scales is generally higher for larger ruptures than for smaller ruptures (Figure 2.9 warmer

vs cooler colored triangles). For smaller ruptures, the average shear stress over scales just

larger than their total rupture length is lower than the average prestress of larger ruptures with

comparable length to the fixed averaging scales (Figure 2.9, triangles below the circles).

This confirms that the smaller ruptures arrest because the prestress conditions ahead of

the rupture are too low to sustain further rupture propagation. For larger ruptures, the

average prestress levels at scales smaller than their total rupture length are generally higher

or comparable to the average prestress over smaller ruptures with the length comparable to

the fixed averaging scales (Figure 2.9, triangles above the circles). This finding suggests that

larger ruptures have higher, more favorable average prestress conditions at smaller scales

compared to smaller ruptures, which facilitates continued rupture propagation. Hence we
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Figure 2.8: The spatially-averaged prestress τAini and energy-averaged prestress τEini are
generally comparable and decrease with increasing rupture size and efficiency of weakening.

find that the shear prestress prior to our simulated ruptures of varying sizes self-organizes

into a spatial distribution of scale-dependent average shear stress that governs the rupture

occurrence.

2.5 Role of dynamic stress transfers and motion-dependent local shear resistance

Such scale- and motion-dependent average fault shear prestress before ruptures results from

two related and interacting factors. First, as dynamic rupture propagates, some of the re-

leased energy is carried by waves along the fault, creating a substantial stress concentration

near the rupture tip that is a well-known feature of dynamic rupture (e.g., Freund, 1990).

The stress concentration enables rupture propagation over regions where the prestress is

lower than the local SSQS shear resistance, drawing the local shear stress up to the peak

stress before the subsequent stress drop due to local weakening (black lines in Figure 2.5).

The dynamic stress concentration increases with the rupture dimension and/or slip and
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Figure 2.9: Comparison of the spatially averaged prestress over several fixed scales (1, 2,
4, 8, 12, and 16 km) and the average prestress over ruptures of varying size. As shown in
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thus allows larger ruptures to continue propagating over regions with lower, and hence less

favorable, prestress conditions (Figure 2.5). This is illustrated in this work for largely crack-

like ruptures that occur in the presented models with mild to moderate enhanced dynamic

weakening (Lambert et al., 2021), but similar conclusions would be reached for pulse-like

ruptures provided that they satisfy the observational constraint of magnitude-independent
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stress drops, which implies that ruptures with larger magnitudes would have larger average

slip and hence larger stress concentrations. Note that a pulse-like rupture with the same

or similar spatial distribution of the slip rate (and hence the same local slip) propagating

along the fault would result in a similar stress concentration at the rupture tip regardless of

the rupture length; however, in that scenario, pulses with larger rupture propagation lengths

would have systematically lower static stress drops, as the stress drops would be proportional

to the (uniform) pulse slip divided by ever increasing propagation lengths.

Second, the evolving local shear resistance substantially depends on both the prior history

of slip events on the fault through fault prestress and on the motion during the current

rupture event through dynamic stress transfers that add substantial time-dependent loading.

This pronounced dependence is due to strong coupling between the evolving motion, the

resulting shear heating, and the evolving shear resistance. As a result, the evolution of local

slip rate and local shear resistance (1) significantly differs at different fault locations of each

rupture (despite uniform constitutive properties) and (2) significantly differs at the same

fault location for different ruptures (Figures 2.1D-I and 2.5D-E).

These two factors create a substantial positive feedback, in which larger ruptures with more

slip generate larger stress concentrations, leading to faster and larger slip, which dynamically

causes more fault weakening, which in turn promotes more/faster slip, more energy release,

larger stress concentrations, and increasing rupture sizes.

The result that larger ruptures are associated with lower average prestress indicates the

need for increasingly less favorable stress conditions to arrest growing ruptures. For a given

rupture size, if the prestress ahead of the rupture is favorable, then the rupture would continue

to grow until it experiences sufficiently unfavorable prestress conditions, thus lowering the

overall average prestress. Alternatively, the rupture may be forcibly arrested by other means

such as strong geometric or rheological barriers. For example, ruptures propagating over

higher prestress conditions within the VW region can be arrested by fault regions with VS
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properties; in those cases, the overall average prestress conditions would depend on the

properties of the VS regions (Perry et al., 2020). Detailed study of the implications of

fault geometry and heterogeneity for rupture arrest and the average stress conditions prior

to rupture is an important topic for future work.

2.6 Comparison of finite-fault modeling to single-degree-of-freedom representations

As captured in field observations of natural earthquakes and reflected in our simulations,

sufficiently large earthquake ruptures nucleate on a subsection of the fault and then propagate

through other sections of the fault. Capturing such space-dependent behavior is typically

called "finite-fault" modeling, in contrast to the point source that considers a spatially av-

eraged representation of an event, as if it occurs at one "point." A typical numerical model

of a point source is the single-degree-of-freedom system (SDOF) of a slider with friction

pulled by a spring (e.g. Dieterich, 1979; Rice & Ruina, 1983; Ruina, 1983). Small-scale

laboratory experiments often measure properties averaged over a sample and are typically

modeled as a SDOF spring-slider systems.

The significant role of spatially varying prestress conditions and dynamic stress transfers

during rupture propagation in determining the rupture behavior implies that capturing the

finite-fault nature of the process is essential for determining the stress evolution charac-

teristic of dynamic rupture. For example, several laboratory studies applied variable slip

rates histories inferred from natural earthquakes to rock samples, measured the resulting

shear resistance, and then related laboratory stress measurements to seismological source

properties such as breakdown energy and stress drops (e.g. Fukuyama & Mizoguchi, 2010;

Nielsen et al., 2016; Sone & Shimamoto, 2009). Such experiments have provided invaluable

data about the local shear resistance of faults, specifically enhanced dynamic weakening,

that have informed theoretical and numerical modeling of finite faults (e.g. Dunham et al.,

2011a; Gabriel et al., 2012; Lambert et al., 2021; Noda et al., 2009; Noda & Lapusta, 2010;

Perry et al., 2020; Rice, 2006; Zheng & Rice, 1998), including the current study. However,

the interpretation of such experiments needs to take into account their SDOF nature. For ex-

ample, to improve alignment etc, the experiments often impose pre-sliding at slow slip rates
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(of the order of micron/s) prior to imitating seismic motion. That procedure results in the

shear prestress before seismic slip comparable to the local SSQS shear resistance (equation

2.4) and near steady-state values of the state variable, as appropriate for a location within

a nucleation zone. In contrast, our simulations show that most points on a fault through

which the rupture propagates have much lower shear prestress and much larger values of the

state variable corresponding to well-healed fault (Figures 2.5 and 2.10B). Furthermore, the

experiments often apply smoothened slip-rate histories obtained from finite-fault inversions,

while the stress concentration at the tip of dynamic rupture makes the slip rate variation

much more dramatic.

To illustrate the differences for the shear resistance evolution obtained with such experimen-

tal procedures versus the one from our simulated finite-fault models, let us compare the local

fault behavior during one of our dynamic ruptures with a SDOF calculation. In the SDOF

calculation, we use the same fault properties (Equations 3.2, 2.10 and 5.6-5.5) and same

parameter values as in the finite-fault VW regions, but apply quasi-static presliding and

modified, smoothened slip rates motivated by the laboratory procedures of Fukuyama and

Mizoguchi (2010) (further details in SupplementaryMaterials). We conduct the comparison

for two fault locations, one in the nucleation region and one within dynamic rupture prop-

agation region (Figure 2.10). These SDOF calculations are successful at reproducing the

presence of the enhanced dynamic weakening with slip as occurs during dynamic ruptures

and generally capture the more moderate slip evolution and behavior of points within the

nucleation region of our simulated dynamic ruptures. At the same time, the overall shear

stress evolution during typical propagation of the dynamic rupture substantially differs from

that of the SDOF calculation, with notable features including the low initial stress (which

depends on prior slip history) relative to the SSQS shear resistance, the much more dramatic

increase in shear stress associated with the dynamic rupture front (which arises due to the

more healed fault coupled with the dynamic stress concentration), and the shear stress evo-

lution at the end of slip (which depends on the final slip distribution over the entire finite

fault) (Figure 2.10).
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Figure 2.10: Comparison of the results of our dynamic modeling with what would be
obtained in laboratory experiments given the same constitutive properties and typical lab
procedures. (A) Comparison of the local slip rate during nucleation (z = 11.5 km, yellow)
and typical propagation (z = 9.6 km, black) of the simulated dynamic rupture of Figure 2.5B
with the slip rate evolution that could be imposed in lab experiments represented by two
regularized Yoffe functions (Tinti et al., 2005) with peak slip rate of 2 m/s and comparable
slip to the point at z = 9.6 km. The imposed regularized Yoffe functions are generally
comparable to the evolution of slip within the nucleation region (z = 11.5 km), however
they do not capture the rapid acceleration of slip associated with the arrival of the rupture
front at points of typical propagation, as observed at z = 9.6 km. (B) Comparison of
the state variable evolution from our simulation and the lab experiment which we simulate
using the single-degree of freedom (SDOF) equations. The simulated lab experiment starts
with the steady-state conditions for 0.1 mm/s based on the experiments of Fukuyama and
Mizoguchi (2010), which results in a much lower initial state value compared to the point
z = 9.6 km in our simulations which, prior to dynamic rupture, had negligible motion over
a 20-year interseismic period. (C-D) Evolution of the local apparent coefficient of friction
with time and slip for the point in our simulated finite-fault dynamic rupture and SDOF lab
experiments. The dynamic weakening is generally comparable between the points in the
finite rupture and the SDOF experiments, however the evolution of shear stress substantially
differ with regards to the much lower prestress at z = 9.6 km before the finite dynamic
rupture and the abrupt increase and then decrease in stress due to the arrival of the dynamic
rupture front and the associated rapid weakening.
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2.7 Implications for earthquake statistics

A notable feature of the scale dependence of average prestress before dynamic rupture is

that, as an earthquake grows larger, the prestress needed for further propagation decreases

(Figure 2.7B). In addition, the higher the weakening rate, the easier it should be for a rupture

to have favorable prestress conditions to continue growing, rather than arresting as a smaller

earthquake. Hence one could hypothesize that the more efficient the enhanced dynamic

weakening, the smaller the complexity of the resulting earthquake sequences, with increas-

ing representation of larger events at the expense of smaller events.

This is exactly what our modeling shows (Figure 2.11). The fault models with increas-

ingly more efficient weakening produce earthquake sequences with increasingly fewer small

events and decreasing b-values of the cumulative size distribution (Figure 2.11). Fault

models with even more efficient dynamic weakening than considered in this study, such as

those that produce sharp self-healing pulses, result in relatively simple earthquake sequences

consisting of only large events (Chapter 4; Lambert et al., 2021). The fault models governed

by relatively mild to more moderate weakening as considered in this work develop a wider

range of earthquake sizes, due to a feedback loop of more likely rupture arrest due to milder

weakening creating stress heterogeneity that in turn makes rupture arrest more likely. This

result is consistent with those of previous quasi-dynamic earthquake sequence simulations

demonstrating complex earthquake sequences with b-values around 0.75 on faults with stan-

dard rate-and-state friction only and milder quasi-dynamic stress transfer (Cattania, 2019).

Our study shows that the b-values decrease to 0.5 for fully dynamic simulations without

enhanced dynamic weakening, and further decrease to 0.25 or so for the most efficient

weakening considered in this study.

While the frequency-magnitude distribution of seismicity over relatively large regions,

such as Northern or Southern California, is generally well-described by Gutenberg-Richter

scaling with typical b-values near unity (Field et al., 2013), whether such scaling applies to

individual fault segments and/or their immediate surroundings is a topic of active research
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(Field et al., 2017; Ishibe & Shimazaki, 2012; Kagan et al., 2012; Page & Felzer, 2015; Page

& van der Elst, 2018; Wesnousky, 1994). Estimates of b-values associated with individual

fault segments can exhibit considerable variability (e.g. between 0.5 and 1.5 along faults

in California; Tormann et al., 2014), and are sensitive to a number of factors, including the

magnitude of completeness of the relevant earthquake catalog and the choice of observation

region and time window (Ishibe & Shimazaki, 2012; Page & Felzer, 2015; Page & van der

Elst, 2018; Tormann et al., 2014). A number of studies suggest that the rate of large

earthquakes on major faults, such as the San Andreas Fault, is elevated above what would be

expected given typical Gutenberg-Richter scaling from smaller magnitude events (Field et

al., 2017; Schwartz & Coppersmith, 1984). In particular, some mature fault segments that

have historically hosted large earthquakes, such as the Cholame and Carrizo segments of the

San Andreas Fault, exhibit substantial deviations from typical Gutenberg-Richter scaling,

being nearly absent of small earthquakes (Bouchon & Karabulut, 2008; Hauksson et al.,

2012; Jiang & Lapusta, 2016; Michailos et al., 2019; Sieh, 1978; Wesnousky, 1994). Our

findings suggest that the paucity of microseismicity on such mature fault segments may

indicate that they undergo substantial dynamic weakening during earthquakes ruptures.

2.8 Discussion

Our simulations demonstrate that the average shear prestress required for rupture propagation

can be considerably lower than the average shear stress required for the rupture nucleation.

This is because the quasi-static nucleation process is governed by relatively small stress

changes and hence requires favorable prestress conditions –close to the local steady-state

quasi-static shear resistance –to proceed. In contrast, during dynamic rupture, the rupture

front is driven by larger wave-mediated dynamic stress concentrations, which are more

substantial for larger ruptures and facilitate rupture propagation over less favorably stressed

regions, resulting in the spatially-averaged prestress over the ruptured area being much lower

than the average local SSQS shear resistance. More efficient weakening facilitates larger

dynamic stress changes at the rupture front, allowing propagation over even less favorable

prestress conditions. Our results highlight the significance of heterogeneity in prestress, or

shear resistance, for the nucleation and ultimate arrest of finite ruptures, even in fault models
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Figure 2.11: Fault models with more efficient weakening result in less earthquake sequence
complexity, producing fewer smaller events (left column) and smaller b-values (right col-
umn). (A-D) Frequency-magnitude and (E-H) cumulative frequency-magnitude statistics
for simulations with increasing efficiency of enhanced dynamic weakening (TP1-4 from
Table 2.2).

that have otherwise uniform material and confining properties.

The decrease in averaged prestress with rupture length can be interpreted as a decrease in

the average quasi-static friction coefficient τAini/(σ− pint)with rupture size (Figure 2.7). The
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average quasi-static friction coefficients for ruptures on the scale of the nucleation size are

consistent with the prescribed quasi-static reference friction coefficient near typical Byer-

lee values. However, as we average the prestress over larger rupture lengths, the average

quasi-static friction coefficient can considerably decrease depending on the efficiency in

weakening.

The presence of enhanced dynamic weakening draws the average shear stress along larger

regions of the fault below the local SSQS consistent with earthquake nucleation, resulting in

lower average shear stress conditions in terms of both the average prestress for larger ruptures

and the average dynamic resistance associated with shear heating during ruptures (Figure

2.12). The models presented in this study with mild-to-moderate enhanced weakening

include considerable persistent fluid overpressurization to maintain low-heat, low-stress

conditions with average dynamic shear resistance during seismic slip rates below 10 MPa;

however the degree of fluid overpressure required tomaintain low-heat conditions is less than

that with comparable rate-and-state properties but no enhanced weakening. The presence of

some enhanced dynamic weakening is also needed for persistently weak fault models due to

chronic fluid overpressure in order to ensure that static stress drops are not too small, as they

would otherwise be with low effective stress and small changes in the friction coefficient

due to standard rate-and-state laws (Figures 2.12 and 2.13; Lambert et al., 2021). Fault

models with more efficient dynamic weakening have been shown to be able to reproduce

low-stress operation and reasonable static stress drops with quasi-static friction coefficients

around Byerlee values and higher effective normal stress (e.g. ≥ 100 MPa; Dunham et al.,

2011a; Lambert et al., 2021; Noda et al., 2009). Earthquake sequence simulations of such

fault models typically consist of only large ruptures (Lambert et al., 2021), consistent with

the notion that large fault areas governed by efficient weakening maintain substantially lower

average shear stresses than that required for nucleation. These findings further strengthen

the conclusion of prior studies that enhanced dynamic weakening can help explain the

discrepancy between laboratory values of (quasi-static) friction coefficients around 0.6 and

geophysical inferences of low effective coefficients of friction (< 0.2), along with mild
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average static stress drops of 1 to 10 MPa, over fault areas that host large earthquakes (e.g

Allmann & Shearer, 2009; Dunham et al., 2011a; Gao & Wang, 2014; Ikari et al., 2011;

Lambert et al., 2021; Marone, 1998; Noda et al., 2009; Perry et al., 2020; Suppe, 2007; Ye

et al., 2016b).
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Figure 2.12: Evolution of the spatially averaged shear stress in the VW region τAvw (black
line) over earthquakes sequences. (A-B) Standard rate-and-state friction results in modest
changes in shear resistance from the average local steady-state quasi-static (SSQS) shear
resistance (orange line). Ruptures on persistently strong faults produce realistic static stress
drops (A); however, the fault temperature would increase by more than 3000 oC during a
dynamic event for a shear-zone half-width of 10 mm. (B) Persistently weak fault models
due to low effective normal stress but with no enhanced weakening (RS 1 of Table 2.2)
can maintain modest fault temperatures, but produce relatively small static stress drops ≤ 2
MPa. (C) Persistently weak models with mild to moderate enhanced dynamic weakening
(TP3 of Table 2.2) are capable of maintaining modest fault temperatures and producing
more moderate average stress drops between 1 - 10 MPa.
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Figure 2.13: The (A) spatially-averaged and (B) energy-based average static stress drops
for ruptures represent relatively mild decreases in average shear stress with respect to the
effective normal stress. Persistently weak fault models with low effective normal stress ≤ 20
MPa and relatively mild weakening, such as from standard rate-and-state friction (RS1 and
RS2) produce potentially too small average static stress drops ≤ 2 MPa, whereas models
with mild to moderate enhanced weakening (TP1-4) produce realistic average static stress
drops of 1–10 MPa.

The scale dependence of average prestress before ruptures can also be interpreted as a scale

dependence of average fault strength, since the average prestress represents a measure of

how much shear stress that fault region can hold before failing in a rupture. Given this

interpretation, our simulations suggest that faults maintain lower average shear stresses, and

hence appear weaker, at larger scales than at smaller scales. This interpretation is conceptu-

ally consistent with laboratory measurements of scale-dependent yield stress for rocks and

a number of engineering materials, which demonstrate decreasing material strength with

increasing scale (Bandis et al., 1981; Greer et al., 2005; Jaeger & Cook, 1976; Pharr et al.,

2010; Thom et al., 2017; Uchic et al., 2004; Yamashita et al., 2015). Note that our larger
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simulated ruptures, even with more efficient weakening, still require higher average shear

stresses over smaller scales in order to nucleate and grow. Thus the lower average prestress

levels that allow continued failure in dynamic ruptures at larger scales only become relevant

once the rupture event has already nucleated and sufficiently grown over smaller scales. This

consideration suggests that the critical stress conditions for rupture occurrence are governed

not by a single stress quantity but by a distribution of scale-dependent stress criteria for

rupture nucleation and continued propagation. An important implication of our findings is

that the critical stress for earthquake occurrence may not be governed by a simple condition

such as a certain level of Coulomb stress. Given our findings, in order to reason about

the stress conditions critical for a rupture to occur, it is important to consider both the size

of the rupture and the weakening behavior, and hence the style of motion, that may occur

throughout rupture propagation.

The scale dependence of fault material strength has also been hypothesized to explain the

measured scaling of roughness on natural fault surfaces (Brodsky et al., 2016). Dynamic

rupture simulations on geometrically irregular faults motivated by such roughness mea-

surements have indicated an additional contribution to fault shear resistance arising from

roughness drag during rupture propagation (Fang & Dunham, 2013). Further examination

of the scale dependence of average shear resistance across faults including realistic fault

geometry is an important topic for future work.

A common assumption is that the shear prestress over the entire ruptured area must be near

the local static (or quasi-static) strength, comparable to the SSQS shear resistance discussed

in this study. We demonstrate that the assumption is not necessarily valid and that faults

with enhanced dynamic weakening and history of large earthquake ruptures would, in fact,

be expected to have low average shear stress over large enough scales. At the same time,

the state of stress needs to be heterogeneous, with the average stresses over small scales

(comparable to earthquake nucleation) being close to the (much higher) local SSQS shear

resistance in some places. Thus, while individual measurements of low resolved shear stress
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onto a fault may suggest that those locations appear to not be critically stressed for quasi-

static failure, those regions, and much of the fault, may be sufficiently stressed to sustain

dynamic rupture propagation and hence large earthquake ruptures. In addition, our findings

suggest that inferences of stress levels on faults may differ if they are obtained over different

scales or influenced by different rupture processes. For example, low-stress conditions on

mature faults from observations of low heat flowmay not only represent average shear stress

conditions over large fault segments as a whole but also be dominated by low dynamic

resistance during fast slip, whereas averages over smaller scales would be expected to reflect

the heterogeneity of the underlying prestress distribution, as perhaps reflected in varying

stress rotations inferred over scales of tens of kilometers (Hardebeck, 2015; Hardebeck &

Hauksson, 1999, 2001).

Our modeling shows that increasingly efficient dynamic weakening leads to different earth-

quake statistics, with fewer small events and an increasing number of large events. Another

factor that can significantly affect the ability of earthquake ruptures to propagate is fault

heterogeneity. Some dynamic heterogeneity in shear stress spontaneously develops in our

simulations, leading to a broad distribution of event sizes for cases with mild to moderate

enhanced dynamic weakening. Our findings suggest that the effects of pre-existing types

of fault heterogeneity need to be considered with respect to the size of the rupture and

weakening behavior on the fault. For example, faults that experience more substantial weak-

ening would require the presence of larger amplitudes of small-wavelength heterogeneity

in shear stress or resistance to produce small events. Examining the relationship between

earthquake sequence complexity and varying levels of fault heterogeneity and enhanced

dynamic weakening is an important topic for future work.

2.9 Conclusions

Our modeling of faults with rate-and-state friction and enhanced dynamic weakening indi-

cates that average shear prestress before dynamic rupture –which can serve as a measure

of average fault strength –can be scale-dependent and decrease with the increasing rupture

size. Such decrease is more prominent for faults with more efficient dynamic weakening.
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The finding holds for faults with the standard rate-and-state friction only, without any addi-

tional dynamic weakening, although the dependence is relatively unremarkable in that case

(Figures 2.7 and 2.14). However, the scale-dependent decrease in average prestress is quite

pronounced even for fault models with mild to moderate enhanced dynamic weakening that

satisfy a number of other field inferences, including nearly magnitude-invariant static stress

drops of 1-10 MPa, increasing average breakdown energy with rupture size, radiation ratios

between 0.1 and 1.0, and low-heat fault operation (Lambert et al., 2021; Perry et al., 2020).

Our simulations illustrate that both critical fault stress required for rupture propagation

and static stress drops are products of complex finite-fault interactions, including wave-

mediated stress concentrations at the rupture front and redistribution of stress post-rupture

by dynamic waves. Hence it is important to keep in mind the finite-fault effects - and their

consequences in terms of the spatially variable fault prestress, slip rate, and shear stress evo-

lution - when interpreting single-degree-of-freedom representations, such as spring-slider

models and small-scale laboratory measurements. This consideration highlights the need to

continue developing a better physical understanding of faulting at various scales through a

combination and interaction of small-scale and intermediate-scale lab and field experiments,

constitutive relations formulated based on such experiments, and finite-fault numerical mod-

eling constrained by inferences from large-scale field observations. Our comparison of local

fault behavior in SDOF and dynamic rupture simulatons also demonstrate how small-scale

experiments can be used in conjunction with finite-fault modeling to improve our under-

standing of the earthquake source: the finite-fault modeling can suggest the initial conditions

and slip-rate histories for the small-scale experiments to impose, and then the shear stress

evolution from the small-scale experiments can be compared to the numerically obtained

ones, which would allow to validate and improve the constitutive laws used in finite-fault

modeling.

We find that increasingly efficient dynamicweakening leads to different earthquake statistics,

with fewer small events and increasingly more large events. This finding is consistent with
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the interpretation of average fault prestress before rupture as average fault strength, in that

lower fault strength over larger scales leads to an increasing number of larger events. It also

adds to the body of work suggesting that enhanced dynamic weakening may be responsible

for deviations –inferred for large, mature fault segments –of earthquake statistics from the

Gutenberg-Richter scaling (Bouchon & Karabulut, 2008; Hauksson et al., 2012; Jiang &

Lapusta, 2016; Michailos et al., 2019; Sieh, 1978). For example, fault models with efficient

dynamic weakening are consistent with mature faults that have historically hosted large

earthquakes but otherwise appear seismically quiescent, such as the Cholame and Carrizo

segments of the San Andreas Fault, which hosted the 1857 Fort Tejon earthquake (Jiang &

Lapusta, 2016). In contrast, the presence of a wider range of rupture sizes and styles of slip

transients on other faults, such as the Japan trench (e.g. Ito et al., 2013), may suggest that

they undergo more mild to moderate enhanced weakening during dynamic ruptures, and/or

exhibit more pronounced fault heterogeneity.

Such considerations may be useful for earthquake early warning systems, which currently

do not take into account the potential physics-based differences in the event size distribution.

Under the assumption of Gutenberg-Richter statistics, the probability that a smaller, Mw 5

or 6 event becomes a much larger earthquake is not great; however, that probability may

be substantially larger on mature faults if they are indeed governed by enhanced dynamic

weakening.

Our results indicate that critical stress conditions for earthquake occurrence cannot be

described by a single number, but rather present as complex spatial distribution with scale-

dependent averages. When considering the critical stress conditions, it is essential to

take into account both the size of the rupture and the weakening behavior, and hence

the style of motion, that may occur throughout rupture propagation. These results warrant

further investigation, specifically how theweakening behavior during dynamic rupturewould

interact with different degrees of fault heterogeneity as well as implications for earthquake

early warning.
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Figure 2.14: Ruptures on fault models with relatively mild weakening due to standard rate-
and-state friction also exhibit a mild decrease in the spatially-averaged prestress τAini with
increasing rupture size.

Parameter Symbol Value
Loading slip rate Vpl 10−9 m/s
Shear wave speed cs 3299 m/s
Shear modulus µ 36 GPa
Thermal diffusivity αth 10−6 m2/s
Specific heat ρc 2.7 MPa/K
Shear zone half-width w 10 mm

Rate-and-state parameters
Reference slip velocity V∗ 10−6 m/s
Reference friction coefficient f∗ 0.6
Rate-and-state direct effect (VW) a 0.010
Rate-and-state evolution effect (VW) b 0.015
Rate-and-state evolution effect (VS) b 0.003

Length scales
Fault length λ 96 km
Frictional domain λ f r 72 km
Velocity-weakening region λVW 24 km
Cell size ∆z 3.3 m
Quasi-static cohesive zone Λ0 84 m
Nucleation size (Rice & Ruina, 1983) h∗RR 226 m
Nucleation size (Rubin & Ampuero, 2005) h∗RA 550 m

Table 2.1: Model parameters used in all simulations in Ch. 2 unless otherwise specified.
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Parameter Symbol TP 1 TP 2 TP 3 TP 4
Interseismic effective normal stress (MPa) σ̄ = (σ − pint) 25 25 25 50
Rate-and-state direct effect (VS) a 0.050 0.050 0.025 0.050
Characteristic slip (mm) DRS 1 1 1 2
Coupling coefficient (MPa/K) Λ 0.1 0.34 0.34 0.34
Hydraulic diffusivity m2/s αhy 10−3 10−3 10−4 10−3

Table 2.2: Parameters for models in Ch.2 including thermal pressurization of pore fluids.

Parameter Symbol RS 1 RS 2
Interseismic effective normal stress (MPa) σ̄ = (σ − pint) 10 20
Rate-and-state direct effect (VS) a 0.050 0.050
Characteristic slip (mm) DRS 0.5 1
Quasi-static cohesive zone (m) Λ0 106 106
Nucleation size (m), Rice & Ruina, 1983 h∗RR 282 282
Nucleation size (m), Rubin & Ampuero, 2005 h∗RA 688 688

Table 2.3: Parameters for models in Ch. 2 including only standard rate-and-state friction.

2.10 Appendix

2.10.1 Methodology for simulations of sequences of earthquakes and aseismic slip

with and without the thermal pressurization of pore fluids

In order to conduct numerical simulations of sequences of spontaneous earthquakes and

aseismic slip, we utilize the spectral boundary integral method to solve the elastodynamic

equations of motion with the friction boundary conditions, including the evolution of pore

fluid pressure and temperature on the fault coupled with off-fault diffusion (Lapusta et al.,

2000; Noda & Lapusta, 2010). Our fault models are governed by a form of the laboratory-

derived Dieterich-Ruina rate-and-state friction law regularized for zero and negative slip

rates, with the state evolution governed by the aging law (Noda & Lapusta, 2010; Rice

& Ben-Zion, 1996). The most commonly used formulation of rate-and-state laws is the

Dieterich-Ruina formulation (Dieterich, 1979; Ruina, 1983):

τ = σ f (V, θ) = (σ − p)
[

f∗ + a ln
V
V∗
+ b ln

θV∗
DRS

]
, (2.7)

where f∗ is a reference steady-state friction coefficient at reference sliding rateV∗, DRS is the

characteristic slip distance, and a and b are the direct effect and evolution effect parameters,
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respectively. During steady-state sliding ( Ûθ = 0), the friction coefficient is expressed as:

fss(V) = f∗ + (a − b) ln
V
V∗
, (2.8)

where the combination of frictional properties (a − b) > 0 results in steady-state velocity-

strengthening (VS) behavior, where stable slip is expected, and properties resulting in

(a − b) < 0 lead to steady-state velocity-weakening (VW) behavior, where accelerating slip

and hence stick-slip occur for sufficiently large regions.

The peak shear stress during dynamic rupture propagation can correspond to a much higher

apparent friction coefficient than the reference friction coefficient f∗ or the similar steady-

state friction coefficient at seismic slip rates of the order of 1 m/s. Assuming that the fault

has been locked interseismically with the state variable healing to a value θint and the slip

rate rapidly accelerates to the peak slip rate Vpeak upon arrival of the rupture front with

negligible evolution of the state variable θ ≈ θint, the peak friction can be approximately

given as:

τpeak/(σ − pint) = f∗ + a ln
Vpeak

V∗
+ b ln

θint
θss(V∗)

(2.9)

=
τss(Vpeak)

(σ − pint)
+ b ln

θint
θss(Vpeak)

=
τss(Vpl)

(σ − pint)
+ (a − b) ln

Vpeak

Vpl
+ b ln

θint
θss(Vpeak)

.

Note that Vpeak � V∗ � Vpl and θint � θss(V∗) � θss(Vpeak) for typical seismic slip rates and

interseismic durations of healing. The last two terms on the third line gives the difference

between the local SSQS shear resistance described in the main text and the peak shear

resistance, where the last term typically dominates for periods of extending healing and

higher values of θint. Consequently, for a given dynamic slip rate Vpeak, the better healed the

interface with higher θini, the higher the peak friction during dynamic rupture (Chapter 3

Lambert & Lapusta, 2020).

The standard Dieterich-Ruina formulation (Equation 5.1) has been empirically-determined

from laboratory experiments at sliding rates between 10−9 m/s to around 10−3 m/s. Under
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the standard logarithmic formulation, friction becomes negative as the slip rateV approaches

zero and is undefined for zero or negative slip rates (Figure 2.15). The standard formulation

may be regularized nearV = 0 such that the shear resistance remains positive for all positive

values of V (Rice & Ben-Zion, 1996):

τ(V, θ) = aσsinh−1
[

V
2V∗

exp
(

f∗ + b log(θV∗/L)
a

)]
, (2.10)

with the steady-state shear resistance given by:

τss(V) = aσsinh−1
[

V
2V∗

exp
(

f∗ + b log(V∗/V)
a

)]
. (2.11)

Theoretical justification for such regularization has been provided by drawing analogy be-

tween the direct velocity effect and the exponential formulation of thermally-activated creep

at contact junctions, where the contact shear stress acts as a biasing factor (Rice et al.,

2001). The standard logarithmic rate-dependent formulation is derived when only consid-

ering forward activated jumps, which may be dominant under significant shear stress and

conditions relevant to most laboratory experiments. The regularized formulation (Equation

2.10) arises when including the presence of backward jumps, which are equally probable as

forward jumps for τ = 0, as in the full thermally-activated creep theory. The logarithmic

and regularized formulations are equivalent for conditions consistent with laboratory exper-

iments, and differ only for very low slip rates (Figure 2.15).

Earthquakes may nucleate only if the VW region is larger than the nucleation size h∗. For

2D problems, two theoretical estimates of the nucleation size in mode III are (Rice & Ruina,

1983; Rubin & Ampuero, 2005):

h∗RR =
π

4
µDRS

(b − a)(σ − p)
; h∗RA =

2
π

µDRSb
(b − a)2(σ − p)

, (2.12)

where µ is the shear modulus. The simulated fault in our models contains a 24-km region

with VW frictional properties surrounded by VS regions to create a 72-km frictional region.

Outside of this frictional regions, the fault moves with a prescribed plate rate Vpl to provide

tectonic-like loading (Figure 2.1A).
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Figure 2.15: Comparison of the standard logarithmic (black) and regularized (red) formu-
lations for rate-and-state friction given fixed θ = DRS/V∗ with V∗ = 1 µm/s, f∗ = 0.6,
and (a − b) = 0.004. The two formulations are equivalent for slip rates relevant to most
laboratory experiments, but differ as V approaches 0 m/s.

The thermal pressurization of pore fluids is governed in our simulations by the following

coupled differential equations for temperature and pore pressure evolution (Noda & Lapusta,

2010):
∂T(y, z; t)

∂t
= αth

∂2T(y, z; t)
∂y2 +

τ(z; t)V(z; t)
ρc

exp(−y2/2w2)
√

2πw
, (2.13)

∂p(y, z; t)
∂t

= αhy
∂2p(y, z; t)

∂y2 + Λ
∂T(y, z; t)

∂t
, (2.14)

where T is the temperature of the pore fluid, αth is the thermal diffusivity, τV is the shear

heating source distributed over a Gaussian shear layer of half-width w, ρc is the specific

heat, y is the distance normal to the fault plane, αhy is the hydraulic diffusivity, and Λ is

the coupling coefficient that gives pore pressure change per unit temperature change under

undrained conditions. To approximate the effects of off-fault yielding, we employ a velocity

limit ofVmax = 15 m/s, as discussed in detail in Lambert et al. (2021). This approximation is

motivated by detailed dynamic rupture simulations with off-fault yielding (Andrews, 2004),

with the value of velocity limited corresponding to a representative seismogenic depth of
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10 km.

Our simulations include fault models with varying levels of ambient fluid overpressure in

terms of effective normal stress and as well as degrees of efficiency due to enhanced weak-

ening due to thermal pressurization. Parameters for the simulations are given in Tables

2.1-2.3. Note that the stress changes associated with standard rate-and-state friction have

a relatively mild logarithmic dependence on slip rate and are directly proportional to the

effective confining stress. As such, persistently weak rate-and-state fault models with low

effective normal stress and no enhancedweakening result in generally mild static stress drops

( ≤ 2 MPa) for typical frictional parameters measured in the laboratory (Figure 2.1). Thus,

the inclusion of at least mild enhanced dynamic weakening is required for fault models with

low effective normal stress, such as due to substantial fluid overpressurization, to produce

average static stress drops between 1–10 MPa, as typically inferred for natural earthquakes

(Figures 2.12-2.13; Lambert et al., 2021).

In order to examine the prestress at the beginning of dynamic ruptures, we define the be-

ginning and end of dynamic rupture, as well as the ruptured area, based on a slip velocity

threshold (Vthresh = 1 cm/s) for seismic slip. We have found in previous studies that varying

Vthresh between by 10−3 to 10−1 m/s results in minor variations of the determined rupture

timing and area, within 1% (Lambert et al., 2021; Perry et al., 2020).

Our fault models with more efficient enhanced dynamic weakening produce fewer smaller

events than those with mild to moderate enhanced weakening, as can be observed in the

frequency-magnitude statistics (Figure 2.11). To create frequency-magnitude histograms,

we compute the seismic moment M0 = µAδ for ruptures, where µ is the shear modulus, A

is the rupture area and δ is the average slip in the rupture. As our simulations are 2-D, we

compute the moment by assuming a circular rupture area A = π(λrupt/2)2, where λrupt is the

rupture length.
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2.10.2 Single-degree-of-freedom representation of laboratory experiments

We compare the evolution of local slip rate and shear stress in our simulated dynamic

ruptures with single-degree-of-freedom (SDOF) calculations motivated by high-velocity

laboratory experiments that impose variable seismic slip rates to infer shear resistance

evolution and often compare their findings with seismological observations (Fukuyama &

Mizoguchi, 2010; Sone & Shimamoto, 2009). The SDOF calculations are governed by the

same rate-and-state frictionwith enhanced dynamicweakening due to thermal pressurization

as in our fault model TP4. Our SDOF calculations impose a slip-rate history, as typically

done in laboratory experiments, and solve for the evolution of shear stress, state variable,

temperature, and pore pressure using Equation 3.2 and Equations 2.10 and 5.6-5.5 given

the initial state. We assume initial conditions where sliding has been maintained until

steady-state conditions at the slip rate of V = 0.1 mm/s, comparable to the initial conditions

of Fukuyama and Mizoguchi (2010). We then impose two different slip rate functions

characterized by regularized Yoffe functions (Tinti et al., 2005), with total slip of 1.95 m

(comparable to our simulated slip) and maximum slip rate of 2 m/s. Tinti et al. (2005)

regularized the stress singularity in the analytical Yoffe function by convolving it with a

triangular function of half-width ts. The regularized Yoffe functions are characterized by

two time-scales, the half-width ts and the rise time tr . For the two examples shown in Figure

9 of the main text, we choose values of tr = 3s with ts = 0.1tr for RYF1 and tr = 1.4s

with ts = 0.4tr for RYF2, in order to compare pulses with more pronounced and gradual

accelerations that produce the same slip and peak slip rate.
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C h a p t e r 3

RUPTURE-DEPENDENT BREAKDOWN ENERGY IN FAULT MODELS
WITH THERMO-HYDROMECHANICAL PROCESSES

This chapter has been adapted from:

Lambert, V. & Lapusta, N. (2020). Rupture-dependent breakdown energy in fault mod-

els with thermo-hydro-mechanical processes. Solid Earth, 11(6), 2283-2302. DOI:

10.5194/se-11-2283-2020.

3.1 Introduction

Many seismological studies consider earthquake source processes in the framework of dy-

namic fracture mechanic and have attempted to infer parameters of the slip-weakening shear

resistance from the strong-motion data resulting from natural earthquakes (Bouchon, 1997;

Bouchon et al., 1998; Cruz-Atienza et al., 2009; Gallovic et al., 2019; Ide & Takeo, 1997;

Kaneko et al., 2017; Olsen et al., 1997). Such studies have noted substantial trade-offs in

the inferred parameters during such inversions, such as between the slip-weakening distance

Dc and strength excess τpeak − τini, where τini is the initial stress (Fig. 1.3). It has been

presumed that the spatial distribution of static stress drop and breakdown energy may be

the most reliably determined features, as the stress drop can be inferred from the spatial

distribution of slip and remaining variations in rupture speed are largely controlled by the

breakdown energy in such linear slip-weakening representations (Guatteri & Spudich, 2000).

One of the most notable features of seismologically-inferred breakdown energies from nat-

ural earthquakes is that the average breakdown energy from the rupture process has been

inferred to increase with the earthquake size (Abercrombie & Rice, 2005; Brantut & Viesca,

2017; Cocco & Tinti, 2008; Rice, 2006; Viesca & Garagash, 2015). Increase in breakdown

energy with slip has also been observed in high-speed friction experiments (Nielsen et al.,
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2016; Selvadurai, 2019), although in some experiments the increase saturates after a given

amount of weakening (Nielsen et al., 2016). Such findings are inconsistent with the break-

down energy being a fixed fault property as often assumed in linear slip-weakening laws and

as approximately follows from standard rate-and-state friction with uniform characteristic

slip-weakening distance (Perry et al., 2020), unless strong and very special heterogeneity

is assumed in fault properties. For example, some modeling studies have assigned strongly

heterogeneous Dc and hence G values to the fault, as if they are properties of the interface,

with larger patches having significantly larger values of Dc and hence G, and considered

sequences of events over such interfaces (e.g. Aochi & Ide, 2011; Ide & Aochi, 2005).

Several theoretical and numerical studies have demonstrated that enhanced dynamic weak-

ening, as widely observed at relatively high slip rates (> 10−3 m/s) in laboratory experiments

(Di Toro et al., 2011; Tullis, 2007), may explain the inferred increase in breakdown energy

with slip (Brantut &Viesca, 2017; Perry et al., 2020; Rice, 2006; Viesca &Garagash, 2015).

A number of different mechanisms have been proposed for such enhanced weakening, many

of them due to shear heating. For example, thermal pressurization may occur due to the

rapid shear heating of pore fluids during slip (Andrews, 2002; Rice, 2006; Sibson, 1973);

if pore fluids are heated fast enough and not allowed to diffuse away, they pressurize and

reduce the effective normal stress on the fault. Flash heating is another thermally-induced

weakening mechanism, where the effective friction coefficient is rapidly reduced due to

local melting of highly stressed micro-contacts along the fault (Goldsby & Tullis, 2011; Pas-

selegue, Goldsby, & Fabbri, 2014; Rice, 1999). Considerations of heat production during

dynamic shear ruptures provide a substantial constraint for potential fault models, as field

studies show no correlation between faulting and heat flow signatures and rarely suggest

the presence of melt (Lachenbruch & Sass, 1980; Sibson, 1975). Models with enhanced

weakening have been successful in producing fault operation at low overall prestress and

low heat production (Lambert et al., 2021; Noda et al., 2009; Rice, 2006) as supported by

several observations (Brune et al., 1969; Hickman & Zoback, 2004; Williams et al., 2004;

Zoback et al., 1987).
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At the same time, accounting for thermo-hydro-mechanical processes during dynamic rup-

ture can clearly weaken or even remove the analogy between frictional shear ruptures and

idealized shear cracks of fracture mechanics. The analogy is based on two key assump-

tions: 1) that the breakdown of shear resistance is concentrated in a small region near the

rupture front, referred to as small-scale yielding, and 2) that there exists a constant residual

stress level τdyn = τmin throughout the ruptured region during sliding (Freund, 1990; Palmer

& Rice, 1973). For example, the relationship between rupture speed and fracture energy

of linear elastic fracture mechanics is only valid under these assumptions. Clearly, these

assumptions can become invalid when thermo-hydro-mechanical processes are considered.

For example, shear heating can raise the pore fluid pressure in regions away from the rupture

front and weaken the fault there, contributing to the breakdown of fault resistance away from

the rupture tip and varying the dynamic resistance level. Furthermore, the shear heating

itself would depend on the overall dissipated energy, making the fault weakening behav-

ior, and hence "breakdown," depend on the absolute stress levels, and not just the stress

changes, as typically considered by analogy with traditional fracture mechanics. Moreover,

studies that infer dynamic parameters from natural earthquakes using dynamically-inspired

kinematic models suggest more complicated evolutions of shear stress with slip, including

heterogeneous dynamic resistance levels (Bouchon et al., 1998; Causse, Dalguer, & Mai,

2013; Ide & Takeo, 1997; Tinti et al., 2005)

In this study, we use numerical models of earthquake sequences with enhanced weakening

due to thermal pressurization to illustrate how the inclusion of thermo-hydro-mechanical

processes during dynamic shear ruptures makes breakdown energy rupture-dependent, in

that the value of both local and average breakdown energy vary among ruptures on the same

fault, even with spatially uniform and time-independent constitutive properties. As such,

the breakdown energy is not an intrinsic fault property, but develops different values at a

given location, depending on the details of the rupture process, which in part depend on the

prestress before the dynamic rupture achieved as a consequence of prior fault slip history.
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Moreover, the local breakdown energy is not uniquely defined by the amount of slip attained

during rupture, but depends on how that slip was achieved through the complicated history

of slip rate and dynamic stress changes throughout the rupture process. Additional fault

characteristics that we do not consider here, such as heterogeneity in fault properties and

dynamically-induced, evolving, inelastic off-fault damage (Dunham et al., 2011a, 2011b;

Roten et al., 2017; Withers et al., 2018) should result in qualitatively similar effects and add

even more variability to the breakdown energy.

3.2 Description of numerical models

We conduct numerical simulations of spontaneous sequences of earthquakes and aseismic

slip (SEAS) utilizing the spectral boundary integral method to solve the elastodynamic

equations of motion coupled with friction boundary conditions, including the evolution of

pore fluid pressure and temperature on the fault coupled with off-fault diffusion (Lapusta et

al., 2000; Noda & Lapusta, 2010). Our simulations consider mode III slip on a 1-D fault

embedded into a 2-D uniform, isotropic, elastic medium slowly loaded with a long-term slip

rate Vpl (Fig. 3.1). The simulations resolve the full slip behavior throughout earthquake se-

quences, including the nucleation process, the propagation of individual dynamic ruptures,

as well as periods of post-seismic and the interseismic slip between events that can last from

months to hundreds of years.

Our fault models adopt the laboratory-derived Dieterich-Ruina rate-and-state friction law

with the state evolution governed by the aging law (Dieterich, 1979; Ruina, 1983):

τ = σ f (V, θ) = (σ − p)
[

f∗ + a log
V
V∗
+ b log

θV∗
DRS

]
, (3.1)

Ûθ = 1 −
Vθ
DRS

, (3.2)

where σ is the effective normal stress, σ is the normal stress, p is the pore fluid pressure,

f∗ is the reference steady-state friction coefficient at reference sliding rate V∗, DRS is the

characteristic slip distance, and a and b are the direct effect and evolution effect parameters,

respectively. Other formulations for the evolution of the state variable exist, such as the slip

law (Ruina, 1983) as well as various composite laws, and the formulation that best describes
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Figure 3.1: Fault model for simulated sequences of earthquakes on a rate-and-state fault
including enhanced weakening due to thermal pressurization of pore fluids. (A) The fault
model incorporates a velocity-weakening (VW) seismogenic region surrounded by two
velocity-strengthening (VS) sections. Afixed plate rate is prescribed outside of these regions.
(B) We incorporate enhanced dynamic weakening due to the thermal pressurization of pore
fluids by calculating the evolution of temperature and pore fluid pressure due to shear heating
and off-fault diffusion throughout our simulations. (C) The beginning of the accumulated
slip history for simulated sequences of crack-like earthquake ruptures and aseismic slip.
Seismic events are illustrated by red lines with slip contours being plotted every 0.5 seconds
while interseismic slip is plotted in black every 10 years. The total simulated slip history
spans 2675 years corresponding to cumulative slip of 84 m and contains 200 seismic events.

various laboratory experiments remains a topic of ongoing research (Bhattacharya et al.,

2015, 2017; Shreedharan et al., 2019). However, the choice of the state evolution law should

not substantially influence the results of this study, as the evolution of shear resistance

during dynamic rupture within our simulations is dominated by the presence of enhanced

weakening mechanisms. We use the version of the expressions (3.1) and (3.2) regularized

for zero and negative slip rates (Noda & Lapusta, 2010).

During conditions of steady-state sliding ( Ûθ = 0), the friction coefficient is expressed as:

fss(V) = f∗ + (a − b) log
V
V∗
. (3.3)

The combination of frictional properties (a − b) > 0 results in steady-state velocity-

strengthening (VS) behavior, where stable slip is expected, and properties resulting in
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(a − b) < 0 lead to steady-state velocity-weakening (VW) behavior, where accelerating slip

and hence stick-slip occur for sufficiently large regions (Rice et al., 2001; Rice & Ruina,

1983; Rubin & Ampuero, 2005).

An important, yet often underappreciated, implication of the rate- and state-dependent effects

observed in laboratory experiments is that notions of static and dynamic friction coefficients,

as well as the slip-weakening distance, are not well-defined and fixed quantities, as would be

considered by standard linear slip-weakening laws (Ampuero & Rubin, 2008; Barras et al.,

2019; Cocco & Bizzarri, 2002; Lapusta & Liu, 2009; Perry et al., 2020; Rubin & Ampuero,

2005). Instead, they depend on the history and current style of motion. For example, the

dynamic friction, comparable to the steady-state friction at dynamic slip rates, depends on

slip rate (Eq. 3.3), which can vary substantially throughout rupture and between different

ruptures. Moreover, the peak friction and effective slip-weakening distance under standard

rate-and-state friction depend on the history of motion through the state variable θ, as well

as the sliding rate during fast slip (Fig. 3.2). Let us consider a point with the same initial

friction but different periods of inter-event healing, captured by increasingly larger values

of the pre-rupture state variable. If the point is now driven to slide at a fixed sliding rate,

the peak friction and slip-weakening distance would be larger for points that (i) have higher

pre-rupture value of the state variable, representing better healed interfaces, and/or (ii) slid-

ing at faster slip rates (Fig. 3.2). For standard rate-and-state friction, these effects typically

translate into generally mild variations in dynamic/static stress drop and breakdown energy,

due to the logarithmic dependence of the shear stress evolution on slip rate, resulting in both

static stress drop and breakdown energy being effectively rupture-independent (Ampuero &

Rubin, 2008; Cocco & Bizzarri, 2002; Lapusta & Liu, 2009; Perry et al., 2020; Rubin &

Ampuero, 2005), at least compared to the large variations of breakdown energy with slip

inferred from natural earthquakes as discussed in the introduction. However, such variations

in stress evolution becomemore substantial with enhanced dynamic weakening mechanisms

that lead to stronger rate-dependent weakening.
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Figure 3.2: Illustration of the rate- and state-dependence of peak and dynamic friction
coefficients, fpeak and fdyn, respectively, as well as the effective slip-weakening distance
Dc. (A-C) Evolution of friction coefficient with slip for points with the same initial friction
coefficient of 0.58 but different values of initial state variable θini, corresponding to different
histories of previous motion. The initially locked point slips at an imposed slip rate of V
= 1 cm/s (black) or V = 1 m/s (red), to approximately reproduce transition from the locked
state to dynamic sliding as the rupture propagates through. For a given slip rate, the friction
evolves to a new steady-state level, fdyn = 0.54 and fdyn = 0.56 for V = 1 m/s and V = 1
cm/s, respectively. These levels are similar, as expected from the logarithmic dependence
on the slip rate and a narrow range of dynamic slip rates. The peak friction coefficient and
effective slip-weakening distance vary more significantly with θini, where the peak friction
coefficient increases for higher θini associated with longer inter-event healing times. The
example uses typical laboratory values of (a − b) = 0.004, f∗ = 0.6, DRS = 1µm, and
V∗ = 10−6 m/s.

Laboratory experiments indicate that the standard rate-and-state laws (Eqs. 3.1 - 3.2) provide

good descriptions of frictional behavior at relatively slow slip rates (10−9 to 10−3 m/s).

However, at higher sliding rates, including average seismic slip rates of ∼1 m/s, additional

enhanced weakening mechanisms can occur, such as the thermal pressurization of pore

fluids. Thermal pressurization is governed in our simulations by the following coupled

differential equations for the evolution of temperature and pore fluid pressure (Noda &

Lapusta, 2010):

∂T(y, z; t)
∂t

= αth
∂2T(y, z; t)

∂y2 +
τ(z; t)V(z; t)

ρc
exp(−y2/2w2)
√

2πw
, (3.4)

∂p(y, z; t)
∂t

= αhy
∂2p(y, z; t)

∂y2 + Λ
∂T(y, z; t)

∂t
, (3.5)

where T is the pore fluid temperature, αth is the thermal diffusivity, τV is the shear heating

source which is distributed over a Gaussian shear layer of half-width w, ρc is the specific

heat, y is the fault-normal distance, αhy is the hydraulic diffusivity, and Λ is the coupling

coefficient that provides the change in pore pressure per unit temperature change under
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undrained conditions.

The total fault domain of size λ is partitioned into a frictional region of size λfr where we

solve for the balance of shear stress and frictional resistance, as well as loading regions

at the edges where the fault is prescribed to slip at a tectonic plate rate (Fig. 3.1A). The

frictional interface is composed of a 24-km region with VW frictional properties of size

λVW, surrounded by a velocity-strengthening domain. The majority of the seismic events

arrest within the VW region, which we refer to as "partial ruptures," however some span the

entire VW region, which we refer to as "complete ruptures" (Fig. 3.1C). Weakening due

to thermal pressurization is confined to the region with the VW properties. The parameter

values used for the simulations presented in this work are motivated by prior studies (Noda

& Lapusta, 2010; Perry et al., 2020; Rice, 2006) and provided in Table 3.1.

3.3 Energy partitioning and notion of breakdown energy G

In the earthquake energy budget, the total strain energy change per unit source area ∆W/A

is partitioned into the dissipated energy per unit area, EDiss/A, and the radiated energy per

unit area, ER/A:

∆W/A = EDiss/A + ER/A. (3.6)

The total strain energy released per unit area ∆W/A is given by:

∆W/A =
1
2
(τ̄ini + τ̄fin)δ̄, (3.7)

where δ̄ is the average final slip for the event, and τ̄ini and τ̄fin are the average initial and final

shear stress weighted by the final slip (Noda & Lapusta, 2012), respectively,

τ̄ini =

∫
Ω
τini(z)δfin(z)dz∫
Ω
δfin(z)dz

, (3.8)

τ̄fin =

∫
Ω
τfin(z)δfin(z)dz∫
Ω
δfin(z)dz

. (3.9)

Here,Ω represents the ruptured domain. The static stress drop is a measure of the difference

in average stress before and after the rupture. The relevant definition of average static stress

drop for energy considerations is the energy-based or slip-weighted stress drop (Noda et al.,
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2013):

∆τ = τini − τfin =

∫
Ω
[τini(z) − τfin(z)] δfin(z)dz∫

Ω
δfin(z)dz

. (3.10)

The dissipated energy per unit rupture area can be computed from the evolution of shear

resistance with slip:

EDiss/A =

∫
Ω

[∫ δfin(z)
0 τ(δ′)dδ′

]
dz∫

Ω
dz

. (3.11)

The dissipated energy EDiss/A is often further partitioned into the average breakdown energy

G (Palmer & Rice, 1973; Rice, 1980; Tinti et al., 2005) and residual dissipated energy (dark

grey triangle and light grey rectangle in Fig. 1.3, respectively). The average breakdown

energy represents the spatial average of the local breakdown energy Gloc within the source

region,

G =

∫
Ω

Gloc(z)dz∫
Ω

dz
(3.12)

where the local breakdown energy is defined as,

Gloc(z) =
∫ Dc (z)

0
[τ(δ′) − τmin(z)]dδ′, (3.13)

and τmin(z) is theminimum local shear resistance during seismic slip after the initial strength-

ening from the initial to peak shear resistance via the direct effect. Dc is defined as the

critical slip distance during the rupture such that τ(Dc(z)) = τmin(z).

Seismological studies have attempted to estimate the average breakdown energy for natu-

ral earthquakes based on the standard energy partitioning diagram (Fig. 1.3) as follows

(Abercrombie & Rice, 2005; Rice, 2006):

G′ =
δ

2

(
∆τ −

2µER

M0

)
, (3.14)

where G′ is the approximation for the average breakdown energy G, δ is the average slip

during the rupture, ∆τ is the seismologically-inferred average static stress drop, µ is the

shear modulus, ER is the radiated energy and M0 is the seismic moment. The definition

of G′ assumes that the rupture area exhibits negligible stress overshoot/undershoot, or that

the average level of dynamic resistance during sliding is the same as the final average shear
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stress. Numerical studies have shown that G′ may indeed provide a reasonable estimate of

the average breakdown energy (within a factor of 2) for crack-like ruptures, which exhibit

mild overshoot/undershoot compared to the static stress drop (Perry et al., 2020), however

such estimates can dramatically differ from the true values for ruptures that experience a

considerable stress undershoot, as is the case of self-healing pulse-like ruptures (Chapter 4

Lambert et al., 2021).

Note that the energy balance shown in Eq. 3.6 reflects the energy partitioning over the

rupture process as a whole. While the dissipated energy is a local quantity along the fault,

the radiated energy is not and can only be related to the stress-slip behavior in the averaged

sense over the entire rupture process (Fig. 1.3). Seismological estimates of the average

breakdown energy can be made assuming the standard energy partitioning following the

slip-weakening diagram (Fig. 1.3) and using Eq. 3.14 with the total radiated energy, with

the results dependent on the accuracy of the radiated energy estimates and validity of the

assumed energy partitioning model, which has been shown to breakdown for self-healing

pulse-like ruptures (Chapter 4; Lambert et al., 2021). Estimating the local breakdown

energy is more challenging. One approach is to use finite-fault slip inversions to determine

the stress evolution during rupture and hence the breakdown work (e.g. Tinti et al., 2005),

with the results dependent on the accuracy of finite-fault inversions that are known to be

non-unique and affected by smoothing.

3.4 Breakdown energy in models with thermal pressurization of pore fluids

The local slip and stress evolution are determined at every point along the fault within

our simulations at all times, thus we can calculate the local dissipation and breakdown

energy throughout each rupture as well as study these quantities evolve in different ruptures

throughout the sequence. We can also compute the average energy quantities and construct

the average stress vs. slip curves for the total rupture process in a manner that preserves

the overall energy partitioning (Noda & Lapusta, 2012). We define seismic slip to occur

when the local slip velocity exceeds a velocity threshold Vthresh = 0.01 m/s. As slip rates

during sliding are typically around 1 m/s or higher and drop off rapidly during the arrest of
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slip, modest changes of this velocity threshold by an order of magnitude produce very mild

differences in Dc and G, by less than 1%.

The average breakdown energy G computed from our simulations increase with average slip

and matches estimates of breakdown energy for natural events (Fig. 3.3), as expected from

the simplified theoretical considerations (Rice, 2006). As demonstrated in previous numeri-

cal studies (Perry et al., 2020), when our fault models combine moderately efficient thermal

pressurization with persistently weak conditions, such as from relatively low interseismic

effective normal stresses (25 MPa) due to substantial chronic fluid overpressurization, the

models produce mostly crack-like ruptures that reproduce all main observations about earth-

quakes, including magnitude-invariant average static stress drops of 1–10 MPa, breakdown

energy values that are quantitatively comparable to estimates from natural earthquakes, and

fault temperatures well below representative equilibrium melting temperatures near 1000o

C for wet granitic compositions in the shallow crust (Rice, 2006). It is important to note that

the presence of enhanced dynamic weakening is critical for producing reasonable values

of static stress drop (> 1 MPa) in such fault models with chronic fluid overpressurization;

otherwise, the stress changes due to the standard rate-and-state friction would be too low

(as they are proportional to the effective normal stress). As such, dynamic weakening due

to thermal pressurization still dominates the overall weakening behavior during dynamic

rupture. These results suggest that fault models incorporating chronic fault weakness and

enhanced weakening may be plausible representations of rupture behavior on mature faults.

The work of Perry et al. (2020) and Lambert et al. (2021) provide a broader exploration of

models with different parameters, including different levels of interseismic effective stresses

and efficiency of enhanced dynamic weakening. Here, we use a representative model to

illustrate the resulting properties of the breakdown energy in such models.

Let us examine the spatial distribution of shear stress and breakdown energy in three ruptures

of varying sizes within the same simulated sequence of earthquakes (Fig. 3.4). All three

ruptures nucleate, propagate, and arrest predominantly in the VW region that has uniform
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Figure 3.3: Fault models including TP reproduce seismologically-inferredmagnitude invari-
ance of stress drops and increasing average breakdown energywith slip. (A) The simulations
result in a sequence of mostly crack-like ruptures that, despite including dynamic weakening
due to thermal pressurization of pore fluids, are capable of reproducing nearly-magnitude
invariant average static stress drops, with values between 1–10 MPa. (B) These crack-like
ruptures display the overall increasing trend in average breakdown energy with average
slip, as inferred for natural earthquakes (Abercrombie & Rice, 2005; Rice, 2006). (C) The
simulated fault maintains reasonable temperatures and avoids melting, due to relatively low
interseismic effective normal stress of 25 MPa (and hence chronic fluid overpressurization)
and sufficiently efficient enhanced weakening due to thermal pressurization of pore fluids.

fault properties, the only difference being how big the events become. The distribution of

shear stress along the fault before each rupture is heterogeneous due to the stress drop from

previous ruptures. While each earthquake nucleates in a region with approximately the same

locally-high initial stress, the ruptures propagate and arrest over regions with lower prestress.
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Larger ruptures with more slip experience greater weakening and larger local stress drops

in some regions, which facilitates further rupture propagation over areas of lower prestress.

As such, while the final average shear stress decreases for larger ruptures, the average initial

stress also decreases, resulting in nearly magnitude-invariant average stress drops.
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Figure 3.4: Comparison of three earthquake ruptures of different sizes nucleating over the
same fault area. (A) Slip distributions for the three ruptures. (B) Distributions of initial
(solid black) and final (solid blue) shear stress for the three ruptures. Gray shading denotes
the ruptured region and orange shading denotes the region where each rupture nucleates.
The dashed red and blue lines denote the average initial and final shear stress in the ruptured
region. Large events have smaller initial and smaller final average stress, resulting in similar
stress drops. (C) Distribution of breakdown energy (solid black) and average breakdown
energy for each event (dashed line). The average breakdown energy generally increases with
the rupture size.

Despite the fault constitutive properties being uniform and constant in time, the breakdown

energy varies spatially within each event as well as differs at each location for different rup-

tures (Figs. 3.4C and 3.5). Larger ruptures that experience larger average slip also exhibit

more weakening, resulting in the average breakdown energy generally increasing with the

rupture size (Fig. 3.4C). If we examine individual points that are common among all three

ruptures, we see that the local breakdown energy also varies as the points experience differ-

ent degrees of slip and overall weakening behavior (Fig. 3.5). This suggests that the local
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and average breakdown energy is not just a function of the local fault material properties,

but a more complicated evolution of effective weakening behavior and stress throughout the

rupture.
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Figure 3.5: The dependence of shear stress on slip for the three ruptures of Figure 3.4.
A) Slip distributions with locations examined in detail marked. (B) Average shear stress
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The curves capture the continuous weakening with slip experienced by most rupture loca-
tions. (C-D) Local shear stress versus slip curves at two points within the three ruptures,
illustrating the general trend in increasing breakdown energy with increasing slip at the same
point.

Note that the breakdown energy illustrated in Fig. 3.5 is dominated by the thermal pres-

surization of pore fluids, with negligible contribution from the weakening due to standard

rate-and-state friction. The breakdown energy due to rate-and-state friction can be estimated
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as (Perry et al., 2020):

G =
1
2

bσDRS

(
log

θiniVdyn

DRS

)2
(3.15)

where the effective normal stress σ is assumed to be constant, θini is the value of the state

variable at the beginning of slip, and Vdyn is the representative dynamic slip rate. Assuming

that σ is still approximately given by the interseismic value at the beginning of slip (which

would produce a upper bound), θini is given by the representative inter-event time of 10

years, and Vdyn is given by the representative peak rate of 10 m/s, the breakdown energy due

to the standard rate-and-state friction in our simulation has the upper bound of 0.15 MJ/m2.

This is an order of magnitude smaller than the values of 1 to 6 MJ/m2 of Fig. 3.5.

3.5 Overall increase of breakdownenergywith slip and significant rupture-dependent

scatter

Previous theoreticalwork has demonstrated how the incorporation of thermo-hydro-mechanical

processes such as the thermal pressurization of pore fluids can explain the inferred increase

in breakdown energy with increasing event size (Rice, 2006). The work of Rice (2006)

presented solutions for two end-member cases for the evolution of shear resistance and

breakdown energy with thermal pressurization, illustrating how continuous weakening oc-

curs with slip and results in breakdown energy increasing with slip.

If slip occurs within a layer of thickness h that is large enough to justify the neglect of heat

and fluid transport, conditions may be considered adiabatic and undrained, which may be

relevant for relatively short slip durations (Rice, 2006; Viesca & Garagash, 2015). Under

such conditions, the weakening behavior is controlled by the ratio of the coupling coefficient

Λ and specific heat ρc, as well as the thickness of the shearing layer h which controls the

efficiency of heat production. Assuming a constant friction coefficient f and slip rate V ,

one can express the evolution of shear resistance τ and breakdown energy G as functions of



75

slip (Rice, 2006),

τ(δ) = f (σ − p0) exp
(
−

fΛ
ρc

δ

h

)
, (3.16)

G(δ) =
ρc (σ − p0) h

Λ

[
1 −

(
1 +

fΛδ
ρch

)
exp

(
−

fΛδ
ρch

)]
. (3.17)

Under such conditions, increasing slip results in continued weakening of the shear resistance

and increasing values of breakdown energy. The continued weakening is the result of shear

heating and subsequent pressurization, which remains active as long as the slip rate and

shear stress are non-zero.

The inclusion of thermal and hydraulic diffusion introduces a diffusion time-scale to the

problem, which governs the efficiency of weakening over extended slip durations. If one

considers slip on a mathematical plane, a characteristic weakening time-scale t∗ may be

defined assuming a constant friction coefficient and slip rate (Mase & Smith, 1987):

t∗ =
4
f 2

( ρc
Λ

)2

(
√
αhy +

√
αth

)2

V2 . (3.18)

Rice (2006) demonstrated that this may be related to a characteristic slip-weakening distance

for thermal pressurization,

L∗ =
4
f 2

( ρc
Λ

)2

(
√
αhy +

√
αth

)2

V
, (3.19)

such that the evolution of shear resistance and breakdown energy for slip on a plane may

also be expressed as a function of slip (Rice, 2006):

τ(δ) = f (σ − p0)exp
(
δ

L∗

)
erfc

(√
δ

L∗

)
, (3.20)

G(δ) = f (σ − p0)L∗
[
exp

(
δ

L∗

)
erfc

(√
δ

L∗

) (
1 −

δ

L∗

)
− 1 + 2

√
δ

πL∗

]
. (3.21)

Unlike the case of a critical slip-weakening distance Dc in standard slip-weakening models,

the weakening of shear resistance is continuous with increasing slip (Fig. 3.6a), with L∗

providing a measure of how much slip is needed to weaken by a certain degree. Note that

the evolution of stress in Eqs. (3.16) and (3.20) do not consider the elastic interactions
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that occur due to non-uniform slip within finite ruptures, and therefore assume that the slip

velocity is not only temporally constant, but spatially uniform over the fault.

Both of these thermal pressurization solutions have the convenient feature of expressing the

breakdown of shear resistance as a function of slip, drawing familiarity to standard slip-

weakening notions of shear fracture. As pointed out by Rice (2006), the representation of

breakdown energy purely as a function of slip is a considerable simplification, whereas the

physics underlying the mechanisms for weakening require that τ is a complicated function

of the slip rate history up to the current time. During dynamic rupture, the local slip rate

experiences considerable acceleration near the rupture front, resulting in a more pronounced

weakening rate (Fig. 3.6), which in turn facilitates large dynamic stresses and higher slip

rates in other parts of the rupture. As the rupture front passes, both the slip rate and weak-

ening rate decrease. However, the slip rate may persists around typical seismic values of

1 m/s until the arrival of arrest waves from the edges of the rupture or local healing. Note

that while the slip rates behind the rupture front in our models appear more or less stable

around 1 m/s (Fig. 3.6E and G), they may vary depending on the arrival of wave-mediated

dynamic stresses from other slipping regions in the rupture, which drive prolonged slip

and therefore modulate the weakening rate due to shear heating mechanisms like thermal

pressurization. In general, the friction coefficient may also vary considerably with the slip

rate, particularly when accounting for additional enhanced weakening processes such as

flash heating (Goldsby & Tullis, 2011; Passelegue et al., 2014; Rice, 1999).

The continued weakening with slip due to thermal pressurization is an important factor

that drives rupture propagation and allows ruptures to propagate under lower, and hence

less favorable, prestress conditions. Let us consider two fault models with the same initial

prestress and the same rate-and-state frictional parameters, but with and without enhanced

weakening due to thermal pressurization (Fig. 3.7). The rupture governed by only stan-

dard rate-and-state friction exhibits relatively mild stress variations with slip rate and thus

requires higher prestress conditions to propagate. While the local slip rate evolution varies



77

among points throughout the rupture, the evolution of shear resistance with slip associated

with the breakdown process is generally comparable throughout the rupture with uniform

rate-and-state properties (Fig. 3.7 left column). In contrast, the rupture that is driven by

enhanced weakening due to thermal pressurization experiences a stronger feedback between

the evolution of shear stress and slip rate, resulting in a much larger rupture that propagates

over lower prestress conditions. The evolution of slip rate is highly variable for different

points throughout the crack-like rupture, with long tails of seismic slip behind the rupture

front that experience periods of acceleration and deceleration due to dynamic stress inter-

actions from neighboring points. This variability in local slip rate translates into further

variability in local weakening, even for points with the same initial prestress. This empha-

sizes that the local weakening behavior, and the associated breakdown energy, depend not

only on the local prestress and weakening properties, but also the distribution of prestress

and weakening behavior throughout the entire rupture process.

An important consequence of continued fault weakening is that much of the additional

dissipated energy, which leads to the increase of breakdown energy with continued slip, is

not concentrated near the rupture front (Fig. 3.6). Moreover, weakening may not actually

be strictly monotonic, but local points can experience transient increases in shear stress as

they begin to arrest, but then are loaded by neighboring slipping regions and forced to slip

and weaken further (Fig. 3.5 and 3.8). The continued and variable weakening of shear

resistance behind the rupture front emphasizes a critical difference between dynamic shear

ruptures and mode I fracture, where the crack surface is typically traction-free behind the

cohesive zone at the rupture front. The attribution of the continually dissipated energy to

the breakdown process governing rupture propagation is also inconsistent with the assump-

tion of small-scale yielding, which facilitated the original mathematical analogy based on

laboratory constitutive relations derived at lower slip-rates (Palmer & Rice, 1973).
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Figure 3.6: Comparison of predicted continuous weakening due to thermal pressurization at
constant slip rate versus local behavior during dynamic rupture. (A) Prediction of continuous
weakening of shear resistance with slip or time due to the thermal pressurization of pore
fluids during slip on a plane at constant slip rate V and constant friction coefficient f (Rice,
2006). (B) Evolution of slip during a dynamic rupture, slip contoured every 0.2 s. (C)
Evolution of shear stress localized around the point z = 4.8 km within the rupture. The
time window shown corresponds to the duration of sliding at seismic slip rates at z = 4.8
m. (D-E) Evolution of local shear stress and slip rate with time at the point indicated by
the blue line in (B). (F-G) Evolution of local shear stress and slip rate with slip at the same
point. While qualitatively consistent with (A) in terms of the continued weakening with slip
and time, the evolution of shear resistance during dynamic ruptures depends on the more
complicated history of slip rate, which varies throughout the rupture process. Most of the
initial local weakening occurs at slip rates higher than 1 m/s as the rupture front passes by,
followed by more gradual weakening behind the rupture front at lower, but still seismic, slip
rates.
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Figure 3.7: Comparison of accumulated slip, local shear stress vs. slip, and local slip rate
vs. time for ruptures with rate-and-state (RS) friction with and without enhanced weakening
due to thermal pressurization (TP). The two ruptures occur with the same initial shear stress
distribution (top right), which results in a relatively small rupture in the RS-only model that
is localized within the relatively highly prestressed nucleation region (top left) The inclusion
of TP allows the rupture to grow and propagate over lower prestress conditions (top center).
(Left column) For the rupture governed by only RS, the breakdown of shear resistance is
generally comparable at different locations with the same fault properties, despite differences
in local slip rate. This is due to the relatively mild dependence of RS friction on slip rate.
(Center and right columns) The rupture governed by RS and TP exhibits a more complex
evolution of local shear stress and slip rate throughout the rupture, which depends not only
on the local prestress but also the prestress and weakening behavior over the entire rupture
through dynamic stress interactions.

While breakdown energy does not appear to be a constant material property, one may ask if

the effects of local weakening due to thermal pressurization may be adequately encapsulated

into a slip-weakening formulation such as Eqs. (3.16-3.20). To gain insight into such pos-
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Figure 3.8: Comparison of local breakdown energy for three large earthquake ruptures
with nearly the same average breakdown energy and comparable average slip. (A) Slip
distributions for the three ruptures. (B) Average shear stress versus slip curves illustrating
the energy partitioning of the ruptures. (C-E) Local shear stress versus slip curves at three
points within the ruptures. There is not a strictly increasing trend of breakdown energy with
slip for all points. In (C), the point z = −4.8 km experiences increasing G with increasing
slip. However, in (E), the point z = 4.8 km experiences lower values of G in ruptures with
larger local slip.

sibility, let us examine three large ruptures in our simulations that have comparable average

slip and breakdown energy (Fig. 3.8). If we consider the evolution of local shear stress

and slip at points shared among the three ruptures, we can see that the local breakdown

energy differs even for comparable local slip. Moreover, the three points, which share the

same constitutive description, do not exhibit a systematic scaling relationship between local

slip and breakdown energy. For example, the point at z = −4.8 km exhibits a generally

increasing trend in local G with increasing slip, whereas the point at z = 4.8 km shows
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Figure 3.9: Comparison of the spatial breakdown energy distribution for the three large
earthquake ruptures with nearly the same average breakdown energy and comparable average
slip of Fig. 3.8. (A) Slip distributions for the three ruptures. (B) Spatial distributions of
initial (solid black) and final (solid blue) shear stress for the three ruptures. Gray shading
denotes the ruptured region and dashed red and blue lines indicate the average initial and
final shear stresses, respectively. (C) Spatial distributions of the local breakdown energy.
While the three ruptures have comparable average breakdown energy, the spatial variation
throughout the rupture process considerably differs. Furthermore, the same spatial locations
can have significantly different breakdown energy values in different rupture events of
comparable size.

decreasing values of G for increasing slip among the three ruptures (Fig. 3.8C vs. E). The

point in the center of the rupture (z = 0) does not even exhibit a monotonic trend, as G both

increases and decreases for ruptures with increasing slip (Fig. 3.8D). Indeed, if we examine

the spatial distribution of local stress and breakdown energy within each rupture, we see that

while the three ruptures have comparable average G and slip, they achieve both in different

ways (Fig. 3.9).

The general trend of increasing breakdown energy with slip qualitatively holds for most local

points within our simulated ruptures, however there is considerable variability for individual

values of G at a given slip (Fig. 3.10). While values of average breakdown energy and slip

for individual ruptures appear to demonstrate a consistent scaling relationship, these average

values smooth out the greater variability in local breakdown energy and slip. For points
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within our simulated ruptures that experience a net decrease, or breakdown, in shear stress,

the local G is generally within a factor of 3 of the scaling relationship between average G

and average slip. This variation adds up to approximately an order of magnitude variation

in local G for some values of slip.
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Figure 3.10: The average and local breakdown energy values for the simulated ruptures
show an increasing trend with average and local slip, consistent with inferences from
natural earthquakes (Fig. 3.3). The general trend of increasing breakdown energy with
slip qualitatively holds for local points within our simulated ruptures; however, there is
considerable variability for individual values of G at a given slip. For points that exhibit net
weakening behavior in our simulated ruptures (blue circles), local values of G tend to vary
within a factor of 3 from the scaling relationship between average G and average slip. The
shaded band bordered by grey dashed lines illustrates the variation in G at a given value of
slip. Local values of G are more variable for regions that experience a net increase in stress
during the rupture process (yellow circles), e.g., regions close to rupture arrest. Theoretical
curves for G vs. slip are indicated by solid lines for Eqs. (3.17) and (3.21) based on Rice
(2006) and dashed lines for Eqs. (3.22 - 3.23) based on Viesca and Garagash (2015), with
the coefficient of friction of f = 0.53 and values otherwise indicated in Table 3.1. In both
cases, the magenta and black lines correspond to the solutions for slip on a plane with two
different values of L∗ while the green line corresponds to the solution for an adiabatic and
undrained shear band of width 20 mm.

For frictional ruptures, substantial slip may occur in regions that experience a net increase

in shear stress, particularly in the regions near the rupture arrest (Fig. 3.5B). We find that

points in our simulated ruptures that experience a net increase in shear stress exhibit greater

variability in G with slip (Fig. 3.10, yellow circles), potentially due to the greater variability
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in slip rate during rupture deceleration and arrest. These points illustrate the challenge of

partitioning the dissipated energy into components that are thought to be, and not be, rele-

vant to the dynamic rupture process. These points exhibit no net local breakdown of shear

resistance but rather a net strengthening. Amore appropriate approach may be to distinguish

between concepts of breakdown energy and "restrengthening energy," as discussed in Tinti

et al. (2005). However, the physical relevance for either component, or their distinction,

during the rupture process is not directly evident. Understanding the physical significance of

different components of dissipated energy for dynamic rupture propagation is an important

topic of active research.

The theoretical considerations of Rice (2006) have been extended to the spatially and

temporally variable slip rate associatedwith steady rupture propagation (Viesca&Garagash,

2015). Approximate expressions for the scaling of breakdown energy with slip can be

presented for end-member conditions of undrained Gu(δ) and drained Gd(δ) weakening as:

Gu(δ) ≈ f (σ − p0)
fΛδ2

2ρch
, undrained, small slip (3.22)

Gd(δ) ≈ (12π)−1/3 f (σ − p0)L∗1/3δ2/3, slip on a plane, large slip. (3.23)

Similar to the solutions (3.17) and (3.21) that assume constant slip rate, the steady-state

solutions (3.22-3.23) do not capture the variability of the local breakdown energy with slip

seen in our simulated dynamic ruptures (Fig. 3.10). This is because our simulated dynamic

ruptures do not exhibit steady rupture propagation, but rather have considerable spatial

variations in slip rate evolution, as likely the case for natural earthquake ruptures. This

comparison illustrates a limitation of steady-state rupture solutions for examining rupture

properties that are highly sensitive to spatial heterogeneity in slip motion, such as breakdown

energy in the presence of thermal pressurization.

While the general increase in breakdown energy with slip is qualitatively consistent among

the theoretical solutions and our simulated dynamic ruptures in 2D models with 1D faults
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(Fig. 3.10), the scaling relationship between breakdown energy and slip would be best

studied in 3D models of dynamic rupture with 2D faults. For example, for ruptures on

2D faults would have a larger fraction of the ruptured area associated with rupture arrest

and hence may demonstrate a wider scatter in local G, as seen by points in our simulated

ruptures that experience a net increase in shear stress. In addition, it would be prudent

to examine any differences in scaling behavior for ruptures that are geometrically confined

along a given direction, as may be representative of large crustal earthquakes. However,

we expect that the main results of this work –that the local and average breakdown energy

can vary among ruptures and are not unique functions of slip –would be consistent with 2D

rupture scenarios in 3D models.

3.6 Conclusions

The average breakdown energy for our simulated ruptures tends to increase with increasing

rupture size and average slip in a manner consistent with inferences from field observations

and simplified theoretical models (Rice, 2006; Viesca & Garagash, 2015). At the same

time, the values of local breakdown energy for a given amount of slip have a wide spread in

our simulations, even though the constitutive properties are uniform and time-independent

along the fault, highlighting the reality that breakdown energy in models with thermo-

hydro-mechanical mechanisms is not fundamentally a function of slip. In fact, ruptures

with near-uniform slip can have local values of the breakdown energy vary by as much as

a factor of 4 (Fig. 3.9C), making a homogeneous fault appear to be heterogeneous. This

is because the breakdown energy depends on the specific history of motion and dynamic

stress changes that occur throughout individual rupture processes. Furthermore, since the

history of rupture motion is determined, in part, by the fault prestress before the dynamic

rupture, the breakdown energy also depends on the history of other slip events on the fault

that determine the prestress.

The analytic formulations for the evolution of shear resistance with slip for the thermal pres-

surization presented by Rice (2006) provide profound insight into the first-order behavior

of such thermally-activated hydro-mechanical weakening mechanisms. However, they are
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based on the kinematic assumptions of a spatially uniform and temporally constant slip

velocity, as well as a constant friction coefficient, that allow for the weakening rate to be

determined as a function of slip. In the fully dynamic statement of the problem, the evolving

and spatially non-uniform slip rate is a key part of the solution which leads to the evolution

in the associated shear heating and weakening/strengthening of the fault that depend not

only on the amount of slip, but also on how that slip is achieved through the complex

history of slip velocity. Our results demonstrate that the extension to steady-state rupture

solutions with non-constant slip rate (Viesca & Garagash, 2015) similarly does not capture

the variability in local breakdown energy associated with the complex and evolving history

of slip velocity and dynamic stress interactions in non-steady ruptures, even in fault models

with uniform fault properties like ours.

Note that this variability in local G for a given slip is achieved among points with uniform

and constant constitutive properties. Such variability in the effective weakening rate and G

may become more pronounced in the presence of fault heterogeneity, such as for geomet-

rically rough faults with variable effective normal stress, or if the hydraulic properties of

the shearing layer and surrounding rock were to evolve during the rupture process, such as

from changes in rock permeability due to off-fault damage. The evolution of permeability

during dynamic rupture may have considerable implications for the role of thermo-hydro-

mechanical processes in the evolution of shear resistance on faults and it is an important

topic for future work.

While we follow the assumption that most of the breakdown energy occurs on the shearing

surface (Rice, 2006; Viesca & Garagash, 2015), additional dissipation may also come from

the production of damage and off-fault inelastic deformation (Andrews, 2005; K. Okubo

et al., 2019; Poliakov, Dmowska, & Rice, 2002), especially on rough, non-planar faults

(Dunham et al., 2011b). Such sources of additional dissipated energy may contribute to the

inferred increase in average breakdown energy with average slip for natural earthquakes.

Estimates from laboratory and field measurements suggest that the contribution of damage
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and other off-fault processes to dissipationmay be relatively small, <10% (Aben et al., 2019;

J. S. Chester et al., 2005; Rockwell et al., 2009), however, this remains an area of active

research. Since the off-fault damage would be rupture-dependent as well, adding it to the

consideration of the breakdown energy would likely further reinforce the conclusion of this

study that breakdown energy is not an intrinsic fault property, but rather is rupture-dependent.

The finding that the breakdown energy –as well as the weakening rate –can vary substantially

along a given rupture and among subsequent ruptures, even for comparable values of slip,

suggests that caution is needed in using the inferred breakdown energies from natural events

for modeling of future earthquake scenarios. Some dynamic rupture simulations account

for thermo-hydro-mechanical effects (Andrews, 2002; Bizzarri & Cocco, 2006; Noda et

al., 2009; Schmitt et al., 2015) and/or incorporate the effects of inelastic off-fault damage

(Dunham et al., 2011a, 2011b; Roten et al., 2017; Withers et al., 2018) that should result

in qualitatively similar effects on the breakdown energy. However, many employ simplified

shear resistance evolutions that prescribe the breakdown energy and/or weakening rate di-

rectly, as a local fault property (Dalguer et al., 2020; Gallovic et al., 2019; Richards-Dinger

&Dieterich, 2012; Shaw et al., 2018). Future work is needed to investigate whether and how

the complexity of the local weakening/strengthening behavior experienced by the simulated

faults with thermo-hydro-mechanical and other mechanismscan be translated into simula-

tions with more simplified local relations, e.g. slip-dependent, and still result in similar

rupture dynamics.

Furthermore, several features of faulting in the presence of thermo-hydro-mechanical effects

call into question the overall analogy with cohesive-zone dynamic fracture theory and hence

the significance of the breakdown energy as the quantity that controls rupture dynamics.

The analogy between breakdown and fracture energies, and more broadly frictional faulting

and shear cracks of traditional fracture mechanics, requires that the breakdown process

be confined close to the rupture tip (small-scale yielding) and that the dynamic resistance

level be constant; under such conditions, the conclusions of dynamic fracture theory apply,



87

including on the significance of breakdown energy (Freund, 1990). However, neither of these

assumptions holds for the faults with thermo-hydro-mechanical processes. The weakening

–and hence breakdown process –typically continues with ongoing slip at seismic slip rates

on such faults, long after the rupture front passes. As a result, the breakdown process is

not confined to the rupture tip and the dynamic resistance level is not constant. Moreover,

the total dissipated energy –not just the energy included in the notion of breakdown energy

–contributes to shear heating and hence fault weakening in thermo-hydro-mechanical fault

models. That is why the entire dissipated energy may affect rupture dynamics as well.

These considerations emphasize the need for better understanding of rupture dynamics and

its controls in the presence of thermo-hydro-mechanical processes and for more systematic

incorporation of such processes in earthquake source modeling.

Table 3.1: Model parameters used in Ch. 3 with the thermal pressurization of pore fluids.

Parameter Symbol Value
Loading slip rate Vpl 10−9 m/s
Shear wave speed cs 3299 m/s
Shear modulus µ 36 GPa

Rate-and-state parameters
Reference slip velocity V∗ 10−6 m/s
Reference friction coefficient f∗ 0.6
Characteristic slip DRS 1 mm
Rate-and-state direct effect (VW) a 0.010
Rate-and-state evolution effect (VW) b 0.015
Rate-and-state direct effect (VS) a 0.050
Rate-and-state evolution effect (VS) b 0.003

Thermal pressurization parameters
Interseismic effective normal stress σ̄ = (σ − p) 25 MPa
Coupling coefficient (when TP present) Λ 0.34 MPa/K
Thermal diffusivity αth 10−6 m2/s
Hydraulic diffusivity αhy 10−3 m2/s
Specific heat ρc 2.7 MPa/K
Shear zone half-width w 10 mm

Length scales
Fault length λ 96 km
Frictional domain λfr 72 km
Velocity-weakening region λVW 24 km
Cell size ∆z 3.3 m
Quasi-static cohesive zone Λ0 75 m
Nucleation size (Rice & Ruina, 1983) h∗RR 200 m
Nucleation size (Rubin & Ampuero, 2005) h∗RA 490 m
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C h a p t e r 4

PROPAGATION OF LARGE EARTHQUAKES AS SELF-HEALING PULSES
OR MILD CRACKS

This chapter has been adapted from:

Lambert, V., Lapusta, N. & Perry, S. (2021). Propagation of large earthquakes as self-

healing pulses and mild cracks. Nature. DOI: 10.1038/s41586-021-03248-1.

4.1 Competing theories for low-stress faults

Accumulating geophysical evidence suggests that shear stress acting onmature faultsmust be

low, 20MPa or less, in comparison to the expected shear resistance of 100-200MPa at depths

where earthquakes occur, given rock overburden and hydrostatic pore fluid pressure, along

with typical friction coefficients measured at low-sliding rates in laboratory experiments

(Brune et al., 1969; Fulton et al., 2013; Gao & Wang, 2014; Henyey & Wasserburg, 1971;

Lachenbruch&Sass, 1980;Nankali, 2011;Rice, 2006; Sibson, 1975; Suppe, 2007; Tanikawa

& Shimamoto, 2009; Townend & Zoback, 2004). One of the most compelling lines of

evidence is the lack of substantial heat flow anomaly around mature faults that would be

expected for fault slip at 100 MPa or more, the so-called "heat paradox" (Brune et al., 1969;

Gao & Wang, 2014; Henyey & Wasserburg, 1971; Lachenbruch & Sass, 1980; Nankali,

2011). The "heat paradox" is documented along prominent plate boundary faults such as

the San Andreas Fault and Japan Trench, which have hosted large earthquakes such as the

1857 Fort Tejon and 2011 Mw 9.0 Tohoku-oki earthquakes, respectively (Figure 4.1). Other

lines of evidence include inferences of steep angles between the principal stress direction

and fault trace (Townend & Zoback, 2004), analyses of the fault core obtained by drilling

through shallow parts of faults that have experienced major recent events, including the

2011 Mw 9.0 Tohoku-oki event (Fulton et al., 2013; Tanikawa & Shimamoto, 2009), the

geometry of thrust-belt wedges (Suppe, 2007), and the existence of long-lived narrow shear

zones that do not exhibit any evidence of melting (F. M. Chester & Chester, 1998; Rice,
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2006; Sibson, 1975).
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Figure 4.1: Geophysical inferences from large earthquakes that can be used to constrain
earthquake physics. (A) Heat flowmeasurements frommature faults such as the Japan trench
suggest that dynamic shear stress levels at seismogenic depths are low (< 20 MPa) (Gao &
Wang, 2014). Red bars indicate assigned errors on observed heat flow. (B) Slip inversions
of high-frequency ground motion indicate that the local slip durations of large earthquakes
are quite short, suggesting that large earthquakes propagate as slip pulses (Heaton, 1990).
(C) Inferred average stress drops from 114 large (Mw ≥ 7.0) earthquakes between 1990 and
2015 are generally between 1 to 10 MPa (Ye et al., 2016b). (D) Inferred radiated energy
values scaled by the product of average slip and stress drop, called radiation efficiency, are
generally between 0.1 and 1, although some exceed values of 1 (Ye et al., 2016b). Error
bars indicate differences in source parameter estimates with the assumed rupture speed Vr

in the finite-fault inversions.

Two contrasting hypotheses are used to explain such low-stress, low-heat operation: either

(H1) mature faults are strong at slow, quasi-static sliding rates, but undergo considerable

enhanced dynamic weakening at seismic slip rates, as widely observed in laboratory exper-
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iments (Di Toro et al., 2011; Tullis, 2007; Wibberley & Shimamoto, 2005), or (H2) mature

faults are chronically weak, including at slow, quasi-static slip rates, due to anomalously

low quasi-static friction coefficients and/or low effective confinement from pervasive fluid

overpressure (Bangs et al., 2009; Brown et al., 2003; Collettini et al., 2009; Faulkner et al.,

2006; Lockner et al., 2011). Slip inversions of high-frequency ground motions from large

earthquakes indicate that their local slip duration is much shorter than the total duration of

the rupture event (Heaton, 1990), suggesting that large earthquake ruptures may propagate

as self-healing slip pulses (Figure 4.1). Numerical and theoretical studies have shown that

self-healing slip pulses with realistic static stress drops can indeed occur on quasi-statically

strong but dynamically weak faults, promoting hypothesis (H1) (Noda et al., 2009). In

contrast, simplified earthquake source theories are based on the assumption that earthquake

ruptures are crack-like, with the local slip duration comparable to the total duration of the

rupture event. Finite-fault inversions of earthquakes are non-unique and cannot conclusively

distinguish between crack-like and pulse-like ruptures. A sharper pulse-like rupture may

be smeared by smoothing inherent in inversions while a crack-like rupture may look more

pulse-like if the inversion cannot capture a long tail of low slip rates. Hence, we must

examine alternative methods for their distinction.

To shed light on the physics governing earthquake ruptures, seismological studies seek to es-

timate source properties such as static stress drop, radiated energy, apparent stress, radiation

efficiency, and average breakdown energy. Global comparisons of static stress drops suggest

that the average stress change within the rupture area of earthquakes is generally independent

of the magnitude of the rupture (Allmann & Shearer, 2009; Ye et al., 2016b), with typical

values between 1 to 10 MPa (Figure 4.1). Earthquake sources are also often characterized

by the apparent stress, which is defined as the rigidity µmultiplied by the ratio ER/M0, that

relates the total radiated energy ER to the seismic moment M0. Both the apparent stress and

ER/M0 are inferred to be magnitude-independent, with typical values for ER/M0 clustering

around 10−5 (Ide & Beroza, 2001; Ye et al., 2016b). Average breakdown energy G has been

inferred to increase with earthquake size, which is consistent with continued decrease of
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shear resistance with slip due to enhanced dynamic weakening (Abercrombie & Rice, 2005;

Perry et al., 2020; Rice, 2006; Viesca & Garagash, 2015). The relative importance of the

radiated energy and breakdown energy is sometimes represented as a radiation efficiency

ηinfR , with values inferred from large earthquakes typically ranging from 0.1 to 1.0 (Figure

4.1 Ye et al., 2016b). These source parameters aim to characterize ruptures through single

averaged quantities and are inferred indirectly from seismological observations, often based

on simplified rupture models.

Here, we show that self-healing pulses that propagate on quasi-statically strong, dynamically

weak faults (hypothesis H1) radiate much more seismic energy than crack-like ruptures on

persistently weak faults (hypothesis H2), given similar static stress drop. This is because

self-healing pulses have lower dynamic stress levels during seismic slip than the final shear

stress –a property called stress undershoot –allowing for low heat production and mild static

stress drops in comparison to their dynamic stress drops (Beeler et al., 2003; Kanamori

& Rivera, 2013; Viesca & Garagash, 2015). In contrast, crack-like ruptures are typically

characterized by a stress overshoot, where dynamic stress during seismic slip is higher than

the final shear stress, meaning that the static stress drop is larger than the dynamic stress

drop (Kanamori & Rivera, 2013; Madariaga, 1976; Viesca & Garagash, 2015). Self-healing

pulses should then radiate more energy than crack-like ruptures with the same static stress

drop, since the radiated energy from earthquakes should be proportional to the dynamic

stress changes.

4.2 Simulated pulse- vs. crack-like ruptures

To verify this conjecture and examine the seismological observables for different types of

ruptures, we conduct numerical simulations in earthquake source models representative of

the two hypotheses for the low-stress, low-heat operation of mature faults. Our simula-

tion approach is capable of simulating sequences of earthquakes and slow slip under slow,

tectonic-like loading, while accounting for full inertial effects and shear heating effects dur-

ing each earthquake rupture (Noda & Lapusta, 2010, Section 4.5). In our models, the faults

are governed by laboratory-derived rate-and-state friction laws, which have been success-
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fully used to explain and simulate a number of earthquake-related phenomena, including

earthquake nucleation, post-seismic slip, continuing creep of stable segments, repeating

earthquakes, and aftershock rates (Dieterich, 2007). Such laws are the most established

representation of fault shear resistance that we have for slow, quasi-static slip rates from

tectonic plate rates of 10−9 m/s to 10−2 m/s. At higher slip rates, enhanced dynamic weak-

ening of fault frictional resistance can occur, for example, due to rapid shear heating, as

widely documented in high-velocity laboratory experiments (Di Toro et al., 2011; Tullis,

2007; Wibberley & Shimamoto, 2005) and supported by theoretical studies (Rice, 2006).

Most of our models include enhanced dynamic weakening due to thermal pressurization of

pore fluids and one includes flash heating of contact asperities. The models of persistently

weak faults additionally incorporate fluid overpressure and/or low quasi-static friction co-

efficients. The faults are embedded into an elastodynamic domain, with all inertial effects

captured during simulated sequences of earthquake ruptures. To approximate the effects of

off-fault yielding –which may increase dissipated energy, reduce sliding rates, and hence

reduce shear heating –we impose a limit on the fault slip rate as suggested by detailed

dynamic rupture simulations (Andrews, 2004). To illustrate the overall behavior and energy

budget of the simulated earthquake ruptures, we average the local on-fault behavior for each

dynamic rupture in a manner that preserves the overall energy partitioning within the rupture

(Noda & Lapusta, 2012). The numerical methodology, model parameters, and analyses of

simulated ruptures are further described in Section 4.5.

Let us compare two characteristic ruptures resulting from our dynamic simulations: a self-

healing pulse-like rupture obtained in a quasi-statically strong but dynamically weak fault

model (hypothesis H1 with effective normal stress of 100 MPa and efficient thermal pres-

surization of pore fluids, model TP1 from Table 4.3) and a crack-like rupture produced in

a persistently weak model (hypothesis H2 with low effective normal stress of 25 MPa and

relatively mild thermal pressurization of pore fluids, model TP6a from Table 4.3) (Figure

4.2). The two ruptures have similar average static stress drop ∆τ (∼8 MPa) and slip δ (∼4

m), while being consistent with low heat production. Only a small portion of the fault slips
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at a given time during the self-healing pulse-like rupture, resulting in a relatively short local

sliding duration (or rise time). For the crack-like rupture, a considerable portion of the fault

slips at most times during the rupture and the local sliding duration is comparable to the

total rupture duration.

Perhaps not surprisingly, the physical behavior on the fault, as illuminated by the averaged

shear stress versus slip plots (Figure 4.2), is significantly different in the two types of rup-

tures (and hence two types of fault models). The self-healing pulse occurs when the average

fault shear prestress is relatively low, ∼30 MPa, in comparison to the fault representative

quasi-static frictional strength of ∼70 MPa. Note that, to nucleate the rupture, the prestress

needs to be comparable to the (high) quasi-static frictional strength in the nucleation region,

but the size of the nucleation region is small in comparison to the overall rupture extent,

and hence the average prestress is still low (Figure 4.5, Supplementary Video S1). In each

initially low-stressed but ruptured location, the fault experiences a large dynamic stress

increase, brought by seismic waves, to overcome the (high) static strength, with the aver-

age peak shear stress of ∼100 MPa. The fault resistance then plummets, due to enhanced

dynamic weakening, to much lower dynamic levels below 10 MPa, consistent with the

quasi-statically strong but dynamically weak fault hypothesis (H1). As slip stops, the fault

experiences a rapid stress increase due to the combination of fault healing and stress increase

brought from nearby sliding regions by seismic waves, with the final average shear stress

being appreciably higher than the dynamic stress level, in what is known as stress undershoot

(Beeler et al., 2003; Kanamori & Rivera, 2013; Viesca &Garagash, 2015). The resulting av-

erage static stress drop of∼8MPa ismuch smaller than the dynamic stress changes described.

In contrast, the static and dynamic stress changes are more comparable for the milder crack-

like rupture that occurs in a model of a persistently weak fault (Figure 4.2D vs. C). Notably,

there is no significant difference between the dynamic shear stress during slip and final

shear stress; close examination reveals that the final stress is actually slightly lower than

the dynamic resistance, a mild stress overshoot characteristic of crack-like ruptures (Figures
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Figure 4.2: Simulated self-healing pulses on quasi-statically strong but dynamically weak
faults vs. crack-like ruptures on chronically weak faults: energy partitioning and comparison
with field observations. (A-B) Characteristic evolution of slip for the two rupture types.
Contours are plotted every 0.25 s. (C-D) The corresponding average evolution of shear
stress vs. slip that also illustrates the energy budget (see text), with the radiated energy in
blue. The self-healing pulse experiences substantial stress undershoot, with the dynamic
shear stress much lower than the final stress. (E-F) The radiated energy to moment ratios
for the simulated pulses (vs. crack-like ruptures) are much larger than (vs. comparable to)
inferences for large earthquakes from teleseismic measurements (pink stars and triangles).
The higher values of radiated energy for the self-healing pulses are compatible with limited
regional estimates from large crustal earthquakes (green triangles, Table 4.6). Dashed lines
connect teleseismic and regional estimates for the same earthquakes.

4.2D and 4.6, and Supplementary Videos 2 and 3; Kanamori & Rivera, 2013; Madariaga,

1976; Viesca & Garagash, 2015). In order to maintain low heat production, as well as

similar average static stress drop to the self-healing pulse, the crack-like rupture requires

persistently lower stress levels, achieved in this case by a (low) effective normal stress of 25
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MPa, consistent with hypothesis (H2).

4.3 Large differences in radiated energy

While the two types of ruptures exhibit similar stress drop and average slip, their energy par-

titioning substantially differs. In particular, the radiated energy from the self-healing pulse is

over six times larger than that of the crack-like rupture. Through an extensive suite of simu-

lations with different fault properties (Tables 4.1-4.5), we find that this is a generic result: the

ratio of the radiated energy to seismic moment, which is proportional to apparent stress (Ide

& Beroza, 2001; Ye et al., 2016b), is almost an order of magnitude larger for the self-healing

pulses than for crack-like ruptures with comparable stress drop and slip (Figure 4.2E). Note

that the crack-like ruptures in our simulations produce radiated energy values comparable

to those seismologically inferred for natural megathrust earthquakes (Figure 4.2E-F), while

the self-healing pulse-like ruptures result in about an order-of-magnitude higher values of

radiated energy. The higher radiated energy of self-healing pulses is consistent with limited

estimates from large crustal earthquakes, which seem to exhibit higher apparent stress than

megathrust earthquakes (Figure 4.2F; Choy & Boatwright, 1995; Perez-Campos & Beroza,

2001). Note that higher radiated energy for earthquakes with the samemoment is commonly

interpreted in terms of higher static stress drops (Figure 4.2E; Ide & Beroza, 2001; Ma &

Archuleta, 2006; Perez-Campos & Beroza, 2001). Our results show that ruptures with the

same, or even lower, static stress drop and moment would have considerably higher radiated

energy if they have higher undershoot (and hence are more pulse-like) (Figures 4.2E and

4.7, Section 4.6). This result is independent of the absolute stress levels on the fault (Figures

4.7 - 4.8). Intraplate earthquakes are an interesting example of ruptures with relatively

high radiated-energy-to-moment ratios which may be achieved by higher static stress drops

than the typical values of 1-10 MPa (Allmann & Shearer, 2009; Choy & Boatwright, 1995;

Perez-Campos & Beroza, 2001). We do not focus on intraplate earthquakes here since they

may not occur under low-stress, low-heat conditions which are predominately evidenced for

mature plate-boundary faults.

The reason for the substantial difference in radiated energy is the completely different rela-



96

tion between the dynamic resistance and final level of stress for the self-healing pulses in

comparison to the crack-like ruptures, which significantly modifies their overall energy par-

titioning (Kanamori & Rivera, 2013). Earthquake ruptures release part of the elastic strain

energy stored in the surrounding medium; some of the energy is consumed in dissipation

on and around the fault (dissipated energy), and the rest is radiated away from the fault

(radiated energy). The average shear resistance vs. slip curves used to examine the average

behavior of the representative pulse-like and crack-like earthquake ruptures also serve as

illustrations of the energy budget, due to their special construction (Noda & Lapusta, 2012).

The total strain energy released per unit rupture area ∆W/A is the trapezoid encompassed by

red dashed lines in Figure 4.2; the dissipated energy is shaded by gray; and the difference,

illustrated by blue, is the radiated energy. Because the dynamic resistance dips signifi-

cantly below the final level of stress for self-healing pulse-like ruptures while the average

static stress drop and slip are the same, the difference between the strain energy released

and dissipated energy –i.e., the radiated energy –is significantly larger for the self-healing

pulse-like ruptures than for the crack-like ruptures of the same average static stress drop and

slip (Section 4.6). Note that the additional dissipation associated with the dynamic shear

stress increase at the rupture tip above the initial stress level comes at the expense of the

radiated energy, resulting in white regions inside the red-dashed trapezoid that depicts the

total energy available for dissipation and radiation.

Our simulations show that progressively sharper self-healing pulses, with shorter local slip

durations compared to total rupture duration, experience increasingly larger average stress

undershoot, and, as a consequence, result in increasingly more radiated energy for the

same stress drop and moment (Figure 4.3). Note that the increasing stress undershoot is a

generic feature of increasingly sharper self-healing pulse-like ruptures that should develop

regardless of the exact governing physics, for the following reasons. Consider a self-healing

slip pulse of a certain local duration that achieves approximately spatially uniform local

slip. As the slip pulse propagates over longer fault stretches, it becomes relatively sharper

(i.e., the ratio of the local duration to the overall event duration becomes smaller). While
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its dynamic stress drop (defined as the difference between the initial stress and dynamic

shear resistance) stays approximately the same, governed by its local behavior, its static

stress drop –related to the slip divided by the increasing rupture length –becomes smaller.

It then follows that undershoot, equal to the difference between the dynamic and static

stress drops, increases for progressively sharper pulses. Physically speaking, as the pulse

of slip propagates through and then away from a location on the fault, the waves from the

regions slipping elsewhere reload the just-slipped portions of the fault, causing the increase

in the final shear stress level and hence the growing undershoot. To stay locked under such

increasing shear stress, the fault needs to exhibit sufficiently rapid healing (Perrin et al.,

1995). Similar considerations should apply to any physical fault mechanisms and condi-

tions that generate sharp pulse-like ruptures, with potential candidates including geometric

restrictions of the rupture area, strong heterogeneities, or elastic contrasts across the inter-

face (Andrews & Ben-Zion, 1997; Beroza &Mikumo, 1996; Day, 1982). The results of our

study would qualitatively apply to all slip-pulse ruptures with a substantial stress undershoot.

The generic mismatch between sliding resistance and final shear stress highlights the po-

tential limitation of the commonly used approach to infer the earthquake energy balance

(Kanamori & Brodsky, 2004; Ye et al., 2016b). In the common approach, the average shear

stress drop is assumed to drop from an initial average shear stress τ̄ini down to a dynamic

level of shear resistance τ̄dyn, which is assumed to be equal to the final average shear stress

τ̄fin (Figure 4.4). In this approximation, subtracting the shear stress τ̄dyn from the problem

creates a mathematical analogy with traction-free cracks of fracture mechanics, with the

remaining dissipated energy G (dark grey triangle) being analogous to the notion of fracture

energy (Cocco et al., 2004). G is also called breakdown energy (Cocco et al., 2004). In

general, the strain energy available for the breakdown energy and radiation can be defined

as ∆W true
0 /A = ER/A + G, and the relative importance of radiated energy in that sum can

be described by a radiation efficiency (Kanamori & Brodsky, 2004):

ηtrueR =
ER/A

ER/A + G
. (4.1)

For the commonly used simplified energy diagram (Figure 4.4A), the available energy is
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Figure 4.3: The relationship between the rupture mode, radiated energy, and stress state
on simulated faults. (A) Progressively sharper self-healing pulses, with shorter local slip
durations compared to total rupture duration, experience larger average stress undershoots
and, as a consequence, result in more radiated energy for the same static stress drop and
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of ruptures simulated on a quasi-statically strong but dynamically weak fault (B) and a
persistently weak/strong fault (C). The average shear stress is far from the quasi-static
strength in the former case but comparable to it in the latter case.

given by ∆W inf
0 /A = (∆τ δ)/2 and hence becomes seismologically inferable. The radiation

efficiency and breakdown energy can then be inferred as:

ηinfR =
ER/A
1
2∆τ δ

(4.2)

and

Ginf = ∆W inf
0 /A − ER/A. (4.3)

The inferable radiation efficiency is also sometimes referred to as the Savage-Wood effi-
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ciency (Savage & Wood, 1971).

seismologically-inferable 
“available energy”

Energy quantities per unit rupture area (A)

0

Standard Energy Diagram
=

= Radiation efficiency

Av
er

ag
e 

Sh
ea

r S
tre

ss

Average Slip

A 

 η
R
 in

fe
ra

bl
e

C 

Average undershoot relative to stress drop
0 1 2 3 4

-6

-5

-4

-3

-2

-1

0

1

1

0.1

3

7
5Crack-like ruptures

Increasingly sharper pulses

 0.5

0.0

-0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
4.5

Av
er

ag
e 

st
re

ss
 u

nd
er

sh
oo

t r
el

at
iv

e 
to

 s
ta

tic
 s

tre
ss

 d
ro

p

0 0.2 0.4 0.6 0.8 1
 ηR true

0

1

2

3

4

5

6

7

 η
R
 in

fe
ra

bl
e

B 
 ηR infer. =

 ηR true =  

2x

0.5x

Figure 4.4: Energy-related values for self-healing pulses are substantially different from
seismological inferences based on the standard energy budget. (A) The standard diagram for
the earthquake energy budget from which seismological inferences are defined. (B-C) Self-
healing pulse-like ruptures with larger average stress undershoot relative to static stress drop
result in greater radiated energy for the same seismologically-inferable available energy,
leading to inferable radiation efficiencies much greater than 1 and estimated breakdown
energies that are increasingly negative. Crack-like ruptures are well described by the
standard energy diagram.

A critical assumption in deriving relations (2) and (3) is that the final average shear stress

after the rupture τfin is the same as the average dynamic level of shear resistance τdyn,

which holds relatively well for crack-like ruptures (e.g. Figure 4.2D) but not for self-healing

pulse-like ruptures. Due to the substantial stress undershoot typical for self-healing pulses,

seismological inferences would significantly underestimate the available energy, resulting

in inferable radiation efficiencies much greater than 1 and inferable breakdown energies Ginf

that are negative (Figure 4.4B and C) (Section 4.6). While several seismological studies
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have indeed recorded radiation efficiencies greater than 1 and negative estimates of Ginf for

some earthquake ruptures (Abercrombie & Rice, 2005; Viesca & Garagash, 2015; Ye et

al., 2016b), such inferences are uncommon. Note that some prior studies of self-healing

pulses assumed that the extra available energy can be spent as breakdown energy (Viesca

& Garagash, 2015), whereas our simulations show that much of it translates into radiated

energy. Our simulation results also call into question the relevance for finite faults of models

with steady-state slip pulses propagating on infinite faults; such infinite-fault slip pulses have

zero radiated energy as well as zero static stress drop, in clear contradiction with seismic

observations (Rice et al., 2005). Our simulations show that pulses on finite faults generated

as part of spontaneous earthquake sequences result in evolving pulse shape, non-zero local

static stress changes and significant seismic radiation (Figures 4.9 - 4.11), despite sometimes

having near-uniform slip distribution. We have verified that these results do not depend on

the numerical resolution.

Crack-like rupture propagation can also occur in models with quasi-statically strong but dy-

namicallyweak friction for high enough levels of shear prestress (Noda et al., 2009); however,

such simulated ruptures typically have static stress drops that are too large in comparison

to field inferences of 1-10 MPa. However, for sufficiently efficient enhanced weakening,

we find that crack-like ruptures can propagate over considerably lower stress levels than the

local quasi-static strength, resulting in reasonable stress drops (Figures 4.12–4.13). While

theoretically possible, the physical plausibility of such ruptures on natural faults warrants

further study, as they require considerably more efficient weakening than the more generic

self-healing pulses, and such special weakening may potentially be easily suppressed, for

example, by dynamically induced changes in rock permeability or additional energy loss due

to off-fault damage during dynamic rupture. Ruptures with more efficient weakening may

be potentially distinguished by their production of considerably stronger high-frequency (

> 1 Hz) near-fault ground motions (Figures 4.14 - 4.15). Similarly, pulse-like ruptures

can and do occur in models of chronically weak faults, for the right combination of fault

prestress and weakening. However, such ruptures may have static stress drops (and hence



101

slips) that are too low compared to observations. Regardless of the absolute stress levels,

such pulse-like ruptures still produce high levels of radiated energy relative to their seismic

moment (Figure 4.16) and they are included in Figures 4.2 and 4.3.

Both prevailing types of ruptures –self-healing pulses on quasi-statically strong but dy-

namically weak faults and crack-like ruptures on persistently weak faults –indeed result in

low-stress, low-heat fault operation as intended (Figure 4.3B-C, models TP1 and TP8 from

Table 4.3). A crucial difference between the two models is the relation of the fault-averaged

shear stress to the representative local quasi-static strength (defined in Section 4.5), i.e.,

how ready is the fault to fail in the quasi-static sense. In the quasi-statically strong but

dynamically weak fault models, the fault is always far, on average, from the representative

local quasi-static strength (Figure 4.3B), with the difference being a large multiple of the

typical static stress drop. Such behavior elevates the importance of earthquake nucleation,

which can only occur in special locations (either locally highly stressed or locally weak),

and hence is potentially rare, perhaps leading to seismic quiescence as observed on some

major strike-slip faults (Jiang & Lapusta, 2016). For the persistently weak models, the fault

is always close, on average, to the local quasi-static strength (within one static stress drop).

4.4 Megathrust vs. crustal earthquakes

Crack-like ruptures in our simulations of persistently weak faults reproduce a number of seis-

mological observables for natural earthquakes, including stress drops between 1 and 10MPa,

radiation efficiencies between 0.1 and 1.0 (Figures 4.3 and 4.4), positive seismologically

inferable breakdown energies (Figure 4.4), and ratios of radiated energy to moment around

10−5 (Figure 4.2). Moreover, the energy partitioning for crack-like ruptures is well captured

by the standard energy analysis, with radiation efficiencies and average breakdown energy

inferred using seismological approaches being comparable to the true, simulated values,

within a factor of two (Figure 4.4 and 4.17). These results suggest that fault models incorpo-

rating chronic fault weakness may be plausible representations of natural faults, particularly

megathrusts in subduction zones which have documented evidence of fluid overpressure

(Bangs et al., 2009; Brown et al., 2003) and which dominate the inferences of radiated
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energy. While the ruptures in such models propagate mainly as crack-like ruptures or mildly

self-healing pulses, they may appear somewhat more pulse-like in finite-fault inversions,

either because the inversions may not be able to resolve weak "tails" of the continuing lower

slip rates or because the slip-rate tails have been further reduced or arrested by the geometric

effects of healing waves from the boundaries of the seismogenic region (Day, 1982). Note

that even for chronically weak faults, additional enhanced dynamic weakening can be critical

for reproducing available seismological inferences, such as realistic static stress drops (> 1

MPa) under persistently weak conditions and inferred increase in breakdown energy with

slip (Perry et al., 2020; Rice, 2006; Viesca & Garagash, 2015).

The higher radiated energy for pulse-like ruptures, however, is consistent with regional esti-

mates for crustal strike-slip earthquakes (Figure 4.2E). Our results show that the discrepancy

of 5–10 times between the radiated energy estimates for large megathrust and strike-slip

events, if real, may signify a difference in physical behavior of faults in different tectonic

environments, with mature strike-slip faults being quasi-statically strong but dynamically

weak and hosting mostly self-healing pulse-like ruptures, consistent with hypothesis H1,

and megathrust faults being chronically weak due to pore fluid overpressure (potentially

with additional milder dynamic weakening due to shear heating), consistent with hypothesis

H2. Such an interpretation would be consistent with sharp pulse-like ruptures inferred

by slip inversions of high-frequency ground motions from large, mostly crustal earthquakes

(Heaton, 1990). The validity of this insight critically depends on the accuracy of the radiated

energy estimates, which need to be further verified (Kanamori et al., 2020; Ma & Archuleta,

2006; Perez-Campos & Beroza, 2001), especially since different methods produce differ-

ent results. The (much higher) radiated energy estimates for strike-slip events are typically

obtained from regional (nearby) data, while the (lower) radiated energy estimates formegath-

rust events are obtained from teleseismic (distant) data. The estimates can be affected by

a number of factors, including attenuation, rupture directivity, and focal mechanism (Ide

& Beroza, 2001; Kanamori et al., 2020; Ma & Archuleta, 2006; Perez-Campos & Beroza,

2001; Ye et al., 2016b). The approaches for estimating radiated energy can be evaluated
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using synthetic data from various physics-basedmodels, such as the simulations in this work.

In summary, we find that two commonly invoked physical models for low-heat, low-stress

operation of mature faults can be distinguished based on radiated energy, under the con-

straint of static stress drops of 1–10 MPa consistent with finite-fault inversions of large

earthquakes. Self-healing pulse-like ruptures have relatively high radiated energy per seis-

mic moment, similar to limited regional estimates for crustal earthquakes but 5 to 10 times

higher than numerous teleseismic estimates for megathrust earthquakes. The teleseismic es-

timates for megathrusts are consistent with radiated energy from crack-like ruptures, which

need to occur on chronically weak faults in order to result in low-heat, low-stress operation.

Hence, either large megathrust earthquake ruptures rarely propagate as self-healing pulses,

or their radiated energy is substantially underestimated by current teleseismic seismological

techniques. Our findings, although conceptually promising, are based on geometrically

simplified two-dimensional models with piecewise uniform fault properties; they motivate

systematic exploration of the relation between rupture mode and seismic radiation in ge-

ometrically realistic three-dimensional fault models with heterogeneity. Our results also

suggest that re-examining the validity of the seismological estimates of radiated energy and

static stress drop from large earthquake ruptures of various types (including self-healing

pulses), using in part numerically simulated sources, would provide significant further in-

sight into earthquake source physics, driving mechanisms of large earthquakes, and hence

seismic hazard.
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4.5 Materials and methods

4.5.1 Supplementary figures
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Figure 4.5: Stress distributions before and after dynamic rupture for models of low-stress,
low heat fault operation. Distribution of the initial (grey) and final (blue) shear stress
along the fault for (A) a self-healing pulse-like rupture on a (H1) quasi-statically strong
but dynamically weak fault, and (B) a crack-like rupture on a (H2) persistently weak fault.
Both ruptures have similar average static stress drops around 7-8 MPa, and nucleate in a
region with stress levels close to their respective quasi-static strength (grey bar). For the
self-healing pulse (A), most of the fault is far below the quasi-static strength, whereas for
the crack-like rupture the entire rupture region is within 1-2 times the static stress drop from
the quasi-static strength.
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Figure 4.7: Relationship between radiated energy, seismic moment, static stress drop and
stress undershoot. (Left) Ratio of radiated energy to moment versus seismologically infer-
able available energy for simulated ruptures. Circles indicate models with average quasi-
static strength τstrength below 20 MPa, squares indicate those with τstrength between 20 and
60 MPa and triangles indicate models with τstrength greater than 60 MPa. (Right) Radiated
energy to moment ratio versus 2D moment density for simulated ruptures. Ruptures are
colored by A) average static stress drop, B) average stress undershoot, and C) the ratio of
the average rise time to rupture duration.
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Figure 4.9: Relationship between local and average stress versus slip behavior for a self-
healing pulse. (A) Evolution of accumulated slip during a representative self-healing pulse-
like rupture with thermal pressurization TP1. Slip is contoured every 0.25 s. (B) Average
shear stress vs. slip behavior. The local behavior in all ruptures is variable, however we use
the averaging methodology of Noda and Lapusta (2012) to construct the average shear stress
vs. slip behavior and illustrate averaged source parameters. (C-G) The local evolution of
shear stress with slip at five different points throughout the rupture.
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Figure 4.10: Evolution of slip pulse throughout the rupture process. (A) Evolution of
accumulated slip during a representative self-healing pulse-like rupture with thermal pres-
surization TP1. Slip is contoured every 0.25 s. (B) Average shear stress vs. slip behavior.
(C-G) The local evolution of slip rate with time at five different points throughout the rup-
ture indicating the development of pulse and non-steady local behavior. As the rupture
accelerates, the pulse becomes sharper, with shorter local slip duration compared to the total
rupture duration.
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Figure 4.11: Relationship between local and average stress versus slip behavior for a self-
healing pulse on a longer fault. (A) Evolution of accumulated slip during a representative
self-healing pulse-like rupture with thermal pressurization TP1 on a longer fault with a
50-km VW region. Slip is contoured every 0.5 s. (B) Average shear stress vs. slip behavior.
The local behavior in all ruptures is variable, however we use the averaging methodology
of Noda and Lapusta (2012) to construct the average shear stress vs. slip behavior and
illustrate averaged source parameters. (C-E) The local evolution of shear stress with slip at
five different points throughout the rupture. The general behavior is qualitatively similar to
the self-healing pulses with similar properties on the shorter fault with a 24-km VW region.
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a 0.25-second interval. (C-D) The corresponding average evolution of shear stress vs.
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is further separated into the average breakdown energy (dark gray shading) and residual
dissipated energy (light gray shading). The seismologically-inferable available energy (red-
dashed triangle) illustrates that the two ruptures have similar static stress drop and average
slip. The crack-like rupture with efficient enhanced weakening experiences large dynamic
stress changes at the rupture front but remains at very low stress levels, experiencing a mild
stress overshoot and no healing in contrast to the self-healing pulse.
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Figure 4.13: Local behavior during a self-healing pulse and crack-like rupture. (A-B)
Evolution of slip rate with time at an individual point in the center of a self-healing pulse-
like rupture (A) and crack-like rupture (B) with more efficient enhanced weakening. Both
ruptures experience a rapid acceleration of slip as the rupture front arrives, however, local
sliding is very short in the self-healing pulse-like rupture before the point quickly relocks,
whereas the point continues to slip with seismic slip rates (1 m/s) until the arrival of healing
waves from the boundary in the crack-like rupture. (C-D) Evolution of shear stress with time
for the same points as in (A-B). Both points have initially low prestress before the arrival of
the stress concentration at the rupture front. The self-healing pulse dramatically weakens
and then heals such that the static stress change is much smaller than the dynamic stress
change. In contrast, the shear stress at the point in the crack-like rupture drops dramatically
and stays low, such that the local static and dynamic stress drops are comparable.
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Figure 4.14: Particle motion for self-healing pulse and crack-like ruptures. (A) Particle
velocity vs. time in the center of the rupture region (z = 0) for a representative self-
healing pulse on a quasi-statically strong, dynamically weak fault (H1,red, Figure 4.2C),
crack-like rupture on a persistently weak fault (H2, black, Figure 4.2D), and crack-like
rupture on a quasi-statically strong, dynamically weak fault (H1, blue, Figure 4.12). (B) The
approximation of off-fault plasticity (Vlim = 15m/s) reduces the sharp peak in particle velocity
associated with the passing of the rupture front, which corresponds to high frequencymotion
above 1 Hz (Figure 4.15C-D).
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Figure 4.15: Particle motion spectra for self-healing pulse and crack-like ruptures. (A-B)
Particle velocity and acceleration spectral amplitudes in the center of the rupture region (z =
0) for a representative self-healing pulse on a quasi-statically strong, dynamically weak fault
(H1, red, Figure 4.2C), crack-like rupture on a persistently weak fault (H2, black, Figure
4.2D), and crack-like rupture on a quasi-statically strong, dynamically weak fault (H1, blue,
Figure 4.12D). Both ruptures on quasi-statically strong, dynamically weak faults experience
larger and more rapid dynamic stress changes resulting in more pronounced high-frequency
ground motion above 1 Hz. (C-D) High-frequency motions can be considerably damped by
the inclusion of approximations for off-fault plasticity (Vlim = 15 m/s), however this may be
concentrated towards higher frequencies than typically considered for many seismological
and strong ground motion studies.
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Figure 4.16: Self-healing pulses and crack-like ruptures in models with comparable quasi-
static strength. (A-B) The average evolution of shear stress vs. slip for a representative
self-healing pulse and crack-like rupture with the same low quasi-static strength conditions
(the effective normal stress of 25 MPa, models TP6a and TP 7b. The self-healing pulse
results in a smaller static stress drop and average slip than the crack-like rupture with similar
quasi-static strength and comparable dynamic resistance. However, the self-healing pulse
has a considerable undershoot compared to its static stress drop. (C-D) Despite simulated
self-healing pulses having lower average static stress drops than crack-like ruptures with
the same quasi-static strength and comparable dynamic resistance, the radiated energy to
moment ratios for the pulse-like ruptures are much larger than those for the crack-like
ruptures. E) Progressively sharper pulses experience greater average stress undershoot,
resulting in more radiated energy for the same static stress drop and moment. In panels
(C-E), the grayed-out backgrounds show results from all models as in Figure 4.2.
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Figure 4.17: Comparison of seismologically-inferable and true average breakdown energies
for simulated crack-like ruptures with average stress overshoot/undershoot within 0.5∆τ.
Inferable breakdown energies are comparable to the true values, within a factor of two.
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4.5.2 Model description

To conduct numerical simulations of long-term fault behavior including earthquake se-

quences and aseismic slip, we utilize the spectral boundary integral method to solve the

elastodynamic equations of motion coupled with friction boundary conditions, including

the evolution of pore fluid pressure and temperature on the fault coupled with off-fault

diffusion (Lapusta et al., 2000; Noda & Lapusta, 2010). Our simulations consider mode III

slip on a 1-D fault embedded into a 2-D uniform, isotropic, elastic medium. At each time

step, slip rates and shear tractions are calculated for each cell of the discretized fault by

equating fault shear stress to frictional shear resistance. The evolution of shear stress at each

cell depends on loading conditions as well as coupled interactions with slip at other fault

cells through wave-mediated static and dynamic stress transfers. The use of adaptive time-

stepping in our methodology allows us to resolve earthquake sequences in their entirety,

including the spontaneous nucleation process, dynamic rupture propagation, postseismic

slip following rupture events, and the interseismic period between events that can last up to

tens or hundreds of years.

In all of our fault models, we use the laboratory-derived Dieterich-Ruina rate-and-state

friction law with the state evolution governed by the aging law (Dieterich, 1979; Marone,

1998; Ruina, 1983):

τ = σ f (V, θ) = (σ − p)
[

f∗ + a log
V
V∗
+ b log

θV∗
DRS

]
, (4.4)

Ûθ = 1 −
Vθ
DRS

, (4.5)

where σ is the effective normal stress, σ is the normal stress, p is the pore fluid pressure,

f∗ is the reference steady-state friction coefficient at reference sliding rate V∗, DRS is the

characteristic slip distance, and a and b are the direct effect and evolution effect parameters,

respectively. Other formulations for the evolution of the state variable exist, such as the slip

law (Ruina, 1983) as well as various composite laws, and the formulation that best describes

various laboratory experiments remains a topic of ongoing research (Bhattacharya et al.,

2015). However, the choice of the state evolution law should not substantially influence the
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results of this study, as the evolution of shear resistance during dynamic rupture within our

simulations is dominated by the presence of enhanced weakening mechanisms. We use the

version of the expressions (4.4-4.5) regularized for zero and negative slip rates (Noda &

Lapusta, 2010).

During conditions of steady-state sliding ( Ûθ = 0), the friction coefficient is expressed as:

fss(V) = f∗ + (a − b) log
V
V∗
. (4.6)

The combination of frictional properties (a − b) > 0 results in steady-state velocity-

strengthening (VS) behavior, where stable slip is expected, and properties resulting in

(a − b) < 0 lead to steady-state velocity-weakening (VW) behavior, where accelerating slip

and hence stick-slip occur for sufficiently large regions. The total fault domain of size λ is

partitioned into a frictional region of size (Figure 4.18). The frictional interface is com-

posed of a region with velocity-weakening frictional properties of size λVW , surrounded by

a velocity-strengthening domain. Most simulations are performed on a fault with a 24-km

VW region, however we perform some additional studies with a 50-km VW region to verify

that our results are consistent for longer fault models. Values for parameters used in our

simulations are provided in Tables 4.1 - 4.5.

Note that the concept of "static strength" is not uniquely defined in such rate-and-state

formulations of shear resistance in which slip rate is non-zero for any non-zero shear stress

of the regularized friction formulation. Even if slip is prescribed at a fixed sliding rate,

friction depends on the history of previous slip through the evolution of the state variable,

which aims to capture the evolution of local contacts. However, at each fixed sliding rate

V , the friction eventually evolves to the steady-state value fss(V) given by (4.6). While that

steady-state value depends on the sliding rate, the dependence is relatively minor, as it is

logarithmic and (a − b) ∼ 0.01 or less. We refer to this collection of similar friction values

at slow slip rates appropriate for fault creep and earthquake nucleation as "quasi-static"

friction coefficient. The product of this quasi-static friction coefficient and the effective

confining stress (normal stress minus pore fluid pressure p) gives the shear resistance of
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Figure 4.18: Model set up for simulations of earthquake sequences and slow slip with and
without enhanced dynamic weakening. (A) The fault is composed of a velocity-weakening
(VW) seismogenic region surrounded by two velocity-strengthening (VS) sections. A fixed
plate rate is prescribed outside of these regions. (B) We incorporate enhanced dynamic
weakening due to the thermal pressurization of pore fluids by calculating the evolution of
temperature and pore fluid pressure due to shear heating and off-fault diffusion throughout
our simulations. (C) A short section of the accumulated slip history for simulated sequences
of crack-like earthquake ruptures and aseismic slip from the same simulation as rupture of
Figure 4.2. Seismic events are illustrated with red lines plotted every 0.5 seconds while
interseismic slip is plotted in black every 10 years.

faults at slow sliding rates, which we call quasi-static strength. As the representative value

of such quasi-static strength, we choose the shear resistance of the fault steadily creeping

at the prescribed long-term tectonic plate rate Vplate with the interseismic value of the pore

pressure pint (i.e. the value of pore pressure not affected by thermal pressurization of pore

fluids):

τ
strength
quasi-static = τss(Vplate) = (σ − pint)

[
f∗ + (a − b) log

(
Vplate

V∗

)]
. (4.7)

Laboratory experiments have shown that the standard rate-and-state laws (Equations 4.4-4.5)

work well for relatively slow slip rates (10−9 to 10−3 m/s). However, at higher slip rates,

including average seismic slip rates of ∼1 m/s, additional dynamic weakening mechanisms,

such as thermal pressurization, can be present. Thermal pressurization occurs when pore

fluids within the fault shearing layer heat up, expand, and pressurize during dynamic rupture,
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reducing the effective normal stress, and therefore shear resistance (Noda & Lapusta, 2010;

Rice, 2006; Sibson, 1973). Thermal pressurization is governed in our simulations by the

following coupled differential equations for pore pressure and temperature evolution (Noda

& Lapusta, 2010):
∂p(y, z; t)

∂t
= αhy

∂2p(y, z; t)
∂y2 + Λ

∂T(y, z; t)
∂t

, (4.8)

∂T(y, z; t)
∂t

= αth
∂2T(y, z; t)

∂y2 +
τ(z; t)V(z; t)

ρc
exp(−y2/2w2)
√

2πw
, (4.9)

where T is the temperature of the pore fluid, αhy is the hydraulic diffusivity, αth is the

thermal diffusivity, τV is the source of shear heating distributed over a Gaussian shear layer

of half-width w, ρc is the specific heat, y is the distance normal to the fault plane, and Λ is

the coupling coefficient that gives pore pressure change per unit temperature change under

undrained conditions.

The efficiency of the thermal pressurization process depends on the interplay of several pa-

rameters, where it may be the dominant weakening mechanism during unstable slip for some

physical regimes (Rice, 2006; Segall et al., 2010). Shear heating, τV , must be strong enough

to raise the temperature, given both the specific heat of the rock, ρc, and the half-width of

the shear zone, w. Furthermore, this heat generation must not be dissipated too quickly by

the thermal diffusivity, αth, of the system. If sufficient heat is generated, the temperature

of the system increases, and this increase is coupled into an increase in pressure of the

fluid. The fluid then pressurizes as long as the hydraulic diffusivity, αhy , is not too large.

Some of these parameters are relatively well constrained from laboratory experiments: αth

= 10−6 m/s and ρc = 2.7 MPa K (Noda & Lapusta, 2010; Rempel & Rice, 2006; Wibberley

& Shimamoto, 2005). The change in pore pressure given a degree increase in temperature

is described by the coupling coefficient Λ, which depends on the extent of damage and

inelastic dilation around the shearing layer, with typical values ranging from 0.1 for highly

damaged wall rock to 1 MPa/K for intact wall rock (Rempel & Rice, 2006; Rice, 2006). Two

other parameters that substantially control the efficiency of thermal pressurization are the

half-width of the shear zone w and hydraulic diffusivity αhy, which can vary significantly:

w can vary from 10−3 m to 10−1 m and αhy can vary from 10−2 m2/s to 10−6 m2/s (Rice,
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2006). Changing these two parameters within these ranges can make thermal pressurization

either very efficient or completely negligible. The values we have chosen are motivated by

prior studies (Noda & Lapusta, 2010; Rice, 2006) as well as our goal of examining ruptures

with both efficient and inefficient enhanced dynamic weakening. In our simulations, we use

uniform values for all hydrothermal properties other than w throughout the entire domain,

as indicated in Tables 4.1-4.3. w is set to the values shown in Table 4.3 within the VW

region, and then smoothly expands, over a 1 km region at the transition to the VS regions, to

a 1-m shearing layer, so that thermal pressurization is effectively disabled in the VS regions.

In addition to thermal pressurization, we also consider a model with enhanced dynamic

weakening due to flash heating (Rice, 2006), which has been shown to be efficient at

generating self-healing pulses (Dunham et al., 2011a; Noda et al., 2009). Flash heating

occurs when highly stressedmicrocontacts heat up dramatically during rapid slip andweaken

dynamically. This process is often modeled with a characteristic slip velocity Vw at which

flash heating activates. The friction coefficient then evolves to a residual level fw and

remains there during rapid sliding. To model flash heating, we make slight modifications

to our steady-state rate-and-state equations to take into account the weakening following

(Noda, 2008):

fss(V) = f (V, θss(V)) =
f (V,DRS/V) − V

|V | fw
1 + |V |/Vw

+
V
|V |

fw (4.10)

where V is the slip rate on the fault, Vw is the characteristic slip velocity at which flash

heating becomes effective, and fw is the residual friction coefficient. Values for parameters

used in our simulations with flash heating are provided in Table 4.4.

We use thermal pressurization in most of our simulations to demonstrate the effects of en-

hanced dynamic weakening, however the effects should be qualitatively consistent for other

weakening mechanisms.

Earthquakes can nucleate only if the steady-state velocity-weakening region is larger than

the nucleation size h∗. For 2-D problems, two theoretical estimates of the nucleation size in
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mode III are (Rice & Ruina, 1983; Rubin & Ampuero, 2005):

h∗RR =
π

4
µDRS

(b − a)(σ − p)
; h∗RA =

2
π

µDRSb
(b − a)2(σ − p)

(4.11)

where µ is the shear modulus. Another important physical length-scale is the cohesive zone

which represents the region at the rupture front under which the primary breakdown in shear

resistance occurs. The quasi-static estimate of the cohesive zone Λ0 is given as:

Λ0 = C1
µ

W
(4.12)

with C1 being a constant and the weakening rate W = bσ
DRS

for the standard rate-and-state

friction law. As the rupture speed increases to the limiting wave speed cL (cL is the shear

wave speed in mode III), the cohesive zone collapses towards zero. Stronger rate-weakening

mechanisms, such as thermal pressurization and flash heating, result in much larger weak-

ening rates and reductions in the cohesive zone size, such that the criterion for sufficient

numerical resolution becomes far more restrictive.

Previous studies established thatΛ0/∆z of 3 to 5 is required to resolve dynamic ruptures with

relatively mild weakening imposed through linear slip-weakening friction (Day et al., 2005).

However we find that this is not sufficient with more efficient enhanced dynamic weakening,

such as that which results in self-healing pulses. If one considers adiabatic and undrained

conditions, then an upper bound for the weakening rate due to thermal pressurization can

be expressed as (Noda & Lapusta, 2010),

WTP =
f τΛ
√

2πwρc
. (4.13)

For the simulations with the most efficient thermal pressurization in this study ( fpeak ≈ 0.9,

τpeak ≈ 45 MPa, Λ = 0.34 MPa/K and w = 1 mm), WTP is about 2035 MPa/m, which

is five to six times larger than the weakening rate from rate-and-state friction WRS = 375

MPa/m. We therefore use a spatial discretization of ∆z = 3.3 m which resolves the quasi-

static cohesive zone estimate by at least 25 cells and the nucleation size with more than 88

cells. This more stringent resolution criterion motivates the choice of 2-D calculations for

this study. We have compared the results of our 2-D simulations with fully dynamic 3-D



123

Parameter Symbol Value
Loading slip rate Vplate 10−9 m/s
Shear wave speed cs 3299 m/s
Shear modulus µ 36 GPa

Thermal diffusivity αth 10−6 m2/s
Specific heat ρc 2.7 MPa/K

Rate-and-state parameters
Reference slip velocity V∗ 10−6 m/s

Reference friction coefficient f∗ 0.6
Rate-and-state direct effect (VW) a 0.010

Rate-and-state evolution effect (VW) b 0.015
Rate-and-state direct effect (VS) a 0.050

Rate-and-state evolution effect (VS) b 0.003
Length scales

Fault length λ 96 km
Frictional domain λ f r 72 km

Velocity-weakening region λVW 24 km
Cell size ∆z 3.3 m

Quasi-static cohesive zone Λ0 84 m
Nucleation size (Rice & Ruina, 1983) h∗RR 226 m

Nucleation size (Rubin & Ampuero, 2005) h∗RA 550 m

Table 4.1: Parameters for all simulations unless specified otherwise.

Parameter Symbol RS 1 RS 2 RS 3 RS 4
Interseismic effective normal stress σ̄ = (σ − pint) 100 MPa 50 MPa 20 MPa 10 MPa

Reference friction coefficient f∗ 0.12 0.12 0.6 0.6
Characteristic slip DRS 5 mm 2.5 mm 1 mm 0.5 mm

Shear zone half-width w 10 mm 1 mm 10 mm 1mm
Quasi-static cohesive zone Λ0 106 m 106m 106 m 106 m

Nucleation size (Rice & Ruina, 1983) h∗RR 282 m 282 m 282 m 282 m
Nucleation size (Rubin & Ampuero, 2005) h∗RA 688 m 688 m 688 m 688 m

Table 4.2: Parameters for models with only standard rate-and-state friction, without en-
hanced dynamic weakening.

simulations for models with milder enhanced dynamic weakening and found qualitatively

similar results.
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Parameter Symbol TP 1 TP 2 TP3
Interseismic effective normal stress σ̄ = (σ − pint) 100 MPa 100 MPa 100 MPa
Rate-and-state direct effect (VS) a 0.05 0.05 0.05

Characteristic slip DRS 4 mm 4 mm 4 mm
Shear zone half-width w 10 mm 10 mm 10 mm
Hydraulic diffusivity αhy 10−3 m2/s 10−4 m2/s 10−5 m2/s
Coupling coefficient Λ 0.34 MPa/K 0.34 MPa/K 0.34 MPa/K

TP 4ab TP 5
Interseismic effective normal stress σ̄ = (σ − pint) 50 MPa 50 MPa
Rate-and-state direct effect (VS) a 0.025, 0.05 0.05

Characteristic slip DRS 2 mm 2 mm
Shear zone half-width w 1 mm 1 mm
Hydraulic diffusivity αhy 10−4m2/s 10−5 m2/s
Coupling coefficient Λ 0.34 MPa/K 0.34 MPa/K

TP 6ab TP 7abc TP8
Interseismic effective normal stress σ̄ = (σ − pint) 25 MPa 25 MPa 25 MPa
Rate-and-state direct effect (VS) a 0.025, 0.05 0.0125, 0.025, 0.05 0.05

Characteristic slip DRS 1 mm 1 mm 1 mm
Shear zone half-width w 10 mm 1 mm 10 mm
Hydraulic diffusivity αhy 10−4m2/s 10−4m2/s 10−4 m2/s
Coupling coefficient Λ 0.34 MPa/K 0.34 MPa/K 0.1 MPa/K

Table 4.3: Parameters for models with thermal pressurization of pore fluids.

Parameter Symbol FW1
Interseismic effective normal stress σ̄ = (σ − pint) 25 MPa

Characteristic slip DRS 1 mm
Shear zone half-width w 1 mm

Characteristic weakening velocity Vw 0.14 m/s
Residual dynamic friction fw 0.12

Table 4.4: Parameters for models with flash weakening.
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Parameter Symbol M2
Fault length λ 192 km

Frictional domain λ f r 168 km
Velocity-weakening region λVW 50 km

Cell size ∆z 3.3 m

Table 4.5: Length scales for longer fault model with thermal pressurization parameters TP1.

4.5.3 Methodologies for computing seismological inferences

In our dynamic simulations, the slip and stress evolution is computed at every point along

the fault at all times. As such, we are able to calculate the the local and average energy

quantities, stress and slip directly in our models (Figure 4.19). We utilize the averaging

methodology of Noda and Lapusta (2012) to compute the energetically averaged properties

directly from the local properties along the fault. The initial distribution of shear traction

on the fault before an earthquake is denoted by τini(z). An earthquake produces a slip

distribution δ(z) and the traction along the fault changes to τfin(z). In our models, there

is small non-zero slip everywhere on the fault during every event due to the nature of the

rate-and-state framework. In terms of determining the area associated with the dynamic

rupture process, it is appropriate to only consider points where the inertial term becomes

significant. However, there is no exact quantitative criterion to define that. Hence we follow

prior studies (Jiang & Lapusta, 2016; Lapusta et al., 2000; Noda & Lapusta, 2013; Noda et

al., 2013) by defining the ruptured domain Σ to consist of locations that exceed a threshold

slip rate of Vth:

Σ = {z ∈ Ω|V(z) > Vth}. (4.14)

There is a sharp falloff in slip rate outside the ruptured area down to the creeping rate

many orders of magnitude below the seismic slip rate. Thus, changing the threshold by

even an order of magnitude or two does not change the rupture size appreciably. For the

simulations presented in this study, we use a threshold of Vth = 0.01 m/s. We have explored

the sensitivity of the rupture area calculated based on Vth ranging from 10−3 to 10−1 m/s and

find minor variations, within 1%. Given this criterion for the rupture area, we are able to

calculate all of the averaged and energetic quantities directly from the local properties along

the fault.
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Figure 4.19: Averaging local on-fault behavior for entire rupture, for comparison with
seismological observations. (A) Evolution of accumulated slip during a representative
crack-like rupture with thermal pressurization. (B-D) The local evolution of shear stress
with slip at three representative points showing: (B) the milder stress evolution during initial
nucleation including preslip, (C) stress concentration followed by continuous weakening
during typical rupture propagation, and (D) negative static stress drop near the arrest of the
rupture. (E) Average shear stress vs. slip behavior which resembles the shape of the typical
propagation location. The local behavior in all ruptures is variable, however we use the
averaging methodology of Noda and Lapusta (2012) to construct the average shear stress vs.
slip behavior and illustrate averaged source parameters.

For natural earthquakes, it is difficult to precisely determine the rupture area due to non-

uniqueness and smoothing during inversion procedure. For large events, the rupture shape

and dimension may be determined from finite-fault inversions, along with the corresponding

local changes in slip and stress, depending on the parameterization of the inversion, includ-

ing the choice of a minimum slip threshold for a given region to slip before being considered

part of the ruptured area (P. Liu & Archuleta, 2000; Noda et al., 2013; Tinti et al., 2016;

Ye et al., 2016b). Note that many seismological studies infer average slip, moment-based

stress drops, and rupture dimensions for earthquakes based on spectral representations of

the seismic waveforms fitted by a model based on a circular crack with constant rupture

speed (Abercrombie & Rice, 2005; Rice, 2006; Viesca & Garagash, 2015). The stress drop

consistent with energy partitioning is the energy-based or slip-weighted stress drop, which
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Figure 4.20: Relationship between local and average stress versus slip behavior for a crack-
like rupture. (A) Evolution of accumulated slip during a representative crack-like rupture
with thermal pressurization TP6a. Slip is contoured every 0.25 s. (B) Average shear
stress vs. slip behavior. The local behavior in all ruptures is variable, however we use the
averaging methodology of Noda and Lapusta (2012) to construct the average shear stress vs.
slip behavior and illustrate averaged source parameters. (C-E) The local evolution of shear
stress with slip at three different points throughout the rupture. (F-H) The local evolution
of slip rate with time at the same points.

was proven to always be larger than the moment-based estimate (Noda et al., 2013). This

reality, along with resolution limitations and the application of smoothing during inversions,

suggest that seismologically estimated average stress drops most likely provide lower esti-

mates for the needed energy-based stress drops for energy partitioning (Adams et al., 2016;

Noda et al., 2013). Some recent studies used finite-fault inversions to estimate energy-based

stress drops directly (Ye et al., 2016b).
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In this study, we compare the averaged source properties from our simulated ruptures with

published seismological inferences from 114 large (Mw ≥ 7.0) megathrust earthquakes

between 1990 and 2015 (Ye et al., 2016b), as well as inferences from the large crustal

earthquakes shown in Table 4.6. The inferences for megathrust earthquakes, such as the

energy-based stress drops, are based on teleseismic finite fault inversions, where the final

rupture models depend on the choice of rupture speed in the parameterization of the in-

version. For the comparisons in this study, we utilize the results of published finite fault

inversions with a rupture speed of 2.5 km/s (Ye et al., 2016b).

Only moment-based estimates of static stress drop can be determined for the large crustal

earthquakes, given published inferences of seismic moment and rupture dimensions. The

estimates of the moment-based stress drop vary by about a factor of 2 given the assumed

geometry of the source region and the dimensions inferred from published finite fault

inversions. These estimates of moment-based stress drop most likely represent lower bounds

for the energy-based stress drop, which is the more appropriate stress drop for considerations

of energy partitioning. Published teleseismic and regional estimates of radiated energy for

the large crustal earthquakes in Table 4.6 vary by about a factor of 4 within the published

references.

4.5.4 Shear heating during frictional sliding

We aim to explore conditions compatible with the inferred low-stress, low-heat operation of

mature faults. In addition, as the constitutive behavior in our simulations does not account

for the production of macroscopic melt, maintaining temperatures below those for which

substantial melt formation would be expected is important for producing models that are

physically self-consistent. Frictional formulations such as standard rate-and-state laws as

well as flash heating do not depend on macroscopic temperature changes and are therefore

mathematically agnostic to the localization of shear and corresponding shear heating. We

monitor the temperature changes throughout all of our simulations and use the results

from only those simulations in which temperatures remain below 1000 0C, a representative

equilibrium melting temperature for granitic compositions in Earth’s crust (Rice, 2006).
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Figure 4.21 illustrates the evolution of maximum fault temperature change over sequences

of earthquakes and slow slip for the three models shown in Figure 4.3.
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Figure 4.21: The history of maximum temperature increase along the fault during the three
simulations shown in Figure 4.3B-C. The three fault models are representative cases for (H1)
a quasi-statically strong, dynamically weak fault (black lines), (H2) a persistently weak fault
(red lines), and a persistently strong fault (blue lines). The models consistent with low-heat,
low-stress hypothesis (H1) and (H2) maintain maximum temperature changes below 1000o
C, whereas the temperature changes for the persistently strong fault routinely increases over
2000o C during large ruptures, given the shear zone width of 10 mm. Note that we can
reduce the maximum fault temperatures in the persistently strong fault model by increasing
the width of the shearing zone.

The rate of shear heating during sliding on a frictional interface is proportional to the shear

resistance and sliding rate, τV , and the average shear stress associated with dissipation and

heat generation can be calculated as:

τheat(t) =

∫ t

0

∫
Ω
τ(z, t ′)V(z, t ′)dzdt ′∫ t

0

∫
Ω

V(z, t ′)dzdt ′
(4.15)

where Ω is the area of the fault interface. The associated temperature increase due to

distributed shear within a shearing layer heavily depends upon the degree of localization.

Let us consider the temperature rise due to slip distributed over a Gaussian shear layer with

half-width, w. The temperature rise at the center of the layer as a function of time can be

expressed as (Rice, 2006):

T(0, t) =
1
ρc

∫ t

0

τ(t ′)V(t ′)dt ′
√

2π
√
w2 + 2αth(t − t ′)

(4.16)
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where αth is the thermal diffusivity and ρc is the specific heat. In the simplified case of

dissipation due to sliding at a fixed slip rate and a fixed residual stress level, ignoring any

dissipation associated with the breakdown process during a rupture, the peak temperature

change as a function of the shear zone half-width and the prescribed dynamic resistance

level, assuming 1 and 5 meters of slip at V = 1 m/s, is shown in Figure 4.22. Substantial

temperature increase is expected as the shearing layer becomes localized between 1 - 10

mm, except for very low dynamic resistance levels. For w = 1 mm, temperatures would

be expected to increase by over 1000o C if the dynamic resistance is greater than 3 MPa.

Even for a much broader layer of w = 10 mm, substantial temperature increase would be

expected for sliding at stress levels above 10 MPa. Note that, for slip rates higher than 1

m/s as commonly observed in dynamic rupture simulations, the shear heating production

rate increases, leading to even higher temperatures. In addition, this consideration ignores

the dissipation associated with the breakdown process, which may be comparable to or even

greater than the dissipation at low residual stress levels.
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Figure 4.22: Peak temperature rise at varying dynamic levels of shear resistance and degrees
of shear localization after 5 meters (right) and 1 meter (left) of slip at a fixed slip velocity of
1 m/s. For shear localized within layers of 1 mm half-width, resistance levels must be lower
than 10 MPa even for 1 meter of slip to avoid temperature rises above 1000 0C.
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4.5.5 Approximation for off-fault plasticity

As enhanced dynamic weakening can lead to rapid and large dynamic stress changes, the

slip rates in models with perfectly linear elastic bulk materials can reach unphysical levels

(> 100 m/s), particularly for fault models with higher effective normal stress (e.g. σ = 100

MPa). In real rocks, such high slip rates, and hence strain rates, would be mitigated by the

onset of additional inelastic deformation around the rupture front, which is not explicitly

included in the spectral boundary integral method that we use.

Numerical studies of dynamic rupture propagation with off-fault Drucker-Prager plasticity

have shown that imposing a maximum slip velocity can mimic the effect of off-fault energy

loss due to the plastic yielding of the off-fault materials under high strain rates (Andrews,

2004). In full consideration of plasticity, the yielding conditions depend upon the bulk ma-

terial properties and confining conditions. For consistency and simplicity, here we employ

a fixed value of Vmax = 15 m/s, motivated by yielding considerations at a representative

seismogenic depth of 10 km (Andrews, 2004). We have explored a range of maximum ve-

locities in our simulations and found that the qualitative behavior of the resulting ruptures,

including the relationships among seismological parameters of interest, such as radiated en-

ergy, apparent stress, radiation efficiencies, stress drop, and average slip, do not substantially

change for velocity limits of 10 m/s or above.

Interestingly, we find that the effect of mimicking the off-fault dissipation through the slip

velocity limit is much larger for single ruptures with a given prestress than for ruptures in

sequences of earthquakes and slow slip. Limiting slip velocities for single ruptures with

the same prestress conditions can result in slower rupture propagation and diminished slip

(Figure 4.23). In the context of sequences of events, however, the additional dissipation

is balanced by ruptures nucleating at slightly higher average shear prestress in the cases

that we have examined. This compensation, in turn, results in similar kinematics, such as

average slip and stress drops, but mildly different energy partitioning (Figure 4.24). Sim-

ulations of single dynamic ruptures with the explicit incorporation of off-fault plasticity as
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well as enhanced dynamic weakening due to flash heating have also shown that the addition

of off-fault plasticity increases the prestress levels at which self-healing pulses may occur

(Dunham et al., 2011a). In our simulations, we find that, following the first several events

(Figure 4.24), the average stress drop and slip tend to be comparable for simulations with

and without the velocity limit, though the average breakdown energy and radiated energy

differ. The initial weakening rate during ruptures is generally similar (Figure 4.24), but it

is eventually slightly restricted by the velocity limit, leading to mildly larger G, which is

expected with the incorporation of off-fault plasticity. However, while ∆τ is similar, τini

and τfin are both higher for ruptures including the velocity limit, though the dynamic level

τdyn is more or less the same, resulting in a larger undershoot and therefore more radiated

energy for the same static stress drop and slip (Figure 4.24).

These results highlight the importance of studying effects of off-fault plasticity on rupture

propagation within the context of earthquake sequences where stress conditions evolve in

a self-consistent manner based on previous slip events. Note that much more stringent

and perhaps unreasonable limits (e.g., Vmax = 1 m/s) favor higher prestress conditions and

predominantly crack-like rupture propagation. The specific effects of off-fault plasticity on

rupture propagation and energy partitioning merits much more detailed study.

4.5.6 Reference to idealized crack model

In comparing local slip duration of crack-like and pulse-like ruptures (Figure 4.3), we refer to

the idealized case of a 2-D antiplane rupture expanding as a symmetric elliptical crack with

constant rupture speed and stress drop, which has been extensively studied both analytically

and numerically (Kostrov, 1964; Madariaga, 1976). The rupture expands with constant

rupture speed vr to a crack half-length a, then abruptly arrests at t = tarr = a
vr
, producing

the slip profile (Kostrov, 1964):

δ1(z, tarr) =
1

E
(√

1 − v2
r /c2

s

) ∆τ
µ

(
a2 − z2

)1/2
(4.17)

where µ is the shear modulus, ∆τ is the stress drop which is uniform over the rupture

length, cs is the shear wave speed, and E is the complete elliptic integral of the second
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Figure 4.23: Using local velocity limit as an approximation for off-fault plasticity. (A-B)
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the weakening rate, increases the breakdown energy G, limits the amount of slip during the
rupture, resulting in a milder pulse.

kind. Following the abrupt arrest is a period of wave-mediated stress redistribution along

with the propagation of healing waves from the ends of the rupture. This period of stress

redistribution leads to an adjustment of the final (static) slip profile to:

δ1(z, tfin) =
∆τ

µ

(
a2 − z2

)1/2
. (4.18)

The wave-mediated stress adjustment following rupture arrest results in a stress overshoot

where the final stress is lower than the dynamic sliding level. This stress overshoot can vary

from 15 percent at vr = 0.6cs to about 20 percent at vr = 0.9cs from the static solution

(Madariaga, 1976).
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Figure 4.24: Long-term behavior of simulations with velocity limit. (A-B) Average shear
stress vs. slip diagrams for eventswith similar stress drop and slip after long-term simulations
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the effects of off-fault plasticity. The average curve for the rupture with the velocity limit in
(B) is overlain on (A) as a red-dashed contour for comparison. Initial weakening is generally
consistent but is constrained by the velocity limit, resulting in more continuous weakening
and mildly larger G. The higher initial stress also results in greater overall undershoot and
higher ER/A. (C-D) The general accumulation of slip within each event is similar for the
long-term behavior of simulations without (C) and with (D) the velocity limit. (E) The
average shear stress is higher in simulations with the velocity limit, which overcompensates
for the additional effects due to limited velocity

After the abrupt arrest at the rupture boundary, slip continueswithin the center of the ruptured

region until the arrival of healing waves propagating from the boundaries. Accounting for

the propagation of healing waves, assumed to propagate at speed ch, the total slip duration
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can be estimated as:

T = a
(

1
vr
+

1
ch

)
. (4.19)

Similarly, the local sliding duration or rise time as a function of location can be estimated

as,

t(x3) =

(
1
vr
+

1
ch

)
(a − |z |) . (4.20)

The spatial average of the rise time over the ruptured region is then,

t =

(
1
vr
+ 1

ch

) ∫ a

−a
(a − |z |)dz

2a
=

a
2

(
1
vr
+

1
ch

)
(4.21)

giving the ratio t/T = 0.5. Note that for similar considerations with a perfectly symmetric

rupture in 3D, the average rise time would be,

t =

(
1
vr
+ 1

ch

) ∫ 2π
0

∫ a

0 (a − r)rdrdθ

πa2 =
a
3

(
1
vr
+

1
ch

)
(4.22)

with the same total duration T . The spatial average of the rise time is smaller in 3D given

that a greater proportion of the rupture area consists of near-arrest portions of the rupture

where slip durations are relatively short compared to the interior. In this case, the ratio of

the average rise time to duration is t/T = 0.33, which is a modest adjustment of the 2D

solution.

4.6 Supplementary text

4.6.1 Energy budget for earthquakes

The earthquake energy budget considers the partitioning of the total strain energy change

∆W into the dissipated energy, EDiss, and the energy radiated away from the source region

to the far-field, ER:

∆W = EDiss + ER . (4.23)

This relation can also be written per unit source area as:

∆W/A = EDiss/A + ER/A. (4.24)

The total strain energy change per unit area on the fault ∆W/A is given by (Kostrov, 1974):

∆W/A =
1
2
(τ̄ini + τ̄fin)δ̄, (4.25)
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where τ̄ini is the average initial stress, τ̄fin is the average final stress, δ̄ is the average final

slip, and where (Noda & Lapusta, 2012):

τ̄ini =

∫
Σ
τini(z)δfin(z)dz∫
Σ
δfin(z)dz

, (4.26)

τ̄fin =

∫
Σ
τfin(z)δfin(z)dz∫
Σ
δfin(z)dz

. (4.27)

In this study, we follow the work of Noda and Lapusta (2012), which provides an averaging

methodology for constructing the average shear stress vs. slip diagrams, τ(δ′). The dissi-

pated energy within the source volume can then be calculated by integrating the area under

the average stress-slip curve in the energy diagram,

EDiss =

∫ δ

0
τ(δ′)dδ′, (4.28)

and the energy that is radiated outside of the source region as seismic waves is determined

by the difference between the strain energy change and dissipated energy within the volume,

ER = ∆W − EDiss. (4.29)

While it is presumed that the radiated energy can be inferred from seismological observations

(Boatwright & Choy, 1986; Dahlen, 1977; Husseini & Randall, 1976; Kanamori & Brodsky,

2004; Kanamori & Rivera, 2013; Kostrov, 1974; Kostrov & Das, 1988; Venkataraman &

Kanamori, 2004; Ye et al., 2016b), determining the total strain energy change and dissipated

energy is challenging as it requires knowledge of the absolute stress levels throughout the

source process. The dissipated energy is often partitioned further into the breakdown energy

G (Cocco et al., 2004; Palmer & Rice, 1973) and the "frictionally dissipated" energy EF/A.

The breakdown energy G is thought to be the part of the dissipated energy that controls the

dynamics of the rupture, often considered as the frictional analog of fracture energy from

singular and cohesive-zone models of dynamic fracture theory. The so-called frictionally

dissipated energy EF is the remaining portion of the dissipated energy which is assumed to

not affect the dynamics of the source process. Note that while the only source of dissipation

in our simulations is through frictional resistance, natural shear ruptures can also experience

contributions from dissipation within the surrounding volume, such as from the activation
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or production of damage during ruptures. We partially approximate this effect by imposing

the velocity limit, as discussed in the Section 4.5.

The averaging methodology for the representative shear stress vs. slip evolution during

dynamic rupture can serve as the energy partitioning diagram as it preserves the total event

energy quantities such as strain energy change, dissipated energy, and therefore radiated

energy. However it does not necessarily precisely preserve the average breakdown energy.

The true average breakdown energy can be defined as the spatial average of the local

breakdown energy with respect to the local stress minima τmin(x):

G =
1
A

∫
Σ

[∫ δ(τmin(x))

0
τ(δ) − τmin(δ)dδ

]
dz (4.30)

which is how we compute the average breakdown energy in our models. This is not

necessarily equivalent to the breakdown energy reflected in the average diagram, since the

minimum shear stress of the average curve does not have a simple relation to the minima of

the curves of each ruptured point. Numerical studies of crack-like ruptures including thermal

pressurization found that these two averaged quantities give similar, but not identical results

(Perry et al., 2020). Therefore, the representation of G from the average energy diagram

can illustrate the average breakdown energy, but does not represent its exact value.

4.6.2 Standard analysis of earthquake energy balance

The standard earthquake energy analysis considers an idealized average stress vs. slip rupture

model (Figure 4.4) in order to express energy-related quantities that are thought to be relevant

to the source dynamics in terms of potentially seismologically-inferable quantities, namely

stress drop, average slip, and radiated energy. An important aspect of the analysis is the

concept of "available energy," or the energy associated with the breakdown process and

radiation, effectively the energy thought to be relevant to the dynamics of the earthquake

rupture (Dahlen, 1977; Husseini & Randall, 1976; Kanamori & Brodsky, 2004; Kanamori

& Rivera, 2013; Kostrov, 1974; Kostrov & Das, 1988; Venkataraman & Kanamori, 2004;

Ye et al., 2016b). We can define the true available energy per unit area ∆W true
0 /A as the sum

of the breakdown energy (defined per unit source area) and radiated energy per unit source
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area:

∆W true
0 /A = G + ER/A. (4.31)

Given this definition, one can also compare the relative magnitudes of the breakdown

and radiated energy through a quantity known as radiation efficiency (Venkataraman &

Kanamori, 2004):

ηtrueR =
ER/A

G + ER/A
=

ER/A
∆W true

0 /A
. (4.32)

The determination of the available energy is fairly straight forward given the idealized energy

diagram of Figure 4.4 (Kanamori &Heaton, 2000; Kanamori &Rivera, 2013; Venkataraman

& Kanamori, 2004). In this idealized model, the shear stress evolution follows simplified

linear slip weakening where stress drops linearly from an initial value τini until slip reaches

a critical value Dc, at which the stress remains constant at τdyn for the remainder of slip,

with τfin = τdyn. The available energy in this case can be represented by:

∆W inf
0 /A =

1
2
∆τ δ, (4.33)

which we call the seismologically-inferable available energy, as it is based on quantities that

can be inferred seismologically. Here δ is the average slip and ∆τ is the energy-based stress

drop (Noda & Lapusta, 2012; Noda et al., 2013):

∆τ = τ̄ini − τ̄fin =

∫
Σ
∆τ(z)δfin(z)dz∫
Σ
δfin(z)dz

. (4.34)

Given this definition, one defines the seismologically-inferable radiation efficiency as:

ηinfR =
ER

∆W inf
0 /A

=
ER/A
1
2∆τ δ

. (4.35)

This quantity can, and has been, estimated from seismological observations (Venkataraman

& Kanamori, 2004; Ye et al., 2016b). Note that while 0 ≤ ηtrueR ≤ 1 by definition, ηinfR can in

principle exceed 1. In that sense, ηtrueR can be called a radiation efficiency, but ηinfR is more

accurately a radiation ratio (Noda et al., 2013).
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Within the context of the idealized rupturemodel represented by the standard energy diagram

(Figure 4.4), it can be seen that:

∆W inf
0 /A ≡

1
2
∆τ δ = ∆W − EF = ER/A + G ≡ ∆W true

0 /A. (4.36)

Given this notion of available energy, there have also been attempts to estimate the average

breakdown energy G for natural earthquakes based on ∆W inf
0 /A and ER/A (Abercrombie

& Rice, 2005; Rice, 2006; Ye et al., 2016b). Assuming relations equivalent to the standard

energy diagram, one can subtract the radiated energy ER/A from the seismologically-

inferred available energy∆W inf
0 /A, thus leading to the seismologically-estimated breakdown

energy Ginf:

Ginf = ∆W inf
0 /A − ER/A. (4.37)

Substituting values that can be inferred seismologically, we can define the inferable quantity

(Abercrombie & Rice, 2005; Rice, 2006):

G′ =
1
2
δ̄

(
∆τ −

2µER

M0

)
, (4.38)

where µ is the shear modulus and M0 is the seismic moment of the event. The last term is

proportional to the apparent stress, σA = µ
ER

M0
(Wyss & Brune, 1968).

4.6.3 Discrepancy between dynamic fault resistance and final post-earthquake stress:

consequences for estimating energy-related quantities

In our simulations, the final average shear stress is typically not the same as the dynamic level

of shear stress, which is a potential issue with the standard energy analysis. This mismatch

is due to either a dynamic stress undershoot, as typical for self-healing pulses, or a dynamic

stress overshoot, as often the case for crack-like ruptures (Figure 4.6; Kanamori & Rivera,

2013; McGarr, 1999; Viesca & Garagash, 2015). Note that the two levels of stress are not

expected to be linked physically, since the dynamic shear resistance is determined by a host

of mechanisms acting during slip, such as rate-and-state friction, shear heating, fluid ef-

fects, etc, while the final static stress depends only on the initial stress and the final static slip.

The discrepancy between the final stress and dynamic fault resistance can significantly

affect the considerations of the earthquake energy balance. Here, we consider a few relevant
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simple modifications of the standard energy diagram and the resulting relationship between

the inferable and true available energies, ∆W inf
0 and ∆W true

0 , respectively. Recall that the

frictionally dissipated energy EF is defined as the energy dissipated below the lowest average

dynamic level of shear stress τdyn in the average stress vs. slip diagram. We can define

an alternative form of the true available energy ∆Ŵ true
0 based on the average stress vs. slip

diagram:

∆Ŵ true
0 /A = ∆W/A − EF/A =

1
2
(τ̄ini + τ̄fin)δ̄ − τ̄dynδ̄. (4.39)

Note that this expression for the true available energy is not necessarily the same as the

previous definition ∆W true
0 /A ≡ ER/A + G, as mentioned earlier due to the complicated

relationship between the minimum of the average curve and the average of the local stress-

slip curves which provide G. In addition, the relationship assumes that the fault does not

recover appreciably from the minimum level of average dynamic stress before the final slip.

Additional energy may be dissipated after the rupture reaches its minimum dynamic level

of stress if it restrengthens with slip rather than only at the final slip. In our simulations,

we find that this effect is normally negligible compared to the other energy quantities and

∆Ŵ true
0 ≈ ∆W true

0 .

If the rupture behavior includes a stress undershoot of size γ∆τ, as occurs in self-healing

pulse-like ruptures, ∆Ŵ true
0 may be written in terms of γ∆τ and ∆W inf

0 :

∆Ŵ true
0 /A =

1
2
∆τδ̄ + (τ̄fin − τ̄dyn)δ̄

= ∆W inf
0 /A + γ∆τδ̄. (4.40)

We see then that the ratio between the true and seismologically-inferable available energies

depends on the extent of the over- or undershoot:

∆Ŵ true
0

∆W inf
0
= 1 + 2γ. (4.41)

If γ = 0, we have the idealized case and ∆Ŵ true
0 = ∆W inf

0 . If there is a non-negligible

undershoot, then γ > 0 and∆Ŵ true
0 > ∆W inf

0 . The ratio between the true and seismologically-

inferable available energies can also be expressed as the ratio between η inf
R and η true

R (Figure
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4.25):
∆Ŵ true

0

∆W inf
0
=

ER/A + G
1
2∆τ δ

=
η inf
R

η true
R

. (4.42)
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Figure 4.25: Comparison of seismologically-inferable and true radiation efficiencies as a
function of stress undershoot. As the average undershoot exceeds 0.5 of the static stress
drop, the inferable radiation efficiency exceeds the true efficiency by more than a factor of
2.

Note that, for rupture behavior with a non-zero increase from τini to τpeak (called strength

excess), the additional dissipated energy does not alter the available energy. This initial

increase affects how available energy is partitioned into breakdown energy G and radiated

energy ER/A, but does not change the actual available energy ∆W true
0 of the rupture. The

strength excess increases the breakdown energy G at the expense of radiated energy ER/A.

The same argument can be made for rupture behaviors with an overshoot as is often the case

with crack-like ruptures, and equation (S37) still applies, with negative values of γ. This

behavior would result in ∆Ŵ true
0 < ∆W inf

0 , but in most simulations |γ | � 1 for crack-like

ruptures, and thus ∆W true
0 ≈ ∆W inf

0 . Numerical studies have shown that the seismologically

estimated breakdown energy Ginf agrees well (within a factor of 2) with the true breakdown

energy G for crack-like events incorporating thermal pressurization (Perry et al., 2020),
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which is consistent with the simulations in this study (Figure 4.17).

As we have seen, if the fault experiences a substantial stress undershoot, the available energy

for radiation and breakdown would be significantly underestimated. Let us consider the case

where the fault experiences a stress undershoot of magnitude γ∆τ and we can approximate

the breakdown energy as G ≈ 1
2 (1 + γ)∆τDc. Then:

ER/A = ∆Ŵ true
0 /A − G

=
1
2
∆τδ̄ + γ∆τδ̄ −

1
2
(1 + γ)∆τDc, (4.43)

ηinfR =
ER

∆W inf
0 /A

= 1 + 2γ − (1 + γ)Dc/δ̄. (4.44)

Thus, ER will exceed ∆W inf
0 for any undershoot such that:

γ >
Dc/δ̄

2 − Dc/δ̄
, (4.45)

which would lead to inferable radiation efficiencies (more appropriately called ratios) of

ηinfR > 1. If γ > 1, meaning that the undershoot is larger than the average stress drop, then

the stress undershoot is large enough that ER/A would always exceed ∆W inf
0 , no matter the

slip-weakening distance Dc. If ∆W inf
0 ≈ ∆W true

0 , as is the case for crack-like ruptures, then

ηinfR ≈ η
true
R . However, for a substantial undershoot, as is the case for self-healing pulse-like

ruptures, one would expect ηinfR � ηtrueR .

Notice that Ginf is also directly related to ηinfR :

Ginf = ∆W inf
0 /A − ER/A→

Ginf

∆W inf
0 /A

= 1 − ηinfR . (4.46)

Hence, if ∆W inf
0 underestimates ∆W true

0 , and we still subtract ER/A, then we are left with

a significant underestimation of the true breakdown energy G. Indeed, in the case of sub-

stantial undershoot, γ > 0.5, the radiated energy can exceed ∆W inf
0 , therefore estimates of

Ginf will also be negative (Figure 4.4c), which is physically inconsistent with the concept of

breakdown energy.
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There is no simple way to calculate G reliably for self-healing pulse-like ruptures using

current seismological observations. One approach has considered the case of a stress

undershoot and additionally assumed a complete coseismic stress loss (τ = 0) during large

pulse-like events (Viesca & Garagash, 2015). In that work, Gmax is defined as:

Gmax = Ginf + τ̄finδ̄ =
1
2
δ̄

(
∆τ −

2µER

M0

)
+ τ̄finδ̄. (4.47)

To calculate Gmax, the absolute final stress on the fault must be known (or assumed) and the

dynamic level of stress is assumed to be zero, thereby assuming that the available energy

is the total strain energy change. This metric assumes that all of the dissipated energy

is incorporated into the breakdown energy, hence it represents the maximum potential

breakdown energy given the assumed absolute stress levels. Note that Gmax can dramatically

overestimate G if the fault does not weaken to zero strength.

4.6.4 Discrepancy between dynamic fault resistance and final post-earthquake stress:

consequences for apparent stress

The existence of stress undershoot/overshoot also affects the interpretation of apparent

stress. A number of seismological studies have associated variations in apparent stress with

differences in static stress drop (Ide & Beroza, 2001; Ma & Archuleta, 2006; McGarr, 1999;

Perez-Campos & Beroza, 2001). We can approximate the relationship between apparent

stress and static stress drop by dividing equation (S40) by average slip:

σA =
ER

δA
= ∆τ

[
1 + 2γ

2
−

1 + γ
2

Dc

δ

]
. (4.48)

This relation shows that increasing static stress drop ∆τ indeed leads to increasing apparent

stress, for the same γ and Dc/δ. However, even if two ruptures have comparable static

stress drop, the apparent stress would considerably differ if the two ruptures exhibit differ-

ent undershoot/overshoot. For the idealized case with no substantial undershoot (γ = 0),

σA ≈ ∆τ
[
1/2 − Dc/2δ

]
, whereas for an undershoot of γ = 1, σA ≈ ∆τ

[
3/2 − Dc/δ

]
.

Assuming again that Dc is similar for the two cases, this would result in over a factor of 3

greater apparent stress for the undershoot of γ = 1. For γ = 2, this increases to at least a

factor of 5.
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Our simulations indeed show that the ratio of radiated energy to moment, and thus appar-

ent stress, increases for both increasing static stress drop and undershoot (Figure 4.7). In

fact, ruptures with smaller static stress drops but considerable undershoot can have higher

apparent stress than ruptures with larger static stress drops but mild to no undershoot. For

example, if we examine crack-like ruptures and self-healing pulses in models with the same

quasi-static strength, our simulated self-healing pulses tend to have smaller average static

stress drops but higher ratios of radiated energy to moment in comparison to simulated

crack-like ruptures (Figure 4.16).

As the apparent stress is sensitive to both the static stress drop and degree of undershoot,

according to our simulations, a (relatively high) radiated energy to moment ratio around

10−4 may be indicative of either a moderately sharp self-healing pulse with a standard stress

drop around 2 - 3 MPa and undershoot γ ≈ 1.5, or a crack-like rupture with negligble

undershoot/overshoot and a larger stress drop of 10 - 15MPa. The seismologically-inferable

radiation efficiency scales the radiated energy by both the potency δA and static stress drop

∆τ, resulting in a single scalar quantity that may provide insight into the degree of stress

undershoot and rupture style. While the inferable radiation efficiency is not a true efficiency,

it describes a scaled energy measure with reference to an idealized fracture model, providing

a useful metric for how compatible the average source process is with a crack-like rupture

(Figures 4.3A and 4.8). Note that the discussed relationships between radiated energy,

moment, static stress drop, and average slip depend on stress changes during the rupture but

not the absolute stress levels (Figures 4.7-4.9).

The relationship between apparent stress, stress undershoot and static stress drop emphasizes

the need for improving constraints on static stress drops from large earthquakes. For example,

apparent stress is inferred to be systematically higher for intraplate earthquakes, which also

are typically inferred to have higher static stress drops (Allmann & Shearer, 2009; Choy

& Boatwright, 1995; Perez-Campos & Beroza, 2001). The apparent stress is sometimes

used as a constraint for inversions of static stress drop, where it is assumed that the static
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stress drop must be larger than the apparent stress, consistent with a stress overshoot for

crack-like ruptures (Savage & Wood, 1971; M. Wei & McGuire, 2014). The uncertainty

of stress drops can be quite high; for example a Mw 6.5 intraplate earthquake offshore

Northern California in 2010 has been inferred static stress drops between 2 and 20 MPa,

with a high value of apparent stress around 7 MPa (M. Wei & McGuire, 2014). Note that

the 7 MPa apparent stress with a lower-end estimate of static stress drop at 2 MPa results in

a seismologically-inferable radiation efficiency (or radiation ratio) around 3, consistent with

our relatively sharp simulated self-healing pulses and considerable undershoot. However, if

the apparent stress is lower than the static stress drop, then the radiation ratio would be less

than 1, consistent with crack-like ruptures and dynamic overshoot.

4.6.5 Radiated energy from self-healing pulses: relation to local rupture behavior,

qualitative consistency for different rupture arrest and for longer faults

The average stress-slip curves that we produce for our ruptures, including pulse-like, are

representative of typical local behavior (Figures 4.9 and 4.19). At the same time, the

simulated pulses in this study are not steady but exhibit variations in local slip, slip rate,

and rupture speed, resulting in seismic radiation and non-zero local static stress changes

throughout the rupture process (Figures 4.9-4.10). Hence our simulated slip pulses are quite

different from the theoretical case of an infinitely propagating steady pulse in which all the

total strain energy change is dissipated within the source region, implying no net radiated

energy. Note, however, that there is no notion of far-field radiation for an infinite fault given

that the entire infinite domain is the source region. Moreover, the relevance of the infinitely

propagating steady pulse model for natural earthquakes is not readily apparent, as not only

the radiated energy but also static stress drop are zero for such models (Rice et al., 2005).

Several theoretical and numerical studies have examined such steady pulse propagation and

shown that it is highly unstable, with pulses eventually dying or growing as a result of small

perturbations in prestress (Brantut et al., 2019; Gabriel et al., 2012).

To study the effect of rupture nucleation and arrest on the radiated energy, we conduct sim-

ulations with different properties of the VS regions that surround our seismogenic region.
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Modifying the VS properties modifies the nucleation process as well as allows for smoother

or more forcible arrest. We find that models with significantly different properties of the

arresting regions produce qualitatively similar results for the radiated energy per moment

(Figure 4.26).

Our simulations are performed with a 24-km velocity-weakening region due to computa-

tional limitations, given the long simulations to generate long earthquake sequences and

resolution required for such simulations with efficient enhanced weakening. The conclu-

sions should hold for a longer fault as well, as we illustrate by considering a twice longer,

50-km velocity-weakening region (Figures 4.11 and 4.27). In general, while the specific

values of the average source properties such as average stress drop, slip, radiated energy,

and average breakdown energy may vary based on the geometry and properties of the fault,

the main findings presented in this study should be qualitatively consistent, in that any con-

ditions that result in an average stress undershoot, or larger average dynamic stress changes

than static stress changes, would result in higher radiated energy for the same average slip

and static stress drop.

4.6.6 On crack-like vs. pulse-like ruptures

We find that self-healing pulses require higher average prestress than crack-like ruptures to

achieve the same average dynamic stress levels and static stress drops. Crack-like ruptures

within our simulations experience relatively minor under/overshoot with respect to their

static stress drop, therefore the average initial stress in the rupture area is around one static

stress drop away from the average dynamic resistance level:

τini ≈ τdyn + ∆τ. (4.49)

In contrast, self-healing pulse-like ruptures experience a substantial undershoot γ, such that

the average initial stress is significantly more than one stress drop away from the average

dynamic resistance level:

τini = τdyn + (1 + γ)∆τ, (4.50)
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Figure 4.26: Effect of velocity-strengthening regions on average source properties. (A-C)
Representative self-healing pulses with comparable average slip in models TP7 with varying
VS properties. (D-F) Corresponding average stress-slip diagrams that illustrate the energy
partitioning for the ruptures in (A-C). Regions with strong VS properties (aVS = 0.05) arrest
rupture propagation over shorter distances than those with relatively weaker VS properties
(aVS = 0.0125), resulting in mild differences in average source properties such as the
average slip and stress drop. (G-I) The scaling relationships between the average source
properties are generally consistent amongmodels with varying VS properties (TP 4,6 and 7),
with ruptures exhibiting larger average undershoot radiating more energy for the same static
stress drop and average slip. Models with relatively strong VS properties (aVS = 0.05)
are denoted by circles, while models with aVS = 0.025 and aVS = 0.0125 are denoted
by triangles and squares, respectively. The grayed-out backgrounds show results from all
models as in Figure 4.2.
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Reference model of
idealized elliptical 2D crack

with constant rupture speed 
(Madariaga, BSSA 1976)
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Figure 4.27: Consistency of radiated energy scaling for different fault lengths. (A-B) Self-
healing pulses propagating over a 50-km VW region (squares) result in systematically lower
static stress drops than those propagating over a 24-km VW region and result in mildly
sharper pulses with shorter rise time to rupture duration. C) While the specific slip and
stress distributions for different rupture sizes vary, they exhibit a consistent trend in higher
radiated energy with increasing stress undershoot for the same average slip and stress.

where γ ≥ 0.5. Therefore, self-healing pulses have higher average prestress than crack-like

ruptures, for the same average dynamic stress levels and static stress drops. This consider-

ation implies a minimum average initial stress that is needed for self-healing pulses; if we

take τdyn = 0 MPa as the minimum dynamic stress level, then the minimum average initial

stress for a self-healing pulse is τmin
ini = (1 + γ)∆τ. So for a minimum stress drop of 1 MPa,

the average initial stress must be τini ≥ (1 + γ)MPa.

Another implication is that crack-like ruptures have larger stress drops than self-healing

pulses, for the same average initial stress and dynamic stress levels (Figure 4.27). This is

because ∆τ pulse =
(
τini − τdyn

)
/(1 + γ), whereas ∆τ crack ≈ τini − τdyn, resulting in the

relation,

∆τ crack ≈ (1 + γ)∆τ pulse, (4.51)
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given the same average initial and dynamic stress levels. It is then apparent that the crack-

like ruptures must have lower average initial stress for crack-like ruptures and self-healing

pulse-like ruptures to have similar average dynamic stress levels and static stress drops.

Note that all ruptures nucleate in regions of relatively high stress, close to the quasi-static

strength (Figure 4.5). However, enhanced weakening allows for larger dynamic stress

changes at the rupture front which facilitates rupture propagation over regions of the fault

with lower prestress. In the case of persistently weak faults, the stress changes at the rupture

front are more mild, requiring prestress levels to be not too far from the quasi-static strength

for the rupture to propagate (Figure 4.5B).

We find that fault models with high quasi-static strength and ultra-efficient dynamic weaken-

ing can support crack-like ruptures at fairly low levels of shear prestress, in which case they

can have reasonable stress drops. The reasoning is as follows. Theoretical and numerical

studies have shown that ruptures can take the form of self-healing pulses, provided that the

background shear stress is around or below a critical stress level τpulse that depends on the

properties of dynamic weakening (Noda et al., 2009; Zheng & Rice, 1998). In other words,

there exists a critical background stress level τpulse, below which, if a rupture is to propagate,

it can only propagate as a self-healing pulse. As the efficiency of the weakening increases,

τpulse decreases. Hence if the weakening is quite efficient, then τpulse can be near-zero, and

crack-like ruptures may be able to propagate at fairly low levels of shear stress (even though

the levels would have to be higher than τpulse).

Let us consider a fault model (Model A) with an effective confining stress of 100 MPa

and efficient thermal pressurization (Λ = 0.34 MPa/K and αhy = 10−3 m2/s), resulting in

self-healing pulses. Now consider another fault model (Model B) with similar physical con-

ditions, except with more efficient thermal pressurization (Λ = 0.5 MPa/K and αhy = 10−6

m2/s). In such conditions, the crack-like rupture in Model B is able to propagate with an

average initial stress that is even lower than the self-healing pulse in Model A (Figure 4.12),
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with both ruptures propagating through average prestress well below the quasi-static strength

(∼70 MPa), and therefore consistent with (H1) quasi-statically strong but dynamically weak

fault operation. Both ruptures experience large dynamic stress changes at the rupture front,

increasing to peak stress levels around 100 MPa, and then dramatically weakening to shear

resistance levels around or below 10 MPa due to thermal pressurization. The self-healing

pulse dramatically weakens and then heals such that the static stress change is much smaller

than the dynamic stress change (Figure 4.13). In contrast, the local shear stress within

the crack-like rupture drops dramatically and stays low, with comparable local static and

dynamic stress changes (Figure 4.13). The two ruptures have comparable static stress drops

and average slip, and are compatible with (H1), operating at sliding resistance levels well

below the same quasi-static strength. However, the self-healing pulse results in a substantial

stress undershoot and therefore radiates considerably more energy, whereas the radiated

energy for the crack-like rupture in Model B is comparable to those of milder crack-like

ruptures with similar stress drop and slip, as well as seismological inferences.

While this example illustrates that the propagation of crack-like ruptures at stress levels much

lower than the quasi-static strength is theoretically possible, the physical plausibility of such

mechanism on natural faults is a topic for further exploration. In particular, such behavior

would require substantially more efficient enhanced weakening than typically considered

(Noda&Lapusta, 2010; Rempel &Rice, 2006; Rice, 2006;Wibberley & Shimamoto, 2005),

which may be potentially suppressed, for example by the evolution of rock permeability or

energy loss from damage production, during dynamic rupture.

One implication of the possibility for crack-like ruptures with efficient enhanced weakening

propagating on quasi-statically strong, but dynamically weak faults is that they may exhibit

comparable average source properties, such as static stress drops, average slip, radiated

energy, apparent stress, and seismologically inferable breakdown energies, as more mild

crack-like ruptures on persistently weak faults (Figure 4.2D vs. 4.12D). This poses a

challenge for discriminating the local physical behavior of natural earthquakes from more
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remote teleseismic observations alone. However, the larger dynamic stress changes near the

rupture front for both self-healing pulse-like ruptures and crack-like ruptures with efficient

enhanced weakening would likely result in stronger near-fault groundmotion (Figures 4.14A

and 4.15). Indeed, the fault-parallel particle acceleration spectral amplitudes near the center

of these ruptures on quasi-statically strong, dynamically weak faults in our models can be

about a factor of 5 times those for the milder crack-like rupture on a persistently weak

fault between 1–10 Hz (4.13B). Note that high-frequency motions may also be considerably

damped by the presence of off-fault inelastic deformation (Figure 4.14B and Figure 4.15

C-D) and attenuation, as well as enhanced by the presence of strong heterogeneities in both

the rupture process and elastic bulk (Dunham et al., 2011a, 2011b). The expected near-fault

ground motions from models with varying degrees of efficiency in enhanced weakening and

rupture styles warrants more detailed study.

4.6.7 Captions for supplementary videos

Video S1: Evolution of shear stress during a self-healing pulse-like rupture on a quasi-

statically strong but dynamically weak fault.

Evolution of shear stress (black line) along the fault during a self-healing pulse-like rup-

ture on a quasi-statically strong but dynamically weak fault (H1). The video illustrates the

changes in shear stress with respect to the initial (gray) and final (blue) shear stresses, as

well as the quasi-static strength (red). The initial stress on the majority of the fault is far

below the quasi-static strength, except for the region in which the rupture nucleates, which

is small compared to the total rupture area. As the rupture front crosses the seismogenic

(VW) region, each point experiences a large dynamic stress increase towards ∼100 MPa,

and then drops to low levels below 10 MPa. Only a small portion of the fault slips at a given

time as the shear resistance heals behind the rupture front and the fault relocks, resulting

in higher final stress levels than the level of shear resistance atwhichmost of the slip occurred.

Video S2: Evolution of shear stress during a crack-like rupture on a persistently weak

fault.

Evolution of shear stress (black line) along the fault during a mild crack-like rupture on a
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persistently weak fault (H2). The initial shear stress over the entire rupture region is within

1–2 times the static stress drop (7.3MPa) away from the quasi-static strength. Slip continues

within the regions behind the rupture front until the rupture front is arrested in the VS region

on the other side of the seismogenic (VW) region, and healing waves redistribute stress and

arrest slip. All conventions follow Video S1.

Video S3: Scaled evolution of shear stress during a crack-like rupture on a persistently

weak fault.

Evolution of shear stress (black line) along the fault for the same mild crack-like rupture as

shown in Video S2, however with the shear stress axis rescaled to emphasize the dynamic

stress changes during the rupture. Slip continues within the regions behind the rupture front

until the rupture front is arrested in the VS region on the other side of the seismogenic (VW)

region, and healing waves redistribute stress and arrest slip, resulting in a dynamic overshoot

throughout most of the ruptured region. All conventions follow Videos S1 and S2.
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C h a p t e r 5

ABSOLUTE STRESS LEVELS ON NUMERICALLY SIMULATED FAULTS:
DEFINITIONS, LINKS TO SEISMOLOGICAL OBSERVABLES, AND
DIFFERENCES FOR CRACK-LIKE VS. PULSE-LIKE RUPTURES

This chapter has been adapted from:

Lambert, V. & Lapusta, N. Absolute stress levels on numerically simulated faults: Defini-

tions, links to seismological observables, and differences for crack-like vs. pulse-like

ruptures. in preparation for Journal of Geophysical Research: Solid Earth.

5.1 Introduction

The low-stress operation of mature faults indicate that the average shear resistance must

be low during periods of substantial fault motion. For example, thermal measurements

surrounding mature faults are in principle related to the average shear stress associated with

dissipation and shear heating. Such observations can thus provide constraints for the average

dynamic shear resistance at seismic slip rates during large earthquakes (Brune et al., 1969;

Fulton et al., 2013; Gao &Wang, 2014; Henyey &Wasserburg, 1971; Lachenbruch & Sass,

1980; Nankali, 2011; Tanikawa & Shimamoto, 2009). Studies of exhumed mature faults

suggest that shear motion can be accommodated within narrow layers, less than one to sev-

eral millimeters wide (e.g. F. M. Chester & Chester, 1998; Wibberley & Shimamoto, 2003).

Higher bounds for the average shear stress associated with shear heating during dynamic

rupture are expected to be on the order of 10 MPa for shear localized between 1 to 10 mm,

in order to avoid substantial heat flow and pervasive melt production (Lambert et al., 2021;

Rice, 2006). Laboratory and theoretical studies suggest that the shear resistance at seismic

slip rates can be significantly lower than the quasi-static shear resistance on faults during

periods of slow aseismic slip and interseismic locking with negligible motion, particularly if

the fault undergoes enhanced dynamic weakening at seismic slip rates (Acosta et al., 2018;

Di Toro et al., 2011; Noda et al., 2009; Rice, 2006; Sibson, 1973; Tsutsumi & Shimamoto,
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1997; Wibberley et al., 2008). As such, field evidence for the low-heat, low-stress operation

of faults are not inherently indicative of the average shear resistance on faults during periods

of quasi-static motion, which may be of particular relevance to tectonic and geodynamic

studies.

Given constraints that the average dynamic shear resistance associated with shear heating

should be low (< 10 MPa), a long-standing question in earthquake physics is how represen-

tative the average static stress drop of large earthquakes is for the average pre-rupture shear

stress (i.e. prestress), which may be considered a measure of the average fault strength at

the scale of the rupture (Kanamori, 1994; Lambert et al., in review; McGarr, 1999; Scholz,

2000; Townend & Zoback, 2000). Theoretical studies have suggested that the presence of

substantial topography on Earth’s surface provides evidence that the ambient shear stress in

the crust is around 100 MPa at some localities (Jeffreys, 1959), though how this is accom-

modated along faults and the upper mantle remains a topic of active research (Behr & Platt,

2014; Dielforder, 2017; Dielforder et al., 2020; Luttrell & Smith-Konter, 2017; Luttrell et al.,

2011). Several studies have estimated the absolute stress levels along major plate boundary

faults, such as the San Andreas Fault system, by considering the force balance of tectonic

block motion, topography, and mantle buoyancy (Fay & Humphreys, 2006; Fialko et al.,

2005; Luttrell & Smith-Konter, 2017), inferring shear stress levels of 20 to 30MPa averaged

over seismogenic depths. Similar studies suggest that the topography associated with most

collisional megathrusts can be maintained by average shear stresses ranging from 7 to 25

MPa (Dielforder, 2017; Dielforder et al., 2020; Lamb, 2006; Luttrell et al., 2011). However,

some calculations suggest that regions with more substantial topography, such as the North

Chilean subduction zone and portions of the San Andreas and San Jacinto fault zones,

may require average shear stresses up to 40 MPa (Fay & Humphreys, 2006; Lamb, 2006).

These estimates are all lower than the expected shear resistance given typical quasi-static

friction measurements in the lab and confining conditions assuming rock overburden and

hydrostatic fluid pressures (Byerlee, 1978; Ikari et al., 2011), however some are significantly

higher than the constraint of less than 10-20 MPa based on heat flow and other shear heating
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considerations. This distinction suggests that the difference between the average earthquake

prestress and the shear resistance during rapid slip could be more than one average static

stress drop (Fay & Humphreys, 2006; Heaton, 1990).

A substantial challenge in relating inferences of average shear stress and resistance among

laboratory and field studies is the wide range of scales and styles of motion involved. Recent

numerical studies have demonstrated that some measures of average shear stress, such as

the spatially-averaged and energy-based prestress before dynamic ruptures, depend on both

the size of the rupture and efficiency of dynamic weakening on the fault (Lambert et al., in

review, 2021; Perry et al., 2020). In particular, such studies highlight that the shear prestress

levels required for the relatively slow, unstable sliding consistent with rupture nucleation

can be substantially different from those needed to sustain dynamic rupture propagation,

emphasizing the importance of considering fault heterogeneity and finite-fault effects when

relating laboratory and field measurements of fault stress. A key component of this disparity

between rupture nucleation and propagation is the significant role of dynamic stress interac-

tions during dynamic rupture propagation, suggesting that the motion-dependence of shear

resistance as well as inertial effects during dynamic rupture are crucial for understanding

the evolution of average absolute shear stress on faults.

A number of studies combine seismological inferences with insights into frictional rupture

behavior from lab experiments and dynamic fracture theory in order to infer characteristics

of the stress evolution and energy partitioning on faults during earthquake ruptures (Aber-

crombie & Rice, 2005; McGarr, 1999; Rice, 2006; Savage & Wood, 1971; Venkataraman

& Kanamori, 2004; Viesca & Garagash, 2015; M. Wei & McGuire, 2014; Ye et al., 2016b).

These studies often assume idealized source representations and make specific assump-

tions about the average dynamic resistance level during sliding. Recent numerical studies

have demonstrated that the physical interpretation of some inferences of average earthquake

source properties, such as the average static stress drop, average breakdown energy, and

radiation ratio, depends on whether rupture propagation occurs as a dynamic crack or self-
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healing pulse, and special consideration is needed when relating them to the local stress

evolution during ruptures (Lambert & Lapusta, 2020; Lambert et al., 2021; Perry et al.,

2020). Hence the interpretation of such average source quantities in terms of the local fault

physics depends on the rupture model.

As a variety of methods and considerations are used to infer the absolute levels of shear

stress before, during, and after ruptures, here we review different measures of average

shear stress on faults, and study their relationship with one another and with geophysical

inferences. We consider three different notions of average shear stress: 1) the spatially-

averaged stress τA, 2) the dissipation-based stress τD , and 3) the energy-based stress τE .

We use numerical simulations of sequences of earthquakes and aseismic slip (SEAS) on

rate-and-state faults with enhanced dynamic weakening due to the thermal pressurization of

pore fluids to compare these three different measures of average fault shear stress and relate

them to seismologically inferable source properties, such as the average static stress drop

and apparent stress, in simulated ruptures of differing rupture style.

5.2 Fault models with rate-and-state friction laws and thermal pressurization of pore

fluids

5.2.1 Model formulation

We conduct numerical simulations of sequences of spontaneous earthquakes and aseismic

slip following the methodological developements of Lapusta et al. (2000), Noda and Lapusta

(2010), and Lambert et al. (2021). Most of our simulations consider mode III slip on a 1-D

fault embedded into a 2-D uniform, isotropic, elastic medium. We also perform a selection

of 3-D simulations with 2-D faults in order to explore the impact of fault geometry on our

modeling conclusions. The resulting slip on the fault includes sequences of earthquakes and

aseismic slip (SEAS) simulated in their entirety, including the nucleation process, dynamic

rupture propagation, postseismic slip that follows each seismic event, and interseismic pe-

riod between seismic events that can last up to tens or hundreds of years and host steady and

transient slow slip.
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Our fault models are governed by a form of the laboratory-derived Dieterich-Ruina rate-

and-state friction law (Dieterich, 1979; Ruina, 1983):

τ = σ f (V, θ) = (σ − p)
[

f∗ + a log
V
V∗
+ b log

θV∗
DRS

]
, (5.1)

where σ is the effective normal stress given normal stress σ and pore fluid pressure p, f∗

is a reference steady-state friction coefficient at reference sliding rate V∗, DRS is the char-

acteristic slip distance, and a and b are the direct effect and evolution effect parameters,

respectively. In our simulations, we use a form of the Dieterich-Ruina law regularized for

zero and negative slip rates (Lapusta et al., 2000; Noda & Lapusta, 2010; Rice & Ben-Zion,

1996).

We use the aging form of the state variable evolution (Ruina, 1983):

Ûθ = 1 −
Vθ
DRS

, (5.2)

which aims to incorporate the evolution of contacts during sliding as well as time-dependent

healing during sufficiently slow motion. During steady-state sliding ( Ûθ = 0), the friction

coefficient is expressed as:

fss(V) = f∗ + (a − b) log
V
V∗
, (5.3)

where the combination of frictional properties (a − b) > 0 results in steady-state velocity-

strengthening (VS) behavior that leads to stable slip and (a − b) < 0 results in steady-state

velocity-weakening (VW) behavior that can leads to spontaneously accelerating slip and

hence seismic events for sufficiently large regions.

Earthquake ruptures can nucleate only if the VW region is larger than the nucleation size

h∗. For 2-D problems, two theoretical estimates of the nucleation size in mode III are (Rice

& Ruina, 1983; Rubin & Ampuero, 2005):
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h∗RR =
π

4
µL

(b − a)(σ − p)
; h∗RA =

2
π

µLb
(b − a)2(σ − p)

, (5.4)

where µ is the shear modulus. h∗RR is the estimate of spatial scale that can host accelerating

slip (Dal Zilio et al., 2020; Rice & Ruina, 1983). h∗RA is the upper bound, for the parameter

regime 1/2 < b/a > 1 , on the size of the quasi-statically expanding nucleation zone before

it transitions to dynamic rupture (Rubin & Ampuero, 2005); numerical studies find that this

is a good estimate of the nucleation size, which increases by about a factor of π2/4 in 3-D

problems (T. Chen & Lapusta, 2009).

The simulated 1-D fault in our 2-D models contains a 24-km region with VW frictional

properties where earthquakes may nucleate and propagate, surrounded by VS regions that

inhibit rupture nucleation and propagation (Figure 5.1). Our 3-D models include a VW

region with a length of 32 km and a down-dip width of 8 km, resulting in an aspect ratio

of 4. The properties of the VW regions are such (Tables 5.1 - 5.3) that the smallest di-

mension of the VW regions are roughly 6 times larger than the estimated nucleation size

in our 3-D models and 44 times larger in our 2-D models, ensuring that the regions would

be seismogenic. We refer to ruptures that span the entire VW region and arrest in the VS

region as model-spanning ruptures. Outside of these frictional regions, the fault moves with

a prescribed plate rate Vpl to provide tectonic-like loading. We define the beginning and

end of dynamic rupture, tini and tfin, respectively, as well as the ruptured region Ωrupt, in

our simulations using a slip velocity threshold (Vthresh = 1 cm/s) for seismic slip, based on

previous studies (Lambert et al., 2021; Perry et al., 2020).

Such rate-and-state laws are the most established representation of fault shear resistance for

relatively low slip rates from tectonic plate rates of 10−9 m/s to around 10−3 m/s. At higher

slip rates, further enhanced dynamic weakening of fault frictional resistance can occur,

for example, due to rapid shear heating, as widely documented in high-velocity laboratory

experiments (Acosta et al., 2018; Di Toro et al., 2011; Tullis, 2007; Wibberley et al., 2008)

and supported by theoretical studies (Rice, 2006). One particular mechanism for such
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Figure 5.1: Evolution of slip rate and shear stress with time for representative fault models
hosting crack-like (fault model TP3) and self-healing pulse-like (fault model TP6) ruptures.
(A-B) The fault models are composed of a velocity-weakening (VW) seismogenic region
surrounded by two velocity-strengthening (VS) sections. Local seismic slip duration during
(A) crack-like ruptures is proportional to the overall rupture duration where as only a small
portion of the fault slips at a given time during (B) self-healing pulse-like ruptures. (C-D)
Evolution of local slip rate and shear stress at the center of the fault over sequences of
earthquakes with low dynamic resistance and moderate static stress drops. Time series are
centered at t=0 corresponding to the ruptures shown in (A-B). (C)Most points within theVW
region are locked, with slip rates far below the loading plate rate, during the interseismic
period between dynamic ruptures. (D) The shear stress over the persistently weak fault
model (TP3) which hosts the crack-like rupture is always low (< 20 MPa). For self-healing
pulse-like ruptures on quasi-statically strong, dynamically weak fault model (TP6), the shear
stress before the rupture is relatively high compared to the persistently weak fault (> 30
MPa), then drops to low values below 10 MPa during seismic slip, and recovers to around
20 MPa over most of the ruptured region.
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enhanced weakening is the thermal pressurization of pore fluids, which occurs when pore

fluids within the fault shearing layer heat up, expand, and pressurize during dynamic rupture,

reducing the effective normal stress, and therefore shear resistance (Noda & Lapusta, 2010;

Rice, 2006; Sibson, 1973).

Our simulations also incorporate enhanced dynamic weakening due to the thermal pressur-

ization of pore fluids, which is governed by the following coupled differential equations for

pore pressure and temperature evolution (Noda & Lapusta, 2010):

∂p(y, z; t)
∂t

= αhy
∂2p(y, z; t)

∂y2 + Λ
∂T(y, z; t)

∂t
, (5.5)

∂T(y, z; t)
∂t

= αth
∂2T(y, z; t)

∂y2 +
τ(z; t)V(z; t)

ρc
exp(−y2/2w2)
√

2πw
, (5.6)

where T is the temperature of the pore fluid, αhy is the hydraulic diffusivity, αth is the

thermal diffusivity, τV is the source of shear heating distributed over a Gaussian shear layer

of half-width w, ρc is the specific heat, y is the distance normal to the fault plane, and Λ is

the coupling coefficient that gives pore pressure change per unit temperature change under

undrained conditions.

We also approximate the effects of off-fault yielding during dynamic rupture in our models

by employing a velocity limit of Vmax = 15 m/s, as discussed in detail in Lambert et al.

(2021). This approximation is motivated by detailed dynamic rupture simulations with

off-fault yielding (Andrews, 2004), with the value of the velocity limit corresponding to a

representative seismogenic depth of 10 km.

Note that for realistic, lab-derived fault constitutive relations such as rate-and-state friction,

the concept of a local "static friction" coefficient is ill-defined, since slip rate is non-zero for

any non-zero shear stress (Rice et al., 2001). In order to examine how average shear stress

measures vary with styles of motion and rupture size, we choose a representative value for

the classical notion of local quasi-static fault strength, which we call the local steady-state

quasi-static (SSQS) shear resistance and define as the product of the interseismic drained
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effective normal stress and the quasi-static friction coefficient during steady creep at the

prescribed tectonic plate rate Vpl:

τ
Vpl
ss (z, t) = (σ − pint) fss(Vpl). (5.7)

The "drained" refers to the effective stress with ambient interseismic pore pressure pint un-

affected by slip processes such as dilatancy or thermal pressurization. Previous numerical

studies have shown that the local SSQS shear resistance τVpl
ss is comparable to the spatially-

averaged prestress consistent with rupture nucleation (Lambert et al., in review). The

quasi-static reference friction in all of our simulations has a uniform value of 0.6, consistent

with many materials exhibiting VW behavior in laboratory experiments (Ikari et al., 2011).

We aim to study the evolution of shear stress and average stress measures in fault models

consistent with low heat production, where the stresses associated with shear heating are

below 20MPa. We conduct simulationswith varying levels of background fluid overpressure

in terms of the effective normal stress, as well as varying degrees of efficiency in enhanced

weakening due to thermal pressurization. The parameter values we have chosen (Tables

5.1 - 5.3) are motivated by prior studies (Lambert et al., 2021; Noda & Lapusta, 2010;

Perry et al., 2020; Rice, 2006) and our goal of examining ruptures with varying efficiency

in enhanced dynamic weakening and different rupture styles.

5.2.2 Crack-like versus self-healing pulse-like ruptures

One potential explanation for the inferred low-stress, low-heat operation of mature faults is

that faults may be persistently weak due to the presence of anomalously low quasi-static fric-

tion coefficients and/or low effective confinement from pervasive fluid overpressure (Bangs

et al., 2009; Brown et al., 2003; Collettini et al., 2009; Faulkner et al., 2006; Lockner et

al., 2011). Another end-member model is that mature faults may indeed be strong at slow,

quasi-static sliding rates, but undergo considerable enhanced dynamic weakening at seismic

slip rates (Lambert et al., 2021; Noda et al., 2009; Rice, 2006). Previous numerical studies

have shown that ruptures in persistently weak fault models that produce typical static stress
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Parameter Symbol Value
Loading slip rate Vpl 10−9 m/s
Shear wave speed cs 3299 m/s
Shear modulus µ 36 GPa
Thermal diffusivity αth 10−6 m2/s
Specific heat ρc 2.7 MPa/K
Shear zone half-width w 10 mm

Rate-and-state parameters
Reference slip velocity V∗ 10−6 m/s
Reference friction coefficient f∗ 0.6
Rate-and-state direct effect (VW) a 0.010
Rate-and-state evolution effect (VW) b 0.015
Rate-and-state direct effect (VS) a 0.050
Rate-and-state evolution effect (VS) b 0.003

Length scales for 2-D simulations
Fault length λ 96 km
Frictional domain λfr 72 km
Velocity-weakening region λvw 24 km
Cell size ∆z 3.3 m
Quasi-static cohesive zone Λ0 84 m
2D Nucleation size (Rice & Ruina, 1983) h∗RR 226 m
2D Nucleation size (Rubin & Ampuero, 2005) h∗RA 550 m
Cell size ∆z 3.3 m
Quasi-static cohesive zone Λ0 84 m

Length scales for 3-D simulations
Fault dimensions λz × λx 80 × 40 km
Frictional domain λfr,z × λfr,x 60 × 20 km
Velocity-weakening region λvw,z × λvw,x 32 × 8 km
Cell size ∆z = ∆x 25 m

Table 5.1: Model parameters used in simulations in Ch. 5 unless otherwise specified.

drops between 1 to 10 MPa propagate as crack-like ruptures, in which seismic slip at each

fault location, once initiated, continues until arrest waves arrive from the edges of the fault

or other heterogeneities in the problem; as a result, the portion of the fault that slips at a

given time during rupture is comparable to the final rupture size and the local slip dura-

tion at different points is comparable to the total rupture duration (Figure 5.1A; Lambert

et al., 2021). The word "crack" in the name refers to analogy with opening cracks that

also typically continue to open until that crack arrests at a barrier. In contrast, ruptures in

quasi-statically strong, dynamically weak fault models with 1 to 10 MPa static stress drops

typically propagate as self-healing pulses in which slip spontaneously arrests behind the
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Parameter Symbol TP 1 TP 2 TP 3
Interseismic drained effective stress σ̄ = (σ − pint) 25 MPa 25 MPa 25 MPa
Shear zone half-width w 10 mm 10 mm 10 mm
Characteristic slip DRS 1 mm 1 mm 1 mm
Rate-and-state direct effect (VS) a 0.05 0.05 0.025
TP coupling coefficient Λ 0.1 MPa/K 0.34 MPa/K 0.34 MPa/K
Hydraulic diffusivity αhy 10−3 m2/s 10−3 m2/s 10−4 m2/s
Parameter Symbol TP 4 TP 5
Interseismic drained effective stress σ̄ = (σ − pint) 50 MPa 25 MPa
Shear zone half-width w 10 mm 1 mm
Characteristic slip DRS 2 mm 1 mm
Rate-and-state direct effect (VS) a 0.05 0.025
TP coupling coefficient Λ 0.34 MPa/K 0.34 MPa/K
Hydraulic diffusivity αhy 10−3 m2/s 10−4 m2/s
Parameter Symbol TP 6 TP 7
Interseismic drained effective stress σ̄ = (σ − pint) 100 MPa 100 MPa
Shear zone half-width w 10 mm 10 mm
Characteristic slip DRS 4mm 4 mm*
Rate-and-state direct effect (VS) a 0.05 0.05
TP coupling coefficient Λ 0.34 MPa/K 0.5 MPa/K
Hydraulic diffusivity αhy 10−3 m2/s 10−6 m2/s
Parameter Symbol TP 8 TP 9
Interseismic drained effective stress σ̄ = (σ − pint) 25 MPa 25 MPa
Shear zone half-width w 1 mm 1 mm
Characteristic slip DRS 1mm 1 mm
Rate-and-state direct effect (VS) a 0.025 0.025
TP coupling coefficient Λ 0.34 MPa/K 0.34 MPa/K
Hydraulic diffusivity αhy 10−5 m2/s 10−6 m2/s

Table 5.2: Parameters for models in Ch. 5 including the thermal pressurization of pore
fluids. ∗Models of crack-like ruptures with very efficient TP (Figure 5.2C) include two
100-m patches of lower characteristic slip distance (DRS = 1mm) placed at the VW to
VS transition in order to provide favorable heterogeneity for nucleation while maintaining
moderate weakening rates throughout theVW that aremore practically resolved numerically.

Parameter Symbol RS 1 RS 2
Interseismic drained effective stress σ̄ = (σ − pint) 10 MPa 20 MPa
Characteristic slip DRS 0.5 mm 1 mm
Quasi-static cohesive zone Λ0 106 m 106 m
2D Nucleation size (Rice & Ruina, 1983) h∗RR 282 m 282 m
2D Nucleation size (Rubin & Ampuero, 2005) h∗RA 688 m 688 m

Table 5.3: Parameters for models in Ch. 5 including only standard rate-and-state friction.
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rupture front due to rapid local healing; as a result, only a small portion of the fault slips at

a given time and the local slip duration is short relative to the rupture duration (Figure 5.1B).

The shear resistance, and hence shear stress, along a fault can substantially vary over time,

such as before, during and after different rupture events, depending on the efficiency of

weakening during rapid fault slip as well as fault healing (Figures 5.1 - 5.3). For persistently

weak faults, the shear stress is always low (< 20 MPa, Figures 5.1C-D). In contrast, the local

shear resistance on quasi-statically strong, dynamically weak faults, and hence the local

shear stress, may be relatively high during periods of negligible motion before and after

ruptures, but drop dramatically to lower values below 10 MPa during seismic slip (Figures

5.1C-D).

Crack-like and self-healing pulse-like ruptures differ in terms of the evolution of shear stress

during rupture propagation. For crack-like ruptures, the local shear resistance drops at high

slip rates and remains low throughout the remainder of the rupture process (Figure 5.2A &

C). As the result, the dynamic stresses arriving from neighboring slipping regions continue

to drive slip until the arrival of arrest waves with opposite stress polarity from the adges

of the rupture (Figure 5.3A & C). The continuation of slip until the arrival of these arrest

waves can result in a dynamic stress overshoot, where the final shear stress post-slip can

be adjusted by the waves to be lower than the typical shear stress during sliding (Figures

5.3A & C; Kanamori & Rivera, 2013; Lambert et al., 2021; Madariaga, 1976; Viesca &

Garagash, 2015). The overshoot is typically minor, i.e., a small fraction of the final static

stress change, and can be typically ignored.

In contrast, the arrest of slip during a self-healing pulse occurs due to local healing of the

shear resistance independent of the arrival of arrest waves, such as from the diffusion of pore

fluids in the case of enhanced weakening due to thermal pressurization, as in our models.

In this case, the dynamic stresses arriving from fault slip elsewhere may be balanced by

local healing, allowing the slip to arrest. Due to the presence of rapid healing, self-healing
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Figure 5.2: Evolution of slip and local shear stress with time throughout four characteristic
ruptures. (Top) Characteristic evolution of slip along the fault for (A&C) crack-like ruptures
and (B & D) self-healing pulses in persistently weak (TP 3 & 5) and quasi-statically strong,
dynamically weak (TP 6 & 7) fault models. Slip contours are plotted every 0.25 s and the
gray shading illustrates a portion of the fault that is slipping during a 0.25-second interval.
(Bottom) The local evolution of shear stress with time at a point in the center of the fault
(z = 0 km), in the four representative ruptures. The stress concentration at the rupture front
is much larger for the ruptures with more efficient weakening on quasi-statically strong,
dynamically weak behavior (B & C) than for the ruptures with more moderate weakening on
persistently weak faults (A & D). The self-healing pulses (B & D) experience rapid healing
resulting in dynamic stress variations that are much larger than the static stress change.
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Figure 5.3: Spatial distribution of slip rate (top) and shear stress (bottom) for the same
representative ruptures as in Figure 5.2. All four ruptures nucleate with prestress levels
(gray line) that are near the local steady-state quasi-static shear resistance (dashed orange
line), however the ruptures propagate over lower prestress conditions depending on the
efficiency of weakening. The slip rate and shear stress at the same instance are shown by
the black lines, illustrating the concentrated stress changes at the rupture front, with slip
continuing throughout the entirety of the rupture for the crack-like ruptures (A-B), but not
the pulse-like ruptures (C-D).
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pulses exhibit a dynamic stress undershoot, or a larger dynamic stress drop than static stress

drop, with the final shear stress being higher than the local shear resistance during sliding

(Figures 5.1D and 5.3B & D; Heaton, 1990; Lambert et al., 2021). This undershoot can be

quite significant, comparable to the static stress drop or even several times larger, increasing

for sharper self-healing pulses (Lambert et al., 2021). The presence of this undershoot can

significantly modify the average stress on faults as we discuss in the following.

Both crack-like and self-healing pulse-like ruptures can propagate in persistently weak and

dynamically weak conditions, though the different modes of rupture result in considerably

different styles of motion and evolution of shear stress (Figures 5.2-5.3; Lambert et al.,

2021). The spatial distribution of shear stress along faults can be highly variable depending

on the current style of motion as well as the history of motion in previous slip events.

For example, despite our fault models having uniform frictional properties and interseismic

effective stresswithin theVWregion, the shear stress distribution evolves to become spatially

heterogeneous due to spatially varying histories of slip over sequences of earthquakes (Figure

5.3). For quasi-statically strong, dynamically weak faults, the prestress along much of the

fault can be substantially lower then the local SSQS shear resistance. Ruptures nucleate in

regions of locally high prestress close to the local SSQS shear resistance, however points

elsewhere throughout the rupture are brought to failure from initially low prestress levels by

the concentration of stresses at the dynamic rupture front (Figures 5.2B & C and 5.3B &

C). In fact, all of our simulated ruptures nucleate in regions with locally high prestress near

the corresponding local SSQS resistance. Ruptures then propagate over areas of potentially

much lower prestress conditions depending on the efficiency of dynamic weakening (Figure

5.3; Lambert et al., in review, 2021). For larger ruptures, the relatively high-stressed

nucleation region is small compared to the total rupture area, such that the prestress over

much of the ruptured fault area can be substantially lower than the local SSQS, or the shear

stress required to initiate unstable quasi-static slip (Lambert et al., in review).
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5.3 Measures of average fault shear stress

Here, we review different methods for averaging the shear stress along a fault over space

and time. We denote methods for averaging shear stress over space with supercripts (e.g.

τA), whereas quantities that represent temporal averages or require information about the

full time-dependent slip process are denoted by a bar (e.g. τ). The formulations for average

stress measures are presented in this section for a 1-D fault; the generalization of the aver-

age stressmeasures to 2-D interfaces in 3-Dmedia are presented inNoda and Lapusta (2012).

In calculating average stress measures for individual dynamic ruptures, we define the rupture

domain as the collection of points over the entire fault domainΩwhere the local slip velocity

exceeds the seismic velocity threshold:

Ωrupt = {z ∈ Ω|V(z) ≥ Vthresh}. (5.8)

Onemay also compute the averages over the entireVWdomainΩvwwith velocity-weakening

frictional properties:

Ωvw = {z ∈ Ω|(a(z) − b(z) < 0} = {|z | ≤ 12km}. (5.9)

For our 2-D models with 1-D faults, the spatial averaging is performed over the fault length,

such as the rupture length λrupt and length of the velocity-weakening region λvw:

λrupt =

∫
Ωrupt

dz; λvw =

∫
Ωvw

dz = 24 km. (5.10)

For model-spanning ruptures in our earthquake sequence simulations, the rupture length

λrupt is comparable to the length of the VW region λvw. Thus average shear stress measures

taken over the scale of the model-spanning earthquakes are expected to be comparable to

averages over the total VW domain.

5.3.1 Spatially-averaged shear stress

The simplest definition of average shear stress along an interface is the spatially-averaged

shear stress τA(t), which is just the spatial average of shear stress τ(z, t) acting in the overall
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slip direction. For example, the spatially-averaged shear stress over the entire VW region in

our models at time t is given by:

τAvw(t) =

∫
Ωvw

τ(z, t)dz

λvw
. (5.11)

For a given rupture, the spatially-averaged prestress τAini and final stress τ
A
fin are given by:

τAini ≡ τ
A
rupt(tini) =

∫
Ωrupt

τ(z, tini)dz

λrupt
and τAfin ≡ τ

A
rupt(tfin) =

∫
Ωrupt

τ(z, tfin)dz

λrupt
. (5.12)

The spatially-averaged rupture stress τArupt, averaged over both the rupture area and duration,

is given by:

τArupt =

∫ tfin
tini

∫
Ωrupt

τ(z, t)dz

λruptTrupt
, (5.13)

where Trupt = tfin − tini is the rupture duration.

While simple to define, the spatially-averaged shear stress is not generally the most useful

definition. As the other average stress measures discussed below, it is impossible to directly

compute, as generally we cannot infer the spatial distribution of absolute stress from remote

observations. But this measure is also difficult to put constraints on or interpret, as it does

not directly characterize the dissipation or describe the local frictional behavior (Noda &

Lapusta, 2012).

5.3.2 Dissipation-based average shear stress

Amore physically meaningful definition of average fault shear stress is the dissipation-based

average shear stress τD(t), which is the spatial average of shear stress τ(z, t) acting in the

overall slip direction weighted by the slip rate distribution. The dissipation-based average

shear stress at time t over the entire VW region and a given rupture area Ωrupt are given by:

τDvw(t) =

∫
Ωvw

τ(z, t)V(z, t)dz∫
Ωvw

V(z, t)dz
and τDrupt(t) =

∫
Ωrupt

τ(z, t)V(z, t)dz∫
Ωrupt

V(z, t)dz
, (5.14)

respectively. The dissipation-based average prestress at the beginning of a rupture τDini is

thus given by:
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τDini ≡ τ
D
rupt(tini) =

∫
Ωrupt

τ(z, tini)V(z, tini)dz∫
Ωrupt

V(z, tini)dz
. (5.15)

τD is equal to the increment in dissipation per increment in potency. The potency per unit

length P over a given domain Ω in our 2-D models is related to the average slip δ in the

principal slip direction and fault length λ. The potency over the VW regionΩvw and a given

ruptured region Ωrupt are given by:

Pvw =

∫
Ωvw

∫ t

0
V(z, t ′)dt ′dz = δvwλvw and Prupt =

∫
Ωrupt

∫ tfin

tini

V(z, t ′)dt ′dz = δruptλrupt,

(5.16)

respectively. Here, δvw is the cumulative average slip across the VW region up to time t and

δrupt is the average final slip accrued in the rupture between the initiation and termination

of the rupture, tini and tfin, respectively.

The cumulative dissipation per unit potency within the region Ω up to time t may generally

be determined by integrating τD over the history of average slip within the region, and

is often interpreted as the shear stress associated with heat generation (Noda & Lapusta,

2012). We define the shear heating stress in our simulations to be equal to the cumulative

dissipation-based average shear stress over the VW seismogenic region, which is thought to

be consistent with the shear stress averaged over seismogenic depths inferred from heat flow

measurements around faults:

τDheat(t) =

∫ t

0

∫
Ωvw

τ(z, t ′)V(z, t ′)dzdt ′∫ t

0

∫
Ωvw

V(z, t ′)dzdt ′
=

∫ δvw
0 τDvw(t(δ

′))dδ′

δvw
. (5.17)

One can similarly define the dissipation-based average rupture stress τDrupt as the average

shear stress associated with dissipation throughout a rupture. τDrupt is then related to the total

dissipated energy per unit potency within the rupture, EDiss/Prupt, by integrating τD over

the average slip of the rupture process:
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τDrupt =
EDiss
Prupt

=

∫ tfin
tini

∫
Ωrupt

τ(z, t ′)V(z, t ′)dzdt ′∫ tfin
tini

∫
Ωrupt

V(z, t ′)dzdt
=

∫ δrupt
0 τDrupt(t(δ

′))dδ′

δrupt
. (5.18)

The relationship between dissipated energy and heat generation assumes that most of the

dissipation is localized near the principal shearing layer and converted into heat, with the

energy dissipated by the generation of new fracture surfaces or chemical processes being

relatively small. This assumption is supported by some laboratory and field measurements

which suggest that the contribution of off-fault dissipationmay indeed be small, < 3% (Aben

et al., 2019; J. S. Chester et al., 2005; Rockwell et al., 2009).

One can see that τD and τA are equivalent when the slip rate V is uniform over the

interface (dV/dz = 0), as may be the case in well-controlled laboratory experiments where

loading displacements may be practically uniformly applied over the sample. In contrast, for

interfaces experiencing spatially-varying slip rates, such as during ruptures or larger meter-

scale laboratory experimentswhich experience spatially variable loading and slip (McLaskey

et al., 2015; McLaskey & Lockner, 2014; Mclaskey & Yamashita, 2017; Yamashita et al.,

2015), the value of τD(t) is controlled by the local shear resistance opposing regions of

fastest motion, hence the regions dissipating most of the work imposed on the system. Thus,

τD is a more useful definition for the average shear resistance on the fault, which can

potentially be inferred from heat measurements. However, similarly to τA, the dissipation-

based average shear stress τD is not directly related to the average local frictional behavior

on the interface (Noda & Lapusta, 2012).

5.3.3 Energy-based average stress

The energy-based average rupture stress τErupt is related to the average shear stress associated

with the work, or strain energy change ∆W , given the potency of the rupture:

τErupt =
∆W
Prupt

=
1
2

[
τEini + τ

E
fin

]
. (5.19)

Here, τEini and τ
E
fin refer to average shear stresses at the beginning and end of rupture, weighted

by the final slip:
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τEini =

∫
Ωrupt

τ(z, tini)δrupt(z)dz∫
Ωrupt

δrupt(z)dz
; τEfin =

∫
Ωrupt

τ(z, tfin)δrupt(z)dz∫
Ωrupt

δrupt(z)dz
. (5.20)

The energy-based average shear stress can be related to the shear tractions and slip along

the interface by integrating the work rate along a virtual quasi-static process connecting the

beginning and termination of a rupture (Noda&Lapusta, 2012). One can construct a version

of this process that results in an average curve with slip that aims to preserve the local shear

resistance behavior as well as serve as an energy-partitioning diagram. By considering the

average slip δrupt in the overall slip direction after a rupture, one can scale the final slip

throughout the rupture area δ̃(z) = δrupt(z)/δrupt to provide a weighting based on the relative

contribution of the local final slip at each point to the average slip or potency. One can then

introduce the integration variable δ′ which represents the increment in average slip from 0

to δrupt. If the slip and slip rate on the fault is always parallel to the overall slip direction, as

it is in our 2-D models with 1-D faults, then the energy-based average stress can be written

as a function of δ′:

τE (δ′) =

∫
Ωrupt

τ(z, δ′δ̃(z))δrupt(z)dz∫
Ωrupt

δrupt(z)dz
. (5.21)

τE has been shown to represent the average local frictional behavior on the interface (Noda

& Lapusta, 2012). Its plot vs. the accumulating slip can represent the energy partitioning

during ruptures, with the area under the curve equal to the dissipated energy per unit fault

area and the initial and final points contributing to the trapezoid illustrating the strain energy

released (Figure 5.4).

Note that the energy-based average stress cannot be determined from the distribution of shear

stress and slip along the interface at individual instants in time during dynamic rupture, but

requires knowledge of the entire rupture event after the dynamic process is over. Therefore

all energy-based average stress quantities require knowledge of the final slip, and hence are

denoted by a bar, as in τE (δ′). Note also that the average of τE (δ′) as δ′ varies from 0
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Figure 5.4: The energy-averaged shear stress vs. slip for the same representative ruptures
as in Figure 5.2, illustrating the energy budget of each rupture. The two crack-like ruptures
(A & C) and the self-healing pulse on the quasi-statically strong, dynamically weak fault
(B) have comparable static stress drop and average slip, while the self-healing pulse under
persistently weak conditions (D) has smaller average slip and static stress drop. The total
strain energy change (dashed red trapezoid) is partitioned into radiated energy (blue shading),
and dissipated energy (gray shading). (A & C) For both crack-like ruptures, the average
static and dynamic stress drops are comparable. (B&D) The self-healing pulses experiences
rapid healing resulting in average dynamic stress variations that are much larger than the
average static stress change, and hence radiate more energy for the same average slip and
static stress drop as the crack-like ruptures (B vs. A & C).
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to the average rupture slip δrupt is equal to τDrupt as the construction of τE (δ′) preserves the

dissipated energy.

5.3.4 Relationshipbetween energy-averaged rupture stress, dissipation-averaged rup-

ture stress, and apparent stress

The strain energy change W per unit rupture area A can be partitioned into the energy

dissipated within the ruptured source region EDiss and the energy that is radiated away to

the far-field ER:

∆W/A =
1
2

[
τEini + τ

E
fin

]
δrupt = EDiss/A + ER/A. (5.22)

For our 2-D simulations of ruptures on 1-D faults, we consider the average energy parti-

tioning per unit rupture length λrupt rather than rupture area A. By dividing both sides of

equation (5.22) by the average slip of the rupture, we can relate the energy-based average

rupture stress τErupt from equation (5.19) to the dissipation-based average rupture stress τDrupt

and the seismologically-inferable apparent stress τa = ER/(δruptA) (Wyss & Brune, 1968):

τErupt =
EDiss

Aδrupt
+

ER

Aδrupt
(5.23)

= τDrupt +
ER

Aδrupt
(5.24)

= τDrupt + τa (5.25)

τDrupt represents the average dynamic shear resistance localized along the interface, whereas

τErupt includes the contribution from inertial resistance during dynamic rupture. This addi-

tional resistance, which is represented by the apparent stress τa, is sometimes referred to as

the radiation resistance Savage and Wood (1971). For purely quasi-static processes where

the radiated energy is negligible, the energy-based average rupture stress τErupt is equiva-

lent to the dissipation-based average dynamic resistance τDrupt. τDrupt can, in principle, be

inferred from heat flow measurements; while this may be difficult to accomplish for a single

rupture, the long-term constraints on heat flow near mature faults, such as less than 10-20

MPa discussed in the introduction, may be a relevant stand-in for large dynamic ruptures.
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τErupt can then be inferred from τDrupt and remote inferences of earthquake source properties.

The energy-based averages are, by definition, the physically relevant average shear stress

measures for the work done to impose slip along a fault, and therefore may represent best

the overall average shear resistance along the fault to external loading.

The energy-based average prestress before a rupture, τEini, can, in principle, be inferred from

thermal constraints (to constrain τDrupt), the apparent stress τa, and the energy-based static

stress drop: ∆τ
E
:

τEini = τ
E
rupt + ∆τ

E
/2

= τDrupt + τa + ∆τ
E
/2. (5.26)

Ruptures with the same dissipation-based average dynamic resistance τDrupt but larger static

stress drops and/or apparent stress thus have higher prestresses τEini. Note that the relevant

definition of static stress drop for comparisonwith energy considerations is the energy-based,

or slip-weighted, static stress drop ∆τ
E
= τEini − τ

E
fin, which has been shown to be greater

than or equal to standard moment-based estimates of static stress drop from seismological

inferences (Noda et al., 2013).

5.4 Relation among average shear stress measures associated with dynamic rupture

5.4.1 Average shear prestress

Let us begin by comparing average measures of shear prestress before our simulated rup-

tures. The energy-averaged prestress τEini represents the average prestress associated with

the potency of the impending rupture. τEini differs from the spatially-averaged prestress τAini

over the rupture area when the resulting slip distribution is not uniform. For our simu-

lated partial ruptures that arrest within the VW region with uniform fault properties, the

energy-based prestress τEini is typically slightly higher than the spatially-averaged prestress

τAini (Figures 5.5). This is likely because regions of higher prestress tend to exhibit larger

local static stress drop, and hence more slip, for the same efficiency of weakening, thus

having a larger contribution to the energy-based average prestress. For larger ruptures that
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propagate substantially into the VS regions, the spatially-averaged prestress can be larger

than the energy-based prestress, depending on the VS properties and the amount of slip that

occurs within the VS regions (Figures 5.5-5.6).
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Figure 5.5: Comparison of average stress measures with rupture length for persistently
weak fault models that produce crack-like ruptures (A) without and (B) with enhanced
weakening due to thermal pressurization. (A) Standard rate-and-state friction results in
relatively mild changes in friction and hence modest variation in the average shear stress
measures for ruptures. (B) For fault models including at least mild enhanced dynamic
weakening, average shear stress measures, except for the dissipation-based average prestress
τDini, exhibit a notable decreasing trend with increasing rupture size. For crack-like ruptures,
the dissipation-based rupture stress τDrupt is greater than energy-based average final stress
τEfin, due to the presence of a dynamic overshoot.

Overall, we find that τAini and τ
E
ini for our simulated ruptures are generally comparable and

decrease with increasing rupture size and efficiency of weakening behavior, becoming sub-

stantially lower than the average local SSQS shear resistance for increasingly larger ruptures
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Figure 5.6: Comparison of average stress measures with rupture length for fault models
producing self-healing pulses and crack-like ruptures with more efficient enhanced weaken-
ing. Stress measures are shown with (left) the same scale and (right) zoomed in to examine
differences within individual simulations. (A-B) For self-healing pulses, the dissipation-
based dynamic resistance τDrupt (yellow) is lower than the other average stress measures,
particularly the energy-based final stress τEfin (light red). (C) In contrast, τDrupt for crack-like
ruptures is greater than τEfin, due to the presence of a dynamic overshoot.
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in cases with efficient enhanced dynamic weakening, consistent with previous numerical

studies (Figures 5.5-5.6, 5.7A vs. C; Lambert et al., in review).
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Figure 5.7: Scaling of measures of average rupture prestress with rupture length. (A)
The spatially-averaged prestress τAini for ruptures arresting in the VW region decreases with
increasing rupture size. For ruptures that are forcibly arrested in the VS region, the average
prestress increases as the average effective weakening decreases. (B) The dissipation-
averaged stress τDini at the initiation of ruptures is generally comparable to the average local
SSQS shear resistance τVpl

ss (orange dashed line), and consistent among simulated ruptures of
varying size and weakening behavior. (C) The energy-averaged prestress τEini is comparable
spatially-averaged prestress τAini.

In contrast, we find that the dissipation-based prestress over the entire rupture area τDini is

determined by the average shear stresses in the nucleation region τDnucl (Figure 5.8A) and

hence does not exhibit a notable dependence on the final rupture length (Figures 5.5 &



180

5.7B). We define the nucleation region for our simulated ruptures as the region between

the expanding stress fronts at the initiation of dynamic rupture and refer to the measures

of average shear prestress over this nucleation region at the initiation of rupture as the

nucleation stress. The similarity between τDini and τ
D
nucl is due to the fact that the motion

within the nucleation region is orders of magnitude faster than within the remainder of

the impending rupture area which is locked during nucleation. Moreover, we find that the

dissipation-based and spatially-averaged nucleation stresses, τDnucl and τ
A
nucl, are comparable

to each other (Figure 5.8) as well as to the average local SSQS resistance. Note that the

spatially-averaged and dissipation-based nucleation stresses, τAnucl and τ
D
nucl, as well as the

dissipation-based prestress over the entire rupture area τDini may be more variable among

different ruptures in fault models with more heterogeneous nucleation conditions.
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Figure 5.8: Relationship among dissipation and spatially-averaged nucleation stress, and
dissipation-based rupture prestress. (A) The dissipation-based average prestress over the
nucleation region τDnucl is comparable to the dissipation-based average prestress over the
entire rupture region τDini. (B) τDnucl is also comparable to the spatially-averaged prestress
within the nucleation region τAnucl. Thus, τ

D
ini, τ

D
nucl, and τ

A
nucl are all comparable to the average

local steady-state quasi-static shear resistance τVpl
ss (Figure 5.7B), and are consistent among

simulated ruptures of varying size and weakening behavior.
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5.4.2 Relationship between average dynamic shear resistance and average stress mea-

sures for cracks and self-healing pulses

τErupt is always greater than or equal to τDrupt, since the difference between the two is given

by the apparent stress τa which must be positive (equation 5.23). Our simulations repro-

duce that (Figures 5.5-5.6). For our simulated ruptures, the spatially-averaged shear stress

throughout the rupture process τArupt is generally comparable to the energy-based rupture

stress τErupt.

The relationship between the dissipation-based rupture stress τDrupt and other average stress

measures can substantially depend on the style of rupture propagation. For crack-like rup-

tures, the dissipation-based average rupture stress τDrupt is within one static stress drop of

the spatially and energy-averaged stresses before (τAini and τ
E
ini) and during (τAini and τ

E
rupt)

the rupture (Figures 5.5 and 5.6C). This is because the final and dynamic stress levels are

comparable for the crack-like ruptures and a considerable portion of the total rupture area

is slipping and dissipating energy at a given time (Figures 5.1A-B & 5.3 A-B top). In

addition, τDrupt is higher than the energy-based final stress τ
E
fin for crack-like ruptures (Yellow

vs. light red in Figures 5.5, 5.6C, and 5.9A), due to the presence of the dynamic overshoot

(Figure 5.4B & D). As the shear heating stress τDheat across the VW region is dominated

by the dissipation during large model-spanning earthquakes, τDheat is also within one static

stress drop of the spatially and energy-averaged stresses before and during large crack-like

ruptures (Figure 5.10A & C).

Fault models with relatively mild weakening maintain average stress levels closer to the local

SSQS shear resistance τVpl
ss (Figures 5.3A, 5.5 & 5.10A). Such models require chronically

weak fault conditions, such as through increased pore fluid pressure or low quasi-static

friction, to maintain low values of the dissipation-based average rupture stress τDrupt, and

thus low shear heating stresses (Figure 5.10A). Crack-like ruptures with reasonable stress

drops may also occur in fault models with very efficient weakening (Figure 5.3C), where

that spatially-averaged average shear stress is far below (several static stress drops) the lo-
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Figure 5.9: Comparison of the dissipation-based dynamic resistance and energy-based
average pre-rupture and final shear stresses for crack-like and self-healing pulse-like ruptures.
(A) For crack-like ruptures, the dissipation-based average rupture stress τDrupt (yellow) –a
measure of the average dynamic shear resistance –is higher than the energy-based final
stress τEfin (pink) due to the presence of a dynamic stress overshoot after rupture arrest.
(B-C) In contrast, for self-healing pulses, the dissipation-based average rupture stress is
lower than the energy-based final stress due to the presence of a dynamic undershoot.
Thus, the energy-based static stress drop (∆τ

E
= τEini − τ

E
fin) can substantially underestimate

the difference between the energy-based pre-rupture stress and dissipation-based average
dynamic resistance for self-healing pulse-like ruptures, whereas the average static stress
drop is more comparable or may even overestimate the average dynamic stress drop for
crack-like ruptures.
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Figure 5.10: The evolution of average shear stress in the VW region over sequences of events
for the four fault models shown in Figure 5.2. The spatially-averaged shear stress τAvw for the
chronically weak fault producing crack-like ruptures (A) is always within 1-2 static stress
drops from the average local SSQS shear resistance (orange line), whereas the average shear
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earthquakes (pink circles) is consistent with the shear heating stress, which provides a lower
bound of the average shear stress τAvw. The energy-based prestress τEini and rupture stress
τErupt from large VW-segment spanning earthquakes (blue squares and circles, respectively)
provide a reasonable description of the spatially-averaged shear stress before large ruptures
and throughout earthquake sequences, independent of the style of rupture.
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cal SSQS shear resistance (Figures 5.3C, 5.10C, and 5.6C). While crack-like ruptures may

exhibit chronically weak or locally quasi-statically strong, dynamically weak behavior, the

spatial and energy-averaged prestresses (τAini and τ
E
ini) are constrained to be within one static

stress drop of the dissipation-based average dynamic resistance τDrupt (Figures 5.10A-B).

In contrast, for self-healing pulses, the dissipation-based average rupture stress τDrupt can be

several static stress drops below the spatially and energy-averaged stresses before (τAini and

τEini) and during (τ
A
ini and τ

E
rupt) the rupture (Figures 5.6A-B and 5.9B-C). Moreover, τDrupt is

lower than both the spatial and energy-based average final stresses, τAfin and τ
E
fin, respectively

(yellow vs. red in Figures 5.6A-B and 5.9B-C). This is because only a small portion of

the fault slips at a given time and the level of dynamic resistance is much lower than the

final stress after healing (Figures 5.1B & D and 5.3B & D). As such, the fault can sustain

substantially higher spatial and energy-averaged prestresses and final stresses, while still

maintaining low levels of dynamic resistance and producing moderate average static stress

drops (Figures 5.4B & 5.10B). Note that the same relationship holds for self-healing pulses

that propagate on faults with persistently weak conditions, such as with low effective normal

stress due to chronic fluid overpressurization, however such pulses result in relatively small

average slip and static stress drops (Figures 5.4D & 5.10D).

Thus, we find that the dissipation-based stress averages τDrupt and τ
D
heat provide lower bounds

for the spatial and energy-averaged shear stress on the fault. Howmuch larger can the spatial

and energy-averaged shear stress be depends on the degree of stress undershoot (Figures

5.5, 5.6 & 5.10). The sharper the self-healing pulse-like ruptures, the larger the undershoot

and apparent stress (Lambert et al., 2021), and hence the larger the average rupture prestress

can be compared to the average dissipation-based shear stress.
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5.4.3 Comparison of average static stress drop and average dissipation-based quasi-

static versus dynamic shear resistance

If one compares the difference between the dissipation-based average prestress τDini and rup-

ture stress τDrupt –measures of average quasi-static and dynamic shear resistance, respectively

–the apparent coefficient of friction can indeed drop from τDini/(σ− pint) near typical Byerlee

values around 0.6, down to values of τDrupt/(σ − pint) less than 0.2, depending on the rupture

size, and hence amount of slip, as well as the efficiency of weakening (Figures 5.5-5.6).

This observation is consistent with large changes in the apparent friction coefficient asso-

ciated with the presence of enhanced dynamic weakening in high-speed laboratory friction

experiments (Di Toro et al., 2011; Tullis, 2007; Wibberley et al., 2008).

However, this large change in average shear stress associated with dissipation does not

correspond to large spatial or energy-based average static stress drops for our simulated

ruptures. As our simulated ruptures grow larger with respect to their nucleation size, the

spatial and energy-averaged prestresses, τAini and τ
E
ini, become considerably lower than the

dissipation-based prestress τDini (Figures 5.5-5.6). The spatial and energy-based average

final shear stresses, τAfin and τEfin, remain comparable to or greater than the dissipation-

based rupture stress τDrupt (Figures 5.5-5.6). In particular, as the final shear stress for

self-healing pulses can be much higher than the dissipation-based rupture stress τDrupt, the

overall difference between the spatial and energy-based average prestresses and final stresses

can be considerably smaller than the difference between the dissipation-based prestress and

rupture stress (Figure 5.6A-B and 5.9B-C). Thus, while the difference between average

quasi-static and dynamic shear resistance may substantially increase with rupture size, and

hence average slip, the resulting spatially-averaged and energy-based static stress drops can

be relatively mild (Figure 5.11).

5.4.4 Impact of VW to VS transition for the scale-dependence of average shear stress

measures

For simulated ruptures that span the entire VW domain and propagate substantially into

the VS regions, the energy-based and spatially-averaged prestress, τEini and τAini, respectively,
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Figure 5.11: Scaling of spatial and energy-based average static stress drops with rupture
length. The (A) spatially-averaged and (B) energy-based average static stress drops for
ruptures represent relatively mild decreases in average shear stress with respect to the
effective normal stress and are nearly magnitude-invariant for ruptures that arrest within the
VW region. The average stress drops for ruptures that penetrate into the VS region increase
with rupture size, depending the VS properties (Perry et al., 2020).

increase with rupture size beyond the extent of the VW domain (Figures 5.5 and5.7A & C).

In contrast, the energy-based rupture stress τErupt and spatially-averaged rupture stress τArupt

continue to decrease with increasing rupture size (Figures 5.5 and 5.12). The scaling of

the spatial and energy-based final stress with rupture size can consequently vary depending

on the properties of the VS region as well as co-seismic healing. The increase in average

prestress can result in both the spatially-averaged and energy-based average static stress

drops increasing for larger ruptures that propagate substantially into the VS regions (Figure

5.11).

Previous numerical studies have shown that the scaling of average static stress drops with

rupture size for ruptures that are arrested predominantly by the VS regions depends on the

VS properties (Perry et al., 2020). The VW to VS boundary marks a strong transition in
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Figure 5.12: Scaling of measures of average rupture shear stress with rupture length. The
(A) spatially-averaged rupture stress τArupt, (B) dissipation-based rupture stress τDrupt, and
(C) energy-based rupture stress τErupt decrease with increasing rupture size, similar to the
spatially- and energy-averaged prestresses in Figure 5.7.

weakening behavior, where ruptures are arrested due to increased dissipation in the VS

regions. As localities with VS properties experience increasing shear resistance with slip

rate, the "weakening" behavior would in fact be negative. The increase in average prestress

with rupture penetration into theVS region is consistentwith the notion that faultmodelswith

more efficient weakening require lower average prestress for rupture propagation, and those

with less efficient weakening require higher average prestress levels for continued rupture

propagation, as demonstrated in previous numerical studies (Lambert et al., in review). For

our models that include weakening due to thermal pressurization, the continued weakening
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with increasing rupture size is a result of continued slip behind the rupture front which

produces further pore fluid pressurization at non-zero levels of dynamic shear resistance,

thus continuing to drop the effective normal stress. The continued weakening due to thermal

pressurization is confined to the VW region in our fault models. Numerical studies based on

laboratory measurements of natural fault properties have also shown that enhanced dynamic

weakeningmay facilitate net VWbehavior as ruptures propagate throughVS regions, raising

questions about the relative role of VS properties and prestress conditions for the ultimate

arrest of large earthquakes (Jiang & Lapusta, 2016; Noda & Lapusta, 2013). Examining the

details of the properties at the rheological transition from VW to VS regions is beyond the

scope of this study, but an important topic for future work.

5.5 Relationship among earthquake source observations, rupture styles, and absolute

stress levels on faults

5.5.1 Relationship between static stress drop, apparent stress, and absolute stress

levels

The discrepancy between the energy-based and the dissipation-based average rupture stresses,

τErupt and τ
D
rupt, respectively, is described by the apparent stress τa (equation 5.22), which

reflects the additional inertial resistance during dynamic rupture. Apparent stress has com-

monly been associated with the static stress drop in seismological analyses (Ide & Beroza,

2001; Ma & Archuleta, 2006; McGarr, 1999; Perez-Campos & Beroza, 2001). It has some-

times been used as a constraint for inversions of static stress drop, where it is assumed that

the static stress drop must be larger than the apparent stress, consistent with a dynamic

stress overshoot for crack-like ruptures (Savage & Wood, 1971; M. Wei & McGuire, 2014).

However, this need not be the case as dynamic stress can be considerably larger than the

static stress changes for self-healing pulse-like ruptures.

The ratio of the apparent stress to average static stress drop can be described by a radiation

ratio, sometimes referred to as the radiation efficiency or Savage-Wood efficiency, which is

also equal to the ratio of the radiated energy to the seismologically inferable available energy

(Kanamori&Brodsky, 2004; Lambert et al., 2021;Noda et al., 2013; Savage&Wood, 1971):
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ηR =
ER/A

1
2∆τ

E
δrupt

=
2τa
∆τ

E
. (5.27)

Previous numerical simulations have shown that crack-like ruptures typically exhibit a rel-

atively mild dynamic overshoot compared to the average static stress drop, meaning that

crack-like ruptures result in comparable average static and dynamic stress drops, within a

factor of two (Lambert et al., 2021). Thus, crack-like ruptures result in radiation ratios less

than or around 1. Lambert et al. (2021) also demonstrate that sharper self-healing pulses,

with shorter local slip durations compared to the rupture duration, result in increasingly

greater stress undershoot and higher values of apparent stress than crack-like ruptures with

the same static stress drop. Therefore self-healing pulses produce higher radiation ratios,

greater than 1 (Figure 5.13, Lambert et al., 2021).

The relationship between the radiation ratio and rupture style demonstrates that whether the

static stress drop adequately represents the average dynamic stress changes during a rupture

depends on the degree of overshoot/undershoot, and hence the rupture model (Figures 5.4

& 5.13). In contrast, the apparent stress, which is derived from the radiated energy and thus

more adequately describes the dynamic stress changes, is independent of the source model

(McGarr, 1999).

5.5.2 Self-healing versus geometric pulses

A number of physical mechanisms can produce kinematically pulse-like rupture propaga-

tion, where a relatively small portion of the fault slides at a given time with shorter apparent

local sliding duration compared to the total rupture duration. This includes self-healing

pulse-like rupture propagation associated with enhanced dynamic weakening and rapid

healing (Heaton, 1990; Lambert et al., 2021; Lu et al., 2007; Noda et al., 2009; Viesca

& Garagash, 2015), as well as other mechanisms for creating pulse-like ruptures such as

geometric restrictions of the seismogenic zone, strong frictional or stress heterogeneity, and

elastic contrast across the fault interface (Ampuero & Ben-Zion, 2008; Andrews & Ben-

Zion, 1997; Beroza &Mikumo, 1996; Day, 1982; Johnson, 1992; Michel et al., 2017; Olsen
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Figure 5.13: The radiation ratio, or ratio of apparent stress to energy-based static stress drop,
increases for ruptures that experience larger average dynamic undershoot with respect to the
static stress drop. Crack-like ruptures typically result in mild stress overshoot/undershoot
whereas sharp self-healing pulses may experience a substantial stress undershoot and radi-
ation ratios greater than 1 (Lambert et al., 2021). 3-D simulations of geometric (TP3, 8,
9) and self-healing pulses (TP5) are denoted by stars, showing that geometric pulses that
exhibit mild to no undershoot exhibit comparable radiation ratios with crack-like ruptures.

et al., 1997). However, it is not clear that all mechanisms for pulse-like rupture propagation

produce substantial dynamic stress undershoot, as exhibited by self-healing pulses.

A defining feature of self-healing pulses is the presence of substantial and rapid healing

of local fault shear resistance on time scales much shorter than the duration of rupture

propagation. For self-healing pulses resulting from enhanced dynamic weakening due to

the thermal pressurization of pore fluids, the healing is governed by the diffusion of pore

fluids. The relevant time scale for substantial fluid diffusion depends on the degree of

shear localization, related to the shear zone half-width w in our models, and the hydraulic
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diffusivity αhy. The diffusion time tdiff ∝ w2/αhy can provide an approximation for the

time to substantial restrengthening due to pore fluid diffusion over scales comparable to

the shear zone width. However, the actual evolution of stress and the duration of slip is a

more complicated function of the efficiency of pore fluid diffusion and continued produc-

tion of heat during sliding, which in turn depends on the evolution of slip rate and shear stress.

Let us consider ruptures in two fault models with the same hydraulic diffusivity αhy = 10−4

m2/s but different shear zone widths (TP5 and TP3). Ruptures in our 2-D simulations fault

model TP5 with a more localized shear zone (w = 1 mm) propagate as self-healing pulses

(Figure 5.4D), whereas ruptures in 2-D simulations of 1-D fault model TP3 with a broader

shear zone (w = 10 mm) propagate as crack-like ruptures (Figure 5.4A). 3-D simulations

of these fault models, with 2-D faults and a seismogenic region with aspect ratio of 4,

produce ruptures that propagate kinematically as pulses; however, the dynamics and energy

partitioning of the two ruptures is distinct (Figure 5.14). The 3-D pulse-like rupture in

fault model TP5 with the shorter diffusion time is much sharper than the 3-D pulse in fault

model TP3, and produces a notable dynamic undershoot and radiation ratio greater than 1.

Thus, the 3-D pulse-like rupture in fault model TP5 exhibits characteristic behavior of a

self-healing pulse, qualitatively similar to those in the corresponding 2-D simulations of the

same fault model.

In contrast, the pulse-like rupture in 3-D fault model TP3 with the longer diffusion time does

not exhibit much undershoot and has the overall energy partitioning generally consistent

with a crack-like rupture, including a much larger static stress drop than apparent stress

and radiation ratio less than 1. Thus, while the rupture in fault model TP3 is kinemati-

cally pulse-like in the 3-D simulation with the elongated fault, the average stress evolution

and energy partitioning is more consistent with a crack-like rupture, as exhibited in the

2-D simulations of the same fault model. As such, this pulse-like rupture is more consis-

tent with a geometrically-constrained dynamic crack, which we refer to as a geometric pulse.
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Figure 5.14: Comparison of self-healing versus geometric pulses in 3-D simulations of 2-D
faults with the seismogenic zone of 4:1 aspect ratio. (A-B) Evolution of slip at x = 0 km
(top) and the distribution of slip rate at an instant in time (bottom) for a self-healing pulse (A,
TP5) and a geometric pulse (B, TP3). Slip contours are plotted every 0.25 s. Both ruptures
exhibit pulse-like slip behavior where a small portion of the fault slips near seismic slip rates
at a given instant during the rupture. (C-D) The corresponding average shear stress versus
slip diagrams showing that the evolution of stress and energy partitioning of the self-healing
pulse are consistent with our 2-D simulations. In contrast, the results for the geometric pulse
are consistent with a crack-like rupture, including a mild overshoot. (E-H) Evolution of local
slip rate, pore fluid pressure, shear stress, and coeffficient of friction with time in the center
of the two ruptures. (E-F) The self-healing pulse exhibits rapid acceleration and relocking
due to rapid thermal pressurization and fluid diffusion. In contrast, the evolution of pore fluid
pressure is more gradual in the geometric pulse, and sliding continues near seismic slip rates
until the arrival of arrest waves from the closer down-dip rupture boundary. (G-H) Rapid
healing due to fluid diffusion leads to a considerable dynamic undershoot for the self-healing
pulses, whereas most points within the geometric pulse do not exhibit considerable healing
from fluid diffusion but rather slip is arrested due to unloading from arrest waves, producing
a mild overshoot. The local shear stress considerably decreases for the geometric pulse upon
unloading from arrest waves as the friction coefficient drops with the rapid decrease in slip
rate (EQ 5.1). The local shear stress is not appreciably altered in the self-healing pulse as
the point has already relocked.



193

Let us further examine the difference in evolution of local shear stress and slip during the

self-healing and geometric pulses. The fault model with more localized shear (w = 1 mm,

TP5) exhibits more efficient shear heating and thermal pressurization during rupture, but

also more efficient diffusion, with a pore fluid diffusion time tdiff ∝ w2/αhy = 0.01 s. Thus

points throughout the rupture experience rapid pressurization and healing due to the diffu-

sion of pore fluids, and consequently a rapid acceleration of slip and subsequent relocking

(Figure 5.14E-F). The substantial rapid healing due to fluid diffusion for the model with

more localized shear (TP5) leads to considerable dynamic undershoot, consistent with a

self-healing pulse (Figure 5.14C&G). In contrast, the fault model with the broader shearing

layer (w = 10 mm, TP3) results in more gradual pressurization and fluid diffusion, with slip

continuing at seismic slip rates until the arrival of arrest waves from the shorter down-dip

rupture boundary. Contrary to local behavior in the self-healing pulse, points throughout the

geometric pulse do not exhibit substantial healing due to fluid diffusion within the duration

of the rupture. Rather, slip is arrested due to unloading from arrest waves, which results in

a minor dynamic overshoot at the very end, as in a dynamic crack (TP3, Figure 5.14G). The

local shear stress within the geometric pulse decreases upon unloading from arrest waves

as the friction coefficient drops with the rapid decrease in slip rate (EQ 5.1, Figure 5.14E &

H). The local shear stress in the self-healing pulse is not appreciably altered by the arrest

waves as points within the ruptured area have already relocked before their arrival.

The significant distinction between the self-healing pulse and the geometric pulse is thus the

manner in which local slip arrests, which is dictated by the mechanism for healing. Let us

now compare ruptures in 3-D simulations of three fault models with the same localization

of shear (w = 1 mm) but decreasing hydraulic diffusivity, and hence decreasing efficiency

of healing indicated by the increasing diffusion times (Figure 5.15). Ruptures in all three

models produce pulse-like ruptures with efficient weakening due to thermal pressurization,

however models with longer diffusion times produce broader pulses with longer durations

of slip that becomes increasingly more influenced by the fault geometry (Figure 5.15A-C).

Some points in the center of the ruptures with longer diffusion times may exhibit moderate
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restrengthening due to pore fluid diffusion before the arrival of arrest waves from the rupture

boundary, and hence a mild undershoot (Figure 5.15I & K). However, as arrest waves arrive

sooner at points closer to the rupture boundaries, most points throughout ruptures in fault

models with longer diffusion times do not experience sufficiently fast healing, and rather

slip is constrained by the dimensions of the rupture by the arrival of arrest waves (Figure

5.15J & L).

Ruptures with less efficient healing produce smaller dynamic undershoots and tend to

exhibit larger static stress drops for comparable values of apparent stress, consistent with

the previous analysis comparing crack-like and self-healing pulse-like ruptures based on

2-D simulations (Figure 5.15D-F). Hence the ruptures with less efficient healing are more

"crack-like," despite appearing kinematically pulse-like. Consistent with the findings of

Lambert et al. (2021), sharper self-healing pulses with shorter local sliding durations result

in more substantial undershoot and produce higher radiation ratios, greater than 1 (Figure

5.13). Pulses become broader, with larger ratios of average rise time tArise to rupture duration

Trupt, as the efficiency of both weakening and healing decreases.

5.5.3 Seismological approximation of energy-averaged prestress assuming near-zero

residual shear resistance

If the shear resistance drops to near-zero values during large earthquake ruptures, the energy-

averaged prestress τEini can potentially be approximated purely from seismologically inferable

quantities, with some input from modeling. The total dissipated energy per unit rupture

area can be partitioned further into the average breakdown energy G and residual dissipated

energy EF/A below the minimum average shear stress during sliding (Cocco et al., 2004;

Kanamori & Brodsky, 2004; Kanamori & Rivera, 2013; Ye et al., 2016b). The sum of

the strain energy change available for the breakdown process and radiation is referred to as

the available energy ∆W0 = GA + ER, which is thought to represent the energy relevant to

the dynamics of the rupture (Kanamori & Brodsky, 2004). If the shear resistance drops to

near-zero values during rapid slip, then EF ≈ 0 and the energy-averaged prestress τEini can be

determined from the available energy ∆W0, potency δruptA, and energy-based static stress
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Figure 5.15: Comparison of pulse-like ruptures in 3-D models with 2-D faults with decreas-
ing hydraulic diffusivity. (A-C) Evolution of slip at x = 0 km (top) and the distribution of
slip rate at an instant in time (bottom) for ruptures in fault models with decreasing hydraulic
diffusivity, and hence increasing fluid diffusion time scales. Slip contours are plotted every
0.25 s. (D-F) The corresponding average shear stress versus slip diagrams illustrating the
energy partitioning. Fault models with efficient TP and relatively short fluid diffusion time
result in self-healing pulses and a substantial stress undershoot (D), whereas models with
longer fluid diffusion times produce broader pulses with the duration of slip influenced by
rupture geometry. (G-H) The evolution of local pore fluid pressure and slip rate in the center
of the fault. Models with efficient TP and short diffusion times exhibit rapid pressurization
and healing from fluid diffusion whereas models with lower hydraulic diffusivity exhibit
slower healing, resulting in broader pulses with longer seismic slip rate durations. (I-L)
Evolution of shear stress with time and slip in the center of the ruptures (I & K) and closer
to the rupture boundary (J & L). Healing due to fluid diffusion can be more pronounced in
the center of the rupture further from the rupture boundary, resulting in a stress undershoot
that is more pronounced for sharper pulses in models with shorter fluid diffusion times. (J &
L) Many points in models with longer diffusion time scales are arrested due to arrest waves,
which arrive earlier at points closer to the rupture boundary, resulting in rupture propagation
being predominantly crack-like.
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drop ∆τ
E
:

τEini = τ
D
rupt + τa + ∆τ

E
/2 (5.28)

≈
G

δrupt
+ τa + ∆τ

E
/2, if EF ≈ 0 (5.29)

=
G + ER/A

δrupt
+ ∆τ

E
/2 (5.30)

=
∆W0

δruptA
+ ∆τ

E
/2. (5.31)

The available energy per unit rupture area can be approximated by the energy-based static

stress drop ∆τ
E
, average slip δrupt, and dynamic undershoot γ as (Lambert et al., 2021):

∆W0/A ≈
(
1
2
+ γ

)
∆τ

E
δrupt, where γ =

(
τEfin −min(τE (δ′))

)
/∆τ

E
. (5.32)

Here, min(τE (δ′)) is the minimum of the energy-averaged stress versus slip diagram (Figure

5.4). This relation assumes that the fault resistance does not recover appreciably from the

minimum level of average dynamic stress before the final slip. Note that, in the absence

of any considerable dynamic overshoot or undershoot (γ ≈ 0), the available energy can be

estimated from the energy-based static stress drop and average slip. Lambert et al. (2021)

have shown that ∆τ
E
δrupt/2 provides a reasonable estimate of the true available energy ∆W0

for simulated crack-like ruptures, within a factor of 2. In contrast, simulated self-healing

pulses exhibit considerable dynamic undershoot (with γ up to 4), resulting in notably larger

available energy than given by ∆τ
E
δfin/2, as encapsulated in equation (5.32). Following

Lambert et al. (2021), we refer to the quantity ∆τ
E
δfin/2 as the seismologically-inferable

available energy, since it can be inferred from seismological observations, yet does not

always represent the true available energy (Abercrombie & Rice, 2005; Kanamori & Rivera,

2013; Lambert et al., 2021; Rice, 2006; Venkataraman & Kanamori, 2004; Ye et al., 2016b).

The findings of Lambert et al. (2021) also suggest that a scaling relationship may exist

between the dynamic undershoot γ, the radiation ratio ηR, and a scaled measure of the

average local rise time, such as the ratio of rise time to rupture duration, tArise/Trupt, i.e.
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γ = F(ηR, tArise/Trupt). Thus, if (i) EF ≈ 0, (ii) one can infer the ratio of average local

rise time to rupture duration tArise/Trupt, and (iii) the relation γ = F(ηR, tArise/Trupt) is known

(for example, from modeling), the energy-based prestress can then be determined from

seismologically-inferable quantities:

τEini ≈ (1 + γ)∆τ
E
, if EF ≈ 0 (5.33)

=
[
1 + F(ηR, tArise/Trupt)

]
∆τ

E
. (5.34)

In Lambert et al. (2021), the dependence F(ηR, tArise/Trupt) has been empirically determined

based on 2-D models of a single planar fault segment. These results motivate more detailed

study of scaling relationships among source properties of 3-D dynamic rupture scenarios,

including more realistic fault geometries and various forms of fault heterogeneity.

5.6 Discussion

As discussed in Lambert et al. (in review), the average shear prestress before rupture repre-

sents a measure of the average shear stress that the fault can hold before failing in a rupture

over that region, and hence can indicate a measure of the average fault strength over the

scale of the rupture area. The dissipation-based and energy-based average prestress, τDini

and τEini, are more physical interpretations of the average fault strength than the merely

spatially-averaged shear prestress τAini, since they are representative of the shear resistance

acting against motion, whereas τAini is not.

The dissipation-based average stress measures from our simulated ruptures are consis-

tent with standard notions of shear resistance from laboratory experiments. The aver-

age dissipation-based prestress τDini represents the average shear resistance acting against

quasi-static motion during rupture nucleation, and it is comparable to the prescribed local

steady-state quasi-static resistance as well as average nucleation stress for our simulated

ruptures, independent of rupture size (Figures 5.5 and 5.7B). Therefore, it is not neces-

sarily representative of the average prestress over the entire ruptured region. A potential

exception may be rupture events where the nucleation region is comparable to the total
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rupture size, as considered in some models of slow-slip transients (e.g Y. Liu & Rice, 2005).

The dissipation-based rupture stress τDrupt represents the average dynamic shear resistance

to motion on the fault during rupture and decreases with increasing rupture size and aver-

age slip in a manner consistent with observations of enhanced dynamic weakening in the lab.

The energy-based prestress τEini is most compatible with the notion of average fault strength

over the scale of a rupture as it incorporates the shear stress preceding the impending motion

of interest over the entire rupture area, weighted by final slip. It is also the most practical

definition as it can, in principle, be inferred from field observations (Equation 5.26). The

energy-based prestress, as well as the spatially-averaged prestress, in our simulated ruptures

decreases with increasing rupture size, which makes the large fault areas appear "weak" or

under-stressed with respect to their quasi-static shear resistance required for rupture nucle-

ation, depending on the efficiency of dynamic weakening (Lambert et al., in review). These

results are consistent with previous numerical studies demonstrating that fault models with

enhanced weakening due to thermal pressurization can result in nearly magnitude-invariant

static stress drops, with values consistent with those from natural earthquakes between 1

to 10 MPa, despite exhibiting increased weakening with slip and rupture size (Lambert

et al., 2021; Perry et al., 2020). The discrepancy between stress conditions for rupture

nucleation and propagation illustrates the importance of considering finite-fault effects and

the heterogeneity in motion and shear stress associated with rupture behavior when relating

small-scale laboratory friction measurements to larger-scale average shear stress measures

on natural faults, such as the static stress drops in earthquake ruptures (Lambert et al., in

review; Perry et al., 2020).

We find that rapid fault healing at the end of seismic slip that facilitates self-healing pulses

can result in substantial difference between the dissipation-based average dynamic resistance

τDrupt, which is most related to shear heating, and the average final shear stresses, τAfin and τ
E
fin,

which are one static stress drop away from average fault prestress. This finding highlights

the significance of fault healing during dynamic rupture for the relation between thermal
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constraints, seismological estimates of average static stress drop, and average shear stress

conditions preceding earthquake ruptures. Rapid weakening and healing, consistent with

self-healing pulse-like rupture propagation, can allow substantial motion to occur locally

at low dynamic resistance (10-20 MPa or less), consistent with low heat production, while

larger fault areas away from the slipping zone can maintain higher stress levels perhaps more

consistent with the geodynamic estimates of average fault stress (30 MPa or more) required

to maintain the surface topography (Fay & Humphreys, 2006; Lamb, 2006). Indeed, let

us consider the difference between the average prestress over the rupture –a measure of

fault strength –and the dissipation-based average dynamic resistance during rupture that

would dominate heat production (Figure 5.16). For self-healing pulse-like ruptures with the

energy-based stress drops of 4–5 MPa, typical for natural earthquakes (Ye et al., 2016a), the

difference can be 10–15 MPa, implying that the heat-production constraint of 10-20 MPa

can correspond to average fault prestress of 25-35 MPa. Crack-like ruptures result in the

(much smaller) difference comparable to the static stress drop.
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Figure 5.16: Difference between the energy-averaged prestress τEini and dissipation-based
average dynamic resistance τDrupt versus static stress drop for self-healing pulses and crack-
like ruptures. The difference between τEini and τ

D
rupt is proportional to the static stress drop

through the radiation ration ηR, which is much larger for sharper self-healing pulses with
shorter rise time to rupture durations.
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If geodynamic considerations, such as maintaining surface topography, indeed require that

mature plate boundary faults accommodate spatial or energy-averaged shear stresses larger

by more than 4-5 MPa than those inferred from heat flow constraints, this would suggest

that either large earthquakes on mature faults propagate predominantly as sharp self-healing

pulses or that their static stress drops are substantially underestimated.

If large earthquakes do predominantly propagate as sharp self-healing pulses, then the ap-

parent stress from such ruptures should be notably higher than their inferred energy-based

static stress drops. This does not appear to be the case given current seismological estimates,

especially for large megathrust earthquakes for which most estimates of radiated energy and

energy-based static stress drop are available (Lambert et al., 2021; Ye et al., 2016a). Typical

values of apparent stress are 1.5 MPa for interplate strike-slip earthquakes and 0.3 MPa for

megathrust earthquakes (Choy & Boatwright, 1995; Ide & Beroza, 2001; Perez-Campos &

Beroza, 2001; Ye et al., 2016b), with values inferred to be systematically higher for strike-

slip events than thrust events, by up to an order of magnitude (Choy & Boatwright, 1995;

Perez-Campos & Beroza, 2001). Current estimates of apparent stress on the order of sev-

eral MPa in both tectonic settings therefore represent relatively mild to moderate additions

in energy-averaged shear stress above shear heating constraints, suggesting that relatively

large static stress drops would be required for the energy-averaged (and spatially-averaged)

pre-earthquake shear stress to be much higher than the shear heating stress. Higher values

of apparent stress around 7 MPa are typical of intraplate strike-slip events, which also tend

to achieve larger static stress drops (Allmann & Shearer, 2009; Choy & Boatwright, 1995;

Perez-Campos & Beroza, 2001). However, intraplate earthquakes may not occur under

low-stress, low-heat conditions that we aim to reproduce by the modeling in this work, since

such conditions are predominantly evidenced for mature plate-boundary faults.

The systematic difference in apparent stress between interplate strike-slip and megathrust

earthquakes suggests either a dependence of apparent stress on focal mechanism or tectonic

settings, or a systematic bias in current seismological estimates. For example, the higher
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radiated energy estimates for strike-slip events are typically obtained from regional data,

while the lower radiated energy estimates for megathrust events are obtained from tele-

seismic data. The estimates can be affected by a number of factors, including attenuation,

rupture directivity, and focal mechanism (Ide & Beroza, 2001; Kanamori et al., 2020; Ma

& Archuleta, 2006; Perez-Campos & Beroza, 2001; Venkataraman & Kanamori, 2004; Ye

et al., 2016b). In addition, resolution limitations and the application of smoothing during

finite fault slip inversions suggest that seismologically-estimated static stress drops most

likely provide lower estimates for the energy-based static stress drops (Adams et al., 2016;

Noda et al., 2013).

Our modeling results suggest that re-examining seismological estimates of radiated energy

and static stress drop may provide substantial further insight into the rupture style of large

earthquakes and the absolute stress conditions on mature faults. Such observations may be

particularly useful as finite-fault slip inversions are non-unique and smoothing may make

crack-like ruptures appear more pulse-like if the inversions cannot resolve the tails of low

slip rates. Moreover, our results indicate that some ruptures can appear kinematically

pulse-like, even when the rupture dynamics are more consistent with crack-like ruptures.

For example, pulses created by the finite seismogenic depth may essentially be considered

geometrically-constrained cracks, in the sense that they do not experience much shear stress

undershoot. More detailed studies are warranted to examine how self-healing and geometric

pulses differ in terms of stress evolution and energy partitioning, including in models with

more complex geometry and heterogeneity. Our results suggest that these two classes of

pulses, which can substantially differ with regards to absolute stress conditions on faults, can

potentially be differentiated by the relationship between apparent stress and static stress drop.

Our results indicate that the degree of localization of active shear during dynamic rupture

can affect the relation between the absolute stress conditions on faults and field observations.

The localization of shear dictates the efficiency of shear heating and affects the efficiency

of healing mechanisms, such as pore fluid diffusion. A number of laboratory experiments
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and theoretical studies suggest that shear localization can evolve during slip, including

initial dilation/compaction upon increased slip rate as well as shear localization and damage

generation during rupture, which can also alter the pore fluid pressure within the shearing

layer and the local effective stress (Faulkner et al., 2018; Lockner & Byerlee, 1994; Marone

et al., 1990; K. Okubo et al., 2019; Platt et al., 2015, 2014; Poirier, 1980; Rice et al., 2014;

Rudnicki & Rice, 1975; Samuelson et al., 2009; Scuderi et al., 2014, 2017; Segall & Rice,

1995). Dynamically induced changes in rock permeability during dynamic rupture can also

increase the rate of pore fluid diffusion, resulting in an increased rate of healing in the case

of weakening due to the thermal pressurization of pore fluids. Such effects could alter the

evolution of shear stress during ruptures and are important topics for future investigation.

5.7 Conclusions

We have discussed three different definitions for average fault shear stress (Table 5.4), which

are all equivalent under uniform and quasi-static slip. Dissipation-based stress measures

capture the resistance to most active sliding. Hence the dissipation-based average prestress

(or initial stress) captures the typical quasi-static local shear resistance at the end of the

nucleation process and the dissipation-based rupture stress captures the typical dynamic

shear resistance during dynamic rupture. Energy-based average stress measures capture

averages over the entire rupture area. The energy-based average prestress quantifies the av-

erage stress that can be sustained before dynamic rupture, and hence can serve as a measure

of fault strength. The energy-based average stress measures can, in principle, be inferred

from seismological inferences of apparent stress and energy-based static stress drop from

earthquakes as well as thermal constraints (Table 5.5).

Fault models with enhanced weakening that produce crack-like ruptures and self-healing

pulses exhibit local quasi-statically strong, dynamically weak behavior, while also produc-

ing moderate average static stress drops between 1–10 MPa. A critical difference between

these two rupture styles is that self-healing pulses experience rapid healing of the local

shear resistance within the time scale of the rupture process, resulting in typical dynamic

resistance significantly lower than the final stress (aka stress undershoot). Crack-like rup-
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tures do not experience such healing and have similar dynamic and final shear stresses,

maintaining spatial and energy-averaged shear stress levels within one static stress drop of

the dissipation-based rupture stress τDrupt, whether the efficiency of weakening is relatively

mild or efficient (Figure 5.10). Hence large crack-like ruptures require relatively large static

stress drops in order to maintain average prestress levels that are substantially higher than the

average dynamic shear stress levels associated with shear heating. In contrast, self-healing

pulses can maintain higher spatial and energy-averaged shear stresses over the ruptured area,

several static stress drops greater than the shear heating stress, throughout periods of both

slow and fast sliding.

Our simulations also show that geometric pulses, which arise when slip is arrested due to

arrest waves from fault geometry such as limited seismogenic depth, are energetically con-

sistent with crack-like ruptures. Hence the same arguments relating the evolution of average

shear stress during rupture and absolute stress conditions on faults for crack-like ruptures

apply to geometric pulses. Our modeling results suggest that self-healing pulses, which

exhibit larger dynamic changes compared to static stress changes, may be distinguished

from crack-like and geometric pulse-like ruptures by their correspondingly larger radiated

energy, and hence apparent stress, with respect to the static stress drop. Our findings suggest

that re-examining seismological estimates of radiated energy and static stress drop may thus

provide better constraints on rupture mode and the average absolute stress levels across

seismogenic faults.
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Symbol Definition and physical relation
Local shear resistance based on laboratory-scale measurements and theories

τ(z, t) Local shear resistance, also equal to local shear stress at location z on the fault at time t,
which depends on the history of sliding, temperature, and pore pressure evolution (Sec. 5.2).

τ
Vpl
ss (z, t) Local steady-state quasi-static (SSQS) shear resistance defined as the shear resistance under

steady slow sliding at loading rate Vpl. τ
Vpl
ss (z, t) may generally vary in space and time, but is

assumed constant and uniform over the VW region in our models (Sec. 5.2).
Average shear stress as a function of time

τA(t) Spatially-averaged shear stress over domain Ω at time t (Sec. 5.3.1).
τD(t) Dissipation-averaged shear stress over domain Ω at time t (Sec. 5.3.2).
τAvw(t) Spatially-averaged shear stress over VW region at time t.
τDvw(t) Dissipation-averaged shear stress over VW region at time t.

Average shear stress as a function of average accumulating slip
τE (δ′) Energy-averaged shear stress at average slip increment δ′ in rupture. Note that τE (δ′)

requires knowledge of the final slip distribution and thus can only be calculated after the
rupture has ended (Sec. 5.3.3).

Average pre-rupture stress
τAnucl Spatially-averaged nucleation stress or spatially-averaged prestress within nucleation

region at tini. Comparable to the spatially-averaged local SSQS shear resistance,
τAnucl ∼ τ

Vpl
ss .

τDnucl Dissipation-based nucleation stress or dissipation-averaged prestress in nucleation region
at tini. Comparable to the spatially-averaged local SSQS shear resistance,
τDnucl ∼ τ

A
nucl ∼ τ

Vpl
ss .

τAini Spatially-averaged prestress over rupture area at tini.
τDini Dissipation-averaged prestress over the rupture area at tini. Comparable to the

spatially-averaged local SSQS shear resistance, τDini ∼ τ
D
nucl ∼ τ

A
nucl ∼ τ

Vpl
ss .

τEini Energy-averaged prestress over the rupture area, τEini = τ
E
(0).

Average final rupture shear stress
τAfin Spatially-averaged final stress over rupture area at tfin.
τDfin Dissipation-averaged final stress over rupture area at tfin.
τEfin Energy-averaged final stress over rupture area, τEfin = τ

E
(δrupt).

Average rupture shear stress
τArupt Spatially-averaged rupture stress over the rupture area throughout the rupture process.
τDrupt Dissipation-averaged rupture stress or dissipation-based average dynamic resistance

throughout the rupture process, τDrupt = EDiss/(δruptA).
τErupt Energy-averaged rupture stress , τErupt = 1

2

(
τEini + τ

E
fin

)
= ∆W/(δruptA) = τa + τDrupt.

Table 5.4: Summary of stress-related quantities discussed in Ch.5.
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Symbol Definition and physical relation
τDrupt Dissipation-averaged rupture stress or dissipation-based average dynamic resistance

throughout the rupture process, τDrupt = EDiss/(δruptA)
τa Apparent stress or radiation resistance, τa = ER/(δruptA).
τErupt Energy-averaged rupture stress, τErupt = 1

2

(
τEini + τ

E
fin

)
= τa + τ

D
rupt

∆τ
E

Energy-based static stress drop or slip-weighted static stress drop relevant to energy
partitioning, ∆τ

E
= τEini − τ

E
fin = 2

(
τEini − τ

E
rupt

)
= 2

(
τErupt − τ

E
fin

)
τEini Energy-averaged prestress over the rupture area, τEini = τ

D
rupt + τa + ∆τ

E
/2.

τEfin Energy-averaged final stress over the rupture area, τEfin = τ
D
rupt + τa − ∆τ

E
/2.

τDheat(t) Shear heating stress or the cumulative dissipation-averaged stress over the VW region
up to time t.

Table 5.5: All quantities can be inferred from thermal and seismic observations from
individual ruptures, except for τDheat(t), which is related to measurements of long-term
thermal signatures around faults. Note that it is not possible, at present, to reliably infer total
dissipated energy from a single dynamic rupture, although such inferencesmay be developed
in the future; at present, a useful approximation could be τDheat(t) which has constrains from
heat flow measurements.
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C h a p t e r 6

RESOLVING SIMULATED SEQUENCES OF EARTHQUAKES AND FAULT
INTERACTIONS: IMPLICATIONS FOR PHYSICS-BASED HAZARD

ASSESSMENT

This chapter has been adapted from:

Lambert, V. & Lapusta, N. (in review). Resolving simulated sequences of earthquakes and

fault interactions: Implications for physics-based seismic hazard assessment. Journal

of Geophysical Research: Solid Earth. DOI: 10.1002/essoar.10506727.1.

6.1 Introduction

Earthquakes occur in the context of fault networks and many large earthquakes span several

fault segments. This reality brings about the issue of fault interaction and highlights the need

for simulating earthquake source processes over several fault segments and regional-scale

fault networks. How dynamic ruptures navigate fault segmentation has strong implications

for seismic hazard analysis (Field, 2019). Earthquakes are capable of jumping fault seg-

ments. For example, the 1992 Landers earthquake succeeded in rupturing across at least

4 fault segments, amounting to a Mw 7.3 event (Sieh et al., 1993). The 2016 Mw 7.8

Kaikoura earthquake ruptured at least 21 segments of the Marlborough fault system (Ulrich

et al., 2019). Increasingly, seismological observations show that it is not uncommon to see

ruptures navigating and triggering subsequent ruptures within fault networks, including the

recent 2019 Mw 6.4 and 7.1 Ridgecrest earthquakes (Ross et al., 2019), and the 2012 Mw

8.6 and 8.2 Indian Ocean earthquakes (S. Wei et al., 2013), the largest and second-largest

recorded strike-slip earthquakes to date. Yet, in any given seismogenic region, the record of

past large events is not long enough to forecast the behavior of ruptures with respect to the

existing fault segments, specifically how likely would it be fore the rupture to jump between

nearby segments, prompting the discussion on whether and how physics-based models may

inform this and other questions important for seismic hazard assessment (Field, 2019).
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Determining what conditions allow a dynamic rupture to propagate or arrest are key to

understanding the maximum potential magnitude of an earthquake. Previous modeling of

single fully dynamic ruptures have shown great success in investigating earthquake prop-

agation in nonplanar and multi-segment fault models, including step-overs and branched

geometries (Ando & Kaneko, 2018; Douilly et al., 2015; Duan & Oglesby, 2006; Dunham

et al., 2011b; Galvez et al., 2014; Harris et al., 1991; Harris & Day, 1993, 1999; Hu et

al., 2016; Kame et al., 2003; Lozos et al., 2015; Ulrich et al., 2019; Withers et al., 2018;

Wollherr et al., 2019). In particular, such modeling has shown that the ability of a rupture to

propagate across segments depends on the stresses before the rupture and shear resistance

assumptions, as well as the geometry of the fault system. However, single-rupture simu-

lations need to select initial conditions and need additional assumptions to incorporate the

effect of previous seismic and aseismic slip.

Fault processes involve both sequences of dynamic events and complex patterns of quasi-

static slip. Simulating this behavior in its entirety is a fascinating scientific problem.

However, even for the more pragmatic goal of physics-based predictive modeling of de-

structive large dynamic events, it is still important to consider sequences of earthquakes

and aseismic slip (SEAS), since prior slip events, including aseismic slip, may determine

where earthquakes would nucleate as well as modify stress and other initial conditions be-

fore dynamic rupture. Furthermore, such simulations provide a framework for determining

physical properties consistent with a range of observations including geodetically recorded

surface motions, microseismicity, past (including paleoseismic) events, and thermal con-

straints, and hence may inform us about the current state of a fault segment or system

and potential future rupture scenarios (e.g. Allison & Dunham, 2018; Barbot et al., 2012;

Ben-Zion & Rice, 1997; Cattania, 2019; T. Chen & Lapusta, 2009; Erickson & Day, 2016;

Erickson & Dunham, 2014; Jiang & Lapusta, 2016; Kaneko et al., 2010; Lambert & Barbot,

2016; Lambert et al., 2021; Lapusta & Rice, 2003; Lapusta et al., 2000; Lin & Lapusta,

2018; Y. Liu & Rice, 2005; Noda & Lapusta, 2013; Perry et al., 2020; Segall et al., 2010).
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However, simulating long-term slip histories is quite challenging because of the variety of

temporal and spatial scales involved.

Recently, several earthquake simulators have been developed with the goal of simulating

millions of earthquake ruptures over regional fault networks for tens of thousands of years

(Richards-Dinger & Dieterich, 2012; Shaw et al., 2018; Tullis et al., 2012). The term "sim-

ulators" typically refers to approaches that employ significant simplifications, compared to

most SEAS simulations, in solution procedures and physical processes, in order to simulate

earthquake sequences on complex, regional scale 3-D fault networks for long periods of time.

For example, earthquake simulators typically account only for the quasi-static stress transfer

due to earthquake events, ignoringwave-mediated stress changes, aseismic slip/deformation,

and fluid effects; employ approximate rule-based update schemes for earthquake progression

instead of solutions of the governing continuummechanics equations; and use oversized nu-

merical cells. Such simplifications are currently necessary to permit simulations of hundreds

of thousands of events over hundreds of fault segments that comprise the regional networks

(Shaw et al., 2018). Earthquake simulators have matched a number of regional-scale statis-

tical relations, including the Gutenberg-Richter frequency-magnitude scaling (Shaw et al.,

2018), and highlighted the importance of large-scale fault and rupture interactions.

Here, we examine the sensitivity of the long-term interaction of fault segments to choices

in numerical discretization and representations of inertial effects in simulated sequences of

earthquakes and aseismic slip, using a relatively simple 2-D model of two co-planar strike-

slip fault segments separated by a velocity-strengthening (VS) barrier. We explore how

considerations for adequate numerical resolution and convergence depend on the physical

assumptions and complexity of earthquake sequences as well as on the modeling outcome

of interest. We especially focus on the rate of earthquake ruptures jumping across the

VS barrier and examine whether reproducing comparable earthquake frequency-magnitude

statistics and static stress drops provides sufficient predictive power for the jump rate, a

quantity of interest to seismic hazard studies (Field, 2019).
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6.2 Model setup and numerical resolution

Our simulations are conducted following the methodological developments of Lapusta et

al. (2000), Noda and Lapusta (2010), and Lambert et al. (2021). We consider a one-

dimensional (1-D) fault embedded into a 2-D uniform, isotropic, elastic medium (Figure

6.1). The 2-D model approximates a faulted crustal plate coupled to a moving substrate

using the idea of a constrained continuum (Johnson, 1992; Lehner et al., 1981). Fault slip

may vary spatially along-strike, but it is depth-averaged through a prescribed seismogenic

thickness λS = 15 km, beneath which the elastic domain is coupled to a substrate moving

at the prescribed loading rate (Vpl = 10−9 m/s). The elastodynamic equation for the depth-

averaged displacement along-strike u(x, y, t) is given by (Kaneko & Lapusta, 2008; Lehner

et al., 1981):

Z2 ∂
2u
∂x2 +

∂2u
∂y
+

1
λ2
eff

(
1
2
sign(y)Vplt − u

)
=

1
cs

∂2u
∂t2 , (6.1)

where λeff = (π/4)λS and Z = 1/(1 − ν), with ν being the Poisson’s ratio. The effective

wave speed along-strike for the crustal plane model is cL = Zcs, where cs is the shear wave

speed. The along-strike slip is then given by δ(x, t) = u(x, y = 0+, t) − u(x, y−, t).

Our simulations resolve sequences of earthquakes and aseismic slip (SEAS) in their entirety,

including the gradual development of frictional instability and spontaneous nucleation, dy-

namic rupture propagation, post-seismic slip that follows the event, and the interseismic

period between events (Figure 6.2). In all models, frictional resistance along the fault inter-

face is governed by the standard laboratory-derived rate-and-state friction law with the state

evolution described by the aging law (Dieterich, 1979; Ruina, 1983):

τ = σ f = (σ − p)
[

f∗ + a ln
V
V∗
+ b ln

V∗θ
DRS

]
, (6.2)

dθ
dt
= 1 −

Vθ
DRS

, (6.3)

where σ = (σ − p) is the effective normal stress, σ is the normal stress, p is the pore

pressure, τ is the shear stress, f is the friction coefficient, V is the slip velocity, θ is the

state variable, DRS is the characteristic slip for the evolution of the state variable, f∗ is the
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Figure 6.1: Schematic of a strike-slip fault with two co-planar velocity-weakening fault
segments separated by a velocity-strengthening barrier. In our simulations, we use a 2-D
approximation of the problem with a 1-D along-strike depth-averaged fault, in which the
fault is assumed to be creeping at the loading plate rate Vpl = 10−9 m/s below the depth of
λS =15 km.

reference steady-state friction coefficient corresponding to a reference slip rateV∗, and a and

b are the direct and evolution effect constitutive parameters, respectively.

At steady-state (constant slip velocity), the shear stress and state variable evolve to their

steady-state values τss and θss given by:
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τss(V) = (σ − p)
[

f∗ + (a − b) ln
V
V∗

]
, (6.4)

θss(V) =
DRS
V

. (6.5)

The combination of frictional properties such that (a−b) > 0 results in steady-state velocity-

strengthening (VS) behavior, where the shear resistance increases with an increase in slip

velocity and where stable slip is expected. If (a − b) < 0, then the fault exhibits velocity-

weakening (VW) behavior, in which case an increase in slip velocity leads to a decrease

in shear resistance, making these regions of the fault potentially seismogenic if their size

exceeds a critical nucleation size.

Two theoretical estimates of the nucleation size in mode II are (Rice & Ruina, 1983; Rubin

& Ampuero, 2005):

h∗RR =
π

4
µL

(1 − ν)(b − a)(σ − p)
; h∗RA =

2
π

µLb
(1 − ν)(b − a)2(σ − p)

, (6.6)

where µ is the shear modulus. The estimate h∗RR was derived from the linear stability anal-

ysis of steady frictional sliding by Rice and Ruina (1983). It also represents the critical cell

size for steady-state quasi-static sliding such that larger cells can become unstable on their

own. Thus h∗RR represents a key length scale to resolve for slow interseismic processes and

earthquake nucleation (Lapusta et al., 2000; Rice & Ruina, 1983). The estimate h∗RA was

determined in the parameter regime a/b > 0.5 using the energy balance of a quasi-statically

expanding crack (Rubin & Ampuero, 2005), and provides an estimate of the minimum size

for a slipping region that releases enough stored energy to result in the radiation of waves.

We aim to explore the impact of numerical resolution on the long-term simulated slip be-

havior of sequences of earthquakes and aseismic slip. The nucleation size, h∗, estimated

by either h∗RR or h∗RA from equation (6.6), is one length-scale that clearly needs to be well

resolved. Early resolution studies for sequences of events showed that resolution of the

nucleation scale h∗RR by 20 to 40 cells is required for stable numerical results (Lapusta et
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al., 2000). Later, the need to resolve the nucleation size by at least 20 cells was shown to

be due to the more stringent criterion of resolving the region where shear resistance breaks

down at the rupture front, often referred to as the cohesive zone. The cohesive zone can

be an order of magnitude smaller than the nucleation size, depending on the constitutive

description (Day et al., 2005; Lapusta & Liu, 2009). The size of the cohesive zone depends

on the weakening rate W of shear stress with slip associated with the constitutive law. The

quasi-static estimate Λ0 of the cohesive zone size at near-zero rupture speed and constant

W is given by:

Λ0 = C1
µ′

W
, (6.7)

where C1 is a constant, µ′ = µ for mode III, and µ′ = µ/(1 − ν) for mode II (Rice, 1980).

For standard rate-and-state friction with the aging form of the state variable evolution, the

weakening rate is given by W = DRS/(bσ) (Lapusta & Liu, 2009) and:

Λ0 = C1
µ′DRS

bσ
. (6.8)

If one assumes that the traction distribution within the cohesive zone is linear, then the

constant C1 can be approximated as C1 = 9π/32 (Rice, 1980).

For fully dynamic rupture simulations, continuously resolving the breakdown process at

the rupture front becomes even more challenging as the cohesive zone size Λ exhibits a

contraction with increasing rupture speed vR (e.g Rice, 1980):

Λ = Λ0 A−1(vR); A−1
I I =

(1 − ν)c2
sD

v2
R(1 − v

2
R/c

2
s )

1/2
; A−1

I I I = (1 − v
2
R/c

2
s )

1/2, (6.9)

whereD = 4(1− v2
R/c

2
s )

1/2(1− v2
R/c

2
p)

1/2 − (2− v2
R/c

2
s )

1/2 with cp =
√

2(1 − ν)/(1 − 2ν)cs.

Note that A−1(0+) = 1, giving the quasi-static cohesive zone estimate Λ0 when vR = 0+. As

the rupture speed approaches the limiting wave speed, vR → cR (Rayleigh wave speed) for

mode II and vR → cs (shear wave speed) for mode III, one has A−1(vR) → 0 and the width of

the breakdown region approaches zero. Hence it becomes increasingly more challenging to

resolve the rupture front during fully dynamic simulations if the rupture accelerates towards
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the limiting speeds. Such acceleration typically occurs during long enough propagation

of dynamic rupture over favorable prestress, unless impeded by additional factors such as

unfavorable prestress or situations with increasing effective breakdown energy, e.g., due

to off-fault inelasticity, thermal pressurization of pore fluids, or navigating fault roughness

(Andrews, 2005; Dunham et al., 2011b; Lambert & Lapusta, 2020; K. Okubo et al., 2019;

Perry et al., 2020; Poliakov et al., 2002; Rice, 2006). Simulations of faults with rate-and-

state friction and the aging form of the state variable evolution embedded in elastic bulk

result in ruptures with near-constant breakdown energy (Perry et al., 2020), and this holds

for most cases considered in this study. In section 6.7, we show that adding an approximation

of off-fault inelasticity to our simulations that reduces the rupture speeds does not alter our

conclusions.

In our model, the fault contains a frictional domain consisting of two VW regions of length

λVW = 32 km that are separated by a 2-km-long VS region that impedes rupture propagation.

We select large enough values of the velocity strengthening in the central VS region so that

the region acts like a barrier, requiring ruptures to jump/renucleate on the other side of

the barrier to propagate over the second segment. This region is a proxy for what would

be a gap in the fault connectivity, at least at the surface, requiring the ruptures to jump

across. The remainder of the frictional region surrounding the VW segments has more mild

VS properties (Figure 6.1). At the edges of the model, outside of the frictional domain,

fault slip is prescribed at the loading plate rate. Values for the model parameters used in

our simulations are provided in Tables 6.1 and 6.2. We first examine models with lower

instability ratio λVW/h∗RR that result in quasi-periodic sequences of events, and then consider

models with higher instability ratios that result in more complex earthquake sequences and

qualitatively different convergence behavior.
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Parameter Symbol Value
Loading slip rate Vpl 10−9 m/s
Shear wave speed cs 3299 m/s
Shear modulus µ 36 GPa
Poisson’s ratio ν 0.25

Rate-and-state parameters
Reference friction coefficient f∗ 0.6

Reference slip velocity V∗ 10−6 m/s
Direct effect (VS) aVS 0.02

Evolution effect (VS) bVS 0.003
Direct effect (barrier) aB 0.05

Evolution effect (barrier) bB 0.001
Length scales

Fault length λ 280 km
Frictional domain λ f r 258 km
Each VW segment λVW 32 km

VS Barrier λB 2 km
Seismogenic depth λS 15 km

Table 6.1: Parameter values for simulations in Ch. 6 unless otherwise specified

Parameter Symbol M1 M2 M3 M4 M5
Effective normal stress σ = (σ − p) 50 MPa 60 MPa 40 MPa 30 MPa 50 MPa
Characteristic slip DRS 20 mm 20 mm 20 mm 18 mm 8 mm
Direct effect (VW) aVW 0.005 0.005 0.005 0.005 0.005

Evolution effect (VW) bVW 0.015 0.0135 0.0175 0.02 0.015
Length scales

Quasi-static cohesive zone Λ0 1.1 km 1.0 km 1.2 km 1.3 km 452 m
Nucleation size (R.&A., 2005) h∗RA 1.8 km 1.9 km 1.7 km 1.6 km 733 m
Nucleation size (R.&R., 1983) h∗RR 1.5 km 1.5 km 1.5 km 1.6 km 603 m

Instability ratio λVW/h∗RA 18 17 19 20 44
Instability ratio λVW/h∗RR 21 22 21 21 53

Table 6.2: Parameter values for simulations in Ch. 6 that vary among fault models

6.3 Resolving quasi-periodic fully dynamic sequences of earthquakes and aseismic

slip (SEAS)

Let us consider the simulated slip behavior of faultmodelM1with instability ratioλVW/h∗RR =

21 (Table 6.2). Its quasi-static cohesive zone (Λ0 = 1.1 km) should be well-resolved by cell

sizes of 12.5 and 25 m, with 88 and 44 cells over Λ0, respectively; the nucleation size is

even larger and hence also well-resolved. Consistently with these considerations, these two

well-discretized simulations produce the same relatively simple quasi-periodic sequences
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of earthquake events that periodically jump across the VS barrier (Figure 6.2A & B). We

clearly see that the results are the same for the two simulations with different resolutions, in-

cluding the local evolution of slip rate and shear stress during ruptures late in the earthquake

sequence (Figure 6.2D-E). Note that the cohesive zone evolves throughout the rupture pro-

cess, shrinking with the increasing rupture speed by 3-4 times in these simulations (Figure

6.2F-H) and the spatial discretization is fine enough to adequately characterize the rupture

front throughout the entire dynamic process. Both simulations have the jump rate as 0.54;

we define this rate of ruptures jumping across the VS barrier within a given time period as

the total number of ruptures that propagate towards the barrier and result in seismic slip on

both fault segments divided by the total number of ruptures that propagate towards the barrier.

The variability between different ruptures in fault model M1 is generally mild, as shown

by their frequency-magnitude histograms (Figure 6.2C). To create the frequency-magnitude

histograms, we compute themoment for each simulated event in our 2-Dmodels as M = µδA

where the rupture area is defined with respect to the rupture length LR and seismogenic

depth λS , as A = (π/4)L2
R when LR ≤ λS and A = LRλS when LR > λS .

The quasi-periodic nature of events observed over the first 4000 years in well-resolved

simulations of fault model M1 persists in longer-duration simulations over 20,000 years,

resulting in similar long-term jump rates of 0.48 to 0.54 depending on the time interval

considered (Figure 6.3). We also examine simulations of fault model M1 with different

initial shear stress conditions and find that the long-term sequences of events converge to

the same quasi-periodic behavior upon adequate discretization, despite the initial few events

being different (Figure 6.3A vs B; details of initial shear stress distributions S1 and S2 are

provided in section 6.9). Simulations of fault model M1 thus exhibit long-term numerical

convergence upon adequate discretization, producing virtually indistinguishable long-term

slip behavior and a consistent rate of two-segment ruptures among simulations with differing

initial conditions, after a sufficiently large initial sequence of events.
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Figure 6.2: Interaction of two co-planar fault segments in well-resolved simulations of
model M1 demonstrating convergence of simulated earthquake sequences. (A-B) History of
cumulative slip over 4000 years in well-resolved fully-dynamic simulations of fault model
M1 with initial conditions S1 using (A) 12.5-m and (B) 25-m cell size. Contours for seismic
slip are plotted every 0.5 s, with ruptures that jump across the VS barrier colored blue.
The simulated fault behavior is virtually indistinguishable between the two resolutions. (C)
Frequency-magnitude histograms of events, on top of each other for the two resolutions. The
well-resolved simulations produce the same relatively simple and quasi-periodic behavior.
(D-E) The evolution of local shear stress and slip velocity at a point (x = −20.5 km, shown by
star in A and B), practically indistinguishable even after over 3800 years of simulated time.
(F-H) Spatial distribution of shear stress at the rupture front for three locations (x = −20
km, 5 km and 20km) throughout the first rupture in (A-B). While the quasi-static estimate
of the cohesive zone Λ0 is about 1.1 km, the actual size of the cohesive zone varies with the
local rupture speed throughout the rupture. In these well-resolved simulations, the cohesive
zone is always resolved by at least 10 cells.
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Figure 6.3: Convergence of well-resolved simulated earthquake sequences in model M1
for longer-term simulations and different initial conditions. (A-B) Cumulative slip over
0-4000 years and 16,000-20,000 years in two well-resolved fully-dynamic simulations of
fault model M1 with two different initial conditions, S1 and S2. Contours of seismic slip are
plotted every 0.5 s with ruptures that jump across the VS barrier colored blue. The quasi-
periodic behavior seen in the first 4000 years in well-resolved simulations, including the rate
of ruptures jumping across the VS barrier, remains generally consistent throughout longer-
term simulations over 20,000 years (Right). Simulations using different initial shear stress
conditions produce different initial sequences of events, however, the simulated sequences
converge to the same slip behavior and have the same long-term rates of two-segment ruptures
(0.50 over 2,000-20,000 years). (C-D) Normalized frequency-magnitude histograms for
events from (A) and (B), respectively, over 4000 and 20,0000 years, illustrating that the
population statistics in this relatively simple system is the same, apart from the initial
start-up period.



218

Let us now consider simulations that use larger computational cells. The cell sizes of 250 m

and 125 m resolve the quasi-static cohesive zoneΛ0 with 4.5-9 cells (Figure 6.4). While this

resolution seems adequate (Day et al., 2005), one can anticipate that the dynamic shrinking

of the cohesive zone size by 3-4 times would result in a more marginal resolution of 1-3

cells. Indeed, we see that the simulated long-term sequences of events and jump rates differ

substantially from those of the well-resolved simulations (Figures 6.2A & B vs. 6.4A &

B). Considering even larger cell sizes of 500 m and 1000 m brings further differences in

the event sequences and jump rates (Figure 6.6), with the earthquake sequences that look

plausible and not obviously numerically compromised even for the largest cell sizes (Figure

6.5). Note that the jump rate in simulations with marginal and oversized cells is neither

systematically larger nor smaller than the range 0.48-0.54 from the well-resolved cases, but

varies from 0.25 to 0.95 depending on the choice of numerical discretization.

Increasingly poor resolution of the dynamic cohesive zone at the rupture front and, for the

largest cell sizes, of the nucleation zone results in an increasing abundance of small events

(Figure 6.6), as had been shown in previous studies (Lapusta & Liu, 2009; Rice, 1993; Rice

& Ben-Zion, 1996). Inadequate resolution of the dynamic rupture front prevents simulat-

ing the actual stress concentration and promotes event arrest. Inadequate resolution of the

nucleation size enables individual cells or small number of cells to fail independently due

to the inadequate resolution of the stress interactions (Lapusta & Liu, 2009; Rice, 1993;

Rice & Ben-Zion, 1996). Using sufficiently oversized cells can result in power-law statistics

in terms of the frequency-magnitude distribution of simulated earthquake ruptures (Figure

6.6E-J; Rice, 1993; Rice & Ben-Zion, 1996).

Note that the suggested minimum average resolution of 3 cells of the (variable) cohesive

zone from the dynamic rupture study by Day et al. (2005) is not adequate for convergent

results in these earthquake sequence simulations. That criterion would be achieved in this

model for a cell size between the 250 m and 125 m. Yet the simulated long-term behavior

for those cell sizes is clearly different from the better-resolved and convergent results with
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Figure 6.4: Less well-resolved simulations of fault model M1 exhibiting different simulated
earthquake sequences and rates of two-segment ruptures. (A-B) History of cumulative slip
over 4000 years in fully dynamic simulations of fault modelM1 usingmarginal and oversized
cells of (A) 125 m and (B) 250 m, respectively. Contours of seismic slip are plotted every
0.5 s, with ruptures that jump across the VS barrier colored blue. (C) Spatial distribution
of shear stress around the rupture front in a well-resolved simulation (∆x = 25 m, red) and
the two simulations with larger cells (∆x = 125 and 250 m). As the cell size increases, the
resolution of the shear stress evolution at the rupture front decreases, although the resolution
would be acceptable in simulations of single ruptures (Day et al., 2005). (D-E) Frequency-
magnitude histograms for events in (A-B), respectively. The simulations with larger cells
exhibit different long-term sequences of events compared to the well-resolved simulations
(Fig. 6.2C), with increased production of small events and significantly different rates of
two-segment ruptures.
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Figure 6.5: Simulations of fault model M1 using more oversized cells exhibiting different
simulated earthquake sequences and rates of two-segment ruptures. (A-B) History of
cumulative slip over 4000 years in fully dynamic simulations of fault model M1 using
oversized cells of (A) 500 m and (B) 1000 m, respectively. Contours of seismic slip are
plotted every 0.5 s, with ruptures that jump across the VS barrier colored blue. (C) Spatial
distribution of shear stress around the rupture front in a well-resolved simulation (∆x =
25 m, red) and the two simulations with oversized cells (∆x = 500 and 1000 m). As
the cell size increases, the breakdown of shear stress at the rupture front is increasingly
poorly resolved. (D-E) Frequency-magnitude histograms for events in (A-B), respectively.
Simulations with oversized cells exhibit different long-term sequences of events compared
to the well-resolved simulations (Figure 6.2), with increased production of small events and
significantly different rates of two-segment ruptures.

the cell sizes of 25 m and 12.5 m. At the same time, the criterion by Day et al. (2005) works

well for a single dynamic rupture as intended, since the first dynamic events in simulations

with cell sizes 12.5 m, 25 m, 125 m, and 250 m are quite similar to each other (Figure 6.7).

The events are not identical, however; for example, the average slip with the resolution of

12.5 m and 125 m differs by 0.7%. Clearly, these differences –acceptable for a single event

–accumulate in these highly nonlinear solutions, resulting in different event statistics and

jump rate (Figure 6.6).
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Figure 6.6: Frequency-magnitude (left) and jump-rate (right) statistics for 20,000 years
of simulated earthquake sequences in model M1 with different initial conditions and cell
sizes. (A-B) Well-resolved simulations with different initial shear stress conditions result in
comparable long-term quasi-periodic sequences, and thus comparable frequency-magnitude
statistics and 2000-year jump rate statistics that are generally consistent with the 20,000-year
jump rate of 0.50. (C-J) As the resolution decreases, the sequences become more complex
with greater variability of event sizes and increased production of smaller events. The jump
rate during different 2000-year periods also becomes more variable and can considerably
differ from the true jump rate of 0.5 in the well-resolved cases.
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We find that our fully dynamic 2-D simulations of fault model M1, which include uniform

VW properties with relatively mild weakening due to standard rate-and-state friction, con-

verge when the quasi-static cohesive zone estimate Λ0 is discretized by at least 22 cells,

which translates to the average resolution of the dynamically variable cohesive zone size

of 10-15 cells. Fault models with additional or different ingredients, such as fault hetero-

geneity/roughness, more efficient weakening, 3D elastodynamics with 3D faults, or different

instability ratio, would require further considerations for resolution requirements that result

in convergent simulations. For example, as we discuss in section 6.6, the convergence and

resolution properties of models with higher instability ratios, which result in more complex

earthquake sequences, are qualitatively different.

In the more complicated earthquake sequences observed in under-resolved simulations of

fault model M1, some statistics, such as the rate of two-segment ruptures, depends on the

specific period that one considers throughout the simulation. To explore the variability in

the event statistics and jump rate across the VS barrier in models with different numerical

resolution, we examine the jump rate over different 2000-year periods throughout longer term

simulations of 20,000 years, using a sliding window of 1000 years starting at the beginning

of the simulation (19 periods total; Figure 6.6). The choice of a 2000-year period allows us

to have a sufficient number (∼20) of large earthquakes within a period to estimate jump rates.

We also consider the outcomes for two different initial conditions S1 and S2, as before. For

the well-resolved simulations exhibiting long-term convergence, the frequency-magnitude

and 2000-year jump rate statistics for simulations with different initiation conditions are

comparable, with the jump rate for all 2000-year periods being consistent with the overall

20,000 year jump rate (Figure 6.6A-B). As the numerical resolution worsens, the sequences

of events become more complex with greater variability in rupture sizes and increased

production of smaller events (Figure 6.6C-J). The jump rate during any 2000-year period

also becomes more variable in marginally-resolved simulations and can considerably differ

from both the 20,000-year jump rate of the same simulation as well as from the true jump
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Figure 6.7: Final slip and evolution of slip for the first rupture in simulations of fault model
M1 with different numerical resolution. (A) The final slip distribution for the first simulated
rupture with the same initial conditions is practically the same for simulations using cell
sizes of 12.5, 25, 125, and 250 m. (B) The evolution of slip is contoured every 0.5 s
and comparable spacing between contours illustrates that the rupture speed is generally
consistent for the first rupture in these well-resolved and marginally-resolved simulations.
The evolution of slip and final slip are virtually identical for the twowell-resolved simulations
using 12.5 and 25 m cells, and the average final slip for simulations with 12.5 and 250 m
cell sizes differ by less than 0.8%.

rate in the well-resolved simulations. Note that, despite being clearly affected by numerical

resolution, the frequency-magnitude and jump-rate distributions of inadequately resolved

simulations can appear generally consistent among simulations with similar cell sizes and

different initial conditions (Figure 6.6 left vs. right columns). In other words, even if

simulations using marginal or oversized cells produce comparable statistical properties for

different initial conditions, these characteristics do not necessarily represent robust features

of the physical system, but rather may still be numerical artifacts.
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6.4 Interaction of fault segments in simulations with quasi-dynamic approximation

for inertial effects

Many numerical studies of long-term fault behavior utilize quasi-dynamic solutions to the

equations of motion, in which the wave-mediated stress transfers during the coseismic phase

are replaced with a radiation damping approximation (Rice, 1993). The quasi-dynamic

approximation substantially reduces the computational expense of the simulation, as the

consideration of stress redistribution by waves requires substantial additional storage and

computational expense. Considerable insight into fault mechanics has been derived from

studies using quasi-dynamic formulations, particularly when such approximations are used

to incorporate new physical effects that may otherwise result in prohibitive computational

expense, as well as in scenarios where it may be argued that inertial effects are relatively

mild, such as during earthquake nucleation or during aseismic slip transients (Allison &

Dunham, 2018; Erickson et al., 2017; Lambert & Barbot, 2016; Y. Liu, 2014; Y. Liu & Rice,

2005, 2007; Rice, 1993; Rubin & Ampuero, 2005; Segall & Rice, 1995; Segall et al., 2010).

However, as with all approximations, it is important to be aware of how such simplifications

modify the outcome of study (Thomas et al., 2014).

Let us review the quasi-dynamic approximation for inertial effects during sliding and study

their implications for the long-term interaction of two fault segments. In the 2-D boundary

integral formulation, the elastodynamic shear stress along a 1-D fault plane can be expressed

as (Cochard & Madariaga, 1994; Perrin et al., 1995):

τ(x, t) = τ0(x, t) + φstatic(x, t) + φdynamic(x, t) − ηV(x, t), (6.10)

where τ0(x, t) are the "loading" tractions (i.e. the stress induced on the fault plane if it were

constrained against any slip), φstatic(x, t) and φdynamic(x, t) represent the static and dynamic

contributions to the stress transfer along the fault, respectively, and the last term represents

radiation damping (η = µ/(2cs) for mode III).

The static solution for the equations of motion would only contain φstatic, which depends
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only on the current values of slip along the fault. However, the static solution does not exist

during dynamic rupture when inertial effects becomes important. φdynamic and ηV both arise

due to the inertial effects. φdynamic represents the wave-mediated stress interactions along

the interface and this term is challenging to compute as it requires calculating convolutions

on time and storing the history of deformation. Radiation damping ηV is much easier to

incorporate as it depends on the current slip rate, and represents part of the radiated energy

(Rice, 1993). The quasi-dynamic approximation, in which φdynamic is ignored and only

ηV is included, allows the solution to exist during inertially-controlled dynamic rupture.

However, the solution is altered from the true elastodynamic representation.

Let us consider the long-term behavior of fault model M1, as examined in section 6.3, but

now using the quasi-dynamic approximation. For well-resolved quasi-dynamic simulations

of fault model M1, we find that the long-term slip behavior of the two fault segment system

is even simpler than for the fully dynamic case, with ruptures being exclusively isolated to

individual segments and the jump rate being zero (Figure 6.8A). For simulations with the

increasing cell size, and thus decreasing spatial resolution, we see increased variability in

the size of the individual ruptures, to the point where some marginally-resolved simulations

produce ruptures that jump across the VS barrier, whereas well-resolved simulations of the

same fault model never do (Figure 6.8B-C). The increasing cell size also leads to increased

production of smaller events and more complicated fault behavior, similarly to the fully

dynamic simulations (Figure 6.8D-F).

In addition to substantially reducing the computational expense associated with calculating

the wave-mediated stress transfers, quasi-dynamic simulations place milder constraints on

the spatial resolution since the cohesive zone always remains near the quasi-static estimate,

Λ ≈ Λ0 = Λ(vR = 0+) (Figure 6.8G-H). This is because the stress transfer calculated for the

ruptures is always quasi-static, and the much stronger stress transfer due to waves is ignored

(Figure 6.9E). As a result, the quasi-dynamic simulations produce significantly smaller slip

velocities and rupture speeds than the fully dynamic ones 6.9A-C, consistent with previous
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Figure 6.8: Interaction of two co-planar fault segments in quasi-dynamic simulations of fault
model M1 with varying discretization. (A-C) History of cumulative slip over 4000 years in
quasi-dynamic simulations of fault model M1 with initial conditions S1 using (A) adequate
discretization, (B) marginal discretization, and (C) oversized cells. Contours of seismic
slip are plotted every 0.5 s, with ruptures that jump across the VS barrier colored blue.
(D-F) Frequency-magnitude histograms for events in (A-C). (G-H) Spatial distribution of
shear stress illustrating the breakdown of shear resistance at the rupture front during quasi-
dynamic simulations in fault model M1 with varying spatial resolution. The cohesive zone
does not shrink during quasi-dynamic ruptures. A well-resolved rupture front is shown in
red with a cell size of 25 m. The cohesive zone (Λ0 = 1.1 km) is resolved by at best 1 to 2
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studies (Lapusta & Liu, 2009; Thomas et al., 2014).

One can attempt to enhance the slip rates and rupture speeds in the quasi-dynamic simu-

lations by reducing the radiation damping term η; this can be interpreted as increasing the

effective shear wave speed in the radiation damping term cenh.s = βcs, thus allowing for

higher slip rates (Lapusta & Liu, 2009). We compare the enhanced quasi-dynamic sim-

ulations (β = 3) with the standard quasi-dynamic (β = 1) and fully dynamic simulations

of fault model M1 (Figure 6.10). Decreasing the radiation damping increases the effective

rupture speed and slip rate (Figure 6.9A -C) in comparison to the standard quasi-dynamic

simulation, however, for the parameters considered, it does not substantially alter the long-

term interactions of the two fault segments, nor match the rate of ruptures jumping across

the VS barrier in the fully dynamic case (Figure 6.10).

In comparing the three simulations with different treatment of the inertial effects, it is clear

that the fully dynamic ruptures result in higher slip rates and narrowing of the cohesive zone

(Figure 6.9). For simulations with standard rate-and-state friction, the peak shear stresses

vary mildly from fully dynamic versus quasi-dynamic representations, as they are limited by

the shear resistance of the fault, which has a relatively mild logarithmic dependence on slip

rate. However, the stress transfer along the fault substantially differs for fully dynamic ver-

sus quasi-dynamic representations (Figure 6.9E). The difference between the stress transfer

term and the shear stress is accommodated by the radiation damping ηV , which results in

higher slip rates V to balance the larger dynamic stress stranfers (Figure 6.9C - E). Hence

while the resolved peak shear stresses along the fault may be comparable due to the specific

choice of the constitutive relationship, the rupture dynamics and kinematics, as seen through

the stress transfer, slip rate, and rupture speed along the fault, differ considerably with and

without the inclusion of full inertial effects.

These larger dynamic stress transfers facilitate the triggering and continued propagation of

slip on the neighboring fault segment, rather than leaving the rupture to always be arrested



228

5.0 s

6.5 s

8.0 s

Distance along fault (km)
10 20 305 15 25

Distance along fault (km)

Sl
ip

 v
el

oc
ity

 (m
/s

)

Distance along fault (km)
18 19 21 22

Sh
ea

r S
tre

ss
 (M

Pa
)

20

30

40

A) C)

D)

1000 m

Rupture 
propagation

20

18 19 21 2220

1.0

0.0

0.5

0

2

10

4

6

8

at VR
 / cL~ 0.92Fully dynamic  ( VR

eff ~ 0.96 cL )
Quasi-dynamic ( VR

eff ~ 0.17 cL )

Sl
ip

 v
el

oc
ity

 (m
/s

)

0

4

8

0

4

8

0

4

8

Enhanced quasi-dynamic, β=3
( VR

eff ~ 0.74 cL )

0.1

1.0

Fully dynamic 
Quasi-dynamic 
Enhanced quasi-dynamic (EQD), β=3

R
up

tu
re

 S
pe

ed
 / 

Li
m

iti
ng

 S
pe

ed
 (v

R
 / 

c l )
 

EQD, vR / ( βcl ) 

St
re

ss
 T

ra
ns

fe
r, 

Φ
 (M

Pa
)

-10

0

10

20

30

40

Distance along fault (km)
10 20 305 15 25

Distance along fault (km)
18 19 21 2220

B) E)

Figure 6.9: Comparison of local slip rate, shear stress, and rupture speed for simulations with
different treatment of inertial effects. (A) Spatial distribution of slip rate at three instances of
time during the first rupture with the same initial conditions in fully dynamic (black), quasi-
dynamic (red), and enhanced quasi-dynamic (blue) simulations of fault model M1. (B) The
fully dynamic rupture accelerates to a rupture speed close to the limiting wave speed of
cL ≈ 4.4 km/s throughout the rupture, whereas the quasi-dynamic ruptures maintain lower
effective rupture speeds. Decreasing the radiation damping term for quasi-dynamic ruptures
increases the slip rate and rupture speed, but does not truly mimic the acceleration of the
fully dynamic rupture. (C-D) A closer look at the spatial distribution of (C) slip velocity
and (D) shear stress at a given time highlights how full consideration of inertial effects leads
to much higher slip velocities and a more localized stress concentration at the rupture front,
which facilitates rupture propagation. Enhancing the quasi-dynamic ruptures with lower
radiation damping increases the slip rate, but maintains the same quasi-static spatial pattern
of stress at the rupture front. (E) The corresponding values of the stress transfer functional
near the rupture front. The radiation damping approximation of the inertial effects results
in dramatically reduced stress transfer along the fault. The larger total stress transfer in the
fully dynamic simulations is balanced by higher slip rates, as shown in (C).
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speeds and larger slip rates (Figure 6.9), the long-term slip behavior for both quasi-dynamic
simulations is qualitatively comparable, with no ruptures jumping across the VS barrier.

by the creeping barrier, as in the well-resolved quasi-dynamic simulations (Figure 6.10).

Decreasing the radiation damping term allows for somewhat higher slip rates and arbitrarily

higher rupture speeds, but it does not mimic the full effects in the dynamic stress transfer,

particularly at the rupture front. As a result, the fully dynamic simulations have higher jump

rates. The differences between fully dynamic and quasi-dynamic approximations can be

even more substantial for models with enhanced weakening at seismic slip rates from the

flash heating of contact asperities or the thermal pressurization of pore fluids (Thomas et

al., 2014).
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6.5 Constraining rupture jump rates using earthquake frequency-magnitude statis-

tics

Two common observations about natural earthquakes and regional seismicity are the average

static stress drops between 1 to 10MPa independently of the eventmagnitude (e.gAllmann&

Shearer, 2009; Ye et al., 2016b) as well as the frequency-magnitude statistics of earthquakes

within a region, which commonly follow the Gutenberg-Richter power-law relation (Field

et al., 2013). Earthquake simulators are capable of matching these observations (Shaw et

al., 2018). An important question is whether matching these constraints endows simulators

with predictive power for other quantities of interest to seismic hazard assessment, such as

the probability of multiple fault-segment ruptures, despite using approximations for inertial

effects and oversized computational cells.

Let us consider this question using simulations of earthquake sequences in five fault models

with the same fault geometry but different friction properties and different assumptions

about inertial effects, and one additional model in which the effective seismogenic depth

λS is slightly reduced from 15 to 14 km (Figure 6.11, Table 6.2). All six models have

comparable nucleation and quasi-static cohesive zone sizes (Table 6.2) and use oversized

cells of ∆x = 1000 m (an example of well-resolved simulations with similar conclusions is

given in section 6.7). The six simulations produce comparable frequency-magnitude distri-

butions, characterized by a b-value of 0.3-0.4 for 4000 years of the simulated time. All six

simulations also produce ruptures with comparable average static stress drops (Figure 6.12),

with values typically between 1 and 10 MPa, as commonly inferred for natural earthquakes

(Allmann & Shearer, 2009; Ye et al., 2016b).

However, the probability of a rupture jumping across the VS barrier varies dramatically

among the six simulations, ranging from 0 to near 100%. This substantial variability in

jump rate for simulations with comparable frequency-magnitude statistics persists in longer-

duration simulations over 20,000 years, where both the 20,000-year jump rate and distribu-

tions of jump rates within individual 2000-year periods can substantially differ (Figure 6.13).
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Figure 6.11: Models with comparable frequency-magnitude statistics and static stress drops
but very different rates of two-segment ruptures. (A-F) Cumulative frequency-magnitude
histograms (top) and history of cumulative slip (bottom) over 4000 years in (A-C) fully
dynamic and (D-F) quasi-dynamic SEAS simulations. The simulations assume different
physical conditions described in the text. All six simulations produce comparable average
static stress drops (Figure 6.12) and comparable population statistics with a b-value around
0.33. However, the rate of two-segment ruptures varies from 0 to 1.
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In particular, fault model M1 results in a jump rate of 0 for the quasi-dynamic simulation

and near 1 for the fully dynamic simulation (Figures 6.11 and 6.13A vs. D), despite having

similar frequency-magnitude statistics. This case illustrates how using approximations for

inertial effects may considerably bias estimates of the actual rate of multi-segment ruptures,

even if the frequency-magnitude statistics and static stress drops are comparable. In addi-

tion, the suite of simulations suggest that the probability of ruptures jumping across the VS

barrier is sensitive to variations in the frictional parameters, effective normal stress, as well

as minor changes in the seismogenic depth.

The results from our simple 2-D modeling suggest that reproducing static stress drops and

frequency-magnitude statistics does not provide substantial predictive power for the long-

term interaction of fault segments. These results are perhaps not surprising given that many

combinations of rate-and-state properties and effective normal stress may produce ruptures

with comparable static stress changes (Figure 6.12), but different overall levels of shear

resistance. Moreover, numerical studies have shown that fault models including enhanced

dynamic weakening may also produce nearly magnitude-invariant static stress drops with

reasonable values between 1–10 MPa (Perry et al., 2020). Such models with enhanced
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Figure 6.13: Variability of jump rates in models with comparable frequency-magnitude
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weakening result in larger dynamic stress variations which may mediate longer-range inter-

actions among faults. However, enhanced weakening can also draw the average stress along

the fault further away from nucleation conditions (Jiang & Lapusta, 2016; Lambert et al.,

2021), which may produce less favorable conditions for dynamic triggering (Ulrich et al.,
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2019).

Similarly, a number of studies have demonstrated that power-law frequency-magnitude

statistics can be reproduced in many models, including discrete fault models (Bak & Tang,

1989; Burridge & Knopoff, 1967; Olami et al., 1992), continuum fault models that are

inadequately resolved and therefore numerically discrete (Ben-Zion & Rice, 1995), and

continuum models with larger instability ratio (Cattania, 2019; Wu & Chen, 2014). In

other words, Gutenberg-Richter statistics is consistent with a model having many potential

rupture sizes, such as many individual faults of varying size or even a single fault that can

host earthquakes of many sizes, between the nucleation size and fault dimensions. Therefore

Gutenberg-Richter statistics may be compatible with a range of fault and/or fault network

properties, and may not pose a considerable physical constraint on its own.

6.6 Resolution and convergence of SEAS simulations of faults with higher instability

ratios

As discussed in section 6.3, we find that the discretization required to achieve long-

term numerical convergence in simulations of fault model M1, with instability ratio of

λVW/h∗RR ≈ 21, is more stringent than the current standards based on simulations of single

dynamic ruptures and shorter SEAS simulations with lower instability ratios (Day et al.,

2005; Lapusta & Liu, 2009). It has been demonstrated that fault models with relatively

low instability ratios can result in quasi-periodic behavior, as seen in fault model M1 (Fig-

ure 6.2), whereas increasing the instability ratio can lead to more variable sequences of

events with partial-segment ruptures of different rupture size, potentially consistent with

Gutenberg-Richter scaling (e.g Cattania, 2019; Lapusta & Rice, 2003; Lapusta et al., 2000;

Michel et al., 2017; Wu & Chen, 2014). As simulations with higher instability ratios can

produce ruptures with a wider variety of rupture sizes, with the rupture size depending on

the prestress conditions before rupture nucleation, one could hypothesize that simulations

of fault models with higher instability ratios may be more sensitive to how the evolution of

shear stress is resolved over long-term fault behavior.
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To test that, let us consider sequences of events in fault model M5 (Table 6.2), which has

smaller characteristic slip distance, hence smaller nucleation size (h∗RR ≈ 603 m), and larger

instability ratio (λVW/h∗RR = 53 vs. 21 in M1). Interestingly, we find that the long-term

sequence of simulated events in this model is not the same for finely-discretized simulations

with cell sizes of 25, 12.5, and 6.25 m (Figure 6.14), in which the quasi-static cohesive zone

Λ0 is resolved by 18, 36, and 72 cells, respectively. The simulations produce nearly identical

fault behavior for the first several hundred years of simulated time, but then eventually begin

to differ (Figure 6.14A-C).

Let us consider the first event in the three simulations of model M5 with fine discretiza-

tion (Figure 6.14A-C), which all have the same initial conditions. If we examine the local

evolution of shear stress vs. slip at two spatial points in the simulations, the results are

virtually identical (Figure 6.15A-B), suggesting that a single dynamic rupture in these

finely-discretized simulations is adequately resolved. The evolution of shear stress and slip

rate at the rupture front with time is also well-resolved for each individual simulation. While

the different spatial resolutions result in small variations in the timing and magnitude of the

resolved properties at specified locations (Figure 6.15C-F), these differences are well within

of what is considered well-resolved and convergent in prior studies (e.g Day et al., 2005).

Early in the rupture, shortly after nucleation (near x = 30 km), the rupture front is almost

identical in the three simulations. (Figure 6.15C & E). As the rupture continues, small

numerical differences for different resolutions result in minor differences in the rupture,

such as less than 0.08% difference in the rupture arrival time and 2% difference in the peak

slip rate between the two best-resolved simulations at the location close to the end of the

rupture (Figure 6.15D & F). Such minor differences arise even for fine resolutions due to

cumulative effects of slightly different representations of the solution by the discrete cells;

for example, the fixed computational cells sample slightly different portions of the passing

rupture front, leading to small accumulating differences in the magnitude of the shear stress

and slip rate.
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Figure 6.14: Sequences of earthquakes and rates of two-segment ruptures over 4000 years in
fully dynamic simulations with different resolution of fault model M5 with higher instability
ratio. Seismic slip is contoured every 0.5 s with ruptures jumping across the VS barrier
colored blue. (A-C) Slip history for increasingly better-discretized simulations. While the
initial 1000 years of simulated behavior appear well resolved and comparable, longer-term
simulations begin to diverge due to the compounded effects of small numerical differences,
leading to similar but inconsistent jump rates across the barrier. (D-E) The spatial distribu-
tion of shear stress at the rupture front. For well-resolved simulations (D), the cohesive zone
is resolved by several cells, but is resolved by less than even one cell for poorly-resolved sim-
ulations (E). (F-G) Simulations with decreasing numerical resolution can exhibit additional
artificial complexity and substantially different long-term fault behavior, including different
rates of two-segment ruptures.
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Figure 6.15: Excellent resolution of local shear stress and slip rate for the first rupture of
well-resolved fully dynamic simulations of model M5 shown in Figure 6.14. The evolution
of local shear stress with slip at (A) x = 20 km and (B) x = −20 km is virtually identical.
Evolution of (C-D) shear stress and (E-F) slip rate with time for the same points. The
rupture nucleates near x = 30 km. Early in the rupture (A, C & E), the local behavior is
comparable among the well-resolved simulations. Near the end of the first rupture (D &
F), the simulations begin to deviate very slightly in their local behavior, consistent with the
results of Day et al. (2005). While the simulated behavior in the first rupture is very similar,
these small differences, resulting from different numerical approximations, compound over
many sequences and eventually lead to diverging behavior, as seen in Figure 6.14.
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These small differences –that do not substantially alter the resulting rupture characteristics

of individual events –do eventually alter the resulting earthquake sequences. For several

ruptures early on in finely-discretized simulations, the slip and shear stress distributions

before and after individual events are virtually indistinguishable (Figure 6.16A-B). How-

ever, eventually the small variations accumulate, resulting in enough differences in prestress

conditions to cause more substantial differences in rupture lengths and amounts of slip

within individual events, as well as changes in timing and location of earthquake nucle-

ations (Figure 6.16C-E). As a result, the long-term history of sequences of slip events is

altered (Figure 6.16F), including the rate of ruptures that jump across the VS barrier. We

hypothesize that this alteration occurs for higher but not lower instability ratios due to more

complex earthquake sequences in the latter case, although this issue requires further study.

Despite the specific sequences of events being different in the finely-discretized simulations

shown in Figure 6.14A-C, we do find that certain outcomes are quite similar between these

simulations, such as relationships between average static stress drop and seismic moment,

average slip and rupture length, and breakdown energy and average slip, as well as general

characteristics of the evolution of average shear stress and shear heating with time (Figure

6.17). Other parameters, such as the rate of ruptures jumping from one fault segment

to another, are sensitive to numerical resolution even in these finely-resolved simulations,

although they have relatively similar values (from 0.64 to 0.78). This highlights how the

criteria for adequate discretization in numerical simulations can depend on both the phys-

ical problem being considered and the outcome of interest. Note that while it is plausible

that further discretization of fault model M5 would result in eventual convergence, and

thus potentially a true rate of two-segment ruptures, the spatial discretization considered

in this study is already much finer than those considered in most numerical SEAS studies,

especially in more realistic models of 2D faults in 3D media which are often challenged to

resolve Λ0 by even 3 cells.

While the specific rate of ruptures jumping across the VS barrier varies among these finely-
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Figure 6.16: Compounded effects of minor numerical differences in well-resolved simula-
tions of model M5 result in diverging long-term earthquake sequences. Comparison of the
prestress before rupture (left) and resulting slip distributions (right) for several events over
the first 1000 years of simulated time in two fully dynamic simulations of fault model M5
using cell sizes of 6.25 m (red) and 12.5 m (black). (A & B) The evolution of shear stress
and accumulation of slip during the first few hundred years of simulated time are virtually
identical. (C-E) Eventually, small differences in shear stress before events build up due to
different numerical approximations, resulting in small differences in slip and rupture length
for individual events, as well as the location and timing for the nucleation of smaller events.
(F & G) The differences in shear stress accumulate over sequences of events, resulting in
noticeable variations of slip in larger events after 800 years of simulated time and, even-
tually, different histories of large segment-spanning events between the two well-resolved
simulations, as shown in Figure 6.14.
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Figure 6.17: Averaged source properties and fault behavior that are generally consistent
among well-resolved fully dynamic simulations of fault model M5, despite lack of conver-
gence of slip with finer resolution. (A) Spatially-averaged stress drop versus moment. (B)
Average slip versus rupture length. (C) Energy-based average stress drop versus moment.
(D) Average breakdown energy versus average slip. (E) Evolution of average shear stress
and the shear stress associated with shear heating over 4000 years of simulated sequences
of earthquakes. It is apparent that the timing and degree of slip of individual events in the
sequences of earthquakes differ. However the general characteristics of the overall average
stress evolution, in terms of the maximum and minimum stresses and the average stress
drops, are comparable, resulting in virtually indistinguishable shear heating stresses.
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discretized simulations of fault model M5, it is possible that some broader statistical features

of the jump rate are more robust. We examine the frequency-magnitude and 2000-year jump

rate statistics for the long-term sequences of events in simulations ofmodelM5with different

discretization. While the distributionsmildly vary among finely-discretized simulationswith

differing cell sizes (12.5 m and 25 m), they are comparable (Figures 6.18 and 6.19). Thus,

one can ascertain information about the probability distribution for the rate of multi-segment

ruptures, even if specific results vary due to numerical discretization. Such small numerical

perturbations could potentially be considered representative of various sources of physical

perturbations on natural faults, and the statistical consistency of the distributions could be

explored by producing ensembles of simulations with varying initial conditions. However,

our results suggest that it is still important to sufficiently resolve the rupture process as the

statistical distributions for rupture properties in simulations using oversized cells can be

more substantially impacted by numerical artifacts and considerably vary from simulations

with finer discretization (Figures 6.18 and 6.20).

6.7 Resolution and convergence in SEAS simulations with moderate rupture speeds

due to an approximation for off-fault plasticity

While the 2-D fault models discussed in this study can be considered relatively simple, in

someways they can be particularly challenging to resolve. In fault models with purely elastic

bulk, dynamic ruptures are able to accelerate to rupture speeds close to the limiting values cL

(e.g. Figure 6.9 for fault model M1), making it difficult to resolve the significantly shrinking

cohesive zone Λ. For example, during fully dynamic ruptures in simulations of fault model

M5, the rupture speed approaches 0.99cL and the cohesive zone shrinks more than 7 times

to about 63.5 m. In real rocks, high slip rates and hence high strain rates associated with

dynamic rupture would be mitigated by off-fault inelastic behavior around the rupture front,

whichwould contribute to limiting the rupture speed (Andrews, 2004;Dunham et al., 2011a).

In order to examine how conditions for resolution and convergence may differ in long-term

SEAS simulations with more moderate rupture speeds, we approximate the effects of off-

fault yielding by employing a limit on the slip velocity, as suggested by Andrews (2004)
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Figure 6.18: Different frequency-magnitude and jump rate statistics for 20,000 years of
sequences of earthquakes in fully dynamic simulations of fault model M5 with varying cell
sizes. (A-F) Frequency-magnitude histograms (Top) and normalized 2000-year jump rate
histograms (Bottom) for 20,000 years of simulated SEAS. (A-B) Even well-resolved simula-
tions exhibit mild differences in long-term event statistics, though the frequency-magnitude
histograms are similar. The 2000-year jump rate histograms are different but comparable for
well-resolved simulations, with the 20,000-year jump rate varying by approximately 15%
among the three simulations. (C-F) Simulations with marginal or inadequate resolution
have enhanced production of smaller events, as small groups of cells nucleate into ruptures
but fail to propagate substantially due to poorly resolved stress concentration at the rupture
front. The 20,000-year jump rates and 2000-year jump rate distributions substantially vary
for simulations using oversized cells compared to the well-resolved simulations.
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Figure 6.19: Differing frequency-magnitude histograms for 4000 years of sequences of
earthquakes in fully dynamic simulations of fault model M5 with varying cell sizes. Simu-
lations are performed using different computational cell sizes of (A) 25 m, (B) 12.5 m, (C)
6.25 m, (D) 125 m, and (E) 500 m. Simulations exhibit differences in long-term behavior,
even for well-resolved simulations (A-C) where the stress at the rupture front is spatially de-
scribed by more than 3 cells. Simulations using oversized cells or with marginal resolution
(D & E) produce more smaller events as small groups of cells nucleate into ruptures that
fail to propagate due to the stress concentration at the rupture front being poorly resolved.

and discussed in detail in Lambert et al. (2021). We consider long-term fully dynamic

simulations of fault model M5 with the slip velocity limited to 2 m/s in order to maintain

rupture speeds around 0.8cL , consistent with the cohesive zone shrinking by about a factor

of 2 from the quasi-static estimate.

Surprisingly, the finely-discretized simulations of fault modelM5with limited rupture speed

still produce differing sequences of events, despite the rupture front and local behavior being

well-resolved and nearly identical for cell sizes of 6.25 to 25 m (Figures 6.21 and 6.22).

As with the standard fully dynamic simulations without the plasticity approximation, well-

resolved simulations of fault model M5 with the velocity limit are nearly identical for the

initial few sequences (Figure 6.23A-B). However, the sequences of events begin to differ

due to slight differences in how the evolution of shear stress is resolved during a slow-slip
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Figure 6.20: Scaling of average slip and stress drop with rupture size for numerically-
discrete versus well-resolved ruptures in fault model M5. (A-B) Despite different long-term
sequences of events, two well-resolved simulations of fault model M5, with cell sizes
∆x = 6.25 m and ∆x = 12.5 m, have similar scaling of average slip and static stress drop
with rupture size. Simulations using oversized cells produce small numerically-discrete
ruptures consisting of only a few cells that fail to propagate due to the poorly resolved
stress concentration of the shear stress at the (diffuse) rupture front. This causes large
ruptures to occur in poorly-resolved simulations for higher values of shear stress, resulting
in large ruptures having greater average slip than in well-resolved simulations (A). The small
numerically-discrete ruptures produce variable amounts of slip, despite being restricted to
the same rupture size of only 1 to several cells (A), leading to large, upward-sweeping trends
in average stress drop with moment, which are purely numerical (B).
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transient within the nucleation region of an impending rupture, resulting in a 3-year delay

between the nucleation of the subsequent rupture in each simulation (Figure 6.23C-D). As

discussed earlier for the standard fully dynamic simulations, the small differences in pre-

stress lead to mild differences in slip and rupture size in subsequent events, which eventually

compound to produce more substantial variations in the long-term sequences of events (Fig-

ure 6.23 E-H). These results once again illustrate the extreme sensitivity of the long-term

sequences of events, and rates of two-segment ruptures, in this highly nonlinear problem,

as well as the significance of resolving how aseismic processes load, relax, and redistribute

stress along faults.

Interestingly, we see similar lack of convergence in quasi-dynamic simulations of fault

model M5, where long-term sequences, including the rate of two-segment ruptures, differ

in seemingly well-resolved simulations due to the compounded effects of small numerical

differences (Figures 6.24 and 6.25). Moreover, despite the rupture front being better re-

solved in the quasi-dynamic simulations and in fully dynamic simulations withthe plasticity

approximation than in the standard fully dynamic simulations, the sequences of events be-

gin to diverge earlier. Specifically, while the standard fully dynamic simulations of fault

model M5 with cell sizes of ∆x = 6.25 and ∆x = 12.5 m have the same event sequences

through approximately 600 to 700 years of simulated time, fully dynamic simulations with

the plasticity approximation begin to substantially differ between 200 to 300 years, and

quasi-dynamic simulations begin to noticeably differ between 100 to 200 years.

A potential explanation for this finding is that both the quasi-dynamic approximation and

strong limitation on slip rate for fully dynamic simulations also limit the magnitude of

the stress transfer along the fault (Figure 6.26), making the simulations more sensitive to

small numerical differences. Thus, while the lower stress concentrations in both cases

facilitate maintaining slower ruptures and resolving the breakdown of shear resistance at the

rupture front, the smaller magnitudes for the stress transfer along the fault makes rupture

propagation more sensitive to variations in the pre-existing shear stress ahead of the rupture
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Figure 6.21: Sequences of earthquakes and rate of two-segment ruptures over 4000 years in
fully dynamic simulations with different resolution of fault model M5 and an approximation
of off-fault plasticity. The rupture speed reduces to 0.8 cL due to the approximation using
a velocity limit of Vlim = 2 m/s. Seismic slip is contoured every 0.5 s with ruptures
jumping across the VS barrier colored blue. (A-C) Slip history for increasingly well-
resolved simulations. The initial few sequences of events appear comparable among well-
resolved simulations, however the sequences begin to differ due to the compounded effects
of small numerical differences. (D-E) The cohesive zone shrinks by only about a factor
of two for rupture speeds below 0.8 cL , so the rupture front is very well-resolved. (F-
G) Simulations with decreasing numerical resolution exhibit additional artificial complexity
and substantially different long-term fault behavior, including rates of two-segment ruptures.
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Figure 6.22: Evolution of local slip rate and shear stress with slip and time at two points at
(left) x = 20 km and (right) x = −20 km during the first rupture of adequately-discretized
fully dynamic simulations of fault model M5 with the effects of off-fault dissipation approx-
imated using a velocity limit of Vlim = 2 m/s, as shown in Figure 6.23. The local behavior
is nearly identical for all three simulations with different spatial discretization.
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Figure 6.23: Simulations with diverging long-term sequences of earthquakes after small
differences in a slow-slip transient. (A-B) Virtually indistinguishable spatial distribution of
shear stress and slip after the 13th event in fully dynamic simulations of fault model M5 with
the effects of off-fault dissipation approximated using a velocity limit of Vlim = 2 m/s, with
cell sizes of ∆x = 6.25 (red) and ∆x = 12.5 (black dashed). (C) Evolution of the maximum
slip rate between 100 to 300 years of simulated time. Before event 13, the timing of slip
events is nearly identical, however after a slow-slip transient following event 13, around
t = 210 years, the timing of slip events begins to diverge. (D) The resolved shear stress
changes due to the slow-slip transient within the nucleation region of event 14 mildly differs
between the two simulations of different cell size, resulting in a slightly higher stress release
for the simulation with cell size ∆x = 12.5 m. (E-F) Following the slow-slip transient, there
is a 3-year difference between the nucleation of event 14, leading to slightly higher prestress
before the initiation of the rupture, and hence slightly different resulting slip distributions.
(G-H) The different rupture sizes and amount of slip in event 14 results in differing final
stress distributions. The timing of subsequent events becomes more disparate between the
two simulations and the shear stress distributions and sequences of events begin to differ
more substantially (Figure 6.21).
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Figure 6.24: Different sequences of earthquakes and rate of two-segment ruptures over 4000
years in quasi-dynamic simulations with different resolution of fault model M5. (Top) Slip
history for simulations with varying spatial resolution showing different histories of events
depending on the choice of cell size. Seismic slip is contoured every 0.5 s with ruptures
jumping across the VS barrier colored blue. (Bottom) Frequency-magnitude statistics for
the respective simulations of varying cell size shown above. Simulations using larger cell
sizes produce a larger number of small events as small groups of cells nucleate, but ruptures
cannot propagate due to the inadequately resolved stress concentration at the rupture front.
Even adequately-resolved simulations show different histories of events, including rates of
ruptures jumping across the VS barrier.

front. Note that while the approximation for off-fault plasticity substantially limits the peak

slip rate and magnitude of the stress transfer along the fault, the overall stress transfer for

the fully dynamic rupture including the plasticity approximation is still more pronounced

than that of the quasi-dynamic ruptures, and remains more pronounced well behind the

rupture front due to the continued arrival of waves from ongoing slip in already-ruptured

regions. Both the quasi-dynamic simulations and the fully dynamic simulations with the

plasticity approximation produce comparable static stress drops and frequency-magnitude

statistics to the standard fully dynamic simulations (Figures 6.19, 6.24 and 6.27). However,

the rupture speeds and rates of two-segment ruptures are consistently higher for the fully
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Figure 6.25: Compounded effects of small numerical differences in well-resolved quasi-
dynamic simulations result in diverging long-term earthquake sequences. Comparison of
prestress before rupture (left) and resulting slip distributions (right) for several events over
the first 2000 years of simulated time in two quasi-dynamic simulations of fault model
M5 using cell sizes of 6.25 m (red) and 12.5 m (black). (A & B) The evolution of shear
stress and accumulated slip during the first few sequences of events is practically identical,
however small differences begin to appear due to different numerical approximations. (C)
The small differences in shear stress accumulate over sequences of events, resulting in
more noticeable variations in the amount of slip in larger events. (D) The accumulation of
noticeable differences in shear stress, particularly in regions of rupture nucleation and near
the VS barrier, leads to differing sequences of events, rupture sizes, and probabilities of
rupture jumping across the VS barrier.

dynamic simulations due to the substantially larger stress transfer. These results emphasize

the significance of inertial effects when considering how ruptures navigate various forms of

fault heterogeneity.
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Figure 6.26: Comparison of local slip rate, shear stress and stress transfer with different
treatment of inertial effects and considerations for plasticity. (A-B) Spatial distribution
of (A) shear stress, (B) slip rate, and (C) stress transfer along the fault during the first
rupture with the same initial conditions in fully dynamic (black) and quasi-dynamic (red)
simulations of fault model M5, as well as a fully dynamic simulation approximating the
effects of off-fault plasticity with a slip velocity limit of 2 m/s. The stress transfer during
fully dynamic ruptures is much more pronounced than quasi-dynamic ruptures, resulting in
higher slip rates and more focused shear stresses at the rupture front. The approximation for
off-fault plasticity limits the peak slip velocity and restricts the magnitude of the peak stress
transfer along the fault. However, the stress transfer for the fully dynamic rupture including
the plasticity approximation is still more pronounced than that of the quasi-dynamic rupture
and remains more pronounced behind the rupture front.
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Figure 6.27: Frequency-magnitude histograms for 4000 years of sequences of earthquakes
in fully dynamic simulations of fault model M5 with the effects of off-fault dissipation
approximated using a slip velocity limit of Vlim = 2 m/s. Simulations are performed using
different computational cell sizes of (A) 25 m, (B) 12.5 m, (C) 6.25 m, (D) 125 m and (E)
500 m. The increased production of smaller events (Mw ≤ 4) in simulations with large
computations cells (D & E) is qualitatively similar to the fully dynamic simulations of fault
model M5 with no velocity limit shown in Figure 6.19.

The simulations ofmodelM5, without andwith the plasticity approximation, provide another

example of how earthquake sequences with similar frequency-magnitude statistics can result

in different jump rates across the velocity-strengthening barrier. While the simulations with

cell sizes of 6.25, 12.5, and 25 m have well-resolved cohesive zones (Figures 6.14 and 6.21)

and similar event statistics (Figure 6.19 and 6.27), they have jump rates ranging from 0.7-0.8

without the plasticity approximation to 0.3-0.5 with the plasticity approximation (Figures

6.14 and 6.21).

6.8 Discussion

We have investigated the sensitivity of numerical simulations of long-term sequences of

earthquakes and aseismic slip (SEAS) to numerical discretization and treatment of inertial

effects, using a simplified 2-D model of a 1D fault with two co-planar seismogenic, VW

segments separated by a VS barrier. Our focus is, in part, on the resulting rate of rupture

jumps across the barrier.
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We find that the convergence of long-term simulated earthquake sequences with increasing

numerical resolution may not always be achievable. Even if simulations are sufficiently

discretized to produce consistent modeling results for individual ruptures or short sequences

of events, they may still produce different long-term sequences due to compounded effects

of small numerical differences over many events. We have achieved the convergence for

fault models with lower instability ratios λVW/h∗RR, i.e., lower fault lengths in comparison

to the nucleation size (Figure 6.3). In contrast, models with higher instability ratios ex-

hibit different long-term behavior even in simulations that are well discretized by standard

metrics (Day et al., 2005; Lapusta & Liu, 2009), including different specific sequences of

earthquakes and different probability of ruptures jumping across the VS barrier. In the cases

with convergent long-term behavior, the criteria for numerical resolution that leads to the

same evolution of slip are more stringent than those for individual dynamic ruptures, i.e.,

the dynamic cohesive zone size needs to be discretized by more cells.

Our results show that numerical convergence in SEAS simulations depends not only on how

well important length-scales are discretized but also on the sensitivity of the specific phys-

ical problem to small numerical perturbations. In particular, our results suggest that faults

with higher instability ratios are more sensitive to accumulating numerical perturbations

(Figure 6.28), although that conclusion requires further study. In another example, while

quasi-dynamic simulations are easier to resolve and thus should result in smaller numerical

discrepancies for sufficiently small cell sizes, the milder stress transfer compared to fully

dynamic ruptures can make long-term quasi-dynamic simulations more sensitive to small

perturbations in shear stress, as occurs in fault model M5. Hence empirical discretization

criteria, such as those of (Day et al., 2005), should be seen as guidelines that may not be

universally applicable to all physical models and outcomes of interest. Moreover, for some

models, numerical convergence of long-term slip may not be possible, though statistical

consistency may hold for some modeling results but not others (Figure 6.28). Overall, these

findings highlight the importance for individual numerical studies to examine the sensitiv-
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ity of their outcomes of interest to the choice of their numerical procedure and discretization.
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Figure 6.28: Conceptual diagram illustrating potentially convergent versus divergent nu-
merical behavior depending on resolution and model complexity, parameterized by the
instability ratio as an example. Well-resolved fault models with low enough instability
ratio may potentially be numerically deterministic where adequate discretization results in
virtually indistinguishable numerical outcomes. Fault models with higher instability ratio
may either have more stringent requirements for numerical discretization in order to achieve
long-term convergence, or such convergence may be impossible; either way, achieving nu-
merical convergence in simulations of sufficiently complex fault models, such as with higher
instability ratios, would be impractical. In such cases, it may still be possible to achieve
statistical consistency among some outcomes within well-resolved simulations, though other
properties of the system may be highly sensitive to numerical precision and considerably
vary depending on the numerical procedures.

For the fault models considered, we find that the rate of earthquake ruptures jumping across

a VS barrier is sensitive to the numerical resolution, representation of inertial effects, as

well as minor changes in physical properties, such frictional parameters, confining stress,
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seismogenic depth, and barrier size. This suggests that, even in this relatively simple model,

the rate of ruptures jumping across a VS barrier is not a stable outcome that can always be

reliably estimated from numerical models, unless the barrier is so large or small that the rate

is reliably zero or 1 (Figure 6.29). The sensitivity of rupture jump rates to small changes

in models suggests that the jump rates across barriers that serve as earthquake gates may

also be highly sensitive to small physical perturbations on natural faults, and thus may be

impractical to estimate in a reliable manner.

However, even for the models that do not achieve deterministic convergence with finer

resolution, we find that some characteristics of well-resolved simulations are preserved,

qualitatively and quantitatively. The characteristics include ranges of average source prop-

erties such as the average static stress drop, quantities related to energy partitioning such

as the average breakdown energy, as well as general features of the average shear stress

and shear heating evolution throughout time (Figure 6.17). These results suggest that some

aspects of physical systems may be reliably determined from a given physics-based model,

while others perhaps cannot, in the sense that they are very sensitive to numerical pro-

cedures and initial conditions, and even well-resolved models produce different outcomes

with respect to those quantities. Our findings also suggest that it may be possible to dis-

cern some statistical aspects of the probability distribution for multi-segment ruptures from

well-formulated numerical models, even if they do not exhibit convergence of long-term

behavior with numerical resolution. However, as the jump rate appears to be sensitive to

small perturbations in numerical and physical properties, it would be prudent to examine

the statistical consistency of the jump rate distribution through large ensembles of models.

Another route for examining plausible rupture scenarios for large earthquakes navigating

key sections of fault networks would be to study detailed dynamic rupture simulations that

can handle more realistic fault geometries with full treatment of inertial effects (e.g Ulrich et

al., 2019; Wollherr et al., 2019), and produce large ensembles of dynamic rupture scenarios

with variations in initial conditions inspired by SEAS simulations.
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Figure 6.29: Consistent isolation of ruptures on fault segments separated by a larger velocity-
strengthening barrier in simulationswith adequate discretization and oversized cells. History
of cumulative slip over 4000 years in two fully dynamic simulations of fault model M1 that
utilize (A) cells that adequately resolve the cohesive zone (∆x = 25 m) and (B) oversized
cells (∆x = 1000 m). Seismic slip is contoured every 0.5 s. The VS barrier is increased
in width to 10 km such that ruptures are isolated to individual fault segments in both
simulations.
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Our results confirm that quasi-dynamic simulations that ignorewave-mediated stress transfer

during dynamic rupture can lead to qualitative differences in the resolved rupture behav-

ior and long-term sequences of slip events. The wave-mediated stress redistribution not

only facilitates long-range interactions among portions of a fault and neighboring segments,

but also alters the state of stress at the rupture front, promoting higher slip rates and more

focused stress concentrations. In particular, the relatively small static stress transfer in quasi-

dynamic simulations makes the rupture front more susceptible to unfavorable conditions,

such as those one may expect from frictional heterogeneity, fault roughness, and regions of

unfavorably low prestress. In contrast, the larger wave-mediated dynamic stresses in fully

dynamic ruptures may assist rupture propagation in navigating unfavorable fault conditions

and geometric irregularities (Ando & Kaneko, 2018; Douilly et al., 2015; Duan & Oglesby,

2006; Dunham et al., 2011b; Galvez et al., 2014; Harris et al., 1991; Harris & Day, 1993,

1999; Kame et al., 2003; Lozos et al., 2015; Thomas et al., 2014; Ulrich et al., 2019; With-

ers et al., 2018; Wollherr et al., 2019). Moreover, the spatial pattern for dynamic stresses,

which affects the preferential direction for ruptures to branch or jump to neighboring faults,

rotates as a function of the rupture speed, and hence can be considerably different from a

quasi-dynamic rupture (Kame et al., 2003). Thus, considering full inertial effects during

individual dynamic ruptures and long-term sequences of slip events is particularly important

when considering the interaction of multiple fault segments and the likelihood of ruptures

propagating through potentially unfavorable conditions.

Our results also confirm that using increasingly oversized cells, with or without wave-

mediated stress transfers, results in a progressivelymore complex slip response, with broader

distributions of event sizes, consistent with conclusions from prior studies (Ben-Zion &

Rice, 1995). Using oversized cells and/or ignoring wave-mediated stress transfer signifi-

cantly modifies the probability of two-segment ruptures, as well as the resulting earthquakes

sequences.

Finally, we have examined whether the rate of ruptures jumping between two fault segments
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can be determined from simulations that reproduce frequency-magnitude statistics and av-

erage static stress drops (Field, 2019; Shaw et al., 2018). We find that these observations do

not constrain rupture jump rates in our models. This highlights the need to better understand

which field observations constrain long-term fault behavior, and thus provide predictive

power for potential future hazards. Physics-based modeling is generally well-suited to

explore these problems, where the relative contribution of physical mechanisms can be ex-

plored for a range of parameters, and intuition can be developed for the relationship among

varying observational constraints and source characteristics. Note that a number of physical

properties not included in our simplified 2-Dmodels may qualitatively alter the behavior and

hence interaction of neighboring fault segments, such as the explicit consideration of depth

variations in slip and the depth extent to which ruptures propagate (e.g Jiang & Lapusta,

2016; Ulrich et al., 2019; Wollherr et al., 2019), time-dependent variations in loading from

distributed deformation at depth (Allison & Dunham, 2018; Lambert & Barbot, 2016), and

enhanced dynamic weakening at seismic slip rates (Di Toro et al., 2011; Dunham et al.,

2011b; Lambert et al., 2021; Noda & Lapusta, 2013; Perry et al., 2020; Tullis, 2007). These

are just a few physical ingredients that merit detailed study in the long-term interaction of

fault segments.

Our results emphasize the need to examine the potential model dependence of simulation

outcomes, including to numerical resolution, particularly when assessing their predictive

value for seismic hazard assessment. Community initiatives, such as the Southern California

Earthquake Center (SCEC) code comparisons for dynamic rupture simulations and simula-

tions of sequences of seismic and aseismic slip (Barall & Harris, 2014; Erickson et al., 2020;

Harris et al., 2018, 2009), can provide further insight into how numerically-derived results

for different physical quantities may depend on numerical methodologies and computational

practices. The significant sensitivity of the rate of multi-segment ruptures to small changes

in numerical models implies that such hazard parameters may also be sensitive to physical

perturbations on natural faults. This consideration motivates further evaluation of meaning-

ful metrics for describing long-term fault behavior and assessing seismic hazard, tasks for
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which physics-based modeling is well-suited.

6.9 Appendix: Description of initial shear stress distributions for numerical simula-

tions of long-term sequences of earthquakes and aseismic slip

In our simulations of sequences of earthquakes and aseismic slip (SEAS), the distributions

of shear stress and slip along the fault evolve depending upon the history of previous slip

during periods of rapid seismic slip as well as slow aseismic slip and fault locking. We

consider how the long-term evolution of fault slip differs among simulations using varying

computational cell sizes and considerations of inertial effects, given the same initial condi-

tions for shear stress, slip rate, and the rate-and-state frictional state variable θ.

For all of our simulations, the velocity-strengthening (VS) portions of the fault are set to be

initially creeping at steady state with the prescribed tectonic plate rate of Vini = Vpl:

τiniVS = τss(Vpl) = σ

[
f∗ + (aVS − bVS) ln

Vpl

V∗

]
(6.11)

τiniB = τss(Vpl) = σ

[
f∗ + (aB − bB) ln

Vpl

V∗

]
. (6.12)

For points within the velocity-weakening (VW) segments of the fault, we first consider

the initial shear stress distribution S1, which favors the first rupture nucleating along the

VW-VS boundary around x = 33 km, and then jumping across the VS barrier to produce a

two-segment rupture (e.g. Figure 6.2) :

τiniVW (x) =



τss(1 m/s) + 3.5MPa for x ∈ [−33km,−2km)

τss(Vpl) + aVW ln 0.1m/s
Vpl
− 1.5MPa for x ∈ [−2km,−1km)

τss(1 m/s) + 5MPa for x ∈ (1km, 27km)

τss(Vpl) + aVW ln 0.1m/s
Vpl

for x ∈ [27km, 33km].

(6.13)

In all of our simulations, points with the VW segments are initially locked with initial

slip rate Vini = 10−10 m/s and the initial state variable θ chosen to be consistent with the
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corresponding initial shear stress and slip rate, given equation 6.2.

In order to examine the convergence of long-term sequences of earthquakes with different

initial conditions, we consider a second initial shear stress distribution S2 (Figures 6.3A

vs B), which favors the first rupture nucleating near the VS barrier around x = 1 km and

propagating away from the barrier and spanning the entire right VW segment:

τiniVW (x) =



τss(1 m/s) + 3.5MPa for x ∈ [−33km,−1km)

τss(Vpl) + aVW ln 0.1m/s
Vpl

for x ∈ (1km, 7km]

τss(1 m/s) + 5MPa for x ∈ (7km, 33km].

(6.14)
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C h a p t e r 7

TIME-DEPENDENT STRESSES FROM FLUID EXTRACTION AND
DIFFUSION WITH APPLICATIONS TO INDUCED SEISMICITY

This chapter has been adapted from:

Lambert, V. & Tsai, V.C. (2020). Time-dependent stresses from fluid extraction and dif-

fusion with applications to induced seismicity. Journal of Applied Mechanics, 87(8).

DOI: 10.1115/1.4047034.

7.1 Introduction

Induced seismicity is a topic of growing scientific interest and societal importance, par-

ticularly surrounding practices in resource extraction and waste disposal (Ellsworth, 2013;

Lee et al., 2019; McGarr et al., 2015; Zoback, 2013). Many processes considered sur-

rounding induced seismicity focus on solid-fluid interactions governing fault strength and

stress. Much attention has been focused on the direct effects of fluid injection and increasing

pore pressure in decreasing the effective normal stress across fault surfaces and potentially

destabilizing faults under their preexisting stress conditions (Bhattacharya & Viesca, 2019;

Frohlich et al., 2014; Frohlich et al., 2011; Guglielmi et al., 2015; Healy et al., 1968; Horton,

2012; Hsieh & Bredehoeft, 1981; Keranen et al., 2014; Kim, 2013; McGarr et al., 2015;

Raleigh et al., 1976, 2013; Walsh & Zoback, 2015; Zhang et al., 2013). However, there

is continued evidence for the presence of seismicity and aseismic deformation caused by

the extraction of pore fluids, particularly in oil and gas fields where pore pressures may

be declining by up to several 10’s of MPa (Doser et al., 1991; Feignier & Grasso, 1990;

Frohlich et al., 2016; Grasso & Feignier, 1989; Grasso & Wittlinger, 1990; Guyoton et al.,

1992; Hough & Bilham, 2018; Hough et al., 2017; Pennington et al., 1986; Segall et al.,

1994; Wetmiller, 1986; Yerkes & Castle, 1970).
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Segall (1989) proposed that the poroelastic stresses resulting from fluid withdrawal can

be responsible for triggering earthquakes in producing fields on their own. A key aspect

highlighted within his work is that the strain mismatch due to reservoir rocks contracting

more than their surroundings generates stresses in areas where no changes in pore-fluid

content occur. Segall (1989) produced stress field solutions encompassing a relatively sim-

ple reservoir geometry assuming a uniform change in fluid mass content along a horizontal

layer. The resulting fields illustrate that, as fluid is extracted, the overlying and underlying

layers experience relative horizontal contraction and the neighboring regions on the flanks

of the producing zone experience relative tension. Such solutions predict a preference for

reverse faulting above and below the producing layer and normal faulting on the flanks

of the producing zone, which is qualitatively consistent with observed seismicity around

several producing fields (e.g. Goose Creek, Wilmington, Buena Vista Hills, Alberta, and

Pau). One drawback of the solutions presented by Segall (1989) is the existence of stress

discontinuities at the edges of the reservoir due to the gradient in the change in fluid mass

content being undefined at the boundaries of the producing region. Steep gradients in the

change in pore fluid content result in local stress concentrations and the finiteness of the

resulting solutions depend on the continuity of the fluid distributions (Segall, 1989, 1992).

As such, quantitative as well as qualitative predictions for the surrounding stresses caused

by fluid extraction and injection may be substantially affected by basic assumptions in the

geometry and hydraulic properties of the producing region.

The particular two-dimensional (2-D) problem for fluid extraction from an infinite hori-

zontal layer with uniform diffusivity was introduced by Segall (1985), accounting for the

smooth temporal evolution of the change in fluid content through diffusion. However, while

considering the effects of varying diffusivity on surface subsidence, he mainly focused on

induced stress changes well below the producing zone in order to estimate the stresses

imposed on the 1983 Coalinga fault by oil field operations, which is several factors deeper

than the corresponding production depth. Since seismicity can also often be observed in

the layers overlying and surrounding the producing or injection zone the focus in this study
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is to expand the analyses of Segall (1985, 1989) to examine the evolution of the stress

field directly surrounding the producing zone in a reservoir including the smooth temporal

evolution of the pore fluid distribution through diffusion. While the fixed reservoir model

of Segall (1989) was shown to qualitatively agree well with patterns in surface deformation

and seismicity surrounding reservoirs with potentially comparable reservoir geometries, we

note that the particular example of a laterally unconstrained reservoir with a finite diffusivity

may be more quantitatively applicable to other producing fields where changes in fluid mass

may not be considered uniform within the producing region (e.g. central Oklahoma (Kera-

nen et al., 2014), North and South Dakota (Keranen & Weingarten, 2018), and Groningen

(J. D. Smith et al., 2019)). Moreover, for many reservoir settings the timescale for fluid

transport (days to years) within the producing layer may be comparable to the timescale

of field observations at relevant distances. For such cases it may be important to account

for the nonstationarity of the geometry of the effective producing zone when interpreting

field measurements and seismological inferences (Keranen et al., 2013, 2014; Mukuhira et

al., 2018). For example, numerical models have illustrated how the temporal evolution of

pore pressure and poroelastic stresses due to fluid injection and diffusion can help explain

temporal trends in the productivity of triggered seismicity, depending on pre-existing fault

geometries and background stress conditions (Segall & Lu, 2015).

The aim of this study is to provide an additional reference model that illustrates the poten-

tial importance of considering the nonstationarity of fluid sources when interpreting field

observations, and from which exact calculations may be made for quantitative comparison

with field data. This model may also serve as a benchmark problem for more complicated

numerical studies. While more sophisticated numerical methods have been applied for

detailed studies of some well-instrumented reservoirs in which the geometry and hydraulic

properties are better constrained, we hope that these relatively simple solutions may prove

useful in regions with limited reservoir data. In order to further facilitate such comparisons

we provide two potential approximate extensions to 3-D for relevant production quantities

such as the volumetric flow rate. In addition, we briefly discuss the implications of our
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model results for existing field observations and seismological studies, including inferred

temporal variations in the principal stress directions of seismic events around injection wells

(Martınez-Garzón et al., 2014; Martıŋnez-Garzón et al., 2013; Schoenball et al., 2014).

7.2 Model description

Segall (1985) showed that for a linear, isotropic poroelastic medium, the solid displacements

u j due to distributed changes in fluid mass content∆m(y, t) can be expressed through a linear

integral relationship over the source volume Vy as,

u j(x, t) =
(1 + νu)B

3πρ0(1 − νu)

∫
V

∆m(y, t)gj(x, y)dVy (7.1)

where νu is the undrained Poisson’s ratio, B is the Skempton’s pore pressure coefficient,

and ρ0 is the fluid density in the reference state. The function gj(x, y) represents the dis-

placement in the j direction at x due to a point center of dilatation at y with associated

change in fluid mass content ∆m(y, t)dV . Note that y and x denote the full position vectors

for the source and receiver elements, respectively. The total displacement u j(x, t) due to

quasi-static changes in a distributed fluid mass at time t is then obtained by integrating the

undrained point fluid mass changes within the region for which ∆m(y, t) is non-zero.

The change in the fluid mass content is defined as the change in fluid mass per unit solid

volume, and can be related to the mean solid stress σkk and pore fluid pressure p as,

∆m =
(1 − 2νu)αρ0

2µ(1 + νu)

[
σkk +

3
B

p
]

(7.2)

where α relates the bulk modulus of the fluid-saturated rock under drained conditions, K ,

and that of the solid rock, Ks, as α = 1 − K
Ks

(Nur & Byerlee, 1971). Stresses may be

related to the displacements and associated strains through the linear isotropic poroelastic

constitutive relationship,

2µεi j = σi j −
νu

1 + νu
σkkδi j +

2µB
3ρ0
∆mδi j (7.3)
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Figure 7.1: Model geometry (top) and distributions for the change in fluid mass content
(bottom) for the fixed reservoir model (a) as described in (Segall, 1989) and the diffusive
reservoir model (b) as described in (Segall, 1985). The half-width of the fixed reservoir is
assumed to be equal to the reservoir depth. Fluid mass content distributions for the diffusive
reservoir model are shown at increasing times with relation to the characteristic diffusion
timescale, td. The spatial distributions of the fluid mass change are scaled by the total mass
content divided by twice the reservoir depth.

such that the stress distribution due to the integrated source is given by,

σi j(x, t) =
µ(1 + νu)B

3πρ0

∫
V

∆m(y, t)Gi j(x, y)dVy

−
BKu

ρ0
∆m(y, t)δi j (7.4)

where µ is the shearmodulus andKu is the undrained bulkmodulus (Segall, 1985). Solutions

for displacements and stresses due to the change in fluid mass within a distributed volume

can therefore be represented through integral expressions of the prescribed change in fluid

mass content and the poroelastostatic Green’s functions Gi j(x, y) and gj(x, y) which have

been presented by Segall (1985) and included within the Appendix (Section 7.5). Note that

in this work, we express solutions for displacements and stresses due to changes in fluid mass

content, and do not attempt to solve for the associated pore pressures within the reservoir.

However, pore pressure distributions within the producing zone may be calculated from the

change in pore fluid mass and the associated solutions for the mean solid stress through Eq.

(7.2) (Segall, 1985).
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7.2.1 Models for fluid mass distribution

Segall (1989) examined the 2-D poroelastic stress field and surface displacements caused by

fluid extraction from a horizontal, permeable layer of thickness T , which was assumed small

compared to the reservoir depth D, and enclosed in an otherwise impermeable half-space

(Fig. 7.1A). ∆m(y, t) is considered uniform over a horizontal interval −a < y1 < a, as well

as with depth D < y2 < D +T , reflecting a producing layer of fixed length 2a and thickness

T . The specific case where a = D was examined by Segall (1989), which we also consider

in this study for direct comparison. We set the net mass flux out of the producing zone −Q

to be constant for time t > 0 and zero for t < 0, and thus can express this uniform change in

fluid mass distribution as a function of the mass flux and time simply as,

∆m f (x, t) = −
Qt
2a

B(x1;−a, a)B(x2; D,D + T) (7.5)

where B(x; ζ1, ζ2) refers to the boxcar function over x from ζ1 and ζ2. We denote this mass

distribution as ∆m f (x, t), and will henceforth refer to it as the fixed reservoir model. Note

that Q reflects the change in fluid mass per unit time and cross-sectional area transverse to

x1, considering a uniform distribution over T and an additional length scale W not explicitly

modeled here out-of-plane along x3. Two key features of this model are that the reservoir

geometry is fixed with length 2a and the temporal evolution of the fluid mass distribution

neglects the finite timescale for fluid migration towards the extraction site at x1 = 0. In

essence, the fixed reservoir model reflects extraction from a geometrically constrained reser-

voir with effectively infinite internal diffusivity, allowing for instantaneous equilibration of

the fluid mass distribution upon further fluid extraction or injection.

In order to account for the redistribution of fluid mass due to diffusion, we consider the case

introduced by Segall (1985) of an infinite horizontal layer of thickness T and diffusivity c,

similarly buried at a depth of D in an otherwise impermeable medium. The spatio-temporal

evolution of the fluid mass distribution within the infinite layer is then governed by the

one-dimensional diffusion equation,

∂∆m(x, t)
∂t

= c
∂2∆m(x, t)

∂x2
1

(7.6)
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with the local fluid mass flux q subject to the boundary conditions,

q(x1 = 0+) − q(x1 = 0−) = −Q t > 0

q(x1 = ±∞) = 0 t > 0.

Accounting for diffusion with respect to the plane at x1 = 0, the fluid mass change per unit

solid volume can be expressed as (Carslaw & Jaeger, 1959),

∆md(x, t) = −Q
( t
c

)1/2
ierfc


(

x2
1

4ct

)1/2 B(x2; D,D + T), (7.7)

for t > 0, where ierfc[x] =
∫ x

0 erfc[x]dx = e−x
2

π1/2 − xerfc[x] is the first integral of the

complementary error function. Here we denote the mass distribution accounting for fluid

diffusion as ∆md(x, t) and refer to it as the diffusive model (Fig. 7.1B).

In contrast to the fixed reservoir model given by Eq. (7.5), the diffusive model does not

contain a fixed reservoir length scale. Instead one can consider an effective producing zone

length approximately equal to the diffusion length ld =
√

4ct, which describes the spatial

extent to which the change in fluid mass concentration due to extraction has propagated

with time. Note here that T is assumed small compared to D and ld such that the mass

distribution is considered uniform with depth inside the reservoir. This assumption that

T < ld breaks down as t → 0 during the onset of fluid extraction. However, we will

primarily focus on timescales where t approaches or is greater than a reference diffusion

timescale, td = D2

4c , based on the reservoir depth, and thus where ld & D > T , such that

this approximation is more appropriate. Assuming a reservoir depth of 1 km, values for td

would be around 2.9 days after the onset of extraction for a hydraulic diffusivity of 1 m2/s

and 29 days for a diffusivity of 0.1 m2/s, which represent moderate values of relatively high

and low diffusivities for production fields, respectively (Segall, 1985). Since the diffusion

length scale increases with the square root of time, ld approaches 10% of D when t is

only at 1% of td, meaning that the effective reservoir length is within one order of magni-

tude of the reservoir depthmuch earlier than the corresponding reference diffusion timescale.
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In considering only the stress distribution outside of the reservoir, where ∆m(x, t) = 0, Eq.

(7.4) reduces to,

σi j(x, t) = C
∫
V

∆m(y, t)Gi j(x, y)dVy (7.8)

where C = µ(1+νu )B
3πρ0(1−νu ) , such that the stresses in the fixed reservoir model (Eq. 7.5) are,

σi j(x, t) =
CQt

2

∫
V

Gi j(x, y)dVy (7.9)

and those for the diffusive model (Eq. 7.7) are,

σi j(x, t) = CQ
( t
c

)1/2 ∫
V

ierfc

(
y2

1
4ct

)1/2 Gi j(x, y)dVy. (7.10)

Full expressions for the stresses and displacements for both distributions are presented in

the Appendix where full closed form solutions may be expressed for the fixed reservoir

model while the diffusive model includes an integral over the horizontal layer which may

be computed numerically.

An important distinction between Eq. (7.9) and Eq. (7.10) is the temporal dependence of

the stress fields. The fixed reservoir solutions are separable in space and time such that while

the total change in fluid mass content increases over time, it is always evenly distributed over

the reservoir length 2a, thereby increasing the magnitude of the same spatial distribution.

For the diffusive case, the spatial distribution of the fluid mass is coupled to the temporal

evolution with respect to the inception of extraction or injection. In such manner, as the total

change in fluid content increases over time, the spatial extent over which this contribution is

distributed also grows with the effective diffusion length scale ld, such that the concentration

of the change in fluid mass content is not geometrically fixed throughout time. We explore

the implications of the spatio-temporal evolution of the effective producing zone in the next

section.

7.3 Results

We consider the cases of fluid extraction from a single site in both the fixed and diffusive

reservoir models, and examine the spatial distributions of the displacements and stresses

surrounding the reservoirs, as well as the temporal evolution of these fields in the case
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of the diffusive model. Figure 7.2 compares the surface displacements and horizontal

strain as well as the horizontal normal stress σ11 and maximum shear stress fields (τ =

[(σ11 − σ22)
2/4 + σ2

12]
1/2) caused by fluid extraction (stresses positive in tension) from the

fixed (Fig. 7.2A) and diffusive (Fig. 7.2B-D) reservoir models. The results for the fixed

model are the same as those presented by (Segall, 1989). Three cases are shown for the

diffusive model with hydraulic diffusivities varying by an order of magnitude c = 0.1cD ,

c = cD and c = 10cD about the reference diffusivity cD . Each diffusive case is calculated

at the same time t = td = D2

4cD . All four examples are scaled to represent instances

where the total extracted fluid volume is the same, but the spatial extent and concentration

varies based on the reservoir geometry and diffusivity. Simulated focal mechanisms in

each case illustrate planes of maximum shear stress (φ = 1
2 tan

−1[(σ22 − σ11)/(2σ12)]) with

black regions denoting quadrants of relative tension and white for quadrants of relative

compression, with respect to each representative point.

The spatial distribution of the surface displacements and extensional strain are qualitatively

similar among the fixed and diffusive models shown in Fig. 7.2, but they differ quantitatively

in both magnitude and localization, reflecting the intensity of the gradient in the change in

fluid mass within each reservoir. As pointed out by Segall (1985), the surface expressions

depend strongly on the hydraulic diffusivity with more pronounced subsidence for lower

diffusivities and relatively small and broadly dispersed subsidence for high diffusivities.

Solutions for the fixed reservoir model are most similar to the diffusive model in Fig.

7.2C which has a similar effective producing zone half-length of ld = D, however vertical

displacements are 8% more pronounced near the extraction site at x1 = 0 for the diffusive

model along with a 32% increase in the horizontal extensional strain (See Figs. 7.2A

and 7.2C). Note that the relative contraction and broadening of the surface expressions for

the cases where c = 0.1cD and c = 10cD , respectively, are also consistent with the time

dependent evolution of the effective reservoir length.
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.

7.3.1 Geometric and temporal dependence of stress concentrations

An important conclusion about the reservoir geometry is that the intensity of imposed

stresses due to injection or extraction depends on the spatial gradient of the change in fluid

mass content, such that higher stress concentrations are located around regions with sharper

gradients in ∆m. This is evident in the fixed reservoir model where discontinuities in the

fluid mass distribution at the ends of the producing zone introduce large stress concentra-

tions near the edges of the reservoir (Fig. 7.2A). In the case of the diffusive model, a stress

concentration is focused about the extraction site at x1 = 0 due to the localized extraction

of fluid, whereas the smooth decay of the distribution away from this point precludes the

concentration of stresses elsewhere (Fig. 7.2B-D). This stress concentration at x1 = 0 is not
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present in the uniform model as the fluid distribution is assumed to equilibrate rapidly to

provide a uniform change in fluid mass content across the reservoir.

In the diffusive model, the intensity of this stress concentration near the extraction point

at any given time is a function of the rate of fluid extraction and the reservoir diffusivity,

and is governed by the ratio of the volume flux into or out of the reservoir to the rate at

which fluid can diffuse away or toward the loading point. For lower diffusivities, the same

change in fluid mass is more sharply localized near the injection or extraction point resulting

in more concentrated stresses (Fig. 7.2B). For higher diffusivities, sharp gradients in the

change in fluid mass are alleviated more rapidly thereby mitigating stress concentrations and

resulting in smoother stress distributions (Fig. 7.2D). This emphasizes the significance of

the reservoir diffusivity in determining the rate at which concentrated stresses induced by

fluid extraction or injection can be relieved.

A more intuitive relationship may be made in terms of the volumetric rate of fluid extraction

ÛV . We consider two simple approximations to extend our 2D model results to three dimen-

sion (3D). For Case 1, we assume a fixed producing zone width W in the x3 direction, and in

Case 2, W is assumed to scale with the producing zone length in time. We consider the mass

flux per effective producing zone length defined by the diffusion length scale, Q

4
√
ct
=

ÛM
AT

where ÛM is the average rate of total fluid mass extraction and A is the horizontal area of the

producing zone in the x1 × x3 plane. In Case 1, the area can be described as A = 4
√

ctW

with the volumetric rate of extraction ÛV = ÛM
ρ0
, giving the relation Q

ρ0
=

ÛV
WT for the effective

volume flux, as in (Segall, 1985). Alternatively, in Case 2 the producing zone width may

be considered to scale with the length through time as W = γ
√

ct for t > 0, where γ is

a positive constant. The area then is given by A = 4γct and the effective volume flux is
Q
ρ0
=

ÛV
πγ
√
ctT

. Accordingly, the prefactor (1+νu )BQ3πρ0

√
t
c for the displacements and stresses

associated with the diffusive model becomes (1+νu )B ÛV3πWT

√
t
c for Case 1 and (1+νu )B ÛV3π2γcT

for Case

2. Here, the trade-off between the volumetric rate of fluid extraction and the diffusivity

of the reservoir becomes more apparent, particularly in Case 2 where the assumed linear
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increase in extracted fluid volume with time is compensated exactly by the linear increase

in the effective producing zone volume. In this case, the prefactor has no temporal depen-

dence, but the spatial distribution of the deformation and stress fields are still coupled to

the temporal evolution of the effective producing zone volume. While the 2-D solutions

are exact, these extensions to 3-D provide only crude approximations meant to facilitate

quantitative comparison with field measurements. The solutions for the special case of an

exactly axisymmetric mass distribution have been introduced by Segall (1992).

Figure 7.3 shows the temporal evolution of the spatial distributions of the horizontal normal

stress and maximum shear stress in the diffusive reservoir model throughout time. Stresses

are normalized by µ(1+νu )BT
6πρ0D(1−νu )

Qt
√

4ct
to reflect the balance between the increasing change

in total extracted fluid volume, as well as the increase in the effective producing zone

volume with the extension of the diffusion length scale. This normalization factor can also

be replaced with the approximate 3-D prefactors introduced in the previous section. In

particular for Case 2, this normalization coefficient becomes µ(1+νu )B ÛV
12π2(1−νu )γcD

such that the

scaling is independent of time and the amplitude depends linearly on the ratio of ÛV and c.

We see that the stress concentration near the extraction site decreases as the producing zone

expands and ∆m becomes smoother and more evenly distributed. Additional distributions

of the horizontal and vertical normal stresses as well as the shear stresses at similar points

in time for the diffusive model are shown in Fig. 7.4.

7.3.2 Rotation of principal stress directions

A notable feature in Figs. 7.2 and 7.3 is that the orientation of the maximum shear stress at

a given location, illustrated by the simulated focal mechanisms, is not static, but rotates over

time as the reach of the diffusion front advances. For example, in Fig. 7.3 the simulated

mechanisms at the outer edges for both x1 = ±3.5D and x2 = 0.25D rotate from horizontal

relative tension to compression between the panels for t = 10td and t = 100td. The temporal

evolution of the angle of maximum extensional stress θ and angle of maximum shear stress

φ are shown in Fig. 7.5 as functions of the lateral distance from the extraction axis at repre-

sentative depths of 0.25D and 0.5D. As the front of the producing zone expands away from
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Figure 7.4: Extensional and shear stresses due to fluid extraction for diffusion models for
progressing time relative to the characteristic diffusion timescale (relative tension positive) in
both the (a) fixed reservoir model of Segall (1989) and (b-e) diffusionmodels for progressing
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the extraction point, the angle of maximum extensional stress change rotates such that points

further away from the extraction site experience a reversal from relative horizontal tension

to compression. The angle of maximum shear stress correspondingly rotates from around

−π/4 to π/4, indicative of a transition from preferred normal faulting to reverse faulting.

This is generally consistent with the trend of expected reverse faulting above and below

the producing layer and normal faulting at the flanks of the producing layer, as discussed

by Segall (1989). However, as the spatial extent of the producing zone grows with time,

the preferred mechanism of seismicity at a given location may evolve as the surrounding

region transitions into a state of compression. The temporal evolution of the magnitude and

direction of the stresses at the locations highlighted in Fig. 7.5 are included in the Appendix

(see Figs. 7.7 and 7.8).
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Due to the interaction of the stress field with the free surface, the timing of the stress rota-

tions varies slightly with depth but may be estimated given knowledge of the reservoir depth

and diffusivity, as well as the depth and distance from the extraction site for the location

of interest (Figure 7.6). For a depth of interest around one-half of the reservoir depth,

the timescale about which one would expect a transition to relative horizontal compression

would be t ≈ td and t ≈ 5.6td for lateral locations of x1 = D and x1 = 2D, respectively.

Considering a reservoir at 1 km depth and a diffusivity of c = 1 m2/s, this gives approx-

imate timescales for stress reversal between 1 and 2 kilometers from the extraction site of

approximately 3 to 16 days following initiation of extraction. For lower diffusivities, this

window can be much broader. For instance, with a diffusivity of c = 0.1 m2/s for otherwise

similar considerations, the time window for stress reversal between 1 and 2 kilometers from

the extraction site becomes roughly 29 to 145 days, potentially providing a more substantial

observation window.

Depending on how the reservoir area scales with time, the magnitude of the stress perturba-

tions may be expected to grow as fluid is continuously extracted. Therefore, the significance

of the stress reversal depends on the diffusivity of the reservoir, as well as the ambient stress

conditions before extraction. For a given time since initiation of pumping, the orientation

of the stress perturbation depends on the diffusivity of the reservoir (Fig. 7.2). For reser-

voirs with higher diffusivities, locations surrounding the extraction site may experience the

rotation in the perturbed stress before the perturbations achieve any notable magnitude. In

contrast, lower diffusivities concentrate the change in fluid mass, allowing for more substan-

tial stress perturbations as the diffusion front propagates.

A lower bound for the magnitude of stress perturbations can be estimated in the case that

the reservoir length and width scale roughly equivalently over time so that the amplitudes of

stresses are independent of time (Case 2, γ = 1). Assuming values of µ = 10 GPa, B = 0.6,

D = 1 km, and ÛV = 106 m3/yr, the scaling for the distributions in Figs. 7.3 and 7.4 would
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Figure 7.5: Temporal evolution of the angle of maximum shear stress φ (left) and angle of
maximum extensional stress θ (right) as a function of lateral distance from the extraction
site at x1 = 0 for representative depths x2 = 0.25D (top) and x2 = 0.5D (bottom). Note
that the rotation of the maximums shear stress angle from −π/4 to π/4 coincides with the
rotation of the horizontal stress from relative tension to compression.

be approximately 3.2 and 32 kPa for c = 1 and c = 0.1 m2/s, respectively. If we consider

a point at 750 m depth and 1.75 km away from the extraction site, the horizontal normal

stress perturbation would correspond to a transition from an extensional stress perturbation

of 12.8 kPa at tD = 29 days for c = 0.1 m2/s, to a compressive perturbation of -30 kPa

after 289 days. For context, such values are roughly an order of magnitude larger than tidal

stresses, typically on the order of 1 kPa, and 0.1% of the potential effective confining stresses

around 1 km depth of 15–20 MPa, assuming lithostatic overburden minus hydrostatic pore

fluid pressure. The relative significance of such poroelastic perturbations depends heavily

on the orientation and existing stress state of faults, including the presence of pore fluid

overpressure within the fault gouge which can substantially alter the effective confining

stress acting on faults.

7.4 Discussion and conclusions

We have expanded upon the analyses presented by Segall (1985) and Segall (1989), consid-

ering the spatio-temporal evolution of the poroelastic response surrounding fluid extraction
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(red).

from a laterally unconstrained horizontal reservoir. We have examined the implications of

allowing for the time-dependent spatial evolution of the effective producing zone due to

fluid diffusion, in comparison to assuming a fixed producing geometry. Distinctions arise as

the intensity of the poroelastic response is influenced by the spatial gradient of the change

in fluid mass content within the reservoir with substantial stress concentrations emerging

around sharp gradients in ∆m. Strong gradients in ∆m would be expected surrounding

the extraction site as well as any discontinuities in the reservoir geometry or permeability

structure. In the particular case considered here with a uniform diffusivity, sharp gradients

would be expected to be alleviated over time due to fluid diffusion, but heterogeneity within

the geometric or hydrological structure of the producing layer may result in growing stress

concentrations over time as the change in fluid mass within the producing zone increases.

A potentially important consideration not incorporated within this model is the possible

temporal evolution of the permeability structure within the reservoir, particularly if stresses

grow large enough to fracture the surrounding rock. In such case, there is the possibility that

stress concentrations due to structural or permeability irregularities may be smoothed out

over time. Overall, the capability for the reservoir to mitigate stress concentrations depends

on the hydraulic diffusivity with respect to the volumetric extraction rate where relatively

high diffusivities allow for the timely redistribution of pore fluid.
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For many reservoir settings, the timescale of fluid transport within the producing layer may

be comparable to the timescale for which field observations and seismological studies are

made at relevant distances. For these cases, it may be important to account for the non-

stationarity of the geometry of the producing zone when interpreting field measurements.

Moreover, the magnitude and distribution of surface expressions depend on the balance

between the volumetric rate of extraction and the rate at which changes in fluid content can

be redistributed through diffusion. Therefore measurements of the spatio-temporal evolu-

tion of surface displacements and strains associated with fluid extraction and injection can

allow for the inference of reservoir properties, such as the reservoir diffusivity and thickness.

As introduced by Segall (1989), the spatial distribution of stress fields resulting from fluid

extraction from a horizontal layer are consistent with reverse faulting above and below the

producing zone and normal faulting along the flanks of the reservoir. However, for a laterally

unconstrained reservoir, the effective length of the producing zone is not fixed in time and the

progression of the producing front away from the extraction site results in a time-dependent

rotation of the planes of maximum imposed shear stress as the stress regime transitions from

relative horizontal tension to compression above and below the producing layer. This alone

may predict that the preferred mechanism of associated seismicity at a given location tran-

sitions from normal faulting to reverse faulting as the effective length of the producing zone

increases. In contrast, for fluid injection one may expected a transition from reverse faulting

to normal faulting, as inferred for seismicity between 2014 and 2015 in the Crooked Lake

and Rocky Mountain House areas in Alberta, Canada, following decades of injection (Eaton

&Mahani, 2015). However, it is important to note that this reflects only a change in polarity

of the stress perturbation and not the absolute stress levels around the reservoir, whereas the

likelihood of triggered seismicity also depends on the criticality of the pre-existing stress

conditions as well as the distribution and orientation of available faults. Rather than a visible

change in focal mechanism, the stressing conditions may instead transition from favorable

to unfavorable conditions, or vice-versa, depending upon the orientation of existing faults
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and pre-existing stress state (Segall & Lu, 2015). While general faulting mechanisms may

remain consistent, the spatio-temporal evolution of the poroelastic stress field as the effective

reservoir expands may be detectable through temporal rotations in the principal stress direc-

tions of recorded seismicity, such as those inferred from stress inversions of seismicity in

The Geysers geothermal field, California, and the Soultz-sous-Forêts enhanced geothermal

system (Martınez-Garzón et al., 2014; Martıŋnez-Garzón et al., 2013; Schoenball et al.,

2014). Finally, the stress state surrounding the producing field would also be expected to

evolve over time due to stress redistribution from earthquakes as well as aseismic slip within

the surrounding region (Bhattacharya & Viesca, 2019; Guglielmi et al., 2015; Keranen et

al., 2013). Overall, developing a better understanding of the spatio-temporal evolution of

seismicity and their focal mechanisms may provide additional constraints on the geometry

and hydraulic properties of the producing zone (Martınez-Garzón et al., 2014; Martıŋnez-

Garzón et al., 2013; Mukuhira et al., 2018; Schoenball et al., 2014; Shapiro et al., 2002).

While exploring the conditions for the triggering of seismic and aseismic slip events is

beyond the scope of this work, the potential measurement of such temporal transitions

in earthquake focal mechanisms or remote activation or deactivation of seismicity may

provide constraints on the criticality of regional stress levels. We emphasize the value

in the solutions presented by Segall (1985, 1989, 1992) and in this work in providing

reference models for which exact calculations may be made for quantitative comparison

with field data. Moreover, these solutions may prove useful as reference solutions for more

sophisticated numerical methodologies. The 2-D solutions presented here are exact, and we

have discussed two approximate extensions to 3-D in order to facilitate direct comparison

with fieldmeasurements and production data, which should be interpretedwith care. Finally,

while we have focused on the case of fluid extraction where Q < 0, this analysis may also

be considered for the case of fluid injection and diffusion where Q > 0. Conveniently, the

distributions for displacements and stresses will be similar to those shown in this work with

only a change in sign due to their linear relationship with the net mass flux Q.
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7.5 Appendix

7.5.1 Two-dimensional poroelastic solutions

Segall (1985) presented quasi-static solutions for the displacement and stress fields due to

changes in fluid mass content within an infinitesimal volume dV for a 2-D linear isotropic

poroelastic half-space. In this study, we calculate these fields resulting from a uniform

change in fluid content given by Eq. (7.5), as well as the time-dependent distribution re-

sulting from fluid diffusion given by Eq. (7.7), by convolving the distributions with the

poroelastic Green’s functions provided in the Appendix of Segall (1985). Here we present

these solutions again for completeness.

For the general quasi-static problem of fluid extraction from a half plane, the relation for the

solid particle displacements can be expressed in the form,

u j(x, t) =
C(y, t)
µ

gj(x, y) (7.11)

where gj(x, y) is the displacement in the j direction at x due to a point center of dilatation

at y with associated change in fluid mass content ∆m(y, t)dV :

g1(x, y) =
1
2

[
x1 − y1

r2
1 (x, y)

+
(3 − 4νu)(x1 − y1)

r2
2 (x, y)

−
4x2(x2 + y2)(x1 − y1)

r4
2 (x, y)

]
(7.12)

g2(x, y) =
1
2

[
x2 − y2

r2
1 (x, y)

+
2x2 − (3 − 4νu)(x2 + y2)

r2
2 (x, y)

−
4x2(x2 + y2)

2

r4
2 (x, y)

]
. (7.13)

The prefactor C(y, t) = µB(1+νu )
3πρ0(1−νu )∆m(y, t)dV has units of force related to the fluid mass

source in the infinitesimal volume dV . Here u1(x) and u2(x) refer to horizontal and ver-

tical displacements, respectively, and r2
1 (x, y) = (x2 − y2)

2 + (x1 − y1)
2 and r2

2 (x, y) =

(x2 + y2)
2 + (x1 − y1)

2 reflect the source-receiver distances to the true mass source and the

image source associated with the free surface at x2 = 0. Note that y and x denote the full

position vectors for the source and receiver elements, respectively.
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The poroelastic stresses caused by points of dilatation may also be calculated from Hooke’s

law in the form σi j(x, t) = C(t)Gi j(x, y) where,

Gi j =
∂gi
∂xj
+
∂gj

∂xi
+

2νu
1 − 2νu

∂gk
∂xk

δi j (7.14)

giving (Segall, 1985),

G11(x, y) =
(x2 − y2)

2 − (x1 − y1)
2

r4
1 (x, y)

+
(x2 + y2)(3y2 − x2) − 3(x1 − y1)

2

r4
2 (x, y)

+
16x2(x2 + y2)(x1 − y1)

2

r6
2 (x, y)

(7.15)

G22(x, y) =
(x1 − y1)

2 − (x2 − y2)
2

r4
1 (x, y)

+
(5x2 + y2)(x2 + y2) − (x1 − y1)

2

r4
2 (x, y)

−
16x2(x2 + y2)(x1 − y1)

2

r6
2 (x, y)

(7.16)

G12(x, y) = −
2(x1 − y1)(x2 − y2)

r4
1 (x, y)

−
2(x1 − y1)(3x2 + y2)

r4
2 (x, y)

+
16x2(x2 + y2)

2(x1 − y1)

r6
2 (x, y)

. (7.17)

7.5.2 Surface displacements and strain due to distributed mass sources

The total displacement due to changes in a distributed fluid mass at time t can be obtained by

integrating the undrained changes in fluid mass within the region for which ∆m(y, t) is non-

zero according to Eq. (7.1). Solutions for the surface displacements and horizontal strains

resulting from the fixed reservoir mass distribution given by Eq. (7.5) can be expressed as,

u1(x, t) =
(1 + νu)BTQt

6πρ0a
log

(
1 + ξ2

+

1 − ξ2
−

)
(7.18)

u2(x, t) =
(1 + νu)BTQt

3πρ0a
[
tan−1 (ξ−) − tan−1 (ξ+)

]
(7.19)

ε11(x, t) =
(1 + νu)BTQt

3πρ0aD

[
ξ+

ξ2
+ + 1

−
ξ−

ξ2
− + 1

]
(7.20)

where ξ− = x1−a
D and ξ+ =

x1+a
D (Segall, 1989). For the diffusive source represented

by Eq. (7.7), the corresponding solutions can be expressed as Eqs. (7.21-7.23), where
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K11(x) = tan−1
(

x2 − (D + T)
x1 − a

)
− tan−1

(
x2 − (D + T)

x1 + a

)
+ tan−1

(
x2 − D
x1 + a

)
− tan−1

(
x2 − D
x1 − a

)
+ 3

(
tan−1

(
x2 + (D + T)

x1 + a

)
− tan−1

(
x2 + (D + T)

x1 − a

)
+ tan−1

(
x2 + D
x1 − a

)
− tan−1

(
x2 + D
x1 + a

) )
+ 4ax2

(
a2 − x2

1 + (x2 + D + T)2

((x1 − a)2 + (x2 + D + T)2)((x1 + a)2 + (x2 + D + T)2)

−
a2 − x2

1 + (x2 + D)2

((x1 − a)2 + (x2 + D)2)((x1 + a)2 + (x2 + D)2)

)
. (7.25)

M(y1, t) =
[

1√
π

exp
(
−

y2
1

4ct

)
−
|y1 |

2
√
ct
erfc

(
|y1 |

2
√
ct

)]
. The integral over y1 can be computed

numerically for the diffusive source.

u1(x, t) =
2(1 + νu)BQ

3πρ0

√
t
c

∫
M(y1, t)

(
tan−1

(
D + T
x1 − y1

)
− tan−1

(
D

x1 − y1

))
dy1 (7.21)

u2(x, t) =
(1 + νu)BQ

3πρ0

√
t
c

∫
M(y1, t) log

(
(x1 − y1)

2 + D2)

(x1 − y1)2 + (D + T)2

)
dy1 (7.22)

ε11(x, t) =
(1 + νu)T BQ

3πρ0

√
t
c

∫
M(y1, t)

(
D(D + T) − (x1 − y1)

2

(D2 + (x1 − y1)2)((D + T)2 + (x1 − y1)2)

)
dy1.

(7.23)

7.5.3 Stresses due to distributed mass sources

The stress distributions resulting from the distributed sourcemay also be represented through

linear integral relations with the poroelastic Green’s functions Gnm(x, y). By considering

the stress distributions only outside of the reservoir, where ∆m(y, t) = 0, these expressions

simplify to the form of Eq. (7.8). Fully analytical expressions for the stress fields associated

with the fixed reservoir mass distribution represented by Eq. (7.5) can be solved as,

σi j(x, t) =
µ(1 + νu)B

3πρ0(1 − νu)

∫
V

Qt
2a

Gi j(x, y)dVy

=
µ(1 + νu)BQt
6πρ0a(1 − νu)

∫ D+T

D

∫ a

−a

Gi j(x1, x2; y1, y2)dy1dy2. (7.24)

These solutions are separable in space and time and can be expressed as σi j(x, t) =
µ(1+νu )BQt
6πρ0a(1−νu )Ki j(x) where the kernels Ki j are expressed as Eqs. (7.25-7.27) (Segall, 1989).
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Solutions resulting from the diffusive mass source represented by Eq. (7.7) can be expressed

similarly, however the spatio-temporal evolution of the stress fields are coupled due to the

time-dependence of the fluid diffusion process.

σi j(x, t) = C
∫
V

Q
( t
c

)1/2
ierfc


(
y2

1
4ct

)1/2 Gi j(x, y)dVy
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c

)1/2 ∫ D+T

D

∫ ∞

−∞

ierfc

(
y2

1
4ct

)1/2
Gi j(x1, x2; y1, y2)dy1dy2 (7.28)

where C = µ(1+νu )B
3πρ0(1−νu ) . Individual stress components can be expressed as σi j(x, y, t) =

µ(1+νu )BQ
3πρ0(1−νu )

(
t
c

)1/2 Ji j(x, y, t), where the kernels Ji j expressed in Eqs. (7.29-7.31) can be

computed numerically.

The spatial distribution of the horizontal and vertical normal stresses, σ11 and σ22, respec-

tively, as well as the shear stress σ12 for the fixed reservoir and diffusive models are shown in
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Figure 7.4. The temporal evolution of these three stress components as a function of lateral

distance from the extraction site are shown in Figure 7.7, where one can note the transition

between relative horizontal tension to compression at each site. The amplitudes of the asso-

ciated principal stresses and maximum shear stresses are given in Figure 7.8. For distances

beyond x1 = 2D an inflection is noticeable in the maximum shear stress which coincides

with the transition from relative horizontal tension to compression. The lateral progression

of the reversal front to relative compression is shown in Figure 7.6 for representative depths

of x2 = 0.25D and x2 = 0.5D. As the effective producing zone expands as ld ∝
√

t, the

propagation of the reversal front is faster early on at locations closer to the extraction point,

but decreases at further distances.
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C h a p t e r 8

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

8.1 Conclusions

We have used physics-based numerical models to examine the relationship between earth-

quake source properties and the heterogeneous evolution of motion and stress on faults. In

particular, we have utilized SEAS simulations to study different physical models for "weak"

mature faults with the goal of determining which fault properties in such models are com-

patible with a range of available observations taken together, including thermal constraints,

earthquake source observations, and earthquake population statistics.

Both end-member models of either chronically weak faults, with mild to moderate en-

hanced dynamic weakening, or dynamically weak faults, with more efficient weakening,

can reproduce magnitude-independent static stress drops with typical values between 1-10

MPa (Perry et al., 2020). In such models, fluids can contribute to apparent fault weakness

through persistent fluid overpressure, as well as through transient thermal pressurization

during dynamic rupture. We find that even fault models with persistently weak conditions

due to chronic fluid overpressure require some mild to moderate enhanced weakening due

to thermal pressurization not only to reproduce observed trends of increasing breakdown

energy with slip, but also to reproduce moderate static stress drops greater than 1 MPa

(Chapter 2; Lambert et al., in review). Our results therefore suggest that some enhanced

dynamic weakening is crucial for matching existing seismological observations, which has

considerable implications for evaluating the potential stability of different fault segments

during future earthquakes (Noda & Lapusta, 2012).

Both chronically weak and dynamically weak faults can operate under low shear stress and

with low heat generation, however they present substantially different relations between the

shear stress required for rupture nucleation and the average stress conditions over larger



289

fault areas (Chapter 2; Lambert et al., in review). Our models show that larger ruptures

propagate over increasingly under-stressed areas due to dynamic stress concentration, and

result in progressively lower average prestress over the entire rupture compared to that for

nucleation, with the effect being more significant in models with more efficient weakening.

Accordingly, models with increasingly efficient weakening during ruptures tend to produce

larger earthquakes, at the expense of smaller earthquakes, resulting in lower b-values and less

complex earthquake sequences. Our results suggest that the paucity or absence of smaller

events along some mature faults, such as central sections of the San Andreas Fault, may

be an observational indication that they undergo considerable dynamic weakening during

ruptures, as previously suggested for the brittle-ductile transition region (Jiang & Lapusta,

2016). These considerations may be particularly useful for early warning systems.

Our results highlight the significance of fault heterogeneity for rupture occurrence, partic-

ularly in fault models with efficient dynamic weakening. Fault models with more efficient

weakening exhibit increasingly notable differences between the stress conditions required

for rupture nucleation and the much lower average shear stress over larger rupture areas.

Thus, faults that experience more substantial weakening should require the presence of

larger amplitudes of heterogeneity to produce small events.

Our simulations illustrate that both critical fault stress required for rupture propagation and

earthquake source properties, such as static stress drops, are products of complex finite-fault

interactions. The critical stress conditions for earthquake occurrence cannot be described

by a single number but rather present as complex spatial distribution with scale-dependent

averages. Thus, when considering the critical stress conditions, it is essential to take into

account both the size of the rupture and the weakening behavior, and hence the style of

motion, that may occur throughout rupture propagation. In addition, our results highlight

the importance of accounting for finite-fault effects when relating small lab-scale measure-

ments to larger-scale fault and rupture properties and the need to continue developing a better

physical understanding of faulting at various scales through the partnership of laboratory
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experiments and finite-fault modeling, constrained by field observations.

We find that persistently weak faults produce predominantly crack-like or mildly pulse-like

ruptures and dynamically weak faults typically produce self-healing pulse-like ruptures.

Moreover, the two types of rupture styles can be distinguished based on the radiated energy

per seismicmoment, and hence apparent stress, of the resulting earthquake ruptures (Chapter

4; Lambert et al., 2021). Crack-like ruptures result in radiated energy per moment compa-

rable to teleseismic estimates from large megathrust earthquakes, while self-healing pulses

produce radiated energy per moment that is much larger than typical teleseismic estimates

for large megathrust earthquakes, yet potentially comparable to limited regional estimates

from large crustal earthquakes. Other mechanisms for producing pulse-like rupture prop-

agation, such geometric restrictions of the fault, can result in similar evolution of average

shear stress and energy partitioning as crack-like ruptures (Chapter 5; Lambert & Lapusta,

in prep). The main difference between self-healing pulses and crack-like ruptures, as well

as geometric pulses, is the manner in which local slip arrests via co-seismic healing, which

translates into differences between the static and dynamic stress changes. The substantial

co-seismic healing exhibited during self-healing pulses is the key feature that allows faults

to maintain higher interseismic stress levels, potentially multiple static stress drops above

stress constraints from shear heating, and results in higher apparent stress.

If the seismological estimates of radiated energy are reliable, then our findings suggest that

the preferred rupture modes for megathrust and mature strike-slip faults would be different,

with large megathrust earthquakes propagating as crack-like to mild pulse-like ruptures,

while large strike-slip earthquakes propagate as sharper self-healing pulses. The corre-

sponding physical conditions that govern large earthquake ruptures on megathrusts versus

mature continental faults such as the San Andreas Fault would then also be different, with

megathrusts operating under chronic fluid overpressure and relatively mild dynamic weak-

ening, and continental faults exhibiting much less chronic overpressure but experiencing

pronounced dynamic weakening. Our results indicate that re-evaluating seismological es-
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timates of radiated energy and static stress drop would thus bring greater insight into the

driving physics of large earthquakes and the absolute stress conditions on mature faults. The

possible discrepancy in driving mechanisms for large megathrust and continental strike-slip

earthquakes raises questions about the relevance of existing inferences from large earth-

quakes, which are dominated by megathrust events, for informing us about properties of

future strike-slip events.

We have found that dynamically weak faults can operate under low stresses but produce

crack-like ruptures with radiated energies and static stress drops close to those of natural

events (Chapter 4; Lambert et al., 2021). While the radiated energy, average static stress

drop and moment may be comparable for crack-like ruptures with mild or extremely efficient

weakening, ruptures with more efficient weakening may be potentially distinguished by their

production of considerably stronger high-frequency ( > 1 Hz) near-fault ground motions. In

addition, faults that undergo very efficient weakening during crack-like ruptures should also

exhibit a lack of microseismicity or near seismic quiescence other than large earthquakes, as

observed on some mature strike-slip faults (Hauksson et al., 2012; Jiang & Lapusta, 2016;

Michailos et al., 2019).

We have investigated the sensitivity of long-term SEAS simulations to choices in numerical

discretization and found that the criteria for numerical convergence can be considerably

more stringent than for simulations of individual dynamic ruptures or shorter sequences,

and depend on the sensitivity of the specific physical problem to small numerical perturba-

tions (Chapter 6; Lambert & Lapusta, in review). Longer-term sequences of slip events can

eventually diverge due to the subtle accumulation of numerical differences interacting with

the highly nonlinear nature of the problem. This is particularly relevant to the parameter

regime where the fault dimensions are considerably larger than the nucleation size, which

promotes a wider distribution of rupture sizes and is highly relevant to natural faults and

fault networks. We find that some physical properties, such as average stress measures,

can be reliably determined from well-formulated numerical models even without long-term
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convergence of the earthquake sequences, however other quantities, such as the probability

of an earthquake rupture jumping from one fault to another, are highly sensitive to modeling

choices.

Our results highlight the need to further assess the predictive power of earthquake models

for different quantities of interest to seismic hazard assessment, as well as what geophysical

observations are needed to constrain the most relevant physics governing earthquake source

processes. The extreme sensitivity of some hazard parameters to small perturbations may

not be unique to numerical models but also relevant to natural faults, making it challenging,

and perhaps impractical, to reliably infer such quantities. As discussed throughout this

thesis, physics-based models are valuable exploratory tools, which can be used to probe the

sensitivity of existing hazard parameters and help identify reliable metrics for informing

long-term fault behavior and future seismic hazards.

Finally, we presented simple physical models that account for the time-dependent diffusion

of pore fluids during reservoir fluid extraction, such as due to energy resource practices

(Chapter 7; Lambert & Tsai, 2020), We used these solutions to show that the magnitude and

spatial distribution of the resulting poroelastic stresses surrounding the reservoir depend

not just on the total volume of extracted fluid, but the rate of fluid extraction relative to

how fast fluids can be redistributed in the reservoir through diffusion. The spatio-temporal

evolution of the perturbed stresses due to fluid extraction may manifest as a rotation in

earthquake focal mechanisms or varied sensitivity to poroelastic triggering, depending on

the pre-existing stress state and fault orientations, and may explain inferred rotations in

principal stress directions associated with some induced seismicity.

8.2 Future directions

The continued development of SEAS simulations and collaborative design of laboratory

and field experiments can allow for increasingly detailed explorations of long-term fault

behavior, earthquake rupture characteristics and their observable features, with the goal
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of developing greater insight into the governing physics of fault zones and earthquake

source processes. The resulting insight can inform the assessment of seismic hazards and

potentially allow physics-based improvements to mitigation approaches such as earthquake

early warning. The following discussions provide an outlook on five areas for continued

development in the modeling of earthquake source processes.

8.2.1 Evaluating physical models of earthquake source processes and exploring be-

yond traditional fracture mechanics

The particular appeal of dynamic fracture theory is that it provides a framework to con-

nect observations of the rupture process, such as rupture speed, to information of the local

physics that control the rupture dynamics, such as fracture energy. In principle, such insight

is then useful for informing models of future rupture processes. However, the presence

of thermo-hydro-mechanical effects in faulting, as well as additional dissipative processes

such as damage generation, calls into question the overall analogy between cohesive-zone

dynamic fracture theory and frictional ruptures (Chapter 3; Lambert & Lapusta, 2020).

In particular, the rupture-dependence of breakdown energy raises questions about how its

inferences from previous events may inform future ruptures, and whether such quantity

describes the relevant dissipated energy that controls the rupture dynamics. Moreover,

our work demonstrates that the physical interpretation of common seismological inferences

based on dynamic fracture theory can depend heavily on the earthquake rupture style, and

special consideration is needed when relating them to the local evolution of shear stress on

faults during rupture.

Further work is warranted to reevaluate physical models of earthquake source processes

and examine the physical characteristics that control rupture dynamics, as well as how

such quantities may be inferred from geophysical studies. This includes revisiting scaling

relations among rupture properties, such as seismic moment, static stress drop, breakdown

energy, rupture speed, and rupture duration, for different rupture scenarios and determining

where scaling arguments are consistent and where they may be substantially distinct, such

as for self-healing pulses. Such insight may be incorporated into seismic hazard scenarios



294

such as the Uniform California Earthquake Rupture Forecast (UCERF) and Great California

Shakeout (Field et al., 2017; Jones et al., 2008).

8.2.2 Reviewing geophysical inferences using in part numerically simulated sources

A substantial challenge for inferring earthquake source characteristics is the lack of ground

truth formethodologies aimed at imaging finite-fault aspects of ruptures. Simulated dynamic

rupture scenarios of differing rupture styles provide an opportunity to evaluate seismological

and geodetic techniques and examine how various layers of source and path complexity con-

tribute to observed features. Such scenarios can be used to calibrate existing observational

techniques such as seismic back-projection and finite-fault inversions, and examine what

rupture features may be reliably inferred, as well as our current observational limitations.

This approach is also well-suited for examining new technologies and the construction of op-

timal observational arrays for earthquake source imaging. In particular, SEAS simulations

can be used to study strategies for resolving the spatial and temporal relationship between

seismic and aseismic modes of fault slip, such as slow-slip transients and earthquake rup-

tures, as well as the earthquake nucleation process (Abercrombie & Mori, 1996; Bouchon

et al., 2011; Kato et al., 2016, 2012; McGuire et al., 2005; Schurr et al., 2014; Sugan et al.,

2014; Tape et al., 2018).

Our work highlights radiated energy as a valuable seismological observable for inferring

fault physics and indicates the need to review the accuracy of radiated energy estimates,

especially since regional estimates tend to be higher than the teleseismic estimates for the

earthquakes from which both are available. Seismological estimates can be affected by a

number of factors, including attenuation, scattering, rupture directivity, focal mechanism,

and interactions of the rupture with the free surface (Ide & Beroza, 2001; Kanamori et al.,

2020; Ma & Archuleta, 2006; Perez-Campos & Beroza, 2001; Venkataraman & Kanamori,

2004; Venkataraman, Rivera, & Kanamori, 2002; Ye et al., 2016b). Teleseismic studies

typically measure only the direct dilatational p-wave and assume a scaling between the p

and shear s-wave contributions, though the p-wave typically carries less than 5% of the total

radiated energy. Directivity and p-to-s corrections are often determined using simplified
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point source or kinematic rupture models, however more complex rupture processes may

result in more complicated azimuthal variations in radiated energy as well as different

frequency content (Venkataraman & Kanamori, 2004). In addition, teleseismic studies

typically consider a limited frequency band below 1 to 2 Hz, whereas the higher radiated

energy of self-healing pulses may be distributed at higher frequencies ( ∼ 10 Hz) that

are relevant to strong ground motion, but more attenuated at further distances. Assessing

the potential magnitude of these contributions, as well as their compounded effect, is an

important topic for future work.

8.2.3 Developing appropriately-scaled fault constitutive relations

In order to assess potential seismic hazards, it is important to evaluate how different physical

processes in the Earth contribute to the slip behavior on faults and associated ground mo-

tions. The spatial scales relevant to earthquake sources processes span over twelve orders

of magnitude from thousands of kilometers to microns. Explicitly incorporating all relevant

scales and physical processes into earthquake models is likely not feasible in the foreseeable

future, if at all. Our current understanding of frictional behavior and rock failure is largely

based on sub-meter-scale (typically centimeters) laboratory experiments, which is directly

applied in earthquake models with computational cells on the order of meters to kilometers,

with little consideration of how to adjust for differences between laboratory scales and nature.

A promising route for studying scale-dependent behavior of fault materials is through numer-

ical modeling of laboratory experiments and the development of numerical homogenization

schemes to produce scale-appropriate fault constitutive relations. Such developments may

be essential for incorporating new physical processes and fault attributes in earthquake mod-

els. For example, effective scaling relationships in which the rate-and-state characteristic

slip distance DRS is not constant, but perhaps evolves with slip rate, may serve as a proxy

for additional physical processes as the fault slips, such as the formation of gouge, drag

from fault roughness and energy dissipation from off-fault damage generation and bulk

plasticity. Such relationships may facilitate resolving relatively small nucleation lengths

consistent with microseismicity, while stabilizing the rupture front during the propagation
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of large dynamic events. Well-motivated scaling practices for fault constitutive relations

may therefore not only introduce new fault physics into earthquake simulations, but also

expand the capability of simulating earthquake populations with a wider range of earthquake

sizes, while minimizing computational expense.

8.2.4 Integrating insight from earthquake models and geodynamic simulations

The loading of stress on faults and its redistribution through different deformation processes

are critical factors controlling the size of earthquake ruptures and seismicity patterns. Mim-

icking tectonic-like loading by prescribing a fixed loading plate rate can be appropriate when

modeling a single planar fault segment, however extending models to long-term motion in

geometrically-realistic fault networks requires a better understanding of how stress is loaded

on individual faults in the broader picture of plate tectonics and crustal deformation. This

highlights the need to improve our understanding of the distribution of forces along faults,

as well as throughout the crust and upper mantle, in both the context of individual earth-

quake source processes and longer-term geodynamics. For example, substantial seismic

slip during large earthquakes can transmit stress to more ductile regions, which in turn may

alter loading conditions not just on that fault, but also neighboring faults, depending on the

rheology of the surrounding bulk. The advancement of SEAS simulations that are able to

incorporate off-fault deformation, such as bulk viscoelastic deformation, within earthquake

sequences can assist in exploring such processes (Allison & Dunham, 2018; Lambert &

Barbot, 2016).

Another plausible route for studying earthquakes in the context of broader crustal defor-

mation is to develop schemes that couple insight from detailed dynamic rupture models

with existing larger-scale geodynamic simulations (e.g. Dal Zilio et al., 2018; Sobolev &

Muldashev, 2017; van Dinther, Gerya, Dalguer, Corbi, et al., 2013; van Dinther, Gerya,

Dalguer, Mai, et al., 2013; van Zelst et al., 2019). For example, earthquake models may

assist in formulating better representations of earthquake source processes in geodynamic

simulations, such as determining simplified representations of the redistribution of stress

during ruptures, accounting for differences between dynamic and static stress changes.
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Geodynamic simulations may provide insight into appropriate boundary conditions for fault

loading in various geometries and tectonics settings. Such initiatives would be of great value

for extending earthquake sequence studies to complex fault networks and intraplate settings,

including faults in the accretionary prism and outer-rise of subduction zones, which are of

particular relevance for tsunami hazard assessment. Such a partnership may also clarify

how long-term geological formations, such as surface topography, and other geodynamic

features can be used to constrain fault conditions, such as absolute levels of stress.

8.2.5 Combining techniques from data science with physics-based modeling to dis-

tinguish characteristics of fault failure processes

Faults accommodate motion through an array of seismic and aseismic modes of defor-

mation, including earthquakes, slow-slip transients, tectonic tremor, and presumably-steady

slow slip. The broad distribution of styles of deformation along faults begs the basic question

of how to distinguish an isolated slip event on a fault from the series of complex deformation

history both on that fault and in its surroundings.

The conditions governing rupture occurrence depend on the collective interaction of dif-

ferent portions of a fault that can be experiencing varying styles of motion. The lack of

well-defined distinctions for when individual slip events start and stop can pose challenges

for rigorously comparing properties and scaling features of slip phenomena, including their

size and duration. In addition, there is great interest in understanding the relationship among

different styles of slip events, such as slow-slip transients and earthquakes, as well as dis-

tinguishing characteristics among events within these categories. The potential to identify

precursory behavior for large earthquakes is of particular interest in the development of early

warning systems, especially with reports of slow-slip transients preceding some recent large

events, such as the MW 9.0 2011 Tohoku and MW 8.1 2014 Iquique earthquakes (Ito et al.,

2013; Kato et al., 2012; Ruiz et al., 2014).

Combining techniques from data science with physics-based numerical modeling is a
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promising route for characterizing modes of slip on faults and identifying their observa-

tional features. Novel techniques in data science, including methods using unsupervised

machine learning, have been successful at extracting rupture features from high-dimensional

data structures, such as distinguishing directivity modes of earthquake populations without

imposing a kinematic rupture model (Ross et al., 2020). Such techniques have so far not

been applied to SEAS simulations, which have the capability of producing large time series

data of complex slip behavior, as well as synthetic observables such as seismic waveform

and geodetic data.

Identifying the distinguishing characteristics of different failure processes on faults is a

crucial step required to examine and quantify how various fault features, such as frictional

and structural heterogeneity, as well as the presence of fluids and thermal effects, alter fault

stability, the interactions among events, and the nucleation of dynamic earthquake ruptures.

Such developments have broad applications for natural and induced seismicity, as well as

other natural failure phenomena such as landslides and glacial sliding, and the general failure

of rocks and materials.
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