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ABSTRACT

In this thesis, we take a look at how quantum information theory can be used to
study physical systems at both high and low energies.

In the first part of this thesis, we examine the structure of the low-energy subspaces
of quantum many-body systems. Motivated by considerations from topological
order and holography, we show that the existence of error-correcting properties in
low-energy subspaces is a generic feature of quantum systems. Using the formalism
of matrix product states, we construct explicit quantum error-detecting codes formed
from the momentum eigenstates of a quantum many-body system. We do so for
both generic gapped systems as well as the gapless Heisenberg model.

We also examine how topological order can persist past the ground state space into
the low-energy subspace of excited states by studying the No Low-Energy Trivial
States (NLTS) conjecture. We prove a version of the NLTS conjecture under the
assumption of symmetry protection. Moreover, we show that our symmetric NLTS
result has implications for the performance of quantum variational optimization
algorithms by using it to prove a bound on the Quantum Approximate Optimization
Algorithm (QAOA). Specifically, we show that there exists a family of graphs on
which QAOA for the MAXCUT problem can always be outperformed at logarithmic
depths by the classical Goemans-Williamson algorithm.

In the second part of this thesis, we examine problems related to bulk reconstruction
in holography and the black hole firewall paradox. Using the formalism of the tensor
Radon transform, we devise and implement a numerical algorithm for reconstructing
(perturbatively in AdS3/CFT2) the bulk metric tensor from a given boundary entropy
profile. We argue that the fidelity of this reconstruction serves as a useful criterion
for when a semi-classical bulk dual should be expected to exist.

We finally examine the black hole firewall problem from the perspective of quantum
error-correction and quantum computational complexity. We argue that the state of
the Hawking radiation has the special property of being computationally pseudo-
random, meaning that it cannot be distinguished from the maximally mixed state by
any efficient quantum computation. We show that this implies that each black hole
has a natural structure as a quantum error-correcting code. These black hole codes
give an operational meaning to some of the ER=EPR type proposals for resolving
the firewall paradox within the framework of quantum information theory.
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C h a p t e r 1

INTRODUCTION

Quantum information theory has become an increasingly versatile tool for studying
various physical systems. In recent years, the incorporation of quantum information
has been especially fruitful for high-energy and condensed matter physics, leading
to advances in our understanding of how black holes process information, and of
the topological orders associated with quantum many-body systems. In this thesis,
we take a look at how quantum information theory can be used to study physical
systems at both high and low energies.

Part I — Low Energies

In the first part of this thesis, we examine the structure of low-energy subspaces
of quantum many-body systems, in particular with regard to the error-correcting
properties that such subspaces can exhibit.

Quantum Error-Correcting Codes in Low-Energy Subspaces
A primary motivation for studying the error-correcting properties of low-energy sub-
spaces comes from the theory of topological phases. Topological phases are special
phases of matter which exhibit long-range entanglement structure. In particular, one
necessary requirement for the existence of topological order is that the ground states
of a topologically ordered model cannot be distinguished by local operations; this
is succinctly summarized by saying that the ground state space of a topologically
ordered model constitutes a quantum error-detecting code against local errors [1].
This characterization of topological order leads to the natural follow-up question of
whether error-correcting properties can extend beyond ground state spaces into the
low-energy subspaces of many-body systems.

A second, independent motivation also comes through holography. The AdS/CFT
correspondence states that gravity in 𝑑 + 1 dimensional Anti-de Sitter spacetime
(AdS) is in some ways equivalent to a conformal field theory (CFT) defined on
the 𝑑-dimensional AdS boundary [2]. Under the AdS/CFT correspondence, the
bulk geometry of AdS spacetime is generally viewed as an emergent property of
the underlying degrees of freedom present in the CFT. One puzzling feature of
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the correspondence is that the map relating the CFT degrees of freedom and the
bulk geometry must be highly degenerate and non-local. For example, through
the holographic dictionary, it appears that an operator located sufficiently deeply in
the bulk must be independently reconstructible on multiple, distinct regions of the
boundary CFT.

In [3], it was argued that the paradoxical features of the bulk-to-boundary recon-
struction map was in fact a reflection of the fact that it is the encoding map of
a quantum error-correcting code. More precisely, [3] proposed that the action of
bulk operators are most appropriately viewed as logical operations on a quantum
error-correction code defined within boundary Hilbert space. This idea was later
given concrete form in [4], which constructed an explicit example of a holographic
quantum error-correcting code that manifestly exhibits many features of the bulk-
to-boundary reconstruction map as a concrete toy model.

The characterization of holographic quantum error-correcting codes remains an
important and challenging problem. The AdS/CFT correspondence suggests that
any holographic CFT must contain, within its low-energy subspaces, an abundance
of quantum error-correcting codes resulting from the encoding of the logical bulk
operators. A natural question is to what extent is such a property holographic? Is the
presence of quantum error-correcting properties something unique to holographic
CFTs or is it something which must be present within a generic quantum system?
This again motivates a study of quantum error-correction within the low-energy
subspaces of a quantum system.

In Chapter 2, we study the quantum error-detecting1 properties associated with the
low-energy subspaces of a quantum many-body system. Using the formalism of
matrix product states, we explicitly construst a quantum error-detecting code from
the excited states of a gapped 1D local Hamiltonian. Specifically, it is shown that
a generic choice of distinct momentum eigenstates selected from a gapped band
is sufficient to form an error-detecting code against sublinearly many local errors.
The construction of this code shows that error-correcting behavior is a generic
feature of low-energy subspaces of gapped, local Hamiltonians. We also construct a
similar code (with the same parameter scaling) consisting of magnon states selected
from a gapless 1D integrable system - the isotropic Heisenberg model. The codes
constructed in Chapter 2 show that the existence of error-correcting properties in

1Although we focus on quantum error-detection since it is a natural primitive in the context
of the problem that we study, all of the results in Chapter 2 hold equivalently as statements about
quantum error-correcting codes, albeit with logarithmic, as opposed to sublinear Ω

(
𝑛1−𝜖 ) , distance.



3

low-energy subspaces is a generic feature of quantum many-body systems, even
in 1D where the analogous notion of topological order in the ground state space
is absent [5], [6], and is not tied to the particular presence or absence of gap or
integrability.

The No-Low Energy Trivial States Conjecture
A topologically ordered model has the additional feature that its ground states are
non-trivial, i.e., they cannot be prepared from a product state by a constant depth
local circuit. As with the aforementioned error-correcting properties associated with
topologically ordered ground states, it becomes natural to ask if this non-triviality
can also be extended into the low-energy subspaces of many-body systems. It is
widely thought to be the case that there does exist physically reasonable gapped local
Hamiltonians which satisfies the property that all states of sufficiently low energy are
non-trivial, a conjecture which is formalized as the No Low-Energy Trivial States
(NLTS) conjecture [7].

More precisely, let {𝐻𝑛}𝑛∈N be a family of local Hamiltonians (with 𝑛 parametrizing
system size) such that:

1. Each 𝐻𝑛 has ground state energy 0.

2. Each interaction term has bounded norm.

3. Each interaction term involves a constant number of qubits.

4. Each qubit participates in a constant number of interactions.

We say that the family has the No Low-Energy Trivial States (NLTS) property if
there exists some 𝜖 > 0 and a function 𝑓 : N→ N such that, given a depth-𝑑 local
quantum circuit𝑈, we have

〈0|𝑈†𝐻𝑛𝑈 |0〉 > 𝜖𝑛

for all 𝑛 ≥ 𝑓 (𝑑).

Conjecture 1 (No-Low Energy States (NLTS)). There exists a family of local Hamil-
tonians which possesses the NLTS property.

The general NLTS conjecture is, aside from being of independent interest, a precur-
sor to the quantum PCP conjecture, and remains open at this time. Note in particular
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that the existence of non-trivial topological order is equivalent to the 𝜖 = 0 case
of the NLTS conjecture. The NLTS conjecture therefore posits that there exists a
family of Hamiltonians such that non-trivial topological order persists beyond the
ground state space into the low-energy subspace of excited states.

In Chapter 3, we prove a specific case of the NLTS conjecture under the assumption
of a local Z2 symmetry. Specifically, we prove that the NLTS conjecture holds
under the assumption that the Hamiltonian, starting product state, and preparation
circuit all satisfy a Z2 symmetry condition. It is interesting to note that the presence
of Z2-symmetry is essential in our proof: the same family of Hamiltonians that
we construct in Chapter 3 does not exhibit NLTS without it. This opens up the
intriguing possibility that NLTS may be akin to topological order in 1D systems
which only exists under symmetry protection.

Examples of systems which satisfy the assumptions of our theorem include quantum
variational algorithms, specifically the Quantum Approximate Optimization Algo-
rithm (QAOA), which is one of the most intensely studied and promising algorithms
for near-term quantum computation [8]. Using our symmetric NLTS result, we
provide a general bound on the performance of QAOA on the maximum cut prob-
lem (MAXCUT) for logarithmic depths. Specifically, we show that for logarithmic
depth QAOA, there always exists an infinite family of graphs on which QAOA
will be outperformed by the best known polynomial time classical algorithm, i.e.,
the Goemans-Williamson algorithm employing semi-definite relaxation. Our result
shows, for the first time, rigorous bounds on the general performance of QAOA
beyond depth one2, and is amongst the first rigorous performance bounds for QAOA
against a well-known classical algorithm.

Part II — High Energies

In the second part of this thesis, we study the applications of quantum informa-
tion theory to high-energy physics, specifically regarding the bulk reconstruction
problem in holography and the black hole firewall problem.

Bulk Reconstruction
It could be said that the flurry of activity involving the application of quantum
information theory in holography really begins with the discovery of the Ryu-

2Previously, for MAXCUT QAOA — one of the best studied cases of the algorithm — the only
known performance bounds beyond a single iteration were for specific graphs, such as the cycle
graph.
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Takayanagi (RT) formula back in 2006 [9], [10]. The RT formula relates the von
Neumann entropy of a CFT state on a boundary subregion with a corresponding
surface area within the bulk. Specifically, the RT formula states that

𝑆(𝐴) = min
𝛾𝐴

Area [𝛾𝐴]
4𝐺

,

where 𝑆(𝐴) is the von Neumann entropy of a boundary CFT state on the subre-
gion 𝐴, and where the minimization on the right runs through all bulk surfaces 𝛾𝐴
cohomologous with 𝐴. For the first time, the RT formula gives a direct and unde-
niable relation between bulk geometry, which is typically considered a part of the
low-energy semiclassical description of the theory, and the underlying microscopic
degrees of freedom that describe the dual theory.

The problem of bulk reconstruction asks about the recovery of geometric quantities
in the bulk AdS spacetime given certain boundary data, and more generally, of
quantifying when a well-defined semi-classical geometric bulk should be expected
to exist. In Chapter 4, we study a simplified version of the bulk reconstruction
problem aimed at recovering the bulk metric tensor perturbatively in AdS3/CFT2.

In particular, we consider the following scenario. Let us be given a boundary
entropy profile {𝑆(𝐴)}𝐴∈I where I consists of all single interval regions 𝐴 on the
boundary, and where 𝑆(𝐴) represents the von Neumann algebra of some CFT state
on 𝐴. The Ryu-Takayanagi formula now translates the entropy profile into the areas
of bulk minimal surfaces. In the special case where we work with AdS3/CFT2,
a constant time slice is naturally represented by the Poincare disk model of the
hyperbolic plane, and the minimal surfaces 𝛾𝐴 are simply geodesics that subtend the
boundary region 𝐴. Given the boundary entropy profile, or equivalently the lengths
of all geodesics between pairs of points on the boundary, we may ask if this data
uniquely determines the bulk metric tensor (up to diffeomorphism). In the context
of geometric tomography, this problem is known as the boundary rigidity problem.
The solution to the boundary rigidity problem is unknown for the general class of
manifolds, but well-defined and studied for the case where the underlying manifold
is of (nearly) constant curvature. We therefore focus our attention to case of small
metric perturbations about the vacuum AdS3 solution, where the induced metric on
a constant time spatial slice is given by 𝑔𝑖 𝑗 = 𝑔(0)𝑖 𝑗 + ℎ𝑖 𝑗 , where 𝑔(0) is the background
metric of the Poincare disk, and where ℎ is a sufficiently small metric perturbation.

Given a boundary region 𝐴 and a background geodesic 𝛾𝐴 subtending 𝐴, the change
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in geodesic length through the addition of a metric perturbation is given by

Δ𝐿 (𝐴) = 1
2

∫
𝛾𝐴

ℎ ( ¤𝛾𝐴, ¤𝛾𝐴) 𝑑𝑠.

The integral above can be considered as a map from the space of symmetric 2-tensors
ℎ to the space of smooth functions on geodesics 𝛾𝐴. More precisely, we define the
tensor Radon transform 𝑅2 [ℎ] of the tensor ℎ to be the function which takes in a
background geodesic curve 𝛾𝐴 and returns the value

𝑅2 [ℎ] (𝛾𝐴) =
∫
𝛾𝐴

ℎ ( ¤𝛾𝐴, ¤𝛾𝐴) 𝑑𝑠.

It can be shown that the tensor Radon transform 𝑅2 [ℎ] is an injective (up to dif-
feomorphism) map of ℎ, which implies a positive solution to the linearized version
of the boundary rigidity problem: we may uniquely (up to diffeomorphism) re-
cover a metric perturbation ℎ given the lengths of all boundary anchored geodesics.
Equivalently, through the RT formula, a bulk metric perturbation is uniquely (up to
diffeomorphism) determined by the set of vacuum subtracted boundary entangle-
ment entropies.

In Chapter 4, we review the theory of the tensor Radon transform and implement
a numerical algorithm to explicitly reconstruct the bulk metric perturbation given
a boundary entropy profile. We apply this reconstruction to a few well-motivated
examples of holographic boundary data, as well as to the (ostensibly non-geometric)
boundary entropy data generated from quenching a free fermion model. We show
that the fidelity of the reconstruction can be used as a characterization of whether a
given entropy profile has a well-defined geometric bulk dual, providing an empirical
answer to the question of when a CFT state has a well-defined semi-classical bulk
dual in the special case of linear perturbations about AdS3.

The Black Hole Firewall Problem
In 2012, [11] presented a sharpened version of the black hole information problem
called the black hole firewall paradox. We can present the key points of the paradox
through a simplified toy-model of the Hawking radiation process. Consider a simple
model for black hole evaporation based on the pair creation picture for Hawking
radiation [12]:

1. We begin with a pure state |𝜓〉𝑀 representing the state of the black hole on an
initial time slice.
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2. We imagine that Hawking radiation is then induced from pair creation. The
schematic evolution of our state is given by

|𝜓〉𝑀 ↦→ |𝜓′〉𝑀 ⊗
1
√

2

(
|00〉�̃�1𝐵1

+ |11〉�̃�1𝐵1

)
,

where 𝐵1 describes the subsystem of an outgoing Hawking mode, and �̃�1

describes its interior partner. The fact that the state on 𝐵1�̃�1 is taken to be a
maximally entangled state reflects the fact that we are assuming quantum field
theory to be a valid semi-classical description of the evaporation process.
For a sufficiently large black hole, the event horizon is an ordinary region
of spacetime with low curvature. The validity of quantum field theory in
such regimes implies that the structure of the vacuum state in the near horizon
region is described by a maximally entangled state between outgoing Hawking
modes and their interior partners.

3. Continued time evolution repeatedly produce new correlated pairs, with the
state at step 𝑁 being

|Ψ𝑁〉 = |𝜓′′〉𝑀 ⊗
1
√

2𝑁

𝑁⊗
𝑘=1

(
|00〉�̃�𝑘𝐵𝑘

+ |11〉�̃�𝑘𝐵𝑘

)
.

If we now trace away the collection of interior modes �̃�𝑘 , then the exterior modes
𝐵𝑘 are left in a maximally mixed state: this is a reflection of the fact that Hawking
radiation is thermal. If the evaporation process continues until the black hole has
completely radiated away, then we are left with a maximally mixed thermal state.
Since we started with a pure state initially, this is in violation of the unitarity of
quantum mechanics.

This is essentially a description of the classic black hole information problem. Note
that the contradiction here is a statement about the asymptotic S-matrix being non-
unitary. What the authors of [11] did was to sharpen the above argument to finite
times using entanglement entropy.

Consider some late outgoing mode 𝐵𝐾 for some sufficiently late time step 𝐾 , and
denote the collection of early modes {𝐵𝑘 | 𝑘 < 𝐾} as 𝐸 . From before, we know
that 𝐵𝐾 must be (maximally) entangled with its partner mode �̃�𝐾 in the interior.
This is formalized by the entropy condition 𝑆(𝐵𝐾 �̃�𝐾) = 0. On the other-hand, if
the ultimate process of black hole evaporation is to remain unitary, then 𝐵𝐾 must
eventually start to purify the early radiation. This means that for sufficiently large
𝐾 , we must have 𝑆(𝐵𝐾𝐸) < 𝑆(𝐸).
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Together we now have three conditions on the von Neumann entropy:

1. The first is the strong sub-additivity of von Neumann entropies:

𝑆(𝐴𝐵𝐶) + 𝑆(𝐵) ≤ 𝑆(𝐴𝐵) + 𝑆(𝐵𝐶),

valid for any tripartite system 𝐴𝐵𝐶.

2. The second is the entropy condition

𝑆(𝐵𝐾 �̃�𝐾) = 0.

This condition follows from the maximal entanglement of an outgoing Hawk-
ing mode and its interior partner. As argued before, this relation follows from
the validity of quantum field theory and the structure of the vacuum state in
the near event horizon region. In effect, this equation signifies the smoothness
of the black hole event horizon.

3. The final condition is

𝑆(𝐵𝐾𝐸) < 𝑆(𝐸),

which signifies the unitary of the black hole evaporation process.

The paradox here is that these three conditions are mutually contradictory. Indeed,
these three conditions lead to the following chain of inequalities:

𝑆(𝐵𝐾) + 𝑆(𝐸) = 𝑆(𝐵𝐾) + 𝑆(𝐸𝐵𝐾 �̃�𝐾)
≤ 𝑆(𝐵𝐾 �̃�𝐾) + 𝑆(𝐵𝐾𝐸)
= 𝑆(𝐵𝐾𝐸)
< 𝑆(𝐸),

which implies that 𝑆(𝐵𝐾) < 0, in contradiction with the non-negativity of entan-
glement entropy. The firewall paradox is so named because, to the original authors
of [11], the most acceptable violation is that of the second condition 𝑆(𝐵𝐾 �̃�𝐾) = 0,
signaling a breakdown of the smoothness of spacetime structure and the presence
of an energetic firewall at the black hole event horizon.

Since its very inception, there have been numerous attempts to resolve the firewall
paradox. While it is arguable that the firewall paradox has yet to be fully resolved, the
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most commonly accepted class of resolutions falls under the collective denomination
of ER=EPR type solutions. The term ER=EPR comes from a postulated equivalence
between entanglement (as represented by the maximally entangled EPR pair), and
spacetime locality (as represented by the acronym ER, which is short for the Einstein-
Rosen bridge). The ER=EPR philosophy3 proposes that instead of considering the
black hole interior as being separate from the exterior radiation, the entanglement
structure of the system suggests that a part of the black hole interior should instead be
identified as a subsystem of the exterior radiation. In short, if the black hole firewall
problem stems from a fundamental violation of the monogamy of entanglement,
then the most straightforward solution is to simply identify the problematic parties.

Although this solution is at first glance both radical and bewildering, there has been
accumulating evidence which suggests that this is truly what happens. Perhaps the
most convincing piece of evidence is the recent discovery of the so-called “replica
wormhole” geometries of the gravitational path integral. [14], [15] The replica
wormhole geometries are additional, and previously unincluded, saddle points to the
calculation of the entanglement entropy using the replica trick for the gravitational
path integral. The inclusion of these new saddles bring about a modification to
the calculation of the radiation entropy at late times, with the striking feature that
unitarity is recovered. The inclusion of the replica wormholes produces the so-called
island formula for the entanglement entropy of the radiation subsystem, given by

𝑆(𝐸) = min
𝑋

[
Area(𝑋)

4𝐺
+ 𝑆bulk (𝐸 ∪ 𝐼)

]
.

In the formula above, 𝐸 denotes the exterior radiation subsystem, and 𝑆(𝐸) the
usual von Neumann entropy. The extermization on the right-hand side is over
closed codimension-2 spatial surfaces 𝑋 , and 𝐼 is a spatial region such that 𝜕𝐼 = 𝑋 ,
called the island. The extremizing surface �̃� is called a quantum extremal surface.
The term 𝑆bulk (𝐸 ∪ 𝐼) denotes the coarse-grained entropy on the union of the
radiation and island subsystems, calculated in a semi-classical approximation using
the Euclidean path integral.

It can be shown that at early times, there is no non-trivial solution to the extremization
problem and the quantum extremal surface �̃� (and hence also the island region 𝐼) is

3The term ER=EPR was first coined by Juan Maldacena and Leonard Susskind in [13]. The
same term has since been appropriated by various authors for a wide selection of distinct, albeit
related, mechanisms and proposals. In this thesis, we will use the term ER=EPR to refer to
the guiding philosophy that there should be some intimate, even if somewhat ill-defined, relation
between spacetime locality and entanglement.
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empty. Correspondingly, the island formula simply reproduces Hawking’s original
entropy calculation at early times, suggesting that

𝑆(𝐸) = 𝑆bulk (𝐸)

at early times. If this result persists to late times, then we are again confronted with
the black hole information problem and the loss of unitarity. At late times, however,
there exists a non-trivial solution to the quantum extremal surface which is located
near the black hole event horizon, and the corresponding island region is non-empty.
The island 𝐼 in this case contains part of the black hole interior, and so it contains the
interior partners of the exterior Hawking radiation. The subsystem 𝐸 is essentially
purified by the inclusion of the island 𝐼 and 𝑆bulk (𝐸 ∪ 𝐼) is consequently small. The
island formula thus reduces at late times to

𝑆(𝐸) ≈ Area( �̃�)
4𝐺

≈ 𝑆BH,

where 𝑆BH is the Beckenstein-Hawking entropy of the remaining black hole. The
island formula is therefore seen to accurately reproduce the unitary page curve

𝑆(𝐸) = min {𝑆bulk (𝐸) , 𝑆BH} .

The island formula suggests that unitary is recovered by identifying an island region
in the interior of the black hole with the exterior radiation, and it provides what is
perhaps the most concrete implementation of the ER=EPR philosophy yet. However,
there are also many unresolved issues remaining.

One puzzling feature is how the semi-classical path integral has knowledge of the
fine-grained entropy in the first place. In particular, the island formula provides
no suggestions as to what is going on microscopically. In Chapter 5, we aim to
examine some of these issues from the perspective of quantum error-correction and
quantum computational complexity. Taking seriously the suggestion that the black
hole interior must be embedded within the exterior radiation, and following a general
philsophy first outlined by Harlow and Hayden in [16], we suggest computational
pseudorandomness as an underlying mechanism for realizing the black hole embed-
ding. By axiomizing the thermality of Hawking radiation as an assumption that the
radiation forms a pseudorandom state (i.e., a state which cannot be distinguished
from a thermal state by a computation of low-complexity), we show that each black
hole defines a natural quantum error-correcting code which encodes the interior
modes of the black hole into the exterior radiation. The presence of the black hole
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code gives an operational meaning to the suggested embedding of the black hole
interior into the exterior radiation within the framework of quantum information
theory.
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Low Energies
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C h a p t e r 2

QUANTUM ERROR-DETECTION AT LOW ENERGIES

Motivated by the close relationship between quantum error-correction, topological
order, the holographic AdS/CFT duality, and tensor networks, we initiate the study
of approximate quantum error-detecting codes in matrix product states (MPS). We
first show that using open-boundary MPS to define boundary to bulk encoding
maps yields at most constant distance error-detecting codes. These are degenerate
ground spaces of gapped local Hamiltonians. To get around this no-go result,
we consider excited states, i.e., we use the excitation ansatz to construct encoding
maps: these yield error-detecting codes with distance Ω(𝑛1−𝜈) for any 𝜈 ∈ (0, 1)
and Ω(log 𝑛) encoded qubits. This shows that gapped systems contain – within
isolated energy bands – error-detecting codes spanned by momentum eigenstates.
We also consider the gapless Heisenberg-XXX model, whose energy eigenstates can
be described via Bethe ansatz tensor networks. We show that it contains – within its
low-energy eigenspace – an error-detecting code with the same parameter scaling.
All these codes detect arbitrary 𝑑-local (not necessarily geometrically local) errors
even though they are not permutation-invariant. This suggests that a wide range of
naturally occurring many-body systems possess intrinsic error-detecting features.

This chapter is based on the published article:

M. Gschwendtner, R. König, B. Şahinoǧlu, and E. Tang, “Quantum error-detection
at low energies,” Journal of High Energy Physics, no. 9, Sep. 2019. DOI:
10.1007/jhep09(2019)021.

2.1 Introduction
Quantum error-correcting codes are fundamental for achieving robust quantum
memories and fault-tolerant quantum computation. Following seminal work by
Shor [1] and others [2]–[5], the study of quantum error-correction has seen tremen-
dous progress from both the theoretical and the experimental point of view. Beyond
its operational implications for the use of faulty quantum hardware, quantum error-
correction is closely connected to fundamental physics, as shown early on by the
work of Kitaev [6]: the ground space of a topologically ordered model constitutes
a quantum error-correcting code whose dimension depends on the topology of the
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underlying surface containing the physical degrees of freedom. In addition to giving
rise to a new field called topological quantum computing [7]–[13], this work has
had a significant impact on the problem of classifying topologically ordered phases
in two spatial dimensions [14], [15]. Motivated by the success of this program,
follow-up work has pursued the classification of gapped phases of matter with or
without global symmetries, starting from one spatial dimension [16]–[19] up to
arbitrarily high dimensions [20], [21].

More recently, concepts from quantum error-correction have helped to resolve
conceptual puzzles in AdS/CFT holographic duality. Almheiri, Dong, and Har-
low almheiri15 have proposed that subspaces of holographic conformal field theo-
ries (CFTs) which are dual to perturbations around a particular classical bulk AdS
geometry constitute a quantum error-correcting code robust against erasure errors.
In this proposal, the bulk and boundary degrees of freedom correspond to the logical
and the physical degrees of freedom of the code, respectively. Puzzling features
such as subregion-subregion duality and radial commutativity can naturally be un-
derstood in this language, under the hypothesis that the duality map works as a code
which recovers, from erasure, part of the boundary degrees of freedom. Related to
this picture, Ryu-Takayanagi type formulas have been shown to hold in any quantum
error-correcting code that corrects against erasure [22].

Key to many of these results in the context of topological order and the AdS/CFT
holographic duality is the language of tensor networks. The latter, originating in
work by Fannes, Nachtergaele, and Werner on finitely correlated states [23] and
the density matrix renormalization group [24], [25], has seen a revival in the last
15 years. Major conceptual contributions include the introduction of matrix product
states by [26]–[30], the introduction of the multi-scale entanglement renormalization
ansatz (MERA) [31] by Vidal, and various projected entangled-pair states (PEPS)
techniques [29], [32]–[36] for higher dimensional systems.

It has been shown that tensor network techniques provide exact descriptions of
topologically ordered states [37]–[39], and furthermore, tensor networks have been
instrumental in the characterization and classification of topological order [40]–
[44]. This approach has also been generalized to higher dimensions, clarifying the
connections to topological quantum field theories [45].

A similar success story for the use of tensor networks is emerging in the area of
AdS/CFT duality. Aspects of holographic duality have been explored in terms of
toy models based on tensor networks [46]–[48]. Indeed, many (though not all)
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conjectured features of this duality can be recovered in these examples. This field,
while still in its infancy, has provided new appealing conjectures which point to
a potentially more concrete understanding of the yet to be uncovered physics of
quantum gravity [49], [50].

Given the existing close connections between quantum error-correction and a variety
of physical systems ranging from topological order to AdS/CFT, it is natural to ask
how generic the appearance of error-correcting features is in naturally occurring
quantum many-body systems. A first step towards showing the ubiquity of such
features is the work of Brandao, et. al. [51]. There, it is shown that quantum
chaotic systems satisfying the Eigenstate Thermalization Hypothesis (ETH) have
energy eigenstates that form approximate quantum error-correcting codes. Nearby
extensive energy eigenstates of 1D translation invariant Hamiltonians, as well as
ground spaces of certain gapless systems (including the Heisenberg and Motzkin
models), also contain approximate quantum error-correcting codes. Motivated by
this work, we ask if one can demonstrate the existence of error-correcting codes
within the low-energy eigenspaces of generic Hamiltonians, whether or not they are
gapped or gapless. Specifically, we ask this question for 1D systems.

Our work goes beyond earlier work by considering errors (that is, noise) of a more
general form: existing studies of error-correction in the context of entanglement
renormalization and/or holography have primarily concentrated on qubit loss, mod-
eled by so-called erasure errors (see e.g., [47], [52], [53]). This erasure noise model
has several theoretical advantages. In particular, it permits one to argue about the
existence of recovery maps in terms of entanglement entropies of the associated
erased regions. This can be connected to well-known results on entanglement
entropies in critical 1D systems. Furthermore, the appearance of entanglement
entropies in these considerations is natural in the context of the AdS/CFT duality,
where these quantities are involved in the connection of the boundary field the-
ory to the bulk geometry via the Ryu-Takayangi formula. However, compared to
other forms of errors typically studied in the quantum fault-tolerance community,
erasure is quite a restricted form of noise: it is, in a certain sense, much easier to
correct than, e.g., depolarizing noise. As an example to illustrate this point, we
recall that the toric code can recover from loss of half its qubits [54], whereas it
can only tolerate depolarizing noise up to a noise rate of 11% even given perfect
syndrome measurements [9]. Motivated by this, we aim to analyze error-correcting
properties with respect to more generic noise even though this precludes the use of
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entanglement entropies. Again, the work [51] provides first results in this direction
by considering errors on a fixed, connected subset of sites (that is, geometrically
localized errors). The restriction to a connected subset was motivated in part by
the consideration of permutation-invariant subspaces (note other previous works on
permutation-invariant code spaces [55], [56]). In our work, we lift the restriction
to permutation-invariant codes and instead analyze arbitrary weight-𝑑 errors with
potentially disconnected supports. Furthermore, we study an operational task – that
of error-detection – with respect to a noise model where errors can occur on any
subset of qubits of a certain size, instead of only a fixed subset.

We find that the language of matrix product states (MPS) and the related excitation
ansatz states provides a powerful analytical tool for studying error-detection in 1D
systems. In particular, we relate properties of transfer operators to error-detection
features: for MPS describing (degenerate) ground spaces of gapped Hamiltonians,
injectivity of the transfer operators gives rise to a no-go theorem. For excitation
ansatz states describing the low-energy excitations of gapped systems, we use injec-
tivity and a certain normal form to establish error-correction properties. Finally, for
a gapless integrable model, we analyze the Jordan structure of (generalized) transfer
matrices to find bounds on code parameters. In this way, our work connects locally
defined features of tensor networks to global error-correction properties. This can
be seen as a first step in an organized program of studying approximate quantum
error-correction in tensor network states.

2.2 Our Contribution
We focus on error-detection, a natural primitive in fault-tolerant quantum compu-
tation. Contrary to full error-correction, where the goal is to recover the initial
encoded state from its corrupted version, error-detection merely permits one to
decide whether or not an error has occurred. Errors (such as local observables)
detected by an error-detecting code have expectation values independent of the par-
ticular logical state. In the context of topological order, where local errors are
considered, error-detection has been referred to as TQO-1 (topological quantum
order condition 1); see, e.g., [57]. An approximate version of the latter is discussed
in [58].

A code, i.e., a subspace of the physical Hilbert space, is said to be error-detecting
(for a set of errors) if the projection back onto the code space after the application of
an error results in the original encoded state, up to normalization. Operationally, this
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means that one can ensure that no error occurred by performing a binary-outcome
POVM consisting of the projection onto the code space or its complement. This
notion of an error-detecting code is standard, though quite stringent: unless the code
is constructed algebraically (e.g., in terms of Pauli operators), it is typically not
going to have this property.

Our first contribution is a relaxed, yet still operationally meaningful definition for
approximate error-detection. It relaxes the former notion in two directions: first,
the post-measurement state is only required to approximate the original encoded
state. Second, we only demand that this approximation condition is satisfied if
the projection onto the code space occurs with non-negligible probability. This is
motivated by the fact that if this projection does not succeed with any significant
probability, the error-detection measurement has little effect (by the gentle mea-
surement lemma [59]) and may as well be omitted. More precisely, we consider a
CPTP map N : B((Cp)⊗𝑛) → B((Cp)⊗𝑛) modeling noise on 𝑛 physical qudits (of
dimension p). Here the Kraus operators of N take the role of errors (considered in
the original definition). We define the following notion:

Definition 2.3.1 (Approximate quantum error-detecting code). A subspace C ⊂
(Cp)⊗𝑛 (with associated projection 𝑃) is an (𝜖, 𝛿)-approximate error-detecting code
for N if for any state |Ψ〉 ∈ C the following holds:

if tr(𝑃N(|Ψ〉〈Ψ|)) ≥ 𝛿 then 〈Ψ|𝜌N ,𝑃 |Ψ〉 ≥ 1 − 𝜖 ,

where 𝜌N ,𝑃 = tr(𝑃N(|Ψ〉〈Ψ|))−1 · 𝑃N(|Ψ〉〈Ψ|)𝑃.

This definition ensures that the post-measurement state 𝜌N ,𝑃 is close (as quantified
by 𝜖) to the initial code state when the outcome of the POVM is 𝑃. Furthermore, we
only demand this in the case where N(|Ψ〉〈Ψ|) has an overlap with the code space
of at least 𝛿.

In the following, we often consider families of codes {C𝑛}𝑛 indexed by the number 𝑛
of physical spins. In this case, we demand that both approximation parameters 𝜖𝑛 and
𝛿𝑛 tend to zero as 𝑛→∞. This is how we make sure that we have a working error-
detecting code in the asymptotic or thermodynamic limit of the physical Hilbert
space.

Of particular interest are errors of weight 𝑑, i.e., errors which only act non-trivially
on a subset of 𝑑 of the 𝑛 subsystems in the product space (Cp)⊗𝑛. We call this
subset the support of the error, and refer to the error as 𝑑-local. We emphasize that
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throughout this paper, 𝑑-local only refers to the weight of the errors: they do not
need to be geometrically local, i.e., their support may be disconnected. In contrast,
earlier work on approximate error-correction such as [51] only considered errors
with support on a (fixed) connected subset of 𝑑 sites. We then define the following:

Definition 2.3.3 (Error-detection for 𝑑-local errors). A subspace C ⊂ (Cp)⊗𝑛 is
called an (𝜖, 𝛿) [[𝑛, 𝑘, 𝑑]]-approximate quantum error-detecting code (AQEDC) if
dimC = p𝑘 and if C is an (𝜖, 𝛿)-approximate error-detecting code for any CPTP
map N : B((Cp)⊗𝑛) → B((Cp)⊗𝑛) of the form

N(𝜌) =
∑︁
𝑗∈[𝐽]

𝑝 𝑗𝐹𝑗 𝜌𝐹
†
𝑗
, (2.1)

where each 𝐹𝑗 is a 𝑑-local operator with ‖𝐹𝑗 ‖ ≤ 1 and {𝑝 𝑗 } 𝑗∈[𝐽] is a probability
distribution. We refer to 𝑑 as the distance of the code.

In other words, an (𝜖, 𝛿) [[𝑛, 𝑘, 𝑑]]-AQEDC deals with error channels which are
convex combinations of 𝑑-local errors. This includes for example the commonly
considered case of random Pauli noise (assuming the distribution is supported on
errors having weight at most 𝑑). However, it does not cover the most general
case of (arbitrary) 𝑑-local errors/error channels because of the restriction to convex
combinations. The consideration of convex combinations of 𝑑-local errors greatly
facilitates our estimates and allows us to consider settings that go beyond earlier
work. We leave it as an open problem to lift this restriction, and only provide some
tentative statements in this direction.

To exemplify in what sense our definition of AQEDC for 𝑑-local errors extends
earlier considerations, consider the case where the distribution over errors in (2.2)
is the uniform distribution over all 𝑑-qudit Pauli errors on 𝑛 qubits. In this case,
the number of Kraus operators in the representation (2.2) is polynomial in 𝑛 even
for constant distance 𝑑. In particular, arguments involving the number of terms
in (2.2) cannot be used to establish bounds on the code distance as in [51], where
instead only Pauli errors acting on 𝑑 fixed sites were considered: The number of
such operators is only 4𝑑 instead of the number

(𝑛
𝑑

)
4𝑑 of all weight-≤ 𝑑-Paulis, and,

in particular, does not depend on the system size 𝑛.

We establish the following approximate Knill-Laflamme type conditions which are
sufficient for error-detection:
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Corollary 2.3.4. Let C ⊂ (Cp)⊗𝑛 be a code with orthonormal basis {𝜓𝛼}𝛼∈[p𝑘 ] such
that (for some 𝛾 > 0),��〈𝜓𝛼 |𝐹 |𝜓𝛽〉 − 𝛿𝛼,𝛽〈𝜓1 |𝐹 |𝜓1〉

�� ≤ 𝛾 · ‖𝐹‖ for all 𝛼, 𝛽 ∈ [p𝑘 ] ,

for every 𝑑-local operator 𝐹 on (Cp)⊗𝑛. Let 𝛿 > p5𝑘𝛾2. Then C is an (𝜖 =

p5𝑘𝛾2𝛿−1, 𝛿) [[𝑛, 𝑘, 𝑑]]-AQEDC.

This condition, which is applicable for “small” code space dimension, i.e., 𝑘 =

𝑂 (log 𝑛), allows us to reduce the consideration of approximate error-detection to
the estimation of matrix elements of local operators. We also establish a partial
converse to this statement: if a subspace C ⊂ (Cp)⊗𝑛 contains two orthonormal
vectors whose reduced 𝑑-local density operators (for some subset of 𝑑 sites) are
almost orthogonal, then C cannot be an error-detecting code with distance 𝑑 (see
Lemma 2.3.6 for a precise statement).

Equipped with these notions of approximate error-detection, we study quantum
many-body systems in terms of their error-detecting properties using tensor network
techniques. More specifically, we consider two types of code families, namely:

(i) codes that are degenerate ground spaces of local Hamiltonians and permits a
description in terms of tensor networks, and

(ii) codes defined by low-energy eigenstates of (geometrically) local Hamiltonians,
with the property that these can be efficiently described in terms of tensor
networks.

As we explain below, (i) and (ii) are closely connected via the parent Hamiltonian
construction. For (i), we follow a correspondence between tensor networks and
codes which is implicit in many existing constructions: we may think of a tensor
as a map from certain virtual to physical degrees of freedom. To define this map,
consider a tensor network given by a graph𝐺 = (𝑉, 𝐸) and a collection of tensors 𝐴.
Let us say that an edge 𝑒 ∈ 𝐸 is a dangling edge if one of its vertices has degree 1,
and let us call the corresponding vertices the dangling vertices of the tensor network.
An edge 𝑒 ∈ 𝐸 is an internal edge if it is not a dangling edge; we use an analogous
notion for vertices. We assume that each internal edge 𝑒 ∈ 𝐸 is associated a virtual
space of fixed bond dimension 𝐷, and each dangling edge with a physical degree
of dimension p. Then the tensor network associates a tensor 𝑇 of degree deg(𝑣)
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to each internal vertex 𝑣 of 𝐺, where it is understood that indices corresponding to
internal edges are contracted. The tensor network is fully specified by the family 𝐴
of such tensors. We partition the set of dangling vertices into two subsets 𝑀 and
𝑀𝑐. Then the tensor network defines a map Γ(𝐴, 𝐺) : (Cp)⊗|𝑀 | → (Cp)⊗|𝑀𝑐 | as
each fixing of the degrees of freedom in 𝑀 defines an element of the Hilbert space
associated with the degrees of freedom in 𝑀𝑐 by tensor contraction. That is, the
map depends on the graph 𝐺 specifying the structure of the tensor network, as well
as the family 𝐴 of local tensors. In particular, fixing a subspace of (Cp)⊗|𝑀 |, its
image under the map Γ(𝐴, 𝐺) defines a subspace C ⊂ (Cp)⊗|𝑀𝑐 | which we will
think of as an error-correcting code. In the following, we also allow the physical and
virtual (bond) dimensions to vary (depending on the location in the tensor network);
however, this description captures the essential construction.

This type of construction is successful in two and higher spatial dimensions, yielding
error-correcting codes with macroscopic distance: examples are the ground states
of the toric code [40], [60] and other topologically ordered models [37], [39], [41].
However, in 1D, it seems a priori unlikely that the very same setup can generate any
nontrivial quantum error-detection code, at least for gapped systems. This is because
of the exponential decay of correlations [61]–[63] and the lack of topological order
without symmetry protection [18], [64]. We make this precise by stating and proving
a no-go theorem.

More precisely, we follow the above setup provided by the boundary-to-bulk tensor
network map Γ(𝐴) = Γ(𝐴, 𝐺). Here, 𝐺 is the 1𝐷 line graph with dangling edges
attached to internal vertices, which is equivalent to considering the ground space
of 1D local gapped Hamiltonians with open boundary conditions. The associated
tensor network is a matrix product state.

Generic MPS satisfy a condition called injectivity, which is equivalent to saying
that the transfer matrix of the MPS is gapped. Exploiting this property allows us to
prove a lower bound on the distinguishability of 𝑑-local reduced density operators
for any two orthogonal states in the code space. This bound is expressed in terms of
the virtual bond dimension 𝐷 of the MPS tensor 𝐴. In particular, the bound implies
the following no-go theorem for codes generated by MPS as described above.

Theorem 2.5.3. Let C ⊂ (Cp)⊗𝑛 be an approximate quantum error-detecting code
generated by Γ(𝐴), i.e., a translation-invariant injective MPS of constant bond
dimension 𝐷 by varying boundary conditions. Then the distance of C is constant.
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The physical interpretation of this theorem is as follows: for every injective MPS
with periodic boundary conditions, there exists a strictly log𝐷-geometrically local
gapped Hamiltonian such that the MPS is the unique ground state [28]. One can
further enlarge the ground space by leaving out a few Hamiltonian terms near the
boundary. The degeneracy then depends on the number of terms omitted, and the
ground states are described by open boundary condition MPS. Then, our no-go
theorem implies that the ground space of any such parent Hamiltonian arising from
such a constant bond-dimension MPS is a trivial code, i.e., it can have at most a
constant distance. This result is equivalent to saying that there is no topological
quantum order in the ground space of 1D gapped systems.1

To get around this no-go result, we extend our considerations beyond the ground
space and include low-energy subspaces in the code space. We show that this in-
deed leads to error-detecting codes with macroscopic distance. We identify two
ways of constructing nontrivial codes by either considering single-particle excita-
tions of varying momenta, or by considering multi-particle excitations above the
ground space. Both constructions provide us with codes having distance scaling
asymptotically significantly better than what can be achieved in the setup of our
no-go theorem. In fact, the code distance is a polynomial arbitrarily close to linear
in the system size (i.e., 𝑛) in both cases.

Our first approach, using states of different momenta, involves the formalism of
the excitation ansatz (see Section 2.6 for a review). This gives a tensor network
parametrization of momentum eigenstates associated with a Hamiltonian having
quasi-particle excitations. We show the following:

Theorem 2.6.9. Let 𝜈 ∈ (0, 1) and let 𝜅, 𝜆 > 0 be such that

5𝜅 + 𝜆 < 𝜈 .

Let 𝐴, 𝐵(𝑝) be tensors associated with an injective excitation ansatz state |Φ𝑝 (𝐵; 𝐴)〉,
where 𝑝 is the momentum of the state. Then there is a subspace C ⊂ (Cp)⊗𝑛 spanned
by excitation ansatz states {|Φ𝑝 (𝐵; 𝐴)〉}𝑝 with different momenta 𝑝 such that C is

1More precisely, this statement holds for systems whose ground states can be approximated by
constant bond dimension MPS. It is not clear whether this is sufficient to make a statement about
general 1D local gapped Hamiltonians. The identification of ground states of 1D local gapped
Hamiltonians with constant bond dimension MPS is sometimes made in the literature, as for example
in the context of classifying phases [18], [19], [64].
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an (𝜖, 𝛿) [[𝑛, 𝑘, 𝑑]]-AQEDC with parameters

𝑘 = 𝜅 logp 𝑛 ,

𝑑 = 𝑛1−𝜈 ,

𝜖 = Θ(𝑛−(𝜈−(5𝜅+𝜆))) ,
𝛿 = 𝑛−𝜆 .

The physical interpretation of this result stems from the fact that excitation ansatz
states approximate quasi-particle excitations: given a local gapped Hamiltonian,
assuming a good MPS approximation to its ground state, we can construct an
arbitrarily good approximation to its isolated quasi-particle excitation bands by the
excitation ansatz. This approximation guarantee is shown using Lieb-Robinson
type bounds [61], [65] based on a previous result [66] which employs the method
of energy filtering operators. Thus our result demonstrates that generic low-energy
subspaces contain approximate error-detecting codes with the above parameters.
Also, note that unlike the codes considered in [51, Theorem 1], the excitation ansatz
codes are comprised of finite energy states, and not finite energy density states.

We remark that the choice of momenta is irrelevant for this result; it is not necessary
to restrict to nearby momenta. Instead, any subset of momentum eigenstates can be
used. The only limitation here is that the number of different momenta is bounded
by the dimension of the code space. This is related to the fact that localized wave
functions (which would lead to a non-extensive code distance) are a superposition
of many different momenta, a fact formally expressed by the position-momentum
uncertainty relation.

Our second approach for side-stepping the no-go theorem is to consider multi-
particle excitations. We consider a specific model, the periodic Heisenberg-XXX
spin chain Hamiltonian 𝐻 on 𝑛 qubits. We find that there are good error-detecting
codes within the low-energy subspace of this system. For this purpose, we consider
the state

|Ψ〉 =
𝑛∑︁

𝑚=1
𝜔𝑚s−𝑚 |1〉⊗𝑛 where 𝜔 = 𝑒2𝜋𝑖/𝑛, (2.2)

and where s−𝑚 = |0〉〈1| changes the state of the 𝑚-th spin from |1〉 to |0〉. This has
energy𝑂 (1/𝑛2) above the ground state energy of 𝐻. The corresponding eigenspace
is degenerate and contains all “descendants” 𝑆𝑟− |Ψ〉 for 𝑟 ∈ {0, . . . , 𝑛 − 2}, where
𝑆− =

∑𝑛
𝑚=1 s−𝑚 is the (total) spin lowering operator. We also note that each state 𝑆𝑟− |Ψ〉
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has fixed momentum 2𝜋/𝑛, and that 𝑟 directly corresponds to its total magnetization.
We emphasize that these states are, in particular, not permutation-invariant. Our
main result concerning these states is the following:

Theorem 2.7.9. Let 𝜈 ∈ (0, 1) and 𝜅, 𝜆 > 0 be such that

6𝜅 + 𝜆 < 𝜈 .

Then there is a subspace C spanned by descendant states {𝑆𝑟− |Ψ〉}𝑟 with magneti-
zation 𝑟 pairwise differing by at least 2 such that C is an (𝜖, 𝛿) [[𝑛, 𝑘, 𝑑]]-AQEDC
with parameters

𝑘 = 𝜅 log2 𝑛 ,

𝑑 = 𝑛1−𝜈 ,

𝜖 = Θ(𝑛−(𝜈−(6𝜅+𝜆))) ,
𝛿 = 𝑛−𝜆 .

This code, which we call the magnon-code, can also be seen to be realized by
tensor networks. The state (2.2) has an MPS description with bond dimension 2 and
the descendants 𝑆𝑟− |Ψ〉 can be expressed using a matrix-product operator (MPO)
description of the operator 𝑆−. More generally, it is known that these states form an
example of the algebraic Bethe ansatz, and the latter have a natural tensor network
description [67]. This suggests that our results may generalize to other exactly
solvable models.

Outline

The paper is organized as follows. We discuss our notion of approximate error-
detection and establish sufficient and necessary conditions in Section 2.3. In Sec-
tion 2.4, we review the basics of matrix product states. We also establish bounds
on expectation values in terms of properties of the associated transfer operators.
In Section 2.5, we prove our no-go theorem and show the limits of error-detection
for code spaces limited to the ground space of a gapped local Hamiltonian. We
then consider low-energy eigenstates of local Hamiltonians and show how they per-
form asymptotically better than the limits of the no-go theorem. We first consider
single-particle momentum eigenstates of generic local gapped Hamiltonians in Sec-
tion 2.6. In Section 2.7, we consider codes defined by many-particle eigenstates of
the Heisenberg-XXX model.
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2.3 Approximate Quantum Error-Detection
Here we introduce our notion of approximate quantum error-detection. In Sec-
tion 2.3.1, we give an operational definition of this notion. In Section 2.3.2,
we provide sufficient conditions for approximate quantum error-detection which
are analogous to the Knill-Laflamme conditions for quantum error-correction [4].
Finally, in Section 2.3.3, we give necessary conditions for a subspace to be an
approximate quantum error-detecting code.

2.3.1 Operational Definition of Approximate Error-Detection
Let N : B((Cp)⊗𝑛) → B((Cp)⊗𝑛) be a CPTP map modeling noise on 𝑛 physical
qubits. We introduce the following notion:

Definition 2.3.1. A subspace C ⊂ (Cp)⊗𝑛 (with associated projection 𝑃) is an
(𝜖, 𝛿)-approximate error-detection code for N if for any pure state |Ψ〉 ∈ C the
following holds:

if tr(𝑃N(|Ψ〉〈Ψ|)) ≥ 𝛿 then 〈Ψ|𝜌N ,𝑃 |Ψ〉 ≥ 1 − 𝜖 ,

where 𝜌N ,𝑃 = tr(𝑃N(|Ψ〉〈Ψ|))−1 · 𝑃N(|Ψ〉〈Ψ|)𝑃.

In this definition, 𝜌N ,𝑃 is the post-measurement state when applying the POVM {𝑃, 𝐼−
𝑃} toN(|Ψ〉〈Ψ|). Roughly speaking, this definition ensures that the post-measurement
state is 𝜖-close to the initial code state if the outcome of the POVM is 𝑃. Note,
however, that we only demand this in the case whereN(|Ψ〉〈Ψ|) has an overlap with
the code space of at least 𝛿. The idea behind this definition is that if this overlap is
negligible, then the outcome 𝑃 does not occur with any significant probability and
the error-detection measurement may as well be omitted.

Definition 2.3.1 is similar in spirit to operationally defined notions of approxi-
mate quantum error-correction considered previously. In [68], approximate error-
correction was defined in terms of the “recoverable fidelity” of any encoded pure
state affected by noise. The restriction to pure states in the definition is justified by
means of an earlier result by Barnum, Knill, and Nielsen [69].

We note that, by definition, an (𝜖, 𝛿)-approximate error-detection code for N is
also an (𝜖′, 𝛿′)-approximate error-detection code for any 𝜖 ≤ 𝜖′ and 𝛿 ≤ 𝛿′. The
traditional “exact” notion of a quantum error-detecting code C (see e.g., [70])
demands that for a set F ⊂ B((Cp)⊗𝑛) of detectable errors, we have

〈Ψ|𝐸 |Φ〉 = 𝜆𝐸 〈Ψ|Φ〉 for all |Ψ〉, |Φ〉 ∈ C
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for some scalar 𝜆𝐸 ∈ C depending only on 𝐸 , for all 𝐸 ∈ F . It is straightforward to
see that such a code defines a (0, 0)-approximate error-detecting code of any CPTP
map N whose Kraus operators belong to F .

2.3.2 Sufficient Conditions for Approximate Quantum Error-Detection
The following theorem shows that certain approximate Knill-Laflamme-type condi-
tions are sufficient for approximate error-detection.

Theorem 2.3.2. Let N(𝜌) = ∑
𝑗∈[𝐽] 𝑅 𝑗 𝜌𝑅

†
𝑗

be a CPTP map on B((Cp)⊗𝑛). Let
C ⊂ (Cp)⊗𝑛 be a subspace with orthonormal basis {𝜓𝛼}𝛼∈[𝐾] . Define

𝜖approx := max
𝛼,𝛽∈[𝐾]

∑︁
𝑗∈[𝐽]

��〈𝜓𝛼 |𝑅 𝑗 |𝜓𝛽〉 − 𝛿𝛼,𝛽〈𝜓1 |𝑅 𝑗 |𝜓1〉
��2 . (2.3)

Let 𝛿 > 𝐾5𝜖approx be arbitrary. Then the subspace C is an (𝜖, 𝛿)-approximate
quantum error-detection code for N with 𝜖 = 𝐾5𝜖approx𝛿

−1.

This theorem deals with cases where the code dimension 𝐾 is “small” compared to
other quantities. We will later apply this theorem to the case where 𝐾 is polynomial,
and where 𝜖approx and 𝛿 are inverse polynomial in the system size 𝑛.

We note that the conditions of Theorem 2.3.2 may appear more involved than e.g.,
the Knill-Laflamme type conditions (see [4]) for (exact) quantum error-correction:
the latter involve one or two error operators (interpreted as Kraus operators of the
channel), whereas in expression (2.3.2), we sum over all Kraus operators. It appears
that this is, to some extent, unavoidable when going from exact to approximate error-
correction/detection in general. We note that (tight) approximate error-correction
conditions [71] obtained by considering the decoupling property of the complemen-
tary (encoding plus noise) channel similarly depend on the entire noise channel.
Nevertheless, we show below that, at least for probabilistic noise, simple sufficient
conditions for quantum error-detection involving only individual Kraus operators
can be given.

Proof. Let us define

err𝜓 (𝑅, 𝛼, 𝛽) := 〈𝜓𝛼 |𝑅 |𝜓𝛽〉 − 𝛿𝛼,𝛽〈𝜓1 |𝑅 |𝜓1〉 .

Consider an arbitrary orthonormal basis {𝜑𝛼}𝛼∈[𝐾] ∈ C ⊂ (Cp)⊗𝑛 of C. Let𝑈 be a
unitary matrix such that

𝜑𝛼 =
∑︁
𝛽∈[𝐾]

𝑈𝛼,𝛽𝜓𝛽 for all 𝛼 ∈ [𝐾] .



28

Because
∑
𝛾∈[𝐾] (𝑈†)𝛼,𝛾𝑈𝛾,𝛽 = 𝛿𝛼,𝛽, we obtain by straightforward computation

〈𝜑𝛼 |𝑅 |𝜑𝛽〉 − 𝛿𝛼,𝛽〈𝜓1 |𝑅 |𝜓1〉 =
∑︁

𝛾,𝛿∈[𝐾]
𝑈𝛼,𝛾𝑈𝛽,𝛿 err𝜓 (𝑅, 𝛾, 𝛿) .

We conclude that

|〈𝜑𝛼 |𝑅 |𝜑𝛽〉| ≤
∑︁

𝛾,𝛿∈[𝐾]
|err𝜓 (𝑅, 𝛾, 𝛿) | ≤ 𝐾 ·

√︄ ∑︁
𝛾,𝛿∈[𝐾]

|err𝜓 (𝑅, 𝛾, 𝛿) |2 for 𝛼 ≠ 𝛽

because max𝛾,𝛿 |𝑈𝛼,𝛾𝑈𝛽,𝛿 | ≤ 1 for a unitary matrix 𝑈 and by using the Cauchy-
Schwarz inequality. By definition of err and 𝜖approx, this implies that

〈𝜑𝛼 |N (|𝜑𝛽〉〈𝜑𝛽 |) |𝜑𝛼〉 ≤ 𝐾4𝜖approx for 𝛼 ≠ 𝛽 (2.4)

for any orthonormal basis {𝜑𝛼}𝛼∈[𝐾] of C.

Let now 𝛿 > 0 be given and let Ψ ∈ C be an arbitrary state in the code space such
that

tr(𝑃N(|Ψ〉〈Ψ|)) ≥ 𝛿 . (2.5)

Let us pick an orthonormal basis {𝜑𝛼}𝛼∈[𝐾] ∈ C ⊂ (Cp)⊗𝑛 of C such that 𝜑1 = Ψ.
Then

1 − 〈Ψ|𝜌N ,𝑃 |Ψ〉 = 1 − 〈Ψ|N (|Ψ〉〈Ψ|) |Ψ〉
tr(𝑃N(|Ψ〉〈Ψ|))

=
1

tr(𝑃N(|Ψ〉〈Ψ|)) · (tr(𝑃N(|Ψ〉〈Ψ|)) − 〈Ψ|N (|Ψ〉〈Ψ|) |Ψ〉)

=
1

tr(𝑃N(|Ψ〉〈Ψ|)) ·
𝐾∑︁
𝛼=2
〈𝜑𝛼 |N (|𝜑1〉〈𝜑1 |) |𝜑𝛼〉

≤ 1
𝛿
· 𝐾5𝜖approx

because of (2.3.2) and (2.3.2). The claim follows.

If there are vectors {𝜂𝛼,𝛽}𝛼,𝛽∈[𝐾] such that��〈𝜓𝛼 |𝑅 𝑗 |𝜓𝛽〉 − 𝛿𝛼,𝛽〈𝜓1 |𝑅 𝑗 |𝜓1〉
�� ≤ ‖𝑅 𝑗𝜂𝛼,𝛽‖ for all 𝑗 ∈ [𝐽] , (2.6)

then this implies the bound

𝜖approx ≤ max
𝛼,𝛽

tr(N (|𝜂𝛼,𝛽〉〈𝜂𝛼,𝛽 |)) = max
𝛼,𝛽
‖𝜂𝛼,𝛽‖2 .
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Unfortunately, good bounds of the form (2.3.2) are not straightforward to establish
in the cases considered here. Instead, we consider a slightly weaker condition
(see Equation (2.3.4)) which still captures many cases of interest. In particular,
it provides a simple criterion for establishing that a code can detect probabilistic
Pauli errors with a certain maximum weight. Correspondingly, we introduce the
following definition:

Definition 2.3.3. An (𝜖, 𝛿) [[𝑛, 𝑘, 𝑑]]-AQEDC C is a p𝑘 -dimensional subspace of
(Cp)⊗𝑛 such that C is an (𝜖, 𝛿)-error-detecting code for any CPTP map of the form

N(𝜌) =
∑︁
𝑗∈[𝐽]

𝑝 𝑗𝐹𝑗 𝜌𝐹
†
𝑗
, (2.7)

where each 𝐹𝑗 is a 𝑑-local operator with ‖𝐹‖ ≤ 1 and {𝑝 𝑗 } 𝑗∈[𝐽] is a probability
distribution.

We then have the following sufficient condition:

Corollary 2.3.4. Let 𝐾 = p𝑘 and C ⊂ (Cp)⊗𝑛 be a code with orthonormal basis
{𝜓𝛼}𝛼∈[𝐾] satisfying (for some 𝛾 > 0),

��〈𝜓𝛼 |𝐹 |𝜓𝛽〉 − 𝛿𝛼,𝛽〈𝜓1 |𝐹 |𝜓1〉
�� ≤ 𝛾 · ‖𝐹‖ for all 𝛼, 𝛽 ∈ [𝐾] , (2.8)

for every 𝑑-local operator 𝐹 on (Cp)⊗𝑛. Let 𝛿 > 𝐾5𝛾2. Then C is an (𝜖 =

𝐾5𝛾2𝛿−1, 𝛿) [[𝑛, 𝑘, 𝑑]]-AQEDC.

Proof. Defining 𝑅 𝑗 =
√
𝑝 𝑗𝐹𝑗 , the claim follows immediately from Theorem 2.3.2.

Note that the exponents in this statement are not optimized, and could presumably
be improved. We have instead opted for the presentation of a simple proof, as this
ultimately provides the same qualitative statements.

We also note that the setting considered in Corollary 2.3.4, i.e., our notion of
(𝜖, 𝛿) [[𝑛, 𝑘, 𝑑]]-error-detecting codes, goes beyond existing work on approximate
error-detection/correction [51]–[53], where typically only noise channels with Kraus
(error) operators acting on a fixed, contiguous (i.e., geometrically local) set of
𝑑 physical spins are considered. At the same time, our results are limited to convex
combinations of the form (2.3.3). It remains an open problem whether these codes
also detect noise given by more general (coherent) channels.
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2.3.3 Necessary Conditions for Approximate Quantum Error-Detection
Here we give a partial converse to Corollary 2.3.4, which shows that a condition of
the form (2.3.4) is indeed necessary for approximate quantum error-detection.

Lemma 2.3.5. Let 𝜓1, 𝜓2 ∈ (Cp)⊗𝑛 be two orthonormal states in the code space C
and𝐹 = 𝐹S⊗𝐼[𝑛]\S ∈ B((Cp)⊗𝑑) an orthogonal projection acting on 𝑑 sitesS ⊂ [𝑛]
such that

|〈𝜓1 |𝐹 |𝜓1〉 − 〈𝜓2 |𝐹 |𝜓2〉| = 𝜂

for some 𝜂 ∈ [0, 1], with 1−𝜂 � 1. Then any subspace C ⊂ (Cp)⊗𝑛 of dimension p𝑘

is not an (𝜖, 𝛿) [[𝑛, 𝑘, 𝑑]]-code for

𝜖 < 1 − 10(1 − 𝜂), and

𝛿 < 𝜂2 .

Proof. Let

𝐹𝑗 ,𝑘 := 〈𝜓 𝑗 |𝐹 |𝜓𝑘〉 for 𝑗 , 𝑘 ∈ {1, 2} .

By choosing the phase of |𝜓1〉 appropriately, we may assume that 𝐹1,2 ≥ 0. Note
that 𝐹1,2 = 𝐹2,1 ≤ ‖𝐹𝜓2‖ =

√︁
〈𝜓2 |𝐹 |𝜓2〉 by the Cauchy-Schwarz inequality and

because 𝐹 is a projection. Let us denote the entries of 𝐹 by

𝐹 =

(
𝑝 𝑟

𝑟 𝑞

)
where 𝑞 ∈ [0, 1 − 𝜂], 𝑝 = 𝑞 + 𝜂, and 𝑟 ∈ [0,√𝑞]. Let us define a CPTP map N of
the form (2.3.3) by

N(𝜌) = 𝑒𝑖𝜋𝐹𝜌𝑒−𝑖𝜋𝐹 where 𝐹 = 𝐹S ⊗ 𝐼[𝑛]\S .

Let �̂� =
∑2
𝑗=1 |𝜓 𝑗 〉〈𝜓 𝑗 |. Consider the normalized vector |Ψ〉 = 1√

2
( |𝜓1〉 + |𝜓2〉).

Then

�̂�N(|Ψ〉〈Ψ|)�̂� =
1
2

∑︁
𝑖, 𝑗 ,𝑘,ℓ

𝑊𝑘,𝑖𝑊ℓ, 𝑗 |𝜓𝑘〉〈𝜓ℓ | , (2.9)

where

𝑊 𝑗 ,𝑘 := 〈𝜓 𝑗 |𝑒𝑖𝜋𝐹 |𝜓𝑘〉 for 𝑗 , 𝑘 ∈ {1, 2} .
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Observe that since 𝐹2 = 𝐹 is a projection, we have 𝑒𝑖𝜋𝐹 = 𝐼 − 2𝐹, thus the entries
of𝑊 are

𝑊 𝑗 ,𝑘 = 𝛿 𝑗 ,𝑘 − 2𝐹𝑗 ,𝑘 for 𝑗 , 𝑘 ∈ {1, 2} .

In particular, from (2.3.3) we obtain for the projection 𝑃 onto C

tr (𝑃N(|Ψ〉〈Ψ|)𝑃) ≥ tr
(
�̂�N(|Ψ〉〈Ψ|)�̂�

)
=

1
2

∑︁
𝑖, 𝑗 ,𝑘

𝑊𝑘,𝑖𝑊𝑘, 𝑗

= 1 − 2𝑝 + 2𝑝2 − 2𝑞 + 2𝑞2 + 4𝑟 (𝑝 + 𝑞 − 1 + 𝑟)
≥ (𝑝 − 𝑞)2 = 𝜂2 , (2.10)

where we used that the last expression is minimal (and equal to (𝑝 − 𝑞)2) for
𝑟 = 1/2(1 − 𝑝 − 𝑞). We also have

〈Ψ|N (|Ψ〉〈Ψ|) |Ψ〉 = 1
4

∑︁
𝑖, 𝑗 ,𝑘,ℓ

𝑊𝑘,𝑖𝑊ℓ, 𝑗

= (2𝑟 + 𝑝 + 𝑞 − 1)2

= (2(𝑟 + 𝑞) − (1 − 𝜂))2 .

This expression is maximal for (𝑟, 𝑞) each maximal (since both are non-negative),
hence for (𝑟, 𝑞) = (

√︁
1 − 𝜂, 1 − 𝜂), and we obtain the upper bound

〈Ψ|N (|Ψ〉〈Ψ|) |Ψ〉 ≤ (1 − 𝜂 + 2
√︁

1 − 𝜂)2 ≤ 9(1 − 𝜂) ,

where we used that 𝑥 ≤
√
𝑥 for 𝑥 ∈ [0, 1]. This implies with (2.3.3) that for

𝜌N ,𝑃 = tr(𝑃N(|Ψ〉〈Ψ|))−1 · 𝑃N(|Ψ〉〈Ψ|)𝑃, we have

〈Ψ|𝜌N ,𝑃 |Ψ〉 ≤
9(1 − 𝜂)
𝜂2 =

9(1 − 𝜂)
(1 − (1 − 𝜂))2

≤ 10(1 − 𝜂)

for 1 − 𝜂 � 1. Thus

1 − 〈Ψ|𝜌N ,𝑃 |Ψ〉 ≥ 1 − 10(1 − 𝜂) .

With (2.3.3), this implies the claim.

We reformulate Lemma 2.3.5, by stating it in terms of reduced density matrices, as
follows:
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Lemma 2.3.6. Let 𝜓1, 𝜓2 ∈ (Cp)⊗𝑛 be two orthonormal vectors in a subspace C ⊂
(Cp)⊗𝑛 of dimension p𝑘 . Fix a region 𝑅 ⊂ [𝑛] of size |𝑅 | = 𝑑 and let 𝜌 𝑗 =

tr[𝑛]\𝑅 |𝜓 𝑗 〉〈𝜓 𝑗 |, 𝑗 = 1, 2 be the reduced density matrices on 𝑅. Then C is not a
(𝜖, 𝛿) [[𝑛, 𝑘, 𝑑]]-error-detecting code for

𝜖 < 1 − 10𝜁 (𝜌1, 𝜌2) , and

𝛿 < (1 − 𝜁 (𝜌1, 𝜌2))2 ,

where 𝜁 (𝜌1, 𝜌2) := max{rank 𝜌1, rank 𝜌2}2 · tr(𝜌1𝜌2).

Proof. By definition of the trace distance, the projection 𝐹 onto the positive part of
𝜌1 − 𝜌2 satisfies

𝜂 :=
1
2
‖𝜌1 − 𝜌2‖1 = tr(𝐹 (𝜌1 − 𝜌2)) .

With the inequality ‖𝐴‖1 ≤
√︁

rank(𝐴)‖𝐴‖𝐹 , we get the bound

𝐹 (𝜌1, 𝜌2) = ‖
√
𝜌1
√
𝜌2‖21 ≤ 𝐷

2‖√𝜌1
√
𝜌2‖2𝐹 = 𝐷2 tr(𝜌1𝜌2)

on the fidelity of 𝜌1 and 𝜌2, where 𝐷 = rank(√𝜌1
√
𝜌2) ≤ max{rank 𝜌1, rank 𝜌2}.

Inserting this into the inequality 1
2 ‖𝜌1 − 𝜌2‖1 ≥ 1 − 𝐹 (𝜌1, 𝜌2) yields

𝜂 ≥ 1 −max{rank 𝜌1, rank 𝜌2}2 · tr(𝜌1𝜌2) .

The claim then follows from Lemma 2.3.5 and the fact that ifC is not an (𝜖, 𝛿) [[𝑛, 𝑘, 𝑑]]-
code, then it is not an (𝜖′, 𝛿′) [[𝑛, 𝑘, 𝑑]]-code for any 𝛿′ ≤ 𝛿 and 𝜖′ ≤ 𝜖 .

We will use Lemma 2.3.6 below to establish our no-go result for codes based on
injective MPS with open boundary conditions.

2.4 On Expectation Values of Local Operators in MPS
Key to our analysis are expectation values of local observables in MPS, and more
generally, matrix elements of local operators with respect to different MPS. These
directly determine whether or not the considered subspace satisfies the approximate
quantum error-detection conditions. To study these quantities, we first review the
terminology of transfer operators (and, in particular, injective MPS) in Section 2.4.1.
In Section 2.4.2, we establish bounds on the matrix elements and the norms of
transfer operators. These will subsequently be applied in all our derivations.
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Figure 2.1: This figure illustrates an MPS with 𝑛 = 3 physical spins, defined in
terms of a family {𝐴 𝑗 }p𝑗=1 of matrices and a matrix 𝑋 .

2.4.1 Review of Matrix Product States
A matrix product state (or MPS) of bond dimension 𝐷 is a state |Ψ〉 on (Cp)⊗𝑛 which
is parametrized by a collection of𝐷×𝐷matrices. In this paper, we focus on uniform,
site-independent MPS. Such a state is fully specified by a family 𝐴 = {𝐴 𝑗 }p𝑗=1
of 𝐷 × 𝐷 matrices describing the “bulk properties” of the state, together with a
“boundary condition” matrix 𝑋 ∈ B(C𝐷). We write |Ψ〉 = |Ψ(𝐴, 𝑋, 𝑛)〉 for such a
state, where we often suppress the defining parameters (𝐴, 𝑋, 𝑛) for brevity.

Written in the standard computational basis, the state |Ψ(𝐴, 𝑋, 𝑛)〉 is expressed as

|Ψ〉 =
∑︁

𝑖1,...,𝑖𝑛∈[p]
tr

(
𝐴𝑖1 · · · 𝐴𝑖𝑛𝑋

)
|𝑖1 · · · 𝑖𝑛〉 (2.11)

for a family {𝐴 𝑗 }p𝑗=1 ⊂ B(C
𝐷) of matrices. The number of sites 𝑛 ∈ N is called

the system size, and each site is of local dimension p ∈ N, which is called the
physical dimension of the system. The parameter 𝐷 ∈ N is called the bond, or
virtual, dimension. This state can be represented graphically as a tensor network as
in Figure 2.1.

Note that the family of matrices 𝐴 = {𝐴 𝑗 }p𝑗=1 of a site-independent MPS equivalently
defines a three-index tensor (𝐴 𝑗 )𝛼𝛽 with one “physical” ( 𝑗) and two “virtual” (𝛼, 𝛽)
indices. We call this the local MPS tensor associated to |Ψ(𝐴, 𝑋, 𝑛)〉.

The matrices {𝐴 𝑗 }p𝑗=1 defining a site-independent MPS |Ψ(𝐴, 𝑋, 𝑛)〉 give rise to
a completely positive (CP) linear map E : B(C𝐷) → B(C𝐷) which acts on 𝑌 ∈
B(C𝐷) by

E(𝑌 ) =
p∑︁
𝑖=1

𝐴𝑖𝑌 𝐴
†
𝑖
. (2.12)

Without loss of generality (by suitably normalizing the matrices {𝐴 𝑗 }p𝑗=1), we assume
that E has spectral radius 1. This implies that E has a positive semi-definite fixed
point 𝑟 ∈ B(C𝐷) by the Perron-Frobenius Theorem, see [72, Theorem 2.5]. We
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say that the MPS |Ψ(𝐴, 𝑋, 𝑛)〉 is injective2 if the associated map E is primitive, i.e.,
if the fixed-point 𝑟 is positive definite (and not just positive semi-definite), and if
the eigenvalue 1 associated to 𝑟 is the only eigenvalue on the unit circle, including
multiplicity [74, Theorem 6.7].

From expression (2.4.1), we can see that there is a gauge freedom of the form

�̃� 𝑗 = 𝑃
−1𝐴 𝑗𝑃, �̃� = 𝑃−1𝑋𝑃, for 𝑗 = 1, . . . , p, (2.13)

for every invertible matrix 𝑃 ∈ 𝐺𝐿 (C𝐷), for which |Ψ(𝐴, 𝑋, 𝑛)〉 = |Ψ( �̃�, �̃�, 𝑛)〉.
Given an injective MPS, the defining tensors can be brought into a canonical form
by exploiting this gauge freedom in the definition of the MPS.3

One proceeds as follows: given an injective MPS, let 𝑟 denote the unique fixed-point
of the transfer operator E. We can apply the gauge freedom (2.4.1) with 𝑃 =

√
𝑟 to

obtain an equivalent MPS description by matrices { �̃� 𝑗 := 𝑟−1/2𝐴 𝑗𝑟1/2}p
𝑗=1, where

the associated map Ẽ is again primitive with spectral radius 1, but now with the
identity operator 𝑟 = 𝐼C𝐷 as the unique fixed-point.

Similarly, one can show that the adjoint

E†(𝑌 ) =
p∑︁
𝑖=1

𝐴
†
𝑖
𝑌 𝐴𝑖

of a primitive map E is also primitive.4 Since the spectrum of E† is given by
spec(E†) = spec(E), this implies that the map E† has a unique positive fixed-
point ℓ with eigenvalue 1, with all other eigenvalues having magnitude less than 1.

Now, let ℓ̃ denote the unique fixed-point of the previously defined Ẽ. Since ℓ̃ is
positive definite, it is unitarily diagonalizable:

ℓ̃ = 𝑈Λ𝑈†,

2Injective MPS are known to be “generic.” More precisely, consider the space C𝐷 ⊗ C𝐷 ⊗ Cp

of all defining tensors with physical dimension p and bond dimension 𝐷. Then the set of defining
tensors with a primitive transfer operator forms an open, co-measure zero set. The definition of
injective that we use here differs from the one commonly used in the literature (cf. [28]), but is
ultimately equivalent. For a proof of equivalence, see Definition 8, Lemma 6, and Theorem 18 of
[73].

3The canonical form holds for non-injective MPS as well, see [28]. We only consider the
injective case here.

4Note that the adjoint is taken with respect to the Hilbert-Schmidt inner product on B(C𝐷). One
way to see that the adjoint of a primitive map is primitive is to note that an equivalent definition for
primitivity given in [74, Theorem 6.7(2)] is in terms of irreducible maps. A map is irreducible if
and only if its adjoint is irreducible (see the remarks in [74] after Theorem 6.2). This in turn means
that a map is primitive if and only if its adjoint is primitive.
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with 𝑈 being a unitary matrix, and Λ being a diagonal matrix with all diagonal
entries positive. Using the gauge freedom (2.4.1) in the form

�̃� 𝑗 ↦→ ˜̃𝐴 𝑗 = 𝑈† �̃� 𝑗𝑈 for 𝑗 = 1, . . . , p ,

we obtain an equivalent MPS description such that the associated channel ˜̃E† has
a fixed-point given by a positive definite diagonal matrix Λ. We may without loss
of generality take Λ to be normalized as tr(Λ) = 1. It is also easy to check that the
identity operator I𝐷 remains the unique fixed-point of ˜̃E.

In summary, given an injective MPS with associated map E, one may, by using the
gauge freedom, assume without loss of generality that:

(i) The unique fixed-point 𝑟 of E is equal to the identity, i.e., 𝑟 = 𝐼C𝐷 .

(ii) The unique fixed-point ℓ of E† is given by a positive definite diagonal matrix
ℓ = Λ, normalized so that tr(Λ) = 1.

An MPS with defining tensors 𝐴 satisfying these two properties above is said to be
in canonical form.

In the following, after fixing a standard orthonormal basis {|𝛼〉}𝐷
𝛼=1 of C𝐷 , we

identify elements 𝑋 ∈ B(C𝐷) with vectors |𝑋〉〉 ∈ C𝐷 ⊗ C𝐷 via the vectorization
isomorphism

𝑋 ↦→ |𝑋〉〉 := (𝑋𝑇 ⊗ 𝐼)
𝐷∑︁
𝛼=1
|𝛼〉 ⊗ |𝛼〉 =

𝐷∑︁
𝛼,𝛽=1

𝑋𝛼,𝛽 |𝛽〉 ⊗ |𝛼〉,

where 𝑋 =
∑𝐷
𝛼,𝛽=1 𝑋𝛼,𝛽 |𝛼〉〈𝛽 |. It is easy to verify that 〈〈𝑋 |𝑌〉〉 = tr(𝑋†𝑌 ), i.e., the

standard inner product on C𝐷 ⊗ C𝐷 directly corresponds to the Hilbert-Schmidt
inner product of operators in B(C𝐷) under this identification. Furthermore, under
this isomorphism, a super-operator E : B(C𝐷) → B(C𝐷) becomes a linear map
𝐸 : C𝐷 ⊗ C𝐷 → C𝐷 ⊗ C𝐷 defined by

|E(𝑋)〉〉 = 𝐸 |𝑋〉〉

for all 𝑋 ∈ B(C𝐷). The matrix 𝐸 is simply the matrix representation of E, thus 𝐸
has the same spectrum as E. Explicitly, for a map of the form (2.4.1), it is given by

𝐸 =

p∑︁
𝑖=1

𝐴𝑖 ⊗ 𝐴𝑖 . (2.14)
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The fixed-point equations for a fixed-point 𝑟 of E and a fixed-point ℓ of E† become

〈〈ℓ |𝐸 = 〈〈ℓ | and 𝐸 |𝑟〉〉 = |𝑟〉〉 , (2.15)

i.e., the corresponding vectors are left and right eigenvectors of 𝐸 , respectively.

For a site-independent MPS |Ψ(𝐴, 𝑋, 𝑛)〉, defined by matrices {𝐴 𝑗 }p𝑗=1, we call
the associated matrix 𝐸 (cf. (2.4.1)) the transfer matrix. Many key properties
of a site-independent MPS are captured by its transfer matrix. For example, the
normalization of the state is given by

‖Ψ‖2 = 〈Ψ|Ψ〉 = tr(𝐸𝑛 (𝑋 ⊗ 𝑋)) .

If the MPS is injective, then, according to (i)–(ii), it has a Jordan decomposition of
the form

𝐸 = |𝐼〉〉〈〈Λ| ⊕ �̃� .

In this expression, |𝐼〉〉〈〈Λ| is the (1-dimensional) Jordan block corresponding to
eigenvalue 1, whereas �̃� is a direct sum of Jordan blocks with eigenvalues of modulus
less than 1. The second largest eigenvalue 𝜆2 of 𝐸 has a direct interpretation in
terms of the correlation length 𝜉 of the state, which determines two-point correlators
|〈𝜎𝑗𝜎𝑗 ′〉 − 〈𝜎𝑗 〉 · 〈𝜎𝑗 ′〉| ∼ 𝑒−| 𝑗− 𝑗

′ |/𝜉 . The latter is given by 𝜉 = log(1/𝜆2).

For an injective MPS, the fact that |𝐼〉〉 is the unique right-eigenvector of 𝐸 with
eigenvalue 1 implies the normalization condition

〈〈Λ|𝐼〉〉 = tr(Λ) = 1 . (2.16)

We will represent these identities diagrammatically, which is convenient for later
reference. The matrix Λ will be shown by a square box, the identity matrix cor-
responds to a straight line. That is, the normalization condition (2.4.1) takes the
form

and the left and right eigenvalue equations (2.4.1)
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Figure 2.2: The transfer operator 𝐸 , as well as 𝐸𝑍 for 𝑍 ∈ B(Cp), and 𝐸𝐹 for
𝐹 ∈ (Cp)⊗3.

2.4.2 Transfer Matrix Techniques
Here we establish some essential statements for the analysis of transfer operators. In
Section 2.4.2, we introduce generalized (non-standard) transfer operators: these can
be used to express the matrix elements of the form 〈Ψ|𝐹 |Ψ′〉 of local operators 𝐹
with respect to pairs of MPS (Ψ,Ψ′). In Section 2.4.2, we establish bounds on
the norm of such operators. Relevant quantities appearing in these bounds are the
second largest eigenvalue 𝜆2 of the transfer matrix, as well as the sizes of its Jordan
blocks.

More General and Mixed Transfer Operators

Consider a single-site operator 𝑍 ∈ B(Cp). The generalized transfer matrix 𝐸𝑍 ∈
B(C𝐷 ⊗ C𝐷) is defined as

𝐸𝑍 =
∑︁
𝑛,𝑚

〈𝑚 |𝑍 |𝑛〉𝐴𝑚 ⊗ 𝐴𝑛 . (2.17)

We further generalize this as follows: if 𝑍1, . . . , 𝑍𝑑 ∈ B(Cp), then 𝐸𝑍1⊗···⊗𝑍𝑑 ∈
B(C𝐷 ⊗ C𝐷) is the operator

𝐸𝑍1⊗···⊗𝑍𝑑 = 𝐸𝑍1 · · · 𝐸𝑍𝑑 .

This definition extends by linearity to any operator 𝐹 ∈ B((Cp)⊗𝑑), and gives a
corresponding operator 𝐸𝐹 ∈ B(C𝐷 ⊗ C𝐷). The tensor network diagrams for these
definitions are given in Figure 2.2, and the composition of the corresponding maps
is illustrated in Figure 2.3.

In the following, we are interested in inner products 〈Ψ(𝐴, 𝑋, 𝑛) |Ψ(𝐵,𝑌, 𝑛)〉 of two
MPS, defined by local tensors 𝐴 and 𝐵, with boundary matrices 𝑋 and 𝑌 , which
may have different bond dimensions 𝐷1 and 𝐷2, respectively. To analyze these, it
is convenient to introduce an “overlap” transfer operator 𝐸 = 𝐸 (𝐴, 𝐵) which now
depends on both MPS tensors 𝐴 and 𝐵. First, we define 𝐸 ∈ B(C𝐷1 ⊗ C𝐷2) by

𝐸 =

p∑︁
𝑚=1

𝐴𝑚 ⊗ 𝐵𝑚 .
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Figure 2.3: The product 𝐸𝑍1⊗𝑍2 = 𝐸𝑍1𝐸𝑍2 of two transfer operators. Left-
multiplication by an operator corresponds to attaching the corresponding diagram
on the left.

The definition of 𝐸𝑍 for 𝑍 ∈ B(Cp) is analogous to Equation (2.4.2), but with
appropriate substitutions. We set

𝐸𝑍 =
∑︁
𝑛,𝑚

〈𝑚 |𝑍 |𝑛〉𝐴𝑚 ⊗ 𝐵𝑛 .

Starting from this definition, the expression 𝐸𝐹 ∈ B(C𝐷1 ⊗C𝐷2) for 𝐹 ∈ B((Cp)⊗𝑑)
is then defined analogously as before.

Norm Bounds on Generalized Transfer Operators

A first key observation is that the (operator) norm of powers of any transfer operator
scales (at most) as a polynomial in the number of physical spins, with the degree of
the polynomial determined by the size of the largest Jordan block. We need these
bounds explicitly and start with the following simple bounds.

Below, we often consider families of parameters depending on the system size 𝑛,
i.e., the total number of spins. We write 𝑚 � ℎ as a shorthand for a parameter 𝑚
“being sufficiently large” compared to another parameter ℎ. More precisely, this
signifies that we assume that |ℎ/𝑚 | → 0 for 𝑛 → ∞, and that by a corresponding
choice of a sufficiently large 𝑛, the term |ℎ/𝑚 | can be made sufficiently small for a
given bound to hold. Oftentimes ℎ will in fact be constant, with 𝑚 →∞ as 𝑛→∞.

Lemma 2.4.1. For 𝑚 > ℎ, the Frobenius norm of the 𝑚-th power (𝜆𝐼 + 𝑁)𝑚 of a
Jordan block 𝜆𝐼 + 𝑁 ∈ B(Cℎ) with eigenvalue 𝜆, such that |𝜆 | ≤ 1, and size ℎ is
bounded by

‖(𝜆𝐼 + 𝑁)𝑚 ‖𝐹 ≤ 3ℎ3/2𝑚ℎ−1 |𝜆 |𝑚−(ℎ−1) . (2.18)

Furthermore,

‖ (𝜆𝐼 + 𝑁)𝑚 ‖ ≤ 4𝑚ℎ−1 for 𝑚 � ℎ . (2.19)
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Proof. For ℎ = 0 the claim is trivial. Assume that ℎ > 1. Because 𝑁ℎ = 0 and 𝑁𝑟

has exactly ℎ − 𝑟 non-zero entries for 𝑟 < ℎ, we have

‖(𝜆𝐼ℎ + 𝑁)𝑚 ‖𝐹 ≤
ℎ−1∑︁
𝑟=0

(
𝑚

𝑟

)
|𝜆 |𝑚−𝑟 ‖𝑁𝑟 ‖𝐹

≤ |𝜆 |𝑚 · |𝜆 |−(ℎ−1)
ℎ−1∑︁
𝑟=0

(
𝑚

𝑟

)
(ℎ − 𝑟)1/2

≤ ℎ1/2 |𝜆 |𝑚 · |𝜆 |−(ℎ−1)
ℎ−1∑︁
𝑟=0

(
𝑚

𝑟

)
.

Since the right hand side is maximal for 𝑟 = ℎ − 1, and the binomial coefficient can
be bounded from above by

(𝑚
𝑟

)
≤

(
𝑒𝑚
𝑟

)𝑟 ≤ 3 · 𝑚𝑟 , we obtain

ℎ−1∑︁
𝑟=0

(
𝑚

𝑟

)
≤ 3ℎ · 𝑚ℎ−1 ,

hence, the first claim follows.

For the second claim, recall that the entries of the 𝑚-th power of a Jordan block are

((𝜆𝐼ℎ + 𝑁)𝑚)𝑝,𝑞 =

( 𝑚
𝑞−𝑝

)
𝜆𝑚+(𝑝−𝑞) if 𝑞 ≥ 𝑝

0 otherwise
(2.20)

for 𝑝, 𝑞 ∈ [ℎ]. This means that if |𝜆 | = 1, the maximum matrix element | ( (𝜆𝐼ℎ + 𝑁)𝑚)𝑝,𝑞 | =( 𝑚
ℎ−1

)
is attained for (𝑝, 𝑞) = (1, ℎ). Using the Cauchy-Schwarz inequality, it is

straightforward to check that

‖ (𝜆𝐼 + 𝑁)𝑚 ‖ ≤ ℎmax
𝑝,𝑞
| (𝜆𝐼 + 𝑁)𝑚𝑝,𝑞 | = ℎ ·

(
𝑚

ℎ − 1

)
=

ℎ

(ℎ − 1)!
𝑚!

(𝑚 − (ℎ − 1))! .

Since ℎ
(ℎ−1)! ≤ 2 for ℎ ∈ N and

𝑚!
(𝑚 − (ℎ − 1))! = 𝑚ℎ−1(1 +𝑂 (ℎ/𝑚)) ≤ 2𝑚ℎ−1 for 𝑚 � ℎ ,

the claim follows.

Now, we apply Lemma 2.4.1 to (standard and mixed) transfer operators. It is
convenient to state these bounds as follows. The first two statements are about the
scaling of the norms of powers of 𝐸 ; the last statement is about the magnitude of
matrix elements in powers of 𝐸 .



40

Lemma 2.4.2. Let 𝜌(𝐸) denote the spectral radius of a matrix 𝐸 ∈ B(C𝐷1 ⊗ C𝐷2).

(i) Suppose 𝜌(𝐸) ≤ 1. Let ℎ∗ be the size of the largest Jordan block(s) of 𝐸 . Then

‖𝐸𝑚 ‖ ≤ 4𝑚ℎ−1 for 𝑚 � ℎ .

(ii) If 𝜌(𝐸) < 1, then

‖𝐸𝑚 ‖𝐹 ≤ 𝜌(𝐸)𝑚/2 for 𝑚 � 𝐷1𝐷2 .

We will often use ‖𝐸𝑚 ‖𝐹 ≤ 1 as a coarse bound.

(iii) Suppose that 𝜌(𝐸) = 1. Let ℎ∗ denote the size of the largest Jordan block(s)
in 𝐸 . For 𝑝, 𝑞 ∈ [𝐷1𝐷2], let (𝐸𝑚)𝑝,𝑞 denote the matrix element of 𝐸𝑚 with
respect to the standard computational basis {|𝑝〉}𝐷1𝐷2

𝑝=1 . Then the following
holds: for all 𝑝, 𝑞 ∈ [𝐷1𝐷2], there is a constant 𝑐𝑝,𝑞 with 𝑐𝑝,𝑞 = 𝑂 (1) as
𝑚 →∞ and some ℓ ∈ {1, . . . , ℎ∗} such that

| (𝐸𝑚)𝑝,𝑞 | = 𝑐𝑚ℓ−1(1 +𝑂 (𝑚−1)) .

Proof. For 𝜆 ∈ spec(𝐸), let us denote by 𝜆𝐼ℎ(𝜆) +𝑁ℎ(𝜆) the associated Jordan block,
where ℎ(𝜆) is its size. Then

‖𝐸𝑚 ‖ = max
𝜆∈spec(𝐸)

‖(𝜆𝐼ℎ(𝜆) + 𝑁ℎ(𝜆))𝑚 ‖ ≤ max
𝜆∈spec(𝐸)

‖(𝜆𝐼ℎ(𝜆) + 𝑁ℎ(𝜆))𝑚 ‖𝐹

where we assumed that 𝑚 � ℎ∗ ≥ ℎ(𝜆), |𝜆 | ≤ 1 and (2.4.1). This shows claim (i).

Claim (ii) immediately follows from (2.4.1) and the observation that𝑚𝐷1𝐷2−1𝜌(𝐸)𝑚 =

𝑂 (𝜌(𝐸)𝑚/2).

For the proof of statement (iii), observe that matrix elements (2.4.2) of a Jordan
block (matrix) with eigenvalue 𝜆 (with |𝜆 | = 1) of size ℎ scale as��((𝜆𝐼 + 𝑁)𝑚)𝑝,𝑞 �� = 1

(𝑞 − 𝑝)!
𝑚!

(𝑚 − (𝑞 − 𝑝))! =
1

(𝑞 − 𝑝)!𝑚
𝑞−𝑝 (1 +𝑂 (1/𝑚))

for 𝑞 > 𝑝 and are constant otherwise. Because 𝑞 − 𝑝 ∈ {1, . . . , ℎ − 1} when 𝑞 > 𝑝,
this is of the form 𝑚ℓ (1 + 𝑂 (1/𝑚)) for some ℓ ∈ [ℎ − 1]. Since 𝐸𝑚 is similar
(as a matrix) to a direct sum of such powers of Jordan blocks, and the form of this
scaling does not change under linear combination of matrix coefficients, the claim
follows.
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Now let us consider the case where 𝐸 = |ℓ〉〉〈〈𝑟 | ⊕ �̃� is the transfer operator of an
injective MPS, normalized with maximum eigenvalue 1. Let 𝜆2 < 1 denote the
second largest eigenvalue. Without loss of generality, we can take the MPS to be in
canonical form, so that 𝐸 has a unique right fixed-point given by the identity matrix
𝐼 and a unique left fixed-point given by some positive-definite diagonal matrix Λ

with unit trace. We can then write the Jordan decomposition of the transfer matrix
as

𝐸 = |𝐼〉〉〈〈Λ| ⊕ �̃� , (2.21)

where |𝐼〉〉 and |Λ〉〉 denotes the vectorization of 𝐼 and Λ, respectively, and where
�̃� denotes the remaining Jordan blocks of 𝐸 . Note that powers of 𝐸 can then be
expressed as

𝐸𝑚 = |𝐼〉〉〈〈Λ| ⊕ �̃�𝑚 .

We can bound the Frobenius norm of the transfer matrix as

‖𝐸𝑚 ‖2𝐹 = ‖|𝐼〉〉〈〈Λ| ⊕ �̃�𝑚 ‖2𝐹 = tr(𝐼) tr(Λ2) + ‖�̃�𝑚 ‖2𝐹 ≤ 𝐷 + ‖�̃�𝑚 ‖2𝐹 ,

where tr(𝐼) = 𝐷 and tr(Λ2) ≤ tr(Λ)2 = 1. In particular, since 𝜌(�̃�) = 𝜆2, we obtain
from Lemma 2.4.2(ii) that

‖�̃�𝑚 ‖𝐹 ≤ 𝜆𝑚/22 for 𝑚 � 𝐷 . (2.22)

This implies the following statement:

Lemma 2.4.3. The transfer operator 𝐸 of an injective MPS satisfies

‖𝐸𝑚 ‖𝐹 ≤
√
𝐷 + 1 for 𝑚 � 𝐷. (2.23)

We also need a bound on the norm ‖𝐸†
𝐹
(𝜓1 ⊗ 𝜓2)‖, where 𝐸 is a mixed transfer

operator, 𝐹 ∈ B((Cp)⊗𝑑) is an operator acting on 𝑑 sites, and where 𝜓 𝑗 ∈ C𝐷 𝑗 for
𝑗 = 1, 2.

Lemma 2.4.4. Let 𝐸1 = 𝐸 (𝐴) and 𝐸2 = 𝐸 (𝐵) be the transfer operators associated
with the tensors 𝐴 and 𝐵, respectively, with bond dimensions 𝐷1 and 𝐷2. Let
𝐸 = 𝐸 (𝐴, 𝐵) ∈ B(C𝐷1 ⊗ C𝐷2) be the combined transfer operator. Let 𝜓1 ∈ C𝐷1

and 𝜓2 ∈ C𝐷2 be unit vectors. Then

‖(𝐸𝐹)†(𝜓1 ⊗ 𝜓2)‖ ≤ ‖𝐹‖
√︃
‖𝐸𝑑1 ‖ · ‖𝐸

𝑑
2 ‖ , (2.24)

‖𝐸𝐹 (𝜓1 ⊗ 𝜓2)‖ ≤ ‖𝐹‖
√︃
‖𝐸𝑑1 ‖ · ‖𝐸

𝑑
2 ‖ , (2.25)

‖𝐸𝐹 ‖𝐹 ≤ 𝐷1𝐷2‖𝐹‖
√︃
‖𝐸𝑑1 ‖ · ‖𝐸

𝑑
2 ‖ , (2.26)

for all 𝐹 ∈ B((Cp)⊗𝑑).
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Proof. Writing matrix elements in the computational basis as

𝐹𝑗1··· 𝑗𝑑 ,𝑖1···𝑖𝑑 := 〈 𝑗1 · · · 𝑗𝑑 |𝐹 |𝑖1 · · · 𝑖𝑑〉,

we have

𝐸𝐹 =
∑︁

(𝑖1,...,𝑖𝑑),( 𝑗1,..., 𝑗𝑑)
𝐹𝑗1··· 𝑗𝑑 ,𝑖1···𝑖𝑑 (𝐴 𝑗1 ⊗ 𝐵 𝑗1) (𝐴 𝑗2 ⊗ 𝐵 𝑗2) · · · (𝐴 𝑗𝑑 ⊗ 𝐵 𝑗𝑑 ).

Therefore,

(𝐸𝐹)† =
∑︁

(𝑖1,...,𝑖𝑑),( 𝑗1,..., 𝑗𝑑)
𝐹𝑗1··· 𝑗𝑑 ,𝑖1···𝑖𝑑 (𝐴

†
𝑗𝑑
⊗ 𝐵†

𝑗𝑑
) · · · (𝐴†

𝑗2
⊗ 𝐵†

𝑗2
) (𝐴† 𝑗1 ⊗ 𝐵

†
𝑗1
)

=
∑︁

(𝑖1,...,𝑖𝑑),( 𝑗1,..., 𝑗𝑑)
(𝜋𝐹𝜋†) 𝑗𝑑 ··· 𝑗1,𝑖𝑑 ···𝑖1 (𝐴

†
𝑗𝑑
⊗ 𝐵†

𝑗𝑑
) · · · (𝐴†

𝑗2
⊗ 𝐵†

𝑗2
) (𝐴†

𝑗1
⊗ 𝐵†

𝑗1
) ,

where 𝜋 is the permutation which maps the 𝑗-th factor in the tensor product (Cp)⊗𝑛

to the (𝑛 − 𝑗 + 1)-th factor, and where 𝐹 is obtained by complex conjugating the
matrix elements in the computational basis. This means that

(𝐸𝐹)† = 𝐸†
𝜋𝐹𝜋†

, (2.27)

with 𝐸† being the mixed transfer operator 𝐸† = 𝐸 (𝐴†, 𝐵†) obtained by replacing
each 𝐴 𝑗 (respectively 𝐵 𝑗 ) with its adjoint.

Now consider

‖(𝐸𝐹)†(𝜓1 ⊗ 𝜓2)‖2 = (〈𝜓1 | ⊗ 〈𝜓2 |)𝐸𝐹 (𝐸𝐹)†( |𝜓1〉 ⊗ |𝜓2〉)
= (〈𝜓1 | ⊗ 〈𝜓2 |)𝐸𝐹𝐸†

𝜋𝐹𝜋†
( |𝜓1〉 ⊗ |𝜓2〉) .

This can be represented diagrammatically as

‖(𝐸𝐹)†(𝜓1 ⊗ 𝜓2)‖2 = .

In particular, we have

‖(𝐸𝐹)†(𝜓1 ⊗ 𝜓2)‖2 = 〈𝜒 | (𝐹 ⊗ 𝐼⊗𝑑) (𝐼⊗𝑑 ⊗ 𝜋𝐹𝜋†) |𝜑〉 , (2.28)
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where 𝜑, 𝜒 ∈ (Cp)⊗2𝑑 are defined as

|𝜙〉 = ,

|𝜒〉 = .

It is straightforward to check that

‖𝜒‖2 = (〈𝜓1 | ⊗ 〈𝜓1 |)𝐸𝑑1 (𝐸
†
1)
𝑑 ( |𝜓1〉 ⊗ |𝜓1〉) ,

‖𝜑‖2 = (〈𝜓2 | ⊗ 〈𝜓2 |)𝐸𝑑2 (𝐸
†
2)
𝑑 ( |𝜓2〉 ⊗ |𝜓2〉) .

Since ‖(𝐸†
𝑗
)𝑑 ‖ = ‖𝐸𝑑

𝑗
‖ for 𝑗 = 1, 2, it follows with the submultiplicativity of the

operator norm that

‖𝜒‖2 ≤ ‖𝐸𝑑1 ‖
2 ,

‖𝜑‖2 ≤ ‖𝐸𝑑2 ‖
2 . (2.29)

Applying the Cauchy-Schwarz inequality to (2.4.2) yields

‖(𝐸𝐹)†(𝜓1 ⊗ 𝜓2)‖2 ≤ ‖(𝐹† ⊗ 𝐼⊗𝑑)𝜒‖ · ‖(𝐼⊗𝑑 ⊗ 𝜋𝐹𝜋†)𝜑‖
≤ ‖𝐹‖2 · ‖𝜒‖ · ‖𝜑‖ ,

where we used the fact that the operator norm satisfies ‖𝐹†‖ = ‖𝐹‖ = ‖𝐹‖ and
‖𝐼 ⊗ 𝐴‖ = ‖𝐴‖. The claim (2.4.4) follows from this and (2.4.2).

The claim (2.4.4) follows analogously by using Equation (2.4.2). Finally, the
claim (2.4.4) follows from (2.4.4) and

‖𝐸𝐹 ‖2 =
∑︁

𝛼1,𝛼2∈[𝐷1]

∑︁
𝛽1,𝛽2∈[𝐷2]

| (〈𝛼1 | ⊗ 〈𝛽1 |)𝐸𝐹 ( |𝛼2〉 ⊗ |𝛽2〉) |2

≤
∑︁

𝛼1,𝛼2∈[𝐷1]

∑︁
𝛽1,𝛽2∈[𝐷2]

‖𝐸𝐹 ( |𝛼2〉 ⊗ |𝛽2〉)‖2

≤ 𝐷2
1𝐷

2
2 max
𝛼,𝛽
‖𝐸𝐹 ( |𝛼2〉 ⊗ |𝛽2〉)‖2 ,

where we employed the orthonormal basis {|𝛼〉}𝛼∈[𝐷1] and {|𝛽〉}𝛽∈[𝐷2] for C𝐷1 and
C𝐷2 , respectively, and applied the Cauchy-Schwarz inequality.
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The main result of this section is the following upper bound on the matrix elements
of geometrically 𝑑-local operators with respect to two MPS.

Theorem 2.4.5. Let |Ψ1〉 = |Ψ(𝐴1, 𝑋1, 𝑛)〉, |Ψ2〉 = |Ψ(𝐴2, 𝑋2, 𝑛)〉 ∈ (Cp)⊗𝑛 be two
MPS with bond dimensions 𝐷1 and 𝐷2, where

𝑋 𝑗 = |𝜑 𝑗 〉〈𝜓 𝑗 |, with ‖𝜑 𝑗 ‖ = ‖𝜓 𝑗 ‖ = 1 for 𝑗 = 1, 2 ,

are rank-one operators. Let 𝐸 = 𝐸 (𝐴1, 𝐴2) ∈ B(C𝐷1 ⊗ C𝐷2) denote the combined
transfer operator defined by the MPS tensors 𝐴1 and 𝐴2, ℎ∗

𝑗
the size of the largest

Jordan block of 𝐸 𝑗 = 𝐸 (𝐴 𝑗 ) for 𝑗 = 1, 2, and ℎ∗ the size of the largest Jordan block
of 𝐸 = 𝐸 (𝐴1, 𝐴2). Assume that the spectral radii 𝜌(𝐸), 𝜌(𝐸1), and 𝜌(𝐸2) are
contained in [0, 1]. Then, for any 𝐹 ∈ B((Cp)⊗𝑑), we have

|〈Ψ1 | (𝐹 ⊗ 𝐼(Cp)⊗𝑛−𝑑 ) |Ψ2〉| ≤ 16 · ‖𝐹‖ · 𝑑 (ℎ∗1+ℎ∗2−2)/2(𝑛 − 𝑑)ℎ∗−1

for 𝑑 � 𝐷1, 𝐷2 and (𝑛 − 𝑑) � 𝐷1𝐷2.

Proof. The matrix elements 𝛼 = 〈Ψ1 | (𝐹 ⊗ 𝐼(Cp)⊗𝑛−𝑑 ) |Ψ2〉 of interest can be written
as

𝛼 = (〈𝜓1 | ⊗ 〈𝜓2 |) 𝐸𝐹𝐸𝑛−𝑑 ( |𝜑1〉 ⊗ |𝜑2〉) .

By the Cauchy-Schwarz inequality, we have

|𝛼 | ≤ ‖𝐸†
𝐹
( |𝜓1〉 ⊗ |𝜓2〉)‖ · ‖𝐸𝑛−𝑑 ( |𝜑1〉 ⊗ |𝜑2〉‖

≤ ‖𝐹‖
√︃
‖𝐸𝑑1 ‖ · ‖𝐸

𝑑
2 ‖ · ‖𝐸

𝑛−𝑑 ‖ ,

by the definition of the operator norm and Lemma 2.4.4. Then, the claim follows
from Lemma 2.4.2 (i), which provides the bounds

‖𝐸𝑑𝑗 ‖ ≤ 4𝑑ℎ
∗
𝑗
−1 for 𝑗 = 1, 2 ,

‖𝐸𝑛−𝑑 ‖ ≤ 4(𝑛 − 𝑑)ℎ∗−1

by our assumptions : 𝜌(𝐸 𝑗 ) ∈ [0, 1], 𝜌(𝐸) ∈ [0, 1], and 𝑑 � 𝐷 𝑗 ≥ ℎ∗𝑗 for 𝑗 = 1, 2,
as well as 𝑛 − 𝑑 � 𝐷1𝐷2 ≥ ℎ∗.

2.5 No-Go Theorem: Degenerate Ground Spaces of Gapped Hamiltonians
are Constant-Distance AQEDC

In this section, we prove a no-go result regarding the error-detection performance
of the ground spaces of local gapped Hamiltonians: their distance can be no more
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than constant. We prove this result by employing the necessary condition for
approximate error-detection from Lemma 2.3.6 for the code subspaces generated
by varying the boundary conditions of an (open-boundary) injective MPS. Note
that, given a translation invariant MPS with periodic boundary conditions and bond
dimension𝐷, there exists a local gapped Hamiltonian, called the parent Hamiltonian,
with a unique ground state being the MPS [28].

We need the following bounds which follow from the orthogonality and normaliza-
tion of states in such codes.

Lemma 2.5.1. Let 𝐴 be the MPS tensor of an injective MPS with bond dimension 𝐷,
and let 𝑋,𝑌 ∈ B(C𝐷) be such that the states |Ψ𝑋〉 = |Ψ(𝐴, 𝑋, 𝑛)〉 and |Ψ𝑌 〉 =
|Ψ(𝐴,𝑌, 𝑛)〉 are normalized and orthogonal. Let us write the transfer operator as
𝐸 = |𝐼〉〉〈〈Λ| ⊕ �̃� (cf. Equation (2.4.2)). Assume 𝑛 � 𝐷. Then

(i) The Frobenius norm of 𝑋 (and similarly the norm of 𝑌 ) is bounded by

‖𝑋 ‖𝐹 = 𝑂 (1) .

(ii) We have

|〈〈Λ| (𝑋 ⊗ 𝑌 ) |𝐼〉〉| = 𝑂 (𝜆𝑛/22 ) ,
|〈〈Λ| (𝑌 ⊗ 𝑋) |𝐼〉〉| = 𝑂 (𝜆𝑛/22 ) .

In the following proofs, we repeatedly use the inequality

| tr(𝑀1 . . . 𝑀𝑘 ) | ≤ ‖𝑀1‖𝐹 · ‖𝑀2‖𝐹 · · · ‖𝑀𝑘 ‖𝐹 (2.30)

for 𝐷 × 𝐷-matrices {𝑀 𝑗 }𝑘𝑗=1. Note that the inequality (2.5) is simply the Cauchy-
Schwarz inequality for 𝑘 = 2. For 𝑘 > 2, the inequality follows from the inequality
for 𝑘 = 2 and the submultiplicativity of the Frobenius-norm because

| tr(𝑀1 . . . 𝑀𝑘 ) | ≤ ‖𝑀1‖𝐹 · ‖𝑀2 · · ·𝑀𝑘 ‖𝐹 ≤ ‖𝑀1‖𝐹 · ‖𝑀2‖𝐹 · · · ‖𝑀𝑘 ‖𝐹 .

Proof. The proof of (i) follows from the fact that the state Ψ𝑋 is normalized, i.e.,

1 = ‖Ψ𝑋 ‖2

= tr
(
𝐸𝑛 (𝑋 ⊗ 𝑋)

)
= tr

(
|𝐼〉〉〈〈Λ| (𝑋 ⊗ 𝑋)

)
+ tr(�̃�𝑛 (𝑋 ⊗ 𝑋))

= tr(Λ𝑋𝑋†) + tr(�̃�𝑛 (𝑋 ⊗ 𝑋))
≥ 𝜆min(Λ) · ‖𝑋 ‖2𝐹 + tr(�̃�𝑛 (𝑋 ⊗ 𝑋)) ,
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where 𝜆min(Λ) denotes the smallest eigenvalue of Λ, and we make use of the fact
that 𝑋𝑋† is positive with trace tr(𝑋𝑋†) = ‖𝑋 ‖2

𝐹
. Since

| tr(�̃�𝑛 (𝑋 ⊗ 𝑋)) | ≤ ‖�̃�𝑛‖𝐹 · ‖𝑋 ⊗ 𝑋 ‖𝐹 ≤ 𝜆𝑛/22 ‖𝑋 ‖
2
𝐹 for 𝑛 � 𝐷

by (2.5) and (2.4.2), we conclude

‖𝑋 ‖2𝐹 ≤
(
𝜆min(Λ) − 𝜆𝑛/22

)−1
= 𝜆min(Λ)−1(1 +𝑂 (𝜆𝑛/22 )) .

Then the claim (i) follows since 𝜆min(Λ)−1 is a constant.

Now, consider the first inequality in (ii) (the bound for |〈〈Λ| (𝑌 ⊗ 𝑋) |𝐼〉〉| is shown
analogously). Using the orthogonality of the states |Ψ𝑋〉 and |Ψ𝑌 〉, we obtain

0 = 〈Ψ𝑋 |Ψ𝑌 〉 = tr
(
𝐸𝑛 (𝑋 ⊗ 𝑌 )

)
= tr

(
( |𝐼〉〉〈〈Λ| + �̃�𝑛) (𝑋 ⊗ 𝑌 )

)
= 〈〈Λ| (𝑋 ⊗ 𝑌 ) |𝐼〉〉 + tr(�̃�𝑛 (𝑋 ⊗ 𝑌 )),

hence

|〈〈Λ| (𝑋 ⊗ 𝑌 ) |𝐼〉〉| = | tr(�̃�𝑛 (𝑋 ⊗ 𝑌 )) | ≤ ‖�̃� ‖𝐹 · ‖𝑋 ⊗ 𝑌 ‖𝐹
≤ 𝜆𝑛/22 ‖𝑋 ‖𝐹 · ‖𝑌 ‖𝐹 ,

using (2.4.2). The claim (ii) then follows from (i).

With the following lemma, we prove an upper bound on the overlap of the reduced
density matrices 𝜌𝑋 and 𝜌𝑌 , supported on 2Δ-sites surrounding the boundary, of the
global states |Ψ𝑋〉 and |Ψ𝑌 〉, respectively.

Lemma 2.5.2. Let 𝐴 be an MPS tensor of an injective MPS with bond dimension 𝐷,
and let 𝑋,𝑌 ∈ B((Cp)⊗𝑛) be such that the states |Ψ𝑋〉 = |Ψ(𝐴, 𝑋, 𝑛)〉 and |Ψ𝑌 〉 =
|Ψ(𝐴,𝑌, 𝑛)〉 are normalized and orthogonal. Let Δ � 𝐷. Let S = {1, 2, . . . ,Δ} ∪
{𝑛 − Δ + 1, 𝑛 − Δ + 2, . . . , 𝑛} be the subset of 2Δ spins consisting of Δ systems at
the left and and Δ systems at the right boundary. Let 𝜌𝑋 = tr[𝑛]\S |Ψ𝑋〉〈Ψ𝑋 | and
𝜌𝑌 = tr[𝑛]\S |Ψ𝑌 〉〈Ψ𝑌 | be the reduced density operators on these subsystems. Then

tr(𝜌𝑋𝜌𝑌 ) ≤ 𝑐𝜆
Δ
2
2

where 𝜆2 is the second largest eigenvalue of the transfer operator 𝐸 = 𝐸 (𝐴) and
where 𝑐 is a constant depending only on the minimal eigenvalue of 𝐸 and the bond
dimension 𝐷.
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Figure 2.4: The two expressions in Equation (2.5), where 𝐿, 𝑀 , and 𝑅 are used to
denote the sites defined in (2.5).

Proof. For convenience, let us relabel the systems as

(𝐿1, . . . , 𝐿Δ) = (1, 2, . . . ,Δ)
(𝑀1, . . . , 𝑀𝑛−2Δ) = (Δ + 1,Δ + 2, . . . , 𝑛 − Δ)
(𝑅1, . . . , 𝑅Δ) = (𝑛 − Δ + 1, 𝑛 − Δ + 2, . . . , 𝑛)

(2.31)

indicating their location on the left, in the middle, and on the right, respectively.
For the tensor product H𝐴 ⊗ H𝐵 of two isomorphic Hilbert spaces, we denote by
F𝐴𝐵 ∈ B(H𝐴 ⊗ H𝐵) the flip-operator which swaps the two systems. The following
expressions are visualized in Figure 2.4. We have

tr(𝜌𝑋𝜌𝑌 ) = tr((𝜌𝐿1···𝐿Δ𝑅1···𝑅Δ
𝑋

⊗ 𝜌𝐿
′
1···𝐿

′
Δ
𝑅′1···𝑅

′
Δ

𝑌
) (F𝐿𝐿 ′ ⊗ F𝑅𝑅′)) , where

F𝐿𝐿 ′ = F𝐿1𝐿
′
1
⊗ F𝐿2𝐿

′
2
⊗ · · · ⊗ F𝐿Δ𝐿 ′Δ ,

F𝑅𝑅′ = F𝑅1𝑅
′
1
⊗ F𝑅2𝑅

′
2
⊗ · · · ⊗ F𝑅Δ𝑅′Δ .

Defining F𝑀𝑀 ′ analogously, 𝐼𝑀𝑀 ′ = 𝐼𝑀1𝑀
′
1
⊗ · · · ⊗ 𝐼𝑀𝑛−2Δ𝑀

′
𝑛−2Δ

, and similarly 𝐼𝐿𝐿 ′
and 𝐼𝑅𝑅′, this can be rewritten (by the definition of the partial trace) as

tr(𝜌𝑋𝜌𝑌 )
= (〈Ψ𝐿𝑀𝑅

𝑋 | ⊗ 〈Ψ𝐿 ′𝑀 ′𝑅′
𝑌 |) (F𝐿𝐿 ′ ⊗ 𝐼𝑀𝑀 ′ ⊗ F𝑅𝑅′) ( |Ψ𝐿𝑀𝑅

𝑋 〉 ⊗ |Ψ𝐿 ′𝑀 ′𝑅′
𝑌 〉)

= (〈Ψ𝐿𝑀𝑅
𝑋 | ⊗ 〈Ψ𝐿 ′𝑀 ′𝑅′

𝑌 |) (𝐼𝐿𝐿 ′ ⊗ F𝑀𝑀 ′ ⊗ 𝐼𝑅𝑅′) ( |Ψ𝐿𝑀𝑅
𝑌 〉 ⊗ |Ψ𝐿 ′𝑀 ′𝑅′

𝑋 〉) .(2.32)
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In the last identity, we have used that F2 = 𝐼 is the identity.

Reordering and regrouping the systems as

(𝐿1𝐿
′
1) (𝐿2𝐿

′
2) · · · (𝐿Δ𝐿

′
Δ) (𝑀1𝑀

′
1) (𝑀2𝑀

′
2) · · · (𝑀𝑛−2Δ𝑀

′
𝑛−2Δ) (𝑅1𝑅

′
1) (𝑅2𝑅

′
2) · · · (𝑅Δ𝑅

′
Δ) ,

we observe that |Ψ𝐿𝑀𝑅
𝑋
〉⊗ |Ψ𝐿 ′𝑀 ′𝑅′

𝑌
〉 is an MPS with MPS tensor 𝐴⊗𝐴 and boundary

tensor 𝑋⊗𝑌 and |Ψ𝐿𝑀𝑅
𝑌
〉⊗ |Ψ𝐿 ′𝑀 ′𝑅′

𝑋
〉 is an MPS with MPS tensor 𝐴⊗𝐴 and boundary

tensor 𝑌 ⊗ 𝑋 . Let us denote the virtual systems of the first MPS by 𝑉1𝑉2, and those
of the second MPS by 𝑊1𝑊2, such that the boundary tensors are 𝑋𝑉1 ⊗ 𝑌𝑉2 and
𝑌𝑊1 ⊗ 𝑋𝑊2 , respectively. Let �̂� = 𝐸𝑉1𝑊1 ⊗ 𝐸𝑉2𝑊2 be the associated transfer operator.
Then we have from (2.5)

tr(𝜌𝑋𝜌𝑌 ) = tr
(
�̂�Δ�̂�F⊗𝑛−2Δ �̂�Δ

[
(𝑋𝑉1 ⊗ 𝑌𝑉2) ⊗ (𝑌𝑊1 ⊗ 𝑋𝑊2)

] )
. (2.33)

Recall that 𝐸Δ = |𝐼〉〉〈〈Λ| ⊕ �̃�Δ, where we have

‖�̃�Δ‖𝐹 ≤
√︁
𝐷2 · ‖�̃�Δ‖ ≤ 𝐷 · 𝜆Δ/22 for Δ � 𝐷 ,

‖|𝐼〉〉〈〈Λ|‖𝐹 = ‖|𝐼〉〉‖2 · ‖ |Λ〉〉‖2 ≤ 𝐷2 .

In the second line, we use the fact that ‖|Λ〉〉‖2 = tr(Λ†Λ) =
∑
𝑖 𝜆𝑖

2 ≤ 1 and
‖|𝐼〉〉‖2 = 𝐷2. Therefore, we have

𝐸Δ =
∑︁

𝑏∈{0,1}
𝐻𝑏 ,

where 𝐻0 = |𝐼〉〉〈〈Λ| and 𝐻1 = �̃�Δ satisfy

‖𝐻0‖𝐹 ≤ 𝐷2 , and ‖𝐻1‖𝐹 ≤ 𝐷 · 𝜆Δ/22 for Δ � 𝐷 . (2.34)

Note that

�̂�Δ = 𝐸Δ ⊗ 𝐸Δ =
∑︁

𝑏1,𝑏2∈{0,1}
𝐻𝑏1 ⊗ 𝐻𝑏2 .

Inserting this into (2.5) gives a sum of 16 terms

tr(𝜌𝑋𝜌𝑌 ) ≤
∑︁

𝑏1,𝑏2,𝑏3,𝑏4∈{0,1}
|𝛼𝑏1,𝑏2,𝑏3,𝑏4 | ,

where

𝛼𝑏1,𝑏2,𝑏3,𝑏4 = tr
(
(𝐻𝑉1𝑊1

𝑏1
⊗ 𝐻𝑉2𝑊2

𝑏2
)�̂�F⊗𝑛−2Δ (𝐻𝑉1𝑊1

𝑏3
⊗ 𝐻𝑉2𝑊2

𝑏4
)
[
(𝑋𝑉1 ⊗ 𝑌𝑉2) ⊗ (𝑌𝑊1 ⊗ 𝑋𝑊2)

] )
.
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Consider the term with 𝑏 𝑗 = 0 for all 𝑗 ∈ {1, . . . , 4}. This is given by

𝛼0,0,0,0 = tr
(
( |𝐼〉〉〈〈Λ|𝑉1𝑊1 ⊗ |𝐼〉〉〈〈Λ|𝑉2𝑊2)�̂�F⊗𝑛−2Δ ( |𝐼〉〉〈〈Λ|𝑉1𝑊1 ⊗ |𝐼〉〉〈〈Λ|𝑉2𝑊2)

·
[
(𝑋𝑉1 ⊗ 𝑌𝑉2) ⊗ (𝑌𝑊1 ⊗ 𝑋𝑊2)

] )
= 〈〈Λ| (𝑋 ⊗ 𝑌 ) |𝐼〉〉〈〈Λ| (𝑌 ⊗ 𝑋) |𝐼〉〉(〈〈Λ| ⊗ 〈〈Λ|)�̂�F⊗𝑛−2Δ ( |𝐼〉〉 ⊗ |𝐼〉〉). (2.35)

By inserting this into (2.5), we get with Lemma 2.5.1 (ii) and the Cauchy-Schwarz
inequality

|𝛼0,0,0,0 | = 𝑂 (𝜆𝑛2) ·
��� (〈〈Λ| ⊗ 〈〈Λ|)�̂�F⊗𝑛−2Δ ( |𝐼〉〉 ⊗ |𝐼〉〉

) ���
= 𝑂 (𝜆𝑛2) · ‖ |Λ〉〉 ⊗ |Λ〉〉‖ · ‖�̂�F⊗𝑛−2Δ ( |𝐼〉〉 ⊗ |𝐼〉〉

)
‖ .

With Lemma 2.4.4, this can further be bounded as

|𝛼0,0,0,0 | = 𝑂 (𝜆𝑛2) · ‖ |Λ〉〉‖
2 · ‖ |𝐼〉〉‖2 · ‖F⊗𝑛−2Δ‖ · ‖𝐸𝑛−2Δ‖ .

Since ‖F‖ = 1 and ‖|Λ〉〉‖ = 𝑂 (1), ‖|𝐼〉〉‖ = 𝑂 (1) and ‖𝐸𝑛−2Δ‖ = 𝑂 (1) (cf. (2.4.3)),
we conclude that

|𝛼0,0,0,0 | = 𝑂 (𝜆𝑛2) . (2.36)

The remaining terms |𝛼𝑏1,𝑏2,𝑏3,𝑏4 | with (𝑏1, 𝑏2, 𝑏3, 𝑏4) ≠ (0, 0, 0, 0) can be bounded
as follows: using inequality (2.5), we have

|𝛼𝑏1,𝑏2,𝑏3,𝑏4 | =
�� tr (
(𝐻𝑏1 ⊗ 𝐻𝑏2)�̂�F⊗𝑁−2Δ (𝐻𝑏3 ⊗ 𝐻𝑏4)

[
(𝑋 ⊗ 𝑌 ) ⊗ (𝑌 ⊗ 𝑋)

] ) ��
≤ ‖𝐻𝑏1 ⊗ 𝐻𝑏2 ‖𝐹 · ‖𝐸F⊗𝑁−2𝑛 ‖𝐹 · ‖𝐻𝑏3 ⊗ 𝐻𝑏4 ‖𝐹 · ‖𝑋 ⊗ 𝑌 ⊗ 𝑌 ⊗ 𝑋 ‖𝐹

= ‖𝑋 ‖2𝐹 · ‖𝑌 ‖2𝐹 ·
©«

4∏
𝑗=1
‖𝐻𝑏 𝑗
‖𝐹

ª®¬ · ‖𝐸F⊗𝑛−2Δ ‖𝐹

= 𝑂 (𝜆Δ/22 ) · ‖𝑋 ‖
2
𝐹 · ‖𝑌 ‖2𝐹 · ‖𝐸F⊗𝑛−2Δ ‖𝐹 ,

where we use (2.5) and the assumption that (𝑏1, 𝑏2, 𝑏3, 𝑏4) ≠ (0, 0, 0, 0). We
use Lemma 2.4.4 and (2.4.3) to get the upper bound ‖𝐸F⊗𝑛−2Δ ‖ ≤ 𝐷2‖𝐹⊗𝑛−2Δ‖ ·
‖𝐸𝑛−𝐷 ‖ = 𝑂 (1). Thus

|𝛼𝑏1,𝑏2,𝑏3,𝑏4 | = 𝑂 (𝜆
Δ/2
2 ) for (𝑏1, 𝑏2, 𝑏3, 𝑏4) ≠ (0, 0, 0, 0) . (2.37)

Combining (2.5) with (2.5), we conclude that

| tr(𝜌𝑋𝜌𝑌 ) | ≤
∑︁

𝑏1,𝑏2,𝑏3,𝑏4∈{0,1}
|𝛼𝑏1,𝑏2,𝑏3,𝑏4 | ≤ |𝛼0,0,0,0 | + 15 max

(𝑏1,𝑏2,𝑏3,𝑏4)≠(0,0,0,0)
|𝛼𝑏1,𝑏2,𝑏3,𝑏4 |

= 𝑂 (𝜆Δ/22 ) .
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The claim follows from this.

Recall that we call (a family of subspaces) C ⊂ (Cp)⊗𝑛 an approximate error-
detection code if it is an (𝜖, 𝛿) [[𝑛, 𝑘, 𝑑]]-code with 𝜖 → 0 and 𝛿 → 0 for 𝑛 → ∞.
Our main result is the following:

Theorem 2.5.3. Let C ⊂ (Cp)⊗𝑛 be an approximate error-detecting code generated
from a translation-invariant injective MPS of constant bond dimension 𝐷 by varying
boundary conditions. Then the distance of C is constant.

Proof. Let C = C𝑛 ⊂ (Cp)⊗𝑛 be a (family of) subspace(s) of dimension p𝑘 defined
by an MPS tensor 𝐴 by choosing different boundary conditions, i.e.,

C𝑛 = {|Ψ(𝐴, 𝑋, 𝑛)〉 | 𝑋 ∈ X} ⊂ (Cp)⊗𝑛

for some (fixed) subspace X ⊂ B(C𝐷). For the sake of contradiction, assume that
C𝑛 is an (𝜖𝑛, 𝛿𝑛) [[𝑛, 𝑘, 𝑑𝑛]]-code with

𝜖𝑛, 𝛿𝑛 → 0 and code distance 𝑑𝑛 →∞ for 𝑛→∞ . (2.38)

Let |Ψ𝑋〉 = |Ψ(𝐴, 𝑋, 𝑛)〉, |Ψ𝑌 〉 = |Ψ(𝐴,𝑌, 𝑛)〉 ∈ C be two orthonormal states
defined by choosing different boundary conditions 𝑋,𝑌 ∈ X. From Lemma 2.5.2,
we may choose Δ sufficiently large such that the reduced density operators 𝜌𝑋 , 𝜌𝑌
on 𝑑 sites surrounding the boundary satisfies

tr(𝜌𝑋𝜌𝑌 ) ≤ 𝑐𝜆𝑑/42 for all 𝑑 ≥ 2Δ . (2.39)

We note that Δ only depends on the transfer operator and is independent of 𝑛. Fix
any constant 𝜖, 𝛿 ∈ (0, 1) and choose some 𝑑 ≥ 2Δ sufficiently large such that

𝜁 (𝜌𝑋 , 𝜌𝑌 ) := 𝑐𝐷2𝜆
𝑑/4
2

satisfies

𝜖 < 1 − 10𝜁 and 𝛿 < (1 − 𝜁)2 . (2.40)

Since by assumption 𝑑𝑛 →∞, there exists some 𝑁0 ∈ N such that

𝑑𝑛 > 𝑑 for all 𝑛 ≥ 𝑁0 . (2.41)

Combining (2.5), (2.5), and (2.5) with Lemma 2.3.6, we conclude that C𝑛 is not an
(𝜖, 𝛿) [[𝑛, 𝑘, 𝑑𝑛]]-code for any 𝑛 ≥ 𝑁0.
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By assumption (2.5), there exists some 𝑁1 ∈ N such that

𝜖𝑛 < 𝜖 and 𝛿𝑛 < 𝛿 for all 𝑛 ≥ 𝑁1 .

Let us set 𝑁 = max{𝑁0, 𝑁1}. Then we obtain that C𝑛 is not an (𝜖𝑛, 𝛿𝑛) [[𝑛, 𝑘, 𝑑𝑛]]-
code for any 𝑛 ≥ 𝑁 , a contradiction.

In terms of the TQO-1 condition (cf. [57]), Theorem 2.5.3 shows the absence of
topological order in 1D gapped systems. The theorem also tells us that we should
not restrict our attention to the ground space of a local Hamiltonian when looking
for quantum error-detecting codes.5 In the following sections, we bypass this no-go
result by extending our search for codes to low-energy states. In particular, we show
that single quasi-particle momentum eigenstates of local gapped Hamiltonians and
multi-particle excitations of the gapless Heisenberg model constitute error-detecting
codes. See Sections 2.6 and 2.7, respectively.

2.6 AQEDC at Low Energies: The Excitation Ansatz
In this section, we employ tangent space methods for the matrix product state for-
malism, i.e., the excitation ansatz [66], [76], [77], in order to show that quasi-particle
momentum eigenstates of local gapped Hamiltonians yield an error-detecting code
with distance Ω(𝑛1−𝜈) for any 𝜈 ∈ (0, 1) and Ω(log 𝑛) encoded qubits.

In order to render the formalism accessible to an unfamiliar reader, we review the
definition of the excitation ansatz in Section 2.6.1. We then develop the neces-
sary calculational ingredients in order to prove the error-detection properties. In
Section 2.6.2, we compute the norm of the excitation ansatz states to lowest order.
In Section 2.6.3, we establish (norm) bounds on the transfer operators associated
with the excitation ansatz. Then, in Section 2.6.4, we provide estimates on matrix
elements of local operators with respect to states appearing in the definition of the
excitation ansatz states. Finally, in Section 2.6.5, we combine these results to obtain
the parameters of quantum error-detecting codes based on the excitation ansatz.6

5Note that this conclusion is only valid for local gapped Hamiltonians in one dimension. When
the spatial dimension 𝑑 ≥ 2, there are ground spaces that have topological order, e.g. the toric code.
Also for higher dimensions, good quantum LDPC codes are shown to exist in the ground space of
frustration-free Hamiltonians [75].

6A simple yet illustrative example of the excitation ansatz states is the following: consider the
𝑛-fold product state |0〉⊗𝑛, the 𝑛-body𝑊-state

|10 · · · 0〉 + · · · + |00 · · · 1〉
√
𝑛

,
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Figure 2.5: This figure illustrates the excitation ansatz |Φ𝑝 (𝐵; 𝐴)〉 for 𝑛 physical
spins.

2.6.1 MPS Tangent Space Methods: The Excitation Ansatz
In [76], the MPS ansatz was generalized to a variational class of states which have
non-zero momentum. The resulting states are called the excitation ansatz. An
excitation ansatz state |Φ𝑝 (𝐵; 𝐴)〉 ∈ (Cp)⊗𝑛 is specified by two MPS tensors {𝐴𝑖}p𝑖=1
and {𝐵𝑖}p𝑖=1 of the same bond and physical dimensions, together with a parameter
𝑝 ∈ {2𝜋𝑘/𝑛 | 𝑘 = 0, . . . , 𝑛} indicating the momentum. It is defined as

|Φ𝑝 (𝐵; 𝐴)〉

= 𝑒−𝑖𝑝
𝑛∑︁
𝑗=1
𝑒𝑖𝑝 𝑗

∑︁
𝑖1,...,𝑖𝑛∈[p]

tr(𝐴𝑖1 · · · 𝐴𝑖 𝑗−1𝐵𝑖 𝑗 𝐴𝑖 𝑗+1 · · · 𝐴𝑖𝑛) |𝑖1 . . . 𝑖𝑛〉. (2.42)

The definition of these states is illustrated in Figure 2.5. Note that we allow the 𝐵
tensors themselves to depend on the momentum 𝑝, so we will sometimes write 𝐵(𝑝)
when we feel the need to be explicit, and the notation |Φ𝑝 (𝐵; 𝐴)〉 should really be
read as a short-hand for |Φ𝑝 (𝐵(𝑝); 𝐴)〉.
as well as other𝑊-like states with position dependent phase, such as

|10 · · · 0〉 + 𝑒𝑖 𝑝 |01 · · · 0〉 + · · · + 𝑒𝑖 𝑝 (𝑛−1) |00 · · · 1〉
√
𝑛

.

Here 𝑝 can be interpreted as the momentum of a single particle excitation. These states are the ground
state and first excited states with different momenta of the non-interacting Hamiltonian 𝐻 = −∑

𝑖 𝑍𝑖 .
One can represent them by a bond-dimension 𝐷 = 2 non-injective MPS which is obtained by
expressing the excitation ansatz as a single MPS instead of a sum of injective MPS. One can also
consider higher (multi-particle) excitations, which can again be treated by using non-injective MPS.

We note that error-detecting properties of various subspaces of the low-energy space of this
particular simple non-interacting Hamiltonian can be studied either with or without the formalism
of MPS. The tangent space methods serve as a powerful tool that allow us to perform our error-
detection analysis, not only for the non-interacting cases, but also for the most general interacting
Hamiltonians.
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It is also useful to define the constituent “position space” states

|Φ 𝑗 ,𝑝 (𝐵; 𝐴)〉 =
∑︁

𝑖1,...,𝑖𝑛∈[p]
tr(𝐴𝑖1 · · · 𝐴𝑖 𝑗−1𝐵𝑖 𝑗 𝐴𝑖 𝑗+1 · · · 𝐴𝑖𝑛) |𝑖1 . . . 𝑖𝑛〉,

= , (2.43)

which is the state with a “single 𝐵(𝑝) excitation” at site 𝑗 . Note that we retain the
𝑝 dependence in the definition of these “position space” states since the 𝐵 tensors
themselves are generally 𝑝 dependent.

We call an excitation ansatz state |Φ𝑝 (𝐵; 𝐴)〉 injective if the transfer operator E(𝐴)
associated with {𝐴 𝑗 }p𝑗=1 is primitive, which is the only case we consider in this
work. Denoting the transfer matrix associated with E(𝐴) simply as 𝐸 , it will also
be useful to define several other mixed transfer matrices as follows:

𝐸𝐵(𝑝) =
∑𝐷
𝑗=1 𝐴 𝑗 ⊗ 𝐵 𝑗 (𝑝) = ,

𝐸
𝐵(𝑝) =

∑𝐷
𝑗=1 𝐵 𝑗 (𝑝) ⊗ 𝐴 𝑗 = ,

𝐸
𝐵(𝑝′)𝐵(𝑝) =

∑𝐷
𝑗=1 𝐵 𝑗 (𝑝′) ⊗ 𝐵 𝑗 (𝑝) = .

For brevity, we often suppress the dependence on 𝐴 and 𝐵 and simply write |Φ𝑝〉 ≡
|Φ𝑝 (𝐵; 𝐴)〉 when no confusion is possible.

In addition to the multiplicative gauge freedom (2.4.1), the excitation ansatz admits
an additional additive gauge freedom. Exploiting this additive gauge freedom, the
following statement can be shown (see [77, Equation (154)]):

Lemma 2.6.1. Let |Φ𝑝 (𝐵; 𝐴)〉 be an injective excitation ansatz state and assume
that 𝐴 is normalized such that the transfer operator has spectral radius 1. Let ℓ and
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𝑟 be the corresponding left- and right-eigenvectors corresponding to eigenvalue 1.
Assume 𝑝 ≠ 0.7 Then there exists a tensor �̃� such that |Φ𝑝 (𝐵; 𝐴)〉 = |Φ𝑝 (�̃�; 𝐴)〉,
and such that

〈〈ℓ |𝐸�̃�(𝑝) = 0 and 〈〈ℓ |𝐸
�̃�(𝑝) = 0 . (2.44)

For completeness, we give a proof of this statement in Appendix 2.A. Below, we
assume that all excitation ansatz states satisfy the gauge condition (2.6.1).

2.6.2 The Norm of an Excitation Ansatz State
For a family of excitation ansatz states {|Φ𝑝 (𝐵; 𝐴)〉}𝑝, we define the constants

𝑐𝑝𝑝′ = 〈〈ℓ |𝐸𝐵(𝑝′)𝐵(𝑝) |𝑟〉〉 = .

We also write 𝑐𝑝 := 𝑐𝑝𝑝. These appear in the norm of the excitation ansatz states as
follows:

Lemma 2.6.2. The norm of an excitation ansatz state |Φ𝑝 (𝐵; 𝐴)〉 ∈ (Cp)⊗𝑛 satisfies

‖Φ𝑝 (𝐵; 𝐴)‖ = √𝑛𝑐𝑝 +𝑂 (𝑛3/2𝜆𝑛/62 ),

where 𝜆2 is the second largest eigenvalue of the transfer matrix 𝐸 .

Proof. Using the mixed transfer operators defined in (2.6.1), we can write the norm
of the state |Φ𝑝 (𝐵; 𝐴)〉 as a sum over pairs ( 𝑗 , 𝑗 ′) ∈ [𝑛]2 satisfying 𝑗 < 𝑗 ′, 𝑗 = 𝑗 ′,
and 𝑗 > 𝑗 ′ respectively, as follows:

‖Φ𝑝 (𝐵; 𝐴)‖2 =
∑︁
𝑗< 𝑗 ′

𝑒𝑖𝑝( 𝑗− 𝑗
′) tr

(
𝐸 𝑗−1𝐸𝐵(𝑝)𝐸

𝑗 ′− 𝑗−1𝐸
𝐵(𝑝)𝐸

𝑛− 𝑗 ′
)

+
∑︁
𝑗> 𝑗 ′

𝑒𝑖𝑝( 𝑗− 𝑗
′) tr

(
𝐸 𝑗−1𝐸

𝐵(𝑝)𝐸
𝑗 ′− 𝑗−1𝐸𝐵(𝑝)𝐸

𝑛− 𝑗 ′
)

+
𝑛∑︁
𝑗=1

tr
(
𝐸 𝑗−1𝐸

𝐵(𝑝)𝐵(𝑝)𝐸
𝑛− 𝑗

)
. (2.45)

7We have made the 𝑝 ≠ 0 assumption here for simplicity. The gauge condition also holds for
𝑝 = 0 in the form 〈〈ℓ |𝐸�̃� (𝑝) = 〈〈ℓ |𝐸�̃� (𝑝) = 𝑂 (𝜆

𝑛
2 ). All of the results presented below for 𝑝 ≠ 0 also

hold for 𝑝 = 0 up to an exponentially small error.
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Consider an individual term tr
(
𝐸 𝑗−1𝐸𝐵(𝑝)𝐸

𝑗 ′− 𝑗−1𝐸
𝐵(𝑝)𝐸

𝑛− 𝑗 ′
)

in the first sum. By
the cyclicity of the trace, it can be expressed as

tr
(
𝐸 𝑗−1𝐸𝐵(𝑝)𝐸

𝑗 ′− 𝑗−1𝐸
𝐵(𝑝)𝐸

𝑛− 𝑗 ′
)
= tr

(
𝐸𝐵(𝑝)𝐸

Δ−1𝐸
𝐵(𝑝)𝐸

𝑛−Δ−1
)
,

where Δ = 𝑗 ′− 𝑗 . Clearly, one of the terms Δ−1 or 𝑛−Δ−1 must be lower bounded
by 𝑛/3. Assume that it is the first (the argument for the other case is analogous),
i.e., that

Δ − 1 > 𝑛/3 . (2.46)

Then we may substitute the Jordan decomposition of 𝐸 in the form

𝐸Δ−1 = |𝑟〉〉〈〈ℓ | ⊕ �̃�Δ−1 ,

which allows us to write

tr
(
𝐸 𝑗−1𝐸𝐵(𝑝)𝐸

𝑗 ′− 𝑗−1𝐸
𝐵(𝑝)𝐸

𝑛− 𝑗 ′
)
= tr

(
𝐸𝐵(𝑝) |𝑟〉〉〈〈ℓ |𝐸𝐵(𝑝)𝐸

𝑛−Δ−1
)

+ tr
(
𝐸𝐵(𝑝) �̃�

Δ−1𝐸
𝐵(𝑝)𝐸

𝑛−Δ−1
)
.

By the gauge condition (2.6.1), the first term vanishes. The magnitude of the second
term can be bounded by inequality (2.5), giving

tr
(
𝐸𝐵(𝑝) �̃�

Δ−1𝐸
𝐵(𝑝)𝐸

𝑛−Δ−1
)
≤ 𝑂 (1) · ‖�̃�Δ−1‖𝐹 · ‖𝐸𝑛−Δ−1‖𝐹 .

Here we used the fact that ‖𝐸
𝐵(𝑝) ‖𝐹 = 𝑂 (1) and ‖𝐸𝐵(𝑝) ‖𝐹 = 𝑂 (1). With (2.6.2) and

Lemma 2.4.2(ii), we have ‖�̃�Δ−1‖𝐹 ≤ 𝜆𝑛/62 and ‖𝐸𝑛−Δ−1‖𝐹 = 𝑂 (1). We conclude
that ���tr (

𝐸 𝑗−1𝐸𝐵(𝑝)𝐸
𝑗 ′− 𝑗−1𝐸

𝐵(𝑝)𝐸
𝑛− 𝑗 ′

)��� = 𝑂 (𝜆𝑛/62 )

for all pairs ( 𝑗 , 𝑗 ′) with 𝑗 < 𝑗 ′.

Identical reasoning gives us a bound of the form

tr
(
𝐸 𝑗−1𝐸

𝐵(𝑝)𝐸
𝑗 ′− 𝑗−1𝐸𝐵(𝑝)𝐸

𝑛− 𝑗 ′
)
= 𝑂 (𝜆𝑛/62 )

for all pairs ( 𝑗 , 𝑗 ′) with 𝑗 > 𝑗 ′. Inserting this into the sum (2.6.2), we obtain

‖Φ𝑝 (𝐵; 𝐴)‖2 =

𝑛∑︁
𝑗=1

tr
(
𝐸 𝑗−1𝐸

𝐵(𝑝)𝐵(𝑝)𝐸
𝑛− 𝑗

)
+𝑂 (𝑛2 · 𝜆𝑛/62 ) . (2.47)
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By the cyclicity of the trace and the Jordan decomposition of 𝐸 , we have

tr
(
𝐸 𝑗−1𝐸

𝐵(𝑝)𝐵(𝑝)𝐸
𝑛− 𝑗

)
= tr(𝐸

𝐵(𝑝)𝐵(𝑝)𝐸
𝑛−1)

= 〈〈ℓ |𝐸
𝐵(𝑝)𝐵(𝑝) |𝑟〉〉 + tr(𝐸

𝐵(𝑝)𝐵(𝑝) �̃�
𝑛−1)

= 𝑐𝑝 + tr(𝐸
𝐵(𝑝)𝐵(𝑝) �̃�

𝑛−1).

Again using inequality (2.5) and Lemma 2.4.2(ii), we get���tr(𝐸
𝐵(𝑝)𝐵(𝑝) �̃�

𝑛−1)
��� ≤ ‖𝐸

𝐵(𝑝)𝐵(𝑝) ‖𝐹 · ‖�̃�
𝑛−1‖𝐹 = 𝑂

(
𝜆
(𝑛−1)/2
2

)
.

Inserting this into (2.6.2) and noting that 𝜆(𝑛−1)/2
2 ≤ 𝑛 · 𝜆𝑛/62 gives us

‖Φ𝑝 (𝐵; 𝐴)‖2 = 𝑛𝑐𝑝 +𝑂 (𝑛2 · 𝜆𝑛/6) = 𝑛𝑐𝑝 (1 +𝑂 (𝑛 · 𝜆𝑛/6)) .

Taking the square root yields the desired claim.

2.6.3 Bounds on Transfer Operators Associated with the Excitation Ansatz
For an operator 𝐹 ∈ (Cp)⊗𝐿 , sites 𝑗 , 𝑗 ′ ∈ [𝐿], and momenta 𝑝, 𝑝′, let us define
operators on C𝐷 ⊗ C𝐷 by the diagrams

𝐸𝐹 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′) = , and 𝐸𝐹 ( 𝑗 , 𝑝) = .

We also denote by 𝐸 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′) the expression 𝐸𝐼 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′).

We keep the dependence of 𝐸𝐹 on 𝐿 implicit, since none of our computations
will explicitly depend on 𝐿. Similarly to the bounds discussed in Section 2.4.2,
we require bounds on the norm (respectively matrix elements) of these transfer
operators. These are given by the following:

Lemma 2.6.3. Let 𝐹 ∈ (Cp)⊗𝐿 , 𝑗 , 𝑗 ′ ∈ [𝐿], and momenta 𝑝, 𝑝′ be arbitrary. Then
we have

〈〈ℓ |𝐸 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′) |𝑟〉〉 = 𝛿 𝑗 , 𝑗 ′𝑐𝑝𝑝′ , (2.48)
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and

|〈〈ℓ |𝐸𝐹 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′) |𝑟〉〉| ≤ ‖𝐹‖
√
𝑐𝑝𝑐𝑝′ , (2.49)

‖𝐸𝐹 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′)‖𝐹 ≤ 𝐷2‖𝐹‖
√︃
‖𝐸

𝐵(𝑝)𝐵(𝑝) ‖𝐹 ‖𝐸𝐵(𝑝′)𝐵(𝑝′) ‖𝐹 , (2.50)

‖𝐸𝐹 ( 𝑗 , 𝑝)‖𝐹 ≤ 𝐷2‖𝐹‖
√︃
‖𝐸

𝐵(𝑝)𝐵(𝑝) ‖𝐹 , (2.51)

‖𝐸𝐹 ‖𝐹 ≤ 𝐷2‖𝐹‖ . (2.52)

For the proof of Lemma 2.6.3 (and other arguments below), we make repeated use
of the following states. Let 𝐿 ∈ [𝑛]. Define

|Φ𝐿
𝑗,𝑝〉 = (2.53)

on C𝐷 ⊗ (Cp)⊗𝐿 ⊗ C𝐷 . Despite the similar notation, these states are not to be
confused with the “position space” states |Φ 𝑗 ,𝑝〉 introduced in Equation (2.6.1). The
key property of the states |Φ𝐿

𝑗,𝑝
〉 is the following:

Lemma 2.6.4. The states (2.6.3) have inner product

〈Φ𝐿
𝑗 ′,𝑝′ |Φ𝐿

𝑗,𝑝〉 = 𝛿 𝑗 , 𝑗 ′𝑐𝑝𝑝′ , (2.54)

independently of the value of 𝐿.

Proof. First, consider the case where 𝑗 ′ = 𝑗 . Then we have

〈Φ𝐿
𝑗,𝑝′ |Φ𝐿

𝑗,𝑝〉 = 〈〈ℓ |𝐸 𝑗−1𝐸
𝐵(𝑝′)𝐵(𝑝)𝐸

𝐿− 𝑗 |𝑟〉〉 = 〈〈ℓ |𝐸
𝐵(𝑝′)𝐵(𝑝) |𝑟〉〉 = 𝑐𝑝𝑝′ ,

where we have used the fixed-point equations (2.4.1). That is, we have

〈Φ𝐿
𝑗,𝑝′ |Φ𝐿

𝑗,𝑝〉 = = .

In a similar fashion, we can compute, for 𝑗 < 𝑗 ′,

〈Φ𝐿
𝑗 ′,𝑝′ |Φ𝐿

𝑗,𝑝〉 = 〈〈ℓ |𝐸 𝑗−1𝐸𝐵(𝑝)𝐸
𝑗 ′− 𝑗𝐸

𝐵(𝑝′)𝐸
𝐿− 𝑗 ′ |𝑟〉〉 = 〈〈ℓ |𝐸𝐵(𝑝)𝐸 𝑗 ′− 𝑗𝐸

𝐵(𝑝′) |𝑟〉〉 = 0,

where we have used the fixed-point equations (2.4.1) and the gauge condition (2.6.1).
The proof for 𝑗 > 𝑗 ′ is analogous.
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Proof of Lemma 2.6.3. We first prove (2.6.3). The expression of interest can be
written diagrammatically as

〈〈ℓ |𝐸𝐹 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′) |𝑟〉〉 = = 〈Φ𝐿
𝑗 ′,𝑝′ | (𝐼 ⊗ 𝐹 ⊗ 𝐼) |Φ𝐿

𝑗,𝑝〉 .

Equation (2.6.3) follows by setting 𝐹 to be equal to the identity on (Cp)⊗𝐿 and using
the orthogonality relation (2.6.4). Furthermore, we have

|〈〈ℓ |𝐸𝐹 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′) |𝑟〉〉| =
���〈Φ𝐿

𝑗 ′,𝑝′ | (𝐼 ⊗ 𝐹 ⊗ 𝐼) |Φ𝐿
𝑗,𝑝〉

��� ≤ ‖𝐹‖ · ‖Φ𝐿
𝑗,𝑝 ‖ · ‖Φ𝐿

𝑗 ′,𝑝′‖.

The claim (2.6.3) then follows from (2.6.4).

Let us next prove (2.6.3). By the definition of the Frobenius norm ‖ · ‖𝐹 , we have

‖𝐸𝐹 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′)‖2𝐹 =

𝐷∑︁
𝛼1,𝛼2,𝛽1,𝛽2=1

��(〈𝛼1 | ⊗ 〈𝛼2 |)𝐸𝐹 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′) ( |𝛽1〉 ⊗ |𝛽2〉)
��2

where {|𝛼〉}𝐷
𝛼=1 is an orthonormal basis of C𝐷 . The terms in the sum can be written

diagrammatically as

(〈𝛼1 | ⊗ 〈𝛼2 |)𝐸𝐹 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′) ( |𝛽1〉 ⊗ |𝛽2〉) = .

Defining vectors

|Ψ 𝑗 ,𝑝 (𝛼, 𝛽)〉 = (2.55)

on (Cp)⊗𝐿 , we have

| (〈𝛼1 | ⊗ 〈𝛼2 |)𝐸𝐹 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′) ( |𝛽1〉 ⊗ |𝛽2〉) |2 = |〈Ψ 𝑗 ′,𝑝′ (𝛼1, 𝛽1) |𝐹 |Ψ 𝑗 ,𝑝 (𝛼2, 𝛽2)〉|2

≤ ‖𝐹‖2 · ‖Ψ 𝑗 ,𝑝 (𝛼2, 𝛽2)‖2 · ‖Ψ 𝑗 ′,𝑝′ (𝛼1, 𝛽1)‖2 .
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The norm of the vector (2.6.3) can be bounded as

‖Ψ 𝑗 ,𝑝 (𝛼, 𝛽)‖2 =

=
�� tr (

𝐸 𝑗−1𝐸
𝐵(𝑝)𝐵(𝑝)𝐸

𝐿− 𝑗 ( |𝛽〉〈𝛼 | ⊗ |𝛽〉〈𝛼 |)
) ��

≤ ‖𝐸
𝐵(𝑝)𝐵(𝑝) ‖𝐹 · ‖𝐸

𝑗−1‖𝐹 · ‖𝐸𝐿− 𝑗 ‖𝐹
≤ ‖𝐸

𝐵(𝑝)𝐵(𝑝) ‖𝐹 .

In the first inequality, we have used (2.5), together with the fact that

‖|𝛽〉〈𝛼 | ⊗ |𝛽〉〈𝛼 |‖𝐹 = 1 .

In the second inequality, we have used Lemma 2.4.2, along with the fact 𝜌(𝐸) = 1.
The claim (2.6.3) follows from this.

With a completely analogous proof, we also have

‖𝐸𝐹 ( 𝑗 , 𝑝)‖𝐹 ≤ 𝐷2‖𝐹‖
√︃
‖𝐸

𝐵(𝑝)𝐵(𝑝) ‖𝐹 , and ‖𝐸𝐹 ‖𝐹 ≤ 𝐷2‖𝐹‖,

which are claims (2.6.3) and (2.6.3).

2.6.4 Matrix Elements of Local Operators in the Excitation Ansatz
Overview of the Proof

Let us give a high-level overview of the argument used to establish our main technical
result, Lemma 2.6.8. The latter gives estimates on matrix elements 〈𝜙𝑝′ |𝐹 |𝜙𝑝〉 of a
𝑑-local operator 𝐹 with respect to normalized excitation ansatz states |𝜙𝑝〉 and |𝜙𝑝′〉,
with possibly different momenta 𝑝 and 𝑝′. More precisely, to apply the approximate
Knill-Laflamme conditions for approximate error-detection, we need to establish
two kinds of bounds:

1. For 𝑝 ≠ 𝑝′ (i.e., the non-diagonal elements), our aim is to argue that
|〈𝜙𝑝′ |𝐹 |𝜙𝑝〉| vanishes as an inverse polynomial in 𝑛. This is ultimately a
consequence of the fact that in the Jordan decomposition 𝐸 = |𝑟〉〉〈〈ℓ | ⊕ �̃� of
the transfer matrix, the sub-dominant term �̃� has norm decaying exponentially
with a rate determined by the second largest eigenvalue 𝜆2.

2. For the diagonal elements, our aim is to argue that 〈𝜙𝑝 |𝐹 |𝜙𝑝〉 is almost
independent of 𝑝, that is, we want to show |〈𝜙𝑝 |𝐹 |𝜙𝑝〉 − 〈𝜙𝑝′ |𝐹 |𝜙𝑝′〉| is small
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for different momenta 𝑝 ≠ 𝑝′. For this purpose, we need to identify the
leading order term in the expression 〈𝜙𝑝 |𝐹 |𝜙𝑝〉. Higher order terms are again
small by the properties of the transfer operator.

To establish these bounds, first observe that an unnormalized excitation ansatz state
|Φ𝑝 (𝐵; 𝐴)〉 is a superposition of the “position space” states {|Φ 𝑗 ,𝑝〉}𝑛𝑗=1, where each
state |Φ 𝑗 ,𝑝〉 is given by a simple tensor network with an “insertion” of an operator at
site 𝑗 ′. Correspondingly, we first study matrix elements of the form 〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉.
Bounds on these matrix elements are given in Lemma 2.6.5. The idea of the proof
of this statement is simple: in the tensor network diagram for the matrix element,
subdiagrams associated with powers 𝐸Δ with sufficiently large Δ may be replaced
by the diagram associated with the map |𝑟〉〉〈〈ℓ |, with an error scaling term scaling
as𝑂 (𝜆Δ/22 ). This is due to the Jordan decomposition of the transfer operator. Thanks
to the gauge condition (2.6.1), the resulting diagrams then simplify, allowing us to
identify the leading order term.

To realize this approach, a key step is to identify suitable subdiagrams corresponding
to powers 𝐸Δ in the diagram associated with 〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉. These are associated
with connected regions of size Δ where the operator 𝐹 acts trivially, and there is no
insertion of 𝐵(𝑝) (respectively 𝐵(𝑝′)), meaning that 𝑗 and 𝑗 ′ do not belong to the
region. Lemma 2.6.5 provides a careful case-by-case analysis depending on, at the
coarsest level of detail, whether or not 𝑗 and 𝑗 ′ belong to a Δ-neighborhood of the
support of 𝐹.

Some subleties that arise are the following: to obtain estimates on the leading-order
terms for the diagonal matrix elements (see (2) above) as well as related expressions,
a bound on the magnitude of the matrix element 〈Φ 𝑗 ,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 only is not sufficient.
The lowest-order approximating expression to 〈Φ 𝑗 ,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 obtained by making
the above substitutions of the transfer operators a priori seems to depend on the
exact site location 𝑗 . This is awkward because the term 〈Φ 𝑗 ,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 appears as
a summand (with sum taken over 𝑗) when computing matrix elements of excitation
ansatz states. We argue that in fact, the leading order term of 〈Φ 𝑗 ,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 is
identical for all values of 𝑗 not belonging to the support of 𝐹. This statement is
formalized in Lemma 2.6.6 and allows us to subsequently estimate sums of interest
without worry about the explicit dependence on 𝑗 .

Finally, we require a strengthening of the estimates obtained in Lemma 2.6.5 because
we are ultimately interested in excitation ansatz states: these are superpositions of
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the states |Φ 𝑗 ,𝑝〉, with phases of the form 𝑒𝑖𝑝 𝑗 . Estimating only the magnitude
of matrix elements of the form 〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 is not sufficient to establish our
results. Instead, we need to treat the phases “coherently,” which leads to certain
cancellations. The corresponding statement is given in Lemma 2.6.7.

The Proof

We will envision the sites {1, . . . , 𝑛} as points on a ring, i.e., using periodic boundary
conditions, and measure the distance between sites 𝑗 , 𝑗 ′ by

dist( 𝑗 , 𝑗 ′) := min
𝑘∈Z
| 𝑗 − 𝑗 ′ + 𝑘 · 𝑛|.

For Δ ∈ {0, . . . , 𝑛} and a subset F ⊂ {1, . . . , 𝑛}, let

BΔ(F ) = { 𝑗 ∈ {1, . . . , 𝑛} | ∃ 𝑗 ′ ∈ F such that dist( 𝑗 , 𝑗 ′) ≤ Δ}

be the Δ-thickening of F .

We say that 𝑗 ′ ∈ {1, . . . , 𝑛} is a left neighbor of (or is left-adjacent to) 𝑗 ∈ {1, . . . , 𝑛}
if 𝑗 ′ = 𝑗 − 1 for 𝑗 > 1, or 𝑗 ′ = 𝑛 for 𝑗 = 1. A connected region R ⊂ {1, . . . , 𝑛}
is said to lie on the left of (or be left-adjacent to) 𝑗 ∈ {1, . . . , 𝑛} if it is of the
form R = { 𝑗1, . . . , 𝑗𝑟}, with 𝑗𝛼+1 left-adjacent to 𝑗𝛼 for 𝛼 ∈ {0, . . . , 𝑟 − 1} with the
convention that 𝑗0 = 𝑗𝑟 . Analogous definitions hold for right-adjacency.

For an operator 𝐹 acting on (Cp)⊗𝑛, let supp(𝐹) ⊂ {1, . . . , 𝑛} denote its support,
i.e., the sites of the system that the operator acts on non-trivially. We say that 𝐹 is
𝑑-local if |supp(𝐹) | = 𝑑. Let us assume that supp(𝐹) decomposes into 𝜅 disjoint
connected components

supp(𝐹) =
𝜅−1⋃
𝛼=0
F𝛼 . (2.56)

We may, without loss of generality, assume that this gives a partition of {1, . . . , 𝑛}
into disjoint connected sets

{1, . . . , 𝑛} = A0 ∪ F0 ∪ A1 ∪ F1 ∪ · · · ∪ A𝜅−1 ∪ F𝜅−1

whereA𝛼 is left-adjacent to F𝛼 for 𝛼 ∈ {0, . . . , 𝜅 − 1},A𝛼+1 is right-adjacent to F𝛼
for 𝛼 ∈ {0, . . . , 𝜅 − 2}, and A0 is right-adjacent to F𝜅−1. We may then decompose
the operator 𝐹 as

𝐹 =
∑︁
𝑖

𝜅−1⊗
𝛼=0
(𝐼A𝛼

⊗ 𝐹𝑖,𝛼),
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𝐹 =

𝐹 (𝜏( 𝑗1)) = 𝐹 (𝜏( 𝑗4)) = 𝐹 (0) = ,

𝐹 (𝜏( 𝑗2)) = 𝐹 (1) = ,

𝐹 (𝜏( 𝑗3)) = 𝐹 (𝜅 − 1) = .

Figure 2.6: Example for 𝐹 and sites 𝑗1, 𝑗2, 𝑗3, 𝑗4 ∈ {1, . . . , 𝑛}with 𝜄( 𝑗1) = 𝜄( 𝑗4) = 7,
𝜄( 𝑗2) = 19, and 𝜄( 𝑗3) = 35.

where we write 𝐹 as a sum of decomposable tensor operators (indexed by 𝑖), with
each 𝐹𝑖,𝛼 being an operator acting on the component F𝛼.

Let us define a function 𝜏 : {1, . . . , 𝑛}\supp(𝐹) → {0, . . . , 𝜅 − 1} which associates
to every site 𝑗 ∉ supp(F ) the unique index 𝜏( 𝑗) for the component A𝜏( 𝑗) of the
complement of supp(𝐹) such that 𝑗 ∈ A𝜏( 𝑗) .

It is also convenient to introduce the following operators {𝐹 (𝜏)}𝜅−1
𝜏=0. The operator

𝐹 (𝜏) is obtained by removing the identity factor on the sitesA𝜏 of 𝐹, and cyclically
permuting the remaining components in such a way that F𝜏 ends up on the sites
{1, . . . , |F𝜏 |}. More precisely, we define 𝐹 (𝜏) ∈ B((Cp)⊗(𝑛−|A𝜏 |)) by

𝐹 (𝜏) =
∑︁
𝑖

𝐹𝑖,𝜏 ⊗
(
𝜏+𝜅−1⊗
𝛼=𝜏+1

𝐼
⊗|A𝛼 (mod 𝜅) |
Cp ⊗ 𝐹𝑖,𝛼 (mod 𝜅)

)
, (2.57)

for 𝜏 ∈ {0, . . . , 𝜅 − 1}. We note that 𝑗 ↦→ 𝐹 (𝜏( 𝑗)) associates a permuted operator
to each site 𝑗 not belonging to the support of 𝐹. Let us also define 𝜄( 𝑗) to be the
index of the site which gets cyclically shifted to the first site when defining 𝐹𝜏( 𝑗) .
An example is shown diagrammatically in Figure 2.6.

For two excitation ansatz states |Φ𝑝〉 and |Φ𝑝′〉 , and an operator 𝐹 on (Cp)⊗𝑛, we
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may write the corresponding matrix element as

〈Φ𝑝′ |𝐹 |Φ𝑝〉 =
𝑛∑︁

𝑗 , 𝑗 ′=1
𝑒𝑖(𝑝 𝑗−𝑝

′ 𝑗 ′) 〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 , (2.58)

where |Φ 𝑗 ,𝑝〉 are the “position space” states introduced in Equation (2.6.1). We are
interested in bounding the magnitude of this quantity.

We begin by bounding the individual terms in the sum (2.6.4).

Lemma 2.6.5. Let 𝑗 , 𝑗 ′ ∈ {1, . . . , 𝑛} and let 𝑝, 𝑝′ be arbitrary non-zero momenta.
Consider the states |Φ 𝑗 ,𝑝〉 and |Φ 𝑗 ′,𝑝′〉 defined by (2.6.1). LetΔ = Δ(𝑛) and 𝑑 = 𝑑 (𝑛)
be monotonically increasing functions of 𝑛. Suppose further that we have

10Δ𝑑 < 𝑛 .

Assume 𝐹 is a 𝑑-local operator of unit norm on (Cp)⊗𝑛 whose support has 𝜅
connected components as in (2.6.4). Then we have the following:

(i) There is some fixed 𝑞 ∈ [𝑛] such that for all 𝑗 , 𝑗 ′ ∈ BΔ(supp(𝐹)), we have

〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = 〈〈ℓ |𝐸𝐼⊗Δ⊗𝐹𝜏 (𝑞)⊗𝐼⊗Δ ( 𝑗 , 𝑝, 𝑗
′, 𝑝′) |𝑟〉〉 +𝑂 (𝜆Δ2 ) ,

where 𝑗 = 𝑗 − 𝜄(𝑞) + Δ + 1 (mod 𝑛) and 𝑗 ′ = 𝑗 ′ − 𝜄(𝑞) + Δ + 1 (mod 𝑛).

Furthermore,

〈Φ 𝑗 ′,𝑝′ |Φ 𝑗 ,𝑝〉 = Δ 𝑗 , 𝑗 ′𝑐𝑝𝑝′ +𝑂 (𝜆Δ2 ) . (2.59)

(ii) If 𝑗 , 𝑗 ′ ∉ BΔ(supp(𝐹)), then

(a) |〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉| = 𝑂 (𝜆Δ/22 ) if 𝑗 ≠ 𝑗 ′.

(b) 〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = 〈〈ℓ |𝐸𝐹 (𝜏( 𝑗)) |𝑟〉〉 · 𝑐𝑝𝑝′ +𝑂 (𝜆Δ/22 ).
Here the operator 𝐹 (𝜏( 𝑗)) is defined by Equation (2.6.4).

(iii) If 𝑗 ∈ BΔ(supp(𝐹)) and 𝑗 ′ ∉ BΔ(supp(𝐹)), then

(a) |〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉| = 𝑂 (𝜆Δ/22 ) if 𝑗 ′ ∉ B2Δ(supp(𝐹)).

(b) There exists some fixed 𝑞 ∈ [𝑛] such that, for all 𝑗 ∈ BΔ(supp(𝐹))
and 𝑗 ′ ∈ B2Δ(supp(𝐹))\BΔ(supp(𝐹)), we have

〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = 〈〈ℓ |𝐸𝐹 (𝜏(𝑞)) ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′, 2Δ) |𝑟〉〉 +𝑂 (𝜆2Δ
2 ),

where 𝑗 = 𝑗 − 𝜄(𝑞) + 2Δ + 1 (mod 𝑛) and 𝑗 ′ = 𝑗 ′ − 𝜄(𝑞) + 2Δ + 1 (mod 𝑛).
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(iv) If 𝑗 ′ ∈ BΔ(supp(𝐹)) and 𝑗 ∉ BΔ(supp(𝐹)), then

(a) |〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉| = 𝑂 (𝜆Δ/22 ) if 𝑗 ∉ B2Δ(supp(𝐹)).

(b) There exists some fixed 𝑞 ∈ [𝑛] such that, for all 𝑗 ′ ∈ BΔ(supp(𝐹)))
and 𝑗 ∈ B2Δ(supp(𝐹))\BΔ(supp(𝐹)), we have

〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = 〈〈ℓ |𝐸𝐹 (𝜏(𝑞)) ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′, 2Δ) |𝑟〉〉 +𝑂 (𝜆2Δ
2 ),

where 𝑗 = 𝑗 − 𝜄(𝑞) + 2Δ + 1 (mod 𝑛) and 𝑗 ′ = 𝑗 ′ − 𝜄(𝑞) + 2Δ + 1 (mod 𝑛).

Proof. For the proof of (i), suppose that 𝑗 , 𝑗 ′ ∈ BΔ(supp(𝐹)). Pick any site
𝑞 ∉ B2Δ(supp(𝐹)). We note that such a site always exists since

|B2Δ(supp(𝐹)) | ≤ 5Δ|supp(𝐹) | = 5Δ𝑑 < 10Δ𝑑 < 𝑛

by assumption. Let us define the shifted indices

𝑗 = 𝑗 − 𝜄(𝑞) + Δ + 1 (mod 𝑛), and 𝑗 ′ = 𝑗 ′ − 𝜄(𝑞) + Δ + 1 (mod 𝑛).

Then we may write

〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = tr (𝐸𝐹 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′))

= tr
(
𝐸 𝑠𝐸𝐼⊗Δ⊗𝐹𝜏 (𝑞)⊗𝐼⊗Δ ( 𝑗 , 𝑝, 𝑗

′, 𝑝′)
)

(2.60)

where 𝑠 ≥ 2Δ. This is because by the choice of 𝑞, there are at least 2Δ sites not
belonging to supp(𝐹) both on the left and the right of 𝑞. Each of these 4Δ sites
contributes a factor 𝐸 = 𝐸𝐼 (i.e., a single transfer operator) to the expression within
the trace. The term 𝐸𝐼⊗Δ⊗𝐹𝜏 (𝑞)⊗𝐼⊗Δ ( 𝑗 , 𝑝, 𝑗

′, 𝑝′) incorporates Δ of the associated
transfer operators 𝐸 = 𝐸𝐼 on the left- and right of 𝑞, respectively, such that at least
2Δ factors of 𝐸 remain. By the cyclicity of the trace, these can be consolidated into
a single term 𝐸 𝑠 with 𝑠 ≥ 2Δ. The operator 𝐼⊗Δ ⊗ 𝐹𝜏(𝑞) ⊗ 𝐼⊗Δ (i.e., the additional
𝐼⊗Δ factors) in the term 𝐸𝐼⊗Δ⊗𝐹𝜏 (𝑞)⊗𝐼⊗Δ ( 𝑗 , 𝑝, 𝑗

′, 𝑝′) is used to ensure that 𝑗 and 𝑗 ′ are
correctly “retained” when going from the first to the second line in (2.6.4). Inserting
the Jordan decomposition 𝐸 = |𝑟〉〉〈〈ℓ | ⊕ �̃� , we obtain

〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = 〈〈ℓ |𝐸𝐼⊗Δ⊗𝐹𝜏 (𝑞)⊗𝐼⊗Δ ( 𝑗 , 𝑝, 𝑗
′, 𝑝′) |𝑟〉〉 + tr

(
�̃� 𝑠𝐸𝐼⊗Δ⊗𝐹𝜏 (𝑞)⊗𝐼⊗Δ ( 𝑗 , 𝑝, 𝑗

′, 𝑝′)
)
.

(2.61)
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By Lemma 2.4.2(ii) and Lemma 2.6.3, we have the bound���tr (
�̃� 𝑠𝐸𝐼⊗Δ⊗𝐹𝜏 (𝑞)⊗𝐼⊗Δ ( 𝑗 , 𝑝, 𝑗

′, 𝑝′)
)��� ≤ ‖�̃� 𝑠‖𝐹 · ‖𝐸𝐼⊗Δ⊗𝐹𝜏 (𝑞)⊗𝐼⊗Δ ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′)‖𝐹
≤ 𝜆𝑠/22 · 𝐷

2‖𝐹‖ ·
√︃
‖𝐸

𝐵(𝑝′)𝐵(𝑝′) ‖𝐹 ‖𝐸𝐵(𝑝′)𝐵(𝑝) ‖𝐹

= 𝑂 (𝜆Δ2 ),

where we have used the fact that 𝜆𝑠/22 ≤ 𝜆Δ2 in the last line. We have also absorbed
the dependence on the constants 𝐷, ‖𝐹‖, and

√︃
‖𝐸

𝐵(𝑝′)𝐵(𝑝′) ‖𝐹 ‖𝐸𝐵(𝑝′)𝐵(𝑝) ‖𝐹 into
the big-O notation. Inserting this into (2.6.4) gives the first claim of (i).

Now consider the inner product 〈Φ 𝑗 ′,𝑝′ |Φ 𝑗 ,𝑝〉 = tr(𝐸 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′)), which corre-
sponds to the case where 𝐹 is the identity. By the cyclicity of the trace, this can
be written as 〈Φ 𝑗 ′,𝑝′ |Φ 𝑗 ,𝑝〉 = tr(𝐸 𝑠𝐸 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′)) for some 𝑠 ≥ 2Δ and suitably
defined 𝑗 , 𝑗 ′. Repeating the same argument as above and using the fact that

〈〈ℓ |𝐸 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′) |𝑟〉〉 = Δ 𝑗 , 𝑗 ′𝑐𝑝𝑝′ = Δ 𝑗 , 𝑗 ′𝑐𝑝𝑝′

by definition of 𝐸 ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′), Equation (2.4.1) (i.e., the fact that |ℓ〉〉 and |𝑟〉〉 are
left, respectively right, eigenvectors of 𝐸), and the gauge identities (2.6.1) of 𝐸𝐵(𝑝)
and 𝐸

𝐵(𝑝) , we obtain the claim (i).

Now consider claim (ii). Suppose that 𝑗 , 𝑗 ′ ∉ BΔ(supp(𝐹)). We consider the
following two cases:

(iia) If 𝑗 ≠ 𝑗 ′, then there is a connected region of at least Δ sites not belonging
to supp(𝐹) to either the left of 𝑗 ′ and not containing 𝑗 , or the left of 𝑗 and not
containing 𝑗 ′. Without loss of generality, we assume the former is the case.
By the cyclicity of the trace, we may also assume without loss of generality
that 𝑗 ′ = Δ + 1, 𝑗 > 𝑗 ′, and that 𝐹 is supported on the sites {2Δ + 2, . . . , 𝑛}. Let
�̂� denote the restriction of 𝐹 to the sites {Δ+ 2, . . . , 𝑛}, and let 𝑗 := 𝑗 − (Δ+ 1).
Then we may write

〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = tr
(
𝐸Δ𝐸

𝐵(𝑝′)𝐸�̂� ( 𝑗 , 𝑝)
)
.

Substituting the Jordan decomposition 𝐸Δ = |𝑟〉〉〈〈ℓ | ⊕ �̃�Δ, we have

〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = 〈〈ℓ |𝐸𝐵(𝑝′)𝐸�̂� ( 𝑗 , 𝑝) |𝑟〉〉 + tr
(
�̃�Δ𝐸

𝐵(𝑝′)𝐸�̂� ( 𝑗 , 𝑝)
)
.
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Since we assume that 𝑝 ≠ 0, the gauge condition (2.6.1) states that 〈〈ℓ |𝐸
𝐵(𝑝) = 0,

hence the first term vanishes and it follows that

|〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉| =
���tr (

�̃�Δ𝐸
𝐵(𝑝′)𝐸�̂� ( 𝑗 , 𝑝)

)���
≤ ‖�̃�Δ‖𝐹 · ‖𝐸𝐵(𝑝′) ‖𝐹 · ‖𝐸�̂� ( 𝑗 , 𝑝)‖𝐹

≤ 𝜆Δ/22 ‖𝐸𝐵(𝑝′) ‖𝐹 · 𝐷
2‖�̂�‖

√︃
‖𝐸

𝐵(𝑝)𝐵(𝑝) ‖𝐹

= 𝑂 (𝜆Δ/22 ) ,

as claimed in (iia). In the last line, we have again absorbed the constants into
the big-𝑂-expression. This proves part (iia) of Claim (ii).

(iib) If 𝑗 = 𝑗 ′, then there are at least Δ sites to the left and right of 𝑗 which do not
belong to supp(𝐹). Therefore we may write

〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = tr
(
𝐸 𝑠𝐸

𝐵(𝑝′)𝐵(𝑝)𝐸
𝑡𝐸𝐹 (𝜏( 𝑗))

)
,

where 𝑠 and 𝑡 are integers greater than Δ, representing the sites surrounding 𝑗

which are not in the support of 𝐹.

Applying the Jordan decomposition 𝐸Δ = |𝑟〉〉〈〈ℓ | ⊕ �̃�Δ twice (for 𝐸 𝑠 and 𝐸 𝑡)
then gives four terms

〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = 〈〈ℓ |𝐸𝐵(𝑝′)𝐵(𝑝) |𝑟〉〉〈〈ℓ |𝐸𝐹 (𝜏( 𝑗)) |𝑟〉〉

+ tr
(
|𝑟〉〉〈〈ℓ |𝐸

𝐵(𝑝′)𝐵(𝑝) �̃�
𝑠𝐸𝐹 (𝜏( 𝑗))

)
+ tr

(
�̃� 𝑡𝐸

𝐵(𝑝′)𝐵(𝑝) |𝑟〉〉〈〈ℓ |𝐸𝐹 (𝜏( 𝑗))
)

+ tr
(
�̃� 𝑡𝐸

𝐵(𝑝′)𝐵(𝑝) �̃�
𝑠𝐸𝐹 (𝜏( 𝑗))

)
.

Since 𝑠 and 𝑡 are both larger than Δ, by the same arguments from before, it
is clear that the last three terms can each be bounded by 𝑂 (𝜆Δ/22 ). The claim
follows since 〈〈ℓ |𝐸

𝐵(𝑝′)𝐵(𝑝) |𝑟〉〉 = 𝑐𝑝𝑝′.

Next, we give the proof of claim (iii). Let us consider the situation where 𝑗 ∈
BΔ(supp(𝐹)) and 𝑗 ′ ∉ BΔ(supp(𝐹)). The proof of the other setting is analogous.
We consider two cases:

(iiia) Suppose 𝑗 ′ ∉ B2Δ(supp(𝐹)). Let us define the shifted index 𝑗 = 𝑗 − 𝜄( 𝑗 ′) +Δ +
1 (mod 𝑛). Then we may write

〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = tr
(
𝐸 𝑠𝐸

𝐵(𝑝′)𝐸
𝑡𝐸𝐼⊗Δ⊗𝐹 (𝜏( 𝑗 ′))⊗𝐼⊗Δ ( 𝑗 , 𝑝)

)
,
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where 𝑠 and 𝑡 are integers larger thanΔ, representing the number of sites adjacent
to 𝑗 ′ on the left and right which are not in BΔ(supp(𝐹)). We use the Jordan
decomposition 𝐸 = |𝑟〉〉〈〈ℓ | ⊕ �̃� on 𝐸 𝑠 to get

tr
(
𝐸 𝑠𝐸

𝐵(𝑝′)𝐸
𝑡𝐸𝐼⊗Δ⊗𝐹 (𝜏( 𝑗 ′))⊗𝐼⊗Δ ( 𝑗 , 𝑝)

)
= 〈〈ℓ |𝐸

𝐵(𝑝′)𝐸
𝑡𝐸𝐼⊗Δ⊗𝐹 (𝜏( 𝑗 ′))⊗𝐼⊗Δ ( 𝑗 , 𝑝) |𝑟〉〉

+ tr
(
�̃� 𝑠𝐸

𝐵(𝑝′)𝐸
𝑡𝐸𝐼⊗Δ⊗𝐹 (𝜏( 𝑗 ′))⊗𝐼⊗Δ ( 𝑗 , 𝑝)

)
= tr

(
�̃� 𝑠𝐸

𝐵(𝑝′)𝐸
𝑡𝐸𝐼⊗Δ⊗𝐹 (𝜏( 𝑗 ′))⊗𝐼⊗Δ ( 𝑗 , 𝑝)

)
,

where the first term vanishes due to the gauge condition (2.6.1). From Lemma 2.4.2(ii)
we have ‖𝐸 𝑡 ‖𝐹 ≤ 1, and repeating the same arguments as before, we get the
bound

|〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉| =
���tr (

�̃� 𝑠𝐸
𝐵(𝑝′)𝐸

𝑡𝐸𝐼⊗Δ⊗𝐹 (𝜏( 𝑗 ′))⊗𝐼⊗Δ ( 𝑗 , 𝑝)
)���

≤ ‖�̃� 𝑠‖𝐹 · ‖𝐸𝐵(𝑝′) ‖𝐹 · ‖𝐸
𝑡 ‖𝐹 · 𝐷2‖𝐹‖ · ‖𝐸

𝐵(𝑝)𝐵(𝑝) ‖𝐹

≤ 𝜆𝑠/22 ‖𝐸𝐵(𝑝′) ‖𝐹 · 𝐷
2‖𝐹‖

√︃
‖𝐸

𝐵(𝑝)𝐵(𝑝) ‖𝐹 .

Since 𝑠 ≥ Δ, we conclude that

|〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉| = 𝑂
(
𝜆
Δ/2
2

)
.

(iiib) Suppose now that 𝑗 ′ ∈ B2Δ(supp(𝐹)). Then by repeating the argument for
case (i), with Δ replaced by 2Δ, we obtain

〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = 〈〈ℓ |𝐸𝐼⊗2Δ⊗𝐹 (𝜏(𝑞))⊗𝐼⊗2Δ ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′) |𝑟〉〉 +𝑂 (𝜆2Δ
2 ),

where we now have 𝑞 ∉ B4Δ(F ). Again, the existence of such a 𝑞 is guaranteed
by the condition 10Δ𝑑 < 𝑛.

We note that (iv) follows immediately from (iii) by interchanging the roles of
( 𝑗 , 𝑝) and ( 𝑗 ′, 𝑝′). Note that we can write

〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = 〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = 〈Φ 𝑗 ,𝑝 |𝐹† |Φ 𝑗 ′,𝑝′〉 .

The last expression within the parentheses is precisely what we had calculated
in (iii), so this implies the following:
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(iva) If 𝑗 ∉ B2Δ(supp(𝐹)), then��〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉
�� = ��〈Φ 𝑗 ,𝑝 |𝐹† |Φ 𝑗 ′,𝑝′〉

�� = 𝑂 (𝜆Δ/22 ),

where we note that the exact same bound holds for 𝐹 and 𝐹† since ‖𝐹‖ = ‖𝐹†‖.

(ivb) If 𝑗 ∈ B2Δ(supp(𝐹)), then

〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = 〈Φ 𝑗 ,𝑝 |𝐹† |Φ 𝑗 ′,𝑝′〉

= 〈〈ℓ |𝐸𝐼⊗2Δ⊗𝐹† (𝜏(𝑞))⊗𝐼⊗2Δ ( 𝑗 ′, 𝑝′, 𝑗 , 𝑝) |𝑟〉〉 +𝑂 (𝜆2Δ
2 )

= 〈〈ℓ |𝐸𝐼⊗2Δ⊗𝐹† (𝜏(𝑞))⊗𝐼⊗2Δ ( 𝑗 ′, 𝑝′, 𝑗 , 𝑝) |𝑟〉〉 +𝑂 (𝜆2Δ
2 )

= 〈〈ℓ |𝐸𝐼⊗2Δ⊗𝐹 (𝜏(𝑞))⊗𝐼⊗2Δ ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′) |𝑟〉〉 +𝑂 (𝜆2Δ
2 ).

This proves the claim.8

Note that in the statement (iib), the dependence on 𝑗 in the expression 〈〈ℓ |𝐸𝐹 (𝜏( 𝑗)) |𝑟〉〉
can be eliminated as follows:

Lemma 2.6.6. Suppose 𝑗1, 𝑗2 ∉ BΔ(supp(𝐹)). Then

|〈〈ℓ |𝐸𝐹 (𝜏( 𝑗1)) |𝑟〉〉 − 〈〈ℓ |𝐸𝐹 (𝜏( 𝑗2)) |𝑟〉〉| = 𝑂 (𝜆Δ2 ) . (2.62)

In particular, for any fixed 𝑗0 ∉ BΔ(supp(𝐹)) we have

〈Φ 𝑗 ,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = 〈〈ℓ |𝐸𝐹 (𝜏( 𝑗0)) |𝑟〉〉 · 𝑐𝑝𝑝′ +𝑂 (𝜆
Δ/2
2 ) , (2.63)

for all 𝑗 ∉ BΔ(supp(𝐹)).
8To clarify how the term 〈〈ℓ |𝐸𝐼 ⊗Δ⊗𝐹† (𝜏 (𝑞)) ⊗𝐼 ⊗Δ ( 𝑗 ′, 𝑝′, 𝑗 , 𝑝) |𝑟〉〉 is complex conjugated, first write

〈〈ℓ |𝐸𝐼 ⊗Δ⊗𝐹† (𝜏 (𝑞)) ⊗𝐼 ⊗Δ ( 𝑗 ′, 𝑝′, 𝑗 , 𝑝) |𝑟〉〉 = 〈Φ𝐿

𝑗′, 𝑝′
|𝐼 ⊗ 𝐼⊗2Δ ⊗ 𝐹†

𝜏 (𝑞) ⊗ 𝐼
⊗2Δ ⊗ 𝐼 |Φ𝐿

𝑗, 𝑝
〉,

where |Φ𝐿

𝑗, 𝑝
〉 are the states defined by (2.6.3), for some appropriate length 𝐿. Then we can proceed

to conjugate the matrix element, giving us

〈Φ𝐿

𝑗′, 𝑝′
|𝐼 ⊗ 𝐼⊗2Δ ⊗ 𝐹†

𝜏 (𝑞) ⊗ 𝐼⊗2Δ ⊗ 𝐼 |Φ𝐿

𝑗, 𝑝
〉 = 〈Φ𝐿

𝑗, 𝑝
|𝐼 ⊗ 𝐼2Δ ⊗ 𝐹𝜏 (𝑞) ⊗ 𝐼2Δ ⊗ 𝐼 |Φ𝐿

𝑗′, 𝑝′
〉

= 〈〈ℓ |𝐸𝐼 ⊗2Δ⊗𝐹 (𝜏 (𝑞)) ⊗𝐼 ⊗2Δ ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′) |𝑟〉〉.
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Proof. The claim (2.6.6) follows immediately from (2.6.6) and claim (iib) of
Lemma 2.6.5 since |𝑐𝑝𝑝′ | = 𝑂 (1).

If 𝜏( 𝑗1) = 𝜏( 𝑗2), there is nothing to prove. Suppose 𝜏( 𝑗1) ≠ 𝜏( 𝑗2). Without loss of
generality, assume that 𝜏( 𝑗1) = 0 and 𝜏( 𝑗2) = 𝜉. Then we may write

𝐹 (𝜏( 𝑗1)) =
∑︁
𝑖

𝐹𝑖,0 ⊗ 𝐼⊗𝑎1 ⊗ 𝐹𝑖,1 ⊗ 𝐼⊗𝑎2 · · · ⊗ 𝐼⊗𝑎𝜅−1 ⊗ 𝐹𝑖,𝜅−1, and

𝐹 (𝜏( 𝑗2)) =
∑︁
𝑖

𝐹𝑖,𝜉 ⊗ 𝐼⊗𝑎 𝜉+1 ⊗ 𝐹𝑖,𝜉+1 ⊗ 𝐼⊗𝑎 𝜉+2 · · · ⊗ 𝐼⊗𝑎𝜅 ⊗ 𝐹𝑖,𝜅−1 ⊗ 𝐼⊗𝑎0

⊗ 𝐹𝑖,0 ⊗ 𝐼⊗𝑎1 ⊗ 𝐹𝑖,1 ⊗ 𝐼⊗𝑎2 ⊗ · · · ⊗ 𝐹𝑖,𝜉−1,

where 𝑎𝛼 = |A𝛼 | for 𝛼 ∈ {0, . . . , 𝜅}. Defining the operators

�̂�𝑖 = 𝐹𝑖,𝜉 ⊗ 𝐼⊗𝑎 𝜉+1 ⊗ 𝐹𝑖,𝜉+1 ⊗ 𝐼⊗𝑎 𝜉+2 · · · ⊗ 𝐼⊗𝑎𝜅−1 ⊗ 𝐹𝑖,𝜅−1 ,

�̂�𝑖 = 𝐹𝑖,0 ⊗ 𝐼⊗𝑎1 ⊗ 𝐹𝑖,1 ⊗ 𝐼⊗𝑎2 ⊗ · · · ⊗ 𝐹𝑖,𝜉−1 ,

we have

𝐹 (𝜏( 𝑗1)) =
∑︁
𝑖

�̂�𝑖 ⊗ 𝐼⊗𝑎 𝜉 ⊗ �̂�𝑖, and 𝐹 (𝜏( 𝑗2)) =
∑︁
𝑖

�̂�𝑖 ⊗ 𝐼⊗𝑎0 ⊗ �̂�𝑖 .

(We give an example for the operator 𝐹, 𝐹 (𝜏( 𝑗1)), and 𝐹 (𝜏( 𝑗2)) in Figure 2.7.)
Therefore we can write

〈〈ℓ |𝐸𝐹 (𝜏( 𝑗1)) |𝑟〉〉 =
∑︁
𝑖

〈〈ℓ |𝐸�̂�𝑖
𝐸𝑎 𝜉𝐸�̂�𝑖 |𝑟〉〉 ,

〈〈ℓ |𝐸𝐹 (𝜏( 𝑗2)) |𝑟〉〉 =
∑︁
𝑖

〈〈ℓ |𝐸�̂�𝑖𝐸
𝑎0𝐸�̂�𝑖

|𝑟〉〉 .

Inserting the Jordan decomposition 𝐸 = |𝑟〉〉〈〈ℓ | ⊕ �̃� gives

〈〈ℓ |𝐸𝐹 (𝜏( 𝑗1)) |𝑟〉〉 =
∑︁
𝑖

(
〈〈ℓ |𝐸�̂�𝑖

|𝑟〉〉〈〈ℓ |𝐸�̂�𝑖 |𝑟〉〉 + 〈〈ℓ |𝐸�̂�𝑖
�̃�𝑎 𝜉𝐸�̂�𝑖 |𝑟〉〉

)
,

〈〈ℓ |𝐸𝐹 (𝜏( 𝑗2)) |𝑟〉〉 =
∑︁
𝑖

(
〈〈ℓ |𝐸�̂�𝑖 |𝑟〉〉〈〈ℓ |𝐸�̂�𝑖

|𝑟〉〉 + 〈〈ℓ |𝐸�̂�𝑖 �̃�
𝑎0𝐸�̂�𝑖

|𝑟〉〉
)
.

Taking the difference, the first terms of the sums cancel, and we are left with��〈〈ℓ |𝐸𝐹 (𝜏( 𝑗1)) |𝑟〉〉 − 〈〈ℓ |𝐸𝐹 (𝜏( 𝑗2)) |𝑟〉〉�� = �����∑︁
𝑖

〈〈ℓ |𝐸�̂�𝑖
�̃�𝑎 𝜉𝐸�̂�𝑖 |𝑟〉〉 −

∑︁
𝑖

〈〈ℓ |𝐸�̂�𝑖 �̃�
𝑎0𝐸�̂�𝑖

|𝑟〉〉
�����

≤
�����∑︁
𝑖

〈〈ℓ |𝐸�̂�𝑖
�̃�𝑎 𝜉𝐸�̂�𝑖 |𝑟〉〉

����� +
�����∑︁
𝑖

〈〈ℓ |𝐸�̂�𝑖 �̃�
𝑎0𝐸�̂�𝑖

|𝑟〉〉
����� .

(2.64)
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𝐹 = ,

𝐹 (𝜏( 𝑗1)) = ,

𝐹 (𝜏( 𝑗2)) = .

Figure 2.7: Example for the operator 𝐹 and the corresponding 𝐹 (𝜏( 𝑗1)) and
𝐹 (𝜏( 𝑗2)).

We can bound the first term
���∑𝑖 〈〈ℓ |𝐸�̂�𝑖

�̃�𝑎 𝜉𝐸�̂�𝑖 |𝑟〉〉
��� as follows. First, we write�����∑︁

𝑖

〈〈ℓ |𝐸�̂�𝑖
�̃�𝑎 𝜉𝐸�̂�𝑖 |𝑟〉〉

����� = tr

(
�̃�𝑎 𝜉

∑︁
𝑖

𝐸�̂�𝑖 |𝑟〉〉〈〈ℓ |𝐸�̂�𝑖

)
≤ ‖�̃�𝑎 𝜉 ‖𝐹

∑︁
𝑖

𝐸�̂�𝑖 |𝑟〉〉〈〈ℓ |𝐸�̂�𝑖


𝐹

≤ 𝜆Δ2

∑︁
𝑖

𝐸�̂�𝑖 |𝑟〉〉〈〈ℓ |𝐸�̂�𝑖


𝐹

,

where the last inequality comes from the fact that 𝑗2 ∉ BΔ(supp(𝐹)) and 𝑗2 ∈ A𝜉

implies that 𝑎𝜉 ≥ 2Δ, so Lemma 2.4.2(ii) gives ‖�̃�𝑎 𝜉 ‖𝐹 ≤ 𝜆Δ2 . Proceeding as we
did in the proof of Lemma 2.6.3, we can write the latter Frobenius norm as∑︁

𝑖

𝐸�̂�𝑖 |𝑟〉〉〈〈ℓ |𝐸�̂�𝑖

2

𝐹

=

𝐷∑︁
𝛼1,𝛼2,𝛽1,𝛽2=1

�����〈𝛼1 |〈𝛼2 |
(∑︁
𝑖

𝐸�̂�𝑖 |𝑟〉〉〈〈ℓ |𝐸�̂�𝑖

)
|𝛽1〉|𝛽2〉

�����2 .
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The individual terms in the sum can be depicted diagrammatically as

〈𝛼1 |〈𝛼2 |
(∑︁
𝑖

𝐸�̂�𝑖 |𝑟〉〉〈〈ℓ |𝐸�̂�𝑖

)
|𝛽1〉|𝛽2〉 = .

Defining the vectors

|Ψ(𝛼, 𝛽)〉 = ,

we can then write

〈𝛼1 |〈𝛼2 |
(∑︁
𝑖

𝐸�̂�𝑖 |𝑟〉〉〈〈ℓ |𝐸�̂�𝑖

)
|𝛽1〉|𝛽2〉 = 〈Ψ(𝛼1, 𝛽1) |

(∑︁
𝑖

�̂�𝑖 ⊗ 𝐼𝐷 ⊗ 𝐼𝐷 ⊗ �̂�𝑖

)
|Ψ(𝛼2, 𝛽2)〉.

Applying the Cauchy-Schwarz inequality, we get�����〈𝛼1 |〈𝛼2 |
(∑︁
𝑖

𝐸�̂�𝑖 |𝑟〉〉〈〈ℓ |𝐸�̂�𝑖

)
|𝛽1〉|𝛽2〉

�����2 ≤ ‖Ψ(𝛼1, 𝛽1)‖2 · ‖Ψ(𝛼2, 𝛽2)‖2 ·
∑︁
𝑖

�̂�𝑖 ⊗ 𝐼𝐷 ⊗ 𝐼𝐷 ⊗ �̂�𝑖

2

.

The norm of the vector |Ψ(𝛼, 𝛽)〉 is given by

‖Ψ(𝛼, 𝛽)‖2 = = = 〈𝛼 |𝑟 |𝛼〉〈𝛽 |ℓ |𝛽〉 ,

where in the second equality, we have used the fixed-point equations (2.4.1). There-
fore we have∑︁
𝑖

𝐸�̂�𝑖 |𝑟〉〉〈〈ℓ |𝐸�̂�𝑖

2

𝐹

≤
∑︁
𝑖

�̂�𝑖 ⊗ 𝐼𝐷 ⊗ 𝐼𝐷 ⊗ �̂�𝑖

2 𝐷∑︁
𝛼1,𝛼2,𝛽1,𝛽2=1

〈𝛼1 |𝑟 |𝛼1〉〈𝛼2 |𝑟 |𝛼2〉〈𝛽1 |ℓ |𝛽1〉〈𝛽2 |ℓ |𝛽2〉

=

∑︁
𝑖

�̂�𝑖 ⊗ 𝐼𝐷 ⊗ 𝐼𝐷 ⊗ �̂�𝑖

2

· | tr(𝑟) tr(ℓ) |2 = 𝐷2

∑︁
𝑖

�̂�𝑖 ⊗ 𝐼𝐷 ⊗ 𝐼𝐷 ⊗ �̂�𝑖

2

,

where the last equality follows from the fact that we gauge-fix the left and right
fixed-points such that 𝑟 = 𝐼C𝐷 and tr(ℓ) = 1. Finally, we note that since the operator
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norm is multiplicative over tensor products, i.e., ‖𝐴 ⊗ 𝐵‖ = ‖𝐴‖ · ‖𝐵‖, we have∑︁
𝑖

�̂�𝑖 ⊗ 𝐼𝐷 ⊗ 𝐼𝐷 ⊗ �̂�𝑖

 =
∑︁
𝑖

�̂�𝑖 ⊗ �̂�𝑖

 = ‖𝐹‖.
Therefore, we have �����∑︁

𝑖

〈〈ℓ |𝐸�̂�𝑖
�̃�𝑎 𝜉𝐸�̂�𝑖 |𝑟〉〉

����� ≤ 𝐷‖𝐹‖𝜆Δ2 .
The term involving 𝑎0 in (2.6.4) can be bounded identically, and so��〈〈ℓ |𝐸𝐹 (𝜏( 𝑗1)) |𝑟〉〉 − 〈〈ℓ |𝐸𝐹 (𝜏( 𝑗2)) |𝑟〉〉�� ≤ 2𝐷‖𝐹‖𝜆Δ2 ,

which proves (2.6.6).

We also need a different version of statement (i), as well as statements (iiib) and (ivb)
derived from it.

Lemma 2.6.7. For Ω ⊂ [𝑛]2, let us define

𝜎𝑝𝑝′ (Ω) =
∑︁
( 𝑗 , 𝑗 ′)∈Ω

𝑒𝑖(𝑝 𝑗−𝑝
′ 𝑗 ′) 〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 .

Let us write F := supp(𝐹) and A𝑐 = [𝑛]\A for the complement of a subset A ⊂
[𝑛]. Then:��𝜎𝑝𝑝′ (BΔ(F ) × BΔ(F ))

�� ≤ |BΔ(F )| · ‖𝐹‖√𝑐𝑝𝑐𝑝′ +𝑂
(√
𝑛 𝜆

Δ/2
2

)
, (2.65)��𝜎𝑝𝑝′ (BΔ(F ) × BΔ(F )𝑐)

�� ≤ |B2Δ(F )| · ‖𝐹‖√𝑐𝑝𝑐𝑝′ +𝑂
(
𝑛2𝜆

Δ/2
2

)
, (2.66)��𝜎𝑝𝑝′ (BΔ(F )𝑐 × BΔ(F ))

�� ≤ |B2Δ(F )| · ‖𝐹‖√𝑐𝑝𝑐𝑝′ +𝑂
(
𝑛2𝜆

Δ/2
2

)
. (2.67)

Finally, we have the following: There exists some fixed 𝑗0 ∈ [𝑛] such that for 𝑝 = 𝑝′,
we have

𝜎𝑝𝑝 (BΔ(F )𝑐 × BΔ(F )𝑐) = |BΔ(F )𝑐 | · 〈〈ℓ |𝐸𝐹𝜏 ( 𝑗0) |𝑟〉〉𝑐𝑝 +𝑂
(
𝑛2𝜆

Δ/2
2

)
.(2.68)

For 𝑝 ≠ 𝑝′, we have��𝜎𝑝𝑝′ (BΔ(F )𝑐 × BΔ(F )𝑐)
�� ≤ |BΔ(F )| · ‖𝐹‖√𝑐𝑝𝑐𝑝′ +𝑂

(
𝑛2𝜆

Δ/2
2

)
. (2.69)

We observe that the first expression on the right-hand side of the above bound scales
linearly with the support size of F instead of the support size of F 𝑐, as may be
naively expected. For (2.6.7), this is due to a cancellation of phases, see (2.6.4)
below.
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Proof. For the proof of (2.6.7), let us first define the vectors

|Ψ(𝑝)〉 =
∑︁

𝑗∈BΔ (F )
𝑒𝑖𝑝 𝑗 |Φ 𝑗 ,𝑝〉 .

Then we can write

|𝜎𝑝𝑝′ (BΔ(F ) × BΔ(F )) | = |〈Ψ(𝑝′) |𝐹 |Ψ(𝑝)〉|
≤ ‖𝐹‖ · ‖Ψ(𝑝)‖ · ‖Ψ(𝑝′)‖ , (2.70)

where the last inequality follows by Cauchy-Schwarz along with the definition of
the operator norm ‖𝐹‖. The vector norm is given by

‖Ψ(𝑝)‖2 =
∑︁

𝑗 , 𝑗 ′∈BΔ (F )
𝑒𝑖𝑝( 𝑗− 𝑗

′) 〈Φ 𝑗 ′,𝑝 |Φ 𝑗 ,𝑝〉,

and together with Equation (i), we get

‖Ψ(𝑝)‖2 = |BΔ(F )| · 𝑐𝑝 +𝑂 (𝜆Δ/22 ) .

Taking the square root and inserting into Equation (2.6.4), we get

|𝜎𝑝𝑝′ (BΔ(F ) × BΔ(F )) | = ‖𝐹‖
(√︃
|BΔ(F )| · 𝑐𝑝 +𝑂 (𝜆Δ/22 )

) (√︃
|BΔ(F )| · 𝑐𝑝′ +𝑂 (𝜆Δ/22 )

)
= |BΔ(F )| · ‖𝐹‖√𝑐𝑝𝑐𝑝′ +𝑂

(√︁
|BΔ(F )| · 𝜆Δ/22

)
.

Using the bound
��BΔ(F )

�� ≤ 5𝑑Δ < 𝑛 gives (2.6.7).

Next, let us look at (2.6.7). We have

𝜎𝑝𝑝′ (BΔ(F ) × BΔ(F )𝑐) =
∑︁

𝑗∈BΔ (F )

∑︁
𝑗 ′∈BΔ (F )𝑐

𝑒𝑖(𝑝 𝑗−𝑝
′ 𝑗 ′) 〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 = Σ1 + Σ2,

where we define

Σ1 :=
∑︁

𝑗∈BΔ (F )

∑︁
𝑗 ′∈B2Δ (F )\BΔ (F )

𝑒𝑖(𝑝 𝑗−𝑝
′ 𝑗 ′) 〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 ,

and

Σ2 :=
∑︁

𝑗∈BΔ (F )

∑︁
𝑗 ′∈B2Δ (F )𝑐

𝑒𝑖(𝑝 𝑗−𝑝
′ 𝑗 ′) 〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 .
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The norm of the second sum can be bounded using Lemma 2.6.5(iiia), giving us

|Σ2 | ≤
∑︁

𝑗∈BΔ (F )

∑︁
𝑗 ′∈B2Δ (F )𝑐

|〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉|

≤ |BΔ(F )| · |B2Δ(F )𝑐 | · 𝑂 (𝜆Δ/22 )
= 𝑂 (𝑛2𝜆

Δ/2
2 ) , (2.71)

where we again use the trivial bound
��BΔ(F )

�� , ��B2Δ(F )𝑐
�� ≤ 𝑛 in the last line. Using

Lemma 2.6.5 (iiib), we can express the first sum, with some fixed 𝑞 ∈ [𝑛], as

Σ1 =
∑︁

𝑗∈BΔ (F )

∑︁
𝑗 ′∈B2Δ (F )\BΔ (F )

𝑒𝑖(𝑝 𝑗−𝑝
′ 𝑗 ′) 〈〈ℓ |𝐸𝐹 (𝜏(𝑞)) ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′) |𝑟〉〉

+ |BΔ(F )| · |B2Δ(F )\BΔ(F )| · 𝑂 (𝜆Δ/22 )

=
∑︁

𝑗∈BΔ (F )

∑︁
𝑗 ′∈B2Δ (F )\BΔ (F )

𝑒𝑖(𝑝 𝑗−𝑝
′ 𝑗 ′) 〈〈ℓ |𝐸𝐹 (𝜏(𝑞)) ( 𝑗 , 𝑝, 𝑗 ′, 𝑝′) |𝑟〉〉 +𝑂

(
𝑛2𝜆

Δ/2
2

)
,

where the indices 𝑗 and 𝑗 ′ are defined as in Lemma 2.6.5. To bound the remaining
sum, let us introduce the states

|Ψ1(𝑝)〉 :=
∑︁

𝑗∈BΔ (F )
𝑒𝑖𝑝 𝑗 |Φ𝐿

𝑗,𝑝
〉 , and

|Ψ2(𝑝′)〉 :=
∑︁

𝑗 ′∈B2Δ (F )\BΔ (F )
𝑒𝑖𝑝

′ 𝑗 ′ |Φ𝐿

𝑗 ′,𝑝′
〉 ,

where we set 𝐿 = |supp(𝐹 (𝜏(𝑞))) |. Here, |Φ𝐿
𝑗,𝑝
〉 are as defined in (2.6.3). Then we

can write

Σ1 = 〈Ψ2(𝑝′) |𝐹 (𝜏(𝑞)) |Ψ1(𝑝)〉 +𝑂
(
𝑛2𝜆

Δ/2
2

)
.

By the Cauchy-Schwarz inequality and the orthogonality relations (2.6.4), we have

|〈Ψ2(𝑝′) |𝐹 (𝜏(𝑞)) |Ψ1(𝑝)〉| ≤ ‖𝐹‖ · ‖Ψ1(𝑝)‖ · ‖Ψ2(𝑝′)‖

= ‖𝐹‖
√︃
𝑐𝑝𝑐𝑝′ |BΔ(F )| · |B2Δ(F )\BΔ(F )| ,

where we bound the states |Ψ1,2(𝑝)〉 in exactly the same way as we did in the proof of
(2.6.7). Using the fact that |BΔ(F )|, |B2Δ(F )\BΔ(F )| ≤ |B2Δ(F )|, we conclude
that

|Σ1 | ≤ |B2Δ(F )| · ‖𝐹‖√𝑐𝑝𝑐𝑝′ +𝑂
(
𝑛2𝜆

Δ/2
2

)
.

Combining this with (2.6.4) gives the claim (2.6.7). The proof of (2.6.7) is analo-
gous, using Lemma 2.6.5(iv).
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Finally, consider (2.6.7) and (2.6.7). We have

𝜎𝑝𝑝′ (BΔ(F )𝑐 × BΔ(F )𝑐) =
∑︁

𝑗∈BΔ (F )𝑐
𝑒𝑖 𝑗 (𝑝−𝑝

′) 〈Φ 𝑗 ,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉

︸                                    ︷︷                                    ︸
=:Θ1

+
∑︁

𝑗 , 𝑗 ′∈BΔ (F )𝑐
𝑗≠ 𝑗 ′

𝑒𝑖(𝑝 𝑗−𝑝
′ 𝑗 ′) 〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉

︸                                          ︷︷                                          ︸
=:Θ2

.

Using Lemma 2.6.5(iia), we have

|Θ2 | ≤ ‖𝐹‖ · 𝑂 (𝑛2𝜆
Δ/2
2 ) . (2.72)

On the other hand, by Lemma 2.6.5(iib), or more precisely its refinement in the form
of Equation (2.6.6) from Lemma 2.6.6, we have

Θ1 =
©«

∑︁
𝑗∈BΔ (F )𝑐

𝑒𝑖 𝑗 (𝑝−𝑝
′)ª®¬ 〈〈ℓ |𝐸𝐹 (𝜏( 𝑗0)) |𝑟〉〉𝑐𝑝𝑝′ +𝑂 (𝑛𝜆Δ/22 )

for some fixed 𝑗0 ∈ BΔ(F )𝑐. For 𝑝′ = 𝑝, the sum above is given trivially by∑
𝑗∈BΔ (F )𝑐 1 =

��BΔ(F )𝑐
��. For 𝑝 ≠ 𝑝′, we have

∑
𝑗∈[𝑛] 𝑒

𝑖 𝑗 (𝑝−𝑝′) = 0, and hence������ ∑︁
𝑗∈BΔ (F )𝑐

𝑒𝑖 𝑗 (𝑝−𝑝
′)

������ =
������ ∑︁
𝑗∈BΔ (F )

𝑒𝑖 𝑗 (𝑝−𝑝
′)

������ ≤ |BΔ(F )|. (2.73)

Therefore, for 𝑝 = 𝑝′, we have

Θ1 =
��BΔ(F )𝑐

�� 〈〈ℓ |𝐸𝐹 (𝜏( 𝑗0)) |𝑟〉〉𝑐𝑝 +𝑂 (𝑛𝜆Δ/22 ) ,

and for 𝑝 ≠ 𝑝′, we have

|Θ1 | ≤
��BΔ(F )

�� 〈〈ℓ |𝐸𝐹 (𝜏( 𝑗0)) |𝑟〉〉𝑐𝑝𝑝′ +𝑂 (𝑛𝜆Δ/22 )
≤

��BΔ(F )
�� · ‖𝐹‖𝑐𝑝𝑝′ +𝑂 (𝑛𝜆Δ/22 ).

Note that we also have 𝑐𝑝𝑝′ ≤
√
𝑐𝑝𝑐𝑝′ by the Cauchy-Schwarz inequality. Combining

these results with (2.6.4) proves claims (2.6.7) and (2.6.7).

2.6.5 The Parameters of Codes Based on the Excitation Ansatz
Recall that the normalization of the excitation ansatz states |Φ𝑝〉 ≡ |Φ𝑝 (𝐵; 𝐴)〉 are
given by Lemma 2.6.2 as

‖Φ𝑝 ‖ =
√
𝑛𝑐𝑝 +𝑂 (𝑛3/2𝜆𝑛/62 ).
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In the following, we let |𝜙𝑝〉 denote the normalized versions of |Φ𝑝〉. In terms of
matrix elements, we have

〈𝜙𝑝 |𝐹 |𝜙𝑝′〉 =
〈Φ𝑝 |𝐹 |Φ𝑝′〉

𝑛
√
𝑐𝑝𝑐𝑝′ (1 +𝑂 (𝑛2𝜆

Δ/6
2 ))

=
〈Φ𝑝 |𝐹 |Φ𝑝′〉
𝑛
√
𝑐𝑝𝑐𝑝′

+𝑂 (𝑛𝜆Δ/62 ). (2.74)

Our main technical result for the excitation ansatz consists of the following estimates:

Lemma 2.6.8. Let 𝜈 ∈ (0, 1) and 𝑑 = 𝑛1−𝜈. Let 𝐹 ∈ B((Cp)⊗𝑛) be a 𝑑-local
operator with unit norm. Consider the normalized versions |𝜙𝑝〉 and |𝜙𝑝′〉 of the
excitation ansatz state (2.6.1). Then we have

|〈𝜙𝑝′ |𝐹 |𝜙𝑝〉| = 𝑂 (𝑛−𝜈/2) for 𝑝 ≠ 𝑝′ , (2.75)

and

|〈𝜙𝑝 |𝐹 |𝜙𝑝〉 − 〈𝜙𝑝′ |𝐹 |𝜙𝑝′〉| = 𝑂 (𝑛−𝜈/2) for all 𝑝, 𝑝′ . (2.76)

Proof. By definition of the excitation ansatz states, we have

〈Φ𝑝′ |𝐹 |Φ𝑝〉 =
𝑛∑︁

𝑗 , 𝑗 ′=1
𝑒𝑖(𝑝 𝑗−𝑝

′ 𝑗 ′) 〈Φ 𝑗 ′,𝑝′ |𝐹 |Φ 𝑗 ,𝑝〉 =
4∑︁
𝛼=1

𝜎𝑝𝑝′ (Ω𝛼) , (2.77)

where

Ω1 = BΔ(supp(𝐹)) × BΔ(supp(𝐹)) ,
Ω2 = BΔ(supp(𝐹)) × BΔ(supp(𝐹))𝑐 ,
Ω3 = BΔ(supp(𝐹))𝑐 × BΔ(supp(𝐹)) ,
Ω4 = BΔ(supp(𝐹))𝑐 × BΔ(supp(𝐹))𝑐 ,

is the partition of [𝑛]2 considered in Lemma 2.6.7. Thus, for 𝑝 ≠ 𝑝′, we obtain

|〈Φ𝑝′ |𝐹 |Φ𝑝〉| ≤ 4|B2Δ(F )|√𝑐𝑝𝑐𝑝′ +𝑂 (𝑛2𝜆
Δ/2
2 ) .

Inserting the expression (2.6.5) for the normalized matrix element, we get

|〈𝜙𝑝′ |𝐹 |𝜙𝑝〉| ≤
��〈Φ𝑝 |𝐹 |Φ𝑝′〉

��
𝑛
√
𝑐𝑝𝑐𝑝′

+𝑂 (𝑛𝜆Δ/62 )

≤ 4|B2Δ(F )|
𝑛

+𝑂 (𝑛𝜆Δ/22 ) +𝑂 (𝑛𝜆
Δ/6)

=
4|B2Δ(F )|

𝑛
+𝑂 (𝑛𝜆Δ/62 ) .
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Assume that supp(𝐹) consists of 𝜅 disjoint connected components. By definition,
we have

|BΔ(supp(𝐹)) | =
��supp(𝐹) ∪

(
BΔ(supp(𝐹))\supp(𝐹)

) �� ≤ 𝑑 + 2𝜅Δ ≤ 𝑑 (1 + 2Δ),

where we use the fact that 𝜅 ≤ 𝑑 in the last inequality. Hence, we have

|〈𝜙𝑝′ |𝐹 |𝜙𝑝〉| ≤
4𝑑 (1 + 4Δ)

𝑛
+𝑂 (𝑛𝜆Δ/62 ) .

Let 1 > 𝜈 > 0 be arbitrary. Choosing 𝑑 = 𝑛1−𝜈 and Δ = 6𝑛𝜈/2 gives9

|B2Δ(supp(𝐹)) |
𝑛

≤ 𝑑 (1 + 4Δ)
𝑛

= 𝑂 (𝑛−𝜈/2), (2.78)

and therefore

|〈𝜙𝑝′ |𝐹 |𝜙𝑝〉| = 𝑂 (𝑛−𝜈/2) +𝑂 (𝑛𝜆𝑛
𝜈/2

2 ) = 𝑂 (𝑛
−𝜈/2) .

Note that the last equality follows since, for all 𝜆2 < 1 and 𝑎, 𝑏 > 0, we have
lim𝑛→∞ 𝑛𝑎𝜆𝑛

𝑏

2 = 0. This proves claim (2.6.8).

Next, we prove (2.6.8). Making use of Equation (2.6.5) and the decomposi-
tion (2.6.5), we have

|〈𝜙𝑝 |𝐹 |𝜙𝑝〉 − 〈𝜙𝑝′ |𝐹 |𝜙𝑝′〉| ≤
���� 〈Φ𝑝 |𝐹 |Φ𝑝〉

𝑛𝑐𝑝
−
〈Φ𝑝′ |𝐹 |Φ𝑝′〉

𝑛𝑐𝑝′

���� +𝑂 (𝑛𝜆Δ/62 )

≤ 1
𝑛

4∑︁
𝛼=1

��� (𝑐−1
𝑝 𝜎𝑝𝑝 (Ω𝛼) − 𝑐−1

𝑝′ 𝜎𝑝′𝑝′ (Ω𝛼)
) ��� +𝑂 (𝑛𝜆Δ/62 ).

By Lemma 2.6.7, we have

|𝜎𝑝𝑝 (Ω𝛼) | ≤ |B2Δ(supp(𝐹)) |𝑐𝑝 +𝑂 (𝑛2𝜆
Δ/2
2 ) for 𝛼 ∈ {1, 2, 3} ,

and so we can write

1
𝑛

3∑︁
𝛼=1

���𝑐−1
𝑝 𝜎𝑝𝑝 (Ω𝛼) − 𝑐−1

𝑝′ 𝜎𝑝′𝑝′ (Ω𝛼)
��� ≤ 1

𝑛

3∑︁
𝛼=1

��𝑐−1
𝑝 𝜎𝑝𝑝 (Ω𝛼)

�� + 1
𝑛

3∑︁
𝛼=1

���𝑐−1
𝑝′ 𝜎𝑝′𝑝′ (Ω𝛼)

���
≤ 6|B2Δ(supp(𝐹)) |

𝑛
+𝑂 (𝑛𝜆Δ/2).

9Note that this choice of 𝑑 and Δ satisfies the requirement in Lemma 2.6.5 for sufficiently large
𝑛.



78

It remains to consider the terms involving Ω4, whereby using Equation (2.6.7), we
get ���𝑐−1

𝑝 𝜎𝑝𝑝 (Ω4) − 𝑐−1
𝑝′ 𝜎𝑝′𝑝′ (Ω4)

��� = 𝑂 (𝑛2𝜆
Δ/2
2 ).

Putting everything together, we have

|〈𝜙𝑝 |𝐹 |𝜙𝑝〉 − 〈𝜙𝑝′ |𝐹 |𝜙𝑝′〉| ≤
6|B2Δ(supp(𝐹)) |

𝑛
+𝑂 (𝑛𝜆Δ/62 )

= 𝑂 (𝑛−𝜈/2),

where we again use the bound (2.6.5) in the last line. This proves claim (2.6.8).

With Lemma 2.6.8, it is straightforward to check the condition for approximate
quantum error-detection from Section 2.3.2. This leads to the following:

Theorem 2.6.9. Let 𝜈 ∈ (0, 1) and let 𝜅,Δ > 0 be such that

5𝜅 + 𝜆 < 𝜈 .

Let 𝐴, 𝐵 be tensors associated with an injective excitation ansatz state |Φ𝑝 (𝐵; 𝐴)〉,
where 𝑝 is the momentum of the state. Then there is a subspace C ⊂ (Cp)⊗𝑛 spanned
by excitation ansatz states {|Φ𝑝 (𝐵; 𝐴)〉}𝑝 with different momenta 𝑝 such that C is
an (𝜖, 𝛿) [[𝑛, 𝑘, 𝑑]]-AQEDC with parameters

𝑘 = 𝜅 logp 𝑛 ,

𝑑 = 𝑛1−𝜈 ,

𝜖 = Θ(𝑛−(𝜈−(5𝜅+𝜆))) ,
𝛿 = 𝑛−𝜆 .

Proof. Let us choose an arbitrary set {𝑝1, . . . , 𝑝p𝑘 } of p𝑘 = 𝑛𝜅 distinct, non-zero
momenta, and define the space C by

C = span{|Φ𝑝 𝑗
(𝐵; 𝐴)〉}p

𝑘

𝑗=1 .

Since momentum eigenstates to different momenta are orthogonal, the states {|𝜙𝑝 𝑗
〉}p

𝑘

𝑗=1
form an orthonormal basis of C. By Lemma 2.6.8, we have

|〈𝜙𝑝𝑟 |𝐹 |𝜙𝑝𝑠〉 − 𝛿𝑟,𝑠〈𝜙𝑝1 |𝐹 |𝜙𝑝1〉| = 𝑂 (𝑛−𝜈/2)

for any 𝑑-local unit norm operator 𝐹 ∈ B((Cp)⊗𝑛) and all 𝑟, 𝑠 ∈ [p𝑘 ]. The
sufficient conditions of Corollary 2.3.4 for approximate error-detection applied with
𝛾 = Θ(𝑛−𝜈/2) show that C is a (Θ(p5𝑘𝑛−𝜈/𝛿), 𝛿) [[𝑛, 𝑘, 𝑑]]-AQEDC for any 𝛿

satisfying 𝛿 > p5𝑘𝑛−𝜈. This implies the claim for the given choice of parameters.
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From [66], we know that isolated energy bands in gapped systems are well approxi-
mated, under mild physical conditions, by the Fourier transforms of local operators.
In particular, this means that, possibly after blocking, isolated momentum eigen-
states of gapped systems are well approximated by some excitation ansatz state, as
one would expect.10 One consequence of this is that the excitation ansatz codes
considered in this section are generic among physical systems: essentially any se-
lection of momentum eigenstates from an isolated energy band of a gapped system
can be expected to form an error-detecting code with the above parameters.

10In fact, we expect excitation ansatz states to be even better approximations of momentum
eigenstates than the constructions considered in [66]. In [66], the local operators 𝑂 act on the
physical level, whereas the defining tensors 𝐵 of excitation ansatz states act on the virtual level, and
are hence more general.
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2.7 AQEDC at Low Energies: An Integrable Model
In this section, we consider the Heisenberg-XXX spin chain. In Section 2.7.1, we in-
troduce the model. The approximate error-detection codes we consider are spanned
by eigenstates that we call magnon-states. The latter are particular instances of the
algebraic Bethe ansatz, for which a general framework of MPS/MPO descriptions
has been introduced in prior work [67]. We review the necessary notation for matrix
product operators (MPOs) in Section 2.7.2. In Section 2.7.3, we give an MPS/MPO
description of magnon-states. In Section 2.7.4, we provide a second MPS/MPO
description with smaller bond dimension. In Section 2.7.5, we consider matrix ele-
ments of operators with respect to the magnon-state basis. We show how to relate
matrix elements of operators with arbitrary support to matrix elements of operators
with connected support. In Section 2.7.6 we analyze the Jordan structure of the
transfer operators. In Section 2.7.7, we bound matrix elements of local operators
in magnon states. Finally, in Section 2.7.8, we determine the parameters of the
magnon code.

2.7.1 The XXX-Model and the Magnon Code
Consider the periodic Heisenberg-XXX spin chain, with Hamiltonian

𝐻 = −1
4

𝑛∑︁
𝑚=1

(
𝜎𝑥𝑚𝜎

𝑥
𝑚+1 + 𝜎

𝑦
𝑚𝜎

𝑦

𝑚+1 + 𝜎
𝑧
𝑚𝜎

𝑧
𝑚+1

)
(2.79)

on (C2)⊗𝑛, where we apply periodic boundary conditions, and where 𝜎𝑥𝑚, 𝜎
𝑦
𝑚, 𝜎

𝑧
𝑚

are the Pauli matrices acting on the 𝑚-th qubit. The model (2.7.1) is gapless
and can be solved exactly using the algebraic Bethe ansatz. Our goal here is to
argue that (2.7.1) contains error-detecting codes in its low-energy subspace. More
precisely, we consider subspaces spanned by non-zero momentum eigenstates.

The Hamiltonian (2.7.1) may alternatively be expressed as

𝐻 =
𝑛

4
𝐼 − 1

2

𝑛∑︁
𝑚=1
F𝑚,𝑚+1 , (2.80)

where F𝑚,𝑚+1 is the flip-operator acting on the 𝑚-th and (𝑚 + 1)-th qubit. Equa-
tion (2.7.1) shows that 𝐻 commutes with the tensor product representation of the
special unitary group 𝑆𝑈 (2) on (C2)⊗𝑛, hence we may restrict to irreducible sub-
spaces (with fixed angular momentum) to diagonalize 𝐻. More precisely, let us
define, for each qubit 𝑚, the operators

s−𝑚 = |0〉〈1|, s+𝑚 = (s−𝑚)†, and s3
𝑚 =

1
2
(−|0〉〈0| + |1〉〈1|).
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These satisfy the canonical 𝔰𝔲(2) commutation relations, with s+ and s− being the
raising and lowering operators of the spin-1/2 representation, and the basis states
|0〉 and |1〉 corresponding to | 𝑗 , 𝑚〉 = |1/2,−1/2〉 and |1/2, 1/2〉, respectively. The
total 𝑧-angular momentum and raising/lowering-operators for the tensor product
representation on (C2)⊗𝑛 are given by

𝑆3 =

𝑛∑︁
𝑚=1

s3
𝑚 and 𝑆± =

𝑛∑︁
𝑚=1

s±𝑚 .

These operators commute with 𝐻, and therefore the total Hilbert space splits into a
direct sum of spin representations:

(C2)⊗𝑛 �
⊕
𝑗

H 𝑗 ⊗ C𝑚 𝑗 ,

where the direct sum is taken over all irreducible spin representations (with mul-
tiplicity 𝑚 𝑗 ) present in the decomposition of the tensor representation. Each H 𝑗

defines an irreducible 2 𝑗 + 1-dimensional angular momentum- 𝑗 representation, and
𝐻 |H 𝑗

= 𝐸 𝑗 𝐼H 𝑗
is proportional to the identity on each of these spaces. For instance,

the subspaceH𝑛/2 with maximal angular momentum has highest weight vector |1〉⊗𝑛

and is spanned by “descendants” obtained by applying the lowering operator, that
is,

H𝑛/2 = span
{
𝑆𝑟− |1〉⊗𝑛 | 𝑟 = 0, . . . , 𝑛

}
.

It is associated with energy 𝐸𝑛/2 = −𝑛/4, which is the ground state energy of 𝐻.
Clearly, this is the symmetric subspace, containing only permutation-invariant (i.e.,
zero-momentum) states. Error-correction within this subspace has been considered
in [51]. Indeed, all the examples constructed there consist of subspaces ofH𝑛/2.

Here we go beyond permutation-invariance. Specifically, we consider the vector

|Ψ〉 = 𝜔
𝑛∑︁
𝑟=1

𝜔𝑟s−𝑟 |1〉⊗𝑛 where 𝜔 = 𝑒2𝜋𝑖/𝑛 . (2.81)

The factor 𝜔 in front is introduced for convenience. A straightforward calculation
shows that 𝑆+ |Ψ〉 = 0 and 𝑆3 |Ψ〉 = (𝑛/2 − 1) |Ψ〉, hence this is a highest weight
vector for angular momentum 𝑗 = 𝑛/2 − 1 and

H𝑛/2−1 = span
{
𝑆𝑟− |Ψ〉 | 𝑟 = 0, . . . , 𝑛 − 2

}
. (2.82)

The energy of states in this subspace can be computed to be 𝐸𝑛/2−1 = −𝑛/4 + 1 −
cos(2𝜋/𝑛) = 𝐸𝑛/2 + 𝑂 (1/𝑛2). This shows that these states are associated with
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low-lying excitations, and the system is gapless. Observe also that (2.7.1) is an
eigenvector of the cyclic shift with eigenvalue 𝜔, that is, it has fixed momentum 𝑝 =

2𝜋/𝑛. As 𝑆𝑟− commutes with the cyclic shift, the same is true for all states inH𝑛/2−1:
this is a subspace of fixed momentum and energy. We will argue thatH𝑛/2−1 contains
error-detecting codes. Specifically, we consider subspaces spanned by states of
the form {𝑆𝑟− |Ψ〉}𝑟 for appropriate choices of magnetization 𝑟. The state (2.7.1)
is sometimes referred to as a one-magnon state. Correspondingly, we call the
corresponding code(s) the magnon-code. We also refer to the vectors {𝑆𝑟− |Ψ〉}𝑟
(respectively, their normalized versions) as magnon-states. For brevity, let us denote
the 𝑟-th descendant by

|Ψ𝑟〉 := 𝑆𝑟− |Ψ〉 for 𝑟 = 0, . . . , 𝑛 − 2 . (2.83)

It is clear that the states |Ψ𝑟〉 and |Ψ𝑠〉 are orthogonal for 𝑟 ≠ 𝑠 as they have different
magnetization, hence they form a basis of the magnon code. It is also convenient to
introduce their normalized versions which are given by

|𝜓𝑟〉 =
(
(𝑛 − 2 − 𝑟)!
𝑛(𝑛 − 2)!𝑟!

)1/2
𝑆𝑟− |Ψ〉 for 𝑟 = 0, . . . , 𝑛 − 2 , (2.84)

as follows from the fact that for a normalized highest-weight vector | 𝑗 , 𝑗〉 of a
spin- 𝑗-representation, the vectors

| 𝑗 , 𝑗 − 𝑘〉 =
(
(2 𝑗 − 𝑘)!
(2 𝑗)!𝑘!

)1/2
𝑆𝑘− | 𝑗 , 𝑗〉,

with 𝑘 = 0, . . . , 2 𝑗 form an orthonormal basis.

2.7.2 Matrix Product Operators
Here we briefly review the formalism of matrix product operators (MPO) and
introduce the corresponding notation. We only require site-independent MPO. Such
an MPO O ∈ B((Cp)⊗𝑛) with bond dimension 𝐷 is given by

O =
∑︁

𝑖1,...,𝑖𝑛∈[p]
𝑗1,..., 𝑗𝑛∈[p]

tr(𝑂𝑖1, 𝑗1 · · ·𝑂𝑖𝑛, 𝑗𝑛𝑋) |𝑖1〉〈 𝑗1 | ⊗ · · · ⊗ |𝑖𝑛〉〈 𝑗𝑛 |

for a family of local tensors {𝑂𝑖, 𝑗 }𝑖, 𝑗∈[p] ⊂ B(C𝐷), and a boundary operator 𝑋 ∈
B(C𝐷). Alternatively, the MPO O can also be parametrized by the operator 𝑋 ∈
B(C𝐷) together with family {𝑂𝛼,𝛽}𝛼,𝛽∈[𝐷] of p×p-matrices. In this parametrization
(illustrated in Figure 2.8), the MPO is written as

O =
∑︁

𝛼0,...,𝛼𝑛∈[𝐷]
𝑋𝛼𝑛,𝛼0𝑂

𝛼0,𝛼1 ⊗ 𝑂𝛼1,𝛼2 ⊗ · · · ⊗ 𝑂𝛼𝑛−1,𝛼𝑛 . (2.85)



83

Figure 2.8: Alternative parametrization of an MPO O.

Figure 2.9: The product of two MPO tensors 𝑂1 and 𝑂2, as well as the power 𝑂�𝑘1 .

Equation (2.7.2) shows that the MPO O = O(𝑂, 𝑋, 𝑛) ∈ B((Cp)⊗𝑛) is fully
specified by three objects:

(i) a four-index tensor 𝑂, defined in terms of the collection {𝑂𝑖, 𝑗 }𝑖, 𝑗∈[p] of ma-
trices acting on the so-called virtual space C𝐷 (alternatively, the collection of
matrices {𝑂𝛼,𝛽}𝛼,𝛽∈[𝐷] acting on the physical space Cp),

(ii) a matrix 𝑋 ∈ B(C𝐷) acting on the virtual space, and

(iii) an integer 𝑛 ∈ N specifying the number of physical spins.

We refer to the tensor 𝑂 as a local MPO tensor, and to 𝑋 as a boundary operator.

It is convenient to introduce the following product on MPO tensors. Suppose 𝑂1

and 𝑂2 are MPO tensors associated with MPOs having physical dimension p, and
bond dimensions 𝐷1 and 𝐷2, respectively. Then 𝑂1 �𝑂2 is the MPO tensor of an
MPO with physical dimension p and bond dimension 𝐷1 · 𝐷2. Its tensor network
description is given in Figure 2.9. More precisely, if 𝑂𝛼 is defined by {𝑂 (𝑥)

𝑖, 𝑗
}𝑖, 𝑗∈[p]

for 𝑥 = 1, 2, then 𝑂1 �𝑂2 is defined in terms of the matrices

𝑂𝑖, 𝑗 =

𝑟∑︁
𝑘=1
(𝑂 (1))𝑖,𝑘 ⊗ (𝑂 (2))𝑘, 𝑗 ∈ B(C𝐷1 ⊗ C𝐷2) for 𝑖, 𝑗 ∈ [p] .

This is clearly associative, and allows us to define 𝑂�𝑘 := 𝑂 �𝑂�(𝑘−1) recursively.

Suppose now that an MPO O = O(𝑂, 𝑋, 𝑛) is given. Observe that for 𝑘 ∈ N, the
operator O𝑘 is an MPO whose virtual bond space is (C𝐷)⊗𝑘 and whose local tensors
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Figure 2.10: This figure shows an MPOO = O(𝑂, 𝑋, 2) defined in terms of matrices
{𝑂𝑖, 𝑗 }𝑖, 𝑗 and the matrices {𝑂�3

𝑖, 𝑗
}𝑖, 𝑗 defining the MPO O3. Left-multiplication by an

operator corresponds to stacking a diagram on top.

Figure 2.11: Definition of the MPS tensor 𝑂 �𝑇 .

take the form

〈𝛼1 · · · 𝛼𝑘 | (𝑂�𝑘 )𝑖, 𝑗 |𝛽1 · · · 𝛽𝑘〉 =
∑︁

𝑠1,...,𝑠𝑘−1∈[p]

〈𝛼1 |𝑂𝑖,𝑠1 |𝛽1〉 · 〈𝛼2 |𝑂𝑠1,𝑠2 |𝛽2〉
· · · 〈𝛼𝑘−1 |𝑂𝑠𝑘−2,𝑠𝑘−1 |𝛽𝑘−1〉 · 〈𝛼𝑘 |𝑂𝑠𝑘−1, 𝑗 |𝛽𝑘〉 ,

with boundary tensor 𝑋⊗𝑘 . Thus the MPO O𝑘 = O(𝑂�𝑘 , 𝑋⊗𝑘 , 𝑛) is defined by
the MPO tensor 𝑂�𝑘 and the boundary operator 𝑋⊗𝑘 . These are visualized in
Figure 2.10, for 𝑘 = 3.

Consider an MPS |Ψ〉 = |Ψ(𝐴, 𝑋, 𝑛)〉 ∈ (Cp)⊗𝑛 of bond dimension 𝐷1 and an
MPO O = O(𝑂,𝑌, 𝑛) ∈ B((Cp)⊗𝑛) of bond dimension 𝐷2. Then clearly O|Ψ〉 is
an MPS with bond dimension 𝐷1𝐷2. We write

O|Ψ〉 = |Ψ(𝑂 � 𝐴,𝑌 ⊗ 𝑋, 𝑛)〉 , (2.86)

see Figure 2.11 for the definition of the MPS tensor 𝑂 �𝑇 .
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Figure 2.12: This figure shows the tensor network representations of 𝐸𝑂 and 𝐸𝑂�3 .

Figure 2.13: This figure illustrates the definition of the product 𝑂 � |𝜑〉.

In the following, we are interested in matrix elements of the form 〈Ψ|O|Ψ〉. A
central object of study is the generalized transfer operator 𝐸𝑂 . If 𝑂 is specified by
matrices {𝑂𝑖, 𝑗 }𝑖, 𝑗∈[p] ⊂ B(C𝐷2), this is given by

𝐸𝑂 =
∑︁

𝑠,𝑡∈[𝐷1]

∑︁
𝑗 ,𝑘∈[𝐷2]

〈𝑠 |𝑂 𝑗 ,𝑘 |𝑡〉𝐴𝑠 ⊗ | 𝑗〉〈𝑘 | ⊗ 𝐴𝑡 ∈ B(Cp ⊗ C𝐷2 ⊗ Cp) .

This operator, as well as 𝐸𝑂�𝑘 ∈ B(Cp ⊗ (C𝐷2)⊗𝑘 ⊗ Cp) for 𝑘 = 3 are illustrated in
Figure 2.12.

Consider an MPO tensor 𝑂 with physical space H𝑝 and virtual space H𝑣. Given a
vector |𝜑〉 ∈ H𝑣, we can define an element 𝑂 � |𝜑〉 ∈ H𝑣 ⊗ B(H𝑝) by attaching 𝑂
from the left, see Figure 2.13. The map (𝑂, 𝜑) ↦→ 𝑂 � |𝜑〉 is bilinear. Hence we
can define

𝑂 � (𝑂 � |𝜑〉) := (𝑂 ⊗ 𝐼B(H𝑝)) (𝑂 � |𝜑〉) ∈ H𝑣 ⊗ B(H𝑝) ⊗ B(H𝑝) .

This is clearly associative. Correspondingly, we also define 𝑂�𝑛 |𝜑〉 ∈ H𝑣 ⊗
B(H𝑝)⊗𝑛 as the result applying this map 𝑛 times. Note that an MPO defined
by (𝑂, 𝑋 = |𝜑〉〈𝜒 |) can be written as

(
〈𝜒 | ⊗ 𝐼⊗𝑛B(H𝑝)

)
𝑂�𝑛 |𝜑〉.

Conversely, observe that a bilinear map Γ : H𝑣 →H𝑣 ⊗ B(H𝑝), together with two
states |𝜑〉, |𝜒〉 ∈ H𝑣, defines a site-independent MPO in this fashion.
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Figure 2.14: An MPS description of the one-magnon state |Ψ〉 (cf. (2.7.1)).

2.7.3 MPS/MPO Representation of the Magnon States
Here we give an MPS/MPO representation of the magnon states that we use through-
out our analysis below. We note that more generally, [67] discusses such represen-
tations for the Bethe ansatz states.

Consider the one-magnon state |Ψ〉 ∈ (C2)⊗𝑛 defined by (2.7.1). It is straightforward
to check that an MPS representation of |Ψ〉 = |Ψ({𝐴0, 𝐴1, 𝑋})〉with bond dimension
𝐷 = 2 is given by

𝐴0 = |1〉〈0| ,
𝐴1 = |0〉〈0| + 𝜔 |1〉〈1| , (2.87)

𝑋 = |0〉〈1| ,

where 𝜔 = 𝑒2𝜋𝑖/𝑛, see Figure 2.14. Next, we consider the descendants (2.7.1). The
operator 𝑆− =

∑𝑛
𝑚=1 s−𝑚 can be expressed as a bond dimension 𝐷 = 2 MPO, given

by

𝑆− = O(𝑂0,0, 𝑂0,1, 01,0, 𝑂1,1, 𝑋) ∈ B((C2)⊗𝑛) ,

where the boundary tensor is 𝑋 = 𝜎− := |0〉〈1|, and where the local tensors are
defined as

𝑂0,0 = 𝑂1,1 = 𝐼C2 ,

𝑂1,0 = |0〉〈1| , (2.88)

𝑂0,1 = 0 .

This definition is illustrated in Figure 2.15. The adjoint operator 𝑆+ has an MPO
representation described as in Figure 2.16.
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Figure 2.15: An MPO description of the lowering operator. The MPO 𝑆− =

O(𝑂, 𝑋, 𝑛) is defined with 𝑂 as given in the figure and with 𝑋 = 𝜎−.

Figure 2.16: An MPO description of the adjoint MPO 𝑆+.

Figure 2.17: An MPS/MPO representation of the vector |Ψ𝑠〉 = 𝑆𝑠− |Ψ〉. Seen as an
MPS, this has rank-1-boundary tensor 𝑋 = ( |0〉〈1|)⊗𝑠+1.

It follows that the “descendants” |Ψ𝑠〉 = 𝑆𝑠− |Ψ〉 can be represented as in Figure 2.17,
i.e., they are MPS of the form

|Ψ𝑠〉 = |Ψ(𝑂�𝑠 � 𝐴, 𝑋⊗(𝑠+1) , 𝑛)〉 for 𝑠 = 0, . . . , 𝑛 − 2 ,

where the MPS tensor 𝑂 �𝑇 is defined as in Equation (2.7.2).
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2.7.4 A Compressed MPS/MPO Representation of the Magnon States
Consider the MPO representation (2.7.3) of 𝑆−. For 𝑠 ∈ [𝑛], it implies the MPO
representation

𝑆𝑠− = O(𝑂�𝑠, 𝜎⊗𝑠− , 𝑛) (2.89)

for the 𝑠-th power of 𝑆−, which has bond dimension 𝐷 = 2𝑠. Below we argue that
the MPO (2.7.4) can also be expressed as an MPO with bond dimension 𝑠 + 1. We
call this the compressed representation:

Lemma 2.7.1. Let 𝑠 ∈ [𝑛] and consider the operator 𝑆𝑠−, where 𝑆− =
∑𝑛
𝑚=1 s−𝑚. This

has the bond dimension 𝐷 = 𝑠 + 1-MPO representation

𝑆𝑠− = O(�̃�𝑠, �̃�𝑠, 𝑛) .

Here the virtual space C𝑠+1 is that of a spin-𝑠/2 with orthonormal angular mo-
mentum eigenstate basis {| 𝑠2 , 𝑚〉 | 𝑚 = − 𝑠2 ,−

𝑠
2 + 1, . . . , 𝑠2 }. The boundary tensor

is

�̃�𝑠 = |
𝑠

2
,− 𝑠

2
〉〈 𝑠

2
,
𝑠

2
|

and the MPO tensor �̃�𝑠 is defined by the matrices

(�̃�𝑠)0,0 = (�̃�𝑠)1,1 = 𝐼 ,

(�̃�𝑠)1,0 = 0 , (2.90)

(�̃�𝑠)0,1 = 𝐽+ ,

where 𝐽+ is the usual spin-raising operator.11 In particular, the states |Ψ𝑠〉 = 𝑆𝑠− |Ψ〉
have an MPS representation of the form

|Ψ𝑠〉 = |Ψ(�̃�𝑠 � 𝐴, �̃�𝑠 ⊗ 𝑋, 𝑛)〉 ,

with bond dimension 2(𝑠 + 1).

Proof. Consider the MPO tensor𝑂�𝑠 associated with the MPO representation (2.7.4)
of 𝑆𝑠−. We express it in terms of matrices {𝑂𝑖, 𝑗 }𝑖, 𝑗∈{0,1} ⊂ B((C2)⊗𝑠) acting on the

11With respect to a distinguished orthonormal basis {| 𝑗 , 𝑚〉}𝑚=− 𝑗 ,− 𝑗+1, · · · , 𝑗 , we have

𝐽+ | 𝑗 , 𝑚〉 =
√︁
𝑗 ( 𝑗 + 1) − 𝑚(𝑚 + 1) | 𝑗 , 𝑚 + 1〉

for all 𝑚 = − 𝑗 , · · · , 𝑗 − 1 and 𝐽+ | 𝑗 , 𝑗〉 = 0.
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virtual space of dimension 𝐷 = 2𝑠. The latter has orthonormal basis {|𝛼〉 =

|𝛼1〉 ⊗ · · · ⊗ |𝛼𝑠〉}𝛼=(𝛼1,...,𝛼𝑠)∈{0,1}𝑠 . By definition (2.7.3) of 𝑂 and the fact that
(𝑂1,0)2 = 𝜎2

− = 0, it is easy to see that

〈𝛼 |𝑂0,0 |𝛽〉 = 𝛿𝛼,𝛽

〈𝛼 |𝑂1,1 |𝛽〉 = 𝛿𝛼,𝛽

〈𝛼 |𝑂1,0 |𝛽〉 = 0
, and 〈𝛼 |𝑂0,1 |𝛽〉 =


1 if 𝛽 � 𝛼

0 otherwise
,

where we write 𝛽 � 𝛼 for 𝛼, 𝛽 ∈ {0, 1}𝑠 if and only if there is exactly one 𝑘 ∈ [𝑠]
such that 𝛽𝑘 = 0 and 𝛼𝑘 = 1, and 𝛼ℓ = 𝛽ℓ for all ℓ ≠ 𝑘 . Let us define j−

𝑘
as the

operator |0〉〈1| acting on the 𝑘-factor in (C2)⊗𝑠, and j+
𝑘
= (j−

𝑘
)† for 𝑘 ∈ [𝑠]. Then it

is easy to check that j+ :=
∑𝑠
𝑘=1 j+

𝑘
has the same matrix elements 〈𝛼 |𝑂0,1 |𝛽〉 as𝑂0,1.

It follows that

𝑂0,0 = 𝐼(C2)⊗𝑠

𝑂1,1 = 𝐼(C2)⊗𝑠
, and

𝑂1,0 = 0
𝑂0,1 = j+

. (2.91)

According to the MPO representation (2.7.4) of 𝑆𝑠−, the matrix elements of this
operator can be expressed as

〈𝑖1 · · · 𝑖𝑛 |𝑆𝑠− | 𝑗1 · · · 𝑗𝑛〉 = 〈1|⊗𝑠𝑂𝑖1 𝑗1 · · ·𝑂𝑖𝑛 𝑗𝑛 |0〉⊗𝑠 for all (𝑖1, . . . , 𝑖𝑛), ( 𝑗1, . . . , 𝑗𝑛) ∈ {0, 1}𝑛 .

Combining this expression with (2.7.4), it follows that

〈𝑖1 · · · 𝑖𝑛 |𝑆𝑠− | 𝑗1 · · · 𝑗𝑛〉 = 〈1|⊗𝑠 (�̃�𝑠)𝑖1 𝑗1 · · · (�̃�𝑠)𝑖𝑛 𝑗𝑛 |0〉⊗𝑠 for all (𝑖1, . . . , 𝑖𝑛), ( 𝑗1, . . . , 𝑗𝑛) ∈ {0, 1}𝑛 ,

where (�̃�𝑠)𝑖, 𝑗 is the restriction of (𝑂�𝑠)𝑖, 𝑗 to the subspace span{(j+)𝑟 |0〉⊗𝑠 | 𝑟 =

0, . . . , 𝑠}. This implies the claim.

2.7.5 Action of the Symmetric Group on the Magnon States
The symmetric group 𝑆𝑛 acts on (C2)⊗𝑛 by permuting the factors, i.e., we have for
an orthonormal basis {|𝑒1〉, |𝑒2〉} ∈ C2 that

𝜋( |𝑒𝑖1〉 ⊗ · · · ⊗ |𝑒𝑖𝑛〉) = |𝑒𝑖𝜋−1 (1)
〉 ⊗ · · · ⊗ |𝑒𝑖

𝜋−1 (𝑛)
〉 for all 𝜋 ∈ 𝑆𝑛 ,

and this is linearly extended to all of (C2)⊗𝑛. Since

[𝜋, 𝑆−] = 0 for all 𝜋 ∈ 𝑆𝑛 , (2.92)

the space span{𝑆𝑘− |Ψ〉 | 𝑘 ∈ N0} is invariant under permutations. In the following,
we will show that the restriction of the group action to this space has a particularly
simple form: every permutation acts as a tensor product of diagonal unitaries. Our
main claim (Theorem 2.7.3 below) follows from (2.7.5) and the following statement.
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Lemma 2.7.2. Let 𝐴0, 𝐴1 ∈ B(C2) be the matrices defining the MPS |Ψ〉, cf. Equa-
tion (2.7.3). Then

𝐴𝑐𝐴𝑏 = 𝜔
𝑐𝜔𝑏𝐴𝑏𝐴𝑐 for all 𝑏, 𝑐 ∈ {0, 1} . (2.93)

Consider the MPO tensor𝑂 defined by Equation (2.7.3) and setO𝑎,𝑏 = O(𝑂, |𝑏〉〈𝑎 |, 2) ∈
B((C2)⊗2) for 𝑎, 𝑏 ∈ {0, 1}. Then

O𝑎,𝑏 (𝑍† ⊗ 𝑍) = (𝑍† ⊗ 𝑍)O𝑎,𝑏 for all 𝑎, 𝑏 ∈ {0, 1} , (2.94)

where 𝑍 = diag(1, 𝜔).

It is convenient to express the corresponding statements diagramatically. First,
observe that specializing (2.7.5) to a neighboring transposition and inserting the
MPO description of 𝑆− introduced in Section 2.7.3, we obtain the diagrammatic
identity

.(2.95)

Claim (2.7.2) describes the action of a neighboring transposition and can be written
as

(2.96)

Claim (2.7.2) can be written as

(2.97)

Proof. Equation (2.7.2) can be shown by checking each case:
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Similarly, (2.7.2) is shown by direct computation.

The main feature we need in what follows is the following statement:

Lemma 2.7.3. Consider the spin 𝑗 = 𝑛/2−1 subspaceH𝑛/2−1 ⊂ (C2)⊗𝑛 introduced
in Equation (2.7.1). Let 𝜏 = (𝑘 𝑘 + 1) ∈ 𝑆𝑛 be an arbitrary transposition of nearest
neighbors. Then the restriction of 𝜏 toH𝑛/2−1 is given by the operator

𝜏 |H𝑛/2−1 = 𝐼
⊗𝑘−1 ⊗ 𝑍† ⊗ 𝑍 ⊗ 𝐼⊗𝑛−𝑘−1 ,

where 𝐼 = 𝐼C2 .

Proof. It suffices to check that 𝜏𝑆𝑠− |Ψ〉 = (𝐼⊗𝑘−1 ⊗ 𝑍† ⊗ 𝑍 ⊗ 𝐼⊗𝑛−𝑘−1)𝑆𝑠− |Ψ〉. This
follows immediately from Lemma 2.7.2. A diagrammatic proof of the steps involved
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can be given as follows (illustrated for 𝑠 = 3):

Here we used (2.7.5) 𝑠 times in the first identity, Equation (2.7.5) in the second
identity, and Equation (2.7.5) (applied 𝑠 times) in the last step.

An immediate and crucial consequence of Lemma 2.7.3 and the unitarity of 𝑍 is the
fact that matrix elements of an operator acting on 𝑑 arbitrary sites can be related to
matrix elements of a local operator on the 𝑑 first sites. To express this concisely,
we use the following notation: suppose 𝐹 = 𝐹1 ⊗ · · · ⊗ 𝐹𝑑 ∈ B((C2)⊗𝑑) is a tensor
product operator and 𝐴 = {𝑎1 < · · · < 𝑎𝑑} ⊂ [𝑛] a subset of 𝑑 = |𝐴| (ordered)
sites. Then we write 𝐹𝐴 ⊗ 𝐼[𝑛]\𝐴 ∈ B((C2)⊗𝑛) for the operator acting as 𝐹𝑘 on
site 𝑎𝑘 , for 𝑘 ∈ [𝑑]. By linearity, this definition extends to general (not necessarily
product) operators 𝐹 ∈ B((C2)⊗𝑑). Note that if 𝐴 = [𝑑] are the first 𝑑 sites, then
𝐹𝐴 ⊗ 𝐼[𝑛]\𝐴 = 𝐹 ⊗ 𝐼⊗𝑛−𝑑 .

Lemma 2.7.4. Consider the magnon states |Ψℓ〉 = 𝑆ℓ− |Ψ〉 and let 𝑟, 𝑠 ∈ {0, . . . , 𝑛−2}
be arbitrary. Suppose 𝐹 ∈ B((C2)⊗𝑑) acts on a subset 𝐴 ⊂ [𝑛] of 𝑑 = |𝐴| sites.
Then

〈Ψ𝑟 | (𝐹𝐴 ⊗ 𝐼[𝑛]\𝐴) |Ψ𝑠〉 = 〈Ψ𝑟 | (�̃�[𝑑] ⊗ 𝐼⊗𝑛−𝑑) |Ψ𝑠〉
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where �̃� ∈ B((C2)⊗𝑑) is given by

�̃� = ((𝑍†)𝑎 ⊗ (𝑍†)𝑎+1 · · · ⊗ (𝑍†)𝑎+𝑑)𝐹 (𝑍𝑎 ⊗ 𝑍𝑎+1 · · · ⊗ 𝑍𝑎+𝑑)

where 𝑎 = (min 𝐴) − 1.

More generally, if 𝐵 ⊂ [𝑛] is a subset of size 𝑏 = |𝐵 | located “to the right of 𝐴”
(i.e., if min 𝐵 > max 𝐴) and 𝐺 ∈ B((C2)⊗𝑏), then

〈Ψ𝑟 | (𝐹𝐴 ⊗ 𝐺𝐵 ⊗ 𝐼[𝑛]\(𝐴∪𝐵)) |Ψ𝑠〉 = 〈Ψ𝑟 | (�̃�[𝑑] ⊗ 𝐺𝐵 ⊗ 𝐼[𝑛]\([𝑑]∪𝐵)) |Ψ𝑠〉 (2.98)

Furthermore, the analogous statement holds when 𝐺 is permuted to the right, but
with 𝑍 replaced by 𝑍†.

Succintly, Equation (2.7.4) can be represented as follows in the case where 𝐴 consists
of a connected set of sites (and 𝑟 = 𝑠 = 0):

We emphasize, however, that the analogous statement is true for the more general
case where 𝐴 is a union of disconnected components.

Proof. The proof of Equation (2.7.4) for a single-site operator 𝐹 is immediate. We
have (illustrated for 𝑟 = 𝑠 = 0):
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Applying (2.7.4) (with 𝑑 = 1) iteratively then shows that the claim (2.7.4) also holds
for any tensor product operator 𝐹 = 𝐹1⊗ · · · ⊗𝐹𝑑 . The general claim then follows by
decomposing an arbitrary operator 𝐹 into tensor products and using linearity.

2.7.6 The Transfer Operator of the Magnon States and its Jordan Structure
We are ultimately interested in matrix elements 〈Ψ𝑟 | (𝐹 ⊗ 𝐼⊗(𝑛−𝑑)) |Ψ𝑠〉 where 𝐹 ∈
B((C2)⊗𝑑) acts on 𝑑 sites. Using the compressed representation from Lemma 2.7.1,
we may write these as

〈Ψ𝑟 | (𝐹 ⊗ 𝐼⊗(𝑛−𝑑)) |Ψ𝑠〉 = 〈Ψ(�̃�𝑟 � 𝐴, �̃�𝑟 ⊗ 𝑋, 𝑛) | (𝐹 ⊗ 𝐼⊗(𝑛−𝑑)) |Ψ(�̃�𝑠 � 𝐴, �̃�𝑠 ⊗ 𝑋, 𝑛)〉 .

We are thus interested in the (“overlap”) transfer operator

𝐸𝑟,𝑠 = 𝐸 (�̃�𝑟 � 𝐴, �̃�𝑠 � 𝐴) for 𝑟, 𝑠 ∈ [𝑛] .

For convenience, let us also set

𝐸0,𝑠 = 𝐸 (𝐴, �̃�𝑠 � 𝐴) for 𝑠 ∈ [𝑛] ,
𝐸𝑟,0 = 𝐸 (�̃�𝑟 � 𝐴, 𝐴) for 𝑟 ∈ [𝑛] ,
𝐸0,0 = 𝐸 (𝐴, 𝐴) .

Observe that 𝐸0,0 is the transfer operator 𝐸 of the MPS |Ψ〉, whereas 𝐸0,𝑠 is the
transfer operator of 𝑆𝑠− |Ψ〉. We will order the tensor factors such that the virtual
spaces of the original MPS are the first two factors. Then 𝐸𝑟,𝑠 ∈ B(C2⊗C2⊗C𝑟+1⊗
C𝑠+1). Our main goal in this section is to show the following:

Theorem 2.7.5. Let 𝑟, 𝑠 ∈ {0, . . . , 𝑛} be arbitrary. Then the operator 𝐸𝑟,𝑠 ∈
B(C2 ⊗ C2 ⊗ C𝑟+1 ⊗ C𝑠+1) has spectrum spec(𝐸𝑟,𝑠) = {1, 𝜔, 𝜔} (where 1 has
multiplicity 2 · (𝑟 + 1) (𝑠 + 1) and 𝜔, 𝜔 each have multiplicity (𝑟 + 1) (𝑠 + 1)). The
size ℎ∗ of the largest Jordan block in 𝐸𝑟,𝑠 is bounded by

ℎ∗ ≤ min{𝑟, 𝑠} + 2 .

To prove this theorem, we first rewrite the operator 𝐸𝑟,𝑠. We have

𝐸𝑟,𝑠 = 𝐸 (�̃�𝑟 � 𝐴, �̃�𝑠 � 𝐴) = 𝐸 (𝐴, �̃�†𝑟 � �̃�𝑠 � 𝐴) ,

where �̃�†𝑟 is obtained from the defining matrices {�̃�𝛼,𝛽}𝛼,𝛽 of �̃� by replacing �̃�𝛼,𝛽

with its adjoint (�̃�†)𝛼,𝛽. This amounts to replacing 𝜎− by 𝜎+, or alternatively,
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swapping the indices in the defining matrices {(�̃�𝑠)𝑖, 𝑗 } (cf. (2.7.1)). That is,

(�̃�𝑠)0,0 = (�̃�𝑠)1,1 = 𝐼C𝑠+1

(�̃�𝑠)1,0 = 0
(�̃�𝑠)0,1 = 𝐽+,𝑠

, and
(𝑂†𝑟 )0,0 = (𝑂†𝑟)1,1 = 𝐼C𝑟+1

(𝑂†𝑟 )1,0 = 𝐽+,𝑟

(𝑂†𝑟 )0,1 = 0

.

where 𝐽+,𝑠 and 𝐽+,𝑟 are the raising operators in the spin-𝑠/2 and the spin-𝑟/2 repre-
sentation, respectively. We conclude that

𝐸𝑟,𝑠 = 𝐸 ⊗ 𝐼C𝑟+1 ⊗ 𝐼C𝑠+1 + 𝐸𝜎+ ⊗ 𝐽+,𝑟 ⊗ 𝐼C𝑠+1 + 𝐸𝜎− ⊗ 𝐼C𝑟+1 ⊗ 𝐽+,𝑠 + 𝐸𝜎+𝜎− ⊗ 𝐽+,𝑟 ⊗ 𝐽+,𝑠 ,

where 𝑆+ are the raising operator 𝑆+ of the spin- 𝑗 representation with 𝑗 = 𝑟/2 and
𝑗 = 𝑠/2, respectively. Here

𝐸 = |00〉〈00| + 𝜔 |01〉〈01| + 𝜔|10〉〈10| + |11〉〈11| + |11〉〈00| ,
𝐸𝜎− = |10〉〈00| + 𝜔 |11〉〈01| ,
𝐸𝜎+ = |01〉〈00| + 𝜔 |11〉〈10| ,

𝐸𝜎+𝜎− = |00〉〈00| + 𝜔 |10〉〈10| + 𝜔|01〉〈01| + |11〉〈11| ,

are the transfer operators of the MPS |Ψ〉. We can write down the transfer matrix
𝐸𝑟,𝑠 more explicitly as

𝐸𝑟,𝑠 = 𝐴0 ⊗ 𝐴0 ⊗ 𝐼 ⊗ 𝐼 + 𝐴1 ⊗ 𝐴1 ⊗ 𝐼 ⊗ 𝐼 + 𝐴0 ⊗ 𝐴1 ⊗ 𝐼 ⊗ 𝐽+,𝑠
+ 𝐴1 ⊗ 𝐴0 ⊗ 𝐽+,𝑟 ⊗ 𝐼 + 𝐴1 ⊗ 𝐴1 ⊗ 𝐽+,𝑟 ⊗ 𝐽+,𝑠 , (2.99)

where

𝐴0 = 𝜎+ =

(
0 0
1 0

)
, and 𝐴1 =

(
1 0
0 𝜔

)
are the defining tensors of the original state |Ψ〉 (cf. (2.7.3)). With this, we can give
the proof of the above theorem as follows.

Proof of Theorem 2.7.5. Observe that in the standard basis of the spin- 𝑗-representation,
the raising operator 𝐽+ is strictly lower diagonal. From (2.7.6) and the definition of
𝐴0 and 𝐴1, it follows that the transfer operator 𝐸𝑟,𝑠 is lower diagonal in the tensor
product basis (consisting of these standard bases and the computational basis of C2)
since each term in the sum is a tensor product of lower diagonal matrices. In fact,
every term except

𝐷 ≡ 𝐴1 ⊗ 𝐴1 ⊗ 𝐼 ⊗ 𝐼
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is strictly lower diagonal. Therefore, we see that the eigenvalues of 𝐸𝑟,𝑠 are given
by the diagonal entries of 𝐷, and consist of the eigenvalue 1 with multiplicity
2(𝑟 + 1) (𝑠 + 1), and the eigenvalues 𝜔 and 𝜔, both with multiplicity (𝑟 + 1) (𝑠 + 1).
Observe that 𝐴0 and 𝐴1 commute up to a factor of 𝜔, that is,

𝐴1𝐴0 = 𝜔𝐴0𝐴1 . (2.100)

To shorten some of the expressions, let us define

𝑁1 = 𝐴0 ⊗ 𝐴0 , 𝑁2 = 𝐴0 ⊗ 𝐴1 , 𝑁3 = 𝐴1 ⊗ 𝐴0 , and 𝐴 = 𝐴1 ⊗ 𝐴1 .

We note that each 𝑁𝑖 is a nilpotent matrix of order 2, i.e.,

𝑁2
𝑖 = 0 for 𝑖 = 1, 2, 3 (2.101)

since 𝐴2
0 = 0. Moreover, for the same reason and (2.7.6), we have

𝑁2𝑁1 = 𝑁1𝑁2 = 𝑁3𝑁1 = 𝑁1𝑁3 = 0 and 𝑁2𝑁3 = 𝜔2𝑁3𝑁2 .

Equation (2.7.6) also implies that

𝑁𝑖𝐴 = 𝑞𝑖 (𝜔)𝐴𝑁𝑖 for 𝑖 = 1, 2, 3 , (2.102)

where 𝑞𝑖 (𝜔) ∈ {1, 𝜔, 𝜔}. Now consider the transfer operator with its diagonal term
removed, i.e.,

𝐸𝑟,𝑠 − 𝐷 = 𝑁1 ⊗ 𝐼 ⊗ 𝐼 + 𝑁2 ⊗ 𝐼 ⊗ 𝐽+,𝑠 + 𝑁3 ⊗ 𝐽+,𝑟 ⊗ 𝐼 + 𝐴 ⊗ 𝐽+,𝑟 ⊗ 𝐽+,𝑠 .

Let C[𝜔, 𝜔] be the set of polynomials in 𝜔 and 𝜔. Let us define the set

X =

{
𝑝1(𝜔, 𝜔) 𝑁1 ⊗ 𝐼 ⊗ 𝐼 + 𝑝2(𝜔, 𝜔) 𝑁2 ⊗ 𝐼 ⊗ 𝐽+,𝑠

+ 𝑝3(𝜔, 𝜔) 𝑁3 ⊗ 𝐽+,𝑟 ⊗ 𝐼 + 𝑝4(𝜔, 𝜔) 𝐴 ⊗ 𝐽+,𝑟 ⊗ 𝐽+,𝑠
���� 𝑝𝑖 ∈ C[𝜔, 𝜔]}

such that 𝐸𝑟,𝑠 − 𝐷 ∈ X. The key properties of X which we need are the following:

(i) If 𝑋1 ∈ X, then 𝐷𝑋1 = 𝑋2𝐷 and 𝑋1𝐷 = 𝐷𝑋3 for some 𝑋2, 𝑋3 ∈ X.

(ii) The product of any min{𝑟, 𝑠} + 2 operators in X is equal to zero.
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Property (i) follows immediately from the commutation relation (2.7.6) because
𝐷 = 𝐴 ⊗ 𝐼 ⊗ 𝐼. Similarly, property (ii) follows from the nilpotency relation (2.7.6),
the commutation relation (2.7.6), and the fact that

𝐽
min{𝑟,𝑠}+2
+,𝑟 = 𝐽

min{𝑟,𝑠}+2
+,𝑠 = 0 .

We can write these two properties succintly as equalities of sets, that is,

𝐷X = X𝐷 , and (2.103)

X𝑚 = {0} for all 𝑚 ≥ min{𝑟, 𝑠} + 2 , (2.104)

where e.g., X2 = {𝑋1𝑋2 |𝑋1, 𝑋2 ∈ X}. Let us write 𝐷𝜆 = 𝐷 − 𝜆𝐼. Then

𝐸𝑟,𝑠 − 𝜆𝐼 = 𝐷𝜆 + (𝐸𝑟,𝑠 − 𝐷) ∈ 𝐷𝜆 + X .

In particular, for ℓ, 𝑚, 𝑛 ∈ N0 we have

(𝐸𝑟,𝑠 − 𝐼)ℓ (𝐸𝑟,𝑠 − 𝜔𝐼)𝑚 (𝐸𝑟,𝑠 − 𝜔𝐼)𝑛 ∈ (𝐷1 + X)ℓ (𝐷𝜔 + X)𝑚 (𝐷𝜔 + X)𝑛

⊆
∑︁

𝑎∈{0,...,ℓ}
𝑏∈{0,...,𝑚}
𝑐∈{0,...,𝑛}

𝐷𝑎
1𝐷

𝑏
𝜔𝐷

𝑐
𝜔
X (ℓ−𝑎)+(𝑚−𝑏)+(𝑛−𝑐) ,

where in the last step, we used the binomial expansion, the pairwise commutativity
of the matrices 𝐷1, 𝐷𝜔, and 𝐷𝜔, and (2.7.6). Since 𝐷1𝐷𝜔𝐷𝜔 = 0, the non-zero
terms in the expansion must have at least one of 𝑎, 𝑏, 𝑐 equal to zero. Choosing

ℓ = 𝑚 = 𝑛 = min{𝑟, 𝑠} + 2 ,

the exponent (ℓ − 𝑎) + (𝑚 − 𝑏) + (𝑛 − 𝑐) is lower bounded by min{𝑟, 𝑠} + 2 for any
such triple (𝑎, 𝑏, 𝑐). We conclude with (2.7.6) that∑︁

𝑎∈{0,...,ℓ}
𝑏∈{0,...,𝑚}
𝑐∈{0,...,𝑛}

𝐷𝑎
1𝐷

𝑏
𝜔𝐷

𝑐
𝜔
X (ℓ−𝑎)+(𝑚−𝑏)+(𝑛−𝑐) = {0} ,

and thus

(𝐸𝑟,𝑠 − 𝐼)min{𝑟,𝑠}+2(𝐸𝑟,𝑠 − 𝜔𝐼)min{𝑟,𝑠}+2(𝐸𝑟,𝑠 − 𝜔𝐼)min{𝑟,𝑠}+2 = 0 .

Therefore the minimal polynomial of 𝐸𝑟,𝑠 must divide 𝑝(𝑥) = [(𝑥 − 1) (𝑥 − 𝜔) (𝑥 −
𝜔)]min{𝑟,𝑠}+2. Thus the Jordan blocks of 𝐸𝑟,𝑠 are bounded above in size by min{𝑟, 𝑠}+
2, as claimed.
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2.7.7 Matrix Elements of Magnon States
With the established bounds on the Jordan structure of 𝐸𝑟,𝑠, we can derive upper
bounds on overlaps of magnon states. Recall that |Ψ𝑟〉 = 𝑆𝑟− |Ψ〉 for 𝑟 = 0, . . . , 𝑛 − 2
and |𝜓𝑟〉 is its normalized version (cf. (2.7.1)) .

Theorem 2.7.6. Let 𝐹 ∈ B((C2)⊗𝑑) be such that ‖𝐹‖ ≤ 1. Let 𝑟 ≠ 𝑠. Then

|〈𝜓𝑟 | (𝐹 ⊗ 𝐼⊗(𝑛−𝑑)) |𝜓𝑠〉| = 𝑂
(

𝑑

𝑛|𝑠−𝑟 |/2

)
.

Proof. We can take the complex conjugate, effectively interchanging 𝑟 and 𝑠. Thus
we can, without loss of generality, assume that 𝑟 < 𝑠. Recall that |Ψ𝑟〉 and |Ψ𝑠〉 can
be represented as MPS using bond dimensions 𝐷𝑟 = 2(𝑟+1), 𝐷𝑠 = 2(𝑠+1) such that
the associated transfer operators 𝐸𝑟 , 𝐸𝑠 and the combined transfer operator 𝐸𝑟,𝑠 all
have spectrum {1, 𝜔, 𝜔} and Jordan blocks bounded by 2, 2, and min{𝑟, 𝑠}+2 = 𝑟+2,
respectively; see Theorem 2.7.5. Applying Theorem 2.4.5 (with ℎ∗1 = 2, ℎ∗2 = 2,
ℎ∗ = 𝑟 + 2), we get

|〈Ψ𝑟 | (𝐹 ⊗ 𝐼⊗𝑛−𝑑) |Ψ𝑠〉| ≤ 16 · 𝑑 (𝑛 − 𝑑)𝑟+1 = 𝑂 (𝑑 · 𝑛𝑟+1) .

Inserting the normalization (2.7.1)

‖Ψ𝑠‖2 =
𝑛(𝑛 − 2)!𝑠!
(𝑛 − 2 − 𝑠)! ≥ 𝑠! · 𝑛

𝑠+1(1 −𝑂 (𝑠2/𝑛))

gives

|〈𝜓𝑟 | (𝐹 ⊗ 𝐼⊗𝑛−𝑑) |𝜓𝑠〉| =
𝑑𝑛𝑟+1

(𝑟!𝑠!)1/2𝑛(𝑟+𝑠)/2+1
· (1 +𝑂 (𝑠2/𝑛)) = 𝑂 (𝑑 · 𝑛−(𝑠−𝑟)/2)

as claimed.

We also need estimates for the difference of expectation values of magnon states.
Let us first show that the reduced 𝑑-local operators are all essentially the same.

Lemma 2.7.7. Let {|𝜓𝑠〉}𝑛−2
𝑠=0 be the normalized magnon-states defined in Equa-

tion (2.7.1). Then

〈1|⊗𝑑 (tr𝑛−𝑑 |𝜓𝑠〉〈𝜓𝑠 |) |1〉⊗𝑑 ≥ 1 −𝑂 (𝑑𝑠/𝑛)

for all 𝑠 ∈ [𝑛].
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Proof. Let us define

|Ψ𝑘
𝑠 〉 = 𝑆𝑠−

©«
𝑘∑︁
𝑗=1
𝜔 𝑗𝜎−𝑗 |1〉⊗𝑘

ª®¬ .
Observe that for 𝑑 < 𝑛

|Ψ𝑛
0〉 = |Ψ

𝑑
0〉 ⊗ |1〉

⊗𝑛−𝑑 + 𝜔𝑑 |1〉⊗𝑑 ⊗ |Ψ𝑛−𝑑
0 〉 .

Writing 𝑆− = 𝑆𝐴− + 𝑆𝐵− with 𝑆𝐴− =
∑𝑑
𝑗=1 𝜎

−
𝑗

and 𝑆𝐵− =
∑𝑛
𝑗=𝑑+1 𝜎

−
𝑗
, we get

|Ψ𝑛
𝑠 〉 =

𝑠∑︁
ℓ=0

(
𝑠

ℓ

)
(𝑆𝐴−)ℓ (𝑆𝐵−)𝑠−ℓ |Ψ𝑛

0〉

= 𝜔𝑑 |1〉⊗𝑑 ⊗ (𝑆𝐵−)𝑠 |Ψ𝑛−𝑑
0 〉 + |Φ〉

= 𝜔𝑑 |1〉⊗𝑑 ⊗ |Ψ𝑛−𝑑
𝑠 〉 + |Φ〉 ,

for a vector |Φ〉 ∈ (Cp)⊗𝑛 satisfying ( |1〉〈1|⊗𝑑 ⊗ 𝐼⊗𝑛−𝑑) |Φ〉 = 0. In particular, we
have

( |1〉〈1|⊗𝑑 ⊗ 𝐼⊗(𝑛−𝑑)) |Ψ𝑛
𝑠 〉 = 𝜔𝑑 |1〉⊗𝑑 |Ψ𝑛−𝑑

𝑠 〉 .

Tracing out the (𝑛 − 𝑑) qubits, it follows that

〈1|⊗𝑑 tr𝑛−𝑑
(
|Ψ𝑛

𝑠 〉〈Ψ𝑛
𝑠 |
)
|1〉⊗𝑑 = ‖Ψ𝑛−𝑑

𝑠 ‖2 .

Rewriting the term using the normalized vector 𝜓𝑛𝑠 = Ψ𝑛
𝑠/‖Ψ𝑛

𝑠 ‖, we get

〈1|⊗𝑑
(
tr𝑛−𝑑 |𝜓𝑛𝑠 〉〈𝜓𝑛𝑠 |

)
|1〉⊗𝑑 =

‖Ψ𝑛−𝑑
𝑠 ‖2

‖Ψ𝑛
𝑠 ‖2

.

Observe that the norm ‖Ψ𝑘
𝑠 ‖2 is a matrix element of the operator 𝐸 𝑘𝑠,𝑠. With

Lemma 2.4.2 (iii), we obtain

〈1|⊗𝑑
(
tr𝑛−𝑑 |𝜓𝑛𝑠 〉〈𝜓𝑛𝑠 |

)
|1〉⊗𝑑 = 𝑐 · (𝑛 − 𝑑)ℓ−1(1 +𝑂 ((𝑛 − 𝑑)−1))

𝑐 · 𝑛ℓ−1(1 +𝑂 (𝑛−1))
= (1 − 𝑑/𝑛)ℓ−1(1 +𝑂 ((𝑛 − 𝑑)−1))
≥ (1 − 𝑑 (ℓ − 1)/𝑛)) · (1 +𝑂 ((𝑛 − 𝑑)−1))

≥ 1 −
(
𝑑 (ℓ − 1)

𝑛
+𝑂 (1/𝑛)

)
for some ℓ ∈ {1, . . . , ℎ∗}, where ℎ∗ is the size of the largest Jordan block of the
transfer operator 𝐸𝑠,𝑠. Since ℎ∗ ≤ 𝑠 + 2 by Theorem 2.7.5, the claim follows.



100

Theorem 2.7.8. Let 𝐹 ∈ B((C2)⊗𝑑) be such that ‖𝐹‖ ≤ 1. Fix some 𝑠0 ≤ 𝑛 − 2.
Then��〈𝜓𝑠 | (𝐹 ⊗ 𝐼⊗𝑛−𝑑) |𝜓𝑠〉 − 〈𝜓𝑟 | (𝐹 ⊗ 𝐼⊗𝑛−𝑑) |𝜓𝑟〉�� = 𝑂 (√︂𝑑𝑠0

𝑛
) for all 𝑟, 𝑠 ≤ 𝑠0 .

Proof. For any 𝐹 ∈ B((C2)⊗𝑑) with ‖𝐹‖ ≤ 1, we have��〈𝜓𝑠 | (𝐹 ⊗ 𝐼⊗𝑛−𝑑) |𝜓𝑠〉 − 〈1|⊗𝑑𝐹 |1〉⊗𝑑 �� ≤ ‖ tr𝑛−𝑑 |𝜓𝑠〉〈𝜓𝑠 | − |1〉〈1|⊗𝑛‖

≤
√︃

1 − 〈1|⊗𝑑 (tr𝑛−𝑑 |𝜓𝑠〉〈𝜓𝑠 |) |1〉⊗𝑑 ,

using the Fuchs — van de Graaf inequality 1
2 ‖𝜌 − |𝜑〉〈𝜑|‖1 ≤

√︁
1 − 〈𝜑 |𝜌 |𝜑〉 [78].

With Lemma 2.7.7 we get��〈𝜓𝑠 | (𝐹 ⊗ 𝐼⊗𝑛−𝑑) |𝜓𝑠〉 − 〈1|⊗𝑑𝐹 |1〉⊗𝑑 �� ≤ 𝑂 (√︂𝑑𝑠0

𝑛
) .

Using the triangle inequality, the claim follows.

2.7.8 The Parameters of the Magnon code
Our main result is the following:

Theorem 2.7.9 (Parameters of the magnon-code). Let 𝜈 ∈ (0, 1) and 𝜆, 𝜅 > 0 be
such that

6𝜅 + 𝜆 < 𝜈 .

Then there is a subspace C spanned by descendant states {𝑆𝑟− |Ψ〉}𝑟 with magneti-
zation 𝑟 pairwise differing by at least 2 such that C is an (𝜖, 𝛿) [[𝑛, 𝑘, 𝑑]]-AQEDC
with parameters

𝑘 = 𝜅 log2 𝑛 ,

𝑑 = 𝑛1−𝜈 ,

𝜖 = Θ(𝑛−(𝜈−(6𝜅+𝜆))) ,
𝛿 = 𝑛−𝜆 .

Proof. We claim that the subspace

C = span{𝜓𝑠 | 𝑠 even and 𝑠 ≤ 2𝑛𝜅}
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spanned by a subset of magnon-states has the claimed property. Clearly, dimC =

𝑛𝜅 = 2𝑘 .

Let 𝐹 be an arbitrary 𝑑-local operator on (C2)⊗𝑛 of unit norm. According to
Lemma 2.7.4, the following considerations concerning matrix elements 〈𝜓𝑞 |𝐹 |𝜓𝑝〉
of magnon states do not depend on the location of the support of 𝐹 as we are
interested in the supremum over 𝑑-local operators 𝐹 and unitary conjugation does
not change the locality or the norm. Thus, we can assume that 𝐹 = �̃� ⊗ 𝐼⊗𝑛−𝑑 . That
is, we have

sup
𝐹 𝑑-local
‖𝐹‖≤1

|〈𝜓𝑟 |𝐹 |𝜓𝑠〉| = sup
�̃�∈B((C2)⊗𝑑)
‖�̃�‖≤1

|〈𝜓𝑟 | (�̃� ⊗ 𝐼⊗𝑛−𝑑) |𝜓𝑠〉| = 𝑂 (
𝑑

𝑛|𝑟−𝑠 |/2
) for 𝑟, 𝑠 ≤ 2𝑛𝜅 .

by Theorem 2.7.6. In particular, if |𝑟 − 𝑠 | ≥ 2, then this is bounded by 𝑂 (𝑑/𝑛).
Similarly,

sup
𝐹 𝑑-local
‖𝐹‖≤1

��〈𝜓𝑠 |𝐹 |𝜓𝑠〉 − 〈𝜓𝑟 |𝐹 |𝜓𝑟〉�� = sup
�̃�∈B((C2)⊗𝑑)
‖�̃�‖≤1

��〈𝜓𝑠 | (�̃� ⊗ 𝐼⊗(𝑛−𝑑)) |𝜓𝑠〉 − 〈𝜓𝑟 | (�̃� ⊗ 𝐼⊗(𝑛−𝑑)) |𝜓𝑟〉��

= 𝑂 (
√︂
𝑑𝑛𝜅

𝑛
) = 𝑂 (

√︁
𝑑𝑛𝜅−1) for 𝑟, 𝑠 ≤ 2𝑛𝜅

by Theorem 2.7.8. Since 𝑑/𝑛 = 𝑂 (
√
𝑑𝑛𝜅−1), we conclude that for all 𝑑-local

operators 𝐹 of unit norm, we have��〈𝜓𝑟 |𝐹 |𝜓𝑠〉 − 𝛿𝑟,𝑠〈𝜓0 |𝐹 |𝜓0〉| = 𝑂 (𝑑1/2𝑛(𝜅−1)/2) for all 𝑟, 𝑠 even with 𝑟, 𝑠 ≤ 2𝑛𝜅 .

The sufficient conditions of Corollary 2.3.4 for approximate error-detection, applied
with 𝛾 = Θ(𝑑1/2𝑛(𝜅−1)/2), thus imply that C is an (Θ(25𝑘𝑑𝑛𝜅−1)/𝛿, 𝛿) [[𝑛, 𝑘, 𝑑]]-
AQEDC for any 𝛿 satisfying

𝛿 > Θ(25𝑘𝑑𝑛𝜅−1) = Θ(𝑛6𝜅−𝜈)

for the choice 𝑑 = 𝑛1−𝜈. With 𝛿 = 𝑛−𝜆, the claim follows.
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2.A Canonical Form of Excitation Ansatz States
For the reader’s convenience, we include here a proof of the Lemma 2.6.1 follow-
ing [77].

Lemma 2.6.1. Let |Φ𝑝 (𝐵; 𝐴)〉 be an injective excitation ansatz state and assume
that 𝐴 is normalized such that the transfer operator has spectral radius 1. Let ℓ and
𝑟 be the corresponding left- and right- eigenvectors corresponding to eigenvalue 1.
Assume 𝑝 ≠ 0. Then there exists a tensor �̃� such that |Φ𝑝 (𝐵; 𝐴)〉 = |Φ𝑝 (�̃�; 𝐴)〉,
and such that

〈〈ℓ |𝐸�̃�(𝑝) = 0 and 〈〈ℓ |𝐸
�̃�(𝑝) = 0 . ((2.6.1))

Proof. We note that the equations (2.6.1) can be written as∑︁
𝑖∈[p]

𝐴
†
𝑖
ℓ�̃�𝑖 = 0 , and

∑︁
𝑖∈[p]

�̃�
†
𝑖
ℓ𝐴𝑖 = 0 . (2.105)

Diagrammatically, they take the form

,

,

where square and round boxes correspond to �̃� and 𝐴, respectively.
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Let the original MPS tensors be 𝐴 = {𝐴 𝑗 }p𝑗=1 and 𝐵 = {𝐵 𝑗 }p𝑗=1 ⊂ B(C
𝐷 ⊗ C𝐷).

Suppose 𝑋 ∈ B(C𝐷) is invertible. Define the MPS tensor 𝐶 = {�̃� 𝑗 }p𝑗=1 ⊂ B(C
𝐷)

by

𝐶 𝑗 = 𝐴 𝑗𝑋 − 𝑒−𝑖𝑝𝑋𝐴 𝑗 for 𝑗 = 1, . . . , p .

that is,

. (2.106)

It is then easy to check that

|Φ𝑝 (𝐵; 𝐴)〉 = |Φ𝑝 (𝐵 + 𝐶; 𝐴)〉 ,

where 𝐵 + 𝐶 is the MPS tensor obtained by setting (𝐵 + 𝐶) 𝑗 = 𝐵 𝑗 + 𝐶 𝑗 for each
𝑗 = 1, . . . , p. Indeed, the difference of these two vectors is

|Φ𝑝 (𝐵 + 𝐶; 𝐴)〉 − |Φ𝑝 (𝐵; 𝐴)〉

=
∑︁

𝑖1,...,𝑖𝑛∈[p]

𝑛∑︁
𝑘=1

𝑒𝑖𝑝𝑘 tr(𝐴𝑖1 · · · 𝐴𝑖𝑘−1𝐶𝑖𝑘 𝐴𝑖𝑘+1 · · · 𝐴𝑖𝑛) |𝑖1 · · · 𝑖𝑛〉

=
∑︁

𝑖1,...,𝑖𝑛∈[p]

(
𝑛∑︁
𝑘=1

𝑒𝑖𝑝𝑘 tr
[
𝐴𝑖1 · · · 𝐴𝑖𝑘−1 (𝐴𝑖𝑘𝑋 − 𝑒−𝑖𝑝𝑋𝐴𝑖𝑘 )𝐴𝑖𝑘+1 · · · 𝐴𝑖𝑛

] )
|𝑖1 · · · 𝑖𝑛〉

= 0 ,

since the terms in the square brackets vanish because of the cyclicity of the trace
(alternatively, this can be seen by substituting each square box (corresponding to 𝐵)
in Figure 2.5 by a formal linear combination of a square box (𝐵) and diagram (2.A)).

Observe that the second equation in (2.A) can be obtained from the first by taking
the adjoint since ℓ is a self-adjoint operator. It thus suffices to show that there is an
MPS tensor �̃� with the desired property |Φ𝑝 (�̃�; 𝐴)〉 = |Φ𝑝 (𝐵; 𝐴)〉 such that∑︁

𝑖∈[p]
𝐴
†
𝑖
ℓ�̃�𝑖 = 0 . (2.107)

It turns out that setting �̃� = 𝐵 + 𝐶 for an appropriate choice of 𝑋 (and thus 𝐶)
suffices. Equation (2.A) then amounts to the identity∑︁

𝑗∈[p]
𝐴
†
𝑗
ℓ(𝐵 𝑗 + 𝐴 𝑗𝑋 − 𝑒−𝑖𝑝𝑋𝐴 𝑗 ) = 0 , (2.108)
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or diagrammatically,

.

Because ℓ is the unique eigenvector of E†(𝜌) = ∑
𝑗∈[p] 𝐴

†
𝑗
𝜌𝐴 𝑗 to eigenvalue 1,

Equation (2.A) simplifies to∑︁
𝑗∈[p]

𝐴
†
𝑗
ℓ𝐵 𝑗 + ℓ𝑋 − 𝑒−𝑖𝑝

∑︁
𝑗∈[p]

𝐴
†
𝑗
ℓ𝑋𝐴 𝑗 = 0 ,

or

.

Since ℓ is full rank, we may substitute 𝑋 = ℓ−1𝑌 . Then (2.A) is satisfied if

,

or ∑︁
𝑗∈[p]

𝐴
†
𝑗
ℓ𝐵 𝑗 + (𝐼 − 𝑒−𝑖𝑝E)(𝑌 ) = 0 .

Because 1 is the unique eigenvalue of magnitude 1 of E, the map (𝜆𝐼 − 𝑒−𝑖𝑝E) is
invertible under the assumption that 𝑝 ≠ 0, and we obtain the solution

𝑋 = ℓ−1𝑌

= −ℓ−1 (
𝐼 − 𝑒−𝑖𝑝E

)−1 ©«
∑︁
𝑗∈[p]

𝐴
†
𝑗
ℓ𝐵 𝑗

ª®¬
to Equation (2.A), proving the claim for 𝑝 ≠ 0.
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C h a p t e r 3

OBSTACLES TO STATE PREPARATION AND VARIATIONAL
OPTIMIZATION FROM SYMMETRY PROTECTION

Local Hamiltonians with topological quantum order exhibit highly entangled ground
states that cannot be prepared by shallow quantum circuits. Here, we show that
this property may extend to all low-energy states in the presence of an on-site Z2

symmetry. This proves a version of the No Low-Energy Trivial States (NLTS)
conjecture for a family of local Hamiltonians with symmetry protected topological
order. A surprising consequence of this result is that the Goemans-Williamson
algorithm outperforms the Quantum Approximate Optimization Algorithm (QAOA)
for certain instances of MaxCut, at any constant level. We argue that the locality and
symmetry of QAOA severely limits its performance. To overcome these limitations,
we propose a non-local version of QAOA, and give numerical evidence that it
significantly outperforms standard QAOA for frustrated Ising models on random
3-regular graphs.

This chapter is based on the published article:

S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, “Obstacles to variational quantum
optimization from symmetry protection,” Physical Review Letters, vol. 125, no. 26,
Dec. 2020. DOI: 10.1103/physrevlett.125.260505.

3.1 Introduction
Classifying topological phases of matter is amongst the main objectives of modern
condensed matter physics [1]. Central to this program is the characterization of
entanglement structures that can emerge in ground states of many-body systems. Of
particular interest are topologically non-trivial ground states [2]. Such states cannot
be generated by a constant-depth quantum circuit starting from a product state.
Non-trivial states exhibit complex, non-local entanglement properties and are thus
expected to have highly non-classical features. Remarkably, certain gapped local
Hamiltonians have non-trivial ground states. For example, preparing a ground state
of Kitaev’s toric code [3] from a product state requires a circuit depth growing at least
polynomially in the system size using nearest-neighbor gates [4], and logarithmically
using non-local gates [5].
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Going beyond ground states, a natural next question is whether there are local
Hamiltonians with the property that any low-energy state is non-trivial. Formalized
by Freedman and Hastings [6], this is known as the No Low-energy Trivial States
(NLTS) conjecture. To state it in detail, consider many-body systems composed
of 𝑛 finite-dimensional subsystems – assumed here to be qubits for simplicity. A
local Hamiltonian is a sum of interaction terms acting non-trivially on 𝑂 (1) qubits
each. We require that each term has operator norm 𝑂 (1) and each qubit is involved
in 𝑂 (1) terms. The interaction terms may be long-range (no geometric locality is
needed). It will be assumed that a local Hamiltonian 𝐻𝑛 as above is defined for each
𝑛 ∈ I, where I is some infinite set of system sizes. A family of local Hamiltonians
{𝐻𝑛}𝑛∈I is said to have the NLTS property if there exists a constant 𝜖 > 0 and a
function 𝑓 : Z+ → Z+ such that:

1. 𝐻𝑛 has ground state energy 0 for any 𝑛 ∈ I,

2. 〈0𝑛 |𝑈†𝐻𝑛𝑈 |0𝑛〉 > 𝜖𝑛 for any depth-𝑑 circuit 𝑈 composed of two-qubit gates
and for any 𝑛 ≥ 𝑓 (𝑑), 𝑛 ∈ I.

Here the circuit depth 𝑑 can be arbitrary. The conjecture is that the NLTS property
holds for some family of local Hamiltonians.

The validity of the NLTS conjecture is a necessary condition for the stronger quantum
PCP conjecture to hold [7]: the latter posits that there are local Hamiltonians whose
ground state energy is QMA-hard to approximate with an extensive error 𝜖𝑛 for
some constant 𝜖 > 0.

A proof of the NLTS conjecture is still outstanding. Although many natural families
of Hamiltonians provably do not have the NLTS property (see [8] for a compre-
hensive list), evidence for its validity has been provided by a number of related
results. Ref. [6] constructs Hamiltonians satisfying a certain one-sided NLTS prop-
erty: these have excitations of two kinds (similar to the toric code), and low-energy
states with no excitations of the first kind are non-trivial. The construction crucially
relies on expander graphs as even the one-sided NLTS property does not hold for
similar constructions on regular lattices [6].

Eldar and Harrow [8] construct families of local Hamiltonians (also based on ex-
pander graphs) such that any state whose reduced density operators on a constant
fraction of sites coincides with that of a ground state is non-trivial. This feature,
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called the No Low-Error Trivial States (NLETS) property, is clearly related to ro-
bustness of entanglement in the ground state with respect to erasure errors [9],
[10]. The existence of Hamiltonians with the NLETS property is a necessary condi-
tion [8] for the existence of good quantum LDPC codes, another central conjecture
in quantum information.

Here we pursue a different approach to the NLTS conjecture by imposing an addi-
tional symmetry in the initial state as well as the preparation circuit. This mirrors
similar considerations in the classification of topological phases, where the concept
of symmetry-protected topological (SPT) phases [11] has been extremely fruitful.
Indeed, the study of SPT equivalence classes of states, pioneered in [12], [13], has
led to a complete classification of 1D phases [11], [14], [15], and also plays an
essential role in measurement-based quantum computation [16], [17].

3.2 Implications for the Quantum Approximate Optimization Algorithm
For concreteness, we focus on the simplest case of onsite Z2-symmetry. A local
Hamiltonian is said to be Z2-symmetric if all interaction terms commute with 𝑋⊗𝑛,
where 𝑋 is the single-qubit Pauli-𝑋 operator. Likewise, a quantum circuit𝑈 acting
on 𝑛 qubits is said to be Z2-symmetric if it obeys

𝑈𝑋⊗𝑛 = 𝑋⊗𝑛𝑈 .

We do not impose the symmetry on the individual gates of 𝑈, though this will
naturally be the case in many interesting examples, such as the QAOA circuits
considered below. Finally, let us say that a state Ψ of 𝑛 qubits is Z2-symmetric if
𝑋⊗𝑛Ψ = ±Ψ. Our first result is a proof of the NLTS conjecture in the presence of
onsite Z2-symmetry:

Theorem 3.2.1. There exist constants 𝜖, 𝑐 > 0 and a family of Z2-symmetric local
Hamiltonians {𝐻𝑛}𝑛∈I such that 𝐻𝑛 has ground state energy 0 for any 𝑛 ∈ I while

〈𝜑|𝑈†𝐻𝑛𝑈 |𝜑〉 > 𝜖𝑛 (3.1)

for any Z2-symmetric depth-𝑑 circuit 𝑈 composed of two-qubit gates, any Z2-
symmetric product state 𝜑, and any 𝑛 ≥ 2𝑐𝑑 , 𝑛 ∈ I.

Our starting point to establish Theorem 3.2.1 is a fascinating result by Eldar and
Harrow stated as Corollary 43 in [8]. It shows that the output distribution of a shallow
quantum circuit cannot assign a non-negligible probability to subsets of bit strings
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that are separated far apart w.r.t. the Hamming distance. More precisely, define the
distribution 𝑝(𝑥) = |〈𝑥 |𝑈 |𝜑〉|2, where 𝑥 ∈ {0, 1}𝑛. Given a subset 𝑆 ⊆ {0, 1}𝑛, let
𝑝(𝑆) = ∑

𝑥∈𝑆 𝑝(𝑥).

Fact 1 ([8]). For all subsets 𝑆, 𝑆′ ⊆ {0, 1}𝑛, one has

dist(𝑆, 𝑆′) ≤ 4𝑛1/223𝑑/2

min {𝑝(𝑆), 𝑝(𝑆′)} .

Here dist(𝑆, 𝑆′) is the Hamming distance, i.e. the minimum number of bit flips
required to get from 𝑆 to 𝑆′. We emphasize that Eq. (3.1) holds for all depth-𝑑
circuits𝑈 and all product states 𝜑 (Z2-symmetry is not needed).

Given a bit string 𝑥, let 𝑥 be the bit-wise negation of 𝑥. Note that 𝑝(𝑥) = 𝑝(𝑥)
since 𝑈𝜑 is Z2-symmetric. Choose 𝑆 and 𝑆′ as the sets of all 𝑛-bit strings with
the Hamming weight ≤ 𝑛/3 and ≥ 2𝑛/3, respectively. Then 𝑝(𝑆′) = 𝑝(𝑆) and
dist(𝑆, 𝑆′) = 𝑛/3. Eq. (3.1) gives

𝑝(𝑆) ≤ 12𝑛−1/223𝑑/2.

Our strategy is to choose the Hamiltonian 𝐻𝑛 such that low-energy states of 𝐻𝑛 are
concentrated on bit strings with the Hamming weight close to 0 or 𝑛 such that 𝑝(𝑆)
is non-negligible. Then Eq. (3.2) provides a logarithmic lower bound on the depth
𝑑 for symmetric low-energy states.

Suppose 𝐺 = (𝑉, 𝐸) is a graph with 𝑛 vertices. The Cheeger constant of 𝐺 is
defined as

ℎ(𝐺) = min
𝑆⊆𝑉

0< |𝑆 |≤𝑛/2

|𝜕𝑆 |
|𝑆 | , (3.4)

where 𝜕𝑆 ⊆ 𝐸 is the subset of edges that have exactly one endpoint in 𝑆. Families of
expander graphs are infinite collections of bounded degree graphs {𝐺𝑛}𝑛∈I whose
Cheeger constant is lower bounded by a constant, i.e. ℎ(𝐺𝑛) ≥ ℎ > 0 for all 𝑛 ∈ I.
Explicit constructions of degree-3 expanders can be found in [18]. Fix a family of
degree-3 expanders {𝐺𝑛}𝑛∈I and define 𝐻𝑛 as the ferromagnetic Ising model on the
graph 𝐺𝑛, i.e.

𝐻𝑛 =
1
2

∑︁
(𝑢,𝑣)∈𝐸

(𝐼 − 𝑍𝑢𝑍𝑣).

Here 𝑍𝑢 is the Pauli-𝑍 applied to a site 𝑢 and 𝐼 is the identity. Clearly, 𝐻𝑛 is
Z2-symmetric, each term in 𝐻𝑛 acts on two qubits and each qubit is involved



116

in three terms. Thus {𝐻𝑛}𝑛∈I is a family of local Hamiltonians. 𝐻𝑛 has Z2-
symmetric ground states 1√

2
( |0𝑛〉 ± |1𝑛〉) with zero energy. Given a bit string 𝑥, let

supp(𝑥) = { 𝑗 ∈ [𝑛] : 𝑥 𝑗 = 1} be the support of 𝑥. From equations (3.2) and (3.3),
one gets

〈𝑥 |𝐻𝑛 |𝑥〉 = |𝜕 supp(𝑥) | ≥ ℎ ·min {|𝑥 |, 𝑛 − |𝑥 |},

where |𝑥 | is the Hamming weight of 𝑥. Assume Eq. (3.2.1) is false. Then 𝑝(𝑥) is a
low-energy distribution such that

∑
𝑥 𝑝(𝑥)〈𝑥 |𝐻𝑛 |𝑥〉 ≤ 𝜖𝑛. By Markov’s inequality,

𝑝(𝑥) has a non-negligible weight on low-energy basis states,

𝑝(𝑆low) ≥ 1/2, 𝑆low = {𝑥 : 〈𝑥 |𝐻𝑛 |𝑥〉 ≤ 2𝜖𝑛}.

By Eq. (3.4), min {|𝑥 |, 𝑛 − |𝑥 |} ≤ 2𝑛𝜖ℎ−1 for all 𝑥 ∈ 𝑆low. Choose 𝜖 = ℎ/6. Then
𝑆low ⊆ 𝑆 ∪ 𝑆′ and 𝑝(𝑆low) ≤ 𝑝(𝑆) + 𝑝(𝑆′) = 2𝑝(𝑆). Here the last equality uses the
symmetry of 𝑝(𝑥). By Eq. (3.5), 𝑝(𝑆) ≥ 1/4. Combining this and Eq. (3.2), one
gets 𝑛1/2 ≤ 48 · 23𝑑/2. We conclude that Eq. (3.2.1) holds whenever 𝑛 > 482 · 8𝑑 .
This proves Theorem 3.2.1.

The Hamiltonians Eq. (3.3) are diagonal in the computational basis and have product
ground states |0𝑛〉 and |1𝑛〉. The presence of the Z2-symmetry is therefore essential:
the same family of Hamiltonians do not exhibit NLTS without it. In this sense, the
NLTS property here behaves similarly to topological order in 1D systems which
only exists under symmetry protection [11], [14].

Theorem 3.2.1 implies restrictions on the performance of variational quantum algo-
rithms for combinatorial optimization. Recall that the Quantum Approximate Opti-
mization Algorithm (QAOA) [19] seeks to approximate the maximum of a cost func-
tion 𝐶 : {0, 1}𝑛 → R by encoding it into a Hamiltonian 𝐻𝑛 =

∑
𝑥∈{0,1}𝑛 𝐶 (𝑥) |𝑥〉〈𝑥 |.

It variationally optimizes the expected energy of 𝐻𝑛 over quantum states of the
form𝑈 (𝛽, 𝛾) |+𝑛〉, where

𝑈 (𝛽, 𝛾) =
𝑝∏
𝑘=1

𝑒𝑖𝛽𝑘𝐵𝑒𝑖𝛾𝑘𝐻𝑛 ,

and where 𝐵 =
∑𝑛
𝑗=1 𝑋 𝑗 . The integer 𝑝 ≥ 1 is called the QAOA level. It controls

non-locality of the variational circuit.

A paradigmatic test case for QAOA is the MaxCut problem. Given a graph
𝐺𝑛 = (𝑉, 𝐸) with 𝑛 vertices, the corresponding MaxCut Hamiltonian is defined
by Eq. (3.3). The maximum energy of 𝐻𝑛 coincides with the number of edges in the
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maximum cut of 𝐺𝑛. Crucially, the QAOA circuit𝑈 (𝛽, 𝛾) with the Hamiltonian 𝐻𝑛
as well as the initial QAOA state |+𝑛〉 obey the Z2-symmetry property. Furthermore,
the circuit 𝑈 (𝛽, 𝛾) has depth 𝑂 (𝐷𝑝), where 𝐷 is the maximum vertex degree of
𝐺𝑛. Specializing Theorem 3.2.1 to bipartite graphs, we obtain an upper bound on
the approximation ratio achieved by the level-𝑝 QAOA circuits for the MaxCut cost
function (see Appendix 3.A for a proof):

Corollary 3.2.2. For every integer 𝐷 ≥ 3, there exists an infinite family of bipartite
𝐷-regular graphs {𝐺𝑛}𝑛∈I such that the Hamiltonians 𝐻𝑛 defined in Eq. (3.3) obey

1
|𝐸 | 〈+

𝑛 |𝑈−1𝐻𝑛𝑈 |+𝑛〉 ≤
5
6
+
√
𝐷 − 1
3𝐷

(3.8)

for any level-𝑝 QAOA circuit𝑈 ≡ 𝑈 (𝛽, 𝛾) as long as 𝑝 < (1/3 log2 𝑛 − 4)𝐷−1.

Note that any bipartite graph with a set of edges 𝐸 has maximum cut size |𝐸 |. In this
case, the left-hand side of Eq. (3.2.2) coincides with the approximation ratio, i.e.,
the ratio between the expected value of the MaxCut cost function on the (optimal)
level-𝑝 variational state and the maximum cut size. Thus Corollary 3.2.2 provides
an explicit upper bound on the approximation ratio achieved by level-𝑝 QAOA.
Such bounds were previously known only for 𝑝 = 1 [19]. Statement (3.2.2) severely
limits the performance of QAOA at any constant level 𝑝, rigorously establishing a
widely believed conjecture [20]: constant-level QAOA is inferior to the classical
Goemans-Williamson algorithm for MaxCut, which achieves an approximation ratio
of approximately 0.878 on an arbitrary graph [21]. Indeed, the right-hand side of
Eq. (3.2.2) is approximately 5/6 ≈ 0.833 for large vertex degree 𝐷.

QAOA circuits 𝑈 (𝛽, 𝛾) possess a form of locality which is stronger than the one
assumed in Theorem 3.2.1. Indeed, if 𝑝 and 𝐷 are constants, the unitary 𝑈 (𝛽, 𝛾)
can be realized by a constant-depth circuit composed of nearest-neighbor gates, i.e.,
the circuit is geometrically local.

A natural question is whether more general bounds on the variational energy can
be established for states generated by geometrically local Z2-symmetric circuits.
Of particular interest are graphs that lack the expansion property, such as regular
lattices, where the arguments used in the proof of Theorem 3.2.1 no longer apply.
A simple model of this type is the ring of disagrees [19]. It describes the MaxCut
problem on the cycle graph Z𝑛.

Quite recently, Ref. [22] proved that the optimal approximation ratio achieved by
level-𝑝 QAOA for the ring of disagrees is bounded above by (2𝑝+1)/(2𝑝+2) for all
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𝑝 and conjectured that this bound is tight. Here we prove a version of this conjecture
for arbitrary geometrically local Z2-symmetric circuits. To quantify the notion of
geometric locality, let us say that a unitary 𝑈 acting on 𝑛 qubits located at vertices
of the cycle graph has range 𝑅 if the operator 𝑈†𝑍 𝑗𝑈 has support on the interval
[ 𝑗 − 𝑅, 𝑗 + 𝑅] for any qubit 𝑗 . For example, the level-𝑝 QAOA circuit associated
with the ring of disagrees has range 𝑅 = 𝑝.

Theorem 3.2.3. Let 𝐻𝑛 be the ring of disagrees Hamiltonian,

𝐻𝑛 =
1
2

∑︁
𝑝∈Z𝑛
(𝐼 − 𝑍𝑝𝑍𝑝+1),

where 𝑛 is even. Let𝑈 be a Z2-symmetric unitary with range 𝑅 < 𝑛/4. Then

1
𝑛
〈+𝑛 |𝑈†𝐻𝑛𝑈 |+𝑛〉 ≤

2𝑅 + 1/2
2𝑅 + 1

.

This bound is tight whenever 𝑛 is a multiple of 2𝑅 + 1.

Since one can always round 𝑛 to the nearest multiple of 2𝑅 + 1, the bound Eq. (3.6)
is tight for all 𝑛 up to corrections 𝑂 (1/𝑛), assuming that 𝑅 = 𝑂 (1).

Let us first prove the upper bound Eq. (3.6). Define 𝑋 = (𝑋𝐼)⊗𝑛/2. Then

𝑋𝐻𝑛𝑋 + 𝐻𝑛 = 𝑛𝐼.

Let𝑉 = 𝑋𝑈. Note that𝑉 is aZ2 symmetric circuit with range 𝑅. Taking the expected
value of Eq. (3.7) on the state𝑈 |+𝑛〉, one infers that Eq. (3.6) holds whenever

1
𝑛
〈+𝑛 |𝑉†𝐻𝑛𝑉 |+𝑛〉 ≥ 1 − 2𝑅 + 1/2

2𝑅 + 1
=

1
2(2𝑅 + 1) .

Thus it suffices to prove that Eq. (3.8) holds for any Z2-symmetric range-𝑅 circuit
𝑉 . For each 𝑗 , 𝑘 ∈ Z𝑛, define

𝜖 𝑗 ,𝑘 =
1
2
〈+𝑛 |𝑉†(𝐼 − 𝑍 𝑗𝑍𝑘 )𝑉 |+𝑛〉.

Let dist( 𝑗 , 𝑘) be the distance between 𝑗 and 𝑘 with respect to the cycle graph Z𝑛.
We claim that

𝜖 𝑗 ,𝑘 = 1/2 if dist( 𝑗 , 𝑘) > 2𝑅.

Indeed, 〈+𝑛 |𝑉†𝑍𝑖𝑉 |+𝑛〉 = 0 for any qubit 𝑖 since𝑉 |+𝑛〉 and 𝑍𝑖𝑉 |+𝑛〉 are eigenvectors
of 𝑋⊗𝑛 with eigenvalues 1 and −1. Such eigenvectors have to be orthogonal. From
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dist( 𝑗 , 𝑘) > 2𝑅, one infers that 𝑉†𝑍 𝑗𝑉 and 𝑉†𝑍𝑘𝑉 have disjoint support. Thus

〈+𝑛 |𝑉†𝑍 𝑗𝑍𝑘𝑉 |+𝑛〉 = 〈+𝑛 | (𝑉†𝑍 𝑗𝑉) (𝑉†𝑍𝑘𝑉) |+𝑛〉
= 〈+𝑛 |𝑉†𝑍 𝑗𝑉 |+𝑛〉 · 〈+𝑛 |𝑉†𝑍𝑘𝑉 |+𝑛〉 = 0.

This proves Eq. (3.9). Suppose one prepares the state 𝑉 |+𝑛〉 and measures a pair of
qubits 𝑗 < 𝑘 in the standard basis. Then 𝜖 𝑗 ,𝑘 is the probability that the measured
values on qubits 𝑗 and 𝑘 disagree. By the union bound,

𝜖 𝑗 ,𝑘 ≤
𝑘−1∑︁
𝑖= 𝑗

𝜖𝑖,𝑖+1.

Indeed, if qubits 𝑗 and 𝑘 disagree, at least one pair of consecutive qubits located in
the interval [ 𝑗 , 𝑘] must disagree. Set 𝑘 = 𝑗 + 2𝑅 + 1. Then 𝜖 𝑗 ,𝑘 = 1/2 by Eq. (3.9).
Take the expected value of Eq. (3.10) with respect to random uniform 𝑗 ∈ Z𝑛. This
gives

1
2
≤ 2𝑅 + 1

𝑛

∑︁
𝑖∈Z𝑛

𝜖𝑖,𝑖+1 =
2𝑅 + 1
𝑛
〈+𝑛 |𝑉†𝐻𝑛𝑉 |+𝑛〉

proving Eq. (3.8). In Appendix 3.B, we construct a Z2-symmetric range-𝑅 circuit𝑈
such that 𝑈 |+𝑛〉 is a tensor product of GHZ-like states on consecutive segments of
2𝑅 + 1 qubits. We show that such circuit saturates the upper bound Eq. (3.6). This
completes the proof of Theorem 3.2.3.

3.3 The Recursive Quantum Approximate Optimization Algorithm
Concerns about limitations of QAOA have previously been voiced by Hastings [20]
who showed analytically that certain local classical algorithms match the perfor-
mance of level-1 QAOA for Ising-like cost functions with multi-spin interactions.
Hastings also gave numerical evidence for the same phenomenon for MaxCut with
𝑝 = 1, and argued that this should extend to 𝑝 > 1 [20].

Motivated by these limitations, we propose a non-local modification of QAOA which
we call the recursive quantum approximate optimization algorithm (RQAOA). To
sketch the main ideas behind RQAOA, consider an Ising-like Hamiltonian

𝐻𝑛 =
∑︁
(𝑝,𝑞)∈𝐸

𝐽𝑝,𝑞𝑍𝑝𝑍𝑞 (3.14)

defined on a graph 𝐺𝑛 = (𝑉, 𝐸) with 𝑛 vertices. Here 𝐽𝑝,𝑞 are arbitrary real
coefficients. RQAOA aims to approximate the maximum energy max𝑧〈𝑧 |𝐻𝑛 |𝑧〉,
where 𝑧 ∈ {1,−1}𝑛. It consists of the following steps.
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First, run the standard QAOA to maximize the expected value of 𝐻𝑛 on the state
|𝜓〉 = 𝑈 (𝛽, 𝛾) |+𝑛〉. For every edge ( 𝑗 , 𝑘) ∈ 𝐸 , compute 𝑀 𝑗 ,𝑘 = 〈𝜓∗ |𝑍 𝑗𝑍𝑘 |𝜓∗〉,
where 𝜓∗ is the optimal variational state.

Next, find a pair of qubits (𝑖, 𝑗) ∈ 𝐸 with the largest magnitude of 𝑀𝑖, 𝑗 (breaking
ties arbitrarily). The corresponding variables 𝑍𝑖 and 𝑍 𝑗 are correlated if 𝑀𝑖, 𝑗 > 0
and anti-correlated if 𝑀𝑖, 𝑗 < 0. Impose the constraint

𝑍 𝑗 = sgn(𝑀𝑖, 𝑗 )𝑍𝑖

and substitute it into the Hamiltonian 𝐻𝑛 to eliminate the variable 𝑍 𝑗 . For example,
a term 𝑍 𝑗𝑍𝑘 with 𝑘 ∉ {𝑖, 𝑗} gets mapped to sgn(𝑀𝑖, 𝑗 )𝑍𝑖𝑍𝑘 . The term 𝐽𝑖, 𝑗𝑍𝑖𝑍 𝑗 gets
mapped to a constant energy shift 𝐽𝑖, 𝑗sgn(𝑀𝑖, 𝑗 ). All other terms remain unchanged.
This yields a new Ising Hamiltonian 𝐻𝑛−1 that depends on 𝑛 − 1 variables. By
construction, the maximum energy of 𝐻𝑛−1 coincides with the maximum energy of
𝐻𝑛 over the subset of assignments satisfying the constraint Eq. (3.11).

Finally, call RQAOA recursively to maximize the expected value of 𝐻𝑛−1. Each
recursion step eliminates one variable from the cost function. The recursion stops
when the number of variables reaches some specified threshold value 𝑛𝑐 � 𝑛. The
remaining instance of the problem with 𝑛𝑐 variables is then solved by a purely
classical algorithm (for example, by a brute force method). Thus the value of 𝑛𝑐
controls how the workload is distributed between quantum and classical computers.
We describe a generalization of RQAOA applicable to Ising-like cost functions with
multi-spin interactions in Appendix 3.C.

Imposing a constraint of the form (3.11) can be viewed as rounding correlations
among the variables 𝑍𝑖 and 𝑍 𝑗 . Indeed, the constraint demands that these vari-
ables must be perfectly correlated or anti-correlated. This is analogous to rounding
fractional solutions obtained by solving linear programming relaxations of combi-
natorial optimization problems. We note that reducing the size of a problem to the
point that it can be solved optimally by brute force is a widely used and effective
approach in combinatorial optimization.

We compare the performance of the standard QAOA, RQAOA, and local classical
algorithms by considering the Ising Hamiltonians in Eq. (3.3) with couplings 𝐽𝑝,𝑞 =
±1 defined on the cycle graph. In Appendix 3.D, we prove:

Theorem 3.3.1. For each integer 𝑛 divisible by 6, there exists a family of 2𝑛/3 Ising
Hamiltonians of the form 𝐻𝑛 =

∑
𝑘∈Z𝑛 𝐽𝑘𝑍𝑘𝑍𝑘+1 with 𝐽𝑘 ∈ {1,−1} such that the
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(a) (b)

Figure 3.1: Comparisons of level-1 RQAOA and the Goemans-Williamson Al-
gorithm. (a) Approximation ratios achieved by level-1 RQAOA (blue) and the
Goemans-Williamson (GW) algorithm [21] (red) for 15 instances of the Ising cost
function with random ±1 couplings defined on the 2D toric grid of size 16 × 16.
In case (b) the Ising Hamiltonian also includes random ±1 external fields. The
RQAOA threshold value is 𝑛𝑐 = 20. We found that the standard level-1 QAOA
achieves approximation ratios below 1/2 for all considered instances (not shown).
The GW algorithm was implemented with 𝑛 = 256 rounding attempts and the best
found solution was selected. The exact maximum energy was computed using
integer linear programming.

following holds for all Hamiltonians in the family:
(i) There is a local classical algorithm which achieves the approximation ratio 1.
(ii) Level-𝑝 QAOA achieves an approximation ratio of at most 𝑝/(𝑝 + 1).
(iii) Level-1 RQAOA achieves the approximation ratio 1.

Our definition of local classical algorithms follows [20]. We also show that the
level-1 RQAOA achieves the optimal approximation ratio for any 1D Ising model
with coupling coefficients 𝐽𝑘 ∈ {1,−1}. This proves that, in certain cases, RQAOA
is strictly more powerful than QAOA.

Finally, we report a numerical comparison between the level-1 RQAOA and the
Goemans-Williamson algorithm [21] for the Ising cost function Eq. (3.3) with ran-
dom coefficients 𝐽 𝑗 ,𝑘 = ±1. Two graphs are considered: (a) the 2D grid, and (b) the
2D grid with one extra vertex connected to all grid points. The latter is equivalent
to the 2D Ising model with random ±1 external fields. As shown in [23], the
problem of maximizing the energy 𝐶 (𝑥) admits an efficient algorithm in case (a)
while case (b) is NP-hard. To compute the mean values 〈𝜓(𝛽, 𝛾) |𝑍 𝑗𝑍𝑘 |𝜓(𝛽, 𝛾)〉,
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we used a version of the algorithm by Wang et al [24], as detailed in Appendix 3.C.
Figure 3.1 shows approximation ratios achieved by each algorithm for 15 problem
instances with the grid size 16 × 16. It can be seen that RQAOA outperforms the
Goemans-Williamson algorithm for all except for one instance. We found that the
standard level-1 QAOA achieves approximation ratio below 1/2 for all considered
instances.

Note added: After submission of this work, analogous limitations were estab-
lished for random regular graphs by exploiting the locality and spatial uniformity of
QAOA [25], [26]. We focus on Z2-symmetry and locality, and our statements also
apply to non-uniform local algorithms.
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3.A Proof of Corollary 3.2.2
In this appendix, we give a proof of Corollary 3.2.2 in the main text. Here and
below, we will denote the expected approximation ratio achieved by the QAOA with
Hamiltonian 𝐻 as

QAOA𝑝 (𝐻) =
(

max
𝛽,𝛾∈R𝑝

〈Ψ𝐻 (𝛽, 𝛾) |𝐻 |Ψ𝐻 (𝛽, 𝛾)〉
)
·
(

max
𝑥∈{0,1}𝑛

〈𝑥 |𝐻 |𝑥〉
)−1

,

where

|Ψ𝐻 (𝛽, 𝛾)〉 = 𝑈𝐻 (𝛽, 𝛾) |+𝑛〉 and 𝑈𝐻 (𝛽, 𝛾) =
𝑝∏

𝑚=1

(
𝑒𝑖𝛽𝑚𝐵𝑒𝑖𝛾𝑚𝐻

)
(3.16)

for 𝛽, 𝛾 ∈ R𝑝 and where 𝐵 =
∑𝑛
𝑗=1 𝑋 𝑗 . Let us first record a few general features of

the QAOA for later use.
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Let 𝐺 = (𝑉, 𝐸) be a graph, 𝑛 = |𝑉 |, 𝑚 = |𝐸 |, and let 𝐽 = (𝐽𝑒)𝑒∈𝐸 ∈ R𝐸 be an
assignment of edge weights on 𝐺. Let us define the Hamiltonian 𝐻𝐺 (𝐽) as

𝐻𝐺 (𝐽) =
∑︁
{𝑢,𝑣}∈𝐸

𝐽{𝑢,𝑣}𝑍𝑢𝑍𝑣 . (3.17)

It will be useful for later to also define

𝐻𝐺 =
∑︁
{𝑢,𝑣}∈𝐸

𝑍𝑢𝑍𝑣, and 𝐻MaxCut
𝐺 =

1
2
(𝑚𝐼 − 𝐻𝐺),

where 𝐻MaxCut
𝐺

is the Hamiltonian used in QAOA for the Maximum Cut problem
on the graph 𝐺. We will use the following bound on the circuit depth of a QAOA
unitary.

Lemma 3.A.1. Let 𝑈 = 𝑈𝐻 (𝛽, 𝛾) with 𝛽, 𝛾 ∈ R𝑝 be a level-𝑝 QAOA unitary
(cf. Eq. (3.A)) for a Hamiltonian 𝐻 = 𝐻𝐺 (𝐽) on a graph 𝐺 (cf. (3.A)). Let 𝐷 be the
maximum degree of 𝐺. Then 𝑈 can be realized by a circuit of depth 𝑑 ≤ 𝑝(𝐷 + 1)
consisting of 2-qubit gates.

If 𝐺 is 𝐷-regular and bipartite, then the circuit depth of 𝑈 can be bounded by
𝑑 ≤ 𝑝𝐷.

Proof. By Vizing’s theorem [27], there is an edge coloring of 𝐺 with at most 𝐷 + 1
colors. Taking such a coloring 𝐸 = 𝐸1 ∪ · · · ∪ 𝐸𝐷+1, we may apply each level
𝑒𝑖𝛽𝐵𝑒𝑖𝛾𝐻 of 𝑈 in depth 𝐷 + 1 by applying (∏𝑣∈𝑉 𝑒

𝑖𝛽𝑋𝑣 )∏𝐷+1
𝑐=1 𝑉𝑐 (𝛾), where each

𝑉𝑐 (𝛾) =
(∏
{𝑢,𝑣}∈𝐸𝑐

𝑒𝑖𝛾𝐽{𝑢,𝑣 }𝑍𝑢𝑍𝑣
)

is a depth-1-circuit of two-local gates.

If 𝐺 is 𝐷-regular and bipartite, we may reduce the chromatic number upper bound
from 𝐷 + 1 to 𝐷 since all bipartite graphs are 𝐷-edge-colorable by Kőnig’s line
coloring theorem. We illustrate the construction of the circuit on Figure 3.2 for the
case 𝐷 = 3 and 𝑝 = 1.

The expected QAOA approximation ratios of suitably related instances are identical:

Lemma 3.A.2. Let L ⊂ 𝑉 be an arbitrary subset of vertices and 𝜕L be the set of
edges that have exactly one endpoint in L. Let 𝐽 = (𝐽𝑒)𝑒∈𝐸 ∈ R𝐸 be arbitrary edge
weights. Define 𝐽 = (𝐽𝑒)𝑒∈𝐸 ∈ R𝐸 by

𝐽𝑒 =


−𝐽𝑒 if 𝑒 ∈ 𝜕L

𝐽𝑒 otherwise .
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Figure 3.2: Example for the construction of the circuit given in Lemma 3.A.1: a
4-colorable graph with maximum degree 3 alongside its associated depth-5 quantum
circuit for the level-1 QAOA unitary.

Then expected QAOA approximation ratios satisfy

QAOA𝑝 (𝐻𝐺 (𝐽)) = QAOA𝑝 (𝐻𝐺 (𝐽)).

Proof. Let us write 𝐻 = 𝐻𝐺 (𝐽) and �̃� = 𝐻𝐺 (𝐽) for brevity. Let 𝑋 = 𝑋 [L]
be a tensor product of Pauli-𝑋 operators acting on every qubit in L ⊂ 𝑉 . Then
�̃� = 𝑋𝐻𝑋 , which implies that

max
𝑥∈{0,1}𝑛

〈𝑥 |𝐻 |𝑥〉 = max
𝑥∈{0,1}𝑛

〈𝑥 |�̃� |𝑥〉 . (3.18)

Let 𝛽, 𝛾 ∈ R𝑝 be arbitrary. Then we also have

𝑋 |Ψ�̃� (𝛽, 𝛾)〉 =
𝑝∏

𝑚=1
(𝑋𝑒𝑖𝛽𝑚𝐵𝑒𝑖𝛾𝑚�̃�𝑋) |+𝑛〉 =

𝑝∏
𝑚=1
(𝑒𝑖𝛽𝑚𝐵𝑒𝑖𝛾𝑚𝐻) |+𝑛〉 = |Ψ𝐻 (𝛽, 𝛾)〉,

where identities in the middle follow since |+𝑛〉 is stabilized by 𝑋 , and since [𝑋, 𝐵] =
0. Therefore we have

〈Ψ�̃� (𝛽, 𝛾) |�̃� |Ψ�̃� (𝛽, 𝛾)〉 = 〈Ψ�̃� (𝛽, 𝛾) |𝑋𝐻𝑋 |Ψ�̃� (𝛽, 𝛾)〉 = 〈Ψ𝐻 (𝛽, 𝛾) |𝐻 |Ψ𝐻 (𝛽, 𝛾)〉.

Combined with (3.A), this implies the claim.

In particular, if 𝐺 = (𝑉, 𝐸) is a bipartite graph, then Lemma 3.A.2 implies that

QAOA𝑝 (𝐻𝐺) = QAOA𝑝 (−𝐻𝐺)
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and

QAOA𝑝 (𝐻MaxCut
𝐺 ) = 1

2
(1 + QAOA𝑝 (𝐻𝐺)). (3.19)

We now prove Corollary 1. It is a direct consequence of Theorem 1, which we
restate here for convenience in the notation of this appendix:

Theorem 3.A.1. Consider a family {𝐺𝑛 = ( [𝑛], 𝐸𝑛)}𝑛∈I of graphs with Cheeger
constant lower bounded as ℎ(𝐺𝑛) ≥ ℎ > 0 for all 𝑛 ∈ I. Then

〈𝜑 |𝑈†𝐻𝐺𝑛
𝑈 |𝜑〉 < |𝐸𝑛 | −

ℎ𝑛

3
for any Z2-symmetric depth-𝑑 circuit 𝑈 composed of two-qubit gates, any Z2-
symmetric product state 𝜑, and any 𝑛 > 4828𝑑 , 𝑛 ∈ I.

Then we have the following:

Corollary 3.A.1. For every integer 𝐷 ≥ 3, there exists an infinite family of bipartite
𝐷-regular graphs {𝐺𝑛}𝑛∈I such that

QAOA𝑝 (𝐻MaxCut
𝐺𝑛

) ≤ 5
6
+
√
𝐷 − 1
3𝐷

as long as

𝑝 < (1/3 log2 𝑛 − 4)𝐷−1 .

Proof. Fix some 𝐷 ≥ 3. By the results of [28], [29], there exists an infinite family
{𝐺𝑛}𝑛∈I of bipartite 𝐷-regular Ramanujan graph with 𝑛 vertices for every 𝑛 ∈ I.
Consider a fixed 𝑛 ∈ I and let 𝑝 = 𝑝(𝑛) be the associated QAOA level. Let
𝑈𝑛 = 𝑈𝐻𝐺𝑛

(𝛽∗, 𝛾∗) be a level-𝑝 QAOA unitary for the Hamiltonian 𝐻𝐺𝑛
on 𝐺𝑛,

and assume that 𝛽∗, 𝛾∗ ∈ R𝑝 are such that the expectation of 𝐻𝐺𝑛
is maximized.

Because 𝐺𝑛 is 𝐷-regular, the circuit depth of𝑈𝑛 can be bounded from above by 𝑝𝐷
according to Lemma 3.A.1. Condition (3.12) implies that 𝑛 > 4828𝑝𝐷 , thus

QAOA𝑝 (𝐻𝐺𝑛
) = 1
|𝐸𝑛 |
〈+𝑛 |𝑈†𝑛𝐻𝐺𝑛

𝑈𝑛 |+𝑛〉 < 1 − ℎ

3|𝐸𝑛 |
𝑛 = 1 − 2ℎ

3𝐷
by Theorem 1, where we have used that |𝐸𝑛 | = 𝑛𝐷/2. With (3.A) (using that 𝐺𝑛 is
bipartite), we conclude that

QAOA𝑝 (𝐻MaxCut
𝐺𝑛

) < 1 − ℎ

3𝐷
.

The claim then follows from the bound ℎ/𝐷 ≥ (𝐷 − 2
√
𝐷 − 1)/(2𝐷), valid for all

Ramanujan graphs.
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3.B Optimal Variational Circuit for the Ring of Disagrees
In this section we prove that the upper bound of Theorem 2 in the main text is tight
whenever 𝑛 is a multiple of 2𝑅 + 1. Let

|GHZn〉 = 2−1/2( |0𝑛〉 + |1𝑛〉)

be the GHZ state of 𝑛 qubits.

Lemma 3.B.1. Suppose 𝑛 = 2𝑝 +1 for some integer 𝑝. There exists a Z2-symmetric
range-𝑝 quantum circuit 𝑉 such that

|GHZn〉 = 𝑉 |+𝑛〉.

Proof. We shall write CX𝑐,𝑡 for the CNOT gate with a control qubit 𝑐 and a target
qubit 𝑡. Let 𝑐 = 𝑝 + 1 be the central qubit. One can easily check that

|GHZn〉 =
©«
𝑝∏
𝑗=1

CX𝑐,𝑐− 𝑗CX𝑐,𝑐+ 𝑗
ª®¬𝐻𝑐 |0𝑛〉.

All CX gates in the product pairwise commute, so the order does not matter. Inserting
a pair of Hadamards on every qubit 𝑗 ∈ [𝑛] \ {𝑐} before and after the respective CX
gate and using the identity (𝐼 ⊗ 𝐻)CX(𝐼 ⊗ 𝐻) = CZ, one gets

|GHZn〉 =
©«

∏
𝑗∈[𝑛]\{𝑐}

𝐻 𝑗
ª®¬ ©«

𝑝∏
𝑗=1

CZ𝑐,𝑐− 𝑗CZ𝑐,𝑐+ 𝑗
ª®¬ |+𝑛〉.

Let 𝑆 = exp [𝑖(𝜋/4)𝑍] be the phase-shift gate. Define the two-qubit Clifford gate

RZ = (𝑆 ⊗ 𝑆)−1CZ = exp(−𝑖𝜋/4) exp [−𝑖(𝜋/4) (𝑍 ⊗ 𝑍)] .

Expressing CZ in terms of RZ and 𝑆 in Eq. (3.14), one gets

|GHZn〉 = 𝑆2𝑝
𝑐

©«
∏

𝑗∈[𝑛]\{𝑐}
𝐻 𝑗𝑆 𝑗

ª®¬ ©«
𝑝∏
𝑗=1

RZ𝑐,𝑐− 𝑗RZ𝑐,𝑐+ 𝑗
ª®¬ |+𝑛〉.

Multiply both sides of Eq. (3.15) on the left by a product of 𝑆 gates over qubits
𝑗 ∈ [𝑛] \ {𝑐}. Noting that

𝑆𝐻𝑆 = 𝑖 exp [−𝑖(𝜋/4)𝑋],

one gets (ignoring an overall phase factor)∏
𝑗∈[𝑛]\{𝑐}

𝑆 𝑗 |GHZn〉 = 𝑆2𝑝
𝑐

©«
∏

𝑗∈[𝑛]\{𝑐}
exp [−𝑖(𝜋/4)𝑋 𝑗 ]

ª®¬ ©«
𝑝∏
𝑗=1

RZ𝑐,𝑐− 𝑗RZ𝑐,𝑐+ 𝑗
ª®¬ |+𝑛〉.
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Using the identity ∏
𝑗∈[𝑛]\{𝑐}

𝑆 𝑗 |GHZn〉 = 𝑆2𝑝
𝑐 |GHZn〉 ,

one can cancel 𝑆2𝑝
𝑐 that appears in both sides of Eq. (3.16). We arrive at Eq. (3.13)

with

𝑉 =
©«

∏
𝑗∈[𝑛]\{𝑐}

exp [−𝑖(𝜋/4)𝑋 𝑗 ]
ª®¬ ©«

𝑝∏
𝑗=1

RZ𝑐,𝑐− 𝑗RZ𝑐,𝑐+ 𝑗
ª®¬ .

The circuit diagram of 𝑉 in the case 𝑛 = 7 is shown in Figure 3.3. Obviously, 𝑉
is Z2-symmetric since any individual gate commutes with 𝑋⊗𝑛. Let us check that
𝑉 has range-𝑝. Consider any single-qubit observable 𝑂𝑞 acting on the 𝑞-th qubit.
Consider three cases:

Case 1: 𝑞 = 𝑐. Then 𝑉†𝑂𝑞𝑉 may be supported on all 𝑛 qubits. However,
[𝑐 − 𝑝, 𝑐 + 𝑝] = [1, 𝑛], so the 𝑝-range condition is satisfied trivially.

Case 2: 1 ≤ 𝑞 < 𝑐. Then all gates RZ𝑐,𝑐+ 𝑗 in 𝑉 cancel the corresponding gates
in 𝑉†, so that 𝑉†𝑂𝑞𝑉 has support in the interval [1, 𝑐] ⊆ [𝑞 − 𝑝, 𝑞 + 𝑝]. Thus the
𝑝-range condition is satisfied.

Case 3: 𝑐 < 𝑞 ≤ 𝑛. This case is equivalent to Case 2 by symmetry.

Recall that we consider the ring of disagrees Hamiltonian

𝐻𝑛 =
1
2

∑︁
𝑝∈Z𝑛
(𝐼 − 𝑍𝑝𝑍𝑝+1).

Lemma 3.B.2. Consider any integers 𝑛, 𝑝 such that 𝑛 is even and 𝑛 is a multiple of
2𝑝 + 1. Then there exists a Z2-symmetric range-𝑝 circuit𝑈 such that

〈+𝑛 |𝑈†𝐻𝑛𝑈 |+𝑛〉 =
2𝑝 + 1/2
2𝑝 + 1

.

Proof. Let𝑉 be the Z2-symmetric range-𝑝 unitary operator preparing the GHZ state
on 2𝑝 + 1 qubits starting from |+2𝑝+1〉, see Lemma 3.B.1. Suppose 𝑛 = 𝑚(2𝑝 + 1)
for some integer 𝑚. Define

𝑈 = 𝑈1𝑈2,
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Figure 3.3: The Z2-symmetric range-3 quantum circuit to prepare the GHZ state
|GHZ2p+1〉 of 2𝑝 + 1 = 7 qubits (𝑝 = 3). Here, 𝑅𝑂 (𝜃) = exp (−𝑖𝜃𝑂).

where
𝑈1 = (𝑋 ⊗ 𝐼)⊗𝑛/2 and 𝑈2 = 𝑉⊗𝑚 .

Since each copy of 𝑉 acts on a consecutive interval of qubits and has range 𝑝, one
infers that𝑈 has range 𝑝. We have

𝑈
†
1𝐻𝑛𝑈1 =

∑︁
𝑝∈Z𝑛

𝐺 𝑝, 𝐺 𝑝 =
1
2
(𝐼 + 𝑍𝑝𝑍𝑝+1).

The state𝑈2 |+𝑛〉 is a tensor product of GHZ states supported on consecutive tuples
of 2𝑝 + 1 qubits. The expected value of 𝐺 𝑝 on the state 𝑈2 |+𝑛〉 equals 1 if 𝐺 𝑝 is
supported on one of the GHZ states. Otherwise, if𝐺 𝑝 crosses the boundary between
two GHZ states, the expected value of 𝐺 𝑝 on the state𝑈2 |+𝑛〉 equals 1/2. Thus

〈+𝑛 |𝑈†𝐻𝑛𝑈 |+𝑛〉 =
∑︁
𝑝∈Z𝑛
〈+𝑛 |𝑈†2𝐺 𝑝𝑈2 |+𝑛〉 = 𝑚(2𝑝 + 1/2) = 𝑛2𝑝 + 1/2

2𝑝 + 1
.

3.C Recursive QAOA
In this appendix, we outline the Recursive QAOA algorithm (RQAOA) for general
cost functions.
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C.1 Variable Elimination
Let 𝐺 = (𝑉, 𝐸) be a hypergraph with |𝑉 | = 𝑛 vertices. Suppose a variable 𝑥𝑣 ∈
{1,−1} is associated with each vertex 𝑣 ∈ 𝑉 . Let {1,−1}𝑉 = {1,−1}𝑛 be the set
of all possible variable assignments. Let 𝐽 : 𝐸 → R be a function which assigns
a real weight 𝐽𝑒 to every hyperedge 𝑒. Given a subset 𝑓 ⊂ 𝑉 and an assignment
𝑥 ∈ {1,−1}𝑉 , let us write

𝑥( 𝑓 ) =
∏
𝑣∈ 𝑓

𝑥𝑣 .

Let us agree that 𝑥(∅) = 1. We consider the problem of maximizing cost functions
of the form

𝐶 (𝑥) =
∑︁
𝑒∈𝐸

𝐽𝑒𝑥(𝑒)

over 𝑥 ∈ {1,−1}𝑉 .

Fix some vertex 𝑣 ∈ 𝑉 . As a motivation, we first describe how a single variable
𝑥𝑣 can be eliminated when a suitably constrained problem is considered. Namely,
suppose that instead of trying to approximate max𝑥∈{1,−1}𝑉 𝐶 (𝑥), we restrict to
𝑥 ∈ {1,−1}𝑉 satisfying

𝑥( 𝑓 ) = 𝜎, (3.27)

where 𝑓 ⊂ 𝑉 is some fixed subset of vertices containing 𝑣, and 𝜎 ∈ {1,−1} is a
constant. If 𝑥 ∈ {1,−1}𝑉 satisfies the constraint (C.1), then

𝐽𝑒𝑥(𝑒) = 𝐽𝑒𝑥(𝑒)𝑥( 𝑓 )𝜎 = 𝜎𝐽𝑒𝑥(𝑒 4 𝑓 ).

Here and below, 𝐴4 𝐵 denotes the symmetric difference of sets 𝐴 and 𝐵. We arrive
at

𝐶 (𝑥) =
∑︁
𝑒∈𝐸
𝑣∉𝑒

𝐽𝑒𝑥(𝑒) +
∑︁
𝑒∈𝐸 :
𝑣∈𝑒

𝜎𝐽𝑒𝑥 (𝑒 4 𝑓 ) . (3.28)

Note that 𝐶 (𝑥) does not depend on 𝑥𝑣. Expression (C.1) can be written as a sum
over the hyperedges of a hypergraph 𝐺′ = (𝑉 ′, 𝐸′) with vertex set 𝑉 ′ = 𝑉\{𝑣} and
hyperedges

𝐸′ = 𝐸′0 ∪ 𝐸
′
1,

where

𝐸′0 = {𝑒 ∈ 𝐸 : 𝑣 ∉ 𝑒} and 𝐸′1 = {𝑒 4 𝑓 : 𝑒 ∈ 𝐸, 𝑣 ∈ 𝑒}.
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Note that 𝐺′ no longer contains the vertex 𝑣. Define a function 𝐽′ : 𝐸′ → R such
that

𝐽′𝑒 = 𝐽𝑒 if 𝑒 ∈ 𝐸′0,

and

𝐽′𝑒 = 𝜎𝐽𝑒4 𝑓 if 𝑒 ∈ 𝐸′1.

By construction, the maximum of

𝐶′(𝑥) =
∑︁
𝑒∈𝐸 ′

𝐽′𝑒𝑥(𝑒)

over all assignments 𝑥 ∈ {1,−1}𝑉 ′ coincides with the maximum of 𝐶 (𝑥) over all
𝑥 ∈ {1,−1}𝑉 satisfying the constraint Eq. (C.1). Furthermore, any maximum 𝑥∗

of𝐶′ can directly be translated to a corresponding maximum of𝐶 over the restricted
set defined by the constraint (C.1) by setting 𝑥∗𝑣 = 𝜎 · 𝑥( 𝑓 \{𝑣}). That is, we have
𝑥∗ = 𝜉 (𝑥) for the function 𝜉 : {1,−1}𝑉 ′ → {1,−1}𝑉 defined by

𝜉 (𝑥)𝑤 =


𝜎 · 𝑥( 𝑓 \{𝑣}) for 𝑣 = 𝑤

𝑥𝑤 otherwise
(3.33)

for all 𝑤 ∈ 𝑉 .

In summary, we have reduced the problem of maximizing 𝐶 (𝑥) over 𝑛 variables
𝑥 ∈ {1,−1}𝑉 satisfying (C.1) to the problem of maximizing 𝐶′(𝑥) over 𝑛 − 1
variables 𝑥 ∈ {1,−1}𝑉 ′. If a global maximum 𝑥 of 𝐶 (𝑥) happens to satisfy (C.1),
the new reduced problem yields a solution to the original problem.

C.2 Correlation Rounding
To construct an approximation algorithm, we simply impose a constraint of the
form (C.1) by choosing 𝑓 ⊂ 𝑉 , 𝑣 ∈ 𝑓 , and 𝜎 ∈ {1,−1} appropriately. To make the
latter choice, we use the standard QAOA𝑝 algorithm with 𝑝 = 𝑂 (1). That is, let us
set

𝐻𝐺 (𝐽) =
∑︁
𝑒∈𝐸

𝐽𝑒𝑍 (𝑒) where 𝑍 (𝑒) =
∏
𝑣∈𝑒

𝑍𝑣 (3.34)

and write 𝐻 = 𝐻𝐺 (𝐽). We first use the standard QAOA𝑝 (𝐻) algorithm to find an
optimal state

Ψ = Ψ𝐻𝐺
(𝛽∗, 𝛾∗) ∈ (C2)⊗|𝑉 |
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maximing the energy of 𝐻𝐺 . The expected value

𝑀𝑒 = 〈Ψ|𝑍 (𝑒) |Ψ〉

can be efficiently approximated on a quantum computer for any 𝑒 ∈ 𝐸 .

Suppose that the state Ψ is measured in the computational basis giving a string
𝑥 ∈ {1,−1}𝑉 . Clearly, if |𝑀 𝑓 | is close to 1, then the variables {𝑥𝑣}𝑣∈ 𝑓 satisfy a
constraint of the form (C.1) with high probability with 𝜎 = sign(𝑀 𝑓 ) ∈ {1,−1} and
any 𝑣 ∈ 𝑓 . Thus it is natural to choose 𝑓 such that |𝑀 𝑓 | is maximal. Combined with
the procedure for eliminating the corresponding variable 𝑥𝑣 described in Section C.1,
we obtain a subroutine for reducing the problem size by one variable. Pseudocode
for this routine is given below.

Imposing a constraint of the form (C.1) can be viewed as rounding correlations
among the variables {𝑥𝑤}𝑤∈ 𝑓 : indeed, the constraint demands that for 𝑣 ∈ 𝑓 , the
variable 𝑥𝑣 and 𝑥( 𝑓 \{𝑣}) must be perfectly correlated or anti-correlated.

1: function eliminateVariable(𝐺 = (𝑉, 𝐸), 𝐽)
2:
3: Input: A hypergraph 𝐺 = (𝑉, 𝐸) and a weight function 𝐽 : 𝐸 → R
4: Output: A hypergraph 𝐺′ = (𝑉 ′, 𝐸′), 𝐽′ : 𝐸′ → R and a function
𝜉 : {1,−1}𝑉 ′ → {1,−1}𝑉 .

5:
6: Run QAOA𝑝 (𝐻𝐺 (𝐽)) to find a state Ψ which maximizes 〈Ψ|𝐻𝐺 (𝐽) |Ψ〉.
7: Compute 𝑀𝑒 = 〈Ψ|𝑍 (𝑒) |Ψ〉 for every 𝑒 ∈ 𝐸 .
8: Set 𝑓 = argmax 𝑓 ∈𝐸 |𝑀 𝑓 | (breaking ties arbitrarily).
9: Pick 𝑣 ∈ 𝑓 arbitrarily.

10: Set 𝜎 = sign(𝑀 𝑓 ).
11: Define 𝑉 ′ = 𝑉\{𝑣}. Also define 𝐸′, 𝐽′ and 𝜉 by

Eqs. (3.19),(3.20),(3.21),(3.22),(C.1).
12: return (𝐺′ = (𝑉 ′, 𝐸′), 𝐽′, 𝜉).
13: end function

C.3 The Recursive QAOA (RQAOA) Algorithm
The recursive QAOA algorithm (RQAOA) we propose here proceeds simply by
iterating the process of eliminating one variable at a time until the number of
variables reaches some specified threshold value 𝑛𝑐 � 𝑛. The remaining instance of
the problem with 𝑛𝑐 variables is solved by a purely classical algorithm (for example,
by the brute force method). Thus the value of 𝑛𝑐 controls how the workload is
distributed between the quantum and the classical computers. Pseudocode for the
RQAOA algorithm is given in Fig. 3.4.
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1: function RQAOA(𝐺 = (𝑉, 𝐸), 𝐽)
2:
3: Input: A hypergraph𝐺 = (𝑉, 𝐸) with 𝑛 = |𝑉 | and a weight function 𝐽 : 𝐸 → R

defining a Hamiltonian 𝐻𝐺 (𝐽), see Eq. (C.2).
4: Output: A variable assignment 𝑥 ∈ {−1, 1}𝑉
5:
6: Let 𝜉 (0) : {1,−1}𝑉 → {1,−1}𝑉 be the identity map.
7: for 𝑘 = 1 to 𝑛 − 𝑛𝑐 do
8: (𝐺, 𝐽, 𝜉) ← eliminateVARIABLE(𝐺, 𝐽).
9: 𝜉 (𝑘) ← 𝜉 (𝑘−1) ◦ 𝜉.

10: end for
11: Let 𝐺 = (𝑉, 𝐸) be the final hypergraph with |𝑉 | = 𝑛𝑐 vertices.
12: Find 𝑥∗ = argmax𝑥∈{1,−1}𝑉 〈𝑥 |𝐻𝐺 (𝐽) |𝑥〉.
13: return 𝜉 (𝑥∗)
14: end function

Figure 3.4: Pseudocode for the recursive QAOA algorithm.

C.4 Classical Simulability of Level-1 RQAOA for Ising Models
Suppose 𝐽 is a real symmetric matrix of size 𝑛. Here we consider Ising-like cost
functions such that the corresponding Hamiltonian is

𝐻 =
∑︁

1≤𝑝<𝑞≤𝑛
𝐽𝑝,𝑞𝑍𝑝𝑍𝑞 .

The mean values of a Pauli operator 𝑍𝑝𝑍𝑞 on the level-1 QAOA state

|Ψ𝐻 (𝛽, 𝛾)〉 = 𝑒𝑖𝛽𝐵𝑒𝑖𝛾𝐻 |+𝑛〉

can be computed in time 𝑂 (𝑛) using an explicit analytic formula. Such a formula
was derived for the Max-Cut cost function by Wang et al. [24, Theorem 1]. Below
we provide a generalization to general Ising Hamiltonians. Since the total number
of terms in the cost function is 𝑂 (𝑛2), simulating each step of RQAOA takes time at
most 𝑂 (𝑛3). Assuming that 𝑛𝑐 = 𝑂 (1), the number of steps is roughly 𝑛 so that the
full simulation cost is 𝑂 (𝑛4). Crucially, the simulation cost of this method does not
depend on the depth of the variational circuit. This is important because RQAOA
may potentially increase the depth from𝑂 (1) to𝑂 (𝑛) since it adds many new terms
to the cost function.

Lemma 3.C.1. Fix a pair of qubits 1 ≤ 𝑢 < 𝑣 ≤ 𝑛. Let 𝑐 = cos (2𝛽) and
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𝑠 = sin (2𝛽). Then

〈Ψ𝐻 (𝛽, 1) |𝑍𝑢𝑍𝑣 |Ψ𝐻 (𝛽, 1)〉 = (𝑠2/2)
∏
𝑝≠𝑢,𝑣

cos [2𝐽𝑢,𝑝 − 2𝐽𝑣,𝑝] − (𝑠2/2)
∏
𝑝≠𝑢,𝑣

cos [2𝐽𝑢,𝑝 + 2𝐽𝑣,𝑝]

+𝑐𝑠 · sin (2𝐽𝑢,𝑣)
[ ∏
𝑝≠𝑢,𝑣

cos (2𝐽𝑢,𝑝) +
∏
𝑝≠𝑢,𝑣

cos (2𝐽𝑣,𝑝)
]
.

Here we only consider the case 𝛾 = 1 since 𝛾 can be absorbed into the definition of
𝐽.

Proof. Given a 2-qubit observable 𝑂, define the mean value

𝜇(𝑂) = 〈Ψ𝐻 (𝛽, 1) |𝑂𝑢,𝑣 |Ψ𝐻 (𝛽, 1)〉.

We are interested in the observable 𝑂 = 𝑍𝑍 ≡ 𝑍 ⊗ 𝑍 .

We note that all terms in 𝐻 and 𝐵 that act trivially on {𝑢, 𝑣} do not contribute to
𝜇(𝑂). Such terms can be set to zero. Given a 2-qubit observable 𝑂, define a mean
value

𝜇′(𝑂) = 〈+𝑛 |𝑒𝑖𝐻 ′𝑂𝑢,𝑣𝑒−𝑖𝐻
′ |+𝑛〉, where 𝐻′ =

∑︁
𝑝≠𝑢,𝑣

(𝐽𝑢,𝑝𝑍𝑢 + 𝐽𝑣,𝑝𝑍𝑣)𝑍𝑝 .

Using the identities

𝑒𝑖𝛽(𝑋𝑢+𝑋𝑣 )𝑍𝑢𝑍𝑣𝑒
−𝑖𝛽(𝑋𝑢+𝑋𝑣 ) = 𝑐2𝑍𝑢𝑍𝑣 + 𝑠2𝑌𝑢𝑌𝑣 + 𝑐𝑠(𝑍𝑢𝑌𝑣 + 𝑌𝑢𝑍𝑣),

𝑒𝑖𝐽𝑢,𝑣𝑍𝑢𝑍𝑣 𝑍𝑢𝑍𝑣𝑒
−𝑖𝐽𝑢,𝑣𝑍𝑢𝑍𝑣 = 𝑍𝑢𝑍𝑣,

𝑒𝑖𝐽𝑢,𝑣𝑍𝑢𝑍𝑣𝑌𝑢𝑌𝑣𝑒
−𝑖𝐽𝑢,𝑣𝑍𝑢𝑍𝑣 = 𝑌𝑢𝑌𝑣

𝑒𝑖𝐽𝑢,𝑣𝑍𝑢𝑍𝑣 𝑍𝑢𝑌𝑣𝑒
−𝑖𝐽𝑢,𝑣𝑍𝑢𝑍𝑣 = cos (2𝐽𝑢,𝑣)𝑍𝑢𝑌𝑣 + sin (2𝐽𝑢,𝑣)𝑋𝑣,

𝑒𝑖𝐽𝑢,𝑣𝑍𝑢𝑍𝑣𝑌𝑢𝑍𝑣𝑒
−𝑖𝐽𝑢,𝑣𝑍𝑢𝑍𝑣 = cos (2𝐽𝑢,𝑣)𝑌𝑢𝑍𝑣 + sin (2𝐽𝑢,𝑣)𝑋𝑢,

and noting that 𝜇′(𝑍𝑍) = 0, one easily gets

𝜇(𝑍𝑍) = 𝑠2 · 𝜇′(𝑌𝑌 ) + 𝑐𝑠 · cos (2𝐽𝑢,𝑣) [𝜇′(𝑍𝑌 ) + 𝜇′(𝑌𝑍)] + 𝑐𝑠 · sin (2𝐽𝑢,𝑣) [𝜇′(𝑋𝐼) + 𝜇′(𝐼𝑋)] .

Using the explicit form of 𝐻′, one gets

𝑒−𝑖𝐻
′ |+𝑛〉 = 1

2

∑︁
𝑎,𝑏=0,1

|𝑎, 𝑏〉𝑢,𝑣 ⊗ |Φ(𝑎, 𝑏)〉else,

where |Φ(𝑎, 𝑏)〉 is a tensor product state of 𝑛 − 2 qubits defined by

|Φ(𝑎, 𝑏)〉 =
⊗
𝑝≠𝑢,𝑣

|𝐽𝑢,𝑝 (−1)𝑎 + 𝐽𝑣,𝑝 (−1)𝑏〉𝑝 where |𝜃〉 ≡ 𝑒−𝑖𝜃𝑍 |+〉.
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Combining Eqs. (3.25) and (3.28), one gets

𝜇′(𝑂) = (1/4)
∑︁

𝑎,𝑏,𝑎′,𝑏′=0,1
〈𝑎′, 𝑏′|𝑂 |𝑎, 𝑏〉 · 〈Φ(𝑎′, 𝑏′) |Φ(𝑎, 𝑏)〉.

Using the tensor product form of the states |Φ(𝑎, 𝑏)〉 and the identity 〈𝜃′|𝜃〉 =

cos(𝜃 − 𝜃′) gives

〈Φ(𝑎′, 𝑏′) |Φ(𝑎, 𝑏)〉 =
∏
𝑝≠𝑢,𝑣

cos [𝐽𝑢,𝑝 (−1)𝑎 − 𝐽𝑢,𝑝 (−1)𝑎′ + 𝐽𝑣,𝑝 (−1)𝑏 − 𝐽𝑣,𝑝 (−1)𝑏′] .

From Eqs. (3.30) and (3.31), one can easily compute the mean value 𝜇′(𝑂) for any
2-qubit observable.

Consider first the case 𝑂 = 𝑌𝑌 . Then the only terms contributing to Eq. (3.30) are
those with 𝑎′ = 𝑎 ⊕ 1 and 𝑏′ = 𝑏 ⊕ 1. The identity 〈𝑎 ⊕ 1|𝑌 |𝑎〉 = −𝑖(−1)𝑎 gives

𝜇′(𝑌𝑌 ) = −(1/4)
∑︁

𝑎,𝑏=0,1
(−1)𝑎+𝑏

∏
𝑝≠𝑢,𝑣

cos [2𝐽𝑢,𝑝 (−1)𝑎 + 2𝐽𝑣,𝑝 (−1)𝑏],

that is,

𝜇′(𝑌𝑌 ) = (1/2)
∏
𝑝≠𝑢,𝑣

cos [2𝐽𝑢,𝑝 − 2𝐽𝑣,𝑝] − (1/2)
∏
𝑝≠𝑢,𝑣

cos [2𝐽𝑢,𝑝 + 2𝐽𝑣,𝑝] .

Next, consider the case 𝑂 = 𝑌𝑍 . Note that the matrix elements 〈𝑎′, 𝑏′|𝑂 |𝑎, 𝑏〉 have
zero real part. From Eqs. (3.30) and (3.31), one infers that 𝜇′(𝑌𝑍) has zero real
part. This implies

𝜇′(𝑌𝑍) = 𝜇′(𝑍𝑌 ) = 0.

Finally, consider the case𝑂 = 𝑋𝐼. Then the only terms that contribute to Eq. (3.30)
are those with 𝑎′ = 𝑎 ⊕ 1 and 𝑏′ = 𝑏. We get

𝜇′(𝑋𝐼) =
∏
𝑝≠𝑢,𝑣

cos (2𝐽𝑢,𝑝).

Here we noted that the inner product Eq. (3.31) with 𝑎′ = 𝑎 ⊕ 1 and 𝑏′ = 𝑏 does not
depend on 𝑎, 𝑏. By the same argument,

𝜇′(𝐼𝑋) =
∏
𝑝≠𝑢,𝑣

cos (2𝐽𝑣,𝑝).

Combining Eq. (3.27) and Eqs. (3.33),(3.34),(3.35),(3.36), one arrives at Eq. (3.23).



135

For more general cost functions that include interactions among three or more
variables, there are two complications: First, unlike in the Ising case, the variable
elimination process will typically increase the degree of non-locality of interactions.
Second, mean values of Pauli operators on the QAOA state Ψ𝐻 (𝛽, 𝛾) lack a simple
analytic formula (as far as we know). However, one can approximately compute
the mean values using the Monte Carlo method due to Van den Nest [30]. A
specialization of this method to simulation of the level-1 QAOA is described in [31].
The Monte Carlo simulator has runtime scaling polynomially with the number of
qubits, number of terms in the cost function, and the inverse error tolerance, see [31]
for details. This method also requires no restrictions on the depth of the variational
circuit.

An important distinction between QAOA and RQAOA lies in the measurement step.
QAOA requires few-qubit measurements to estimate the variational energy as well as
the final 𝑛-qubit measurement that assigns a value to each individual variable. This
last step is what makes QAOA hard to simulate classically and may lead to a quantum
advantage [32]. In contrast, RQAOA only needs few-qubit measurements to estimate
mean values of individual terms in the cost function. The 𝑛-qubit measurement step
is replaced by the correlation rounding that eliminates variables one by one. One
may ask whether the lack of multi-qubit measurements also precludes a quantum
advantage. Indeed, in the special case of level-1 variational circuits and the Ising-like
cost function RQAOA can be efficiently simulated classically, see above. However,
level-𝑝 RQAOA with 𝑝 > 1 as well as level-1 RQAOA with more general cost
functions are not known to be classically simulable in polynomial time, leaving
room for a quantum advantage.

3.D Comparison of QAOA, RQAOA, and Classical Algorithms
D.1 QAOA versus Classical Local Algorithms
In this section, we discuss another limitation of QAOA which results from its locality
and the covariance condition discussed in Lemma 3.A.2: we compare QAOA to a
certain very simple classical local algorithm (see Lemma 3.D.1 below). We show
that there is an exponential number of problem instances for which the classical
local algorithm outperforms QAOA.

Let us briefly sketch the notion of a local classical algorithm. We envision that the
tuple (𝐽𝑒)𝑒∈𝐸 is given as input. Here we are interested in algorithms which are local
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with respect to the underlying graph 𝐺. For 𝑟 ∈ N and 𝑣 ∈ 𝑉 , define

𝐸𝑟 (𝑣) =
𝑟⋃
ℓ=1

⋃
(𝑒1,...,𝑒ℓ )

path with 𝑣 ∈ 𝑒1

{𝑒1, . . . , 𝑒ℓ}

to be the set of edges that belong to a path starting at 𝑣 of length bounded by 𝑟.
Consider a classical algorithmA which on input {𝐽𝑒}𝑒∈𝐸 outputs 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈
{0, 1}𝑛. We say that A is 𝑟-local if there is a family of functions {𝑔𝑣 : R𝐸𝑟 (𝑣) →
{0, 1}}𝑣∈𝑉 such that the following holds for every problem instance (𝐽𝑒)𝑒∈𝐸 ∈ R𝐸 :
We have

𝑥𝑣 = 𝑔𝑣
(
{𝐽𝑒}𝑒∈𝐸𝑟 (𝑣)

)
for every 𝑣 ∈ 𝑉 .

In other words, in an 𝑟-local classical algorithm, every output bit 𝑥𝑣 only depends on
edge weights 𝐽𝑒 belonging to paths of length bounded by 𝑟 starting at 𝑣. We note that
this definition can easily be generalized to the probabilistic case (e.g., by including
local random bits). For the purposes of this section, deterministic functions turn out
to be sufficient.

The (choice of) family {𝑔𝑣}𝑣∈𝑉 can be considered as a set of variational parameters
for the classical algorithm. To keep the number of variational parameters constant,
we consider vertex-transitive graphs 𝐺. Fix 𝑣∗ ∈ 𝑉 . For every 𝑣 ∈ 𝑉 , fix an
automorphism 𝜋𝑣 of 𝐺 such that 𝜋𝑣 (𝑣∗) = 𝑣. Then the sets 𝐸𝑟 (𝑣) for different
𝑣 ∈ 𝑉 can be identified via 𝐸𝑟 (𝑣) = 𝜋𝑣 (𝐸𝑟 (𝑣∗)). We say that an 𝑟-local classical
algorithm is uniform if (after this identification) 𝑔𝑣 ≡ 𝑔 for all 𝑣 ∈ 𝑉 , i.e., if there
is a single function 𝑔 : R𝐸𝑟 (𝑣∗) → {0, 1} specifying the behavior of the algorithm.
To obtain general-purpose algorithms (applicable to any instance), the function
𝑔 : R𝐸𝑟 (𝑣∗) → {0, 1} should be chosen adapatively (i.e., potentially depending on
the instance). The definition of local classical algorithm sketched here includes e.g.,
the algorithms considered in Ref. [20], though it is slightly more general as the local
functions can be arbitrary.

Let 𝑛 = 6𝑟 be a multiple of 6. Consider 𝑛-qubit Hamiltonians (cf. (3.A)) of the form

𝐻 (𝐽) =
∑︁
𝑘∈Z𝑛

𝐽𝑘𝑍𝑘𝑍𝑘+1 where 𝐽 = (𝐽0, . . . , 𝐽𝑛−1) ∈ {1,−1}𝑛 .

To define locality and uniformity for the cycle graph Z𝑛, let 𝜋𝑣 (𝑤) = 𝑣 +𝑤 (mod 𝑛)
be chosen as translation modulo 𝑛 for 𝑣 ∈ Z𝑛. We show the following:

Lemma 3.D.1. There is a subset S ⊂ {1,−1}𝑛 of 2𝑛/3 problem instances such that
the following holds:



137

(i) QAOA𝑝 (𝐻 (𝐽)) ≤ 𝑝/(𝑝 + 1) for every 𝑝 ∈ N and every 𝐽 ∈ S.

(ii) There is a 1-local uniform classical algorithm such that for every 𝐽 ∈ S, the
algorithm outputs 𝑥 ∈ {0, 1}𝑛 such that 〈𝑥 |𝐻 (𝐽) |𝑥〉 = 1.

(iii) Level-1 RQAOA achieves the approximation ratio 1.

Proof. For every 𝑠 = (𝑠0, . . . , 𝑠2𝑟−1) ∈ {0, 1}2𝑟 , define 𝐽 = 𝐽 (𝑠) ∈ {1,−1}𝑛 by

𝐽3𝑎 = 𝐽3𝑎+1 = (−1)𝑠𝑎 , and 𝐽3𝑎+2 = 1,

for all 𝑎 = 0, 1, . . . , 2𝑟 − 1. We claim that the set S = {𝐽 (𝑠) | 𝑠 ∈ {0, 1}2𝑟} has the
required properties. Consider an instance 𝐻 (𝐽 (𝑠)) with 𝑠 ∈ S. Define

𝑋 (𝑠) =
2𝑟−1∏
𝑎=0

𝑋3𝑎+1 .

Then 𝐻 (𝐽 (𝑠)) is related to 𝐻Z𝑛 =
∑
𝑗∈Z𝑛 𝑍 𝑗𝑍 𝑗+1 by the gauge transformation

𝐻 (𝐽 (𝑠)) = 𝑋 (𝑠)𝐻Z𝑛𝑋 (𝑠)−1 .

Since the QAOA algorithm is invariant under such gauge transformation (see
Lemma 3.A.2), we obtain

QAOA𝑝 (𝐻 (𝐽 (𝑠))) = QAOA𝑝 (𝐻Z𝑛) ≤
𝑝

𝑝 + 1

where we use the bound

QAOA𝑝 (𝐻MaxCut
Z𝑛

) ≤ 2𝑝 + 1
2𝑝 + 2

,

proven in [22] for even 𝑛, in combination with Lemma 3.A.2. This shows (i).

For the proof of (ii), consider the classical algorithm A which on input 𝐽 =

(𝐽0, . . . , 𝐽𝑛−1) outputs

𝑥𝑣 = 𝑔(𝐽𝑣−1, 𝐽𝑣) for every 𝑣 ∈ Z𝑛 ,

where

𝑔(𝐽, 𝐽′) =


1 if (𝐽, 𝐽′) = (−1,−1)

0 otherwise .

Clearly, the algorithm A is uniform and 1-local, and it is easy to check that the
output satisfies 〈𝑥 |𝐻 (𝐽) |𝑥〉 = 1.

The proof of (iii) is given as a part of Lemma 3.D.2.
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D.2 RQAOA on the Ising Ring
Here we prove that level-1 RQAOA achieves approximation ratio 1 on the ring of
disagrees, in sharp contrast to (arbitrary) level-𝑝 QAOA (see Lemma 3.D.1(i)).
More generally, level-1 RQAOA produces 𝑥 ∈ {0, 1}𝑛 which maximizes the cost
function (that is, achieves approximation ratio 1) for any 1𝐷 Ising model where the
coupling coefficients are either +1 or −1.

Lemma 3.D.2. Consider a cost function of the form

𝐶𝑛 (𝑥) =
∑︁
𝑘∈Z𝑛

𝐽𝑘𝑥𝑘𝑥𝑘+1 for 𝑥 ∈ {1,−1}𝑛 ,

where 𝐽𝑘 ∈ {1,−1} for all 𝑘 ∈ Z𝑛. Then the level-1 RQAOA produces 𝑥∗ ∈ {1,−1}𝑛

such that 𝐶𝑛 (𝑥∗) = max𝑥∈{1,−1}𝑛 𝐶𝑛 (𝑥).

It would be interesting to see additional, more general families of examples where
approximation ratios achieved by RQAOA can be computed or lower bounded ana-
lytically.

Proof. Let

𝐻 =
∑︁
𝑘∈Z𝑛

𝐽𝑘𝑍𝑘𝑍𝑘+1 . (3.50)

Observe first that 〈Ψ𝐻 (𝛽, 𝛾) |𝑍𝑖𝑍 𝑗 |Ψ𝐻 (𝛽, 𝛾)〉 = 0 if |𝑖 − 𝑗 | > 2 since in this case the
operators 𝑈−1𝑍𝑖𝑈 and 𝑈−1𝑍 𝑗𝑈 have disjoint support. Lemma 3.C.1 shows that a
QAOA1-state Ψ𝐻 (𝛽, 𝛾) has expectation values

〈Ψ𝐻 (𝛽, 𝛾) |𝑍𝑖𝑍 𝑗 |Ψ𝐻 (𝛽, 𝛾)〉 =


1
2𝐽𝑖 sin(4𝛽) sin(4𝛾) if 𝑗 = 𝑖 + 1
1
4𝐽𝑖𝐽𝑖+1 sin2(2𝛽) sin2(4𝛾) if 𝑗 = 𝑖 + 2

0 otherwise

(3.51)

when 𝐽𝑘 ∈ {1,−1} for every 𝑘 ∈ Z𝑛. Thus

|〈Ψ(𝛽, 𝛾) |𝑍𝑖𝑍𝑖+2 |Ψ(𝛽, 𝛾)〉| ≤ 1/4 for all (𝛽, 𝛾) . (3.52)

Assume (𝛽∗, 𝛾∗) are such that (𝛽∗, 𝛾∗) = argmax(𝛽,𝛾) 〈Ψ𝐻 (𝛽∗, 𝛾∗) |𝐻 |Ψ𝐻 (𝛽∗, 𝛾∗)〉.
Then we can infer from (D.2) that

〈Ψ(𝛽∗, 𝛾∗) |𝑍𝑖𝑍𝑖+1 |Ψ(𝛽∗, 𝛾∗)〉 = 𝐽𝑖/2 . (3.53)
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Combined with (D.2) and (D.2), we conclude that

argmax(𝑖, 𝑗):𝑖< 𝑗 |〈Ψ𝐻 (𝛽∗, 𝛾∗) |𝑍𝑖𝑍 𝑗 |Ψ𝐻 (𝛽∗, 𝛾∗)〉| = (𝑖∗, 𝑖∗ + 1) (3.54)

for some 𝑖∗ ∈ Z𝑛. Without loss of generality, assume that 𝑖∗ = 𝑛 − 2. Then,
according to (D.2), the RQAOA algorithm eliminates the variable 𝑥𝑛−1 (i.e., 𝑣 = 𝑛−1,
𝑓 = {𝑛 − 2, 𝑛 − 1}). By (D.2), this is achieved by imposing the constraint

𝑥𝑛−1 = 𝑥𝑛−2𝐽𝑛−2 (3.55)

i.e., 𝜎 = 𝐽𝑛−2. The resulting reduced graph 𝐺′ = (𝑉 ′, 𝐸′) has vertex set 𝑉 ′ =
𝑉\{𝑛 − 1} = Z𝑛−1 and edges

𝐸′ = {{𝑖, 𝑖 + 1} | 𝑖 ∈ Z𝑛\{𝑛 − 2}} ∪ {{𝑛 − 2, 0}}
= {{𝑖, 𝑖 + 1} | 𝑖 ∈ Z𝑛−2} ,

and it is easy to check that the new cost function takes the form

𝐶′(𝑥) = 1 +
∑︁
𝑘∈Z𝑛−1

𝐽′𝑘𝑥𝑘𝑥𝑘+1 (3.56)

with

𝐽′𝑖 =


𝐽𝑖 when 𝑖 ≠ 𝑛 − 2

𝐽𝑛−2𝐽𝑛−1 when 𝑖 = 𝑛 − 2
. (3.57)

We note that the transformation (D.2) preserves the parity of the couplings in the
sense that ∏

𝑘∈Z𝑛
𝐽𝑘 =

∏
𝑘∈Z𝑛−1

𝐽′𝑘 . (3.58)

Inductively, the RQAOA thus eliminates variables 𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥𝑛𝑐 while imposing
the constraints (cf. (D.2))

𝑥𝑛−1 = 𝑥𝑛−2𝐽𝑛−2

𝑥𝑛−2 = 𝑥𝑛−3𝐽
′
𝑛−3

...

arriving at the cost function𝐶𝑛𝑐 (𝑥) associated with an Ising chain of length 𝑛𝑐 having
couplings belonging to {1,−1}. Because of (D.2) and because (D.2) is frustrated
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if and only if
∏
𝑘∈Z𝑛 𝐽𝑘 = −1, we conclude that any maximum 𝑥∗ ∈ {1,−1}𝑛𝑐 of

𝐶𝑛𝑐 (𝑥) satisfies

𝐶𝑛𝑐 (𝑥∗) =

𝑛𝑐 + 1 if

∏
𝑘∈Z𝑛 𝐽𝑘 = 1

𝑛𝑐 − 2 otherwise .

Because the cost function acquires a constant energy shift in every variable elimi-
nation step (cf. (D.2)), the output 𝑥 = 𝜉 (𝑥∗) of the RQAOA algorithm satisfies

𝐶 (𝑥) = 𝑛 − 𝑛𝑐 + 𝐶𝑛𝑐 (𝑥∗) =

𝑛 + 1 if

∏
𝑘∈Z𝑛 𝐽𝑘 = 1

𝑛 − 2 otherwise .

This implies the claim.
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C h a p t e r 4

BUILDING BULK GEOMETRY FROM THE TENSOR RADON
TRANSFORM

Using the tensor Radon transform and related numerical methods, we study how bulk
geometries can be explicitly reconstructed from boundary entanglement entropies
in the specific case of AdS3/CFT2. We find that, given the boundary entanglement
entropies of a 2d CFT, this framework provides a quantitative measure that detects
whether the bulk dual is geometric in the perturbative (near AdS) limit. In the
case where a well-defined bulk geometry exists, we explicitly reconstruct the unique
bulk metric tensor once a gauge choice is made. We then examine the emergent
bulk geometries for static and dynamical scenarios in holography and in many-body
systems. Apart from the physics results, our work demonstrates that numerical
methods are feasible and effective in the study of bulk reconstruction in AdS/CFT.

This chapter is based on the published article:

C. Cao, X.-L. Qi, B. Swingle, and E. Tang, “Building bulk geometry from the
tensor radon transform,” Journal of High Energy Physics, no. 12, Dec. 2020. DOI:
10.1007/jhep12(2020)033.

4.1 Introduction
Recent progress [1]–[7] in quantum gravity has shown that spacetime geometry can
emerge from quantum entanglement. This emergence provides appealing explana-
tions for many intuitive properties of the physical world, including the existence of
gravity [8]–[11], conditions on the allowed distribution of energy and matter [12],
[13], and the unitarity of black hole dynamics [14], [15]. Most of these develop-
ments have taken place in the context of the Anti-de Sitter/Conformal Field Theory
(AdS/CFT) correspondence [16], [17], although some proposals relating geometry
and entanglement also apply to flat or de Sitter geometries [5], [7], [18]–[20]. As an
example of the holographic principle [21], [22], AdS/CFT describes a duality be-
tween a (𝑑 + 1)-dimensional bulk theory with the presence of gravity in asymptotic
AdS spacetime, and a 𝑑-dimensional conformal field theory (CFT) without gravity
on the boundary. For the purposes of studying quantum gravity, the duality is es-
pecially powerful because the CFT is an object whose basic rules we understand.
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However, much remains to be understood about the relationships between the two
sides of the duality.

One such challenge in the AdS/CFT duality is to understand how the boundary
degrees of freedom without gravity can reorganize themselves into a higher di-
mensional bulk configuration with gravity. This is called the problem of bulk
reconstruction, and this paper reports two results on this topic. First, we describe a
perturbative procedure to reconstruct the bulk geometry given an appropriate set of
boundary entanglement data. Second, we show that this reconstruction procedure
can detect whether the putative bulk dual is semi-classical in the sense of having
only weak fluctuations about an average value.

Our first result builds on a number of works that study bulk metric reconstruction
using geodesic lengths [23], [24] or entanglement entropy [25]1. Early efforts
in this area often utilized bulk symmetries to simplify the problem of recovering
the bulk metric from minimal geodesic data [33]–[35]. Later work on differential
entropy and hole-ography [25], [36] furthered our understanding using information
theoretic quantities and suggested a method to recover the bulk, although no explicit
reconstruction formula was given for generic cases. More recently, it was shown
that in certain cases, static geometries [37], or even the full dynamical metric [38],
can be fixed non-perturbatively by boundary entanglement data without any prior
knowledge of the bulk symmetries. However, barring a few well-known examples
with symmetries, there does not exist a reconstruction procedure that directly and
explicitly converts entropy data into bulk metrics. Our work addresses this missing
element.

Our second result arises from the basic issue that we have a far from complete
understanding of what kind of boundary states correspond to semi-classical bulk
geometries. Some necessary conditions are expected from holographic entropy in-
equalities [39] and from consistency relations for any putative metric reconstruction
procedure2. In general, we do not expect all quantum states from the boundary
CFT to correspond to well-defined semi-classical geometries in the bulk. On the
contrary, we expect an abundance of non-geometrical states obtained, for instance,
by superposing states with macroscopically distinct dual geometries such as the

1More generally, but less explicitly, there are also proposals for bulk reconstruction using tensor
networks [4], [26]–[29], modular Hamiltonians [30], and light-cone cuts [31], [32]. These rely on
different boundary data and methodologies which we will not discuss here.

2One typically proceeds by assuming the boundary state has a bulk geometry and running the
reconstruction procedure. If the boundary state actually does not have a bulk geometry, then the
reconstruction procedure will lead to internal inconsistencies.
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AdS vacuum and an AdS black-hole geometry. Therefore, to better understand
holographic duality, we must also address the necessary and sufficient conditions
under which a bulk geometry can emerge from the boundary state. Our work also
addresses this open question.

In this paper, we study the above issues in the context of AdS3/CFT2 using an
approach based on the tensor Radon transform. The method is for metric solutions
that are close to AdS3, hence it is restricted at present to perturbative problems. To
linear order in the perturbation, each quantum state on the boundary corresponds to
a constant time slice in the bulk, so we provide a numerical reconstruction algorithm
that takes the entanglement entropies of intervals in the boundary state as input, and
outputs the best-fit bulk metric tensor of the spatial slice in the linearized regime.
This solution is unique up to gauge transformations. The algorithm also provides
a quantitative indicator of whether the boundary data admits a bulk geometric
description near AdS3. This is measured by the quality of the fit, which intuitively
quantifies how far the boundary entanglement data of a given state is from being
geometric. A poor quality of the fit indicates the boundary data lack consistency
with a semi-classical geometry.

As a proof of principle, we explore several reconstructions numerically in holography
and with a 1d free fermion CFT. We find that free fermion ground states in the
presence of disorder and a mass deformation do not correspond to a well-defined
bulk geometries. Likewise, mixtures of states where each is dual to a distinct
classical geometry can also fail to have a well-defined bulk geometry. In addition to
these static examples, the method is applied to several dynamical scenarios including
global and local quenches in the free fermion model and entanglement dynamics in a
toy model scrambling system. In the case where the dynamics is scrambling, we find
that the bulk description is qualitatively consistent with an in-falling spherical shell of
bulk matter experiencing gravitational attraction. These results further demonstrate
that it is both feasible and interesting to study AdS/CFT using tensor Radon transform
techniques coupled with modest (laptop-scale) computational resources.

The remainder of the paper is organized as follows. In Section 4.2, we briefly review
the basic assumptions, especially how entanglement entropy can be tied to metric
tensors via the tensor Radon transform. We give a general review on the tensor
Radon transform in Appendix 4.A. Its adaptation to a hyperbolic geometry and the
gauge fixing procedure are found in Appendix 4.B and Appendix 4.C, respectively.
In Section 4.3, we introduce the numerical reconstruction procedure, which we
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elaborate in detail in Appendix 4.D. In Section 4.4, we apply the reconstruction
algorithm to static and dynamical boundary entanglement data. In Section 4.5,
we discuss these reconstructions and how geometrical and non-geometrical can be
distinguished using the relative reconstruction error. Finally we conclude with some
remarks and directions for future work in Section 4.6.

4.2 Boundary Rigidity and Bulk Metric Reconstruction
We begin with the vacuum state |0〉CFT of a hologaphic CFT. Because this state
has conformal symmetry at all scales, it must be dual to empty AdS [16]. When
the bulk theory is Einstein gravity coupled to matter, the bulk geometry controls
the leading entanglement structure of the CFT state via the Ryu-Takayanagi (RT)
formula [2], [3]. Given a boundary region 𝐴, the RT formula computes the von
Neumann entropy 𝑆(𝐴) in terms of a minimal area surface,

𝑆(𝐴) = 1
4𝐺

min
𝛾𝐴

Area[𝛾𝐴],

where Area[𝛾] is the area of 𝛾𝐴, 𝐺 is Newton’s constant, and the minimum runs
over bulk surfaces 𝛾𝐴 that are homologous to 𝐴. In the time symmetric case where
RT applies, all of these surfaces can be taken to lie in a time-symmetric spacelike
surface Σ. In other words, the Ryu-Takayanagi formula says that the von Neumann
entropy of a state on a boundary subregion is given by area of the minimal area bulk
surface that subtends the region.

If we have access to a boundary state, in the sense of knowing its von Neumann
entropies on all (connected) subregions, then the RT formula translates these entropic
quantities into a set of boundary anchored minimal surface areas. Because these
minimal surfaces all lie on the spatial slice Σ, recovering the bulk geometry from
entanglement reduces to a pure geometry problem where we try to find the interior
metric 𝑔𝑖 𝑗 of a Riemannian manifoldM while knowing only the areas of minimal
surfaces that are anchored to its boundary 𝜕M. This is precisely the statement of
the boundary rigidity problem [40], which is well-studied in the field of integral
geometry [41].

For this work, we focus exclusively on the case of AdS3/CFT2, where minimal
surfaces are simply geodesics and spatial slices are 2d Riemannian manifolds. For
a class of 2d Riemanian manifolds (called simple manifolds), it is known that the
lengths of all boundary-anchored geodesics indeed fixes the bulk metric uniquely up
to gauge equivalence [42]. Because the single interval von Neumann entropies in the
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ground state of a 2d CFT are universally determined by the central charge [43], the
RT formula combined with boundary rigidity completely fixes the bulk geometry
to be that of hyperbolic space [44], [45]. Of course, this is precisely the induced
geometry on a time-symmetric slice of AdS, as it had to be based on the grounds of
symmetry3.

It is natural to ask whether we can exploit the power of the RT formula and the results
from boundary rigidity theory to reconstruct dual geometries from boundary states
other than the vacuum. For instance, given a generic non-vacuum state |𝜓〉CFT, can
we apply the same principles to reconstruct the metric tensor for the bulk geometry
from the set of boundary-anchored geodesic lengths? There are several obstacles
that prevent us from recovering the bulk metric tensor exactly using the above
methods, even if |𝜓〉CFT has a well-defined dual geometry. First, since it may not
be possible for minimal surfaces (or extremal surfaces in the dynamical case [46])
to foliate entire space(time) manifold, thus we can only reconstruct regions where
there is at least a local foliation with minimal or extremal surfaces. Second, even
for the regions whose geometries are fixed by the entanglement data [38], there is
no explicit reconstruction formula for the general boundary rigidity problem.

Although such problems are difficult to solve in general, it is typically easier to
reconstruct the difference between the dual geometry and a known reference, or
background, geometry. This is known as the linearized boundary rigidity prob-
lem [40], [41]. In this work, instead of a direct reconstruction of the of the dual
geometry for |𝜓〉CFT, we reconstruct the differences in the entanglement patterns as
linearized metric perturbations around the AdS background.

To do so, we first fix the background geometry to be vacuum AdS3. Working
with a given constant-time slice, let us suppose that |𝜓〉CFT has a slightly different
entanglement structure compared to |0〉CFT, and is dual to a bulk geometry with a
metric that is close, but not equal, to that of pure hyperbolic space on our time-slice.
Then by the RT formula, the boundary-anchored geodesic lengths now differ slightly
from those of pure hyperbolic space. For a given boundary sub-region 𝐴, the change
in the geodesic length anchored at 𝐴 is related to the vacuum subtracted entropy of

3Since the lengths of geodesics on an asymptotically AdS spacetime are divergent when extended
to the boundary, it is understood that the geodesics are actually regularized to be anchored on a cutoff
surface that is some finite distance away from an arbitrarily chosen coordinate in the bulk. For the
rest of this work, we will always impose a UV cutoff for the CFT, or equivalently, an IR cut off in the
bulk geometry so that the geodesic lengths stay finite.
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the state by

Δ𝐿 (𝐴) = 𝐿𝜓 (𝐴) − 𝐿0(𝐴) =
𝑆𝜓 (𝐴) − 𝑆0(𝐴)

4𝐺
,

where 𝐿𝜓 (𝐴) and 𝐿0(𝐴) denotes the lengths of geodesics anchored at the end points
of 𝐴 for states |𝜓〉CFT and |0〉CFT, respectively.

This change in geodesic length corresponds to a change in the bulk metric

𝑔
(0)
𝑖 𝑗
↦→ 𝑔𝑖 𝑗 = 𝑔

(0)
𝑖 𝑗
+ ℎ𝑖 𝑗 ,

where 𝑔(0)
𝑖 𝑗

is the pure hyperbolic metric and ℎ𝑖 𝑗 is the perturbation. For the linearized
problem, the goal is to find ℎ𝑖 𝑗 to leading order, with ℎ𝑖 𝑗 viewed as a rank two
symmetric tensor field on the hyperbolic background. Note that geodesics of the
background metric remain geodesics of the perturbed metric to first order in ℎ

since geodesics satisfy an extremality condition. Changes in entanglement due to
variations in the minimal surface itself are of order ℎ2 [8]. The leading order change
in geodesic length can then be written as

Δ𝐿 (𝐴) = 𝐿𝜓 (𝐴) − 𝐿0(𝐴)

=

∫
𝛾𝐴

√︃
(𝑔(0)
𝑖 𝑗
+ ℎ𝑖 𝑗 ) ¤𝛾𝑖𝐴 ¤𝛾

𝑗

𝐴
𝑑𝑠 −

∫
𝛾𝐴

√︃
𝑔
(0)
𝑖 𝑗
¤𝛾𝑖
𝐴
¤𝛾 𝑗
𝐴
𝑑𝑠

=
1
2

∫
𝛾𝐴

ℎ𝑖 𝑗 ¤𝛾𝑖𝐴 ¤𝛾
𝑗

𝐴
𝑑𝑠 + O(ℎ2), (4.1)

where 𝛾𝐴 is the geodesic of the hyperbolic background anchored at the end points of
𝐴 and ¤𝛾𝑖

𝐴
denotes unit tangent vectors along 𝛾𝐴. The tangent vectors are normalized

such that

𝑔
(0)
𝑖 𝑗
¤𝛾𝑖𝐴 ¤𝛾

𝑗

𝐴
= 1.

For simplicity, we will use 𝐿 (𝛾𝐴) and 𝐿 (𝐴) interchangeably, often dropping the
explicit dependence on 𝐴 and simply writing 𝐿 (𝛾) when there is no confusion, with
the understanding that 𝛾 is a boundary-anchored geodesic.

To make concrete progress in this work, we simplify the full problem by taking the
linearized bulk result for changes in geodesic length to be equal to the full change
in boundary entanglement entropy,

Δ𝐿 (𝛾) ≈ 1
2

∫
𝛾

¤𝛾𝑖 ¤𝛾 𝑗ℎ𝑖 𝑗 𝑑𝑠.
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This approximation enables calculations; going beyond it may be technically non-
trivial, but it is likely not a fundamental obstacle.

With this simplification, the length perturbation becomes the integrated longitudinal
projection of the metric perturbation along a geodesic 𝛾. This is precisely the tensor
Radon transform 𝑅2 [ℎ] of the metric perturbation ℎ𝑖 𝑗 [47]. Given a symmetric
2-tensor field ℎ𝑖 𝑗 , the tensor Radon transform 𝑅2 [ℎ] defines a map from the space
of boundary geodesics to the complex numbers given by

𝑅2 [ℎ𝑖 𝑗 ] (𝛾𝐴) ≡
∫
𝛾𝐴

ℎ𝑖 𝑗 ¤𝛾𝑖𝐴 (𝑠) ¤𝛾
𝑗

𝐴
(𝑠) 𝑑𝑠,

where 𝛾𝐴 is the background geodesic anchored at the boundary of 𝐴.

As an aside, we note that there exist several related notions of Radon transform. A
standard Radon transform on a Riemannian manifold is defined by integrating some
quantity on a minimal co-dimension one surface, whereas an X-ray Radon transform
is defined similarly, but for a dimension one surface, i.e., a geodesic. For two spatial
dimensions, as is the case we consider here, the two definitions coincide. For more
details on the Radon transform, see Appendix 4.A.

Formally, the bulk metric deformation can be recovered by inverting the tensor
Radon transform. Schematically, we can write

𝑅−1
2 [2Δ𝐿] = 𝑅

−1
2 [𝑅2 [ℎ𝑖 𝑗 ]] = ℎ𝑖 𝑗 ,

where 𝑅−1
2 denotes some (not yet properly defined) inverse Radon transform, and

where Δ𝐿 denotes the collection of boundary anchored geodesic length deviations.

Throughout, we work exclusively in the perturbative regime, to leading order in
ℎ, which allows us to relate geodesic length deformations to the Radon transform
through (4.2). It also ensures that the resulting geometric solution, when it exists, is
uniquely determined by the boundary entropy data [42], [45].4 We wish to comment
here that despite restrictions to the perturbative regime, ℎ𝑖 𝑗 can still capture highly
non-trivial physics. Indeed, standard calculations of gravitational waves and the
dynamics of typical stars, planets, and galaxies are all done in the weak-field regime.

Before we can proceed with the inversion process, we must give meaning to the
inverse Radon transform. For this purpose, it is important to note that the Radon

4In general, we are not guaranteed a unique solution for the bulk metric, even if one exists,
because the assumption that the manifold is simple breaks down for sufficiently large deviations from
a constant curvature background [23]. Working in the perturbative limit ensures that the Radon
transform remains well-defined. See Appendix 4.A.
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transform has a non-trivial kernel: given any vector field 𝜉 on 𝑀 such that 𝜉 |𝜕𝑀 = 0,
we necessarily have

𝑅2 [∇𝑖𝜉 𝑗 + ∇ 𝑗𝜉𝑖] = 0.

Physically, any Radon transform of a pure gauge deformation that reduces to the
identity at the boundary is zero. The presence of this kernel is natural because
the transform relates geodesic lengths (which are gauge invariant) to metric tensors
(which are not), so the Radon transform can only be injective up to gauge.

In the presence of such a kernel, we must fix a gauge prescription in order to recover
a metric tensor uniquely. We will use a prescription which we call the holomorphic
gauge [48]. In a crude sense, the holomorphic gauge preferentially reconstructs
the trace part of the metric at the cost of diminishing non-zero contributions to
the off-diagonal.5 This provides two independent gauge constraints in two spatial
dimensions, which would allow us to proceed with the reconstruction. For a more
detailed description of the gauge constraints and Radon transform on a hyperbolic
background, see Appendix 4.B.

As a final comment, in the above discussion we have explicitly assumed that the
boundary state corresponded to a well-defined bulk geometry. Below we will
construct algorithmic machinery which can actually carry out the reconstruction in
this case. However, we will also see that the algorithm can be applied to a more
general class of states, with interesting results.

4.3 Numerical Methods for Reconstruction
The inversion formula for the flat-space scalar Radon transform is a well-known
classical result in integral geometry [41]. Explicit reconstruction formulas for
scalar and vector Radon transforms are also available for constant negative curvature
backgrounds [42], [49]. However, there are currently no explicit reconstruction
formulas available for higher rank tensors on curved backgrounds, although several
results in the literature come close to a solution in various regimes [42], [48]–
[52]. In the absence of an exact analytic reconstruction formula, we instead draw
inspiration from the general principles employed in seismology to study the Earth’s
interior [53] in developing our numerical method.

In this section, we give a brief overview of the method. The full details of the
5There exists other gauge fixing prescriptions as well. The most commonly considered pre-

scription is known as the solenoidal gauge. See Appendix 4.A. We choose an alternative gauge
prescription for various reasons of convenience. For more details on gauge fixing, see Appendix 4.C.
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discretization, gauge fixing, and solutions for the constrained least square problem
can be found in Appendix 4.D.

4.3.1 Discretization and Optimization Procedures
The basic idea behind our numerical reconstruction is straightforward. We first
discretize the bulk and boundary regions into a finite number of tiles. To each
tile T in the bulk, we associate a tensor ℎ𝑖 𝑗 (T ), and for each interval 𝐴 on the
boundary, we associate a geodesic (of the background metric) 𝛾𝐴 anchored on the
endpoints of the interval. In two spatial dimensions, a rank-2 symmetric tensor
has 3 independent degrees of freedom. Each geodesic anchored at the end points
of an interval generates a linear equation via the discretized version of the Radon
transform (4.2), defined by

2Δ𝐿 (𝛾𝐴) = 𝑅2 [ℎ𝑖 𝑗 ] ≈
∑︁
T
𝑊 𝑖 𝑗 (T , 𝛾𝐴)ℎ𝑖 𝑗 (T ), (4.2)

where the tensor𝑊 𝑖 𝑗 contains information about the direction of the tangent vectors
¤𝛾𝐴, as well as the arc length Δ𝑠(𝛾𝐴,T) of the geodesic segment that passes through
each tile T . In Equation (4.3.1), we sum over all bulk tiles T and over repeated
indices. Naturally, one has 𝑊 𝑖 𝑗 (T , 𝛾𝐴) = 0 if the geodesic does not pass through a
tile T .

We can abbreviate Equation (4.3.1) in matrix form as

b = Wh,

where W and h are vectorized representations of𝑊 𝑖 𝑗 and ℎ𝑖 𝑗 , and where b denotes
the corresponding geodesic length deformations. As a result, given a specific
discretization, the discretized forward Radon transform can be written as a linear
map𝑊 : 𝑉𝐵 → 𝑉𝛾 from the space of tile-wise constant bulk tensor valued functions
𝑉𝐵 to the space of boundary anchored geodesic lengths 𝑉𝛾. Both spaces are finite
dimensional due to the discretization.

Since the forward Radon transform has a non-trivial kernel in the continuum limit,
we must impose a gauge fixing condition to recover a unique solution. We give the
full detail of the gauge fixing conditions and the accompanying partial differential
equations in Appendix 4.C. To ensure the problem is well-posed, we set the holo-
morphic gauge constraints as discretized partial differential equations, which we
formally write as

Ch = 0. (4.3)
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Here, C denotes the constraint matrix representing the partial differential operator
associated with the gauge constraint. Reconstruction of the metric perturbation then
corresponds to finding the solution to the linear equations (4.3.1) above, subject to
the linear constraints (4.3.1).

In practice, there does not always exist exact solutions ℎ𝑖 𝑗 which satisfies the con-
strained system. This can be due to a variety of reasons, such as the presence of
discretization errors, or if the boundary data is simply inconsistent with a geometric
bulk, i.e., if the boundary entropy function fails to lie within the range of the forward
Radon transform [41], [42], [48]. Instead of trying to look for an exact solution,
it is more natural to look for the best-fit solution h∗ which solves the constrained
minimization problem

min
h
‖Wh − b‖,

subject to Ch = 0. (4.4)

The objective function is linear and we are guaranteed a unique global minimum.
Thus we will say that h∗ is the optimal geometric solution corresponding to boundary
data b. We will also write h∗(b) when we need to denote the dependence of h∗ on
the initial boundary data.

Even with the existence of an optimal reconstruction h∗, we do not expect generic
boundary data to correspond to a geometric dual in general. A useful quantity is
the relative error of reconstruction, which measures the tension between the best-fit
solution and the actual data. We can consider various relative errors. If we know
the exact bulk solution, say h0, then we can denote the bulk relative error as

Ebulk =
‖h∗ − h0‖
‖h0‖

,

where h∗ is the bulk metric tensor reconstructed from the forward transform of h.

More commonly however, we do not have access to an a priori geometric state.
Instead, we have a CFT state |𝜓〉CFT from which we can extract discretized boundary
data b𝜓 . In this case, we can likewise consider the boundary relative error, defined
by

Ebdy =
‖W[h∗(b𝜓)] − b𝜓 ‖

‖b𝜓 ‖
. (4.5)

The boundary relative error is simply the normalized distance from b𝜓 to the sub-
space of boundary data vectors with geometric duals, which is the same quantity
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minimized by the constrained least squares problem (4.3.1). The boundary relative
error therefore serves to quantify the degree to which a state is geometric or non-
geometric. We will discuss in greater detail in Section 4.5 how the relative errors
can be used to distinguish geometric data from non-geometric data on the boundary.

To ensure the reliability of the reconstruction algorithm for the inverse tensor Radon
transform, we also perform the numerical inversion of boundary data b whose bulk
tensor field is known. We produce such boundary data by preparing various known
bulk tensor valued functions h0 in the holomorphic gauge, and then generating its
corresponding geodesic data b0 through a forward tensor Radon transform. Subse-
quently, we apply the numerical reconstruction to the geodesic data and compare the
reconstructed h∗(b0) to the original test function h0. We find remarkable agreement
in our reconstructions. Absent rigorous analytic convergence guarantees, the suc-
cessful benchmarking of the algorithm on known cases serve to provide confidence
in the fidelity of the reconstruction. Details of this benchmarking process are given
in Appendix 4.E.

4.4 Reconstructed Geometries
The forward tensor Radon transform is generally neither injective nor surjective.
Therefore, not all boundary data can be interpreted as the Radon transform of a
bulk tensor field. However, it may be possible to derive necessary and sufficient
characterization of what boundary data corresponds to a bulk tensor field. Such a
criterion is known as a range characterization of the tensor Radon transform. Ranges
characterizations of various transforms have been discussed extensively for scalar
and vector cases on curved backgrounds and tensor cases on flat background [41],
[42], [48]. However, it remains an active topic of research for transforms on curved
background for higher rank tensor fields.

Although we lack a rigorous analytic characterization for the tensor Radon transform,
our numerical methods can still effectively capture the parts of the entanglement
data that do not lie within the range of the tensor Radon transform. Since the Radon
transform is linear, any contribution that cannot be fitted to a bulk tensor field in the
global best-fit reconstruction effectively captures the non-geometric contribution for
the discrete reconstruction. More specifically, the relative boundary error (4.3.1)
serves as a indicator for the fraction of the boundary entropy data which does not
lie within the range, i.e., the fraction which can be considered non-geometric.

In the upcoming sections, we reconstruct geometries from boundary entanglement
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entropies generated by holographic systems as well as those generated numerically
from a 1d free fermion system. We then discuss how their relative boundary errors
Ebdy can be used as a standard to distinguish states that have a well-defined classical
dual geometry from the ones that do not. This provides a direct quantitative condition
for whether a state is geometric.

For entanglement entropies generated by holographic systems, we expect a weakly
coupled gravity dual, and therefore spacetime geometries that are generically classi-
cal at low energies. The same cannot be expected for a generic many-body quantum
system at criticality [54], although they may still capture interesting features using
a dual spacetime prescription. For instance, in a free fermion system, the conformal
field theory has neither strong coupling nor a large central charge. Although it is
unclear what the dual bulk description would be, it is generally expected that any
geometric description must be one where gravity is strongly coupled, the leading
order RT formula does not apply, and the spacetime is dominated by quantum ef-
fects. Therefore, the reconstruction is likely poor in the absence of a large number
of symmetries. We will find that numerical evidence support these basic intuitions.

It is difficult to present certain reconstructions from dynamical systems in a paper.
A list of the animated reconstructions for various dynamical processes are linked
here.6

4.4.1 Holographic Reconstructions
As a benchmark for holographic geometry reconstructions, we first reconstruct the
metric for the thermal AdS geometry in the linearized regime. The entropy data we
use are generated by the minimal geodesic lengths in a BTZ geometry [55] using
the Ryu-Takayanagi formula. Since the data corresponds to a bulk geometry by
construction, the reconstruction should show good agreement with said geometry
at linear order. This includes the correct qualitative behaviour in the bulk, and
a positive metric perturbation present deeper into the bulk. It must also afford
relatively small reconstruction errors, which can be attributed to factors such as
discretization errors, approximations made in linearization, and working on a fixed
hyperbolic background despite the changes in bulk geometry.

Indeed, as shown in Figure 4.1, we find good agreement with our expectations in
the reconstruction. By probing deeper into the bulk, the geodesics for a thermal
geometry travel through larger distances, resulting in a net positive change in the

6Link: https://www.youtube.com/playlist?list=PLCjJ3kjqxOfw1aIa5c0X6KSpox1-AjM5b

https://www.youtube.com/playlist?list=PLCjJ3kjqxOfw1aIa5c0X6KSpox1-AjM5b
https://www.youtube.com/playlist?list=PLCjJ3kjqxOfw1aIa5c0X6KSpox1-AjM5b
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Figure 4.1: Thermal state reconstruction. Plot shows the individual tensor compo-
nents ℎ11, ℎ12, ℎ22 of the metric perturbation from left to right, respectively. The
boundary relative errors are Ebdy . 10−2 across a wide range of temperatures.

metric perturbation. Note that at linear order, we cannot detect a change in bulk
topology, which the entanglement data dual to a BTZ geometry should predict. This
is because of the fixed background metric.7

Motivated by entanglement dynamics in holography, we can also construct heuristics
for the entanglement growth of a boundary theory. For instance, under a global
quench, we expect qualitative growth of entanglement to be captured by

𝑆𝐴 (𝑡) ≈ min{𝑠𝑣𝑡, 𝑠 |𝐴|} (4.6)

for 𝑡 ≥ 0, where entanglement for any region will grow linearly in time after the
initial stage, until the entropy satisfies a volume law [56], [57]. Here 𝑠 denotes the
entropy density, 𝑣 the speed of entropy growth, and 𝑡 the time that has elapsed since
the quench. The size of the boundary interval is denoted by |𝐴|. The corresponding
metric and curvature perturbations are shown in Figure 4.2.

As the system thermalizes, larger subregions have a volume law entropy. The wave-
front of the entanglement spread is reflected in the bulk as a spherically symmetric
perturbation moving from the boundary to the center. Assuming Einstein gravity,
which holds for holographic CFTs, the curvature perturbation 𝛿𝑅 also reflects the
bulk matter distribution through the linearized Hamiltonian constraint for each in-
stance of time [47]. Therefore, this thermalization process is consistent with the
collapse of a spherical shell of matter [56].

7Suppose the background metric is updated using the new found metric perturbation. Then we
should recover the fact that the corrected geodesics avoid the central region of the bulk. However,
geodesic avoidance alone does not necessarily indicate the formation of a horizon. For instance,
adding a single massive particle in AdS will lead to a back-reacted geometry where geodesics avoid
the region near the inserted mass.
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(a) Component ℎ11.

(b) Linearized scalar curvature perturbation.

Figure 4.2: Metric perturbation from volume law entropy growth (4.4.1). Plots are
ordered from left to right as time increases. We only give ℎ11 for the sake of clarity,
because ℎ12 ≈ 0 and ℎ22 ≈ ℎ11. The boundary relative error is Ebdy ≈ 0.03.

Mixture of Thermal States

There are also instances where we do not expect a well-defined geometry to exist. For
example, when the state is taken from a theory where the bulk is strongly coupled
and/or the state is a macroscopic superposition of certain classical geometries,
quantum gravitational effects can dominate, leading to a breakdown of the classical
geometric description.

In this section, as an example of a potentially non-geometric holographic state,
we look at mixtures of thermal AdS geometries at various temperatures. We will
consider states of the form

𝜌 = 𝑝𝜌(𝑇1) + (1 − 𝑝)𝜌(𝑇2),

where 𝜌(𝑇𝑖) are thermal states of a CFT with distinct temperatures 𝑇1 and 𝑇2.
From [58], the von Neumann entropy of the mixture is estimated as

𝑆(𝜌𝐴) = 𝑆(𝜌1,𝐴) + 𝑆(𝜌2,𝐴) + 𝐻 (𝑝),

where we write 𝜌𝑖,𝐴 to denote the reduced state of 𝜌(𝑇𝑖) on a boundary region 𝐴,
and where

𝐻 (𝑝) = −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝)
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is a Shannon-like term that corresponds to the entropy of mixing [59]. Physically,
such a state can be created by superposing two thermofield double states at different
temperatures, and then tracing out one side of the wormhole. For CFTs with
strong bulk gravity where 𝐺𝑁 ≈ 1, we find the superposition incurs a large error,
indicating non-geometric configurations in the bulk. However, for a CFT with a
weakly coupled dual where 𝐺𝑁 � 1, the geometry smoothly interpolates between
the two temperatures at the linearized level, consistent with our expectation that the
entropy operator is proportional to the area operator at leading order in 𝑁 . In the
language of Radon transform, this is caused by the entropy of mixing 𝐻 (𝑝) being a
non-geometrical contribution.

Figure 4.3: Component ℎ11 of a mixture of two thermal geometries at two distinct
temperatures. Top diagram for𝐺𝑁 ≈ 1 and bottom for𝐺𝑁 � 1, both with 𝐿AdS = 1.
From left to right, we increase the mixing ratio 𝑝 and the geometry transitions
smoothly from one at lower temperature to the other at higher temperature when
the gravitational coupling is weak. The reconstruction is dominated by artifacts and
have large error if the coupling is strong, leading to a contribution 𝐺𝑁𝐻 (𝑝) in the
leading order.

4.4.2 1D Free Fermion
Given that the reconstruction procedure relies only on the von Neumann entropy of
a state, we may also apply it to various quantum many-body systems where we do
not necessarily expect the conformal field theory to be dual to a semi-classical bulk
theory with weakly coupled gravity. The lack of a semi-classical geometric dual
will generally be reflected in the presence of a large boundary reconstruction error.
One example where the separation between geometric and non-geometric states is
particularly manifest is the contrast between the reconstruction of holographically
motivated data and that of a 1d free fermion.
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Generic low-energy states for free fermion systems are generally believed to have
a highly quantum bulk because the conformal field theory is non-interacting, and
has a small central charge. Heuristically, the strong-weak nature of the holographic
duality suggests that such systems should result in a strongly coupled bulk geometry,
if such geometries even exist. In this section, we give a few examples indicating that
generic excited states in the free fermion system are indeed non-geometric. However,
we shall also see that certain large-scale geometric properties may nevertheless be
present, even if the overall state is ostensibly non-geometric.

For our reconstruction, we consider a 100-site massless free fermion system with
periodic boundary conditions, and with Hamiltonian

�̂�0 = −
∑︁
𝑖

�̂�
†
𝑖
�̂�𝑖+1 + h.c.,

where, as usual, the creation and annihilation operators satisfy the canonical anti-
commutation relations

{�̂�𝑖, �̂�†𝑗 } = 𝛿𝑖 𝑗 , {�̂�𝑖, �̂� 𝑗 } = 0, {�̂�†
𝑖
, �̂�
†
𝑗
} = 0.

We shall also consider various quench dynamics and deformations of the free fermion
system.

The free fermion system is described by a (1 + 1)-d conformal field theory in the
thermodynamic limit, with central charge 𝑐 = 1/2 [60]. Here we study directly
the regulated lattice model. Any such model of non-interacting fermionic modes
can be studied efficiently numerically with a cost scaling polynomially with the
number of fermion modes 𝑁 . In particular, we can compute all of the single interval
entanglement entropies via [61]. The key point is that the state of the system is
Gaussian. In particular, given a subset 𝐴 of the fermions, the reduced density
matrix is 𝜌𝐴 ∝ 𝑒−𝐾𝐴 with 𝐾𝐴 quadratic in �̂� and �̂�†,

𝐾𝐴 = �̂�†𝑘𝐴�̂�.

Here 𝑘𝐴 is an |𝐴| × |𝐴| Hermitian matrix that determines all correlation functions
of fermions in 𝐴. It is related to the 2-point function via

𝐺𝐴
𝑖 𝑗 = 〈�̂�

†
𝑖
�̂� 𝑗 〉

��
𝑖, 𝑗∈𝐴 =

(
1

𝑒𝑘
T
𝐴 + 1

)
𝑖 𝑗

.

The entropy of 𝐴 is then determined by the eigenvalues of 𝑘𝐴, but there is also a
direct formula in 𝐺𝐴:

𝑆(𝐴) = −tr
[
𝐺𝐴 ln𝐺𝐴 + (1 − 𝐺𝐴) ln(1 − 𝐺𝐴)

]
.
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To fix our background geometry, we numerically compute the ground state entangle-
ment of the critical Hamiltonian �̂�0. To consider non-vacuum emergent geometries,
we consider states |𝜓〉 ≠ |0〉, which are not necessarily energy eigenstates of �̂�0. For
instance, these excited states can be generated by first deforming the Hamiltonian
away from criticality through a mass deformation

�̂�0 ↦→ �̂�0 + 𝑚�̂�1,

and then finding the ground state |𝜓𝑚〉 of the perturbed Hamiltonian. For small 𝑚,
the new ground state |𝜓𝑚〉 is generically an excited state with relatively low energy
in the unperturbed system.

We will study reconstructions in both the static and dynamical cases. For the static
case, we reconstruct the emergent geometry of the new ground states |𝜓𝑚〉 by finding
the best-fit geometry using the discrete Radon transform. We do this for a number
of distinct values of 𝑚. For the dynamical case, we consider the quench dynamics
corresponding to the deformation �̂�1. We start with some fixed deformed ground
state |𝜓𝑚〉 and then time evolve the state with the free Hamiltonian �̂�0 and reconstruct
the geometry that corresponds to each time step: |𝜓𝑚 (𝑡)〉 = exp(−𝑖𝑡�̂�0) |𝜓𝑚〉.

Local Deformations

In this section and the next, we will consider deformations of the form

�̂�1 =
∑︁
𝑖∈𝑆

�̂�
†
𝑖
�̂�𝑖+1 + h.c., (4.7)

where 𝑚 is a small positive parameter, and where 𝑆 is a set of sites where we
introduce such deformations. The perturbation serves to deform the ground state
wavefunction around the sites near 𝑆. We label the sites counter-clockwise from 0
to 99, starting with site 0 aligned with the positive 𝑥-axis (i.e., site 𝑖 sits on the unit
circle at angle 𝜃𝑖 = 2𝜋𝑖/100). We will consider local perturbations where 𝑆 consists
of one or two sites in this section, and more global perturbations in the next section.

Figure 4.4 shows the best-fit geometry arising from the ground state |𝜓𝑚〉 corre-
sponding to a local mass deformation at a single site 𝑆 = {0}, located along the
positive 𝑥-axis. We can see that, in contrast to the holographic reconstructions in
Section 4.4.1, the geometries shown in Figure 4.4 are heavily dominated by noise
and local artifacts. The corresponding relative error of reconstruction is also larger
by more than an order of magnitude as compared to the holographic cases (see
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Figure 4.13a in Section 4.5 for a more comprehensive comparison of relative er-
rors). The large error of reconstruction can be seen as a hallmark of the fact that the
underlying state is non-geometric.

Figure 4.4: Components of the reconstructed metric tensor perturbation corre-
sponding to the ground state of a mass deformed Hamiltonian, with the deformation
located at a single site located along the positive 𝑥-axis. The boundary relative error
is Ebdy ≈ 0.62.

Note that the lack of geometric features in the reconstruction does not necessarily
indicate that the reconstruction procedure is flawed. In fact, non-geometric features
are expected because not all boundary data should produce geometric reconstruc-
tions. Our reconstruction procedure has equipped us with information of telling
apart when that will happen. We will discuss this further in Section 4.5.

Nevertheless, there are cases where some large-scale geometric features can be
extracted from the plot. This is especially clear in the dynamical case, where we
consider the quench dynamics obtained by evolving the deformed ground state |𝜓〉
using the free fermion Hamiltonian �̂�0. The reconstruction, performed timeslice
by timeslice, is shown in Figure 4.5 (only the dominant component ℎ11 is shown).
While it may not be entirely clear, Figure 4.5 reveals a large scale shockwave that
originates from the deformation site and then travels across the bulk before being
reflected at the left boundary.
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Figure 4.5: Quenched time dynamics of the reconstructed geometry corresponding
to a single mass deformation along the 𝑥-axis (see Figure 4.4 for the 𝑡 = 0 geome-
tries). Only the dominant component ℎ11 is shown here. The average reconstruction
error over time is Ebdy ≈ 0.52.

The large-scale geometry is heavily obscured by non-geometric noise in Figure 4.5.
To better extract the large-scale features that we consider to be relevant, we must
filter out the small-scale artifacts what we consider to be “noise.”

To more clearly extract the underlying large-scale features of what appears to be
waves generated by the perturbations, we perform some pre-processing of the bound-
ary data to smooth out the small-scale noise. This is done by averaging the entan-
glement entropies of two neighbouring intervals of the same size. More precisely,
suppose 𝑆(𝑖, 𝑗) is the von Neumann entropy on the interval from site 𝑖 to site 𝑗 .
Then the smoothing procedure we are applying is similar to a filter by convolving
with a 2-site window function such that

𝑆(𝑖, 𝑗) → 𝑆(𝑖, 𝑗) + 𝑆(𝑖 + 1, 𝑗 + 1)
2

.

This produces a less noisy reconstruction and significantly reduces the amount of
non-geometric contributions to boundary relative errors. Intuitively, the smoothing
procedure acts as a low-pass filter in the space of boundary intervals. This serves
to remove the short distance artifacts normally associated with non-geometricality.
While we used a specific filter in this example, one may apply more general filter
constructions for other purposes.8

8It is reasonable to suspect that the two site averaging of entanglement entropy works well as
a filter here because UV details in the free fermion Hamiltonian (4.4.2) with Fermi momentum
±𝜋/2 contributed to non-geometric noise. We might therefore expect that we can remove such
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We wish to emphasize that this filtering procedure is not a part of our reconstruction
process. It is merely here to assist us in gaining some intuition regarding the
qualitative physical behaviour of this type of dynamical process. One could imagine
that the filtering reveals what the bulk physical process might have looked like, had
the state actually been geometric.

The corresponding smoothed geometries are shown in Figure 4.6. It can be seen
that smoothing significantly reduces local noise, and clearly reveals large-scale time
dynamics associated with the quench that looks like a (shock)wave.

Figure 4.6: Quenched time dynamics of the reconstructed geometry corresponding
to a single mass deformation along the 𝑥-axis. The boundary data is pre-processed
by smoothing to remove small-scale details (see Figure 4.5 for the corresponding
unsmoothed reconstruction). Only the dominant component ℎ11 is shown here. The
relative error is 0.03 . Ebdy . 0.1.

As another example, the quench dynamics of a state with two distinct deformations
at sites 𝑆 = {0, 30} is shown in Figure 4.7 (unsmoothed) and Figure 4.8 (smoothed).

non-geometric contributions through coarse-graining by grouping together adjacent sites in pairs.
While this grouping does indeed remove some non-geometric noise, it does not remove it entirely: the
reconstruction error after grouping is 0.1 . E . 0.3, which is in between what is shown in Figure 4.5
and Figure 4.6. Given that the smoothed data reconstruction error is still significantly larger than
that of completely geometric data, it is not clear if the non-geometric contribution completely reside
in the UV.
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Figure 4.7: Quenched time dynamics of the reconstructed geometry corresponding
to a mass deformation at two distinct sites (𝑆 = {0, 30}). The trace of ℎ𝑖 𝑗 is shown
here. The boundary relative error is Ebdy ≈ 0.41.

Figure 4.8: Quenched time dynamics of the reconstructed geometry corresponding
to a mass deformation at two distinct sites (𝑆 = {0, 30}). The boundary data is
pre-processed by smoothing to remove small-scale details. The trace of ℎ𝑖 𝑗 is shown
here. The boundary relative error is Ebdy ≈ 0.05.

In all cases, we see that the free fermion Hamiltonian will generate seemingly non-
interacting waves that traverse through the hypothetical bulk spacetime. Since the
underlying time dynamics is integrable, the same entanglement feature recurs after
the waves traverse the entire system; we show one such iteration in our figures.

Global Deformations

Similarly to the previous analysis for local deformations, we can also consider
global deformations in the same vein. In this section, we will consider Hamiltonian
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perturbations of the same form as (4.4.2), but now with deformations located at
every other site, i.e., 𝑆 = {0, 2, 4, · · · , 98}.

In Figure 4.9, we show the geometries reconstructed from the ground state |𝜓𝑚〉 of
a Hamiltonian with the aforementioned global deformations, plotted across a range
of 𝑚 values. Again, we find the overall geometry to be highly dominated by noise,
with a large relative error of reconstruction indicating that the underlying state is
non-geometric. The relative error of reconstruction generally becomes worse with
increasing values of 𝑚 (see Figure 4.13b). Qualitatively, the reconstructions for the
different values of𝑚 appear similar, the main difference being the overall magnitude
of the metric perturbation.

Figure 4.9: Components of the reconstructed metric tensor perturbation correspond-
ing to the ground state of a globally mass deformed Hamiltonian (with 𝑚 values
as shown), with deformations located at every other site. The relative errors are
approximately Ebdy ≈ 0.25 for this set of plots (see Figure 4.13b).

Looking at the corresponding quench dynamics (see Figure 4.10 for the unsmoothed
reconstruction and Figure 4.11 for the smoothed version), we see that the large-scale
geometry involves a spread of entanglement that is qualitatively similar to the
configuration obtained in the thermalization scenario considered in section 4.4.1.
However, in this case the bulk “matter” is non-interacting. The integrability of free
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fermion Hamiltonian ensures that the falling shockwave returns to the boundary
after some finite time instead of collapsing into a steady configuration.

Figure 4.10: Quenched time dynamics of the reconstructed geometry corresponding
to a global mass deformation (see Figure 4.9 for the 𝑡 = 0 geometries). The
component ℎ22 is shown here. The boundary relative error is maximal Ebdy ≈ 0.22
near 𝑡 = 0 and is minimal Ebdy ≈ 0.006 around 𝑡 = 20.

Figure 4.11: Quenched time dynamics of the reconstructed geometry corresponding
to a global mass deformation. The boundary data is pre-processed by smoothing
to remove small-scale details. The dominant component ℎ22 is shown here. The
boundary relative error is largely similar to the unsmoothed version except at the
initial/final times, where it is significantly reduced by the smoothing.

4.4.3 Random Disorder
Finally, we can take a look at the geometries arising from a random perturbation of
the free fermion system. Disorder is introduced by adding a random external field
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at each site of the spin chain

�̂�disorder = �̂�0 +
∑︁
𝑖

𝑤𝑖 �̂�
†
𝑖
�̂�𝑖,

where each parameter𝑤𝑖 is a random parameter chosen i.i.d. from a uniform random
distribution over the interval [−0.1, 0.1].

In Figure 4.12, we show a generic sampling of ground states obtained from such
random disorder. As would be naively expected, the resulting ground states have
generically large relative errors, with no discernible large scale features (quench
dynamics also reveal no discernible large-scale patterns) or symmetries.

Figure 4.12: A bulk best-fit reconstruction of a state generated with random disorder.
Each row is a reconstruction of a particular instance with random disorder. The
boundary relative errors vary across a wide range of values, but typically 0.05 .
Ebdy . 1 (see Figure 4.13a).
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4.5 Geometry Detection
In this section, we summarize the results of the previous reconstructions and com-
ment on their similarities and differences. We also emphasize that a small relative
error of reconstruction is indicative of a classical bulk geometry in which boundary
entropies are computed via the RT formula, whereas a large error may indicate
some combination of (1) no classical geometry, (2) no classical geometry near the
AdS background, or (3) a classical geometry, but where entropies have non-trivial
contributions from sources other than the area of RT surfaces, e.g. higher order
corrections. For the purpose of this discussion, we refer to all three of these negative
cases as non-geometric, but it would clearly be desirable to distinguish them further
in future work.

From the results of the mass deformation, we confirm that generic low-energy states
of a free fermion system do not appear to have a good geometric reconstruction.
Comparing the ground states of the mass deformed 1d free fermion with that of
the thermal AdS state, we see that the relative errors for the 1d free fermion are
significantly larger than those of the holographic data (see Figures 4.13a, 4.13b,
4.14). Smoothing of the boundary data reduces the relative error of reconstruction
by a significant amount (as would be expected due to the reduction of small-scale
artifacts). However, even with smoothing, the level of error is clearly distinguishable
from the reconstructions of known geometric states such as thermal AdS.

In particular, ground states of the locally deformed 1d free fermion Hamiltonian
have a relative error that is of order ∼ 1. Smoothing of the boundary data brings
this down to ∼ 10−1, which is still an order of magnitude larger in comparison to the
thermal AdS reconstructions, which have a relative error on the order of∼ 10−2. The
unsmoothed relative error for the global deformation of the 1d free fermion hovers
around ∼ 10−1. Smoothing brings this down significantly to ∼ 10−2. The most
likely explanation for the pronounced effect of smoothing here is due to the global
symmetry present in the globally deformed state. We also see that the relative errors
for reconstructions corresponding to random disorder in the 1d free fermion tends
to interpolate between the results for local and global deformations across different
random instances, with the best case relative errors being . 10−1 and the worst case
being ∼ 1. A summary of these results is plotted in Figure 4.13a, which shows a
histogram of the number of instances for each type of reconstruction, as we vary
some of the relevant parameters (i.e., temperature, mass, etc). In Figure 4.13b, we
also plot the relative error of reconstruction as a function of the mass deformation
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parameter 𝑚. As would be expected, we see that a larger mass deformation, and
hence a larger deviation from criticality, contributes positively to the relative error
of reconstruction regardless of smoothing.

(a) A histogram of relative errors from
different boundary data: Thermal AdS
(TAdS), global mass deformation (MD), lo-
cal quench without smoothing (LQ), and
system with random disorder (Disorder).
Boundary relative error Ebdy plotted on the
𝑥-axis.

(b) Global mass deformation errors, as a
function of the deformation parameter 𝑚.
Red dots denote the boundary relative error
of the original fermion data. Blue squares
are relative errors after smoothing.

Figure 4.13: Relative errors across various regimes, and global mass deformation
errors.

A summary of the time dynamics of the relative errors is shown in Figure 4.14. For
the dynamical reconstructions, we see that the relative error generally varies with
time. This is most noticeable with the global quench dynamics, where the relative
error tends to decrease as entanglement spreads. Although one starts with a mass
deformed state with large relative error at 𝑡 = 0, subsequent evolution can effectively
wash out non-geometric features the system begins to thermalize. The state at 𝑡 ≈ 20
captures basic entanglement properties of a thermal state, thus the reconstruction is
thermal AdS-like with small relative errors. Nevertheless, the state cannot actually
thermalize due to integrability; the system recurs at later times and the relative error
rebounds.

At this point, it is not completely clear why the global quench states have such small
relative error at intermediate times. A likely guess that the enhanced symmetries
for the globally deformed states contribute to a more geometrical reconstruction,
with the effect being especially pronounced at intermediate times when the system
is maximally thermal, before it is kicked back by integrability. Such behaviour is
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not seen in the local quench disorder, where the magnitude of the relative error is
larger, and remains stable across the time evolution. However, symmetry is likely
not the full answer either, since otherwise we would expect the disordered models
to generically have larger relative error compared to the global mass deformed state,
whereas we observer the disordered model to be peaked at smaller errors. While the
full characterization for which states appear more geometric than others is currently
unknown, it seems likely that there are many contributing factors to a successful
reconstruction, among them properties like symmetry and thermality.

Figure 4.14: Relative boundary error as a function of time for a free fermion system
after a quench. GQS, GQ, LQS, LQ denote global quench with smoothing, global
quench without smoothing, local quench with smoothing, and local quench without
smoothing, respectively. Dashed line marks the average relative error for the thermal
AdS entropy data.

Finally, we show the relative errors corresponding to the superposition of thermal
states in Figure 4.15. We find two regimes for the geometricality of the superposition,
depending on the magnitude of the mixing term𝐺𝑁𝐻 (𝑝). We find the superposition
to be non-geometric when the entropy of mixing provides a significant correction to
the geodesic lengths. This implies a generally non-geometrical construction when
𝐺𝑁𝐻 (𝑝) ≈ 1, as would be the case when the gravitational coupling𝐺𝑁 is strong, or
when the entropy of mixing is made large by superposing a large number of distinct
geometries.

Conversely, in the weak coupling limit with few distinct superpositions, the con-
tribution of the mixing term 𝐺𝑁𝐻 (𝑝) to the geodesic lengths becomes negligible,
causing the entropy operator to be approximately linear in this regime. This leads
to a smooth, geometric interpolation between the two distinct geometries as we tune
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the probability of mixing. The clear separation between the two cases is clearly
illustrated in Figure 4.15, where we plot the relative errors for a state constructed as
a mixture of two distinct thermal states.

Figure 4.15: Boundary relative errors for superpositions of thermal AdS geometries.

In summary, we find that the boundary relative error provides a useful measure for
the extent to which a state is geometric or non-geometric. Through the discretized
Radon transform, we confirm some existing expectations for the geometric nature of
certain holographic states, as well as states arising from many-body systems that are
generally believed to be non-geometric. We find that generic low-lying energy states
of a free fermion system are indeed dominated by non-geometric contributions as
indicated by our algorithm. However, there also exists states in these systems that
have small relative error, such as the configurations following a global quench. It is
suspected that the enhanced symmetries for the globally deformed states contributes
to a more geometrical reconstruction. Moreover, quench dynamics reveal large-scale
patterns of geometric evolution, despite the states themselves being non-geometric
as characterized by the relative error. Further advances in the tensor Radon transform
and its range characterization may help us understand what kind of properties in
the boundary data lead to good reconstructions, and the nature of the large-scale
behavior revealed by the numerical transform.

4.6 Discussion
In this work, we took some first steps in addressing the explicit bulk metric recon-
struction problem in holography, as well as the question of whether non-geometrical
bulk states can be detected from boundary data alone. Motivated by the tensor
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Radon transform, we provided – and explicitly implemented – an algorithm that re-
constructs the bulk metric tensor without any a priori assumptions on the symmetries
or form of the metric tensors, other than the fact that they are perturbatively close to
AdS. We applied this reconstruction to entanglement data from holographic systems
with large 𝑁 , as well as to that of a 1𝑑 free fermion system. The reconstruction
was also applied, time-slice by time-slice, to time-evolving states. We confirmed
that, assuming the linearized Einstein’s equations, thermalization following a global
quench in holographic systems is consistent with a shell of in-falling matter in the
bulk that finally settles into a state that appears to be gravitationally bound deep
inside the bulk. This kind of behaviour is absent in free fermion systems where the
corresponding shockwave of “in-falling matter” repeatedly oscillates between the
boundary and the bulk due to the integrability of the system.

We also provided a partial answer to whether a given state in the conformal field
theory has a well-defined geometric dual on the gravity side. We find that boundary
reconstruction errors provide a quantitative measure that distinguished “geometri-
cal” states, such as the ones we find in large 𝑁 theories with semi-classical duals,
from “non-geometrical” states like the generic excited states of a free fermion spin
chain. This is a precise, albeit coarse, way of understanding what portion of the
boundary data lies outside the range of the tensor Radon transform, and therefore
cannot be interpreted as a tensor field on a hyperbolic background. In the instances
we have examined, this measure was an effective indicator of non-geometricality.

Finally, our initial attempts in developing this algorithm indicate that efficient nu-
merical reconstructions of the bulk metric tensor from entanglement entropy data,
at least at the linearized level, are achievable. This is partly because the optimiza-
tion problem we consider is linear in nature and can be solved in polynomial time
with low computational power. As such, it provides an efficiently computable to-
mographic procedure that translates boundary entropy data, where the underlying
spacetime and gravitational dynamics are hidden, to a setting where it is manifest.
Although a wealth of previous analytic results are available, the flexibility of nu-
merical studies is also invaluable, as we have found in various areas of physics from
quantum many-body systems to numerical general relativity. As we start to move
away from the more tractable dynamics of quantum systems that carry simplifying
assumptions such as symmetries, the full force of numerical methods will prove to
be extremely helpful. Here we provide one such preliminary construction which
can hopefully provide a stepping stone for future advances.
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Further work is clearly required to improve upon our first efforts. Here we list but a
few major directions where progress can be made.

On the front of new results in mathematics, especially related to tensor Radon
transform:

1. To put our geometry detector on a firmer mathematical footing, one needs a
rigorous characterization of the range of tensor Radon transforms on curved
backgrounds, in particular, the hyperbolic background. In the language of
holographers, we are in need of a set of necessary[38], [39] and sufficient
conditions that characterizes what type of quantum states have semi-classical
dual geometries. A complete characterization of the range of Radon transform
on hyperbolic space, for example, precisely provides such conditions that
checks whether a set of entanglement data is dual to a semi-classical geometry
close to AdS.

2. It is also crucial to obtain an explicit reconstruction formula in closed form.
Such formulae are known for the Euclidean background, and for the case of
scalar or vector Radon transform on curved backgrounds. Development of
these results will further enable calculations in the continuum limit, which is
relevant for AdS/CFT.

On the front of new results in physics:

1. We hope to extend this method to higher dimensions, which so far has faced
the most obstacles in bulk metric reconstruction. Because area variation can
already be cast as a tensor Radon transform in arbitrary dimensions [47], the
idea of discretization followed by gauge fixing and linear optimization may
simply be extended to minimal surfaces. Similarly, X-ray transforms in higher
dimensions that makes use of correlation data can also be viable [23]. This
may provide a numerically computable alternative to other methods [38], [62],
[63].

2. Although we examine dynamical cases, we only reconstruct the spatial metrics
for each individual time slice. Reconstruction of the full linearized space-time
metric perturbation against the AdS background should also be possible by
gluing together these spatial slices. However, one has to be careful about
gauge fixing and the role played by the time coordinate. More work is needed
to clarify these constructions.
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3. It is also worthwhile to go beyond linearized level. A known approach is
to apply the inverse Radon transform iteratively, such that the background
geometry is updated using the reconstructed metric perturbation ℎ𝑖 𝑗 . Such
method is used in the geophysics community [53], [64]. However, we have
to be careful about the change in extremal surface beyond the linear level,
especially in the dynamical cases. This is worthwhile though, since working
beyond the linearized level should allow a better understanding of non-trivial
topologies, for example. As we have seen in this work, they are invisible at
the linearized level despite our expectation that collapse of bulk matter should
lead to such changes in geometry.

4. Reconstruction of entanglement data from other quantum systems. Thus
far, we have only seen limited application of this reconstruction algorithm,
largely limited by the availability of entanglement data. Nevertheless, it may
be possible to compute these entanglement approximately for smaller but
more interesting quantum many-body systems using tensor networks or other
classical techniques. It may also be worthwhile to obtain data for geodesic
lengths via other more accessible data, such as correlation functions or mutual
information.

5. In light of the difficulty in computing von Neumann entropies for quantum
systems, we can explore the possibility of using quantum Renyi entropies,
which also have a geometric interpretation in holography [65]. A prominent
advantage is its computability using numerics and measurability in actual
quantum systems. Reconstructions using such data can enable us to directly
acquire entropy data from quantum simulations and experimental setups.

6. Similar techniques using Radon transforms to recover the metric tensor of ge-
ometry emerged from entanglement are also applicable to near-flat manifolds
outside the context of AdS/CFT. In fact, the Radon transform on flat-space
is much better understood. Similar reconstructions should be possible for
constructions like [18] where, for instance, the relevant quantum states can be
low energy states of a gapped local Hamiltonian.

Finally, there is also much progress to be made in our reconstruction algorithm and
related numerics.
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1. One area of improvement is a data-driven modelling. For our current work,
we fixed a particular tiling that is easy to implement. However, it has been
shown that a tiling depending on the boundary data can lead to improvement
for bulk reconstruction [66]. These include Voronoi partitions or improved
modelling using Bayesian inference [67].

2. Our discretization, constraint, and interpolation methods are all extremely
simplistic, as appropriate for a proof of concept implementation. Numerous
improvements can be made to improve the accuracy of the reconstruction
algorithm, for example: proper triangular meshes, finite-element methods,
better regularization techniques, etc. We expect that the reconstruction proce-
dure here can be drastically improved in fidelity by adapting proper numerical
techniques.
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4.A The Tensor Radon Transform
Here, let us formally define the geodesic tensor Radon transform. We begin with an
introduction to the tensor Radon transform in general, but will quickly specialize to
the special case of the 2-tensor Radon transform on the Poincare disk (with finite
cutoff).

In short, the 𝑚-tensor geodesic Radon transform 𝑅𝑚 is a map which takes a sym-
metric 𝑚-tensor field defined on a sufficiently well-behaved Riemannian manifold
𝑀 (with boundary) to the space of geodesics on that manifold.
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4.A.1 General Definitions
Let (𝑀, 𝑔) be an 𝑛-dimensional Riemmanian manifold with boundary 𝜕𝑀 and
metric 𝑔. We say that (𝑀, 𝑔) is a simple manifold if 𝜕𝑀 is strictly convex9 and
any two points in 𝑀 are connected by a unique geodesic segment which depends
smoothly on the endpoints [68]. Alternatively, a simple manifold is one in which the
boundary is strictly convex, and where the exponential map exp𝑝 : exp−1

𝑝 (𝑀) → 𝑀

is a diffeomorphism for every 𝑝 ∈ 𝑀 . Fixing some 𝑝 ∈ 𝑀 , we may identify a
simple manifold with a strictly convex domain Ω of R𝑛.

The simplicity of a manifold is a sufficient condition for the geodesic Radon trans-
form to be well-defined [69]. There are more general conditions available, but
simplicity will generally be sufficient for our purposes. From now on, unless other-
wise stated, all of our manifolds will be assumed to be simple.

Let 𝑆𝑀 denote the unit circle bundle of 𝑀 . The bundle 𝑆𝑀 is the collection of
all pairs (𝑝, 𝑣), where 𝑝 ∈ 𝑀 and where 𝑣 ∈ 𝑇𝑝𝑀 is a unit tangent vector at
𝑝. The boundary of the unit circle bundle, denoted 𝜕𝑆𝑀 , consists of all such
pairs where 𝑝 ∈ 𝜕𝑀 . The boundary of the unit circle bundle naturally splits into
two components, 𝜕+𝑆𝑀 consisting of all the inward pointing vectors, and 𝜕−𝑆𝑀
consisting of all the outward pointing vectors. We will define both components to
be closed, i.e., vectors tangent to 𝜕𝑀 will be in both 𝜕+𝑆𝑀 and 𝜕−𝑆𝑀 .

Given (𝑝, 𝑣) ∈ 𝜕+𝑆𝑀 , let 𝛾𝑝,𝑣 : [0, 𝜏(𝑝, 𝑣)] → 𝑀 denote the unique unit speed
geodesic through (𝑝, 𝑣), i.e., the unique geodesic such that

𝛾𝑝,𝑣 (0) = 𝑝, and ¤𝛾𝑝,𝑣 (0) = 𝑣.

The parameter 𝜏(𝑝, 𝑣) denotes the exit time10 of 𝛾𝑝,𝑣, i.e., the first non-zero time
such that 𝛾𝑝,𝑣 (𝜏) ∈ 𝜕𝑀 . Note that the exit time is well-defined under the assumption
that the underlying manifold is simple.

Now, let 𝑓𝑖1···𝑖𝑚 be a smooth, symmetric (covariant) 𝑚-tensor field on 𝑀 . Then the
Radon transform of 𝑓 is defined by

𝑅𝑚 [ 𝑓 ] (𝑝, 𝑣) =
∫ 𝜏(𝑝,𝑣)

0
𝑓𝑖1···𝑖𝑚 (𝛾𝑝,𝑣 (𝑠)) ¤𝛾𝑖1𝑝,𝑣 (𝑠) · · · ¤𝛾𝑖𝑚𝑝,𝑣 (𝑠) 𝑑𝑠.

Thus, the Radon transform is a map 𝑅𝑚 : 𝑆𝑚 (𝑀) → 𝐶∞(𝜕+𝑆𝑀) which takes
the space 𝑆𝑚 (𝑀) of smooth, symmetric (covariant) 𝑚-tensors on 𝑀 to the space

9Namely, given any two points 𝑝, 𝑞 ∈ 𝜕𝑀 , there exists a geodesic segment connecting 𝑝 and 𝑞
that meets 𝜕𝑀 only at 𝑝 and 𝑞.

10Or since 𝛾𝑝,𝑣 is unit speed parameterized, the total arclength of 𝛾𝑝,𝑣 .
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𝐶∞(𝜕+𝑆𝑀) of smooth functions on the inward pointing boundary unit circle bundle
component 𝜕+𝑆𝑀 . Since we can uniquely identify each (𝑝, 𝑣) ∈ 𝜕+𝑆𝑀 with a
corresponding unit speed geodesic 𝛾𝑝,𝑣, it will be often convenient to consider the
Radon transform as a map on the space of boundary anchored geodesics.

4.A.2 𝑠-Injectivity
There are a few natural questions we may ask for the Radon transform, the foremost
being the surjectivity and the injectivity of the transform. We will not comment
much on the range of the tensor Radon transform, except to note that the tensor
Radon transform is generally not surjective. This, of course, corresponds to the
well known fact that not all boundary states have a well-defined bulk dual. A useful
analytic characterization of the range remains an open problem for the tensor Radon
transform on generic manifolds.

Let us now consider the problem of injectivity. The tensor Radon transform has a
natural kernel. Let (𝑀, 𝑔) be an 𝑛-dimensional simple Riemannian manifold. We
will let 𝑑𝑉 denote the canonical volume form, which is locally given by

𝑑𝑉 =
√︁
|𝑔 | 𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑛,

where (𝑥1, · · · , 𝑥𝑛) is some oriented chart, and where |𝑔 | is the determinant of the
metric 𝑔𝑖 𝑗 in that chart. We will let ∇ denote the Levi-Civita connection on 𝑀 .
Now, let 𝑆𝑚𝑀 denote the space of (covariant) symmetric 𝑚-tensors on 𝑀 . We will
define the inner derivative11 d : 𝑆𝑚𝑀 → 𝑆𝑚+1𝑀 by

d 𝑓 = 𝜎∇ 𝑓 ,

where 𝜎 denotes complete symmetrization. In local coordinates, we simply have

(d 𝑓 )𝑖1···𝑖𝑚+1 = 𝑓(𝑖1···𝑖𝑚;𝑖𝑚+1) ,

where parentheses indicate the complete symmetrization of the contained indices as
usual. We will likewise define the divergence12 𝜹 : 𝑆𝑚𝑀 → 𝑆𝑚−1𝑀 to be

𝜹 𝑓 = Tr𝑚,𝑚+1(∇ 𝑓 ),

11Despite the confusingly similar notation, d is not the exterior derivative 𝑑, which acts on forms
and not symmetric tensors. Unfortunately, the notation is somewhat well-established in the integral
geometry community, so we will stick to it. We will never need to use the exterior derivative in this
paper, but nevertheless we will denote the inner derivative with boldface font d as a reminder that it
is not the exterior derivative.

12Again, 𝜹 is not the co-exterior derivative. We will use the same boldface convention.
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where Tr𝑚,𝑚+1 denotes (Riemannian) contraction between the 𝑚th and (𝑚 + 1)th
arguments. In local coordinates, we have

(𝜹 𝑓 )𝑖1,··· ,𝑖𝑚−1 = 𝑓𝑖1,··· ,𝑖𝑚−1, 𝑗 ;𝑘𝑔
𝑗 𝑘 .

The operators d and −𝜹 are adjoint for compactly supported symmetric tensor fields
on 𝑀 . More generally, for any compact region 𝐷 ⊆ 𝑀 , we have∫

𝐷

〈d𝑢, 𝑣〉 + 〈𝑢, 𝜹𝑣〉 𝑑𝑉 =

∫
𝜕𝐷

〈𝑖𝜈𝑢, 𝑣〉 𝑑𝑆,

where 𝑢 and 𝑣 are (sufficiently smooth) symmetric tensors of the appropriate orders,
𝑖𝜈 denotes interior multiplication with respect to an outward pointing normal 𝜈, and
where 𝑑𝑆 is the induced volume form on 𝜕𝐷. The inner product 〈·, ·〉 on 𝑆𝑚𝑀 is
given by complete contraction, i.e.,

〈𝑢, 𝑣〉 = 𝑔𝑖1 𝑗1 · · · 𝑔𝑖𝑚 𝑗𝑚𝑢𝑖1,··· ,𝑖𝑚𝑣 𝑗1,··· , 𝑗𝑚 .

The significance of the operators 𝜹 and d are as follows. Let 𝐻𝑘 (𝑆𝑚𝑀) denote
the Sobolev space of 𝑚-symmetric tensors, i.e., the space of all sections which
are 𝑘-times (weakly) differentiable, and such that all derivatives are locally square
integrable. Each 𝐻𝑘 (𝑆𝑚𝑀) can be given the structure of a Hilbert space when 𝑀 is
compact. Then we have the generalized Helmholtz decomposition as follows:

Theorem 4.A.1 (Generalized Helmholtz Decomposition [41]). Let (𝑀, 𝑔) be a
compact Riemannian manifold with boundary. Let 𝑘 ≥ 1 and 𝑚 ≥ 0 be integers.
Given any section 𝑓 ∈ 𝐻𝑘 (𝑆𝑚𝑀), there exists uniquely determined 𝑓 𝑠 ∈ 𝐻𝑘 (𝑆𝑚𝑀)
and 𝑣 ∈ 𝐻𝑘+1(𝑆𝑚−1𝑀) such that

𝑓 = 𝑓 𝑠 + 𝒅𝑣, where 𝜹 𝑓 𝑠 = 0, and 𝑣 |𝜕𝑀 = 0.

The fields 𝑓 𝑠 and 𝒅𝑣 are called the solenoidal and potential parts of 𝑓 .

Note that in the case 𝑚 = 1, Theorem 4.A.1 is just the usual Helmholtz decomposi-
tion

F = −∇𝜑 + ∇ × A

after identifying vectors and covectors using the metric.

The decomposition of a symmetric tensor field into solenoidal and potential parts
gives us a natural identification of the kernel for the Radon transform. Indeed, we
have the following result:
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Theorem 4.A.2. Let (𝑀, 𝑔) be a simple manifold and let 𝑅𝑚 be the𝑚-tensor Radon
transform on 𝑀 . Let 𝑣 ∈ 𝐻𝑘+1(𝑆𝑚−1𝑀) be a vector field such that 𝑣 |𝜕𝑀 = 0. Then

𝑅𝑚 [𝒅𝑣] = 0.

Therefore, Theorem 4.A.2 identifies a natural kernel for the Radon transform, namely
the space of all potential tensor fields. Since every sufficiently smooth tensor field
can be decomposed uniquely into a potential and a solenoidal part, a natural question
is whether the solenoidal part is uniquely recoverable from the Radon transform,
i.e., whether the space of potential tensor fields exhausts the kernel of the Radon
transform. If this is indeed the case, i.e., if 𝑅𝑚 [ 𝑓 ] = 0 implies 𝑓 s = 0, then we say
that the Radon transform is 𝑠-injective.

The question of the 𝑠-inectivity of the Radon transform is a fundamental problem
in integral geometry. The general case remains open, although the case for 2-
dimensional simple manifolds was settled in the affirmative [70]:

Theorem 4.A.3 (𝑠-injectivity [70]). Let (𝑀, 𝑔) be a simple 2-dimensional Rieman-
nian manifold. Then the tensor Radon transform 𝑅𝑚 on 𝑀 is 𝑠-injective for all
𝑚 ≥ 0.

Note that in the case of the scalar transform for 𝑚 = 0, all scalar functions are
automatically solenoidal, so the scalar Radon transform 𝑅0 is injective in the usual
sense.

Given the 𝑠-injectivity of the Radon transform, we can recover the bulk tensor field
by imposing the solenoidal gauge condition

𝑓 = 𝑓 s.

The solenoidal gauge is the most commonly employed gauge condition for the tensor
Radon transform, but it comes with some inconvenient features. In particular, it
does not respect the decomposition of a tensor into its trace and traceless parts.
The 2-tensor Radon transform on a purely trace bulk tensor field is identical to
the scalar Radon transform on the corresponding trace function, but the inversion
of the 2-tensor Radon transform under the solenoidal gauge introduces extraneous
gauge degrees of freedom which causes the recovered field to disagree with the
original. This is rather undesirable, since the corresponding scalar transform is
purely injective and admits a unique recovery. We will instead employ an alternative
gauge condition, which we introduce in Section 4.C, that makes the tensor Radon
transform consistent with the scalar Radon transform for pure trace fields.
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4.B The Radon Transform on the Poincare disk
Let us now focus our attention to the case of a single time-slice of AdS3. Such
a time-slice is isomorphic to the hyperbolic plane, which we will consider in the
Poincare disk model. Concretely, the Poincare disk is the Riemannian manifold of
constant scalar curvature 𝑅 = −1, defined within the open unit disk

D = {𝑧 ∈ C | |𝑧 | < 1} .

We will cover the Poincare disk using its natural Cartesian coordinates (𝑥, 𝑦), or
equivalently, using complex coordinates 𝑧 = 𝑥 + 𝑖𝑦. The metric is then given by

𝑔(𝑧) = 4(𝑑𝑥2 + 𝑑𝑦2)
(1 − 𝑥2 − 𝑦2)2

= 4(1 − |𝑧 |2)−2 |𝑑𝑧 |2,

where |𝑑𝑧 |2 = 𝑑𝑧 · 𝑑𝑧 = 𝑑𝑥2 + 𝑑𝑦2. We will denote the Poincare disk by H = (D, 𝑔).
Geometrically, the geodesics of the Poincare disk are circular segments which are
orthogonal to the boundary circle 𝑆1.

Both for physical reasons, and to properly define the Radon transform, we cannot
work with the Poincare disk in its entirety.13 Rather, we must impose a cutoff. We
will let 𝜅 ∈ (0, 1) be a cutoff radius, and consider the cutoff disk

D𝜅 = {𝑧 ∈ C | |𝑧 | < 𝜅}.

Then we consider the cutoff Poincare disk to be the manifold defined byH𝜅 = (D𝜅, 𝑔).

We will be mainly interested in the Radon transform for symmetric 2-tensors. The
Poincare disk (with cutoff) is a simple manifold. As such, the Radon transform
is always well-defined on the Poincare disk. To that end, let 𝑓𝑖 𝑗 be a symmetric
2-tensor field on H𝜅. The Radon transform is then given by

𝑅2 [ℎ] (𝑝, 𝑣) =
∫ 𝜏(𝑝,𝑣)

0
𝑓𝑖 𝑗 (𝛾(𝑠)) ¤𝛾𝑖𝑝,𝑣 (𝑠) ¤𝛾

𝑗
𝑝,𝑣 (𝑠) 𝑑𝑠.

Note that since the boundary of the (cutoff) Poincare disk is a circle, we may uniquely
identify each geodesic 𝛾𝑝,𝑣 with a connected subregion 𝐴 (i.e., a circular arc) of
the boundary. The corresponding geodesic is then the minimal surface with respect
to that boundary subregion. In this way, we may regard the image of the Radon
transform as a function on the space of boundary subregions.

13Technically, the Radon transform does not really care about the fact that the Poincare disk is
non-compact, especially since there is still a well-defined notion of (asymptotic) boundary. However,
it is much more convenient to work with a compact manifold with an actual boundary.
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The metric on the Poincare disk is an isotropic metric. Let us write

𝑔(𝑧) = 4(1 − |𝑧 |2)−2 |𝑑𝑧 |2 = 𝑒2𝜆(𝑧) |𝑑𝑧 |2.

We may then write a unit tangent vector as 𝑣 = 𝑒−𝜆 (cos 𝜃, sin 𝜃), where 𝜃 is the
natural angular coordinate on the unit disk. Then we can decompose the Radon
transform as

𝑓𝑖 𝑗 ¤𝛾𝑖 ¤𝛾 𝑗 = 𝑒−2𝜆
(
𝑓11 cos2 𝜃 + 2 𝑓12 cos 𝜃 sin 𝜃 + 𝑓22 sin2 𝜃

)
(4.8)

= 𝑒−2𝜆
(
𝑓11 + 𝑓22

2
+ 𝑓12 sin 2𝜃 + 𝑓11 − 𝑓22

2
cos 2𝜃

)
= 𝑒−2𝜆

(
ℎ0 + ℎ𝑒2𝑖𝜃 + ℎ𝑒−2𝑖𝜃

)
,

where in the last line we have defined the components

ℎ0 =
1
2

tr ℎ,

ℎ =
1
4
( 𝑓11 − 2𝑖 𝑓12 − 𝑓22),

ℎ =
1
4
( 𝑓11 + 2𝑖 𝑓12 − 𝑓22).

The components ℎ0, ℎ, and ℎ will be called the trace, holomorphic, and anti-
holomorphic parts of 𝑓 , respectively. Note that in this way, we can always iden-
tify any symmetric 2-tensor 𝑓𝑖 𝑗 with a function 𝑓 ≡ 𝑓𝑖 𝑗 ¤𝛾𝑖 ¤𝛾 𝑗 of harmonic content
(−2, 0, 2).

We can then equivalently write the tensor Radon transform in the ℎ-components as

𝑅2 [𝑔] (𝑝, 𝑣) =
∫ 𝜏(𝑝,𝑣)

0
𝑒−2𝜆(𝛾(𝑠))

(
ℎ0(𝛾(𝑠)) + ℎ(𝛾(𝑠))𝑒2𝑖𝜃 (𝑠) + ℎ(𝛾(𝑠))𝑒−2𝑖𝜃 (𝑠)

)
𝑑𝑠.

(4.9)

Note that the trace component of the transform simply gives the scalar transform
(after absorbing the metric into the definition of ℎ0). Therefore the tensor Radon
transform 𝑅2 is essentially equivalent to the scalar Radon transform for tensors
which are purely trace.

As previously mentioned, the solenoidal gauge does not respect the decomposition
of the tensor into trace and traceless parts. It will therefore be convenient to find a
gauge which preserves this decomposition. We do so in Appendix 4.C.
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4.C The Holomorphic Gauge
In this section, we present an alternative to the solenoidal gauge, which we call the
holomorphic gauge, which both uniquely fixes a solution space to the inverse Radon
transform and preserves the scalar part of the transform.

To define the holomorphic gauge, we first introduce some background. We employ
global isothermal coordinates (𝑥, 𝑦, 𝜃) on the unit circle bundle 𝑆H of the Poincare
disk, where (𝑥, 𝑦) are the usual Poincare coordinates on the base manifold, and
where 𝜃 is a fiber coordinate indicating the angular direction of a tangent vector.

We can define the geodesic flow 𝑋 , given in global isothermal coordinates on the
unit circle bundle by

𝑋 = 𝑒−𝜆
(
cos 𝜃 𝜕𝑥 + sin 𝜃 𝜕𝑦 +

(
− sin 𝜃 𝜕𝑥𝜆 + cos 𝜃 𝜕𝑦𝜆

)
𝜕𝜃

)
,

where we write the metric as 𝑔 = 𝑒2𝜆 (𝑑𝑥2 + 𝑑𝑦2). Writing the vector field in terms
of complex coordinates, we can decompose the geodesic flow as 𝑋 = 𝜂+ +𝜂−, where

𝜂+ = 𝑒
−𝜆𝑒𝑖𝜃 (𝜕 + 𝑖𝜕𝜆 𝜕𝜃) ,

𝜂− = 𝑒
−𝜆𝑒𝑖𝜃

(
𝜕 + 𝑖𝜕𝜆 𝜕𝜃

)
= 𝜂+,

where 𝜕 = 1
2 (𝜕𝑥 − 𝑖𝜕𝑦) and 𝜕 = 1

2 (𝜕𝑥 + 𝑖𝜕𝑦) are the Wirtinger derivatives.

Let Ω𝑘 = 𝐿
2(𝑆H) ∩ ker(𝜕𝜃 − 𝑖𝑘) be the space of square-integrable functions on the

unit circle bundle with fixed harmonic content 𝑘 . Then it can be shown [71] that 𝜂±
are smooth elliptic differential operators such that 𝜂± : Ω𝑘 → Ω𝑘±1 for any 𝑘 ∈ Z.
In particular, note that Δ ≡ 𝜂+𝜂− = 𝜂−𝜂+ is also a smooth elliptic partial differential
operator.

Note that the geodesic flow 𝑋 is naturally related to the Radon transform as fol-
lows [41]: let 𝑓𝑖 𝑗 be a symmetric 2-tensor field, and let us define the function

𝑢 (𝑥, 𝑦, 𝜃) =
∫ 𝜏+ (𝛾)

0
𝑓𝑖 𝑗 ¤𝛾𝑖 ¤𝛾 𝑗 𝑑𝑠,

where 𝛾 denotes the unique unit speed geodesic through (𝑥, 𝑦), with initial angle 𝜃,
and where 𝜏+(𝛾) denotes the exit time of the geodesic. Note that we have 𝑢 |𝜕−𝑆𝑀 = 0
and

𝑢 |𝜕+𝑆𝑀 = 𝑅2 [ 𝑓 ],
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by construction. If 𝛾(𝑥0,𝑦0,𝜃0) is a geodesic through (𝑥0, 𝑦0, 𝜃0), then

𝑢
(
𝛾(𝑥0,𝑦0,𝜃0) (𝑡), 𝜃 (𝑥0,𝑦0,𝜃0) (𝑡)

)
=

∫ 𝜏+ (𝛾)

𝑡

𝑓𝑖 𝑗 ¤𝛾𝑖 ¤𝛾 𝑗 𝑑𝑠,

where 𝜃 (𝑥0,𝑦0,𝜃0) (𝑡) ≡ arg
[
¤𝛾(𝑥0,𝑦0,𝜃0) (𝑡)

]
denotes the angle of the tangent vector to

𝛾(𝑥0,𝑦0,𝜃0) at time 𝑡. Differentiating with respect to 𝑡, we get

¤𝛾𝑖 𝜕𝑢
𝜕𝑥𝑖
+ ¤𝜃 𝜕𝑢

𝜕𝜃
= − 𝑓𝑖 𝑗 ¤𝛾𝑖 ¤𝛾 𝑗 . (4.10)

Note that the left-hand side is precisely the expression 𝑋𝑢.14 Denoting by 𝑢 𝑓 the
unique solution to the transport equation (4.C) with boundary condition 𝑢 𝑓 |𝜕−𝑆𝑀 =

0, it follows that the Radon transform 𝑅2 [ 𝑓 ] is given by

𝑅2 [ 𝑓 ] = 𝑢 𝑓 |𝜕+𝑆𝑀 .

The transport equation can therefore be seen as the differential form of the Radon
transform.

The key result leading to the holomorphic gauge is then the following theorem.

Theorem 4.C.1. For any symmetric 2-tensor 𝑓 ∈ 𝐿2(𝑆𝑀), there exists a unique
2-tensor ℎ ∈ 𝐿2(𝑆𝑀) such that 𝑅2 𝑓 = 𝑅2ℎ, and such that ℎ is of the form

ℎ = ℎ0 + ℎ2 + ℎ−2,

where ℎ0 ∈ 𝐿2(𝑀) ∩Ω0, and where ℎ±2 ∈ ker 𝜂∓ ∩Ω±2.
14Let us explicitly calculate ¤𝜃 here. We start with the geodesic equation

¥𝛾𝑖 + Γ𝑖
𝑗𝑘 ¤𝛾

𝑗 ¤𝛾𝑘 = 0.

Evaluating the 𝑥 component, for example, we get

𝑑

𝑑𝑠
(𝑒−𝜆 cos 𝜃) + 𝑒−2𝜆𝜕1𝜆(cos2 𝜃 − sin2 𝜃) + 2𝑒−2𝜆𝜕2𝜆 sin 𝜃 cos 𝜃 = 0.

Taking the derivative and expanding, we then have

−𝑒−2𝜆 (𝜕1𝜆 cos2 𝜃 + 𝜕2𝜆 sin 𝜃 cos 𝜃) − 𝑒−𝜆 sin 𝜃 · ¤𝜃 + 𝑒−2𝜆𝜕1𝜆(cos2 𝜃 − sin2 𝜃) + 2𝑒−2𝜆𝜕2𝜆 sin 𝜃 cos 𝜃 = 0,

which simplifies as

−𝑒−𝜆𝜕1𝜆 sin 𝜃 + 𝑒−𝜆𝜕2𝜆 cos 𝜃 = ¤𝜃,

so that equation (4.C) is given by

𝑒−𝜆
[
cos 𝜃

𝜕

𝜕𝑥
+ 𝑒−𝜆 sin 𝜃

𝜕

𝜕𝑦
+

(
− sin 𝜃

𝜕𝜆

𝜕𝑥
+ cos 𝜃

𝜕𝜆

𝜕𝑦

)
𝜕

𝜕𝜃

]
𝑢 (𝑥, 𝑦, 𝜃) = 𝑋𝑢 (𝑥, 𝑦, 𝜃) = − 𝑓 (𝑥, 𝑦, 𝜃) ,

where 𝑓 ≡ 𝑓𝑖 𝑗 ¤𝛾𝑖 ¤𝛾 𝑗 , as given in Equation (4.B).
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Proof. We adapt the proof from Theorem 1 of [48], which covers the case where
the underlying metric is the usual flat Euclidean metric. Let 𝑓 ∈ 𝐿2(𝑆𝑀) ∩ Ω𝑘 be
given. Then consider the differential equation

𝜂− 𝑓 = Δ𝑣,

𝑣 |𝜕𝑆𝑀 = 0,

where 𝑣 ∈ 𝐻1(𝑆𝑀) ∩ Ω𝑘−1. Since Δ is a smooth elliptic operator, it follows from
the standard theory of elliptic differential equations that the above system admits
a unique (weak) solution 𝑣. Given such a solution, let us define 𝑔 = 𝑓 − 𝜂+𝑣. It
follows that

𝜂−𝑔 = 𝜂−( 𝑓 − 𝜂+𝑣) = 0.

This shows that each 𝑓 ∈ 𝐿2(𝑆𝑀) ∩Ω𝑘 can be written uniquely as

𝑓 = 𝜂+𝑣 + 𝑔,

where 𝑣 ∈ 𝐻1(𝑆𝑀) ∩Ω𝑘−1, 𝑣 |𝜕𝑆𝑀 = 0, and where 𝑔 ∈ 𝐿2(𝑆𝑀) such that 𝜂−𝑔 = 0.

Next, let 𝑓 be a given 2-tensor which we may write as

𝑓 = 𝑓0 + 𝑓−2 + 𝑓2,

where 𝑓𝑘 ∈ Ω𝑘 . The transport equation gives us

𝑋𝑢 = − 𝑓 ,
𝑢 |𝜕−𝑆𝑀 = 0,

𝑢 |𝜕+𝑆𝑀 = 𝑅2 𝑓 .

Let us apply the previously derived decomposition to write 𝑓2 = 𝜂+𝑣1 + 𝑔2, where
𝑣1 |𝜕𝑆𝑀 = 0 and where 𝜂−𝑔2 = 0. This gives us

𝑓2 = 𝜂+𝑣1 + 𝑔2

= 𝑋𝑣1 − 𝜂−𝑣1 + 𝑔2,

which allows us to write the transport equation as

𝑋 (𝑢 + 𝑣1) = −( 𝑓0 − 𝜂−𝑣1 + 𝑓−2 + 𝑔2),

where 𝜂−𝑔2 = 0. Since 𝑣1 |𝑆𝑀 = 0, it follows that we have (𝑢 + 𝑣1) |𝜕+𝑆𝑀 = 𝑢 |𝜕+𝑀 =

𝑅2 𝑓 . If we define the 2-tensor ℎ by

ℎ = ℎ0 + ℎ−2 + ℎ2,
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where ℎ0 = 𝑓0 − 𝜂−𝑣1 and ℎ−2 = 𝑓−2, then ℎ satisfies 𝑅2ℎ = 𝑅2 𝑓 , and is such that
𝜂−ℎ2 = 0. We may repeat this reasoning with the 𝑓−2 term (using the complex
conjugate of the previous decomposition) to obtain the desired result.

Definition 4.C.2. We will define a 2-tensor whose components satisfy the conditions
of Theorem 4.C.1 to be in the holomorphic gauge.

Importantly, let us note that if a 2-tensor 𝑓 is purely scalar, i.e., 𝑓 = 𝑓0, then it is
trivially already in the holomorphic gauge. Thus the holomorphic gauge is a gauge
which respects the scalar part of the transform. This is to be contrasted with the
solenoidal gauge, which will introduce spurious off-diagonal components even for
scalar tensor fields.

Since ℎ±2 ∈ Ω±2, let us write ℎ2 = ℎ𝑒2𝑖𝜃 and ℎ−2 = ℎ𝑒−2𝑖𝜃 , where ℎ, ℎ ∈ 𝐿2(𝑀). In
this notation, the holomorphic gauge condition reads

𝜂+(ℎ𝑒−2𝑖𝜃) = 0,

𝜂+(ℎ𝑒−2𝑖𝜃) = 0.

We have

𝜂(ℎ𝑒−2𝑖𝜃) = 𝑒−𝜆𝑒𝑖𝜃 (𝜕 + 𝑖𝜕𝜆 𝜕𝜃) (ℎ𝑒−2𝑖𝜃) (4.11)

= 𝑒−𝜆𝑒−𝑖𝜃 (𝜕 + 2𝜕𝜆) ℎ, (4.12)

so the holomorphic gauge conditions simplify to the Schrodinger type equations

(𝜕 + 2𝜕𝜆)ℎ = 0,

(𝜕 + 2𝜕𝜆)ℎ = 0.

We can solve these equations by introducing an integrating factor of 𝑒2𝜆. Then the
equation for ℎ gives us

0 = 𝑒2𝜆𝜕ℎ + 2𝜕𝜆 𝑒2𝜆ℎ

= 𝜕 (𝑒2𝜆ℎ).

This amounts to saying that the solutions are holomorphic functions (up to an
exponential factor) on the unit disk D. We can therefore generate any solution as
follows: given any continuous function on the unit circle ℎ |𝜕D : 𝜕D → C, we can
extend ℎ into the unit disk using Cauchy’s integral formula to get

ℎ(𝑧) = 𝑐𝜆𝑒
−2𝜆(𝑧)

2𝜋𝑖

∮
𝜕D

ℎ |𝜕D(𝑤)
𝑤 − 𝑧 𝑑𝑤, (4.13)
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where we write 𝑐𝜆 = 𝑒2𝜆(1) to denote the (constant) value of 𝑒2𝜆 on the unit circle.
We will use this convenient reconstruction property of solutions in the holomorphic
gauge to benchmark the numerical (inverse) Radon transform in Appendix 4.E.

4.D The Numerical (Inverse) Radon Transform
In this appendix, we describe the details of the numerical (inverse) Radon transform.

The manifold we work with is the hyperbolic plane H2, which is modeled as the
Poincare disk, i.e., the unit disk equipped with the canonical hyperbolic metric

𝑔 =
4

(1 − 𝑥2 − 𝑦2)2
(𝑑𝑥2 + 𝑑𝑦2),

where (𝑥, 𝑦) are global Poincare coordinates. For physical reasons, and to make
the Radon transform well-defined, we must impose a cutoff on the Poincare disk.
We thus pick a constant 𝜅 ∈ (0, 1) and work with the Poincare disk restricted to
𝑟 ≤ 𝜅. Equivalently, the cutoff Poincare disk can be regarded (after a rescaling of
the metric) as a model for a hyperbolic plane with curvature equal to −𝜅2.

To perform the numerical Radon transform, we must first discretize the Poincare
disk. A natural first choice would be to use a uniform tiling, a choice which conforms
best to the intrinsic symmetries of the Poincare disk. However, the Gauss-Bonnet
theorem places limitations on how fine a uniform tiling can be, and the inability to
take the tile size to zero is an unwieldy restriction. Instead, we opt for a simple
square tessellation which we perform in the Beltrami-Klein model.

The Beltrami-Klein model is related to the Poincare disk model through the change
of coordinates

(𝑟, 𝜃) ↦→ (𝑅,Θ) =
(

2𝑟
1 + 𝑟2 , 𝜃

)
,

where (𝑟, 𝜃) denotes polar Poincare coordinates, and (𝑅,Θ) denotes polar Beltrami-
Klein coordinates. The Beltrami-Klein model has the convenient property that
geodesics are straight lines. This makes a square tessellation in the Beltrami-Klein
model the closest analogue to a regular Euclidean square tessellation for the hyper-
bolic plane. The figures present throughout this paper showcase the corresponding
square tessellation in the Poincare disk.

Given a tessellation of the Poincare disk, we can discretize any function 𝑓 by
assigning to a given tile T the value of 𝑓 at the centroid of T . Ordering the tiles
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arbitrarily, we can regard the discretized functions as vectors,

f =
©«
𝑓 (T1)
...

𝑓 (T𝑁 )

ª®®®¬ .
We must also discretize the (ideal) boundary of the Poincare disk for the Radon
transform. We do so by placing 𝑀 equally spaced boundary sites on the unit
circle. We will then consider the collection of all geodesics originating from one
boundary site and terminating on another. We can order the boundary sites by
their angular position on the unit circle, and the geodesics lexicographically by the
angular positions of their endpoints.

For each geodesic of the background geometry, the integral (4.B) can then be
discretized by replacing the functions ℎ0, ℎ and ℎ with their piece-wise constant
discretizations:

𝐼2 [𝑔] (𝛾 𝑗 ) =
∫
𝛾 𝑗

𝑒−2𝜆(𝛾 𝑗 (𝑠))
(
ℎ0(𝛾 𝑗 (𝑠)) + ℎ(𝛾 𝑗 (𝑠))𝑒2𝑖𝜃 (𝑠) + ℎ(𝛾 𝑗 (𝑠))𝑒−2𝑖𝜃 (𝑠)

)
𝑑𝑠

≈
∑︁
T

[
ℎ0(T )𝑊0(𝛾 𝑗 ,T) + ℎ(T )𝑊 (𝛾 𝑗 ,T) + ℎ(T )𝑊 (𝛾 𝑗 ,T)

]
,

where 𝑊0,𝑊 , and 𝑊 contain the information on the geodesic and the remaining
parts of the integrand. Explicitly,𝑊0 and𝑊 are defined by

𝑊0(𝛾 𝑗 ,T) =
∫
𝛾 𝑗

𝑒−2𝜆(𝛾 𝑗 (𝑠)) 1T (𝛾 𝑗 (𝑠)) 𝑑𝑠,

𝑊 (𝛾 𝑗 ,T) =
∫
𝛾 𝑗

𝑒−2𝜆(𝛾 𝑗 (𝑠))+2𝑖𝜃 (𝑠) 1T (𝛾 𝑗 (𝑠)) 𝑑𝑠,

where 1T (𝛾(𝑠)) is an indicator function such that

1T (𝑥) =


1 𝑥 ∈ T ,

0 𝑥 ∉ T .

Note that𝑊0 is nothing but the arc lengths of the geodesic segments that intersects
a tile T . The function𝑊 , on the other hand, also contains a complex weight which
captures the directionality of the geodesic in the tile.

It is important to note that 𝑊0 and 𝑊 depend only on the particular choice of
discretization, and can be pre-computed.
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We can collect all of the quantities into a matrix equation. Let W be the 𝐾 × 3𝑁 ,
where 𝐾 =

(𝑀
2
)
, defined by

W =

©«
𝑊0(𝛾1,T1) · · · 𝑊0(𝛾1,T𝑁 ) 𝑊 (𝛾1,T1) · · · 𝑊 (𝛾1,T𝑁 ) 𝑊 (𝛾1,T1) · · · 𝑊 (𝛾1,T𝑁 )
𝑊0(𝛾2,T1) · · · 𝑊0(𝛾2,T𝑁 ) 𝑊 (𝛾2,T1) · · · 𝑊 (𝛾2,T𝑁 ) 𝑊 (𝛾2,T1) · · · 𝑊 (𝛾2,T𝑁 )

...
. . .

...
...

. . .
...

...
. . .

...

𝑊0(𝛾𝐾 ,T1) · · · 𝑊0(𝛾𝐾 ,T𝑁 ) 𝑊 (𝛾𝐾 ,T1) · · · 𝑊 (𝛾𝐾 ,T𝑁 ) 𝑊 (𝛾𝐾 ,T1) · · · 𝑊 (𝛾𝐾 ,T𝑁 )

ª®®®®®¬
.

Likewise, let h be the length 3𝑁 vector defined by

h =

(
ℎ0(T1) · · · ℎ0(T𝑁 ) ℎ(T1) · · · ℎ(T𝑁 ) ℎ(T1) · · · ℎ(T𝑁 )

)T
.

Then the discretized Radon transform, which we denote by ΔL, is given by the
matrix equation

ΔL = Wh. (4.14)

The discrete inverse Radon transform is then just the inverse problem to the sys-
tem (4.D). However, the inverse problem is complicated by the fact that the Radon
transform is neither surjective nor injective (recall that the forward transform has a
non-trivial kernel that corresponds to the gauge degrees of freedom).

To make the inverse well-posed, we must supplement it with a set of gauge constraints
to pick out a unique inverse (when it exists) in the continuum case. In the discrete
analog, we expect the kernel to be visible through the presence of zero eigenvalues
in the singular value spectrum of W. Due to discretization and numerical errors,
the system (4.D) will either be singular or extremely ill-conditioned. As in the
continuum case, we will supplement the system (4.D) with a set of discretized gauge
constraints to make the problem well-posed.

For our implementation, we discretize the holomorphic gauge conditions given by
equations (4.C) and (4.C). The holomorphic gauge constraints are simple first order
partial differential equations. They can be realized discretely by implementing 𝜕𝑥
and 𝜕𝑦 are finite-difference operators. We will use a simple three-point stencil
for the finite-difference operators, although higher-order variations can be used for
increased accuracy. For example, the 𝑥 partial of a function 𝑓 at tile 𝑖 will be
approximated by

𝜕𝑥 𝑓 (T𝑖) ≈
𝑓 (T𝑅(𝑖)) − 𝑓 (T𝐿 (𝑖))

2
,
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where 𝐿 (𝑖) and 𝑅(𝑖) denote the indices of the tiles to the immediate left and right
of tile 𝑖.15 The 𝑦-partials are analogous. In this way, we can discretize the partial
derivatives as matrices Δ̃𝑥 and Δ̃𝑦.16 Since the vector h effectively contains 3 copies
stacked on top of each other, we define the operators

Δ𝑥 =
(
Δ̃𝑥 | Δ̃𝑥 | Δ̃𝑥

)
, (4.15)

Δ𝑦 =
(
Δ̃𝑦 | Δ̃𝑦 | Δ̃𝑦

)
.

The discretized holomorphic gauge conditions can then be written as

Ch = (Δ𝑥 + 𝑖Δ𝑦 + 2Λ)h, (4.16)

where Λ is the matrix defined by

Λ =
(
Λ̃ | Λ̃ | Λ̃

)
,

where Λ̃ has entries given by

Λ̃𝑖 𝑗 = 𝜕𝜆(T𝑖) 𝛿𝑖 𝑗 .

4.E Accuracy of the Numerical Reconstruction
In the absence of an analytic reconstruction formula in the continuum case, we need
to validate the numerical reconstruction so as to provide confidence that it performs
the inverse transform correctly. To do so, we will first benchmark the numerical
reconstruction using various test cases obtained by instantiating known rank-2 sym-
metric tensor fields in the bulk in the holomorhpic gauge. From Equation (4.C), we
can see that a bulk solution in the holomorphic gauge can be readily generated by
prescribing the boundary values.

As a benchmarking test, we therefore test the reconstruction algorithm as follows:
15This approximation will work for all non-boundary tiles. The tiles on the boundaries will have

to use forwards or backwards finite-differences instead. For example, for a tile on the left boundary,
we get

𝜕𝑥 𝑓 (T𝑖) ≈
−3 𝑓 (T𝑖) + 4 𝑓 (T𝑅 (𝑖) ) − 𝑓 (T𝑅 (𝑅 (𝑖)) )

2
.

16The entries of Δ̃𝑥 are given by

(Δ̃𝑥)𝑖 𝑗 =
𝛿𝐿 (𝑖) , 𝑗 − 𝛿𝑅 (𝑖) , 𝑗

2

if tile 𝑖 is a non-boundary tile, with the appropriate modifications for the boundaries.
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1. We first pick an arbitrary function ℎ |𝜕D : 𝜕D→ C on the unit circle. We also
pick another arbitrary scalar function ℎ0 : D→ C.

2. Using Equation (4.C), we extend the function ℎ |𝜕C into the bulk to get a
holomorphic function ℎ : D→ D.

3. From the functions ℎ0 and ℎ, we define the bulk tensor

𝑓 = ℎ0 + ℎ𝑒2𝑖𝜃 + ℎ𝑒−2𝑖𝜃 ,

where ℎ denotes the complex conjugate of ℎ. The 𝑓 defined in this way is a real-
valued continuum bulk 2-tensor with components fixed in the holomorphic
gauge.

4. We run the forward numerical Radon transform to generate boundary data b.
From b, we then run the discretized inverse Radon transform with holomorphic
gauge constraints to numerically recover a discretized bulk solution h.

5. Finally, we compare the values of ℎ, evaluated at the centroids of the dis-
cretized tiling, with the reconstructed value h. Denoting the exact solution at
the centroids as h∗, we can evaluate the relative error

Ebulk =
‖h − h∗‖
‖h∗‖

to get a sense of the reconstruction quality.

In the absence of known analytic results, and before we move on with physically
relevant examples, we can run the above test with several choices of boundary
functions ℎ |𝜕D as a proof of concept that the numerical inverse Radon transform is
performing an adequate reconstruction.

Below, we show some sample test cases for the numerical inverse transform. All of
the transforms shown below are performed with 1000 bulk tiles and 100 boundary
sites (for a total of 4950 geodesics), following the procedure outlined above.

The reconstructions here show good agreement with the original bulk data. On a
qualitative level, the plots of the bulk metric profile are essentially indistinguishable
between the original and the reconstruction. The bulk relative errors across various
test cases range from 0.01 to 0.1, indicating quantitatively successful reconstructions
in general. The boundary relative errors are typically an order of magnitude smaller
than the bulk relative errors, ranging from 0.001 to 0.01. The magnitudes of the
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boundary relative errors for these known test cases can serve as an estimate for the
general magnitude of numerical errors present in the algorithm. See Figures 4.16-
4.19.

It should be noted that the relative errors shown here can actually be slightly mis-
leading. Most sources of error in the reconstruction arise due to large fluctuating
values of the boundary tiles. Tiles at or near the boundary are generally undercon-
strained due to the relatively small number of geodesics which pass through any
given boundary region. This allows the boundary tiles to take on arbitrary values
in order to minimize the relative boundary error as the algorithm is designed to do,
although this comes at the cost of bulk accuracy. We can see that if we exclude the
values of the boundary tiles from the calculation of relative error, that the relative
error of the reconstruction is generally an order of magnitude smaller. This suggests
that the bulk reconstruction performs very well deep into the bulk, with larger errors
towards the boundary. This is important to keep in mind, since it suggests that
the qualitative bulk picture provided by the numerical inverse should be generally
trustworthy.
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Figure 4.16: Benchmark reconstruction with ℎ0(𝑥, 𝑦) = 𝑥𝑦 and ℎ |C(𝜃) = sin(2𝜃).
Top: Original bulk data generated with ℎ0(𝑥, 𝑦) = 𝑥𝑦 and ℎ |C(𝜃) = sin(2𝜃).
Bottom: The bulk data reconstructed after running the forward Radon transform
to get boundary data. Visually, the two sets of data are identical. The relative
error between the two are Ebulk ≈ 0.0227 (relative error 0.004643 without boundary
tiles).
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Figure 4.17: Benchmark reconstruction with ℎ0(𝑥, 𝑦) = 2𝑒−(𝑥2+𝑦2) and ℎ |C(𝜃) =
cos(2𝜃) + sin(3𝜃). Top: Original bulk data generated with ℎ0(𝑥, 𝑦) = 2𝑒−(𝑥2+𝑦2)

and ℎ |C(𝜃) = cos(2𝜃) +sin(3𝜃). Bottom: The bulk data reconstructed after running
the forward Radon transform to get boundary data. Visually, the two sets of data
are identical. The relative error between the two are Ebulk ≈ 0.0273 (relative error
0.005516 without boundary tiles).
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Figure 4.18: Benchmark reconstruction with ℎ0(𝑥, 𝑦) = 1/(1+𝑥2+𝑦2) and ℎ |C(𝜃) =
cos(5𝜃). Top: Original bulk data generated with ℎ0(𝑥, 𝑦) = 1/(1 + 𝑥2 + 𝑦2) and
ℎ |C(𝜃) = cos(5𝜃). Bottom: The bulk data reconstructed after running the forward
Radon transform to get boundary data. Visually, the two sets of data are identical.
The relative error between the two are Ebulk ≈ 0.0885 (relative error 0.01357 without
boundary tiles).
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Figure 4.19: Benchmark reconstruction with ℎ0(𝑥, 𝑦) = 𝑥2 + 𝑦2 and ℎ|C(𝜃) =

2 cos(𝜃) + 3 sin(3𝜃). Top: Original bulk data generated with ℎ0(𝑥, 𝑦) = 𝑥2 + 𝑦2 and
ℎ |C(𝜃) = 2 cos(𝜃) + 3 sin(3𝜃). Bottom: The bulk data reconstructed after running
the forward Radon transform to get boundary data. Visually, the two sets of data
are identical. The relative error between the two are Ebulk ≈ 0.01886 (relative error
0.003709 without boundary tiles).

4.E.1 Constrained Optimization
With the discrete Radon transform (4.D) and the discretized holomorphic con-
straints (4.D), we can solve this linear system for h as a constrained optimization
problem:

min
h
‖Wh − b‖, (4.17)

subject to Ch = 0.



197

We look for a best-fit solution h∗ that solves the above system. In general, we
do not expect there to exist a solution h∗ such that Wh∗ − b = 0, due to either
numerical/discretization errors or the boundary data being non-geometric.

Because the objective function is linear, this problem has a unique global solution
that can be obtained using standard constrained least squares. We briefly review the
method below.

Theorem 4.E.1. Consider the constrained least square problem (4.E.1). Assuming
the stacked matrix (

W
C

)
(4.18)

is left-invertible, and that C is right-invertible, a vector h∗ uniquely solves the
constrained least square problem (4.E.1) if and only if there exists some g such that(

W†W C†

C 0

) (
h∗
g

)
=

(
W†b

0

)
. (4.19)

Proof. Suppose that (h∗, g) satisfies (4.E.1). Clearly h∗ satisfies the constraint
Ch∗ = 0. Then for any h that satisfies the constraint Ch = 0, we have

‖Wh − b‖2 = ‖W(h − h∗) +Wh∗ − b‖2

= ‖W(h − h∗)‖2 + ‖Wh∗ − b‖2 + 2(h − h∗)†W†(Wh∗ − b)
= | |W(h − h∗) | |2 + ||Wh∗ − b| |2 + 2(h − h∗)†C†g
= | |W(h − h∗) | |2 + ||Wh∗ − b| |2

≥ ||Wh∗ − b| |2,

where in the second line we used the definition of the norm ‖v‖2 = v†v, in the third
line we used the fact that

W†Wh∗ + C†g = W†b,

and in the fourth line we used the fact that

C(h − h∗) = Ch − Ch∗ = 0 − 0 = 0.

Therefore, h∗ is an optimal solution. Furthermore, the optimal constrained solution
is obtained if and only if (

W
C

)
(h − h∗) = 0.
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By assumption, the stacked matrix is left-invertible, therefore the minimum h = h∗
is also unique.

In the reverse direction, it suffices to show that the matrix in (4.E.1) is invertible.
Suppose on the contrary that the matrix is non-invertible. Then there must exist a
vector (h, g) ≠ 0 such that (

W†W C†

C 0

) (
h
g

)
=

(
0
0

)
. (4.20)

Left multiplying both sides by (h, g)†, we have(
h† 0†

) (
WTW C†

C 0

) (
h
g

)
= h†W†Wh + h†C†g = 0.

Noting that Ch† = 0, we get ‖Wh‖2 = 0, so that Wh = 0. Since the stacked
matrix (4.E.1) is injective, it follows that we must have h = 0. The system (4.E.1)
then reduces to

C†g = 0.

We then conclude that g = 0 since C is right-invertible by assumption. This
is in contradiction with the assumption that (h, g) ≠ 0. Hence the matrix in
Equation (4.E.1) must be invertible, and a solution for g must exist.

4.E.2 Interpolation and Regularization
In principle, the optimal solution h∗ can be obtained through straightforward matrix
inversion of Equation (4.E.1). Suppose h is a column vector with 3𝑁 entries, and
the constraint matrix is 𝑀 × 3𝑁 . Then any well-known polynomial algorithm for
matrix inversion is of O

(
(𝑀 + 3𝑁)3

)
. The inversion of system (4.E.1) is slightly

complicated by the fact that the matrix W is generally expected to be extremely
ill-conditioned. We can get around this by regularizing the system.

To make the least squares problem (4.E.1) better conditioned, and to smooth out
small scale fluctuations in the discretized reconstruction, we employ a derivative
type Tikhonov regularization. We replace the matrix W†W in (4.E.1) by

W†W + 𝛾
(
Δ†𝑥Δ𝑥 + Δ†𝑦Δ𝑦

)
,

where 𝛾 > 0 is a regularization parameter which controls the strength of the reg-
ularization, and where Δ𝑥 and Δ𝑦 are the discretized partial differential operators
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defined in (4.D). This replacement effectively changes the least squares problem
in (4.E.1) to

min
h

(
‖Wh − b‖2 + 𝛾‖Δ𝑥h‖2 + 𝛾‖Δ𝑦h‖2

)
,

subject to Ch = 0,

which both regularizes the system so that the smallest singular values of W are of
order √𝛾 and also takes into account the strength of fluctuations in the resulting
solution. Since we expect small scale fluctuations to be mostly due to bulk dis-
cretization errors, this choice of regulator serves as a reasonable filter. In this note,
all of our reconstructions employ regularization with 𝛾 = 10−8.

In the case of fixed data but variable number of bulk tiles, the reconstruction can
also become ill-conditioned when the number of bulk degrees of freedom exceed the
number of boundary constraints in the form of geodesic lengths. Roughly speaking,
because we have 𝑂 (3𝑁) number of bulk degrees of freedom, one for each tensor
component at a particular tile. Suppose there are 𝐾 sites on the boundary. Then
the number of linear equations from geodesic lengths is of order 𝑂 (𝐾2). Hence the
reconstruction can become ill-conditioned when 3𝑁 > 𝐾2. While it is possible to
decrease the number of bulk tiles, or increase the number of boundary sites, both
come at a cost depending on our requirements for reconstruction. As an alternative,
we can also interpolate between geodesic data by adding virtual sites and the lengths
of geodesics for the extended set of sites.

In the current implementation, we add the virtual sites in between the original
lattice sites such that the new lattice scale is half of the original. Let us label all
sites sequentially along the counter clockwise direction on the boundary circle from
1 through 2𝐾 such that 2𝐾 + 1 ≡ 1. To generate the geodesic lengths between a
virtual site 𝑗 and an original site 𝑖, we average the lengths of two geodesics that are
anchored at (𝑖, 𝑗 +1) and (𝑖, 𝑗 −1). For a geodesic that ends on two virtual sites, 𝑖, 𝑗 ,
we take the 4-point average of the original geodesic lengths for the ones anchored
at (𝑖, 𝑗 + 1), (𝑖, 𝑗 − 1), (𝑖 + 1, 𝑗), and (𝑖 − 1, 𝑗).
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C h a p t e r 5

THE GHOST IN THE RADIATION: ROBUST ENCODINGS OF
THE BLACK HOLE INTERIOR

We reconsider the black hole firewall puzzle, emphasizing that quantum error-
correction, computational complexity, and pseudorandomness are crucial concepts
for understanding the black hole interior. We assume that the Hawking radiation
emitted by an old black hole is pseudorandom, meaning that it cannot be distin-
guished from a perfectly thermal state by any efficient quantum computation acting
on the radiation alone. We then infer the existence of a subspace of the radiation
system which we interpret as an encoding of the black hole interior. This encoded
interior is entangled with the late outgoing Hawking quanta emitted by the old
black hole, and is inaccessible to computationally bounded observers who are out-
side the black hole. Specifically, efficient operations acting on the radiation, those
with quantum computational complexity polynomial in the entropy of the remaining
black hole, commute with a complete set of logical operators acting on the encoded
interior, up to corrections which are exponentially small in the entropy. Thus, under
our pseudorandomness assumption, the black hole interior is well protected from
exterior observers as long as the remaining black hole is macroscopic. On the other
hand, if the radiation is not pseudorandom, an exterior observer may be able to create
a firewall by applying a polynomial-time quantum computation to the radiation.

This chapter is based on the published article:

I. Kim, E. Tang, and J. Preskill, “The ghost in the radiation: Robust encodings of
the black hole interior,” Journal of High Energy Physics, no. 6, Jun. 2020. DOI:
10.1007/jhep06(2020)031.

5.1 Introduction
The discovery that black holes emit Hawking radiation raised deep puzzles about
the quantum physics of black holes [1]. What happens to quantum information that
falls into a black hole, if that black hole subsequently evaporates completely and
disappears? Is the information lost forever, or does it escape in the radiation emitted
by the black hole, albeit in a highly scrambled form that is difficult to decode?
And if the information does escape, how? The struggle to definitively answer these
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questions has been a major theme of quantum gravity research during the 45 years
since Hawking’s pivotal discovery.

The AdS/CFT holographic correspondence provides powerful evidence indicating
that quantum information really does escape from an evaporating black hole [2]. This
correspondence, for which there is now substantial evidence, asserts that the process
in which a black hole forms and then completely evaporates in an asymptotically
anti-de Sitter bulk spacetime admits a dual description in terms of a conformally-
invariant quantum field theory living on the boundary of the spacetime. In this dual
description, the system evolves unitarily and therefore the process is microscopically
reversible — on the boundary there is no gravity, no black hole, no place for
information to hide. Since this observation applies to evaporating black holes that
are small compared to the AdS curvature scale, it seems plausible that a similar
conclusion should apply to more general spacetimes which are not asymptotically
AdS, even though we currently lack a firm grasp of how quantum gravity works in
that more general setting.

However, so far the holographic correspondence has not provided a satisfying picture
of the mechanism that allows the information to escape from behind the black hole’s
event horizon. It is not even clear how the boundary theory encodes the experience
of observers who cross the event horizon and visit the black hole interior.

That describing the inside of a black hole raises subtle issues was emphasized in
2012 by the authors known as AMPS [3]. Following AMPS, consider a black hole
𝐻 that is maximally entangled with another system 𝐸 which is outside the black
hole, and suppose that 𝐵 is a thermally occupied Hawking radiation mode which is
close to the horizon and moving radially outward. Since the black hole is maximally
entangled with 𝐸 , the highly mixed state of 𝐵 must be purified by a subsystem of
𝐸 . But on the other hand, we expect that a freely falling observer who enters the
black hole will not encounter any unexpected excitations at the moment of crossing
the horizon; since field modes are highly entangled in the vacuum state, this means
that 𝐵 should be purified by a mode �̃� located inside the black hole. Now we have
a problem, because it is not possible for the mixed state of 𝐵 to be purified by both
𝐸 and �̃�. Something has to give! Were we to break the entanglement between 𝐵
and �̃� for the sake of preserving the entanglement between 𝐵 and 𝐸 , the infalling
observer would encounter a seething firewall at the horizon. This conclusion is hard
to swallow, since for a macroscopic black hole we would expect semiclassical theory
to be trustworthy at the event horizon, and the black hole solution to the classical
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Einstein equation has a smooth horizon, not a firewall.

To find a way out of this quandary, it is helpful to contemplate the thermofield double
(TFD) state of two boundary conformal field theories, which we will refer to as the
left and right boundary theories. The TFD is an entangled pure state of the left and
right boundaries, with the property that the marginal state of the right boundary (with
the left boundary traced out) is a thermal state with temperature 𝑇 , and likewise the
marginal state of the left boundary (with the right boundary traced out) is thermal
with the same temperature. The corresponding bulk geometry is a two-sided black
hole. Both the left black hole and the right black hole are in equilibrium with a
radiation bath at temperature 𝑇 , and both have smooth event horizons. Furthermore,
the two black holes have a shared interior — they are connected in the bulk by a
non-traversable wormhole behind the horizon [4]. Here, the right black hole (let us
call it 𝐻) is purified by another system (the left black hole 𝐸), and emits Hawking
radiation, yet it has a smooth horizon. How can we reconcile this finding with the
AMPS argument?

For the case of the two-sided black hole, there is an instructive answer [5]. The
Hawking mode 𝐵 outside the right black hole can be purified by both �̃� behind the
horizon and by a subsystem of 𝐸 , because 𝐸 itself lies behind the horizon and �̃� is a
subsystem of 𝐸! It is very tempting to suggest that a similar resolution of the AMPS
puzzle applies to the case of a one-sided black hole 𝐻, which is entangled with a
system 𝐸 outside its horizon. That is, we may regard the black hole interior and the
exterior system entangled with the black hole as two complementary descriptions
of one and the same system. Indeed, we might imagine allowing 𝐸 to undergo
gravitational collapse, thereby obtaining a pair of entangled black holes, which, if
we accept a conjecture formulated in [5], would be connected through the bulk by a
non-traversable wormhole. The boundary dual of this bulk state, up to a one-sided
transformation acting on one of the two boundaries, is a TFD, to which our previous
discussion of the entanglement structure of the two-sided black hole ought to apply.

The idea that, for the case of a black hole 𝐻 purified by the exterior system 𝐸 ,
we may regard the black hole interior as related to 𝐸 by a complicated encoding
map, has been advocated, discussed, and criticized in much previous work [5]–
[10]. We will revisit this issue in this paper, arguing that a proper resolution of
the AMPS puzzle should invoke concepts that have received relatively short shrift
in earlier discussions of the firewall problem, namely quantum error correction,
computational complexity, and pseudorandomness.
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The scenario described above, in which the black hole 𝐻 has become maximally
entangled with the exterior system 𝐸 , might arise because the black hole actually
formed long ago, and since then has radiated away more than half of its initial entropy.
In that case 𝐸 would be the Hawking radiation so far emitted during the black hole’s
lifetime, most of which is by now far away from the black hole. One could object that
our proposal, that the black hole interior is related to 𝐸 by a complicated encoding
map, is too wildly non-local to be credible [8], [9], [11]. Why cannot an exterior
agent who interacts with the Hawking radiation send instantaneous signals to the
black hole interior in flagrant violation of causality? And why cannot such an agent
access the encoded system �̃�, breaking the entanglement between �̃� and 𝐵 and
hence creating excitations which can be detected by an observer who falls through
the horizon?

Our answer is that such non-local operations are in principle possible, but are not
accessible to observers whose computational abilities are bounded (a notion we
make precise in Section 5.6); the operations required to disturb the interior mode are
far too complex to be realizable in practice for any realistic observer. Thus, in spite
of the extreme non-locality of the encoding map, violations of the semiclassical
causal structure of the black hole spacetime are beyond the reach of any realistic
exterior observer. This statement is most conveniently expressed using the language
of quantum error correction and computational complexity. We will use |𝑆 | to
denote the size of a physical system 𝑆; by size we mean the number of qubits, so
that 2|𝑆 | is the dimension of the Hilbert space of 𝑆. We regard 𝐻 as the Hilbert
space of black hole microstates, and 𝐸 as the Hilbert space of the previously emitted
radiation. For an old black hole 𝐻 which is nearly maximally entangled with 𝐸 , we
show that a quantum error-correcting code can be constructed, in a subspace of 𝐸𝐻,
which describes the black hole interior. The logical operators of this code, which
preserve the code subspace, are operators acting on the interior. We will argue that a
code exists with the following property: any operation on the radiation 𝐸 that can be
performed as a quantum computation whose size is polynomial in |𝐻 | will commute
with a set of logical operators of the code, up to corrections which are exponentially
small in |𝐻 |. For this encoding, then, an observer outside a black hole can signal the
interior only by performing an operation of super-polynomial complexity. Because
the encoded interior is for all practical purposes invisible to the agent who roams
the radiation system 𝐸 , we call the code’s logical operators ghost operators.1

1The word “ghost” is sometimes used to describe unphysical degrees of freedom. That is not
what we mean here. The ghost operators act on a system (the interior of a black hole) which is
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To reach this conclusion, we make a nontrivial but reasonable assumption — that
the radiation system 𝐸 is pseudorandom. Note that if the state of 𝐸𝐻 is pure,
and |𝐻 | � |𝐸 |, then the density operator 𝜌𝐸 of 𝐸 is not full rank, so that 𝜌𝐸 is
obviously distinguishable from the maximally mixed state 𝜎𝐸 . When we say that 𝜌𝐸
is pseudorandom, we mean that 𝜌𝐸 and 𝜎𝐸 are not computationally distinguishable.
That is, suppose we receive a copy of 𝜌𝐸 (or even polynomially many copies) and we
are asked to determine whether the state is maximally mixed or not using a quantum
circuit whose size is polynomial in |𝐻 |. If 𝜌𝐸 is pseudorandom, then our probability
of answering correctly exceeds 1/2 by an amount which is exponentially small in
|𝐻 |. Such pseuodrandom quantum states exist, and furthermore it has recently been
shown [12] that they can be prepared by efficient quantum circuits, if one accepts
a standard (and widely believed) assumption of post-quantum cryptography: That
there exist one-way functions which are hard to invert using a quantum computer.
Since black holes are notoriously powerful scramblers of quantum information [13],
we think the assumption that 𝜌𝐸 is pseudorandom is plausible, though undeniably
speculative. Our main technical result shows that if 𝜌𝐸 is pseudorandom, then a
code with ghost logical operators must exist.

That the existence of quantum-secure one-way functions implies the hardness of
decoding Hawking radiation had been pointed out earlier in [14] and [15]. But
our statement goes further — it indicates that causality is well respected from the
viewpoint of computationally bounded observers (as long as |𝐻 | is large). The semi-
classical causal structure of the evaporating black hole spacetime can be disrupted
by an observer with sufficient computational power, but not by an observer whose
actions can be faithfully modeled by a quantum circuit with size polynomial in |𝐻 |.
On the other hand, interior observers, who in principle have access to 𝐻 as well 𝐸 ,
could plausibly perform nontrivial operations on the interior which are beyond the
reach of the computationally bounded observer who acts on 𝐸 alone.

Our main result can be regarded as a contribution to the theory of quantum er-
ror correction in a nonstandard setting. In the context of fault-tolerant quantum
computation, where the goal is to protect a quantum computer from noise due to un-
controlled interactions with the computer’s environment, we usually consider noise
which is weak and only weakly correlated. For example, we might model the noise
using a Hamiltonian describing the interactions of the computer and environment,
where each term in the Hamiltonian is small and acts on only a few of the computer’s
physical but inaccessible to observers outside the black hole who have reasonable computational
power.
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qubits. In our setting the “computer” is the system 𝐸𝐻, and the “noise” results from
the interactions of the computationally bounded observer with system 𝐸 , while 𝐻
is regarded as noiseless. In contrast to conventional quantum error correction, we
allow the noise to be strong, highly correlated, and adversarially chosen, yet the
logical system �̃� encoded in 𝐸𝐻 is well protected against this noise. To obtain this
result, though, it is essential that the noise acts only on 𝐸 and not on 𝐻, a departure
from the usual model of fault tolerance in which all qubits are assumed to be noisy.

We note that the encoding of the black hole interior in 𝐸𝐻 is state dependent; that is,
the way the system �̃� is embedded in 𝐸𝐻 depends on the initial state that underwent
gravitational collapse to form a black hole. This state dependence of the encoding
has sparked much discussion and consternation [8], [16]. What seems troubling is
that operators which depend on the state to which they are applied are not linear
operators acting on Hilbert space, and therefore cannot be regarded as observables
as described in the conventional quantum theory of measurement. Our view is
that the tension arising from the state dependence of the encoded operator algebra
signals that we do not yet have a fully satisfactory way to describe measurements
performed inside black holes. We will not rectify this shortcoming in this paper.

Our argument about the robustness of the ghost logical operators makes no direct
use of AdS/CFT technology. This may be viewed as either a strength or a weakness.
The strength is that our results may be applicable to black holes in spacetimes which
are asymptotically flat or de Sitter, and stand independently of any assumptions
of holography. The weakness is that we have not presented evidence based on
holographic duality which supports our conjecture.

There has been great recent progress toward resolving the discrepancy between
Hawking’s semiclassical analysis [1] and the Page curve [17]–[19] of an evaporating
black hole, including formulas for the entropy of the radiation supported by explicit
computations [20]–[22]. These results strengthen the evidence that black hole
evaporation is a unitary process, and also point toward a resolution of the firewall
problem in which the interior of a partially evaporated black hole is encoded in the
Hawking radiation. This beautiful prior work, however, does not directly address
how the profoundly nonlocal encoding of the interior in the radiation is compatible
with the semiclassical causal structure of the black hole geometry. It is for that
purpose that we hope our observations concerning the pseudorandomness of the
radiation and the construction of ghost logical operators acting on the interior will
prove to be relevant. Our main conclusion is that the encoded interior can be
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inaccessible to observers outside the black hole who have reasonable computational
power. Establishing closer contact between our work and these recent computations
is an important open problem.

The rest of this paper is structured as follows. In Section 5.2, we provide a non-
technical summary of the paper. In Sections 5.3 and 5.4, we review the notion of
pseudorandomness in both the classical and quantum setting; in Section 5.5, we
argue that the Hawking radiation is a pseudorandom quantum state, and we explain
in detail our computational model of the black hole.

In the remaining sections, we derive consequences of the pseudorandomness as-
sumption, and explore their potential relevance to the black hole firewall problem.
In Section 5.6, we show that it is computationally hard for an observer interacting
with the early radiation 𝐸 to distill the interior mode �̃� and carry it into the black
hole. In Section 5.7, we show that the encoded system �̃� is protected against er-
rors inflicted on 𝐸 by any agent who performs a quantum operation with poly( |𝐻 |)
computational complexity and sufficiently small Kraus rank. In Section 5.8, we
describe the construction of ghost logical operators acting on the black hole inte-
rior; these operators commute with all low-complexity operations applied to 𝐸 by
an agent 𝑂, provided that 𝑂’s quantum memory is not too large. If the observable
properties of the black hole interior are described by such ghost operators, we infer
that the interior cannot be affected or detected by computationally bounded agents
who interact with the Hawking radiation. The theory of ghost operators, which
can be constructed for any approximate quantum error-correcting code, may also be
of independent interest. In Section 5.9, we show that, if the state of the partially
evaporated black hole has been efficiently generated, then an agent with access to
both 𝐸 and 𝐻 can manipulate the encoded interior efficiently, and efficiently distill
the encoded system �̃� to a small quantum memory. Section 5.10 contains our con-
clusions. Some technicalities are treated in the Appendices, and in Appendix 5.D
we discuss via an example how the construction of ghost logical operators may fail
if the Hawking radiation is not pseudorandom.

5.2 Probing the Radiation
In this section we will provide a somewhat more explicit explanation of our main
result, still skipping over technical details which will be laid out in later sections. The
situation we consider is depicted in Figure 5.1. There, the unitary transformation𝑈bh

describes the formation and subsequent partial evaporation of a black hole formed
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from infalling matter in a pure state |𝜙matter〉, where 𝐸 denotes the “early” Hawking
radiation which has been emitted so far, 𝐻 denotes the remaining black hole which
has not yet evaporated, and 𝐵 denotes Hawking quanta of the “late” radiation which
has just been emitted from the black hole. We may assume for convenience that 𝐵
is a single qubit — our conclusions would be the same if we considered 𝐵 to be any
system of constant dimension, independent of the size of 𝐸 and 𝐻. The system 𝑃

denotes an ancillary system called the “probe”, which might represent, for example,
ambient dust around the black hole. We will discuss the role of the probe in greater
detail shortly, but for simplicity we may ignore its presence right now.

Figure 5.1: A black hole forms due to the gravitational collapse of an infalling state
of matter. The black hole then evaporates for a while, emitting the “early” radiation
𝐸 and the “late” radiation 𝐵; the formation and partial evaporation of the black hole
are described by the unitary transformation 𝑈bh. An observer 𝑂 interacts with the
early radiation and a probe system 𝑃, where the unitary transformation𝑈E (enclosed
by the dotted line) has quantum complexity which scales polynomially with the size
|𝐻 | of the remaining black hole (essentially its entropy 𝑆bh). If the radiation is
pseudorandom, then 𝑂 is unable to distinguish 𝐸 from a perfectly thermal state.

In the case of an “old” black hole 𝐻, which has already radiated away over half
of its initial entropy and has become nearly maximally entangled with 𝐸 , we have
|𝐻 | < |𝐸 |. Because the lifetime of an evaporating black hole scales like the 3/2
power of its initial system size, we may regard the unitary transformation 𝑈bh to
be “efficient,” meaning that it can be accurately described by a quantum circuit
whose size increases only polynomially with |𝐸𝐻𝐵|. Our key assumption is that
the efficient unitary𝑈bh creates a pseudorandom state of 𝐸𝐵 (see Section 5.5). The
notion of a pseudorandom quantum state will be further discussed in Section 5.4.
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In the context of the AMPS puzzle, the recently emitted system 𝐵 should be purified
by a system �̃� behind the horizon. We will explore the idea that this system �̃� is
actually encoded in 𝐸𝐻, the union of the black hole system𝐻, and the early radiation
system 𝐸 . Let us denote the state prepared by the unitary map 𝑈bh as |Ψ〉𝐸𝐻𝐵, and
consider its expansion

|Ψ〉𝐸𝐻𝐵 =
∑︁
𝑖 𝑗 𝑘

Ψ𝑖 𝑗 𝑘 |𝑖〉𝐸 ⊗ | 𝑗〉𝐻 ⊗ |𝑘〉𝐵.

There is a corresponding map 𝑉Ψ : �̃�→ 𝐸𝐻 defined by

𝑉Ψ =
√︁
𝑑𝐵

∑︁
𝑖 𝑗 𝑘

Ψ𝑖 𝑗 𝑘 |𝑖〉𝐸 ⊗ | 𝑗〉𝐻 ⊗ 〈𝑘 | �̃�,

where 𝑑𝐵 is the dimension of 𝐵. If 𝐵 is maximally mixed in the state |Ψ〉, then 𝑉Ψ
is an isometric map embedding �̃� in 𝐸𝐻. We interpret 𝑉Ψ as the encoding map of
a quantum error-correcting code, which maps the interior system �̃� to the subspace
of 𝐸𝐻 with which 𝐵 is maximally entangled.

If 𝑇�̃� is any operator acting on �̃�, there is a corresponding “logical” operator 𝑇𝐸𝐻
acting on 𝐸𝐻 defined by

𝑉Ψ𝑇�̃� = 𝑇𝐸𝐻𝑉Ψ.

This logical operator is not uniquely defined, because Equation (5.2) only specifies
its action on the code space, the image of 𝑉Ψ. We may say that 𝑇𝐸𝐻 is the “mirror
operator” of 𝑇�̃� determined by |Ψ〉, whose defining property is that 𝑇𝐸𝐻 and 𝑇�̃�
produce the same output when acting on the state |Ψ〉.

We wish to investigate whether an agent who interacts with only the radiation
system 𝐸 can manipulate the encoded system �̃�. For that purpose, we introduce an
additional system 𝑂 to represent an observer outside the black hole who interacts
with 𝐸 . This interaction is modeled by a unitary transformation 𝑈E acting on 𝑂𝐸 ,
possibly followed by a simple measurement performed on𝑂; for example one might
measure all the qubits of 𝑂 in a standard basis. The unitary transformation, but not
the following measurement, is shown in Figure 5.1. After the interaction, but before
𝑂 is measured, the joint state of 𝑂𝐸𝐵𝐻 has evolved to

|Ψ′〉𝑂𝐸𝐵𝐻 = ((𝑈E)𝑂𝐸 ⊗ 𝐼𝐵𝐻) (|𝜔〉𝑂 ⊗ |Ψ〉𝐸𝐵𝐻) ,

where |𝜔〉𝑂 is the initial state of 𝑂 before 𝑂 and 𝐸 interact.
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Our notation 𝑈E for the unitary transformation is motivated by a widely used
convention in the theory of quantum channels, in which E denotes a quantum noisy
channel (a trace-preserving completely positive map), with the letter E indicating
an “error” acting on the input to the channel. A quantum channel always admits
a dilation (also called a purification), a unitary transformation which acts on the
input system and an “environment,” after which the environment is discarded. In
our context, the noisy channel E acting on 𝐸 arises from the action of the observer,
and we may regard the observer’s system 𝑂 as the environment in the dilation of
𝑈E . In the following discussion, we will often omit the subscript 𝑂𝐸 on (𝑈E)𝑂𝐸 ,
leaving it implicit that𝑈E acts on the radiation system 𝐸 and observer 𝑂.

Now we can appeal to a standard result in the theory of quantum error correction. In
|Ψ〉𝐸𝐻𝐵, we regard 𝐵 as a “reference system” which purifies the maximally mixed
state of the encoded system �̃�. Is there a recovery operator which can be applied to
𝐸𝐻 to correct the error induced by this noisy channel? In fact a recovery operator
that corrects the error exactly exists if and only if the marginal state 𝜌′

𝑂𝐵
of 𝑂𝐵

factorizes,

𝜌′𝑂𝐵 = 𝜌′𝑂 ⊗ 𝜌
′
𝐵,

in which case we say the reference system 𝐵 “decouples” from the environment
𝑂. Heuristically, the error can be corrected if and only if no information about the
state of �̃� leaks to the environment 𝑂. There is also an approximate version of this
statement [23], [24]. Roughly speaking (we will be more precise in Section 5.6),
recovery with fidelity close to one is possible if and only if 𝑂 and 𝐵 are nearly
uncorrelated after 𝑂 and 𝐸 interact.

Now consider the implications of our assumption that the Hawking radiation is
pseuodorandom. As stated in Section 5.1, the marginal state 𝜌𝐸𝐵 is pseudorandom
if 𝜌𝐸𝐵 cannot be distinguished from a maximally mixed state by any circuit with size
polynomial in |𝐻 |, apart from an error exponentially small in |𝐻 |. We will show
in Section 5.6 that, assuming |𝑂 | � |𝐻 |, if 𝜌𝐸𝐵 is pseudorandom and 𝑈E is any
polynomial-size unitary transformation, then 𝑂 and 𝐵 approximately decouple up
to an error exponentially small in |𝐻 |. Therefore, apart from an exponentially small
error, a computationally bounded observer 𝑂 is unable to inflict an uncorrectable
error on the encoded system �̃�.

We can make a stronger assertion: it is possible to choose the logical operators
acting on the encoded system to be robust ghost operators, which (acting on the code
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space) nearly commute with any operation applied by the computationally bounded
observer 𝑂. Returning now for simplicity to the setting of exact correctability,
we claim that if the error induced by 𝑈E is correctable, then for any operator 𝑇�̃�
acting on system �̃�, it is possible to choose the corresponding logical operator 𝑇𝐸𝐻
satisfying Equation (5.2) such that

𝑇𝐸𝐻𝑈E (𝐼𝑂 ⊗ 𝑉Ψ) = 𝑈E𝑇𝐸𝐻 (𝐼𝑂 ⊗ 𝑉Ψ) .

In this sense, the correctable errors have no effect on the ghost logical algebra. This
claim is a special case of a more general statement about operator algebra quan-
tum error correction (OAQEC) [25], [26]. Since we do not expect a black hole to
provide an exact error-correcting code, we will need to analyze the case of approx-
imate quantum error correction. Unfortunately, it does not seem straightforward to
generalize the results of [25], [26] to the approximate setting. Instead, we present a
self-contained construction of exact ghost logical operators in Section 5.8.1, without
making direct use of known results from the theory of OAQEC, and then generalize
the construction to the approximate setting in Section 5.8.2.

We will apply the approximate version of this result to the situation where 𝑈E
induces an approximately correctable error, thus inferring that the logical operators
acting on the encoded system �̃� may be chosen so that they nearly commute with
the actions of the computationally bounded observer 𝑂. We propose that these
robust ghost operators are the logical operators acting on the black hole interior, and
conclude that the interior is very well protected against the actions of any realistic
observer who resides outside the black hole.

The statements about the indistinguishability of 𝜌𝐸𝐵 from a maximally mixed state,
the decoupling of 𝑂 from 𝐵, the correctability of 𝑈E , and the commuting action of
𝑇𝐸𝐻 and𝑈E on the code space, are all approximate relations with exponentially small
corrections. Therefore, we need to be mindful of these corrections in constructing
our arguments. Fortunately, many relevant features of approximate quantum error-
correction have been previously studied, and we make use of results from [23], [24]
in particular.

For the general argument sketched above we have assumed that the observer system
satisfies |𝑂 | � |𝐻 |. But it is also instructive to consider a different scenario, in
which the observer has access to an auxiliary probe system 𝑃. We now imagine that
the probe 𝑃, which might have a size comparable to or larger than 𝐸 , is prepared
in a simple initial state and then interacts efficiently with 𝐸 . After this interaction
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between 𝐸 and 𝑃, the observer (still satisfying |𝑂 | � |𝐻 |), interacts with 𝐸𝑃,
performing an efficient quantum computation that may be chosen adversarially. In
this case, too, we can show under the same pseudorandomness assumption as before
that the reference system 𝐵 decouples from𝑂, and that robust ghost logical operators
can be constructed. For example, the probe might cause all of the qubits of 𝐸 to
dephase in a preferred basis, but the entanglement between �̃� and 𝐵 would still
be protected. The modification from the previously considered case is that now �̃�

will be encoded in 𝐸𝐻𝑃 rather than 𝐸𝐻, and we conclude that the encoded black
hole interior remains inaccessible to any computationally bounded observer 𝑂 who
examines the radiation and the probe, as long as the size of the observer’s memory
satisfies |𝑂 | � |𝐻 |.

Our conclusion that �̃� is difficult to decode or manipulate follows from the pseu-
dorandomness of the Hawking radiation if the observer is computationally bounded
and has access only to the radiation system 𝐸 outside the black hole. But we might
imagine that an observer who jumps into the black hole has access to the black hole
degrees of freedom 𝐻 as well as 𝐸 . We show in Section 5.9 that an observer who
has access to 𝐸𝐻 can efficiently manipulate and decode �̃�, assuming only that the
state |Ψ〉𝐸𝐵𝐻 was created by an efficient unitary process. In this sense, an interior
observer can interact with the interior degrees of freedom, as one might expect. A
similar remark applies to the fully evaporated black hole. If the final state after
complete evaporation is a highly scrambled pure state of 𝐸𝐵, where |𝐵 | � |𝐸 |,
then the maximally mixed state of 𝐵 is purified by a code subspace of 𝐸 . If 𝐵
has constant size, then the code state can be efficiently distilled and deposited in a
small quantum memory, assuming only that the map from the infalling matter to the
outgoing Hawking radiation is an efficient unitary process.

If an efficient measurement of 𝐸𝐵 can detect the correlation between 𝐸 and 𝐵,
then we may expect that an observer acting on 𝐸 is able to interact efficiently with
the black hole interior. In Appendix 5.D, we show that, if a product observable
𝑀𝐸 ⊗ 𝑁𝐵 has an expectation value in the state |Ψ〉𝐸𝐻𝐵 that differs significantly from
its expectation value in a maximally mixed state of 𝐸𝐵, then there cannot be a
complete set of ghost logical operators on 𝐸𝐻 commuting with 𝑀𝐸 . It follows that,
if 𝑀𝐸 can be realized efficiently, low-complexity operations acting on the Hawking
radiation can send a signal to the interior.
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5.3 Classical Pseudorandomness
Our argument that the black hole interior is inaccessible to computationally bounded
exterior observers hinges on the hypothesis that the Hawking radiation emitted by an
old black hole is pseudorandom. In this section we will provide background about
the concept of pseudorandomness, which some readers might find helpful.

As discussed in Section 5.1, we are interested in a black hole that is still macroscopic,
but has already been evaporating for longer than its Page time [27]. The state of the
previously emitted radiation system 𝐸𝐵 is purified by the black hole system 𝐻, and
by this time 𝐸𝐵 is much larger than 𝐻; therefore the microscopic state 𝜌𝐸𝐵 of 𝐸𝐵
has far lower rank than a thermal state. It must then be possible, at least in principle,
to distinguish 𝜌𝐸𝐵 from a thermal state. But how, operationally, would an observer
outside the black hole who interacts with the radiation be able to tell the difference?

To start with, it will be instructive to consider a simple classical model that captures
some of the features of this setup — after we understand how the classical model
works we will be better prepared to analyze an analogous quantum model. Let
us suppose that the emitted Hawking radiation is a classical bit string 𝑥 of length
𝑛, which our observer is permitted to read. But this bit string is not chosen de-
terministically; rather, when the observer reads the radiation he actually samples
from a probability distribution governing 𝑛-bit strings. We will say that the state of
the black hole is “thermal” if this distribution is the uniformly random distribution
𝑝𝐼 (𝑥), where

𝑝𝐼 (𝑥) =
1
2𝑛
, ∀𝑥 ∈ {0, 1}𝑛.

But suppose that the state of the black hole is described by a distribution that is in
principle almost perfectly distinguishable from the uniform distribution. Can this
state “fool” the observer, leading him to believe the distribution is uniform even
though that is far from the case? See Figure 5.2.

To be more concrete, let us suppose the observer is assured that he is sampling
from a distribution which is either the uniform distribution 𝑝𝐼 (𝑥), or a different
distribution 𝑝𝑆 (𝑥) which is uniform on the subset of 𝑛-bit strings 𝑆:

𝑝𝑆 (𝑥) =


2−𝛼𝑛, 𝑥 ∈ 𝑆

0, 𝑥 ∉ 𝑆
,

where |𝑆 | = 2𝛼𝑛 (with 0 < 𝛼 < 1) is the number of strings contained in 𝑆.
The observer samples once from the distribution, receiving 𝑥, and then executes
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Figure 5.2: An observer samples from a distribution and attempts to decide whether
the distribution is uniformly random or not.

a classical circuit 𝐶 with 𝑥 as an input, finally producing either the output 1 if he
guesses that the distribution is 𝑝𝑆, or the output 0 if he guesses that the distribution
is 𝑝𝐼 .2

For 𝑛 large, it is clear that 𝐶 can be chosen so that the observer guesses correctly
with a high success probability. Suppose, for example, that he outputs 1 if 𝑥 ∈ 𝑆
and he outputs 0 if 𝑥 ∉ 𝑆. It the distribution is actually 𝑝𝑆, this guess is correct with
probability 1. If the distribution is actually 𝑝𝐼 , then the guess is correct unless 𝑥
happens to lie in 𝑆 “by accident,” which occurs with probability 2−(1−𝛼)𝑛. Therefore,
for fixed 𝛼 and large 𝑛, the probability of an incorrect guess is exponentially small
in 𝑛.

However, depending on the structure of the set 𝑆, the circuit 𝐶 that distinguishes
𝑝𝑆 and 𝑝𝐼 might need to be quite complex, making this strategy impractical if the
observer has limited computational power. Suppose, for example, that the observer
is unable to perform a computation with more than Λ(𝑛) gates, where Λ(𝑛) grows
subexponentially with 𝑛— that is, Λ(𝑛) ≤ exp( 𝑓 (𝑛)) where 𝑓 (𝑛) scales sublinearly
with 𝑛. Then we can show that the set 𝑆 can be chosen such that this computationally
bounded observer has only an exponentially small chance of distinguishing 𝑝𝑆 and
𝑝𝐼 ; that is, his probability of guessing the distribution correctly is no better than

2The conclusion we reach below would not change much if he were permitted to sample from
the distribution a number of times polynomial in 𝑛.
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1/2 + 2−𝑐𝑛, where 𝑐 is a positive constant. In that case, we say that the distribution
𝑝𝑆 is pseudorandom.

To show that such a pseudorandom distribution 𝑝𝑆 exists, we argue in two steps. In
the first step, we consider some fixed circuit 𝐶, and denote by 𝐿𝐶 the set of 𝑛-bit
input strings for which 𝐶 outputs 1 (we say that 𝐶 “accepts” the strings in 𝐿𝐶). If
the input 𝑥 is chosen by sampling from 𝑝𝐼 (𝑥), then 𝐶 accepts 𝑥 with probability

𝑃𝐶 (𝐼) =
|𝐿𝐶 |
2𝑛

,

while if 𝑥 is chosen by sampling from 𝑝𝑆 (𝑥), then 𝐶 accepts 𝑥 with probability

𝑃𝐶 (𝑆) =
|𝑆 ∩ 𝐿𝐶 |

2𝛼𝑛
.

Now suppose that 𝑆 is chosen randomly from among all subsets of 𝑛-bit strings with
cardinality |𝑆 | = 2𝛼𝑛. We can envision the possible strings as 2𝑛 balls, of which the
balls accepted by 𝐶 are colored white, and the balls rejected by 𝐶 are colored black,
while 𝑆 is a random sample containing |𝑆 | of these balls. Suppose that the white
balls constitute a fraction 𝑓 of all the balls. Then, for 𝑛 large, we expect that 𝑆 also
contains a fraction of white balls which is close to 𝑓 . This intuition can be made
precise using Hoeffding’s inequality, from which we derive

Pr ( |𝑃𝐶 (𝑆) − 𝑃𝐶 (𝐼) | ≥ 𝜖) ≤ 𝑒−2|𝑆 |𝜖2
, (5.1)

where the probability is evaluated for the uniform distribution over all subsets with
|𝑆 | elements. Now we can choose 𝜖 to have the exponentially small value 𝜖 = |𝑆 |−1/4

(for example) to see that, if 𝑆 is sampled uniformly with |𝑆 | fixed, the probability that
𝐶 accepts a sample from 𝑝𝑆 is exponentially close to the probability that 𝐶 accepts
a sample from 𝑝𝐼 . We conclude that, not only is it possible to choose the subset
𝑆 such that the fixed circuit 𝐶 can barely distinguish 𝑝𝑆 from 𝑝𝐼 , but furthermore
most choices for 𝑆 with |𝑆 | = 2𝛼𝑛 have this property.

We have now completed the first step in our two-step argument. But so far we have
only shown that 𝑆 can be chosen such that 𝑝𝑆 and 𝑝𝐼 are hard to distinguish for one
fixed circuit 𝐶. We wish to make a much stronger claim, that there is a choice for
𝑆 such that 𝑝𝑆 and 𝑝𝐼 are nearly indistinguishable by any circuit with a number of
gates subexponential in 𝑛.

To prove this stronger claim, we proceed with the second step in the argument. For a
collection of circuits {𝐶1, . . . , 𝐶𝑁 }, what is the probability that |𝑃𝐶𝑖

(𝑆) − 𝑃𝐶𝑖
(𝐼) | ≥
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𝜖 , for at least one 𝑖? An upper bound on this probability follows from the union
bound, which asserts that

𝑃(𝐴1 ∪ · · · ∪ 𝐴𝑁 ) ≤
𝑁∑︁
𝑖=1

𝑃(𝐴𝑖),

where {𝐴1, 𝐴2, . . . , 𝐴𝑁 } is any set of events. Using Equation (5.3), we conclude
that the probability that at least one of the 𝑁 circuits distinguishes 𝑝𝑆 from 𝑝𝐼 with
probability at least 𝜖 is no larger than 𝑁𝑒−2|𝑆 |𝜖2 .

How many possible circuits are there which act on the 𝑛-bit input 𝑥 and contain 𝑚
computation steps? In each step of the computation, we either input one of the bits
of 𝑥 or we execute a gate which is chosen from a set of 𝐺 possible gates, where 𝐺
is a constant. Our claim will hold if each gate in 𝐺 has a constant number of input
and output bits, so for simplicity let us assume that each gate has at most two input
bits and generates a single output bit (like a NAND gate for example). Each two-bit
gate acts on a pair of bits which are outputs from previous gates; this pair can be
chosen in fewer than 𝑚2 ways. Therefore, the total number 𝑁 (𝑚) of size-𝑚 circuits
can be bounded as

𝑁 (𝑚) ≤
(
(𝑛 + 𝐺)𝑚2

)𝑚
,

which implies

log 𝑁 (𝑚) ≤ 𝑚 (2 log𝑚 + log(𝑛 + 𝐺)) .

Even if we choose an exponentially large circuit size 𝑚 = 2𝛾𝑛 and an exponentially
small error 𝜖 = 2−𝛿𝑛, we find that 𝑁 (𝑚)𝑒−2|𝑆 |𝜖2 is doubly exponentially small in 𝑛
for |𝑆 | = 2𝛼𝑛 and 𝛼 > 𝛾 + 2𝛿. Hence, if 𝑆 is randomly chosen, it’s extremely likely
that the distributions 𝑝𝑆 and 𝑝𝐼 are indistinguishable by circuits of size 2𝛾𝑛, up to
an exponentially small error.

To summarize, we have shown that the set 𝑆 can be chosen so that the probability
distribution 𝑝𝑆 has these properties:

1. Its entropy per bit 𝛼 is a positive constant less than 1.

2. It is statistically distinguishable from 𝑝𝐼 with an exponentially small failure
probability.

3. If 𝛾 < 𝛼, any circuit using at most 2𝛾𝑛 gates almost always fails to distinguish
𝑝𝑆 and 𝑝𝐼 .
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If 𝑛 is macroscopic, the task of distinguishing 𝑝𝑆 from 𝑝𝐼 can be absurdly difficult,
even if the entropy density 𝛼 is quite small. Suppose, for example, that 𝑛 = 1023

is comparable to Avogadro’s number, and 𝛼 = 10−12. Choosing 𝛾 = 𝛿 = 10−13,
we conclude that a circuit with 𝑚 = 21010 gates can distinguish 𝑝𝑆 from 𝑝𝐼 with a
success probability no larger than 𝜖 = 2−1010 . Even if we could perform one gate
per unit of Planck time and Planck volume, an unimaginably large spacetime region
would be required to execute so large a circuit.

The existence of pseudorandom distributions was first suggested by Yao [28], and
the construction we have described was discussed by Goldreich and Krawcyzk [29].
In our analysis, we have assumed that the observer executes a deterministic circuit,
but it turns out that giving the observer access to a random number generator does
not make his task any easier [29].

Up until now, we assumed that the observer performs a computation whose output
is a single bit. But what if he obtains a 𝑘-bit output instead? Can we choose the set
𝑆 so that for all circuits of bounded size, the probability distribution governing the
𝑘 output bits is very similar for input strings drawn from 𝑝𝑆 and 𝑝𝐼? Our previous
reasoning does not have to be modified much to handle this case. Now for the fixed
circuit 𝐶, we denote by 𝐿𝐶 [𝑦] the set of 𝑛-bit input strings for which 𝐶 outputs
the 𝑘-bit string 𝑦, and we denote by 𝑃𝐶 (𝐼) [𝑦], 𝑃𝐶 (𝑆) [𝑦] the probability that 𝐶
outputs 𝑦 when receiving as input a sample from 𝑝𝐼 and 𝑝𝑆, respectively. Now we
envision the 𝑛-bit input strings as balls which can be colored in 2𝑘 possible ways,
corresponding to the 2𝑘 possible values of the output 𝑦. Applying the previous
argument to each color, we find that when 𝑆 is chosen at random from among all
subsets with cardinality |𝑆 |,

Prob [|𝑃𝐶 (𝑆) [𝑦] − 𝑃𝐶 (𝐼) [𝑦] | ≥ 𝜖] ≤ 𝑒−2|𝑆 |𝜖2
,

for each output 𝑦. From the union bound, the probability that |𝑃𝐶 (𝑆) [𝑦] −𝑃𝐶 (𝐼) [𝑦] |
exceeds 𝜖 for at least one value of 𝑦 is bounded above by 2𝑘𝑒−2|𝑆 |𝜖2 , which also
provides an upper bound on the probability that the total variation distance between
𝑃𝐶 (𝑆) and 𝑃𝐶 (𝐼) exceeds 𝜖′ = 2𝑘𝜖 . Therefore the total variation distance will be
no larger than 𝜖′ with high probability as long as 2𝛼𝑛2−2𝑘𝜖′2 is large, which means
𝜖′ can be exponentially small in 𝑛 provided 2𝑘 < 𝛼𝑛.

We conclude that the pseudorandom input distribution and the uniformly random
input distribution will yield exponentially close output distributions as long as the
observer’s output register is small compared to the entropy of 𝑆.
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The preceding argument shows that, indeed, there are probability distributions which
are computationally indistinguishable from the uniformly random distribution. But
can we make such a distribution efficiently? It turns out that our argument for
the computational hardness of distinguishing a pseudorandom distribution from
a uniformly random distribution can be used to show that such distributions are
typically hard to produce with polynomial-sized circuits.3 However, there are distri-
butions that can be created using polynomial-sized circuits which, under reasonable
complexity-theoretic assumptions, are difficult to differentiate from the uniformly
random distribution, for any polynomial-sized circuit. Such distributions can be gen-
erated by pseudorandom generators [30]. We will give a more complete description
of such constructions for the quantum case in Section 5.4.

Efficient sampling from a (classical) pseudorandom distribution is analogous to the
formation and partial evaporation of a black hole. Pseudorandom number generators
consult a random “key” which is hidden from the adversary, and then compute a
function which depends on the key. This function is chosen so that an output
drawn from the resulting family of outputs indexed by the key is computationally
indistinguishable from the output of a truly random function. In the case of the
partially evaporated black hole, the key becomes a black hole microstate, and the
key-dependent function evaluation becomes the chaotic unitary evolution of the
evaporating black hole. An adversary samples the Hawking radiation, and attempts
to determine whether the sample is drawn from a thermal distribution or not.

To properly discuss the evaporating black hole, we will need to consider the quantum
version of pseudorandomness, to which we turn in the next two sections. But our
simplified classical model of “Hawking radiation” is instructive. It teaches us that the
(classical) adversary can interact with the (classical) radiation for a subexponential
time (or even for the exponential time 2𝛾𝑛 if 𝛾 is sufficiently small), without ever
suspecting that the radiation is far from uniformly random. On the other hand, that
conclusion may no longer apply if the adversary collects 𝑘 bits of information where
𝑘 is sufficiently large (𝑘 > 𝛼𝑛/2). Both of these features will pertain to the quantum
version of our story.

5.4 Quantum Pseudorandomness
Now consider the quantum version of the task described in the Section 5.3. Our
observer receives a quantum state 𝜌, and is challenged to guess whether 𝜌 is maxi-

3We thank Adam Bouland for emphasizing this point.
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mally mixed or not. For that purpose, he performs a quantum computation with 𝜌
as input, and he outputs a single bit: 0 if he guesses 𝜌 is maximally mixed, and 1
otherwise.

Following our analysis of the classical case, let us first suppose that the observer
executes a particular fixed quantum circuit. That means the observer measures a
particular Hermitian observable 𝐴 with unit operator norm. Suppose we try to fool
the observer by providing as input a pure state 𝜌 = |𝜓〉〈𝜓 |. How well can the
observable 𝐴 distinguish this pure state from the maximally mixed state?

Suppose that |𝜓〉 is chosen uniformly at random from among all 𝑛-qubit pure states.
Then Levy’s lemma [31] says that

Pr
(����〈𝜓 |𝐴|𝜓〉 − Tr(𝐴)

2𝑛

���� ≥ 𝜖 ) ≤ 𝑒−𝑐 2𝑛𝜖2
(5.2)

for some constant 𝑐, where the probability is evaluated with respect to the invariant
Haar measure on the 𝑛-qubit Hilbert space. This means that, for 𝑛 large, the pure
state |𝜓〉 can be chosen so that |𝜓〉 and the maximally mixed state are exponentially
difficult to distinguish using the observable 𝐴. Furthermore, most pure states have
this property. Even a pure quantum state can pretend to be maximally mixed, and
the observer will not know the difference!4

As in the classical case we can strengthen this claim: the state |𝜓〉 can be chosen
so that |𝜓〉 is hard to distinguish from the maximally mixed state not just for one
fixed quantum circuit, but for any quantum circuit of reasonable size. To carry out
this step of the argument, we will need an upper bound on the number of quantum
circuits of specified size; here we confront the subtlety that quantum circuits, unlike
classical ones, form a continuum, but this wrinkle poses no serious obstacle to
completing the argument. If we settle for specifying the unitary transformation
realized by a circuit with 𝑚 gates to constant accuracy, it suffices to specify each
gate to 𝑂 (log𝑚) bits of precision. Therefore, as in the classical case, the complete
circuit can be specified by 𝑂 (𝑚 log𝑚) bits. It follows that, if 𝑚 is subexponential
in 𝑛, then the number 𝑁 (𝑚) of circuits with size 𝑚 is the exponential of a function
which is subexponential in 𝑛. In contrast, the right-hand side of Equation (5.4) is the
exponential of an exponential function of 𝑛. Using the union bound, we conclude
that if the pure state |𝜓〉 is chosen uniformly at random, it will, with high probability,

4If two identical copies of |𝜓〉 are available, then it is easy to distinguish the pure state |𝜓〉 from
the maximally mixed state by conducting a swap test. Here we assumed that only a single copy is
available.
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be hard to distinguish |𝜓〉 from the maximally mixed state using any circuit of size
subexponential in 𝑛.

On the other hand, if we were not concerned about the complexity of the observer’s
task, then it would be easy to distinguish |𝜓〉 from the maximally mixed state. The
observer could perform a projective measurement with the two outcomes {𝐸0 =

𝐼 − |𝜓〉〈𝜓 |, 𝐸1 = |𝜓〉〈𝜓 |}, guessing that the input state is |𝜓〉 if he obtains the
outcome 𝐸1, and guessing that the input state is maximally mixed if he obtains the
outcome 𝐸0. This strategy always succeeds if the input is |𝜓〉, and fails with the
exponentially small probability 2−𝑛 if the input is maximally mixed. The trouble is
that, for a typical pure state |𝜓〉, this measurement is far too complex to carry out in
practice.

A typical pure quantum state is somewhat analogous to the distribution 𝑝𝑆 we
described in Section 5.3. In both cases, it is hard for an observer who is limited
to performing polynomial-size computations to tell that the state is not uniformly
random, even though an observer with unlimited computational power can tell the
difference. Furthermore, both examples are subject to the same criticism — it is
computationally hard to sample uniformly from Haar measure (that is, to prepare
a “typical” pure state), just as it is computationally hard in the classical setting to
sample from the distribution 𝑝𝑆. In the quantum setting, as for the classical setting,
we may ask a more nuanced question: can quantum states be prepared efficiently
which are hard to distinguish from maximally mixed states? This more nuanced
question is the relevant one as we contemplate the properties of the radiation emitted
by a partially evaporated black hole, because the formation and subsequent complete
evaporation of a black hole can occur in a time that scales like 𝑆3/2

bh , where 𝑆bh is the
initial black hole entropy. Hence, the preparation of the Hawking radiation can be
simulated accurately by an efficient quantum circuit.

The answer is yes (under a reasonable assumption), as was shown recent by Ji,
Liu, and Song [12]; pseudorandom quantum states can be prepared efficiently. The
assumption we need is the existence of a family of quantum-secure pseudorandom
functions {PRF𝑘 }𝑘∈𝐾 . This means that each PRF𝑘 can be efficiently computed, but
it is difficult to distinguish a randomly sampled member of {PRF𝑘 } from a truly
random function with any efficient quantum algorithm. The set 𝐾 is called the key
space of the function family. The existence of such pseudorandom functions follows
from the existence of quantum-secure one-way functions, an assumption which is
standard in cryptography.
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The key idea is that we can construct a pseudorandom quantum state as a superpo-
sition of computational basis states, where all basis states appear with equal weight
except for a phase, and the phases appear to be random to a computationally bounded
observer. Specifically, we consider a family of states {|𝜙𝑘〉}𝑘∈𝐾

|𝜙𝑘〉 =
1
√
𝑁

∑︁
𝑥∈𝑋

𝜔
PRF𝑘 (𝑥)
𝑁

|𝑥〉,

where 𝑁 = 2𝑛, 𝜔𝑁 = 𝑒2𝜋𝑖/𝑁 , 𝑋 = {0, 1, 2, . . . , 𝑁−1}, and {PRF𝑘 : 𝑋 → 𝑋}𝑘∈𝐾 is
a family of quantum-secure pseudorandom functions. We can show that a uniform
mixture of the states {|𝜙𝑘〉} is computationally indistinguishable from the maximally
mixed state.5

We may argue as follows. First ,we consider the family of all functions 𝑓𝑘 ′ : 𝑋 →
𝑋}𝑘 ′∈𝐾 ′ indexed by key space 𝐾′, and the corresponding family of pure states

| 𝑓𝑘 ′〉 =
1
√
𝑁

∑︁
𝑥∈𝑋

𝜔
𝑓𝑘 ′ (𝑥)
𝑁
|𝑥〉. (5.3)

The first thing to note is that {| 𝑓𝑘 ′〉} is information-theoretically indistinguishable
from Haar-random; we state this fact for the reader’s convenience in Lemma 5.4.1.

Lemma 5.4.1 ([12], Lemma 1). Let {| 𝑓𝑘 ′〉} be the family of states defined in Equation
(5.4). Then, for 𝑚 polynomial in 𝑛, the state ensemble {| 𝑓𝑘 ′〉⊗𝑚} is statistically
indistinguishable from the ensemble {|𝜓〉⊗𝑚} where |𝜓〉 is Haar-random, up to a
negligible error.

Furthermore, the ensemble {|𝜙𝑘〉} cannot be efficiently distinguished from the en-
semble {| 𝑓𝑘 ′〉}. If it could be, then we could leverage this fact to efficiently distin-
guish {PRF𝑘 } from a family of random functions [12], contradicting our assumption
that {PRF𝑘 } is a quantum-secure pseudorandom function family. It now follows that
the ensemble {|𝜙𝑘〉} cannot be efficiently distinguished from a maximally mixed
state.

So far, we have shown that a uniform mixture of the states {|𝜙𝑘〉} is pseudorandom;
it remains to show that this mixture can be prepared efficiently. We start with a
product of qubits, each in the state |0〉, and apply a Hadamard gate to each qubit to
obtain the state

1√︁
𝑁 |𝐾 |

∑︁
𝑥∈𝑋

∑︁
𝑘∈𝐾
|𝑥〉|𝑘〉.

5In fact, we can simplify the construction. It was shown in [32] that the same family of states is
still pseudorandom if we replace the root of unity 𝜔𝑁 by −1.
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Next, we apply the quantum Fourier transform (which has complexity polynomial
in 𝑛) to another 𝑛-qubit register that is initialized in the state |00 . . . 01〉, obtaining

1
𝑁
√︁
|𝐾 |

∑︁
𝑥,𝑦∈𝑋

∑︁
𝑘∈𝐾
|𝑥〉|𝑘〉𝜔𝑦

𝑁
|𝑦〉.

Now, we compute PRF𝑘 (𝑥) and subtract modulo 𝑁 from the 𝑦 register. This
computation can be done efficiently because by assumption the PRF𝑘 is an efficiently
computable function; the resulting state is

1
𝑁
√︁
|𝐾 |

∑︁
𝑥,𝑦∈𝑋

∑︁
𝑘∈𝐾
|𝑥〉|𝑘〉𝜔𝑦

𝑁
|𝑦 − PRF𝑘 (𝑥)〉.

After shifting the summation index 𝑦, we have, up to a global phase,

1
𝑁
√︁
|𝐾 |

∑︁
𝑥,𝑦∈𝑋

∑︁
𝑘∈𝐾

𝜔
PRF𝑘 (𝑥)
𝑁

|𝑥〉|𝑘〉𝜔𝑦
𝑁
|𝑦〉 = 1√︁

|𝐾 |

∑︁
𝑘

|𝜙𝑘〉|𝑘〉|QFT〉,

where |QFT〉 = 𝑁−1/2 ∑
𝑦∈𝑋 𝜔

𝑦

𝑁
|𝑦〉. After the key |𝑘〉 is discarded, the marginal

state over the first register is the uniform mixture of {|𝜙𝑘〉}. Thus, we have prepared
this mixture efficiently.

The definition of a pseudorandom quantum state in reference [12] is really overkill
for our purposes. Those authors are concerned with cryptographic applications,
and therefore consider a definition (as stated in Lemma 5.4.1) where, for each value
𝑘 of the key, 𝑚 identical copies of |𝜙𝑘〉 are available where 𝑚 is polynomial in
𝑛. We will not encounter such scenarios in this paper. Therefore, we may instead
adopt a simplified definition of pseudorandomness which is more suitable for the
application to black hole physics. In Definition 5.6.1 below, the size |𝐻 | of the
remaining black hole parametrizes how difficult it is to distinguish radiation emitted
from the partially evaporated black hole from the maximally mixed state. In this
sense, the remaining black hole 𝐻 serves as the key space of the pseudorandom
radiation state. Even if |𝐻 | is less than half of the initial black hole entropy, this
task remains difficult so long as the remaining black hole 𝐻 is macroscopic. Our
hypothesis that the Hawking radiation is pseudorandom provides a way to formalize
the idea that the Hawking radiation is effectively thermal even when the state of 𝐸
has relatively low rank because |𝐻 | � |𝐸 |.

5.5 Is Hawking Radiation Pseudorandom?
We have now seen, in both the classical and quantum settings, that pseudorandom
states exist. Though in principle these states are almost perfectly distinguishable
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from maximally mixed states, in practice no observer with reasonable computational
power can tell the difference. Moreover, under standard cryptographic assumptions,
there exist constructions of such states which can be efficiently prepared. But up
to this point, we have not addressed whether pseudorandom quantum states can be
efficiently prepared in plausible physical processes like the evaporation of a black
hole.

In the case of a black hole which forms from gravitational collapse, and then
completely evaporates, the resulting state of the emitted Hawking radiation, though
highly scrambled, would not be pseudorandom. We take it for granted that the
time evolution of the quantum state can be accurately approximated by a quantum
circuit, which has size polynomial in the initial black hole entropy 𝑆bh because
the evaporation process takes a time 𝑂

(
𝑆

3/2
bh

)
. We may consider a toy model of

this process, in which the initial state |𝜙matter〉 of the collapsing matter is a product
state of 𝑛 qubits |𝜙matter〉 = |0〉⊗𝑛, and the final state after complete evaporation is
|Ψfin〉 = 𝑈 |𝜙matter〉, where𝑈 is a unitary transformation constructed as a polynomial-
size circuit. In this case, an observer could just execute this circuit in reverse, hence
applying𝑈† to |Ψfin〉, and then measure the qubits in the standard basis, thus easily
distinguishing |Ψ〉 from the maximally mixed state. We see that, if 𝜌 is a state that
can be prepared by a polynomial-size quantum circuit, yet is hard to distinguish
from maximally mixed by polynomial-size circuits, then 𝜌 cannot be pure.

Instead, we consider a partially evaporated black hole as in Figure 5.3. We imagine
that the 𝑛-qubit state 𝜌𝐸𝐵 is prepared by applying a polynomial-size unitary circuit
𝑈bh to the initial state |0〉⊗𝑛 |0〉⊗𝑘 of 𝐸𝐵𝐻, where 𝐻 is a 𝑘-qubit system, and then
discarding 𝐻. In our toy model, 𝐸𝐵 is the Hawking radiation that has been emitted
so far, and 𝐻 is the remaining black hole. (Recall that 𝐵 is a small portion of
the emitted Hawking radiation whose properties we will investigate later; for the
purpose of the present discussion, we are only interested in the state of 𝐸𝐵, the full
radiation system.) If our observer had access to 𝐻 as well as 𝐸𝐵, he could easily
tell that the state is not maximally mixed, but what if 𝐻 is inaccessible?

We are particularly interested in the case where 1 � 𝑘 = |𝐻 | < 𝑛 = |𝐸𝐵|,
so that 𝜌𝐸𝐵 fails to have full rank, and must therefore be information-theoretically
distinguishable from the maximally mixed state; this situation resembles the classical
model discussed in Section 5.3, where the entropy of the distribution 𝑝𝑆 is substantial
but not maximal. Could the state 𝜌𝐸𝐵 of the Hawking radiation, which is prepared by
unitary evolution of 𝐸𝐵𝐻 for a time which is polynomial in |𝐸𝐵|, be pseudorandom?
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Figure 5.3: Our toy model of a partially evaporated black hole, where 𝐸𝐵 is the
Hawking radiation emitted so far, and 𝐻 is the remaining black hole. The initial
state |𝜙matter〉 of the gravitationally collapsing matter is modeled as a product state.
We conjecture that the unitary black hole dynamics prepares a pseudorandom state
of 𝐸𝐵.

This is a question about quantum gravity, and we do not know the answer for
sure, but we can make a reasonable guess. We have already seen in Section 5.4
that quantum circuits exist that efficiently prepare pseudorandom quantum states.
Since black holes are believed to be particularly potent scramblers of quantum
information, it is natural to conjecture that the internal dynamics of a black hole can
produce pseudorandom states as well. Indeed, we may expect similar behavior for
the radiation emitted by other strongly chaotic quantum systems aside from black
holes. Only for the case of black holes, though, where we face the daunting firewall
puzzle, will our constructions of robust logical operators acting on 𝐸𝐻 seem to have
a natural interpretation.

To better understand why the state of 𝐸𝐵 might be hard to distinguish from a
maximally mixed state, we may suppose, for example, that 𝜌𝐻 is maximally mixed
so that the pure state of 𝐸𝐵𝐻 has the form

|Ψ〉𝐸𝐵𝐻 =
1

2|𝐻 |/2
∑︁
𝑖

|𝜓𝑖〉𝐸𝐵 ⊗ |𝑖〉𝐻 ,

where the states {|𝜓𝑖〉𝐸𝐵} are orthonormal. The marginal state of 𝐸𝐵 is then

𝜌𝐸𝐵 =
1

2|𝐻 |
∑︁
𝑖

|𝜓𝑖〉〈𝜓𝑖 |.

Suppose the observer receives a state which is either 𝜌𝐸𝐵 or the maximally mixed
state 𝜎𝐸𝐵 = 𝐼𝐸𝐵/2|𝐸𝐵 |. A natural test is as follows: The observer augments 𝐸𝐵
with the maximally mixed state of 𝐻 (which is easy to prepare), and then measures
the projection onto |Ψ〉. This can be done efficiently by applying 𝑈−1

bh and then
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measuring in the standard basis. If the input state is 𝜎𝐸𝐵, the projection onto |Ψ〉
succeeds with probability 2−(|𝐸𝐵 |+|𝐻 |) , while if the input state is 𝜌𝐸𝐵, the success
probability is

〈Ψ|
∑
𝑖 |𝜓𝑖〉〈𝜓𝑖 |

2|𝐻 |
⊗ 𝐼𝐻

2|𝐻 |
|Ψ〉 = 1

22|𝐻 | .

Thus this test distinguishes 𝜌𝐸𝐵 and 𝜎𝐸𝐵, but only with a probability that is expo-
nentially small in 𝐻.

To conduct a better test, we would somehow need to exploit the structure of the
ensemble {|𝜓𝑖〉𝐸𝐵}. But if, as we expect, black holes are especially effective infor-
mation scramblers, it is reasonable to suppose that the ensemble lacks any special
properties that can be exploited by an observer who is limited to performing a
polynomial-time quantum computation. If so, the Hawking radiation is pseudoran-
dom, and the test we have described may be nearly optimal.

In the example above, we have assumed that the radiation has infinite temperature.
The actual behavior of a black hole evaporating in asymptotically flat spacetime
is more complicated — the temperature is actually finite, and in fact becomes
hotter and hotter as the evaporation proceeds. Conceptually, though, the situation is
similar to the idealized case of an black hole evaporating at infinite temperature. At
early times, when |𝐻 | � |𝐸𝐵|, we expect the radiation emitted at a specified time
to be information-theoretically indistinguishable from precisely thermal radiation
at the same temperature. At late times, when |𝐻 | � |𝐸𝐵|, the global state of
the radiation is distinguishable in principle from a thermal state (with temperature
varying according to the time of emission), but we assume that telling the difference
is computationally hard because the radiation is highly scrambled.

We also note that the constructions in [12] reinforce earlier observations concerning
the computational hardness of decoding the Hawking radiation [14], [15]. These
authors considered the quantum state |Ψ〉𝐸𝐵𝐻 of an old black hole, and analyzed the
task of extracting from the early radiation 𝐸 the subsystem which is entangled with
the recently emitted Hawking mode 𝐵. This task would be easy for an observer
who has access to both 𝐸 and 𝐻, but one can argue that there are efficiently
preparable states of 𝐸𝐵𝐻 for which this decoding task cannot be achieved by
an observer who performs a polynomial-size quantum computation on 𝐸 alone.
Here, too, the hardness of decoding cannot be proven from first principles, but
it follows from plausible complexity assumptions which are standard in “post-
quantum” cryptography [14], [15]. Again, the existence of states that are hard to
decode does not guarantee that a black hole creates such states, but we take it on
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faith that if efficient preparation of such states is possible, then a black hole will be
up to the job.

To summarize, on the basis of these (admittedly speculative) considerations, we
propose that for the quantum state |Ψ〉𝐸𝐵𝐻 of an old black hole, the state 𝜌𝐸𝐵 of
the Hawking radiation is pseudorandom. If |𝐻 | < |𝐸𝐵|, then the rank of 𝜌𝐸𝐵
is not maximal, so that 𝜌𝐸𝐵 is distinguishable from a thermal state. In fact, an
observer with access to 𝐻 as well as 𝐸𝐵 could efficiently check that 𝜌𝐸𝐵 is not
thermal. Furthermore, an observer without access to 𝐻 could check that 𝜌𝐸𝐵 is not
thermal by performing a quantum computation of exponential size on 𝐸𝐵 alone.
But an observer outside the black hole, who performs a polynomial-size quantum
computation on 𝐸𝐵 without access to 𝐻, will be able to distinguish 𝜌𝐸𝐵 from a
thermal state with a success probability that is at best exponentially small in |𝐻 |.
Our analysis of the robustness of the encoded black hole interior in the remainder
of this paper will rest on this assumption.

This discussion highlights the importance of distinguishing the von Neumann en-
tropy of the Hawking radiation from its thermodynamic entropy. After the Page
time, the Von Neumann entropy of 𝐸𝐵 becomes far smaller than the von Neu-
mann entropy of a perfectly thermal state, so one could in principle verify that the
Hawking radiation is not perfectly thermal by measuring its von Neumann entropy.
The existence of pseudorandom quantum states then implies that measuring the
von Neumann entropy with a small error requires an operation of superpolynomial
complexity [33]. One could imagine trying to measure the entropy of the radiation
by, for example, withdrawing its thermal energy to operate a heat engine. If the
radiation is pseudorandom, though, the radiation would be indistinguishable from
thermal radiation in any efficient process, despite its low von Neumann entropy.

Recalling the construction of the pseudorandom state recounted in Section 5.4, we
note [34] that the quantum Fourier transform can be executed with circuit depth
𝑂 (log 𝑛), and that under plausible cryptographic assumptions the function PRF𝑘
can be computed in depth polylog 𝑛 [12]. Thus a pseudorandom state can be
prepared in polylog 𝑛 time. Plausibly, the state preparation can be achieved in a time
comparable to the 𝑂 (log 𝑛) scrambling time of a black hole, as one might naively
expect.
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5.6 Pseudorandomness and Decoupling
In this section, we formalize our hypothesis that Hawking radiation is pseudorandom,
and explore its implications regarding the firewall paradox [3]. Our analysis can be
viewed as a refinement of the Harlow-Hayden argument [14], [15].

As formulated in [3] and summarized in Section 5.1, the firewall paradox highlights
a conflict between the unitarity of black hole evaporation and the monogamy of
entanglement. A possible resolution is that the interior mode �̃� that purifies a
recently emitted Hawking mode 𝐵 may actually be encoded in the radiation. On
the face of it, this resolution flagrantly violates locality, and one wonders whether
this violation of locality can be detected by an agent who first interacts with the
radiation and then falls through the event horizon to visit the interior. We will
argue that, provided the Hawking radiation is pseudorandom and the size of the
observer is small compared to the black hole, the nonlocality is undetectable in
practice because it would take an exponentially long time for the observer to distill
the encoded interior mode before falling into the black hole.

We will first present a sketch of the argument in a simplified setting where the
radiation interacts with a single observer who is significantly smaller than the
remaining black hole. Later on we will extend the argument to the case where
the observer has access to a large probe outside the horizon, whose size may be
comparable to or even larger than the remaining black hole.

Recall our conventions: let 𝑂 denote the observer, 𝐻 the remaining black hole, 𝐵
the late outgoing mode, 𝐸 the early radiation, and 𝑃 the external probe. We will
also refer to the joint system 𝐸𝐵 as the exterior radiation. All subsystems can be
decomposed in terms of qubits, and our statements about computational complexity
concern the number of steps in a computation executed by a universal quantum
computer. Below and throughout the remainder of the paper, given an operator 𝐴,
we will use ‖𝐴‖1 = Tr(

√
𝐴†𝐴) to denote the trace norm, ‖𝐴‖𝐹 =

√︁
Tr(𝐴†𝐴) to

denote the Frobenius norm, and ‖𝐴‖ to denote the operator norm.

First, we define what it means for the external radiation of the black hole to be
pseudorandom.

Definition 5.6.1. Let |Ψ〉𝐸𝐵𝐻 be the state of the black hole and the radiation. Let
𝜎𝐸𝐵 = 𝐼𝐸𝐵/𝑑𝐸𝐵 be the maximally mixed state of 𝐸𝐵, and let 𝜌𝐸𝐵 = Tr𝐻 ( |Ψ〉〈Ψ|).
We say that the state |Ψ〉𝐸𝐵𝐻 is pseudorandom on the radiation 𝐸𝐵, if there exists
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some 𝛼 > 0 such that

|Pr (M(𝜌𝐸𝐵) = 1) − Pr (M(𝜎𝐸𝐵) = 1) | ≤ 2−𝛼 |𝐻 |, (5.4)

for any two-outcome measurementM with quantum complexity polynomial in |𝐻 |,
the size of the remaining black hole.

This definition captures the notion that no feasible measurement can tell the dif-
ference between 𝜌𝐸𝐵 and the maximally mixed state. A few remarks will help to
clarify the definition. (1) When we say a measurement of 𝜌𝐸𝐵 has polynomial
quantum complexity, we mean it can be performed by executing a quantum circuit
of polynomial size acting on 𝐸𝐵, followed by a qubit measurement in the standard
computational basis. Use of ancilla systems is also permitted in the measurement
process, provided the ancilla is initialized in a product state. (2) Of particular in-
terest is the value of the constant 𝛼 that makes the bound in Equation (5.6.1) tight
for asymptotically large black holes. But because black holes are such effective
information scramblers, we would expect a comparable value of 𝛼 to apply also for
black holes of moderate size. There is no obvious small parameter in the problem
that would lead us to expect 𝛼 to be small compared to 1. (3) This definition is ap-
propriate for the case where the Hawking radiation has infinite temperature. As we
remarked in Section 5.5, we expect the realistic case of finite-temperature radiation
to be conceptually similar, and for similar conclusions to apply in that case. But we
will stick with the infinite-temperature case for the rest of the paper to simplify our
analysis.6

Let us now deduce a consequence of Definition 5.6.1. We introduce an observer
subsystem 𝑂 initialized in a state 𝜔𝑂 , and an ancilla subsystem 𝑃 initialized in the
product state |0〉𝑃. The main result of this section is the following: suppose that
|Ψ〉𝐸𝐵𝐻 is pseudorandom, and let 𝜌𝑂𝑃𝐸 be any state of 𝑂𝑃𝐸 obtained by applying
a unitary of polynomial complexity to 𝜔𝑂 ⊗ |0〉𝑃 ⊗ |Ψ〉𝐸𝐵𝐻 . Then the correlation
between the observer and the early radiation is exponentially small in |𝐻 | for any
such state; i.e.,

‖𝜌𝑂𝐵 − 𝜌𝑂 ⊗ 𝜌𝐵‖1 ≤ 6 · 2−(𝛼 |𝐻 |−|𝑂 |) , (5.5)
6In the finite temperature case, the entanglement between 𝐵 and the rest of the system is no longer

maximal. This causes an extra complication when we use the quantum error-correction technology
in Section 5.7, because the encoding map 𝑉 from 𝐵 to 𝐸𝐻 defined by the state Ψ𝐸𝐵𝐻 need not be
exponentially close to an isometry. Instead we may replace 𝑉 by the approximate isometry 𝑉𝜌−1/2

𝐵
,

which slightly modifies the error bounds derived in Section 5.7 and 5.8. Similar techniques have
been used in [7], [8], [10].
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where we have now assumed that 𝐵 is a single qubit. We will call (5.6) the
decoupling bound, because it states that the observer 𝑂 nearly decouples from the
exterior radiation mode 𝐵, and therefore gains negligible information about the
interior mode �̃� which is entangled with 𝐵. In Section 5.8 we leverage (5.6) to show
that the interior mode �̃� can be regarded as an encoded subsystem of 𝐸𝐻 which is
protected against all “low-complexity” errors, where “low-complexity” is shorthand
for polynomial complexity.

Prior work [14], [15] has suggested that the decoupling bound holds when the size
of the remaining black hole is an 𝑂 (1) fraction of the initial black hole entropy 𝑆bh.
However, our conclusion goes further. Even if the majority of the initial black hole
has evaporated, so that |𝐻 | � |𝐸𝐵|, the observer 𝑂 and the late radiation 𝐵 remain
decoupled as long as the remaining black hole 𝐻 is macroscopic and the observer’s
system 𝑂 obeys |𝑂 | � |𝐻 |.

To derive the decoupling bound, we apply the pseudorandomness assumption to the
setup described in Figure 5.1. The unitary𝑈E is applied to the radiation, probe, and
the observer. Because the evaporation time of the black hole is polynomial in its
size, and𝑈E is applied before the evaporation is complete, we may assume that𝑈E
is applied in a polynomial time and therefore has polynomial complexity. We also
assume that the initial state of the observer 𝜔𝑂 is of low complexity, although this
assumption is not crucial; we may take the state 𝜔𝑂 to be arbitrary, at the cost of a
slightly weaker decoupling bound.

In order to bound the correlation between 𝐵 and 𝑂, we consider a complete set
of operators acting on 𝑂𝐵. A convenient choice is the set of Pauli operators 𝑃𝑖
acting on 𝑂𝐵. By a Pauli operator acting on 𝑛 qubits we mean a tensor product of 𝑛
2 × 2 Pauli matrices; there are 4𝑛 such operators {𝑃𝑖, 𝑖 = 0, 1, 2, . . . , 4𝑛 − 1} (where
𝑃0 = 𝐼) whose phases can be chosen so that each 𝑃𝑖 for 𝑖 ≠ 0 has eigenvalues ±1,
and the {𝑃𝑖} are orthogonal in the Froebenius norm: Tr

(
𝑃𝑖𝑃 𝑗

)
= 2𝑛𝛿𝑖 𝑗 . Here 𝑛 is

the number of qubits in 𝑂𝐵. Because measurement of 𝑃𝑖 is a low-complexity two-
outcome measurement, it follows from the assumption that Ψ𝐸𝐵𝐻 is pseudorandom
that

|Tr((𝜌𝑂𝐵 − 𝜎𝑂𝐵)𝑃𝑖) | ≤ 2−𝛼 |𝐻 |

for any Pauli operator 𝑃𝑖, where 𝜎𝑂𝐵 is the state that results when the state 𝜌𝐸𝐵
measured by the observer is replaced by the maximally mixed state; see Figure 5.4.

To understand why Equation (5.6) follows from pseudorandomness, note that we
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are modeling a measurement of 𝐸𝐵 by the observer 𝑂 as a low-complexity unitary
interaction between 𝐸𝐵 and𝑂, followed by a simple measurement of the𝑂 register.
Strictly speaking, then, we should allow the Pauli operator 𝑃𝑖 to act only on 𝑂, not
on 𝑂𝐵. In effect, we are assuming that the observer’s quantum memory contains
|𝑂𝐵| qubits rather than |𝑂 | qubits, so that measuring a Pauli operator acting on
𝑂𝐵 is permitted. In our formulation of the pseudorandomness assumption, there is
no restriction on the size of the observer’s memory, only on the complexity of his
operation. Therefore, assuming that the state of 𝐸𝐵 is pseudorandom, the observer’s
measurement will not distinguish 𝜌𝑂𝐵 from 𝜎𝑂𝐵 even if the observer is permitted
to measure 𝐵 as well as 𝑂.

Using the completeness and orthogonality of the Pauli operators, we can bound the
Frobenius distance between the two states as

‖𝜌𝑂𝐵 − 𝜎𝑂𝐵‖2𝐹 = Tr
(
(𝜌𝑂𝐵 − 𝜎𝑂𝐵)2

)
= 2−(|𝑂𝐵|)

∑︁
𝑖

|Tr((𝜌𝑂𝐵 − 𝜎𝑂𝐵)𝑃𝑖) |2 .

Because there are 4|𝑂𝐵 | Pauli operators, the right hand side is bounded by 2−2𝛼 |𝐻 |2|𝑂𝐵 |.
The trace distance is bounded by the Frobenius norm as

‖𝜌‖1 ≤
√︁

rank(𝜌) ‖𝜌‖𝐹 ,

for any operator 𝜌. Therefore we have

‖𝜌𝑂𝐵 − 𝜎𝑂𝐵‖1 ≤ 2|𝑂𝐵|2−𝛼 |𝐻 |, (5.6)

because the rank of 𝜌𝑂𝐵 can be no larger than 2|𝑂𝐵|. From (5.6), one finds that

‖𝜌𝑂𝐵 − 𝜌𝑂 ⊗ 𝜌𝐵‖1 ≤ ‖𝜌𝑂𝐵 − 𝜎𝑂𝐵‖1 + ‖𝜎𝑂𝐵 − 𝜌𝑂 ⊗ 𝜌𝐵‖1
≤ 2|𝑂𝐵 |−𝛼 |𝐻 | + ‖𝜎𝑂𝐵 − 𝜌𝑂 ⊗ 𝜌𝐵‖1
= 2|𝑂𝐵 |−𝛼 |𝐻 | + ‖𝜎𝑂 ⊗ 𝜎𝐵 − 𝜌𝑂 ⊗ 𝜌𝐵‖1
≤ 2|𝑂𝐵 |−𝛼 |𝐻 | + ‖𝜎𝑂 − 𝜌𝑂 ‖1 + ‖𝜎𝐵 − 𝜌𝐵‖1
≤ 3 × 2( |𝑂𝐵|−𝛼 |𝐻 |) .

(5.7)

The first line is the triangle inequality. From the first line to the second line, we used
(5.6). From the second line to the third line, we used the fact that 𝜎𝑂𝐵 is a product
state over 𝑂 and 𝐵. From the third line to the fourth line, we used the fact that

‖𝜎𝑂 ⊗ 𝜎𝐵 − 𝜌𝑂 ⊗ 𝜌𝐵‖1 ≤ ‖(𝜎𝑂 − 𝜌𝑂) ⊗ 𝜎𝐵‖1 + ‖𝜌𝑂 ⊗ (𝜎𝐵 − 𝜌𝐵)‖1
≤ ‖𝜎𝑂 − 𝜌𝑂 ‖1 + ‖𝜎𝐵 − 𝜌𝐵‖1,

(5.8)
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where the first line of (5.6) follows from the triangle inequality, and the second from
the property that tracing out a subsystem cannot increase the trace distance. To
reach the last line of (5.6), we again used the property that tracing out a subsystem
cannot increase the trace distance. Finally, in the case where 𝐵 is a single qubit,
so that |𝑂𝐵 | = |𝑂 | + 1, (5.6) becomes the decoupling bound (5.6). More generally,
decoupling is satisfied whenever |𝑂𝐵 | � 𝛼 |𝐻 |.

Figure 5.4: Graphical depiction of the decoupling bound, which follows from the
pseudorandomness of the Hawking radiation emitted by an old black hole. On the
left, a black hole forms from collapse and partially evaporates; the emitted radiation
is 𝐸𝐵 and the remaining black hole is 𝐻. Then an observer 𝑂 and probe 𝑃 interact
with the radiation subsystem 𝐸 for a time that scales polynomially with the initial
black hole entropy 𝑆bh. On the right, the unitary transformation describing the
interaction of 𝑂𝑃𝐸 is the same as on the left, but the state of the Hawking radiation
is replaced by a maximally mixed state of 𝐸𝐵. The decoupling bound asserts that
the final state of 𝑂𝐵 is the same in both cases, up to an error that is exponentially
small in |𝐻 |, the size of the remaining black hole, provided that |𝑂 | � |𝐻 |.

Because two states close in trace distance cannot be distinguished well by any mea-
surement, the decoupling bound implies that the state 𝜌𝑂𝐵 cannot be distinguished
from the state 𝜎𝑂𝐵 assuming that |𝑂 | � |𝐻 |. We thus conclude that any subsystem
small compared to the remaining black hole 𝐻, even after interacting with the early
radiation 𝐸 , cannot be correlated with 𝐵; see Figure 5.4. In particular, an observer
outside the black hole who interacts with 𝐸 for a polynomially bounded time remains
decoupled from 𝐵, assuming that the Hawking radiation is pseudorandom.

This conclusion about the hardness of decoding follows from the pseudorandomness
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assumption for any computationally bounded observer who can access only system
𝐸 . However, the decoding becomes easy if the observer has access to both 𝐸 and
𝐻, as long as the state |Ψ〉𝐸𝐵𝐻 has polynomial complexity. For this case, we will
describe an explicit decoding protocol in Section 5.9.

5.7 Black Holes as Quantum Error-Correcting Codes
In this section, we recast the findings in Section 5.6 in the language of quantum
error correction. The quantum error correction point of view will prove to be useful
in understanding more subtle thought experiments studied in Section 5.8. We will
see that an old black hole, together with its previously emitted Hawking radiation,
is a quantum error-correcting code with exotic properties that have not been noted
in previous discussions of holographic quantum error-correcting codes [35], [36].
These properties hold if the Hawking radiation is pseudorandom. That a black
hole can be viewed as a quantum error-correcting code is not new [17], [36]–
[38]. What is new is that a black hole can protect quantum information against
seemingly pernicious errors; we refer to these as “low-complexity errors,” meaning
errors inflicted by a malicious agent who performs a quantum computation on the
Hawking radiation with complexity scaling polynomially in the size of the remaining
black hole.

To explain this claim, it is useful to view the state of the black hole and the radiation
as an encoding map from the interior mode �̃� into 𝐸𝐻. That is, |Ψ〉𝐸𝐻𝐵 defines
an isometric embedding of �̃� into 𝐸𝐻. Recall that 𝐸 denotes the early radiation,
𝐻 denotes the remaining black hole, and 𝐵 denotes a late outgoing mode. For
simplicity, we assume that 𝐵 is a single qubit, but the following results remain
essentially unchanged for 𝐵 of any constant size (small compared to 𝐻). The
encoded system �̃� describes the mode in the black hole interior that is entangled
with 𝐵.

We can define an (approximate) isometric embedding 𝑉Ψ : H�̃� → H𝐸𝐻 of a single
qubit �̃� into the subspace 𝐸𝐻 by

𝑉Ψ |𝑖〉�̃� = 2(𝐼𝐸𝐻 ⊗ 〈𝜔|𝐵�̃�) ( |Ψ〉𝐸𝐻𝐵 ⊗ |𝑖〉�̃�), (5.9)

where |𝜔〉𝐵�̃� = 2−1/2( |00〉𝐵�̃� + |11〉𝐵�̃�) denotes an EPR pair on 𝐵�̃�; see Figure 5.5.
While 𝑉Ψ itself is not precisely an isometric embedding, it is exponentially close
to one under the assumption that |Ψ〉𝐸𝐵𝐻 is pseudorandom on the exterior system
𝐸𝐵, as specified in Definition 5.6.1. In Appendix 5.A, we show that there exists an
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isometric embedding 𝑉 such that

‖𝑉 −𝑉Ψ‖ ≤ 2 · 2−𝛼 |𝐻 |, (5.10)

where ‖ · ‖ denotes the operator norm. The isometry𝑉 then defines a code subspace
that encodes �̃�. For macroscopic observers (i.e., |𝑂 | � 1), the error in (5.7) is
negligible compared to the error in the decoupling bound (5.6). Although the norm
in Equation (5.7) is the operator norm rather than the trace norm, that distinction
need not concern us if |𝐵 | is sufficiently small compared to |𝐻 |. Therefore we can
ignore any differences between 𝑉 and 𝑉Ψ and use them interchangeably.

Figure 5.5: The definition of the encoding of �̃� into 𝐸𝐻, with Ψ defined as in
Figure 5.3.

We will now show that the isometry 𝑉Ψ : H�̃� → H𝐸𝐻 defined above embeds �̃�
into 𝐸𝐻 as a code subspace for which any low-complexity noise model acting on 𝐸
is (approximately) correctable. By low-complexity error, we mean that the unitary
process 𝑈E in Figure 5.6 has complexity at most polynomial in |𝐻 |. Here the
external observer 𝑂 plays the role of the “environment” for the noise process acting
on 𝐸 and the probe 𝑃.

The error model depicted in Figure 5.6 is rather exotic compared to error models
that are typically considered in discussions of quantum gravity and fault-tolerant
quantum computing. For example, one widely studied error model is the “erasure
model,” wherein each qubit may be removed with some probability, and we know
which qubits are removed. The performance of quantum codes against erasure errors
arises, in particular, in studies of the holographic AdS/CFT dictionary [35], [36];
if a logical bulk operator can be “reconstucted” on a portion of the boundary, that
means that erasure of the complementary portion of the boundary is correctable for
that logical operator. By the no-cloning theorem, no code can tolerate erasure of
more than 50% of the qubits in the code block. In contrast, in our setup, erasure
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Figure 5.6: A black hole can be viewed as a quantum error-correcting code. By
tracing out the observer 𝑂, we obtain a “noise model” E on the early radiation and
the probe.

is correctable even if most of the qubits are removed. The catch is that the erased
qubits must lie in 𝐸 ; removal of qubits in 𝐻 is not allowed.

In studies of fault-tolerant quantum computing, the noise afflicting the physical
qubits is usually assumed to be weak and weakly correlated. In a Hamiltonian
formulation of the noise model, this means that each qubit in the computer is weakly
coupled to a shared environment [39]. In contrast, for the noise model described
by 𝑈E , the noise may act strongly on all the qubits in 𝐸 ; the only restriction is that
the noise has quantum complexity scaling polynomially with |𝐻 |. Furthermore,
how the noise acts depends on the initial state 𝜔𝑂 of the observer 𝑂, which may be
chosen adversarially. Again, what makes successful error correction possible is that
the subsystem 𝐻 is assumed to be noiseless, an assumption that would be unrealistic
for typical quantum computing hardware.

Codes that can protect against this malicious typle of noise are central to our
proposed resolution of the firewall paradox. An old black hole provides such a
code if its previously emitted radiation is pseudorandom. The code corrects errors
successfully if the noise acting on 𝐸 has low complexity and the remaining black
hole 𝐻 is noiseless, provided that the observer 𝑂 is small compared to 𝐻.

5.7.1 Correcting Low-Complexity Errors
For simplicity, we will first consider a scenario without the probe 𝑃 shown in
Figure 5.6. We will see that the error applied to the radiation system 𝐸 is (approxi-
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mately) correctable. In Section 5.7.2, we will explain how our conclusion changes
when the probe 𝑃 is included.

A central result in the theory of quantum error correction is the information-
disturbance relation, which states that a code can protect quantum information
from noise if and only if the “environment” of the noise channel E learns nothing
about the logical information. More precisely, there is a physical process R, the
recovery process, which reverses the error:

R ◦ E ≈ I, (5.11)

where I is the identity operation, if and only if the “reference system” that purifies
the quantum error-correcting code decouples from the environment . In Figure 5.6
(neglecting the probe 𝑃), the environment of the noise channel E acting on 𝐸 is the
observer 𝑂, and 𝐵 is the reference system that purifies the encoded interior mode
�̃�. Therefore the necessary and sufficient condition for (approximate) correctability
is the (approximate) decoupling of 𝐵 and 𝑂,

𝜌𝑂𝐵 ≈ 𝜌𝑂 ⊗ 𝜌𝐵 (5.12)

where 𝜌𝑂𝐵 is the reduced density operator for𝑂𝐵. Here the approximation errors of
Equation (5.7.1) and Equation (5.7.1) are related to each other by a constant factor.
Therefore, using the decoupling bound (5.6), we can conclude that there exists a
recovery process R that reverses E up to an error exponentially small in |𝐻 |, as long
as |𝑂 | � |𝐻 | and assuming that the Hawking radiation is pseudorandom.

Various formal statements that imply the existence of R in Equation (5.7.1) are
known; for the reader’s convenience, we reproduce some of these results below. First,
let us properly define what it means for a channel to be approximately correctable
with respect to some code subspace — a more comprehensive discussion can be
found in [23]. Let 𝑆(H) denote the set of states on a Hilbert spaceH . Suppose that
we are given channels E,N : 𝑆(H) → 𝑆(H). Fixing a state 𝜌 ∈ 𝑆(H), we define
the entanglement fidelity between E and N with respect to 𝜌 to be

𝐹𝜌 (E,N) = 𝑓 [(E ⊗ I)(|𝜓〉〈𝜓 |), (N ⊗ I)(|𝜓〉〈𝜓 |)] ,

where |𝜓〉 is a purification of 𝜌, and where

𝑓 (𝜌, 𝜏) = Tr
(√︃√

𝜏𝜌
√
𝜏

)
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is the usual fidelity between states 𝜌 and 𝜏. To quantify the closeness of two
channels, we use the worst-case entanglement fidelity to define the Bures distance,
given by

𝔅(E,N) = max
𝜌

√︃
1 − 𝐹𝜌 (E,N); (5.13)

we sometimes define a more restricted notion of the Bures distance, where we
maximize over states in some specified subspace. In discussions of error correction,
we say that a noise channel E is 𝜖-correctable with respect to a code subspace
C ⊆ H if there exists a recovery channel R such that

𝔅(R ◦ E,I) ≤ 𝜖, (5.14)

where the maximization in the Bures metric is over all code states 𝜌 with support
on C.

The Bures metric is bounded above and below by the trace norm as

2𝔅2(E,N) ≤ max
𝜌
‖(E ⊗ I)(|𝜓〉〈𝜓 |) − (N ⊗ I)(|𝜓〉〈𝜓 |) ‖1

≤ 2
√

2B(E,N). (5.15)

The norm in the middle is essentially the diamond-norm distance between the
channels E andN [40], except that for the purpose of characterizing error correction
the maximization is over code states only. Applying this inequality and tracing out
the purifying system, the 𝜖-correctability of a channel E implies that we have

max
𝜌
‖(R ◦ E)(𝜌) − 𝜌‖1 ≤ 2

√
2𝜖, (5.16)

where again the maximization is over code states.

As mentioned previously, an important result characterizing approximate correctabil-
ity is the information-disturbance trade-off, which we now state quantitatively.
Let E : 𝑆(H𝐴) → 𝑆(H𝐴) be a noise channel acting on a system 𝐴, and let
𝑉 : H𝐴 →H𝐹 ⊗ H𝐴 be an isometry which purifies E; i.e.,

E(𝜌) = Tr𝐹 (𝑉𝜌𝑉†).

Hence 𝐹 is the environment of the channel; we have resisted the temptation to
denote the environment by 𝐸 to avoid confusion with our convention that 𝐸 denotes
a subsystem of the Hawking radiation. Then the complementary channel Ê :
𝑆(H𝐴) → 𝑆(H𝐹) is defined by

Ê (𝜌) = Tr𝐴 (𝑉𝜌𝑉†).
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A special case of interest is the identity channel I. Taking the environment to be
1-dimensional, the complementary channel to the identity channel is simply the
(partial) trace

Î (𝜌) = Tr𝐴 (𝜌).

Then the information-disturbance trade-off states the following:

Theorem 5.7.1 ([23], Theorem 1). Let C ⊆ H𝐴 be a code subspace. Let E :
𝑆(H𝐴) → 𝑆(H𝐴) be an error channel. Then

inf
R

𝔅 (R ◦ E,I) = inf
R ′

𝔅

(
Ê,R′ ◦ Tr

)
, (5.17)

where the infimums are taken over all channels R : 𝑆(H𝐴) → 𝑆(H𝐴), and R′ :
R→ 𝑆(H𝐹).

Note that a channel R′ : R → 𝑆(H𝐹) is just state preparation on the channel
environment H𝐹 , i.e., every such channel R′ is uniquely identified with a state
𝜎𝐹 ∈ 𝑆(H𝐹) such that

(R′ ◦ Tr) (𝜌) = Tr(𝜌) 𝜎𝐹 ,

so we can equivalently write

inf
R ′

𝔅

(
Ê,R′ ◦ Tr

)
= inf

𝜎𝐹

𝔅

(
Ê, 𝜎𝐹 ⊗ Tr

)
.

Now let us see what Equation (5.7.1) tells us in the context of the black hole error-
correcting code defined by the (approximate) isometry 𝑉Ψ. Let �̃��̃� be a logical state
and let �̃��̃�𝐵 be a purification. The isometry𝑉Ψ then embeds �̃��̃�𝐵 as a (purified) code
state 𝜌𝐸𝐻𝐵:

𝜌𝐸𝐻𝐵 = 𝑉Ψ �̃��̃�𝐵𝑉
†
Ψ
.

Let E : 𝑆(H𝐸 ) → 𝑆(H𝐸 ) be an arbitrary channel acting on 𝐸 such that some
purification 𝑈E of E has low-complexity (see the set-up described in Figure 5.1).
Let

𝜎𝑂𝐸𝐻𝐵 = 𝑈E (𝜔𝑂 ⊗ 𝜌𝐸𝐻𝐵)𝑈†E (5.18)

denote the overall post-evolution state. To apply Theorem 5.7.1, let us consider
the error channel E ⊗ I𝐻 . Then the environment of the channel E ⊗ I𝐻 is the
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observer subsystem 𝑂, and the complementary channel Ê ⊗ I𝐻 maps 𝑆(H𝐸𝐻) to
𝑆(H𝑂). From (5.7.1), the state obtained from 𝜌𝐸𝐻𝐵 after the application of Ê ⊗ I𝐻
is precisely given by(

Ê ⊗ I𝐻 ⊗ I𝐵
)
(𝜌𝐸𝐻𝐵) = Tr𝐸𝐻 (𝜎𝑂𝐸𝐻𝐵) = 𝜎𝑂𝐵.

Since 𝜎𝑂𝐸𝐻𝐵 was a state obtained through acting on the black hole code state 𝜌𝐸𝐻𝐵
with a low-complexity unitary, it follows by the pseudorandom hypothesis that the
decoupling bound (5.6) holds. Therefore we have

‖𝜎𝑂𝐵 − 𝜎𝑂 ⊗ 𝜎𝐵‖1 ≤ 6 · 2−(𝛼 |𝐻 |−|𝑂 |) .

Finally, since𝑈E is supported away from 𝐵, we have 𝜎𝐵 = 𝜌𝐵, and so(Ê ⊗ I𝐻 ⊗ I𝐵) (𝜌𝐸𝐻𝐵) − 𝜎𝑂 ⊗ 𝜌𝐵
1
≤ 6 · 2−(𝛼 |𝐻 |−|𝑂 |) . (5.19)

This holds for all code states, so (5.7.1), together with the first inequality in (5.7.1),
implies that we have

inf
𝜎𝑂

𝔅

(
Ê ⊗ I𝐻 , 𝜎𝑂 ◦ Tr𝐸𝐻

)
≤
√

3 · 2−(𝛼 |𝐻 |−|𝑂 |)/2.

Therefore, the channel E is approximately correctable by Theorem 5.7.1. We state
this as a Lemma.

Lemma 5.7.2. Let 𝑉Ψ be the approximate isometric embedding defined by the state
Ψ𝐸𝐻𝐵. Let E be an error channel on 𝐸 with purification 𝑈E . Suppose that the
decoupling bound (5.6) holds. Then E is 𝜖-correctable for 𝑉Ψ, where

𝜖 =
√

3 · 2−(𝛼 |𝐻 |−|𝑂 |)/2,

if 𝐵 is a single qubit. For general |𝐵 |, we have

𝜖 =

√︂
3
2
· 2−(𝛼 |𝐻 |−|𝑂𝐵|)/2.

Note that the recovery operator R acts on 𝐸𝐻 rather than 𝐸 . The same will be true
for the ghost logical operators we construct in Section 5.8.

5.7.2 Including the Probe
We would now like to consider a modified scenario in which both the observer𝑂 and
a probe 𝑃 interact with the Hawking radiation system 𝐸 , as indicated in Figure 5.1.
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We cannot simply absorb 𝑃 into𝑂, because we will continue to insist that𝑂 is small
compared to 𝐻, while we wish to allow 𝑃 to be comparable to 𝐻 in size, or even
larger. In this modified scenario, the unitary purification𝑈E of the noise model acts
on 𝑂𝑃𝐸 rather than 𝑂𝐸 . This change does not alter the conclusion that 𝑂 and 𝐵
decouple if 𝑈E has low complexity. Therefore, just as before, there is a recovery
map that reverses the effect of the noise on the encoded state. What changes is that
now the recovery map acts on 𝑃𝐸𝐻 rather than 𝐸𝐻.

We emphasize that if the probe 𝑃 is sufficiently large, then 𝑃 need not decouple
from 𝐵, even if 𝑈E has low complexity. To understand why not, suppose 𝑃 has
the same size as the system 𝐸 and that the channel E swaps 𝑃 and 𝐸 . Before
this swap, 𝐵 is entangled with the code space embedded in 𝐸𝐻; therefore after the
swap (a low-complexity operation), 𝐵 is entangled with 𝑃𝐻. More realistically,
we might imagine that 𝑃 is a cloud of dust surrounding the black hole, and that
|𝑃 | � |𝐸 |. After the dust interacts with the Hawking radiation, the encoding of �̃�
will be modified, so that 𝐵 is entangled with a code subspace of 𝑃𝐸𝐻 rather than a
subspace of 𝐸𝐻 [9].

However, any subsystem of 𝑂𝑃 which is small compared to 𝐻 will decouple from
𝐵, as long as 𝑈E has low complexity, and assuming that the Hawking radiation is
pseudorandom. The only way to distill the encoded state into a small subsystem is
to perform a high complexity operation. Hence, if only low-complexity operations
are allowed, we need not worry about a scenario in which the encoded version of
�̃� outside the horizon is decoded into a small system, and then falls into the black
hole to meet its twin in the interior. This is essentially the observation of Harlow
and Hayden [14], later extended by Aaronson [15]. Our analysis goes further by
clarifying that the encoded state is hard to distill even when the remaining black
hole 𝐻 is much smaller than 𝐸 , as long as 𝐻 is macroscopic and assuming that the
Hawking radiation is pseudorandom.

One might wonder whether the encoded mode can be easily extracted if the probe
system 𝑃 is prepared in a carefully chosen state [41]. Our conclusion is that any such
initial state of 𝑃 would need to have exponential complexity, an unlikely property for
the dust surrounding an evaporating black hole. One might also ask what happens
if all the qubits in the early radiation system 𝐸 are measured in the standard basis by
the observer. Surely this would disrupt the encoded interior of the black hole. But
in our model, the number of radiation qubits that can be measured is limited by the
size |𝑂 | of the observer’s memory, and the interior will stay well protected as long
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as |𝑂 | is much smaller than |𝐻 |.

It is also instructive to view the system 𝑂 in a different way. Up until now, we have
regarded 𝑂 as a potentially malicious agent who attempts to damage the encoded
interior of the black hole by acting on its exterior. More prosaically, we can think of
𝑂 as an abstract purifying space which is introduced for convenience so that we can
describe the noise channel E using its purification, the unitary transformation 𝑈E .
From that point of view, limiting the size |𝑂 | of the “observer”𝑂 is just a convenient
way of restricting the form of the quantum channel E. Specifically, the rank of the
marginal density operator 𝜌𝑂 , after𝑈E is applied, is called the Kraus rank (or simply
the rank) of the channel E. This rank can be no larger than the dimension of system
𝑂, namely 2|𝑂 |, which we have assumed to be small compared to the dimension 2|𝐻 |

of the Hilbert space of black hole microstates. Thus our conclusion can be restated:
if the Hawking radiation is pseudorandom and 𝐻 is macroscopic, then the quantum
error-correcting code protects the encoded version of �̃� against any noise channel
acting on 𝑃𝐸 that has both low complexity and low rank.

An advantage of this viewpoint is that one might otherwise be misled into inter-
preting |𝑂 | as the physical size of an actual observer. More accurately, it can be
regarded as the effective size of the quantum memory of a physical object. This
distinction is significant. For an object of specified mass, the largest possible quan-
tum memory is achieved by a black hole of that mass, but the memory size of a
quantum computer typically falls far short of that optimal value, because most of its
mass is locked into the rest mass of atomic nuclei and unavailable for information
processing purposes. Furthermore, the mass per unit volume of a typical quantum
computer is far smaller than a black hole’s. Therefore it is reasonable to expect that
the effective Hilbert space dimension of system 𝑂 (and hence the Kraus rank of the
channel E) is far smaller than the Hilbert space dimension of a black hole with the
same circumference as system 𝑂.

Up until now, we have mostly focused on the hardness of decoding the black hole
interior mode by acting on the Hawking radiation outside the black hole, concluding
that distilling the encoded system to a small quantum memory is computationally
hard if the remaining black hole is macroscopic. In Section 5.8 we will turn to
a more subtle question: can a low-complexity operation acting on the Hawking
radiation system 𝐸 create an excitation near the black hole horizon that could be
detected by an infalling observer who falls into the black hole? Here too, we will
argue that the answer is no. This is a nontrivial extension beyond what we have
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found so far — on the face of it, perturbing a quantum state is a far easier task than
depositing the state in a compact quantum memory.

Bousso emphasized that if the interior mode �̃� is encoded in 𝐸𝐻, and if effective
quantum field theory on curved spacetime is a good approximation in regions of low
curvature, then the vacuum near the black hole horizon would need to be “frozen”
[9]. That is, neither a small agent 𝑂 acting on 𝐸 nor a large probe 𝑃 interacting
with 𝐸 could disrupt the entanglement of �̃� with 𝐵 and hence create an excitation
localized near the horizon. We agree with this conclusion, provided that |𝐻 | � 1 and
that the interactions of 𝑂𝑃 with 𝐸 have quantum complexity scaling polynomially
with |𝐻 |. Interactions with the large probe may alter how the black hole interior is
encoded in the radiation and probe, but they do not disrupt the frozen vacuum.

Once |𝐻 | is O(1), large corrections to effective field theory may be expected. Fur-
thermore, the semiclassical structure of spacetime may no longer be applicable
in the regime where operations of superpolynomial complexity are allowed; these
high-complexity operations could tear spacetime apart. In particular, our expecta-
tion that an agent acting on 𝐸 should be unable to influence the black hole interior
might be flagrantly violated if the agent can perform high-complexity operations.
We should grow accustomed to the notion that for effective field theory to be an
accurate approximation, we require not only geometry with low curvature and states
with low energy, but also operations with low complexity and low Kraus rank.

To investigate whether the semiclassical causal structure is robust with respect to
low-complexity operations, we will need to develop some additional formalism,
specifically the theory of ghost logical operators; in the context of an old black hole,
these may be viewed as operators which act on the black hole interior. We would like
to understand, given that the interior is encoded in the Hawking radiation outside
the black hole, why low-complexity operations acting on the Hawking radiation
produce no detectable excitations inside the black hole. We turn to that task next.

5.8 Theory of Ghost Logical Operators
So far, we have argued that the late radiation system 𝐵 remains decoupled from
any sufficiently small subsystem of the early radiation 𝐸 and the probe 𝑃, when
the observer 𝑂 performs a low-complexity operation on 𝐸𝑃. Therefore an infalling
observer with reasonable computational power is prevented from extracting the
encoded interior mode before jumping into the black hole. But what if the observer
settles for the seemingly easier task of disrupting the interior rather than decoding
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it? In this section, we will show that an algebra of ghost logical operators can
be constructed acting on the interior mode, with the property that low-complexity
operations performed outside the black hole nearly commute with the ghost algebra.
Hence, if these ghost operators are regarded as operations that can be performed by
an observer inside the black hole, we may conclude that the interior is well protected
against the actions of malicious agents outside the black hole.

Following arguments from [11], consider an operator 𝑇 which acts on the interior
mode. Because the corresponding encoded operator acting on the Hawking radiation
is highly scrambled, the commutator of this encoded operator with a generic simple
operator acting on the radiation has no reason to be small. It seems, then, that an
external observer should be able to perturb the interior mode easily [9], [11]. Can this
conclusion be evaded by constructing the encoded operators suitably? For two-side
black holes in AdS/CFT, Papadodimas and Raju argued that “mirror operators” with
the desired properties can be constructed [7], [10], but no satisfactory construction
is known for evaporating black holes.

Within our simple toy model of evaporating black hole, we can construct analogues
of the mirror operators. Assume that the decoupling bound (5.6) holds. Then, as
we will see, for every operator 𝑇𝐵 acting on some outgoing mode 𝐵, there exists a
“mirror operator” 𝑇𝐸𝐻 acting on 𝐸𝐻 which satisfies the following conditions:

𝑇𝐵 |Ψ〉 ≈ 𝑇𝐸𝐻 |Ψ〉,
[𝑇𝐸𝐻 , 𝐸𝑎] |Ψ〉 ≈ 0,

(5.20)

where {𝐸𝑎} is a set of operators that a computationally bounded external observer
can apply on the radiation, and |Ψ〉 is the state of the radiation and the black hole.
The equations (5.8) hold up to an error exponentially small in |𝐻 |. The first line
implies that one can (in principle if not in practice) certify entanglement between
an outgoing radiation mode and an abstract subsystem specified by the operators
{𝑇𝐸𝐻}.7 Therefore, these operators satisfy the right measurement statistics expected
for sensibly defined interior operators. The second line implies that these operators
approximately commute with all the operators that the external observer can apply.
The fact that𝑇𝐸𝐻 commutes with {𝐸𝑎} holds as an operator equation on all the states
in the code subspace. Therefore, the subsystem specified by the mirror operators
{𝑇𝐸𝐻} is fully entangled with the late outgoing radiation modes while also being
effectively “space-like separated” from the external observer. That is, the external

7For example, one could perform Bell tests using the Pauli operators acting on 𝐵 and its mirror.
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observer can disrupt the semiclassical causal structure of the black hole only by
applying operations of superpolynomial complexity to the radiation.

In our construction, it is important to properly characterize the set {𝐸𝑎} of operators
that the exterior observer can apply to the radiation. If we view the observer, the
black hole, and the exterior radiation as a closed system, we ought to model the entire
evolution as a unitary process. In order to enforce the unitarity of this process, the
operator applied by the observer to the radiation should depend on the initial state
of the observer, as in Figure 5.7.

Figure 5.7: The operator applied by an exterior observer to the Hawking radiation
depends on the observer’s initial state 𝜔𝑂 , the probe’s initial state |0〉, and the joint
unitary transformation𝑈E .

In this scenario, the set of operations that the observer can apply to the radiation is
not completely arbitrary. Specifically, any such operation must be of the following
form:

𝜌𝑃𝐸 ↦→ Tr𝑂
(
𝑈E (𝜔𝑂 ⊗ 𝜌𝑃𝐸 )𝑈†E

)
, (5.21)

wherein the only freedom available to the observer is the choice of the initial state
𝜔𝑂 . Because the observer is part of a system that is governed by the laws of physics,
the observer’s actions are determined entirely by that initial state, not by the global
unitary process. One may view Equation (5.8) as a quantum channel that acts on
𝑃𝐸 with a Kraus representation and corresponding dilation given by

𝜌𝑃𝐸 ↦→
∑︁
𝑎

𝐸𝑎𝜌𝑃𝐸𝐸
†
𝑎

= Tr𝑂

(∑︁
𝑎,𝑏

( |𝑎〉𝑂 ⊗ 𝐸𝑎) 𝜌𝑃𝐸 (〈𝑏 |𝑂 ⊗ 𝐸†𝑏)
)
,

where
∑
𝑎 𝐸
†
𝑎𝐸𝑎 = 𝐼, and {|𝑎〉} is an orthonormal basis for 𝑂. Therefore, 𝐸𝑎𝜌𝑃𝐸𝐸†𝑎

can be thought as a (subnormalized) post-selected state in which the state of the
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observer after interacting with the radiation is |𝑎〉𝑂 . Up to normalization, the
operator that the observer applied on the radiation would be 𝐸𝑎 in that case. While
we do not know the exact details about {𝐸𝑎}, within our model we have the following
non-trivial constraints:

1. The cardinality of the set {𝐸𝑎} is bounded above by 𝑑𝑂 , where 𝑑𝑂 = 2|𝑂 | is
the dimension of the observer’s Hilbert space.

2. The global unitary evolution 𝑈E has a complexity polynomial in the black
hole entropy ∼ |𝐻 |.

The construction of the mirror operators rests on the observation that 𝑉Ψ defines
the embedding map of a quantum error-correcting code that can protect quantum
information against “environmental noise” caused by the observer𝑂; see Figure 5.6.
The error model induced by the observer is different from conventional error mod-
els that are typically considered in discussions of fault-tolerant quantum computing.
For one, the error is applied only on the radiation 𝐸 and probe 𝑃, not the remaining
black hole 𝐻. Secondly, 𝑈E can apply any operation to the radiation with com-
plexity polynomial in |𝐻 |. In contrast, more conventional noise models such as the
depolarizing channel or the amplitude damping channel typically result from a brief
interaction between the environment and the system of interest.

We have already seen in Section 5.7 that the encoding map 𝑉Ψ protects quantum
information against this exotic error model; this conclusion follows from the de-
coupling condition, which in turn is a consequence of the pseudorandomness of
Hawking radiation as discussed in Section 5.6. Our next task is to relate this robust-
ness against low-complexity noise to the claim in Equation (5.8). The formalization
and proof of this statement is the main technical contribution of this section.

Before diving into details in the following subsections, let us summarize the con-
clusion. Consider an error model in which one applies either a channel E(·) =∑
𝑎 𝐸𝑎 (·)𝐸†𝑎 or the identity channel, each occurring with nonzero probability. If a

quantum error-correcting code 𝑉Ψ can correct such errors, then there is a complete
set of logical operators that commutes with all the errors {𝐸𝑎} when acting on the
code space; see Figure 5.8. That is, for any operator 𝑇 acting on the abstract logical
space, there exists a corresponding logical operator 𝑇 acting identically on the code
subspace such that 𝑇 satisfies the following intertwining condition for all 𝐸𝑎:

𝑇𝐸𝑎𝑉Ψ ≈ 𝐸𝑎𝑇𝑉Ψ ≈ 𝐸𝑎𝑉Ψ𝑇. (5.22)
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These logical operators are special because the commutation relation holds as an
operator equation acting on all the states in the code subspace. By mapping the
isometry 𝑉Ψ back to the state |Ψ〉, we arrive at Equation (5.8) and Figure 5.8. Note
that this is a stronger statement than saying that the commutator of 𝑇 and 𝐸𝑎 has a
vanishing expectation value in the code subspace, i.e.,

𝑉
†
Ψ
𝑇𝐸𝑎𝑉Ψ ≈ 𝑉†Ψ𝐸𝑎𝑇𝑉Ψ.

In Section 5.8.1, we will prove (5.8) in the exactly correctable setting. We will then
generalize the construction to the approximate case in Section 5.8.2.

Equation (5.8) also arises in the theory of Operator Algebra Quantum Error-
Correction (OAQEC) [25], [26]. However, in that context, one normally considers a
logical operator 𝑇 which annihilates the orthogonal complement of the code space.
A novelty of our discussion is that we will allow 𝑇 to have support extending beyond
the code space. In that case, it is delicate to ensure that the action of 𝑇 on states
outside the code space is consistent with (5.8). More importantly, OAQEC was for-
mulated in [25], [26] for the case of exact quantum error-correction. Our discussion
in Section 5.8.1 is self-contained, and generalizes readily to the approximate setting,
as we show in Section 5.8.2.

Figure 5.8: Acting on any code state, the ghost logical operator 𝑇 (approximately)
commutes with any “error” in the set {𝐸𝑎}.

5.8.1 Exact Ghost Operators
Let H̃ be an abstract logical Hilbert space, and consider an encoding𝑉 : H̃ → C ⊆
H , where C denotes the code subspace embedded within the larger physical Hilbert
space H . Given a Hilbert space H , we will let 𝑆(H) denote the state space of H ,
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i.e., the set of all density operators supported on H . Let E be a correctable error
channel for C, which we can write in a Kraus representation as

E(𝜌) =
|𝐾 |∑︁
𝑎=1

𝐸𝑎𝜌𝐸
†
𝑎 ,

where we denote the set of Kraus operators as 𝐾 = {𝐸𝑎}. A given channel will of
course have many different Kraus representations; the choice of representation will
not matter in the exact case, since the set of exactly correctable errors is closed under
linear combinations, but we will have to be careful in the analysis of the approximate
case in section 5.8.2. In this section, we will fix an arbitrary Kraus representation
𝐾 for E.

As a convention, we will denote quantities in H̃ with tildes, and quantities in H
without. Let

𝑇 =

𝑟∑︁
𝑘=1

𝜆𝑘 �̃�𝑘

be a normal operator on H̃ , with (distinct) eigenvalues {𝜆𝑘 }, where each P𝑘 is the
spectral projector onto the corresponding eigenspace. For ease of notation, given
any projector 𝑃, we will denote the corresponding range subspace as [𝑃], i.e.,
[𝑃] = Im(𝑃).

Consider the encoded subspace 𝐹𝑘 = Im(𝑉�̃�𝑘 ) of each eigenspace, and define

[𝑃𝑘 ] = span
{
𝐸𝑎 |𝜙〉

���� 𝐸𝑎 ∈ 𝐾, |𝜙〉 ∈ 𝐹𝑘} .
Note that [𝑃𝑘 ] is the subspace generated by the set of all correctable errors, i.e.,
the span of 𝐾 , acting on the encoded eigenspace 𝐹𝑘 . These subspaces are well-
defined since linear combinations of correctable errors remain correctable, and
the Knill-Laflamme conditions [42] imply that subspaces corresponding to distinct
eigenvalues will be orthogonal. We can then define a normal operator 𝑇 : H → H
by

𝑇 =
∑︁
𝑘=1

𝜆𝑘𝑃𝑘 ,

where each 𝑃𝑘 is the corresponding projector onto [𝑃𝑘 ].

Definition 5.8.1. Given any normal operator 𝑇 : H̃ → H̃ , we will call the operator
𝑇 : H → H obtained through the above construction the pseudo-ghost operator
corresponding to 𝑇 .
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For any |𝜒 𝑗 〉 ∈ 𝐹𝑗 and any error operator 𝐸𝑎 ∈ 𝐾 , the action of the pseudo-ghost
operator 𝑇 is such that

𝑇𝐸𝑎 |𝜒 𝑗 〉 =
𝑟∑︁
𝑘=1

𝜆𝑘𝑃𝑘𝐸𝑎 |𝜒 𝑗 〉 = 𝜆 𝑗𝐸𝑎 |𝜒 𝑗 〉 = 𝐸𝑎𝑇 |𝜒 𝑗 〉.

Here 𝑇 can be any logical operator for 𝑇 , which therefore satisfies 𝑇 |𝜒 𝑗 〉 = 𝜆 𝑗 |𝜒 𝑗 〉.

These pseudo-ghost operators satisfy 𝑇𝐸𝑎 = 𝐸𝑎𝑇 acting on the code space, and so
do the ghost operators that we wish to construct. However, note that a pseudo-ghost
operator 𝑇 will not necessarily act as a logical operator for 𝑇 since we might not
have 𝐹𝑘 ⊆ [𝑃𝑘 ] if the identity is not among the Kraus operators. The operator𝑇 will
not act correctly on the code subspace unless each of the encoded eigenspaces for 𝑇
are contained within the corresponding eigenspace for 𝑇 . Our definition of a ghost
logical operator should stipulate that 𝑇 is logical, as well as requiring [𝑇, 𝐸𝑎] = 0
acting on the code space.

Definition 5.8.2. Let 𝑇 : H → H be a logical operator for 𝑇 . We say that 𝑇 is a
ghost logical operator for 𝑇 if

𝑇𝐸𝑎 |𝜓〉 = 𝐸𝑎𝑇 |𝜓〉 (5.23)

for all 𝐸𝑎 ∈ 𝐾 and |𝜓〉 ∈ C. Given a pseudo-ghost operator 𝑇 , we say that 𝑇 is
extensible if it admits an extension onto H such that it becomes a logical operator
for 𝑇 .

Clearly the extension of any extensible pseudo-ghost operator will define a corre-
sponding ghost logical operator. With the above definitions, it is simple to give a
concise criterion for when pseudo-ghost operators extend to ghost logical operators
in the exact setting.

Lemma 5.8.3. Let 𝑇 be a pseudo-ghost operator. Then 𝑇 is extensible if and only if

〈𝜒 𝑗 |𝐸 |𝜒𝑖〉 = 0, (𝑖 ≠ 𝑗) (5.24)

for all 𝐸 ∈ 𝐾 , |𝜒𝑖〉 ∈ 𝐹𝑖, |𝜒 𝑗 〉 ∈ 𝐹𝑗 .

Proof. To see necessity, suppose that 𝑇 is extensible, and let 𝑇 ′ denote its logical
extension. Because 𝑇 ′ is a logical operator for 𝑇 , it must satisfy

𝑇 ′|𝜒𝑖〉 = 𝜆𝑖 |𝜒𝑖〉.
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Let 𝐸 ∈ 𝐾 be arbitrary. Left multiplying by 〈𝜒 𝑗 |𝐸†, we get

𝜆𝑖 〈𝜒 𝑗 |𝐸† |𝜒𝑖〉 = 〈𝜒 𝑗 |𝐸†𝑇 ′|𝜒𝑖〉 =
𝑟∑︁
𝑘=1

𝜆𝑘 〈𝜒 𝑗 |𝐸†𝑃𝑘 |𝜒𝑖〉 = 𝜆 𝑗 〈𝜒 𝑗 |𝐸† |𝜒𝑖〉.

Here we have used 𝐸 |𝜒 𝑗 〉 ∈ [𝑃𝑘 ], and noted that 𝑇 and 𝑇 ′ have the same action
on [𝑃𝑘 ]; we also used 𝑃𝑘𝐸 |𝜒 𝑗 〉 = 𝛿𝑘 𝑗𝜆 𝑗𝐸 |𝜒 𝑗 〉. If 𝜆𝑖 ≠ 𝜆 𝑗 , then we must have
〈𝜒 𝑗 |𝐸† |𝜒𝑖〉 = 0. Taking the complex conjugate, we obtain Equation (5.8.3).

Conversely, suppose that for all 𝑖 ≠ 𝑗 and all correctable errors we have 〈𝜒𝑖 |𝐸 |𝜒 𝑗 〉 =
0. We must extend the action of 𝑇 to each encoded eigenvector |𝜒𝑖〉 ∈ C. The
relations 〈𝜒𝑖 |𝐸 |𝜒 𝑗 〉 = 0 imply that |𝜒𝑖〉 is orthogonal to the subspaces [𝑃 𝑗 ] for 𝑗 ≠ 𝑖.
There are two possible cases, either |𝜒𝑖〉 ∈ [𝑃𝑖], for which 𝑇 |𝜒𝑖〉 = 𝜆𝑖 |𝜒𝑖〉 is already
well-defined and we are done, or else there exists a component of |𝜒𝑖〉 lying in the
subspace orthogonal to

⊕𝑟

𝑘=1 [𝑃𝑘 ].

Let |𝜒⊥
𝑖
〉 denote the normalized component of |𝜒𝑖〉 orthogonal to [𝑃𝑖]. Then we

extend the subspace [𝑃𝑖] to [𝑃′
𝑖
] by defining the projector

𝑃′𝑖 = 𝑃𝑖 + |𝜒⊥𝑖 〉〈𝜒⊥𝑖 |.

Note that the new subspace [𝑃′
𝑖
] contains within it [𝑃𝑖] and remains orthogonal to

[𝑃 𝑗 ] for 𝑗 ≠ 𝑖. Moreover, we have |𝜒𝑖〉 ∈ [𝑃′𝑖]. We can now define an extension of
𝑇 with the projector 𝑃′

𝑖
in place of 𝑃𝑖. Then the extension 𝑇 ′ satisfies

𝑇 ′|𝜒𝑖〉 = 𝜆𝑖 |𝜒𝑖〉.

We may repeat this procedure with an orthogonal basis {|𝜒𝑘〉} for C until we are
left with an extension which acts as a logical operator for 𝑇 .

We will be primarily interested in the case where there exists a full set of ghost
logical operators. We say that there exists a complete set of ghost logical operators
if for every normal operator 𝑇 : H̃ → H̃ , there exists a corresponding ghost logical
operator 𝑇 . In what follows, given a channel E, we will let EI denote the channel

EI = I/2 + E/2,

where I is the identity channel. That is, in the channel EI , with probability 1/2 E
is applied, and with probability 1/2 nothing happens.

Theorem 5.8.4. Let E be a correctable channel with Kraus operators 𝐾 . Then
a complete set of ghost logical operators for E exists if and only if 𝐾 ∪ {𝐼} is a
correctable set, i.e., if and only if EI is a correctable channel.
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Proof. Suppose that 𝐾 ∪ {𝐼} is a correctable set. Then the Knill-Laflamme con-
ditions for 𝐾 ∪ {𝐼} imply that the hypotheses of Lemma 5.8.3 are satisfied so that
every pseudo-ghost operator is extensible to a ghost logical operator. It follows that
there exists a complete set of ghost logical operators.

Conversely, suppose that there exists a complete set of ghost logical operators. Let
|𝜓〉, |𝜙〉 ∈ C be two mutually orthogonal code states, and let |�̃�〉 = 𝑉† |𝜓〉 and
|𝜙〉 = 𝑉† |𝜙〉 be the corresponding pre-images in H̃ . Define the operators

𝑇1 = |𝜙〉〈𝜙 | − |�̃�〉〈�̃� |,

and

𝑇2 = |𝜙 + �̃�〉〈𝜙 + �̃� | − |𝜙 − �̃�〉〈𝜙 − �̃� |,

where |𝜙±𝜙〉 = 2−1/2( |𝜙〉 ± |�̃�〉). By assumption, there exist ghost logical operators
𝑇1 and 𝑇2 corresponding to 𝑇1 and 𝑇2. Now let 𝐸𝑎, 𝐸𝑏 ∈ 𝐾 ∪ {𝐼}. Then we have

〈𝜓 |𝐸†𝑎𝐸𝑏 |𝜙〉 = 〈𝜓 |𝐸†𝑎𝐸𝑏𝑇1 |𝜙〉
= 〈𝜓 |𝑇1𝐸

†
𝑎𝐸𝑏 |𝜙〉

= −〈𝜓 |𝐸†𝑎𝐸𝑏 |𝜙〉,

where the first line follows due to the fact that |𝜙〉 is an eigenvector for 𝑇1 with
eigenvalue 1, the second line follows from the defining equations (5.8.2) for the
ghost operators, together with the fact that 𝑇1 is self-adjoint, and the last line follows
from the fact that |𝜓〉 is an eigenvector for 𝑇1 with eigenvalue −1. This implies that
〈𝜓 |𝐸†𝑎𝐸𝑏 |𝜙〉 = 0.

Repeating the same argument for 𝑇2, we have

〈𝜙 − 𝜓 |𝐸†𝑎𝐸𝑏 |𝜙 + 𝜓〉 = 〈𝜙 − 𝜓 |𝐸†𝑎𝐸𝑏𝑇2 |𝜙 + 𝜓〉
= 〈𝜙 − 𝜓 |𝑇2𝐸

†
𝑎𝐸𝑏 |𝜙 + 𝜓〉

= −〈𝜙 − 𝜓 |𝐸†𝑎𝐸𝑏 |𝜙 + 𝜓〉,

which implies that

0 = 〈𝜙 |𝐸†𝑎𝐸𝑏 |𝜙〉 − 〈𝜓 |𝐸†𝑎𝐸𝑏 |𝜓〉.

Since 𝜙 and 𝜓 were arbitrary, this holds for any pair of orthogonal states.

Let {| 𝑗〉} be an orthonormal basis for C and define 𝜆𝑎𝑏 = 〈𝜓 |𝐸†𝑎𝐸𝑏 |𝜓〉 for an
arbitrary state |𝜓〉 ∈ C. Then it follows that we have

〈𝑖 |𝐸†𝑎𝐸𝑏 | 𝑗〉 = 𝜆𝑎𝑏𝛿𝑖 𝑗 ,
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so that the Knill-Laflamme conditions for 𝐾 ∪ {𝐼} are satisfied. Therefore, 𝐾 ∪ {𝐼}
is a correctable set of errors.

5.8.2 Approximate Ghost Operators
In this section, we discuss how the ghost logical operators can be constructed
for approximate quantum error-correcting codes. We need to consider this case
because we inferred in Section 5.7 that the errors due to low-complexity operations
on the radiation system 𝐸 are correctable approximately (with a residual error
exponentially small in |𝐻 |) rather than exactly. Although the uncorrected error is
exponentially small, the Hilbert space is exponentially large, so we need to do a
careful analysis to check that the ghost logical operators commute with the errors
apart from exponentially small effects.

It turns out the strategy that we pursued in the exact setting also works in the
approximate setting. To get started, we will construct approximate ghost projectors
{P𝑖} that play the same role as the {𝑃𝑖} in the previous section.

Definition 5.8.5. Let {|𝑖〉} be an orthonormal basis for H̃ , and suppose 𝑉 is an
encoding isometry. We define (approximate) ghost projectors with respect to this
basis, denoted P𝑖, to be the orthogonal projectors onto the positive eigenspace of

E(|𝑖〉〈𝑖 | − 𝜌𝑖,⊥),

where |𝑖〉 = 𝑉 |𝑖〉 for |𝑖〉 ∈ H̃ , and where

𝜌𝑖,⊥ =
1

dim H̃ − 1

∑︁
𝑗≠𝑖

| 𝑗〉〈 𝑗 |.

The motivation behind this definition follows from the fact that P𝑖 is an operator that
can optimally distinguish E(|𝑖〉〈𝑖 |) from E(𝜌𝑖,⊥), according to the Holevo-Helstrom
theorem [40]. Because the effect of the channel E can be reversed up to a small error,
it nearly preserves the orthogonality of |𝑖〉〈𝑖 | and 𝜌𝑖,⊥; therefore, P𝑖 can distinguish
the two states almost perfectly. This suggests that P𝑖, up to a small error, projects
E(|𝑖〉〈𝑖 |) to a state close to E(|𝑖〉〈𝑖 |) and nearly annihilates E(𝜌𝑖,⊥). In the following
two lemmas, we prove these claims rigorously. In Lemma 5.8.6, we show that
P𝑖𝐸𝑎 |𝑖〉 ≈ 𝐸𝑎 |𝑖〉, and in Lemma 5.8.7, we show that P𝑖𝐸𝑎 | 𝑗〉 ≈ 0, for 𝑖 ≠ 𝑗 , where
𝐸𝑎 is any Kraus operator of the channel E.

If E is an 𝜖-correctable channel, then we have

max
𝜌
‖(R ◦ E)(𝜌) − 𝜌‖1 ≤ 2

√
2𝜖 := 𝜖,
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as given by Equation (5.7.1). Let us define 𝜖 = 2
√

2𝜖 to minimize factors of 2
√

2.
Then we can obtain the following bound:

Lemma 5.8.6. Let E be an 𝜖-correctable channel and let P𝑖 be the corresponding
ghost projector with respect to some basis. Then we have

‖𝐸𝑎 |𝑖〉 − P𝑖𝐸𝑎 |𝑖〉‖22 ≤ 2
√

2𝜖 := 𝜖, (5.25)

where ‖|𝜙〉‖2 :=
√︁
〈𝜙|𝜙〉.

Proof. Note that, by the monotonicity of the trace norm, we have

‖E(|𝑖〉〈𝑖 | − 𝜌𝑖,⊥)‖1 ≥ ‖(R ◦ E)(|𝑖〉〈𝑖 | − 𝜌𝑖,⊥)‖1.

We can use the fact that the recovery map R nearly succeeds in recovering the
original state. By the triangle inequality,

2 = ‖|𝑖〉〈𝑖 | − 𝜌𝑖,⊥‖1 ≤ ‖(R ◦ E)(|𝑖〉〈𝑖 | − 𝜌𝑖,⊥)‖1
+ ‖|𝑖〉〈𝑖 | − (R ◦ E)(|𝑖〉〈𝑖 |) ‖1
+ ‖𝜌𝑖,⊥ − (R ◦ E)(𝜌𝑖,⊥)‖1.

Therefore,
‖E(|𝑖〉〈𝑖 | − 𝜌𝑖,⊥)‖1 ≥ 2 − 2𝜖 . (5.26)

Moreover, we have

‖E(|𝑖〉〈𝑖 | − 𝜌𝑖,⊥)‖1 = Tr(2P𝑖E(|𝑖〉〈𝑖 | − 𝜌𝑖,⊥))
≤ 2Tr(P𝑖E(|𝑖〉〈𝑖 |)).

(5.27)

The first line above follows by decomposing E(|𝑖〉〈𝑖 | − 𝜌𝑖,⊥) into its positive and
negative parts. Because the operator is traceless, the trace of the positive part is
equal to the trace of the negative part, up to a minus sign. Since the trace distance
is equal to the sum of the absolute value of the positive and negative trace, and
because these values are the same, we arrive at the first identity. The second line
then follows from the fact that Tr(P𝑖E(𝜌𝑖,⊥)) ≥ 0.

Therefore, we get the following bound:

1 − 𝜖 ≤ Tr(P𝑖E(|𝑖〉〈𝑖 |))
=

∑︁
𝑎

〈𝑖 |𝐸†𝑎P𝑖𝐸𝑎 |𝑖〉

=
∑︁
𝑎

𝑞𝑖𝑎〈𝜓𝑖𝑎 |P𝑖 |𝜓𝑖𝑎〉

= 1 −
∑︁
𝑎

𝑞𝑖𝑎 (1 − 〈𝜓𝑖𝑎 |P𝑖 |𝜓𝑖𝑎〉),

(5.28)
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where we define

|𝜓𝑖𝑎〉 =
𝐸𝑎 |𝑖〉√︃
〈𝑖 |𝐸†𝑎𝐸𝑎 |𝑖〉

,

and 𝑞𝑖𝑎 = 〈𝑖 |𝐸†𝑎𝐸𝑎 |𝑖〉. Note that
∑
𝑎 𝑞𝑖𝑎 = 1 since E is trace-preserving. Therefore,

we get
1 − 〈𝜓𝑖𝑎 |P𝑖 |𝜓𝑖𝑎〉 ≤

𝜖

𝑞𝑖𝑎

by noting that the last line of Equation (5.8.2) contains a sum of non-negative terms.
Since the sum is ≤ 𝜖 , each individual term must be ≤ 𝜖 as well. Substituting in the
expressions for 𝑞𝑖𝑎 and |𝜓𝑖𝑎〉, this inequality becomes

〈𝑖 |𝐸†𝑎𝐸𝑎 |𝑖〉 − 〈𝑖 |𝐸†𝑎P𝑖𝐸𝑎 |𝑖〉 ≤ 𝜖,

which is equivalent to Equation (5.8.6).

Lemma 5.8.7. Under the same hypothesis as Lemma 5.8.6, if 𝑖 ≠ 𝑗 , then

‖P𝑖𝐸𝑎 | 𝑗〉‖22 ≤ (dimC) 𝜖 . (5.29)

Proof. Note that
2 − 2𝜖 ≤ ‖E(|𝑖〉〈𝑖 | − 𝜌𝑖,⊥)‖1

= Tr(2P𝑖E(|𝑖〉〈𝑖 | − 𝜌𝑖,⊥))
≤ 2 − 2Tr(P𝑖E(𝜌𝑖,⊥)),

where we have used Equation (5.8.2) in the first line, and Equation (5.8.2) in the
second. The last line follows from the fact that P𝑖 ≤ 𝐼. It follows that

1
dimC − 1

∑︁
𝑗≠𝑖

Tr(P𝑖E(| 𝑗〉〈 𝑗 |)) = Tr(P𝑖E(𝜌𝑖,⊥)) ≤ 𝜖,

and therefore, we have

Tr(P𝑖E(| 𝑗〉〈 𝑗 |)) ≤ (dimC) 𝜖,

for all 𝑗 ≠ 𝑖. Expanding in terms of the Kraus operators of the channel E, this
becomes ∑︁

𝑎

Tr(P𝑖𝐸𝑎 | 𝑗〉〈 𝑗 |𝐸†𝑎P𝑖) =
∑︁
𝑎

‖P𝑖𝐸𝑎 | 𝑗〉‖22 ≤ (dimC)𝜖,

where the first equality holds because P𝑖 is a projector. Equation (5.8.7) then
follows.
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At this point, we can follow the construction we used for the case of exact ghost
operators. Let C be a code subspace and let E be an error channel such that EI is
𝜖-correctable. Then by Lemmas 5.8.6 and 5.8.7, we have

‖𝐸𝑎 |𝑖〉 − P𝑖𝐸𝑎 |𝑖〉‖22 ≤ 2𝜖, and ‖P𝑖𝐸𝑎 | 𝑗〉‖22 ≤ 2(dimC) 𝜖,

where each 𝐸𝑎 is a Kraus operators for E, or the identity. Note that the extra factor of
2 comes from the fact that the Kraus operators forEI are given by {𝐸𝑎/

√
2}∪{𝐼/

√
2},

where each 𝐸𝑎 is a Kraus operator for E.

Given a normal operator 𝑇 : H̃ → H̃ defined by

𝑇 =
∑︁
𝑘

𝜆𝑘 | �̃�〉〈�̃� |,

we define the operator

𝑇 =
∑︁
𝑘

𝜆𝑘P𝑘 , (5.30)

where each P𝑘 is a ghost projector with respect to the given eigenbasis for 𝑇 . Then
the operator 𝑇 satisfies

‖𝑇𝐸𝑎 | 𝑗〉 − 𝜆 𝑗𝐸𝑎 | 𝑗〉‖2 =

∑︁
𝑘

𝜆𝑘P𝑘𝐸𝑎 | 𝑗〉 − 𝜆 𝑗𝐸𝑎 | 𝑗〉


2

≤

∑︁𝑘≠ 𝑗 𝜆𝑘P𝑘𝐸ℓ | 𝑗〉


2

+
𝜆 𝑗P 𝑗𝐸ℓ | 𝑗〉 − 𝜆 𝑗𝐸𝑎 | 𝑗〉2

≤
∑︁
𝑘≠ 𝑗

|𝜆𝑘 | ‖2P𝑘𝐸𝑎 | 𝑗〉‖2 +
��𝜆 𝑗 �� P 𝑗𝐸𝑎 | 𝑗〉 − 𝐸𝑎 | 𝑗〉2

≤
√︁

2(dimC)𝜖
∑︁
𝑘≠ 𝑗

|𝜆𝑘 | +
��𝜆 𝑗 ��√2𝜖

≤
√︁

2(dimC)𝜖 ‖𝑇 ‖1,

where ‖𝑇 ‖1 is the trace norm of 𝑇 . Now, let 𝑇 = 𝑉𝑇𝑉†, where 𝑉 is the code
embedding. Then for a general code state |𝜓〉 = ∑

𝑗 𝑐 𝑗 | 𝑗〉, we have𝑇𝐸𝑎 |𝜓〉 − 𝐸𝑎𝑇 |𝜓〉2 ≤
∑︁
𝑗

|𝑐 𝑗 | ·
𝑇𝐸𝑎 | 𝑗〉 − 𝜆 𝑗𝐸𝑎 | 𝑗〉2

≤
√︁

2(dimC)𝜖 ‖𝑇 ‖1
∑︁
𝑗

��𝑐 𝑗 ��
≤ (dimC)‖𝑇 ‖1

√
2𝜖 .
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A slightly weaker, but more convenient bound in terms of the operator norm of 𝑇
can be given as 𝑇𝐸𝑎 |𝜓〉 − 𝐸𝑎𝑇 |𝜓〉2 ≤ (dimC)2‖𝑇 ‖

√︂(
4
√

2
)
𝜖,

which we can also express as a bound on the difference of two operators in the
operator norm: 𝑇𝐸𝑎𝑉 − 𝐸𝑎𝑉𝑇 ≤ 25/4(dimC)2‖𝑇 ‖

√
𝜖, (5.31)

where we have used 𝜖 = 2
√

2𝜖 . Note that the bound (5.8.2) holds for any Kraus
representation {𝐸𝑎} of E.

The bound (5.8.2) motivates the following definition:

Definition 5.8.8. Let (E, 𝐾) be a noise channel E equipped with a given Kraus
representation 𝐾 = {𝐸𝑎}. Let 𝑇 : H̃ → H̃ be a normal operator. We say that 𝑇 is
a 𝛿-approximate ghost operator for 𝑇 with respect to (E, 𝐾) if we have

‖𝑇𝐸𝑎𝑉 − 𝐸𝑎𝑉𝑇 ‖ ≤ ‖𝑇 ‖𝛿, (5.32)

where 𝐸𝑎 ∈ 𝐾 ∪ {𝐼} is either a Kraus operator for E, or the identity. We say that a
ghost operator𝑇 is universal if Equation (5.8.8) holds for every Kraus representation
of E.

Now we are ready to prove the analog of Theorem 5.8.4 in the approximate setting.
As before, we say that there exists a complete set of 𝜖-approximate ghost operators
if there exists an 𝜖-approximate ghost logical operator for every normal operator on
H̃ .

Theorem 5.8.9. Let C be a code subspace and suppose that EI is 𝜖-correctable
for C. Then there exists a complete set of 𝛿-approximate universal ghost operators,
where

𝛿 = 25/4(dimC)2
√
𝜖 . (5.33)

For the sake of completeness, we also prove a converse of this result (Theorem 5.B.3)
in Appendix 5.B. These results collectively can be seen as a generalization of the
standard theorems of operator algebra quantum error-correction [25], [26] to the
approximate setting.



260

Proof. Suppose that EI is 𝜖-correctable for C. Then Equation (5.8.2) shows that
𝑇 defined by Equation (5.8.2) is a 𝛿-approximate ghost operator for any normal
operator 𝑇 , where 𝛿 = 25/4(dimC)2

√
𝜖 . The construction of the ghost projector P𝑘 ,

and therefore also the construction of 𝑇 , depends only on the channel E and not on
any particular Kraus representation; it follows that 𝑇 is universal.

5.8.3 Firewalls Revisited
We have now seen that, by assuming that the state of the Hawking radiation system
𝐸𝐵 is pseudorandom, we may infer that low-complexity operations on 𝐸 are ap-
proximately correctable; the code space �̃� that purifies the late radiation system 𝐵

is protected against low-complexity operations on 𝐸 . Correctability in turn implies
that a complete set of ghost logical operators acting on 𝐸𝐻, which nearly commute
with all low-complexity operations on 𝐸 , can be constructed.

Let us now reconsider the potential implications of the existence of ghost logical
operators in the context of the black hole firewall problem. First, we assemble the
results we have derived thus far to determine the value of 𝛿 for which the ghost
logical operators are 𝛿-approximate. Under the pseudorandomness assumption
Equation (5.6.1), we saw in Lemma 5.7.2 that low-complexity operations are 𝜖-
correctable for 𝜖 =

√︁
3/2 · 2−(𝛼 |𝐻 |−|𝑂𝐵|)/2. Since the code space dimension is

dimC = 2|𝐵 |, Equation (5.8.9) says that the ghost operators are 𝛿-approximate for

𝛿 = 25/422|𝐵|√𝜖 = 2 · 31/4 22|𝐵| 2−(𝛼 |𝐻 |−|𝑂𝐵 |)/4 = 2 · 31/4 2−(𝛼 |𝐻 |−|𝑂 |−9|𝐵 |)/4. (5.34)

Thus, 𝛿 becomes exponentially small for asymptotically large |𝐻 |, |𝑂 |, and |𝐵 |,
provided |𝑂 |, |𝐵 | � |𝐻 |. We could, for example, consider an encoded interior and
an observer with size scaling linearly with |𝐻 |, and still have a complete set of
ghost logical operators commuting with all low-complexity operations on 𝐸 , up to
exponentially small errors.

This conclusion followed only from the assumption that the state of 𝐸𝐵 is pseudo-
random — we needed no other special properties of black holes to derive it. We
might, in fact, expect the same pseudorandomness assumption to hold not just for
black holes but also for other strongly chaotic quantum systems. But a black hole is
special, because it has an event horizon, and it is because of the event horizon that
we expect the late radiation system 𝐵 to be entangled with modes behind the horizon
as well as with a subspace of 𝐸𝐻; thus arises the black hole firewall problem. To
ease the firewall problem, we propose using the ghost logical operators to describe
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(a portion of) the black hole interior. We would not make such a proposal for
describing the “interior” of a burning lump of coal.

Pleasingly, under this proposal, it is hard for an agent who acts on the radiation
to create a firewall, or to otherwise influence the black hole interior apart from
exponentially small effects. To create an excitation behind the horizon, the agent
outside the black hole must perform an operation of superpolynomial complexity.

We might want to allow the observer to perform a quantum computation on 𝐸

which is chosen from a long list of possible unitary transformations. The observer’s
freedom to choose can be encoded in the observer’s initial state 𝜔𝑂 , as depicted in
Figure 5.7. If there are multiple observers {𝑂1, 𝑂2, . . . 𝑂𝑚}, all interacting with 𝐸 ,
we can group them all together into a collective observer 𝑂 = 𝑂1𝑂2 . . . 𝑂𝑚. We
may construct a complete set of ghost logical operators acting on the encoded black
hole interior, consistently shared by all the observers, provided that |𝑂 |, |𝐵 | � |𝐻 |.

To be more concrete, suppose we want the black hole interior to be protected
against any unitary transformation acting on 𝐸 chosen from amongst a collection of
𝑁 possible unitaries U = {𝑈𝑎}𝑁𝑎=1. We can model this situation by considering a
conditional unitary transformation, controlled by an ancilla register in the observer’s
possession. To ensure that we can apply Theorem 5.8.9, we will add the identity
transformation 𝑈0 = 𝐼𝐸 to the list of possibilities, and envision that the observer
applies

𝑈U =

𝑁∑︁
𝑎=0
|𝑎〉〈𝑎 |𝑂 ⊗ (𝑈𝑎)𝐸 , (5.35)

where each |𝑎〉𝑂 is a computational basis state and 2|𝑂 | = 𝑁+1. Thus 𝑈𝑎 is applied
by fixing the initial state of the 𝑂 register to be |𝑎〉𝑂; see Figure 5.9.

Figure 5.9: The action of the observer as a controlled unitary tranformation.
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Our construction of a complete set of ghost logical operators applies — assuming
the Hawking radiation is pseudorandom — if𝑈U has complexity polynomial in |𝐻 |.
This will be assured if the cardinality 𝑁 of the list of unitaries is polynomial in |𝐻 |.
The unitary

Λ𝑎 (𝑈𝑎) = |𝑎〉〈𝑎 |𝑂 ⊗ (𝑈𝑎)𝐸

for which a non-trivial unitary acting on 𝐸 is triggered only by the basis state |𝑎〉𝑂 ,
has polynomial quantum complexity if𝑈𝑎 does — we show in Lemma 5.C.1 that, if
we fix the complexity of𝑈𝑎, then Λ𝑎 (𝑈𝑎) can be implemented to precision 𝜖 with a
circuit of 𝑂 (𝑁2 log4(1/𝜖)) two-qubit gates. Furthermore, the overall operator

𝑈U =

𝑁∏
𝑎=0

Λ𝑎 (𝑈𝑎)

is a product of 𝑁 + 1 such unitaries, and thus has complexity at worst a factor of
𝑁 + 1 larger. Therefore, if 𝑁 = poly( |𝐻 |), then 𝑈U can be executed to exponential
precision with a circuit of size poly( |𝐻 |).

The unitary transformation𝑈U is a dilation of the quantum channel

EU (𝜌) =
1

𝑁 + 1

𝑁∑︁
𝑎=0

𝑈𝑎𝜌𝑈
†
𝑎 (5.36)

acting on 𝐸 , with Kraus operators {𝑈𝑎}𝑁𝑎=0. Because𝑈U has polynomial complexity,
under the pesudorandomness assumption, a complete set of 𝛿-approximate ghost
logical operators can be constructed, with 𝛿 given by Equation (5.8.3). In other
words, for each unitary 𝑈𝑎 that the observer might apply, 𝑈𝑎 commutes with all
ghost logical operators up to an exponentially small error. Hence no matter which
low-complexity unitary the observer applies, the encoded black hole interior is
hardly affected at all.

This conclusion is summarized by the following theorem:

Theorem 5.8.10. Suppose that the decoupling bound (5.6) holds. Let 𝑉 : H�̃� →
H𝐸𝐻 denote the black hole code embedding. LetU = {𝑈𝑎}𝑁𝑎=1 denote an arbitrary
set of 𝑁 = poly( |𝐻 |) unitaries acting on the early radiation 𝐸 , where each unitary
has complexity poly( |𝐻 |). Then there exists a complete set of logical operators
L ⊆ B(H𝐸𝐻) for the black hole code such that for all 𝑇 ∈ L, and all 𝑈𝑎 ∈ U, we
have

‖ [𝑈𝑎, 𝑇]𝑉 ‖ ≤ 2𝛿′‖𝑇 ‖, (5.37)
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and

‖𝑇𝑉 −𝑉𝑇 ‖ ≤ 𝛿′‖𝑇 ‖, (5.38)

where 𝑇 is the operator on �̃� corresponding to 𝑇 , and

𝛿′ = 8 · 61/4 2−𝛼 |𝐻 |/4(𝑁 + 1)3/4 (5.39)

if �̃� is a single qubit ( |𝐵 | = 1).

Proof. Let us model the observer 𝑂 on the Hilbert space H𝑂 = C𝑁+1, so that
2|𝑂 | = 𝑁 + 1. In Lemma 5.C.1, we show that the conditional unitary 𝑈U defined in
Equation (5.8.3) can be approximated to exponential accuracy with a circuit of size
poly( |𝐻 |) if each𝑈𝑎 has complexity poly( |𝐻 |) and 𝑁 = poly( |𝐻 |); therefore, under
the pseudorandomness assumption,𝑈U is 𝜖-correctable with

𝜖 =

√︂
3
2
· 2−(𝛼 |𝐻 |−|𝑂𝐵 |)/2,

and hence there exists a complete set of 𝛿-approximate ghost logical operators for
𝑈U with

𝛿 = 2 · 31/4 2−(𝛼 |𝐻 |−|𝑂 |−9|𝐵 |)/4,

or
𝛿 = 8 · 61/4 2−𝛼 |𝐻 |/42|𝑂 |/4 = 8 · 61/4 2−𝛼 |𝐻 |/4(𝑁 + 1)1/4

if |𝐵| = 1. The Kraus operators for the channel EU in Equation (5.8.3) are
{𝑈𝑎/
√
𝑁+1}; hence

‖𝑇𝑈𝑎𝑉 −𝑈𝑎𝑉𝑇 ‖ ≤ ‖𝑇 ‖𝛿
√
𝑁 + 1 = ‖𝑇 ‖𝛿′.

This, together with Lemma 5.B.2, gives the desired results in Equation (5.8.10) and
Equation (5.8.10).

Note that, although 𝛿′ in Equation (5.8.10) could be exponentially small even for
superpolynomial 𝑁 , we required 𝑁 = poly( |𝐻 |) because only in that case have we
shown that the conditional unitary 𝑈U has complexity poly( |𝐻 |); we needed this
property for the pseudorandomness assumption to imply that the observer is unable
to distinguish the state of 𝐸𝐵 from a maximally mixed state.

We have inferred the existence of ghost logical operators which act on 𝐸𝐻. It should
also be possible to realize a non-trivial logical operator as a physical operator acting
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on 𝐸 alone, but only if that operator is computationally complex to construct.
For instance, suppose that 𝑊 : H𝐸 → H𝐸 is a unitary logical operator that can be
accurately approximated by a quantum circuit of polynomial size. Then there exists a
ghost logical operator𝑇 that fails to commute with𝑊 acting on the code space. Since
𝑊 has polynomial complexity, this contradicts Theorem 5.8.10, and we conclude that
no such 𝑊 can exist. This conclusion resonates with the observations of Bouland,
Fefferman, and Vazirani, who argued that in the context of AdS/CFT duality, the
dictionary relating the black hole exterior and interior should be computationally
complex [43], [44].

On the other hand, if a quantum circuit is allowed to act on 𝐻 as well as 𝐸 , and
if 𝐵 has constant size, then any logical operator on the code space can be realized
efficiently. We show this in Section 5.9.

5.8.4 State Dependence
The (approximate) encoding isometry 𝑉Ψ : H�̃� → H𝐸𝐻 is determined by the pure
quantum stateΨ𝐸𝐻𝐵 of the black hole𝐻 and its emitted Hawking radiation 𝐸𝐵. This
state, and hence the encoding map, depends on the initial microstate of the infalling
matter that collapsed to form the black hole. Therefore, the encoded interior of the
black hole is said to be “state dependent” [7], [10].

If black hole evaporation is unitary, and the event horizon is smooth because the
black hole interior is encoded in the radiation, then state dependence of the encoding
seems to be unavoidable; if the quantum information encoded in the initial state is
preserved in the final state of the fully evaporated black hole, then how the late
radiation emitted after the Page time is entangled with the early radiation emitted
before the Page time must depend on that initial state. This state dependence of
the encoding is nonetheless troubling [8], [9], [16]. If the experiences of observers
who fall through the event horizon are described by the logical operators of the
code, and these logical operators are state dependent, then the observers inside the
black hole seem to be capable of measuring nonlinear operators acting on Ψ𝐸𝐻𝐵,
rather than linear operators as in the standard theory of quantum measurement. This
ability to measure nonlinear properties of the state could lead to inconsistencies.
We regard this as an unresolved issue, reflecting our incomplete understanding of
how to describe measurements conducted behind black hole horizons.

But the state-dependent encoding of the black hole interior is not sufficient by itself
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to solve the black hole firewall problem.8 If the Hawking radiation is thoroughly
scrambled, then we expect that the interior mode that purifies 𝐵 can be decoded by
acting on 𝐸 alone after the Page time [45], and therefore that the logical operators
of the code may also be chosen to act on 𝐸 alone. If 𝑇 and 𝑆 are two noncommuting
logical operators, where 𝑆 acts on 𝐸 , then an observer (Bob) outside the black hole
who applies 𝑆 could in principle alter the outcome of a measurement of𝑇 performed
by an observer (Alice) inside the black hole. Thus Bob can send an instantaneous
message to Alice, in apparent violation of relativistic causality.

While we agree that such acausal signaling is possible in principle, we insist that the
computational complexity of the task should be considered. Under the assumption
that the Hawking radiation is pseudorandom, we have found that, in order to signal
Alice, Bob must apply an operation to 𝐸 with complexity superpolynomial in
|𝐻 |, if Alice’s observables are the ghost logical operators we have constructed.
Though possible, such an operation is infeasible in practice if the black hole 𝐻
is macroscopic; therefore the semiclassical causal structure of the spacetime is
respected.

5.9 Inside the Black Hole
Under our pseudorandomness assumption, an observer who acts on the early radi-
ation system 𝐸 can affect the encoded interior of a black hole only by applying an
operation with superpolynomial complexity. However, an agent who has access to
the black hole system 𝐻 as well as 𝐸 can manipulate the interior efficiently. Here we
construct an efficient unitary circuit �̄�𝐸𝐻 , acting on 𝐸𝐻, that perturbs the encoded
interior. Our construction makes use of an efficient quantum circuit that realizes
the unitary𝑈bh that describes the formation and partial evaporation of a black hole.
This unitary creates a state in which 𝐵 is maximally entangled with a subspace of
𝐸𝐻; if the circuit that implements 𝑈bh is efficient, then �̄�𝐸𝐻 can be implemented
efficiently as well. We will also see that an agent with access to 𝐸𝐻 can efficiently
decode the interior, distilling the code subspace of 𝐸𝐻 to a small quantum memory.

Suppose we are given a unitary operator𝑈𝐵𝐸𝐻 which realizes the map

𝑈𝐵𝐸𝐻 |0〉𝐵 |0 . . . 0〉𝐸𝐻 =
1
√

2
( |0〉𝐵 |𝜓0〉𝐸𝐻 + |1〉𝐵 |𝜓1〉𝐸𝐻),

where 𝐵 is a single qubit, and 𝐸𝐻 is 𝑛 qubits. By applying the circuits that implement
𝑈𝐵𝐸𝐻 and𝑈†

𝐵𝐸𝐻
on an ancillary register, together with some additional gates acting

8We thank Raphael Bousso for raising this issue.
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on the ancilla and 𝐸𝐻, we will apply a unitary operator �̄�𝐸𝐻 acting on 𝐸𝐻 with the
property that

�̄�𝐸𝐻 |𝜓0〉𝐸𝐻 = 𝑣00 |𝜓0〉𝐸𝐻 + 𝑣10 |𝜓1〉𝐸𝐻 ,
�̄�𝐸𝐻 |𝜓1〉𝐸𝐻 = 𝑣01 |𝜓0〉𝐸𝐻 + 𝑣11 |𝜓1〉𝐸𝐻 ,

where

𝑣 =

(
𝑣00 𝑣01

𝑣10 𝑣11

)
is some chosen 2 × 2 unitary matrix. That is, �̄�𝐸𝐻 applies an arbitrary “log-
ical” unitary transformation on the two-dimensional “code space” spanned by
{|𝜓0〉𝐸𝐻 , |𝜓1〉𝐸𝐻}.

The protocol is explained in two steps. First, we describe a probabilistic protocol
which applies �̄�𝐸𝐻 with success probability 1

4 . Next, using the probabilistic protocol,
we build a deterministic protocol which applies �̄�𝐸𝐻 with probability 1. The first
protocol applies a unitary𝑈𝑎1𝑎2 and𝑈†𝑎1𝑎2 once each. Here,𝑈𝑎1𝑎2 is a unitary acting
on an ancillary register 𝑎 = 𝑎1𝑎2 and can be realized by applying the circuit that
implements𝑈𝐵𝐸𝐻 on register 𝑎1 and 𝑎2. The register 𝐵 is replaced with 𝑎1 and the
register 𝐸𝐻 is replaced with 𝑎2. The second protocol applies𝑈𝑎1𝑎2 and𝑈†𝑎1𝑎2 three
times each. We also use some additional gates, which are also efficient.

For the probabilistic protocol, consider the following sequence of operations:

1. Initialize 𝑎 in the |0 . . . 0〉 state.

2. Apply𝑈𝑎1𝑎2 .

3. Apply a swap between 𝑎2 and 𝐸𝐻.

4. Apply the single-qubit operation 𝑣𝑇 to 𝑎1.

5. Apply𝑈†𝑎1𝑎2 .

6. Measure the 𝑎 register in the computational basis, and postselect on measuring
the all-0 bit string.

Applying this protocol for 𝑈𝐵𝐸𝐻 = 𝑈bh, and taking the initial state to be |𝜙matter〉 =
|00 . . . 0〉, we obtain the circuit diagram in Figure 5.10.

Let us analyze what happens when this protocol is executed. Suppose the state of
𝐸𝐻 is an arbitrary pure quantum state |𝜓〉𝐸𝐻 . After the second step, we have

1
√

2

(
|0〉𝑎1 |𝜓0〉𝑎2 + |1〉𝑎1 |𝜓1〉𝑎2

)
|𝜓〉𝐸𝐻 .
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Figure 5.10: A probabilistic protocol which (with success probability 1/4) applies
an arbitrary unitary operator 𝑣 to �̃�, the encoded interior partner of 𝐵. Here �̄�𝐸𝐻
denotes 𝑣 acting on the code subspace of 𝐸𝐻.

Now expand |𝜓〉𝐸𝐻 in an orthonormal basis that includes both |𝜓0〉 and |𝜓1〉; the
remaining 2𝑛 − 2 elements of the basis set are labeled |𝜓𝑖〉 from 𝑖 = 2 to 𝑖 = 2𝑛 − 1,
so that

|𝜓〉 =
∑︁
𝑖

𝜆𝑖 |𝜓𝑖〉.

After the third step, we obtain

1
√

2
( |0〉𝑎1 |𝜓0〉𝐸𝐻 + |1〉𝑎1 |𝜓1〉𝐸𝐻) |𝜓〉𝑎2 ,

which after the fourth step becomes

1
√

2
((𝑣00 |0〉𝑎1 + 𝑣01 |1〉𝑎1) |𝜓0〉𝐸𝐻 + (𝑣10 |0〉𝑎1 + 𝑣11 |1〉𝑎1) |𝜓1〉𝐸𝐻) |𝜓〉𝑎2

=
1
√

2
( |0〉𝑎1 (𝑣00 |𝜓0〉𝐸𝐻 + 𝑣10 |𝜓1〉𝐸𝐻) + |1〉𝑎1 (𝑣01 |𝜓0〉𝐸𝐻 + 𝑣11 |𝜓1〉𝐸𝐻)) |𝜓〉𝑎2 .

Now we want to study what happens after we carry out the fifth and the sixth
step. Instead of explicitly applying 𝑈†𝑎1𝑎2 , it is more convenient to think about an
orthogonal measurement in a basis that includes 𝑈𝑎1𝑎2 |0 . . . 0〉𝑎 = 1√

2
( |0〉𝑎1 |𝜓0〉𝑎2 +

|1〉𝑎1 |𝜓1〉𝑎2). After projecting onto this state, we obtain the (subnormalized) state

1
2
(𝜆0 (𝑣00 |𝜓0〉𝐸𝐻 + 𝑣10 |𝜓1〉𝐸𝐻) + 𝜆1 (𝑣01 |𝜓0〉𝐸𝐻 + 𝑣11 |𝜓1〉𝐸𝐻))

=
1
2
((𝑣00𝜆0 + 𝑣01𝜆1) |𝜓0〉𝐸𝐻 + (𝑣10𝜆0 + 𝑣11𝜆1) |𝜓1〉𝐸𝐻)),
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which, aside from the normalization factor of 1/2, is equivalent to applying 𝑣 to the
code vector 𝜆0 |𝜓0〉𝐸𝐻 + 𝜆1 |𝜓1〉𝐸𝐻 . Hence, �̄�𝐸𝐻 is applied with success probability
1/4.

Now we explain how to upgrade this probabilistic operation to a unitary quantum
circuit that applies �̄�𝐸𝐻 deterministically. For this purpose, we use the oblivious
amplitude amplification technique introduced by Berry et al.; see Lemma 3.6 of
[46]. For the reader’s convenience, we restate this result.

Lemma 5.9.1. (Oblivious amplitude amplification) Let𝑉 ′ and𝑉 be unitary matrices
on 𝜇 + 𝑛 qubits and 𝑛 qubits respectively, and let 𝜃 ∈ (0, 𝜋/2). Suppose that for any
𝑛-qubit state |𝜓〉,

𝑉 ′|0𝜇〉|𝜓〉 = sin(𝜃) |0𝜇〉𝑉 |𝜓〉 + cos(𝜃) |Φ⊥〉,

where ( |0𝜇〉〈0𝜇 | ⊗ 𝐼) |Φ⊥〉 = 0. Let 𝑅 = 2|0𝜇〉〈0𝜇 | ⊗ 𝐼− 𝐼 and 𝑆 = −𝑉 ′𝑅𝑉 ′†𝑅†. Then,

𝑆ℓ𝑉 ′|0𝜇〉|𝜓〉 = sin((2ℓ + 1)𝜃) |0𝜇〉𝑉 |𝜓〉 + cos((2ℓ + 1)𝜃) |Φ⊥〉.

In our case, 𝑉 ′ is the unitary process described in the first five steps, 𝑉 is �̄�𝐸𝐻 , |0𝜇〉
is |0 . . . 0〉𝑎, and sin(𝜃) = 1

2 . Therefore, 𝜃 = 𝜋
6 , and we can choose ℓ = 1 to apply

𝑉 deterministically. For this choice of ℓ, it suffices to apply 𝑉 ′ twice and its inverse
once to achieve 𝑉 . For each 𝑉 ′, we apply 𝑈𝑎1𝑎2 and its inverse 𝑈†𝑎1𝑎2 once each
(as well as other simple unitary operations). In total, then, we can deterministically
apply �̄�𝐸𝐻 by using𝑈𝑎1𝑎2 three times and𝑈†𝑎1𝑎2 three times. In particular, the entire
circuit is efficient if𝑈𝑎1𝑎2 is. Applying this protocol for𝑈𝐵𝐸𝐻 = 𝑈bh, we obtain the
circuit diagram in Figure 5.11.

More generally, suppose that the register 𝐵 contains |𝐵 | > 1 qubits, so that the
code subspace of 𝐸𝐻 has dimension 2|𝐵 |. A probabilistic protocol for applying an
arbitrary unitary transformation to the code space can be constructed that closely
follows the construction for a single qubit, but now with success probability 2−2|𝐵 |.
In particular, using the probabilistic protocol and oblivious amplitude amplification
we can approximate any two-qubit gate (|𝐵| = 2) acting on the code space accurately
and efficiently.

From a universal set of such two-qubit gates, we can build a logical unitary circuit.
Hence any low-complexity operation on the code space can be realized as a low-
complexity quantum circuit acting on 𝐸𝐻.
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Figure 5.11: A deterministic circuit which applies an arbitrary unitary operator 𝑣
to �̃�, the encoded interior partner of 𝐵. Here �̄�𝐸𝐻 denotes 𝑣 acting on the code
subspace of 𝐸𝐻. Note that the final𝑈†bh and 𝑣𝑇 acting on the ancilla can be removed
without changing how the circuit acts on the code space.

If we can perform logical gates on the code space, then we can also decode the logical
state, distilling it to a small quantum memory in our possession. To be concrete,
suppose the code space is two-dimensional. To decode, it suffices to prepare an
ancilla qubit 𝑏 in an arbitrary state, and then perform a SWAP operation on 𝑏 and
the encoded qubit. For this purpose, we can use the quantum circuit identity shown
in Figure 5.12, where SWAP is constructed from controlled-𝑋 , controlled-𝑍 , and
Hadamard gates. The Hadamard gates act on 𝑏, and the C-𝑋 and C-𝑍 gates act with
𝑏 as the control qubit and the code space as the target qubit.

Figure 5.12: A two-qubit SWAP gate can be expressed in terms of Hadamard gates,
controlled-𝑋 gates, and a controlled-𝑍 gate. If there are efficient circuits for the 𝑋
and 𝑍 gates acting on the code space, we may replace the gates in these circuits by
gates controlled by an ancilla qubit, and use this identity to build a circuit that swaps
the logical qubit in the code space with the ancilla qubit.
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Suppose we have a circuit acting on 𝐸𝐻 that applies 𝑋 to the code. We can replace
each gate in that circuit by a controlled gate, with 𝑏 as the control qubit. The
resulting circuit applies C-𝑋 with 𝑏 as the control qubit, and if the circuit for 𝑋 is
efficient, so is the circuit for C-𝑋 . Likewise, we can turn an efficient circuit acting
on 𝐸𝐻 that applies 𝑍 to the code into an efficient circuit for C-𝑍 . Using the circuit
identity, we obtain an efficient circuit acting on 𝑏 and 𝐸𝐻 that swaps the encoded
information into 𝑏. Using this realization of the SWAP gate, the entangled state of
𝐵 with the encoded interior mode �̃� becomes an entangled state of 𝐵 and 𝑏.

Note that this construction of logical gates, and of the decoding circuit, can also
be applied to the fully evaporated black hole. After the evaporation is complete, 𝐻
is gone, but any Hawking radiation qubit 𝐵 is entangled with a highly scrambled
subspace of 𝐸 , a large system composed of all the other radiation quanta. Because
the evolution of the initial infalling matter to the final outgoing Hawking radiation
is described by an efficient unitary transformation 𝑈, we have seen how 𝑈𝑎1𝑎2 and
𝑈
†
𝑎1𝑎2 can be used three times each to construct either 𝑋 or 𝑍 acting on the encoded

qubit. By replacing the gates in 𝑈 by controlled gates, we can construct the SWAP
operator, and hence distill the encoded qubit which is entangled with 𝐵 into a small
quantum memory efficiently.

5.10 Conclusion
From a purely quantum information perspective, the results in this paper apply to a
tripartite pure state Ψ𝐸𝐻𝐵, where |𝐸 | � |𝐻 | � |𝐵 |. Our central assumption, from
which all else follows, is that the marginal state 𝜌𝐸𝐵 is pseudorandom — i.e., cannot
be distinguished from a maximally mixed state with a bias better than 2−𝛼 |𝐻 | by any
quantum computation with complexity polynomial in |𝐻 |. From this assumption, it
follows that if a unitary transformation with complexity poly( |𝐻 |) acts on 𝐸 and an
observer𝑂, then 𝐵 and𝑂 decouple in the resulting stateΨ′

𝑂𝐸𝐻𝐵
, i.e., 𝜌′

𝑂𝐵
≈ 𝜌′

𝑂
⊗ 𝜌′

𝐵

up to an error 𝑂
(
2−𝛼 |𝐻 |+|𝑂 |+|𝐵 |

)
. Here 𝛼 = 𝑂 (1) is a positive constant.

The state Ψ𝐸𝐻𝐵 also defines an encoding map 𝑉Ψ : H�̃� → H𝐸𝐻 , whose image
is a subspace of 𝐸𝐻 that is nearly maximally entangled with 𝐵. From the de-
coupling condition, we can infer that the encoded system �̃� is hard to decode if
𝛼 |𝐻 |−|𝑂 |−|𝐵 | � 1; the observer can distill �̃� to a small subsystem only by per-
forming an operation with complexity superpolynomial in |𝐻 |. Furthermore, if the
observer 𝑂 performs any quantum computation on 𝐸 with complexity poly( |𝐻 |),
there is a recovery operator R acting on 𝐸𝐻 that corrects this “error” with fidelity
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𝐹 = 1 − 𝜖 where 𝜖 = 𝑂

(
2−𝛼 |𝐻 |/2+|𝑂 |/2+|𝐵 |/2

)
. Here the size |𝑂 | of the observer 𝑂

may be interpreted as the number of qubits in𝑂’s quantum memory, or equivalently
as the Kraus rank of the quantum channel applied to 𝐸 by 𝑂.

The existence of such a recovery operator R has a further implication. We can
construct a complete set of ghost logical operators for �̃� acting on 𝐸𝐻; if 𝑂
applies a quantum channel to 𝐸 with complexity poly( |𝐻 |), then these ghost
operators commute with all the Kraus operators of the channel, up to an error
𝑂

(
2−𝛼 |𝐻 |/4+|𝑂 |/4+9|𝐵 |/4

)
. Thus the ghost operators fail to detect the action of any

observer who performs an operation on 𝐸 with complexity poly( |𝐻 |).

For quantum informationists, these results may be viewed as a contribution to the
theory of operator algebra quantum error-correcction in the approximate setting.
What can be said about their potential physical consequences?

The existence of pseudorandom quantum states that can be prepared by quantum
circuits with depth 𝑂 (polylog|𝐻 |) follows from standard assumptions used in post-
quantum cryptography [12]. Because black holes are efficient scramblers of quantum
information, it is plausible that a pseudorandom state can be efficiently prepared
by an evaporating black hole, where the black hole microstates of 𝐻 provide the
concealed “key” of the state. A similar remark may apply to other strongly chaotic
systems as well. In the setting of black holes, our conclusion about the hardness of
decoding the Hawking radiation of an old black hole builds on the work of Harlow
and Hayden [14] by highlighting the role of pseudorandomness, and by clarifying
that the condition |𝐻 | � 1 already ensures that decoding is hard — even if |𝐻 | is
much smaller than |𝐸 |.

We require in addition that |𝐻 | is sufficiently large compared to the size |𝑂 | of the
observer’s quantum memory, though we may allow the observer to wield a large
probe system 𝑃 which interacts with 𝐸 , where |𝑃 | � |𝐻 |, |𝑂 |. In that case, the
system �̃� becomes encoded in 𝑃𝐸𝐻 rather than 𝐸𝐻. However, the conclusion that �̃�
cannot be efficiently distilled to a subsystem of size |𝑂 | still applies for |𝑂 | � 𝛼 |𝐻 |,
if 𝐵 has constant size. Therefore, no agent with reasonable computational power can
decode �̃� and carry it into the black hole without incurring a substantial backreaction
on the black hole geometry.

To evade the black hole firewall problem, it has been proposed that (part of) the
interior of an old black hole past its Page time is actually encoded in the radiation
system 𝐸 emitted long ago. This encoding is profoundly nonlocal and therefore
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potentially problematic — why cannot an agent far outside the black hole who acts
on 𝐸 send instantaneous messages to observers who are inside, or even create a
firewall at the event horizon? Our view is that computational complexity should
be invoked to reconcile the nonlocal encoding of the interior with the semiclassical
causal structure of the black hole geometry.

The finding that ghost logical operators can be constructed when the Hawking
radiation is pseudorandom fits neatly with this viewpoint. We propose that the
observables accessible to observers inside the black hole are described by these
ghost logical operators, though admittedly we have no compelling general basis
for this claim other than to address the firewall problem. If we accept the claim,
it follows that an agent outside the black hole can create detectable excitations
behind the horizon only by performing operations of superpolynomial complexity.
This conclusion, though based on different arguments, meshes with the proposal by
Bouland et al. [43], [44], that the dictionary relating the black hole interior to its
exterior in the context of AdS/CFT duality must be computationally complex.

In our discussion, the encoding map relating the interior system �̃� to the early
radiation 𝐸 and remaining black hole 𝐻 depends on the microstate of the initial
collapsing body from which the black hole formed. It can also depend on how the
observer interacts with the radiation [47]. Specifically, an observer who controls
a large probe system 𝑃 that comes into contact with 𝐸 is empowered to alter the
encoding substantially. But modifying the code does not help the observer to decode
the radiation or to send a message to the interior — achieving either task by acting
on 𝐸 requires an operation with complexity superpolynomial in |𝐻 |.

Once an observer falls through the event horizon, the interior of the black hole should
become accessible. From our point of view, this interior observer can interact not just
with 𝐸 but also with 𝐻, which makes the task of manipulating the interior far easier.
Indeed, for a code space of constant dimension, arbitrary unitary transformations on
the code space can be realized by quantum circuits acting on 𝐸𝐻 with complexity
poly( |𝐸𝐻 |).

It is a familiar notion that, even in a theory of quantum gravity, local effective field
theory on a curved background can provide an excellent approximation when the
spacetime curvature is sufficiently small and the energy is sufficiently low. The
story of ghost logical operators indicates that further constraints may need to be
satisfied for physics to be approximately local: operations must have sufficiently
low complexity and Kraus rank. Operations with high complexity and/or high rank
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can tear spacetime apart.

Our description of the robust encoded interior of an old black hole highlights the
effectiveness of quantum error-correction against a nonstandard noise model. In
the setting of fault-tolerant quantum computing, we normally seek an encoding that
can protect against weakly correlated errors with a relatively low error rate. Here,
though, the “noise” inflicted by our observer 𝑂 on the early radiation system 𝐸 is
strong and chosen adversarially. As long as this noise process has computational
complexity poly( |𝐻 |) and sufficiently small Kraus rank, the encoded system �̃� can
be restored with high fidelity, and the ghost logical operators are barely affected at
all. What makes this protection possible is that, although 𝐸 is treated very harshly,
the “key space” 𝐻 is assumed to be noiseless. Perhaps related ideas can be exploited
to protect quantum information in other physically relevant settings.
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5.A Approximate Embedding

Lemma 5.A.1. Let |Ψ〉𝐸𝐵𝐻 be a pseudo-random state (see Definition 5.6.1), where
𝐵 is a single qubit. Then the operator𝑉Ψ defined by Equation (5.7) is an approximate
embedding, i.e., there exists an embedding 𝑉 such that

‖𝑉 −𝑉Ψ‖ ≤ 2 · 2−𝛼 |𝐻 | .

Proof. Let 𝜌𝐸𝐵𝐻 = |Ψ〉〈Ψ|𝐸𝐵𝐻 . Applying the decoupling inequality (5.6) without
the presence of an observer (i.e., taking |𝑂 | = 0), we see that 𝜌𝐵 is nearly maximally
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mixed, i.e.,

‖𝜌𝐵 −
1
2
𝐼𝐵‖1 ≤ 2−𝛼 |𝐻 | .

Equivalently, this implies that

‖𝑉†
Ψ
𝑉Ψ − 𝐼�̃�‖1 ≤ 2 · 2−𝛼 |𝐻 | := 𝜖 . (5.40)

Now, let 𝑈ΣΨ𝑊
† = 𝑉Ψ be the singular value decomposition for 𝑉Ψ. Let us denote

the singular values of 𝑉Ψ as {𝜎𝑘 }. Then (5.A) implies that we have |𝜎2
𝑘
− 1| ≤ 𝜖 .

Since |𝜎𝑘 + 1| ≥ 1 (the singular values are nonnegative real numbers), we then also
have

|𝜎𝑘 − 1| ≤ 𝜖 · |𝜎𝑘 + 1|−1 ≤ 𝜖 .

Now, let Σ denote the matrix with the same shape as ΣΨ whose diagonal values are
all equal to 1. Define 𝑉 = 𝑈Σ𝑊†, and note that 𝑉 is an isometric embedding since
𝑉†𝑉 = 𝐼�̃�. Finally, we have

‖𝑉 −𝑉Ψ‖ = ‖𝑈 (Σ − ΣΨ)𝑊†‖
≤ ‖𝑈‖ · ‖𝑊†‖ · ‖Σ − ΣΨ‖
≤ 𝜖,

where the last inequality follows since all singular values of Σ − ΣΨ are bounded
above by 𝜖 by construction.

5.B Complete Set of Ghost Operators Implies Correctability
In this Appendix, we prove a converse to Theorem 5.8.9, showing that if a quantum
error-correcting code C has a complete set of 𝛿-approximate ghost logical operators
for a channel

E(𝜌) =
𝑟∑︁
𝑎=1

𝐸𝑎𝜌𝐸
†
𝑎

with a set of 𝑟 Kraus operators 𝐾 = {𝐸𝑎}, then the channel EI with Kraus operators
𝐾 ∪ {𝐼} is 𝜖-correctable for C, where 𝜖 = 𝑂 ( |𝐾 |

√︁
(dimC) 𝛿).

For this purpose, we will use the approximate version of the Knill-Laflamme error-
correction conditions studied by Bény and Oreshkov [23]; these may be expressed
in the form

𝑃𝐸†𝑎𝐸𝑏𝑃 = 𝜆𝑎𝑏𝑃 + 𝐵𝑎𝑏,
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where 𝑃 is the projector on the code space C, 𝜆𝑎𝑏 is a density matrix (a non-
negative Hermitian operator with trace 1), and for each 𝑎 and 𝑏, 𝐵𝑎𝑏 is an operator
mapping C to C. For 𝐵𝑎𝑏 = 0, these are the usual Knill-Laflamme conditions
for exact correctability [42]. If 𝐵𝑎𝑏 is small, the Knill-Laflamme conditions are
approximately satisfied, and a recovery operator R exists that corrects the channel
E acting on the code space, up to a small error 𝜖 as in Equation (5.7.1).

A relation between 𝐵𝑎𝑏 and 𝜖 was derived in [23]. We define maps Λ and B by

Λ(𝜌) =
𝑟∑︁

𝑎,𝑏=1
𝜆𝑎𝑏Tr(𝜌) |𝑎〉〈𝑏 |, and B(𝜌) =

𝑟∑︁
𝑎,𝑏=1

Tr(𝜌𝐵𝑎𝑏) |𝑎〉〈𝑏 |,(5.41)

respectively. Consider the Bures distance 𝔅(Λ + B,Λ) defined as in Equation
(5.7.1), with the maximum taken over all code states 𝜌. Then the noise channel E
is 𝜖-correctable for the code C if and only if 𝔅(Λ + B,Λ) ≤ 𝜖 [23].

We may estimate this Bures distance as in Equation (5.7.1), finding

2𝔅2(Λ + B,Λ) ≤ max
𝜌
‖(B ⊗ I)(|𝜓〉〈𝜓 |) ‖1 , (5.42)

where |𝜓〉 is a purification of the logical density operator 𝜌. Using Equation (5.B),
we obtain

‖(B ⊗ I)(|𝜓〉〈𝜓 |) ‖1 =

 𝑟∑︁
𝑎,𝑏=1
〈𝜓 |𝐵𝑎𝑏 |𝜓〉|𝑎〉〈𝑏 |


1

≤ 𝑟2 max
𝑎,𝑏
|〈𝜓 |𝐵𝑎𝑏 |𝜓〉|

≤ 𝑟2 max
𝑎,𝑏
‖𝐵𝑎𝑏‖

≤ 𝑟2(dimC) max
𝑎,𝑏
‖𝐵𝑎𝑏‖max.

(5.43)

Here the entry-wise max norm of ‖𝐴‖max of a matrix 𝐴 is defined as the largest (in
absolute value) entry of the matrix in the computational basis; i.e.,

‖𝐴‖max = max
𝑖, 𝑗
|〈𝑖 |𝐴| 𝑗〉| ,

and we used an inequality relating the operator and max norms,

‖𝐵𝑎𝑏‖ ≤ (dimC)‖𝐵𝑎𝑏‖max.

We can now prove:
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Lemma 5.B.1. The channel

E(𝜌) =
𝑟∑︁
𝑎=1

𝐸𝑎𝜌𝐸
†
𝑎

is 𝜖-correctable with respect to the code C, with

𝜖 = 𝑟

√︂
1
2
(dimC) 𝛿,

if there is a density operator 𝜆𝑎𝑏 and an orthonormal basis {|𝑖〉} for the code space
such that for all 𝑖 and 𝑗 , ��〈𝑖 |𝐸†𝑎𝐸𝑏 | 𝑗〉 − 𝛿𝑖 𝑗𝜆𝑎𝑏�� ≤ 𝛿. (5.44)

Proof. According to the Bény-Oreshkov criterion [23], the channel is 𝜖-correctable
if 𝔅2(Λ + B,Λ) ≤ 𝜖2, and from Equations (5.B) and (5.B), we have

𝔅2(Λ + B,Λ) ≤ 1
2
𝑟2(dimC)max

𝑎,𝑏
‖𝐵𝑎𝑏‖max ≤

1
2
𝑟2(dimC)𝛿,

where we derived the last inequality from the definition of the ‖ · ‖max norm and
Equation (5.B.1). This proves the Lemma.

We will use the following Lemma in the proof of Theorem 5.8.10, as well as in the
proof of Theorem 5.B.3 below.

Lemma 5.B.2. Let C be a code subspace with code projector 𝑃. Let 𝑇 be an
𝛿-approximate ghost operator for the channel E and the set of Kraus operators 𝐾 .
Then

‖ [𝑇, 𝐸]𝑃‖ ≤ 2𝛿‖𝑇 ‖ (5.45)

for all 𝐸 ∈ 𝐾 .

Proof. Let 𝑉 be the code embedding. By definition of the ghost operator, we have

‖𝑇𝐸𝑉 − 𝐸𝑉𝑇 ‖ ≤ 𝛿‖𝑇 ‖,

for all 𝐸 ∈ 𝐾 ∪ {𝐼}. Taking 𝐸 = 𝐼 gives

‖𝑇𝑉 −𝑉𝑇 ‖ ≤ 𝛿‖𝑇 ‖. (5.46)
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Then we have

‖ [𝑇, 𝐸]𝑉 ‖ = ‖𝑇𝐸𝑉 − 𝐸𝑇𝑉 ‖ = ‖𝑇𝐸𝑉 − 𝐸𝑉𝑇 + 𝐸𝑉𝑇 − 𝐸𝑇𝑉 ‖
≤ ‖𝑇𝐸𝑉 − 𝐸𝑉𝑇 ‖ + ‖𝐸𝑉𝑇 − 𝐸𝑇𝑉 ‖
≤ 2𝛿‖𝑇 ‖ + ‖𝐸 ‖ · ‖𝑉𝑇 − 𝑇𝑉 ‖
≤ 2𝛿‖𝑇 ‖,

(5.47)

where in the last line we used Equation (5.B) and the fact that ‖𝐸 ‖ ≤ 1 since
𝐸†𝐸 ≤ 𝐼 implies ‖𝐸†𝐸 ‖ = ‖𝐸 ‖2 ≤ 1. We can now obtain Equation (5.B.2) if we
can replace 𝑉 in Equation (5.B) by 𝑃. This is justified because, for any operator 𝐴,
we have

‖𝐴𝑃‖ = ‖𝐴𝑉𝑉†‖ ≤ ‖𝐴𝑉 ‖ · ‖𝑉†‖ ≤ ‖𝐴𝑉 ‖,

where we have used ‖𝑉†‖ ≤ 1 in the last line since𝑉 is an isometric embedding.

With these Lemmas in hand, we can proceed to prove:

Theorem 5.B.3. Suppose that there exists a complete set of 𝛿-approximate ghost
logical operators for the channel E and its set of Kraus operators 𝐾 = {𝐸𝑎}. Then
EI is 𝜖-correctable for the code C, where

𝜖 = ( |𝐾 | + 1)
√︁

2(dimC) 𝛿.

Proof. Suppose that there exists a complete set of 𝛿-approximate ghost logical
operators for E with respect to some Kraus decomposition 𝐾 = {𝐸𝑎}𝑟𝑎=1. We will
also define 𝐸0 = 𝐼.

Given any two orthogonal code states |𝜓〉, |𝜙〉 ∈ C, let us define the operators 𝑇1

and 𝑇2 as in the proof of Theorem 5.8.4. Note that ‖𝑇1‖ = ‖𝑇2‖ = 1. Let 𝑇1 and 𝑇2

be their respective 𝛿-approximate ghost operators. Then, for 0 ≤ 𝑎, 𝑏 ≤ 𝑟, we get��2〈𝜓 |𝐸†𝑎𝐸𝑏 |𝜙〉�� = ��〈𝜓 |𝐸†𝑎𝐸𝑏𝑇1 |𝜙〉 − 〈𝜓 |𝑇1𝐸
†
𝑎𝐸𝑏 |𝜙〉

��
=

��〈𝜓 |𝐸†𝑎𝐸𝑏𝑇1 |𝜙〉 − 〈𝜓 |𝐸†𝑎𝑇1𝐸𝑏 |𝜙〉 + 〈𝜓 |𝐸†𝑎𝑇1𝐸𝑏 |𝜙〉 − 〈𝜓 |𝑇1𝐸
†
𝑎𝐸𝑏 |𝜙〉

��
≤

��〈𝜓 |𝐸†𝑎𝐸𝑏𝑇1 |𝜙〉 − 〈𝜓 |𝐸†𝑎𝑇1𝐸𝑏 |𝜙〉
�� + ��〈𝜓 |𝐸†𝑎𝑇1𝐸𝑏 |𝜙〉 − 〈𝜓 |𝑇1𝐸

†
𝑎𝐸𝑏 |𝜙〉

��
≤ ‖ (𝐸𝑏𝑇1 − 𝑇1𝐸𝑏) |𝜙〉‖‖𝐸𝑎 |𝜓〉‖ + ‖𝐸𝑏 |𝜙〉‖‖ (𝑇1𝐸𝑎 − 𝐸𝑎𝑇1) |𝜓〉‖
≤ 4𝛿,

where in the second-to-last line we used the Schwarz inequality, and in the last line
we used Lemma 5.B.2 and the fact that ‖𝐸𝑎‖ ≤ 1. Therefore we have��〈𝜓 |𝐸†𝑎𝐸𝑏 |𝜙〉�� ≤ 2𝛿. (5.48)
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Repeating the same argument for 𝑇2, we likewise get��〈𝜙 − 𝜓 |𝐸†𝑎𝐸𝑏 |𝜙 + 𝜓〉�� ≤ 2𝛿.

Then we have��〈𝜙|𝐸†𝑎𝐸𝑏 |𝜙〉 − 〈𝜓 |𝐸†𝑎𝐸𝑏 |𝜓〉��
=

��〈𝜙|𝐸†𝑎𝐸𝑏 |𝜙〉 − 〈𝜓 |𝐸†𝑎𝐸𝑏 |𝜓〉 + 〈𝜙|𝐸†𝑎𝐸𝑏 |𝜓〉 − 〈𝜓 |𝐸†𝑎𝐸𝑏 |𝜙〉 − 〈𝜙 |𝐸†𝑎𝐸𝑏 |𝜓〉 + 〈𝜓 |𝐸†𝑎𝐸𝑏 |𝜙〉��
≤

��〈𝜙|𝐸†𝑎𝐸𝑏 |𝜙〉 − 〈𝜓 |𝐸†𝑎𝐸𝑏 |𝜓〉 + 〈𝜙 |𝐸†𝑎𝐸𝑏 |𝜓〉 − 〈𝜓 |𝐸†𝑎𝐸𝑏 |𝜙〉�� + 2
��〈𝜙 |𝐸†𝑎𝐸𝑏 |𝜓〉��

≤ 2
��〈𝜙 − 𝜓 |𝐸†𝑎𝐸𝑏 |𝜙 + 𝜓〉�� + 4𝛿

≤ 8𝛿. (5.49)

Now consider an orthonormal basis {|𝑖〉, 𝑖 = 0, 1, 2, . . . , dimC − 1}, for the code
space and define 𝜆𝑎𝑏 = 〈0|𝐸†𝑎𝐸𝑏 |0〉. Noting that in the equations (5.B) and (5.B),
|𝜙〉 and |𝜓〉 can be any two elements of the orthonormal basis, we see that

|〈𝑖 |𝐸†𝑎𝐸𝑏 | 𝑗〉| ≤ 2𝛿

for 𝑖 ≠ 𝑗 , while
|〈𝑖 |𝐸†𝑎𝐸𝑏 |𝑖〉 − 𝜆𝑎𝑏 | ≤ 8𝛿.

Thus we find that the approximate Knill-Laflamme conditions for EI are satisfied:

1
2

��〈𝑖 |𝐸†𝑎𝐸𝑏 | 𝑗〉 − 𝜆𝑎𝑏𝛿𝑖 𝑗 �� ≤ 4𝛿.

Note that the factor of 1/2 comes from the normalization of the Kraus operators for
EI . From Lemma 5.B.1, this implies that EI is 𝜖-correctable for C, where

𝜖 = ( |𝐾 | + 1)
√︁

2(dimC) 𝛿.

5.C Complexity of Controlled Unitary

Lemma 5.C.1. Let 𝑈 be a unitary of circuit complexity 𝑘 with respect to some
universal 2-qubit gate set G. Given an ancillary system of 𝑛 qubits, let Λ𝑚 (𝑈) be
the operator controlled on the state |𝑚〉, where 0 ≤ 𝑚 < 2𝑛, i.e.,

Λ𝑚 (𝑈) ( |ℓ〉 ⊗ |𝑥〉) = |ℓ〉 ⊗ 𝑈𝛿ℓ𝑚 |𝑥〉.

Then given any 𝜖 > 0, the operator Λ𝑚 (𝑈) can be implemented with 𝜖-precision
with circuit complexity 𝑂

(
4𝑛𝑘 log4(𝑘/𝜖)

)
.
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Proof. Let𝑈 = 𝑈𝑘 · · ·𝑈1 be a decomposition of𝑈 into elements ofG. To implement
Λ𝑚 (𝑈) to 𝜖-precision, it suffices to implement Λ𝑚 (𝑈𝑖) to 𝜖/𝑘-precision for each
1 ≤ 𝑖 ≤ 𝑘 . Since each 𝑈𝑖 is a 2-qubit gate, it follows that Λ𝑚 (𝑈𝑖) is supported
on at most 𝑛 + 2 qubits. By the Solovay-Kitaev theorem [48], each Λ𝑚 (𝑈𝑖) can be
implemented to 𝜖/𝑘-precision with 𝑂 (4𝑛 log4(𝑘/𝑚)) gates from G. It follows that
𝑈 itself can be implemented to 𝜖-precision with 𝑂 (4𝑛𝑘 log4(𝑘/𝜖)) gates.

The scaling with 𝑛 can be considerably improved using circuit constructions from
[49], but Lemma 5.C.1 will suffice for our purposes.

5.D What if the Radiation is Not Pseudorandom?
The central assumption of this paper is that the state of the Hawking radiation 𝐸𝐵
emitted by a partially evaporated black hole is pseudorandom. Here we ask what
happens if this assumption is broken in a particular way.

Suppose 𝐵 is a single qubit and the pure state of 𝐸𝐵𝐻 is

|Ψ〉𝐸𝐵𝐻 =
1
√

2
( |0〉𝐵 |𝜓0〉𝐸𝐻 + |1〉𝐵 |𝜓1〉𝐸𝐻).

Consider a Hermitian operator 𝑀𝐸 acting on 𝐸 such that 𝑀𝐸 ⊗ 𝑍𝐵 can be efficiently
measured, where 𝑍𝐵 is the Pauli-𝑍 operator acting on 𝐵. Suppose that

〈𝑀𝐸 ⊗ 𝑍𝐵〉Ψ − 〈𝑀𝐸〉Ψ〈𝑍𝐵〉Ψ = 𝑐,

where the subscript Ψ indicates that the expectation value is evaluated in the global
state |Ψ〉𝐸𝐵𝐻 , or equivalently in the marginal state 𝜌𝐸𝐵. Note that 𝑐 = 0 if 𝜌𝐸𝐵 is
maximally mixed. Therefore, by definition, if 𝜌𝐸𝐵 is pseudorandom, then 𝑐 must be
exponentially small in |𝐻 |. It follows that if 𝑐 is a nonzero constant, independent of
|𝐻 |, then 𝜌𝐸𝐵 is not pseudorandom (though the converse is not necessarily true).

We will now show that, if 𝑐 ≠ 0, there cannot be a complete set of logical operators
that commute with 𝑀𝐸 acting on the code space spanned by {|𝜓0〉𝐸𝐻 , |𝜓1〉𝐸𝐻} .
Note that because the marginal state 𝜌𝐵 is maximally mixed, we have 〈𝑍𝐵〉Ψ = 0,
and therefore

2𝑐 = 2〈𝑀𝐸 ⊗ 𝑍𝐵〉Ψ = 〈𝜓0 |𝑀𝐸 |𝜓0〉 − 〈𝜓1 |𝑀𝐸 |𝜓1〉.

Consider a Hermitian operator 𝑋𝐿 on𝐸𝐻 that acts on the code basis states {|𝜓0〉𝐸𝐻 , |𝜓1〉𝐸𝐻}
like the Pauli-𝑋 operator:
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𝑋𝐿 |𝜓0〉 = |𝜓1〉, 𝑋𝐿 |𝜓1〉 = |𝜓0〉,

and notice that

〈𝜓1 | [𝑋𝐿 , 𝑀𝐸 ] |𝜓0〉 = 〈𝜓0 |𝑀𝐸 |𝜓0〉 − 〈𝜓1 |𝑀𝐸 |𝜓1〉 = 2𝑐 ≠ 0.

This shows that the commutator [𝑋𝐿 , 𝑀𝐸 ] is 𝑂 (1) acting on the code space. Thus
no logical Pauli-𝑋 operator commutes with 𝑀𝐸 acting on the code space, and in
particular there can be no complete set of ghost logical operators commuting with
𝑀𝐸 .

For this argument, we chose the operator acting on 𝐵 to be 𝑍𝐵, but a similar argument
works for any Hermitian operator acting on 𝐵. Suppose 𝑁𝐵 is a Hermitian operator
acting on 𝐵 such that

〈𝑀𝐸 ⊗ 𝑁𝐵〉Ψ − 〈𝑀𝐸〉Ψ〈𝑁𝐵〉Ψ = 𝑐 ≠ 0. (5.50)

Since 𝑁𝐵 is Hermitian, we can diagonalize it in a certain basis, and we may assume,
without loss of generality, that 𝑁𝐵 is traceless. (If 𝑁𝐵 is not traceless, we may
replace 𝑁𝐵 by 𝑁′

𝐵
= 𝑁𝐵 − Tr (𝑁𝐵) (𝐼/2) without modifying Equation (5.D).) In the

basis in which it is diagonal, then 𝑁𝐵 is equal to 𝑍𝐵 up to a nonzero multiplicative
constant.
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