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To my beloved parents.



Humans think in stories, and we try to make sense of the world by telling stories.
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viiiABSTRACT

Nonlinear models are widely used in signal processing, statistics, and machine learning to model
real-world applications. A popular class of such models is the single-index model where the response
variable is related to a linear combination of dependent variables through a link function. In other
words, if x ∈ R? denotes the input signal, the posterior mean of the generated output H has the
form, E[H |x] = d(x)w), where d : R→ R is a known function (referred to as the link function),
and w ∈ R? is the vector of unknown parameters. When d(·) is invertible, this class of models is
called generalized linear models (GLMs). GLMs are commonly used in statistics and are often
viewed as flexible generalizations of linear regression. Given = measurements (samples) from
this model, D = {(x8, H8) |1 ≤ 8 ≤ =}, the goal is to estimate the parameter vector w. While the
model parameters are assumed to be unknown, in many applications these parameters follow certain
structures (sparse, low-rank, group-sparse, etc.) The knowledge on this structure can be used to
form more accurate estimators.
The main contribution of this thesis is to provide a precise performance analysis for convex
optimization programs that are used for parameter estimation in two important classes of single-
index models. These classes are: (1) phase retrieval in signal processing, and (2) binary classification
in statistical learning.
The first class of models studied in this thesis is the phase retrieval problem, where the goal is to
recover a discrete complex-valued signal from amplitudes of its linear combinations. Methods
based on convex optimization have recently gained significant attentions in the literature. The
conventional convex-optimization-based methods resort to the idea of lifting which makes them
computationally inefficient. In addition to providing an analysis of the recovery threshold for the
semidefinite-programming-based methods, this thesis studies the performance of a new convex
relaxation for the phase retrieval problem, known as phasemax, which is computationally more
efficient as it does not lift the signal to higher dimensions. Furthermore, to address the case of
structured signals, regularized phasemax is introduced along with a precise characterization of the
conditions for its perfect recovery in the asymptotic regime.
The next important application studied in this thesis is the binary classification in statistical learning.
While classification models have been studied in the literature since 1950’s, the understanding of
their performance has been incomplete until very recently. Inspired by the maximum likelihood
(ML) estimator in logistic models, we analyze a class of optimization programs that attempts to find
the model parameters by minimizing an objective that consists of a loss function (which is often
inspired by the ML estimator) and an additive regularization term that enforces our knowledge on



the structure. There are two operating regimes for this problem depending on the separability of the
training data set D. In the asymptotic regime, where the number of samples and the number of
parameters grow to infinity, a phase transition phenomenon is demonstrated that happens at a certain
over-parameterization ratio. We compute this phase transition for the setting where the underlying
data is drawn from a Gaussian distribution.
In the case where the data is non-separable, the ML estimator is well-defined, and its attributes have
been studied in the classical statistics. However, these classical results fail to provide reasonable
estimate in the regime where the number of data points is proportional to the number of samples.
One contribution of this thesis is to provide an exact analysis on the performance of the regularized
logistic regression when the number of training data is proportional to the number of samples.
When the data is separable (a.k.a. the interpolating regime), there exist multiple linear classifiers
that perfectly fit the training data. In this regime, we introduce and analyze the performance of
"extended margin maximizers" (EMMs). Inspired by the max-margin classifier, EMM classifiers
simultaneously consider maximizing the margin and the structure of the parameter. Lastly, we
discuss another generalization to the max-margin classifier, referred to as the robust max-margin
classifier, that takes into account the perturbations by an adversary. It is shown that for a broad
class of loss functions, gradient descent iterates (with proper step sizes) converge to the robust
max-margin classifier.
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1C h a p t e r 1

INTRODUCTION

In this chapter, we provide an overview of the results presented in the thesis. The recovery of
discrete signals from a number of their samples (or measurements) has become the main challenge
in various disciplines, including communication theory and signal processing, parameter estimation
in statistics and machine learning, analysis of financial data, and genome sequencing. This challenge
mainly arises due to the unknown factors in the measurement system as well as the presence of loss
and distortions. To address this challenge, there have been many attempts to understand, design, and
even simplify the measurement systems, with the goal of having an analyzable model that captures
the main aspects of the real-world phenomenon.

Once this mathematical description is available, the recovery problem reduces to tuning the
parameters of the model such that it generates the best (possible) output when compared to the
measured values. The latter problem has been studied in the optimization theory, where the best
choice is translated into minimizing (or maximizing) an objective function that takes its values in an
ordered field1.

This thesis focuses on a specific class of nonlinear models where the model output is related to a
linear combination of its inputs through a link function. Let x ∈ R? (or x ∈ C? for phase retrieval)
denote the input signal, and H be the model output. The posterior mean of the generated output
takes the following form,

E[H |x] = d(x)w), (1.1)

where d : R → R is a known function (referred to as the link function), and w ∈ R? (or w ∈ C?

for phase retrieval) is the vector of unknown parameters. The goal is to estimate the unknown
parameters, w, Given = measurements (samples) from this model, D = {(x8, H8) |1 ≤ 8 ≤ =}.

When the link function is invertible, resulting models are called generalized linear models (GLMs).
In statistics literature, GLMs are viewed as generalizations of linear regression with an additional
flexibility of choosing a link function. The underlying assumptions for classical linear regression
are normality, homoscedasticity, and linearity, i.e., the errors are normally distributed, the error

1an ordered field is a field together with a total ordering



variances are constant and independent of the mean, and the systematic effects combine additively.
However, there are many situations where these assumptions are far from being satisfied. Therefore,
GLMs have been introduced to extend the scope of linear models. The term was coined in 1972 by
Nelder and Wedderburn [96], and their main idea was to formulate linear models for a transformation
of the mean value while keeping the observations untransformed [90].

In this thesis, we investigate the performance of the solutions of optimization problems to recover the
underlying parameters. Our main focus will be on the class of convex programs where the objective
function and the constraint set are both convex. Due to certificates of optimality that accompany their
solutions, these programs are often very appealing for theoretical analyses. Moreover, assuming the
convex constraint set is efficiently described, there are numerical methods that can find the optimal
solution with a total number of computations that is bounded by a polynomial function of the input
dimension (see e.g. [77]).

In general, to recover a ?-dimensional signal, one needs to acquire at least ? pieces of information,
i.e., the number of measurements needed is at least O(?). However, in many applications in
machine learning, signal processing, statistics, etc., the underlying signal has certain structure
(sparse, low-rank, finite alphabet, etc.), opening of up the possibility of recovering it from a number
of measurements smaller than the ambient dimension, i.e., = < ?. Understanding the role of this
structure and finding ways to incorporate it into the optimization framework has been a very active
area of research in the past two decades. The conventional methods add a penalty (regularization)
function which enforces our prior knowledge on the structure [132]. These methods have been
successfully used in various applications. However, the theoretical understanding of their success
has been quite a challenge, and it was achieved years later mainly by the emergence of the field
"Compressed Sensing" [43].

Initial theoretical results focused on analyzing the performance of optimization programs for
the recovery of sparse signals [26, 46, 30], where ℓ1 norm has been used to induce the sparse
solution. Also, efficient numerical algorithms, such as orthogonal matching pursuit [134], have
been introduced for the problem of sparse signal recovery. Later on, using analogous techniques the
problem of low-rank matrix recovery has been analyzed [107, 29], where nuclear (trace) norm (‖ · ‖∗)
was used as a convex surrogate for the rank minimization. Chandrasekaran et al. [33] introduced a
unified framework of atomic norm minimization where structured signals can be written in terms of
a linear combination of a few simple building blocks (the so-called "atoms".) As a consequence of
such theoretical understandings, using (non-smooth) regularization functions became very common
in numerous applications.
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While these initial results provided great theoretical insights on the required number of measurements
for signal recovery in linear inverse problems, the resulting upper bounds (i.e., sufficient recovery
conditions) were often not tight. Hence, finding lower bounds (i.e., necessary conditions) on the
required number of measurements has become the next challenge. Sharp results on the recovery
threshold of structured signal recovery in linear inverse problems have been first derived by
Stojnic [121] and Amelunxen et al. [7]. Also, around the same time sharp theoretical results on
least-sqaures with ℓ1 regularization (a.k.a. LASSO) have been studied [13, 45]. More recently,
sharp analyses for more general class of loss functions and regularizers (M-estimators for linear
measurements) have been provided [42, 129].

Inspired by these results, in this thesis we study the precise performance of convex optimization
problems for signal recovery in two specific examples of nonlinear models. Our theoretical
assumptions are similar to the ones used in the analyses of linear inverse problems. However, the loss
functions and the resulting optimizations have been formulated based on the measurement schemes
in each application. The two classes of problems that will be extensively studied in the remaining of
this thesis are: (1) structured signal recovery in phase retrieval, and (2) linear classification with
structured parameters. Each of these applications falls into the category of single-index models
introduced earlier. For the phase retrieval problem, it is often assumed that the input vector x
and the parameter vector w are both complex-valued, and the link function is the absolute value
function, d(I) = |I |. For binary classification the output, H, is the class label, and the link function
determines the probability of the output being +1. In this case there are multiple choices for the
link function, the most popular of which is the sigmoid function d(D) = 1

1+4−D . We provide more
detailed explanation of the results presented in the thesis in the next section.

1.1 Contributions and Organization
The technical contents of the thesis are divided into two main parts, where in each part we study one
of the problem classes introduced above.

Structured signal recovery in phase retrieval
The fundamental problem of recovering a signal from magnitude-only measurements is known as
phase retrieval. It has a rich history and occurs in many areas in engineering and applied sciences
such as medical imaging [6], X-ray crystallography [93], astronomical imaging [52], and optics [144].
In most of these cases, measuring the phase is either expensive or even infeasible. For instance, in
some optical settings, detection devices like CCD cameras and photosensitive films cannot measure
the phase of a light wave and instead measure the photon flux. Due to the loss of important phase
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Figure 1.1: An example of a setup for phase retrieval using masks (courtesy of [23]). The phase
plate applied after the sample modulates the spectrum.

information, signal reconstruction from magnitude-only measurements can be quite challenging.
Therefore, despite a variety of proposed methods and analysis frameworks, phase retrieval still faces
fundamental theoretical and algorithmic challenges.

In Chapter 2, the phase retrieval problem is introduced mathematically. Consequently, we provide
discussions on challenges (due to ill-posedness) in signal recovery as well as commonly-used
methods to solve this problem. While the conventional methods mainly focus on solving the
original non-convex formulation of the phase retrieval, recently convex methods have gained
significant attention to solve this problem. The first convex-relaxation-based methods were based
on semidefinite programs (SDPs) [27, 25] and resorted to the idea of lifting [8, 22, 68, 115] the
signal from a vector to a matrix to linearize the quadratic constraints. After introducing this convex
formulation, known as PhaseLift, we focus on a more efficient optimization algorithm for solving
the phase retrieval problem. For this, we define a Riemannian manifold of the points that satisfy
phaseless Fourier measurements (this manifold is referred to fixed norms manifold). By analyzing
the first and second order geometry of this manifold, a novel approach based on Riemannian gradient
is proposed. Numerical simulations demonstrate that this approach outperforms the others in speed
and accuracy.

Chapter 3 investigates the performance of signal recovery by solving an SDP for the Fourier phase
retrieval, where the measurement vectors are rows of the discrete Fourier transform. We further
assume that only low-frequency measurements are available to us (the problem of signal recovery
from low-frequency measurements is known as super-resolution). The results presented in this
chapter provide a flexible measurement scheme using masks, under which the signal recovery is
guaranteed through solving the SDP. The flexible masks design can actually be implemented in
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real-world applications. Figure 1.1, courtesy of [23], shows an example of modulating the signal in
an X-ray imaging setting. We provide a discussion in this chapter on how to implement the proposed
masking scheme in two applications, coherent diffraction imaging (CDI) and direction of arrival
estimation.

Chapter 4 investigates the recovery threshold for the (real-valued) signal through solving an SDP
(PhaseLift) in a setting where the measurements are drawn from a sub-Gaussian distribution. We
analyze this problem as a special example of low-rank matrix recovery from quadratic measurements.
The recovery threshold is established via a universality result that demonstrates equivalence to
another problem where the measurements are independently drawn from an isotropic Gaussian
distribution.

While the convex nature of their formulation makes them appealing for theoretical analysis, semidef-
inite relaxation squares the number of unknowns which makes these algorithms computationally
inefficient, especially in large systems. Therefore, multiple researchers attempted to find other
alternatives to these methods. We should also note that methods based on non-convex optimization
are often complex for precise theoretical analysis and recovery guarantees.

In Chapter 5, we focus on analyzing a recently proposed convex-optimization-formulation for
the complex phase retrieval problem known as PhaseMax where the constraint set is obtained by
relaxing the non-convex equality constraints in the original phase retrieval problem to inequality
constraints. Our results in this chapter provide the first exact analysis of the phase transition
of (complex-valued) PhaseMax. Consequently, Chapter 6 addresses the problem of structured
signal recovery by introducing regularized PhaseMax and analyzing its performance. When the
measurement matrix has i.i.d. Gaussian entries, it is shown that this method is indeed order-wise
optimal, allowing perfect recovery from a number of phaseless measurements that is only a constant
factor away from the optimal number of measurements required when phase information is available.

Binary classification with structured parameters
Machine learning models have been very successful in many applications, ranging from spam
detection, face and pattern recognition, to the analysis of genome sequencing and financial markets.
However, despite this indisputable success, our knowledge on why the various machine learning
methods exhibit the performances they do is still at a very early stage. To make this gap between the
theory and the practice narrower, researchers have recently begun to revisit simple machine learning
models with the hope that understanding their performance will lead the way to understanding the
performance of more complex machine learning methods.
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Figure 1.2: An example of a separable data set with the hyperplane corresponding to the max-margin
classifier. The points that are closest to the hyperplane are called support vectors.

Linear classification is an important building block for most modern machine learning models.
Researchers have studied this problem since the 1950’s, with the goal of finding "optimal" parameters
of the model that separates the two classes of data. In Chapter 7, we mathematically set up the
problem by showing that the parameters of the classifier can be derived by solving an optimization
problem consisting of a loss function and an additive regularization term, where the loss function
is often inspired by the maximum-likelihood estimator, and the regularization term enforces the
structure of the vector of parameters. This optimization problem exhibits two different behaviors
depending on the separability of the training data set. Our results in this chapter give the asymptotic
condition for the separability of the training data set when the data points are drawn from a Gaussian
distribution.

After characterizing the exact phase transition which separates the problem into two different
regimes of operations, we investigate the performance in each case. In Chapter 8, we investigate
the performance of the solution to the optimization problem when the data set in inseparable. In this
regime we form the regularized logistic regression and characterize the performance of its unique
solution.
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In Chapter 9, we study the behavior of the optimization when the data is separable. In this
interpolating regime, there are multiple classifiers that perfectly fit the training data. By studying
their generalization error, Vapnik has provided an upper bound which is inversely proportional to
the minimum distance of the points to the separating hyperplane (a.k.a. the margin). Therefore, the
max-margin classifier has been introduced as the "optimal" classifier. Figure 1.2 shows an example
of a max-margin classifier on a separable 2-D data set. Inspired by the max-margin classifier, we
introduce the ExtendedMarginMaximizer (EMM) which takes into account the structure of the
underlying parameter as well as the minimum distance of the data points to the separating hyperplane
(a.k.a. the margin). We provide sharp asymptotic results on various performance measures (such as
the generalization error) of EMMs and show that an appropriate choice of the potential function can
in fact improve the resulting estimator.

Finally, in Chapter 10 we introduce a new classifier, referred to as the robust max-margin classifier
which incorporates the presence of adversarial perturbations. We show that the proposed classifier
is the solution to a saddle-point optimization problem. Our main result in this chapter establishes
that for a broad class of loss functions, gradient descent algorithms (with properly-tuned step sizes)
converge to the robust max-margin classifier.

1.2 Notations
We gather here the basic notations that are used throughout this writing.

Bold face lower case letters are reserved for vectors and bold face upper case letters are used for
matrices. For a vector v, v) is its transpose, E8 denotes its 8th entry and ‖v‖? is its ;? norm, where
we often drop the subscript for ? = 2. For a scalar C ∈ R, (C)+ = max(C, 0) denotes its positive part,
and SIGN(C) indicates its sign. The set of symmetric (or Hermitian) matrices are denoted by S=,
and tr(·) denotes the trace of a square matrix (i.e., sum of its diagonal entries). I3 represents the
identity matrix in dimension 3. fmax(M) denotes the maximum singular value of the matrix M. 03
and 13 respectively represent the all-one and all-zero vectors in dimension 3. We use calligraphy
letters for sets. For set S, cone(S) is the closed conical hull of S.

For a complex number 2 ∈ C, the notation<(2) =
1
2
(2 + 2∗) represents the real part of 2. Similarly,

the symbol =(2) =
1
2i
(2 − 2∗) refers to the imaginary part of 2 wherein i denotes the imaginary unit,

i.e., i2 = −1. We also have |I | =
√
I<2 + I=2 and ∠(I) denotes the phase of the complex scalar

I. For a complex scalar, I ∈ Z, Ī denotes its conjugate, and (·)∗ is used to denote the conjugate
transpose of a vector.
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- ∼ ?- implies that the random variable - has a density ?- , and E - denotes its expected value.
N(`, f2) denotes real Gaussian distribution with mean ` and variance f2. Likewise, NC(`, f2)
refers to a complex Gaussian distribution with real and imaginary parts drawn independently from
NC(`<, f2/2) and NC(`=, f2/2), respectively. R(2f2) denotes the Rayleigh distribution with the
second moment equals to 2f2. Rad(?), for ? ∈ [0, 1], is the symmetric Bernoulli random variable
which takes the value +1 with probability ? and −1 with probability 1 − ?. �→ and %→ represent
convergence in distribution and in probability, respectively.

A function 5 (·) is said to be !-smooth if its derivative, 5 ′(·), is !-Lipschitz. 5 : R3 → R is called
(invariantly) separable, when for all w ∈ R3 , 5 (w) = ∑3

8=1 5̃ (F8), for a real-valued function 5̃ . For
a function Φ : R3 → R, the Moreau envelope associated with Φ(·) is defined as,

"Φ(v, C) = min
x∈R3

1
2C
| |v − x| |2 +Φ(x) , (1.2)

and the proximal operator is the solution to this optimization, i.e.,

ProxCΦ(·) (v) = arg min
x∈R3

1
2C
| |v − x| |2 +Φ(x) . (1.3)

The function Φ(·) is said to be locally-Lipschitz if for any " > 0, there exists a constant !" , such
that,

∀u, v ∈ [−", +"]3 , |Φ(u) −Φ(v) | ≤ !" ‖u − v‖ . (1.4)

Finally, for any vectorw ∈ R?, the binary classifier associated withw is defined as: �w : R? → {±1},
such that �w(x) = Sign(w)x).
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10C h a p t e r 2

PHASE RETRIEVAL: CHALLENGES AND ALGORITHMS

In this chapter, we introduce and study the first application of the single-index models known
as the phase retrieval. Phase retrieval emerges in many applications in engineering and applied
sciences, where measuring the phase is expensive or altogether infeasible. We start by introducing
the phase retrieval problem in Section 2.1. After mathematically setting up the problem, we discuss
its ill-posedness and present the modern approaches to solve the problem based on imposing a prior
(e.g. sparsity) or exploiting additional measurements. Consequently, in section 2.2 we discuss
the recovery algorithms by first explaining the Gerchberg-Saxton (GS) algorithm [56] which is a
conventional method based on alternating minimization. Consequently, we shift our attention to
convex programs by introducing the PhaseLift method which is a convex-optimization formulation
of the phase retrieval based on semidefinite programming [25].

In Sections 2.3, we suggest a novel Riemannian optimization approach for solving the Fourier
phase retrieval problem by studying and exploiting the geometry of the problem to reduce the
ambient dimension and derive extremely fast and accurate algorithms. We reformulate the problem
as a constrained problem on novel Riemannian manifold, referred to as the fixed-norms manifold.
Deriving the first-order geometry of this manifold in closed form allows the design of a highly
efficient optimization algorithm which is presented in Section 2.4. Numerical simulations in
Section 2.5 suggests that the proposed approach outperforms conventional optimization-based
methods both in accuracy and convergence speed. The results presented in this section are available
in the research paper [47] by Douik et al.1, and some of the texts appear as it is in the publication.

2.1 Motivations and Problem Setup
The fundamental problem of recovering a signal from magnitude-only measurements is known as
phase retrieval. This problem has a rich history and appears in many areas in engineering and
applied physics, such as astronomical imaging [52], X-ray crystallography [93], medical imaging [6],
and optics [144]. In most of these cases, measuring the phase is either expensive or even infeasible.
For instance, in some optical settings, detection devices like CCD cameras and photosensitive films
cannot measure the phase of a light wave and instead measure the photon flux.

1A. Douik, F. Salehi, and B. Hassibi. “A Novel Riemannian Optimization Approach and Algorithm for Solving the
Phase Retrieval Problem.” In: Proc. of the 53rd Asilomar Conference on Signals, Systems, and Computers, Asilomar,
CA, USA. Vol. 1. 1. Nov. 2019, pp. 1962–1966.



Let x0 ∈ C= denote the underlying signal. We consider the phase retrieval problem with the goal of
recovering x0 from < magnitude-only measurements of the form,

18 = |a★8 x0 |, 8 = 1, . . . , <, (2.1)

where we assume that {a8 ∈ C=}<8=1 is the set of known measurement vectors. Originally, the phase
retrieval problem has been introduced in applications such as coherent diffraction imaging and
optics, where the measurements correspond to the Fourier transform of the underlying signal, i.e.,
the measurement vectors are the rows of the DFT matrix. In more recent applications, more general
settings become feasible for the measurement vectors. As an example, [82] designed a measurement
framework using a random dielectric metasurface diffuser (MD) where the MD can be designed to
have scattering matrix, with certain properties.

Given the measurements, the phase retrieval problem can be formalized as the following optimization:

find x

subject to: |a★8 x| = 18 , 1 ≤ 8 ≤ <.
(2.2)

Identifiability
We first note that there is a trivial ambiguity due to global phase change, which cannot be identified
in the phase retrieval problem. To resolve this, one can assume, without loss of generality, that the
first entry of the signal is real-valued.

When the number of measurements, <, is the same as the number of unknowns = (e.g. Fourier
phase retrieval), the available data is highly incomplete. In fact, for any given Fourier magnitude,
the Fourier phase can be chosen in an =-dimensional set, and distinct phases result in distinct signals.
For Fourier phase retrieval, it is well known that the phase often contains more information than the
Fourier magnitude. Therefore, the Fourier phase retrieval is a highly-illposed problem.

To compensate on this ill-posedness of the phase retrieval problem, and inspired by the recent
developments in measurement technologies, researchers have investigated new approaches for the
phase retrieval problem which can be categorized into the following two main streams:

(i) Imposing prior information: When the number of measurements are not enough to uniquely
determine the underlying signal, one can often enforce certain structure(s) on the underlying
signals. Imposing such structures reduces the "effective dimension" (a.k.a. degrees of freedom)
of the underlying signal and reduces the ill-posedness of the phase retrieval problem. The most
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popular example of a structure is the sparse structure, when it is assumed that the underlying
signal is sparse (with few non-zero entries). Inspired by the recent advances in the area of
compressed sensing [26, 43], researchers have recently analyzed recovery algorithms for the
sparse phase retrieval.

(ii) Additional measurements: The abovementioned ill-posedness arises due to the fact that the
number of Fourier measurements (=) is less than the number of 2= − 1. Therefore, when no
structure is present, having additional measurements is inevitable to uniquely identify the
signal. However, when < > =, many of the measurement vectors can no longer form an
orthonormal basis. There are two main approaches to introduce additional measurements:

a) Fouriermeasurements: Awidely-usedmethod to acquire additional Fouriermeasurements
is to use multiple masks and measure the Fourier transform of the masked signal.

b) Random measurements: Another popular approach is to consider the setting in which
the measurment vectors are drawn randomly from a distribution.

We will see examples of both of these approaches in the remaining of this chapter.

To conclude this section, we state the following result from Jaganathan et al. [68] on the identifiability
of the signal in sparse phase retrieval.

Theorem 1 (Theorem 2.1 in [68]). Let S: represent the set of all :-sparse signals with aperiodic
support, where 3 ≤ : ≤ = − 1. Almost all signals in S: can be uniquely recovered.

2.2 Recovery Algorithms
Phase Retrieval is a classical problem, and various algorithms have been proposed to tackle this
problem in the identifiable regime. The conventional algorithms focus on the Fourier setting
where the measurements are the magnitude of the Fourier transform of the underlying signal. The
conventional methods focus on solving the non-convex optimization via iterative updates. The
Gerchberg-Saxton [56] is a widely-used algorithm for Fourier phase retrieval in practice based on
the alternating projections.

GS starts by adding = non-zero entries to the underlying signal x. Define x̃ ∈ C2= such that x̃8 = x8
for 8 = 1, 2, . . . , =, and x̃8 = 0 for 8 > =. The GS considers the 2=-DFT measurements of x̃.

In a consequent work, Fienup [53] has improved the Gerchberg-Saxton algorithm by imposing
additional constraint on the signal. Despite great success in practical application, rigorous theoretical
analyses are not available for these methods.
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Algorithm 1 GS Algorithm
Require:

F ∈ C2=×2=: 2=-DFT matrix
b = |Fx̃|: Magnitude of the discrete Fourier measurements

Ensure: x ∈ C=: Estimate of the underlying signal
Initialize x(0) randomly, C ← 0
while C < ) do

Compute the Fourier transform y(C) = Fx(C)
Impose measurement constraints ỹ(C)

8
= SIGN(y(C)

8
) b8, for 8 = 1, 2, . . . , 2=.

Compute the inverse Fourier transform, x(C+1) = F−1ỹ(C)
Set values equal to zero: x(C+1)

8
= 0 for 8 = = + 1, . . . , 2=.

C ← C + 1
end while
return x()) [1 : =]

SDP-based methods
More recently, methods based on convex optimization have gained significant attentions to solve the
phase retrieval problem. Due to the convex nature of their formulation, these algorithms usually
have rigorous theoretical guarantees. These methods are mainly based on semidefinite programming
by linearizing the resulting quadratic constraints using the idea of lifting [27, 57, 142, 143, 25, 11,
101, 8, 67].

By lifting the optimization variable, x, one can rewrite the measurement in terms of the lifted
variable, X = x★x as follows:

b2
8 = |a★8 x|2 = a★8 xx★a8 = tr

(
a★8 Xa8

)
= tr

(
X(a8a★8 )

)
= tr(XA8),

where A8 ∈ S= is defined as A8 = a8a★8 . Using this lifted formulation, one can rewrite the phase
retrieval problem as,

find
X∈S=

X

s.t. tr
(
XA8) = b2

8 , for 8 = 1, 2, . . . , <

rank(X) = 1

X � 0 .

(2.3)

Or, equivalently, it can be written as,
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min
X∈S=

rank
(
X
)

s.t. tr
(
XA8) = b2

8 , for 8 = 1, 2, . . . , <

X � 0 .

(2.4)

Note that (2.3) and (2.4) are still non-convex optimization programs since rank(·) is a non-convex
function. The problem of finding a minimum rank solution among symmetric (Hermitian) matrices
that satisfy linear constraints has been studied extensively. A promising approach considers a
convex-surrogate for the rank(·) function which is known as nuclear (or trace norm), and defined as:

| |X| |∗ =
=∑
8=1

f8 (X), (2.5)

and for hermitian matrices | |X| |∗ = tr(X). Therefore, the following semidefinite program is derived
by replacing the rank(·) function with the nuclear norm.

min
X∈S=

tr(X)

s.t. tr
(
XA8) = b2

8 , for 8 = 1, 2, . . . , <

X � 0 .

(2.6)

Finding the solution to the phase retrieval by solving the optimization problem (2.6) is often known
as the PhaseLift method [25].

2.3 A Novel Approach Based on Riemannian Optimization for Solving the Phase Retrieval
Problem

Despite the success of semidefinite programs in solving the phase retrieval problem and the
theoretical guarantees and recovery thresholds that follow, these methods are often computationally
expensive. Semidefinite relaxation squares the number of unknowns which makes these algorithms
computationally complex, especially in large systems. This caveat makes these approaches intractable
in real-world applications.

In many applications of the phase retrieval problem, a subset of phaseless measurements is obtained
from an orthonormal basis. For example, the Fourier phase retrieval problem reconstructs a signal
from phaseless measurements of its discrete Fourier transform. This particular structure of the
phase retrieval problem allows its reformulation as a constrained optimization problem wherein
the constraint set is represented by an orthonormal basis. In this section, we suggest exploiting the
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problem structure to reduce the dimension of the problem and design fast recovery algorithms using
Riemannian optimization techniques. To this end, we introduce a new manifold, referred to as the
"fixed norms" manifold, which generalizes the complex sphere S=−1. The results presented in this
section have been published in the research paper [47] by Douik et al.2

Some of the concepts in Riemannian geometry as well as optimization algorithms that are related to
our analysis will be reviewed. For a thorough introduction to these concepts, readers are referred
to the standard texts [16] for differential geometry, [83] for abstract manifold, [105] and [74] for
Riemannian geometry, and [4] for optimization on matrix manifolds.

Setup
Let x ∈ C= be a complex vector of dimension = and assume that the < observations are obtained by
√
18 = |a∗8 x|, 1 ≤ 8 ≤ < with the sensing vectors a8 ∈ C=. Considering a smooth loss function ℓ, the

phase retrieval problem can be formulated as

min
x∈C=

<∑
8=1

ℓ( |a∗8 x|,
√
18) . (2.7)

Without loss of generality, assume that the first : observations are obtained from an orthogonal
basis, say the discrete Fourier transform for : = =. In other words, matrices A8 = a8a∗8 , 1 ≤ 8 ≤ :
are non-negative orthogonal projection matrices that collectively span the whole ambient space C=,
i.e., A8 = A∗

8
, A8A 9 = X8 9A8 and

∑:
8=1 A8 = I=.

The Riemannian optimization formulation for the phase retrieval problem
The unconstrained optimization of the phase retrieval problem in (2.7) can be formulated as a
constrained optimization as follows:

min
x∈C=

<∑
8=:+1

ℓ( |a∗8 x|,
√
18) (2.8a)

s.t. |a∗8 x| =
√
18, 1 ≤ 8 ≤ : . (2.8b)

Clearly, the modulus equality constraint |a∗
8
x| =
√
18 of (2.8) is equivalent to the quadratic constraint

x∗a8a∗8 x = 12
8
. Define the matrices A8 = a8a∗8 , 1 ≤ 8 ≤ : . From the previous assumptions on

the system model, the set of matrices {A8}:8=1 are non-negative orthogonal projection matrices
2A. Douik, F. Salehi, and B. Hassibi. “A Novel Riemannian Optimization Approach and Algorithm for Solving the

Phase Retrieval Problem.” In: Proc. of the 53rd Asilomar Conference on Signals, Systems, and Computers, Asilomar,
CA, USA. Vol. 1. 1. Nov. 2019, pp. 1962–1966.
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that collectively span the whole ambient space C=. In other words, for all 1 ≤ 8, 9 ≤ : , we have
A8 = A∗

8
, A8A 9 = X8 9A8 and

∑:
8=1 A8 = I=. LetM denote the set of solutions to the optimization

problem (2.8), i.e.,M = {x ∈ C= | x∗A8x = 18, 1 ≤ 8 ≤ :}, called herein the fixed norms manifold.
The optimization problem can then be expressed as,

min
x∈M

<∑
8=:+1

ℓ( |a∗8 x|,
√
18) . (2.9)

Background on Riemannian manifold and optimization
A Riemannian manifold (M, 6) is a real smooth manifoldM embedded in the Euclidean space
E and equipped with a Riemannian metric 6. For a point x ∈ M, the tangent space is denoted by
TxM. For tangent vectors bx and [x in TxM, the restriction of the Riemannian metric 6x to TxM
is denoted by 6x(bx, [x) = 〈bx, [x〉x. Similarly, the norm of bx ∈ TxM is defined and denoted by
| |bx | |x =

√
〈bx, bx〉x.

For a real and smooth function 5 : M → R, the directional derivative of 5 at the point x ∈ M
in the direction bx ∈ TxM is denoted by D 5 (x) [bx]. The function that associates to each bx

the directional derivative D 5 (x) [bx] is called the indefinite directional derivative of 5 at x. The
Euclidean and Riemannian gradients of 5 at x ∈ M are denoted by Grad 5 (x) and grad 5 (x),
respectively. Similarly, the Euclidean and Riemannian Hessian of 5 at the point x ∈ M in the
direction bx ∈ TxM are denoted by Hess 5 (x) [bx] and hess 5 (x) [bx], respectively. For a single
variable function W(C), we use the shorthand notation ¤W(C) to denote the first order derivative XW(C)

XC
.

Given a Riemannian connection ∇ onM and an interval I ⊆ R containing 0, a geodesic curve
W : I → M going through x ∈ M in the direction bx ∈ TxM, i.e., W(0) = x and ¤W(0) = bx, is
denoted by Wx,bx (C). The geodesic Wx,bx (C) defines the Exponential map Expx : TxM → M by
Expx(bx) = Wx,bx (1).

Properties of fixed norms manifold
Given a set of : non-negative and orthogonal = × = projection matrices {A8}:8=1 over the complex
field C, i.e., A8 � 0 and A8A 9 = X8 9A8 for all 1 ≤ 8, 9 ≤ : , satisfying ∑:

8=1 A8 = I= and : positive
real numbers {18}:8=1 ∈ R++, the fixed norms manifold is defined by

M = {x ∈ C= | x∗A8x = 18, 1 ≤ 8 ≤ :} . (2.10)

The linear approximation of the manifold at each point is known as the tangent space. The following
result characterizes the tangent space ofM.

16



Lemma 1. The setM is a well-defined real manifold of dimension 2= − : embedded in R= × R=,
which is isomorphic to C=, and whose tangent space at x ∈ M is given by

TxM =
{
bx ∈ C= | <

(
b∗xA8x

)
= 0, 1 ≤ 8 ≤ :

}
. (2.11)

The restriction of the real Riemannian metric 6 to TxM is defined by

〈bx, [x〉x = <(b∗x[x) =
1
2
(b∗x[x + [∗xbx), (2.12)

which turns (M, 6) into a real smooth Riemannian manifold.

The result of Lemma 1 will be used to derive an efficient first-order iterative optimization method
to solve the optimization problem (2.9). Tangent spaces play an important role in Riemannian
optimization in the same fashion that derivatives of smooth functions play a crucial role in numerical
optimization.

The normal space is the orthogonal complement of the tangent space with respect to the Riemannian
metric. For the fixed norms manifold, the normal space has the form

NxM =

{
[x ∈ C= | [x =

:∑
8=1

U8A8x, {U8}:8=1 ∈ R
}
. (2.13)

This is due to the fact that for any tangent vector bx ∈ TxM, we have the following,

〈bx, [x〉x =
1
2

:∑
8=1

U8
(
b∗xA8x + x∗A8bx

)
=

:∑
8=1

U8<
(
b∗xA8x

)
= 0 ,

where the last equality is from the (2.11). Proceeding onwards, we can now derive a closed-form for
the orthogonal projections onto the normal space and the tangent space.

For an aribitrary vector y ∈ C=, the projections onto the tangent space TxM and the normal space
NxM, respectively denoted by Πx(y) and Π⊥x (y), are given by

Πx(y) = y −
:∑
8=1

1
218
(y∗A8x + x∗A8y)A8x, (2.14)

Π⊥x (y) =
:∑
8=1

1
218
(y∗A8x + x∗A8y)A8x . (2.15)

Another important concept in Riemannian manifolds is geodesics, which generalizes the concept
of straight lines in a Euclidean space. Here we state the following lemma without proof which
represents the geodesic curve of the fixed norms manifold.
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Lemma 2. The geodesic curve Wx,bx : R→M going through x ∈ M in the direction bx ∈ TxM is
given by

Wx,bx (C) =
:∑
8=1

[
cos

©«
√√
b∗xA8bx

18
C
ª®®¬ A8x +

√√
18

b∗xA8bx
sin

©«
√√
b∗xA8bx

18
C
ª®®¬ A8bx

]
. (2.16)

The reader can refer to Lemma 2 in [47] for the proof.

The exponential map is a function from a subset of a tangent space TxM to the manifoldM that
associates to each tangent direction bx in the neighborhood of 0x a geodesic curve W : R → M
going through x ∈ M in the direction bx ∈ TxM, i.e., W(0) = x and ¤W(0) = bx. A manifold is said to
be geodesically complete if the domain of its exponential map is the whole tangent space.

2.4 Proposed Algorithms for Phase Retrieval
Now that we characterized the tangent space, the only remaining ingredient for our Riemannian
optimization algorithm is a retraction, a mapping from the vectors in the tangent space to the points
on the manifold.

Mapping from the tangent space to the manifold
After obtaining the descent direction −grad 5 (xC), the unconstrained optimization algorithms update
the point by xC+1 = xC − `Cgrad 5 (xC), `C is a (time-varying) step size. However, on Riemannian
manifolds, such point may lie outside the manifold. The natural approach is to move along the
geodesic in xC in the direction −`Cgrad 5 (xC), i.e., to use the Exponential map for the update by
setting xC+1 = ExpxC (−`Cgrad 5 (xC)). However, evaluating this map for the fixed norms manifold is
computationally intensive to calculate. Therefore, to improve the efficiency of the algorithm, instead
of moving along the geodesic, one needs to move on a curve that only preserves the gradient at xC .
This is accomplished by the concept of a retraction defined below

Definition 1 (Retraction). A retraction 'x is a mapping from TxM toM that satisfies the following
properties:

1. Centering Property: 'x(0x) = x

2. Local Rigidity Property:
X'x(Cbx)

XC

���
C=0
= bx

The choice of a computationally efficient retraction is a crucial step in designing highly efficient
Riemannian optimization algorithms. [4] provides a way of constructing a retraction by exploiting
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the Euclidean structure of the embedding space. Following the same approach, we design a highly
efficient first-order retraction on the fixed norms manifold:

'x(bx) =
:∑
8=1

√√
18

18 + b∗xA8bx
A8 (x + bx) . (2.17)

Riemannian steepest descent algorithm
After introducing the efficient retraction in (2.17), we are now ready to use this to present the
Riemannian steepest descent optimization algorithm on the embedded fixed norms manifold where
the steps are summarized in Algorithm 2.

Algorithm 2 Gradient Descent on the Fixed Norms Manifold
Require:
M: Fixed norms manifold
ℓ(·): The loss function
∇ℓ: Gradient of the loss

- Initialize x ∈ M.
while ∇ℓ∗(x)∇ℓ(x) ≥ n do

- Compute search direction

bx = ∇ℓ(x) −
:∑
8=1

1
218
(∇ℓ∗(x)A8x + x∗A8∇ℓ(x))A8x

- Find Armĳo step size U using Backtracking.

- Update x =
:∑
8=1

√
18

18 + U2b∗xA8bx
A8 (x + Ubx).

end while
return x
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2.5 Numerical Simulations
In this section, the convergence time and accuracy of the proposed Riemannian gradient descent
and conjugate gradient algorithms on the fixed-norms manifold (Algorithm 2) are compared to
state-of-the-art unconstrained, e.g., trust-region, and constrained, e.g., interior point and active
set, optimization methods. For the empirical simulations, we generate the underlying signal
xopt as a random complex Gaussian vector and all algorithms are initialized with x such that
E| |x − xopt | |22 = 2=f2.
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Figure 2.1: Comparison of the running time (in seconds) of different constrained and unconstrained
optimization algorithms for solving the Fourier phase retrieval. The horizontal axis represents the
inverse of the standard deviation (f) in dB.

Figure 2.1 depicts a comparison of the running time of the different algorithms in solving the
Fourier phase retrieval problem. It can be seen from the figure that the proposed algorithms on the
fixed norms manifold systematically run faster than all other tested algorithms with an average of
50 − 100 fold gain. Furthermore, it can be observed in Figure 2.2 that optimizing over the fixed
norms manifold provides significantly higher accuracy, or equivalently a lower loss. As an example,
for a f equal to 5-dB, the achieved accuracy by the conjugate-gradient on the fixed-norm manifold is
7 order of magnitude higher than the best accuracy achieved by other tested algorithms. Therefore,
properly exploiting the geometry of the problem, the proposed algorithm outperforms traditional
optimization-based methods both in accuracy and convergence speed.
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Figure 2.2: Comparison of accuracy of different constrained and unconstrained optimization
algorithms in reconstructing the solution of the Fourier phase retrieval. The horizontal axis
represents the inverse of the standard deviation (f) in dB.
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22C h a p t e r 3

MULTIPLE ILLUMINATIONS PHASELESS SUPER-RESOLUTION

Phaseless super-resolution is the problem of recovering an unknown signal from measurements
of the "magnitudes" of the "low frequency" Fourier transform of the signal. This problem arises
in applications where measuring the phase and making high-frequency measurements are either
too costly or altogether infeasible. The problem is especially challenging because it combines
the difficult problems of phase retrieval and classical super-resolution. It has been shown that by
appropriately "masking" the signal, and obtaining measurements of the masked signals, one can
uniquely and robustly identify the phase using semidefinite programming. This is particularly useful
as, upon recovering the phase, the problem will reduce to the classical super-resolution problem for
which the performance has been analyzed (see e.g. [28]).

In this section, we broadly extend the class of masks that can be used to recover the phase and show
how their effect can be emulated in coherent diffraction imaging using multiple illuminations, as
well as in direction-of-arrival (DoA) estimation using multiple sources to excite the environment.
We provide numerical simulations to demonstrate the efficacy of the method and approach. The
results presented in this chapter are available in the research paper [115]1, and some of the texts
appear as it is in the publication.

3.1 Background and Motivation
It is often difficult to obtain high-frequency measurements in sensing systems due to physical
limitations on the highest possible resolution a system can achieve. As an example, the fundamental
resolution limit in optical systems caused by diffraction is an obstacle to observe sub-wavelength
structures. Super-resolution is the problem of recovering the high-frequency features of the signal
using low-frequency Fourier measurements. In addition, as discussed in the previous chapter, many
measurement systems can only measure the magnitude of the Fourier transform of the underlying
signal, and the fundamental problem of recovering a signal from the magnitude of its Fourier
transform is known as phase retrieval.

Both of the aforementioned reconstruction problems have rich histories and occur in many areas in
1F. Salehi, K. Jaganathan, and B. Hassibi. "Multiple Illumination Phaseless Super-resolution (MIPS) with

Applications to Phaseless DoA Estimation and Diffraction Imaging." In: Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on. IEEE. 2017, pp. 3949–3953.



engineering and applied physics such as astronomical imaging [106, 52], X-ray crystallography [93],
medical imaging [59, 6, 5], and optics [144]. A wide variety of techniques have been proposed for
super-resolution [116, 109, 28, 127] and phase retrieval [53, 66, 117] problems.

Here we consider the phaseless super-resolution problem, which is the problem of reconstructing a
signal using its low-frequency Fourier magnitude measurements. Our work is inspired by [69] where
it was shown that using three phaseless low frequency measurements, obtained by appropriately
"masking" the signal, one can uniquely and robustly identify the phase using convex programming
and obtain the same super-resolution performance reported in [28]. While this is a significant result,
due to physical limitations in measuring systems, it is not always possible to generate the mask
matrices required in [69]. The main contribution of this paper is to broadly extend the class of
masks that can be used to recover the phase using convex programming. In addition, we show how
these masks can be implemented in coherent diffraction imaging, using multiple illuminations,
and direction of arrival estimation, using multiple sources to excite the environment.

The remaining of this chapter is organized as follows. In Section 2, we mathematically set up
the reconstruction problem and present our main result. In Section 3, we describe the practical
significance of our result. Section 4 contains the details of the proof. The results of the various
numerical simulations are presented in Section 5.

3.2 Main Result
Let x =

[
G0, G1, . . . , G=−1

])
be a complex-valued signal of length = and sparsity B. Suppose we

have a device that can only measure the magnitude-squares of the 2: + 1 low frequency terms
of the =-point discrete Fourier transform (DFT) of x (one DC term and : lowest frequencies on
either side of it). Clearly, this is not sufficient to generally recover x. The idea of masked phaseless
measurements is to obtain additional information by first masking the signal and then measuring the
magnitude-squares of the 2: + 1 low frequency terms of its =-point DFT. Mathematically, masking a
signal is equivalent to multiplying it by a diagonal "mask" matrix, say D [23, 65].

In fact, more than one mask is necessary if one wishes to recover general signals from such
measurements. Assuming we have A masks, for 0 ≤ ; ≤ A − 1, we will represent them by
D; = diag(3; [0], 3; [1], . . . , 3; [= − 1]). The problem we are interested in is recovering x ∈ C= from
the resulting collection of low frequency masked phaseless measurements, viz.,

find x

s.t. / [<, ;] = |〈f<, D;x〉|2

for − : ≤ < ≤ : , and 0 ≤ ; ≤ A − 1,

(3.1)
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where 〈·, ·〉 is the standard inner product operator, f< is the conjugate of the <th column of the
=-point DFT matrix, and / [<, ;] denotes the magnitude-square of the <th term of the =-point DFT
for the ;th mask. The index < is to be understood modulo =, due to the nature of the =-point DFT.

There are two main issues that arise with the above problem: (1) designing a set of masks for which
one can (up to a global phase) uniquely, efficiently, and stably identify the signal, and (2) developing
an algorithm that can provably do so. Both these issues were resolved in [69] where it is shown that,
under appropriate conditions, the following three masks

D0 = I= , D1 = I= + D(1) , D2 = I= − i D(1) , (3.2)

where D(1) is a diagonal matrix whose diagonal entries are given by

3 (1) [D] = 4i2c D
= , D = 0, 1, . . . , = − 1, (3.3)

are sufficient to uniquely identify the rank-one Hermitian matrix, X = xx∗ by solving the following
convex (semidefinite) program,

min
-∈S=

‖X‖1

s.t. / [<, ;] = tr
(
D★
; f<f★<D;X

)
for − : ≤ < ≤ : , and 0 ≤ ; ≤ A − 1,

X � 0.

(3.4)

The above convex program is obtained by the standard method of linearizing a quadratic-constrained
problem by lifting the problem to the rank-one matrix X = xx∗, and consequently convexifying it by
relaxing the rank one constraint to a non-negativity constraint. This method has been explained
earlier in Chapter 2.2. Here, since the matrix we want to recover is sparse, the ℓ1 norm is used as the
objective function.

While the result of [69] is very nice, in many applications, the masking matrix D(1) is difficult to
implement. Therefore, it is desirable to have more flexibility in the mask designs so as to permit
more applications. We herein propose a set of 5 flexible masks. The building blocks of these masks
are the diagonal matrices denoted by D(@) , for 0 ≤ @ ≤ = − 1, whose diagonal entries are,

3 (@) [D] = 4i2c @D
= , D = 0, 1, . . . , = − 1. (3.5)

We are now in a position to state the main result of this chapter.
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Theorem 2. The convex program (3.4) has a unique optimizer, namely X = xx★, and thus x can be
uniquely identified (up to a global phase), if

1. Δ = min
0≤8, 9≤B−1,8≠ 9

(C8 − C 9 ) mod = ≥ �=
:
, where C8s for 0 ≤ 8 ≤ : − 1 are the positions of the

non-zero entries of x, and � is a numerical constant.

2. y−: , . . . , y0, . . . , y: ≠ 0, where y denotes the =-point DFT of x.

3. The following mask matrices are used:

D0 = D(0) = I, D1 = I + D(@1) , D2 = I − i D(@1)

D3 = I + D(@2) , D4 = I − i D(@2) .
(3.6)

4. @1 and @2 are integers that satisfy

623 (@1, @2) = 1, |@1 | + |@2 | ≤ 2:. (3.7)

As we shall presently see, the masks used in the theorem are easy to implement in both DoA
Estimation and Coherent Diffraction Imaging setups.

3.3 Applications
Phaseless Direction of Arrival Estimation
Consider the planar direction of arrival estimation setup described in Fig. 3.1. Suppose there are
" objects which can reflect waves, with the <th object, for 0 ≤ < ≤ " − 1, located at distance
A< and angle \< from the origin. A transmitter positioned at location − ;_2 on the G-axis, where
_ is the transmission wavelength, is used to transmit narrow-band waves with center frequency
52 =

2
_
, and a uniform linear array (ULA) consisting of 2: + 1 receivers located along the G-axis at

(− :_2 , . . . , 0,
_
2 , . . . ,

:_
2 ) is used for signal detection. The direction of arrival estimation problem

deals with estimating \<, for 0 ≤ < ≤ " − 1, from the received signal.

If y denotes the narrow-band vector impinging on the receivers in the frequency domain, then we
can write:

H: ∝
"−1∑
<=0
(d<4

−i2l2A<
2 )4ic(:−;)B8=\< , (3.8)

where d< is the reflectivity of object < and l2 = 2c 52 [136]. We refer the reader to section 6.1
of [64] to follow details of this formulation. If ; = 0, then the vector y represents the 2: + 1
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Figure 3.1: Direction of arrival estimation using a uniform linear array.

low-frequency terms of the Fourier series of a signal having amplitudes d<4
−i2l2A<

2 at locations
B8=\<

2 . Hence, direction of arrival estimation involves solving the classic super-resolution problem.

Observe that, for an integer @, the vector y represents the 2: + 1 low-frequency measurements of the
same signal which is masked by the matrix D(@) . Theorem 2, coupled with this critical observation,
enables phaseless direction of arrival estimation.

The mask D0 in Theorem 2 can be implemented by putting an in-phase transmitter at the origin, D1

and D3 by using additional in-phase transmitters at − @1_
2 and − @2_

2 , respectively, and D2 and D4 by
using additional transmitters that have c/2 phase difference at those very locations. As a result, if 5
strategically placed transmitters are used for transmission, then there is no need to measure phase
during reception and the angles can be provably recovered by solving (3.4). This is particularly
useful in scenarios where measuring phase reliably is either impractical or too costly.

Remark 1. This idea also extends to the nested array and co-prime array setups described in [102]
and [137], respectively.

Coherent Diffraction Imaging (CDI)
Consider the planar CDI setup described in Figure 3.2. Let the object and the detector be
perpendicular to the G-axis, located at G = 0 and G = 3, respectively, and k(I) denote the one-
dimensional object which we wish to determine. The object is illuminated using a coherent source
incident at an angle \ with respect to the G-axis.

Detection devices cannot measure the phase of the incoming light waves (the frequency is too high),
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Figure 3.2: A typical Coherent Diffraction Imaging setup.

and instead measure the photon flux. The flux measurements at position I′ on the detector, denoted
by � (I′), are well approximated by:

� (I′) ∝
����∫
I

k(I)4i 2cI
_
(− I′

3
+\)3I

����2 . (3.9)

If \ = 0, then the measurements provide the knowledge of the Fourier magnitude-square of k(I).
Section 6.2 in [64] presents details of the above formulation. Therefore, diffraction imaging involves
solving the phase retrieval problem. Quite often, the approximation (3.9) only applies to positions
closer to I = 0. As a result, one needs to solve phaseless super-resolution in order to recover the
underlying object.

If \ = @

3
, then the measurements correspond to the Fourier magnitude-square of k(I) masked by the

matrix D(@) . The equations are identical to those in the direction of arrival setup. Hence, by using 5
strategic illuminations (using sources placed at \ = 0, @1

3
,
@2
3
), one can provably recover the object

from the low-frequency Fourier magnitude measurements by solving (3.4).

3.4 Proof of Theorem 2
Let F denote the =-point DFT matrix and F: be the (2: + 1) × # sub-matrix of F, consisting of the
rows −: ≤ < ≤ : (understood modulo #). Define y: = F:x which simply denote the 2: + 1 low
frequency terms in the =-point DFT of x. The proof involves two key steps:
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1. The matrix y:y∗: is uniquely determined by the set of constraints described in (3.4).

2. Given y:y∗: , the matrix xx∗ can be uniquely reconstructed by minimizing ‖X‖1 under the
conditions specified in Theorem 2.

Proceeding onward, we now provide the details for the first step. Consider the following affine
transformation Y = F:XF∗

:
. When measurements are obtained using the masks proposed in

Condition 3 of Theorem 2, the affine constraints of (3.4) can be rewritten in terms of the variable Y
as follows,

Y[<, <] = |y: [<] |2, for − : ≤ < ≤ : ,
Y[<, < + @1] = y: [<]y∗: [< + @1], for − : ≤ < ≤ : − @1 ,

Y[<, < + @2] = y: [<]y★: [< + @2], for − : ≤ < ≤ : − @2.

(3.10)

where Y[A, 2] denotes the entry in row A and column 2 of the matrix Y. For the sake of brevity, we
omit some of the details here. We refer the interested readers to the proof of Theorem 3.1 in [69].

As a result of (3.10), the set of constraints in (3.4) can be viewed as a matrix completion problem in
Y. Next, we define a graph � = (V, E) on the vertices V = {−:,−: + 1, . . . , : − 1, :} with the
edge set E defined such that, for −: ≤ < ≤ : , (<, < − @1) ∈ E and (<, < − @2) ∈ E. In other
words, the graph � contains an edge between vertices 8 and 9 if the (8, 9)th entry of . is fixed by the
measurements. Since ;1 and ;2 are co-prime (Condition 4 in Theorem 2), the graph � is connected.
Additionally, every vertex has an edge with itself (i.e., all the diagonal entries are fixed by the
measurements).

The following lemma establishes that under the conditions specified in Theorem 2, the matrix
Y: = y:y∗: is the unique feasible solution.

Lemma 3. Suppose � = (V, E) is an undirected graph on V = {E0, E1, . . . , E=−1}. For 4 =
(E8, E 9 ) ∈ E, define A4 ∈ C=×= as the matrix with all entries zero except for A[8, 9], which is equal
to 1. Also, for 8 = 0, 1, . . . , = − 1, define the matrix A8 ∈ C=×= as the matrix that is zero everywhere
except for A[8, 8], which is equal to 1. Suppose z ∈ C= is a vector with all entries being non-zero.
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The matrix Z = zz∗ is the unique solution of

find
X∈S=

X

s.t. tr
(
A8X

)
= |z[8] |2, for 8 = 0, 1, . . . , = − 1

tr(A4X) = z∗ [ 9]z[8], for 4 = (E8, E 9 ) ∈ E
X � 0

(3.11)

if and only if � is connected.

The proof of Lemma 3 is based on the method of dual certificates. We postpone the detailed proof
to Section 3.6.

Now that we established the uniqueness of Y: from the result of Lemma 3, we can explain the
second key ingredient of the proof. Note that after finding Y: , the problem would reduce to the
classical super-resolution problem.

To apply the theoretical result from the theory of super-resolution, we exploit the fact that Y
corresponds to the 2: + 1 two-dimensional low frequencies of the two-dimensional signal X.
Consequently, this step would be a direct consequence of the two-dimensional super-resolution
theorem in [28]. When Condition 1 in Theorem 2, also known as the minimum separation condition,
holds the optimization program (3.4) uniquely identifies the signal.

3.5 Numerical Results
In this section, the performance of the solution to the optimization problem (3.4) is demonstrated
through numerical simulations. We provide simulation results for both noiseless and noisy settings.

Noiseless setting
We choose = = 40, @1 = 2, and @2 = 3. The masks {D0,D1,D2,D3,D4} defined in (3.6) are used
to obtain phaseless low frequency measurements. Using parser YALMIP and solver SeDuMi, we
simulate 20 trials for various choices of : and Δ. We generate the indices of the support of the signal
in such a way that the minimum separation condition (i.e. condition 1 in Theorem 2) is satisfied.
Signal values in the support are drawn independently from a standard normal distribution. The
probability of successful reconstruction of the signal by the semidefinite program (3.4) as a function
of : and Δ is depicted in Figure 3.3. The white region corresponds to a success probability of 1 and
the black region corresponds to a success probability of 0. The plot shows that (3.4) successfully
reconstructs signals with high probability when : ≥ =

Δ
.
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Figure 3.3: Probability of successful reconstruction of the signal by solving the semidefinite
program 3.4. For the numerical simulations, we set = = 20, @1 = 2, and @2 = 3. The empirical result
is based on 20 trials for various choices of : and Δ, using the masks defined in (3.6).

Noisy setting
A major advantage of semidefinite programming-based reconstruction is robustness to noise. In this
part, we demonstrate the performance of the solution of the optimization program (3.4) in the noisy
setting.

To test the robustness, here we add an i.i.d. standard normal noise (with appropriate variance) to
each measurement, / [<, A]. We first solve the program (3.4) by replacing the equality constraints
with appropriate inequality constraints, and obtain the optimizer X̂. Then, we find its best rank-one
approximation, say x̂x̂★. The estimate x̂ is then compared with the true solution x in terms of the
mean-squared error.

We set = = 40, @1 = 2, @2 = 3, : = 14, and Δ = 8. By varying the signal-to-noise ratio (SNR),
we simulate 20 trials and compute the mean-squared error E[ ‖x̂−x‖22

‖x‖22
]. The results are depicted in

Figure 3.4.

In the logarithmic scale, we see a linear relationship between the mean-squared error and SNR. This
clearly indicates that the reconstruction is stable in the noisy setting.
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Figure 3.4: Mean-squared error (MSE) as a function of SNR for = = 40, @1 = 2, @2 = 3, : = 14, and
Δ = 8.

3.6 Proof of Lemma 3
The proof is based on the method of dual certificates. We define matrix W ∈ C=×= as follows:

W =
∑

8, 9 :(E8 ,E 9 )∈E
W8 9 (3.12)

where W8 9 , for 0 ≤ 8, 9 ≤ = − 1, is a matrix defined as follows,

W8 9 = w8 9w∗8 9 , w8 9 = z[ 9]∗e8 − z∗ [8]e 9 , (3.13)

where e8 ∈ C= denotes the 8th vector in the standard basis. We will show that W satisfies the
following properties:

1. W � 0 ,

2. WZ = 0 ,

3. rank
(
W

)
= = − 1 .
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W is a positive semidefinite matrix as it is the sum of W8 9 where W8 9 = w8 9w∗8 9 � 0. In order to
show that properties 2 and 3 are satisfied, we show the following:

y∗Wy = 0⇔ y = Uz for some U ∈ C, (3.14)

which simply means that the null-space of W is span
(
z
)
. One can write:

y∗Wy =
∑

8, 9 :(E8 ,E 9 )∈E
y∗W8 9y =

∑
8, 9 :(E8 ,E 9 )∈E

|y[8]z[ 9] − y[ 9]z[8] |2 (3.15)

which gives the following,

y∗Wy = 0⇔ y[8]z[ 9] − y[ 9]z[8] = 0, ∀(8, 9) ∈ E . (3.16)

If G is connected and the entries of z are all non-zero, (3.16) is valid if and only if y = Uz for some
U ∈ C. This shows that rank

(
W

)
= = − 1. In addition, we have

tr
(
WZ

)
= tr(Wzz∗) = z∗Wz = 0. (3.17)

Proceeding onwards, we use the above properties to prove Lemma 3. To this end, we need to show
that the matrix Z is the unique feasible point of the following optimization problem,

find
X∈S=

X

s.t. tr
(
A8X) = |z[8] |2, for 8 = 0, 1, . . . , = − 1

tr
(
A4X

)
= z∗ [ 9]z[8], for 4 = (E8, E 9 ) ∈ E

X � 0 .

(3.18)

The dual of this optimization problem is

max
_∈C=,`∈C |E |

−
=−1∑
8=0

_8 |z[8] |2 −
∑

8, 9 :(E8 ,E 9 )∈E
(`8, 9z∗ [ 9]z[8] + ¯̀8, 9z∗ [8]z[ 9])

s.t.
=−1∑
8=0

_8A8 +
∑

8, 9 :4=(E8 ,E 9 )∈E
(`8, 9A4 + ¯̀8, 9A∗4) � 0 .

(3.19)
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For 0 ≤ 8 ≤ = − 1, define N(8) as the set of neighbors of node E8 in �. By choosing _★
8
=∑

9 : 9∈# (8) |z[ 9] |2 and `★8 9 = z∗ [ 9]z[8], we can define the following matrix,

W =

=−1∑
8=0

_★8 A8 +
∑

8, 9 :4=(E8 ,E 9 )∈E
(`★8, 9A4 + ¯̀★8, 9A4

∗) . (3.20)

Property 1 of the matrix W ensures that W � 0 which is the dual feasibility. Property 2 is the
complimentary slackness. These two properties prove that Z = zz∗ is an optimal solution for (3.11).

Now suppose there is another solution, namely Z +H, where H ∈ S= is an = × = Hermitian matrix.
Let Tz denote the set of Hermitian matrices of the form,

Tz = {zh∗ + hz∗ : h ∈ C=}, (3.21)

and T⊥z be its orthogonal complement. In other words, Tz is the tangent space at zz∗ to the manifold
of Hermitian matrices of rank one. H can be decomposed as two parts HTz and HT⊥z , that are the
projections of H onto the subspaces Tz and T⊥z , respectively. In order to be an optimal solution, H
should satisfy

tr
(
WH

)
= tr

(
WHTz

)
+ tr

(
WHT⊥z

)
= 0. (3.22)

Property 2 ensures that tr
(
WHTz) = 0; therefore, we have tr(WHT⊥z ) = 0. Since H is a positive

semidefinite matrix, its projection onto T⊥z is also positive semidefinite. HT⊥z � 0 together with
properties 2 and 3 lead to,

tr(WHT⊥z ) = 0⇔ HT⊥z = 0, (3.23)

where for the last equality, we used the fact that the matrix W has rank = − 1 and its null space lies
on the line spanned by z.

To conclude the proof, it remains to show that HTz = 0. In order to be a feasible point, HTz must
satisfy the following conditions:

tr
(
A8HTz

)
= 0, for 8 = 0, 1, . . . , = − 1, and,

tr
(
A4HTz) = 0, for 4 = (E8, E 9 ) ∈ E .

(3.24)
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It is easy to check that the only matrix in Tz which satisfies the above conditions is the zero matrix.
Therefore, H = 0 and Z = zz∗ is the unique solution of (3.11).
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35C h a p t e r 4

RECOVERY THRESHOLD OF PHASELIFT IN REAL PHASE RETRIEVAL

In this chapter, we study the recovery threshold of the semidefinite program (the method known
as the PhaseLift) for the phase retrieval problem. Our result provides a precise analysis on the
required number of measurements in order to perfectly recover the underlying signal, and is valid for
a broad class of sub-Gaussian distributions. To analyze this problem, we first formulate the phase
retrieval as the problem of finding a rank-1 matrix from its quadratic measurements. Consequently,
we consider the problem of low-rank matrix recovery from its quadratic measurements, where the
goal is to recover a low-rank positive semidefinite matrix. The presented recovery threshold is
valid in the asymptotic regime when the dimension of the underlying signal, =, and the number of
measurements, <, go to infinity at a proportional rate, X := <

=
. We show that the minimum rate of

random quadratic measurements (also known as rank-one projections) required to recover a low rank
positive semidefinite matrix is 3A, where A denotes the rank of the PSD matrix. As a consequence,
we settle the long standing open question of determining the minimum number of measurements
required for perfect signal recovery in phase retrieval using the celebrated PhaseLift algorithm, and
show it to be 3=. The results presented in this section are available in the research paper [2] 1, and
some of the texts appear as it is in the publication. This research paper provides a novel universality
result for the setting where the entries of measurement vectors are sub-Gaussian that can be (slightly)
correlated. This is an upgrade compared to the previous results in the literature [100, 103].

4.1 Matrix Recovery from Quadratic Measurements
In this section we consider the problem of recovering a matrix from (so-called) quadratic mea-
surements. Our approach here is similar to that described earlier in Section 2.2. The goal is to
reconstruct a PSD matrix ∈R=×= in a convex set S, given < measurements of the form,

12
8 = a)8 X0a8 = tr

(
X0(a8a)8 )

)
, 8 = 1, . . . , < . (4.1)

Here, {a8}=8=1 denotes the set of measurement vectors. Depending on the application, the matrix
X may exhibit various structures. To enforce this structure, we use a convex penalty function

1E. Abbasi, F. Salehi, and B. Hassibi. “Universality in Learning from Linear Measurements.” In: arXiv preprint
arXiv:1906.08396(2019).



5 : S= → R, to enforce this structure via the following convex estimator,

X̂ = arg min
X∈S

5 (X)

subject to: a)8 Xa8 = 12
8 , 8 = 1, . . . , < . (4.2)

Note that the measurements in (4.1) are linear with respect to the matrix X, yet quadratic with
respect to the measurement vectors a8.

For our result to hold, we require the measurement vectors to satisfy the following assumption:

Assumption 1. We say vectors {a8}<8=1 satisfy Assumption 1, if

1. a8’s are drawn independently from a sub-Gaussian distribution.

2. For each 8, the entries of a8 are independent, zero-mean and unit-variance.

In particular, this assumption is valid when {a8}’s have i.i.d. standard normal entries. We also
impose the following assumptions on the objective function 5 (·).

Assumption 2. We say the function 5 (·) satisfies Assumption 2, if the followings hold true.

1. [Separability] 5 (·) is continuous, convex, and separable, where 5 (x) = ∑=
8=1 58 (G8) .

2. [Smoothness] The functions { 58 (·)} are three times differentiable everywhere, except for a
finite number of points.

3. [Bounded Third Derivative] For any � > 0, there exists a constant 2 5 > 0, such that for all 8,
we have | m

3 58 (G)
mG3 | ≤ 2 5 , for all smooth points in the domain of 58 (·) such that |G | < �.

As observed in the Assumption 2, we only consider the special (yet popular) case of separable
penalty functions. Common choices include ‖X‖ℓ1 , ‖X‖� , and tr(X) (which is equivalent to the
nuclear norm for PSD matrices) for matrices.

Our main result establishes that, when the measurement vectors satisfy Assumption 1, the recovery
threshold of the optimization program is equal to the recovery threshold of the following optimization
program:
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X̂ = arg min
X∈S

5 (X)

subject to: tr ((H8 + I)X) = 12
8 , 8 = 1, . . . , < , (4.3)

where I is the = × = identity matrix, and H is a randomWigner matrix, that is a symmetric matrix
whose upper-diagonal entries are drawn independently from N(0, 1) and its diagonals entries are
drawn independently from N(0, 2). The following proposition presents a formal statement of our
argument.

Proposition 1. Consider the problem of recovering the matrix X0 ∈ S ⊆ S=, from < quadratic
measurements of the form (4.1), using the estimator (4.2). Assume,

• The measurement vectors {a8}<8=1 satisfy Assumption 1, and,

• S is a convex set, and 5 (·) is a convex function that satisfies Assumption 2,

• {H8 ∈ S=}<
8=1 is a set of independent Wigner matrices.

Then, as < and = grow to infinity at a fixed rate < = \ (=), the estimator (4.2) perfectly recovers
X0 with probability approaching one if and only if the estimator (4.3) perfectly recovers X0 with
probability approaching one.

Low-rank Matrix Recovery
Assume the unknown matrix X0 � 0 has rank A, where A is a constant A (i.e., A does not grow
with problem dimensions =, <). Such matrices appear in many applications such as traffic data
monitoring, array signal processing, and phase retrieval. The nuclear norm, ‖ · ‖★, is often used as
the convex surrogate for low-rank matrix recovery [107].

Here, we are interested in analyzing the following optimization,

X̂ = arg min tr(X)
subject to: a)8 Xa8 = 12

8 , 8 = 1, . . . , < .

X � 0 . (4.4)
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Note that tr(·) = ‖ · ‖★ in the cone of PSD matrices. According to Proposition 1, the perfect recovery
in (4.4) is equivalent to perfect recovery in the following optimization with Gaussian measurements,

X̂ = arg min tr(X)
subject to, tr ((H8 + I)X) = 12

8 , 8 = 1, . . . , < .

X � 0 , (4.5)

where H8’s are i.i.d. Wigner matrices as defined in Proposition 1. The following corollary provides
the required number of measurements for the recovery of the true matrix X0.

Corollary 1. Consider the optimization program (4.4), where the matrix X0 � 0 has rank A and
the measurement vectors {a8}<8=1 satisfy Assumption 1. Assume <, =→∞ at the proportional rate
X := <

=
∈ (0, +∞). The estimator perfectly recovers X0 iff X > 3A .

Corollary 1 indicates that 3A= measurements are needed to perfectly recover a rank-A PSD matrix X0,
from quadratic measurements. To the extent of our knowledge, this is the first result that precisely
computes the phase transition of low-rank matrix recovery from quadratic measurement.

Figure 4.1 depicts the result of numerical simulations. For different values of A and X, the Frobenius
norm of the error of the estimators (4.4) and (4.5) has been computed. As observed in this Figure,
the empirical phase transition matches the result of Corollary 1, that is X > 3A .

Phase transition of PhaseLift in phase retrieval
We are now ready to settle the main question of the chapter, that is the required number of Gaussian
measurements for perfect recovery of the signal in Phase retrieval. Recall from Chapter 2 that the
PhaseLift optimization is defined as the optimization (2.6) which has exactly the same form as (4.4),
with X0 = x0x)0 being a rank-1 matrix.

Therefore, the recovery threshold for PhaseLift can be viewed as an important application for the
result of Corollary 1, when the underlying matrix X0 is of rank 1. Corollary 1 states that the phase
transition of the PhaseLift algorithm happens at X★ = 3, i.e., < > 3= measurements are needed for
the perfect signal reconstruction in PhaseLift. We should emphasize the significance of this result
as establishing the exact phase transition of the PhaseLift algorithm was an open problem.
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Figure 4.1: Phase transition regimes for both estimators (4.4) and (4.5), in terms of the oversampling
ratio X = <

=
and A = rank(X0), for the cases of (a) estimator (4.4) with quadratic measurements and

(b) estimator (4.5) with Gaussian measurements. In the numerical simulations, we used matrices of
size = = 40. The data is averaged over 20 independent realizations of the measurements.

4.2 A Universality Result
The result of Proposition 1 and Corollary 1 are justified via a more general universality result by
Abbasi et al [2]. In this section, we state this universality results without proof. The interested reader
is referred to the Appendix of [2] for a more detailed discussion as well as the technical proofs.

Motivation and background
Recovering a structured signal from a set of linear observations appears in many applications in areas
ranging from finance to biology, and from imaging to signal processing. More formally, the goal is
to recover an unknown vector x0 ∈ R=, from observations of the form H8 = a)

8
x0, for 8 = 1, . . . , <. In

many modern applications, the ambient dimension of the signal, =, is often larger than the number
of observations, <, which results in infinitely many solutions that satisfy the linear equations arising
from the observations, and therefore to obtain a unique solution where one must assume some prior
structure on the unknown vector. Therefore, the following estimator is used to recover x0,

x̂ = arg min
x

5 (x) subject to, H8 = a)8 x, 8 = 1, . . . , < , (4.6)

where 5 : R= → R is a convex penalty function that captures the structure of the structured signal.

A canonical question in this area is “how many measurements are needed to recover x0 via this
estimator?" This question has been extensively studied in the literature ( see [122, 7, 33] and the
references therein). The answer depends on the a8 and is very difficult to determine for any given
set of measurement vectors. As a result, it is common to assume that the measurement vectors are
drawn randomly from a given distribution and to ask whether the unknown vector can be recovered
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with high probability. In the special case where the entries of the measurement matrix are drawn
i.i.d. from a Gaussian distribution, the minimum number of measurements for the recovery of x0

with high probability is known and is related to the concept of the Gaussian width (see Chapter 6
for a more detailed discussion on this subject). For instance, it has been shown that 2: log(=/:)
linear measurements are required to recover a :−sparse signal, and 3A= measurements suffice
for the recovery of a symmetric = × = rank-A matrix. Recently, Oymak et al. [100] showed that
these thresholds remain unchanged, as long as the entries of each a8 are i.i.d and drawn from a
"well-behaved" distribution. It has also been shown that similar universality holds in the case of
noisy measurements [103]. Although these works are of great interest, the independence assumption
on the entries of the measurement vectors can be restrictive. Here, we discuss a stronger universality
result which holds for a broader class of measurement distributions. One important ramification
of this result is to establish the precise recovery threshold for the low-rank matrix recovery from
quadratic measurements. Such measurement schemes appear in a variety of problems [35, 21, 147,
87].

Universality theorem
Here we state the main Theorem that is known as the universality result. Before stating the result,
we provide some definitions on the perfect recovery in convex estimators.

Definition 2. Let x0 ∈ S where S ⊆ R= is a convex set. For a convex function 5 : R= → R and a
measurement matrix A ∈ R<×=, we define the convex estimator E{x0,A,S, 5 (·)} as follows,

x̂ = arg min
x∈S

Ax=Ax0

5 (x) . (4.7)

We say E{x0,A,S, 5 (·)} has perfect recovery iff x̂ = x0.

In the main result, presented in Theorem 3, we show universality for a wide range of distributions
on the measurement vector as well as a broad class of convex penalties. Here, we first explain the
conditions needed for the measurement matrix,

Assumption 3. [The Measurement Vectors]Wesay that themeasurementmatrixA =

[
a1, . . . , a<

])
∈

R<×= satisfies Assumption 3 with parameters - ∈ R= and � ∈ R=×=, if the following holds true.

1. [Sub-Exponential Tails] The vectors a8’s are independently drawn from a random sub-
exponential distribution, with mean - and covariance ¯̂I � � � ^I, for some positive
constants ¯̂, ^ > 0.
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2. [Bounded Mean] For some constants 21, g1 > 0, we have ‖`‖22
E[‖a8−-‖2]

≤ 21 · =−g1 for all 8.

3. [Bounded Power] For some constants 22, g2 > 0, we have Var(‖a8 ‖2)
E2 [‖a8−-‖2]

≤ 22 · =−g2 for all 8 .

Assumption 3 summarizes the technical conditions that are essential in the proof of our main
theorem. The first assumption on the tail of the distribution would enable us to exploit concentration
inequalities for sub-exponential distributions. We allow the vector a8 to have a non-zero mean, yet
we require the power of its mean to be small compared to the power of the random part of the vector.
Intuitively, one would like the measurement vectors to sample diversely from all the directions in
the R=, and not to be biased towards a specific direction. Finally, the last assumption is meant to
control the dependencies among the entries of a8 and is used to prove concentration of 1

=
a)
8
Ma8

around its mean, for a matrix M with bounded operator norm. For instance, for a Gaussian vector
g ∼ N(0,�), this assumption reduces to finding constants 22, g2 > 0, such that ‖�‖

2
�

‖�‖2★
≤ 22g

−=.

We are now ready to state our main theorem which shows that the performance of the convex
estimator E(x0,A,S, 5 (·)) is independent of the distribution of the measurement vectors. Hence,
we can replace them with a Gaussian random vectors with the same mean and covariance.

Theorem 3. [non-Gaussian=Gaussian] Consider the problem of recovering x0 ∈ S ⊆ R= from the
measurements y = Ax0 ∈ R<, using a convex penalty function 5 (·) in the estimator E{x0,A,S, 5 (·)}
in (4.7). Assume S is a convex set and < and = are growing to infinity at a fixed rate < = \ (=).
Also assume that

1. 5 : R= → R is a convex function that satisfies Assumption 2.

2. The measurement matrix A =

[
a1, . . . , a<

])
∈ R<×= satisfies Assumption 3, with - := E[a8]

and � := Cov[a8] for all 8 = 1, . . . , < .

3. G =

[
g1, . . . , g<

])
∈ R<×= is a random Gaussian matrix with independent rows drawn from

Gaussian distribution N(-,�) .

Then the estimator E{x0,A,S, 5 (·)} (introduced in Definition 2) succeeds in recovering x0 with
probability approaching one (as < and = grow large), if and only if the estimator E{x0,G,S, 5 (·)}
succeeds with probability approaching one.

Theorem 3 shows that (when the conditions of Assumption 3 are satisfied) only the mean and
covariance of the measurement vectors a8 affect the required number of measurements for perfect
recovery in (4.7).
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It is straightforward that if we have sub-Gaussian measurements {a8}<8=1 that satisfy Assumption 1,
then Vec

(
a8a)8

)
would satisfy Assumption 3. Therefore, Proposition 1 is just an immediate

consequence of the result of Theorem 3.

Analysis of the Gaussian estimator
The universality result stated above indicates that when the assumptions are satisfied, one can simply
replace the measurement vectors with ones with i.i.d. Gaussian distribution while the recovery
threshold remains unchanged. Here we state a result on the performance of the Gaussian estimator.

The descent cone of a convex function 5 (·) at point x0 is defined as

D 5 (x0) = Cone ({z : 5 (x0 + z) ≤ 5 (x0)}) , (4.8)

which is a convex cone. Here, Cone(S) shows the conic-hull of the set S.

The following lemma characterizes the required number of measurements for the equivalent Gaussian
estimator.

Lemma 4. Consider the problem of recovering the vector x0 ∈ S, given the observations y =
Gx0 ∈ R<, via the estimator E{x0,G,S, 5 (·)} introduced earlier. Assume that the rows of G are
independent Gaussian random vectors with mean - and covariance � = MM) . Let X := </= and
the set S and the penalty function 5 (·) are convex. E{x0,G,S, 5 (·)} succeed in recovering x0 with
probability approaching one (as < and = grow to infinity), if and only if

√
X >
√
X★ = E

 max
w∈(S−x0)∩� 5 (x0)

1√
=

M)w∈S=−1

w)g

=

√
1 + 1

=
(w)`)2

 (4.9)

where S=−1 is the =-dimensional unit sphere, and the expected value is over the Gaussian vector
g ∼ N(0,�).
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43C h a p t e r 5

PRECISE ANALYSIS OF (COMPLEX-VALUED) PHASEMAX: PHASE
RETRIEVAL VIA LINEAR PROGRAMMING

In this chapter, we focus on analyzing a recently proposed convex-optimization-formulation for the
complex phase retrieval problem known as PhaseMax. As explained and analyzed in the previous
chapters, conventional convex-relaxation-based methods in phase retrieval resort to the idea of
"lifting" which makes them computationally inefficient, since the number of unknowns is effectively
squared. In contrast, PhaseMax is a novel convex relaxation that does not increase the number of
unknowns. Instead it relies on an initial estimate of the true signal which must be externally provided.
Here, we investigate the required number of measurements for exact recovery of the signal in the
large system limit and when the linear measurement matrix is random with i.i.d. standard normal
entries. If = denotes the dimension of the unknown complex signal and < the number of phaseless
measurements, then in the large system limit we show that <

=
> 4

cos2 (\) measurements are necessary
and sufficient to recover the signal with high probability, where \ is the angle between the initial
estimate and the true signal. Our result indicates a sharp phase transition in the asymptotic regime
which matches the empirical result in numerical simulations. Furthermore, from recent works in the
literature, we provide some insights on how to find an efficient initialization via a method called
spectral initialization.

The organization of this chapter is as follows. In Section 5.1, we provide motivations for this new
convex relaxation as well as a discussion on some earlier works that analyzed PhaseMax. We
mathematically setup the problem in Section 5.2. Consequently, in Section 5.3, we present our main
result followed by discussions and the result of numerical simulations. Finally, Section 5.4 provides
some discussion on spectral initialization. The results presented in this chapter are available in the
research paper [112]1, and some of the texts appear as it is in the publication.

5.1 Motivations and Background
As explained earlier, the phase retrieval problem has a rich history and occurs in many areas in
engineering and applied physics. In most of these cases, measuring the phase is either expensive or
even infeasible. For instance, in some optical settings, detection devices like CCD cameras and

1F. Salehi, E. Abbasi, and B. Hassibi, “A Precise Analysis of Phasemax in Phase Retrieval.” In: 2018 IEEE
International Symposium on Information Theory (ISIT), IEEE, 2018, pp. 976–980.



photosensitive films cannot measure the phase of a light wave and instead measure the photon flux.

Reconstructing a signal from magnitude-only measurements is generally very difficult due to loss
of important phase information. Therefore, phase retrieval faces fundamental theoretical and
algorithmic challenges and a variety of methods were suggested [66]. Convex methods have recently
gained significant attention to solve the phase retrieval problem. These methods are mainly based
on semidefinite programming by linearizing the resulting quadratic constraints using the idea of
lifting (e.g. see [27, 67] and references therein). Due to the convex nature of their formulation, these
algorithms usually have rigorous theoretical guarantees. However, semidefinite relaxation squares
the number of unknowns which makes these algorithms computationally complex, especially in
large systems. This caveat makes these approaches intractable in real-world applications.

Introduced in two independent works [58, 9], PhaseMax is a recently proposed convex formulation
for the phase retrieval problem in the original =−dimensional parameter space. This method
maximizes a linear functional over a convex feasible set. The constrained set in this optimization is
obtained by relaxing the non-convex equality constraints in the original phase retrieval problem to
convex inequality constraints. To form the objective function, PhaseMax relies on an initial estimate
of the true signal which must be externally provided.

The simple formulation of the PhaseMax method makes it appealing for practical applications.
In addition, existing theoretical analysis indicates that this method achieves perfect recovery for
a nearly optimal number of random measurements. The analysis in [58, 9, 60] suggests that
< > �=, where � is a constant that depends on the quality of initial estimate (xinit), is the sufficient
number of measurements for perfect signal reconstruction when the measurement vectors are drawn
independently from the Gaussian distribution. The exact phase transition threshold, i.e. the exact
value of the constant �, for the real PhaseMax has been recently derived in [41, 40]. However, for
the practical case of complex signals, previous results could only provide an upper bound on �.

The main contribution of the results presented in this chapter is the characterization of the phase
transition regimes for the perfect signal recovery in the (complex-valued) PhaseMax algorithm. Our
result is asymptotic and assumes that the measurement vectors are derived independently from
Gaussian distribution. To the extent of the author’s knowledge, this is the first work that computes
the exact phase transition bound of the (complex-valued) PhaseMax in phase retrieval.

In our analysis, we utilize the recently Convex Gaussian Min-max Theorem (CGMT) [130, 129]
which uses Gaussian process methods. CGMT has been successfully applied in a number of different
problems including the performance analysis of structured signal recovery in M-estimators [129, 3],
massive MIMO [131, 1], etc. CGMT has been also used by Dhifallah et. al. [41] to analyze the
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real version of the PhaseMax. The complex case, however, does not directly fit into the framework
of CGMT. Therefore, in this chapter we introduce a secondary optimization that provably has the
same phase transition bounds as PhaseMax and that also can be analyzed by CGMT. A detailed
discussion and proof of the equivalence of the phase transition of the secondary optimization with
the original PhaseMax optimization is provided in Section 5.5.

5.2 Problem Setup
Let x0 ∈ C= denote the underlying signal. We consider the phase retrieval problem with the goal of
recovering x0 from < magnitude-only measurements of the form,

1 9 = |a★9 x0 |, 9 = 1, . . . , <. (5.1)

Throughout this chapter, we assume that {a 9 ∈ C=}<9=1 is the set of known measurement vectors
where the a 9 ’s are independently drawn from the complex Gaussian distribution with mean zero and
covariance matrix I.

As mentioned earlier, the PhaseMax method relies on an initial estimate of the true signal. xinit ∈ C=

is used to represent this initial guess. We assume that both x0 and xinit are independent of all the
measurement vectors. The PhaseMax algorithm provides a convex formulation of the phase retrieval
problem by simply relaxing the equality constraints in (5.1) into convex inequality constraints. This
results in the following convex optimization problem:

x̂ = arg max
x∈C=

<{xinit∗ x}

subject to: |a∗9x| ≤ 1 9 , 1 ≤ 9 ≤ <.
(5.2)

This optimization searches for a feasible vector that possesses the most real correlation with xinit.
Note that because of the global phase ambiguity of the measurements in (5.1), we can estimate x0

up to a global phase. Therefore, we define the following performance measure for the PhaseMax
method,

D(x̂, x0) = min
q∈[−c,c]

‖x̂4 9q − x0‖
‖x0‖

. (5.3)

Under this setting, a perfect recovery of x0 means D(x̂, x0) = 0. In this chapter, we investigate the
necessary and sufficient conditions under which the optimization program (5.2) perfectly recovers
the true signal.
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5.3 Main Result
In this section, we present the main result of this chapter which provides us with the necessary
and sufficient number of measurements for the perfect recovery of the PhaseMax method in (5.2)
under different scenarios. First, we discuss some of the previous works that analyzed the recovery
condition (in terms of the number of measurements) for the (real-valued) PhaseMax. These analyses
have shown that in order to successfully recover the underlying signal x0, O(=) measurements are
needed. While these analyses share the same order complexity, they are not providing an exact
bound. The exact phase transition for the real-valued PhaseMax has been computed in works by
Dhifallah et al. [40, 41]. However, to the extent of the author’s knowledge, the exact phase transition
has not been computed prior to our work [112] (our work was first released in January 2018).

In what follows, after reviewing some of the prior results for the real setting, we present our main
contribution, which is the precise phase transition of the PhaseMax algorithm for recoverying a
complex-valued signal.

Prior work: recovery threshold for the real setting
As explained earlier the PhaseMax optimization has been introduced by two independent works [9,
58], where they analyzed the required number of measurements for the optimization program (5.2)
to successfully recover the underlying signal. Here, we briefly explain these approaches.

Bahmani and Romberg [9] provided the first analysis for the recovery threshold by using some results
from statistical learning theory. They provide an analysis when the measurements are corrupted

with a bounded positive noise. In the noiseless setting, their result indicates that <
dinit
& =, where dinit

defines the correlation between the underlying signal and the initial guess.

Golstein and Studer [58], who first coined the term PhaseMax, analyzed the problem for the setting
where the measurement vectors are drawn from a uniform distribution on the sphere S(=−1)

C
. They

translated the recovery condition into the problem of intersection of the feasible set and the ascent
set (of the objective function), and finding the condition that these two sets have a zero intersection
around x0. They showed that the successful recovery is possible when the number of measurements
satisfies the following:

< >
4=
W
, (5.4)

where W := 1 − 2
c
\, and \ := acos(dinit) is the angle between x0 and xinit. We should note that this

result is sharper than the earlier bound presented. A similar result has been derived by Hand and
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Voroninski [60] using concentration inequalities.

The closest work to our analysis is the results presented by Dhifallah et al. [40, 41] where they
presented a precise phase transition for real-valued PhaseMax in the asymptotic regime where
<.=→∞ at a fixed oversampling ratio X := <

=
∈ [0,∞). They have shown that (provided X > 2) for

isotropic Gaussian measurements, the necessary and sufficient condition for the successful recovery
of the (real-valued) signal via PhaseMax is,

c

X tan( c
X
) > 1 − d2

init, (5.5)

where dinit denotes the correlation between the x0 and xinit. In [41], the authors have shown that
by iteratively applying PhaseMax, a method referred to as PhaseLamp, a better recovery threshold
would be achieved.

Table 5.1 provides a comparison between different recovery thresholds that have been reported in
the previous works in literature.

Authors Sample Complexity

Bahmani-Romberg’16 X > 32
sin4 W

log( 84
sin4 W
)

Hand-Voroninski’16 X > �0(\)
Goldstein-Studer’17 X > 4

W

Dhifallah et al.’17 c
X tan( c

X
) > 1 − d2

init

Table 5.1: Recovery thresholds of PhaseMax reported in prior works in the literature.

Precise phase transition for complex-valued PhaseMax
In this section, we present the main result of the chapter which provides us with the necessary
and sufficient number of measurements for the perfect recovery of the PhaseMax method in (5.2)
under different scenarios. Our result is asymptotic which assumes a fixed oversampling ratio
X := <

=
∈ [0,∞), while = → ∞. In theorem 4, we introduce Xrec which depends on the problem

parameters and prove that the condition X > Xrec is necessary and sufficient for perfect recovery.
Our result reveals significant dependence between Xrec and the quality of the initial guess. We use
the following similarity measure to quantify the caliber of the initial estimate:

dinit := max
0≤q<2c

<{4 9q x∗init x0}
| |x0 | | | |xinit | |

=
|x∗init x0 |
| |x0 | | | |xinit | |

. (5.6)
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Note that the multiplication by a unit amplitude scalar in the above definition is due to the global
phase ambiguity of the phase retrieval solution (the true phase of x0 is dissolved in the absolute value
in (5.1)). Therefore, for convenience we assume that both xinit and x0 are aligned unit norm vectors
(| |x0 | | = | |xinit | | = 1), which results in dinit = x∗init x0. We also define \ as the angle between xinit and
x0, and therefore, dinit = cos \. We now present the main result of the chapter which characterizes
the phase transition regimes of PhaseMax for perfect recovery, in terms of X and dinit.

Theorem 4. Consider the PhaseMax problem defined in Section 5.2. For a fixed oversampling
ratio X = <

=
> 4, the optimization program (5.2) perfectly recovers the true signal (in the sense that

lim=→∞ P(D(x̂, x0) > n) = 0, for any fixed n > 0) if and only if,

X > Xrec :=
4

cos2 \
=

4
d2
init

, (5.7)

where dinit is defined in (5.6).

Theorem 4 establishes a sharp phase transition behavior for the performance of PhaseMax. The
inequality (5.7) can also be rewritten in terms of \ (or dinit) when the oversampling ratio, X, is fixed,

dinit = cos \ >
√

4
X
. (5.8)

The proof of Theorem 4 consists of two main steps. First, we introduce a real optimization program
with 2= − 1 variables and prove that it has the same phase transition bounds as PhaseMax in (5.2).
The point of this step is that this new real optimization is especially built in a way that its performance
can be precisely analyzed using well known tools like CGMT. Therefore, the next step would be to
apply the CGMT framework to the new real optimization and to derive its phase transition bounds.
We postpone a detailed version of the proof to Section 5.5. The following remarks are in place.

Remark 2. The condition X > 4 is proven to be fundamentally necessary for the phase retrieval
problem under generic measurements to have a unique solution [36]. This is consistent with
Theorem 4 where you can observe that even in the best scenario where xinit is aligned with x0, we
still need < > 4= measurements for PhaseMax to have x0 as the solution. On the other hand, in
the case where xinit carries no information about x0 (xinit is orthogonal to x0), recovery of x0 by
PhaseMax is not guaranteed regardless of the number of measurements.

Remark 3. It is shown in [58] that X > 4
1−2\/c is sufficient for perfect recovery of x0. This bound is

compared to our result in Figure 5.1 which shows phase transition regions of PhaseMax derived
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from empirical results. Although the simulations are run on the signals of size = = 128, one can see
that the blue line derived from Theorem 4, perfectly predicts the phase transition boundary.
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Theorem 1

GS Bound

Figure 5.1: Phase transition regimes for the (complex-valued) PhaseMax problem in terms of the
oversampling ratio X = <

=
and \, the angle between x0 and xinit. For the empirical results, we

generated 10 independent realizations of the measurement vectors with = = 128. The blue line
indicates the sharp phase transition bounds derived in Theorem 4 and the red line comes from the
results of [58], which is referred to as the GS Bound.

5.4 Spectral Initialization
As seen in the previous section, an important ingredient of the PhaseMax optimization is an
initialization step to generate the initial guess (xinit) which determines the objective function in (5.2).
In addition to PhaseMax, many of the iterative optimization methods which attempt to directly
solve the non-convex phase retrieval formulation [97, 34, 145] require an initial estimate of that is
well-aligned with the signal. Spectral methods are widely used for generating such initial vectors,
and are widely used in generalized linear models (e.g. [86, 70]).

Here, we focus on the real setting (i.e., real-valued signal and measurement vectors). Similarly
to the previous section, cosine squared similarity is used to measure the alignment of the initial
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estimate derived from spectral initialization, say xinit, with the underlying signal, x0.

d(xinit, x0)2 =
|x)initx0 |2

‖x0‖2‖xinit‖2
(5.9)

We will assume that our measurement vectors are independently and identically distributed according
to the standard normal distribution, 08 ∼ N(0, �=). We will also assume, without loss of generality,
that | |x0 | | = 1. The measurement information we have available to us is H8 = (0)8 x0)2 = 12

8
for

measurements 8 = 1, ..., <.

It is worth noting that achieving a cosine similarity that is greater than a positive constant is
challenging especially in high dimensions. For instance, if we choose xinit uniformly at random from
S=−1, then with high probability, the correlation would be of O(

√
1
=
), which goes to zero as =→∞.

Consider the matrix D< ≡ 1
<

∑<
8=1 ) (H8)a8a)8 , where ) : R → R is some function defined so that

the leading eigenvector of D< corresponds to x0 in the limit as the number of measurements <
goes to infinity. First, we will show that as < → ∞, the leading eigenvector of D< corresponds
to x0 for some suitable function ) (·). As < → ∞, due to the law of large numbers, we can see
that D< → D̄< = E[) (H)00) ], where a ∼ N(0, I=) and H = (a)x0)2. To calculate the converging
matrix D̄<, we simply consider its action on an orthonormal basis for R=.

Let B = {x0, z1, ..., z=−1} be an orthonormal basis of R=, where I1, ..., I=−1 are all orthogonal to
the underlying vector x0. Presenting D̄< in the B has as its first entry x)0 D̄<x0, and z)

8
D̄<z8 for

8 = 1, ..., = − 1 as the rest of its diagonal entries. We have:

x)0 D̄<x0 = x)0E[) (H)aa) ]x0 = E[) (H) (a)x0)2] = E[) (H)H],

and for 8 = 1, 2, . . . , = − 1,

z)8 D̄<z8 = z)8 E[) (H)aa) ]z8 = E[) (H) (a)z8)2] = E[) (H) (a)z8)2] .

Due to the isotropic Gaussian distribution of a, we have that a)z8 has a standard normal distribution
and is independent of H, hence,

z)8 D̄<z8 = E[) (H)]E[(a)z8)2] = E[) (H)]E[H] .

It can be shown that the off-diagonal entries of D̄< are all zero. Therefore, we can write:

D̄< = E[) (H)]E[H] I= + cov(H, ) (H))x0x)0 . (5.10)
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Hence, the leading eigenvector of D̄< is x0 if and only if cov(H, ) (H)) > 0.

Now that we characterized the condition under which the converging matrix D̄< has x0 as its leading
eigenvector, the important question to ask is how many measurements are needed in order for D<

to be close to its expected value D̄<. Chen and Candes [34] has shown that O(=) is sufficient for
spectral initialization to give an estimate with absolute positive alignment with the underlying signal.
This is an improvement to earlier results in [97, 25] where < = O(=?>;H;>6(=)) was reported as a
sufficient recovery condition.

Precise characterization of spectral initialization performance
A recent paper by Lu and Li [88] provides a precise characterization of the performance of the
spectral initialization method under isotropic Gaussian measurements. Here we briefly review their
main result.

In their analysis, they analyze the leading eigenvector of D< in the linear asymptotic regime where
<, = → ∞ at fixed ratio U := <

=
. Defining ^ := ‖x0‖ > 0 and B ∼ N(0, 1), P(H |^B) = 5 (H |^B).

They also assume that I = ) (H) has a bounded support [0, g], and cov(I, B2) > 0 is needed to
ensure that x0 is the leading eigenvector of D<. Their analysis relies on two helper functions
q, kU : [g, +∞) → R defined as,

q(_) := _ · E[ IB
2

_ − I ] , kU (_) := _
(

1
U
+ E I

_ − I

)
, (5.11)

where I and B are defined above.The following theorem indicates the precise phase transition of the
spectral initialization:

Theorem 5 (Theorem 1 in [88]). Consider the spectral initialization with the aforementioned
assumption and let ZU be a function defined as,

ZU (_) := kU
(
max(_, _̄U)

)
, where _̄U := arg min

_>g
kU (_).

Then, the equation ZU (_) = q(_) has a unique solution in _ > g, _★U. Let xinit be the leading
eigenvalue of the data matrix D<. As =→∞,

d (xinit, x0)
P−→


0 if k′(_★U) < 0,√

k′(_★U)
k′(_★U)−q(_★U)

if k′(_★U) > 0.
(5.12)

The above result indicates an asymptotic phase transition in terms of k′(_★U). It turns out that this
indeed imposes a phase transition for U, i.e., the cosine similarity converges to a constant bigger
than zero iff U > �

(
^, ), 5

)
.
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Remark 4. As indicated by the above analysis, in order to obtain a reasonable initial guess for
the PhaseMax, it is necessary and sufficient to have O(=) measurements. Our result in Theorem 4
indicates that when dinit > 0, the PhaseMax optimization can recover the underlying signal with
4=
d2
init

measurements. Combining these two results indicates that under Gaussian measurement
scheme, one can achieve a perfect recovery for (noiseless) phase retrieval with O(=) measurements.
However, note that in order to apply our result from Theorem 4, we need the measurement vectors
to be independent from xinit. Therefore, we need to use a different subset of measurements for the
initialization.

5.5 Proof of Theorem 4
In this section, we introduce the main ideas used in the proof of Theorem 4. As mentioned earlier in
section 5.3, we assume x0 is a unit norm vector aligned with xinit. Due to the rotational invariance
of the Gaussian distribution, without loss of generality, we assume x0 = e1, the first vector of the
standard basis in C=. Furthermore, the optimization program (5.2) is scalar invariant. So, we can
assume ‖xinit‖ = 1.

The proof consists of two main steps: In the first step, we analyze the complex optimization problem
(5.2) and find the necessary and sufficient condition under which x̂ = x0. Consequently, we use this
condition to build an equivalent real optimization problem. Lemma 8 introduces this equivalent real
optimization ERO, in R2=−1, and states that the perfect recovery in the PhaseMax algorithm occurs
if and only if the all-zero vector is the unique minimizer of the ERO.

In the second step, we adopt the CGMT framework to analyze the ERO and investigate the conditions
on dinit (or \) under which the unique answer to the ERO is 0. Therefore, as a result of Lemma 8,
these conditions will guarantee the perfect recovery in the initial PhaseMax optimization (5.2).

Introducing the equivalent real optimization (ERO)
We define the error vector w := x − e1 and rewrite (5.2) in terms of w,

max
w∈C=

<{xinit∗ w}

subject to: |a∗8 (e1 + w) | ≤ 18 , 1 ≤ 8 ≤ <.
(5.13)

For 8 = 1, 2, . . . , < , we use q8 := ∠(ai
∗x0) to define aligned measurement vectors ã8 := 4 9q8a8.

Therefore, we have,

18 = ã∗8 x0 = (ã8)1, for 8 = 1, 2, . . . , < , (5.14)
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where (ã8)1 is the first entry of ã8. Let D be the set of all directions w with non-negative objective
value, i.e.,

D := {w ∈ C= : <{x∗init w} ≥ 0}.

Also, we define the set F to represent the feasible set of the optimization problem (5.13).

F := {w ∈ C= : |a∗8 (e1 + w) | ≤ 18, for 8 = 1, 2, . . . , <}.

The following lemmas show necessary and sufficient conditions for perfect recovery in PhaseMax,
based on these notations.

Lemma 5. x0 is the unique optimal solution of (5.2) if and only if D
⋂F = {0}.

Proof. For w ∈ D⋂F , x0 + w is a solution of (5.2) with an objective value greater than the value
for x0. Therefore, D

⋂F = {0} is equivalent to x0 being a local minimizer of (5.2) which is also a
global minimum due to the convexity of the problem. �

Lemma 6. D⋂F = {0} if and only if D⋂
cone(F ) = {0}.

Proof. Note thatD ⊂ C= is a convex cone and F ⊂ C= is a convex set. The proof is the consequence
of the following equality,

D
⋂

cone(F ) = cone(D
⋂
F ). (5.15)

�

Lemma 7. cone(F ) = ⋂<
8=1{w ∈ C= : <{ã∗

8
w} ≤ 0}.

Proof. Let d ∈ F ,

|18 + ã∗8 d| ≤ 18 , for 8 = 1, 2, . . . , <. (5.16)

Therefore,

<{ã∗8 d} = <{18 + ã∗8 d} − 18 ,
≤ |18 + ã∗8 d| − 18 , (5.17)

≤ 0 .
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This shows that cone(F ) ⊆ ⋂<
8=1{w ∈ C= : <{ã∗

8
w} ≤ 0}. To show the other direction, choose

d ∈ C= such that: <{ã∗
8
d} < 0, for 8 = 1, 2, . . . , <. One can show that there exists ' > 0, such

that for all A ≤ ', Ad ∈ F . Therefore, d ∈ cone(F ). This concludes the proof.

�

We have the following corollary as a result of Lemma 5, Lemma 6, and Lemma 7.

Corollary 2. x0 is the unique optimal solution of (5.2) if and only if,

{w : <{x∗initw} ≥ 0 and, <{ã∗8 w} ≤ 0, for 1 ≤ 8 ≤ <} = {0}. (5.18)

We are now ready to establish the equivalent real optimization (ERO). We will show that the
following optimization has the exact phase transition bounds as PhaseMax in (5.2).

max
w′∈R2=−1

() w′

subject to: |a′)8 (e1 + w′) | ≤ 18 , 1 ≤ 8 ≤ <,
(ERO)

where e1 is the first vector of the standard basis in R2=−1, ( and {a′
8
}<
8=1 are (2= − 1) dimensional

real vectors defined as

[ :=

[
<{xinit}

−={xinit(2 : =)}

]
and a′8 :=

[
<{ã8}

−={ã8 (2 : =)}

]
, ∀8. (5.19)

Here ={ã8 (2 : =)} is the imaginary part of the last = − 1 entries of ã8.

Lemma 8. x0 is the unique optimal solution of the PhaseMax method if and only if w′ = 0 is the
unique optimal solution of (ERO).

The proof of Lemma 8 is straightforward by defining

w′ =
[
<{w}

={w(2 : =)}

]
∈ R2=−1 , (5.20)

and then showing that the optimality conditions for w′ = 0 in (ERO) is equivalent to (5.18).

It is worth mentioning that the result of Lemma 8 is valid for any set of measurement vectors {a8}. In
the next part, we use this result to compute the phase transition of PhaseMax when the measurement
vectors are drawn independently from the Gaussian distribution.
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In the next section, we use the asymptotic CGMT (Lemma 32 in Appendix A.1) to analyze the ERO.
To this end, we need to reqrite the ERO in the form of the primaty optimization that is a bilinear
form with respect to an i.i.d Gaussian matrix. This enables us to apply Lemma 32 to the ERO and
derive an Auxiliary Optimization in the form of (AO). Lemma 32 indicates that if ‖w′‖ P→ 0 for the
(AO), then the same also holds for the ERO and we have perfect recovery. We consequently analyze
the (AO) using conventional concentration results in high dimensions.

Computing the phase transition for PhaseMax
In this part we adopt the CGMT framework along with the result of Lemma 8 to compute the exact
phase transition of the PhaseMax algorithm under the Gaussian measurement scheme.

We start by calculating the distribution of the entries of a′
8
that are defined in (5.19). Recall that a8’s

are independently drawn from the complex Gaussian distribution with mean zero and covariance
matrix I=. Therefore, the distribution of the entries of ã8’s that were are defined above has the
following properties:

(i) The first entry of ã8 is the absolute value of the first entry of the a8. Therefore, it has a Rayleigh
distribution, i.e.,

(ã8)1 ∼ R(1), (5.21)

(ii) The remaining entries of ã8 remain standard Gaussian random variables,

(ã8): ∼ NC(0, 1), for 2 ≤ : ≤ = , (5.22)

(iii) The entries of ã8 remain independent.

This implies that all the entries of a′
8
are independent, the first entry of a′

8
has a R(1) distribution

and the rest of the entries have Gaussian distribution N(0, 1
2 ). We form the measurement matrix

A ∈ R<×(2=−1) by row-stacking vectors {a′i
) , 1 ≤ 8 ≤ <}. Let A1 ∈ R< be the first column

of A, and Ā ∈ R<×(2=−2) be the remaining part (i.e., A =

[
A1 Ā

]
). x0 = e1 implies that

A1 =
[
11, 12, . . . , 1<

])
, where 18’s are defined in (5.1). Using the Lagrange multipliers, we can

reformulate (ERO) as the following min-max program,

min
F1∈R

w̄∈R2=−2

max
,,-∈R<+

−()w + (, − -)) Āw̄ − (, + -))A1 + (, − -))A1(1 + F1), (5.23)
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where F1 denotes the first entry of w and w̄ represents the remaining entries. Define v := , − - .
It can be shown that optimal values of (5.23) satisfy , + - = |, − - |. Here, | · | denotes the
component-wise absolute value. Therefore, (5.23) can be rewritten as an optimization over v ∈ R<

and w ∈ R2=−1 in the following form:

min
F1∈R

w̄∈R2=−2

max
v∈R<
− ()w + v) Ãw̄ + v)A1(1 + F1) − |v|)A1. (5.24)

Note that Ā has i.i.d. standard normal entries. One can check that (5.24) satisfies the condition of
Lemma 32, i.e., it is convex w.r.t. w and concave w.r.t v, and all the terms outside the bilinear form
are independent of Ā. Hence, we can form the (AO) as follows,

min
F1∈R

w̄∈R2=−2

max
v∈R<
−()w + v)g| |w̄| | + | |v| |h) w̃ + v)A1(1 + F1) − |v|)A1, (5.25)

where g ∈ R< and h ∈ R2=−2 with entries drawn independently from standard normal distribution.
Analysis of (5.25) is skipped here as a similar analysis would be provided in Chapter 6. We conclude
this chapter with a theorem that characterizes the performance of the (ERO).

Let w★ be the optimizer of (5.25) and define B★ := 1 + F★1 and C★ := | |w̄★| |. B★ simply denotes
the first entry of the optimal solution and C★ indicates the norm of the remaining entries. In order
to have a perfect recovery in the PhaseMax optimization (5.2), we should find conditions under
which (C★, B★) = (0, 1) would be achieved by the optimal solution of (AO). The following result
characterizes the performance of the (AO) (i.e., optimization (5.25)).

Theorem 6. In the asymptotic regime where <, = → ∞, and X := <
=
, B★ and C★ converge to the

solution of the following deterministic optimization,

max
B∈[−1,1], C≥0

dinit B +
√

1 − dinit2
√
C2 − X

2
?(C, B)

s.t. ?(C, B) ≤ 2C2

X
.

(5.26)

In the above optimization, ?(C, B) is defined as,

?(C, B) = C2 + (1 + B) [1 + B −
√
C2 + (1 + B)2] + (1 − B) [1 − B −

√
C2 + (1 − B)2] . (5.27)

It can be shown that dinit > 2√
X
is the necessary and sufficient condition for (C★, B★) = (0, 1) to be

the unique solution of (5.26) which is equivalent to the perfect recovery in the (ERO).
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57C h a p t e r 6

ACHIEVING OPTIMAL SAMPLE COMPLEXITY VIA REGULARIZED
PHASEMAX

[1] F. Salehi et al. “Learning without the Phase: Regularized PhaseMax Achieves Optimal
Sample Complexity”. In: Advances in Neural Information Processing Systems (2018),
pp. 8641–8652.

The problem of estimating an unknown signal, x0 ∈ R=, from a vector y ∈ R< consisting of
< magnitude-only measurements of the form H8 = |a8x0 |, where a8’s are the rows of a known
measurement matrix A, is a classical problem known as phase retrieval. This problem arises when
measuring the phase is costly or altogether infeasible. In many applications in machine learning,
signal processing, statistics, etc., the underlying signal has certain structure (sparse, low-rank, finite
alphabet, etc.), opening up the possibility of recovering x0 from a number of measurements smaller
than the ambient dimension, i.e., < < =. Ideally, one would like to recover the signal from a number
of phaseless measurements that is on the order of the "degrees of freedom" of the structured signal,
x0.

To this end, inspired by the PhaseMax algorithm [58, 9], we formulate a convex optimization
problem, where the objective function relies on an initial estimate of the true signal and also includes
an additive regularization term to encourage structure. The new formulation is referred to as
regularized PhaseMax. We analyze the performance of regularized PhaseMax to find the minimum
number of phaseless measurements required for perfect signal recovery. The results are asymptotic
and are in terms of the geometrical properties (such as the Gaussian width) of certain convex cones.
When the measurement matrix has i.i.d. Gaussian entries, we show that our proposed method is
indeed order-wise optimal, allowing perfect recovery from a number of phaseless measurements
that is only a constant factor away from the optimal number of measurements required when phase
information is available. We explicitly compute this constant factor, in terms of the quality of the
initial estimate, by deriving the exact phase transition. The theory well matches empirical results in
our numerical simulations.



6.1 Motivation and Background
Recovering an unknown signal or model given a limited number of linear measurements is an
important problem that appears in many applications. Researchers have developed various methods
with rigorous theoretical guarantees for perfect signal reconstruction, e.g. [13, 44, 122, 134].
However, there are many practical scenarios in which the signal should be reconstructed from
nonlinear measurements. In particular, in many physical devices, measuring the phase is expensive
or even infeasible. For instance, detection devices such as CCD cameras and photosensitive films
cannot measure the phase of a light wave and instead measure the photon flux [66].

As explained earlier, the fundamental problem of recovering a signal from magnitude-only measure-
ments is known as phase retrieval. This problem has a rich history and occurs in many areas in
engineering and applied sciences such as medical imaging [6], X-ray crystallography [93], astronom-
ical imaging [52], and optics [144]. Due to the loss of phase information, signal reconstruction from
magnitude-only measurements can be quite challenging. Therefore, despite a variety of proposed
methods and analysis frameworks, phase retrieval still faces fundamental theoretical and algorithmic
challenges.

Recently, convex methods have gained significant attention to solve the phase retrieval problem.
As explained in Chapter 2, the first convex-relaxation-based methods were based on semidefinite
programs [27, 25] and resorted to the idea of lifting [8, 22, 68, 115] the signal from a vector to a
matrix to linearize the quadratic constraints. While the convex nature of this formulation allows
theoretical guarantees, the resulting algorithms are computationally inefficient since the number
of unknowns is effectively squared. This makes these approaches intractable when the system
dimension is large. The PhaseMax, that was introduced in the Chapter 5, is a novel convex relaxation
for phase retrieval which works in the original =-dimensional parameter space. Since it does not
require lifting and does not square the number of unknowns, it is appealing in practice. It does,
however, require an initial estimate of the signal. The exact phase transition for PhaseMax has been
explored in details in Chapter 5.

Non-convex methods for phase retrieval have a long history [53]. Recent non-convex methods start
with a careful initialization [89, 94] and update the solution iteratively using a gradient-descent-like
scheme. Examples of such methods include Wirtinger flow algorithms [24, 34, 119], truncated
amplitude flow [145], and alternating minimization [97, 150]. Despite having lower computational
cost, precise theoretical analysis of such algorithms seems very technically challenging.

All the aforementioned algorithms essentially demonstrate that a signal of dimension = can be
perfectly recovered through < > �= amplitude-only measurements, where � > 1 is a constant that
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depends on the algorithm as well as the measurement vectors. However, many interesting signals in
practice contain fewer degrees of freedom than the ambient dimension (sparse signals, low-rank
matrices, finite alphabet signals, etc.). Such low-dimensional structures open up the possibility of
perfect signal recovery with a number of measurements significantly smaller than =.

Summary of contributions
In this chapter, we propose a new approach for recovering structured signals. Inspired by the
PhaseMax algorithm, we introduce a new convex formulation and investigate necessary and sufficient
conditions, in terms of the number of measurements, for perfect recovery. We refer to this new
framework as regularized PhaseMax. The constrained set in this optimization is obtained by relaxing
the non-convex equality constraints in the original phase retrieval problem to convex inequality
constraints. The objective function consists of two terms. One is a linear functional that relies on an
initial estimate of the true signal which must be externally provided. The second term is an additive
regularization term that is formed based on a priori structural information about the signal.

We precisely compute the necessary and sufficient number of measurements for perfect signal
recovery when the entries of the measurement matrix are i.i.d. Gaussian. To the extent of our
knowledge, this is the first convex optimization formulation for the problem of structured signal
recovery given phaseless linear Gaussian measurements that provably requires an order optimal
number of measurements. The focus of this chapter is on real signals and real measurements. The
complex case is more involved, requires a different analysis, and will be considered as an interesting
future direction.

Through our analysis, we make the following main contributions:

• We first provide a sufficient recovery condition, in terms of the number of measurements, for
perfect signal recovery. We use this to infer that our proposed method is order-wise optimal.

• We characterize the exact phase transition behavior for the class of absolutely scalable
regularization functions.

• We apply our findings to two special examples: unstructured signal recovery and sparse
recovery. We observe that the theory well matches the result of numerical simulations for
these two examples.

59



Prior work
Phase retrieval for structured signals has gained significant attention in recent years. We briefly
mention some of the most relevant literature for the Gaussian measurement model. Oymak et
al. [101] analyzed the performance of the regularized PhaseLift algorithm and observed that
the required sample complexity is of a suboptimal order compared to the optimal number of
measurements required when phase information is available. For the special case of sparse phase
retrieval, similar results have been reported in [85] which indicates that O(:2 log(=)) measurements
are required for recovering of a :-sparse signal, using regularized PhaseLift. Recently, there has
been a stream of work on solving phase retrieval using non-convex methods [20, 146]. In particular,
Soltanolkotabi [119] has shown that amplitude-based Wirtinger flow can break the O(:2 log(=))
barrier. We also note that the paper [61] analyzed the PhaseMax algorithm with ℓ1 regularizer and
observed that it achieves perfect recovery with O(: log(=/:)) samples, provided a well-correlated
initialization point.

6.2 Preliminaries
Problem setup
Let x0 ∈ R= denote the underlying structured signal. We consider the real phase retrieval problem
with the goal of recovering x0 from < magnitude-only measurements of the form,

H8 = |a)8 x0 |, 8 = 1, 2, . . . , < , (6.1)

where {a8 ∈ R=}<8=1 is the set of (known) measurement vectors. In practice, this set is identified
based on the experimental settings; however, throughout this chapter (for our analysis purposes),
we assume that the a8’s are drawn independently from a Gaussian distribution with mean zero and
covariance matrix I=. In order to exploit the structure of the signal, we assume that 5 (·) is a convex
function that measures the "complexity" of the structured solution.

The regularized PhaseMax algorithm also relies on an initial estimate of the true signal. Here, xinit
is used to represent this initial guess. Our analysis is based on the critical assumption that both xinit
and x0 are independent of all the measurement vectors. The constraint set in generalized PhaseMax
is derived by simply relaxing the equality constraints in (6.1) into convex inequality constraints. We
introduce the following convex optimization problem to recover the signal:

x̂ = arg min
x∈R=

!_ (x) = −xinit)x + _ 5 (x)

subject to: |a)8 x| ≤ H8 , for 1 ≤ 8 ≤ <.
(6.2)
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The function 5 is assumed to be sign invariant, i.e., 5 (x) = 5 (−x) for all x ∈ R= (−x has the same
"complexity" as x.) Note that because of the global phase ambiguity of measurements in (6.1),
we can only estimate x0 up to a sign. Up to this sign ambiguity, we can use the normalized mean
squared error (NMSE), defined as | |x̂−x0 | |2

| |x0 | |2
, to measure the performance of the solution. Here, we

investigate the conditions under which the optimization program (6.2) uniquely identifies the true
signal, i.e., x̂ = x0 (up to the sign). Our results are asymptotic which is valid when <, =→∞.

Background on convex analysis
Our results give the required number of measurements as a function of certain geometrical properties
of the descent cone of the objective function. Here, we recall these definitions from convex analysis.

Definition 3. (Descent cone) For a function ' : R= → R, the descent(tangent) cone at point x is
defined as,

)' (x) = cone({z ∈ R= : '(x + z) ≤ '(x)}) , (6.3)

where cone(S) denotes the closed conical hull of the set S.

Definition 4. Let S be a closed convex set in R=. For x ∈ R=, the projection of x on S, denoted by
ΠS (x), is defined as follows,

ΠS (x) := arg min
y∈S

| |x − y| | , (6.4)

where | | · | | is the Euclidean norm. The distance function is defined as: distS (x) = | |x − ΠS (x) | |.

Definition 5. (Statistical dimension) [7] The statistical dimension of a closed convex cone C in R=

is defined as,

3 (C) = Eg [| |ΠC (g) | |2] , (6.5)

where g ∈ R= is a random vector with independent standard normal entries.

The statistical dimension canonically extends the dimension of linear spaces to convex cones.
This quantity has been extensively studied in linear inverse problems. It is well-known that as
=→∞, < > 3 ()!_ (x0)) is the necessary and sufficient condition for perfect signal recovery under
noiseless linear Gaussian measurements [33, 122]. Our analysis indicates that given phaseless
linear measurements, the regularized PhaseMax algorithm requires O(3 ()!_ (x0))) measurements
for perfect signal reconstruction. Therefore, it is order-wise optimal in that sense.
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6.3 Recovery Thresholds for Regularized PhaseMax
In this section, we present the main results of the chapter which provide us with the required number
of measurements for perfect signal recovery in the regularized PhaseMax optimization (6.2). This
gives the value <0 = <0(=, x0, xinit, _), such that the regularized PhaseMax algorithm uniquely
identifies the underlying signal x0 with high probability whenever < > <0.

First, we investigate sufficient conditions for recovery of the underlying signal. Theorem 7 provides
an upper bound on the number of measurements that is equal to a constant factor times the statistical
dimension of the descent cone, 3 ()!_ (x0)). Therefore, although our analysis is not exact in this
section, it leads us to the important observation that our proposed method is order-wise optimal in
terms of the required sample complexity for perfect signal reconstruction.

In addition to the sufficient recovery condition, we provide an exact analysis for the phase transition
behavior of regularized PhaseMax when the regularizer is an absolutely scalable function. We apply
this result to the case of unstructured phaseless recovery as well as sparse phaseless recovery to
compute the exact phase transitions. We then compare the result of our theory with the empirical
results from numerical simulations.

Sufficient recovery condition
Let P := 1

| |x0 | |2
x0x)0 and P⊥ := I − P denote the projections onto the span of x0 and its orthogonal

complement, respectively, where | | · | | denotes the ℓ2-norm of the vectors. We also define
3 (=) := 3 ()!_ (x0)) as the statistical dimension of the descent cone of the objective function at point
x0. Our analysis rigorously characterizes the phase transition behavior of the regularized PhaseMax
in the large system limit, i.e., when =→∞, while < and 3 (=) grow at a proportional ratio X = <

3 (=)
.

X is often called the oversampling ratio. Here, the superscript (=) is used to denote the elements of a
sequence. To streamline the notations, we often drop this when understood from the context.

Theorem 7 provides sufficient conditions for the successful recovery of x0. The recovery threshold
depends on _ and the initialization vector, xinit. We define dinit := x)initx0 to quantify the caliber of
the initial estimate. Due to the sign invariance property of the solution, we can assume without
loss of generality that dinit ≥ 0. Before stating the theorem, we shall introduce the function
' : (2, +∞) → R+.

Definition 6. For G > 2, '(G) is the unique nonzero solution of the following equation:

C2 =
G

c
((1 + C2)atan(C) − C) . (6.6)
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Figure 6.1: The function '(G), which is defined in Definition 6, for different values of G. ' is a
monotonically decreasing function that approaches 0 in the limit.

Figure 6.1 depicts the evaluation of the function '(G) for different input values G. As observed,
'(G) is a decreasing function with respect to G, and it approaches zero as G grows to infinity. It can
be shown that for large values of the input G, '(G) decays with the rate 1

G
.

Theorem 7 (Sufficient recovery condition). For a fixed oversampling ratio X > 2, the regularized
PhaseMax optimization (6.2) perfectly recovers the target signal (in the sense that lim

=→∞
P{| |x̂ − x0 | |2 >

n | |x0 | |2} = 0, for any fixed n > 0) if,

'(X) < sup
v∈m!_ (x0)

| |Pv| |
| |P⊥v| | , (6.7)

where m!_ (x0) denotes the sub-differential set of the objective function !_ (·) at point x0.

It is worth noting that m!_ (x0) is a convex and compact set, and it can be expressed in terms of the
sub-differential of the regularization function m 5 (x0) as follows,

m!_ (x0) = {_u − xinit : u ∈ m 5 (x0)} . (6.8)

Observe that since '(·) is a monotonically decreasing function, the inequality (6.7) gives a lower
bound for the oversampling ratio X. In fact, we can restate the result in terms of this lower bound as
the following corollary:

Corollary 3. If there exists a fixed constant g > 0 such that,

sup
v∈m!_ (x0)

| |Pv| |
| |P⊥v| | > g, (6.9)

63



Figure 6.2: Phase transition regimes for the regularized PhaseMax problem in terms of the
oversampling ratio X and dinit = x)initx0, for the cases of x0 with no structure. The blue line indicates
the theoretical estimate for the phase transition derived from Theorem 8. The red line corresponds
to the upper bound calculated by Theorem 7. In the simulations, we used signals of size = = 128.
The result is averaged over 10 independent realizations of the measurement vectors.

then the regularized PhaseMax optimization (6.2) has perfect recovery for X > �, where � is a
constant that only depends on g.

Proof. This corollary is an immediate consequence of Theorem 7 by choosing � = '−1(g) and
noting that '(·) is monotonically decreasing. �

This result indicates that if xinit and _ are chosen in such a way that the inequality (6.9) is satisfied
for some positive constant g, then one needs < > �3 (=) measurement samples for perfect recovery,
where � is a constant and 3 (=) (= 3) is the statistical dimension of the descent cone of the objective
function at point x0. As motivating examples, we use Theorem 7 to find upper bounds on the phase
transition when x0 has no structure or it is a sparse signal.

Example 1: Assume the target signal x0 has no a priori structure. The objective function in this case
would be ! (x) = −x)initx, and m! (x0) = {−xinit}. It can be shown that the statistical dimension is
3 (=) = = − 1/2. Due to the absence of the regularization term in this case, without loss of generality,
we can assume that ‖x0‖ = ‖xinit‖ = 1. Theorem 7 provides the following sufficient condition for
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perfect recovery:
| |Pxinit | |
| |P⊥xinit | |

=
dinit√

1 − d2
init

> '(X) . (6.10)

This indicates that O(=) measurements are sufficient for perfect recovery as long as dinit ≥ d0,
where d0 > 0 is a constant that does not approach zero as =→∞. The exact phase transition for the
unstructured case (PhaseMax), which was presented in Section 5.3, is compatible with this result.
Figure 6.2 shows the result of numerical simulation for different values of X and dinit, when = = 128.
As depicted in the figure, the sufficient recovery condition from Theorem 7 is approximately a factor
of 2 away from the actual phase transition.

Example 2: Let x0 be a :-sparse signal. In this case, we use ‖ · ‖1 as the regularization function.
We show in Section 6.8 that if _ > 2√

:
, then 3 (=) ≤ �: log(=/:) for some constants 2, � > 0.

This matches the well-known order for the statistical dimension derived in the compressed sensing
literature [122].

Moreover, in order to satisfy the condition in Corollary 3, we need to have dinit
| |x0 | |1 > (1 + n)_, for

some n > 0. Therefore, x0 can be perfectly recovered having O(: log(=/:)) samples when the
hyper-parameter _ is tuned properly, i.e., 2√

:
< _ <

dinit
| |x0 | |1 . Figure 6.3 compares this upper bound

with the precise analysis that we will show in the next section. As depicted in this figure, the
sufficient recovery condition is a valid upper bound on the phase transition, but it is not sharp.

Figure 6.3: Comparing the upper bounds on the phase transition, derived by Theorem 7 (dashed
lines) and the precise phase transition by Theorem 8 (solid lines), for three values of the sparsity
factor B = :/=.
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Precise phase transition
So far, we have provided a sufficient condition for perfect signal recovery in the regularized PhaseMax.
In this section, we give the exact phase transition, i.e., the minimum number of measurements <0

required for perfect recovery of the unknown vector x0. For our analysis, we assume that the function
5 (·) is absolutely homogeneous (scalable), i.e., 5 (g · x) = |g | · 5 (x), for any scalar g, and every
x ∈ R=. This covers a large range of regularization functions such as norms and semi-norms. Let
m!_

⊥(x0) ⊂ R= denote the projection of the sub-differential set into the orthogonal complement of
x0, i.e.,

m!_
⊥(x0) = {P⊥u : u ∈ m!_ (x0)} , (6.11)

which is a convex and compact set. To state the result in a general framework, we require one further
assumption on functions ! (=)

_
(·).

Assumption 4 (Asymptotic functionals). The following uniform convergences exist, as =→∞,

V − E
[ 1
√
=

h) Πm!_⊥ (x0) (
V
√
=

h)
] Unif.
−−−→ �_ (V), and,

E
[
distm!_⊥ (x0) (

V
√
=

h)
] Unif.
−−−→ �_ (V) , (6.12)

where h ∈ R= has i.i.d. standard normal entries and �_, �_ : R+ → R denote the functions that the
sequences uniformly converge to.

One can show that, under some mild conditions on the regularization function 5 (·), Assumption 4
holds and also �_ (V) = �_ (V)�′_ (V), where �′_ (·) denotes the derivative of the function �_ (·).
This assumption especially holds for the class of separable regularizers, where 5 (v) = ∑

8 5̃ (E8) (e.g.
ℓ1 norm for the case of sparse phase-retrieval). Later in this section, we will see validity of this
assumption for the two examples discussed earlier.

Our precise phase transition results indicate the required number of measurements as the solution of
a set of two nonlinear equations with two unknowns. We define a new parameter U := <

=
, where

Uopt =
<0
=

indicates the exact phase transition of the regularized PhaseMax optimization. The
following theorem gives an implicit formula to derive Uopt.

Theorem 8 (Precise phase transition). Let x̂ be the solution to the regularized PhaseMax optimization
(6.2)with the objective function !_ (x) = −x)initx+_ 5 (x), where the convex function 5 (·) is absolutely
homogeneous and Assumption 4 holds. The regularized PhaseMax optimization would perfectly
recover the target signal x0 if and only if:
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1. U > Uopt, where Uopt is the solution of the following system of nonlinear equations with two
unknowns, U and V,

−�_ (V) !_ (x0) = tan( c
UV
�_ (V)) (�2

_
(V) − V�_ (V)) ,

tan( c
UV
�_ (V)) (�_ (V) + c

UV
�_ (V) !_ (x0)) = c

UV
�_ (V) �_ (V)

(6.13)

2. and, !_ (x0) < !_ (0) = 0

where the functions �_ (·) and �_ (·) are defined in (6.12).

A few remarks are in place for this theorem:

Remark 5 (Solving equations (6.13)). The system of nonlinear equations (6.13) only involves two
scalars V and U, and the functions �_ (V) and �_ (V) are determined by the objective function !_ (x).
For our numerical simulations, we used a fixed-point iterative method that can quickly find the
solution given a proper initialization.

Remark 6 (Tuning _). Theorem 8 requires the objective function to satisfy !_ (x0) = _ 5 (x0)−dinit <
0. Therefore, it is necessary to choose _ in such a way that _ < dinit

5 (x0) . Some additional assumptions
on the unknown vector x0 enables us to calculate the proper range for _. For instance, if we consider
the case where the entries of x0 are drawn form a specific distribution, where the non-zero entries
of x0 are Gaussian (or other random variables), E[ 5 (x0)] gives a reasonable estimation on 5 (x0)
that can help us in choosing _ appropriately. We will see an example of such case in the next
section. Figure 6.4 shows an example of how the phase transition of the regularized PhaseMax, or
equivalently the required sample complexity, behaves as a function of the hyper-parameter _.

In the next section, we use the result of Theorem 8 to compute the exact phase transition for the case
of unstructured signal as well as the sparse signal recovery. Since the regularizer 5 (x) is absolutely
scalable, for both examples, we assume that ‖x0‖ = 1.

6.4 Applications of Theorem 8
Unstructured signal recovery
When there is no a priori information about the structure of the target signal, we use the following
optimization (PhaseMax) for signal recovery:

x̂ = arg min
x∈R=

! (x) = −xinit)x

subject to: |a)8 x| ≤ H8 , for 1 ≤ 8 ≤ < .

(6.14)
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Figure 6.4: The phase transition behavior as a function of the regularization parameter _, derived
from the result of Theorem 8. As depicted in the figure, there is a suitable region for tuning _ which
gives a lower recovery threshold for the regularized PhaseMax.

Due to the absence of the regularization term, without loss of generality we can assume that
‖xinit‖ = 1. Moreover, ! (x0) = −dinit which indicates that the second condition in Theorem 8 is
satisfied. To apply the result of our theorem, we first compute explicit formulas for the functions
�_ (V) and �_ (V) as follows,

�_ (V) = V , �_ (V) =
√
V2 + 1 − d2

init . (6.15)

We can now form the system of nonlinear equations (6.13) as follows,


√
V2 + 1 − d2

init
dinit

1−d2
init
= tan( c

U
) ,

tan( c
U
) (

√
V2 + 1 − d2

init −
cdinit
U
) = c

U

√
V2 + 1 − d2

init .
(6.16)

Finally, solving equations (6.16) yields the following necessary and sufficient condition for perfect
recovery,

c

U tan(c/U) > 1 − d2
init , (6.17)

which also verifies the result presented in Section 5.3.

Figure 6.2 shows the result of numerical simulations of running the PhaseMax algorithm for different
values of dinit and X. The intensity level of the color of each square in Figure 6.2 represents the

68



error of PhaseMax in recovering x0. As seen in the figure, although our theoretical results have
been established for the asymptotic setting (when the problem dimensions approach infinity), the
blue line, which is derived from (6.17), reasonably predicts the phase transition for = = 128. The
sufficient condition that is derived from Theorem 7 is also depicted by the red line in the same figure.

Sparse recovery
We consider the case where the target signal x0 is sparse with : non-zero entries. The convex
function 5 (x) = 1√

=
‖x‖1, which is known to be a proper regularizer that enforces sparsity [132], is

used in the regularized PhaseMax optimization to recover x0,

x̂ = arg min
x∈R=

!_ (x) = −xinit)x + _
√
=
‖x‖1

subject to: |a)8 x| ≤ H8 , for 1 ≤ 8 ≤ < .

(6.18)

To streamline notations, here we assume that the non-zero entries of x0 are the first : entries

and decompose vector v ∈ R= as v =
[

vΔ

vΔ2

]
, where vΔ ∈ R: denotes the first : entries of v, and

vΔ2 ∈ R=−: is the remaining = − : entries. As <, = → ∞, we would like to apply the result of
Theorem 8 to compute the exact phase transition. Due to the rotational invariance property of the
Gaussian distribution, it can be shown that multiplying the last (= − :) entries of xinit by a unitary
matrix U ∈ R(=−:)×(=−:) does not change the phase transition behavior in (6.2). Hence, we can
assume that the entries of xΔ2init have a Gaussian distribution, i.e.,

xinit =
[
xΔinit
xΔ2init

]
, and xΔ2init =

1
√
= − :

‖xΔ2init‖ g , (6.19)

where g ∈ R=−: has standard normal entries. This observation enables us to establish the following
lemma:

Lemma 9. Consider the optimization problem (6.18) to recover the :-sparse signal x0. We assume
that the entries of xinit are distributed as in (6.19) and define d̃ := 1√

:
sign(xΔ0 )

)xΔinit, where sign(·)
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denotes the component-wise sign function. Then, Assumption 4 holds with:

�_ (V) = V(B + 2(1 − B) · &( _√
V2 + ‖x

Δ2

init‖2
1−B

) ) ,

�2
_ (V) = B · (V2 + _2) + ‖xΔinit‖2 − 2_

√
Bd̃ − !2(x0)

+ (1 − B) (V2 +
‖xΔ2init‖2

1 − B ) · E� [ shrink
2(�, _√

V2 + ‖x
Δ2

init‖2
1−B

) ] (6.20)

where &(·) is the tail distribution of the standard normal distribution, � has standard normal
distribution, and B := :/= is the sparsity factor. The shrinkage function shrink(·, ·) : R × R+ → R+
is defined as:

shrink(G, g) = ( |G | − g)1{|G | ≥ g} . (6.21)

It is worth noting that the function shrink(·, ·) also appeared in computing the statistical dimension
for ℓ1 regularization (see Section 6.8) which indicates some implicit relation to U>?C .

We have numerically computed the solution of the nonlinear system (6.20). Figure 6.5 shows the
error of regularized PhaseMax over a range of dinit and X. The comparison between our upper bound
derived from Theorem 7 and precise analysis of Theorem 7 is depicted in Figure 6.3 for three values
of the sparsity factor B = 0.05, 0.1, 0.2. Observe that the upper bound is only a constant factor away
from the precise phase transition, while its derivation involves simpler formulas. Finally, Figure
6.4 illustrates impact of the regularization parameter _ on the phase transition of the regularized
PhaseMax optimization for four values of dinit. The values of _ in this figure are normalized by
dinit
√
=

‖x0‖ , which is the maximum acceptable value of _ in the regularized PhaseMax.

6.5 Conclusion and Future Directions
In this chapter, we introduced a new convex optimization framework, regularized PhaseMax, to
solve the structured phase retrieval problem. We have shown that, given a proper initialization,
the regularized PhaseMax optimization perfectly recovers the underlying signal from a number
of phaseless measurements that is only a constant factor away from the number of measurements
required when the phase information is available. We explicitly computed this constant factor.

An important (yet still open) research problem is to investigate the required sample complexity to
construct a proper initialization vector, xinit. As an example, for the case of sparse phase retrieval,
although our analysis indicates that O(: log =

:
) is the required sample complexity of the regularized

PhaseMax optimization, the best known initialization technique [20] needs O(:2 log =) samples to
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Figure 6.5: Phase transition regimes for the regularized PhaseMax problem in terms of the
oversampling ratio X and dinit = x)initx0, for the cases of x0 with sparse structure. The blue line
indicates the theoretical estimate for the phase transition derived from Theorem 8. In the simulations,
we used signals of size = = 128. The result is averaged over 10 independent realizations of the
measurements.

generate a meaningful initialization, which is suboptimal. An important future direction is to study
initialization techniques that break this sample complexity barrier, or to exploit information theoretic
arguments (as in [94]) to show that the sample complexity for the initialization cannot be improved.

To form the objective function in the regularized PhaseMax, we exploited some a priori knowledge
about the structure of the underlying signal. In many practical settings, such prior information is not
available. There has been some interesting recent publications (e.g. [10, 148, 51]) which introduce
efficient algorithms to learn the structure of the underlying signal. An interesting research direction
is to investigate new optimization frameworks that do not rely on the prior information about the
structure of the underlying signal.

6.6 Proofs and Technical Derivations
In order to establish the results, we use the following lemmawhich provides an equivalent optimization
that has the same error performance as PhaseMax, and is the key ingredient in deriving the main
results of the paper.

Lemma 10 (Equivalent Optimization). Consider the regularized PhaseMax problem introduced in
Section 6.2. As =→∞, the error performance converges in probability as follows:
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(
| |x̂ − x0 | |2

| |x0 | |2

)
−

(
| |w★| |2 + (1 − B★)2

)
=→∞−→ 0 . (6.22)

Here B★ ∈ R and w★ ∈ R= are the unique optimizers of the following optimization program,

min
B∈R

min
w∈R=,w⊥x0

− x)init(Bx0 + w) + _ 5 (Bx0 + w)

subject to: h)w ≥
√
< cd(B, | |w| |) ,

(6.23)

where h ∈ R= has i.i.d. standard normal entries and the function cd : R × R+ → R is defined as,

cd(B, A) =
1
c
[((1 + B)2 + A2) atan( A

1 + B ) + ((1 − B)
2 + A2) atan( A

1 − B ) − 2A] . (6.24)

The full technical details of obtaining this result is explained in Section 6.7. In short, to show the
equivalence, we start from (6.2) and define new variables B := x)0 x and w = P⊥x. Then reformulate
it as an unconstrained optimization using Lagrange multipliers. The result is a consequence of
applying CGMT (Lemma 32, see Appendix A.1) with some simplifications.

Before explaining the technical details of the proofs of our main results, we state one more lemma
which will be used in the proof of Theorem 8. In the path of analyzing the auxiliary optimization,
we replace several functions with their limits in probability. This can be done through the same
tricks used in section A.4 of [129] and Lemma B.1 in the same paper. Here, we state the following
lemma without proof.

Lemma 11 (Min-convergence – Open Sets). Consider a sequence of proper, convex stochastic
functions "= : (0,∞) → R and a deterministic function " : (0,∞) → R such that:

1. "= (G)
P−→ " (G), for all G > 0,

2. there exists I > 0 such that " (G) > infG>0 " (G) for all G ≥ I.

Then, infG>0 "= (G)
P−→ infG>0 " (G).

The objective function in our optimization problems satisfies the assumptions of this lemma at the
points where we replace them with their limits.
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Proof of Theorem 7
Consider the following optimization:

min
B∈R

min
w∈R=,w⊥x0

− x)init(Bx0 + w) + _ 5 (Bx0 + w)

subject to: h)w ≥
√
< cd(B, ‖w‖) .

(6.25)

The result of Lemma 10 established that as = → ∞, the error performance of the regularized
PhaseMax converges to the error performance in (6.25). The following corollary indicates the
necessary and sufficient condition for perfect recovery:

Corollary 4. As =→∞, x0 is the unique solution of the regularized PhaseMax optimization, if and
only if (B★,w★) = (1, 0) be the unique optimizer of the equivalent optimization (6.25).

Proof. This is an immediate consequence of Lemma 10, noticing that ‖x̂ − x0‖ = 0 is the condition
for perfect recovery. �

We proceed onwards with analyzing (6.25). For simplicity, we assume ‖x0‖ = 1. Define a new
function 5̂ (·) : R= → R as follows,

5̂ (x) = 5 (x0) + max
v∈m 5 (x0)

v) (x − x0) . (6.26)

m 5 (x0) is the sub-differential set of function 5 (·) at point x0 which is a convex and compact set.
5̂ (·) is basically the first-order approximation of the regularization function 5 (·) at point x0. This
replacement cannot be done in general, but since we are only investigating the phase transition
regime where the norm of the error, ‖x̂− x0‖, approaches to zero, we may perform this exchange. To
investigate the phase transition behavior in (6.25), we bound 1− B and | |w| | to a small neighborhood
of 0. Therefore, it is valid to replace 5 with 5̂ in that small neighborhood around x0. Reformulating
the optimization using this replacement would give us the following,

min
B∈R,w⊥x0

max
v∈m 5 (x0)

− x)init(Bx0 + w) + _ 5 (x0) + _v) ((B − 1)x0 + w)

subject to: h)w ≥
√
< cd(B, | |w| |) .

(6.27)

We add the constant term, x)initx0−_ 5 (x0), to the objective function and reformulate themaximization
in terms of m! (x0) as follows,

73



min
B∈R,w⊥x0

max
v∈m! (x0)

(B − 1)x)0 v + w)v

subject to: h)w ≥
√
< cd(B, ‖w‖) .

(6.28)

If |B | > 1 in (6.28), we have the following inequalities:

| |w| |2 3 ()! (x0)) ≥ (h)w)2 ≥ < cd(B, | |w| |) >
<

2
| |w| |2 . (6.29)

The first inequality is due to the fact that x − x0 = (B − 1)x0 + w is in )! (x0) (the descent cone
of the objective at point x0). The second inequality appeared as a constraint in the optimization
problem (6.28). The last inequality holds since cd(B, A) > A2/2, when |B | ≥ 1. Therefore, using the
assumption X = <

3
> 2, it can be shown that the feasible set of (6.28) is nonempty if and only if

|B | ≤ 1.

Since the regularized PhaseMax optimization is convex, in order to show that B★ = 1 and w★ = 0
are the unique optimizers of (6.28), it is sufficient to check the optimality condition in a small
neighborhood of (B★ = 1,w★ = 0). We also use the following approximation of the function cd(B, A)
which is valid in a small neighborhood around the point (B, A) = (1, 0):

cd(B, A) =
1
c

[ (
(1 − B)2 + A2)atan( A

1 − B ) − A (1 − B)
]
. (6.30)

Next, for fixed |B | < 1, we will find an upper bound for A := | |w| | such that B and w satisfy the
constraint in (6.28). To this goal, we use the following inequalities:

A2 3 ()! (x0)) ≥ (h)w)2 ≥ < cd(B, A) ⇒ A2 ≥ X cd(B, A) . (6.31)

Replacing the approximation (6.30) for cd(B, A) when B ↑ 1, we have,

A ≤ '(X)
(
1 − B

)
, (6.32)

where '(X) is the unique nonzero solution of the following nonlinear equation:

C2 =
X

c

[
(1 + C2)atan(C) − C

]
. (6.33)
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We are now at the stage to establish the result of Theorem 7. Assume that ṽ ∈ m! (x0) achieves the
supremum in (6.7) (note that ṽ always exists because the set m! (x0) is compact). ṽ then satisfies the
following conditions:

1. x)0 ṽ < 0 ,

2. ‖Pṽ‖ > '(X) ‖P⊥ṽ‖ .

We have the following inequalities:

min
|B |≤1,w⊥x0

max
v∈m! (x0)

(B − 1)x)0 v + w)v ≥ min
|B |≤1,w⊥x0

(B − 1)x)0 ṽ + w) ṽ

≥ min
|B |≤1,w⊥x0

(1 − B) | |Pṽ| | − | |w| | | |P⊥ṽ| | ,
(6.34)

where for the first inequality, we used the fact that maximization over v gives a larger value compared
to choosing the specific vector ṽ. For the second inequality we used Cauchy-Schwarz to bound
w) ṽ from below. When B ↑ 1, we use the approximation (6.32) which bounds ‖w‖ from above.
Therefore, we have:

(1 − B) | |Pṽ| | − | |w| | · | |P⊥ṽ| | > (1 − B) ( | |Pṽ| | − '(X) | |P⊥ṽ| |) > 0. (6.35)

This gives the final result that B★ = 1, w★ = 0 is the unique solution of (6.28). The perfect recovery
in the generalized PhaseMax follows from the result of Corollary 4.

Proof of Theorem 8
We start from the equivalent optimization derived as the result of Lemma 10, defined as,

min
B∈R

min
w∈R=,w⊥x0

− x)init(Bx0 + w) + _ 5 (Bx0 + w)

subject to: h)w ≥
√
< cd(B, ‖w‖) .

(6.36)

One key idea to analyze this optimization is to replace 5 (Bx0 + w) with its first-order linear
approximation around the point x0. Let 5̂ denote the approximation function,

5̂ (x) = 5 (x0) + max
v∈_m 5 (x0)

v) (x − x0) . (6.37)
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Here, m 5 (x0) denotes the sub-differential of 5 (·) at point x0 which is well-defined for convex
functions and is a compact and convex set. Replacing 5 (·) with its approximation enables us to
precisely analyze the conditions for perfect signal recovery in the equivalent optimization (6.36)
which determines the precise phase transition in the regularized PhaseMax optimization. This
approximation is tight when the norm of the error approaches zero (which occurs in perfect recovery).
We refer the interested reader to [99] for more details.

Therefore, for the rest of this section, we will analyze the following optimization,

min
B∈R

w∈R=,w⊥x0

max
v∈_m 5 (x0)

5 (x0) + _v) (Bx0 + w − x0) − Bdinit − x)initw

subject to: h)w ≥
√
< cd(B, ‖w‖) .

(6.38)

Next, we use the dual variable V to rewrite (6.38) as,

min
B∈R

w∈R=,w⊥x0

max
v∈_m 5 (x0)

V≥0

5 (x0)+_v) (Bx0+w−x0)−Bdinit−x)initw−
V
√
=

h)w+ V√
=

√
< cd(B, | |w| |) . (6.39)

In the next step, we would like to switch the minimization over w with the maximization over V.
But since the objective function is not convex with respect to w, such an exchange would not be a
direct result of the Sion’s min-max theorem. However, note that the initial optimization satisfies the
conditions of the Sion’s min-max theorem. In the asymptotic settings, using the same techniques as
in [129] (see section A.2.4 in the appendix of the paper), one can show that changing the order of
min and max does not change the solution of the optimization problem.

Hence, we are now able to first do the minimization over w. To do this, we define A := ‖w‖ and
by fixing A, we are computing the minimization with respect to the direction of w. The following
optimization is the result of minimization over the direction of w:

min
B∈R
A≥0

max
v∈_m 5 (x0)

V≥0

(1 − B) (dinit − v)x0) − A · ‖P⊥(_v − xinit −
V
√
=

h)‖ + V
√
U cd(B, A) , (6.40)

where, as defined in Section 6.3, U = <
=
is the oversampling ratio and P⊥ = I− x0x)0 is the projection

to the orthogonal subspace of x0.

Up to this point, the result is valid for every convex function 5 (·). But in order to continue our
analysis, we need the following lemma which restricts us to a specific class of functions, i.e., the
class of absolutely scalable functions.
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Lemma 12. Let 5 : R= → R be a convex function such that for all x ∈ R= and U ≥ 0,
5 (U x) = U 5 (x). Then, for all v ∈ m 5 (x),

v)x = 5 (x) , (6.41)

where m 5 (x) is the set of sub-differentials of function 5 (·) at point x.

Proof. Since 5 (·) is convex, for all v ∈ m 5 (x) and any n < 1, we have

(1 − n) 5 (x) = 5 ((1 − n)x) ≥ 5 (x) − nv)x . (6.42)

Thus, n 5 (x) ≤ nv)x. Choosing n1 = 1/2 and n2 = −1/2 yields v)x = 5 (x) which concludes the
proof. �

If we apply Lemma 12 to the objective function in (6.40), we can replace v)x0 with 5 (x0) for all
v ∈ m 5 (x0), which gives the following optimization,

min
B∈R
A≥0

max
V≥0

− (1 − B)! (x0) − A · min
v∈_P⊥m! (x0)

‖v − V
√
=

h‖ + V
√
U cd(B, A) . (6.43)

Recall that (1 − B) and A ≥ 0 respectively represent the norm of the error in the direction of x0 and
its orthogonal complement. Therefore, the perfect recovery in our optimization corresponds to the
case where the optimizers are A★ = 0 and B★ = 1, and we are interested in the phase transition ratio
U★ for which this happens.

We use the following approximation of the objective function near the point (A, B) = (0, 1), which
was introduced earlier in (6.30),

cd(B, A) =
1
c

[
((1 − B)2 + A2)atan( A

1 − B ) − A (1 − B)
]
. (6.44)

Next, we define the new variable C := A
1−B and rewrite the optimization in terms of C and B. One can

show from (6.44) that as A ↓ 0 and B ↑ 1, the value of cd(B, A) will only depends on the ratio C.

min
B∈R
C≥0

max
V≥0

Ψ(B, C, V) = −(1−B)! (x0)−C (1−B) ·dist_m!⊥ (x0) (
V
√
=

h)+V(1−B)
√
U
(
(1 + C2)atan(C) − C

)
,

(6.45)
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where m!⊥(x0) = P⊥m! (x0) and distS (x) is the distance function defined in Definition 4. Since we
have a convex-concave objective function over three scalars, we can write the first order optimality
conditions for the solutions to (6.45) as follows,


m
mV
Ψ(B, C, V)

��
(B★=1,C★,V★) = 0

m
mB
Ψ(B, C, V)

��
(B★=1,C★,V★) = 0

m
mC
Ψ(B, C, V)

��
(B★=1,C★,V★) = 0

(6.46)

Next, we want to find the conditions (on U) under which the solution to (6.46) happens at B★ = 1.
Therefore, we aim to solve the system of nonlinear equations (6.46), for three unknowns C, V and X.

These equations can be written in the following form,

− C ·
V

=
‖h‖2 − h)√

=
Πm!⊥ (x0) (

V√
=
h)

dist_m!⊥ (x0) (
V√
=
h)

+
√
U((1 + C2)atan(C) − C) = 0

! (x0) + C · dist_m!⊥ (x0) (
V
√
=

h) − V
√
U((1 + C2)atan(C) − C) = 0

− dist_m!⊥ (x0) (
V
√
=

h) + V C atan(C)
√
U√

U((1 + C2)atan(C) − C)
= 0 (6.47)

Next, we exploit the conditions of Assumption 4. Using theorem 5.2.2. in [141], both the functions
dist_m!⊥ (x0) (

V√
=
h) and h)√

=
Πm!⊥ (x0) (

V√
=
h) converge point-wise to their expected value. Moreover,

from Assumption 4, we know that both E[dist_m!⊥ (x0) ( V√=h)] and E[ h)√
=
Πm!⊥ (x0) (

V√
=
h)] converge

uniformly to �_ (V) and V − �_ (V), respectively. Therefore, using the same arguments as in [129],
we can replace dist_m!⊥ (x0) (

V√
=
h) with �_ (V) in the optimization (6.45), and then apply the result of

Theorem 7.17 in [111], we can show that �′
_
(V) = �_ (V) �′_ (V).

Therefore, we are able to use the functions �_, and �_ to rewrite the system of non-linear
equations (6.47):

− C · �_ (V)
�_ (V)

+
√
U((1 + C2)atan(C) − C) = 0

! (x0) + C · �_ (V) − V
√
U((1 + C2)atan(C) − C) = 0

− �_ (V) +
V C atan(C)

√
U√

U((1 + C2)atan(C) − C)
= 0 (6.48)

78



By combining the first and third equations, we will get

C = tan( c
UV
�_ (V)) (6.49)

Finally, using (6.49) in (6.48) reduces the number of equations to 2, and yields the following system
of non-linear equations.


�_ (V) ; = tan( c

UV
�_ (V)) (�2

_
(V) − V�_ (V)) ,

tan( c
UV
�_ (V)) (�_ (V) − c;

UV
�_ (V)) = c

UV
�_ (V) �_ (V) ,

(6.50)

This concludes the proof.

6.7 Proof of Lemma 10
Define matrix A ∈ R<×= with 8th row equal to the measurement vector a8, for 8 = 1, 2, . . . , <. Let
y := |Ax0 | ∈ R< denote the measurement values. To streamline our analysis, we assume ‖x0‖ = 1.
One can rewrite the constraint set of the optimization problem (6.2) as following,

|Ax| ≤ y ⇔ −Ax + y ≥ 0 , and Ax + y ≥ 0, (6.51)

where all the inequalities are component-wise. Exploiting the Lagrange multipliers, we can
reformulate the generalized PhaseMax optimization as,

min
x∈R=

max
-,(∈R<+

− xinit)x + _ 5 (x) + (- − ())Ax − (- + ())y , (6.52)

where `8 and [8 are Lagrange multipliers for the inequalities a)
8
x ≤ H8 and a)

8
x ≥ −H8, respectively.

Assume H8 > 0 (which happens with probability 1), these two inequalities cannot be active at the
same time. Therefore, at least one of `8 and [8 must be equal to 0, for every 8 = 1, 2, . . . , <. Hence,
we have - + ( = |- − ( |. Here | · | denotes the component-wise absolute value function. Define
v := - − ( ∈ R< and rewrite the optimization in terms of v gives the following,

min
x∈R=

max
v∈R<

− xinit)x + _ 5 (x) + v)Ax − |v|) |Ax0 | . (6.53)

Since the term |v|) |Ax0 | depends on the matrix A, it is not possible to apply the CGMT to the
bilinear form v)Ax. In order to apply CGMT, we use the following key decomposition for x:
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x = Bx0 + w, (6.54)

where B = x)0 x ∈ R is a scalar and the vector w = P⊥x ∈ R= is orthogonal to x0. We can rewrite the
optimization problem (6.53) in terms of B and w as follows,

min
B∈R, w⊥x0

max
v∈R<

− Bdinit − x)initw + _ 5 (Bx0 + w) + v)Aw + Bv)Ax0 − |v|) |Ax0 |, (6.55)

where dinit = x)initx0. Next, we use the following property of Gaussian matrices.

Lemma 13. Let G ∈ R<×= be a random matrix with i.i.d. standard normal entries, and u, v ∈ R=

are such that u ⊥ v. The random vectors Gu and Gv are independent.

Proof. Let G = [68, 9 ]<×= and define a = Gu, and b = Gv. Since G has Gaussian entries a, b
are Gaussian vectors in R<. Therefore, to show their independence it is sufficient to show that
E[a, b) ] = 0<×<.

E[081 9 ] =
=∑
:=1

=∑
;=1

D:E; E[68,: 6 9 ,;] =

∑=
:=1 D:E: = 0, if 8 = 9

0 , if 8 ≠ 9
, (6.56)

where we used the fact that u)v =
∑=
:=1 D:E: = 0.

�

Using the result of Lemma 13 , the random vectors Ax0 and Aw are independent. So, we are allowed
to change the matrix A in the bilinear form v)Aw with its independent copy H ∈ R<×= which also
has i.i.d. standard normal entries. We also define q = Ax0 ∈ R<, which is independent from H.
Note that since A has i.i.d. normal entries and ‖x0‖ = 1, the entries of q also has i.i.d. standard
normal distribution. We can rewrite the optimization (6.55) as follows:

min
B∈R, w⊥x0

max
v∈R<

− Bdinit − x)initw + _ 5 (Bx0 + w) + v)Hw + Bv)q − |v|) |q| . (6.57)

Next, we apply the CGMT framework in Lemma 32 to equation (6.57), in order to replace the
bilinear form v)Hw with two linear forms ‖v‖h)w + v)g‖w‖. But this lemma requires the set that
we optimize w over to be compact. In order to be able to apply CGMT, we enforce an "artificial"
bound on the norm of w. Note that our goal is to eventually prove that, ŵ converges to a finite number
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U★. We define  U = U★+Δ for some Δ > 0 and also the compact set Sw = {w|w ⊥ x0 , ‖w‖ ≤  U}.
Let ŵtemp to be the optimizer to the version of (6.57) where we optimize w over Sw. It is simple
to verify that if ‖ŵtemp‖ P−→ U★, then ‖ŵ‖ P−→ U★. This means that if in the final equation, we get a
unique finite solution for the asymptotic behavior of ‖ŵ‖ (which is what we do) , the proof goes
though and we can apply the CGMT.

Now that this concern is taken care of, the following corollary will be the result of applying CGMT
to the equation (6.57).

Corollary 5. Let x̂ be the unique optimizer of the generalized PhaseMax algorithm (6.2). As =→∞
the error performance converges in probability as follows:

(
‖x̂ − x0‖2

‖x0‖2

)
−

(
‖w★‖2 + (1 − B★)2

)
=→∞−→ 0 , (6.58)

where B★, w★ are the unique optimizers of the following (auxiliary) optimization:

min
B∈R, w⊥x0

max
v∈R<

− Bdinit − x)initw + _ 5 (Bx0 + w) − ‖v‖h)w + v)g‖w‖ + Bv)q − |v|) |q| .
(6.59)

h ∈ R= and g ∈ R< are random vectors with i.i.d. standard normal entries.

We proceed onward with analyzing (6.59). Observe that if we fix |v|, then the optimal v satisfies
sign(v) = sign(‖w‖g + Bq) which simplifies the optimization to the following,

min
B∈R, w⊥x0

max
v∈R<

− Bdinit − x)initw + _ 5 (Bx0 + w) − ||v| |h)w + |v|) ( | Bq + ‖w‖g | − |q|), (6.60)

By fixing the norm of v and optimizing over its direction, the optimization problem (6.60) can be
reduced to the following:

min
B∈R, w⊥x0

− Bdinit − x)initw + _ 5 (Bx0 + w)

subject to: h)w ≥ ||{| Bq + ||w| |g | − |q|}+ | | ,
(6.61)

where, for a vector c, we let {c}+ denote the component-wise positive part function, with 8th entry
equal to max(0, c8). Next, note that q and g are independent vectors in R< with i.i.d. standard
normal entries. We introduce the function cd(B, A) as follows:
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Definition 7. The function cd : R × R+ → R is defined as,

cd(B, A) = E-1,-2 [{|B-1 + A-2 | − |-1 |}2+] , (6.62)

where -1, -2
8.8.3.∼ N(0, 1).

Lemma 14. 1
<
| |{| Bq + ||w| |g | − |q|}+ | |2

P→ cd(B, ‖w‖), as < →∞.

Proof. Define the vector u ∈ R<+ as,

u := {| Bq + ‖w‖g | − |q|}+ . (6.63)

The entries of u are i.i.d and E[D2
8
] = cd(B, ‖w‖), for 1 ≤ 8 ≤ <. Therefore, the weak law of large

number gives the following:

1
<
| |u| |2 = 1

<

<∑
8=1

D2
8

P→ E[D2
8 ] = cd(B, ‖w‖) . (6.64)

�

To conclude the proof of Lemma 10, we exploit the result of Lemma 14 to replace ‖{|Bq + ||w| |g| −
|q|}+ | | in (6.61), which gives us the following optimization:

min
B∈R

min
w∈R=,w⊥x0

− x)init(Bx0 + w) + _ 5 (Bx0 + w)

subject to: h)w ≥
√
< cd(B, ‖w‖) .

(6.65)

We are not going through the technical details of obtaining the convergence result in (6.65). The
point-wise convergence, for fixed values of B and ‖w‖, follows from Lemma 14. To show the
uniform convergence, we appeal to the convexity of the objective function. The corresponding
convergence of the optimal cost follows from the uniform convergence.

The following lemma gives an explicit formula for the function cd(·, ·) in terms of its two input
arguments.

Lemma 15.

cd(B, C) =
1
c

[ (
(1 + B)2 + C2

)
atan

( C

1 + B
)
+

(
(1 − B)2 + C2

)
atan

( C

1 − B
)
− 2C

]
. (6.66)
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Proof.

cd(B, C) = E
[
{|B-1 + C-2 | − |-1 |}2+

]
(6.67)

=
1
c

∫ ∞

0
4−G

2
1/2

∫ ∞

1−B
C
G1

4−G
2
2/2(CG2 − (1 − B)G1)2 3G2 3G1 (6.68)

+ 1
c

∫ ∞

0
4−G

2
1/2

∫ − 1+B
C
G1

−∞
4−G

2
2/2 (CG2 + (1 + B)G1)2 3G2 3G1 ,

�

where, due to the symmetry, we have computed the expectation only for -1 > 0 and multiplied the
result by two. Next, we rewrite the integral in the polar coordinates (A, \) where G1 = A cos(\), and
G2 = A sin(\).

cd(B, C) =
1
c

∫ c/2

atan( 1−B
C )

∫ ∞

0
A34−A

2/2 (C sin(\) − (1 − B) cos(\))2 3A 3\ (6.69)

+ 1
c

∫ c/2

atan( 1+B
C
)

∫ ∞

0
A34−A

2/2 (C sin(\) − (1 + B) cos(\))2 3A 3\

=
2
c

∫ c/2

atan( 1−B
C )
(C sin(\) − (1 − B) cos(\))2 3\ + 2

c

∫ c/2

atan( 1+B
C
)
(C sin(\) − (1 + B) cos(\))2 3\

(6.70)

=
2
c

[
C2 + (1 − B)2

2
atan

( C

1 − B
)
− C (1 − B)

2

]
+ 2
c

[
C2 + (1 + B)2

2
atan

( C

1 + B
)
− C (1 + B)

2

]
(6.71)

=
1
c

[
((1 + B)2 + C2) atan

( C

1 + B
)
+

(
(1 − B)2 + C2

)
atan

( C

1 − B
)
− 2C

]
. (6.72)

We derived (6.70) using the fact that
∫ ∞

0 A34−A
2/23A = 2. Computing each of the integrals with

respect to \ would result in (6.71), and the final result in (6.72) is derived by some simplifications.

6.8 Computing the Statistical Dimension for the ℓ1 Regularization
In this section we bound the statistical dimension of the descent cone of the objective function in
(6.2), where 5 (·) = ‖ · ‖1 is used for regularization. We assume that the underlying signal, x0, is
:-sparse and define function !_ : R= → R as follows,

!_ (x) := −x)initx + _‖x‖1, (6.73)
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In order to derive an upper bound for the statistical dimension 3
(
)!_ (x0)

)
, we first introduce another

summary parameter for convex sets called the Gaussian width.

Definition 8 (Gaussian width [141]). The Gaussian width of a subset T ⊂ R= is defined as,

l(T ) = E sup
x∈T
〈x, g〉, where g ∼ N(0, I) . (6.74)

The following proposition indicates the relationship between the Gaussian width and statistical
dimension of a convex cone.

Proposition 2 (Proposition 10.2 in [7]). Let C ⊂ R= be a convex cone. Then

l2(C ∩ S=−1) ≤ 3 (C) ≤ l2(C ∩ S=−1) + 1 , (6.75)

where S=−1 ⊂ R= is the unit sphere.

The Proposition 2 shows that in order to bound the statistical dimension of a convex cone, we need
to bound the squared Gaussian width of that cone. Hence, in the remaining of this section we
will bound the squared Gaussian width. To this goal, we briefly review some known properties of
Gaussian width of convex cones.

Some properties of Gaussian width
The Gaussian width is one of the intrinsic volumes of a body studied in combinatorial geometry. It is
invariant under translation and unitary transformation and has deep connections to convex geometry.
While discussing all the properties of Gaussian width is beyond the scope of this paper, we refer the
interested reader to [110, 133, 141] and references therein.

Inspired by [122, 33], here we bound the Gaussian width of a cone via the distance to its polar cone.
Before stating the proposition, we review the definition of the polar cone.

Definition 9 (Polar cone). Let C ⊂ R= be a non-empty convex cone. The polar cone of C, denoted
by C★, is defined as follows,

C★ = {z ∈ R= : 〈z, x〉 ≤ 0 for all x ∈ C} . (6.76)

The following proposition establishes a connection between the Gaussian width of the cone C and
its polar cone C★:
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Proposition 3 (Proposition 3.6 in [33]). Let C be any non-empty convex cone in R=, and let
g ∼ N(0, I) be a random Gaussian vector. Then we have the following bound:

l(C ∩ S=−1) ≤ Eg [dist(g, C★)] , (6.77)

where the dist(·, ·) function here denotes the Euclidean distance between a point and a set.

Applying Jensen’s inequality will result in the following,

l2(C ∩ S=−1) ≤ Eg [dist2(g, C★)] . (6.78)

This is very useful in bounding the Gaussian width of the descent cone of a convex function due to
We next appeal the following lemma to bound the Gaussian width:

Lemma 16 ([108]). For a convex function 5 : R= → R,

() 5 (x))★ = cone(m 5 (x)) , (6.79)

where m 5 (x) is the sub-differential set of function 5 at point x.

The polar cone of ) 5 (x) is also called the normal cone, # 5 (x), at point x. Exploiting the above
results, we can bound l2 ()! (x0) ∩ S=−1) in terms of the squared distance to the normal cone at
point x0, i.e., we have the following,

3 ()!_ (x0)) ≤ l2
(
)!_ (x0) ∩ S=−1

)
+ 1 ≤ Eg

[
dist2(g, cone(m!_ (x0))

]
+ 1 . (6.80)

For simplicity in the remaining formulations we omit the sub-script _ and denote the objective
function by !. Let Δ denote the set of coordinates where x0 is non-zero. The sub-differential set of
the function ! (defined in (6.73)) can be formally characterized as,

m! (x0) = {−xinit +
_
√
:

v : v ∈ R= s.t. v[8] = sign(x0 [8]) for 8 ∈ Δ, |v[8] | ≤ 1 for 8 ∈ Δ2}. (6.81)
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Here Δ2 := [=]\Δ represents the zero entries of x0. Without the loss of generality, we are going
to assume that the first : entries of x0 are non-zero, while the rest are zero. Then, cone of the
sub-differential can be rewritten as

cone(m 5 (x)) = {V · (−xinit +
_
√
:

v) : v[1 : :] = 1, ‖v[: + 1 : =] ‖∞ ≤ 1, V ≥ 0}. (6.82)

The squared distance to the normal cone can be formulated as the following optimization:

dist2(g, #! (x0)) = min
C≥0

∑
8∈Δ
(g[8] + Cxinit [8] − C_sign(x0 [8]))2 (6.83)

+
∑
9∈Δ2

min
|D 9 |<C
(g[ 9] + Cxinit [ 9] − _D 9 )2

Define z := z(C) = g + Cxinit. We can rewrite the equation (6.83) as,

dist2(g, #! (x0)) = min
C≥0

∑
8∈Δ
(z[8] − C_sign(x0 [8]))2 (6.84)

+
∑
9∈Δ2

shrink(z[ 9], C_)2 ,

where the function shrink(·, ·) is defined as, shrink(G, )) =


G + ) , G < −)

0 , − ) ≤ G ≤ )

G − ) , G > )

. This function

is known as ℓ1-shrinkage function and is used in sparse denoising. Taking the expectation with
respect to g will provide us with the quantity we would like to bound. We are bounding the
expectation of the squared distance by bounding each of the two terms of the sum. For the first term,
we have:

E
[∑
8∈Δ
(z[8] − C_sign(x0 [8]))2

]
= : + C2(_2: − ||xΔinit | |

2) − 2C_sign(x0))xΔinit (6.85)

Bounding the expectation of the second term in (6.84) would result in,

E[
∑
9∈Δ2

shrink2(z[ 9], C_)] ≤ 2(= − :)f3
√

2cC_
4G?(−C

2_2

2f2 ) , (6.86)
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where f2 := 1 + | |x
Δ
init | |

2

=−: C2.

Using the result of equations (6.85) and (6.86), we can see that when _ > 2√
:
, then by choosing

C =

√
2 log =

:

_
, both of the terms in the sum are bounded by �: log =

:
, where 2 and � are constants that

are independent of the problem’s parameters.

Therefore, when _ > 2√
:
(where : is the number of non-zero entries), the statistical dimension of

)!_ (x0) is bounded by �: log =
:
. This has been used in Example 2 in Section 6.3. Using the result

of Theorem 7, we can conclude that for the sparse phase retrieval problem the required sample
complexity of the regularized PhaseMax is O(: log =

:
). This indicates that regularized PhaseMax is

order-wise optimal (given a proper initialization).
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Part II:

Linear Classification with Structured Parameters



89C h a p t e r 7

LINEAR MODELS FOR BINARY CLASSIFICATION

In this chapter, we introduce the problem of classification with linear decision boundaries. As
explained earlier in Chapter 1, this problem falls under the category of generalized linear models. In
binary classification, a linear decision boundary can be seen as a hyperplane that separates the two
classes. Given a training data set, the goal is to find the parameters of the classifier (equivalently the
normal vector of the separating hyperplane).

Mathematically speaking, we assume that we have access to the training data D = {(x8, H8) |1 ≤ 8 ≤
=}, where, for 8 = 1, 2, . . . , =, x8 ∈ R? denotes the feature vector and H8 ∈ {+1,−1} indicates the
class label, which is a symmetric Bernoulli random variable with,

P[H8 = 1|x8] = Φ(x)8 w★). (7.1)

Here, w★ ∈ R? is the parameter vector of the underlying model, and Φ : R → R is a known
real-valued (non-linear) function, often referred to as the link function. A well-known example of
such model is logistic regression in which the function Φ is the logistic function.

logistic model: P[H8 = 1|x8] =
4x)

8
w★

4x)
8

w★ + 4−x)
8

w★
. (7.2)

Another important example is the noise-free model, in which the hyperplane with the normal vector
w★ perfectly separates the two classes.

noise-free model: P[H8 = 1|x8] = SIGN(x)8 w★). (7.3)

It is worth noting that thew logistic model converges to a noise-free model as | |w★| | → +∞.

Here, we assume that the link function, Φ(·) is known, and the goal is to find w★ given the data set
D. We assume that the data points x8’s are generated independently from a distribution PG . Inspired
by the maximum-likelihood estimator in logistic regression, one can attempt to find w★ by solving
an optimization problem of the form:

ŵ = arg min
w∈R?

=∑
8=1

ℓ(x)8 w, H8), (7.4)



where the objective function is additive with respect to each of the data points, and the function
ℓ : R2 → R is defined based on the link function Φ(·). For instance, we will show in Chapter 8 that
the maximum-likelihood estimator can be derived by choosing ℓ(·, ·) as,

ℓ(D, E) = log(1 + exp(−DE)), (7.5)

which gives the following optimization program:

ŵ!' = arg min
w∈R?

=∑
8=1

log
[
1 + exp(H8x)8 w)

]
. (7.6)

It turns out that the optimization program (7.6) exhibits different behaviors depending on the
separability of the data set.

Definition 10. The data set D = {(x8, H8) |1 ≤ 8 ≤ =} is said to be separable if there exists w0 ∈ R?

such that H8 = SIGN(w)
0 x8) for 8 = 1, 2, . . . , =.

7.1 Non-separable Data sets
When =/? is sufficiently large, i.e., when we have access to a sufficiently large number of samples, the
maximum-likelihood estimator is well-defined. In this case, the training data setD is non-separable,
and the optimization program (7.6) has a unique solution. Since this is a convex optimization, a
descent method (such as gradient descent) can be used to achieve the optimal solution. There has
been multiple studies in classical statistics on the performance of the estimate derived from the
logistic regression when the data is non-separable. The main underlying assumptions in these studies
is that the number of data samples, =, far exceeds the number of parameters, ?. More specifically,
it has been shown that when =/? → ∞, the solution of the logistic regression ŵ!' becomes an
efficient estimator of the underlying parameters w★, i.e.,

• ŵ!' is an unbiased estimator of w★.

• ŵ!' has the minimum variance among all unbiased estimators. The covariance matrix of this
estimator is equal to the inverse of the Fisher Information matrix.

We will observe in Chapter 8 that the above results, derived in the classical regime, do not hold
when the number of samples is proportional to the number of parameters. In particular, we will see
that when X = =/? < +∞, the estimator derived from the logistic model is not even an unbiased
estimator!

90



In practice, we often assume that the underlying parameters possess certain structure(s). To enforce
the structure, we often add a regularization term to the objective function. The regularized logistic
regression can be formulated as following,

ŵ'!' = arg min
w∈R?

1
=

=∑
8=1

log
[
1 + exp(H8x)8 w)

]
+ _
?

?∑
:=1

'(F: ). (7.7)

where '(·) is the regularization function that enforces the desired/expected structure.

In Chapter 8, we provide a precise asymptotic analysis of the solution of the regularized logistic
regression. In particular, we characterize the performance via the solution to a nonlinear system of
equations with 6 unknowns. We will show that any performance measures of the resulting estimator
can be computed form the solution of this nonlinear system. We then investigate the performance
for certain choices of the regularization functions: (1) ridge regularization, which is often used
in ML applications to improve the performance of the estimator and to avoid overfitting, (2) ℓ1

regularization, which is used to enforce sparse structures, and (3) ℓ∞ regularization, which is used
when the underlying parameter has a discrete (binary) structure.

7.2 Separable Data sets (Interpolating Regime)
In the setting where the data set D is separable, the optimization problem (7.6) does not have a
unique solution. LetW denote the set of parameters that perfectly separates the data, i.e.,

W = {w ∈ R? | H = SIGN(w)x) , for (x, H) ∈ D}. (7.8)

The regime of parameters whenD is a separable data set (equivalently, when the setW is non-empty)
is known as the interpolating regime.

To find an optimal solution of (7.6), we often use an iterative solver, which starts from an initialization
point and follows an update rule till convergence. It has been observed that in many machine learning
tasks, iterative solvers converge to one of the points in the setW (i.e., the training error converges to
zero). Therefore, one can qualitatively pose the following important (yet still mysterious) question:

Which point(s) inW is (are) ”better” estimator(s) of the actual parameter, w★?

Studies on the performance of different classifiers for binary classification dates back to the seminal
work of Vapnik in the 1980’s [140]. In an effort to find the "optimal" hyperplane that separates
the data, he presented an upper bound on the test error which is inversely proportional to the
margin (minimum distance of the data points to the separating hyperplane), and concluded that the
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max-margin classifier is indeed the desired classifier. It has also been observed that to construct such
optimal hyperplanes one only needs to only take into consideration a small amount of the training
data, the so-called support vectors [37].

A more recent line of research studies the convergence of iterative optimization algorithms (such as
gradient descent) on the logistic loss in the interpolating regime. Soudry et al. [120] studied the
behavior of gradient descent updates when applied on the logistic loss, i.e.,

wC+1 = wC − [ × ∇! (D,w) for C ≥ 0, (7.9)

where [ is the step-size and ! (D,w) = ∑=
8=1 log

[
1 + exp(H8x)8 w)

]
is the objective function in

logistic regression. The following Theorem characterizes the convergence behavior of GD iterates:

Theorem 9 (Theorem 3 in [120]). Consider the optimization problem (7.6), and the gradient descent
iterates initialized at w0 and updated as in (7.9) with [ < �D/= 1. We have,

(i) | |wC | | → +∞, as C →∞, and,

(ii) lim
C→∞

wC
| |wC | | =

ŵ
| |ŵ| | , where ŵ is the parameters of the max-margin classifier defined as,

ŵ = arg min
w∈R?

| |w| |2

s.t. H8 (x)8 w) ≥ 1, for 1 ≤ 8 ≤ =.
(7.10)

This result is very interesting as it sheds light on the convergence behavior of the GD iterates. While,
there are multiple hyperplanes that separates the data, the GD converges to a special one that is the
max-margin classifier. More importantly, in order to assess the performance of the result achieve by
running gradient descent method, we should analyze the performance of the max-margin classifier.

In Chapter 9, we attempt to extend this result by considering the case where the underlying parameter,
w★ possesses certain structure (sparse, low-rank, block-sparse, etc.), and consider a convex function
k : R? → R which encourages this structure. We introduce the Extended Margin Maximizer (EMM)
as the solution of the following optimization,

min
w∈R?

k(w)

s.t. H8 (x)8 w) ≥ 1, for 1 ≤ 8 ≤ =.
(7.11)

1�D is a constant that depends on the data set D. It has been shown in [120] that for logistic loss �D = 2
f2

max (- )
.

92



We will show that EMM can be viewed as an optimization problem that simultaneously considers
enforcing the structure and the maximiztion of the margin. After introducing extended margin-
maximizers as a suitable extension of the max-margin classifier in the structured setting, in Chapter 9
we also analyze the asymptotic behavior of the EMM optimizer when the data points are derived
independently from a Gaussian distribution. It will be shown in our theoretical results as well as
numerical simulations that an appropriate choice of the potential function k(·) can lead to a classifier
which outperforms the max-margin classifier.

Before proceeding into the analysis of the performance of the optimal classifiers in Chapters 8
and 9, we need to answer an important question. What is the condition for the separability of
the training data? In the remaining of this chapter, we focus on answering this question.

7.3 Separability Condition
In this section, we study the necessary and sufficient conditions for the separability of the data
set, D. Here, we assume that the data points, {x8}=8=1 , are drawn independently from the standard
normal distribution N(0, 1

?
I?). In addition, the labels are generated from a logistic-type model,

with the underlying parameter, w★ ∈ R?, as follows,

H8 = RAD
(
Φ(x)8 w★)

)
, 8 = 1, 2, . . . , =, (7.12)

where the link function Φ : R→ [0, 1] is non-decreasing.

We analyze this problem in the linear asymptotic regime in which the problem dimensions, ? and =,
grow to infinity at a proportional rate X := ?

=
, known as the overparameterization ratio. Our analysis

on the separability of the data set also relies on another parameter, the signal strength defined as
^ := | |w

★ | |√
?
. Under these assumptions, we provide the conditions on the separability of the data

set. Our results rely on a summary function 2C (·, ·), which incorporates the information about the
underlying model.

Definition 11. For the parameter C > 0, the function 2C : R × R+ → R+ is defined as,

2C (B, A) = E
[
(1 − CB/1. − A/2)2+

]
, (7.13)

where /1, /2
i.i.d.∼ N(0, 1), and . ∼ RAD(Φ(C/1)).

Asymptotic phase transition
Theorem 10 provides the necessary and sufficient conditions for the separability of the data.
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Theorem 10 (Phase transition). Consider the data set D = {(x8, H8)}=8=1 ⊂ R
? × {+1,−1}, where,

for 8 = 1, 2, . . . , =, x8 is independently drawn from N(0, I/?) and H8 is derived from (7.12). As
=, ? →∞ at a fixed overparameterization ratio X := ?

=
∈ (0,∞), D is (almost surely) separable (or

equivalently, the setW is nonempty) if and only if,

X > X∗ = X∗(^) := inf
B,A≥0

2^ (B, A)
A2 . (7.14)

Theorem 10 indicates the necessary and sufficient conditions for the separability of the data. From
earlier discussion in Section 7.2, the separability of the data set is the condition required for the
existence of the EMM classifier (7.11). Therefore, (7.14) also indicates the necessary and sufficient
condition for the existence of EMM. The proof of Theorem 10 is provided in Section 9.8 of Chapter 9.
A few remarks are in place:

Remark 7. The condition for the existence of the EMM classifier (7.11) is independent of the choice
of the potential function, k(·).

Remark 8. The phase transition (7.14) is valid for any choice of the link function Φ(·). This
generalizes the former result by Candes and Sur [31]. It is worth noting that the summary functional
2^ depends on the choice of the link function. This function is often computed numerically (computing
the integral corresponds to the expectation.)

The following lemma, describes the changes in X∗ with respect to the signal strength, ^.

Lemma 17. Assume Φ(·) is an increasing function with Φ(0) = 1/2 and limD→−∞Φ(D) =
1 − limD→+∞Φ(D) = 0. X∗ is a decreasing function of ^, with X∗(0) = 1

2 and lim^→∞ X∗(^) = 0.

Note that the assumptions on the link function in Lemma 17 are satisfied by typical choices of link
function, as we expect the output (the probability of the label being equal to +1) to be close to 1
when the feature vector is well-aligned with the underlying parameter vector, w★, and close to 0
when the feature vector is aligned with −w★.

The result of Lemma 17 can be intuitively verified. Recall that ^ = ‖w
★‖√
?

and H8 ∼ RAD(Φ(x)
8
w★)).

Therefore, ^ →∞ translates to having H8 = SIGN(x)
8
w★). In this case, our training data is always

separable for any number of observations =. Besides, the case of ^ = 0 corresponds to having
random labels assigned to feature vectors x8. [38] showed that in this case, as ? →∞, X > 0.5 is the
necessary and sufficient condition for the separability of the data set.
Figure 7.1 provides a comparison between the theoretical result in Theorem 10 and the empirical
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Figure 7.1: The phase transition, X∗, for the separability of the data set, where the feature vector, x8
is drawn from the Gaussian distribution, N(0, 1

?
I?), and the labels are H8 ∼ RAD

(
Φ(x)

8
w★)

)
, for

Φ(I) = 4C

4C+4−C . The empirical result is the average over 20 trials with ? = 150, and the theoretical
results are from Theorem 10.

results derived from numerical simulations for ? = 150 and 20 trials. As seen in this plot, the theory
matches well with the empirical simulations.

Conclusion
In this chapter, we introduced the problem of binary classification as a special example of generalized
linear models which is commonly used in machine learning applications. With the goal of finding
the optimal parameter of the logistic model, we formed an optimization consisting of a loss function
and a regularization term. Separability of the training data set,D, is the distinguishing factor for the
behavior of the optimal solution of this optimization. Our analysis on the separability of D shows a
sharp asymptotic phase transition with respect to the overparameterization ratio X = ?/=. For data
sets generated from a Gaussian distribution, we precisely characterize the phase transition which
shows the necessary and sufficient condition on the separability of D.
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PRECISE PERFORMANCE ANALYSIS OF REGULARIZED LOGISTIC
REGRESSION IN HIGH DIMENSIONS

[1] F. Salehi et al. “The Impact of Regularization on High-dimensional Logistic Regression”.
In: Advances in Neural Information Processing Systems (2019), pp. 11982–11992.

Logistic regression is the most commonly used statistical model for predicting dichotomous
outcomes [63]. It has been extensively employed in many areas of engineering and applied sciences,
such as in the medical [18, 135] and social sciences [78]. As an example, in medical studies, logistic
regression can be used to predict the risk of developing a certain disease (e.g. diabetes) based on a
set of observed characteristics from the patient (age, gender, weight, etc.)

Linear regression is a very useful tool for predicting a quantitative response. However, in many
situations the response variable is qualitative (or categorical) and linear regression is no longer
appropriate [71]. This is mainly due to the fact that least-squares regression often succeeds under
the assumption that the error components are independent with normal distribution. In categorical
predictions, however, the error components are neither independent nor normally distributed [96].

In logistic regression, we model the probability that the label, . , belongs to a certain category. When
no prior knowledge is available regarding the structure of the parameters, maximum likelihood
is often used for fitting the model. Maximum likelihood estimation (MLE) is a special case of
maximum a posteriori estimation (MAP) that assumes a uniform prior distribution on the parameters.

In many applications in statistics, machine learning, signal processing, etc., the underlying parameter
obeys some sort of structure (sparse, group-sparse, low-rank, finite-alphabet, etc.). For instance,
in modern applications where the number of features far exceeds the number of observations, one
typically enforces the solution to contain only a few non-zero entries. To exploit such structural
information, inspired by the Lasso [132] algorithm for linear models, researchers have studied
regularization methods for generalized linear models [118, 54]. From a statistical viewpoint, adding
a regularization term provides a MAP estimate with a non-uniform prior distribution that has higher
densities in the set of structured solutions.



8.1 Prior Work
Classical results in logistic regression mainly concern the regime where the sample size, =, is
overwhelmingly larger than the feature dimension ?. It can be shown that in the limit of large samples
when ? is fixed and = → ∞, the maximum likelihood estimator provides an efficient estimate of
the underlying parameter, i.e., an unbiased estimate with the covariance matrix approaching the
inverse of the Fisher information [139, 84]. However, in most modern applications in data science,
the data sets often have a huge number of features, and therefore, the assumption =

?
� 1 is not valid.

Sur and Candes [31, 123, 124] have recently studied the performance of the maximum likelihood
estimator for logistic regression in the regime where = is proportional to ?. Their findings challenge
the conventional wisdom, as they have shown that in the linear asymptotic regime, the maximum
likelihood estimate is not even unbiased. Their analysis provides the precise performance of the
maximum likelihood estimator.

There have been many studies in the literature on the performance of regularized (penalized)
logistic regression, where a regularizer is added to the negative log-likelihood function (a partial
list includes [19, 76, 138]). These studies often require the underlying parameter to be heavily
structured. For example, if the parameters are sparse, the sparsity is taken to be >(?). Furthermore,
they provide order-wise bounds on the performance, but do not give a precise characterization of the
quality of the resulting estimate. A major advantage of adding a regularization term is that it allows
for recovery of the parameter vector even in regimes where the maximum likelihood estimate does
not exist (due to an insufficient number of observations).

Summary of results and contributions
Here, we study regularized logistic regression (RLR) for parameter estimation in high-dimensional
logistic models. Inspired by recent advances in the performance analysis of M-estimators for linear
models [42, 48, 129], we precisely characterize the asymptotic performance of the RLR estimate.
Our characterization is through a system of six nonlinear equations in six unknowns, through
whose solution all locally-Lipschitz performance measures such as the mean, mean-squared error,
probability of support recovery, etc., can be determined. In the special case when the regularization
term is absent, our 6 nonlinear equations reduce to the 3 nonlinear equations reported in [123].
When the regularizer is quadratic in parameters, the 6 equations also simplify to 3. When the
regularizer is the ℓ1 norm, which corresponds to the popular sparse logistic regression [80, 81],
our equations can be expressed in terms of &-functions, and quantities such as the probability of
correct support recovery can be explicitly computed. Numerous numerical simulations validate the
theoretical findings across a range of problem settings. To the extent of the author’s knowledge, the
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result presented here is the first work that precisely characterizes the performance of the regularized
logistic regression in high dimensions1. The result presented in this chapter is adopted from our
paper [113].

8.2 Mathematical Setup
Assume we have = samples from a logistic model with parameter w★ ∈ R?. Let D = {(x8, H8)}=8=1
denote the set of samples, where for 8 = 1, 2, . . . , =, x8 ∈ R? is the feature vector and the label
H8 ∈ {−1, +1} is a symmetric Bernoulli random variable with,

P[H8 = 1|x8] = d′(x)8 w★) , for 8 = 1, 2, . . . , = , (8.1)

where d′(C) := 4
C
2

4
C
2 +4

−C
2
is the standard logistic function. The goal is to compute an estimate for w★

from the training data D. The maximum likelihood estimator, ŵ"! , is defined as,

ŵ"! = arg max
w∈R?

=∏
8=1
Pw(H8 |x8) = arg max

w∈R?

=∏
8=1

4
H8x)8 w

2

4
x)
8

w
2 + 4−

x)
8

w
2

= arg min
w∈R?

=∑
8=1

d(x)8 w) − (1 + H8
2
) (x)8 w) ,

(8.2)

where d(C) := log(1+ 4C) is the link functionwhich has the standard logistic function as its derivative.
The last optimization is simply minimization over the negative log-likelihood. This is a convex
optimization program as the log-likelihood is concave with respect to w.
As explained earlier, in many interesting settings the underlying parameter possesses certain
structure(s) (sparse, low-rank, finite-alphabet, etc.). In order to exploit this structure, we assume
5 : R? → R is a convex function that measures the (so-called) "complexity" of the structured
solution. We fit this model by the regularized maximum (binomial) likelihood defined as follows,

ŵ = arg min
w∈R?

1
=
·
[ =∑
8=1

d(x)8 w) − (1 + H8
2
) (x)8 w)

]
+ _
?
5 (w) . (8.3)

Here, _ ∈ R+ is the regularization parameter that must be tuned properly. In this chapter, we study
the linear asymptotic regime in which the problem dimensions ?, = grow to infinity at a proportional
rate, X := ?

=
> 0. Our main result characterizes the performance of ŵ in terms of the ratio, X, and

the signal strength, ^ = | |w
★ | |√
?

. For our analysis, we assume that the regularizer 5 (·) is separable,
5 (w) = ∑

8 5̃ (F8), and the data points are drawn independently from the Gaussian distribution,
1The statement refers to the time of the first submission of these results in May, 2019.
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{x8}=8=1
i.i.d.∼ N(0, 1

?
I?). We further assume that the entries of w★ are drawn from a distribution Π.

Our main result characterizes the performance of the resulting estimator through the solution of a
system of six nonlinear equations with six unknowns. In particular, we use the solution to compute
some common descriptive statistics of the estimate, such as the mean and the variance.

8.3 Characterization of the Performance of Regularized Logistic Regression
In this section, we present the main results of this chapter, that is the characterization of the
asymptotic performance of regularized logistic regression (RLR). When the estimation performance
is measured via a locally-Lipschitz function (e.g. mean-squared error), Theorem 11 precisely
predicts the asymptotic behavior of the error. The derived expression captures the role of the
regularizer, 5 (·), and the particular distribution of w★, through a set of scalars derived by solving a
system of nonlinear equations. We first present this system of nonlinear equations along with some
insights on how to numerically compute its solution. Afterwards, we formally state our result in
Theorem 11. The result of this theorem will then be used to predict the general behavior of ŵ. In
particular, we compute its correlation with the true signal as well as its mean-squared error.

A nonlinear system of equations
As we will see in Theorem 11, given the signal strength ^ and the ratio X, the asymptotic performance
of RLR is characterized by the solution to the following system of nonlinear equations with six
unknowns (U, f, W, \, g, A).



^2U = E
[
, Prox_fg 5̃ (·)

(
fg(\, + A

√
X/)

) ]
,

W =

√
X

A
E
[
/ Prox_fg 5̃ (·)

(
fg(\, + A

√
X/)

) ]
,

^2U2 + f2 = E
[
Prox_fg 5̃ (·)

(
fg(\, + A

√
X/)

)2]
,

W2 =
2
A2 E

[
d′(−^/1)

(
^U/1 + f/2 − ProxWd(·) (^U/1 + f/2)

)2]
,

\W = −2 E
[
d′′(−^/1)ProxWd(·)

(
^U/1 + f/2

) ]
,

1 − W

fg
= E

[ 2d′(−^/1)
1 + Wd′′

(
ProxWd(·) (^U/1 + f/2)

) ] .
(#!()

Here /, /1, /2 are standard normal variables, and, ∼ Π, where Π denotes the distribution on the
entries of w★. The following remarks provide some insights on solving this nonlinear system.

Remark 9 (Proximal Operators). It is worth noting that the equations in (#!() include the
expectation of functionals of two proximal operators. The first three equations are in terms
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of Prox 5̃ (·) , which can be computed explicitly for most widely used regularizers. For instance,
in ℓ1-regularization, the proximal operator is the well-known shrinkage function defined as
[(G, C) := G

|G | ( |G | − C)+. The remaining equations depend on computing the proximal operator of the
link function d(·). For G ∈ R, ProxCd(·) (G) is the unique solution of I + Cd′(I) = G.

Remark 10 (Numerical Evaluation). Define v := [U, f, W, \, g, A]) as the vector of unknowns. The
nonlinear system (#!() can be reformulated as v = ((v) for a properly defined ( : R6 → R6.
We have empirically observed in our numerical simulations that a fixed-point iterative method,
vC+1 = ((vC), converges to v∗, such that v∗ = ((v∗).

Asymptotic performance of regularized logistic regression
We are now able to present our main result. Theorem 11 below describes the average behavior of
the entries of ŵ, the solution of the RLR. The derived expression is in terms of the solution of the
nonlinear system (#!(), denoted by (Ū, f̄, W̄, \̄, ḡ, Ā). An informal statement of our result is that as
=→∞, the entries of ŵ converge as follows,

ŵ 9

3→ Γ(w★
9 , /) , for 9 = 1, 2, . . . , ? , (8.4)

where / is a standard normal random variable, and Γ : R2 → R is defined as,

Γ(2, 3) := Prox_f̄ḡ 5̃ (·)
(
f̄ḡ(\̄2 + Ā

√
X3)

)
. (8.5)

In other words, the RLR solution has the same behavior as applying the proximal operator on the
"perturbed signal", i.e., the true signal added with a Gaussian noise.

Theorem 11. Consider the optimization program (8.3), where for 8 = 1, 2, . . . , =, x8 has the
multivariate Gaussian distribution N(0, 1

?
I?), and H8 = RAD

(
d(x)

8
w★)

)
, and the entries of w★ are

drawn independently from a distribution Π. Assume that the parameters X, ^, and _ are such that
the nonlinear system (#!() has a unique solution (Ū, f̄, W̄, \̄, ḡ, Ā). Then, as ? → ∞, for any
locally-Lipschitz2 function Ψ : R × R→ R , we have,

1
?

?∑
9=1
Ψ(ŵ 9 ,w★

9 )
P−→ E

[
Ψ

(
Γ(,, /),,

) ]
, (8.6)

where / ∼ N(0, 1),, ∼ Π is independent of / , and the function Γ(·, ·) is defined in (8.5).
2A function Ψ : R3 → R is said to be locally-Lipschitz if,

∀" > 0, ∃!" ≥ 0, such that ∀x, y ∈
[
− ", +"

]3 : |Ψ(x) −Ψ(y) | ≤ !" | |x − y| | .
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We defer the detailed proof to Section 8.7. In short, to show this result we first represent the
optimization as a bilinear form, u)Xv, where X is the measurement matrix. Applying the CGMT to
derive an equivalent optimization, we then simplify this optimization to obtain an unconstrained
optimization with six scalar variables. The nonlinear system (#!() represents the first-order
optimality condition of the resulting scalar optimization.
Before stating the consequences of this result, a few remarks are in order.

Remark 11 (Assumptions). The assumptions in Theorem 11 are chosen in a conservative manner.
In particular, we could relax the separability condition on 5 (·) to some milder condition in terms of
asymptotic convergence of its proximal operator. Furthermore, one can relax the assumption on
the entries of w★ being i.i.d. to a weaker assumption on the empirical distribution of its entries.
However, for the applications discussed in this chapter, the theorem in its current form is adequate.
In Chapter 9, we will perform a more general analysis with less restrictive assumptions.

Remark 12 (Choosing Ψ). The performance measure in Theorem 11 is computed in terms of
evaluation of a locally-Lipschitz function, Ψ(·, ·) . As an example, Ψ(D, E) = (D − E)2 can be used
to compute the mean-squared error. In the next section, we will appeal to this theorem with various
choices of Ψ to evaluate different performance measures on ŵ.

Correlation and variance of the RLR estimate
As the first application of Theorem 11, we compute common descriptive statistics of the estimate
ŵ. In the following corollaries, we establish that the parameters Ū, and f̄ in (#!(), respectively,
correspond to the correlation and the mean-squared error of the resulting estimate.

Corollary 6. As ? →∞, 1
| |w★ | |2 ŵ)w★ %−→ Ū .

Proof. Recall that | |w★| |2 = ?^2. Applying Theorem 11 with Ψ(D, E) = DE gives,

1
| |w★| |2

ŵ)w★ =
1
^2?

?∑
9=1

ŵ 9w★
9

%−→ 1
^2E

[
, Prox_f̄ḡ 5̃ (·)

(
f̄ḡ(\̄, + Ā

√
X/)

) ]
= Ū , (8.7)

where the last equality is derived from the first equation in the nonlinear system (#!(), along with
the fact that (Ū, f̄, W̄, \̄, ḡ, Ā) is the solution to this nonlinear system. �

Corollary 6 states that upon centering ŵ around Ūw★, it becomes uncorrelated from w★. Therefore,
we define w̃ := ŵ

Ū
to be an unbiased estimator of w★. The following corollary computes the

mean-squared error of w̃.
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Corollary 7. As ? →∞, 1
?
| |w̃ − w★| |2 %−→ f̄2

Ū2 .

Proof. We appeal to Theorem 11 with Ψ(D, E) = (D − ŪE)2,

1
?
| |w̃ − w★| |2 = 1

Ū2
( 1
?
| |ŵ − Ūw★| |2

) %−→ 1
Ū2E

[ (
Prox_f̄ḡ 5̃ (·)

(
f̄ḡ(\̄, + Ā

√
X/)

)
− Ū,

)2]
=
f̄2

Ū2 ,

(8.8)
where the last equality is derived from the third equation in the nonlinear system (#!() together
with the result of Corollary 6. �

In the next two sections, we investigate other properties of the estimate ŵ under ℓ1 and ℓ2
2

regularization.

8.4 Impact of ℓ2 regularization on Logistic Regression
The ℓ2 norm regularization is commonly used in machine learning applications to stabilize the
model. Adding this regularization would simply shrink all the parameters toward the origin and
hence decrease the variance of the resulting model. Here, we provide a precise performance analysis
of the RLR with ℓ2

2-regularization, i.e.,

ŵ = arg min
w∈R?

1
=
·
[ =∑
8=1

d(x)8 w) − (1 + H8
2
) (x)8 w)

]
+ _

2?

?∑
8=1

w2
8 . (8.9)

To analyze (8.9), we use the result of Theorem 11. It can be shown that in the nonlinear system (#!(),
\̄, ḡ, Ā can be derived explicitly from solving the first three equations. This is due to the fact that the
proximal operator of 5̃ (·) = 1

2 (·)
2 can be expressed in the following closed-form,

ProxC 5̃ (·) (G) = arg min
H∈R

1
2C
(H − G)2 + 1

2
H2 =

G

1 + C . (8.10)

This indicates that the proximal operator in this case is just a simple scaling. Substituting (8.10) in
the nonlinear system (#!(), we can rewrite the first three equations as follows,

\ =
UX

W
,

g =
W

f
(
X − _W

) ,
A =

f
√
X

W
.

(8.11)
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Figure 8.1: The correlation factor (Ū) of the solution of logistic regression with ℓ2
2 penalty.

Using this simplification, we can state the following Theorem which gives the performance of
logistic regression under ℓ2

2-regularization:

Theorem 12. Consider the optimization (8.9)with parameters ^, X, and W, and the same assumptions
as in Theorem 11. As ? →∞, for any locally-Lipschitz function Ψ(·, ·), the following convergence
holds,

1
?

?∑
9=1
Ψ(ŵ 9 − Ūw★

9 ,w
★
9 )

P−→ E
[
Ψ

(
f̄/,,

) ]
, (8.12)

where / is standard normal,, ∼ Π is independent of / , and Ū, f̄ are the unique solution to the
following nonlinear system of equations,

Xf2

2
= E

[
d′(−^/1)

(
^U/1 + f/2 − ProxWd(·) (^U/1 + f/2)

)2]
,

−XU
2
= E

[
d′′(−^/1)ProxWd(·)

(
^U/1 + f/2

) ]
,

1 − X + _W = E
[ 2d′(−^/1)
1 + Wd′′

(
ProxWd(·) (^U/1 + f/2)

) ] .
(#!( − !2)

The proof is provided in Section 8.8. Theorem 12 states that upon centering the estimate ŵ, it
becomes uncorrelated from w★ and the distribution of the entries approach a zero-mean Gaussian
distribution with variance f̄2.
Figures 8.1, 8.2, and 8.3 depict the performance of the regularized estimate for different values of _.
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Figure 8.2: The variance f̄2 of the solution of logistic regression with ℓ2
2 penalty.

Figure 8.3: The mean-squared error 1
?
‖ŵ − w★‖2 of the solution of logistic regression with ℓ2

2
penalty.
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The dashed lines depict the theoretical results derived from Theorem 12, and the dots are the results
of empirical simulations. The empirical results are the average over 100 independent trials with
? = 250 and ^ = 1. Although our theoretical results are asymptotic, we observe that the theory well
matches the empirical results in our numerical simulations.

As observed in these figures, increasing the value of _ reduces the correlation factor Ū (Figure 8.1)
and the variance f̄2 (Figure 8.2). Figure 8.3 shows the mean-squared-error of the estimate as a
function of _ . It indicates that for different values of X, there exists an optimal value _opt that
achieves the minimum mean-squared error.

Unstructured case
By setting _ = 0 in (8.9), we obtain the optimization with no regularization, i.e., the maximum
likelihood estimate. When we set _ to zero in (#!( − !2), Theorem 12 gives the same result as Sur
and Candes reported in [123]. In their analysis, they have also provided an interesting interpretation
of W̄ in terms of the likelihood ratio statistics.

8.5 Sparse Logistic Regression
In this section, we study the performance of our estimate when the regularizer is the ℓ1 norm. In
modern machine learning applications, the number of features, ?, is often overwhelmingly large.
Therefore, to avoid overfitting, one typically needs to perform feature selection, that is to exclude
irrelevant variables from the regression model [71]. Adding an ℓ1 penalty to the loss function is the
most popular approach for feature selection.

As a natural consequence of the result of Theorem 11, we study the performance of RLR with ℓ1

regularizer (referred to as "sparse LR") and evaluate its success in recovery of the sparse signals.
Here, we extend our general analysis to the case of sparse LR. In other words, we will precisely
analyze the performance of the solution of the following optimization,

ŵ = arg min
w∈R?

1
=
·
[ =∑
8=1

d(x)8 w) − (1 + H8
2
) (x)8 w)

]
+ _
?
| |w| |1 . (8.13)

In what follows, we first explicitly describe the expectations in the nonlinear system (#!() using
two &-functions3. Consequently, we analyze the support recovery in the resulting estimate and show
that the two &-functions represent the probability of on and off support recovery.

3The &-function is the tail distribution of the standard normal random variable defined as &(C) :=
∫ ∞
C

4−G
2/2

√
2c

3G .
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Convergence behavior of sparse LR
For our analysis in this section, we assume that each entry w★

8
, for 8 = 1, . . . , ?, is sampled i.i.d.

from a distribution,

Π(,) = (1 − B) · X0(,) + B ·
(q( ,√̂B )
√̂
B

)
, (8.14)

where B ∈ (0, 1) is the sparsity factor, q(C) := 4−C
2/2
√

2c
is the density of the standard normal distribution,

and X0(·) is the Dirac delta function. In other words, entries of w★ are zero with probability 1 − B,
and the non-zero entries have a Gaussian distribution with appropriately defined variance. Although
our analysis can be extended further, here we only present the result for a Gaussian distribution on
the non-zero entries. The proximal operator of 5̃ (·) = | · | is the soft-thresholding operator defined
as [(G, C) = G

|G | (G − C)+ . Therefore, we are able to explicitly compute the expectations with respect
to 5̃ (·) in the nonlinear system (#!(). To streamline the representation, we introduce the following
two proxies,

C1 =
_√

A2X + \2^2

B

, C2 =
_
√
X

A
. (8.15)

In the next section, we provide an interpretation for C1 and C2. In particular, we will show that &(C̄1),
and &(C̄2) are related to the probabilities of on and off support recovery, which would allow us to
compute the type I and type II errors in support recovery. Considering the distribution Π (in 8.14)
for the entries of w★, we can rewrite the first three equations (which are in terms of the proximal
operator of | · |) in (#!() as follows,

U

2fg
= \ · &(C1) ,

W

2Xfg
= B · &

(
C1
)
+ (1 − B) · &

(
C2
)
,

^2U2 + f2

2f2g2 =
W_2

2Xfg
+ WA

2

2fg
+ ^2\2 · &

(
C1
)
− _2(B · q(C1)

C1
+ (1 − B) · q(C2)

C2
) .

(8.16)

Appending the three equations in (8.16) to the last three equations in (#!() gives the nonlinear
system for sparse logistic regression. Upon solving these system of nonlinear equations, we can use
the result of Theorem 11 to compute various performance measures on the estimate ŵ.

Figures 8.4, 8.5, and 8.6 show the performance of our estimate as a function of _. The dashed lines
depict the theoretical results derived from Theorem 11, and the dots are the results of empirical
simulations. The empirical results are the average over 100 independent trials with ? = 250 and
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Figure 8.4: The correlation factor (Ū) of the solution of logistic regression with ℓ1 penalty.

Figure 8.5: The variance f̄2 of the solution of logistic regression with ℓ1 penalty.
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Figure 8.6: The mean-squared error 1
?
‖ŵ − w★‖2 of the solution of logistic regression with ℓ1

penalty.

^ = 1. It can be seen that the bound derived from our theoretical result matches the empirical
simulations. Also, it can be inferred from Figure 8.6 that the optimal value of _ (_opt that achieves
the minimum mean-squared error) is a decreasing function of X.

Support recovery
We next study the support recovery in sparse logistic regression. As mentioned earlier, sparse LR is
often used when the underlying parameter has few non-zero entries. We define the support of w★ as
Ω := { 9 |1 ≤ 9 ≤ ?,w★

9
≠ 0}. Here, we would like to compute the probability of success in recovery

of the support of w★.
Let ŵ denote the solution of the optimization (8.13). We fix the value n > 0 as a hard-threshold
based on which we decide whether an entry is on the support or not. In other words, we form the
following set as our estimate of the support given ŵ,

Ω̂ = { 9 |1 ≤ 9 ≤ ?, |ŵ 9 | > n} . (8.17)

In order to evaluate the success in support recovery, we define the following two error measures,

�1(n) = Prob{ 9 ∈ Ω̂| 9 ∉ Ω} , �2(n) = Prob{ 9 ∉ Ω̂| 9 ∈ Ω} . (8.18)

In our estimation, �1 represents the probability of false alarm, and �2 is the probability of missed-
detection of an entry of the support. The following lemma indicates the asymptotic behavior of both
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errors as n approaches zero.

Lemma 18 (Support Recovery). Let ŵ be the solution to the optimization (8.13), and the entries of
w★ have distribution Π defined in (8.14). Assume _ is chosen such that the nonlinear system (#!()
has a unique solution (Ū, f̄, W̄, \̄, ḡ, Ā). As ? →∞, we have,

lim
n↓0

�1(n)
?
−→ 2 &

(
C̄1
)
where, C̄1 =

_

Ā
√
X
, and,

lim
n↓0

�2(n)
?
−→ 1 − 2 &

(
C̄2
)
where, C̄2 =

_√
XĀ2 + \̄2^2

B

.
(8.19)

Figures 8.7 and 8.8 depict the performance of the ℓ1-regularized logistic regression in finding the
support of the underlying signal. The dashed lines are the theoretical results derived from Lemma 18,
and the dots are the results of empirical simulations. For the numerical simulations, the result is the
average over 100 independent trials with ? = 250 and ^ = 1 and n = 0.001.

Figure 8.7: The support recovery in the regularized logistic regression with ℓ1 penalty for �1: the
probability of false detection.

8.6 Conclusion and Future Directions
In this chapter, we analyzed the performance of the regularized logistic regression (RLR), which is
often used for parameter estimation in binary classification. We considered the setting where the
underlying parameter has a certain structure (e.g. sparse, group-sparse, low-rank, etc.) that can be
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Figure 8.8: The support recovery in the regularized logistic regression with ℓ1 penalty for �2: the
probability of missing an entry of the support.

enforced via a convex penalty function 5 (·). As mentioned earlier in Section 8.1, an advantage of
RLR is that it allows parameter recovery even for instances where the (unconstrained) maximum
likelihood estimate does not exist. We precisely characterized the performance of the regularized
maximum likelihood estimator via the solution to a nonlinear system of equations. Our main results
can be used to measure the performance of RLR for a general convex penalty function 5 (·). In
particular, we apply our findings to two important special cases, i.e., ℓ2

2-RLR and ℓ1-RLR. When the
regularizer is quadratic in parameters, we have shown that the nonlinear system can be simplified
to three equations. By setting the regularization parameter, _, to zero, which corresponds to the
maximum likelihood estimator, we simply derived the results reported by Sur and Candes [123].
For sparse logistic regression, we established that the nonlinear system can be represented using two
&-functions. We further showed that these two &-functions represent the probability of the support
recovery.

For our analysis, we assumed that the data points are drawn independently from a Gaussian
distribution and utilized the CGMT framework. An interesting future work is to extend our analysis
to non-Gaussian distributions. To this end, we can exploit the techniques that have been used to
establish the universality law (see [100, 103, 2] and the references therein).
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8.7 Proof of Theorem 11
We present the proof of our main result that is a precise characterization on the performance of the
optimization program (8.3) in the limit where ?, =→∞ at a fixed ratio X := ?

=
. We assume that the

data points are drawn independently from Gaussian distribution, x8
i.i.d.∼ N(0, 1

?
I?). For simplicity

in notations, we replace H8 with (1+H8)2 which results in the labels being in {0, 1}. Therefore, we can
rewrite (8.3) as follows,

min
w∈R?

1
=

1) d( 1
√
?

Hw) − 1
=
√
?

y)Hw + _
?
5 (w) (8.20)

where the action of function d(·) on a vector is considered component-wise, y ∈ R= and H ∈ R=×?

are defined as follows,

y =


H1

H2
...

H=


, H =

√
? ·


−x)1−
−x)2−
...

−x)=−


. (8.21)

Note that the matrix H is defined in such a way that its entries have i.i.d. standard normal distribution.
We use the CGMT framework for our analysis. The proof strategy consists of three main steps:

1. Finding the auxiliary optimization: In order to apply the result of Theorem 15, we need to
rewrite the optimization as a bilinear form and find its associated auxiliary optimization.

2. Analyzing the auxiliary optimization: The goal of this step is to simplify the auxiliary
optimization in such a way that its performance can be characterized via a scalar optimization.

3. Finding the optimality condition on the scalar optimization: We investigate the solution to the
resulting scalar optimization. Specifically, by writing the first-order optimality conditions, we
will derive the nonlinear system of equations (#!().

We explain each of the three steps in more details in the following subsections.

Finding the auxiliary optimization
In order to apply the CGMT, we need to have a min-max optimization. Introducing a new variable
u, we have the following optimization,

min
w∈R? , u∈R=

1
=

1) d(u) − 1
=

y)u + _
?
5 (w)

s.t. u = 1
√
?

Hw .

(8.22)
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Next, we use the Lagrange multiplier v to rewrite (8.22) as a min-max optimization,

min
w∈R? ,u∈R=

max
v∈R=

1
=

1) d(u) − 1
=

y)u + _
?
5 (w) + 1

=
v) (u − 1

√
?

Hw) . (8.23)

Since y depends on H, we cannot directly apply CGMT to the bilinear form v)Hw. To solve this
issue, we first introduce P := 1

| |w★ | |22
w★w★) and P⊥ := I? −P, the projection matrices on the direction

of w★ and its orthogonal complement, respectively. We use these projections to decompose the
matrix H as, H = H1 + H2, with H1 := H × P, and H2 := H × P⊥. Rewriting (8.23) with the
decomposition of H would give,

min
w∈R? ,u∈R=

max
v∈R=

1
=

1) d(u) − 1
=

y)u + _
?
5 (w) + 1

=
v) (u − 1

√
?

H1w) − 1
=
√
?

v)H2w . (8.24)

It is worth noting that after performing this decomposition, the label vector (y) would be independent
of H2 since,

y = �4A
(
d′( 1
√
?

Hw★)
)
= �4A

(
d′( 1
√
?

HPw★)
)
= �4A

(
d′( 1
√
?

H1w★)
)
, (8.25)

where we used Pw★ = w★. Exploiting this fact, one can check that all the additive terms in the
objective function of (8.24) except the last one are independent of H2. Also, the objective function
is convex with respect to w and u and concave with respect to v. In order to apply the CGMT
framework, we only need an extra condition which is restricting the feasible sets of w, u, and v to be
compact and convex. We can introduce some artificial convex and bounded sets Su, (v, and Sw,
and perform the optimization over these sets. Note that these sets can be chosen large enough such
that they do not affect the optimization itself. For simplicity, in our arguments here we ignore the
condition on the compactness of the feasible sets and apply the CGMT whenever our feasible sets
are convex.

The optimization program (8.24) is suitable to be analyzed via the CGMT as the conditions are all
satisfied. Having identified (8.24) as the (PO) in our optimization, it is straightforward to write its
corresponding (AO) as equation (A.1) as explained in Appendix A.1. Therefore, the Auxiliary
Optimization (AO) can be written as follows,

min
w∈R? ,u∈R=

max
v∈R=

1
=

1) d(u) − 1
=

y)u + _
?
5 (w) + 1

=
v) (u − 1

√
?

H1w)

− 1
=
√
?
(v)h| |P⊥w| | + | |v| |g)P⊥w) , (8.26)

where h ∈ R= and g ∈ R? have i.i.d. standard normal entries. Next, we need to analyze the
optimization (8.26) to characterize its performance.
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Analyzing the auxiliary optimization
In this section, we analyze the auxiliary optimization (8.26). Ideally, we would like to solve the
optimizations with respect to the direction of the vectors, in order to finally get a scalar-valued
optimization over the magnitude of the variables.

Proceeding onward, we first perform the maximization with respect to the direction of v. We can
write the following maximization with respect to v,

max
v∈R=

1
=
√
?
| |v| |g)P⊥w + 1

=
v)

(
u − 1
√
?

H1w − ||P
⊥w| |
√
?

h
)
. (8.27)

In order to maximize the objective function, v chooses its direction to be the same as the vector it is
multiplied to. Define A := ‖v‖/

√
=, then maximizing over the direction of v would give,

max
A≥0

A
( 1
√
=?

g)P⊥w + || 1
√
=

u − 1
√
=?

H1w − ||P
⊥w| |
√
=?

h| |
)
. (8.28)

Replacing this in (8.26), we would have,

min
w∈R? ,u∈R=

max
A≥0

1
=

1) d(u) − 1
=

y)u + _
?
5 (w) + A 1

√
=?

g)P⊥w

+A | | 1
√
=

u − 1
√
=?

H (Pw) − ||P
⊥w| |
√
=?

h| | , (8.29)

where we replaced H1 with H × P . Next, we would like to solve the minimization with respect to w.

Before continuing our analysis, we need to discuss an important point that would help us in the
remaining of this section. It will be observed that in order to simplify the optimization, we would
like to flip the orders of min and max in the (AO) optimization. Since the objective function in the
optimization (8.29) is not convex-concave, we cannot appeal to the Sion’s min-max theorem in order
to flip min and max. However, it has been shown in [129] (see Appendix A) that flipping the order
min and max in the (AO) is allowed in the asymptotic setting. This is mainly due to the fact that
the original (PO) optimization was convex-concave with respect to its variables, and as the CGMT
suggests, (AO) and (PO) are tightly related in the asymptotic setting; hence, flipping the order of
optimizations in (AO) is justified whenever such a flipping is allowed in the (PO). We appeal to this
result to flip the orders of min and max when needed.

The goal is to express the final result in terms of the expected Moreau envelope of the regularization
function, 5 (·) and the link function, d(·). Finding the optimal direction of w is cumbersome due to
the existence of the term _ 5 (w) in the objective. So, we introduce new variables -, # ∈ R? and
rewrite the optimization as follows,
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min
w∈R? ,u∈R=

-∈R?
max
#∈R?
A≥0

1
=

1) d(u) − 1
=

y)u + _
?
5 (-) + A 1

√
=?

g)P⊥w

+A | | 1
√
=

u − 1
√
=?

H (Pw) − ||P
⊥w| |
√
=?

h| | + 1
?
#) (- − w) . (8.30)

We are now able to perform the optimization with respect to w. As explained above, we are
allowed to flip the order of min and max in the asymptotic regime. We first analyze minw to find
the optimal direction of w. To streamline the notations, we introduce the scalars U := w)w★

| |w★ | |2 , and
f := 1√

?
| |P⊥w| |. Also define q := 1

^
√
?
Hw★, where q has i.i.d. standard normal entries (recall that

H has i.i.d. standard normal entries). Optimizing with respect to the direction of P⊥w yields,

min
-∈R? ,u∈R=
U∈R,f≥0

max
#∈R?
A≥0

1
=

1) d(u) − 1
=

y)u + _ 5 (-) − f | | 1
√
?

P⊥(A
√
Xg − #) | |

+ A | | 1
√
=

u − ^U√
=

q − f
√
=

h| | + 1
?
(P#)) - + 1

?
(P⊥#)) - − 1

?
(P#))w , (8.31)

where X := ?

=
is the overparameterization ratio. Next, using a subtle trick by introducing two new

scalar variables, namely h and g, we can change | | · | | to | | · | |2 which simplifies the next steps of our
analysis. The new optimization would be,

min
-∈R? ,u∈R=
U∈R,f≥0
h≥0

max
#∈R?
A,g≥0

1
=

1) d(u) − 1
=

y)u + _
?
5 (-) − f

2g
− fg

2
| | 1
√
?

P⊥(A
√
Xg − #) | |2 + A

2h

+Ah
2
| | 1
√
=

u − ^U√
=

q − f
√
=

h| |2 + 1
?
(P#)) - + 1

?
(P⊥#)) - − 1

?
(P#))w . (8.32)

Next, in order to compute the optimal #, we use the following completion of squares,

−fg
2
| | 1
√
?

P⊥(A
√
Xg − #) | |2 + 1

?
(P⊥#)) - = −fg

2
| | 1
√
?

P⊥(A
√
Xg − # + 1

fg
-) | |2

+ 1
2?fg

| |P⊥- + fgA
√
XP⊥g| |2 − fgA

2

2=
| |P⊥g| |2 .

(8.33)
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Since g ∈ R? has standard normal entries, we can approximate fgA2

2= | |P
⊥g| |2 with XfgA2

2 . We
exploit (8.33) to solve the inner optimization with respect to # which gives,

min
-∈R? ,u∈R=
U∈R,f,h≥0
1
?

w★) -=U^2

max
A,g≥0

1
=

1) d(u) − 1
=

y)u − f

2g
− XfgA

2

2
+ A

2h
− ^

2U2

2fg

+ Ah
2
| | 1
√
=

u − ^U√
=

q − f
√
=

h| |2 + 1
2?fg

| |- + fgA
√
Xg| |2 + _

?
5 (-) ,

(8.34)

where we also used the following equality:

1
?
| |P⊥- + fgA

√
XP⊥g| |2 = 1

?
| |- + fgA

√
Xg| |2 − 1

?
| |P- | |2 − (fgA)2 | |Pg| |2

=
− 2fgA

√
X

?
(Pg))`

? → +∞ =
1
?
| |- + fgA

√
Xg| |2 − 1

?
| |P- | |2 = 1

?
| |- + fgA

√
Xg| |2 − ^2U2 .

(8.35)

Consequently, by flipping the order of min and max, we first compute the minimization with respect
to -. Hence, the optimal - would be the solution to the following optimization:

min
-∈R?

1
2?fg

| |- − fgA
√
Xg| |2 + _

?
5 (-)

s.t.
1
?

w★) - = U^2 .

(8.36)

Using the Lagrange multiplier \, we can rewrite this optimization as,

min
-∈R?

max
\∈R

1
2?fg

| |- − fgA
√
Xg| |2 + _

?
5 (-) − \

?
w★) - + U\^2 . (8.37)

Applying yet another completion of squares, we have,

1
2?fg

| |- − fgA
√
Xg| |2 − \

?
w★) - =

1
2?fg

| |- − fgA
√
Xg − \fgw★| |2 − fg\

2^2

2
, (8.38)

where we omit the term 1
?
g)w★ = O( 1√

?
) as it is negligible compared to the other terms (which are

of constant orders). We are able to represent the solution of (8.36) in terms of the Moreau envelope
of the function 5 (·) as follows,
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min
-∈R?

1
?

w★) -=U^2

1
2?fg

| |-−fgA
√
Xg| |2+_

?
5 (-) = max

\∈R

1
?
"_ 5

(
fg(A

√
Xg+\w★), fg

)
+U\^2−fg\

2^2

2
.

(8.39)

Substituting (8.39) in (8.34), we have the following optimization:

min
u∈R=

U∈R,f,h≥0

max
A,g≥0
\∈R

1
=

1) d(u) − 1
=

y)u + Ah
2
| | 1
√
=

u − ^U√
=

q − f
√
=

h| |2 − f

2g
− XfgA

2

2
+ A

2h

−^
2U2

2fg
+ ^2U\ − ^

2fg\2

2
+ 1
?
"_ 5 (·)

(
fg(A

√
Xg + \w★), fg

)
. (8.40)

We now focus on the optimization with respect to u. Recall that y = �4A
(
d′( 1√

?
Hw★)

)
=

�4A
(
d′(^q)

)
. We are interested in solving the following optimization:

min
u∈R=

1
=

1) d(u) − 1
=

y)u + Ah
2
| | 1
√
=

u − ^U√
=

q − f
√
=

h| |2 . (8.41)

Similarly to the previous steps, we first do a completion of squares as follows,

−1
=

y)u + Ah
2
| | 1
√
=

u − ^U√
=

q − f
√
=

h| |2 = Ah
2
| | 1
√
=

u − ^U√
=

q − f
√
=

h − 1
Ah
√
=

y| |2

− 1
2Ah
| |y| |2 − :U

=
y)q − f

=
y)h .

(8.42)

Next, we use the distribution of y to simplify the expressions in the right-hand side of (8.42). We
can write,

1
=
| |y| |2 = 1

=

=∑
8=1

H2
8

WLLN
=⇒
=→∞

E[H2
8 ] = E[H8] = E/ [d′(^/)] =

1
2
, (8.43)

and,

1
=

y)q = 1
=

=∑
8=1

H8@8 =
1
=

=∑
8=1

�4A (d′(^@8))@8
WLLN
=⇒
=→∞

E/ [/ · d′(^/)] = ^ E/ [d′′(^/)] , (8.44)

where / ∼ N(0, 1), and for the last equality, we used the Stein’s lemma (Lemma 35 in Appendix A.2).
Also note that we can ignore the term f

=
y)h since it is O

(
1√
=

)
(which goes to zero in the
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asymptotic regime while the other terms are of constant orders). Hence, we are able to rewrite the
optimization (8.41) with respect to u in the following form:

min
u∈R=

1
=

1) d(u) + Ah
2=
| |u − ^Uq − fh − 1

Ah
y| |2 − 1

4Ah
− ^2UE/ [d′′(^/)] . (8.45)

We can rewrite the equation (8.45) in terms of the Moreau envelope, "d(·) , as follows,

min
f,h≥0
U∈R

max
A,g≥0
\∈R

− f

2g
− XfgA

2

2
+ A

2h
− ^

2U2

2fg
+ ^2U\ − ^

2fg\2

2
− 1

4Ah
− ^2UE/ [d′′(^/)]

+ 1
?
"_ 5 (·)

(
fg(A

√
Xg + \w★), fg

)
+ 1
=
"d(·)

(
^Uq + fh + 1

Ah
y, 1
Ah

)
.

(8.46)

As the last act in this step, we want to analyze the convergence properties of (AO). Recall that 5 (·)
is a separable function. Therefore, using the result of Lemma 36 (see Appendix A.2), we have:

"_ 5 (·)
(
fg( A√

X
g + \w★), fg

)
=

?∑
8=1

"_ 5̃ (·)
(
fg(A

√
Xg8 + \w★

8 ), fg
)
. (8.47)

Using the strong law of large numbers, we have,

1
?
"_ 5 (·)

(
fg(A

√
Xg + \w★), fg

) 0.B.−→ E
[
"_ 5̃ (·)

(
fg(A

√
X/ + \,), fg

) ]
, (8.48)

where / is a standard normal random variable and, ∼ Π is independent of / . Similarly, we can
write,

1
=
"d(·)

(
^Uq + fh + 1

Ah
y, 1
Ah

) 0.B.−→ E
[
"d(·)

(
^U/1 + f/2 +

1
Ah
�4A (^/1),

1
Ah

) ]
. (8.49)

We appeal to Lemma 33 to analyze the convergence properties of (AO). Due to the convergence we
are getting from the LLN, applying this lemma enables us to replace the Moreau envelopes with
their expected value. Hence, we need to analyze the following optimization,

min
f,h≥0
U∈R

max
A,g≥0
\∈R

− f

2g
− XfgA

2

2
+ A

2h
− ^

2U2

2fg
+ ^2U\ − ^

2fg\2

2
− 1

4Ah
− ^2UE/ [d′′(^/)]

+E
[
"_ 5̃ (·)

(
fg(A

√
X/ + \,), fg

) ]
+ E

[
"d(·)

(
^U/1 + f/2 +

1
Ah
�4A (^/1),

1
Ah

) ]
. (8.50)
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Finding the optimality condition of the scalar optimization
In this section, we conclude the proof of the main result of the paper. For this, we need to show
that the optimizer of the optimization (8.50) can be found by solving the nonlinear system of
equations (#!(). Before analyzing the auxiliary optimization, we state two lemmas that will be
used in our analysis.

The next two lemmas present some properties of the proximal operator of the function d(I) =
log(1 + 4I).

Lemma 19. Let d(I) = log(1 + 4I), then the following identity holds,

ProxCd (G + C) = −ProxCd (−G) . (8.51)

Proof. Since the function d(·) is differentiable, the proximal operator satisfies the following equation,

1
C
(ProxCd(·) (G) − G) + d′(ProxCd(·) (G)) = 0 . (8.52)

Next we use the fact that d′(−I) = 1 − d′(I) for I ∈ R, to rewrite the equation as follows,

1
C

(
− ProxCd(·) (−G) − (G + C)

)
+ d′(−ProxCd(·) (−G)) = 0 , (8.53)

which gives the desired identity. �

Lemma 20. The derivative of the proximal operator of the function d(·) can be computed as follows,

3

3G
ProxCd(·) (G) =

1
1 + Cd′′

(
ProxCd(·) (G)

) . (8.54)

Proof. Taking derivative with respect to G of (8.52),

1
C
( 3
3G

ProxCd(·) (G) − 1) + 3

3G
ProxCd(·) (G) × d′′

(
ProxCd(·) (G)

)
= 0 , (8.55)

which can be written as in (8.54). �

Let � (U, f.A, g, h, \) denote the objective function in (8.50). We want to find the optimizer of � (·),
i.e., the point (U★, f★, A★, g★, h★, \★). Since the objective function is smooth, when the optimal
values are all non-zero, they should satisfy the first order optimality condition, i.e.,

∇� = 0 . (8.56)
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We will show that the (8.56) would simplify to our system of nonlinear equations. We start by
putting the derivative w.r.t. \ equal to zero. We have the following,

m�

m\
= 0⇒ ^2U − ^2fg\ + 1

?
E
[
w★)

(
gf(A

√
Xg + \w★) − Proxfg_ 5 (·) (fg(A

√
Xg + \w★))

) ]
= 0 ,
(8.57)

where we used Lemma 34 (in Appendix A.2) for taking the derivative of the Moreau envelope,
"_ 5 (·) . We can simplify (8.57) and rewrite it as follows,

^2U =
1
?
E
[
w★)Proxfg_ 5 (·) (fg(A

√
Xg + \w★))

) ]
. (8.58)

Next, we take derivative of the objective function � (·) w.r.t. A and h and put that equal to zero. We
state the following lemma which will be exploited in taking the derivatives.

Lemma 21. For fixed values of ^, U, and f, let the function � : R+ → R be defined as follows,

� (W) = −1
4
W + E/1,/2

[
"d(·)

(
^U/1 + f/2 + W�4A (d′(^/1)), W

) ]
, (8.59)

then the derivative of � (·) would be as follows:

�′(W) = − 1
W2E

[
d′(−^/1)

(
^U/1 + f/2 − ProxWd(·) (^U/1 + f/2)

)2]
. (8.60)

Proof. We have,

�′(W) = −1
4
+ 3

3W
E/1,/2

[
"d(·) (^U/1 + f/2 + W�4A (d′(^/1)), W)

]
. (8.61)

In order to compute the last derivative, we exploit Lemma 34. We have,

3

3W
E
[
"d(·) (^U/1 + f/2 + W�4A (d′(^/1)), W)

]
= −E

[ d′(−^/1)
2W2

(
^U/1 + f/2 − ProxWd(·) (^U/1 + f/2)

)2]
− E

[ d′(^/1)
2W2

(
^U/1 + f/2 + W − ProxWd(·) (^U/1 + f/2 + W)

)2]
+ E

[ d′(^/1)
W

(
^U/1 + f/2 + W − ProxWd(·) (^U/1 + f/2 + W)

) ]
,

(8.62)
where we used the fact that for G ∈ R, d′(−G) = 1 − d′(G). To derive (8.60), we appeal to the result
of Lemma 19 which gives the following identity,

ProxWd(·) (^U/1 + f/2 + W) = −ProxWd(·) (−^U/1 − f/2) . (8.63)

�
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Proceeding onward, we use the result of Lemma 21 to find the optimality conditions with respect to
A and h. We have,

m
mA
� = 0⇒ −XfgA + 1

2h −
1
hA2�

′( 1
hA
) + 1

?
E
[√
Xg)

(
fgA
√
Xg − Proxfg_ 5 (·) (fg(A

√
Xg + \w★))

) ]
= 0 ,

m
mh
� = 0⇒ −A

2h2 − 1
Ah2�

′( 1
Ah
) = 0 .

(8.64)

In order to simplify the equations, we define a new variable W := 1
Ah
. We can rewrite the

equations (8.64) as follows,
W = 1

?
E
[√Xg)

A
Proxfg_ 5 (·)

(
fg(A

√
Xg + \w★)

) ]
,

W2 = E
[ 2d′(−^/1)

A2

(
^U/1 + f/2 − ProxWd(·) (^U/1 + f/2)

)2]
.

(8.65)

So far we have shown that three of the optimality conditions are the same as the nonlinear equations
1,2, and 5 in (#!(). Next, we take the derivative w.r.t. g. We have,

m

mg
� = 0⇒ f

2g2 −
XfA2

2
+ ^

2U2

2fg2 −
^2f\2

2
+ 1
?

m

mg
E["_ 5 (·)

(
fg(A

√
Xg+ \w★), fg

)
] = 0 . (8.66)

The derivative of the expected Moreau envelope can be computed as follows,

1
?

m

mg
E["_ 5 (·)

(
fg(A

√
Xg+\w★), fg

)
] = f

2
(XA2+\2^)− 1

2fg2E
[
‖Proxfg_ 5 (·)

(
fg(A

√
Xg+\w★)

)
‖22

]
.

(8.67)

Replacing (8.67) in (8.66) would result in,

(^U)2 + f2 = E
[
‖Proxfg_ 5 (·)

(
fg(A

√
Xg + \w★)

)
‖22

]
. (8.68)

(8.68) is the third equation in the nonlinear system (#!(). Next, putting the derivative w.r.t. f to
equal zero gives the following,

− 1
2g
− XgA

2

2
+ ^

2U2

2f2g
− ^

2g\2

2
+ 1
?

m

mf
E["_ 5 (·)

(
fg(A

√
Xg + \w★), fg

)
]

+ m

mf
E
[
"d(·)

(
^U/1 + f/2 + W�4A (^/1), W

) ]
= 0 .

(8.69)

We can compute the partial derivative of the expected Moreau envelopes as follows,
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1
?

m

mf
E["_ 5 (·)

(
fg(A

√
Xg+\w★), fg

)
] = g

2
(XA2+\2^)− 1

2f2g
E
[
| |Proxfg_ 5 (·)

(
fg(A

√
Xg+\w★)

)
| |22

]
,

(8.70)

and,

m

mf
E
[
"d(·)

(
^U/1 + f/2 + W�4A (^/1), W

) ]
=
f

W
− 2
W
E
[
/2d

′(−^/1)ProxWd(·)
(
^U/1 + f/2

) ]
,

=
f

W

(
1 − 2E

[ d′(−^/1)
1 + Wd′′

(
ProxWd(·) (^U/1 + f/2)

) ] ) .
(8.71)

To derive the last equality, we used Lemma 20 as well as Stein’s lemma.

Replacing (8.70) and (8.71) in (8.69) gives,

1 − W

gf
= E

[ 2d′(−^/1)
1 + Wd′′

(
ProxWd(·) (^U/1 + f/2)

) ] . (8.72)

As the last step in deriving the first-order optimality conditions, we take the derivative with respect
to U in order to derive the fourth equation in the nonlinear system (#!(). We have,

m�

mU
=
−^2U

fg
+ ^2\ − ^2E[d′′(^/)] + m

mU
E["d(·)

(
^U/1 + f/2 + W�4A (d′(^/1)), W

)
] = 0 . (8.73)

To simplify this equation, we write,

−^2E[d′′(^/)]+ m
mU
E["d(·)

(
^U/1+f/2+W�4A (d′(^/1)), W

)
] = ^

2U

W
−2E

[ ^
W
/1d

′(−^/1)ProxWd(·)
(
^U/1+f/2

) ]
.

(8.74)

Replacing (8.74) in (8.73) would result in,

W^

2
(\ − U

fg
) + ^U

2
= E

[
/1d

′(−^/1)ProxWd(·)
(
^U/1 + f/2

) ]
. (8.75)

Using Stein’s lemma, we can rewrite the right-hand-side as,

RHS = −E
[
^d′′(−^/1)ProxWd(·)

(
^U/1 + f/2

) ]
+ ^UE[ d′(−^/1)

1 + Wd′′
(
ProxWd(·) (^U/1 + f/2)

) ],
= −E

[
^d′′(−^/1)ProxWd(·)

(
^U/1 + f/2

) ]
+ ^U

2
− ^UW

2gf
,

(8.76)

where we exploited (8.72) to derive the last equation. Substituting in (8.75) would give,
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W\ = −2E
[
d′′(−^/1)ProxWd(·)

(
^U/1 + f/2

) ]
. (8.77)

Therefore, we have shown that the nonlinear system (#!() is equivalent to the optimality condition
in (8.50).

Recall that in the process of simplifying (AO), we introduced the Moreau envelope of 5 (·) in (8.39).
The optimizer of that Moreau envelope gives the solution of the Auxiliary optimization. Let
(Ū, f̄, W̄, \̄, ḡ, Ā) be the unique solution of the nonlinear system. Hence, we can present the solution
of the (AO) in terms of the proximal operator as follows,

#̂�$8 = Γ(#∗8 , /) = Prox_f̄ḡ 5̃ (·)
(
f̄ḡ(\̄w★

8 +
Ā
√
X
/)

)
, for 8 = 1, 2, . . . ?. (8.78)

As the last step, we want to show the convergence of the locally-Lipschitz function Ψ(·, ·). Earlier
in this section, in the process of applying the CGMT, we have introduced some artificial bounded
sets on the optimization variables and stated that we can perform the optimization over these sets.
Considering that the variables belong to those bounded sets, we can state that the function Ψ(·, ·) is
Lipschitz, as constraining a locally-Lipschitz function to a bounded set gives a Lipschitz function.
Next, using the strong law of large numbers along with the fact that the entries of w∗ are i.i.d. and
drawn from distribution Π, we have,

1
?

?∑
8=1
Ψ(ŵ�$

8 ,w★
8 )

0.B.−→ E
[
Ψ(Γ(,, /),,)

]
, (8.79)

where / is a standard normal random variable and, ∼ Π is independent of / .

Exploiting the asymptotic convergence of CGMT (Lemma 32), we can introduce the set S as follows,

S = {w ∈ R? : | 1
?

?∑
8=1
Ψ(w,w∗8 ) − E

[
Ψ(Γ(,, /),,)

]
| > n} . (8.80)

The convergence in (8.79) would establish that as ? →∞, ŵ�$ ∈ S with probability approaching 1.
Therefore, as the result of Lemma 32, ŵ = ŵ%$ ∈ S with probability approaching 1. This concludes
the proof of Theorem 11.

8.8 Proof of Theorem 12
This result can be derived using the result of Theorem 11. We just need to show that the parameters
\, A , and g can be explicitly computed from the first three equations in the nonlinear system (#!().
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Recall that we characterize the performance of the RLR in terms of the solution of the following
nonlinear equation,

^2U = E
[
, Prox_fg 5̃ (·)

(
fg(\, + A

√
X/)

) ]
,

W =

√
X

A
E
[
/ Prox_fg 5̃ (·)

(
fg(\, + A

√
X/)

) ]
,

^2U2 + f2 = E
[
Prox_fg 5̃ (·)

(
fg(\, + A

√
X/)

)2]
,

W2 =
2
A2 E

[
d′(−^/1)

(
^U/1 + f/2 − ProxWd(·) (^U/1 + f/2)

)2]
,

\W = −2 E
[
d′′(−^/1)ProxWd(·)

(
^U/1 + f/2

) ]
,

1 − W

fg
= E

[ 2d′(−^/1)
1 + Wd′′

(
ProxWd(·) (^U/1 + f/2)

) ] .
(8.81)

In the ℓ2
2-regularization, we have 5̃ (·) =

1
2 (·)

2, for which the proximal operator can be computed in
closed-form, i.e., we have,

ProxC 5̃ (G) =
G

1 + C . (8.82)

Replacing in the first equation of (8.81) gives,

^2U = E
[
, Prox_fg 5̃ (·)

(
fg(\, + A

√
X/)

) ]
= E

[
, × fg(\, + A

√
X/)

1 + _fg
]
=
fg\^2

1 + _fg ,
(8.83)

where we used the fact that E[,2] = ^2 and E[, · /] = 0 due to the independence of , and / .
Next, from the second equation in (8.81), we have,

W =

√
X

A
E
[
/ Prox_fg 5̃ (·)

(
fg(\, + A

√
X/)

) ]
=

√
X

A
E
[
/ × fg(\, + A

√
X/)

1 + _fg
]
=

Xfg

(1 + _fg) ,
(8.84)

and finally from the third equation in (8.81), we can compute,

^2U2 + f2 = E
[ (
Prox_fg 5̃ (·)

(
fg(\, + A

√
X/)

) )2]
=

f2g2

(1 + _fg)2
(\2^2 + XA2)

= ^2U2 + Xf2g2A2

(1 + _fg)2
.

(8.85)
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We can rewrite the equations (8.83), (8.84), and (8.85) as follows,



\ =
UX

W
,

g =
W

f
(
X − _W

) ,
A =

f
√
X

W
.

(8.86)

Replacing the derived expressions in (8.86) for \, A , and g in the last three equations of (8.81) gives
the following system of three equations with three unknowns,

Xf2

2
= E

[
d′(−^/1)

(
^U/1 + f/2 − ProxWd(·) (^U/1 + f/2)

)2]
,

−XU
2
= E

[
d′′(−^/1)ProxWd(·)

(
^U/1 + f/2

) ]
,

1 − X + _W = E
[ 2d′(−^/1)
1 + Wd′′

(
ProxWd(·) (^U/1 + f/2)

) ] .
(8.87)

This concludes the proof of Theorem 12.
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125C h a p t e r 9

PERFORMANCE OF EXTENDED MARGIN MAXIMIZERS ON SEPARABLE
DATA

[1] F. Salehi et al. “The Performance Analysis of Generalized Margin Maximizers on Separable
Data”. In: International Conference on Machine Learning. PMLR. 2020, pp. 8417–8426.

Logistic models are commonly used for binary classification tasks. The success of such models
has often been attributed to their connection to maximum-likelihood estimators. It has been shown
that gradient descent algorithm, when applied on the logistic loss, converges to the max-margin
classifier (a.k.a. hard-margin SVM). The performance of the max-margin classifier has been recently
analyzed in [95, 39]. Inspired by these results, in this chapter, we present and study a more general
setting, where the underlying parameters of the logistic model possess certain structures (sparse,
block-sparse, low-rank, etc.) and introduce a more general framework (which is referred to as
"Extended Margin Maximizer", EMM). While classical max-margin classifiers minimize the 2-norm
of the parameter vector subject to linearly separating the data, EMM minimizes any arbitrary convex
function of the parameter vector. We provide a precise analysis of the performance of EMM via
the solution of a system of nonlinear equations. We also provide a detailed study for three special
cases: (1) ℓ2-EMM that is the max-margin classifier, (2) ℓ1-EMM which encourages sparsity, and
(3) ℓ∞-EMM which is often used when the parameter vector has binary entries. Our theoretical
results are validated by extensive simulation results across a range of parameter values, problem
instances, and model structures.

9.1 Motivations and Background
Machine learning models have been very successful in many applications, ranging from spam
detection, face and pattern recognition, to the analysis of genome sequencing and financial markets.
However, despite this indisputable success, our knowledge on why the various machine learning
methods exhibit the performances they do is still at a very early stage. To make this gap between the
theory and the practice narrower, researchers have recently begun to revisit simple machine learning
models with the hope that understanding their performance will lead the way to understanding the
performance of more complex machine learning methods.

More specifically, studies on the performance of different classifiers for binary classification dates



back to the seminal work of Vapnik in the 1980’s [140]. In an effort to find the "optimal" hyperplane
that separates the data, he presented an upper bound on the test error which is inversely proportional
to the margin (minimum distance of the data points to the separating hyperplane), and concluded
that the max-margin classifier is indeed the desired classifier. It has also been observed that to
construct such optimal hyperplanes, one only has to take into account a small amount of the training
data, the so-called support vectors [37].

In this chapter, we challenge the conventional wisdom by showing that when the underlying parameter
has a certain structure, one can come up with classifiers that outperform the max-margin classifier.
We introduce the ExtendedMarginMaximizer (EMM) which takes into account the structure of
the underlying parameter as well as the minimum distance of the data points to the separating
hyperplane. We provide sharp asymptotic results on various performance measures (such as the
generalization error) of EMM and show that an appropriate choice of the potential function can in
fact improve the resulting estimator.

Prior work
There have been many recent attempts to understand the generalization behavior of simple machine
learning models [12, 92, 149, 14, 62]. Most of these studies focus on the least-squares/ridge
regression, where the loss function is the squared ℓ2-norm, and derive sharp asymptotic results
on the performance of the estimator. In particular, in [62, 79] the authors have shown that the
minimum-norm least square solution demonstrates the so-called "double-descent" behavior [15].

A more recent line of research studies the generalization performance of gradient descent (GD)
for binary classification. It has been shown [120]) that for a separable data set, GD (when applied
on the logistic loss) converges in the direction to the max-margin classifier (a.k.a. hard-margin
SVM). The performance of max-margin classifier has been recently analyzed in two independent
works [95, 39]. It is worth noting that understanding the implicit bias of optimization algorithms
in more complex machine learning models has recently gained a lot of attention [98, 50]. These
understandings can justify interesting properties of machine learning models observed in practice.

Summary of contributions
Inspired by the recent results in understanding the performance of the max-margin classifier, in
this chapter we introduce and study a more general framework. We assume that the underlying
parameters possess certain structures (e.g. sparse) and introduce the extended margin maximizer
(EMM) as the solution of a convex optimization problem whose objective function encourages the
structure.
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We analyze the performance of EMM in the high-dimensional regime where both the number of
parameters, ?, and the number of samples = grows, and analyze the asymptotic performance as a
function of the overparameterization ratio X := ?

=
> 0.

In Chapter 7, we provided the phase transition condition for the separability of data, i.e., we derived
the exact value of X∗ such that the data is separable for all X > X∗.

Here, we analyze the performance in the interpolating regime (X > X∗). To the best of our knowledge,
our result presented here is the first in the literature that introduces the extended margin maximizers,
and provides sharp asymptotic results on the performance of EMM classifiers on separable data.

Recently, there have been a series of works by multiple groups of researchers to characterize the
performance of the logistic loss minimizer in binary classification [113, 126] (see Chapter 8 for
more details). Furthermore, in an analogous avenue of research, the CGMT framework has been
utilized to study the generalization behavior of the gradient descent algorithm in the interpolating
regime, where there exists a (nonempty) set of parameters that perfectly fit the training data [95, 39].

The organization of this chapter is as follows: In Section 9.2, we mathematically introduce the
problem. Section 9.3 contains the main results of this chapter where we present the precise
performance analysis of EMM, which then will be used to compute the generalization error. We
investigate our theoretical findings for three specific cases of potential functions in Section 9.4.
Numerical simulations for the generalization error of the EMM classifiers are presented in Section 9.5.
We should note that most technical derivations of the results presented in the chapter are deferred to
the end of the chapter.

9.2 Problem Setup
We consider the problem of binary classification, having a set of training data, D = {(x8, H8)}=8=1,
where each of the sample points consists of a ?-dimensional feature vector, x8, and a binary label,
H8 ∈ {±1}. We assume that the data setD is generated from a logistic-type model with the underlying
parameter w★ ∈ R?. This means that

H8 ∼ Rad(d(x)8 w★)) , 8 = 1, . . . , = , (9.1)

where d : R→ [0, 1] is a non-decreasing function and is often referred to as the link function. A
commonly-used instance of the link function is the standard logistic function defined as d(C) := 1

1+4−C .

When =/? is sufficiently large, i.e., when we have access to a sufficiently large number of samples,
the maximum-likelihood estimator( ŵ"!) is well-defined. In such settings, the MLE is often the
estimator of choice due to its desirable properties in the classical statistics. Sur and Candès [123]
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have recently studied the performance of the MLE in logistic regression in the high-dimensional
regime, where the number of observations and parameters are comparable, and show, among other
things, that the maximum likelihood estimator is biased. Their results have been extended to
regularized logistic regression [113], assuming some prior knowledge on the structure of the data.
In particular, it has been observed that, when the regularization parameter is tuned properly, the
regularized logistic regression can outperform the MLE.

Inspired by the recent results on analyzing the generalization error of machine learning models, in
this chapter, we study the generalization error of binary classification in a regime of parameters
known as the interpolating regime. Here, the assumption is that there exists a parameter vector that
can perfectly fit (interpolate) the data, i.e.,

∃w0 s.t. SIGN(w)
0 x8) = H8, for 8 = 1, 2, . . . , =. (9.2)

LetW denote the set of all the parameters that interpolate the data.

W = {w ∈ R? : SIGN(w)x8) = H8 , for 1 ≤ 8 ≤ =.}. (9.3)

It has been observed that in many machine learning tasks, the iterative solvers that minimize the
loss function often converge to one of the points in the setW (the training error converges to zero).
Therefore, one can (qualitatively) pose the following important (yet still mysterious) question:

Which point(s) inW is (are) "better" estimator(s) of the actual parameter, w★?

In an attempt to find an answer to this question, we focus on the simple (yet fundamental)
model of binary classification. We assume that the underlying parameter, w★ possesses a certain
structure (sparse, low-rank, block-sparse, etc.), and consider a locally-Lipschitz and convex function
k : R? → R which encourages this structure. We introduce the Extended Margin Maximizer (EMM)
as the solution to the following optimization:

min
w∈R?

k(w)

s.t. H8 (x)8 w) ≥ 1, for 1 ≤ 8 ≤ =.
(9.4)

It is worth noting that the condition on the separability of the data set is crucial for the optimization
program (9.4) to have a feasible point.
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Remark 13. It can be shown that when k(·) is absolutely scalable1, the EMM can be found by
solving the following equivalent optimization program,

max
w∈R3

min
1≤8≤=

H8 (x)8 w)

k(w) = max
w∈R3

min
1≤8≤=

H8 (x)8 w)

‖w‖ × ‖w‖
k(w) . (9.5)

The first multiplicative term on the right indicates the margin associated with the separator w, and
the second term, ‖w‖

k(w) takes into account the structure of the model. Hence, we refer to the objective
function in the optimization (9.5) as the extended margin, and the solution to this optimization is
called the extended margin maximizer (EMM).

In this chapter, we study the linear asymptotic regime in which the problem dimensions ?, = grow
to infinity at a proportional rate, X := ?

=
> 0. Our main result characterizes the performance of the

solution of (9.4), ŵ, in terms of the ratio, X, and the signal strength, ^ := ‖w
★‖√
?
. We assume that

the data points, {x8}=8=1, are drawn independently from the Gaussian distribution. Our main result
characterizes the performance of the resulting estimator through the solution of a system of five
nonlinear equations with five unknowns. In particular, as an application of our main result, we can
accurately predict the generalization error of the resulting estimator.

9.3 Main Results
In this section, we present our main result, that is the characterization of the performance of the
extended margin maximizers. Our results are represented in terms of a summary functional, 2C (·, ·),
which incorporates the information about the underlying model. (Recall that this function has been
defined earlier in Chapter 7.)

Definition 12. For the parameter C > 0, the function 2C : R × R+ → R+ is defined as,

2C (B, A) = E
[
(1 − CB/1. − A/2)2+

]
, (9.6)

where /1, /2
i.i.d.∼ N(0, 1), and . ∼ Rad(d(C/1)).

As discussed in Theorem 10 in Chapter 7, in the Gaussian setting, the data is separable iff,
1A function 5 : R3 → R is absolutely scalable when,

∀v ∈ R3 ,∀U ∈ R, 5 (Uv) = |U | 5 (v).

All ℓ? norms, for example, are absolutely scalable.
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X > X∗ = X∗(^) := inf
B,A≥0

2^ (B, A)
A2 . (9.7)

It is worth emphasizing again that this condition, which is simply the condition on separability of
the data set D, does not depend on the choice of the potential function k(·).

A nonlinear system of equations
Our main result in the next section precisely characterizes the performance of EMM in terms of a
system of 5 nonlinear equations with 5 unknowns, (U, f, V, W, g), defined as follows,



1
?
E

[
w★)P

]
= U^2,

1
?
E

[
h)P

]
=

√
2^ (U,f)

X
,

1
?
E ‖P‖2 = U2^2 + f2,

m2^ (U,f)
mU

=
2^2W
V

√
2^ (U, f),

m2^ (U,f)
mf

=
2
√
2^ (U,f)
Vg

,

(9.8)

where P is defined as,

P = Proxfgk(·)
(
(U − fgW)w★ + Vfg

√
Xh

)
. (9.9)

Remark 14. The first three equations in the nonlinear system (9.8) capture the role of the potential
function via its proximal operator. When k(·) is separable, these functions can further be reduced
to the proximal operator of a real-valued function. For instance, when k(·) = ‖·‖1, the proximal
operator is simply equivalent to applying the well known shrinkage (defined as [(G, C) = G

|G | ( |G | − C)+)
on each entry. For more information on the proximal operators, please refer to [104].

Asymptotic performance of EMM
We are now ready to present the main result of the chapter. Theorem 13 characterizes the asymptotic
behavior of EMM, that is the solution to the optimization program (9.4). It connects the performance
of EMM to the solution of the nonlinear system of equations (9.8), and informally states that,

ŵ �→ Γ(w★, h), as ? →∞, (9.10)

where h ∈ R? has standard normal entries, and Γ : R? × R? → R? is defined as,
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Γ(v1, v2) = Proxf̄ḡk(·)
(
(Ū − f̄ḡW̄)v1 + V̄f̄ḡ

√
Xv2

)
, (9.11)

where (Ū, f̄, V̄, W̄, ḡ) is the solution to the nonlinear system (9.8).

Theorem 13. Let ŵ be the solution of the EMM optimization (9.4), where for 8 = 1, 2, . . . , =, x8 has
the multivariate Gaussian distribution N(0, 1

?
I?), and H8 ∼ Rad(d(x)

8
w★)), and w★ is drawn from

a distribution Π with ^ = ‖w
★‖√
?
. As =, ? →∞ at a fixed overparameterization ratio X = ?

=
> X∗(^),

then,

(i) The nonlinear system (9.8) has a unique solution (Ū, f̄, V̄, W̄, ḡ).

(ii) For any locally-Lipschitz function � : R? × R? → R, we have,

� (ŵ,w★) %→ E[� (Γ(w, h),w)], (9.12)

where h ∈ R? has standard normal entries, w ∼ Π is independent of h, and the function Γ(·, ·)
is defined in (9.11).

The detailed proof of this result is deferred to Section 9.6. In short, we introduce dual variables
and write down the Lagrangian which contains a bilinear form with respect to a matrix with i.i.d.
Gaussian entries. Exploiting the CGMT framework, we then analyze the nearly-separable auxiliary
optimization to find its optimal value, and show that the nonlinear system (9.8) corresponds to its
optimality condition.

Remark 15. The result in Theorem 13 is stated for a general locally-Lipschitz function � (·, ·). To
evaluate a specific performance measure, one can appeal to this theorem with an appropriate choice
of �. As an example, the function � (u, v) = 1

?
‖u − v‖2 gives the mean-squared error (MSE).

Generalization error
Theorem 13 can be utilized to derive useful information on the performance of the classifier. In
fact, using this theorem, one can show that the parameters Ū and f̄, respectively, correspond to the
correlation (to the underlying parameter) and the mean-squared error of the resulting estimator.

An important measure of performance is the generalization error, which indicates the success of the
trained model on unseen data. Here, we compute the generalization error of the EMM classifier. We
do so by appealing to the result of Theorem 13.
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Definition 13. The generalization error for a binary classifier with parameter ŵ is defined as,

�� ŵ = Px{SIGN(x) ŵ) ≠ SIGN(x)w★)}, (9.13)

where the probability is computed with respect to the distribution of the test data.

It can be shown that when the distribution of the test data is rotationally invariant (e.g., Gaussian,
uniform dist. on the unit-sphere), GE only depends on the angle between ŵ and w★. The following
proposition provides sharp asymptotic results on the generalization error of the EMM classifier.

Proposition 4 (Generalization Error). Let ŵ be the EMM classifier defined in Section 9.2. Assume
X > X∗, and the (test) data is distributed according to the multivariate Gaussian distribution
N(0, 1

?
I?). Then, as ? →∞, we have,

��ŵ
%→ 1
c
acos( ^Ū

√
^2Ū2 + f̄2

), (9.14)

where Ū and f̄ are derived by solving the nonlinear system (9.8).

Proof. We first note that when the data is normally distributed, the generalization error for ŵ is
defined as,

��ŵ =
1
c
acos( ŵ)w★

‖w★‖ ‖ŵ‖ ). (9.15)

We appeal to the result of Theorem 13 with two different functions. Using �1(u, v) = 1
?
v)u in (9.12)

will give,

1
?

ŵ)w★ %→ 1
?
E

[
w★)Proxf̄ḡk(·)

(
(Ū − f̄ḡW̄)w★ + V̄f̄ḡ

√
Xh

) ]
. (9.16)

Since (Ū, f̄, V̄, W̄, ḡ) is the solution to the nonlinear system, we can replace the expectation from the
first equation in (9.8), which gives the following,

1
?

ŵ)w★ %→ ^2Ū. (9.17)

Similarly, using the result of Theorem 13 for the measure function �2(u, v) = 1
?
‖u‖2, along with

the third equation in (9.8) gives,
1
√
?
‖ŵ‖ %→

√
^2Ū2 + f̄2 . (9.18)
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The proof is the consequence of (9.15), (9.17), and (9.18), along with the continuity of the function
acos(·). �

9.4 EMM for Various Structures
As explained earlier, the potential function k(·) is chosen to encourage the structure of the underlying
parameter. In this section, we investigate the performance of the EMM classifier for some common
structures and the corresponding choices of the potential function.

Max-margin classifier (ℓ2-EMM)
The ℓ2-norm regularization is commonly used in machine learning applications to stabilize the
model. Here, we study the performance of the EMM classifier when k(·) = 1

2 ‖·‖
2
2, i.e., the solution

to the following optimization program,

min
w∈R?

1
2
‖w‖22

s.t. H8 (x)8 w) ≥ 1, for 1 ≤ 8 ≤ =.
(9.19)

The optimization program (9.19) is called the hard-margin SVM and the corresponding solution is
the max-margin classifier, as it maximizes the minimum distance (margin) of the data points from
the separating hyperplane. As mentioned earlier in Section 9.1, the conventional justification for
using such a classifier is that the risk of a classifier is inversely proportional to its margin. The
performance of ℓ2-EMM (9.19), has been earlier analyzed in [95].

When k(·) = 1
2 ‖·‖

2
2, the proximal operator has the following closed-form,

Prox C
2 ‖·‖

2 (u) = 1
1 + Cu. (9.20)

By replacing the proximal operator in the nonlinear system (9.8), we can explicitly find two of the
variables (V, and W) and reduce it to the following system of three nonlinear equations in three
unknowns,



√
2^ (U, f) = f

√
X,

m2^ (U, f)
mU

=
−2^2UgfX

1 + fg ,

m2^ (U, f)
mf

=
2fX

1 + fg .

(9.21)
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Sparse classifier (ℓ1-EMM)
In today’s machine learning applications, typically the number of available features, ?, is over-
whelmingly large. To reduce the risk of overfitting in such settings, feature selection methods are
often performed to exclude irrelevant variables from the model [71]. Adding an ℓ1 penalty is the
most popular approach for feature selection.

As a natural consequence of our main result in Theorem 13, here we analyze the asymptotic
performance of EMM when the potential function is the ℓ1 norm, and evaluate its success on the
unseen data (i.e., the test error) when the underlying parameter, w★, is sparse.

min
w∈R?

‖w‖1

s.t. H8 (x)8 w) ≥ 1, for 1 ≤ 8 ≤ =.
(9.22)

In this case, the proximal operator of the potential function (‖·‖1) is basically equivalent to applying
the soft-thresholding operator, on each entry, i.e.,

ProxC‖·‖1 (u) = [(u, C), (9.23)

where [(G, C) := G
|G | ( |G | − C)+ is the soft-thresholding operator. It is worth noting that the analysis

presented here is similar to our analysis in Section 8.5 of the previous chapter. Here, for a sparsity
factor B ∈ (0, 1], we assume the entries of w★ are sampled i.i.d. from the following distribution,

ΠB (F) = (1 − B) · X0(F) + B ·
(q( F√̂B )
√̂
B

)
, (9.24)

where X0(·) is the Dirac delta function, and q(C) := 4
− C

2
2√

2c
is the density of the standard normal

random variable. This means that each of the entries of w★ are zero with probability 1 − B, and the
nonzero entries have independent Gaussian distribution with variance ^2

B
. Having this assumption,

we can further simplify the first three equations in the nonlinear system (9.8), and present them in
terms of &-functions. To streamline our representation, we introduce the following proxies,

C1 =
fg√

^2

B
(U − fgW)2 + V2f2g2X

, C2 =
1
V
√
X
. (9.25)
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We also define the function j : R→ R+ as,

j(C) = E
[
(/ − C)2+

]
, / ∼ N(0, 1)

= &(C) (1 + C2) − Cq(C),
(9.26)

where &(C) :=
∫ ∞
C
q(G)3G denotes the tail distribution of a standard normal random variable. We

are now able to simplify the first three equations in (9.8) and derive the following nonlinear system,



&(C1) = U
2(U−fgW) ,

B · &(C1) + (1 − B) · &(C2) =
√
2^ (U,f)
2VfgX ,

B

C21
· j(C1) + (1−B)C22

· j(C2) = ^2U2

2f2g2 + 1
2g2 ,

m2^ (U,f)
mU

=
2^2W
V

√
2^ (U, f),

m2^ (U,f)
mf

=
2
√
2^ (U,f)
Vg

.

(9.27)

The nonlinear system (9.27) can be solved via numerical methods. For our numerical simulations in
Section 9.5, we exploit accelerated fixed-point methods to solve the nonlinear system. Using the
result of Lemma 4, we can compute the generalization error.

Another important measure in this setting (when w★ is sparse) is the probability of error in support
recovery. Let Ω ⊆ [?] denote the support of w★ (i.e. Ω = { 9 : w★

9
≠ 0}.) For a predefined threshold

n > 0, we form the following estimate of the support,

Ω̂n = { 9 : 1 ≤ 9 ≤ ?, |ŵ 9 | > n}. (9.28)

The following lemma establishes the success in the support recovery:

Lemma 22 (Support Recovery). For a sparsity factor B ∈ (0, 1], let the entries of w★ have
distribution ΠB defined in (9.24), and ŵ be the solution to the optimization (9.22). Then, as ? →∞,
we have,

lim
n↓0

%1(n) := P
{
9 ∉ Ω̂n | 9 ∈ Ω

} %→ 1 − 2&(C̄1)

lim
n↓0

%2(n) := P
{
9 ∈ Ω̂n | 9 ∉ Ω

} %→ 2&(C̄2) ,
(9.29)

where C̄1 and C̄2 are defined as in (9.25), with variables derived from solving the nonlinear
system (9.27).
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Binary classifier (ℓ∞-EMM)
As the last example of structured classifiers, here we study the case where w★ ∈ {±}?. To encourage
this structure, the potential function is chosen to be the ℓ∞ norm. In linear regression, ‖·‖∞ is
used to recover the binary signals, i.e., when w★ ∈ {±1}? [33]. This problem arises in integer
programming and has some connections to the Knapsack problem [91]. Here, we consider analyzing
the performance of the solution of the following optimization program,

min
w∈R?

‖w‖∞

s.t. H8 (x)8 w) ≥ 1, for 1 ≤ 8 ≤ =.
(9.30)

It can be shown that the proximal operator of the ℓ∞-norm can be derived by projecting the points
onto the ℓ1-ball. We use this connection to present the proximal operator in this case in terms of the
soft-thresholding operator [(·, ·).
For a vector w whose entries are drawn independently from a distribution Π, we can present the
following formula for the proximal operator:

ProxC ?‖·‖∞ (w) = w − Prox_‖·‖1 (w), (9.31)

where _ := _(C) is the smallest non-negative number that satisfies,

E
[
|[(,, _) |

]
= E

[
( |, | − _)+

]
≤ C. (9.32)

Here, the expectation is with respect to, ∼ Π. Note that _ is a non-increasing function of C, and
_ = 0 whenever C ≥ E |, |.

Similar to the case of ℓ1-EMM, here we can use the closed-form of the proximal operator to simplify
the first three equations in the nonlinear system (9.8).

For our numerical simulations in the next section, we have done the computations for three different
distributions: (1) The i.i.d. Gaussian distribution, (2) the sparse distribution defined in (9.24), and
(3) the uniform binary distribution, Π = Unif

(
{±1}?

)
.

9.5 Numerical Simulations
In this section, we investigate the validity of our theoretical results with multiple numerical
simulations applied to the three different cases of EMM classifiers elaborated in Section 9.4. For
each of the three potential functions discussed in the paper (i.e., ℓ1, ℓ2, and ℓ∞ norms), we perform
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Figure 9.1: Generalization error of the EMM classifier under three potential functions, ℓ1 norm
with the red line (ℓ1-EMM), ℓ2 norm with the blue line (ℓ2-EMM), and ℓ∞ norm with the black line
(ℓ∞-EMM). The entries of w★ are drawn independently from N(0, ^2) Gaussian distribution.

numerical simulations for three different models on the distribution of w★. In other words, we
change the distribution of the entries of w★ and evaluate the performance of the aforementioned
classifiers on each model. It will be observed in our numerical simulations that the appropriate
choice of the potential function in the EMM optimization (9.4) has an impact on the generalization
error of the resulting classifier. The three different distributions that we choose for the underlying
parameter are as follows:

Gaussian: in the first model, we assume that the entries of w★ are drawn from a zero-mean Gaussian
distribution,N(0, ^2). In this model, the direction of w★ (which indicates the separating hyperplane)
is distributed uniformly on the unit sphere. Figure 9.1 gives the generalization error when w★ has
Gaussian distribution. The solid lines show the theoretical results derived from Theorem 13 and
Proposition 4. The circles depict empirical results that are computed by taking the average over
100 trials with ? = 200 and ^ = 2. Although our theory provides the generalization error in the
asymptotic regime, it appropriately matches the result of empirical simulations in our simulations
in finite dimensions. It can be observed in this figure that the max-margin classifier (ℓ2-EMM)
outperforms the other two classifiers. We should also note that as the overparameterization ratio,
X, grows, the generalization error increases which indicates that the larger the value of X, the less
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reliable our classifiers become.
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Figure 9.2: Generalization error of the EMM classifier under three potential functions, ℓ1 norm
with the red line (ℓ1-EMM), ℓ2 norm with the blue line (ℓ2-EMM), and ℓ∞ norm with the black line
(ℓ∞-EMM). The underlying vector w★ is B-sparse with the non-zero entries drawn independently
from N(0, ^2/B) Gaussian distribution.

Sparse: here, we assume that the entries of w★ are drawn from the sparse distribution represented
in (9.24), i.e., each entry is nonzero with probability B, and the nonzero entries have i.i.d. Gaussian
distribution with appropriately-defined variance. Figure 9.2 demonstrates the result of the numerical
simulations for this model for the three different classifiers of interest. The empirical result is
the average over 100 trials with ? = 200, B = 0.1, and ^ = 2. Similarly to the previous case, the
empirical results match the theory. Also, it can be observed that the ℓ1-EMM outperforms the two
other classifiers in the regime of X where the classifiers performs well (i.e. X w 6.) Similarly, we
can observe that for large values of X, all the classifiers perform poorly.

Binary: in this model, the entries of w★ are independently drawn from {+^,−^}, i.e., w★ is
uniformly chosen on the discrete set {±^}?. Figure 9.3 shows the result of numerical simulations
under this model. Similarly to previous cases, the empirical results (^ = 2, ? = 200) match
the theory. Also, the ℓ∞-EMM classifier outperforms the other two classifiers for X < 1 (which
corresponds to the under-parameterized setting). However, the max-margin classifier performs
better for larger values of X.
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Figure 9.3: Generalization error of the EMM classifier under three potential functions, ℓ1 norm
with the red line (ℓ1-EMM), ℓ2 norm with the blue line (ℓ2-EMM), and ℓ∞ norm with the black line
(ℓ∞-EMM). The entries of w★ are drawn independently from ^ ∗Rad(0.5) Rademacher distribution.

9.6 Proof of Theorem 13
Here, we present the proof of the main result of this chapter. Recall that the extended margin
maximizer is defined as the solution to the following optimization program,

min
w∈R?

k(w)

s.t. H8 (x)8 w) ≥ 1, for 1 ≤ 8 ≤ =.
(9.33)

Theorem 13 provides a precise characterization on the performance of this optimization program in
the asymptotic regime, where =, ? →∞ at a fixed ratio X := =/?. We assume that the data points
are drawn independently from the multivariate Gaussian distribution, i.e., x8

i.i.d.∼ N(0, 1
?
I?).

For our analysis, we utilize the CGMT framework (see Appendix A.1), which will provide us with a
nearly-separable optimization program that has the same performance as (9.33). To simplify the
presentation, we are breaking down the proof into the following three main steps:

1. Finding the auxiliary optimization: By introducing dual variables, we present the optimiza-
tion (9.33) as a bilinear form with respect to a Gaussian matrix. Consequently, we use the
result of Lemma 32 to find the auxiliary optimization.
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2. Analyzing the auxiliary optimization: The first step provides a nearly-separable optimization.
The purpose of this step is to simplify this optimization and present it in terms of an
optimization program with respect to scalar variables.

3. Optimality condition of the auxiliary optimization: By taking the derivatives with respect
to various scalars, we present the first-order optimality condition on the solution of the
(simplified) auxiliary optimization. Further simplification gives the nonlinear system (9.8).

It is worth noting that the steps explained above resemble our proof in the previous chapter.

We explain each of the three steps in more details in the following subsections.

Finding the auxiliary optimization
The following lemma presents the auxiliary optimization associated with the EMM optimiza-
tion (9.33).

Lemma 23. Let ŵ be the solution to the optimization (9.33). Consider the following optimization:

min
U∈R

w̃∈R?
w̃⊥w★

1
?
k(Uw★ + w̃)

s.t.
1
?
(h) w̃)2 ≥ = · 2^

(
U,
‖w̃‖
√
?

)
,

(9.34)

where h ∈ R? has i.i.d. standard normal entries. Assume (Ū, ¯̃w) ∈ R × R? be the solution to this
optimization program. Then, as ? →∞, we have:ŵ − (Ūw★ + ¯̃w)

 %−→ 0. (9.35)

Proof. In order to apply the CGMT, we need to have a min-max optimization. Introducing the
Lagrange variable, , :=

[
_1, _2, . . . , _=

])
∈ R=+, we can rewrite the optimization program as follows,

min
w∈R?

max
,∈R=+

1
?
k(w) + 1

=

=∑
8=1

_8
(
1 − H8 (x)8 w)

)
. (9.36)

Note that the scaling has been performed in such a way that all the terms in the objective be of
constant order. We define the matrix H ∈ R=×? as,
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H := −√? ·


−x)1−
−x)2−
...

−x)=−


. (9.37)

Based on the assumption on the distribution of data points, this matrix has i.i.d. standard normal
N(0, 1) entries. To ease the notation, we also define a new variable ,̄ = , � y (i.e., _̄8 = _8H8) and
reformulate the optimization (9.36) as,

min
w∈R?

max
,̄∈R=
_̄8H8≥0

1
?
k(w) + 1

=
,̄)y + 1

=
√
?
,̄)Hw. (9.38)

We proceed by analyzing the optimization program (9.38). In order to apply the CGMT, we
need an additive bilinear form that is statistically independent of other functions that appear in
the objective. Note that the label vector y ∈ {±1}= is a random vector that depends on Hw★, as
y = Rad

(
d(− 1√

?
Hw★)

)
. Therefore, to remove this independence between y and the bilinear form,

we use the projection onto w★. Let P be the matrix of orthogonal projection onto span(w★), i.e.,
P = 1

‖w★‖2 w★w★) , and P⊥ be its orthogonal complement, P⊥ = I? − P. We use these projection
matrices to decompose the Gaussian matrix H as H = H1 +H2 with H1 := H×P, and H2 := H×P⊥.
This gives the following equivalent optimization,

min
w∈R?

max
,̄∈R=
_̄8H8≥0

1
?
k(w) + 1

=
,̄)y + 1

=
√
?
,̄)H1w + 1

=
√
?
,̄)H2w. (PO)

It is worth noting that the projections of a Gaussian matrix (or vector) onto orthogonal subspaces
are statistically independent. Also, the label vector y would be independent of H2 since,

y = Rad
(
d(− 1
√
?

Hw★)
)
= Rad

(
d(− 1
√
?

HPw★)
)
= Rad

(
d(− 1
√
?

H1w★)
)
, (9.39)

where we used Pw★ = w★. Therefore, all the additive terms in the objective function of (PO)
except the last one are independent of H2. Also, the objective function is convex with respect to w
and concave(linear) with respect to ,̄. In order to apply the CGMT framework, we only need an
extra condition which is restricting the feasibility sets of w and ,̄ to be compact and convex. We
can introduce some artificial convex and bounded sets Sw and S,̄, and perform the optimization
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over these sets. Note that these sets can be chosen large enough such that they do not affect the
optimization itself. For simplicity, in our arguments here we ignore the condition on the compactness
of the feasible sets and apply the CGMT whenever the variables are defined on a convex domain.

The optimization program (PO) is suitable to be analyzed via the CGMT as the conditions are
all satisfied. Having identified (PO) as the primary optimization, it is straightforward to write
its corresponding auxiliary optimization (AO) [as in (A.1), c.f. Appendix A.1]. The Auxiliary
Optimization (AO) can be written as follows,

min
w∈R?

max
,̄∈R=
_̄8H8≥0

1
?
k(w) + 1

=
,̄)y + 1

=
√
?
,̄)H1w + 1

=
√
?

( ,̄ h)P⊥w + ,̄)g
P⊥w

 )
, (AO)

where h ∈ R? and g ∈ R= have i.i.d. standard normal entries. Next, we decompose w as
w := Pw + P⊥w = Uw★ + w̃, where U ∈ R, and w̃ ∈ R? is such that w̃ ⊥ w★. We also define
the vector q := − 1

^
√
?
Hw★. Note that since ‖w‖ = ^√?, the entries of q have standard normal

distribution. Therefore, we have the following equivalent optimization,

min
U∈R

w̃∈R?
w̃⊥w★

max
,̄∈R=
_̄8H8≥0

1
?
k(Uw★ + w̃) + 1

=
,̄)y − U^

=
,̄)q + 1

=
√
?

( ,̄ h) w̃ + ,̄)g ‖w̃‖
)
. (9.40)

Proceeding onward, we solve the inner optimization (max,̄) with respect to the direction of ,̄. We
have:

max
,̄∈R=
_̄8H8≥0

1
=
,̄)y − U^

=
,̄)q + 1

=
√
?

( ,̄ h) w̃ + ,̄)g ‖w̃‖
)
= max

,̄∈R=
_̄8H8≥0

,̄
√
=
( 1
√
=?

h) w̃ + 1
√
=
‖-‖) (9.41)

s.t. `8 =
(
1 − U^@8H8 +

‖w̃‖
√
?
68H8

)
+, 1 ≤ 8 ≤ =.

Recall that the function 2^ : R × R+ → R is defined (c.f. Definition 12) as follows:

2^ (C1, C2) = E
(
1 − ^C1/1. + C2/2

)2
+, (9.42)

where /1, /2 are independent standard normal random variables, and . ∼ Rad
(
d(^/1)

)
. There-

fore, we have E `2
8
= 2^ (U, ‖w̃‖√? ), and using the SLLN as ?, = → ∞, we can replace ‖-‖ with
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√
= · 2^ (U, ‖w̃‖√? ) due to the almost sure convergence. Introducing the positive variable V = ‖,̄‖√

=
, we

have the following reformulation of the auxiliary optimization,

min
U∈R

w̃∈R?
w̃⊥w★

max
V≥0

1
?
k(Uw★ + w̃) + V

√
=?

h) w̃ + V ·
√
2^

(
U,
‖w̃‖
√
?

)
. (9.43)

We can write the inner maximization (with respect to V) as a constraint for the optimization, which
gives the same formulation as (9.34), i.e.,

min
U∈R

w̃∈R?
w̃⊥w★

1
?
k(Uw★ + w̃)

s.t.
1
?
(h) w̃)2 ≥ = · 2^

(
U,
‖w̃‖
√
?

)
.

(9.44)

Using the result of Lemma 32, we have that when the solution of the primary optimization converges
as the problem dimensions grow (? →∞), the solution of the auxiliary optimization converges to
the same set (point). This concludes the proof. �

Analyzing the auxiliary optimization
In this section, we analyze the performance of the refined version of the auxiliary optimization
in (9.43). Although this optimization program is (nearly) separable, it is still a high-dimensional
optimization. Ideally, one would like to simplify this optimization to obtain another optimization
program in lower dimensions (with respect to a few scalar variables) where the performance can be
numerically computed. To do so, in this section we exploit some tools from convex analysis along
with some tricks from calculus to further simplify the optimization program (9.43).

The goal is to express the final result in terms of the expected Moreau envelope of the regularization
function. To better understand the behavior of the solution in (9.43), we first introduce some new
variables, u, v ∈ R?, and W ∈ R and write the optimization as follows,

min
U∈R

u,w̃∈R?
max
V≥0,W
v∈R?

1
?
k(u) + V

√
=?

h) w̃ + V ·
√
2^

(
U,
‖w̃‖
√
?

)
+ 1
?

v)
(
u − Uw★ − w̃

)
+ W
?

w★) w̃. (9.45)

The variable u has been introduced to detach the impact of B and w̃ from k(·). The variables v and
W are Lagrange dual variables to remove the constraints from the optimization. We shall emphasize
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again that the normalization has been performed to ensure that all the terms in the objective are of
constant order. Next, we would like to solve the minimization with respect to w̃.

Before continuing our analysis, we need to discuss an important point that would help us in the
remaining of this section. It will be observed that in order to simplify the optimization, we would
like to flip the orders of min and max in the (AO) optimization. Since the objective function in the
auxiliary optimization is not convex-concave, we cannot appeal to the Sion’s min-max theorem in
order to flip min and max. However, it has been shown (see Appendix A in [129]) that flipping the
orders of min and max in the (AO) is allowed in the asymptotic setting. This is mainly due to the
fact that the original (PO) optimization was convex-concave with respect to its variables, and as
the CGMT suggests (AO) and (PO) are tightly related in the asymptotic setting; hence, flipping
the order of optimizations in (AO) is justified whenever such a flipping is allowed in the (PO). We
appeal to this result to flip the orders of min and max when needed.

Next, we solve the optimization with respect to the direction of w̃. Defining f := ‖w̃‖ /√? and
solving the optimization with respect to the direction of w̃ leads to,

min
f≥0,U
u∈R?

max
V≥0,W
v∈R?

1
?
k(u) + V ·

√
2^

(
U, f

)
+ 1
?

v)
(
u − Uw★) − f ·

 V√=h − 1
√
?

v + W
√
?

w★

 . (9.46)

Consequently, we are considering the maximization with respect to the vector variable v ∈ R?. As
seen in (9.46), this variable appears in the last two additive terms in the objective function. To find
the optimal value for v, we introduce a new scalar variable g > 0 2, which simplifies the optimization
by changing ‖·‖ to ‖·‖2. The new optimization would be,

min
f≥0,U
u∈R?

max
V≥0,g>0,W

v∈R?

1
?
k(u) + V ·

√
2^

(
U, f

)
+ 1
?

v)
(
u − Uw★) − fg

2
− f

2g
·
 V√=h − 1

√
?

v + W
√
?

w★

2
.

(9.47)

It can be easily checked that the optimization programs (9.46) and (9.47) are equivalent by simply
solving the inner optimization with respect to the variable g. We are now ready to solve the
optimization with respect to v. To do so, we continue by making a completion of squares as follows,

2The square-root trick: it was first proposed in the analysis of the auxiliary optimization in regularized M-estimators,
and the idea is to use the following equivalence (which is derived immediately from AM-GM inequality):

√
G = min

g>0

1
2g
G + g

2
, ∀G > 0.
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1
?

v)
(
u − Uw★) − f

2g
·
 V√=h − 1

√
?

v + W
√
?

w★

2
= − f

2g
·
 V√=h − 1

√
?

v + W
√
?

w★ + g

f
√
?

u − Ug

f
√
?

w★

2

+ g

2f?
u − Uw★

2 + V
√
=?

u)h + W
?

u)w★

− UV
√
X

?
h)w★ − UW^2,

?, =→ +∞ = − f
2g
·
 V√=h − 1

√
?

v + W
√
?

w★ + g

f
√
?

u − Ug

f
√
?

w★

2

+ g

2f?

u + Vf√Xg
h + (fW

g
− U)w★

2

− f

2g
(XV2 + W2^2), (9.48)

where we exploit the fact that, as ? → ∞, we can replace 1
?

w★
2 and 1

?
‖h‖2 with ^2 and 1,

respectively. Furthermore, we omit the term 1
?
h)w★ = O( 1√

?
) as it is negligible compared to other

terms in the optimization (which are of constant O(1) orders.) Using the above completion-of-
squares, v is now appearing in only one quadratic term in (9.48). Hence, to maximize the objective,
v chooses itself in such a way that it makes the quadratic term equal to zero. This gives the following
optimization,

min
f≥0,U
u∈R?

max
V≥0,g>0,W

v∈R?
V·

√
2^

(
U, f

)
−fg

2
− f

2g
(
XV2+W2^2)+ 1

?

[
k(u)+ g

2f

u + Vf√Xg
h + (fW

g
− U)w★

2 ]
.

(9.49)

We now switch the order of min and max (similar to what we did earlier for w̃) and perform the
minimization with respect to u. Using the definition of the Moreau envelope, we can write down
this optimization in terms of the Moreau envelope of the potential function. We have,

"k(·)
(
(U − fW

g
)w★ − Vf

√
X

g
h, f
g

)
= min

D∈R?
k(u) + g

2f

u + Vf√Xg
h + (fW

g
− U)w★

2

. (9.50)

Using the result of Lemma 37 (see Appendix A.2), we have that the Moreau envelope is a Lipschitz
function as k(·) is Lipschitz. Therefore, we can exploit the Gaussian concentration of Lipschitz
functions (see Theorem 5.22 in [141]) which gives,
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1
?
"k(·)

(
(U− fW

g
)w★− Vf

√
X

g
h, f
g

) %−→ 1
?
E

[
"k(·)

(
(U − fW

g
)w★ − Vf

√
X

g
h, f
g

) ]
, as ? →∞.

(9.51)

We now appeal to Lemma 33 in Appendix A.2 which allows us to replace the Moreau envelope
with their expected value due to the convergence we are getting in (9.51). Hence, by replacing the
expected value of the Moreau envelope function, we are getting the following optimization, to be
analyzed in the next section.

min
f≥0,U

max
W

V≥0,g>0

1
?
E

[
"k(·)

(
(U − fW

g
)w★ − Vf

√
X

g
h, f
g

) ]
+ V

√
2^

(
U, f

)
− fg

2
− f

2g
(XV2 + W2^2).

(9.52)

Optimality conditions of the auxiliary optimization
In this section, we conclude the proof of the main result of the paper by showing that (when X > X∗)
the optimizer to the scalar optimization (9.52) can be derived by solving the nonlinear system of
equations (9.8).

Here, we investigate the optimality condition for the solution of the auxiliary optimization. So far,
we simplified the (AO) and after some algebra, we got the scalar optimization (9.52) with respect to
five variables. Here, we would like to present the solution to this optimization. Let � (U, f, W, V, g)
denote the objective function in the scalar optimization. In other words, the function � is defined as:

� (U, f, W, V, g) = 1
?
E

[
"k(·)

(
(U − fW

g
)w★ + Vf

√
X

g
h, f
g

) ]
+V

√
2^

(
U, f

)
−fg

2
− f

2g
(XV2+W2^2).

(9.53)

The following lemma describes the behavior of the function � with respect to its variables.

Lemma 24. The function � : R5 → R defined in (9.53) is (jointly) convex with respect to the
variables (U, f), and (jointly) concave with respect to the variables (W, V, g).

The proof of this lemma is provided in Appendix 9.7. Using the result of Theorem 10 in Chapter 7,
the objective function, �, will diverge when X < X∗. For X > X∗, Lemma 24 states that the function
� is convex-concave. The following remark indicates that the optimal solution of the optimization
problem does not happen at the boundary values.
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Remark 16. We need to show that the optimal solution does not happen at the boundary, i.e., at
V = 0, or f = 0. Taking the derivative with respect to V at the objective function in (9.47), we will
have m

mV
|V=0 =

√
2^ (U, f) > 0. Therefore, the optimal V is nonzero. It can also be seen in the same

optimization program that when f = 0, V can choose its value arbitrarily large and the optimal
value would be +∞. Hence, the optimal f is also nonzero as we have a minimization w.r.t. f.

Let (Ū, f̄, W̄, V̄, ḡ) denote the solution to the optimization (9.52). Since the objective function is
smooth with respect to its variables and the optimal values do not coincide with the boundaries, its
solution must satisfy the first-order optimality condition, i.e., ∇�

(
Ū, f̄, W̄, V̄, ḡ

)
= 05×1. We will

show that this would simplify to our system of nonlinear equations (9.8).

We start by setting the derivative with respect to U to zero. We have,

m�

mU
= 0⇒ 1

?
E

[ m
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"k(·)
(
(U − fW

g
)w★ + Vf

√
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h, f
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) ]
+ V

2
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(
U, f

) · m2^ (U, f)
mU

= 0 , (9.54)

where we used the Leibniz integral rule to bring the derivative inside the expectation. Using the
result of Lemma 34, we can write the following,
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g
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) ]
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(9.55)

Replacing (9.55) in (9.54) gives the following nonlinear equation,

g
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[
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g
k(·) ((U−
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g
)w★+ Vf
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g
h
) ]
=
^2Ug

f
− ^2W+ V

2
√
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) · m2^ (U, f)
mU

. (9.56)

Next, we find another optimality condition by setting the derivative with respect to V to zero. We
have,

m�

mV
= 0⇒ 1
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"k(·)

(
(U − fW

g
)w★ + Vf

√
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g
V = 0 . (9.57)
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Similarly to (9.55), we can compute the expected derivative of the Moreau envelope function by
appealing to Lemma 34,

1
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√
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g
h
) ]
.

(9.58)

Replacing (9.58) in (9.57) will give the following nonlinear equation:
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Next, we compute the derivative with respect to W and set it to zero. We have,
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= 0 , (9.59)

1
?
E

[ m
mW
"k(·)

(
(U − fW

g
)w★ + Vf

√
X

g
h, f
g

) ]
=
f^2W

g
−^2U− 1

?
E

[
w★)Prox f

g
k(·) ((U−

fW

g
)w★+ Vf

√
X

g
h
) ]
.

(9.60)

Replacing (9.60) in (9.59) will give the following nonlinear equation:
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g
k(·) ((U −
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g
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g
h
) ]
= ^2U . (E1)

Also, replacing (E1) in the nonlinear equation (9.56) gives the following nonlinear equation:

m2^ (U, f)
mU

=
2^2W

V

√
2^ (U, f) . (E4)

Next, we take the derivative with respect to f. We have:
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(9.61)
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We use the result of the Lemma 34 to compute the derivative of "k (·, ·) with respect to f. We have,
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(9.63)

Replacing this into (9.61) will give the following equation,
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Similarly, by taking the derivative with respect to g, we have:
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k(·) ((U −
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√
X
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h
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= U2^2 + f2 . (E3)

We can now simplify (9.64) to get the following equation:

m2^ (U, f)
mf

=
2g

√
2^ (U, f)
V

. (E5)

Finally, we make a change of variable by replacing g with 1
g
in the equations (E1), (E2), (E3),(E4),

and (E5) will respectively give the desired equations in the system of nonlinear equations (9.8) as
the optimality condition on the solution of the optimization (9.52). This concludes the proof.

9.7 Proof of Lemma 24
We first state the following lemma which will be useful in our proof.

Lemma 25. The function 5 (B, A) :=
√
2^ (B, A) is (jointly) convex in (s,r).

Proof. First, note that for x ∈ R=, the function x ↦→ ‖(x)+‖ is a convex function as it can be written
as a sup of convex(linear) functions.

‖(x)+‖ = sup
u∈R=+
‖u‖≤1

u)x .. (9.65)
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For = ∈ N, define the function 5 (=)^ (B, A) as:

5
(=)
^ (B, A) =

1
√
=

(1= − B^hy + Agy
)
+
 , (9.66)

where 1= denotes the all-one vector, h, g ∈ R= have i.i.d. N(0, 1) entries, and . ∼ Rad
(
d(^h)

)
. It

is readily seen that 5 (=)^ (B, A) is jointly convex with respect to B and A as it is a combination of a
convex function and a linear function. Using the LLN, we also have that,

5
(=)
^ (B, A)

%−→ 5 (B, A) =
√
2^ (B, A). (9.67)

Therefore, 5 (B, A) is a convex function as it is a point-wise limit of convex functions. �

Consider the objective function in the optimization program 9.47, i.e.,

5 (?)
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)
=
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(
u−Uw★)−fg

2
− f

2g
·
 V√=h − 1

√
?

v + W
√
?

w★

2
.

(9.68)

First, we would like to show that 5 (?) is jointly convex with respect to U, f, and u. From Lemma (25),
we know that

√
2^

(
U, f

)
is jointly convex with respect to U and f. The function k(·) is also convex

and the remaining terms are all linear with respect to these three variables. Hence, 5 (?) is convex
with respect to u, U, and f.

Next, we show that this function is jointly concave with respect to the remaining variables. We
note that the function

 V√
=
h − 1√

?
v + W√

?
w★

2
is convex with respect to variables v, W, and V. The

perspective of this function 1
g

 V√
=
h − 1√

?
v + W√

?
w★

2
is (jointly) convex with respect to (W, V, g, v).

Therefore, 5 (?) is jointly convex with respect to these variables as the remaining terms are affine
with respect to (W, V, g, v). Next, we define the function � (?) by maximizing 5 (?) with respect to v,
i.e.,

� (?)
(
U, f, u; W, V, g

)
= max

v∈R?
5 (?)

(
U, f, u; W, V, g, v

)
. (9.69)

This function is also jointly convex-concave, since it is a point-wise maximum of concave function
with respect to v. The result is the consequence of the fact that � (?) converges to �, i.e.,

� (?)
(
U, f, u; W, V, g

) %→ � (U, f, W, V, g) , as ? →∞. (9.70)
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9.8 Proof of Theorem 10 in Chapter 7
In this section, we prove the result presented in Theorem 10 which identifies the phase transition on
the separability of the data. To this end, we exploit the result of Lemma 23 which associates the
following optimization to the EMM optimization (9.33).

min
U∈R

w̃∈R?
w̃⊥w★

1
?
k(Uw★ + w̃)

s.t.
1
?
(h) w̃)2 ≥ = · 2^

(
U,
‖w̃‖
√
?

)
.

(9.71)

We first show that, as ?, = → ∞, X > X∗ = X∗(^) is the necessary and sufficient condition for
the optimization program (9.71) to have a feasible solution. Define f := ‖w̃‖ √?, and write the
following:

sup
U∈R

w̃⊥w★

1
?
(h) w̃)2 − = · 2^

(
U,
‖w̃‖
√
?

)
= sup
f≥0,U

f2 ·
P⊥h

2 − = · 2^
(
U, f

)
. (9.72)

Note that we used the fact that the P⊥ is the projection onto the hyperplane orthogonal to w★. The
supremum is achieved iff w̃ chooses its direction to be the same as P⊥h. The optimization program
has a feasible point if and only if the optimal value in (9.72) is non-negative. In other words, the
necessary and sufficient condition on the separability of the data is:

∃ A ≥ 0, B , s.t. A2 ·
P⊥h

2 − = · 2^
(
B, A

)
≥ 0 ⇐⇒ 1

=

P⊥h
2 ≥ X∗ = inf

B,A≥0

2^ (B, A)
A2 . (9.73)

Next we note that h has i.i.d. N(0, 1) entries, therefore, SLLN asserts that,

1
=

P⊥h
 0.B.−→ ? − 1

=
. (9.74)

Therefore, as =, ? →∞with X := ?

=
, the optimization program (9.71) is feasible if and only if X > X∗.

As Lemma 23 states that the solution to the EMM optimization (9.33) converges in probability to
the solution of (9.71). Therefore, X > X∗ indicates the phase transition for the existence of the EMM
classifier.

We would also want to refer the interested reader to [38] for an astute geometric/combinatorial
perspective on the phase transition behavior in binary classification.
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9.9 EMM for Various Structures
In this section, we provide some technical details on how to characterize the performance of the
classifiers introduced in Section 9.4. For each of the three classifiers, depending on the distribution
of the underlying parameter (w★), we simplify the nonlinear system (9.8) by explicitly evaluating
the expected values.

Max-margin classifier (ℓ2-EMM)
As mentioned earlier, when k(·) = 1

2 ‖·‖
2
2, the EMM classifier will become the well-known

max-margin classifier. In this case, we can find the following closed-form for the proximal operator:

Prox C
2 ‖·‖

2 (v) = 1
1 + C v. (9.75)

Therefore, the expectations in the nonlinear system (9.8) can be computed explicitly as follows:
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1 + fg
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(9.76)

Replacing these evaluations into the first three equations in the nonlinear system (9.8) will explicitly
give two of the variables in terms of the other three variables. More specifically, we get W = −U
from the first equation and V = 1+fg

g
√
X
from the third equation in the nonlinear system (9.8). Hence,

the nonlinear system would reduce to solving the following system of 3 nonlinear equations with 3
unknowns:



√
2^ (U, f) = f

√
X,

m2^ (U, f)
mU

=
−2^2UgfX

1 + fg ,

m2^ (U, f)
mf

=
2fX

1 + fg .

(9.77)

Sparse classifier (ℓ1-EMM)
The second choice for the potential function is k(·) = ‖·‖1, which is used to promote sparsity in the
underlying parameter. Here, we assume that the entries of the underlying parameter are generated
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independently from the distribution ΠB introduced in (9.24), where B ∈ (0, 1) denotes the sparsity
factor which indicates the probability of an entry being nonzero. The nonzero entries have Gaussian
distribution with variance ^2/B. The proximal operator for ℓ1 norm can be computed explicitly as,

ProxC‖·‖1 (u) = [(u, C), (9.78)

where [(G, C) = G
|G |

(
|G | − C

)
+ is the soft thresholding function that has been applied entrywise. The

expectations that appear in the first three equations in the nonlinear system (9.8) can be presented as
follows:
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)
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(9.79)

where C1 and C2 are defined as,

C1 =
fg√

^2

B
(U − fgW)2 + V2f2g2X

, C2 =
1
V
√
X
, (9.80)

and the function j : R→ R+ is defined as:

j(C) = E[
(
/ − C

)2
+] = &(C)

(
1 + C2

)
− Cq(C) , (9.81)

where the random variable / in the above expectation have standard normal distribution, and
q(G) = 1√

2c
exp(−G2/2) denotes the density of the standard normal distribution. Replacing the

computed expectations in (9.79) in the nonlinear system (9.8) gives the sparse nonlinear system
presented in (9.27).

It is worth mentioning that the sparse nonlinear system (9.27) can be solved efficiently via iterative
numerical methods. A main advantage of the sparse nonlinear system is that it has been presented
in terms of the &(·) function which can be computed quickly in most numerical softwares (e.g.
MATLAB). For our numerical simulations in Section 9.5, we used an accelerated fixed-point
iterative method to find the solution of the nonlinear system.
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Binary classifier (ℓ∞-EMM)
The third and last choice of the potential function is the ℓ∞ norm. In this case, the potential function
is defined as k(·) = ? ‖·‖∞3. The following lemma determines how to compute the proximal
operator in this case.

Lemma 26. Let u ∈ R? have i.i.d. entries from a distribution Π. Then, for C > 0, we have:

ProxC ?‖·‖∞
(
u
)
= u − Prox_‖·‖1 (u), (9.82)

where _ is defined as,

1. for C ≤ E |, |, _ is the unique solution of E
[ (
|, | − _

)
+
]
= C.

2. for C ≥ E |, |, then _ = 0.

In the following subsections, we use the result of Lemma 26 to compute the proximal operator for
two different models (i.e., two different distributions on the entries of w★).

ℓ∞-EMM with sparse parameter

Here, we consider the case where the entries of w★ are drawn independently from the distribution ΠB
defined in (9.24). Note that when we set B to 1, this distribution will be the same as i.i.d. Gaussian
entries. Hence, the result in this section can be applied to the non-sparse setting (when the underlying
parameter has i.i.d. Gaussian entries.)

Using the result of Lemma 26, in this case the proximal operator can be computed as follows,

Proxfg?‖·‖∞
(
(U−fgW)w★+Vfg

√
Xh

)
= (U−fgW)w★+Vfg

√
Xh−Prox_fg‖·‖1
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√
Xh

)
,

(9.83)

where _ is defined in terms of the proxies C1 and C2 (defined in (9.80)):

1. If B
C1
+ 1−B

C2
>

√
c
2 , then _ is the unique solution of the following nonlinear equation:

2B ·
[ 1
C1
q(_C1) − _&(_C1)

]
+ 2(1 − B)

[ 1
C2
q(_C2) − _&(_C2)

]
= 1 . (9.84)

3The multiplication by the dimension, ?, is necessary to ensure that all the terms in the optimization have constant
(O(1)) order.
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2. If B
C1
+ 1−B

C2
≤

√
c
2 , then _ = 0.

Therefore, after finding the value of _ by solving equation (9.84), the proximal operator which
appears in the first three equations of the nonlinear system (9.8) can be written explicitly in terms of
the proximal operator of the ℓ1 norm which was illustrated in the previous part. Also, similarly to
the case of ℓ1-EMM, the expectations are written in terms of the functions &(·) and q(·). Therefore,
the solution to the nonlinear system can be found efficiently using numerical solvers.

ℓ∞-EMM with binary parameter

Here, we consider the case where w★ has i.i.d. entries with distribution Π = ^ ·Rad( 12 ). To simplify
our presentation, we define the following proxy:

C3 =
( U
fg
− W

)
· ^ .

Using the result of Lemma 26, in this case the proximal operator can be computed as follows,
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(9.85)

where _ is defined as:

1. When V
√
X · q(− C3

V
√
X
) + C3 ·&(− C3

V
√
X
) > 1

2 , _ is defined as the unique solution of the following
equations:

V
√
X · q(_ − C3

V
√
X
) + (C3 − _) · &(

_ − C3
V
√
X
) = 1

2
. (9.86)

2. Otherwise, _ = 0.

Hence, _ can be computed by solving the equation (9.86), and consequently the proximal operator
which appears in the first three equations of the nonlinear system (9.8) can be written explicitly in
terms of the proximal operator of the ℓ1 norm which was illustrated in the previous part.
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156C h a p t e r 10

ROBUSTIFYING BINARY CLASSIFICATION TO ADVERSARIAL
PERTURBATION

[1] F. Salehi and B. Hassibi. “Robustifying Binary Classification to Adversarial Perturbation”.
In: arXiv preprint arXiv:2010.15391 (2020).

Despite the enormous success of machine learning models in various applications, most of these
models lack resilience to (even small) perturbations in their input data. Hence, new methods to
robustify machine learning models seem very essential.

In this chapter, we consider the problem of binary classification with adversarial perturbations. By
investigating the solution to a min-max optimization (which considers the worst-case loss in the
presence of adversarial perturbations), we introduce a generalization to the max-margin classifier
which takes into account the power of the adversary in manipulating the data. We refer to this
classifier as the "Robust Max-margin" (RM) classifier. Under some mild assumptions on the loss
function, we theoretically show that the gradient descent iterates (with sufficiently small step size)
converge to the RM classifier in its direction. Therefore, the RM classifier can be studied to compute
various performance measures (e.g. generalization error) of binary classification with adversarial
perturbations.

10.1 Motivation and Background
Machine learning models have been very successful in many applications, ranging from spam
detection, speech and visual recognition, to the analysis of genome sequencing and financial
markets. Yet, despite this indisputable success, it has been observed that commonly used machine
learning models (such as deep neural networks) are very unstable in the presence of non-random
perturbations [125, 17, 32].

In this chapter, we study the simple (yet fundamental) problem of binary classification where the
goal is to find a classifier that has a high accuracy in predicting the binary labels when having feature
vectors as its input. When the clean data is available, max-margin classifier [140] is the model of
choice as maximizing the margin is interpreted as minimizing the risk of misclassification [37].
Recently, it was shown in [120] that for a broad class of loss functions, including the well-known
logistic loss, the gradient descent iterates converge to the max-margin classifier. More recently, the



asymptotic performance of this classifiers has been characterized in [95, 39, 114]. In Chapter 9, we
have provided a detailed discussion on the performance of the max-margin classifier (as a special
member of extended margin maximizers) under Gaussian data.

Here, we consider the case where the training data is perturbed by an adversary and introduce the
"Robust Max-margin" (RM) classifier as a generalization of max-margin to perturbed input data.
We then consider the adversarial training method, in which the optimal parameter is a solution to a
saddle-point optimization. We show that the gradient descent algorithm with properly-tuned step
sizes converges in its direction to the RM classifier. A significant consequence of this result is
that one can characterize various performance measures (e.g. generalization error) of adversarial
training in binary classification by analyzing the performance of the RM classifier.

To the extent of our knowledge, this is the first work that introduces the robust max-margin classifier
and proves the convergence of gradient descent iterates to this classifier. Very recently, the authors
of [72] have analyzed the performance of robust max-margin classifier (referred to as the "robust
separation") under i.i.d. Gaussian training data. Their analysis on the performance of the resulting
estimator is similar to what we showed in the previous chapter and is based on the Convex Gaussian
Min-max Theorem [121, 130]. Similar analyses have been recently provided for the performance of
max-margin classifiers as well as other generalized linear models [113, 95, 39, 49, 114, 55].

The organization of this chapter is as follows: inn Section 10.2, we provide some background
on the binary classification problem and how it connects with the max-margin classifier. The
mathematical setup for the problem of binary classification with perturbed training data is provided
in Section 10.3. The main result of this chapter is presented in Section 10.4, and the proofs are
provided in Sections 10.5 and 10.6.

10.2 Preliminaries
We start with some notations that are used throughout this chapter. For any vector w ∈ R?, the
binary classifier associated with w is defined as: �w : R? → {±1}, such that �w(x) = Sign(w)x).
N denotes the set of non-negative integers. fmax(M) denotes the maximum singular value of the
matrix M. 03 and 13 , respectively, represent the all-one and all-zero vectors in dimension 3. A
function 5 (·) is said to be !-smooth if its derivative, 5 ′(·), is !-Lipschitz.

Background: binary classification with unperturbed data
Here, we review some of the main ideas of binary classification when the adversary is not present.
Let D = {(x8, H8) : 1 ≤ 8 ≤ =} denote a set of data points, where for 8 = 1, . . . , =, x8 ∈ R? is the
feature vector, and H8 ∈ {±1} is the binary label. We assume that D is linearly separable, i.e., there
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exist w★ ∈ R? such that:
H8 = SIGN(x)8 w★) , for 8 = 1, 2, . . . , =. (10.1)

When the training data has no perturbation, one can attempt to find a classifier by minimizing the
empirical loss on data set D. In the setting of binary classification, the loss function is usually
formed as,

L(w) =
=∑
8=1

ℓ(H8x)8 w) (10.2)

where the function ℓ(·) : R→ R+ is a decreasing function that approaches 0 as its input approaches
infinity. A typical approach to find the minimizer of the loss function L(w) is through the iterative
algorithms, such as the gradient descent (GD) algorithm. The convergence of the GD iterates on
separable data sets has been studied in recent papers [73, 120], where it was shown, among others,
that while the norm of the iterates approaches infinity, their direction would approach to the direction
of the well-known !2 max-margin classifier defined as,

w" = arg min
w∈R?

‖w‖

s.t. H8x)8 w ≥ 1 , 1 ≤ 8 ≤ =.
(10.3)

In other words, their result states that for almost every x ∈ R?, �wC (x) → �w" (x) as C grows, where
wC denotes the result of GD after C steps. The max-margin classifier (10.3) (a.k.a. hard-margin
SVM [37]) has been extensively studied in the machine learning community (see Chapter 9 for a
more detailed discussion). This classifier simply maximizes the smallest distance of the data points
to the separating hyper-plane (referred to as the margin).

The above mentioned result, i.e., convergence of the GD iterates to the max-margin classifier,
has significant consequences as the max-margin classifier can then be studied to compute various
performance measures (such as the generalization error) of the resulting estimator. Very recently,
researchers have exploited this result to accurately compute the generalization error of GD over the
logistic loss [95, 114].

10.3 Binary Classification with Adversarial Perturbations
As explained earlier in Section 10.1, understanding the behavior of machine learning models under
perturbed input is very essential with the goal of improving the robustness of these models. Inspired
by recent advances in understanding the behavior of machine learning models under adversarial
perturbation, here we study the problem of binary classification with perturbed data.

We assume that the training data is a perturbed version of the underlying data set, D. Let
D′ = {(x8 + z8, H8) : 1 ≤ 8 ≤ =} denote the set of training data, where, for 8 = 1, 2, . . . , =, z8 ∈ S8
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is the unknown perturbation, and the set S8 consists of all the allowed perturbation vector. In the
adversarial setting, it is often assumed that the perturbation vectors, {z8}=8=1, are chosen in such a
way that the training algorithm is beguiled into generating a wrong solution.

Throughout this chapter, for our analysis purposes, we assume that the perturbation vectors have
bounded norms by defining S8 = n8B?, where B? denotes the unit ball in R?, and n8 ≥ 0, for
1 ≤ 8 ≤ =, indicates the maximum allowed norm for the 8th perturbation vector, z8. While the
perturbation vectors are hidden to us, we assume having knowledge of {n8}=8=1.

Note that the set of allowed perturbations can be different for different data points. This includes
certain special cases such as: (1) only a subset of the data is perturbed (n8 = 0 if the 8th data point is
not perturbed), and (2) all the data points have the same perturbation set, i.e., for some n ≥ 0, we
have n8 = n for 1 ≤ 8 ≤ =.

Saddle-point optimization
The parameters of the desired model are often derived by forming a loss function and solving
an optimization problem to find a minimizer of the loss. In adversarial training, one should also
consider the manipulative power of the adversary where the adversary attempts to misguide the
training algorithm. When the goal of a training algorithm is to minimize a loss function, one can
view the adversary as an entity which attempts to maximize the loss. The following min-max
optimization problem incorporates the contrary behaviors of the adversary and the training algorithm
with respect to the loss function.

min
w∈R?

max
z8∈S8 ,1≤8≤=

L(w) :=
=∑
8=1

ℓ
(
H8 (x8 + z8))w

)
. (10.4)

In order to find a robust model, we should solve this saddle-point optimization. Under our
assumptions on the perturbation sets, we can introduce the function L& (w) which is the result of the
inner maximization in (10.4), i.e.,

L& (w) =
=∑
8=1

max
‖z8 ‖≤n8

ℓ
(
H8 (x8 + z8))w

)
, (10.5)

where & =
[
n1, n2, . . . , n=

])
. Therefore, the robust classifier is defined as a minimizer of L& (w).

10.4 Main Results
In this section, we present the main results of this chapter, that is the convergence of the gradient
descent iterates to the robust max-margin classifier. We first introduce the Robust Max-margin
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(RM) classifier as an extension of the max-margin classifier when the training data is perturbed.
Consequently, in our main result we show that, under some conditions on the function ℓ(·), the
gradient descent algorithm (with sufficiently small step size) converges in its direction to the RM
classifier.

Robust Max-margin (RM) Classifier
The max-margin classifier is a classifier that maximizes the minimum distance of the data points
to the separating hyperplane (also known as the margin). In our setting where the training data is
perturbed, we should modify the notion of the margin to incorporate various perturbations across
data points. More specifically, in order to get a robust classifier, we would like the data points with
higher perturbations to be farther away from the resulting separating hyperplane.

The Robust Max-margin classifier is defined as,

w(&)
'"

:= arg min
w∈R?

‖w‖

s.t. H8x)8 w ≥ 1 + n8 ‖w‖ , 1 ≤ 8 ≤ =.
(10.6)

As observed in the constraints of this optimization, the RM classifier enforces data points with
higher perturbations to keep a larger distance from the separating hyperplane {x : w)

"
x = 0}.

When the data is perturbed, we expect the RM classifier to outperform the max-margin classifier.
Figure 10.1 depicts a comparison in generalization error between the max-margin and the RM
classifier. Although for small perturbations, the two models behave the same way, the RM classifier
has a better performance as we increase the norm of perturbations.

While the separability of the data is necessary for the existence of the RM classifier, it is not sufficient.
The following lemma provides a sufficient condition for its existence.

Lemma 27. The RM classifier exists when the data set D = {(x8, H8) : 1 ≤ 8 ≤ =} is separable and,

‖& ‖∞ <
1

‖w" ‖2
, (10.7)

where w" is the max-margin classifier.

Proof. Themax-margin classifier,w" , existswhenD is linearly separable. Also, w̄ = 1
1−‖& ‖∞‖w" ‖2 w"

is a feasible point of the optimization (10.6). Therefore, the RM classifier exists and,

‖w" ‖ ≤ ‖w'" ‖ ≤ ‖w̄‖ .

�
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Figure 10.1: A comparison in generalization error (GE) between the max-margin (10.3) and the
robust max-margin (10.6). The result is the average over 20 independent trials with = = 100 and
? = 40. The data is generated from a Gaussian distribution and 40% of data points are perturbed
with maximum norm of n . For large values of n , the RM classifier has a better generalization error
than the max-margin classifier.

When the perturbation sets are the same for different data points, one expects the RM classifier to be
the same as the max-margin classifier.

Lemma 28. If & = n × 1= for some n ≥ 0, the RM classifier exists if and only if n < 1
‖w" ‖ . In this

case,
w'" =

w"

1 − n ‖w" ‖
. (10.8)

Proof. Assume w'" exists, then we have w̄ =
w'"

1+n ‖w'" ‖ satisfy the constraints in the optimiza-
tion (10.3). Since w" is the solution to this optimization, we have ‖w" ‖ ≤ ‖w̄‖ which gives
n · ‖w" ‖ < 1. It is easy to check that w =

w"
1−n ‖w" ‖ is the solution to the optimization (10.6), as it

satisfies the constraints and w" is the optimal value of the optimization program (10.3). �

Convergence of GD Iterates
In this section, we present the main result of the chapter that is the convergence of the gradient
descent iterates to the RM classifier. As discussed earlier in Section 10.3, the goal is to solve the
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following optimization problem,
min
w∈R?

L& (w), (10.9)

where L& (·) is defined in (10.5). Gradient descent (GD) is the common method of choice to find
a minimizer of this optimization. Starting from an initialization, w0 ∈ R?, the GD iterates are
generated through the following update rule:

wC+1 = wC − [ · ∇L& (wC), for C ∈ N, (10.10)

where [ > 0 is the step size.

Our goal is to study the behavior of the GD iterates as C grows large. For our analysis, we need some
assumptions to hold for the loss function ℓ(·).

Assumption 5. The function ℓ : R → R+ is twice-differentiable, monotonically decreasing, and
V-smooth.

We note that the common choices of the loss function satisfy the conditions in Assumption 5. For
instance, the logistic loss defined as ℓ(D) = log

(
1+ exp(−D)

)
satisfies these conditions (with V = 1.)

We first state the following lemma which provides some insights on the behavior of GD iterates, wC ,
as C →∞.

Lemma 29. Consider the gradient descent iterates (10.10) with step size [ < 2 · V−1 · (fmax(X) +
‖& ‖)−2, where X = [x1, x2, . . . , x=]) ∈ R=×? is the data matrix, L& is defined in (10.5), and ℓ(·)
satisfies Assumption 5. If the RM classifier exists, then, as C → +∞, we have,

i. ‖wC ‖ → +∞,

ii. ∇L& (wC) → 0? , and,

iii. H8x)8 wC − n8 ‖wC ‖ → +∞, for 8 = 1, 2, . . . , =.

The proof of this lemma is provided in Section 10.5.

Lemma 29 provides useful insights on the behavior of the gradient descent iterates. With small
enough step size, as C grows, the norm of wC becomes unbounded while making L(wC) closer to
zero. Since wC diverges, we focus our attention on its direction, i.e., the normalized vector wC

‖wC ‖ . In
fact, the classifier defined by wC , �wC (·) only depends on its direction. Therefore, if wC

‖wC ‖ converges,
we can claim that the classifiers generated by GD iterates converge.
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Figure 10.2: Convergence of GD iterates to the RM classifier. For our experiment, we have = = 30,
? = 10, number of iterations is 1013, and n8 ∼ Unif(0, 1

‖w" ‖ ). The distance between the max-margin

and the RM classifier is
 w"
‖w" ‖ −

w'"
‖w'" ‖

 = 0.2192.

Our main result in Theorem 14 states that the classifiers generated from the GD iterates converges to
the RM classifier defined in 10.6. Before stating this result, we need the following definition which
is a modified version of an assumption in [120].

Definition 14. A function 5 (D) has a tight exponential tail if there exist positive constants 0, 2, g, `
such that for all D > g: 

5 (D) ≤ 2
(
1 + exp(−` · D)

)
exp(−0 · D), and,

5 (D) ≥ 2
(
1 − exp(−` · D)

)
exp(−0 · D).

(10.11)

Theorem 14. Let Assumption 5 hold and −ℓ′(·) have a exponential tail. Consider the gradient
descent iterates in (10.10) with [ < 2 · V−1 · (fmax(X) + ‖& ‖)−2. Then, for almost every data set, we
have,

lim
C→∞

 wC

‖wC ‖
− w'"

‖w'" ‖

 = 0. (10.12)

Therefore, the resulting classifier converges to the RM classifier.

163



Remark 17. The assumption on−ℓ′(·) having a tight exponential tail holds for common loss functions
in binary classification. As an example, the derivative of the logistic function satisfies (10.11) with
0 = 2 = ` = 1.

Remark 18. Theorem 14 states that while wC diverges as C grows, its direction converges to the
direction of the robust max-margin classifier. We should note that this convergence is quite slow.
Figure 10.2 depicts the convergence of the direction of GD iterates to the RM classifier as C →∞
where it can be observed that the convergence becomes slow as C grows (the horizontal axis has
a logarithmic scale). In our proof in Section 10.6, we theoretically establish that the rate of
convergence is logarithmic.

10.5 Proof of Lemma 29
In our proof, we use the following lemma which characterizes the behavior of gradient descent
iterates on smooth functions.

Lemma 30 (Lemma 10 in [120]). Let L(w) be a W-smooth non-negative objective. If [ < 2
W
, then,

for any starting point w(0), with the GD sequence

w(C + 1) = w(C) − [∇L(w(C)),

we have that:
∞∑
D=0
‖∇L(w(D))‖2 < +∞.

We also use the following corollary.

Corollary 8. For any positive constant � < V
(
f<0G (X) + ‖& ‖

)2, there exist ' > 0, such that∇2L& (w)
 < � when ‖w‖ > '.

The proof is straightforward, by computing the Hessian of L& (·) and using the fact that ℓ(·) is
twice-differentiable and V-smooth.

Since the function ℓ(·) is monotonically decreasing, we can write,

L& (w) =
=∑
8=1

ℓ(H8x)8 w − n8 ‖w‖) . (10.13)

The gradient of the loss function can be computed as,
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∇L& (w) =
=∑
8=1

ℓ′(H8x)8 w − n8 ‖w‖)(H8x8 − n8
w
‖w‖ ). (10.14)

Consider the sequence BC := 1
[
w)
'"

wC for C ∈ N. First, we show that this sequence is increasing.

BC − BC+1 = w)
'"∇L& (wC) (10.15)

=

=∑
8=1

ℓ′(H8x)8 wC − n8 ‖wC ‖)w)
'"

(
H8x8 − n8

wC

‖wC ‖
)

≤
=∑
8=1

ℓ′(H8x)8 wC − n8 ‖wC ‖)
(
H8x)8 w'" − n8 ‖w'" ‖

)
≤

=∑
8=1

ℓ′(H8x)8 wC − n8 ‖wC ‖) < 0 ,

where for the first inequality, we used the fact that ℓ′(D) < 0 and Cauchy-Schwartz, and for the
second inequality, we used the constraints of the optimization (10.6).

Since {BC}C≥0 is an increasing sequence in R, it either grows to +∞ or approaches a limit value. We
analyze each of these cases separately.

Case 1 : lim
C→∞

BC = ! < +∞

When the sequence has a limit, we have limC→∞ BC − BC+1 = 0. From the last inequality in (10.15),
this implies that as C →∞,

ℓ′(H8x)8 wC − n8 ‖wC ‖) → 0, for 1 ≤ 8 ≤ =. (10.16)

Since ℓ′(D) is negative for D ∈ R, we must have

H8x)8 wC − n8 ‖wC ‖ → +∞, for 1 ≤ 8 ≤ =, (10.17)

which is (iii). This also implies that ‖wC ‖ → ∞. Finally, from (10.14), we have that ∇L& (wC) → 0?.

Case 2 : lim
C→∞

BC = +∞

‖wC ‖ ≥ [BC
‖w'" ‖ implies that limC→∞ ‖wC ‖ = +∞. Using Corollary 8, for any constant � <

V
(
f<0G (X) + ‖& ‖

)2, there exists a non-negative integer C0 such that the second derivative is bounded
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by � for any C > C0. Hence, we can use the result of Lemma 30 with [ < 2 · V−1 · (fmax(X) + ‖& ‖)−2

which gives ‖∇L& (wC)‖ → 0 as C → +∞.

In order to show (iii), we use the last inequality in (10.15), as C →∞ since w)
'"
∇L& (wC) → 0, we

have:

ℓ′(H8x)8 wC − n8 ‖wC ‖) → 0, for 1 ≤ 8 ≤ =, (10.18)

which gives the desired result.

10.6 Proof of Theorem 14
For the RM classifier, we define the set of support vectors as:

S = S'" := {8 ∈ [=] : H8x)8 w'" = 1 + n8 ‖w'" ‖} . (10.19)

First, we consider the KKT conditions for the optimization (10.6) which gives:

w'" =
∑
8∈S

U8
(
H8x8 − n8ŵ

)
, (10.20)

where ŵ := w'"
‖w'" ‖ and U8 ≥ 0. It can be shown that when the data points are drawn from a

continuous distribution, for almost every data set, the support vectors are linearly independent and
U8’s are all positive (see also [73] and Appendix B in [120]). Given the fact that −ℓ′(D) has an
exponential tail, we assume that U, W, g, ` are positive constants such that:


−ℓ′(D) ≤ W

(
1 + exp(−` · D)

)
exp(−U · D), and,

−ℓ′(D) ≥ W
(
1 − exp(−` · D)

)
exp(−U · D),

(10.21)

for every D ≥ g.

We define a vector w̃ such that:

exp
(
w̃) (H8x8 − n8ŵ)

)
:=

U8

W · [ , for 8 = 1, 2, . . . , =. (10.22)

Recall that the gradient descent iterates are defined as,
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wC+1 − wC = −[∇L
(
wC

)
, C ∈ N. (10.23)

Next, for C ≥ 0, we define the residual vector rC ∈ R?.

rC := wC −
1
U

log(C)w'" − w̃. (10.24)

In our proof, we adopt a similar strategy as [120] and bound the norm of the residual vector ‖r(C)‖
by a constant � for every C ≥ 1. Consider the following equation,

‖rC+1‖2 − ‖rC ‖2 = ‖rC+1 − rC ‖2 + 2 r)C
(
rC+1 − rC

)
. (10.25)

We bound each of the two terms in the RHS of (10.25).

We start with bounding the first term in the (10.25). We have,

‖rC+1 − rC ‖2 =
wC+1 − wC − w'"

(
log( C + 1

C
)/U

)2

≤ [2 ‖∇L(wC)‖2 + (UC)−2 ‖w'" ‖2

+ 2([/U) log(1 + C−1)w'"
)∇L(wC)

≤ [2 ‖∇L(wC)‖2 + (UC)−2 ‖w'" ‖2 ,

(10.26)

where in the first inequality, we replaced wC+1 − wC using the gradient descent iterates (10.23) along
with log(1 + D) ≤ D, and in the second inequality, we exploit the inequality (10.15) that gives
ŵ)∇L(w(C)) < 0.

Since the norm of wC approaches infinity as C grows, when [ < 2 · V−1 · (fmax(X) + ‖& ‖)−2, we can
use the result of Corollary 8 and Lemma 30 to have:

∞∑
C=0
‖∇L(wC)‖ < �1, (10.27)

for some constant �1 > 0. Therefore, we can bound the sum over the first term in (10.25).

∑
C≥1
| |rC+1 − rC | |2 ≤ [2�1 + U−2 ‖w'" ‖2

∑
C≥1

C−2 < �2. (10.28)
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Next, we will bound the second term in (10.25), i.e., r)C
(
rC+1 − rC

)
. To do so, we first define the

constant \ as follows:

\ := min
8∈S2

H8x8w'" − n8 ‖w'" ‖ > 1, (10.29)

where S2 = [=] − S indicates the indices of non-support vectors. The following lemma provides an
upper bound on r)C

(
rC+1 − rC

)
for C ≥ 1.

Lemma 31. With the assumptions of Theorem 14, consider the gradient descent iterates (10.23),
{wC}C∈N, and the vector rC defined in (10.24). Then, for constants � ≥ 0 and C0 ∈ N, we have:

r)C
(
rC+1 − rC

)
≤ �C−min(\,1+ `

2U ) , ∀C ≥ C0. (10.30)

Using the result of Lemma 31, since \ > 1 and `/U > 0, we have:

∑
C≥0

r)C
(
rC+1 − rC

)
<

C0−1∑
C=1

r)C
(
rC+1 − rC

)
+ �

∑
C≥C0

C−min(\,1+ `

2U )

< �3.

(10.31)

Therefore, from (10.25), (10.28), and (10.31), we have,

‖r: ‖2 = ‖r1‖2 +
:−1∑
C=1
‖rC+1‖2 − ‖rC ‖2 < �4 , ∀: ≥ 1, (10.32)

for a positive constant �4. Consequently, from (10.24), we have,wC −
1
U

log(C)w'"

 ≤ �4 + ‖w̃‖ . (10.33)

By some straightforward calculations we can get,

 wC

‖wC ‖
− w'"

‖w'" ‖

2
≤ 2

[ U(�4 + ‖w̃‖)
log(C) ‖w'" ‖

]2
, (10.34)

which gives the desired result, i.e.,

lim
C→∞

 wC

‖wC ‖
− w'"

‖w'" ‖

 = 0. (10.35)
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180A p p e n d i x A

SOME TECHNICAL TOOLS

A.1 Convex Gaussian Min-max Theorem
Several times in this writing, we appeal to the recently developed Convex Gaussian Min-max
Theorem (CGMT) [130] for analysis of optimization programs. The CGMT associates with a
Primary Optimization (PO) problem an Auxiliary Optimization (AO) problem from which we can
investigate various properties of the primary optimization, such as phase transitions. In particular,
the (PO) and the (AO) problems are defined respectively as follows:

Φ(G) := min
w∈Sw

max
u∈Su

u)Gw + k(u,w), (PO)

q(g, h) := min
w∈Sw

max
u∈Su

‖w‖g)u − ‖u‖h)w + k(u,w), (AO)

whereG ∈ R<×=, g ∈ R<, h ∈ R=,Sw ⊂ R=,Su ⊂ R< and k : R=×R< → R. DenotewΦ := wΦ(G)
and wq := wq (g, h) for any optimal minimizers in (PO) and (AO), respectively. The following
Theorem establishes the connection between the two optimizations in the Gaussian setting.

Theorem 15 (CGMT). [128] In (A.1), let Sw, Su, be convex and compact sets, and assume that
k(·, ·) is convex-concave on Sw × Su. Also assume that G, g, and h all have entries i.i.d. standard
normal. The following statements are true:

1. For all ` ∈ R, and C > 0,

P( |Φ(G) − ` | > C) ≤ 2P( |q(g, h) − ` | ≥ C) . (A.2)

2. Let S be an arbitrary open subset of Sw and S2 := Sw/S. Denote ΦS2 (G) and qS2 (g, h) be
the optimal costs of the optimizations in (PO), and (AO), respectively, when the minimization
over w is now constrained over w ∈ S2. If there exists constants q̄, q̄S2 , and [ > 0 such that,

• q̄S2 ≥ q̄ + 3[ ,

• q(g, h) < q̄ + [, with probability at least 1 − ? ,

• qS2 (g, h) > q̄S2 − [, with probability at least 1 − ? ,



then, P(wΦ(G) ∈ S) ≥ 1 − 4? .

The probabilities are taken with respect to the randomness in G, g, and h.

We also state the following lemma which is a consequence of previous theorem in the asymptotic
regime,

Lemma 32 (Asymptotic CGMT). [128] using the same notations and assumptions as in Theorem 15,
suppose that there exist constants q̄ < q̄S2 such that q(g, h)

?
−→ q̄, and qS2 (g, h) −→ q̄S2 . Then,

lim
=→∞
P(wΦ(G) ∈ S) = 1 . (A.3)

We refer the interested reader to [128, 130, 129] for further reading on the subject, its premises, and
applications.

A.2 Useful Technical Lemmas
We gathered here some useful lemmas that are used in the proof of our main results.

In the analysis of the auxiliary optimization, we replace several functions with their limits in
probability. This can be done through the same tricks used in section A.4 of [129] and Lemma B.1
in the same paper. The following lemma is used in our analysis of (AO) optimization and allows us
(when the conditions are satisfied) to replace the objective with the function it converges to in the
asymptotic regime. Here, we state this lemma without proof.

Lemma 33 (Min-convergence – Open Sets). Consider a sequence of proper, convex stochastic
functions "= : (0,∞) → R, and a deterministic function " : (0,∞) → R, such that:

1. "= (G)
P−→ " (G), for all G > 0,

2. there exists I > 0 such that " (G) > infG>0 " (G) for all G ≥ I.

Then, infG>0 "= (G)
P−→ infG>0 " (G).

The next lemma provides the partial derivatives of the Moreau envelope function.
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Lemma 34. Let Φ : R3 → R be a convex function. For v ∈ R3 and C ∈ R+, theMoreau envelope
function is defined as,

"Φ(·) (v, C) = min
x∈R3

Φ(x) + 1
2C
| |x − v| |2 , (A.4)

and the proximal operator is the solution to this optimization, i.e.,

ProxCΦ(·) (v) = arg min
x∈R3

Φ(x) + 1
2C
| |x − v| |2 . (A.5)

The derivative of the Moreau envelope function can be computed as follows,

m"Φ(·)
mv =

1
C
(v − ProxCΦ(·) (v)) ,

m"Φ(·)
mC

= − 1
2C2
(v − ProxCΦ(·) (v))2 . (A.6)

We refer the interested reader to [75] for the proof as well as a detailed study of the properties of the
Moreau envelope.

Lemma 35 (Stein’s lemma). [141] For a function 5 : R→ R, we have E/ [/ 5 (/)] = E/ [ 5 ′(/)] .

Lemma 36. Let 5 : R3 → R be an invariantly separable function such that 5 (x) = ∑3
8=1 5̃ (G8) for

all x ∈ R3 , where 5̃ is a real-valued function. Then, we have:

" 5 (·) (v, C) =
3∑
8=1

" 5̃ (·) (E8, C) , and ProxC 5 (·) (v) =


ProxC 5̃ (·) (E1)
ProxC 5̃ (·) (E2)

...

ProxC 5̃ (·) (E3)


. (A.7)

Proof. We can write,

" 5 (·) (v, C) = min
x∈R3

5 (x) + 1
2C
| |x − v| |2 = min

x∈R3

3∑
8=1

5̃ (G8) +
(G8 − E8)2

2C
,

=

3∑
8=1

min
G8

5̃ (G8) +
(G8 − E8)2

2C
,

=

3∑
8=1

" 5̃ (·) (E8, C) .

(A.8)

�

In the next lemma, we show that the Moreau envelope of a Lipschitz function is itself a Lipschitz
function.
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Lemma 37. Let Φ : R3 → R be an !-Lipschitz function. Then, "Φ(·) (·, C) is a 2!-Lipschitz
function, i.e., for all u, v ∈ R3 ,

|"Φ(·) (u, C) − "Φ(·) (v, C) | ≤ 2! ‖u − v‖ . (A.9)

Proof. In order to show this result, we need to find an upper bound on the derivative of the Moreau
envelope. For all v ∈ R3 , we have,

!
v − ProxCΦ(·) (v) ≥ Φ(

v
)
−Φ

(
ProxCΦ(·) (v)

)
≥ 1

2C
v − ProxCΦ(·) (v)2

,
(A.10)

where the first inequality is due to the !-Lipschitzness of the functionΦ(·), and the second inequality
is derived from the fact that ProxCΦ(·) (v) is the solution to the optimization (A.4). This gives the
following bound on the distance of the proximal operator to the underlying vector.

v − ProxCΦ(·) (v) ≤ 2C!. (A.11)

We can now bound the derivative m"Φ( ·)
v as follows,m"Φ(·)

mv

 = 1
C

(v − ProxCΦ(·) (v)) ≤ 2! , ∀v ∈ R3 . (A.12)

This concludes the proof. �
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