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ABSTRACT

First introduced in [APS04] as a categorification of Kauffman bracket skein modules
and recapitulated in [Rob13,GW10], the (sutured) annularKhovanov homology[GN14,
GLW18] is a natural generalization of Khovanov homology[Kho00, Kho02, Kho05]
to links in the thickened annulus. As in Khovanov homology, annular Khovanov
homology is defined in combinatoric manner but is of geometric and representation-
theoretic interest and plays a role of powerful link invariant. In this thesis, we explore
further on the power of annular Khovanov homology in distinguishing links in the
thickened annulus.

Grigsby, Licata, and Wehrli[GLW18] defined an action of the Lie algebra sl2 =
sl2(C) over the annular Khovanov homology from the observation that the vector
space associated to an annular circle by the Khovanov TQFT can be regarded as
a vector representation or (a tensor product of) trivial representations, and the
annular Khovanov differential is an intertwiner between such representations. It is
a direct consequence of the existence of sl2-action that the dimension of the annular
Khovanov homology is unimodal with respect to the annular gradings.

We investigate further on the consequences of the sl2-action. One of the basic
questions regarding a representation of sl2 is the irreducibility of the representation.
Our main result classifies the annular links whose annular Khovanov homology is
irreducible as an sl2-representation. This is based on the spectral sequence from the
annular Khovanov homology to the annular instanton homology given in [XZ19].
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C h a p t e r 1

INTRODUCTION

Themain objects of study in this thesis are annular links, links in a thickened annulus
up to ambient isotopies. The study of annular links is often a nice intersection of
knot theory and braid theory, as a braid uniquely determines and is determined by
its annular closure. In this sense, the study of annular links is more closely related to
braid theory than the theory of ordinary knots and links in (3, which only determines
a braid up to Markov equivalences. As in the knot theory in (3, invariants coming
from various other fields of mathematics including algebraic topology, quantum
topology, and Floer theory play an important role in the study of annular links. In
fact, any invariants of ordinary knots and links can be regarded as an invariant of
annular links by embedding the thickened annulus into (3 in standard, unknotted
manner, hence the distinction between ordinary and annular knot invariants comes
from the detection of the ambient thickened annulus, or equivalently the axis of the
annulus.

First introduced in [APS04] as a categorification of Kauffman bracket skein modules
and recapitulated in [Rob13, GW10], there is a natural generalization of Khovanov
homology[Kho00, Kho02, Kho05] to a link L in the thickened annulus. By mea-
suring the winding number with respect to the center of the thickened annulus,
Khovanov’s chain complex can be endowed with an additional filtration called an-
nular filtration, and the homology SKh(L) of the associated graded module with
respect to this annular filtration turns out to be an invariant of links in the thick-
ened annulus, often called annular Khovanov homology[GLW18, XZ19] or sutured
annular Khovanov homology[GN14, BG15] in literature. Just like the Khovanov
homology, annular Khovanov homology has proven itself to be a powerful link
invariant, e.g. it detects the closed braids[GN14], the closure of trivial braids
among closed braids[BG15], and annular links which are contained in a 3-ball in
the thickened annulus[XZ19].

Since the earliest stage of the subject, Khovanov homology have drawn much atten-
tion not only from topologists but also from algebraists due to its representation the-
oretic interpretation, and the annular Khovanov homology is no exception. Grigsby,
Licaca, and Wehrli[GLW18] defined an action of the Lie algebra sl2 = sl2(C) over
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SKh(L) from the observation that the vector space associated to an annular circle
by the Khovanov TQFT can be regarded as a vector representation or (a tensor
product of) trivial representations, and the annular Khovanov differential is an in-
tertwiner between such representations. This action of sl2 can also be seen from
higher category theoretical point of view via trace decategorification of sl2 foams,
cf. [QR17]. With the action of sl2, the annular grading has a clear representation
theoretic interpretation as the weight of the sl2-representation.

It is a direct consequence of the sl2-action on SKh(L) that the dimension of the
annular Khovanov homology is unimodal with respect to the annular gradings.

In this thesis, we investigate further on the consequences of the sl2-action on SKh(L).
One of the basic questions regarding a representation of sl2 is the irreducibility of the
representation. Our main result classifies the annular links whose annular Khovanov
homology is irreducible as an sl2-representation.

Theorem 1. The annular Khovanov homology of an annular link is irreducible (as
an sl2-representation) if and only if it is isotopic to the core of the annulus.

In a sense, Theorem 1 is comparable to the unknot detection theorem[KM11] of
ordinary Khovanov homology if we view the core of the thickened annulus as the
simplest annular link. We also note that Xie and Zhang[XZ19, Corollary 1.4] gives
another detection theorem of the core of the thickened annulus in terms of the annular
Khovanov homology: their result is in terms of the triply graded vector space while
Theorem 1 is in terms of the sl2-irreducibility, or equivalently annular-graded vector
space.

Our proof ofTheorem1 is largely a consequence of the tangle detection theorem[XZ19]
and the following theorem, which states that the next-to-top annular grading term of
the annular Khovanov homology of a closed braid is strictly larger than the topmost
annular grading term.

Theorem 2. Let f be a braid of = ≥ 2 strands and f̂ its closure. Then,

dim SKh(f̂; = − 2) > 1 = dim SKh(f̂; =).

Theorem 2 is a slight improvement of the unimodality of annular Khovanov homol-
ogy with respect to the annular grading, cf. [GLW18, Corollary 1]. It is natural
to ask whether this strict inequality between the dimensions in consecutive annular
gradings continues to hold for smaller annular gradings. While this question turns
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out to be negative, we observed an interesting patterns in the distribution of the
dimension of annular Khovanov homology with respect to the annular gradings
experimentally:

Conjecture 3. For a closed braid L of = strands, then there is a positive integer <
such that the followings hold for every : ≡ = mod 2:

dim SKh(L; :) < dim SKh(L; : − 2) if < < : ≤ =,
dim SKh(L; :) = dim SKh(L; : − 2) if 0 < : ≤ <.

The formofConjecture 3 resembles the famousFox’s trapezoidal conjecture[Fox62](cf.
[Sto14]) stating that a similar family of equalities and inequalities holds for the co-
efficients of the Alexander polynomial of alternating knots. We have checked
Conjecture 3 and a related conjecture affirmatively on more than ∼ 1000 random
closed braids from 6 to 9 strands.

This thesis is organized as follows. In Chapter 2, we provide the necessary back-
grounds on annular links and annular Khovanov homology. In Chapter 3, we prove
our main results, Theorem 1 and 2. In Chapter 4, we discuss Conjecture 3 and a
related conjecture with the experimental results as a supporting evidence.
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C h a p t e r 2

PRELIMINARIES

This chapter is devoted to provide the necessary backgrounds on annular links and
annular Khovanov homology. Mainly due to the usage of representation theory over
sl2, every homology groups considered in this paper is over the complex field C
unless otherwise stated explicitly, though many of the contents in this section allow
a straightforward extension to arbitrary coefficient ring.

2.1 Annular links
Let � = {I ∈ C | 1 ≤ |I | ≤ 2} be a (closed) annulus and � = [0, 1]. An annular link
is a (smooth) closed 1-submanifold of � × �, considered up to ambient isotopies of
� × �. An annular knot is a 1-component annular link. Every annular links in this
paper is oriented, though the precise orientation matters little.

Just as in the case of ordinary links in (3, an annular linkL ⊆ �×� can be represented
as a link diagram on �, obtained by a vertical projection � × � → � of a generic
representative in the isotopy class of L ⊆ � × �.

One of the most elementary new feature of annular links compared to ordinary links
(in (3) is the notion of wrapping and winding number.

Definition 2.1.1. The wrapping number of an annular link L is the minimal (un-
signed) intersection number of L with a meridional disk of � × �. The winding
number of L is the signed intersection number of L with any meridional disk of
� × �.

Both the wrapping and winding number are invariants of annular links, and it is
clear by definition that the wrapping number of an annular link is always greater
than or equal to the winding number.

Remark 2.1.2. Whenever convenient, we choose an orientation for an annular link
that maximizes the winding number. In case of braid closures, this coincides with
the braid-like orientation, all of whose strands wind positively around the braid axis.

The notion of annular links is particularly well-suited to the study of braids as a
closed braid is naturally an annular link and two braids in the same conjugacy class
define and are defined by identical annular links.
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Definition 2.1.3. Let

�= =

〈
f1, · · · , f=−1

�����f8f8+1f8 = f8+1f8f8+1, 1 ≤ 8 ≤ = − 2
f8f9 = f9f8, |8 − 9 | ≥ 2

〉
be the braid group on = strands. For a braid f ∈ �=, there is an associated (=, =)-
tangle V in �2 × �, see Figure 2.1 for a concrete example. The closure of f, denote
as f̂, is the annular link obtained by closing up V vertically and embedding it into
the thickened annulus �× � in the way that the braid axis coincides with the center of
� × � and the first strand is placed innermost (equivalently, the last strand is placed
outermost) in � × �.

V

f1

f−1
2
f1

f−1
2

Figure 2.1: Braid closure of V = f1f
−1
2 f1f

−1
2 in the annulus �, presented by an

annular diagram.

From the construction, it is clear that both the wrapping number and the winding
number of a closed braid of = strands is equal to =.

Definition 2.1.4. LetL1,L2 be annular links. The annular unionL1tL2 ofL1 andL2

is defined as the annular link embeddingL1 (resp. L2) into {I ∈ � | 1 ≤ |I | ≤ 3/2}×
�(resp. {I ∈ � | 3/2 ≤ |I | ≤ 2} × �) by radial rescaling.

2.2 Annular Khovanov homology
Annular Khovanov homology[APS04, Rob13, GW10] is a natural extension of the
Khovanov homology to annular links. Its definition can be best understood in
comparison with the construction of ordinary Khovanov homology[Kho00, Kho02,
Kho05], which we briefly review below.
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At each crossings of a link diagram D(!) of a link ! in R3, there are two ways to
resolve the crossing, depicted as in Figure 2.2.

Figure 2.2: Two ways to resolve a crossing.

Applying one of the two resolutions at each crossing, we have a collection of non-
intersecting circles on R2 which is often called a complete resolution ofD(!). This
process assigns to a tuple in {0, 1}2 a complete resolution of D(!) (where 2 is the
number of crossings inD(!)), hencewe think of the complete resolutions as vertices
in a hypercube, the cube of resolution ofD(!). Then the underlying vector space of
the Khovanov chain complex CKh(D(!)) is obtained by applyingKhovanov (1+1)-
dimensional TQFT to the cube of resolution ofD(!), and the differential is defined
using the saddle cobordisms associated to the change of resolution at a crossing. The
Khovanov homology Kh(!) is the homology of the chain complex CKh(D(!)),
which can be shown to be invariant under planar isotopies and Reidemeister moves
and thus defines an invariant of a link.

Annular Khovanov homology can be constructed in a similar manner by keeping
track of the winding number of the complete resolutions. That is, a link diagram
D(L) of an annular linkL can be resolved into a collection of non-intersecting circles
in �, but contrary to the planar circles which are all isotopic, a circle in � may be
essential (isotopic to the core of the annulus) or inessential (homotopic to a point).
We then assign a grading, often referred as annular or :-grading, to the Khovanov
TQFT of the annular circles: C {1} ⊕ C {−1} if essential, C2 {0} otherwise, where
{:} denotes the grading shift by : . This additional grading extends linearly with
respect to tensor products, thus defines a grading on the Khovanov chain complex
CKh(D(L)). One can check that the differential on CKh(D(L)) is nonincreasing in
:-grading, hence CKh(D(L)) is filtered with respect to the :-grading. The annular
Khovanov homology SKh(L) is then defined as the homology of the associated
graded complex of the :-filtered chain complex CKh(D(L)).
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Remark 2.2.1. [Rob13] showed that the annular Khovanov homology decategorifies
to the Kauffman bracket skein module[HP89].

By definition, annular Khovanov homology admits a decomposition by :-grading:

SKh(L) =
⊕
:

SKh(L; :).

Remark 2.2.2. There is no consensus on which smoothing should be 0- or 1-
resolution in literature, thus one can find two different definitions of (annular)
Khovanov homology, which compute the mirror of one another. We follow the
convention of [GN14], opposed to [Rob13].

Remark 2.2.3. Note that Khovanov homology is bigraded and thus there are two
gradings other than the annular grading on annular Khovanov homology. As these
two graddings have insignificant roles in this paper, they are omitted in the notation
and largely ignored in the followings.

It is clear from definition that for an annular link L of wrapping number l, the
annular grading of SKh(L) is supported in {−l,−l + 2, · · · , l − 2, l}.

Similar to Khovanov homology, the annular Khovanov homology of the annular
union is readily computable from the annular Khovanov homology of factor links:

Proposition 2.2.4. For annular links L8, 8 = 1, 2,

SKh(L1 t L2) = SKh(L1) ⊗ SKh(L2)

as a :-graded vector space. In particular,

SKh(L1 t L2; :) =
⊕
:1+:2=:

SKh(L1; :1) ⊗ SKh(L2; :2).

Proof. Given a link diagramD(L1)(resp. D(L2) for L1(resp. L2),D(L1) tD(L2)
is a link diagram for L1 t L2. As there is no crossings between D(L1) and D(L2),
the annular Khovanov chain complex CKh(D(L1) t D(L2)) is the tensor product
of the chain complexes CKh(D(L1)) and CKh(D(L2)), hence the identity follows
from the Künneth formula. �

In [BS15], Batson and Seed constructed the link splitting spectral sequence for
Khovanov homology, a spectral sequence from the Khovanov homology of a link
to the Khovanov homology of the disjoint union of the link components. We also
have an annular analogue:
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Theorem 2.2.5. [Mar21, Theorem 3.1] Let L = L1 ∪ L2 be a union of sublinks L1

and L2. There exists a spectral sequence whose �1 page is isomorphic to SKh(L)
and which converges to SKh(L1 t L2). This spectral sequence can be decomposed
by :-grading: for each : ,

SKh(L; :) ⇒ SKh(L1 t L2; :)

Roughly speaking, Batson-Seed’s proof for ordinary Khovanov homology applies
equally well to the annular Khovanov case after one realizes that the additional
differential 31 in Batson-Seed’s proof consists of saddle cobordisms as in the Kho-
vanov differential, thus is filtered by :-grading and induces the spectral sequence
on the associated graded complex.

Closed braids are a particularly nice class of annular links, and annular Khovanov
homology can be used to detect them.

Theorem 2.2.6. [GN14, Corollary 1.2], [XZ19, Theorem 1.3] Let L be an annular
link. Then L is isotopic to a closed braid if and only if the top :-grading term of
SKh(L;C) is isomorphic to C.

Remark 2.2.7. The tangle detection theorem, Theorem 2.2.6, is one notable instance
where the choice of coefficient ring matters. The proof in [XZ19] relies on the
existence of a spectral sequence

SKh(L) ⇒ AKI(L)

to the annular instanton Floer homology AKI(L). To the best of author’s knowledge,
extending annular instanton Floer homology over other coefficient rings is a nontriv-
ial task, especially when the coefficient ring is of characteristic two. Nevertheless,
Theorem 2.2.6 still holds over fields of characteristic two:

Proposition 2.2.8. Let L be an annular link. Then L is isotopic to a closed braid if
and only if the top :-grading term of SKh(L;Z/2Z) is isomorphic to Z/2Z.

Proof. Let F = Z/2Z be the prime field of characteristic 2. The computation of
top :-grading term of the annular Khovanov homology of a closed braid is done
in [GN14, Corollary 1.2], hence we only prove that the top :-grading term of
SKh(L;F) is F only if L is a closed braid.

By [GW10, Theorem 2.1], there exists a spectral sequence from SKh(L;F) to
SFH(Σ(�× �,L);F), where Σ(�× �,L) is the branched double cover of the product
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sutured manifold � × � branched over L ⊆ � × �. We may view the product sutured
manifold �× � as the knot exterior of I-axis / ⊆ (3, then the branched double cover
Σ(� × �,L) is isomorphic to the link exterior of the preimage ?−1(/) ⊆ Σ((3,L)
with 4 meridional sutures. In particular, the limit page SFH(Σ(� × �,L);F) is
isomorphic to HFK(Σ(� × �,L), ?−1(/);F) or HFK(Σ(� × �,L), ?−1(/);F) ⊗ +
depending on the parity of the wrapping number l of L, where the knot Floer
homology HFK(Σ(� × �,L), ?−1(/);F) is 1

2 Z-graded by the Alexander grading
and + = F

{ 1
2
}
⊕ F

{
−1

2
}
is a 2-dimensional vector space with Alexander grading

±1
2 . Here we are using symmetrized Alexander grading at the cost of the grading

being half-integral.

It is implicit in the proof of [GW10, Theorem 2.1] that this Ozsváth-Szabó spectral
sequence above respects the annular and Alexander grading, in the sense that it is
decomposed into

SKh(L; :;F) ⇒


HFK(Σ(� × �,L), ?−1(/); :2 ;F) l is even⊕
8=±1 HFK(Σ(� × �,L), ?−1(/); :+82 ;F) l is odd

Especially, the assumption that the top :-grading term of SKh(L;F) is F implies that
the topAlexander grading term ofHFK(Σ(�×�,L), ?−1(/);F) is also isomorphic to
F. The fiberedness detection theorem[Ni07] then implies that the preimage ?−1(/)
of I-axis is fibered in Σ((3,L).

When L is an annular knot, a special case of Goldsmith conjecture[Kir97, Problem
1.28] for branched double cover over a knot, answered affirmatively by [EL83],
guarantees that L must be a closed braid.

WhenL hasmultiple connected components, wemay apply the link splitting spectral
sequence, Theorem 2.2.5, multiple times to observe that each component of L is
an annular knot of which the top :-grading of the annular Khovanov homology
is isomorphic to F, hence a closed braid. This argument also shows that the top
:-grading of SKh(L;F) is the sum of number of strands of the component braids.
We then apply the link splitting spectral sequence again, but now over C. Each
component of L is a braid, hence the top :-grading of their annular Khovanov
homology is the number of strands and the top :-grading term isomorphic to C.
Hence the top :-grading of SKh(L;C) is at least the top :-grading of SKh(L;F).
(We do not know at this point that there exist no higher :-grading terms of SKh(L;C)
which degenerate to 0). On the other hand, as the annular Khovanov chain complex
can be defined over Z, the universal coefficient theorem for homology, over the
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principal ideal domain C and F respectively, implies that

dimC SKh(L; :;C) ≤ dimF SKh(L; :;F),

for each : . Hence the top :-grading of SKh(L;C) and SKh(L;F) coincide and the
top :-grading term of SKh(L;C) is isomorphic to C, which implies by the tangle
detection theorem over C that L itself is a closed braid. �

2.3 Wrapping number conjecture
As observed above, annular Khovanov homology gives an immediate lower bound
for the wrapping number of the annular link. As the annular Khovanov homology
is a categorification of the Kauffman bracket skein module, it is natural to ask if
the Kauffman bracket skein module gives a similar lower bound for the wrapping
number of the annular link. This is observed in the very beginning of the study of
Kauffman bracket skein modules:

Proposition 2.3.1. [HP11, Lemma 3]For an annular link L of wrapping number l
and winding number F, let deg(L) be the largest degree appearing in the Kauffman
bracket skein module 〈L〉 of L. Then,

F ≤ deg(L) ≤ l.

In the same paper, Hoste and Przytycki conjectured that deg(L) is exactly the
wrapping number l.

Conjecture 4. (Wrapping number conjecture[HP11]) For an annular link L, let
deg(L) be the largest degree appearing in the Kauffman bracket skein module 〈L〉
of L. Then deg(L) is the wrapping number of L.

An immediate consequence of the wrapping number conjecture is the categorified
version of the wrapping number conjecture:

Conjecture 5. (Categorified wrapping number conjecture[Mar21, Conjecture 1.2])
For an annular link L, the maximal non-zero annular grading of SKh(L) is the
wrapping number of L.

Both of the conjectures above remains unsolved in full generality, but the above
spectral sequences give a good lower bound for the maximal non-zero annular
grading of SKh(L) in terms of a variant of Thurston norms of L. This section is
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devoted to present and compare such arguments, which first was proposed by Eli
Grigsby. For the detailed history of the wrapping conjecture, see [Mar21].

The first bound for the maximal non-zero annular grading of SKh(L) was the
winding number, as observed in Proposition 2.3.1. The argument goes as follows:

Both the maximal non-zero annular grading and the winding number are additive
under annular unions, hence we may assume without loss of generality that L is a
connected annular link. Up to crossing changes, an annular knot is isotopic to the
closure of a twist f1f2 · · ·f=−1, and it is easy to check that the winding number and
wrapping number coincides for such annular knots.

A stronger bound can be found using the Ozsváth-Szabó spectral sequence. As
before, let L be an annular knot and l be the wrapping number of L. Note that
the Thurston norm detection property of the knot Floer homology (cf. [OS08,
Theorem 1.1], [Ni09, Theorem 1.1]) guarantees the nontriviality of HFK(Σ(� ×
�,L), ?−1(/); :) for : being the Seifert genus 6(?−1(/)) of ?−1(/). But the
preimage of any Seifert surface of the axis / ⊆ (3 is a Seifert surface of ?−1(/),
thus we have a bound

6(?−1(/)) ≤


26 + =−2
2 l:even,

26 + =−1
2 l:odd,

where = is the geometric intersection number of L and a Seifert surface of the axis
/ , or equivalently a meridional surface in �× �, and 6 is the genus of the meridional
surface. Note that = ≡ l mod 2, thus the fraction term on the right hand side of the
inequality above is always an integer. Hence, assuming the best scenario that the
equality holds in the inequality above, we have a bound on the maximal non-zero
annular grading of SKh(L) of the form 46 + = or 46 + =− 2, depending on the parity
of l.

A similar bound can be obtained using the annular instanton homology of L. Using
the same notation as above for 6 and =, the adjunction inequality [XZ19, Theorem
8.2] and the spectral sequence SKh(L) ⇒ AKI(L) gives a bound 26 + =. If we can
check the equality for 6(?−1(/)), the Ozsváth-Szabó spectral sequence will give a
better bound. If there is a huge gap between 6(?−1(/)) and a generalized Thurston
norm of the form 26 + =−1

2 or 26 + =−2
2 , the annular instanton homology will give

a better bound. While such a generalized Thurston norm approach is known not to
give a proof of Conjecture 5 by itself, it may be used to check Conjecture 5 for some
nice annular links.
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2.4 sl2-action on Annular Khovanov homology
In [GLW18], Grigsby, Licata, and Wehrli defined an an action of the Lie algebra
sl2 = sl2(C) on the annular Khovanov homology. Here we review the basics of
the representation theory of sl2 and the construction in [GLW18]. Throughout this
section, we are working over the complex field C.

The Lie algebra sl2 is a 3-dimensional Lie algebra with a standard basis {4, 5 , ℎ},
where

4 =

(
0 1
0 0

)
, 5 =

(
0 0
1 0

)
, ℎ =

(
1 0
0 −1

)
,

with Lie brackets

[4, 5 ] = ℎ, [ℎ, 4] = 24, [ℎ, 5 ] = −2 5 .

A representation of the Lie algebra sl2, or an sl2-representation, is a vector space
* together with an action d : sl2 → End(*) such that d( [G, H]) = [d(G), d(H)]
holds for each G, H ∈ sl2. An sl2-representation is irreducible if there are no proper
subspaces, 6 * such that d(G) ·, 6 , for all G ∈ sl2.

Any finite dimensional representations over sl2 can be decomposed into weight
spaces:

* =
⊕
_∈Z

*_,

where *_ = {G ∈ * | ℎ · G = _G} is the weight space of * with weight _. The
theoremof highestweight implies that irreducible representations of sl2 are classified
by its highest weight, hence for each integer = ≥ 0, there exists a unique irreducible
representation+(=) with highest weight =. Using the Lie bracket relations, the action
of 4(resp. 5 ) increases the weight by 2(resp. decreases the weight by 2). Hence the
irreducible representation +(=) is spanned by

{E, 5 · E, · · · , 5 = · E}

for a highest weight vector E ∈ +(=) . In particular, the dimension of each weight
space of an irreducible representation is 1.

As sl2 is (semi)simple, any finite dimensional representation is isomorphic to a
direct sum of irreducible representations.

Recall that each circles in a complete resolution of a link diagram is associated to
a 2-dimensional vector space, C {1} ⊕ C {−1} or C2 {0} depending on its winding
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number. Grigsby, Licata, andWehrli observed in [GLW18] that the two vector spaces
are isomorphic to the (underlying vector space of) sl2-representations +(1) and +2

(0) ,
respectively, and the annular Khovanov differential is an intertwiner between (the
tensor products of) such representations. As a result, the action of sl2 on the annular
Khovanov chain complex, defined by extending the above action on annular circles
via tensor products, induces an sl2-action on its homology.

A direct consequence of the sl2-action on the annular Khovanov homology is the
following:

Theorem 2.4.1. [GLW18, Corollary 1] For :1, :2 ∈ Z such that :1 ≡ :2 mod 2
and |:1 | ≥ |:2 |,

dimC SKh(L; :1) ≤ dimC SKh(L; :2).

In other words, the sequence {dimC SKh(L; :)}: is unimodal.

Remark 2.4.2. We use the terminology unimodal instead of trapezoidal chosen by
[GLW18], whichmay cause a confusionwith the Fox trapezoidal conjecture[Fox62].
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C h a p t e r 3

PROOF OF THE MAIN RESULT

In this chapter, we prove the main results of this thesis, Theorem 1 and Theorem 2.

Proof of Theorem 2. Wefirst show that it suffices to prove the theorem for connected
braid closures. Suppose that f̂ is a union of two closed braids f̂1 ∪ f̂2. Then the
splitting spectral sequence applied on f̂ = f̂1 ∪ f̂2 implies that

dim SKh(f̂; = − 2) ≥ dim SKh(f̂1 t f̂2; = − 2)
= dim SKh(f̂1; =1 − 2) + dim SKh(f̂2; =2 − 2)

when =8 is the number of strands of f8, 8 = 1, 2. Note that the equality above comes
from Proposition 2.2.4. Assuming Theorem 2 for connected braid closures, the
right-hand side of the above inequality is greater than 2, hence the proof follows
from the induction on the number of connected components of f̂.

Now assume that f̂ is connected (i.e. when it is an annular knot).

Note that the closed braid f̂ is connected if and only if the permutation determined
as the image of the braid word representing f under the natural projection �= →
(= is an =-cycle, where (= is the permutation group of = elements. In fact the
number of connected components of the closure is the number of orbits of the
permutation. Thus we may conjugate f so that the resulting permutation is the
=-cycle (1, 2, ..., = − 1, =). Then the fact that the projection �= → (= is given
by imposing the relations f2

8
= 83 implies that f̂ transforms to the closure of the

positive 1
=
-twist V= := f1f2 · · ·f=−1 after a sequence of crossing changes.

But two annular links related by a crossing change share the same set of generators of
the Khovanov chain complex; only the differential maps differ. Hence the parity of
the annular Khovanov homology at the next-to-top annular grading does not change
under a crossing change.

And it is easy to show by a direct computation that SKh( V̂=; = − 2) is even. For
example, taking the 0-(resp. 1-)resolution at the innermost crossing of V̂= results in
the annular link �V=−1 × 1(resp. V̂=−2), hence as a :-graded vector space we have an
isomorphism

CKh( V̂=) � CKh(�V=−1 × 1) ⊕ CKh( V̂=−2).
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Then we measure the contribution of each summand to CKh( V̂=; = − 2).�V=−1 × 1 is the annular union of V̂=−1 and the nontrivial annular unknot, hence
CKh(�V=−1 × 1) is isomorphic to two copies of CKh( V̂=−1) with :-gradings shifted
by ±1. Hence the only contribution of this summand to :-grading = − 2 component
is from the topmost component of CKh( V̂=−1) with :-grading shift −1 and the
next-to-top component of CKh( V̂=−1) with :-grading shift 1.

And the topmost :-grading of CKh( V̂=−2) is = − 2, thus the contribution from
CKh( V̂=−2) is from the top :-grading. As an annular closure, the topmost :-
grading component of SKh( V̂=−1)(resp. SKh( V̂=−2) has dimension 1. Hence the
contributions from both of the two topmost :-grading components are odd, thus the
parity of dim CKh( V̂=; = − 2) is the same as that of CKh( V̂=−1; = − 3). Then the
claim follows from induction on = and a simple computation that SKh( V̂1) � +(1) .

As the annular Khovanov homology is unimodal with respect to :-grading, evenness
of dim SKh(f̂, = − 2) implies in particular that dim SKh(f̂, = − 2) ≥ 2, completing
the proof for the connected case. �

Remark 3.0.1. [GLW18] found the exact formula for the annular Khovanov homol-
ogy of V̂=. Using the notations as above (and disregarding the quantum grading),
the formula is

SKh( V̂=) � +(=) ⊕ +(=−2) .

Especially, the next-to-top :-grading summand of SKh( V̂=) has dimension 2.

Remark 3.0.2. Theorem 2 remains true over fields of arbitrary characteristic, using
the universal coefficient theorem argument similar to Proposition 2.2.8. Indeed, for
a field F of positive characteristic,

SKh(f̂; :;F) ≥ SKh(f̂; :;C)

for any integer : , and the proof in [GN14] works verbatim to guarantee that the top
:-grading term of SKh(f̂;F) is isomorphic to F. In characteristic 2, another proof
using Ozsváth-Szabó spectral sequence and Baldwin-Vela-Vick’s theorem [BV18,
Theorem 1.1] on nontriviality of the next-to-top Alexander grading term of the knot
Floer homology of fibered knots together with the fiberedness detection theorem is
possible.

Combined with the braid detection theorem, Theorem 2.2.6, we can now prove
Theorem 1.



16

Proof of Theorem 1. Let � =
{
(I, C) ∈ � × � | |I | = 3

2 , C =
1
2
}
be the core of the

thickened annulus. It is clear from the definition that SKh(�) � +(1) (which is
irreducible), hence it suffices to show that an annular link L is necessarily isotopic
to � if SKh(L) is irreducible.

Note first that irreducibility of the annularKhovanov homology implies that dim SKh(L; :) =
0 or 1,∀: . In particular, the topmost :-grading term of SKh(L) is of dimension 1,
hence L must be a closed braid by Theorem 2.2.6.

If L is isotopic to a closed braid of = ≥ 2 strands, we may apply Theorem 2 which
leads to a contradiction that there exists : such that SKh(L; :) > 1. Hence L is
isotopic to a closed braid of a single strand, which is simply �. �
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C h a p t e r 4

TRAPEZOIDAL AND LOG-CONCAVITY CONJECTURES

While Theorem 2 is true, the strict inequality SKh(f̂; :) < SKh(f̂; : − 2) does
not hold in general if : is less than the number of strands of f. For example, the
annular Khovanov homology of the 1

=
-th twist V̂= is SKh( V̂=) � +(=) ⊕+(=−2) , hence

the next-to-top and third-to-top :-grading term of SKh( V̂=) are both of dimension 2
if = is greater than 4.

Probably the next interesting question is whether the dimension of the annular
Khovanov homology with respect to the :-grading continues to be flat once it stops
to be strictly larger than its precursor. This is the content of Conjecture 3. A
symmetric sequence with the property as above is called trapezoidal:

Definition 4.0.1. A sequence 0−=, 0−=+2, · · · , 0=−2, 0= of nonnegative integers is
symmetric if 08 = 0−8 holds for all 8. A symmetric sequence is unimodal if 08 ≤ 08−2

for all 8 > 0. A symmetric sequence 0−=, 0−=+2, · · · , 0=−2, 0= is trapezoidal if there
exists 0 < < ≤ = such that 08 < 08−2 if < < 8 ≤ = and 08 = 08−2 if 0 < 8 ≤ <.

Hence Conjecture 3 claims that the dimension of the annular Khovanov homology
of a closed braid forms a trapezoidal sequence.

A general strategy to prove that a sequence is trapezoidal is to show log-concavity.

Definition 4.0.2. A symmetric sequence is log-concave if 08+208−2 ≤ 02
8
for all

8 < =.

Indeed, for a unimodal sequence, log-concavity implies trapezoidality. As the
dimension of annular Khovanov homology is unimodal with respect to :-grading,
the following conjecture is stronger than Conjecture 3.

Conjecture 6. The sequence {dim SKh(f̂; :)}:≡= mod 2
−=≤:≤= is log-concave.

UsingMorisson’s mathematica script[Mor19], we tested the validity of Conjecture 3
and Conjecture 6. In fact, we computed the annular Khovanov homology of slightly
more general class of annular links, defined as follows.
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Definition 4.0.3. An annular link L is minimally wrapping if the wrapping number
and winding number of L coincides up to changing the orientations of the connected
components of L.

Using a similar argument as in the standard proof of Alexander’s theorem for links
which unwinds the part that winds a candidate braid axis in reverse direction, mini-
mally wrapping links can be equivalently formulated as the annular links admitting
a braid closure diagram but the center of the annulus is allowed to lie on the regions
between parallel strands closing the braid, not necessarily the braid axis. As a
result, we can use the same script as in [Mor19] to compute the annular Khovanov
homology of minimally wrapping links only by modifying the :-grading function.

The setup is as follows: We restrict to the braid of at most 9 strands and at most
9 crossings, due to the computational complexity of annular Khovanov homology.
Even with the restriction on the number of strands and crossings, there still exists
an enormous number of braids to consider; mere count of the braid words in �9 of
length 9 is approximately 300 millions. Hence we take a random approach rather
than trying a full computation for such braids and compute the annular Khovanov
homology of a random braid word. In case of closed braids, a counterexample to
Conjecture 3 or Conjecture 6 can only occur when the number of strands is > 5 due
to Theorem 2, hence a random braid word is chosen under this constraint. In case
of minimally wrapping link, we have no constraints on the number of strands but
additionally choose a random integer which corresponds to the number of strands
between the braid axis and the center of the annulus. In both cases, due to Proposition
2.2.4, we only consider the braids which cannot be written as an annular union of

Currently, more than 10000 closed braids of 6 to 7 strands, more than 1000 closed
braids of 8 and 9 strands, and about 100 minimally wrapping links have been tested,
and every samples tested passed both Conjecture 3 and Conjecture 6. The code and
data is available at [Kim21].
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