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ABSTRACT

During a spacecraft mission design process, engineers often balance the follow-
ing three criteria: science return, optimality in performance, and safety. Given
a science criterion, engineers design the orbit parameters with predefined perfor-
mance and safety. Often in this approach, the spacecraft has no understanding of
the expected outcome or the knowledge of the mission safety criteria. Autonomous
science-driven orbit (or goal) selection and planning for safety under uncertainty
enable efficient and adaptable missions. To this end, we propose an architecture for
information-based guidance and control for coordinated inspection, motion plan-
ning and control algorithms for safe and optimal guidance under uncertainty, and
architecture for safe exploration.

In the first part of this thesis, we present an architecture for inspection or mapping of
a target spacecraft in a low Earth orbit using multiple observer spacecraft. We use
an information gain approach to directly consider the trade-off between gathered
data and fuel/energy cost. The estimated information gain is a crucial input to the
motion planner, which computes orbits and reconfiguration strategies for each of the
observers to maximize the information gain from distributed observations of the
target spacecraft. The resulting motion trajectories jointly consider observational
coverage of the target spacecraft and fuel/energy cost. We validate our architecture
in a mission simulation to visually inspect the target spacecraft and on the three
degree-of-freedom robotic spacecraft dynamics simulator testbed.

In the second part of the thesis, we present gPC-SCP, Generalized Polynomial
Chaos-based Sequential Convex Programming method, to compute a sub-optimal
solution for a continuous-time chance-constrained stochastic nonlinear optimal con-
trol (SNOC) problem. The approach enables motion planning and control of robotic
systems under uncertainty. The proposed method involves two steps. The first step
is to derive a deterministic nonlinear optimal control problem (DNOC) with con-
vex constraints that are surrogate to the SNOC by using gPC expansion and the
distributionally-robust convex subset of the chance constraints. The second step is
to solve the DNOC problem using sequential convex programming (SCP) for tra-
jectory generation and control. We prove that in the unconstrained case, the optimal
value of the DNOC converges to that of SNOC asymptotically and that any feasible
solution of the constrained DNOC is a feasible solution of the chance-constrained
SNOC. We derive a stable stochastic model predictive controller using the gPC-SCP



v

for tracking a potentially unsafe trajectory in the presence of uncertainty. We empir-
ically demonstrate the efficacy of the gPC-SCP method for the following three test
cases: 1) collision checking under uncertainty in actuation, 2) collision checking
with stochastic obstacles, and 3) safe trajectory tracking under uncertainty in the
dynamics and obstacle location by using a receding horizon control approach. We
validate the effectiveness of the gPC-SCP method on the robotic spacecraft testbed.

In the third part of this thesis, we present a new approach for optimal motion plan-
ning for safe exploration that integrates the chance-constrained stochastic optimal
control with dynamics learning and feedback control. We derive an iterative con-
vex optimization algorithm that solves an Information-cost Stochastic Nonlinear
Optimal Control problem (Info-SNOC). The optimization objective encodes con-
trol cost for performance and exploration cost for learning, and the safety is incor-
porated as distributionally robust chance constraints. The dynamics are predicted
from a robust regression model that is learned from data. The Info-SNOC algorithm
is used to compute a sub-optimal pool of safe motion plans that aid in exploration
for learning unknown residual dynamics under safety constraints. A stable feedback
controller is used to execute the motion plan and collect data for model learning.
We prove the safety of rollout from our exploration method and reduction in uncer-
tainty over epochs, thereby guaranteeing the consistency of our learning method.
We validate the effectiveness of Info-SNOC by designing and implementing a pool
of safe trajectories for a planar robot. We demonstrate that our approach has a
higher success rate in ensuring safety when compared to a deterministic trajectory
optimization approach.
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frames, taken from [16]. Right : Passive relative orbits for four
deputy spacecraft, propagated using the initial conditions proposed
in [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 An example of the optimal PRO initialization maneuver and PRO
reconfiguration maneuver computed using Problem 1 and 2. We de-
signed the PRO’s using the stable subspace proposed in [16]. . . . . . 18

2.3 An example of the optimal attitude trajectory computed using Prob-
lem 4 for the initial and terminal states q[0] = [1, 0, 0, 0], ω[0] = 0,
q[Ta] = [0.5, 0.167, 0.167, 0.833], and ω[Ta] = 0, respectively. . . . . 21



xi

2.4 Example gPC approximation of some standard probability distribu-
tion functions (PDF) using gPC expansion. For the beta and expo-
nential distributions, gPC expansion represents the PDF well with
just second order approximation. For a Gaussian distribution, the
gPC representation is exact. . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Concept of operations of an inspection mission for observing a target
spacecraft with multiple observer spacecraft deployed. . . . . . . . . 26

3.2 The multi-level and multi-timescale hierarchical architecture for com-
bined orbit and attitude planning and control for an inspection task.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Nine generated PRO candidates to cover the target spacecraft (blue

in the center). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 An example of the visibility check using ray casting database for a

given camera with fixed location, pointed in−y direction with a field
of view of 30 degrees. . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 PRO candidate selection for N = 2 from the set of PROs shown in
Fig. 3.3. For each of the nine candidates the expected information
cost is computed (bar chart top left). PRO 5 achieves the lowest H
and is selected in the first iteration. Assuming one observer is or-
biting PRO 5, we estimate H for the remaining PROs in the second
iteration. The lowest cost is achieved for PRO 7 (bar chart bottom
left). Observer spacecraft on the selected PROs can observe the tar-
get from many perspectives (plot on the right). . . . . . . . . . . . . 34

3.6 Example solutions for the PRO reconfiguration planning problem.
Each of the two observers plan to move from its current state to one
of the selected PRO candidates (see Fig. 3.5) and simultaneously
estimates the delta-V cost for such maneuver (see captions on each
plot). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



xii

3.7 Centralized PRO candidate selection and information database im-
plementation of the framework in Fig. 3.2 for inspection. The sam-
pled PRO candidates and the information database are stored in the
memory of the target spacecraft. The PRO candidates are then as-
signed to the observers based on coverage (information) and fuel
optimality. The assigned candidates are communicated to the ob-
servers. The observers have a decentralized controller for initializa-
tion or reconfiguration to the assigned PROs. From the PRO, the
observer spacecraft communicates the information update to the tar-
get spacecraft at a fixed time period for computing a new set of PRO
candidates to inspect areas that have not been inspected earlier. . . . . 38

3.8 Distributed PRO candidate selection and information database im-
plementation of the framework in Fig. 3.2 for inspection. The infor-
mation database is stored on all the observers and evaluated using
the updates communicated at fixed frequency from the neighbours.
The PRO candidates are sampled in a distributed fashion using syn-
chronous messages with the updated information cost. Optimal PRO
assignment is done using distributed auction method discussed in [14]. 39

3.9 Inspection of Cygnus using two observers. Left: Trajectories of the
two observers. The bold part shows the planned PRO reconfigura-
tion. Right: The information cost converges to zero over time, be-
cause the entire target spacecraft is inspected. . . . . . . . . . . . . . 41

3.10 Information cost and POI coverage over time with varying number of
observer spacecraft. The results are averaged over 5 trials with stan-
dard deviation shown as shaded area. Left: Using multiple observers
allows to significantly reduce the time until a target information cost
value is reached. For example, H = 2 is achieved in less than half
the time when using 5 observers compared to when using one ob-
server. Right: A lower information cost leads to a better coverage of
POIs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.11 A plot showing comparison of minimum distance between observers
when 3, 4, and 5 CubeSats are used for the inspection task as function
of time. As expected, 3 observer configuration has larger separation
compared to 5 observer configuration. . . . . . . . . . . . . . . . . . 42



xiii

3.12 Attitude trajectory generated using the slerp interpolation and se-
quential convex programming. The control required to track the slerp
trajectory and the smoothed trajectory are compared. The smoothed
trajectory satisfies the torque limits of ±2 mNm, while tracking the
slerp trajectory easily saturates the reaction wheels. . . . . . . . . . . 44

3.13 A picture of the information-based planning (Fig. 3.2) experiment on
the multi-spacecraft testbed [30] for autonomy research. . . . . . . . 45

3.14 Block diagram showing the hierarchical planner as applied to the
three degree-of-freedom spacecraft dynamics simulator. . . . . . . . 46

3.15 Output of Algorithm 1. Observer 1 is actively inspecting the target
spacecraft using the hierarchical information-based planning algo-
rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.16 Information-based planning to inspect all the four surfaces of the
target spacecraft using a single agent. . . . . . . . . . . . . . . . . . 48

4.1 Effect of uncertainty in the state estimate and actuation on the PRO
maintenance, shown in LVLH frame. We show the PRO trajectories
generated over 100 Monte-Carlo trials, by sampling the uncertainty
in state and actuation. . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Example gPC propagation for a pendulum. The figure compares the
mean and 2σ confidence computed using gPC Projection (PgPC = 1),
linear covariance propagation and Monte Carlo (MC) propagation of
the simple pendulum dynamics θ̈ = − sin θ − 0.8θ̇ +

√
0.001ξ(t). It

is observed that the gPC approximation overestimates the variance
compared to MC and the linear covariance propagation underesti-
mates the variance. The PgPC = 1 projection corresponds to a Gaus-
sian approximation that includes the cross correlation between the
state and uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 An illustration of the convex linear constraint used for collision check-
ing in deterministic SCP at a particular instant in time is shown on
the left. The linear chance constraint under stochastic dynamics is
projected to gPC space forming a second-order cone constraint. The
cone constraint is visualized as a robustness bound on the robot’s
state as shown in the figure on right. . . . . . . . . . . . . . . . . . . 70



xiv

5.2 An illustration of the second-order cone constraint used for collision
checking with uncertainty in dynamics and the obstacle position at
an instant in time is shown on the right. For a given risk of collision
probability ε, the uncertainty in obstacle position is visualized as an
additional uncertainty in the robots state. . . . . . . . . . . . . . . . 72

5.3 The top and side view of the Caltech’s robotic spacecraft dynamics
simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 The figure demonstrates convergence of the mean and the variance
(σx, σy) of the states (x, y) with increasing PgPC for σ = {0.01, 0.1}. 83

5.5 Left: We compare the probabilistic safe trajectories computed us-
ing distributionally robust and Gaussian collision chance constraint.
Center: We compare the trajectories for various risks (ε = 0.05, 0.25, 0.5)

of collision constraint violation. Right: We demonstrate collision
checking under uncertainty in both robot dynamics and obstacle lo-
cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 We compare the trajectories generated for different sizes c = {0.316, 0.224, 0.071}
(shown as the green circle) of the terminal set. We show the terminal
state of the robot (blue), when a nominal trajectory (sampled from
the probabilistic trajectory) is executed using an exponentially stable
controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.7 We show trajectory tracking and safety under uncertainty in dynam-
ics and obstacle location in real-time over 5 trials by using the pro-
posed stochastic model predictive controller. We compare the dis-
tributionally robust (DRLCC) collision constraint with the Gaussian
collision constraint. Left: In the case with small uncertainty (Σp =

1e − 4), both constraints perform safe tracking. Right: With large
uncertainty (Σp = 1e − 2), the DRLCC provides safety in all the
trials, while Gaussian collision constraint fails in 2 trials. . . . . . . . 86

5.8 The guidance, navigation, and control loop used for planning a distributionally-
robust safe trajectory using gPC-SCP and controlling the 3 DOF
spacecraft simulators. . . . . . . . . . . . . . . . . . . . . . . . . . 87



xv

5.9 We show the output of the gPC-SCP method at each stage of Al-
gorithm 2 and 10 trials of closed-loop trajectory tracking by using
an exponentially stable feedback controller designed in [30]. Top:
We show the output of AO-RRT for 5000 nodes and the SCP for the
nominal dynamics. Middle: We show the probabilistic safe trajec-
tory generated using the gPC-SCP method with a risk measure of
ε = 0.05 for collision checking. Bottom: We observe one failure in
the 10 trials of the closed-loop trajectory execution. . . . . . . . . . . 88

6.1 Info-SNOC applied to Scenario 1. In Fig. (a), we show the motion
plan along with the 2σ confidence in position of the performance
trajectory (ρ = 0) and the information trajectory (ρ = 1) computed
using Info-SNOC, and the nominal trajectory computed using SCP
under nominal dynamics. In Fig. (b), we show the trace of Σx w.r.t
time. The information trajectory (ρ = 1) has higher Σx compared to
the performance trajectory (ρ = 0). We compare total open-loop fuel
computed at each time step in Fig. (c), and in Fig. (d) we demonstrate
collision avoidance during exploration for 20 trials of rollout using a
safety augmented stable controller. . . . . . . . . . . . . . . . . . . 104

6.2 Info-SNOC applied to Scenario 2. In Fig. (a), we show a comparison
of the performance trajectory (ρ = 0), the information trajectory
(ρ = 1), and an intermediate safe trajectory (green) computed using
Info-SNOC and the nominal trajectory computed using deterministic
SCP under nominal dynamics. In Fig. (b), we compare a sampled
trajectory with the trajectories generated by feedback tracking and
rollout with a safety filter. . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Performance over epochs for Scenario 1. Left: we show decrease in
the terminal position variance over epochs demonstrating improved
goal reaching with epoch. Center: the differential entropy of the
prediction variance Σg for information trajectory (ρ = 1) is larger
compared to the performance trajectory (ρ = 0). Right: the number
of collisions during rollout for 1000 trials decrease as the learning
converges, validating Theorem 6. . . . . . . . . . . . . . . . . . . . 105

7.1 Multiple 6-DOF M-STAR spacecraft at Caltech’s Aerospace Robotics
and Control Lab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 M-STAR spacecraft dynamics simulator. . . . . . . . . . . . . . . . 109
7.3 Flowchart of pneumatic system on translation and attitude stage. . . . 110



xvi

7.4 Attitude stage architecture. . . . . . . . . . . . . . . . . . . . . . . . 112
7.5 Section view of Caltech’s custom-made reaction wheels. . . . . . . . 113
7.6 Software architecture design. . . . . . . . . . . . . . . . . . . . . . . 113
7.7 Coordinate Systems used for the derivation of the dynamic model. . . 116
7.8 Attitude Stage with actuator configuration and nomenclature in the

body frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.9 Thruster characterization setup and sample results recorded by the

load cell, showing rise time and fall time. . . . . . . . . . . . . . . . 124
7.10 Experimental data and linear fit of average force and impulse vs.

thruster firing time at 40 psi, 50 psi, and 60 psi operating pressure. . . 124
7.11 Closed-loop control implementation for the 6DOF simulator. . . . . . 126
7.12 Closed-loop waypoint reaching experimental result- test case 1. . . . 128
7.13 Closed-loop waypoint reaching experimental result- test case 2. . . . 128
A.1 1-DOF cylinder and flexible solar array model. . . . . . . . . . . . . 155
A.2 Distributed Piezo and and strain distribution across the composite

beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.3 Front and top view of the experimental setup. . . . . . . . . . . . . . 171
A.4 Closed-loop ODE system as implemented in Simulink for simulations.172
A.5 Trajectory tracking (simulation) for δ = 1 with gains λθ = 3, and

Kθ = 0.5, Kξ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 172
A.6 Trajectory tracking (simulation) for δ = 0.5 with gains λθ = 3,

Kθ = 0.5, Kξ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 173
A.7 Trajectory tracking (simulation) for δ = 0 with gains λθ = 3, Kθ =

0.5, Kξ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
A.8 Slewing (simulation) for δ = 1 with gains λθ = 3,Kθ = 0.5,Kξ = 0.5.173
A.9 Slewing (simulation) for δ = 0.5 with gains λθ = 3, Kθ = 0.5,

Kξ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
A.10 Slewing (simulation) for δ = 0 with gains λθ = 3,Kθ = 0.5,Kξ = 0.5.174
A.11 Trajectory tracking (simulation) for δ = 0.5 in configuration 2 with

gains λθ = 3, Kθ = 0.5, Kξ = 0.5. . . . . . . . . . . . . . . . . . . 174
A.12 Trajectory tracking (simulation) for δ = 0 in configuration 2 with

gains λθ = 3, Kθ = 0.5, Kξ = 0.5. . . . . . . . . . . . . . . . . . . 175
A.13 Slewing (simulation) for δ = 0.5 in configuration 2 with gains λθ =

3, Kθ = 0.5, Kξ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . 175
A.14 Slewing (simulation) for δ = 0 in configuration 2 with hains λθ = 3,

Kθ = 0.5, Kξ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 175



xvii

A.15 Open-loop beam experimental setup. . . . . . . . . . . . . . . . . . 176
A.16 Open-loop experiment vs simulation, beam tip deflection. . . . . . . 176
A.17 SASA setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.18 SASA setup views . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.19 Top view of the setup showing coordinate systems used in experiments.179
A.20 Closed-loop ODE system as implemented in Simulink for experiments.180
A.21 Open-loop experiment versus simulation, bus rotation. . . . . . . . . 180
A.22 Trajectory tracking (experiment) for δ = 1 with gains λθ = 1.5,

Kθ = 0.5, Kξ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.23 Trajectory tracking (experiment) for δ = 0.5 with gains λθ = 1.5,

Kθ = 0.5, Kξ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.24 Trajectory tracking (experiment) for δ = 0 with gains λθ = 2, Kθ =

0.5, Kξ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.25 Slewing (experiment) for δ = 1 with gains λθ = 1, Kθ = 0.25,

Kξ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.26 Slewing (experiment) for δ = 0.5 with gains λθ = 1, Kθ = 0.25,

Kξ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.27 Slewing (experiment) for δ = 0 with gains λθ = 1, Kθ = 0.25,

Kξ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.28 Trajectory tracking (experiment) for δ = 0.5 in configuration 2 with

gains λθ = 2, Kθ = 0.5, Kξ = 0.5. . . . . . . . . . . . . . . . . . . 183
A.29 Trajectory tracking (experiment) for δ = 0 in configuration 2 with

gains λθ = 2, Kθ = 0.5, Kξ = 0.5. . . . . . . . . . . . . . . . . . . 183
A.30 Slewing (experiment) for δ = 0.5 in configuration 2 with gains λθ =

2, Kθ = 0.5, Kξ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.31 Slewing (experiment) for δ = 0 in configuration 2 with gains λθ = 2,

Kθ = 0.5, Kξ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 184



xviii

LIST OF TABLES

Number Page

1.1 Spacecraft simulators from other institutions. [107–123] . . . . . . . 13
5.1 Number of collisions over 1000 trails. . . . . . . . . . . . . . . . . . 85
7.1 List of components on the translation stage. . . . . . . . . . . . . . . 111
7.2 List of components on the attitude stage. . . . . . . . . . . . . . . . 112
7.3 Nominal torque and angular momentum of the spacecraft. . . . . . . 113
7.4 Constraints on the angular motion of the attitude stage. . . . . . . . . 115
7.5 Linear fit equations for firing time computation for a given control

signal Fr at time t and control frequency fcl. . . . . . . . . . . . . . 123
A.1 Physical, geometrical and structural parameters of bus, array, and

PZT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171



1

C h a p t e r 1

INTRODUCTION

1.1 Motivation
Autonomous on-orbit servicing [1] and inspection of a spacecraft is a key enabling
technology for increasing the mission lifetime, improving the safety of the human
spaceflight, and gaining an insight into the health of the spacecraft. Inspection and
mapping of known or unknown space objects in Earth’s orbit is the first essential
step towards on-orbit servicing capabilities that include refueling, repairing, assem-
bling, and upgrading of space assets [2, 3]. State-of-the-art approaches for on-orbit
inspection include robotic manipulators with rails for extended workspace, single
servicing spacecraft [4, 5], and astronaut intervention. These approaches have se-
vere limitations: the capability of manipulators is limited due to mechanical con-
straints [4]; the single service orbiter has payload constraints, and astronaut inter-
vention is expensive and potentially dangerous. A team of collaborating spacecraft
has the potential to provide augmented capabilities with enhanced robustness and
versatility at a reduced cost and time [6, 7]. Thus, we propose to use a distributed
spacecraft formation for on-orbit inspection. The multi-spacecraft approach has
additional challenges [8, 9] of coordination, synchronization, and communication.
The technologies for small spacecraft such as CubeSats are maturing quickly, mak-
ing multi-spacecraft servicing closer to a reality [10–13]. In this thesis, we present
information-based guidance, navigation, and control (GNC) architecture for inspec-
tion or mapping of a target spacecraft, referred to as chief, in an orbit around Earth
using multiple spacecraft, referred to as deputies, in stable passive relative orbits
(PROs). This architecture integrates higher-level information-based orbit selection
with model-based guidance [14] and control [15] algorithms to demonstrate coor-
dinated inspection.

Model-based design strategies for guidance [16, 17] and control [18] of space-
craft and robotic systems often take a deterministic approach with robustness guar-
antees [19] to quantify performance under worst-case uncertainties. These ap-
proaches assume a bounded value of uncertainty leading to conservative trajec-
tories and control laws. Confidence-based motion planning [20–23] and control
algorithms [24, 25], which incorporate uncertainties in the dynamic model and en-
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vironment to guarantee safety and performance with high probability, enable safe
operation of robots and autonomous systems in partially known and dynamic en-
vironments. A probabilistic approach can allow for integration with a higher-level
discrete decision-making algorithm for information gathering [26, 27], and for safe
exploration [28, 29] to learn the interaction with an unknown environment. Ex-
amples of autonomous systems that require safety guarantees under uncertainty in-
clude spacecraft with thrusters as actuators during proximity operations [27, 30],
powered descent on Mars [31], and quadrotors flying in turbulent winds [32, 33].
We propose a new trajectory optimization algorithm that systematically accounts
for the uncertainty in dynamics and environment to compute safe and optimal mo-
tion plans. We extend this algorithm for tracking a trajectory under uncertainty by
using a stochastic model predictive formulation.

Modeling the complex dynamic interactions with the environment requires high-
fidelity techniques that are often computationally expensive. Machine-learning
models can remedy this difficulty by approximating the dynamics from data [34–
37]. The learned models typically require off-line training with labeled data that
are often not available or hard to collect in many applications. Safe exploration is
an efficient approach to collect ground truth data by safely interacting with the en-
vironment. In this thesis, we integrate the proposed motion planning method with
a learning algorithm and an exponentially stable controller to derive a safe explo-
ration algorithm for active and safe data collection.

Spacecraft formation flying technologies using smallsats, such as microsatellites
and CubeSats, as individual agents offer a robust, adaptable, and cost-effective way
to establish space telescopes [38], communication systems [39] for observation,
and various other applications [13, 40, 41]. The ability of these systems to per-
form equivalent to a monolithic system depends on achieving high-precision rel-
ative navigation, guidance, control, and synchronization of the individual agents
in the formation. A ground-based robotic dynamics simulator that can mimic the
frictionless motion in a disturbance torque-free environment with flight-like subsys-
tems provides a platform to test and validate the GNC algorithms required to design
and build such a multi-agent spacecraft system. To this end, we design and build a
novel robotic six-degree-of-freedom spacecraft simulator for autonomy research.
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1.1.1 Problem Statement
In this thesis, we study the problem of autonomous coordinated inspection and
safe exploration. Both the problems can be formulated as an information-driven
chance-constrained optimal control problem. Depending on the time scales of the
dynamics, we propose and study the following three simplifications of this problem.

Coordinated Inspection

We formulate the multi-agent coordinated inspection problem as an information-
cost optimal control problem. In this framework, we use the information cost for
computing informative orbits and attitude plans. We use the orbits and attitude
plan as an input to the optimal guidance and control algorithms. We derive the
information cost by using the confidence on the output of the inspection sensor
model.

Chance-Constrained Stochastic Optimal Control

We formulate the optimal guidance and control under uncertainty in dynamics and
environment as a chance-constrained stochastic optimal control problem. For this
problem, given an uncertainty model, we derive a novel motion planning algorithm
for computing a safe and optimal motion plan under uncertainty.

Safe Exploration

We formulate the safe exploration problem as an information-cost chance-constrained
stochastic optimal control problem. We integrate this problem with learning and an
exponentially stable feedback controller to demonstrate safe and active data collec-
tion for model learning. In this case, we derive the information cost using confi-
dence in the model quality. Essentially, using this architecture, we can improve the
model.

1.2 Contributions
The main contributions of this thesis can be summarized as follows.

1.2.1 Chapter 3
We present an information-based GNC architecture for inspection or mapping of a
target spacecraft, referred to as chief, in an orbit around Earth using multiple space-
craft, referred to as deputies, in stable Passive Relative Orbits (PROs). We assume
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that the target spacecraft is in a low Earth orbit, and the deputies are deployed from
the target spacecraft. We design stable relative parking orbits for initial formation
deployment. From the onset of formation deployment, our guidance algorithm fo-
cuses on designing PROs and reconfiguration strategies for each of the deputies to
maximize the information gain from distributed observation of the target. The re-
sulting motion trajectories jointly consider (a) observational coverage of the target
spacecraft, (b) fuel/energy cost, and (c) collision checking while iteratively act-
ing upon updates from estimation. The planner strives towards computational ef-
ficiency to make real-time on-board computation possible, while making trade-off
between optimality as needed. The capabilities of the proposed planner framework
are demonstrated on a design reference mission involving up to 5 spacecraft per-
forming coordinated inspection of a target spacecraft using simulations.
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Figure 1.1: The multi-spacecraft GNC system architecture for autonomous inspec-
tion and mapping proposed in Chapter 3

The four components of the proposed architecture, shown in Fig. 1.1, are 1) in-
formation estimation, 2) state and inertial frame estimation, 3) guidance (or) mo-
tion planning, and 4) control. In this work, we assume that the state and inertial
frame estimation algorithms are available and focus on motion planning for infor-
mation maximization. The information estimation quantifies the information gain
of the target spacecraft, given past and potential future poses of all the observer
spacecraft. The estimated information gain is a crucial input to the motion planner,
which considers a set of alternative PROs and decides when and how to reconfigure
the observer spacecraft, while approximately maximizing the information gain and
minimizing delta-V. For computational efficiency, both information estimation and
motion planning modules rely on simplified attitude dynamics. Our controls com-
ponent ensures PRO initialization, safe reconfiguration, and instrument pointing.
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Figure 1.2: Caltech’s M-STAR (Multi-Spacecraft Testbed for Autonomy Research),
described in Chapter 7, planning a safe trajectory to ensure safety under uncertainty
in actuation during a proximity maneuver. The motion planning problem is for-
mulated as a chance-constrained stochastic optimal control problem solved in two
steps. Step 1: Project the stochastic problem to a deterministic problem by using
generalized polynomial chaos approach and distributional robustness; and Step 2:
Use deterministic solvers to compute an optimal solution to the deterministic prob-
lem.

1.2.2 Chapters 4 and 5
Motion planning problem considering safety in conjunction with optimality un-
der uncertainty can be formulated as a continuous-time continuous-space stochas-
tic nonlinear optimal control problem (SNOC) with chance constraints. We propose
the generalized polynomial chaos-based sequential convex programming (gPC-SCP)
method, as described in Fig. 1.2, to solve a chance-constrained SNOC problem. The
method involves deriving a deterministic nonlinear optimal control (DNOC) prob-
lem with convex constraints that are a surrogate to the SNOC problem with linear
and quadratic chance constraints. We derive the DNOC problem by accounting
for nonlinear stochastic dynamics using generalized polynomial chaos expansions
(gPC) [42–44] and obtaining deterministic convex approximations of linear and
quadratic chance constraints using distributional robustness [45–47]. The DNOC
problem is then solved using sequential convex programming (SCP) [14, 15, 48]
for trajectory optimization and for nonlinear stochastic model predictive control
(SMPC).
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The main contributions of the Chapters 4 and 5 can be summarized as follows:

(a) We present a systematic sequence of approximations for the chance-constrained
SNOC problem to compute a convex-constrained DNOC problem using gPC
projection. We analyze the gPC projection of the stochastic dynamics for ex-
istence and uniqueness [49, 50] of a solution in the gPC space. Examples are
provided to study the effect of projection on both the controllability of surro-
gate dynamics and the feasibility of the DNOC problem. We prove the con-
vexity of the distributionally-robust linear and quadratic chance constraints
in the gPC space.

(b) In order to characterize the deterministic approximation obtained using gPC
projection, we present analysis on convergence of the DNOC problem to the
SNOC problem for the unconstrained case. Then, we prove that any feasible
solution of the constrained DNOC problem is a feasible solution of chance-
constrained SNOC problem with an appropriate gPC transformation step ap-
plied.

(c) We derive provably conservative convex surrogates for collision checking
with both deterministic and stochastic obstacles. We integrate this collision
constraint with a sampling-based planning method [17, 51] to derive an algo-
rithm that computes safe and optimal motion plans under uncertainty.

(d) We extend the gPC-SCP method to derive an iterative algorithm that solves
the SMPC formulation. We prove that, if the terminal cost used in the SMPC
problem is derived by an exponentially-stabilizing controller (e.g. [24]) for
the stochastic dynamics, then the stochastic model predictive controller is
stable and the cost converges to an upper bound.

(e) We validate the convergence and stability theorems, and the safety provided
by the convex constraints in simulation, on a three degree-of-freedom robot
dynamics. We show empirically that the gPC-SCP method, for both planning
and control, has a higher success rate in comparison to the Gaussian approx-
imation [25, 52] of the collision chance constraints. We demonstrate the effi-
cacy of the gPC-SCP method by computing a safe trajectory for a spacecraft
proximity maneuver with stochastic obstacles on the robotic spacecraft dy-
namics simulator [30] hardware platform and by executing the trajectory in
real-time closed-loop experiments.



7

1.2.3 Chapter 6
We present an episodic learning and control algorithm for safe exploration, as
shown in Fig. 1.3, that integrates learning, stochastic trajectory planning, and roll-
out for active and safe data collection. Rollout is defined as executing the com-
puted safe trajectory and policy using a stable feedback controller. The planning
problem is formulated as an Information-cost Stochastic Nonlinear Optimal Con-
trol (Info-SNOC) problem that maximizes exploration and minimizes the control
effort. Safety constraints are formulated as chance constraints. The propagation

Rollout

Nonlinear
Controller Safety Filter

Sensors

Information-Cost Stochastic
 Nonlinear Optimal Control 

Learn
 Unknown Model 

Deterministic Surrogate

Sequential Convex
Programming 

Data

Initial Safe
Set Data
epoch = 1 
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epoch > 1 

epoch += 1 

Safe
Set

Obstacle

Obstacle Obstacle

Terminal Set

Probabilistic Safe Trajectory

Robot

Gaussian 
Model

Figure 1.3: An episodic framework for safe exploration using chance-constrained
trajectory optimization. An initial estimate of the dynamics is computed using a
known safe set [53] and control policy. A probabilistic safe trajectory and policy
that satisfies safety chance-constraints is computed using Info-SNOC for the esti-
mated dynamics. This policy is used for rollout with a stable feedback controller to
collect data.

of uncertainty in the dynamic model and chance constraints in Info-SNOC are
addressed by projecting the problem to the gPC space and computing a distribu-
tionally robust [20, 46] convex approximation. By building on [20], we derive a
sequential convex optimization solution to the Info-SNOC problem to plan a pool
of sub-optimal safe and information-rich trajectories with the learned approxima-
tion of the dynamics. A sample of the trajectory pool is used as an input to the
rollout stage to collect new data. To ensure real-time safety, the nonlinear feedback
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controller with a safety filter used in the rollout stage certifies bounded stochastic
stability [54]. The new data is used to learn an improved dynamic model.

The contributions of the Chapter 6 are as follows: a) we propose a new safe ex-
ploration and motion planning method by directly incorporating safety as chance
constraints and ensuring stochastic nonlinear stability in the closed-loop control
along with a safety filter; b) we derive a new solution method to the Info-SNOC
problem for safe and optimal motion planning, while ensuring the consistency and
reduced uncertainty of our dynamics learning method; and c) we use a multivari-
ate robust regression model [55] under a covariate shift assumption to compute the
multi-dimensional uncertainty estimates of the unknown dynamics used in Info-
SNOC.

1.2.4 Chapter 7
We describe the development of a new 6-DOF spacecraft simulator, the Multi-
Spacecraft Testbed for Autonomy Research (M-STAR). The spacecraft simulator
hardware was designed to have decentralized control and information sharing capa-
bilities with neighboring agents in view of the future goal of testing multi-agent
GNC algorithms using up to five of these simulators. Each spacecraft has 16
thrusters and 4 reaction wheels to study fault-tolerant control.

In view of the model-based GNC algorithms a detailed nonlinear dynamic model
for the 5-DOF system was derived by modelling it as a 3D pendulum on a gliding
planar platform with a center of gravity offset in the 3D pendulum. The nonlinear
dynamic model is decoupled by assuming a small center of gravity offset. A non-
linear hierarchical control law is proposed for fast attitude dynamics and slower po-
sition dynamics due to the time-scale separation. The control law computes forces
and torques collocated to the dynamics. Control allocation [56] is done to map the
collocated control signal to the actuator signal. Optimization formulations [57] can
be used to solve the control allocation problem, typically formulated as a linear
program. For the M-STAR control allocation, we implement a generalized pseudo-
inverse method for control allocation with a weighted influence matrix to account
for actuator saturation limits, as the optimization formulations are computationally
expensive for real-time implementation.

The position control of the M-STAR is performed using on-off solenoids, which are
inherently nonlinear due to mechanical delays and varying pressure in the manifold
that supplies compressed air to the solenoids. The solenoids are characterized [58]
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by measuring the force produced for varying on-off time, using a calibrated load
cell. A linear model to compute the on time of a thruster is developed using the
measured data for a given force requirement at each time step. The control law,
control allocation scheme, and thruster model are tested for position tracking using
a Robot Operating System (ROS)-based software framework.

1.3 Related Work
1.3.1 Autonomous On-Orbit Inspection
The prior research on autonomous on-orbit servicing can be classified into three
lines of work: 1) vision-based navigation and mapping with control [59–61], 2)
formation maintenance control [62] for inspection, and 3) single spacecraft flight
mission [4]. The main focus of the vision-based navigation [63] research has been to
develop inspection and mapping algorithms using sensors such as monocular cam-
eras and laser range finders. Using the navigation estimates, a pointing control and
formation maintenance control was designed to ensure that the target body is within
the field of view of the sensors. This work is applicable to single spacecraft mis-
sions and does not take into account the overall formation maintenance and safety
during the inspection task. We propose an architecture that can be integrated with
any of the aforementioned navigation algorithms and extends to multi-spacecraft
collaborative inspection by using an information metric to design stable relative
orbits and minimum energy attitude motion plan for inspection.

A very recent work considers a centralized approach [62] to integrate formation rel-
ative orbit planning and control for the inspection task but is limited to the scenario
where the target spacecraft are continuously tracked by the observer spacecraft us-
ing attitude control. The algorithm presented in this thesis is applicable to a wide
range of scenarios when the full pose information about the observer spacecraft
is available. Along with the work on algorithm development, the recent mission
Seeker [4] demonstrated on-orbit inspection using a single observer to track and es-
timate the bounding box of the Cygnus spacecraft in both dark and light background
with neural networks.

From robotics perspective, active information acquisition [64] was studied for both
single-agent [28, 65, 66] and multi-agent systems [67, 68] to planning [67] and
control [69]. The prior research was applied to ground robots and quadrotors. We
extend this work, to incorporate spacecraft formation flying and pointing dynamics
for active inspection in low Earth orbit. While the earlier research focuses on indi-
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vidual aspects of autonomy stack, we propose an architecture that works for both
spacecraft and ground robots.

1.3.2 Trajectory Optimization Under Uncertainty
Existing methods to solve a chance-constrained stochastic nonlinear optimal control
(SNOC) problem use moment space propagation [25, 70–72], unscented transformation-
based propagation [73], Monte Carlo sample propagation [21, 22, 74], and scenario-
based [73, 75] approaches to construct a deterministic surrogate problem. Although
these methods alleviate the curse of dimensionality, they do not provide asymp-
totic convergence guarantees for a DNOC problem. Monte Carlo methods pro-
vide asymptotic convergence guarantees, but often require large samples to esti-
mate the constraint satisfaction for nonlinear systems and use mixed-integer pro-
gramming [21] solvers for computing a solution. We use generalized polynomial
chaos (gPC) propagation [44] to construct a deterministic nonlinear optimal control
(DNOC) problem that converges to the SNOC problem, asymptotically. The gPC
projection transforms the chance constraints from being a non-convex constraint
in moment space to a convex constraint in the gPC space. This enables the use
of sequential convex programming (SCP) [14, 15] method for computing a solu-
tion. Additionally, we study the existence and uniqueness [76] of a solution and the
controllability of the deterministic surrogate dynamics of the stochastic dynamics.

Earlier work [22, 25, 77] uses a Gaussian approximation of the linear and the
quadratic chance constraint for collision checking and for terminal constraint satis-
faction. While this avoids multi-dimensional integration of chance constraints for
feasibility checking, Gaussian approximation might not be an equivalent represen-
tation (or) even a subset of the feasible set in the presence of stochastic process noise
in dynamics. We use distributional robustness [46, 47] property to propose a new
deterministic second-order cone constraint and a quadratic constraint approxima-
tion of the linear and quadratic chance constraints. We prove that the deterministic
approximations are a subset of the respective chance constraints.

In [21, 22], linear chance constraints were considered for probabilistic optimal plan-
ning for linear systems. The literature on chance-constrained programming focuses
on problems with deterministic decision variable and uncertain system parameters
for both linear [46] and nonlinear [47] cases. The results [45, 46] on distributional
robust subset and convex approximations of the chance constraints can be readily
transformed to the case with a random decision variable for an unknown measure.
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The quadratic chance constraint would lead to an inner semi-definite program [78]
that adds complexity to the SNOC problem considered in this thesis. The linear
chance constraint for collision checking was first presented in [20]. In [79], authors
show that linearized chance constraint is a subset of the original nonlinear chance
constraint for a Gaussian confidence-based constraint. Since the local Gaussian
assumption might not be valid for a nonlinear systems, we present proof for the dis-
tributionally robust convex constraint formulation that extends to include stochastic
obstacles for a nonlinear stochastic differential equation.

From a stochastic model predictive control (SMPC) perspective, recent work [80–
83] on control of discrete-time linear stochastic dynamical systems provides condi-
tions for recursive feasibility, constraint satisfaction, convergence and stability by
using a probabilistic invariant set as the domain of operation and a control Lyapunov
function as the terminal cost function. Research on control of nonlinear stochastic
dynamics [25, 84, 85] is focused on implementation by using nonlinear program-
ming methods. In [86], authors formulate a bounding semi-definite optimization
problem on moments using global polynomial optimization method [87] for con-
trolling a nonlinear stochastic system, but do not incorporate state constraints or
prove the stability of the system. We propose a SMPC method to control nonlin-
ear stochastic differential equation that uses a stochastic control contraction met-
ric [24, 88] as the terminal cost function. Assuming recursive feasibility and con-
straint satisfaction, we prove the convergence and stability of the SMPC method.
We solve the SMPC problem using the gPC-SCP method to track a potentially un-
safe trajectory in the presence of uncertainty in dynamics and environment.

The gPC expansion approach was used for stability analysis and control design
of uncertain systems [84, 85, 89–92]. For trajectory optimization, recent work fo-
cused on nonlinear systems with parametric uncertainty [93, 94] with no constraints
on the state, or linear systems with linear chance-constraints that do not extend to
the SNOC problem considered here and lack analysis on the deterministic approxi-
mation of the uncertain system. The gPC approach was used to compute a moment-
space receding horizon approximation [95], which was solved using nonlinear pro-
gramming methods. We extend prior work to incorporate nonlinear dynamics and
include analysis on the deterministic approximation. We formulate convex con-
straints for linear and quadratic constraints in gPC space and use this formulation
to design algorithms for motion planning and control of a nonlinear stochastic dy-
namic system.
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1.3.3 Safe Exploration
Safe exploration for continuous dynamical systems has been studied using the fol-
lowing three frameworks: learning-based model-predictive control (MPC), dual-
control, and active dynamics learning. Learning-based MPC [53, 96–98] has been
studied extensively for controlling the learned system. These deterministic tech-
niques are also applied for planning an information trajectory1 to learn online. The
approach has limited analysis on safety of the motion plans that use recursive feasi-
bility argument and by appending a known safe control policy. In contrast, stochas-
tic trajectory planning [20, 22, 99, 100] naturally extends to incorporate proba-
bilistic learned dynamic model. The safety constraints formulated as joint chance
constraints [22] facilitate a new approach to analyze the safety of the motion plans
computed using Info-SNOC. The effect of uncertainty in the learned model on the
propagation of dynamics is estimated using the method gPC expansion for propa-
gation, which has asymptotic convergence to the original distribution, and provides
guarantees on the constraint satisfaction.

Estimating unknown parameters while simultaneously optimizing for performance
has been studied as a dual control problem [101]. Dual control is an optimal control
problem formulation to compute a control policy that is optimized for performance
and guaranteed parameter convergence. In some recent work [99, 102], the conver-
gence of the estimate is achieved by using the condition of persistency of excitation
in the optimal control problem. Our method uses SCP [14, 15, 103] to compute
the persistent excitation trajectory. Recent work [104] uses nonlinear programming
tools to solve optimal control problems with an upper-confidence bound [105] cost
for exploration without safety constraints. We follow a similar approach but for-
mulate the planning problem as an SNOC with distributionally robust linear and
quadratic chance constraints for safety. The distributionally robust chance con-
straints are convexified via projection to the gPC space. The algorithm proposed
in this thesis can be used in the MPC framework with appropriate terminal condi-
tions for feasibility and to solve dual control problems with high efficiency using
the interior point methods.

1.3.4 Robotic Spacecraft Dynamics Testbed
Historically, air bearing [106] platforms have been a popular choice to build space-
craft dynamics simulators. Air bearing spacecraft simulation platforms were de-

1An information trajectory is defined as a result of optimal motion planning that has more in-
formation about the unknown model compared to a fuel-optimal trajectory.
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Organization Name DOF
Naval Postgraduate School POSEIDYN 3
Georgia Institute of Technology ASTROS 5
Florida Institute of Technology ORION 6
University of Florida ADAMUS 6
Yonsei University ASTERIX 5
NASA Jet Propulsion Laboratory (JPL) FCT 5

SSDT 3
German Aerospace Center (DLR) TEAMS 3 and 5
Massachusetts Institute of Technology SPHERES 3

ARGOS 3 (attitude)

Table 1.1: Spacecraft simulators from other institutions. [107–123]

veloped by several research laboratories [107–123]; a selection of these simula-
tion platforms is shown in Table 1.1. Existing air bearing platforms can be classi-
fied into four types based on the mode of operation: 3 degrees-of-freedom (DOF)
planar [109, 116, 120], 3-DOF attitude [108, 110, 120], 5-DOF planar and atti-
tude [107, 114, 117, 122], and 6-DOF planar and attitude with gravity-axis mo-
tion [113, 119, 121]. The air bearing system acts as a ground-based simulator plat-
form for flight-like actuators and sensors, which provides an opportunity to test
flight algorithms and emulate space dynamics [124]. In this thesis, we describe the
development of a new 6-DOF spacecraft simulator, the Multi-Spacecraft Testbed
for Autonomy Research (M-STAR), that is designed to be modular and accom-
modates 3-DOF, 4-DOF, 5-DOF, and 6-DOF operation with minimal mechanical
modifications.

1.4 Organization
The organization of the dissertation is as follows. In Chapter 2, we discuss space-
craft formation flying dynamics, optimal control problem for orbit initialization
and reconfiguration, optimal attitude trajectory design, and generalized polynomial
chaos method for propagation of a stochastic differential equation. We build on
this material and present an information-based guidance and control architecture
in Chapter 3. We demonstrate inspection of a target spacecraft in simulation and
on the robotic spacecraft simulator testbed. In Chapter 4, we derive a determin-
istic surrogate trajectory optimization problem for a stochastic nonlinear optimal
control problem. We study the asymptotic performance and controllability of the
deterministic surrogate problem. In Chapter 5, we design a motion planning and
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control algorithm to compute safe and optimal motion plans under uncertainty in
dynamics and environment. In Chapter 5, we extend the motion planning algorithm
to incorporate an information cost to design safe and informative trajectories for
exploration. We integrate this planning algorithm with robust regression and an
exponentially stable feedback controller to demonstrate safe exploration. In Chap-
ter 7, we describe the design and development of a six degree of freedom spacecraft
dynamics simulator. We conclude in Chapter 8 with a summary of the contributions
made in the thesis and a note on future work.
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C h a p t e r 2

PRELIMINARIES

To understand the information-based guidance and control architecture proposed
in Chapter 3, we introduce the spacecraft formation flying dynamics, optimal con-
trol problem used for optimal orbit initialization and reconfiguration, attitude plan-
ning problem. We show example planning outputs by solving the optimal control
problem using the sequential convex programming method. Following this, we de-
scribe the generalized polynomial chaos (gPC) method used for uncertainty propa-
gation in Chapters 4, 5, and 6.

2.1 Spacecraft Formation Flying
The relative orbit dynamics [125, 126] of the observer spacecraft with respect to the
target spacecraft in chief orbit are described in a Local-Vertical Local-Horizontal
(LVLH) frame (x̂, ŷ, ẑ) as shown in Fig. 2.1 that is fixed to the target spacecraft.
The x̂ coordinate is in the chief orbit’s radial direction, the ẑ coordinate is defined
in the angular momentum direction, and the ŷ coordinate completes the right handed
coordinate system.

J2 influence [25]. Energy matching is shown by simulation, in the
presence of J2, to provide collision-free trajectories for the swarm
over several hundred orbits with only a single initializing burn by
each agent. Related work has found other conditions that show J2
invariance between two spacecraft but they do not address the
possibility of collisions [6–8,10,11]. In comparison, simulations in
Sec. IV suggest that energy matching provides a powerful method to
minimize both swarm drift rate and the collision rate across a wide
range of reference orbits, regardless of altitude, eccentricity, and
inclination. A main contribution of this paper is to identify energy
matching as a very effective approach to swarm keeping. In Sec. V, a
multiburn guidance method is developed and implemented which
extends the energy-matching method so that it is effective in the
presence of atmospheric drag in addition to J2. Additionally, the
potential use of the J2-invariant trajectories in a feedback controller is
discussed. The collision-free equations and multiburn guidance
method are designed specifically to address the major concerns of
spacecraft swarmGNC, including collision avoidance and propellant
efficiency, in the presence of J2 and drag.

The paper is organized as follows. In Sec. II, the problem statement
and the assumptions made in initializing the swarm are defined.
Additionally, the metrics that are used to quantify the swarm motion
are defined. In Sec. III, we investigate the effect of J2 on the swarm
and use the HCW equations to develop some simple single burn
control options. In Sec. IV, the main results are presented by
expanding upon the equations developed in Sec. III, taking into
account the J2 perturbation. In Sec. V, the simulations are rerun with
atmospheric drag and use a multiburn guidance method based on the
equations developed in Sec. IV to provide collision-free motion in an
environment perturbed by both J2 and drag. Additionally, the
advantages of using J2-invariant trajectories as the reference for a
feedback controller are discussed. The simulations run in this paper
use a high-fidelity dynamic model, which includes both J2 and
atmospheric drag. The derivation for this model is located in
Appendices A and B.

II. Preliminaries: Swarm Initialization

To investigate the relative motion of the swarm, two coordinate
systems must be defined. First, the Earth-centered inertial (ECI)
coordinate system is used to locate the chief spacecraft or a virtual
reference point called the chief orbit (see Fig. 1a). This coordinate

system is inertially fixed and located at the center of the Earth. The X̂

direction points toward the vernal equinox, the Ẑ direction points

toward the north pole, and the Ŷ direction is perpendicular to the
other two and completes the right-handed coordinate system. The
second coordinate system is the local vertical, local horizontal
(LVLH) coordinate system. The LVLH frame is centered at the chief
spacecraft or chief orbit. Figure 1a shows the LVLH frame with
respect to a chief spacecraft. The x̂, or radial, direction is always

aligned with the position vector and points away from the Earth; the
ẑ, or cross-track, direction is aligned with the angular momentum
vector; and the ŷ, or along-track, direction completes the right-
handed coordinate system. The LVLH frame is a rotating frame with
a rotation rate of!x about the radial axis and!z about the cross-track
axis.

The chief orbit is defined using hybrid orbital elements, which
include geocentric distance r, radial velocity vx, angular momentum
h, inclination i, right ascension of the ascending node �, and
argument of latitude �. These six parameters fully define [22] the
chief orbit in the ECI frame. These hybrid states are used instead of
the classical orbital elements because the orbits of the spacecraft may
vary due to the perturbations. Hybrid states still have a physical
meaning when describing a perturbed orbit. The classical orbital
elements can easily be found from the hybrid states. The dynamics
for the chief orbit are derived in AppendixA. Now that the chief orbit
has been located, the LVLH frame can be defined for the chief
orbit and used to locate the deputy spacecraft. The relative position
and velocity of the deputy spacecraft are expressed by ‘j �
� xj yj zj�T and _‘j � � _xj _yj _zj�T , respectively.

For numerical simulations in this paper, the initial distribution of
the swarm is a normal distribution in each direction. Each normal
distribution is centered at the chief, or origin, of the LVLH frame and
has a standard deviation �. In other words, the initial position of a
spacecraft can be written as �x; y; z� � �N�0; ��; N�0; ��; N�0; ���
where all normal distributions are independent. This distribution was
chosen to represent a random deployment of the swarm. The actual
deployment of the spacecraft would need to be more controlled than
what is assumed for the simulations in this paper. Therefore, the
results in the following sections give conservative estimates for
the number of collisions. Additionally, each deputy has the same
velocity as the chief in the LVLH frame, which means that
� _x; _y; _z� � �0; 0; 0�. However, in all of the simulations, each
spacecraft performs a burn at the start of the simulation, and so the
assumption that all of the relative velocities are the same will not
affect the swarmmotion. An example of a spacecraft swarm is shown
in Fig. 1b.

Each simulation in this paper is run for a period of 500 orbits with
60 output times per orbit. Unless otherwise specified, the nominal
swarm has a circular chief orbit with an altitude of 500 km, an
inclination of 45 deg, and an argument of latitude of 45 deg. The
nominal swarm has 500 deputies distributed around the chief using a
standard deviation � of 0.5 km.

To determine the effectiveness of a swarm, metrics to quantify the
motion of the swarm are needed. Two metrics are the drift of each

spacecraft Dj and the average drift of the swarm �D. The drift of a
spacecraft is the maximum along-track position in the LVLH frame
over all orbits compared with the maximum along-track position
attained during its first orbit, and this is illustrated in Fig. 2. The
average drift of the swarm is

Fig. 1 A visualization of the relative coordinate system and a spacecraft swarm.
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Figure 2.1: Left : A visualization of the ECI (X̂, Ŷ , Ẑ) and LVLH (x̂, ŷ, ẑ) frames,
taken from [16]. Right : Passive relative orbits for four deputy spacecraft, propa-
gated using the initial conditions proposed in [16].

We assume that the target spacecraft’s dynamics is defined by the Gauss’s varia-
tional equation [16],

æ̇ = fc(æ) + G(æ)uc, (2.1)
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where æ ∈ R6 is the orbital element vector in the ECI frame, the bias term fc

determines the rate of change of æ, and G is the control allocation matrix for the
control input uc ∈ R3. In the LVLH frame, the functional form of the relative
orbital dynamics of the ith observer is defined as follows:

ẋi = fi(xi,æ, æ̇,ui), (2.2)

where the bias term fi depends on the target’s dynamics æ and the force input ui.
For the definitions of fc, fi, and G see [16]. We assume that the target spacecraft is
in a circular orbit, the linearized relative dynamics fi of the ith observer spacecraft
for continuous control input ui in the LVLH frame are as follows:

ẍ− 2nẏ − 3n2x =
fthr

m
ux, ÿ + 2nẋ =

fthr

m
uy, z̈ + n2z =

fthr

m
uz, (2.3)

where n =
√
µ/r3

0 is the mean motion of the target spacecraft, µ is the gravitational
constant, r0 is the radius of the chief orbit with respect to the ECI frame, and m is
the mass of the observer spacecraft. The control input u = [ux, uy, uz]

> scales the
thruster force fthr similar to a pulse-width modulated signal. These dynamics in
Linear Time Invariant (LTI) state-space form are given by:

ẋ = Ax + B
u

m
, (2.4)

where x = [x, y, z, ẋ, ẏ, ż]>. The matrices A and B are given in (2.38) (appendix).

The discrete-time dynamics for is given by:

x[k + 1] = Adx[k] + Bdu[k], with Ad = eA∆t, Bd =

∫ ∆t

t=0

eAτ
B

m
dτ, (2.5)

where k is the current time-step, and ∆t is the discretization time step. The matrix
Ad is given in (2.39). For continuous control u(t) the input matrix Bd is given in
(2.40).

The LTI dynamics with control input u is used in designing trajectories for reach-
ing a stable relative orbit and for reconfiguration maneuvers to a new set of stable
relative orbits. The relative orbits for parking and inspection are designed using
the energy matching condition discussed below in (2.6), which results in passively
stable orbits that require minimum fuel for maintenance.

The global criterion for stable relative orbits is given by the energy matching

1

2

(
(ẋ− ny)2 + (ẏ + n(x+ r0))2 + ż2

)
− µ√

(r0 + x)2 + y2 + z2
= − µ

2r0

. (2.6)
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In (2.6), the energy of the observer is matched with that of the target spacecraft at all
time t. Using this criteria to design the orbits of the deputies results in a bounded
relative motion with respect to the LVLH frame. For simplified analysis, we use
a subset of the energy matched orbits defined by the following initial condition
constraint for the HCW dynamics when u = 0:

ẏ0 = −2nx0, (2.7)

where ẏ0 is the initial velocity in y direction and x0 is the initial position in the
LVLH frame. The initial ∆V in y0 is computed using the initial position infor-
mation. We use this condition to generate a pool of stable relative trajectories and
search for an optimal trajectory in the pool for conducting the inspection mission.

2.2 Optimal Relative Orbit Initialization and Reconfiguration
The trajectory design for stable relative orbit initialization and orbit reconfiguration
is formulated as a fixed-time optimal control problem with L1 fuel cost. For N
observer spacecraft the optimal control problem is given in the following problem.

Problem 1. Centralized Continuous Time Relative Orbit Reconfiguration

JPRO = min
xi,ui,i∈{1,...,N}

N∑
i=1

∫ tf

t0

‖ui(t)‖1dt (2.8)

s.t ẋi = Axi + Bui ∀t ∈ [t0, tf ] (2.9)

‖C(xi − xj)‖2 ≥ rc ∀t ∈ [t0, tf ], j > i, j = {2, . . . , N} (2.10)

ui ∈ U ∀t ∈ [t0, tf ] (2.11)

xi(t0) = xi0 & xi(tf ) = xif , (2.12)

where i denotes the observer and i ∈ {1, . . . , N}, C = [I3×3 03×3], rc is the min-
imum safe allowable distance between two spacecraft, U is a convex control con-
straint set, and xi0 and xif are the initial and terminal conditions of the ith observer.
The optimal control problem is transformed to a convex optimization problem by
using the discrete dynamics in (2.5) and convexifying the collision constraint in
(2.10) about a nominal trajectory (x̄i, ūi), given the full trajectory (x̄j, ūj) of the
neighboring observer spacecraft j, as discussed in prior work [15, 127]. For each
observer spacecraft i the following decentralized convex optimization problem is
solved to compute the trajectory.
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Figure 2.2: An example of the optimal PRO initialization maneuver and PRO re-
configuration maneuver computed using Problem 1 and 2. We designed the PRO’s
using the stable subspace proposed in [16].

Problem 2. Decentralized Discrete Time Convex Relative Orbit Reconfiguration

JPROi = min
xi,ui

T−1∑
k=0

‖ui[k]‖1 ∆t (2.13)

s.t xi[k + 1] = Adxi[k] + Bdui[k] ∀k ∈ {1, . . . , T − 1} (2.14)

(x̄i[k]− x̄j[k])>C>C(xi[k]− x̄j[k]) ≥ rc‖C(x̄i[k]− x̄j[k])‖2

∀k ∈ {0, 1, . . . , T}, j > i, j = {2, . . . , N} (2.15)

ui[k] ∈ U ∀k ∈ {0, 1, . . . , T − 1} (2.16)

xi[0] = xi0 & xi[T ] = xif , (2.17)

where T is the number of time steps in the time interval [t0, tf ], k = 0 and k = T

correspond to the initial condition and terminal condition, respectively. Problem
2 is used to compute a safe trajectory for stable relative orbit initialization and
reconfiguration. The choice of initial and terminal conditions for each phase of the
mission in Fig. 3.1 is discussed in Section 3.2. The convex program is initialized
with a straight line trajectory from initial to terminal conditions as the nominal
trajectory. A model predictive control (MPC) formulation of the above problem can
be used for controlling the spacecraft to track the designed trajectory [15, 127]. The
orbital dynamics and attitude dynamics are assumed to be decoupled for the motion
planning and control design. We discuss the attitude dynamics and trajectory design
problem formulation in the following sections.

2.3 Attitude Dynamics
The attitude of the spacecraft can be represented by any attitude representations
including quaternions [128], Modified Rodrigues Parameters (MRPs) [128], and
SO(3) rotation matrices. For the attitude planning problem we use quaternions
q ∈ R4 and ‖q‖2 = 1, q ∈ H, where H is the Hamiltonian space and have a
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bijective mapping to the quaternion sphere. The attitude kinematics equation is
given using the body angular rates ω = [ω1, ω2, ω3]> ∈ R3. The kinematics of
quaternions are given as

q̇ = Ω(ω)q, (2.18)

where Ω(ω) is given in (2.41). The attitude dynamics is as follows:

ω̇ = −J−1(ω × Jω) + J−1τ , (2.19)

where J is inertia tensor of the observer, τ is the input torque, and × denotes
the vector cross product. The continuous dynamics is linearized around a nomi-
nal trajectory (q̄, ω̄) and the functional form of the linear system is defined in the
following equations:

q̇ = A1q(q− q̄) + A1ω(ω − ω̄) + Ω(ω̄)q̄, (2.20)

where A1q = ∂Ωq
∂q

∣∣∣
(q,ω)=(q̄,ω̄)

,A1ω = ∂Ωq
∂ω

∣∣∣
(q,ω)=(q̄,ω̄)

(2.21)

ω̇ = A2ω(ω − ω̄) + J−1τ − J−1(ω̄ × J)ω̄, (2.22)

where A2ω = −∂(J−1(ω̄ × J)ω̄)

∂ω

∣∣∣
ω=ω̄

. (2.23)

The linearized equations are discretized for a time interval ∆ta and time steps Ta
and represented as follows to use in the sequential convex programming formula-
tion:

q[k + 1] = A1q(q̄, ω̄,∆ta)[k]q[k] + A1ω(q̄, ω̄,∆ta)[k]q[k]

+ C1(q̄, ω̄,∆ta)[k], (2.24)

ω[k + 1] = A2ω(ω̄,∆ta)[k] + J−1τ [k] + C2(ω̄,∆ta)[k], (2.25)

where k ∈ {1, . . . , Ta} is the time step. The matrices A1q, A1ω, C1, A2ω, and
C2 are computed using the symbolic Python package SymPy. The linear, discrete
form of the attitude dynamics is used to construct a sequential convex programming
problem for designing a smooth and optimal attitude trajectory.

2.4 Optimal Attitude Trajectory Planning Problem
The attitude planning problem is formulated as the following optimal control prob-
lem with a norm constraint on the quaternions:
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Problem 3. Continuous Time Attitude Planning

Jattitude = min
q,ω,τ

∫ tf

t0

‖τ (t)‖2dt

s.t q̇ = Ω(ω)q ∀t ∈ [t0, tf ]

ω̇ = −J−1 (ω × Jω) + J−1τ ∀t ∈ [t0, tf ]

q>q = 1 ∀t ∈ [t0, tf ]

‖τ‖∞ ≤ τmax ∀ t ∈ [t0, tf ]

q(t0) = q0,ω(t0) = ω0 & q(tf ) = qf ,ω(tf ) = ωf ,

(2.26)

where τmax is the maximum torque that can be applied on the spacecraft using re-
action wheels, and (q0,ω0) and (qf ,ωf ) are the initial and terminal orientation
and angular velocity, respectively. The solution of Problem 3 is a minimum en-
ergy attitude maneuver from initial orientation q0 to a terminal orientation qf . We
use the discrete dynamics in (2.24) and (2.25) to formulate the following convex
optimization problem given a nominal attitude q̄ and angular velocity trajectory ω̄.

Problem 4. Linearized Discrete Time Attitude Planning

Jattitude = min
q,ω,τ

Ta∑
k=0

‖τ [k]‖2∆ta (2.27)

s.t (2.24) and (2.25) ∀k ∈ {0, . . . , Ta − 1} (2.28)

τ [k + 1]− τ [k] ≤ α∆ta k ∈ {0, . . . , Ta − 2} (2.29)

‖τ [k]‖∞ ≤ τmax k ∈ {0, . . . , Ta} (2.30)

q[0] = q0,ω[0] = ω0 & q[Ta] = qf ,ω[Ta] = ωf . (2.31)

We use a normalized nominal attitude trajectory q̄
‖q̄‖ for linearization in (2.24)

and (2.25), to impose the norm constraint ‖q‖2 = 1. We additionally introduce
the constraint in (2.29) to account for the actuator dynamics, where α is a con-
stant depending on the input signal to the actuators. For a given initial and terminal
quaternion q0 and qf , we initialize Problem 4 by computing the nominal quaternion
q̄ trajectory using slerp interpolation. The nominal angular velocity trajectory ω̄ is
computed using q̄ and the kinematics in (2.18). Problem 4 is solved using sequen-
tial convex programming. The attitude motion plan is tracked using the nonlinear
control law derived in prior work [129]. In Chapter 3, we integrate Problem 2,
Problem 4, and control algorithms [15, 129] with an information cost and derive an
algorithm for active inspection of a spacecraft.
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Figure 2.3: An example of the optimal attitude trajectory computed using Prob-
lem 4 for the initial and terminal states q[0] = [1, 0, 0, 0], ω[0] = 0, q[Ta] =
[0.5, 0.167, 0.167, 0.833], and ω[Ta] = 0, respectively.

2.5 Generalized Polynomial Chaos
The generalized Polynomial Chaos (gPC) [42, 43, 93] expansion theory is used to
model uncertainty with finite second-order moments as a series expansion of or-
thogonal polynomials. The polynomials are orthogonal with respect to a known
density function ζ(.). Consider the random vector ξ with independent identically
distributed (i.i.d) random variables {ξi}

dξ
i=1 as elements. Each ξi ∼ N (0, 1) is nor-

mally distributed with zero mean and unit variance. The random vector x(t) ∈ X ⊆
Rdx at time t, can be expressed as the following series:

xi(t) =
∑∞

j=0 xij(t)φj(ξ), (2.32)

where xi denote the ith element in the vector x ∈ X and xij is the jth coeffi-
cient in the series expansion. The dimension dξ is the sum of number of random
inputs in the SDE (4.7) and the number of random initial conditions. The func-
tions φj(ξ) are constructed using the Hermite polynomial [42] basis functions. The
functions φj(ξ) are orthogonal with respect to the joint probability density function

ζ(ξ) = ζ(ξ1)ζ(ξ2) · · · ζ(ξdξ), where ζ(ξk) = 1√
2π
e
−ξ2k

2 . The choice of the orthogo-
nal polynomials depends on the uncertainty model effecting the dynamics. We refer
to [44] for details on type and construction of the polynomials for different standard
uncertainty models such as uniform, beta, and Poisson distributions.

Remark 1. The series expansion is truncated to a finite number ` + 1 as xi ≈∑`
j=0 xij(t)φj(ξ) based on the maximum degree of the polynomials PgPC required

to represent the variable x. The minimum ` required to appropriately represent x

with uncertainty parameter ξ ∈ Rdξ is given by ` =
(

PgPC+dξ
dξ

)
− 1.
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Figure 2.4: Example gPC approximation of some standard probability distribution
functions (PDF) using gPC expansion. For the beta and exponential distributions,
gPC expansion represents the PDF well with just second order approximation. For
a Gaussian distribution, the gPC representation is exact.

The coefficients xij(t) are computed using the Galerkin projection given by the
following equation:

xij(t) =

∫
D ζ(ξ)xi(t)φj(ξ)dξ

〈φj(ξ), φj(ξ)〉
, (2.33)

where 〈φi(ξ), φj(ξ)〉 =
∫
D ζ(ξ)φi(ξ)φj(ξ)dξ. For non-polynomial functions, the

Galerkin projection is computed using the Stochastic Collocation [43] method as
follows: ∫

D
ζ(ξ)xi(t)φj(ξ)dξ ≈

m∑
k=1

wkxi(t)φj(nk), (2.34)

where Gauss-Hermite quadrature is used to generate the nodes nk and the corre-
sponding node weights wk. Following Lemmas 1 and 2 discuss the convergence of
the gPC expansion to the true distribution and the error due to truncated polynomial
approximation of a distribution.
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Lemma 1. (Cameron-Martin Theorem [130]) The gPC series approximation in (2.32)

converges to the true value xi ∈ L2.

‖xi(t)−
∑`

j=0 xij(t)φj(ξ)‖L2 → 0, as ` → ∞ ∀ t ∈ [t0, tf ]. (2.35)

Remark 2. The expectation E(xi) and variance Σxi of the random variable xi can
be expressed in terms of the coefficients of the expansion as follows:

E(xi) = xi0, Σxi ≈
∑̀
j=1

x2
ij〈φj, φj〉 as `→∞. (2.36)

Lemma 2. (Truncation Error Theorem [131]) If an element xi of the random vari-

able x is represented using ` polynomials, then the approximation error is given as

follows:

‖xi −
∑̀
j=0

xij(t)φj(ξ)‖ = ‖e`‖ ≤

√√√√ ∞∑
j=`+1

x2
ij‖φj‖2. (2.37)

Lemmas 1 and 2, and Remark 2 will be used in studying the convergence of the
gPC approximation of the cost function, the SDE and the chance constraints. Fur-
thermore, the higher-order moments can be expressed as a polynomial function of
the coefficients.

Curse of Dimensionality

The truncated polynomial expansion is a finite-dimensional approximation of the
random variable. The number of polynomials ` grow exponentially large based on
the degree of polynomial used to represent the state distribution. The large dimen-
sionality can be reduced, inducing sparsity in the gPC expansion, by using tech-
niques like sparse gPC [132], and data-driven gPC [133]. A cost effective approach
to estimate moments up to second order is to use gPC polynomials up to degree 2,
i.e., PgPC = 2 [134]. The computationally complexity for PgPC = 2 is equivalent to
linear covariance propagation. Note that, unlike the linear covariance propagation
method, the gPC method with PgPC = 2 accounts for the coupling between the state
x and the white-noise process dw.

2.6 Chapter Summary
We described the formation flying dynamics, optimal control problem formula-
tion for PRO initialization and reconfiguration, optimal attitude trajectory planning
problem, and the generalized polynomial chaos method for uncertainty propagation.
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Appendix

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0


, and B =



0 0 0

0 0 0

0 0 0

fthr 0 0

0 fthr 0

0 0 fthr


(2.38)

Ad =


4−3 cosn∆t 0 0 1

n
sinn∆t 2

n
(1−cosn∆t) 0

6(sinn∆t−n∆t) 1 0 − 2
n

(1−cosn∆t) 1
n

(4 sinn∆t−3n∆t) 0

0 0 cosn∆t 0 0 1
n

sinn∆t

3n sinn∆t 0 0 cosn∆t 2 sinn∆t 0
−6n(1−cosn∆t) 0 0 −2 sinn∆t 4 cosn∆t−3 0

0 0 −n sinn∆t 0 0 cosn∆t

 (2.39)

Bd =
fthr

m


1
n2

(1−cosn∆t) 2
n2

(n∆t−sinn∆t) 0

− 2
n2

(n∆t−sinn∆t) 4
n2

(1−cosn∆t)− 3
2

∆t2 0

0 0 1
n2

(1−cosn∆t)
1
n

sinn∆t 2
n

(1−cosn∆t) 0

− 2
n

(1−cosn∆t) 4
n

sinn∆t−3∆t 0

0 0 1
n

sinn∆t

 (2.40)

Ω(ω) =


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 (2.41)
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C h a p t e r 3

INFORMATION-BASED GUIDANCE AND CONTROL FOR
ON-ORBIT INSPECTION

In this chapter, we discuss the concept of operations of a typical Earth orbit inspec-
tion mission with the target spacecraft, information-based optimal control prob-
lem formulation for inspection. We design a hierarchical algorithm to solve the
information-based optimal control problem. We demonstrate inspection of a tar-
get spacecraft with multiple deputy spacecraft using the proposed algorithm. We
validate the algorithm on the robotic spacecraft simulator (see Chapter 7) testbed.

The scenario considered in this thesis has three phases (see Figure 3.1). In the first
phase, the small observer spacecraft are deployed from the target spacecraft and
begin a drift phase. The drifting spacecraft are then inserted into a parking PRO or
an initial PRO in the second phase. In the third phase, the spacecraft in stable rela-
tive orbits are used for inspecting the target. As needed, the spacecraft reconfigure
to a new set of PROs to inspect a previously unobserved surface area on the target
spacecraft. In this chapter, we use the Hills-Clohessy-Wiltshire (HCW) equations
to describe the relative orbital dynamics of the observer CubeSats. For the sta-
ble relative orbit initialization and reconfiguration phase, we formulate an optimal
control problem with L1 fuel cost and safety, energy matching as constraints, and
solve it using sequential convex programming (SCP), similar to prior work [14].
The planned trajectories are tracked using a model predictive control formulation
of the convexified problem. During the inspection phase, we represent the attitude
dynamics using quaternions. The attitude planning is done using a combination of
slerp interpolation and SCP with norm constraint on the quaternions. We use an ex-
isting nonlinear feedback controller for attitude tracking [129]. In the following, we
review the information-based optimal control problem as applied to the coordinated
inspection task.

3.1 Multi-Agent Motion Planning for Inspection
We design optimal PROs and the attitude trajectory for N observer spacecraft, in-
specting M points of interest (POI) on a target spacecraft, by using the following
information-based optimal control problem.
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(a) Three observer spacecraft deployed
from the target spacecraft.

(b) Initialization of the deployed ob-
server spacecraft into stable relative or-
bits.

(c) Reconfiguration of the observer
spacecraft to inspect a different surface
area on the target.

(d) Pointing control for inspection of the
target spacecraft.

Figure 3.1: Concept of operations of an inspection mission for observing a target
spacecraft with multiple observer spacecraft deployed.

Problem 5. Information-Based Optimal Control Problem

min
p,ui

∫ tf

0

 ∑
sj∈POI

H(p, sj) +
∑
i

‖ui‖

 dt (3.1)

s.t.



Dynamics Model : ṗi = f(pi,ui)

Safe Set : pi ∈ P , ∀i ∈ {1, . . . , N}

Points of Interest : sj ∀j ∈ {1, . . . ,M}

Inspection Sensor Model : zi,j = h(pi, sj) + ξ, ξ ∼ N (0,Σh(pi, sj)),

(3.2)

Points of Interest : sj ∀j ∈ {1, . . . ,M} (3.3)
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where
∑

sj∈POI H(p, sj) is the information cost,
∑

i ‖ui‖ is the fuel cost, pi is
the full-pose of the observer spacecraft, sj is the full-pose of the jth POI on the
target spacecraft. The inspection sensor model in (3.3) outputs the value of interest
zi,j , when the ith observer with pose pi is inspecting a POI at sj . Minimizing the
information cost

∑
sj∈POI H(p, sj) ensures that the inspection task is complete. We

discuss the choice of the information cost and the sensor model in Section 3.2.

We decompose the Problem 5 to derive the proposed hierarchical algorithm in Sec-
tion 3.2. In the hierarchical algorithm, we use the information-cost and the sensor
model to select the informative PROs and attitude for each agent. We optimize the
informative PROs and attitude plan for optimal orbit insertion, reconfiguration, and
attitude tracking using the optimal control problems discussed Sections 2.2 and 2.4.

3.2 Main Distributed Inspection Algorithm
Our approach has four major components: information estimation, state estimation,
motion planning, and control, see Fig. 1.1. The information estimation quantifies
the information gain of the target spacecraft, given past and potential future poses of
all the observer spacecraft. The estimated information gain is a crucial input to the
motion planner, which considers a set of alternative passive relative orbits (PROs)
and decides when and how to reconfigure the spacecraft, while approximately max-
imizing the information gain and minimizing the control effort. For computational
efficiency, both information estimation and motion planning modules rely on sim-
plified attitude dynamics. Our controls component tracks the planned motions at
runtime. We assume that an accurate estimate of the LVLH frame and the full state
of the observer spacecraft in the LVLH frame and the target spacecraft in the ECI
frame are available at all times during the guidance and control.

We first discuss the centralized implementation of the algorithm and then discuss
on the extension to distributed architecture with communication between observers.
The algorithm is implemented using a hierarchical framework, where different com-
ponents are executed at different frequencies (see Figure 3.2). In an offline pre-
processing stage, we use a rough prior model of the target spacecraft to generate
PRO candidates as well as a ray casting database, which is a data structure that en-
ables efficient computation of the information gain at runtime. Our motion planning
module runs at a low rate ωlow, e.g., once per orbit. It uses the PRO candidates, ray
casting database, as well as information database to decide whether and how the
spacecraft should reconfigure to different PROs. These PROs are maintained us-
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ing our PRO controller at a mid-rate ωmid, e.g., every few seconds. At the same
timescale, we plan for new desired attitudes, take pictures of the target spacecraft,
and update our relative state estimate and information cost. At the highest rate
ωhigh, e.g., several times per second, we use attitude trajectory optimization and
control. The pseudo code of our approach is given in Algorithm 1 for centralized
implementation.

Offline

Raycasting
Database

PRO
Candidates

High-Rate Mid-Rate

Low-Rate

Attitude Trajectory Optimization and Control

PRO 
Controller

PRO Candidate
Selection

PRO
Reconfiguration

Planning
PRO 

Assignment

Information
Database

Communication

Feedback 
Controller

Control
Allocation

Slerp 
Interpolation

CameraGyroReaction
Wheels

Star
tracker Thrusters

Attitude
Planning

Relative State
Estimate

Attitude
Trajectory

Optimization

Figure 3.2: The multi-level and multi-timescale hierarchical architecture for com-
bined orbit and attitude planning and control for an inspection task.

3.2.1 Prerequisites: Information Metric
Information Gain

To quantify the information, we assume that we have a (rough) prior model of the
target spacecraft and sample points of interest (POIs) on its surface. The overall
goal is then to minimize the variance of the estimation of all POIs. Specifically, we
introduce the information cost, H , based on prior work [69], as follows:

HPOI(s) =

(
w−1 +

∑
p∈P

σ(p, s)−1

)−1

H =
∑

s∈POIs

HPOI(s)φ(s), (3.4)

where s ∈ R3 is a sampled POI on the target spacecraft’s surface, w ∈ R is the
basic variance based on the prior model of the target spacecraft, p ∈ SE(3) is
the pose of a sensor mounted on a spacecraft such as a camera, P is the set of all
sensor poses, σ(p, s) estimates the variance of estimating POI at s with the sensor



29

Algorithm 1: Multi-level Hierarchical Guidance and Control Architecture.
Input: Prior rough model of the target, points of interest (POI) on its surface,

and the number of observers N
Input: Initialized instance of the information cost (Section 3.2.1) and

information database (Section 3.2.1)
Input: Minimum safe distance dmin and desired sensing distance ds from the

observer to the target, sensor field of view
Input: Pose estimates of all the observers and the LVLH frame available to all

the observers at all time
Output: Autonomous inspection
.Pre-processing [Offline]

1 PreProcessing (Input)
2 Generate PRO candidate pool as discussed in Section 3.2.2,
3 Generate ray casting database,
4 Initialize information database using prior model,
5 return PRO candidates, information database, ray casting database

.Low-Rate: [loop frequency: ωlow]
6 LowRate (information database, PRO candidates)
7 Generate an optimal set of N PROs that minimizes information cost,

see Section 3.2.3,
8 for observer in {1, . . . , N} do
9 Compute N reconfiguration plans for the observer to each selected

PRO, see Section 3.2.3,

10 Compute optimal PRO assignment to each observer that minimizes total
reconfiguration cost, see Section 3.2.3,

11 return reconfiguration plan, PRO assignment

.Mid-Rate: [loop frequency: ωmid]
12 MidRate (reconfiguration plan, PRO assignment)
13 for observer in {1, . . . , N} do
14 if reconfiguration plan is available then
15 Execute reconfiguration plan using MPC controller discussed

in [15],
16 Plan attitude using visibility check with the ray casting database,

information update, see Section 3.2.4,
17 else
18 Propagate the assigned PRO, HCW dynamics using (2.7),
19 Maintain Stable HCW using PRO controller, see Section 3.2.4,
20 Plan attitude using visibility check with the ray casting database,

information update, see Section 3.2.4,

21 return attitude plan, information update

.High-Rate: [loop frequency: ωhigh]
22 HighRate (attitude plan)
23 for observer in {1, . . . , N} do
24 Attitude trajectory optimization using Problem 4,
25 Nonlinear attitude control using the reference input [129]
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at p, and φ(s) ∈ R is the relative importance of POI s. The cost H is similar
to Bayesian sensor fusion, where the estimates are fused using the confidence in
the noisy sensor outputs. This formulation can handle important cases such as
multiple spacecraft observing the same POI well. Additionally, minimizing H also
minimizes the expected variance of the estimation of the POIs [69].

For a camera, the function σ(·, ·) corresponds to information per pixel. Minimiz-
ing σ entails computing the location and orientation of the camera to optimally
capture a POI. The choice of σ can directly incorporate other sensor or spacecraft
characteristics, such as the current uncertainty of the spacecraft’s pose estimate, the
accuracy of the sensor based on the distance between p and s, or the lighting con-
ditions. Here, we use a simple formulation of σ assuming an RGB camera sensor
and no environmental noise [135]:

σ(p, s) ∝

dist2(p, s) s visible from p

∞ otherwise
, (3.5)

where dist(p, s) is the Euclidean distance between POI s and pose p. In practice,
computing σ requires an efficient visibility check. Since we have a rough prior
model of the target spacecraft, we propose to use a ray casting database, which
uses pre-processing to speed up visibility checks significantly, see Section 3.2.2.

Information Database

Let P be the set of all sensor poses. For each POI s, we store the set of sensor poses
p ∈ P that can observe s as PPOI(s), i.e.,

PPOI(s) = {p ∈ P|σ(p, s) finite}. (3.6)

We call the data structure that storesPPOI(s) for all s ∈ POIs information database.
We use the fact that our state estimator uses the common LVLH frame for all the ob-
servers, making direct pose exchanges feasible. The information database is com-
pact and can be stored locally on each observer. Furthermore, if the covariance
of the pose estimate is available, it can be communicated and used as well for an
improved uncertainty sensor model σ.

3.2.2 Pre-processing: PRO Candidates and Ray Casting
PRO Candidate Computation

Passive Relative Orbits (PROs) play an important role in the proposed GNC ar-
chitecture as it provides thrust-free orbits around the target spacecraft that can be
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utilized for on-orbit inspection and mapping. With prior knowledge of the target
spacecraft model and the desired sensing distance of a given sensor, we can pre-
compute a finite set of PRO candidates that will be utilized throughout the on-orbit
inspection and mapping in real-time.

To generate a set of PRO candidates to geometrically cover the target spacecraft
from varying perspectives in a systematic manner, we first express the solution to
HCW (2.3) from Cartesian to Phase-Magnitude [125] form:

x(t) = ρx sin (nt+ αx), y(t) = ρy + 2ρx cos (nt+ αx), z(t) = ρz sin (nt+ αz)

(3.7)

ρx =

√
ẋ2

0 + x2
0n

2

n
, ρy = y0 − 2ẋ0/n, ρz =

√
ż2

0 + z2
0n

2

n
(3.8)

αx = tan−1 nx0

ẋ0

, αz = tan−1 nz0

ż0

. (3.9)

Then we set ρy = 0 to restrict the PRO candidates to be concentric around the
target spacecraft. The concentric PROs ensure collision avoidance [16] between
spacecraft as multiple orbits around the target spacecraft are used for inspection.
We further confine the PRO candidates to have orbits whose distance to the target
spacecraft varies around the desired sensing distance of the sensor ds by setting
ρx = 0.5ds. Note that these concentric PROs will have semi-major axis of ds and
semiminor axis of 0.5ds in its x − y projection. Then the parameter ρz and αz are
varied from 0 to 2ds and −π/2 to π/2, respectively, to generate PRO candidates to
be utilized for the on-orbit inspection. The parameter ρz controls the eccentricity of
the orbit and determines how far stretched a PRO is along the z-axis. The parameter
αz rotates a PRO about the z-axis and provides varying cross-sectional view of the
target spacecraft. The PROs generated in this manner are essentially 3D ellipses that
are different cross-sections of a 3D cylinder encompassing the target spacecraft.
PROs generated using this technique cover only the radial surface of a cylinder
around the target spacecraft. In order to generate the PROs that cover top and
bottom surfaces of the target spacecraft, we set the parameter ρz = ds, ρy = 0, αx =

0, and vary ρx and αz in the range [dmin, 0.5ds] and [−π/2, π/2], respectively. The
parameter dmin is the minimum safe distance to the target spacecraft. An example
of generated PROs is shown in Fig. 3.3. Further, for each sampled PRO on the 3D
cylinder, we compute the delta-V required to initialize stable PRO at that location.

The total number of PRO candidates to be pre-computed will depend on the compu-
tational resources available on the spacecraft. The cardinality of the PRO candidate
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Figure 3.3: Nine generated PRO candidates to cover the target spacecraft (blue in
the center).

set should be large enough to be able to densely cover the target spacecraft, but
not too large to enable online computation of PRO reconfiguration and assignment
planning with on-board computation in real-time.

Ray Casting Database

In practice, computing σ requires an efficient visibility check. Since we have a
rough prior model of the target spacecraft, we propose to use a ray casting database,
which uses pre-processing to speed up visibility checks significantly. First, we use
the model to sample candidate points of interest (POIs). Then, we i) uniformly
create potential rays, ii) for each POI we use ray casting to find the subset of the po-
tential rays that are not occluded, and iii) we store the result in a hash map indexed
by spherical coordinates of the rays for fast look-up. At runtime, we first convert
the position of p to spherical coordinates and use bilinear mapping of the nearby
candidate rays to determine visibility. Second, we consider the attitude of p and the
field of view of the sensor. An example of the visibility check for a fixed camera is
shown in Fig. 3.4.

3.2.3 Low-Rate: Orbit Motion Planning
The orbit motion planner uses the PRO candidates, a set of pre-computed passive
relative orbits, and decides when and how each each of the observer spacecraft
should switch to one of the orbits in that candidate set. Our approach uses three
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Figure 3.4: An example of the visibility check using ray casting database for a
given camera with fixed location, pointed in −y direction with a field of view of 30
degrees.

parts: i) PRO candidate selection based on minimizing the information cost H , ii)
PRO reconfiguration planning to minimize delta-V, and iii) optimal PRO assign-

ment.

PRO Candidate Selection

For the PRO candidate selection, we use a sequential greedy approach to gener-
ate a PRO set from the PRO candidate pool that will collectively minimize the
information cost H when its orbits are committed by the observers. For each PRO
candidate, we first compute an estimate of H that would be attained if an observer
spacecraft takes measurements along the PRO. The estimation of H is computed
by considering future sensor poses sampled from the candidate PRO with attitudes
greedily assigned, together with the past sensor poses from all observers in the in-

formation database. Then, the candidate PRO with the lowest estimate of H is
appended as an element of the PRO set. The procedure is repeated N times such
that the cardinality of the PRO set generated is equal to the number of observers.

In our proposed multi-spacecraft GNC architecture, the sequential greedy approach
is favored over combinatorial optimization for its computational efficiency. Se-
lecting a PRO set that minimizes the information cost H with optimality guaran-
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tee requires combinatorial computation. This approach has factorial scaling as the
number of observers increase. In contrast, the sequential greedy approach scales
linearly with N and is able to generate near-optimal solution whose optimality gap
is sufficiently small in practice. Figure 3.5 demonstrates the PRO candidate selec-

tion using the sequential greedy approach and shows the resulting PRO set.

0 5
Orbit

0.0
0.5
1.0
1.5
2.0

H

Estimated H (iter 1)

0 5
Orbit

0.0

0.2

0.4

0.6

H

Estimated H (iter 2)

5
7

Selected Orbits

Figure 3.5: PRO candidate selection for N = 2 from the set of PROs shown in
Fig. 3.3. For each of the nine candidates the expected information cost is computed
(bar chart top left). PRO 5 achieves the lowestH and is selected in the first iteration.
Assuming one observer is orbiting PRO 5, we estimate H for the remaining PROs
in the second iteration. The lowest cost is achieved for PRO 7 (bar chart bottom
left). Observer spacecraft on the selected PROs can observe the target from many
perspectives (plot on the right).

PRO Reconfiguration Planning

For PRO reconfiguration planning we use sequential convex programming in Prob-
lem 1 to compute minimum fuel trajectories that transfer an observer spacecraft
from their current pose to each of the N selected PROs previously generated. In
computing an optimal transfer trajectory for an observer spacecraft to a target PRO,
the observer solves multiple instances of Problem 1 with varying terminal condi-
tions (2.17) sampled along the target PRO. The lowest cost solution from the mul-
tiple problem instances forms the optimal transfer trajectory, and its corresponding
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estimate of the delta-V is recorded. This process is performed for each of the ob-
servers and can be easily done in a distributed manner.

A similar approach is utilized at the beginning of the mission for PRO initialization,
which can be achieved by computing the initial thruster firing using the energy
matching conditions derived in [16]. These initial conditions are shown to be robust
to J2 perturbations.

S/C 0 to orbit 5 (cost 0.10) S/C 0 to orbit 7 (cost 0.09)

S/C 1 to orbit 5 (cost 0.09) S/C 1 to orbit 7 (cost 0.08)

PRO Reconfiguration Planning

Figure 3.6: Example solutions for the PRO reconfiguration planning problem. Each
of the two observers plan to move from its current state to one of the selected PRO
candidates (see Fig. 3.5) and simultaneously estimates the delta-V cost for such
maneuver (see captions on each plot).

PRO Assignment

For the PRO assignment, we use the Hungarian method [136] to assign candidate
PROs to specific spacecraft, such that the estimated delta-V is minimized. For ex-
ample, given 3 observers and 4 candidate PROs, the assignment is done such that∑3

i=1

∫ tf
t0
‖ui‖1dt is minimized. This PRO is initialized using the SCP formula-

tion or by using the stable initial conditions through the reconfiguration planning.
Such an approach can be easily distributed by utilizing, for example, distributed
auctions [14].



36

In the example in Fig. 3.6 there are two possible assignments: observer 0 selects
orbit 5 and observer 1 selects orbit 7, or observer 0 selects orbit 7 and observer 1
selects orbit 5. The Hungarian method computes the optimal assignment efficiently
in polynomial time. Here, both costs are equal (0.18) and both assignments are
optimal.

3.2.4 Mid-Rate: Attitude Planning, Information Update, and PRO Controller
Information Update

We update our current information gain H as well as the information database in
case of two events: if a new sensor measurement was obtained or if we receive a
message from another observer of a new measurement. Let p′ ∈ SE(3) the new
sensor pose. Then we can update the information database by i) finding the set of
visible POIs from p′ using the ray casting database, and ii) updating the database:

PPOI(s) = PPOI(s) ∪ {p′}; ∀s ∈ POIs s.t. s visible from p′. (3.10)

Afterwards, we can re-compute H by evaluating (3.4). If a new measurement was
obtained on the spacecraft, p′ is broadcasted to all other observers.

We note that H can also be re-evaluated incrementally more efficiently in the com-
mon case of p′ only observing a small subset of the POIs, because only a few
HPOI(s) values will change. Furthermore, if σ(·, ·) depends on the covariance of
p′, the covariance needs to be included in the information database and communi-
cated to the neighboring observers.

Attitude Planner

While the orbit motion planner (Section 3.2.3) already considers attitudes to select
the subset of suitable PROs, these attitudes might be impossible to track or are sim-
ply outdated based on the actual observations made so far. Therefore, we employ
an efficient, greedy attitude planner algorithm, which takes the current value of H
as well as angular velocity limits into account. A greedy approach is favored over
more elaborate attitude planning, such as ones using dynamic programming [137],
for computational efficiency.

Specifically, we try to point our camera towards an observable POI s∗ with the
highest variance:

s∗ = arg max{HPOI(s)|s ∈ POIs and s visible from p}, (3.11)
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where p is the current pose of the observer. As before, the visibility check can be
done efficiently using the ray casting database. Based on s∗, the desired attitude can
be computed such that s∗ is in the field of view.

PRO Controller

During long-term operation, the nonlinear effects like J2, atmospheric drag, and
the uncertainty in the thruster firing leads to drift in the spacecraft position with
respect to the target spacecraft. To mitigate this we can perform regular orbit main-

tenance recomputing the energy matched delta-V using (2.7) and applying it to the
spacecraft (or) by using a feedback tracking controller. We assume that the tar-
get spacecraft is on a circular orbit and use HCW equations that do not consider
nonlinear (J2) and non-conservative effects (drag). This simplification allows us
to develop an architecture that can be extend to include the nonlinear effects using
initial conditions [16] that are robust to (J2) effect. For reconfiguration control, we
use a model predictive control (MPC) [15] formulation of SCP by computing the
control at fixed time intervals.

3.2.5 High-Rate: Attitude Trajectory Optimization and Control
The attitude planner in Section 3.2.4 generates a sequence of POIs for each space-
craft to point to in a greedy manner. The sequence of POIs are interpolated to a
smooth attitude trajectory that is used as reference for the attitude tracking con-
troller by solving Problem 4 using SCP. The optimization includes control con-
straints and actuator dynamics to ensure feasibility during tracking. The attitude

controller tracks an interpolated attitude profile. The tracking of the interpolated
attitude profile uses an exponentially stable controller [129]. The gains of the con-
troller are tuned for the rise time and potential noise observed in the mission sce-
nario.

3.2.6 Properties and Remarks
Our approach scales linearly with the number of POIs, linearly with the number
of PROs, and cubically with the number of spacecraft and empirically shows very
promising results with respect to the solution quality.

3.2.7 Extension to Distributed Inspection
In the above formulation, the PRO candidate selection, the information database, in-
formation updates, and the PRO assignment play key role in distributed inspection.
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Figure 3.7: Centralized PRO candidate selection and information database imple-
mentation of the framework in Fig. 3.2 for inspection. The sampled PRO candidates
and the information database are stored in the memory of the target spacecraft. The
PRO candidates are then assigned to the observers based on coverage (information)
and fuel optimality. The assigned candidates are communicated to the observers.
The observers have a decentralized controller for initialization or reconfiguration
to the assigned PROs. From the PRO, the observer spacecraft communicates the
information update to the target spacecraft at a fixed time period for computing a
new set of PRO candidates to inspect areas that have not been inspected earlier.

The distributed implementation of the architecture is shown in Fig. 3.8. The candi-
date selection can be done by one spacecraft and the resulting set of selected PROs
can be communicated efficiently to the others using broadcast communication. It is
also possible to compute this in a distributed fashion by using synchronization mes-
sages between the spacecraft. The database and the information update can be up-
dated in a distributed fashion using broadcast communication, where each observer
broadcasts its’ current camera pose at a fixed frequency. The PRO assignment can
be easily distributed by using, for example, distributed auctions [14]. Note that the
PRO controller, the attitude planning, and control are decentralized, provided we
have the full absolute pose estimates of the observers and the LVLH frame.

3.3 Inspection of a Target Spacecraft
In this section, we apply the proposed multi-level hierarchical GNC architecture and
its algorithms towards inspection of the Cygnus spacecraft (target) in a low Earth
orbit using multiple CubeSat observers. The choice of Cygnus as the target is mo-
tivated by a recent mission Seeker [4], where a single CubeSat was deployed from
the target spacecraft and initialized in a relative orbit around Cygnus. The CubeSat
was used to estimate the centroid of a bounding box around the target spacecraft
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Figure 3.8: Distributed PRO candidate selection and information database imple-
mentation of the framework in Fig. 3.2 for inspection. The information database is
stored on all the observers and evaluated using the updates communicated at fixed
frequency from the neighbours. The PRO candidates are sampled in a distributed
fashion using synchronous messages with the updated information cost. Optimal
PRO assignment is done using distributed auction method discussed in [14].

using a neural network. With the potential applications of multi-spacecraft exten-
sion to this mission, we study the mission scenario where multiple CubeSats are
deployed from the target spacecraft and initialized in safe stable relative orbits to
inspect Cygnus. We begin by describing the problem setup, followed by implemen-
tation details, and finally present results for planning and control during different
phases of the mission.

3.3.1 Inspection Scenario Setup
The observer spacecraft are of mass m = 10 kg corresponding to a 6U-CubeSat
(20cm × 10cm × 30cm) and the thruster coefficient is fthr = 200 mN for each
element of the input scaling vector u ∈ [−1, 1] for the force per unit mass in (2.3).
Each CubeSat is deployed using a Nanoracks [138] system with initial velocity
between 0.5 m/s to 2 m/s from Cygnus. The target spacecraft is in an orbit with
radius r0 = 6771 km. The number of observers deployed from Cygnus is varied
from 1 to 5 to study the design trade-off for the inspection mission. We assume
that the observers are equipped with a reaction wheel configuration that is capable
of performing attitude control for a maximum inertia 0.2 kgm2 in each direction
and have a limit maximum torque of ±2 mNm in each direction. For each case,
the proposed architecture in Algorithm 1 is applied to initialize stable orbits and to
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compute the progress of inspection in PROs over time. In the following test cases,
we implement the proposed algorithm on a single computer (could be in the target
spacecraft or in an observer spacecraft) and communicate the assigned PROs, the
reconfiguration plan, and the information database to the observers.

3.3.2 Results and Discussion
In this section, we demonstrate the effectiveness of the proposed architecture in in-
specting Cygnus using multiple spacecraft through orbits and reconfiguration plan-
ning based on the information cost function H . Additionally, we discuss in detail
how the proposed architecture can be utilized as a design tool to determine the op-
timal number of observers needed and to validate the hardware selection for multi-
spacecraft inspection missions.

Deployment and PRO Initialization

The algorithm is initialized when the CubeSats are deployed from Cygnus using a
Nanorack. The initial deployment of the CubeSat plays a crucial role in the total
fuel required for the mission – we design for this by using a nominal initial velocity
condition that is 0.5 m/s in our algorithm to get an estimate of the fuel required to
complete the mission. The initial position after drift is randomly sampled within
10 m to 20 m away from the Cygnus spacecraft. The average PRO initialization
cost is computed to be 0.09 for zero initial velocity, 1.93 for the nominal deploy-
ment velocity of 0.5 m/s, and 7.91 for the worst case deployment velocity. Due to
the high cost and potential violation of HCW dynamics assumption for large initial
velocity deployment ranging from 0.7 m/s to 2 m/s, we recommend that the ob-
servers drift initially to get close to Cygnus over the next few orbits for minimum
fuel initialization. This approach requires further analysis and is deferred to a future
work.

Inspection with Two Observers

With a nominal initial deployment position (10 m to 20 m) and velocity (0.5 m/s)
knowledge, we apply Algorithm 1 with two observers (N = 2) to inspect Cygnus.
Figure 3.9 shows how the proposed architecture effectively coordinates the actions
of the two observers to collectively inspect Cygnus over time. The two observers
are initially reconfigured to a closest PRO set that minimizes H rapidly. The two
observers then reconfigure twice during the entire mission to avoid information
saturation. Note that we use a time-triggered scheduler to check if a reconfiguration
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is required to inspect areas with higher variance. The observers might choose not
to reconfigure if the current orbit is already optimal. This approach can be easily
modified to have an information-based trigger for quicker maneuvering response to
collect measurement on POIs of higher relative importance.
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Figure 3.9: Inspection of Cygnus using two observers. Left: Trajectories of the
two observers. The bold part shows the planned PRO reconfiguration. Right: The
information cost converges to zero over time, because the entire target spacecraft is
inspected.

Multi-Spacecraft Formation Design For Inspection

From a mission point of view, we want to design a formation that can inspect Cygus
in minimum time and fuel efficient manner while ensuring safety. Using the PROs
to generate candidate solutions already ensures minimal fuel requirement due to
passive stability of orbits. We use fuel for intermediate reconfiguration between
PROs, if required, which is guaranteed to be minimal from the SCP formulation in
Problem 2 for reconfiguration. In order to design the optimal number of observers
required for such a mission, we compare the information cost reduction by varying
the formation size from 3 to 5 iteratively. The variation of information cost H and
coverage over time for different formation sizes are shown in Fig. 3.10. From this
figure, we can observe a significant time reduction in inspection when we use a
formation of size 3 compared to when only using a single spacecraft. On the other
hand, the coverage does not increase much with time when the formation size is
increased from from 3 to 5. In Fig. 3.11, we show the minimum distance between
the observers as a function of time for different formation sizes. For the formation
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with 3 observers, the minimum distance varies from 5 m to 30 m as the mission
evolves in time and for 5 observers, it varies from near 0 m to 15 m. There is a safety
hazard when using a formation with 5 observers with no significant improvement in
performance compared to formation with size 3. From this analysis, we conclude
that from a minimum time and safety point of view, the mission can be achieved
optimally using a formation of 3 observers.

0 5000 10000 15000 20000
time [s]

0

2

4

6

8

10

H

0 5000 10000 15000 20000
time [s]

0

20

40

60

80

100

co
ve

ra
ge

 [%
]

1 s/c
2 s/c
3 s/c
5 s/c

Figure 3.10: Information cost and POI coverage over time with varying number of
observer spacecraft. The results are averaged over 5 trials with standard deviation
shown as shaded area. Left: Using multiple observers allows to significantly reduce
the time until a target information cost value is reached. For example, H = 2 is
achieved in less than half the time when using 5 observers compared to when using
one observer. Right: A lower information cost leads to a better coverage of POIs.
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Figure 3.11: A plot showing comparison of minimum distance between observers
when 3, 4, and 5 CubeSats are used for the inspection task as function of time. As
expected, 3 observer configuration has larger separation compared to 5 observer
configuration.

At a high-rate we run an attitude trajectory optimization and controller to smoothly
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track the coarse pointing vectors computed using the ray casting database. Fig-
ure 3.12 shows a comparison of slerp interpolated trajectory, smoothed trajectory
taking into account torque and momentum limits of the reaction wheel, and the
controlled trajectory. We can observe that the smoothed trajectory does not saturate
the reaction wheels, whereas the slerp trajectory leads to saturation by crossing the
maximum torque limit of 2 mNm and jerk in the attitude motion of the observer.
Note that this step is useful in designing the pointing requirement and reaction
wheel desaturation strategy for each observer. For example, the observers around
Cygnus initialized in a stable PRO have their period matched to that of Cygnus’s
orbital period. Due to this, the observers spend some time of the orbit in the dark
and might not be able to inspect the Cygnus. The actuator limits can be used to
design a partial orbit inspection strategy, where the observers only inspect when the
pointing strategy is feasible for 30 % of the orbit. If the pointing plan is not feasible,
then the system can desaturate the wheels when in the dark and inspect only when
in the sunlight.

3.4 Experiments on the Robotic Spacecraft Simulator Testbed
We validate Algorithm 1 by optimally inspecting the four surfaces of a target space-
craft, as shown in Fig. 3.13, on the M-STAR (Multi-Spacecraft Testbed for Auton-
omy Research) platform described in Chapter 7. We assume that observers-2 and
3 are stationary and observer-1 is active. Observers-2 and 3 have inspected two
surfaces (red normal in Fig. 3.13). Observer-1 communicates with the neighbor-
ing observers to sort and select the unobserved surfaces of the target spacecraft
via information database. The information database includes a list of surfaces not
inspected.

In Fig. 3.14, we show the implementation of the hierarchical Algorithm 1 for M-
STAR. We use a higher-level planner to select an optimal and informative terminal
state for observer-1. We sample the feasible state-space of the observer-1 around
the target spacecraft for terminal states. We choose the terminal state that the ob-
server has good visibility of the surface to be inspected from that state and requires
minimum fuel to achieve that state. We use the terminal condition as a constraint
in Problem 1 for planning a safe trajectory to approach and point an observer to in-
spect the surfaces that are not inspected by the neighbours. We execute the motion
plan by using an exponentially stable nonlinear feedback controller [30].

We generate 800 terminal state space samples within the concentric circles defined
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Figure 3.12: Attitude trajectory generated using the slerp interpolation and sequen-
tial convex programming. The control required to track the slerp trajectory and
the smoothed trajectory are compared. The smoothed trajectory satisfies the torque
limits of ±2 mNm, while tracking the slerp trajectory easily saturates the reaction
wheels.

by the safety distance dmin =0.7 m and the visibility distance dmax =1.2 m, as
shown in Fig. 3.15a. We observe that 14 samples (see Fig. 3.15b) have good vis-
ibility of the surfaces to be inspected. In Figure 3.15c, we show the optimal tra-
jectories computed for each of the terminal samples to estimate the cost-to-go. We
compute the information cost using large prior w and update the information us-
ing (3.4) and (3.5). The cost-to-go and the information cost are scaled by using the
maximum value of the 14 samples. We select the optimal and informative terminal
state by maximizing the ratio of the scaled information cost and the cost-to-go, as
shown in Fig. 3.15e. We show the optimal motion plan in Fig. 3.15d. The optimal
trajectory is executed using an exponentially stable feedback controller.

Observer-1 updates the information database and replans to achieve coverage. In
Fig. 3.16, we show the optimal trajectories generated using the hierarchical algo-
rithm for inspecting all four surfaces of the target spacecraft. In this approach,
we select the next best terminal condition by using a fixed number of state-space
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Figure 3.13: A picture of the information-based planning (Fig. 3.2) experiment on
the multi-spacecraft testbed [30] for autonomy research.

samples at each inspection iteration. We guarantee coverage by replanning. To
guarantee asymptotic optimality, we can use efficient sampling techniques.

3.5 Chapter Summary
In this chapter, we present a new guidance and control architecture that consists
of multiple timescale modules for cooperatively observing and inspecting a target
spacecraft in Earth orbit using multiple observer spacecraft. The proposed method-
ology hierarchically combines optimal trajectory design for orbit initialization and
reconfiguration, attitude/pointing planning and control, and an optimal control for-
mulation that incorporates an information cost for inspecting the target spacecraft.
The information cost is used to cover the entire shape or structure of the target
spacecraft and balances the trade-off between gathered data quality and fuel/energy
cost. The orbit planning involves designing a safe and optimal trajectory to opti-
mally insert each observer spacecraft into passively relative orbits around the target
spacecraft for conducting the inspection task. To this end, we formulate the problem
as a multi-spacecraft optimal control problem and solve it using sequential convex
programming. The passively stable relative orbits are chosen in an offline phase
based on the energy matching condition for stability and using an information gain
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Figure 3.14: Block diagram showing the hierarchical planner as applied to the three
degree-of-freedom spacecraft dynamics simulator.

metric to inspect the maximum surface area of the target spacecraft. During the
inspection, we confirm if an area of the target spacecraft has been inspected or not,
using our novel raycasting database to efficiently check the visibility of POIs. Once
the passive relative orbits are initialized, we compute a pointing control plan at fast
rates to optimally reorient the spacecraft for inspection. The planned attitude tra-
jectory is executed using a nonlinear feedback controller. The effectiveness of the
proposed architecture is validated via numerical simulation of inspecting the tar-
get spacecraft in Earth orbit using multiple observer spacecraft. We demonstrate
the proposed planning approach on a three-degree-of-freedom robotic spacecraft
testbed for inspecting a target spacecraft. The methods presented in this chapter can
be effectively used as a mission planning tool to compute and track multi-spacecraft
observers on energy-efficient passive relative orbits for inspecting a spacecraft.
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Figure 3.15: Output of Algorithm 1. Observer 1 is actively inspecting the target
spacecraft using the hierarchical information-based planning algorithm.
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C h a p t e r 4

TRAJECTORY OPTIMIZATION FOR CHANCE-CONSTRAINED
NONLINEAR STOCHASTIC SYSTEMS

The PRO initialization and reconfiguration methods discussed in Chapter 2 and
in [16] assume perfect knowledge of the state information and that there is no un-
certainty in actuation. In Fig. 4.1, we show the effect of uncertainty in position
information, σpos, and the actuation (∆V ), σvel, on the propagation of three deputy
spacecraft. We propagate the PRO’s by adding uncertainty to the position of the
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Figure 4.1: Effect of uncertainty in the state estimate and actuation on the PRO
maintenance, shown in LVLH frame. We show the PRO trajectories generated over
100 Monte-Carlo trials, by sampling the uncertainty in state and actuation.

deputy with respect to the LVLH frame, [x0 + σposξ1, y0 + σposξ2, z0 + σposξ2], and
by incorporating uncertainty in actuation as [ẋ0 +σvelξ4, ẏ0 +σvelξ5, ż0 +σvelξ6]. We
assume to have the knowledge of the initial position estimate, [x0, y0, z0], w.r.t the
LVLH and compute the initial actuation [ẋ0, ẏ0, ż0] using the energy matching con-
ditions derived in [16]. ξi ∼ N (0, 1) ∀i ∈ {1, . . . , 6}. We observe in Fig. 4.1, that
uncertainty in state estimation and actuation leads to deviation from the designed or-
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bit. During proximity operations, such a dispersion could lead to a mission failure.
In order to ensure safety, the trajectory optimization algorithms, discussed in Chap-
ter 2, should incorporate uncertainty in dynamics and the neighboring deputy state.
To this end, we formulate a stochastic optimal control problem under chance con-
straints and propose a new algorithm, shown in Fig. 1.2, to compute safe motion
plans under uncertainty in the dynamics and obstacle state.

4.1 Problem Formulation
In this section, we present the stochastic optimal control problem formulation, pre-
liminaries on the relaxations used for chance constraints, and the generalized poly-
nomial chaos approach that forms a basis for constructing a surrogate deterministic
optimal control problem.

4.1.1 Stochastic Nonlinear Optimal Control Problem
We consider the finite-horizon stochastic nonlinear optimal control (SNOC) prob-
lem with joint chance constraints in continuous time and continuous space. The
SNOC problem minimizes an expectation cost function, that is a sum of a quadratic
function in the random state variable x(t) and a convex norm of the control policy
ū(t). The evolution of the stochastic process x(t) for all sampled paths is defined
by a stochastic differential equation. The joint chance constraints guarantee con-
straint feasibility with a probability of 1−ε, where ε > 0 and is chosen to be a small
value (example: ε ∈ [0.001, 0.05]) for better constraint satisfaction. The following
optimal control problem is considered with the state distribution and control as the
decision variables.

Problem 6. Chance-Constrained Stochastic Nonlinear Optimal Control.

J∗SNOC = min
x(t),ū(t)

E
[∫ tf

t0
J(x(t), ū(t))dt+ Jf (x(tf ))

]
(4.1)

s.t. dx = f(x(t), ū(t))dt+ g(x(t), ū(t))dw(t) (4.2)

Pr(x(t) ∈ XF) ≥ 1− ε ∀t ∈ [t0, tf ] (4.3)

ū(t) ∈ U ∀t ∈ [t0, tf ] (4.4)

x(t0) = x0 xtf ∈ Xf , (4.5)

where the cost functional J and the terminal cost Jf are defined as follows:

J(x(t), ū(t)) = x(t)>Qx(t) + ‖ū‖p, where p ∈ {1, 2,∞},

Jf (x(tf )) = x(tf )
>Qfx(tf ), (4.6)
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whereQ andQf are positive definite matrices. The p−norm of a vector ū is defined
as ‖ū‖p = (

∑du
1 |ūi|p)

1
p . The terminal set Xf is the set of allowed realization of

the state x after propagation. The terminal constraints is applied as a probabilistic
soft constraint to ensure feasibility of Problem 6. In the following, we define each
of the aforementioned elements of Problem 6 and discuss convex approximations
of linear and quadratic chance constraints.

Stochastic Differential Equation (SDE) [76]

The dynamics of the system is modeled as a controlled diffusion process with Itô

assumptions. The random variable x(t) is defined on a probability space (Ω,F,Pr)

where Ω is the sample space, F forms a σ-field with measure Pr.

dx(t) = f(x(t), ū(t))dt+ g(x(t), ū(t))dw(t),

Pr(|x(t0)− x0| = 0) = 1, ∀t0 ≤ t ≤ tf <∞,
(4.7)

where: f(., .) : X × U → Rdx , g(., .) : X × U → Rdx×dξ , and w(t) is a dξ-
dimensional Wiener process and the initial random variable x0 is independent of
w(t) − w(t0) for t ≥ t0, and dw(t) ∼ N (0, dtI). The sets X ⊆ Rdx and U ⊆ Rdu

are compact sets. We make the following assumptions to ensure the existence and
uniqueness of a solution to the SDE.

Assumption 1. The functions f(x(t), ū(t)) and g(x(t), ū(t)) are defined and mea-
surable on X × U .

Assumption 2. Equation (4.7) has a unique solution x(t), that is continuous with
probability 1, and ∃ a K ∈ R++ such that the following conditions are satisfied:
a) Lipschitz condition [76]: ∀t ∈ [t0, tf ], sj ∈ X × U , j = 1, 2,

‖f(s1)− f(s2)‖+ ‖g(s1)− g(s2)‖F ≤ K‖s1 − s2‖, (4.8)

b) Restriction on growth: ∀t ∈ [t0, tf ], s1 ∈ X × U

‖f(s1)‖2 + ‖g(s1)‖2
F ≤ K2(1 + ‖s1‖2). (4.9)

We use the following definition to study the controllability of deterministic approx-
imations of SDE (4.7).

Definition 1. The SDE (4.7) is εc-controllable [49]. For any initial state x0 ∈ X ,
we can compute a sequence of control ū(t) ∀t ∈ [t0, tf ] such that Pr(‖x−x(tf )‖2≥
δ | x(t0) = x0) ≤ εc, where x(tf ) is the terminal state, δ > 0 and εc > 0 are small,
and tf is finite.
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Control Policy. We assume that the control policy ū(t) ∈ U ⊆ Rdu is deterministic
and the set U is a convex set. The deterministic control policy is motivated by a
hardware implementation strategy, where a state dependent Markov control policy
defined on the compact set X is sampled for a value with highest probability (or)
for the mean.

Note: We use the gPC method to project the SDE to an Ordinary Differential Equa-
tion (ODE) in a higher dimensional space for propagating the dynamics.

Chance Constraints [46]

In order to accommodate the unbounded uncertainty model in the dynamics, the
feasible region XF defined as,

XF = {x(t) ∈ X : hi(x(t)) ≤ 0 ∀ i ∈ {1, . . . ,m}}, (4.10)

is relaxed to a chance constraint (CC) using the risk measure ε,

XCC = {x(t) ∈ X : Pr(x(t) ∈ XF) ≥ 1− ε}, (4.11)

with a guaranteed constraint satisfaction probability of 1− ε. The constraint set XF
is assumed to be the polytope XF = {x ∈ X : ∧mi=1a

>
i x+bi ≤ 0} withm flat sides,

or a quadratic constraint set XF = {x ∈ X : x>Ax ≤ c} for any realization x of
the state. The joint chance constraint formulation of the polytopic constraint is of
the form, Pr(∧mi=1a

>
i x + bi ≤ 0) ≥ 1− ε.

A convex relaxation of the individual chance constraint for an arbitrary distribution
of the state vector x(t) due to the nonlinearity in the system is intractable, so an ex-
tension of the problem called Distributionally-Robust Chance Constraints (DRCC)
given as follows,

XDRCC = {x(t) ∈ X : inf
x(t)∼(µx,Σx)

Pr(x(t) ∈ XF) ≥ 1− ε}, (4.12)

where the chance constraint is satisfied for all distributions with known mean and
variance of the decision variable is used. The set defined by the DRCC in (4.12) is
a conservative approximation [47] of the chance constraint i.e., XDRCC ⊆ XCC.

a) Distributionally-Robust Linear Chance Constraint (DRLCC) [46]: Consider a
single Linear Chance Constraint (LCC) with a ∈ Rdx and b ∈ R:

XLCC = {x(t) ∈ X : Pr(a>x(t) + b ≤ 0) ≥ 1− ε}. (4.13)
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Assuming that the mean µx and the covariance Σx of x are known, a distributionally-
robust constraint version of (4.13) is given as follows:

XDRLCC = {x(t) ∈ X : inf
x(t)∼(µx,Σx)

Pr(a>x(t) + b ≤ 0) ≥ 1− ε}. (4.14)

Equivalently, (4.14) can be rewritten in the following deterministic form, which will
be used to derive a second-order cone constraint for the DNOC in Section 4.2.5.

XDRLCC = {x(t) ∈ X : a>µx(t) + b+

√
1− ε
ε

√
a>Σxa ≤ 0} (4.15)

Lemma 3. The set XDRLCC in (4.15) is a subset of XLCC defined in (4.13).

Proof. See Theorem 3.1 in [46].

Risk Measure. The risk measure ε in (4.13) is assumed to be in the range [0.001, 0.5].
For small values of ε (< 0.001), the value

√
1−ε
ε

increases exponentially. This de-
creases the feasible space defined by the set XLCC drastically leading to numerical
issues in the gPC-SCP method presented in this thesis. For handling the risk of
the order of 1e− 7, as discussed in [139], the uncertainty in the system needs to be
modeled accurately such that Σx is small (or) newer deterministic surrogate method
needs to be developed to overcome the numerical instability.

If the dynamics are linear, the constraint in (4.15) is replaced with a tighter equiva-
lent deterministic constraint given by the following inequality:

a>µx(t) + b+ erf(1− 2ε)
√
a>Σxa ≤ 0, (4.16)

where the function erf(.) is defined as erf(δ) = 2√
π

∫ δ
0
e−t

2
dt and ∀ε ∈ (0, 0.5). This

constraint set is transformed to a second-order cone constraint in the gPC variables.

b) Conservative Quadratic Chance Constraint (CQCC): Lemma 4 presents a new
conservative deterministic relaxation for the quadratic chance constraint that is used
to bound the deviation of the random vector x(t) from the mean µx(t).

Lemma 4. The constraint set

XCQCC = {x(t) ∈ X :
1

c
tr(QΣx) ≤ ε} (4.17)

is a conservative approximation of the original Quadratic Chance Constraint (QCC)

XQCC = {x ∈ X : Pr((x− µx)>Q(x− µx) ≥ c) ≤ ε} (4.18)

i.e., XCQCC ⊆ XQCC, where Q ∈ Rdx×dx is a positive definite matrix and c ∈ R++

and Σx is the covariance of the random variable x.
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Proof. We will prove that any random vector x ∈ X that is in the set XCQCC is also
in the set XQCC implying XCQCC ⊆ XQCC. The proof follows from the approach
taken to prove the multivariate Chebyschev’s inequality [140]. Let F (x) be the
Cumulative Distribution Function (CDF) of the random variable x and v = x−µx.

G = {v ∈ X : v>Qv ≥ c} =⇒ 1

c
v>Qv ≥ 1 ∀v ∈ G.

Using the definition of probability in terms of the CDF,

Pr((x− µx) ∈ G) ≤ 1

c

∫
v∈G

v>QvdF (v)

≤ 1

c

∫
v∈Rn

v>QvdF (v).

Let qij be an element of matrix Q in the ith row and jth column, and vi be the ith

element in the vector v. Using the expansion v>Qv =
∑dx

i=1

∑dx
j=1 qijvivj in the

inequality above, the integral is simplified.∫
v∈Rn

v>QvdF (v) =

∫
v∈Rv

dx∑
i=1

dx∑
j=1

qijvivjdF (v)

=
dx∑
i=1

dx∑
j=1

qij

∫
v∈Rdx

vivjdF (v)

= tr(QΣx).

(4.19)

The quadratic chance constraint holds if (4.17) is satisfied, as Pr((x− µx) ∈ G) ≤
1
c
tr(QΣx). Therefore, (4.17) is a conservative deterministic approximation of the

quadratic chance constraint Pr((x−µx)>Q(x−µx) ≥ c) ≤ ε i.e., XCQCC ⊆ XQCC.
Note that if ε is a design variable, the approximation can be made tight by solving
an inner semi-definite program following the approach in [78].

Corollary 0.1. The constraint set 1
c
tr(QΣx) + 1

c
(µ>xQµx) ≤ ε is a conservative

approximation of the quadratic chance constraint Pr(x>Qx ≥ c) ≤ ε}, where
Q ∈ Rdx×dx is a positive definite matrix and c ∈ R++ and Σx is the co-variance of
the random variable x.

Proof. The proof follows from Lemma 4.

Note. Similar to linear chance constraints, having a small ε (< 1e − 3) in the
quadratic chance constraints might lead to numerical issues due to decreased feasi-
ble space. Further research needs to be conducted in this direction to provide such
safety guarantees.
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c) Joint Chance Constraints (JCC) [47]: The distributionally-robust joint chance
constraints (DRJCC) for a polytope set is defined as, infx(t)∼(µx,Σx) Pr(∧mi=1a

>
i x +

bi ≤ 0) ≥ 1 − ε. The joint constraints are split into multiple single chance con-
straints using Bonferroni’s inequality [47] method as follows:

inf
x(t)∼(µx,Σx)

Pr(∧mi=1a
>
i x + bi ≤ 0) ≥ 1− ε

⇐⇒ sup
x(t)∼(µx,Σx)

Pr(∨mi=1a
>
i x + bi ≥ 0) ≤ ε

⊆
m∑
i=1

sup
x(t)∼(µx,Σx)

Pr(a>i x + bi ≥ 0) ≤ ε.

(4.20)

If the probability distribution of x is Gaussian, then the JCC are split using Boole’s
inequality [21]. The total risk measure ε is allocated between each of the chance
constraints in the summation such the

∑m
i=1 εi = ε leading to m individual DRCC

of the following form.

inf
x(t)∼(µx,Σx)

Pr(a>i x + bi ≤ 0) ≥ 1− εi. (4.21)

We follow a naive risk allocation approach by equally distributing the risk measure
ε among the m constraints such that εi = ε

m
. Alternatively, optimal risk alloca-

tion [141] can be achieved using iterative optimization techniques. Using distribu-
tional robustness, Problem 6 is reformulated to the following Problem 7.

Problem 7. Distributionally-Robust Chance-Constrained Stochastic Nonlinear Op-
timal Control.

J∗DR−SNOC = min
x(t),ū(t)

E
[∫ tf

t0
J(x(t), ū(t))dt+ Jf (x(tf ))

]
s.t. (4.7), (4.15), (4.17), (4.4), and (4.5).

Note: Given a risk measure ε, the constraints in Problem 7 are a function of mean
µx and covariance matrix Σx of the state at any time t. While this enables fast
computation of chance constraints, it reduces the feasible space XF . An optimal
approach to trade off between the feasible space and computational complexity
with theoretical guarantees seems infeasible due to the nonlinearity in the dynam-
ics model. We present an empirical evidence that using distributional robustness
approach does not lead to infeasibility in practical scenarios for both planning and
control problems. For practical implementation, this approach should be integrated
with system design to ensure feasibility. We will transform the SNOC problem to a
DNOC problem by applying the generalized polynomial chaos expansion (see Sec-
tion 2.5). This approach transforms the SNOC problem that is infinite dimensional
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in state (stochastic state) and time, to a problem that is infinite dimension only in
time. In the following section, we derive an approximate nonlinear ordinary differ-
ential equation system for the SDE in (4.7) using gPC expansion (see Section 2.5)
and the Galerkin scheme. The DRCC are projected to the gPC coordinates xij
leading to convex constraints.

4.2 Deterministic surrogate of the SNOC Problem
The stochastic nonlinear optimal control problem discussed in Section 4.1.1 is re-
formulated in terms of the coefficients of the gPC expansion, with decision variables
as the gPC coefficients and the control ū. In the following, we discuss the existence
and uniqueness of a solution to the coupled Ordinary Differential Equations (ODE)
obtained form gPC approximation of SDE, the cost function in the gPC space, and
present the convex constraints for the gPC coefficients obtained from deterministic
approximation of chance constraints. We present the convergence and feasibility
theorem of the approximation at the end of this section.

4.2.1 Deterministic ODE Approximation of the SDE
The gPC expansion in (2.32) is applied for all the elements in the vector x ∈ X ⊆
Rdx and the matrix representation using Kronecker product is given in the follow-

ing, where X =
[
x10 · · · x1` · · · xdx0 · · · xdx`

]>
are gPC states.

Φ(ξ) =
[
φ0(ξ) · · · φ`(ξ)

]>
(4.22)

x ≈ Φ̄X, where Φ̄ = Idx×dx ⊗ Φ(ξ)>. (4.23)

Consider the following Ito’s integral form of the SDE in (4.7).

x(t) = x(t0) +

∫ t

t0

f(x, ū)dt+

∫ t

t0

g(x, ū)dw. (4.24)

The gPC projection of the above SDE is given by the following ODE.

xij(t) = xij(t0) +

∫ t

t0

f̄ij(X, ū)dt+

∫ t

t0

ḡij(X, ū)
√
dt (4.25)

f̄ij =

∫
D ζ(ξ)φj(ξ)fi(Φ̄X, ū)dξ

〈φj(ξ), φj(ξ)〉
,

ḡij =

∫
D ζ(ξ)φj(ξ)gi(Φ̄X, ū)ξdξ

〈φj(ξ), φj(ξ)〉
.
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Figure 4.2: Example gPC propagation for a pendulum. The figure compares the
mean and 2σ confidence computed using gPC Projection (PgPC = 1), linear covari-
ance propagation and Monte Carlo (MC) propagation of the simple pendulum dy-
namics θ̈ = − sin θ−0.8θ̇+

√
0.001ξ(t). It is observed that the gPC approximation

overestimates the variance compared to MC and the linear covariance propagation
underestimates the variance. The PgPC = 1 projection corresponds to a Gaussian
approximation that includes the cross correlation between the state and uncertainty.

The dynamics of the coefficients xij with the above notation is given in (4.27),
where fi and gi are the ith element of the vector f and ith row of the matrix g

respectively. We use the Euler-Maruyama discretization method of the SDE for
time integration. The discrete time stochastic dynamics is given as follows:

x[k + 1] = x[k] + f(x[k], ū[k])∆t+ g(x[k], ū[k])
√

∆tξ, (4.26)

where x[k], ū[k] are the states and controls at time step k, ∆t is the integration
time interval, and ξ is a multivariate Gaussian distribution N (0, I). The discrete
stochastic system is projected to a discrete deterministic system using gPC method.

xij[k + 1] = xij[k] + f̄ij(X[k], ū[k])∆t

+ ḡij(X[k], ū[k])
√

∆t (4.27)

The full nonlinear discrete time ODE with the stacked vector X is given as follows:

X[k + 1] =X[k] + f̄(X[k], ū[k],∆t)

+ ḡ(X[k], ū[k],
√

∆t). (4.28)

Figure 4.2 shows an example of propagation using (4.28). While not discussed here,
the projection is also applicable to a higher-order discretization methods [142]. The
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sequential convex programming method used for trajectory optimization involves
successive linearizations [15] of the dynamics about a given trajectory and dis-
cretization for time integration. In Proposition 1, we present the conditions for
existence and uniqueness of the solution to the projected system. The existence
and uniqueness of solution to the ODE surrogate ensure convergence of any Picard
iteration scheme used for integration.

Proposition 1. The ODE system (4.27) obtained using gPC approximation of the

SDE has a solution and the solution is unique, for a given initial condition, assum-

ing that the SDE satisfies the existence and uniqueness conditions in (4.8), (4.9) and

the expectation

Kgij =
K

kj
E(Lgj(ξ)), Kfj =

K

kj
E(Lfj(ξ)) (4.29)

in (4.29) are bounded for each j = 0, 1, · · · , `, where: P =

[
Φ̄ 0

0 I

]
, kj = 〈φj, φj〉,

Lfj(ξ) = |φj(ξ)|‖P‖2, Lgj(ξ) = Lfj(ξ)|φ1(ξ)|. The constants Kgij and Kfj are the

Lipschitz coefficients of the projected functions ḡij and f̄j respectively.

Proof. See Proposition 1 of [20].

While the projection operation preserves existence and uniqueness properties of
the SDE, it might not conserve the controllability of the moments of the system.
Following examples discuss on how the εc controllability in Definition 1 of the
SDE effects the controllablility of the projected ODE system.

Example 1. Consider the linear SDE dx = xdt+ūdt+
√
dtξ, where x ∈ R1, ū ∈ R1

and ξ ∼ N (0, 1). Using the random variable ξ as the variable, we can construct the
first order gPC expansion x = x0 +x1ξ of the state with x0, x1 ∈ R1. The projected
dynamics using the expansion is given as follows:[

dx0

dx1

]
=

[
1 0

0 1

][
x0

x1

]
dt+

[
1

0

]
ūdt+

[
0√
dt

]
. (4.30)

The dynamics of x1 is decoupled from x0 and the propagation is not influenced by
the control ū. Notice that, even though the original SDE (dx = xdt+ūdt) is control-
lable, the projected system (4.30) is not fully controllable. The projection operation
converts a SDE to an ODE in higher dimensions. Though this operation enables for
fast uncertainty propagation, the linear projected system is underactuated and not
fully controllable.
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Remark 3. Using a stochastic state feedback of the form u = −kx in Example 1,
we get the closed-loop SDE dx = (1 − k)xdt +

√
dtξ. The gPC projection of the

system is as follows:[
dx0

dx1

]
=

[
1− k 0

0 1− k

][
x0

x1

]
dt+

[
0√
dt

]
. (4.31)

Using a stochastic feedback, the state x1 that corresponds to the variance of the
SDE can be controlled.

Example 2. The gPC projection of the nonlinear SDE dx = (x2 + ū)dt +
√
dtξ

using the expansion x = x0 + x1ξ is given as follows:[
dx0

dx1

]
=

[
x2

0 + x2
1 + ū

2x0x1

]
dt+

[
0√
dt

]
. (4.32)

The projected system (4.32) is underactuated. In the case of nonlinear systems, the
coupling between the dynamics of x0 and x1 allows for indirectly controlling the
state x1.

Remark 4. The gPC projected ODE system in (4.27) might not be fully controllable
as discussed in Example 1. We choose soft terminal constraints on the variance of
the state variable to ensure the feasibility of Problem 6 in accordance with Defini-
tion 1.

With above remarks on the controllability of the projected system, we proceed
to construct finite dimensional approximation of the cost functional and chance-
constraints to formulate the convex-constrained nonlinear deterministic optimal con-
trol problem.

4.2.2 Cost Function
Using the notation in (4.23), expectation of the cost functional in (4.6) is expressed
in the gPC coefficients as follows:

JgPC(X(t), ū(t)) = X(t)>QgPCX(t) + ‖ū‖p,

JgPCf (X(tf )) = X(tf )
>QgPCfX(tf ),

(4.33)

where QgPC = E(Φ̄>QΦ̄) and QgPCf = E(Φ̄>Qf Φ̄). Since the gPC projection is
a canonical transformation, we can prove that the projected matrix QgPC is positive
definite.

Proposition 2. The expectation matrix E(Φ̄>Φ̄) is a positive definite matrix.
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Proof. We can prove the following equality by expanding the matrix multiplication.

E(Φ̄>Φ̄) = I⊗ E(ΦΦ>) (4.34)

The block matrix E(ΦΦ>) is positive definite as the functions φi used to construct
the column vector Φ are orthogonal with respect to the density function ζ . There-
fore, E(Φ̄>Φ̄) is positive definite, since E(ΦΦ>) is positive definite.

Lemma 5. IfQ is a positive definite matrix, then the expectationQgPC = E(Φ̄>QΦ̄)

is a positive definite matrix.

Proof. SinceQ is a positive definite matrix, we haveQ < λmin(Q)I where λmin(Q) >

0. The expectation E(Φ̄>QΦ̄) can be lower bounded as follows:

E(Φ̄>QΦ̄) < E(Φ̄>λmin(Q)IΦ̄), (4.35)

< λmin(Q).E(Φ̄>Φ̄). (4.36)

Using Proposition 2 in (4.36), we conclude that E(Φ̄>QΦ̄) is a positive definite
matrix.

Corollary 0.2. If the polynomials φi used for gPC projection are Hermite polyno-
mials, then E(Φ̄>QΦ̄) < λmin(Q)I.

Proof. We can prove Corollary 0.2 by using the fact that for Hermite polynomials
E(Φ̄>Φ̄) < I in Lemma 5.

4.2.3 Convex Approximation of the Chance Constraint
The deterministic approximations of the chance constraints discussed in Section 4.1.1
are expressed in terms of the gPC coefficients that define a feasible set for the de-
terministic optimal control problem with gPC coefficients as decision variables.

Lemma 6. The second-order cone constraint given below

(a> ⊗M)X + b+

√
1− ε
ε

√
X>UNN>U>X ≤ 0 (4.37)
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is equivalent to the deterministic approximation of the DRLCC in (4.14) as `→∞.,
where the matrices M,U,N are given by

M =
[
1 0 · · · 0

]
1×(`+1)

U =


a1 0 0

0
. . . 0

0 0 adx

⊗ I(`+1)×(`+1)

N = 1dx×dx ⊗H; H =

[
0 O
O

√
E(HH>)

]
where H =

[
φ1(ξ) · · · φ`(ξ)

]>
(4.38)

and 1 is a matrix with entries as 1.

Proof. It is sufficient to prove that (a> ⊗ M) ≈ a>µx and X>UNN>U>X ≈
a>Σxa as ` → ∞. Invoking Lemma 1 and Remark 2, the polynomials of gPC
coefficients can be replaced by mean and variable of the variable x.

(a> ⊗M)X =
[
a1M a2M · · · adxM

]
X

= a1x10 + a2x20 + · · ·+ adxxdx0

≈ a>µx.

(4.39)

Equation (4.39) shows the steps involved to prove (a>⊗M) ≈ a>µx. Let us define

a vector pi =
[
xi0 p̄>i

]>
where p̄i =

[
xi1 · · · xi`

]>
.

U>X =
[
a1p
>
1 a2p

>
2 · · · adxp

>
dx

]>
(4.40)

NN>U>X =
[
Ha1p1 Ha2p2 · · · Hadxpdx

]
(4.41)

X>UNN>U>X =
dx∑
i=1

dx∑
j=1

aiajp
>
i Hpj (4.42)

=
dx∑
i=1

dx∑
j=1

aiaj p̄
>
i E(HH>)p̄j

≈ a>Σxa.

Using this notation, the matrices in (4.37) are expanded as shown in (4.40), (4.41),
and (4.42). Therefore the equivalence is proved by Lemma 1 as `→∞.
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Lemma 7. The quadratic inequality

dx∑
i=1

∑̀
k=1

qii〈φk, φk〉x2
ik ≤ εc, (4.43)

expressed in terms of the gPC coefficients is equivalent to the constraint in (4.17)

as ` → ∞, where Q is a diagonal matrix with ith diagonal element as qii and

〈φk, φk〉 =
∫
D ζ(ξ)φkφkdξ.

Proof. The deterministic approximation, tr(QΣx) ≤ cε, of the QCC in (4.18) can
be expand as follows.

tr(QΣx) ≤ cε ≡
dx∑
i=1

qiiE((xi − µxi)>(xi − µxi)) ≤ cε

≡
dx∑
i=1

∑̀
j=1

qii〈φj, φj〉x2
ij ≤ cε

(4.44)

The equivalence is proved by directly expanding the trace and using Remark 2 as
shown in (4.44).

Using the projected dynamics (4.25), the cost functional in (4.33), and the linear and
quadratic chance constraints (4.37), (4.43) in gPC coefficients we can formulate the
following distributionally-robust deterministic nonlinear optimal control problem
with the gPC states X and the control ū as the decision variables.

Problem 8. Distributionally-Robust Deterministic Nonlinear Optimal Control Prob-
lem.

J∗gPC = min
X(t),ū(t)

∫ tf

t0

JgPC(X(t), ū(t))dt+ JgPCf (X(tf ))

s.t. (4.28), (4.37), (4.43)

ū(t) ∈ U ∀t ∈ [t0, tf ]

X(t0) = X0 X(tf ) ∈ XXf ,

where the projection of the initial condition x0 in gPC space is X0. The terminal set
XXf is constructed using a distributionally-robust polytope (or) a conservative ellip-
soid approximation of the set xf in Problem 6 with probabilistic guarantees using
Lemmas 6 and 7. We make the following observations about distributional robust-
ness and gPC projection discussed above for transforming Problem 6 to Problem 8.
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• The infinite-dimensional optimal control problem in state space and time, as
described in Problem 6, is projected to Problem 8, that is finite dimensional
in space and infinite-dimensional in time.

• The ODE approximation of the SDE using gPC projection diverges over long
horizon problem, (or) when the uncertainty effecting the SDE has large vari-
ance, (or) when the uncertainty model has large gradients with respect to state
and control. Multi-element gPC method can be used to over come this diver-
gence due to finite dimensional approximation. The structure of the proposed
constraint reformulation is invariant to multi-element gPC method.

• The choice of the terminal set used in Problem 6 is restricted due to the
εc−controllability of the SDE. We use soft constraints on the terminal state
to ensure the feasibility of both Problem 6 and 8.

• The projected cost functional preserves the positive definite property of the
quadratic cost used in Problem 6.

• The linear and quadratic chance constraints for a given risk measure are
second-order cone and semi definite constraints respectively in the gPC coef-
ficients.

Problem 8 (DNOC) enables the use of techniques like psuedo-spectral method, and
sequential convex programming for solving Problem 8 (SNOC). We use sequential
convex programming to solve Problem 8 and apply this technique to compute safe
and optimal motion plans under uncertainty. The model predictive extension of
gPC-SCP is applied for controlling a nonlinear robotic system under uncertainty
and safety constraints.

4.2.4 gPC-SCP: Generalized Polynomial Chaos-Based Sequential Convex Pro-
gramming

We formulate the gPC-SCP problem by constructing a sequential convex program-
ming (SCP) approximation of Problem 8 with gPC state (X) and control (ū) as
the decision variables. The convex program is then solved iteratively using inte-
rior point method till a convergence criteria is satisfied and projected back to the
probability space from the gPC space to compute a solution of Problem 7.

The SCP problem formulation involves two steps: 1) discretizing the continuous
time optimal control problem to a discrete time optimal control problem, and 2)
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convexifing the non-convex constraints and cost function about a nominal initial
state and control trajectory. Following this approach, the projected integral cost
functional (4.33), the nonlinear dynamics (4.28), and the second-order cone con-
straint (4.37) and semi-definite constraint (4.43) are discretized using first-order
hold approach for T time steps between the time horizon [t0, tf ] with gPC state and
control as the decision variables.

At iteration i, the cost functional, constraints (4.37) and (4.43), and feasible control
set U are convex. The discretized gPC dynamics in (4.28) is a nonlinear equality
constraint at each time step. We convexify the nonlinear dynamics (4.28) by lin-
earizing it about the state and control trajectory S(i−1) = {X(i−1), ū(i−1)} computed
at (i−1)th iteration. The linearized equations form a set of linear constraints on the
state and control action as follows:

X(i)[k + 1] = X(i)[k] + A(i)[k]X(i)[k] +B(i)[k]ū(i)[k]

+ Z(i)[k], where : k ∈ {1, . . . , T − 1}.
(4.45)

A(i) =
∂(f̄ + ḡ)

∂X

∣∣∣
S(i−1)

; B(i) =
∂(f̄ + ḡ)

∂ū

∣∣∣
S(i−1)

Z(i) = f̄(S(i−1),∆t) + ḡ(S(i−1),
√

∆t)

− A(i)X(i−1) −B(i)ū(i−1). (4.46)

The gPC-SCP problem at iteration i, after discretization and convexification is given
in the following Problem 9.

Problem 9. gPC-SCP: Generalized Polynomial Chaos-based Sequential Convex
Programming.

min
X(i),ū(i)

T−1∑
k=1

JgPC(X(i)[k], ū(i)[k])∆t+ JgPCf (X(i)[T ])

s.t. Projected Dynamics :(4.45)

Constraints : {(4.37), (4.43)}

ū(i)[k] ∈ U ∀ k ∈ {1, . . . , T − 1}

X(i)[1] = X0 X(i)[T ] ∈ XXf

‖X(i)[k]− X(i−1)[k]‖2
2 ≤ αxβ ∀ k ∈ {1, . . . , T} (4.47)

‖ū(i)[k]− ū(i−1)[k]‖2
2 ≤ αuβ ∀ k ∈ {1, . . . , T − 1}. (4.48)
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Problem 9 shows the SCP formulation at ith, given a nominal trajectory S(i−1) =

{X(i−1), ū(i−1)} computed at (i − 1)th iteration with the constraint set at each time
step k and iteration i, where XXf is the projected terminal constraint. The nom-
inal trajectory S0 at i = 1, used to initialize gPC-SCP, is computed using a de-
terministic trajectory optimization for the nominal dynamics ẋ = f(x, ū), that
ignores the uncertainty affecting the system. For motion planning problem, the
nominal trajectory S0 is computed using kino-dynamic motion planning algorithms
like asymptotically-optimal rapidly exploring random trees [51].

An additional trust region constraint on the gPC state (4.47) and control (4.48)
are used to ensure the convergence and feasibility of the SCP as i → ∞, where
αx > 0, αx > 0, and β ∈ (0, 1). The choice of β ensures the convergence of
the trust region as the number of iterations increases. This acts as a convergence
criteria, while ensuring that the search space is small. The trust region on gPC
state in (4.47) can be equivalently understood as probabilistic constraint of the form
Pr(‖xi − xi−1‖ ≤ αxp) ≥ 1− εt, where αx is a function of αxp using the quadratic
projection discussed in Lemma 7. The SCP algorithm is known to converge to the
KKT point of the DNOC problem under mild conditions. For detailed analysis
on convergence, see [14, 15, 48]. We ensure feasibility of gPC-SCP: 1) by using
stochastic reachable terminal sets, as discussed in [80], that are constructed using
the linearized approximation of the dynamics, and 2) by increasing the trust region
in-loop with β > 1 when an in-feasibility occurs.

4.2.5 Sub-Optimality and Convergence
In this section, we study the optimality of Problem 8 and show that Problem 8 com-
putes a sub-optimal solution to Problem 6. We make a two step approximation
of Problem 6 by using distributional robustness to formulate Problem 7 with known
mean and variance of the state and then use gPC propagation to construct the deter-
ministic optimal control Problem 8 that is solved using SCP. In Lemma 8, we prove
the sub-optimality of the optimal cost J∗SNOC of Problem 6 compared to the optimal
cost J∗DR−SNOC of Problem 7 that is distributionally robust.

Lemma 8. The optimal solution of Problem 7 is a sub-optimal solution of Prob-

lem 6, i.e., J∗SNOC ≤ J∗DR−SNOC.

Proof. The constraint set XDRLCC and XCQCC in Problem 7 are a subset of the
constraint set XLCC and XQCC of Problem 6 respectively. Therefore, J∗SNOC ≤
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J∗DR−SNOC as the feasible space of Problem 6 is larger than the feasible space
of Problem 7.

Problem 8 (DNOC) computed via gPC projection converges asymptotically to Prob-
lem 7 (SNOC). The following theorem discuss the conditions for convergence.

Theorem 1. The surrogate deterministic nonlinear optimal control Problem 8 with

convex constraints is a sub-optimal surrogate for the stochastic nonlinear optimal

control Problem 6 with following being true:

(a) In the case with no chance constraints, the cost |J∗gPC − J∗| → 0 as `→∞
(b) In the case with linear and quadratic chance constraints, any feasible solution

of Problem 8 is a feasible solution of Problem 6 as ` → ∞ and J∗SNOC ≤ J∗gPC,

assuming that a feasible solution exists.

Proof. Case (a): It is sufficient to prove that the cost function and the dynamics are
exact as `→∞. Using the Kronecker product notation, due to Lemma 1, we have
the following:

‖x− Φ̄X‖L2 → 0 as `→∞ (4.49)

(4.49) =⇒ ‖ẋ→ Φ̄Ẋ‖L2 → 0 as `→∞ (4.50)

(4.49) =⇒ |JgPC − J | → 0 as `→∞

|JgPCf − Jf | → 0 as `→∞
(4.51)

From (4.50), and (4.51) we conclude that the optimal value |J∗gPC − J∗| → 0 as
`→∞, since the cost function, the dynamics and the initial and terminal conditions
are exact as `→∞.
Case (b): Consider the sets XLgPC, and XQgPC defined below.

XLgPc = {x ∈ X : x ≈ Φ̄X where X ∈ (4.37)} (4.52)

XQgPC = {x ∈ X : x ≈ Φ̄X where X ∈ (4.43)} (4.53)

Using Lemmas 6 and 7, we have the approximate convex constraints converge to the
deterministic equivalent of the distributionally robust chance constraint as `→∞.

Lemma 6 =⇒ XLgPc → XDRLCC as `→∞

Lemma 7 =⇒ XQgPC → XCQCC as `→∞
(4.54)
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Using Lemmas 3 and 4, we have the following:

Lemma 3 =⇒ XDRLCC ⊆ XLCC

Lemma 4 =⇒ XCQCC ⊆ XQCC

(4.55)

{(4.54), (4.55)} =⇒

XLgPc ⊆ XLCC as `→∞

XQgPC ⊆ XQCC as `→∞
(4.56)

Combining (4.54) and (4.55), we can conclude that (4.56) holds as ` → ∞. This
proves that if a feasible solution exists for Problem 8 then it is a feasible solution
of Problem 6 as ` → ∞. Using Lemma 8, as ` → ∞ we have J∗gPC → J∗DR−SNOC.
This implies that J∗SNOC ≤ J∗gPC.

The above theorem proves the consistency of the gPC projection method as `→∞.
The asymptotic convergence of the cost and the chance constraints constraints is
achieved with large number of the polynomials φ. This leads to a deterministic
optimal control problem with size `dx. The choice of ` depends on the number
of uncertainty in the system and the nature of the state distribution. A computa-
tionally efficient approach is to use PgPC = 2 for generating the functions φ used
in the projection. This replicates the computational efficiency of linear covariance
propagation techniques, while ensuring the convexity of the chance constraints in
gPC space. We study the chance constraint formulation for collision checking un-
der uncertainty in dynamics and obstacle locations in the following section using
distributional robustness and gPC projection.

4.3 Chapter Summary
We present a generalized polynomial chaos-based sequential convex programming
method for safe and optimal motion planning and control under uncertainty in dy-
namics and constraints. The method uses generalized polynomial chaos projec-
tion and distributional robustness to compute a convex subset of the multi-model
state-dependent chance constraints, and a high-fidelity deterministic surrogate of
the stochastic dynamics and the cost functional. The surrogate deterministic opti-
mal problem is a finite-dimensional approximation of the stochastic optimal control
problem and enables the use of sequential convex programming for trajectory opti-
mization. We study the controllability of the surrogate deterministic dynamics and
propose a terminal constraint to ensure the feasibility of the surrogate optimal con-
trol problem. We prove the asymptotic convergence of the surrogate problem to the
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stochastic optimal control problem. The asymptotic convergence property of the
deterministic surrogate allows for achieving a greater degree of safety.
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C h a p t e r 5

GUIDANCE AND CONTROL UNDER UNCERTAINTY

We formulate a motion planning problem to incorporate uncertainty in dynamics
and obstacles using the gPC-SCP method proposed in Chapter 4. We derive prov-
ably convex collision constraints using the linear and quadratic chance constraints
and integrate them with the gPC-SCP method to compute safe motion plans under
uncertainty. We extend the gPC-SCP method for tracking control using a stochastic
model predictive formulation.

5.1 Motion Planning Under Uncertainty
The motion planning problem is to compute an optimal and safe trajectory (x ∈ XF )
for the SDE in (4.7) from an initial state x0 ∈ X to the terminal set Xf ⊆ X on
a given map with static obstacles. In the following, we derive a chance constraint
formulation of the collision constraint and terminal state constraint. The chance
constraints are used to formulate a SNOC problem as described in Problem 6. The
SNOC problem is then projected to the gPC space for solving via SCP method.
At each SCP iteration, the collision constraints are approximated as linear chance
constraint around the nominal trajectory and form a second-order cone constraint in
gPC state X as discussed in Lemma 6. The terminal set is defined as a soft constraint
on an ellipsoidal set and forms a semi-definite constraint in gPC states as discussed
in Lemma 7.

In the following, we first discuss the linear chance constraint formulation for col-
lision checking with a deterministic obstacle and then extend it to include the un-
certainty in obstacle locations for SCP. We prove that the approximation is a subset
of the original nonlinear chance constraint. We then discuss the chance constraint
formulation of the terminal set constraint. The chance constraint formulations for
collision checking and terminal set are used to design a motion planning algo-
rithm that integrates an asymptotically-optimal sampling based planner [51] with
the gPC-SCP method for computing a safe trajectory under uncertainty.

5.1.1 Collision Checking with Deterministic Obstacles
We derive a second-order cone constraint approximation of the circular obstacle in
the gPC coordinates under the uncertainty in dynamics at any point in time t ∈
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Figure 5.1: An illustration of the convex linear constraint used for collision check-
ing in deterministic SCP at a particular instant in time is shown on the left. The
linear chance constraint under stochastic dynamics is projected to gPC space form-
ing a second-order cone constraint. The cone constraint is visualized as a robustness
bound on the robot’s state as shown in the figure on right.

[t0, tf ]. The approximation involves two steps. We first derive a conservative linear
chance constraint approximation of the nonlinear collision chance constraint. In the
second step we project the linear chance constraint to a second order cone constraint
in the gPC coordinates. Let the state of the obstacle be p̄obs at time t and the radius
of the obstacle be robs. The collision chance constraint at any time t for a robot with
the state distribution x and radius rrob is given as follows:

Pr (‖C(x− p̄obs)‖2 ≥ rrob + robs) ≥ 1− εcol, (5.1)

where the matrix C is used to compute the position of the obstacle and the robot
given the states p̄obs and x respectively. The probability of collision is tuned using
the risk measure εcol ∈ [0.001, 0.1]. In the following theorem, we prove that, given
a nominal state distribution trajectory xnom, we can compute a conservative linear
chance constraint approximation of the collision constraint (5.1). The nominal tra-
jectory xnom can computed by using a deterministic planner without considering
the uncertainty in the dynamics.

Theorem 2. The linear chance constraint,

Pr
(

(x̄nom − p̄obs)
>C>C(x− p̄obs)

≥ rsafe‖C(x̄nom − p̄obs)‖2

)
≥ 1− εcol, (5.2)

in robot state distribution x is a conservative approximation of the nonlinear colli-

sion chance constraint in (5.1) at any time t ∈ [t0, tf ], where x̄nom is a realization

of the nominal state distribution xnom of the robot that satisfies (5.1), p̄obs is the

state of the obstacle, and rsafe = rrob + robs.
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Proof. Consider the set Xfree, defined as Xfree = {x : ‖C(x − p̄obs)‖2 ≥ rsafe}.
Given a nominal trajectory xnom, the setXs defined asXs = {x : (x̄nom−p̄obs)

>C>C(x−
p̄obs) ≥ rsafe‖C(x̄nom− p̄obs)‖2} is such that Xs ⊆ Xfree. For a proof of Xs ⊆ Xfree

see [15]. Figure 5.1 shows an example of the set Xs and Xfree, where the hyperplane
used for linearization of the circular constraint leads to reduced feasible space. We
can construct an indicator function Ifree(x) such that Ifree(x) = 1 if x ∈ Xfree and
Ifree(x) = 0 otherwise. Similarly, indicator Is(x) is such that Is(x) = 1 if x ∈ Xs
and Is(x) = 0 otherwise.

Since Xs ⊆ Xfree, x ∈ Xs =⇒ x ∈ Xfree,

and Is(x) = 1 =⇒ Ifree(x) = 1. (5.3)

Therefore, if E(Is) ≥ 1−εcol, then E(Ifree) ≥ 1−εcol with at least 1−εcol probability.
Note that, Pr(x ∈ Xfree) = E(Ifree(x)) and Pr(x ∈ Xs) = E(Is(x)). This implies
that if the chance constraint in (5.2) is satisfied with probability 1 − εcol, then the
constraint in (5.1) is satisfied with at least a probability of 1−εcol. The distributional
robustness approach can be visualized, as shown in Fig. 5.1, as a robust ball around
the robot’s state for collision checking using the convex feasible subset Xs of the
non-convex feasible space Xfree.

Remark 5. The constraint (5.2) is of the form Pr(a>x+b ≤ 0) ≥ 1−εcol, where a =

−(x̄nom−p̄obs)
>C>C, and b = (x̄nom−p̄obs)

>C>Cp̄obs +rsafe‖C(x̄nom−p̄obs)‖2.
Using the Lemma 2, we formulate a second-order cone constraint that is used in the
SCP problem for collision checking.

5.1.2 Collision Checking with Stochastic Obstacles
We extend the linear chance constraint formulation in (5.2) to include uncertainty
in obstacle state. Let the obstacle state distribution be pobs ∼ N (µp,Σp), where µp

is the mean, Σp is the variance matrix, and the radius of obstacle is robs.

Assumption 3. The obstacle state distribution p is uncorrelated to the state distribu-
tion x of the robot.

The collision chance constraint at any time t for a state distribution x and radius
rrob is given as follows:

Pr (‖C(x− pobs)‖2 ≥ rrob + robs) ≥ 1− εcol, (5.4)

where both x and pobs are random variables, unlike in (5.1).
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Figure 5.2: An illustration of the second-order cone constraint used for collision
checking with uncertainty in dynamics and the obstacle position at an instant in
time is shown on the right. For a given risk of collision probability ε, the uncertainty
in obstacle position is visualized as an additional uncertainty in the robots state.

Theorem 3. The linear chance constraint,

Pr
(

(x̄nom − p̄obs)
>C>C(x− pobs)

≥ rsafe‖C(x̄nom − p̄obs)‖2

)
≥ 1− εcol, (5.5)

in robot state distribution x and obstacle state distribution pobs is a conservative

approximation of the nonlinear collision chance constraint in (5.4) at any time t ∈
[t0, tf ], where x̄nom is a realization of the nominal state distribution xnom of the

robot, p̄obs is a realization of the obstacle state distribution pobs, and rsafe = rrob +

robs.

Proof. Consider the sets Xfree and Xs, defined as Xfree = {x : ‖C(x − pobs)‖2 ≥
rsafe and Xs = {x : (x̄nom − p̄obs)

>C>C(x − pobs) ≥ rsafe‖C(x̄nom − p̄obs)‖2}
respectively, where p̄obs is a sample from the obstacle state distribution pobs. In the
constraint Xs, (x − pobs) is the decision variable. Note that, for any realization of
the state x̄ and the p̄obs we have Xs ⊆ Xfree (see [15] for the proof). Using the
arguments in Theorem 2, the constraint (5.5) is a conservative approximation of the
constraint (5.4). As shown in Fig. 5.2, the uncertainty in obstacle is projected as an
additional uncertainty in robot’s state for collision checking using the hyperplane
approximation.

Remark 6. The constraint (5.5) is a linear chance constraint of the form Pr(a>(x−
pobs) + b ≤ 0) ≥ 1− εcol, where a = −(x̄nom − p̄obs)

>C>C, b = rsafe‖C(x̄nom −
p̄obs)‖2, and pobs ∼ N (µp,Σp). In this case, the distributionally-robust determin-
istic surrogate is computed for the stacked state xc = [x>p>obs]

>, that includes both
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robot and the obstacle state. The surrogate constraint is given as follows:

a>µx − a>µp + b+
√

1−εcol
εcol

√
a>Σxa+ a>Σpa ≤ 0. (5.6)

Using Lemma 6, the inequality constraint in moments is transformed to a second-
order cone constraint in terms of the gPC states X of the robot dynamics.

Remark 7. For correlated obstacle state p and robot state x, with the cross correla-
tion matrix Σxp, the deterministic surrogate of (5.4) is given as follows:

a>µx − a>µp + b+√
1−εcol
εcol

√
a>Σxa+ 2a>Σxpa+ a>Σpa ≤ 0. (5.7)

The derivation uses the stacked state xc, as shown in Remark 6.

Remark 8. Theorem 3 can be applied for safe multi-agent reconfiguration under
uncertainty by replacing the obstacle state pobs with the neighbouring robots state.
The robots communicate the moments used in (5.7) for collision checking with the
neighbouring agents.

5.1.3 Terminal Constraint
The terminal constraint is defined as an ellipsoidal set (x− x̄f )

>QXf (x− x̄f ) ≤ cf

around a terminal point x̄f , where QXf is a positive definite matrix. The chance
constraint formulation of the terminal set involves two steps: 1) constraining the
mean of the terminal point as µf = x̄f and 2) formulating the quadratic chance
constraint Pr((x− x̄f )

>QXf (x− x̄f ) ≤ cf ) ≥ 1− εf around the mean µf with risk
measure εf of not reaching the terminal set. We use the conservative deterministic
constraint discussed in Lemma 4, that bounds the variance of the state. The terminal
constraints are summarized as follows:

µf = x̄f ,
1

cf
tr(QXfΣxf ) ≤ εf , (5.8)

where µf is the mean and Σxf is the variance of the terminal state. The conservative
approximations we presented in this Section are a trade-off between the knowledge
of moments available and the computational speed achieved by convex constraints.
For a linear SDE with obstacles whose uncertainty is described by Gaussian distri-
bution, a tighter equivalent deterministic surrogate constraints can be derived using
the covariance propagation technique for uncertainty propagation and the inverse
cumulative distribution function for Gaussian distribution.
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5.1.4 Motion Planning Algorithm
For motion planning, we integrate the deterministic approximations discussed in Sec-
tions 5.1.1, 5.1.2, and 5.1.3 with the asymptotically-optimal rapidly exploring ran-
dom trees [51] (AO-RRT) algorithm. Following Algorithm 2, outlines the motion
planning method using gPC-SCP for a dynamical system under uncertainty.

Algorithm 2: Distributionally-Robust Motion Planning.
Input: Map, obstacle location, x0, Xf , ∆t, `,
Input: Uncertainty model of g(x, ū) in SDE (4.7).
Output: Optimal and safe state distribution Xsol = {x0,x1, ...,xT} and

control input Usol = {ū0, ū1, ..., ūT−1}.
.Stage 1: gPC Projection.

1 Problem 8← gPC Projection
2 Formulate the collision constraint using Theorems 2 and 3,
3 Formulate the terminal set Xf using (5.8),
4 Project the SDE using (4.25),
5 Project the collision constraint using Lemma 6,
6 Project the terminal set using Lemma 7,
7 Setup and project cost function using (4.33),
8 return: Problem 8 in gPC space.

9 Problem 9← Linearize (Discretize (Problem 8))
10 Save Problem 9.
.Stage 2: Compute a nominal trajectory using
AO-RRT.

11 {X 0
sol,U0

sol, T} ← AO-RRT (x0,Xf ,∆t, ẋ = f(x, ū)) /* For detailed
implementation of AO-RRT see [51]. */
.Stage 3: gPC-SCP.

12 {Xsol,Usol} ←SCP (Problem 9,{X 0
sol,U0

sol, T}) /* The sequential
convex programming (SCP) approach is described
in Section 4.2.4. */

Algorithm 2 has three stages. In Stage 1, we formulate the linear chance con-
straint for collision checking and the quadratic chance constraint for the terminal
constraint respectively. Using the chance constraints, we setup Problem 7 (SNOC)
and project it to Problem 8 (DNOC). We formulate the gPC-SCP in Problem 9 by
discretizing Problem 8. In Stage 2, we use AO-RRT to compute an initial feasible
trajectory {X 0

sol,U0
sol} for the nominal dynamics ẋ = f(x, ū). In Stage 3, the feasi-

ble trajectory is then used to initialize the SCP iterations in gPC-SCP, that optimizes
for the uncertainty in dynamics. The output of stage 3 is a safe and optimal state
trajectory in gPC space. Using the gPC polynomials in (4.23), the gPC space trajec-
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tory is projected back to the state space distribution to output {Xsol,Usol} in line 12
of Algorithm 2. Note that RRT in AO-RRT can be replaced with sparse tree [143]
algorithm for improved speed and with RRT∗ [144] for optimality. We discuss the
application of Algorithm 2 in Section 5.3.

5.2 Tracking Control Using Stochastic Model Predictive Control
We derive a stochastic model predictive control (SMPC) algorithm using gPC-SCP
for the nonlinear control affine system defined as follows:

dx = f(x)dt+B(x)ūdt+ g(x, ū)dw, (5.9)

to track a desired state and control trajectory (x̄des(t), ūdes(t)), that is at least C2

continuous and defined ∀t ∈ [t0, tf ]. In the SMPC approach, we solve Problem 7
for a fixed time horizon [t0, th], where t0 ≤ tS < th < tf , and apply the control
input at the time t0. The control input ū is state dependent, i.e., ū = ū(x), as the
SMPC problem is solved at each sample time tS with an estimate of the current
state x̄(tS) as an input. The SMPC approach discussed below will ensure safety of
the system in real-time at the control stage.

5.2.1 Continuous-time SMPC for Reference Tracking
We first present the continuous-time SMPC problem and then discuss the conditions
for convergence and stability in terms of probability. The finite-horizon SMPC
problem for tracking a desired trajectory (x̄des, ūdes) in the error state δx = x −
x̄des and the control δū = ū − ūdes is given by the following Problem 10. The
desired trajectory (x̄des(t), ūdes(t)) is computed for the nominal dynamics dx =

f(x)dt + B(x)ūdt by using a deterministic motion planning algorithm. Note that
the desired trajectory is still a feasible trajectory for the SDE (5.9). Hence, the
desired trajectory could be unsafe in the presence of a white noise in the dynamics.
We assume that the full state information is available to the controller.

Problem 10. Continuous-Time SMPC.

J∗S0 = min
δx,δū

E
[∫ th

t0

JS(δx(t), δū)dt+ JSf (δx(th))

]
(5.10)

s.t. dδx = ∆fdt+ ∆Bdt+ g(x, ū)dw (5.11)

x ∈ XSsafe ,∀t ∈ [t0, th], x(th) ∈ XSf (5.12)

E(x(t0)) = µx0 , ū ∈ U , (5.13)

where ∆f(x, x̄des) = f(x)−f(x̄des), ∆B(x, ū, x̄des, ūdes) = B(x)ū−B(x̄des)ūdes,
x(th) is the terminal state, and x̄0 is an estimate of the system’s state at t0. We
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solve Problem 10 at each time tS = t0 + k∆t for the horizon [tS , th + k∆t], where
∆t is the sampling time interval and k ∈ Z+ is the time step respectively. The cost
functional JS in (5.10) is defined as follows:

JS(δx, δū) = δx>Qδx + δū>Rδū, (5.14)

whereQ andR are positive definite matrices. The safe set XSsafe in (5.12) is defined
using joint linear chance constraints:

XSsafe = {x|Pr(∧ia>i x + bi ≤ 0) ≥ 1− εi ∀t ∈ [t0, tf ]}. (5.15)

The terminal constraint set XSf in (5.12) is defined using a quadratic chance con-
straint as follows:

XSf = {x | Pr(δx>thQXf δxth ≤ cf ) ≥ 1− εf}, (5.16)

where δxth = x(th) − x̄des(th) and QXf is a positive definite matrix. The matrix
QXf and the bound cf in the quadratic constraint (5.16) are designed to be a sub-
level set of the positive control invariant and reachable set of the dynamics (5.11)
in Problem 10. Using a reachable set as the terminal constraint guarantees the feasi-
bility of Problem 10 at each sample time tS ∈ [t0, tf ]. The terminal cost JSf enables
tracking of the desired trajectory by ensuring the stability of SMPC (Problem 10),
as discussed in Section 5.2.2.

5.2.2 Convergence and Stability
The control problem is to track the desired trajectory (x̄des, ūdes), i.e., limt→∞ E(‖x−
x̄des‖2

2) ≤ ct, while ensuring that x ∈ XSsafe , where ct is an upper bound on the
tracking error. The finite-horizon stochastic model predictive closed-loop system
might be unstable. To guarantee tracking of the desired trajectory and the stability
of the system (5.11), the terminal cost function JSf should represent the truncated
cost of the infinite-horizon optimal control problem. An approach to achieve sta-
bility (see [145, 146]) in a deterministic nonlinear model predictive control is to
have a control Lyapunov function as the terminal cost. We use a Stochastic Con-
trol Lyapunov Function (SCLF) [50, 147], as the terminal cost for guaranteeing the
stability of the SDE system (5.11). This is an extension of the approach discussed
in [82] and [83] for discrete-time Markov decision process. We make the following
assumptions to ensure feasibility and constraint satisfaction of the Problem 10 for
studying the convergence and stability of the closed-loop system.
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Assumption 4. The SDE in (5.11) is εc− controllable, as stated in Definition 1, to
the terminal state δx = 0.

Assumption 5. The Problem 10 is initialized at the state x0 such that x0− x̄des(t0) ∈
Xci ⊆ X , where Xci is a stochastic control invariant set of the error dynamics (5.11)
and 0 ∈ Xci. A detailed discussion on the set-invariance of a controlled stochastic
system can be found in [81, 148, 149].

Assumption 6. The constraint satisfaction at each sampling time, tS is achieved by
using the constraint tightening approach. In the constraint tightening approach, as
described in [80, 150], an inner-level optimization problem is used to compute an
optimal risk measure ε that leads to a feasible Problem 10.

The cost functional JS is a function of the quadratic polynomials in the error state
δx and control δū and satisfies the lower bounded as discussed in Remark 9.

Remark 9. The cost functional JS is convex in [δx, δū], and is lower bounded at
any time t ∈ [t0, tf ] as follows:

JS ≥ min{λmin(Q), λmin(R)}(‖δx‖2 + ‖δū‖2) ∀ t, (5.17)

where λmin(Q) and λmin(R) are the minimum eigenvalues of the positive definite
matrices Q and R respectively.

In the following Assumption 7, we introduce the properties of the terminal cost JSf
that guarantee the convergence of the cost and stability of the closed-loop system.
Along with a SCLF-based terminal cost, we use a terminal constraint that is a subset
of the control invariant set of the SDE (5.11) as discussed below.

Assumption 7. The terminal cost JSf from (5.10) and the terminal constraint set
XSf satisfy the following conditions.

(A1) XSf ⊆ Xci ⊂ Xsafe, where Xci is defined in Assumption 5 and 0 ∈ XSf

(A2) The terminal cost JSf (δx) is of the following form:

JSf = γδx>M(x, t)δx, γ > 0, (5.18)

is a contraction metric (see [28, 88]) and is uniform bounded as follows:

clf‖δx‖2 ≤ JSf (δx) ≤ cuf‖δx‖2, (5.19)
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where clf > 0 and cuf > 0, and satisfies the following inequality:

M(x, t)
∂F

∂x
+

(
∂F

∂x

)>
M(x, t) +

d

dt
M(x, t) ≤ −2αM(x, t) (5.20)

where F = ∆f + ∆B.

(A3) We assume that tr(g∇xxJSfg
>) ≤ cv ∀(x, ū) ∈ X × U .

(A4) The terminal cost JSf satisfies the following inequality:

LJSf ≤ −2γαδxM(x, t)δx+ cv. (5.21)

If we choose γ such that 2αγδxM(x, t)δx ≥ JS , then

LJSf (δx) + JS(δx, δū) ≤ cv, (5.22)

where the operator L is defined as L(JSf ) = ∂tJSf +∇xJ
>
Sf∆f +∇xJ

>
Sf∆B

+ 1
2
tr(∇xxJSfg(x, ū)g>(x, ū)), JSf (δx) is the terminal state cost, JS(δx, δū)

is defined in (5.10), and cv is defined in the Assumption (A3).

(A5) For the SMPC feedback control ūS , the cost JS is uniformly bounded as
follows:

cl‖δxS‖2 ≤ JS(δxS , δūS) ≤ cu‖δxS‖2. (5.23)

where cl > 0 and cu > 0. The coefficients cl and cu are a function of the
eigenvalues of the positive definite matrices Q and R.

In Theorem 4, we prove that the optimal cost J∗Sk decreases with the time step
k, i.e., J∗Sk+1

≤ J∗Sk , provided that Problem 10 satisfies the Assumptions 4, 5, 6,
and 7. We show that a decreasing optimal cost implies that the SMPC is a stabilizing
controller.

Theorem 4. Suppose that Problem 10 satisfies Assumptions 4, 5, 6, and 7, the

terminal cost JSf is a control contraction metric as defined in [147], and JSf , JS
satisfy the inequality (5.22). Then,

J∗Sk+1
≤ J∗Sk + cv, (5.24)

J∗Sk =E
(∫ th+k∆t

t0+k∆t

JS(δx∗, δū∗)dt

)
+ E(JSf (δx

∗(th + k∆t))), (5.25)
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where J∗Sk is the optimal cost and (δx∗, δū∗) is the optimal feasible trajectory

of Problem 10 for the time horizon [t0 + k∆t, th + k∆t], ∆t and k are the sampling

time interval and time step respectively. Furthermore, the control ūS computed

using the SMPC (Problem 10) is an exponential stabilizing control for the error

dynamics in (5.11).

Proof. We first prove that the optimal cost of the finite-horizon SMPC (Problem 10)
decreases with the time step k and then show that the decreasing optimal cost im-
plies stability of the closed-loop system. Without loss of generality, we prove the
inequality (5.24) for k = 0. This result can be extended to any k by moving the
time horizon of Problem 10.

(a) Decreasing Cost: Let the optimal trajectory computed using the SMPC at the
sampling time t0 = 0 and t0 = ∆t be (δx∗0, δū

∗
0),∀t ∈ [0, th] and (δx∗1, δū

∗
1),∀t ∈

[∆t, th + ∆t], respectively. Assume that the trajectory (δx∗0, δū
∗
0),∀t ∈ [0, th] is

appended with the trajectory (δx∗c0 , δū
∗
c0

),∀t ∈ [th, th+∆t], that is computed using
an asymptotically stable controller satisfying the Assumption 7. The optimal costs
for k = 0 and k = 1 are defined as J∗S0(δx

∗
0, δū

∗
0) and J∗S1(δx

∗
1, δū

∗
1), respectively.

Using (5.25), we can show the following equality:

JS1(δx
∗
0, δū

∗
0) = J∗S0(δx

∗
0, δū

∗
0)− E

(∫ ∆t

0

JS(δx∗0, δū
∗
0)dt

)
+ E

(∫ th+∆t

th

JS(δx∗c0 , δū
∗
c0

)dt

)
(5.26)

+ E(JSf (δx
∗
c0

(th + ∆t)))− E(JSf (δx
∗
c0

(th))).

Since the cost JS is quadratic in state and control, the term−E(
∫ ∆t

0
JS(δx∗0, δū

∗
0)dt)

is ≤ 0. Using this, the above equality reduces to the following inequality.

JS1(δx
∗
0, δū

∗
0) ≤ J∗S0(δx

∗
0, δū

∗
0)

+ E
(∫ th+∆t

th

JS(δx∗c0 , δū
∗
c0

)dt

)
+ E(JSf (δx

∗
c0

(th + ∆t)))− E(JSf (δx
∗
c0

(th))).

By conditioning the expectation operation for a known δx∗c0(th), we get the follow-
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ing inequality:

JS1(δx
∗
0, δū

∗
0) ≤ J∗S0(δx

∗
0, δū

∗
0)

+ E
(∫ th+∆t

th

JS(δx∗c0 , δū
∗
c0

)dt

)
(5.27)

+ E(JSf (δx
∗
c0

(th + ∆t)))− JSf (δx∗c0(th)).

By Dynkin’s formula (see [49, 151]), we have the following equality:

E
(
JSf (δx

∗
c0

(th + ∆t)))− JSf (δx∗c0(th)
)

= E
(∫ th+∆t

th

LJSf (δx∗c0)dt
)
. (5.28)

Using the Dynkin’s equality (5.28) in the inequality (5.27), we have the following
inequality:

JS1(δx
∗
0, δū

∗
0) ≤ J∗S0(δx

∗
0, δū

∗
0)

+ E
(∫ th+∆t

th

(
JS(δx∗c0 , δū

∗
c0

) + LJSf (δx∗c0)
)
dt.

)
(5.29)

Using (5.22) in (5.29), we have

JS1(δx
∗
0, δū

∗
0) ≤ J∗S0(δx

∗
0, δū

∗
0) + cv. (5.30)

The trajectory (δx∗0, δū
∗
0) is a sub-optimal trajectory for the horizon [∆t, th + ∆t].

Therefore, J∗S1 ≤ J∗S0+cv. Since we use linear operations in proving J∗S1 ≤ J∗S0+cv,
we can extend the inequality to any k ∈ Z+ by simply moving the time horizon.
Thus, we have J∗Sk+1

≤ J∗Sk + cv.

(b) Stability: The control δūS computed using Problem 10 satisfies the inequality
in (5.22) as stated in Assumption 7. Using the uniform bounds in (5.19) and (5.23),
the SCLF inequality is simplified as follows for the feedback control ūS :

LJSf (δxS) ≤ − cl
cuf

JSf (δxS) + cv. (5.31)

Applying the Dynkin’s formula, we have the following bound.

E(‖δxS(t)‖2) ≤
cuf
clf

E(‖δxS(0)‖2)e
− cl
cuf

t
+
cvcuf
clf cl

(5.32)

As t → ∞, the expectation of the tracking error is bounded by
cvcuf
clf cl

. Therefore,
the closed-loop system is exponentially stable, assuming that Assumptions 4, 5, 6,
and 7 are satisfied when formulating Problem 10.
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Note that the convergence and stability of the SMPC controller depend on the choice
of the terminal cost JSf . The cost functional JSf and the metric M(x, t) defined
in Assumption 7 are designed by using the control contraction metric discussed
in [147]. In the following section, we discuss the implementation of the SMPC
controller using gPC-SCP.

5.2.3 SMPC using gPC-SCP
We formulate the SMPC (Problem 10) such that recursive feasibility, constraint sat-
isfaction, and stability is guaranteed, as discussed in Section 5.2.2. We then solve
the SMPC problem by using the gPC approach and the gPC-SCP problem. In the
following Algorithm 3, we discuss the stochastic model predictive control algo-
rithm for tracking a given desired trajectory (x̄des, ūdes). We generate the desired
trajectory for the nominal trajectory using a deterministic motion planner.

Algorithm 3: Stochastic Model Predictive Control.
Input: Obstacle location, x0, Xf , ∆t, T ,
Input: Desired trajectory (x̄des, ūdes), uncertainty model of g(x, ū) in

SDE (4.7).
Output: Safe control input Usol = {ū0, ū1, ..., ūT−1} to track (x̄des, ūdes).

1 Compute Problem 9 for Problem 10, as discussed in Algorithm 2.
2 while The terminal set Xf not reached do
3 Usol←SCP (Problem 9,(x̄des, ūdes), T,∆t, x0)
4 Apply ū0 to the system (4.7)
5 Update x0 using sensor information
6 Update (x̄des, ūdes) based on ∆t

In the offline stage, we compute the projected gPC-SCP problem for Problem 10.
Given a desired trajectory (x̄des, ūdes), time interval ∆t and the number of time steps
T , we solve the gPC-SCP at each time step k and apply the control ū(t0 + k∆t) to
the system. We apply the control ū(t0 + k∆t) to the system, until the terminal set
Xf is reached. Note that the terminal set Xf is large large enough to accommodated
for the tracking error bound discussed in Theorem 4. In the following Section 5.3,
we discuss the implementation of Algorithms 2 and 3 on a three degree-of-freedom
robot.

5.3 Simulations and Experiments on Spacecraft Dynamics Simulator
We apply the gPC-SCP method in Algorithm 2 to design safe and optimal motion
plans, and the SMPC Algorithm 3 to track a nominal unsafe trajectory for the three
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degree-of-freedom robotic spacecraft simulator dynamics [30]. For the spacecraft
simulator dynamics, we conduct an empirical study via simulation to demonstrate
the safety provided by Algorithms 2 and 3 in comparison to the Gaussian collision
constraint [21, 22, 25, 52, 74]. We ran the simulations on an Ubuntu machine with
the configuration: 7th generation Intel Core i7 process, and 16 GB RAM. We solve
the SCP problem using CVXpy [152] and ECOS [153] solver. We then validate
the experimental results on the spacecraft simulator hardware platform, where the
motion planning and control is computed on a NVIDIA Jetson TX2 Computer.

5.3.1 Robotic Spacecraft Dynamics Simulator [30]
The Caltech’s M-STAR (Multi-Spacecraft Testbed for Autonomy Research) is shown
in Fig. 5.3. The testbed floats on an ultra-precise epoxy floor using linear air bear-
ings to achieve 3DOF friction-less motion. The M-STAR is equipped with eight
thrusters for position (x, y) and yaw angle (θ) control. The dynamics of the robot is
given as follows:

dx = f(x, ū)dt+ σg(x, ū)dw, (5.33)

where x = [x, y, θ, ẋ, ẏ, θ̇]>, ū ∈ R8, σ ∈ R. The functions f(x, ū) and g(x, ū) are
given below:

f(x, ū) =

[
I3×3 0

0 0

]
x +

[
0

B(m, I, l, θ)ū

]
, (5.34)

g(x, ū) = blkdiag{0, B(m, I, l, θ)ū}. (5.35)

The control effort ū is constrained to be 0 ≤ ū ≤0.45 N, and B(m, I, l, θ) ∈
R3×8 is the control allocation matrix (see Chapter 7), where m = 10 kg and I =

1.62 kg m s−2 are the mass and the inertia matrix, and l = 0.4 m is the moment arm.
The uncertainty σg(x, ū) stems due to viscous friction between the robot and the
flat floor, drift due to gravity gradient, and uncertainty in thruster actuation. We
choose σ = 0.1, this value encompasses all the above forms of uncertainty. With
this model, we study the convergence, collision checking, and trajectory tracking
discussed in Theorems 1, 2, 3, and 4.

5.3.2 Simulation
Consider the map shown in Fig. 5.4. We design a safe and optimal trajectory, J =

‖ū‖2, from the initial state E(x0) = 0 to the terminal state E(xf ) = [0.3, 2.3, 0, 0, 0, 0]>,
while avoiding the obstacle located at pobs = [0.3, 1, 0, 0, 0, 0]> with radius rsafe =
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Figure 5.3: The top and side view of the Caltech’s robotic spacecraft dynamics
simulator.

0.5 m. We formulate the collision constraint using Theorems 2 and 3 and bound
the terminal variance using a slack variable to ensure feasibility. In Fig. 5.4, we
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Figure 5.4: The figure demonstrates convergence of the mean and the variance
(σx, σy) of the states (x, y) with increasing PgPC for σ = {0.01, 0.1}.

show the mean and variance of the position of M-STAR, (x, y), computed using
Algorithm 2. We compare the mean and variance computed for gPC polynomial
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degree PgPC = {1, 2, 3, 4} and variance σ = {0.01, 0.1} with g(x, ū) = [0, Bū]>.
The convergence of mean and variance with increasing PgPC, implies convergence
with respect to `, validating Theorem 1. Since, there are no known methods to
compute global optimal solution for Problem 6, we cannot comment on the sub-
optimality of the solution. For the case with low variance σ = 0.01, we observe
that gPC polynomial with degree PgPC = 1 are sufficient for computing the mean
and the variance accurately. While for the large variance σ = 0.1, we need gPC
polynomials with degree PgPC = 2. We can use PgPC = 1 with large variance
in dynamics for the following two case: 1) short-horizon planning, and 2) iterative
planning with closed-loop state information updates. We use gPC polynomials with
degree PgPC = 2 in the following analysis for motion planning and PgPC = 1 for
SMPC-based tracking control.
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Figure 5.5: Left: We compare the probabilistic safe trajectories computed using dis-
tributionally robust and Gaussian collision chance constraint. Center: We compare
the trajectories for various risks (ε = 0.05, 0.25, 0.5) of collision constraint vio-
lation. Right: We demonstrate collision checking under uncertainty in both robot
dynamics and obstacle location.

Motion Planning

In Fig. 5.5, we show the mean and 2-σ confidence level of the trajectories computed
using distributionally robust collision checking and Gaussian confidence-based col-
lision checking for a risk measure ε = 0.05. We observe that increasing the risk of
collision (ε) in planning formulation from 0.05 to 0.5 reduces the safety in the tra-
jectories. As shown in Fig. 5.5, that the trajectories generated using DRLCC are
safer for both deterministic and stochastic obstacle (Σp = 1e − 4), in comparison
to Gaussian constraint.

We validate the safety of the motion plans computed using gPC-SCP by tracking a
sampled trajectory with the exponentially stable controller designed in [30] for the
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Figure 5.6: We compare the trajectories generated for different sizes c =
{0.316, 0.224, 0.071} (shown as the green circle) of the terminal set. We show
the terminal state of the robot (blue), when a nominal trajectory (sampled from the
probabilistic trajectory) is executed using an exponentially stable controller.

nominal dynamics. We sample a trajectory x by using the projection equation x =

ΦT (ξ)X . The gPC-SCP algorithm computes the gPC coordinates X, we compute
x by randomly sampling the multivariate normal distribution ξ. Using the motion
plans shown in Fig. 5.5 as an input to the controller, we get the following number
of collisions over 1000 trials. The number of collisions with DRLCC constraint

DRLCC Gaussian
Deterministic Obstacle 2 66

Stochastic Obstacle (Σp = 1e− 4) 5 182

Table 5.1: Number of collisions over 1000 trails.

for the risk measure ε = {0.05, 0.25, 0.5} are {0, 23, 181}, respectively. The goal
reaching of the robot for various terminal variance size is shown in Fig. 5.6. For
the terminal variance with c = 0.071, the robot violates the constraint 49 times over
1000 trials. Note that, although the DRLCC constraint performs better than the
Gaussian constraint for nonlinear dynamical system, it reduces the feasible space
of the optimization problem. For a given dynamical system and obstacle map, a
trade-off analysis between distributional robustness and risk measure ε is required
to ensure that the feasible space is non-empty.

Tracking Control using Stochastic Model Predictive Control

We apply the SMPC method described in Section 5.2 to track a trajectory designed
using nominal dynamics dx = f(x, ū)dt with deterministic obstacles for a fixed
horizon of tf =25 s and ∆t =0.25 s. Since, the uncertainty in the dynamics and
the obstacle location is not considered in the design of the nominal trajectory, it
could be unsafe during operation. Algorithm 3 will enable safe operation, provided
that Assumption 7 are satisfied. We use the Lyapunov function defined in [30] as
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Figure 5.7: We show trajectory tracking and safety under uncertainty in dynam-
ics and obstacle location in real-time over 5 trials by using the proposed stochastic
model predictive controller. We compare the distributionally robust (DRLCC) col-
lision constraint with the Gaussian collision constraint. Left: In the case with small
uncertainty (Σp = 1e − 4), both constraints perform safe tracking. Right: With
large uncertainty (Σp = 1e− 2), the DRLCC provides safety in all the trials, while
Gaussian collision constraint fails in 2 trials.

the terminal cost JSf , that satisfies Assumption 7 provided that the cost-to-go is
defined as Q = I and R = I. We formulate the terminal constraint set as dis-
cussed in Section 5.1.3. The terminal variance is bounded using a slack variable for
feasibility.

In Fig. 5.7, we compare the tracking performance with σ = 0.1 and uncertainty
in obstacle position Σp = {0.01, 0.1}. We observe that for Σp = 0.01, both the
proposed distributionally robust approach and Gaussian collision checking are safe
for th = 5 s. In the case with Σp = 0.1, the Gaussian approach has 2 failure over
5 trials for time horizon th = 5 s. We observe that the appropriate choice of T
in Problem 10 and the cost-to-go function depend on the terminal cost JSf , the size
of the invariant set around the nominal trajectory and the uncertainty in the system
and the environment. If the uncertainty is large, then the time horizon needs to be
large to ensure safety. While this validates Theorem 4, further research needs to be
conducted towards construction of probabilistic invariant sets for nonlinear systems
to apply SMPC method for non-Hamiltonian systems.

5.3.3 Experiments
We apply Algorithm 2 for the scenario shown in Fig. 1.2 using the closed-loop
described in Fig. 5.8 to design and execute safe plans for SS-1 in Fig. 1.2 under
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Figure 5.8: The guidance, navigation, and control loop used for planning a
distributionally-robust safe trajectory using gPC-SCP and controlling the 3 DOF
spacecraft simulators.

uncertainty in dynamics and obstacle location. This scenario is relevant to the low-
earth orbit, on-orbit, servicing application discussed in [27]. Please see [30], for
details on sensing module to estimate full-state, control and control allocation algo-
rithm. We use the location of the obstacles SS-2, SS-3, SS-4, and Asteroid shown
in Fig. 5.9, and the uncertainty in position of the obstacles Σp = 1e − 4 as an
input to Algorithm 2. The initial state and terminal state of SS-1 are E(x0) =

[−0.9,−2.3, 0, 0, 0, 0]> and E(xf ) = [0, 2.3, 0, 0, 0, 0]>, respectively.

In Fig. 5.9, we present the results for 10-trials of the closed-loop tracking experi-
ment. We compute an initial anytime trajectory using AO-RRT and optimize it for
nominal dynamics. We use the optimized solution as an input for the gPC-SCP
method. We observe that the method is biased towards the initial trajectory. As
shown, the gPC-SCP method outputs a safe trajectory. We use the mean of the
output trajectory as a reference trajectory for the controller. As shown in Fig. 5.9,
the uncertainty in the model leads to drift in the system. The gPC-SCP method
provides a safe trajectory for control by accommodating for the uncertainty in dy-
namics. We observe one failure out of the 10 trials of closed-loop tracking. The
failure was because of a large disturbance torque on SS-1 due to a damaged floor.
Out of the 10 trials, 7 closed-loop tracking trials reached the expected terminal set.
This demonstrates the efficacy of the gPC-SCP method.
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Figure 5.9: We show the output of the gPC-SCP method at each stage of Algo-
rithm 2 and 10 trials of closed-loop trajectory tracking by using an exponentially
stable feedback controller designed in [30]. Top: We show the output of AO-RRT
for 5000 nodes and the SCP for the nominal dynamics. Middle: We show the prob-
abilistic safe trajectory generated using the gPC-SCP method with a risk measure
of ε = 0.05 for collision checking. Bottom: We observe one failure in the 10 trials
of the closed-loop trajectory execution.
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5.4 Chapter Summary
We derive deterministic surrogate convex constraints for collision checking with
deterministic and stochastic obstacles. Using these constraints, we integrate the
gPC-SCP method with a sampling-based motion planning algorithm to compute
safe motion plans under uncertainty in dynamics and obstacle location. We extend
this method to design a stochastic model predictive control for safely tracking a
nominal trajectory which is computed using a deterministic motion planning algo-
rithm by ignoring the uncertainty. We prove the convergence and stability of the
stochastic model predictive controller. We validate our approach in simulations and
on the robotic spacecraft simulator hardware and demonstrate a higher success rate
in ensuring the safety of motion trajectories compared to a Gaussian approximation
of the chance constraints.
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C h a p t e r 6

SAFE EXPLORATION AND LEARNING

Robots deployed in the real world often operate in unknown or partially-known
environments. We have incorporated the partial knowledge in dynamics and en-
vironment as stochastic uncertainty in the motion planning and control algorithms
proposed in Chapters 4 and 5. These algorithms assume prior knowledge of the
uncertainty model. Safe exploration is an efficient approach to collect ground truth
data by safely interacting with the environment to build the uncertainty model in
the guidance and control loop.

In this chapter, we present an episodic learning and control algorithm for safe explo-
ration, as shown in Fig. 1.3, that integrates learning, stochastic trajectory planning,
and rollout for active and safe data collection. Rollout is defined as executing the
computed safe trajectory and policy using a stable feedback controller.

The planning problem is formulated as an Information-cost Stochastic Nonlinear
Optimal Control (Info-SNOC) problem that maximizes exploration and minimizes
the control effort. Safety constraints are formulated as chance constraints. The
propagation of uncertainty in the dynamic model and chance constraints in Info-
SNOC are addressed by projecting the problem to the generalized polynomial chaos
(gPC) space, as derived in Chapter 4, and computing a distributionally robust con-
vex approximation, as described in Chapter 5. By building on this work, we derive
a sequential convex optimization solution to the Info-SNOC problem to plan a pool
of sub-optimal safe and information-rich trajectories with the learned approxima-
tion of the dynamics. A sample of the trajectory pool is used as an input to the
rollout stage to collect new data. To ensure real-time safety, the nonlinear feedback
controller with a safety filter used in the rollout stage certifies bounded stochastic
stability [54]. The new data is used to learn an improved dynamic model.

6.1 Problem Formulation
In this section, we discuss the preliminaries of the learning method used for mod-
elling the unknown dynamics, the formulation of the Info-SNOC problem, and the
deterministic surrogate projection using gPC.
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6.1.1 Robust Regression For Learning
An exploration step in active data collection for learning dynamics is regarded as
a covariate shift problem. Covariate shift is a special case of distribution shift be-
tween training and testing data distributions. In particular, we aim to learn the un-
known part of the dynamics g(x, ū) from state x and control ū defined in Sec. 6.1.2.
The covariate shift assumption indicates the conditional dynamics distribution given
the states and controls remains the same while the input distribution of training
(Prs(x, ū)) is different from the target input distribution (Prt(x, ū)). Robust re-
gression is derived from a min–max adversarial estimation framework, where the
estimator minimizes a loss function and the adversary maximizes the loss under
statistical constraints. The resulting Gaussian distributions provided by this learn-
ing framework are given below. For more technical details, we refer the readers
to [55, 154]. The output Gaussian distribution takes the formN (µg,Σg) with mean
µg and variance Σg:

Σg(x, ū, θ2) =
(

2Prs(x,ū)
Prt(x,ū)

θ2 + Σ−1
0

)−1

, (6.1)

µg(x, ū, θ1) = Σg(x, ū, θ2)
(
−2Prs(x,ū)

Prt(x,ū)
θ1φ(x, ū) + µ0Σ−1

0

)
,

whereN (µ0,Σ0) is a non-informative (i.e., large Σ0) base distribution, and φ(x, ū)

is the feature function that is learned using neural networks from data. The model
parameters θ1 and θ2 are selected by maximizing the target log likelihood. The den-
sity ratio Prs(x,ū)

Prt(x,ū)
is estimated from data beforehand. Robust regression can handle

multivariate outputs with correlation efficiently by incorporating neural networks
and predicting a multivariate Gaussian distribution, whereas traditional methods
like Gaussian process regression suffer from high-dimensions and require heavy
tuning of kernels [154].

6.1.2 Optimal and Safe Planning Problem
In this section, we present the finite-time chance-constrained stochastic optimal
control problem formulation [20] used to design an information-rich trajectory. The
optimization has control effort and terminal cost as performance objectives, and the
safety is modelled as a joint chance constraint of a set F defined by a polytope or a
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quadratic constraint. The full stochastic optimal control problem is as follows:

J∗ = min
x(t),ū(t)

E
[∫ tf

t0

J(x(t), ū(t))dt+ Jf (x(t), ū(t))

]
(6.2)

s.t. ẋ(t) = f(x(t), ū(t)) + ĝ(x(t), ū(t)) (6.3)

Pr(x(t) ∈ F) ≥ 1− ε, ∀t ∈ [t0, tf ] (6.4)

ū(t) ∈ U ∀t ∈ [t0, tf ] (6.5)

x(t0) = x0 E(x(tf )) = µxf , (6.6)

where x(t) ∈ X ⊆ Rdx denotes the state of the dynamics, x0 and xf are the ini-
tial and the terminal states respectively, the control ū ∈ U ⊆ Rdu is deterministic,
ĝ is the learned probabilistic model, and E is the expectation operator. The mod-
elling assumptions and the problem formulation will be elaborated in the following
sections.

Dynamical Model

The ĝ term of (6.3) is the estimated model of the unknown g term of the original
dynamics:

˙̄p = f(p̄, ū) + g(p̄, ū)︸ ︷︷ ︸
unknown

, (6.7)

where the state p̄ ∈ X is now considered deterministic, and the functions f :

X × U → Rdx and g : X × U → Rdx are Lipschitz with respect to p̄ and ū. The
control set U is convex and compact.

Remark 10. The maximum entropy distribution with the known mean µg and co-
variance matrix Σg of the random variable ĝ is the Gaussian distributionN (µg,Σg).

The learning algorithm computes the mean vector µg(µx, ū) and the covariance ma-
trix Σg(µx, ū) estimates of g(x, ū) that are functions of the mean µx of the state x

and control ū. Due to Remark 10, the unknown bias term is modeled as a multi-
variate Gaussian distribution ĝ(µx, ū) ∼ N (µg,Σg). The estimate ĝ in (6.3) can be
expressed as

ĝ = B(µx, ū)θ(t) + µg(µx, ū), (6.8)

where θ(t) ∼ N (0, dtI) i.i.d and B(µx, ū)B>(µx, ū) = Σg(µx, ū). Using (6.8),
(6.7) can be written in standard Ito stochastic differential equation (SDE) form as
given below, where θ(t)dt = dw.

dx = f(x, ū)dt+ µg(µx, ū)dt+B(µx, ū)dw (6.9)
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The existence and uniqueness of a solution to the SDE for a given initial distribu-
tion x0 and control trajectory ū such that Pr(|x(t0)− x0)| = 0) = 1 with measure
Pr, is guaranteed by the Lipschitz condition (4.8) and Restriction on Growth condi-

tion(4.9). The approximate system (6.9) is assumed to be controllable in the given
feasible space.

Cost Functional

The integrand cost functional J = JC + JI includes two objectives: a) exploration
cost JI for achieving the maximum value of information for learning the unknown
dynamics g, and b) performance cost JC (e.g., minimizing the control effort). The
integrand cost functional JC for fuel optimality, which is convex in ū, is given as

JC = ‖ū‖s where s ∈ {1, 2,∞} (6.10)

One example of JI is the following variance-based information cost using each ith

diagonal element σ2
i in Σg.

JI = −
n∑
i=1

σi(µx, ū) (6.11)

The information cost JI in (6.11) is a functional of the mean µx of the state x and
control ū at time t. By minimizing the cost JI , we maximize the information [105]
available in the trajectory x to learn the unknown model g. The terminal cost func-
tional Jf is quadratic in the state x, Jf = x(tf )

>Qfx(tf ), where Qf is a positive
semi-definite function.

State and Safety Constraints

Safety is defined as a constraint on the state space x, x(t) ∈ F at time t. The
safe set F is relaxed by formulating a joint chance constraint with risk of constraint
violation as

Pr(x ∈ F) ≥ 1− ε. (6.12)

The constant ε is called the risk measure of a chance constraint. We consider the
polytopic constraint set Flin = {x ∈ X : ∧ki=1a

>
i x + bi ≤ 0} with k flat sides and

a quadratic constraint set Fquad = {x ∈ X : x>Qx ≤ c} for any realization x

of the state as described in Chapter 4. For the rest of the chapter, we consider the
following individual chance-constrained problem:

(x∗, ū∗) =argmin
x(t),ū(t)

E
[∫ tf

t0
((1− ρ)JC + ρJI)dt+ Jf

]
,

s.t.{(6.9), (4.15), (4.18), (6.5), (6.6)}.
(6.13)
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that is assumed to have a feasible solution with ρ ∈ [0, 1]. In Sec. 6.2, we present the
Info-SNOC algorithm by using the projected deterministic optimal control problem
described in Chapter 4.

6.2 Info-SNOC Main Algorithm
We present the main algorithm for the architecture shown in Fig. 1.3 that integrates
the learning method and the Info-SNOC method with rollout. We discuss an it-
erative solution method to Info-SNOC by projecting (6.13) to the gPC space. We
formulate a deterministic optimal control problem in the gPC space and solve it us-
ing SCP [14, 15, 20] method. The gPC projection of (6.13) is given by the following
equation:

Problem 11.

(X∗, ū∗) =argmin
X(t),ū(t)

[∫ tf
t0

((1− ρ)JC + ρJI)dt+ EJgPCf
]

s.t. {(4.28), (4.37), (4.43), (6.5)}

X(t0) = X0, X(tf ) = Xf .

(6.14)

We solve Problem 11 by using the gPC-SCP approach described in Section 4.2.4.
The information cost functional JI from (6.11) is expressed as a function of X by
using the polynomial representation [20] of µx in terms of X. Let S = {X, ū}
and the cost JI is linearized around a feasible nominal trajectory S0 = {X0, ū0} to
derive a linear convex cost functional JdI :

JdI = −
n∑
i=1

(
σi(S

0) + ∂σi
∂S

∣∣∣
S0

(S − S0)
)
. (6.15)

We use the convex approximation JdI as the information cost in the SCP formula-
tion of the optimal control problem in (6.14). In the gPC space, we split the problem
into two cases: a) ρ = 0 that computes a performance trajectory, and b) ρ ∈ (0, 1]

that computes information trajectory to have stable iterations. The main algorithm
is outlined below.

Algorithm

We use an initial estimate of the model (6.8) learned from data generated by a
known safe control policy, and a nominal trajectory (xo, ūo) computed using de-
terministic SCP [15] with nominal model to initialize Algorithm 4. The stochastic
model and the chance constraints are projected to the gPC state space, which is in
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line 2 of Algorithm 4. The projected dynamics is linearized around the nominal
trajectory and used as a constraint in the SCP. The projection step is only needed
in the first epoch. The projected system can be directly used for epoch > 1. The
current estimated model is used to solve (6.14) using SCP, in line 7 with ρ = 0, for a
performance trajectory (xp, ūp). The output (xp, ūp) of this optimization is used as
initialization to the Info-SNOC problem obtained by setting ρ ∈ (0, 1] to compute
the information trajectory (xI , ūI). The trajectory (xI , ūI) is then sampled for a
safe motion plan (p̄des, ūdes) in line 9, that is used for rollout, in line 10, to collect
more data for learning. The SCP step is performed in the gPC space X. After each
SCP step, the gPC space coordinates X are projected back to the random variable
x space. The Info-SNOC problem outputs a trajectory of random variable x with
finite variance at each epoch.

Algorithm 4: Info-SNOC using SCP [14] and gPC [20]
Input:

1. Initial Safe Set Data, Feasible Nominal Trajectory(xo, ūo)

2. gPC Projection as discussed in Section 4.2

3. Linearize the gPC cost and dynamics, see Section 4.2.4

1 epoch = 1,
2 while Learning Criteria Not Satisfied do
3 Learn g ∼ N (µg,Σg) using Robust Regression,
4 (xp, ūp) = SCP ((xo, ūo), ρ = 0), using (6.14),
5 (xI , ūI) = SCP ((xp, ūp), ρ ∈ (0, 1]), using (6.14),
6 Sample (xI , ūI) for (p̄des, ūdes),
7 Rollout using sample (p̄des, ūdes) and uc,
8 Data collection during rollout,
9 epoch← epoch + 1

Convergence and Optimality

The information trajectory (xI , ūI) computed using SCP with the approximate lin-
ear information cost JdI (6.15) is a sub-optimal solution of (6.14) with the opti-
mal cost value J∗dI . Therefore, the optimal cost of (6.14) given by J∗I is bounded
above by J∗dI , J

∗
I ≤ J∗dI . For the Info-SNOC algorithm, we cannot guarantee the

convergence of SCP iterations to a Karush-Kuhn-Tucker point using the method
in [14, 103] due to the non-convexity of JI . Due to the non-convex cost function
JI , the linear approximation JdI of the cost JI can potentially lead to numerical
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instability in SCP iterations. Finding an initial performance trajectory, ρ = 0, and
then optimizing for information, ρ ∈ (0, 1], is observed to be numerically stable
compared to directly optimizing for the original cost functional J = JC + JI .

Feasibility

The initial phases of learning might lead to a large covariance Σg due to the insuffi-
cient data, resulting in an infeasible optimal control problem. To overcome this, we
use two strategies: 1) explore the initial safe set till we find a feasible solution to
the problem, and 2) use slack variables on the terminal condition to approximately
reach the goal accounting for a large variance.

6.2.1 Rollout Policy Implementation
The information trajectory (xI , ūI) computed using the Info-SNOC algorithm is
sampled for a pool of motion plans (p̄des, ūdes). The trajectory pool is computed
by randomly sampling the multivariate Gaussian distribution θ and transforming it
using the gPC expansion x(θ) ≈ Φ̄(θ)X. For any realization θ̄ of θ, we get a deter-
ministic trajectory p̄des = Φ̄(θ̄)X that is ε safe with respect to the distributionally
robust chance constraints. The trajectory (p̄des, ūdes) is executed using the closed-
loop control law uc = uc(p̄, p̄des, ūdes) for rollout, where p̄ is the current state. To
ensure real-time safety during the initial stages of exploration, a safe control policy
uc is computed using the control barrier function-based safety filter. The proper-
ties of the control law uc and the safety during rollout are studied in the following
section.

6.3 Analysis
In this section, we present the main theoretical results analyzing the following two
questions: 1) at any epoch i how do learning errors translate to safety violation
bounds during rollout, and 2) under what assumptions is the multivariate robust re-
gression a consistent learning method as epoch→ ∞. The analysis proves that if
the Info-SNOC algorithm computes a motion plan with finite variance, then learn-
ing is consistent and implies safety during rollout.

Assumption 8. The projected problem (6.14) computes a feasible trajectory to the
original problem (6.13). The assumption is generally true if we choose a sufficient
number of polynomials [20], for the projection operation.

Assumption 9. The probabilistic inequality Pr(‖g(p̄, ū) − µg(p̄, ū)‖2
2 ≤ c1) ≥

1− ε`b holds, where ε`b is small, for the same input (p̄, ū) to the original model g,
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and the mean µg of the learned model. Using this inequality, we can say that the
following bounds hold with high probability:

‖g(p̄, ū)− µg(p̄, ū)‖2
2 ≤ c1, tr (Σg) ≤ c2, (6.16)

where c2 = c1ε`b. As shown in [154], the mean predictions made by the model
learned using robust regression is bounded by c1, which depends on the choice of
the function class for learning. The variance prediction Σg is bounded by design.
With Assumptions 8 and 9, the analysis is decomposed into the following three
subsections.

6.3.1 State Error Bounds During Rollout
The following assumptions are made on the nominal system ˙̄p = f(p̄, u) to derive
the state tracking error bound during rollout.

Assumption 10. There exists a globally exponentially stable (i.e., finite-gain Lp
stable) tracking control law uc = uc(p̄, p̄des, ūdes) for the nominal dynamics ˙̄p =

f(p̄,uc). The control law uc satisfies the property uc(p̄des, p̄des, ūdes) = ūdes for
any sampled trajectory (p̄des, ūdes) from the information trajectory (xI , ūI). At any
time t the state p̄ satisfies the following inequality, when the closed-loop control uc

is applied to the nominal dynamics,

M(p̄, t) ∂f
∂p̄

+
(
∂f
∂p̄

)>
M(p̄, t) + d

dt
M(p̄, t) ≤ −2αM(p̄, t),

where f = f(p̄,uc(p̄, p̄des, ūdes)), α > 0, M(p̄, t) is a uniformly positive definite
matrix with (λmin(M)‖p̄‖2 ≤ p̄>M(p̄, t)p̄ ≤ λmax(M)‖p̄‖2), and λmax and λmin

are the maximum and minimum eigenvalues.

Assumption 11. The unknown model g satisfies the bound ‖g (p̄,uc)−g(p̄des, ūdes)‖2
2 ≤

c3.

Assumption 12. The probability density ratio
ζxI(t)

ζxI(0)
≤ r is bounded, where the

functions ζxI(0) and ζxI(t) are the probability density functions of xI at time t = 0

and t respectively.

Lemma 9. Given that the estimated model (6.8) satisfies the Assumption 9, and

the systems (6.7) and (6.9) satisfy Assumptions 10, 11, 12, if the control uc =

uc(p̄,xI , ūI) is applied to the system (6.7), then the following condition holds at

time t

ExI(t)(‖p̄− xI‖2
2) ≤ λmax(M)

2λmin(M)αm
(c1 + c2 + c3)r (6.17)

+ λmax(M)r
λmin(M)

E
(
‖p̄(0)− xI(0)‖2

)
e−2αmt,
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where (xI , ūI) is computed from (6.14) and αm = (α − 1). The states p̄ ∈ X ,

and xI ∈ X are feasible trajectories of the deterministic dynamics (6.7) and the

SDE (6.9) for the initial conditions p̄(0) ∈ X and xI(0) ∈ X respectively at t ≥ t0.

Proof. Consider the following original system (p̄, ūc) propagated with the control
uc = uc(p̄,xI , ūI), and the learned dynamical system that satisfies that information
trajectory (xI , ūI).

dp̄ = f(p̄,uc)dt+ g(p̄,uc)dt

dxI = f(xI , ūI)dt+ µg(xI , ūI)dt+B(xI , ūI)dw
(6.18)

We define an augmented system using y = [p̄,xI ]
>.

dy =

[
f(p̄,uc)

f(xI , ūI)

]
dt+

[
g(p̄,uc)

ĝ(xI , ūI)

]
dt+

[
0 0

0 B(xI , ūI)

][
dw1

dw

]
(6.19)

Consider the distance metric V = e>M(p̄, t)e, where e = p̄−xI . The infinitesimal
generator L using the Itô assumption is given by,

LV =e>
d

dt
M(p̄, t)e

+ 2e>M(p̄, t) (f(e+ xI ,uc)− f(xI , ūI))

+ 2e>M(p̄, t) (g (e+ xI ,uc)− µg(xI , ūI))

+ tr(B(xI , ūI)
>M(p̄, t)B(xI , ūI)),

where d
dt
Mij =

∂Mij

∂t
+
(
∂Mij

∂p̄

)>
f(e+ xI ,uc). Using the bound,

tr(B(xI , ūI)
>M(p̄, t)B(xI , ūI)) ≤ λmax(M)c2 (6.20)

and uc is designed such that uc(p̄ = xI ,xI , ūI) = ūI . For a fixed t > 0, using the
argument in [155], we can find c ∈ [p̄,xI ] such that

LV ≤ e>
d

dt
M(p̄, t)e+ e>M

∂f

∂p̄

∣∣∣
p̄=c

e+ e>
(
∂f

∂p̄

)
>
∣∣∣
p̄=c
Me,

+ 2e>M(p̄, t) (g (e+ xI ,uc)− g(xI , ūI))

+ 2e>M(p̄, t) (g(xI , ūI)− µg(xI , ūI)) + λmax(M)c2.

LV ≤ −2αe>M(p̄, t)e

+ 2e>M(p̄, t) (g (e+ xI ,uc)− g(xI , ūI))

+ e>M(p̄, t)e

+ λmax(M)‖ (g(xI , ūI)− µg(xI , ūI)) ‖2
2 + λmax(M)c2
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Using completion of squares,

LV ≤ −2(α− 1)e>M(p̄, t)e

+ λmax(M)‖ (g (e+ xI ,uc)− g(xI , ūI)) ‖2
2

+ λmax(M)(c1 + c2).

We assume that ‖g (e+ xI ,uc)− g(xI , ūI)‖2
2 ≤ c3.

LV ≤ −2αmV + λmax(M)(c1 + c2 + c3). (6.21)

Applying Dynkin’s formula, the bound on the density ratio, and using the bounds
on M we have the following bound:

Ex(0)(‖p̄− xI‖2
2) ≤λmax(M)

λmin(M)
E
(
‖p̄(0)− xI(0)‖2

)
e−2αmt

+
λmax(M)(c1 + c2 + c3)

2λmin(M)αm
(6.22)

ExI(t)(‖p̄− xI‖2
2) ≤ λmax(M)

2λmin(M)αm
(c1 + c2 + c3)r (6.23)

+ λmax(M)r
λmin(M)

E
(
‖p̄(0)− xI(0)‖2

)
e−2αmt

Therefore, expectation of the tracking error is bounded.

Lemma 9 states that the expected mean squared error E(‖p̄− xI‖2) is bounded by
λmax(M)(c1+c2+c3)r

2αmλmin(M)
as t → ∞ when the control law uc is applied to the dynamics

in (6.7). The bounded tracking performance leads to constraint violation, which is
studied in the next section.

6.3.2 Safety Bounds
The safety of the original system (6.7) for the linear and quadratic chance con-
straints during rollout with a controller uc discussed in Sec. 6.3.1 is analyzed in
Theorems 5 and 6.

Theorem 5. Given a feasible solution (x, ūx) of (6.13), with the quadratic chance

constraint Pr((x − µx)>Q(x − µx) ≥ c) ≤ E((x−µx)>Q(x−µx))
c

≤ εq, the trajectory

p̄ of the deterministic dynamics (6.7) satisfies the following inequality at any time

t:

(p̄− µx)>Q(p̄− µx) ≤ λmax(Q)Ex

(
‖p̄− x‖2

2

)
, (6.24)

where E (‖p̄− x‖2
2) is bounded as defined in Lemma 9.
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Proof. Consider the expectation of the ellipsoidal set (p̄− µx)>Q(p̄− µx). Using
p̄− µx = p̄− x + x− µx, the expectation of the set can be expressed as follows:

E
(
(p̄− µx)>Q(p̄− µx)

)
= E

(
(p̄− x)>Q(p̄− x)

)
(6.25)

+E
(
(x− µx)>Q(x− µx)

)
+ 2E

(
(p̄− x)>Q(x− µx)

)
.

Using the following equality:

E
(
(p̄− x)>Q(x− µx)

)
= −E

(
(x− µx)>Q(x− µx)

)
,

and E
(
(x− µx)>Q(x− µx)

)
≥ 0 in (6.25), we obtain the constraint bound in (6.24).

Using the feedback tracking bound (6.17) in (6.24), we can show that the constraint
violation bound is a function of learning bounds c1, c2, and c3.

Note that if the learning method converges, i.e., c1 → 0, c2 → 0, and c3 → 0, then
p̄→ µx. The quadratic constraint violation in (6.24) depends on the tracking error
and the size of the ellipsoidal set described by Q.

Theorem 6. Given a feasible solution (x, ūx) of (6.13) with infx∼(µx,Σx) Pr(a>x +

b ≤ 0) ≥ 1 − ε`, the trajectory p̄ of the deterministic dynamics (6.7), with control

uc, satisfies the following inequality at any time t:

inf
x∼(µx,Σx)

Pr
(
a>p̄ + b ≤ δ`(x)

)
≥ 1− ε`, (6.26)

where δ`(x) = ‖a‖2Ex(‖(p̄− x)‖2)− ‖a‖2

√
1−ε`
ε`

√
c4, Ex(‖(p̄ − x‖2) is bounded

as defined in (6.17) and tr(Σx) = c4.

Proof. From Lemma 3, the feasible solution (x, ūx) satisfies the equivalent condi-
tion P(µx,Σx) ≤ 0, where P(µx,Σx) = a>µx + b +

√
1−ε`
ε`

√
a>Σxa for the risk

measure ε`, mean µx, and covariance Σx. Consider the similar condition for the
actual trajectory p̄(t), P(µp̄,Σp̄):

P(µp̄,Σp̄) = a>µp̄ + b+

√
1− ε`
ε`

√
a>Σp̄a

= a>µx + a>(µp̄ − µx) + b+

√
1− ε`
ε`

√
a>Σp̄a

+

√
1− ε`
ε`

√
a>Σxa−

√
1− ε`
ε`

√
a>Σxa (6.27)
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Note that since the system (6.7) is deterministic, we have µp̄ = p̄ and Σp̄ = 0.
Using P(µx,Σx) ≤ 0, the right hand side of the above inequality reduces to the
following:

P(µp̄,Σp̄) ≤ a>(p̄− µx)−
√

1− ε`
ε`

√
a>Σxa. (6.28)

Using the decomposition Σx = G̃>G̃, Cauchy-Schwarz’s inequality, and Jensen’s
inequality, we have a>(µp̄ − µx) ≤ ‖a‖2‖(p̄ − µx)‖2 ≤ ‖a‖2Ex(‖(p̄ − x)‖2).
Using the sub-multiplicative property of `2-norm in the inequality above, we have
P(µp̄,Σp̄) ≤ ‖a‖2

(
E(‖(p̄− x)‖2)−

√
1−ε`
ε`
‖G̃‖F

)
. Assuming that tr(Σx) = c4

in the above inequality, we have

P(µp̄,Σp̄) ≤‖a‖2E(‖(p̄− x)‖2)− ‖a‖2

√
1− ε`
ε`

√
c4.

The above inequality is equivalent to the probabilistic linear constraint in (6.26).
The bound δ`(x) = ‖a‖2E(‖(p̄ − x)‖2) − ‖a‖2

√
1−ε`
ε`

√
c4 is a function of the

learning bounds in (6.16) by substituting the feedback tracking bound in (6.17).

The linear constraint is offset by δ` leading to constraint violation of the original
formulation (4.14). Note that, if c1 → 0, c2 → 0, c3 → 0, and c4 → 0, then δ` → 0.
In order to ensure real-time safety during trajectory tracking, we use a high gain
control for disturbance attenuation with safety filter augmentation for constraint
satisfaction.

6.3.3 Consistency
Data is collected during the rollout of the nonlinear system to learn a new model
for the next epoch. For epoch e, the predictor ĝe follows a multivariate Gaussian
distribution N (µeg,Σ

e
g) and g is the empirical true data. We assume that set Xe ⊂

X generated by the optimization problem in (6.13) for the first e iterations is a
discretization of X . Assuming that there exists a global optimal predictor ĝ∗ in the
function class G that can achieve the best error ε∗ at each epoch e:

max
x∈Xe
‖g − ĝ∗‖2 = ε∗, (6.29)

the consistency of the learning algorithm is given by the convergence of the regret
re, which is defined as the Euclidean distance between the predictor ĝe and the
optimal predictor ĝ∗:

re = ‖ĝe − ĝ∗‖2 → 0, as e→∞. (6.30)

We prove the consistency of Algorithm 4 in Theorem 7.
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Theorem 7. If Assumption 9 holds with the maximum prediction error

maxx∈Xe ‖g − µeg‖
2

2
, ce1 at epoch e, then the regret re = ‖ĝe− ĝ∗‖2 of Algorithm 4

achieves the bound:

r2
e ≤ ce1 + dC2 + ε∗2 with probability 1− |Xe|δe, (6.31)

where δe , (Cd

d∏
p

∆p)
−1 1

(2π)
d
2 |Σeg |

1
2
e−

1
2
C2

∑d
p=1∆p (6.32)

with the output dimension d, ∆p ,
∑d

q=1 mqp > 0, ∀p ∈ {1, 2, . . . , d}, andM =

(Σe
g)
−1 with its (q, p)-th element (mqp). Furthermore, the regret re → 0 as e→∞.

Proof. Using the inequality Pr(ĝe − µeg ≥ Ce) < δe, ∀x ∈ Xe, since ĝe ∼
N (µeg,Σ

e
g), we can bound re as follows:

r2
e ≤ ‖µeg + Ce− ĝ∗‖2

2, (6.33)

where δe is defined in (6.32), and e is unit vector in d dimensions. Hence, C is
a function of |Xe|δe. This is the tail probabilities inequality [156] of multivariate
Gaussian distributions. The error r2

e is then bounded using the empirical prediction
error ‖µeg− g‖2

2 and the best prediction error (6.29) as r2
e ≤ ‖µeg +Ce− g‖2

2 + ‖g−
ĝ∗‖2

2. By using the triangular inequality, we get the bound in (6.31) as follows:

r2
e ≤ ‖µeg − g‖2

2 + dC2 + ε∗2 ≤ce1 + dC2 + ε∗2. (6.34)

At any epoch e, we have x ∈ Xe, |‖µeg‖2
2 + tr(Σe

g) − ‖g‖2
2| ≤ ωe [154], where ωe

is a hyper-parameter that is associated with model selection in robust regression.
Using tr(Σe

g) ≤ ce2, (6.33) becomes r2
e ≤ ωe + ce2 + dC2 + ε∗2.

Assuming that the ground truth model is in the function class G, we have ε∗ = 0.
With infinite data, the hyper parameter ωe = 0 and ce2 → 0 at each data point. For
achieving the same value of δe, C → 0 with shrinking Σe

g. This implies that for
large data, i.e., as e → ∞, we have re → 0. The regret re is bounded as shown
in (6.31). Therefore, Algorithm 4 is consistent with high probability. Note that the
Info-SNOC approach outputs trajectories of finite variance at epoch e, given that
tr(Σe

g) is bounded.

During the initial exploration phase, the finite dimensional approximation in the
gPC projection might add to the error bounds discussed in Theorems 5 and 6 lead-
ing to safety violation. This approximation error is automatically incorporated as
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residual dynamics in the stochastic dynamics when collecting data during rollout
and learned using robust regression. Thus ensuring that safety is guaranteed with
increasing data.

6.4 Simulation and Discussion
We test the Info-SNOC framework shown in Fig. 1.3 on the three degree-of-freedom
robotic spacecraft simulator [30] dynamics with an unknown friction model and an
over-actuated thruster configuration that is used for a real spacecraft. The dynamics
of x = (x, y, θ)T with respect to an inertial frame is given as:

ẍ = f(θ, B, ū) + g(ẋ, ẏ, θ̇), f = blkdiag(R(θ), 1)Bū,

where R(θ) ∈ SO(2). The states (x, y) ∈ R2, θ ∈ [0, 2π) denote position and
orientation respectively. The function g is unknown, and assumed to be linear
viscous damping in the simulations. The control effort ū ∈ R8 is constrained to
be 0 ≤ ū ≤ 1, and B(m, I, l, b) ∈ R3×8 is the control allocation matrix where
m =17 kg and I = 2 kg m s−2 are the mass and the inertia matrix, and l = b =

0.4 m is the moment arm.

The unknown function g = diag([−0.02,−0.02,−0.002])ẋ is modeled as a mul-
tivariate Gaussian distribution to learn from data using robust regression. To get
an initial estimate of the model, we explore a small safe set around the initial con-
dition and collect data. For the following test cases, we collect 40 data points to
have a feasible optimal control problem (6.13) in the planning stage as discussed
in Sec. 6.2. The algorithm is initialized with a nominal trajectory computed using
deterministic SCP under nominal dynamics.

Info-SNOC Results

The learned dynamics is used to design safe trajectories for 40 s using the Info-
SNOC algorithm for Scenarios 1 and 2 as shown in Figs. 6.1a and 6.2a, respec-
tively. Scenario 1 has a wall at y = 6 m and a circular obstacle of radius 2.5 m

at (5,−0.3), and scenario 2 has two circular obstacles of radius 0.6 m at (5,−0.5)

and (10, 0.5) as collision constraints respectively. The obstacles in both scenarios
are transformed to linear chance constraints and the terminal constraint is trans-
formed to quadratic chance constraint as discussed in [20], with a risk measure of
ε` = εq = 0.05. The Info-SNOC algorithm is applied with ρ = 0 (L1-norm control
cost) and ρ = 1 (information cost). We compare the mean µx and 2σ-confidence
ellipse around µx of the trajectories with the nominal trajectory. We observe that
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Figure 6.1: Info-SNOC applied to Scenario 1. In Fig. (a), we show the motion plan
along with the 2σ confidence in position of the performance trajectory (ρ = 0) and
the information trajectory (ρ = 1) computed using Info-SNOC, and the nominal
trajectory computed using SCP under nominal dynamics. In Fig. (b), we show the
trace of Σx w.r.t time. The information trajectory (ρ = 1) has higher Σx compared
to the performance trajectory (ρ = 0). We compare total open-loop fuel computed at
each time step in Fig. (c), and in Fig. (d) we demonstrate collision avoidance during
exploration for 20 trials of rollout using a safety augmented stable controller.

for the ρ = 1, the safe trajectory explores larger state-space compared to the ρ = 0

case, which corresponds to the fuel-optimal trajectory. The total control effort at
each time is shown in Fig. 6.1c. It shows that information trajectory uses more en-
ergy compared to the performance trajectory. The extra fuel is used to explore the
domain for improving the model. The terminal variance Σx(tf ) in both scenarios is
large due to the correlation among the multiple dimensions of g that are predicted
by the learning algorithm.

Safe Rollout

The safe trajectories in Figs. 6.1a and 6.2a are sampled following the method dis-
cussed in Sec. 6.2.1 and the rollout is performed using the controller designed
in [30] that satisfies Lemma 9. The sample trajectories and rollout trajectories are
shown in red and blue respectively in Figs. 6.1d and 6.2b. The sampled trajectory
is safe with the risk measure of collision ε` = 0.05 around the obstacles. Roll-
out trajectories, with a feedback controller, collide with the obstacles due to the



105

0 10
X

4

2

0

2

4

Y

Intermediate safe trajectory

= 1.0
= 0.0

nominal

(a)

5 0 5 10 15
X

4

2

0

2

Y

rollout
sample
feedback

(b)

Figure 6.2: Info-SNOC applied to Scenario 2. In Fig. (a), we show a comparison
of the performance trajectory (ρ = 0), the information trajectory (ρ = 1), and an
intermediate safe trajectory (green) computed using Info-SNOC and the nominal
trajectory computed using deterministic SCP under nominal dynamics. In Fig. (b),
we compare a sampled trajectory with the trajectories generated by feedback track-
ing and rollout with a safety filter.

following two reasons: 1) the learning bounds (6.16) lead to constraint violation
as discussed in Theorems 5 and 6, and 2) the state-dependent uncertainty model
N (µg,Σg) might predict large Σg that can saturate the actuators. Saturated actu-
ators cannot compensate for the unmodelled dynamics. In order to ensure safety,
we augment the feedback controller with a real-time safety augmentation using
barrier-function -based quadratic program [157]. Using this filter, the blue rollout
trajectories are diverted from obstacles, as seen in Figs. 6.1d and 6.2b, avoiding
constraint violation.
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Figure 6.3: Performance over epochs for Scenario 1. Left: we show decrease in the
terminal position variance over epochs demonstrating improved goal reaching with
epoch. Center: the differential entropy of the prediction variance Σg for informa-
tion trajectory (ρ = 1) is larger compared to the performance trajectory (ρ = 0).
Right: the number of collisions during rollout for 1000 trials decrease as the learn-
ing converges, validating Theorem 6.
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Consistency

The data collected during rollout is appended to the earlier data to learn a new
model. Figure 6.3 shows improvement in control performance (control cost for
ρ = 0.0) with increasing number of epochs. The prediction variance Σg decreases
from 1e − 2 to 0.3e − 2 over 15 epochs. The main assumption for consistency,
which states that the variance of the trajectory computed using (6.13) is bounded
and decreasing, is satisfied, thereby demonstrating the correctness of Theorem 7.
We observe that the differential entropy of the information trajectory is higher (i.e.,
contains more information about g) than the performance trajectory by design.

We observed that Σx(tf ) of the information trajectory (ρ = 1) computed using Info-
SNOC decreases from 104.11 to 61.46 over 15 epochs, by applying the framework
in Fig. 1.3 for Scenario 1, demonstrating the increase in probability of reaching the
quadratic terminal set. This validates the Theorem 5. The number of collisions
of the rollout trajectory without a safety filter over a 1000 trials at each epoch is
shown in Fig. 6.3. The number of collisions decrease from 227 to 107 for the
information trajectory, from 51 to 38 for the performance trajectory, and from 699

to 563 for the nominal trajectory over 15 epochs. This increase in the probability
of the linear chance constraint satisfaction with epoch validates the Theorem 6. In
the first epoch, we observed that the rollout using the nominal trajectory leads to
69.9% collisions over 1000 trials, using the information trajectory leads to 22%

collisions, and using the performance trajectory leads to less than 5.1% collisions,
demonstrating the effectiveness of Info-SNOC.

6.5 Chapter Summary
We present a new method of learning-based safe exploration and motion planning
by solving information-cost stochastic optimal control using a partially learned non-
linear dynamical model. The variance prediction of the learned model is used as the
information cost, while the safety is formulated as distributionally robust chance
constraints. The problem is then projected to the generalized polynomial chaos
space and solved using sequential convex programming. We use the Info-SNOC
method to compute a safe and information-rich pool of trajectories for rollout us-
ing an exponentially stable controller with a safety filter augmentation for safe data
collection. We analyze the probability of constraint violation for both linear and
quadratic constraints. We show that the safety constraints are satisfied for rollout
under learned dynamics, as the learned model converges to the optimal predictor
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over epochs. The consistency of the learning method using the Info-SNOC algo-
rithm is proven under mild assumptions.

The episodic learning framework was applied to the robotic spacecraft model to ex-
plore the state space and learn the friction under collision constraints. We compute
a pool of safe and optimal trajectories using the Info-SNOC algorithm for a learned
spacecraft model under collision constraints and discuss an approach for rollout
using a stable feedback control law to collect data for learning. We validate the
consistency of robust regression method and the safety guarantees by showing the
reduction in variance of the learned model predictions and the number of collisions
over 15 epochs respectively.
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C h a p t e r 7

MULTI-SPACECRAFT TESTBED FOR AUTONOMY
RESEARCH

The information-based guidance and control architecture proposed in Chapter 3 and
the gPC-SCP method derived in Chapters 4 and 5 are tested on the Multi-Spacecraft
Testbed for Autonomy Research (M-STAR). In the following, we describe the de-
sign, construction, and control of the M-STAR testbed.

7.1 The Spacecraft Dynamics Simulator Facility at Caltech
7.1.1 Overview of the Facility
The spacecraft simulator facility requires the following three components to be op-
erational: the epoxy flat floor, the compressed air filling station, and the M-STAR.
The epoxy flat floor is a high precision floor with flatness within 0.001 inches for
frictionless translation of the spacecraft dynamics simulator using three flat air-
bearing pads. Figure 7.1 shows the facility with multiple M-STAR spacecraft sim-
ulators and protection for collisions on the outer edge of the floor. The full 6-DOF
spacecraft simulator can be seen in the middle with two 3-DOF simulators on the
sides.The second component, the filling station, is composed of an industrial air
compressor and two 6,000 psi storage tanks. The filling station is used to fill the on-
board air cylinders that supply air to the flat air bearings, spherical air bearing, and
16 on-off non-latching solenoid valves that act as thrusters on the simulator. The
M-STAR shown in Fig. 7.2 acts as the dynamic simulation platform for a smallsat
and includes all the necessary on-board sensors, actuator systems, and computing to
achieve full 6-DOF control. The pose of the spacecraft simulator is estimated using
14 motion capture cameras mounted on the ceiling of the facility. In the following
section, we elaborate on the subsystem hardware of the simulator.

7.1.2 M-STAR Spacecraft Simulator Hardware
The Caltech Aerospace Robotics and Controls Lab’s 6-DOF spacecraft dynamics
simulator for spacecraft formation control research was designed to accommodate
up to a 12U CubeSat as a payload. The floating test bed simulates 5-DOF dynamic
motion and 1-DOF kinematic motion along the gravity direction, with translation
and attitude stages decoupled via a spherical air bearing. The translation stage
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Figure 7.1: Multiple 6-DOF M-STAR spacecraft at Caltech’s Aerospace Robotics
and Control Lab.

floats frictionlessly on the precision floor using three flat round air bearings. The
attitude stage has a hemispherical air bearing ball that floats frictionlessly on the
cup mounted at the top of the linear actuator on the translation stage. Tables 7.1
and 7.2 list the hardware components on both the translation stage and attitude
stages respectively. The hardware on each stage is divided into three subsystems: 1)
mechanical, including structural and pneumatic components; 2) electrical, includ-
ing power, computing, and low level controller boards; and 3) actuation, to impart
torque or impulse in the required degree of freedom. Each of these components
plays an essential role in achieving torque-free controlled motion.

Flat Air 
Bearing

Compressed 
Air Tanks

TX2

Thruster Control Board

Odrive Board

Reaction 
Wheels

Linear 
Actuator Battery

Attitude 
Stage

Thrusters

Thrusters

Figure 7.2: M-STAR spacecraft dynamics simulator.
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Figure 7.3: Flowchart of pneumatic system on translation and attitude stage.

Translation Stage.

The translation stage provides frictionless in-plane motion for the whole simula-
tor using three linear flat round air bearings. It consists of three compressed air
cylinders running at 4500 psi, a spherical air bearing cup, pneumatic components
for pressure regulation, and tubing required to supply air for the bearings. The
pneumatic system on the translation stage is shown in Fig. 7.3. In addition, it is
equipped with a linear actuator, a brushless DC linear motor for achieving motion
in the gravity direction with supporting control electronics.

The different operation modes of operation (3-DOF, 4-DOF, 5-DOF, and 6-DOF)
can be achieved as follows:

• 3-DOF: spherical air bearing turned off and linear actuator replaced with a
passive tube

• 4-DOF: spherical air bearing turned off

• 5-DOF: linear actuator replaced with a passive tube

• 6-DOF: all actuators active

This provides flexibility in operation and allows the construction of algorithms with
increased complexity. The compressed air storage tanks’ capacity was designed to
achieve at least 25-30 minutes of flotation time at the operating pressure in 6-DOF
mode. Several custom-designed add-ons can be incorporated on the translation
stage such as docking ports and reaction wheels for yaw control.
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Subsystem Component
NewWay Air Bearing

Compressed Air Cylinders
Mechanical Structure Design

Spherical Air bearing
Regulator

Actuator Progressive Automation Linear Actuator
Battery

Electronics and Power Linear Actuator Controller
Raspberry Pi

Table 7.1: List of components on the translation stage.

Attitude Stage.

The attitude stage structure was designed using carbon fiber composites and hon-
eycomb materials, optimized to provide a flotation time of up to 30 minutes with a
payload of 12 kilograms. It has a box structure and acts as a platform for a potential
payload, such as a 12U CubeSat. The attitude stage structure has the hemispheri-
cal ball of the air bearing pair and floats on the translation stage to provide 3-DOF
frictionless attitude motion. This stage has 16 on-off non-latching solenoids with
custom made nozzles and four in-house reaction wheels as actuators. The power
distribution board for the attitude stage and the low-level controller for the thrusters
are designed at Caltech. The schematic of the pneumatic subsystem for supplying
regulated compressed air to the thrusters is shown in Fig. 7.3. It includes three
compressed air cylinders, a regulator, and a manifold for air distribution. The reg-
ulated pressure is supplied to all the thrusters through the manifold to maintain the
pressure across them. The operating pressure of the thrusters is decided based on
experimental characterization of the solenoids. The electrical subsystem of the at-
titude stage is shown in Fig. 7.4. We chose an NVIDIA Jetson TX2 as the main
computer to run the GNC and perception algorithms. The computer communicates
the control signal to the low level boards as shown in Fig. 7.4. The subsystem
components of the stages are listed in Table 7.2.



112

Battery
Power

Distribution
Board

Jetson
Carrier

Tx2 Board

Custom Thruster
Controller Board

16 Nonlatching
Solenoid Thrusters 

With Nozzle 

Motion
Capture
System

Reaction Wheel
Motor controller 1

Reaction Wheel
Motor controller 2

Reaction 
Wheel 1

Reaction 
Wheel 2

Reaction 
Wheel 3

Reaction 
Wheel 4

Hall Sensor

Hall Sensor

Hall Sensor

Hall Sensor

IMU (Vector
Nav)

Figure 7.4: Attitude stage architecture.

Subsystem Component
Structure

Mechanical Nozzles
Pneumatics

Actuator Thrusters
Reaction Wheel Assembly

Battery
Power Distribution Board

Electronics and Power Thruster Control Board
ODRIVE Reaction Wheel Driver

Maxon Motor Reaction Wheel Motor
NVIDIA Jetson TX2 Computer

Table 7.2: List of components on the attitude stage.

Reaction Wheel Sizing and Manufacturing.

Custom reaction wheels were designed for the spacecraft simulator to achieve cer-
tain nominal performance specifications. The principle axis of inertia of the whole
simulator including a 12U CubeSat payload, shown in (7.1), was estimated using
CAD software. The nominal torque and angular momentum requirements for at-
titude control corresponding to the estimated principle inertia of the spacecraft is
shown in Table 7.3.

J =

1.19 0 0

0 1.24 0

0 0 1.43

 [kgm2] (7.1)
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Nominal torque X-axis [Nm] 0.069
Nominal torque Y-axis [Nm] 0.072
Nominal torque Z-axis [Nm] 0.044
Angular momentum X-axis [Nms] 0.2077
Angular momentum Y-axis [Nms] 0.2164
Angular momentum Z-axis [Nms] 0.4492

Table 7.3: Nominal torque and angular momentum of the spacecraft.

The flywheel was made out of brass, fabricated using a CNC lathe for better toler-
ances. The motor selected was an EC frameless motor from Maxon Motor, which
has a decoupled stator and the rotor, leading to an increased lifetime. The entire
structure (flywheel, shaft, and motor) was constrained between two ball bearings to
reduce vibration as shown in Fig. 7.5.

Brass flywheel Chassis Ball bearingShaft StatorRotor

Figure 7.5: Section view of Caltech’s custom-made reaction wheels.
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Figure 7.6: Software architecture design.

7.1.3 M-STAR Software Architecture
The software for the simulator was designed to allow for interchangeable guidance,
navigation, and control modules. The architecture is implemented in C++ using ab-
stract base classes for the three modules, with virtual loop functions for subclasses
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to implement. As illustrated in Fig. 7.6, navigation subclasses are responsible for
generating updated state data for the guidance system and controller. The guid-
ance system maintains a trajectory of desired states, from which the controller se-
lects a target state for the current time step and implements the required dynamics.
The current experimental setup features waypoint guidance, motion capture camera
based navigation, and the 5-DOF controller outlined in the next section. However,
these could respectively be swapped for an arbitrary motion-planning algorithm,
pose feedback from integrated on board sensor data, and controllers for the four
configurations of the simulator.

The architecture is built on Robotic Operating System (ROS) framework, which
allows for each loop to be scheduled at a unique rate that can be changed at run
time. Data from other modules is automatically fetched before each loop runs. ROS
also provides a messaging architecture for communicating with peripheral boards,
the ability to create unique launch configurations for different module setups, and
test logging.

7.2 Dynamics and Control
Each M-STAR has two links coupled using a spherical air bearing as a joint. This
system can be modelled as a three dimensional pendulum on a floating platform
with a ball joint to provide 3-DOF rotation of the pendulum (modelling the attitude
of the spacecraft) and 2-DOF planar motion of the floating platform. Constraints
on the 3D pendulum motion due to mechanical interference between the attitude
stage and the translation stage are shown in Table 7.4. The coordinate systems
used for deriving the kinematics and dynamics of the system are shown in Fig. 7.7.
The inertial reference frame on the test floor is defined by the coordinate system
(Xi, Yi, Zi) with origin Oi . A non-rotating reference frame (Xib, Yib, Zib) that is
parallel to the inertial frame, is attached to the attitude stage with origin Ob at the
center of the hemispherical bearing to define the orientation of the attitude stage.
The attitude stage dynamics are derived in terms of the angular rates in the body
frame (Xb, Yb, Zb) at origin Ob. Before proceeding to the discussion on the dynam-
ics and control implementation, the attitude representation used for describing the
motion of the 3D pendulum in SO(3) space is discussed.
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Pitch (rotation about Xib) ±45◦

Roll (rotation about Yib) ±45◦

Yaw (rotation about Zib) ±180◦

Table 7.4: Constraints on the angular motion of the attitude stage.

7.2.1 Attitude Kinematics
The attitude of the 3D pendulum can be represented by any attitude representations
including quaternions [128], Modified Rodrigues Parameters (MRPs) [128], and
SO(3) rotation matrix. For example, the MRPs, pmrp = [p1, p2, p3]>, pmrp ∈ R3

are stereographic projections of the unit quaternions [128], q ∈ H, where H is the
Hamiltonian space and have a bijective mapping to the quaternion sphere are used
here. The attitude representation in MRPs takes into account the unit norm of the
quaternions. The attitude kinematics equation is given using the body angular rates
ω ∈ R3. The kinematics of MRPs are given as follows:

ṗmrp = Z(pmrp)ω,

Z(pmrp) =
1

2

(
I3

(
1− pTmrppmrp

2

)
+ pmrpp

T
mrp + S(pmrp)

)
,

S(pmrp) =
[ 0 −p3 p2
p3 0 −p1
−p2 p1 0

]
.

(7.2)

The rotation matrix R(pmrp)> to transform from the frame (Xib, Yib, Zib) to the
body frame(Xb, Yb, Zb) in terms of the MRPs is given as

R(pmrp)> = I3×3 −
4(1− pTmrppmrp)

(1 + pTmrppmrp)2
S(pmrp) +

8

(1 + pTmrppmrp)2
S(pmrp)2.

(7.3)

The transformation R(pmrp) is used in mapping the external force due to thrusters
in the body frame to the inertial frame for controlling the translation dynamics.

7.2.2 Nonlinear Dynamic Model
The dynamics of the 5-DOF system with the velocity vb at the centre of rotation of
the attitude stage and angular rates of the attitude stageω in body frame (Xb, Yb, Zb)

is given in the (7.5), where, rcg is the center of gravity offset from the center of
rotation of the attitude stage in the body frame coordinates, J is the mass moment of
inertia of the attitude stage about the center of rotation in the body frame, R(pmrp)

is defined in (7.3), (x, y) is the planar location of the center of rotation from the
inertial frame origin, ma is the mass of the attitude stage, and mt is the mass of
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Figure 7.7: Coordinate Systems used for the derivation of the dynamic model.
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the translation stage. In the following equations, a1 = [1; 0; 0] , a2 = [0; 1; 0] and
a3 = [0; 0; 1] are unit vectors in the reference frame (Xib, Yib, Zib).

ṗp = R(pmrp)vb where pp = (x, y, 0)>, D = (a>1 ; a>2 ; 0) (7.4)

Mb(pmrp)

[
ω̇

v̇b

]
+ Cb

[
ω

vb

]
+Hb = τ b (7.5)

Mb(pmrp) =

[
J maS(rcg)R(pmrp)>DR(pmrp)

ma

(
S(rcg)R(pmrp)>DR(pmrp)

)>
(ma +mt)

]
(7.6)
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Cb =

[
−S(Jω) maS(rcg)R(pmrp)>DR(pmrp)S(ω)

−maR(pmrp)>DR(pmrp)S(ω)S(rcg) (mt +ma)S(ω)

]
(7.7)

Hb =

[
−magS(rcg)R(pmrp)>a3

0

]
(7.8)

The control inputs to the system are represented by τ b = [ τ fτ t ], which include
forces due to thrusters τ f and torques τ t due to thrusters and reaction wheels in
body frame. The control design is done in body frame. The forces computed in
body frame τ f are transformed to forces in inertial frame τ p = R(pmrp)τ f for im-
plementation of the position control law. The implementation of the transformation
and the influence of thrusters in the body frame on the position dynamics in iner-
tial frame is discussed in the following sections. In the body frame, for the 5-DOF
dynamics in (7.5) it can be proved that Ṁb − (Cb + CT

b ) = 0 and that Ṁb − 2Cb

is a skew-symmetric matrix. The matrix form in (7.5) will be used in the following
section to derive a controller that globally exponentially tracks a given position and
almost globally exponentially tracks an attitude trajectory.

7.2.3 Control Design for Full Nonlinear Dynamics
The objective of the control design is to ensure that the 5-DOF of M-STAR, [pp,pmrp]

given in (7.4), exponentially tracks a given trajectory [ppdes
,pmrpdes

] ∈ C2([0,∞]).
The following theorem states the nonlinear control law and proves the global expo-
nential stability of the closed-loop system in (7.11). Here the variables sω = ω−ωr
and sv = vb − vbr define the states for virtual dynamics. The variables ωr and vbr

define the reference signal computed from filtered desired states dynamics given in
the following (7.9).

ωr = Z−1(pmrp)ṗmrpdes
(t) + Z−1(pmrp)Λω(pmrpdes

(t)− pmrp)

vbr = R>ṗpdes
(t) +R>Λv(ppdes

(t)− pp)
(7.9)

Theorem 8. The closed-loop system in terms of virtual states sω, sv, given in (7.11),

with the control law (7.9–7.10), is globally exponentially stable in the sense of the

Euclidean norm, assuming the feedback gains Kω, Kv,Λω,Λv > 0 and the inertia

matrix Mb is positive definite and uniformly bounded with lower bound λmin and
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upper bound λmax.

τ b = Mb

[
ω̇r

v̇br

]
+ Cb

[
ωr

vbr

]
+Hb −

[
Kω 0

0 Kv

][
sω

sv

]
(7.10)

Mb

[
ṡω

ṡv

]
+ Cb

[
sω

sv

]
+

[
Kω 0

0 Kv

][
sω

sv

]
= 0 (7.11)

Proof. The inertia matrix Mb, due to the properties of positive definiteness and
uniform boundedness, is used to compute the norm V = 1

2

[
δsω
δsv

]>
Mb

[
δsω
δsv

]
, for

Lyapunov-like stability analysis [158, 159]. The closed-loop system in (7.11) has
two particular solutions [sω, sv] = 0 and [sω, sv] = se = [ω − ωr,vb − vbr ]. We
perform a squared length analysis using the norm, after obtaining the infinitesimal
distance δse at fixed time. The derivative of the squared length is given in the
following equation.

V̇ =
1

2

[
δsω

δsv

]>
Ṁb

[
δsω

δsv

]
+

[
δsω

δsv

]>
Mb

[
δ̇sω

δ̇sv

]
(7.12)

Using the closed-loop dynamics and s>
(
Ṁb − 2Cb

)
s = 0, on the right hand side

of the above equation we get the following.

V̇ =
1

2

[
δsω

δsv

]>(
Ṁb − 2Cb − 2

[
Kω 0

0 Kv

])[
δsω

δsv

]

= −

[
δsω

δsv

]> [
Kω 0

0 Kv

][
δsω

δsv

] (7.13)

With the inertia matrix bounds and K = min{Kω, Kv}, we get the following in-
equality.

V̇ ≤ − 2K

λmax{Mb}
V (7.14)

Using Comparison Lemma [158] and the bounds on the inertia matrix Mb, we ob-
tain:

V(t) ≤ exp

(
− 2K

λmax{Mb}
t

)
V(0)

∥∥[ δsω
δsv

]∥∥
2
≤

√
λmax{Mb}
λmin{Mb}

exp

(
− K

λmax{Mb}
t

)∥∥∥[ δsω(0)
δsv(0)

]∥∥∥
2

(7.15)
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It follows from contraction-based incremental stability analysis [159, 160] that all
the system trajectories of the closed-loop system in (7.11) converge exponentially
fast with rate 2K

λmax{Mb}
, i.e. δse → 0, which implies [ω − ωr,vb − vbr ] → 0. With

converged virtual dynamics, from the definition of reference trajectories in (7.9),
we get the following equations.

ω − ωr = Z−1(pmrp)(ṗmrp − ṗmrpdes
(t)) + Z−1(pmrp)Λω(pmrp(t)− pmrpdes

(t))

vb − vbr = R>(ṗp − ṗpdes
(t)) +R>Λv(pp(t)− ppdes

)
(7.16)

From (7.16), it is clear that the attitude trajectory and the position trajectory con-
verge globally exponentially fast to the desired trajectory as [ω−ωr,vb−vbr ]→ 0.
The closed-loop virtual dynamics with a bounded disturbance at input d(t) =[
dω(t)
dv(t)

]
is as following:

Mb

[
ṡω

ṡv

]
+ Cb

[
sω

sv

]
+

[
Kω 0

0 Kv

][
sω

sv

]
=

[
dω(t)

dv(t)

]
. (7.17)

The Lyapunov derivative with the closed-loop system as in (7.17) can be simpli-
fied to following equation using Cauchy-Schwarz inequality and the bounds on the
inertia matrix Mb.

V̇ = − 2K

λmax{Mb}
V +

√
2V

λmin{Mb}
‖d(t)‖2 (7.18)

Using the transformationW =
√
V , followed by application of

Comparison Lemma [158] and the uniform bounds on the inertia matrix Mb, we get
the bounds on the norm of the virtual coordinates, where supt≥0 |d(t)| ≤ γ∞.

∥∥[ δsω
δsv

]∥∥
2
≤

√
λmax{Mb}
λmin{Mb}

exp

(
− K

λmax{Mb}
t

)∥∥∥[ δsω(0)
δsv(0)

]∥∥∥
2

+
λmax{Mb}γ∞
λmin{Mb}K

(
1− exp

(
− Kt

λmax{Mb}

)) (7.19)

By taking a limit t → ∞, we get the bounds on the virtual states
∥∥[ δsω

δsv

]∥∥
2
→

λmax{Mb}γ∞
λmin{Mb}K

. Thus the exponentially stable closed-loop virtual dynamics, (7.11),
is finite-gain Lp stable and Input-to-State Stable (ISS) for a bounded disturbance
d ∈ Lp at the input [159].

7.2.4 Control Implementation
For the control implementation, it is assumed that the attitude stage is coarsely bal-
anced with small rcg. Equation (7.20) shows the decoupled translation dynamics



120

in inertial frame and rotational dynamics in body frame with small center of grav-
ity offset. The terms in the dynamics corresponding to the rcg act as a bounded
disturbance at the input d(t) =

[
dw(t)
dp(t)

]
for small accelerations.

J 0 0

0 ma +mt 0

0 0 ma +mt


ω̇ẍ
ÿ

+

ω × Jω0

0

+

−magS(rcg)R(pmrp)>a3

0

0


=

[
τ r

τ p

]
+

[
dw(t)

dp(t)

]
(7.20)

dw(t) = −maS(rcg)R(pmrp)>a1ẍ−maS(rcg)R(pmrp)>a2ÿ

dp(t) =

[
−ma(S(rcg)R(pmrp)>a1)>ω̇ −maa

>
1 R(pmrp)S(ω)2rcg

−ma(S(rcg)R(pmrp)>a2)>ω̇ −maa
>
2 R(pmrp)S(ω)2rcg

]
(7.21)

A hierarchical control law was implemented with an inner attitude control loop and
an outer position control loop because of the timescale separation between the two
dynamics, (7.20). Given a desired position trajectory, [xdes(t), ydes(t)] ∈ R2, and
attitude trajectory represented in MRPs, pmrpdes

(t) ∈ R3, the control law presented
below exponentially tracks both position and attitude trajectories using smooth con-
trol inputs for the decoupled dynamics for no disturbance. In the case with a
bounded disturbance at the input, the closed-loop system is finite-gain Lp stable.
The control input to the position dynamics is simplified from (7.10) and is given
by (7.22).

τ p = (mt +ma)

[
ẍdes

ÿdes

]
−Kd

[
ẋ− ẋdes

ẏ − ẏdes

]
−Kp

[
x− xdes

y − ydes

]
(7.22)

(mt +ma)

[
ẍ− ẍdes

ÿ − ÿdes

]
−Kd

[
ẋ− ẋdes

ẏ − ẏdes

]
−Kp

[
x− xdes

y − ydes

]
= dp(t) (7.23)

The closed-loop position dynamics with the control law in (7.22) are given in (7.23).
The gain values Kd and Kp are chosen to achieve the required position tracking
performance. The attitude controller in (7.24) is exponentially stable [161] with
no disturbance and tracks a given desired attitude trajectory that is C2 continuous.
It can be shown that this control law is simplified form of the controller proposed
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in (7.10). The nonlinear controller is finite-gain Lp stable with bounded disturbance
at the input.

τ r = Jω̇r − S(Jω)ωr −Kr(ω − ωr)−magS(rcg)R(pmrp)>a3

ωr = Z−1(pmrp)ṗmrpdes
(t) + Z−1(pmrp)Λr(pmrpdes(t) − pmrp)

(7.24)

J(ω̇ − ω̇r)− S(Jω)(ω − ωr)−Kr(ω − ωr) = dw(t) (7.25)

The closed-loop attitude dynamics are given in the (7.25). The matrices Λr and Kr

are positive definite and are chosen to achieve required tracking performance. The
control laws presented above compute control signals which are at least C2 contin-
uous and the number of control inputs are collocated with the states. Considering
the overactuated design of the simulator and the impulse actuation of the thrusters,
a transformation from the continuous control signal to the thruster on-off times is
required to achieve equivalent performance with non-smooth control inputs. In the
following two sections, we discuss the actuator models for thrusters and reaction
wheels to make this transformation, along with the influence matrices due to the
location of the actuators.

7.2.5 Thruster Model and Influence Matrix
Influence Matrix.

Equations (7.22) and (7.24) give force and torque inputs that need to be applied
collocated with the five degrees of freedom of the system. The spacecraft has 16
thrusters mounted in the configuration shown in Fig. 7.8, with thrusters 1-8 used for
position and yaw angle control, and 9-16 used for roll and pitch angle control. The
collocated force and torque inputs from the control law are transformed to the force
input requirements on each of the 16 actuators through control allocation using an
influence matrix. For the position controller, the following is the actuator input to
control input mapping called the influence matrix.

τ p = R(pmrp)Bpfpthr (7.26)

In the equation 7.26, R(pmrp) transforms the actuator input in the body frame to the
inertial frame. Bp corresponds to the influence matrix given by (7.27) for position
control. The force vector, fpthr = [f1 f2 f3 f4 f5 f6 f7 f8]>, acts as the input to the
spacecraft dynamics simulator thrusters mounted for position and yaw control. The
actuator numbering is shown in Fig. 7.8.

Bp =

[
−1 −1 0 0 1 1 0 0

0 0 −1 −1 0 0 1 1

]
(7.27)
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For attitude control, the thruster force to control input mapping is given as follows.

τ r = Brfthr where Br = [B1 B2] and fthr =
[
f>pthr f>athr

]>
(7.28)

where fathr = [f9 f10 f11 f12 f13 f14 f15 f16]>. Also, see Fig. 7.8 for the thruster
numbering and nomenclature of `, b, and h.

B1 =

 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−` ` −b b −` ` −b b

 ,

B2 =

0 0 h −h 0 0 −h h

h −h 0 0 −h h 0 0

0 0 0 0 0 0 0 0

 .
(7.29)

Control Allocation.

The control allocation scheme for the position controller computes the 8 dimen-
sional thruster forces F1 given the transformation matrix R(pmrp) and the influ-
ence matrix Bp. A generalized right psuedo-inverse solution to the control alloca-
tion problem that minimizes the L2-norm of the control effort is given by fpthr =

B>p
(
BpB

>
p

)−1
R(pmrp)−1τ p and weighted pseudo-inverse is given in (7.30), with a

diagonal weighing matrix W. We use this algorithm for real-time implementation.

fpthr = W(BpW)>
(
BpW(BpW)>

)−1
R(pmrp)−1τ p (7.30)

The elements of the diagonal matrix W can be chosen to take into account actuator
saturation limits. For example, given the maximum umax and minimum umin thrust
that can be produced by the thruster f1, we choose the corresponding diagonal ele-
ment in W as 1

|umax−umin| . For attitude control using thrusters and reaction wheels,
the same approach can be used for computing the actuator force.

Thruster Firing Time.

The continuous actuator force computed using the control allocation scheme needs
to be transformed to the thruster firing times because the thrusters on the space-
craft simulator are on-off non-latching solenoids. The on time of the thrusters is
controlled using a PWM signal with the duty cycle mapped to the on time require-
ments. Consider a PWM signal with frequency fpwm with duty cycle corresponding
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to firing time ∆t, and continuous force Fr that needs to be applied by a thruster at
time step t. Let Fa be the force applied by the thruster when open/on and the control
loop frequency be fcl. It is assumed that control frequency is the same as the PWM
signal frequency. The firing time is given in the following equation.

∆t =
Fr
fclFa

(7.31)

The equation above assumes that the thruster produces the same force for all fir-
ing times. To verify this claim and validate the model, an experimental setup was
built as shown in Fig. 7.9. In the following section, we discuss the details of the
experimental setup and the thruster model obtained from experiments.

Experimental Characterization of the Solenoidal Thruster.

The experimental setup built to characterize the performance of the solenoidal
thrusters includes a thruster mounted on a load cell with a regulated power sup-
ply. An instrumental amplifier is used to amplify the load cell output voltage, and
the amplified voltage is sampled by a dSPACE MicroLabBox at 1 kHz. The thruster
is supplied with pressure-regulated compressed air at 40 psi, 50 psi, or 60 psi, the
three operating pressures tested. The thrusters are fired for a multiple of 10 ms be-
tween 10 ms and 80 ms, and the load cell force is recorded as a function of time for
the duration of firing, as shown in Fig. 7.9b.

Figure 7.10a shows the experimental data and the linear fit of the average force
produced by the thruster for varying firing time. The force produced is not constant
due to the nonlinear behaviour of the thruster. The impulse produced with varying
firing time is linear as seen in Fig. 7.10b. For the control implementation, we use
the linear fit equations in Table 7.5 to compute the firing time of a thruster for a
given force Fr that needs to be applied at time t with control loop frequency fcl.

Operating Pressure (psi) Fit equation

40 ∆t = 7.863 Fr
fcl

-0.009727

50 ∆t =4.829Fr
fcl

-0.007686

60 ∆t =3.51Fr
fcl

-0.006035

Table 7.5: Linear fit equations for firing time computation for a given control signal
Fr at time t and control frequency fcl.
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(a) Thruster characterization experimental
setup.
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Figure 7.9: Thruster characterization setup and sample results recorded by the load
cell, showing rise time and fall time.
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Figure 7.10: Experimental data and linear fit of average force and impulse vs.
thruster firing time at 40 psi, 50 psi, and 60 psi operating pressure.

7.2.6 Reaction Wheel Configuration and Model
The simulator is equipped with four reaction wheels for attitude control arranged in
a pyramid configuration ( see Fig. 7.8). The angle αw made by the axis of the wheel
and the (Xb, Yb) plane is chosen to have maximum momentum storage [162], αw =

35.26◦. The overactuated configuration will be used to study the fault detection,
isolation, and recovery of reaction wheels, which is a major source of failure [163]
in flight missions. The attitude dynamics with four reaction wheels in the pyramid
configuration and no gravity torques is given in (7.32). The influence matrix is
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given by G in (7.33).

Jω̇ + ω × Jω = −GJωω̇ − ω ×GJωω (7.32)

G =

c(αw)c(45◦) −c(αw)c(45◦) −c(αw)c(45◦) c(αw)c(45◦)

c(αw)s(45◦) c(αw)s(45◦) −c(αw)s(45◦) −c(αw)s(45◦)

s(αw) s(αw) s(αw) s(αw)

 (7.33)

Jω =


Jw1 0 0 0

0 Jw2 0 0

0 0 Jw3 0

0 0 0 Jw4

 (7.34)

In the above equation, J is the mass moment of inertia including the four wheels, Jω
is a diagonal matrix with the mass moment of inertia of the wheels about the rotation
axis, ω = [ω1 ω2 ω3 ω4]> is the rotation speed of the each of the four wheels,
and s(·), c(·) denote the sine and cosine of a given angle, respectively. For the
numbering and location of the wheels with respect to body frame see Fig. 7.8. The
term −GJωω̇ is the control input to the attitude dynamics. The attitude controller
in (7.24) is modified to cancel the cross-coupling term −ω × GJωω by feeding
the wheel speed to the control law. The final control law is given in the following
equation.

τ b = Mb

[
ω̇r

v̇br

]
+ Cb

[
ωr

vbr

]
+Hb −

[
S(GJωω) 0

0 0

][
ωr

vbr

]
−

[
Kω 0

0 Kv

][
sω

sv

]
(7.35)

The wheel torques can be computed using the generalized pseudo-inverse from the
control inputs. The reaction wheels are designed to run at the nominal speeds
[−2500, 2500,−2500, 2500] rpm, which is the null space of the influence matrix
G, to avoid excitation of the attitude dynamics. The speed control of the wheel is
done using a Hall sensor integrated into the selected Maxon motor.

7.2.7 Hardware Implementation of the Hierarchical Control Law
In this section, we elaborate on the implementation of the hierarchical control law
discussed earlier. The schematic of the control law is shown in Fig. 7.11. The at-
titude control is done in the inner-loop with control frequency between 80 − 100

Hz using reaction wheels. The thrusters can be used to do coarse attitude con-
trol, or desaturate the reaction wheels. The X, Y position controller is done using
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thrusters, it is coupled with the attitude dynamics by a rotation matrix to map the
actuator force in the body frame to the inertial frame. The position dynamics are
slow compared to the attitude dynamics, so it is run as an outer-loop with feedback
on position data for control computations and attitude data for control allocation at
control frequency between 1− 10 Hz.

Motion Planning

Control

Map, Start and
Goal States.

Asymptotically
Optimal-RRT

Deterministic Motion
Planning

Position
Controller

Control
Allocation

M-STAR Sensing 
(IMU, Vicon System)

1-10Hz

Thruster Firing
Time

Nonlinear
Attitude

Controller

Actuator
Selection

Reaction
Wheels

Thrusters Thruster Firing
Time

Low-Level
Wheel Control

80-100Hz

Figure 7.11: Closed-loop control implementation for the 6DOF simulator.

7.3 Experiments
In this section, we present the preliminary experimental results for the position
tracking controller discussed earlier. Here, we try to track a step input and demand-
ing harmonic trajectories using the control law, control allocation and firing time
schemes developed in this Chapter. The position and orientation data of the simu-
lator is measured using the motion capture camera system running at 100 Hz. The
thrusters are operated at 50 psi. The tracking results are discussed in the following
section. In a recent work [164], we demonstrated in-orbit spacecraft assembly using
the controller discussed in section 7.2.7.

7.3.1 Results
Figures 7.12 and 7.13 show preliminary results of waypoint reaching experiments.
The task for the controller was to reach origin of the inertial frame and stay there
until a further command was communicated. The controller performs well for the
two presented cases. The current position controller can be easily extended for
tracking a trajectory with coarse way points. The steady-state error in both of the
cases was less than the assigned value of 5cm. In this particular test the yaw angle
attitude was coarsely maintained around 0, except when the system faced perturba-
tions from uneven flow and varying pressure in the pressure manifold that supplies
air to the thrusters, which caused a couple on the simulator due to firing forces that
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do not balance. Further investigation into characterizing the viscous friction due to
air gap between the simulator and the epoxy floor, and the dead zone of the thrusters
needs to be done to improve the performance of the controller.
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(a) x position (m) vs. time (s). (b) y position (m) vs. time (s).
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Figure 7.12: Closed-loop waypoint reaching experimental result- test case 1.

(a) x position (m) vs. time (s). (b) y position (m) vs. time (s).
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Figure 7.13: Closed-loop waypoint reaching experimental result- test case 2.
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7.4 Chapter Summary
In this chapter, we discussed the hardware development of a 6-DOF robotic space-
craft simulator M-STAR for testing formation guidance, navigation and control al-
gorithms. The simulator has 6-DOF with translation and attitude stages decoupled
using a spherical air bearing. The translation stage floats on the epoxy flat floor
using three flat round air bearings. The hardware architecture of M-STAR and its
subsystems including mechanical structure, pneumatic system for flat air bearings,
spherical air bearing required to achieve frictionless and disturbance torque free
motion of the simulator were discussed in detail. The low level control architecture
for thrusters and reaction wheels was mentioned for controlling the dynamics.

A nonlinear dynamic model of M-STAR was presented by modelling the system
as a 3D pendulum on a floating platform. A hierarchical model-based control law
for the nonlinear system was discussed for tracking a given position and attitude
trajectory. A generalized pseudo-inverse control allocation scheme, with a thruster
actuator model developed using experiments, was used to implement the control
law in a ROS based software framework for testing position control. Future work
will focus on multi-agent guidance and control experiments exercising all five M-
STARs.
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C h a p t e r 8

CONCLUSION

In this thesis, we integrated an information cost with the traditional optimal control
problems to demonstrate on-orbit coordinated inspection and safe exploration. We
designed efficient algorithms for motion planning and control under uncertainty.
In Chapter 2, we studied the fundamentals of formation flying, optimal orbit initial-
ization and reconfiguration, and generalized polynomial chaos approach for uncer-
tainty propagation.

In Chapter 3, we presented an information-based guidance and control architec-
ture that consists of multiple timescale modules for cooperatively observing and
inspecting a target spacecraft. The proposed methodology integrates optimal or-
bit initialization and reconfiguration, attitude planning and control, and a discrete
information-cost optimal orbit selection for inspecting the target spacecraft. The
information cost and a replanning strategy were used to guarantee the coverage
of the target spacecraft and balance between the gathered data quality and control
cost. During the inspection, we confirm if an area of the target spacecraft has been
inspected or not, using our novel raycasting database to efficiently check the visibil-
ity of POIs. The updated database was used to monitor the progress of inspection.
The effectiveness of the proposed architecture was validated by inspecting a tar-
get spacecraft in Earth orbit using multiple observer spacecraft. We demonstrate
the proposed planning approach on a three-degree-of-freedom robotic spacecraft
testbed for inspecting a target spacecraft. Using the architecture, we developed an
effective mission design tool that incorporates autonomy for adaptation and safety.

The computational complexity of the information-based guidance and control ar-
chitecture presented in Chapter 3 is upper bounded by the complexity of the as-
signment problem. We use a preliminary Hungarian method [136] to demonstrate
the architecture. Distributed assignment methods [14] can be used to improve the
speed of assignment and the overall architecture for online implementation.

In Chapter 4, we presented a generalized polynomial chaos-based sequential convex
programming method for safe and optimal motion planning and control under un-
certainty in dynamics and constraints. We used generalized polynomial chaos pro-
jection and distributional robustness to compute a convex subset of the multi-model
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state-dependent chance constraints, and a high-fidelity deterministic surrogate of
the stochastic dynamics and the cost functional. We proposed an algorithm to solve
the surrogate deterministic optimal problem using sequential convex programming
for trajectory optimization. We studied the controllability of the surrogate deter-
ministic dynamics and proposed approaches to ensure the feasibility of the opti-
mization problem. We proved the asymptotic convergence of the surrogate problem
to the stochastic optimal control problem, thereby demonstrating the suboptimality
of the proposed approach.

In Chapter 5, we derived deterministic surrogate convex constraints for collision
checking with deterministic and stochastic obstacles. We integrated the gPC-SCP
method with these constraint formulations and derived a motion planning algorithm
to compute safe motion plans under uncertainty in dynamics and obstacle location.
We extended this method to design a stochastic model predictive control for safely
tracking a nominal trajectory which was computed by ignoring the uncertainty. We
proved the convergence and stability of the stochastic model predictive controller
and validated our approach in simulations and on the robotic spacecraft simulator
hardware. We demonstrated a higher success rate in the safety of motion trajectories
compared to a Gaussian approximation of the chance constraints.

The gPC-SCP method discussed in Chapter 5 can guarantee safety for risk measure
ε ∈ [0.001, 0.5]. For small risk measure ε (< 1e − 3), the convex deterministic
surrogate derived in this thesis might be overly conservative and might reduce the
feasibility significantly, leading to the infeasibility of the optimization problem.
Further research needs to be conducted in this direction to handle low-risk ε <

1e− 7.

In Chapter 6, we presented the Info-SNOC algorithm for safe exploration. In
this method, we integrate a learning-based model and motion planning by solving
information-cost stochastic optimal control using a partially learned nonlinear dy-
namical model and formulated safety as distributionally robust chance constraints.
We solved the Info-SNOC problem using the gPC-SCP method descrived in Chap-
ters 4 and 5. We used the Info-SNOC method to compute a safe and information-
rich pool of trajectories for rollout using an exponentially stable controller with a
safety filter augmentation for safe data collection. We analyzed safety during rollout
under learned dynamics and showed that the learned model converges to the opti-
mal predictor over epochs. The safe exploration architecture presented in Chapter 6
is limited by the range of risk measures that can be used in the gPC-SCP method
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and the speed of the learning method used to learn and predict the unknown inter-
action. Fast Bayesian learning methods (for example, [165]) can be incorporated to
improve the learning speed.

In Chapter 7, we described the hardware development of the 6-DOF M-STAR
testbed. We discussed the construction and modularity of the platform that en-
ables flexible formation guidance, navigation, and control algorithm testing. We
presented the dynamic modelling, control algorithm development and implementa-
tion in software and on hardware.

8.1 Future Work
Mission Design for Autonomy

As discussed in Section 3.3, the information-based autonomy architecture could be
an essential tool for mission design. While the architecture in Chapter 3 attempts to
study mission design from a safety vs. information perspective, there is still signifi-
cant work to design other aspects of autonomy. In particular, this architecture could
prove useful to answer questions such as "what, how, and when to communicate?"
and "can we achieve mission success under partial subsystem faults?". Further-
more, the experimental result provided in Section 3.4, can be applied to ground
robotic systems for novelty detection for efficient safe exploration.

Fast Approximations For Motion Planning Under Uncertainty

Although the offline gPC projection approach described in Section 4.2.5 allows for
motion planning and control under uncertainty in both dynamics and environment,
it is computationally expensive for large degree-of-freedom systems. Alternatively,
there is scope to use efficient numerical integration methods to develop an imple-
mentation that avoids the Galerkin projection. Furthermore, there is need to extend
the proposed algorithms for multi-agent motion planning and control for safe on-
orbit reconfiguration.
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A p p e n d i x A

NONLINEAR ATTITUDE CONTROL OF A SPACECRAFT WITH
DISTRIBUTED ACTUATION OF SOLAR ARRAYS

A.1 Introduction
Space observatories require precise attitude control and pointing accuracy to achieve
desired diffraction-limited optical performance. For example, the Hubble and James
Webb Space Telescopes require 7 milliarcsec [166] and 15 milliarcsec [167] point-
ing accuracies, respectively. A range of emerging science missions such as Aste-
ria [168], Exo-C [169] and technologies such as laser communication [170], pre-
cision formation flying [171], and interferometric imaging [172], place stringent
requirements on pointing error and stability. In these state-of-the-art space obser-
vatories, precision imaging involves two stages [169, 173]: (i) coarse stage instru-
ment pointing, which is achieved using the primary spacecraft Attitude Control Sys-
tem (ACS), and (ii) fine stage precision control and jitter reduction. Coarse stages
are typically built from Reaction Wheel Assemblies (RWAs), because hydrazine
thrusters are too disruptive for precision imaging [167]. In this case, however, the
RWA system, which drives the ACS, ironically becomes the dominant source of
instrument jitter and imaging performance degradation. To avoid these issues, the
RWA disturbance must be eliminated at its source, so that an ultra-quiet, space-
craft actuation system (UQSAS), i.e., one that does not produce severe unwanted
disturbances as a side effect, can be put in its place. Recently, electric propulsion
systems have been proposed as viable UQSAS options, but these actuation systems
are clearly fuel-limited and are typically designed as low-thrust propulsion systems
that do not have enough control authority to support a high-bandwidth pointing
control loop. In contrast, Strain-Actuated Solar Arrays (SASA) have been recently
introduced as a propellant-free, UQSAS alternative [174, 175] that can support a
high-bandwidth pointing control loop assuming a high force-density piezoelectric-
based actuation system.
Given the potential for SASA to serve as a viable UQSAS alternative, several
studies have been conducted thus far. In [175], replacing the RWA with SASA
to achieve spacecraft slewing, attitude control, and momentum management was
investigated. In [174, 176], a design optimization of both the control architec-
ture and structural geometry was reported. In contrast to earlier work, this ar-
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ticle presents a complete derivation of the spacecraft-SASA dynamics in which
the infinite-dimensional nature of the flexible appendage is modeled using Euler-
Bernoulli beam theory [177, 178]. More specifically, the nonlinear dynamics of
the open-loop plant is modeled as an ODE-PDE system with the ODE describ-
ing spacecraft single-axis rigid-body rotation, and the PDE describing the spatially
continuous flexible dynamics of the solar array, which includes an allocation for
a multi-input distributed piezoelectric actuation system. This study includes a rel-
evant control-structure interaction stability analysis, simulation, and experimental
validation. The salient feature of the proposed approach is that the piezoelectric
actuators induce bending deflections that are strategically manipulated by a novel
underactuated control law to effectively yield the needed array-to-bus coupling (re-
action torques) required by the assumed precision pointing tracking control system
realization (that is derived herein).
A literature survey aimed at extracting an appropriate open-loop plant model for
model-based control design approach revealed several candidate modeling approaches,
including those based directly on classical methods such as the Newton-Euler method,
Lagrange’s equation, Hamilton’s principle, and the principal of virtual work, where
the spacecraft and flexible appendages are modeled as a rigid/flexible multi-body
system [179–182]. These approaches combine finite and infinite-dimensional dy-
namics via a coupled ODE-PDE system of nonlinear equations, which can be lin-
earized as in [177, 180, 181, 183]. In particular, [182] accounted for rotation-
induced centrifugal stiffening in the context of a linearized analysis. In this paper,
the linear model for a circular bus with flexible appendages in [180] is extended
with axial stiffness in the beam due to rotation and gyroscopic terms using the ex-
plicit generalization of Lagrange’s equation for infinite dimension systems [180].
As such, the resulting system dynamics becomes coupled, nonlinear, and under-
actuated in nature [184, 185] with control inputs derived exclusively from the un-
derlying SASA actuation system. This is noteworthy because earlier studies of
SASA, including [186], modeled the solar array with a finite-dimensional rigid-
body approximation, in contrast to the infinite dimensional PDE model that is used
herein. The importance of improving model fidelity in this manner is underscored
by the fact that finite-dimensional controllers are prone to spillover [187, 188] when
applied to the actual infinite dimensional system for which they were designed.
Numerous previous studies [180, 189, 190] have focused on the control-structure
interaction problem for vibration suppression of flexible appendages. However,
this paper is the first of its kind where a beam is driven by distributed actuators
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such that the underactuated spacecraft bus achieves attitude guidance and control
objectives. In either case, a canonical system of ODE-PDE equations of motion
is generated, for which additional processing takes on either of the following two
standard methods: (i) the ODE-PDE system is discretized into an ODE system
using either Galerkin [177, 178, 191] or operator-theoretic methods [192], or (ii)
The ODE-PDE form is left intact [193] for analysis. As mentioned previously, dis-
cretization in the first method leads to spillover issues [187, 188]; while keeping
PDEs intact avoids this problem.
It is worth noting that ODE-PDE cascaded systems, similar to the SASA system
generated herein, have been studied previously in the literature. Published results
in this area depend heavily on the type of PDE classification. Indeed, separate
results have been obtained for first-order wave equation [194, 195], second-order
wave equation [196], and parabolic equation [197, 198]. In each of these cases,
the control input entering the system at the boundary can assume either a Dirich-
let [196, 198] or a Neumann interconnection [199]. In these works, however, the
ODE-PDE interaction is strictly unidirectional with regards to how the PDE couples
with the ODE system. In contrast, [197] presents an ODE-PDE system where this
assumption is relaxed so that the more complete modeling case of bidirectional cou-
pling can be considered. With regards to control, a PDE backstepping method [193,
196, 198] and boundary controller are able to provide infinite-dimensional full-state
feedback where the gain kernels are used to compensate for PDE dynamics while
stabilization of the entire system is achieved. Similarly, the ODE-PDE SASA sys-
tem considered herein is bidirectionally coupled with a distributed control input.
The open-loop model’s inherent passivity [18], and kinetic symmetry [200] are ex-
ploited in the construction of the nonlinear ODE-PDE attitude control law. Specif-
ically, the nonlinear controller derivation proposed in [201, 202] is adapted to the
ODE-PDE under-actuated SASA system proposed herein. In doing so, the resultant
closed-loop dynamics with the beam dynamics canceled by a feed-forward term are
governed by a virtual dynamical system that converges exponentially to a stable
manifold in the sense of spatial L2 norm. In the case with partial or no cancella-
tion of the beam dynamics, finite-gain time-signal `p stability of the closed-loop
system is proved by formulating the uncanceled beam dynamics as a disturbance
term. From an end-to-end point of view, the controller actuates the flexible beam to
achieve satellite slewing using the coupled ODE-PDE dynamics.
One of the major objectives of this paper is to experimentally demonstrate real-time
closed-loop SASA (ODE-PDE) attitude tracking control in the laboratory. In order
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to do so, it was necessary to discretize the infinite-dimensional ODE-PDE plant dy-
namics and control law. Towards this end, Galerkin’s method [177, 178, 180, 203]
was used to form ODE systems from the PDE dynamics. The discretized control
law was tested on the simulated plant dynamics before attempting implementa-
tion on the actual laboratory SASA testbed. The testbed consists of a one-degree-
of-freedom cylinder (spacecraft bus) with flexible beams (solar arrays) symmetric
about the cylinder’s axis of rotation. Strain actuation in the beams is achieved by
bonding piezoelectric actuators asymmetrically about the axis of the cylinder.
The main contribution of this paper is the design of a new nonlinear ODE-PDE
control law using the coupled structure in the dynamics to perform precision atti-
tude control with detailed stability proofs. Notably, the proposed ODE-PDE control
design captures all the modes of the flexible beam, thereby avoiding the spillover
problem. Stable trajectory tracking via the nonlinear distributed control law is suc-
cessfully demonstrated by analysis, numerical simulations, and experimental tests
of the closed-loop system. The actuator model is validated by comparing the tip de-
flection of a composite cantilever beam (aluminum beam with surface-bonded PZT)
with those obtained from simulations and experiments. The piezoelectric ceramic
used in the actuators is lead zirconate titanate, which is abbreviated PZT based on
its chemical formula: Pb[ZrxTi1−x]O3, (0 ≤ x ≤ 1). It is shown that the maxi-
mum controlled attitude rotation achieved by bending the solar array is constrained
both by the inertia of the solar array and the bus, and by the maximum stress that
can be applied to the solar array without compromising its structural integrity.
The paper is organized as follows. The kinematics, dynamics of the system, and ac-
tuator model of the composite beam (PZT and beam) are discussed in Section A.2.
Nonlinear ODE-PDE control law design and the associated stability analysis are
presented in Section A.3. Numerical implementation and results for trajectory
tracking and slewing is given in Section A.4. Experimental results that validate
the actuator model and real-time trajectory tracking of the bus rotation are given in
Section A.5. Concluding remarks are given in Section A.6.

A.2 Dynamics of a 1-DOF Satellite with SASA
The spacecraft with asymmetric SASAs is modeled as a cylinder with flexible ap-
pendages that are fixed symmetrically to the rotational axis of the cylinder as shown
in Fig. A.1. The dynamics of the system include planar rotation of the spacecraft bus
and bending in the flexible composite beam due to strain-actuation. Our modeling
approach uses explicit generalization of Lagrange’s equations [180]. The equations
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of motion of the ODE-PDE system can also be derived by following the approach
discussed in [204, 205]. Before proceeding to the Euler-Lagrange equations, we
discuss briefly the system kinematics, physical properties of the composite beam,
and the actuator model for strain-actuation using PZTs.

A.2.1 Kinematics

θ

dx
ξ

x

PZT
SOLAR 
ARRAY(SA)

O x3

y2
x2

y3
x1

y1 P

A

Figure A.1: 1-DOF cylinder and flexible solar array model.

The spacecraft body is modeled as a cylinder of radius r, and the solar array is
modeled as a composite beam of length `, with PZT actuators bonded on the beam
surface. It is assumed that the beam does not undergo any longitudinal vibration.
The coordinate systems used in the derivation of kinematics are shown in Fig. A.1.
In the (x1, y1) coordinate system, the location of a point P on an element dx of the
beam is given byRP/A = [x, ξ], where ξ(x, t) : [0, `]×R+ → R is the displacement
due to bending in y1 direction. The spacecraft body rotation angle about origin O
is θ(t), where θ(t) : R+ → [−π, π] . The position and velocity of P with respect
to origin of the spacecraft O are given by (A.1) and (A.2), respectively. These
equations are used to compute ξ using x3 and y3.

[
x3

y3

]
=

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

][
r + x

ξ

]
(A.1)

The velocity kinematics are given by:[
ẋ3

ẏ3

]
=

[
− sin(θ) − cos(θ)

cos(θ) − sin(θ)

][
(r + x)θ̇ + ξ̇

ξθ̇

]
(A.2)
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A.2.2 Mass Per Unit Length and Total Rigidity of the Composite Beam
The physical properties of the solar array, such as mass per unit length and loca-
tion of the neutral axis that plays an important role in the evolution of the system
dynamics, are functions of the spatial variable x due to the composite nature of the
beam. The mass per unit length of the composite beam is given in (A.3).

mR(x) = mb + k(x)mp, mb = ρbAb, mp = ρpAp (A.3)

where ρb and ρp denote the beam and the PZT densities, respectively. Also, Ab and
Ap are the cross sectional areas of the beam and the PZT, respectively. Note that
the function k (x) = 1 at the locations where the PZT is bonded, and k (x) = 0

otherwise.

mR(x) = mb + k(x)mp +
nv∑
i=1

mvδd(x− `vi) (A.4)

For simulations and experiments described in this paper, we use (A.4) for the mass
per unit length, which takes into account the effect of point masses placed on the
beam for a particular sensing system we used. The point mass is mv, δd is the Dirac
delta function, `vi is the distance to the i-th point mass on the beam from the root,
and nv is the number of point masses.

The physical, structural, and geometric properties of the PZTs and the beam are
different. As a result, the elastic neutral axis of the composite beam is offset from
the geometric centroid. The distance between the top surface of the composite beam
to the neutral axis hn, as shown in Fig. A.2a, is given as:

hn =
Ept

2
p + Ebtb (tb + 2tp)

2 (Eptp + Ebtb)
(A.5)

where Eb, Ib, tb, Ep, Ip, and tp are the Young’s modulus, area moment of inertia
about neutral axis, and thickness of the beam and the PZT, respectively.

The total beam rigidity EIt at the locations where PZTs are bonded, with area
moment of inertia calculated about the new neutral axis, is given by:

EIt = EbIb + EpIp

where Ib =
wt3b
12

+ wtb

(
tp +

tb
2
− hn

)2

, Ip =
wt3p
12

+ wtp

(
hn −

tp
2

)2

(A.6)

The total beam rigidity EIb at locations with k(x) = 0 (where no PZT actuator is
attached) is given by following equation:

EIb =
Ebwt

3
b

12
(A.7)
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In the dynamic model, we use the variable EI(x) for rigidity of the beam, which is
a function of spatial position x.

A.2.3 Actuator Model
Piezoelectric materials undergo uniform strain when an electrical potential differ-
ence is applied across their electrodes [206]. Due to this and other desirable prop-
erties, PZT actuators are commonly used in design of intelligent structures, active
vibration control, and strain-actuated beams [187, 207–211]. PZT patches can be
bonded to the surface of a solar array, or embedded within the solar array sub-
structure [208, 212]. References [208, 212] discuss actuator models for the SASA
configurations described above, with and without perfect bonding. Herein, a quasi-
static actuator model based on the surface bonded PZT model [210] is assumed,
including some needed error corrections in the final model.

The following actuator model provides the mathematical framework for modeling
moments applied to the beam due to a voltage V applied across the PZT bonded to
the beam surface. In deriving the model, it is assumed that the bonding between the
PZT and the beam is perfect, and that the composite beam has constant width ‘w’.
Here, the PZT is bonded only on the top surface and the strain distribution ‘ε’ along
the cross section of the composite beam is assumed to be linear (see Fig. A.2a):

ε = κz + ε0 (A.8)

where κ is the slope of the strain distribution due to bending, and ε0 is the beam
extension due to the neutral axis offset. Force and moment equilibria are used to
evaluate the expressions for κ and ε0 (for detailed derivation, see [213]). The static
model derived here is used in the dynamic model, assuming that the process is
quasi-static in nature. In the following, εp is the strain of an unconstrained PZT
when a voltage ‘V ’ is applied across it. This strain is given by: εp = dzxV

tp
, [210].

The piezoelectric coefficient dzx is the ratio of strain in the x-direction when an
electric field is applied across the PZT in the z-direction.

κ =
6EbEpεptbtp(tb + tp)

E2
b t

4
b + 4EbEpt3btp + 6EbEpt2bt

2
p + 4EbEptbt3p + E2

pt
4
p

(A.9)

ε0 =
εpEptp(Ept

3
p + Ebt

3
b)

E2
b t

4
b + 4EbEpt3btp + 6EbEpt2bt

2
p + 4EbEptbt3p + E2

pt
4
p

(A.10)
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Figure A.2: Distributed Piezo and and strain distribution across the composite
beam.

The moment in the beam, due to the uniform PZT strain produced by the applied
voltage V , is given by

Mb = EbIbκ = cV,

where c =
6E2

b IbEpdzxtb(tb + tp)

E2
b t

4
b + 4EbEpt3btp + 6EbEpt2bt

2
p + 4EbEptbt3p + E2

pt
4
p

(A.11)

The moment is proportional to the voltage applied across the PZT. The constant
c depends on the geometric parameters, the structural properties of the PZT, and
the elastic modulus of the composite beam. The actuator model is extended to a
scenario with multiple PZTs using step functions (see Fig. A.2b). The model with
n PZTs on the beam surface is given in (A.12), where Vi is the voltage applied
across the ith PZT, ci is the proportionality constant corresponding to the structural
and geometric properties of the ith PZT, and u (x) is the step function with unit
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amplitude. The lengths l1i and l2i are defined for ith PZT as shown in Fig. A.2b.

Mb =
n∑
i=1

ciVi (u(x− l1i)− u(x− l2i)) (A.12)

Equations (A.11) and (A.12) are used to compute voltage signals required to achieve
attitude control from the control signal in the simulations and experiments.

A.2.4 Dynamics
The system dynamics include elastic bending of the composite beam, modeled us-
ing Euler-Bernoulli beam theory, and rotational motion, which is modeled as pla-
nar rigid-body spacecraft rotation. The dynamic model, prescribed by the coupled
ODE-PDE system with fixed-root and free-end boundary conditions, uses a hybrid
coordinate system integrating one rigid body with an infinite-dimensional system
(also called as distributed parameter system). In deriving the model, we assume
that the deflections due to bending are small and that the beam has no longitudinal
vibration; the effect of ε0 in (A.10) is assumed to be negligible. The state of the sys-
tem corresponding to beam deflection is ξ(x, t), described by a continuous function
of spatial radial position x and time t.

The system Lagrangian L involves several quantities, including the spacecraft bus
(cylinder) mass moment of inertia Jθ, rotational kinetic energy of the spacecraft
body Ts (Eq. (A.13)), beam kinetic energy assuming asymmetric strain-actuation
Tb (Eq. (A.14)), and elastic potential energy and axial stiffening of the beams due
to centrifugal force from bus rotation U (Eq. (A.15)).

Ts =
1

2
Jθθ̇

2 (A.13)

Tb =

∫ `

0

mR

[
θ̇2(r2 + x2 + ξ2) + ξ̇2 + 2rξ̇θ̇ + 2rθ̇2x+ 2ξ̇θ̇x

]
dx (A.14)

U =

∫ `

0

[
EI
(
ξ
′′
)2
]
dx+

∫ `

0

[
P
(
θ̇, x
)(

ξ
′
)2
]
dx (A.15)

The Lagrangian of the ODE-PDE system is given as L = Ts + Tb − U . Note that
()

′
= ∂

∂x
(), and P

(
θ̇, x
)

=
∫ r+`
r+x

[
mRθ̇

2s
]
ds = p(x)θ̇2 is the axial tension in

the beam due to rotation, where mR is expressed as a function of s = r + x. The
definition of the composite beam total rigidity EI is given in Section A.2.2. The
nonconservative work Wnc done due to the moment applied by strain actuation is
given by:

Wnc =

∫ `

0

Mb(x, t)
2

EbIb
dx (A.16)
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where Mb(x, t) is the internal beam moment (see (A.11)) due to the strain produced
by PZTs. The equations of motion are obtained by using the explicit generalization
of Lagrange’s equations for infinite-dimensional systems approach (see [180] for
more details). The extended Hamilton’s principle can be stated as follows, where t0
and tf are the initial and final time values, respectively:∫ tf

t0

(δL+ δWnc) dt = 0 (A.17)

Applying integration by parts to the expanded variations in terms of the state vari-
ables and using boundary conditions, we obtain the following equations of motion
in terms of the Lagrangian:

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (A.18)

d

dt

(
∂L

∂ξ̇

)
− ∂L

∂ξ
+

∂

∂x

(
∂L

∂ξ′

)
− ∂2

∂x2

(
∂L

∂ξ′′

)
=

∂2

∂x2
(Mb(x, t)) (A.19)

The structural damping in the system is modeled using the Kelvin-Voigt constant
µ. The equations of motion after substituting the Lagrangian are:(
Jθ + 2

∫ `

0

(
mR

(
(x+ r)2 + ξ2

)
− p(x)ξ

′2
)
dx

)
θ̈ + 2

∫ `

0

mR (r + x) ξ̈dx

+

∫ `

0

4mRξξ̇θ̇dx−
∫ `

0

4θ̇p(x)ξ
′
ξ̇′dx = 0

(A.20)

2mR (r + x) θ̈ + 2mRξ̈ − 2mRθ̇
2ξ − 2

(
θ̇2p(x)ξ

′
)′

+ 2
(
EIξ

′′
+ µEIξ̇

′′
)′′

= 2(Mb(x, t))
′′

(A.21)

The beam boundary conditions, due to the fixed root and free end, are given as:

ξ(x, t)|x=0 = ξ
′
(x, t)

∣∣∣
x=0

= 0,

(EIξ
′′

+ µEIξ̇
′′
)
∣∣∣
x=`

= 0, (EIξ
′′

+ µEIξ̇
′′
)
′
∣∣∣
x=`

= 0
(A.22)

The physical and structural properties of the bus and the solar array constrain the
maximum slew angle that can be achieved by SASA. The linearized dynamics
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of (A.20) and (A.21) are given as:∫ `

0

(Jθ + 2mR(x+ r)2)dx θ̈ +

∫ `

0

2mR(x+ r) ξ̈ dx = 0 (A.23)∫ `

0

2mR(x+ r)dxθ̈ +

∫ `

0

2mRξ̈dx+

∫ `

0

2
(
EIξ

′′
)′′

dx =

∫ `

0

2(Mb(x, t))
′′
dx

(A.24)

The linearized dynamics, (A.23) and (A.24), correspond to momentum equilibrium
about the axis of rotation and force equilibrium of an element dx of the solar array,
respectively. It is evident from these equations that the bus angular acceleration is
bounded due to the bus inertia, beam inertia, beam mass distribution, and the shear
force term

∫ `
0

2
(
EIξ

′′)′′
dx. The shear force

∫ `
0

2
(
EIξ

′′)′′
dx across the solar array

and the input strain actuation
∫ `

0
2(Mb(x, t))

′′
dx are bounded due to the structural

constraints on the beam. The bus angular rotation is bounded, because a finite
definite integral of a bounded continuous function is bounded.

A.3 Nonlinear ODE-PDE Control Design of SASA
The equations of motion in (A.20) and (A.21) are re-written in Section A.3.1, fol-
lowed by a matrix form that is typical for robot system dynamic models. Equa-
tions (A.20) and (A.21) are expressed in the standard Euler-Lagrangian matrix form
in (A.25) by applying integration by parts to the term

∫ `
0
θ̇p(x)ξ

′
ξ̇′dx in (A.20).

A.3.1 Matrix Form of Euler-Lagrangian System

∫ `

0

Ms(x)

[
θ̈

ξ̈

]
dx+

∫ `

0

Cs(x)

[
θ̇

ξ̇

]
dx+

[
0

Ss

]
=

[
0

2
∫ `

0
(Mb(x, t))

′′
dx

]
(A.25)

Ms(x, t) =

[
m11(ξ) m12

m12 m22

]

=

[(
Jθ/`+ 2

(
mR ((x+ r)2 + ξ2)− p(x)ξ

′2
))

2mR (x+ r)

2mR (x+ r) 2mR

]
(A.26)

Cs(x, t) =

[
c11(ξ, ξ̇) c12(ξ, θ̇)

−c12(ξ, θ̇) 0

]

=

 2
(
mRξξ̇ − p(x)ξ

′
ξ̇′
)

2
(
mRξθ̇ + (p(x)ξ

′
)
′
θ̇
)

−2
(
mRξθ̇ + (p(x)ξ

′
)
′
θ̇
)

0

 (A.27)
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Ss(x, t) = 2

∫ `

0

(
EIξ

′′
+ µEIξ̇

′′
)′′

dx (A.28)

It is important to note that c11 = ṁ11

2
and

(
Ṁs − 2Cs

)
is skew-symmetric. This

skew-symmetric property is exploited in the stability proof of the main control law.
Also, the boundary conditions in (A.22) still apply.

A.3.2 Preliminaries
Definition 2. (Spatial L2-norm) Given the spatial domain [0, `] with ` > 0, let
the standard Hilbert space Z = L2([0, `],Rn) be equipped with inner product

〈z1, z2〉Z =
∫ `

0
zT1 z2dx and induced norm ‖z‖Z =

√∫ `
0
zT zdx for all spatial func-

tions z, z1, z2 : [0, `] 7→ Rn in Z .

Definition 3. (Temporal `p-norm) Given the time signal q(t) ∈ Rn ∀ t ≥ 0 and
arbitrary s ∈ [0,∞), let (q(t))s be the truncation of q(t) where (q(t))s = q(t)

for t ∈ [0, s], and (q(t))s = 0 otherwise. Let the truncated `p signal norm be
‖(q)s‖`p , (

∫ s
0
‖q(t)‖pdt)

1
p < ∞ for p ∈ [1,∞), and ‖(q)s‖`∞ , sup

t≥0
‖(q(t))s‖ <

∞ for p =∞, where ‖ · ‖ is any vector norm.

Definition 4. (Spatiotemporal norms) Given q(x, t) ∈ Rn ∀ x ∈ [0, `] and t ≥
0, let Q , `p(R+,L2([0, `],Rn)) denote the Hilbert space with induced spatial

L2 norm ‖q(t)‖L2 ,
√∫ `

0
q(x, t)T q(x, t)dx and truncated `p signal norm ‖q‖Q ,

‖(‖q(t)‖L2)s‖`p .

In this paper, there are two generalized coordinates θ and ξ such that q(x, t) ,

[θ(t), ξ(x, t)]T ∈ R2 where θ : R+ 7→ R and ξ : [0, `]× R+ 7→ R.

A.3.3 Properties of the Underactuated Hybrid System
Kinetic Symmetry

The dynamics in (A.25) possesses kinetic symmetry [200] with respect to the space-
craft attitude θ, as the inertia matrix Ms(x) per unit length is independent of θ. The
kinetic symmetry with respect to θ in the absence of gravitational effects leads to
symmetry in mechanics, satisfying (A.29).

∂K

∂θ
=
∂L

∂θ
= 0 (A.29)

z1 =
∂L

∂θ̇
=

∫ `

0

(m11θ̇ +m12ξ̇)dx, ż1 =
d

dt

∂L

∂θ̇
=
∂L

∂θ
= 0 (A.30)
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The above is true because the corresponding LagrangianL is independent of θ. Note
that the first generalized angular momentum for the variable θ, which is denoted by
z1, is given in (A.30).

Positive Definiteness and Uniform Boundedness of the Inertia Matrix

The positive definiteness and uniform bounds of the inertia matrix are used in the
Lyapunov analysis of the closed-loop system to prove exponential stability. The
inertia matrix here, unlike rigid-body robot dynamics, has axial stiffening compo-
nent −p(x)ξ

′2 in the m11 term due to the centrifugal force on the solar array, which
can make the inertia matrix non-positive definite. The effect of axial stiffing on the
multibody dynamics is studied in [182, 214]. Using the Sylvester’s criterion, we
obtain the inequalities presented in (A.31) for the positive definiteness of the Ms

matrix.
Jθ/`+ 2

(
mR

(
(x+ r)2 + ξ2

)
− p(x)ξ

′2
)
> 0

2mRJθ/`+ 4m2
Rξ

2 − 4mRp(x)ξ
′2
> 0

(A.31)

These inequalities are always satisfied due to the small deflection assumption of
the beam. Assuming constant mR, the inequalities in the (A.31) can be simplified
to (A.32).

2ξ2 − ξ′2
((`− x)(`+ x+ 2r)) > − Jθ

`mR

(A.32)

The maximum of ((`−x)(`+x+2r)) occurs at x = 0. Equation (A.32) is satisfied
if 2ξ2 − ξ

′2
(`2 + 2`r) > − Jθ

`mR
. This is used to define a domain of permissible

displacement and strain envelope as 2ξ2 + Jθ
`mR

> ξ
′2

(`2 + 2`r). Let the bounds of
the inertia matrix be given by using the spatial L2 norm as follows:

0 < σ1‖q(t)‖2
L2 ≤

∫ `

0

qTMs(x, t)qdx ≤ σ2‖q(t)‖2
L2 ; where q(t) = (θ, ξ)T

(A.33)

The bounds are not uniform because they depend on the state ξ, if ξ → ∞ both σ1

and σ2 grow unbounded. In the configuration space of the system, ξ(x) at any time
t is a function of the moment applied at that location and ξ ≤ ξmax, where ξmax

is the maximum strain that can be achieved before violating structural constraints
of the beam. For the Euler-Bernoulli beam considered, using the strain-moment
relationship for symmetric bending ξmax = hMmax

EI
, where the thickness of the beam

is 2h,Mmax is the maximum moment that can be applied at a point,E is the Young’s
modulus and I is the moment of inertia respectively. Therefore, we can always find
σ1 and σ2, which are uniform bounds on the inertia matrix Ms.
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A.3.4 Nonlinear ODE-PDE Control Law
The control objective is to ensure that the bus rotation angle θ(t) ∈ C2([0,∞))

tracks a desired attitude trajectory θd(t) ∈ C2([0,∞)). The nonlinear control law
is developed using the properties discussed in Section A.3.3. To track a desired
bus rotation trajectory θd, a reference rotation velocity signal, as shown in (A.34),
is computed by shifting the rotation velocity with the position error term in which
λθ is a positive value. The reference rotation acceleration is obtained by taking the
time derivative of the (A.34):

θ̇r(t) = θ̇d(t)− λθ(θ − θd(t)) (A.34)

θ̈r(t) = θ̈d(t)− λθ(θ̇ − θ̇d(t)) (A.35)

The reference beam deflection signal ξr is computed by integrating (A.36). The
reference signal ξr quantifies the θ dynamics for the reference signal θr that is aug-
mented with the error feedback term Kθ

(
θ̇ − θ̇r

)
, where Kθ is a positive feedback

gain.

m12ξ̈r +m11θ̈r + c11θ̇r + c12ξ̇r = Kθ(θ̇ − θ̇r) (A.36)

Using (A.34), (A.35), and (A.36), and variables sθ = θ̇ − θ̇r and sξ = ξ̇ − ξ̇r, the
control law is defined in (A.37), where τ = (Mb(x, t))

′′
.

τ = m12θ̈r +m22ξ̈r − c12θ̇r + 2
(
δEIξ

′′
+ µEIδξ̇

′′
)′′

−Kξsξ (A.37)

The closed-loop system with this controller is given in (A.39), where δ is a constant
∈ [0, 1], Kξ is a positive feedback gain and qs(x, t) = [ sθsξ ].

Ks =

[
Kθ 0

0 Kξ

]
; D(δ, ξ

′′
, ξ̇

′′
) =

 0

(1− δ)
(

2EIξ
′′

+ µ2EIξ̇
′′
)′′

 (A.38)

∫ `

0

(
Msq̇s + Csqs +D(δ, ξ

′′
, ξ̇

′′
) +Ksqs

)
dx = 0 (A.39)

Notice that the parameter δ defines an auxiliary control input in the following sense.
If δ = 1, the beam bending stiffness term (Ss(x, t) in (A.28)) is completely nulled
(e.g., via feed-forward control), and if δ = 0, the beam bending dynamics are
natural (uncompensated). For δ = 1, exponential stability of the closed-loop system
is given in Theorem 9, and the robust stability against a bounded disturbance term
is discussed in Theorem 10.
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Theorem 9. The closed-loop system, given in (A.40), with the control law (A.34–

A.37) and δ = 1, is globally exponentially stable in the sense of spatial L2 norm,

defined in Definition 2, assuming the feedback gains Kξ, Kδ > 0 and the inertia

matrix Ms is positive definite by (A.31) and uniformly bounded as in (A.33).∫ `

0

(Msq̇s + Csqs +Ksqs) dx = 0 (A.40)

Proof. The inertia matrix Ms, due to the properties discussed in Sections A.3.1
and A.3.3, is used to compute a spatial norm (A.41) for a Lyapunov-like stability
analysis [193]:

VL =
1

2

∫ `

0

qTsMs(x, t)qsdx (A.41)

The time-derivative of VL is given as follows:

V̇L =

∫ `

0

qTsMsq̇sdx+
1

2

∫ `

0

qTs Ṁsqsdx; where Ṁs =
[
ṁ11(ξ) 0

0 0

]
(A.42)

Using ṁ11(ξ)
2

= c11, and adding and subtracting c12(ξ, θ̇)sξsθ, it can be simplified
to (A.43).

V̇L = −
∫ `

0

qTs Ksqs ≤ −
2K

σ2

VL (A.43)

In the above inequality, we used the uniform bounds on the inertia matrix as given
in (A.33), and K = min{Kθ, Kξ} > 0. Also, note that the skew-symmetric prop-
erty of Ṁs − 2Cs is used. Using the Comparison Lemma [158], and the bounds on
the inertia matrix, we obtain:

VL(t) ≤ exp

(
−2K

σ2

t

)
VL(0)∥∥∥[ sθ(t)

sξ(x,t)

]∥∥∥2

L2
≤ σ2

σ1

exp

(
−2K

σ2

t

)∥∥∥[ sθ(0)
sξ(x,0)

]∥∥∥2

L2∥∥∥[ sθ(t)
sξ(x,t)

]∥∥∥
L2
≤
√
σ2

σ1

exp

(
−K
σ2

t

)∥∥∥[ sθ(0)
sξ(x,0)

]∥∥∥
L2

(A.44)

Therefore, the system in (A.40) converges exponentially to the manifold sθ = 0 and
sξ = 0 for a positive definite gain matrix in the sense of L2,

∫ `
0
(θ̇− θ̇r)2dx→ 0 and∫ `

0
(ξ̇ − ξ̇r)2dx → 0, implying θ̇ → θ̇r and ξ̇ → ξ̇r. To prove θ → θd, we need to

subtract θ̇ from both sides of the (A.34) to obtain θ̇r(t)−θ̇ = θ̇d(t)−θ̇−λθ(θ−θd(t)),
and use the fact that

(
θ̇ − θ̇r

)
→ 0 to form the first-order ODE, θ̇ − θ̇d(t) =

−λθ(θ−θd(t)). This equation becomes ė = −λe with e = θ−θd(t), which implies
e(t) = e(0) exp[−λθt] for any initial tracking error condition e(0) ∈ R. Thus
θ → θd holds globally with an exponential rate of convergence λθ > 0.
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If δ 6= 1, the beam dynamics termD(δ, ξ
′′
, ξ̇

′′
) is regarded as a bounded disturbance

at the input of the closed-loop system in (A.40), where δ ∈ [0, 1). The closed-loop
dynamics in (A.39) can be written as the following equation:∫ `

0

(Msq̇s + Csqs +Ksqs) dx = −
∫ `

0

D(δ, ξ
′′
, ξ̇

′′
)dx (A.45)

In order to satisfy the structural constraints and the Euler-Bernoulli beam assump-
tion, the term D(δ, ξ

′′
, ξ̇

′′
) must be bounded in the context of the Definitions 2-4.

This situation can be generalized to a case when the closed-loop system in (A.40)
has a bounded perturbation

∫ `
0
d(x, t)dx at the input, as defined in Theorem 10.

The stability of the closed-loop system in (A.45) is essential for tracking a trajec-
tory when δ 6= 1 with a bounded tracking error. In the Theorem 10, we prove the
finite-gain `p stability of the closed-loop system in (A.40) in the sense of spatial
L2 norm by approximating −

∫ `
0
D(δ, ξ

′′
, ξ̇

′′
)dx in the (A.45) as a general bounded

disturbance term
∫ `

0
d(x, t)dx as an the input to the closed-loop system in (A.40).

Theorem 10. The closed-loop system, given in (A.40), with a bounded pertur-

bation at the input of the form
∫ `

0
d(x, t)dx =

∫ `
0

([
δθ
δξ

]
+
[
γθ 0
0 γξ

]
[ sθsξ ]
)
dx ex-

ponentially converges to the error ball, limt→∞

∥∥∥[ sθ(t)
sξ(x,t)

]∥∥∥
L2
→ σ2γ∞

σ1K
, assuming

that the inertia matrix Ms is positive definite by (A.31) and uniformly bounded

by (A.33). Also, it is assumed that the nonvanishing perturbation term at the ori-

gin, δL2(t) =
∥∥∥[ δθδξ ]∥∥∥L2 satisfies the bound supt≥0 |δL2(t)| ≤ γ∞. Note that the

functions γθ, γξ : R → R are nonnegative and continuous ∀ t ≥ 0 and γ∞ is a

positive constant. Furthermore, (A.40) is finite-gain `p stable ∀ p ∈ [1,∞] in the

sense of spatial L2 norm, given that the `p time norm of δL2(t) is bounded, as in

‖(δL2(t))s‖`p ≤ γp, where γp is a positive constant.

Proof. We proceed to take the VL as in (A.41), VL = 1
2

∫ `
0
qTsMs(x, t)qsdx. Us-

ing the skew-symmetric property of Ṁs − 2Cs, its time-derivative simplifies to the
following (A.46).

V̇L ≤ −
2

σ2

min{Kθ, Kξ}VL +
2

σ1

max{γθ, γξ}VL +

∫ `

0

(sθδθ + sξδξ)dx (A.46)

Let K ,
(

min{Kθ, Kξ} − σ2
σ1

max{γθ, γξ}
)

. For sufficiently large Kθ, Kξ > 0,
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we can prove K > 0, ∀ t ≥ 0. Using the Cauchy-Schwarz inequality,

V̇L ≤ −
2K

σ2

VL +
∥∥∥[ sθ(t)

sξ(x,t)

]∥∥∥
L2

∥∥∥[ δθδξ ]∥∥∥L2 (A.47)

≤ −2K

σ2

VL +

√
2VL
σ1

δL2(t) (A.48)

Using the transformation W =
√
VL, followed by application of the Comparison

Lemma [158] and the uniform bounds on the inertia matrix (A.33), we get the
following inequality in terms of spatial L2 norm of states.∥∥∥[ sθ(t)

sξ(x,t)

]∥∥∥
L2
≤
√
σ2

σ1

exp

(
−Kt
σ2

)∥∥∥[ sθ(0)
sξ(x,0)

]∥∥∥
L2

+
1

σ1

∫ t

0

(
δL2(τ) exp

(
−K(t− τ)

σ2

))
dτ (A.49)

Given that supτ≥0 |δL2(τ)| ≤ γ∞, moving it to outside the integral and expanding
the integral, we get the following inequality.∥∥∥[ sθ(t)

sξ(x,t)

]∥∥∥
L2
≤
√
σ2

σ1

exp

(
−Kt
σ2

)∥∥∥[ sθ(0)
sξ(x,0)

]∥∥∥
L2

+
σ2γ∞
σ1K

(
1− exp

(
−Kt
σ2

))
(A.50)

By taking a limit t→∞ on both sides of (A.50), we get the bound,
limt→∞

∥∥∥[ sθ(t)
sξ(x,t)

]∥∥∥
L2
→ σ2γ∞

σ1K
, on the spatial L2 norm of the states. Taking `p norm

on both sides of the (A.49), with qs(x, t) = [sθ, sξ], we get the following inequality.

‖qs‖Q ≤
√
σ2

σ1

‖qs(x, 0)‖L2

∥∥∥∥exp

(
−Kt
σ2

)∥∥∥∥
`p

+
1

σ1

∥∥∥∥exp

(
−Kt
σ2

)∥∥∥∥
`1

‖δL2(t)‖`p

(A.51)

≤
√
σ2

σ1

‖qs(x, 0)‖L2 ζ +
σ2

Kσ1

‖δL2(t)‖`p (A.52)

≤
√
σ2

σ1

‖qs(x, 0)‖L2 ζ +
σ2γp
σ1K

(A.53)

In (A.52), ζ = 1 if p = ∞ and ζ = 1

(Kp/σ2)
1
p

if p ∈ [1,∞). Thus, the closed-

loop system with bounded disturbance is shown to be finite-gain time-signal `p
norm stable with `p and L2 norms defined in Definitions 2-4 using Theorem 5.1

in [158].

Remark. Theorem 9 offers global exponential stability in the spatial L2 norm sense
under the implicit assumption that the underlying Euler-Bernoulli beam model re-
mains valid globally; i.e., for all bending states with arbitrarily large strain energy.
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In practice, overloading physical beams causes plastic deformations which violate
elastic beam model assumptions. To mitigate this issue, an auxiliary momentum
management control system [175] is often needed to reduce strain levels before the
onset of plasticity is allowed to occur.

In the control law in (A.37), not canceling the beam dynamics completely is a con-
venient way to add bounded disturbance at the input during simulations and exper-
iments. The dynamics and the control laws discussed so far are all in PDE form. In
the following section, we will discuss the implementation of the closed-loop sys-
tem for simulations and experimental validation using finite-dimensional approxi-
mations of the system dynamics. The values of γξ and γθ that can be overcome with
a high gain depends on the actuator saturation limits.

A.4 Control Implementation and Simulation Results
A.4.1 Galerkin Formulation
The ODE-PDE model is discretized to obtain an ODE model using the Galerkin
method [177, 180] for numerical simulations and experiments. The beam deflection
is approximated as ξ(x, t) = φT (x)η(t), where φ(x) and η(t) are continuously dif-
ferentiable functions with respect to x, t respectively. φ(x) are Galerkin functions.
These functions comprise an approximation of the basis for the space of possible
deflections of the flexible beam. The discretization is implemented by minimizing
the weighted residual of the ξ(x, t) dynamics (see (A.54)).∫ `

0

φ
(
mR (r + x) θ̈ +mRξ̈ −mRθ̇

2ξ
)
dx

−
∫ `

0

φ

((
θ̇2p(x)ξ

′
)′

+
(
EIξ

′′
+ µEIξ̇

′′
)′′

−M ′′

b (x, t)

)
dx = 0

(A.54)

The Galerkin functions φj(x), where j ∈ {1, 2, 3, 4}, in (A.55) are taken from [180],
and are chosen to satisfy boundary conditions. We use four Galerkin functions
φ = [φ1(x), φ2(x), φ3(x), φ4(x)]T , which describe dynamics sufficiently for track-
ing a sinusoidal attitude trajectory and slewing shown here, as the frequency of the
trajectory chosen is well below the first mode of the composite beam.

φj(x) = 1− cos

(
jπx

`

)
+

1

2
(−1)j+1

(
jπx

`

)2

(A.55)
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A.4.2 Dynamics in Galerkin Form
The equations of motion in Galerkin form are given in (A.56). The matrices [A],
[B], and [C] are used to define the mass matrix [Mg] and the gyroscopic cross cou-
pling terms in matrix [Cg]. The matrix [E] corresponds to beam stiffness. The
matrices in (A.59) are referred to as Galerkin matrices in this paper.

[Mg]

[
θ̈

η̈

]
+ [Cg]

[
θ̇

η̇

]
+

[
0

2[E](η + µη̇)

]
=

[
0∫ `

0
2φM

′′

b dx

]
(A.56)

[Mg] =

[
m11g m12g

m21g m22g

]

=

[(
Jθ + 2

∫ `
0
mR (x+ r)2 dx+ 2ηT ([A]− [B])η

)
2[C]

2[C]T 2[A]

] (A.57)

[Cg] =

[
c11g c12g

c21g c22g

]
=

[
2η̇T ([A]− [B])η 2ηT ([A]− [B]) θ̇

−2([A]− [B])ηθ̇ 0

]
(A.58)

[A] =

∫ `

0

mRφφ
Tdx, [B] =

∫ `

0

pφ
′
φ

′Tdx,

[C] =

∫ `

0

mR(x+ r)φTdx, [E] =

∫ `

0

φ(EIφ
′′T

)′′dx

(A.59)

A.4.3 Computation of Voltage Signal from Control Signal
The voltage signal, which is the input to the PZT actuator, is computed from the
control signal in Galerkin form

∫ `
0

2φM
′′

b dx during experiments as follows. For
n discrete PZT actuators bonded onto the solar array (see Fig. A.2b), the moment
produced can be modeled as described in (A.12), which is used in the following:

τ =

∫ `

0

φM
′′

b dx (A.60)

=

∫ `

0

φ
n∑
i=1

ciVi(t) (u(x− l1i)− u(x− l2i))
′′
dx (A.61)

=
n∑
i=1

ciVi(t)

∫ `

0

φ (u(x− l1i)− u(x− l2i))
′′
dx (A.62)

where the function u is a step function, whose derivative is the Dirac delta function
δd. The term

∫ `
0
φ (u(x− l1i)− u(x− l2i))

′′
dx can be simplified to∫ `

0
−φ′

(δd(x− l1i)− δd(x− l2i)) dx using integration by parts. Using the shifting
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property of the impulse function, we get (A.63):

τ =
n∑
i=1

ciVi(t)
(
φ

′
(l2i)− φ

′
(l1i)

)
(A.63)

With two PZT actuators on the beam, the voltage signal is computed using (A.63)
as follows:

Φ

[
V1

V2

]
= τ, where Φ =


φ

′
1 (l21)− φ′

1 (l11) φ
′
1 (l22)− φ′

1 (l12)

φ
′
2 (l21)− φ′

2 (l11) φ
′
2 (l22)− φ′

2 (l12)

φ
′
3 (l21)− φ′

3 (l11) φ
′
3 (l22)− φ′

3 (l12)

φ
′
4 (l21)− φ′

4 (l11) φ
′
4 (l22)− φ′

4 (l12)

 , (A.64)

[
V1

V2

]
=
(
ΦTΦ

)−1
ΦT τ (A.65)

Equation (A.65) is the optimal least squares solution to (A.64), assuming all the
columns of Φ are independent. The model can be simplified to the case with one
PZT by removing the second column of the Galerkin function dependent matrix
in (A.64).

A.4.4 Nonlinear Controller in Galerkin Form
The reference signal ξr can be approximated using Galerkin functions as ξr =

φT (x)ηr(t) assuming it satisfies the boundary conditions on ξ. The control law
discussed in Section A.3.4 can be expressed in Galerkin form by minimizing the
weighted residual.

sθ = θ̇ − θ̇r, sξ = φT (η̇ − η̇r)

m12g η̈r + c12g η̇r = Kθ(θ̇ − θ̇r)`−m11g θ̈r − c11g θ̇r (A.66)

τ =

∫ `

0

2φM
′′

b dx = m21g θ̈r +m22g η̈r + c21g θ̇r + 2δ[E](η + µη̇)

−Kξ

∫ `

0

φφTdx (η̇ − η̇r) (A.67)

The control effort given in (A.67) is used to compute the voltage using (A.65).

A.4.5 Simulation Results
In this section, we apply the proposed control law to a cylinder with flexible com-
posite beams as shown in Fig. A.3. The model corresponds to the experimental
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setup described in Section A.5, whose nominal design parameters are given in Ta-
ble A.1. We simulate numerically the closed-loop system for controlled rotation
of the cylinder by applying a voltage to the piezoelectric actuators on the beam.
Here we track a sinusoidal signal of amplitude 0.001 radians and frequency 0.02
Hz, and slew from a zero initial attitude to 0.001 radians for different values of δ.
We present results for two cases: 1) Configuration 1: with only ‘PZT LEFT 1’ and
‘PZT RIGHT 1’ active (see Fig. A.3), and 2) Configuration 2: Distributed config-
uration, with all four PZT actuators active. The numerical implementation of the
closed-loop discretized system in ODE form is shown in Fig. A.4.

FLEXIBLE 
BEAM

PZT

CYLINDER

VICON 
MARKER

PZT LEFT 1 PZT RIGHT 1 PZT RIGHT 2PZT LEFT 2

𝑙𝑙𝑙𝑙11

𝑙𝑙21𝑙𝑙12
𝑙𝑙22

Figure A.3: Front and top view of the experimental setup.

Table A.1: Physical, geometrical and structural parameters of bus, array, and PZT.

` 29.7× 10−2 m Eb 68.9 GPa Ep 66 GPa
tb 0.45× 10−3 m ρb 2738 kg/m3 ρp 7800 kg/m3

w 0.036 m µ 10−4 tp 0.48× 10−3 m
d31 190× 10−12 m/V `11 1.1× 10−2m `21 8.144× 10−2 m
`12 8.614× 10−2 m `22 15.858× 10−2 m r 0.6× 10−2

Jθ 1.0759× 10−6 m

The Galerkin matrices are computed using (A.59) for the configuration shown in
Fig. A.3. Using the Galerkin matrices, the closed-loop system defined by the ODE
given in (A.56)-(A.59) and (A.66)-(A.67) can be integrated using Euler’s method.
The Galerkin matrices are computed offline for the nominal design parameters. The
closed-loop system is simulated using Simulink with the Galerkin matrices. The
trajectory tracking and slewing is achieved for δ = {0, 0.5, 1} with the gain values
specified in the figures.
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Galerkin Matrices

Desired 
Attitude

Trajectory

Reference 
Attitude

Trajectory 𝜽𝜽𝒓𝒓

Reference 
Solar Array Motion

Trajectory 𝜼𝜼𝐫𝐫

Discretized 
PDE control Law

Discretized 
(PDE-ODE) 
Dynamics

Deflection and 
Attitude Sensors

Figure A.4: Closed-loop ODE system as implemented in Simulink for simulations.

For configuration 1, we present results for δ = {1, 0.5, 0}; see Figs. A.5–A.7 for
trajectory tracking, and Figs. A.8–A.10 for slewing. If the closed-loop simulation
is performed with the same gain values for the three δ values, it was observed that
the tracking error is inversely proportional to the δ value in the range [0, 1]. For
δ = 1, trajectory tracking is achieved exponentially fast. The voltage signals were
computed from the control signal offline using (A.65). Note that the maximum
voltage required to do the tracking and slewing is well within ±200 V, which is
the saturation limit of the PZT actuators used in experiments. It is observed that
controller 1 predominantly uses the first free vibration mode of the beam to achieve
tracking. For slewing results, the time required to reach steady state is increased for
smaller δ. Figures A.11–A.14 show tracking and slewing in configuration 2. Based
on these simulation results, experiments are performed for values of δ for which
control effort is within ±200 V.
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Figure A.5: Trajectory tracking (simulation) for δ = 1 with gains λθ = 3, and
Kθ = 0.5, Kξ = 0.5.
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Figure A.6: Trajectory tracking (simulation) for δ = 0.5 with gains λθ = 3, Kθ =
0.5, Kξ = 0.5.
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Figure A.7: Trajectory tracking (simulation) for δ = 0 with gains λθ = 3,Kθ = 0.5,
Kξ = 0.5.
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Figure A.8: Slewing (simulation) for δ = 1 with gains λθ = 3,Kθ = 0.5,Kξ = 0.5.
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Figure A.9: Slewing (simulation) for δ = 0.5 with gains λθ = 3, Kθ = 0.5,
Kξ = 0.5.
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Figure A.10: Slewing (simulation) for δ = 0 with gains λθ = 3, Kθ = 0.5, Kξ =
0.5.
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Figure A.11: Trajectory tracking (simulation) for δ = 0.5 in configuration 2 with
gains λθ = 3, Kθ = 0.5, Kξ = 0.5.
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Figure A.12: Trajectory tracking (simulation) for δ = 0 in configuration 2 with
gains λθ = 3, Kθ = 0.5, Kξ = 0.5.
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Figure A.13: Slewing (simulation) for δ = 0.5 in configuration 2 with gains λθ = 3,
Kθ = 0.5, Kξ = 0.5.
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Figure A.14: Slewing (simulation) for δ = 0 in configuration 2 with hains λθ = 3,
Kθ = 0.5, Kξ = 0.5.
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A.5 Experiments
A.5.1 Actuator Model Validation
The quasi-static actuator model in (A.11) is validated using a cantilever beam setup
(see Fig. A.15). The system parameters of the setup are given are `ba = 24.4×10−2

m, `1pa = 0.9 × 10−2 m, `pa = 7.244 × 10−2 m. The beam and PZT density are
listed in Table A.1.

(a) Beam test setup

BEAM
PZT

𝑙𝑙𝑏𝑏𝑏𝑏

𝑙𝑙1𝑝𝑝𝑏𝑏 𝑙𝑙𝑝𝑝𝑏𝑏

(b) Beam schematic

Figure A.15: Open-loop beam experimental setup.

The cantilever beam dynamics in PDE form is given in (A.68) (see [177]). The
Galerkin method was used to discretize the PDE equation to form the ODE in (A.69).

mRξ̈ +
(
EIξ

′′
+ µEIξ̇

′′
)′′

−M ′′

b (x, t) = 0 (A.68)(∫ `ab

0

mRφφ
Tdx

)
η̈ +

(∫ `ab

0

φ
(
EIφ

′′T
)′′

dx

)
(η + µη̇)−

∫ `ab

0

φM
′′

b (x, t)dx = 0

(A.69)

In Figs. A.16, we compare the open-loop response of the beam computed from
simulations against results measured using the Vicon motion capture system during
experiments at the tip of the beam.
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Figure A.16: Open-loop experiment vs simulation, beam tip deflection.
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For a sinusoidal input, the frequency of the simulated response matches experimen-
tal results. The amplitude of the response is not an exact match because 1) we
assume there is perfect bonding between the beam and PZT, 2) the beam is fixed at
the root using a ‘C-clamp’, which is not an ideal cantilever beam, and 3) the Vicon
marker effect on the beam is not modeled. We proceed and use this model in the
real time experiments as the difference between the simulation and experiments can
be compensated with additional control effort (it can be considered as a bounded
uncertainty at the input of the system (A.25)).

A.5.2 SASA Experimental Setup
The experimental setup is shown in Fig. A.17, which includes SASA setup, Vicon
system, amplifiers, and the controller. The top and side view of the SASA setup
are shown in Fig. A.18. The setup has a cylinder, a beam, and two plates. The
properties of the beam and PZT used are given in Table A.1. The cylinder has a slot
machined using wire cut Electrical Discharge Machining (EDM), through which
beam is fitted to the cylinder. The ball bearings are secured to the plates using an
interference fit and the cylinder is press fit into the inner bearing race. Two ball
bearings are used to resist torques perpendicular to the axis of the cylinder, and to
allow rotation about the cylinder axis. Here we used a T120-A4E-602 PZT sheet
manufactured by Piezo Systems, Inc. with a maximum input voltage of ±200 V.

Two PZTs are bonded on each side of the beam using superglue1 (the above can-
tilever beam experiments used this bonding agent as well), for asymmetric actua-
tion. A voltage signal is supplied to the PZT amplifiers using a Humusoft MF624
controller, which can produce up to ±10 V. We use linear amplifiers manufactured
by Piezo systems to amplify the voltage supplied by the controller before applying
it across the PZTs. The real-time code for experiment was setup in Matlab using
Simulink® Desktop real-timeTM toolbox. For computation of derivatives and inte-
grals we used the discrete time function blocks2 available in Simulink®.

1Loctite® Super Glue
2http://www.mathworks.com/help/simulink/discrete.html
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(a) SASA experimental setup

Vicon
System

Controller 
(Humusoft & 

Computer)

SASA 
Experimental

Setup

Camera1

Camera2

Camera3

Voltage

(b) Schematic of SASA test setup

Figure A.17: SASA setup

CYLINDER

PLATE 1

PLATE 2

PZT

(a) Side view

AMPLIFIER

(b) Top view with ampli-
fiers

Figure A.18: SASA setup views

The properties in Table A.1 are estimated using physical properties of the aluminum
beam, cylinder, and steel ball bearings. The experimental system is built to be sym-
metric so that measurements from a single beam can be used to compute control
effort during the real-time experiments. To use the dynamics and control law de-
rived, we transform the Vicon system world coordinate system, ea1 and ea2 , to an
inertial coordinate system fixed to the center of the cylinder, ec1 and ec2 . Note that
in Figs. A.3, A.17a, and A.19, there are 12 Vicon markers at 6 locations on each
beam. The x and y coordinates of these Vicon markers are measured in ea1 and
ea2 , and then transformed to coordinate system ec1 and ec2 to compute deflection
at these locations. The deflection at the 6 Vicon marker locations is computed by
solving an inverse kinematic problem given in (A.70), where θ is measured using
the Vicon marker as shown in Fig. A.19. The flowchart in A.20 shows the flow of
the real-time implementation. As seen in Fig. A.20, we use three Vicon cameras
to measure the beam deflection and cylinder rotation. The Vicon system commu-
nicates with the controller (i.e., a desktop computer with the Humusoft controller)
using a local wireless area network.
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𝑒𝑒𝑏𝑏1

𝑒𝑒𝑏𝑏2

𝑜𝑜1

O
𝑒𝑒𝑏𝑏1

𝑒𝑒𝑏𝑏2
𝑒𝑒𝑐𝑐1𝑒𝑒𝑐𝑐2 𝛼𝛼

Vicon Marker for 
rotation

Figure A.19: Top view of the setup showing coordinate systems used in experi-
ments.

[
r + x

ξ

]
=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

][
x

y

]
(A.70)

Let the deflection measured at the 6 Vicon marker locations (with distances from
root [`v1 `v2 `v3 `v4 `v5 `v6 ]) using the Vicon system be ξexp = [ξ1 ξ2 ξ3 ξ4 ξ5 ξ6]. The
measurements ξexp are used to compute η for the four Galerkin functions in (A.71).
The derivatives θ̇ and η̇ are estimated using discrete derivatives of the computed θ
and η values from Vicon measurements.

ξTexp =



φ1(`v1) φ2(`v1) φ3(`v1) φ4(`v1)

φ1(`v2) φ2(`v2) φ3(`v2) φ4(`v2)

φ1(`v3) φ2(`v3) φ3(`v3) φ4(`v3)

φ1(`v4) φ2(`v4) φ3(`v4) φ4(`v4)

φ1(`v5) φ2(`v5) φ3(`v5) φ4(`v5)

φ1(`v6) φ2(`v6) φ3(`v6) φ4(`v6)


η (A.71)

A.5.3 SASA Open-loop Simulation versus Experiments
For the open-loop results, we measure the bus rotation due to an applied voltage
across ‘PZT RIGHT 1’ and ‘PZT LEFT 1’ on the beam. The estimation errors are
seen clearly in Fig. A.21, which illustrates a comparison of open-loop simulation
and experimental results. The response to a sinusoidal input is a good match. For
the step input, simulations predict larger rotation. This difference is due to the
estimation of system parameters and not modeling the ball bearing friction. In spite
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Galerkin Matrices

Desired 
Attitude

Trajectory

Reference 
Attitude

Trajectory 𝜽𝜽𝒓𝒓

Reference 
Solar Array Motion

Trajectory 𝜼𝜼𝐫𝐫

Discretized 
PDE control Law

Discretized 
(PDE-ODE) 
Dynamics

Deflection and 
Attitude Sensors

Control Signal 
to Voltage 

Signal

Figure A.20: Closed-loop ODE system as implemented in Simulink for experi-
ments.

of the modeling errors, the closed-loop system achieves the control objectives (see
Section. A.5.4 for details).
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Figure A.21: Open-loop experiment versus simulation, bus rotation.

A.5.4 Control Experiment Results
The experimental setup described above is used to test the control law. Based on
the simulation results, we test the controller in configuration 1 for δ = {1, 0.5, 0}
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(Figs. A.22–A.29) and in configuration 2 for δ = {0.5, 0} (Figs. A.28–A.31). Sim-
ilar to the simulation, we track a sinusoidal signal of amplitude 0.001 radians, with
a frequency of 0.02 Hz, and slew to 0.001 radians from a zero initial angle. As
mentioned earlier, the real-time code was implemented using Simulink Desktop
real-time toolbox. For all the δ values listed earlier we achieve the control objec-
tives. The measurements are made and control signal is applied to PZTs at the same
frequency (100 Hz) during the experiment. During the closed-loop experiments, it
was observed that the setup has a fundamental frequency around 50-60 Hz. In con-
figuration 2, the PZTs on each side become more active as the δ value is reduced
toward zero. Note that the controllers work notwithstanding the modeling errors
and parametric uncertainties. The control effort computed by the control algorithm
during experiments is at least 20 Volts more than predicted during simulations.
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Figure A.22: Trajectory tracking (experiment) for δ = 1 with gains λθ = 1.5,
Kθ = 0.5, Kξ = 0.5.
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Figure A.23: Trajectory tracking (experiment) for δ = 0.5 with gains λθ = 1.5,
Kθ = 0.5, Kξ = 0.5.
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Figure A.24: Trajectory tracking (experiment) for δ = 0 with gains λθ = 2, Kθ =
0.5, Kξ = 0.5.
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Figure A.25: Slewing (experiment) for δ = 1 with gains λθ = 1, Kθ = 0.25,
Kξ = 0.5.
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Figure A.26: Slewing (experiment) for δ = 0.5 with gains λθ = 1, Kθ = 0.25,
Kξ = 0.5.
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Figure A.27: Slewing (experiment) for δ = 0 with gains λθ = 1, Kθ = 0.25,
Kξ = 0.5.
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Figure A.28: Trajectory tracking (experiment) for δ = 0.5 in configuration 2 with
gains λθ = 2, Kθ = 0.5, Kξ = 0.5.
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Figure A.29: Trajectory tracking (experiment) for δ = 0 in configuration 2 with
gains λθ = 2, Kθ = 0.5, Kξ = 0.5.
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Figure A.30: Slewing (experiment) for δ = 0.5 in configuration 2 with gains λθ =
2, Kθ = 0.5, Kξ = 0.5.

0 50 100
time (seconds)

-5

0

5

10

15

20

ro
ta

tio
n 

(3
) 

in
 r

ad
ia

ns

#10-4

3

3
d

(a) Slewing

0 50 100
time (seconds)

-1

-0.5

0

0.5

1

S
le

w
in

g 
er

ro
r 

(3
d -

 3
 )

 in
 r

ad
ia

ns #10-3

(b) Slewing error

0 50 100
time (seconds)

0

20

40

60

80

V
ol

ta
ge

 (
V

)

Voltage signal-PZT1
Voltage signal-PZT2

(c) Control effort

Figure A.31: Slewing (experiment) for δ = 0 in configuration 2 with gains λθ = 2,
Kθ = 0.5, Kξ = 0.5.

A.6 Conclusion
In this paper, we derived nonlinear equations of motion that describe the one-
degree-of-freedom rotation of a spacecraft with Strain-Actuated Solar Arrays (SASA),
and presented a novel control technology with a new Ordinary Differential Equa-
tions (ODE)-Partial Differential Equation model (PDE) control algorithm. The
equations of motion form a nonlinear ODE-PDE system, with ODE describing bus
rotation and PDE describing solar array flexible dynamics. The attitude control ob-
jective was achieved using the inertial coupling between the cylinder and the flex-
ible appendage. The control law computes the beam dynamics required to achieve
the desired attitude and actuates the flexible beam using the distributed actuation
using an actuator to control mapping. The attitude tracking control law is designed
in terms of a variable δ that scales with the stiffness term to simulate an uncanceled
or partially canceled beam dynamics. The exponential stability of the closed-loop
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system for δ = 1 corresponding to full beam dynamics cancellation with a feed-
forward term was proven. The closed-loop system was simulated for different δ
values to verify trajectory tracking and slewing. To test the control algorithms
in real-time, we developed an experimental setup. The setup includes a cylinder
and a beam connected using an interference fit. Strain actuation in the beam was
achieved using piezoelectric actuators (PZT). The quasi-static actuator model used
for SASA experiments was validated by comparing tip deflections of a cantilever
beam obtained from simulations against experimental measurements. We achieved
controlled cylinder rotation using beam strain-actuation on the experimental setup,
which validates the SASA control algorithm. Strain-actuation was extended to a
distributed actuation configuration with multiple PZTs. This model was used to test
the controllers in a distributed configuration for trajectory tracking and slewing.
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