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Abstract

This paper presents a decentralized, distributed guidance and control scheme
to combine a heterogeneous swarm of component satellites into a large satel-
lite structure. The component satellites for the heterogeneous swarm are
chosen to promote flexibility in final shape inspired by crystal structures
and Islamic tile art. After the ideal fundamental building blocks are se-
lected, basic nanosatellite-class satellite designs are made to assist in sim-
ulations involving attitude control. The Swarm Orbital Construction Al-
gorithm (SOCA) is a guidance and control algorithm to allow for the lim-
ited type heterogeneity and docking ability required for in-orbit assembly.
The algorithm consists of two parts, a distributed auction which uses bar-
rier functions to ensure the proper agent selection for each target, and a
trajectory generation portion which leverages model predictive control and
sequential convex programming to achieve optimal collision-free trajectories
to the desired target point even with nonlinear system dynamics. The opti-
mization constraints use a boundary layer to determine whether the collision
avoidance or the docking constraints should be applied. The algorithm was
tested in a simulated perturbed 6-DOF spacecraft dynamic environment
for planar and out-of-plane final structures and on two robotic platforms,
including a swarm of frictionless spacecraft simulation robots.
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optimal assignment, swarm systems

Nomenclature

Aj
set = Assembly set of agent j
B = Barrier function for number of docks
Bang = Barrier function for angle of docks
C = Auction cost
Dj = Dock set of agent j
δt = Time step [s]
f = Discrete-time nonlinear dynamics
F = Cost integrand function
gi = Convex inequality constraints
J = Trajectory generation cost function
k = Discrete time step
Li,j = SCPn inequality constraint constant
n = Maximum number of docks ports on the current agent
N = Number of agents
NT (xf ) = Number of docks required at target position xf

Nj = Set of neighbor agents
pi = Auction bid of agent i
P = Ellipsoidal error profile of the nominal trajectory
r = Position elements of the state [m]
Rbl = Boundary layer radius [m]
Rcol = Collision avoidance radius [m]
Rcomm = Communication radius [m]
Rdock = Dock radius [m]
xj,0 = Initial state constraint
xk = State trajectory at the k-th time step
xn,k = Nominal, nonlinear state trajectory at the k-th time step
Xf = Set of terminal positions [m]
t = Time [s]
t0 = Initial time [s]
tf = Final time [s]
T = Final discrete time step [s]
θ = Dock angle allowed by agent type [degrees]
ΘT (xf ) = Dock angle required at terminal position [degrees]
uk = Control input trajectory at the k-th time step [m/s2]
uk = Nominal control input trajectory at the k-th time step [m/s2]
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Umax = Maximum control input [m/s2]
Vmax = Maximum speed [m/s]
w = SCPn iteration

1. Introduction

Design and construction of large space systems is often constrained by
factors like launch vehicle fairing size, available payload mass, or ability to
withstand launch loading. Satellites constructed in space would not expe-
rience these design constraints, allowing for lighter, more capable satellites.
Start to finish construction in orbit is not yet possible, but improvements
can still be made through recent advances in swarm spacecraft guidance
and control [18, 21, 22] and autonomous rendezvous and docking [10]. By
leveraging the above swarm guidance and control algorithms, a large space
structure can be constructed from a swarm of component satellites. The ad-
vantages of such a mission are clear: increased reliability due to redundancy,
increased flexibility, ability to reconfigure for future missions, and ability to
self-repair [43]. Applications for these missions range from the small scale,
where the components are microsatellites building a support structure for a
distributed telescope or a solar sail, to the large scale, where components are
habitat modules building a space colony. The mission concept is illustrated
in Figure 1. The steps are as follows:

Figure 1: Outline of Mission Steps

Step 1 The components enter into loose formation to stay close to other
components until they are used (e.g. see collision-free J2 invariant
passive relative orbits in [21]).
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Step 2 The components determine their desired final position in the as-
sembly and move to take the position using SOCA.

Step 3 Along the path to the final position, components assigned to neigh-
boring positions dock and proceed combined.

Step 4 Finally, a complete structure is made once all components have
reached their final destination.

1.1. Related Work

To reach the full potential of this swarm, it is imperative that the pro-
posed guidance and control algorithm allows each agent in the swarm to
act independently, without global knowledge of the swarm. Centralized al-
gorithms are disadvantageous because they require all-to-all or all-to-one
communication, which is difficult in large spacecraft swarms, either highly
taxes the communication systems or introduces a single-point failure. This
requirement means the algorithm must be decentralized, so each agent de-
cides its own trajectory based on information from the neighboring agents
with which it can communicate. Also, to increase the flexibility in poten-
tial final structures, it is beneficial to use multiple types of agents in the
construction swarm, so the guidance and control algorithm must be able to
handle heterogeneous agents. Finally, the proposed algorithm must control
both position and attitude of the spacecraft since docking is required.

In the literature, many examples of decentralized swarm guidance schemes
exist, but the swarms are typically homogeneous [35, 38, 39, 40, 44]. The
heterogeneous swarm guidance schemes typically use centralized algorithms.
A similar modular swarm construction mission was demonstrated using a ho-
mogeneous swarm of rectangular robots constructed in a brick pattern [31].
Though this demonstration involved a homogeneous swarm with a planar
construction and centralized guidance and assignment, the assembly scheme
docks along the way to the final location, similar to the present paper. An-
other team created a satellite assembly guidance and control scheme for a
homogenous swarm to a predefined final formation using a glideslope al-
gorithm to guide each satellite to a dock relative to other satellite, with
collision avoidance and particular constraints on relative velocity at certain
waypoints along the trajectory [27]. The approach is suboptimal; it uses
linearized dynamics and neglects perturbations and relative attitude but
succeeds in building the formation at a low fuel cost [27].

The field of robotic self-assembly has many interesting and innovative
mechanisms. The robotic systems that are applied to space assembly are
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typically multi-use robots with multiple end-effectors like the MoleCubes [45],
which have a useful reconfiguration technique where the cubes rotate along
a diagonal axis to switch the location of two faces. This actuation type
could be very useful in the in-space construction scheme we have defined.
Another interesting actuation type with space applications is used by the
MIT M-Blocks. The M-Blocks are cubes that have magnetic edges and an
internal flywheel which allows them to pop up and latch on to make various
configurations [30]. Self-assembling robotics applied to space applications is
limited. The Transformable Robotic Infrastructure-Generating Object Net-
work (Trigon) system uses robotic self-assembly for in space construction
to facilitate human planetary missions [19]. The Trigon system is multi-use
and can build structures from rovers to habitats using a ”kit-of-parts”, a
set of Trigon parts. Each Trigon part is essentially a face with actuators
along the edges that can interact to self-assemble by moving parts along the
structure [19].

In orbit, some methods propose a free-flying tether robot which can dock
with components to combine them into an overall structure [9, 14, 33]. One
study proposes a sensing and optimal control strategy for a swarm of homo-
geneous spacecraft with plume impingement constraints assuming negligible
orbital perturbations [36]. Assembler agents (robots which put components
together) are more popular, like the antenna construction in [32], which gen-
erates target position constraints from antenna design, but neglects orbital
dynamics in favor of flexible body dynamics. Assembler agent style assem-
bly can be seen in many proposed missions, detailed further in [29], along
with additive manufacturing schemes.

PolyBots [42] self-assemble using two types of agents with hermaphroditic
docking ports. The two agent types are similar to our design, a node and a
segment. Though the system architecture is similar to our concept, PolyBots
are mainly for surface operations and can be connected to form an arbitrary
robot. The flexibility of the segment agent allows the PolyBot chains to be
used for locomotion and manipulation.

This paper details a decentralized, distributed assignment and guidance
scheme for a heterogeneous swarm, called the Swarm Orbital Construction
Algorithm (SOCA) for six Degrees-of-Freedom (DOF) spacecraft dynamics.
Hence, this paper also elucidates results of experimental validation using
Caltech’s Multi-Spacecraft Testbed for Autonomy Research (M-STAR) [25].
In prior work, the Swarm Assignment and Trajectory Optimization (SATO)
algorithm was used to solve a target assignment and collision-free path plan-
ning problem by implementing a decentralized auction algorithm with a
trajectory planner which implemented model predictive control using se-
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quential convex programming (MPC-SCP) [22, 23]. The two algorithms are
run sequentially over the course of the SATO algorithm so that the initial
assignments and trajectories can be updated as agent connectivity changes
or collision avoidance is needed. All agents are assumed to know of the set
of target locations, and have a limited communication radius. SATO was
designed for a homogeneous swarm targeting to a disconnected, free-flying
formation and did not incorporate docking or assembly of any kind. While
SATO performs admirably for this type of homogeneous swarm formation
building, it must be altered for the proposed heterogeneous construction
swarm. In addition to the heterogeneity logic, the collision avoidance logic
in MPC-SCP must be carefully relaxed to allow docking agents to come
within the collision avoidance radius.

The main contributions of this paper are the derivation and experimen-
tal validation of the in-orbit assembly guidance algorithm which makes it
suitable for limited type heterogeneity in the swarm and allows for docking
satellites while avoiding undesired collisions. The heterogeneity is handled
in the target assignment phase, where a barrier function is added to the
optimization cost to make improper assignments prohibitively expensive.
The barrier functions do not encode which type of agent must be assigned
to each spot, but rather what docking characteristics the agent must fit to
function in that target location. This prevents agents from going to po-
sitions where they cannot satisfy the requirements. MPC-SCP is used to
generate the collision-free trajectories, with a boundary layer added to relax
collision constraints on agents targeting neighboring positions to allow the
agents to dock before reaching the target.

This paper will go over the design of the Swarm Orbital Construction
Algorithm (SOCA), first the heterogeneous auction algorithm in Section 2
and then the trajectory generation algorithm in Section 3. Next, simula-
tion results from the improved SOCA algorithm are presented in Section
4. Finally, the experimental validation of the algorithm on both wheeled
robots and spacecraft simulator robots is presented in Section 5, with the
MPC-SCP trajectories followed by tracking controllers. The result of this
paper a coherent and robust algorithm for in-orbit construction using a de-
centralized algorithm to guide and control a heterogeneous, docking swarm
of satellites.
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2. Heterogeneous Target Assignment

2.1. Heterogeneous Docking Components

When designing the construction swarm, a lot of thought was put into
the geometry of the agents and the resulting final constructions possible us-
ing those geometries. The desire for flexibility in final configuration led to
the examination of Islamic tile art and the geometry of crystals for inspi-
ration. Islamic art like that shown in Figure 2 relies strongly on geometric
shapes and symmetry, creating complicated and elegant periodic or aperi-
odic patterns [1, 2]. These patterns can be helpful in the investigation of
large space structures for several reasons. Mainly, the vast array of compli-
cated geometric patterns can be used as models for layouts of potential space
structures because they are sufficiently complex to suit a variety of mission
types and the basic geometric shapes can be constructed using standard
satellite buses. The focus on symmetry is beneficial for space structures as
well because symmetric structures are more likely to be controllable. By
inspection of the rigid body Euler equations, it is clear that the attitude
dynamics of asymmetric satellites are significantly more entwined than ax-
isymmetric satellites, and in the proposed scheme it is highly possible that
the center of gravity of an asymmetric assembly is outside the assembly,
therefore the control points available may not be able to stabilize the as-
sembly. When evaluating potential large space structures, controllability is
a grave concern.

Islamic tile artists created quasi- and aperiodic tiling patterns centuries
before western mathematicians like Roger Penrose formalized them [3]. Pen-
rose tilings, or 5-way symmetric tilings do not have the translational symme-
try of most tile patterns which makes them aperiodic [20, 28]. This means
the tilings are not simple tessellations, but are complex and non-repeating
patterns. Unfortunately these fascinating Penrose tile designs require non-
convex geometries which are less desirable for satellite structural designs.
Tessellation, which makes use of translational symmetry, is also helpful in
increasing the packing efficiency of the rocket, components that tessellate
will pack more densely into the rocket, enabling more agents to be brought
to orbit in each launch. Crystals found in nature typically have a peri-
odic geometric layout much like the above mentioned art. For example,
the mineral beryl typically has a hexagonal prism shape in macro-scale. It
also has a hexagonal void created at the nano-scale, created by the ring of
silicon-oxygen bonds [8].

The chosen hexagonal prism connectors with rectangular prism rods can
be combined to create a complex planar structure with a minimal degree

7



Figure 2: Geometric motivation for this work was found in art and nature,
through Islamic tile art, like the Royal Palace Gates in Fes, Morocco

of heterogeneity. Hexagonal and rectangular agent types can be used to
create the following shapes: parallelogram, equilateral triangle, hexagon,
any combination thereof, as shown in Figure 3. Any one of these shapes
can tessellate to cover the whole plane, but it is also possible to combine
the shapes to cover the plane in more useful ways tailored to particular
missions. These shapes can be combined using semiregular or uniform tiling
in methods similar to that of Islamic tile art and the work of M.C. Escher,
where fixed geometric shapes are tessellated and decorated to create art [7].
The patterns and shapes can all be made at any scale, by adding more
rectangular rod agents between the hexagonal connector agents.

The concept of tessellation and tiling is much more complicated in three
dimensions, with only three regular geometries capable of filling 3-space, the
cube, tetrahedron and octahedron [41]. Instead of complete 3-space tessel-
lation, several planes of different tilings can be connected by out of plane
agents to create 3D configurations. When designing these configurations, it
would also be beneficial to examine space grid structures, an architectural
feature akin to complicated trusses where patterns of struts combine in three
dimensions to act as a single unit [6]. The ability of this system to create
three dimensional configurations relies heavily on the docking orientations
allowed by the chosen docking port. In this paper we will assume the dock-
ing system allows docking at a set of relative angles, 0◦ and 90◦. This makes
the generation of 3D shapes possible, though limiting the out of plane dock
angles limits the possible final shapes.
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Figure 3: Examples of potential shapes and tiling patterns possible with the
proposed mission, using only rectangular rod and hexagonal connector agents

2.2. Assignment with Conflict Resolution for Heterogeneous Agents

The target assignment algorithm, called Distributed Auction Algorithm
for Docking (DAA-D), assumes each agent in the swarm knows the location
of all the possible targets. The targets are provided by ground crew, along
with the requisite information about docking constraints. Since the algo-
rithm is decentralized and distributed, all bidding information is communi-
cated only to agents within the communication radius. This communication
radius limitation prevents the algorithm from reaching the centralized, op-
timal solution when the problem begins with the graph disconnected, but
allows it to more accurately approximate the real systems. Each agent calcu-
lates its cost to each target using some cost function like the distance between
the two points or the cost of a minimum-fuel optimal trajectory, shown in
Problem 1. The agent then uses this cost to bid for type-appropriate tar-
get locations with the agents within its communication network as shown
below in Problem 2. The auction is designed to allow all bids to propagate
completely through the communication network. As the agents move to the
targets, the communication graph becomes connected which ensures that
over time the optimal assignment will be reached [23].

Problem 1 (Auction Cost for Docking).
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C(xj,0,xj,f ) = min
uj

T−1∑
k=k0

‖uj [k]‖1∆t subject to (1)

xj [k+1] = Aj [k]xj [k]+Bj [k]uj [k]+zj [k], k = k0, . . . , T−1, j = 1, . . . , N
(2)

‖uj [k]‖∞ ≤ Umax k = k0, . . . , T − 1, j = 1, . . . , N (3)

‖Hxj [k]‖2 ≤ Vmax H = [03×3 I3×3], k = k0, . . . , T, j = 1, . . . , N (4)

xj [0] = xj,0 (5)

xj [T ] = Xf (j) (6)

where x is the state, u is the control, A(x̄n,k) =
∂f

∂xk

∣∣∣∣
(x̄n,k,ūk)

, B(ūk) =

∂f

∂uk

∣∣∣∣
(x̄n,k,ūk)

, z(x̄n,k, ūk) = f(x̄n,k, ūk) − A(x̄n,k)x̄n,k − B(ūk)ūk, f is the

nonlinear dynamics, and Xf is the set of terminal positions. The cost func-
tion used here and in the trajectory generation section was chosen to create
spacecraft fuel optimal paths, though the vector norm chosen depends on
the spacecraft thruster configuration [22]. DAA-D has to be designed to
ensure that each agent type is assigned to an appropriate location. For
the current agent definitions, the agent types have different numbers and
locations of docking ports but the same radius. This means that potential
target locations can be differentiated by the quantity and the angle of docks
required at each location. Algorithmically, this involves changing the cost
function used in the auction to make improper assignments prohibitively
expensive. This is achieved through the use of barrier functions. The target
information known by every agent must now indicate the location of the
target and how many docks must be performed at that location.

A barrier function can be used to prevent agents from successfully bid-
ding on targeting locations they cannot accommodate. An example barrier
function is:

B(n,NT (xf )) =

{
− log(a(n,NT (xf )) n ≥ NT (xf )

Inf n < NT (xf )
(7)

with NT (xf ) is the number of docks required at a target, n is the maximum
number of docks an agent can perform based on its type (6 for connectors,
2 for rods) and a(n,NT ) is a function of the docking ports available and re-
quired, like the examples investigated below. The barrier function is chosen
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to give B(n,NT (xf )) infinite value when the number of docks at a target
exceeds the number of docks the agent can perform. It is also possible to use
a sigmoid function to change the performance of the assignment by changing
the function a(n,NT (xf )).

Figure 4: Possible barrier functions to use in assignment

Barrier functions made using three different a(n,NT (xf )) are shown in
Figure 4. Using a(n,NT (xf )) = 1 gives a simple sorting of agents, where
the cost for rod agents is prohibitively high at positions that require more
docking ports than they have. If a(n,NT (xf )) = n − NT (xf ) is used, the
barrier function makes the cost lower if fewer docking ports are used, where
NT is low. Changing a(n,NT (xf )) to some decreasing positive function of
n−NT (xf ) like 1/(n−NT (xf )+1) makes the cost lower for positions where
they can use the most docking ports, where NT is the highest allowed. For
all of these barrier functions, the cost of assigning to locations requiring
more docking ports than the agent has are made prohibitively high. If
no barrier function is used then the problem is the same as the standard
auction from SATO [23], and improper assignments are allowed to occur.
The chosen barrier function uses a(n,NT (xf )) = n − NT (xf ) to dissuade
agents from using all of their docking ports. Since the barrier function only
strongly affects completely unsuitable targets, the optimality of the auction
is not affected. Of course, the function must be well chosen such that the
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influence of the barrier on suitable targets is not large enough to negatively
impact the optimality.

The barrier function used above would not be sufficient to properly as-
sign all input configurations. A potential improper assignment is illustrated
in Figure 5, where the number of docks required is possible for the rod agent,
but the angle required is not possible. This is an example of an assignment
with an underutilized connector, with one or two docks required. To be
able to accurately handle these cases, it is necessary to augment the barrier
function to include the angle between the docks so that all improper assign-
ments are avoided. This requires that the angle of the docks are encoded in
the desired final configuration that all agents have access to.

Figure 5: Bad Assignment: the desired configuration on the left has an un-
derutilized connector, with only two docks required. This allows the initial
barrier function to mis-assign a rod agent to the connector location, resulting
in a disconnected structure.

The angle barrier function becomes more complicated in 3D configura-
tions, and the choice of barrier function depends on the geometries of the
chosen swarm. For planar configurations, the angle barrier function can act
on the angle between docking agents, some multiple of 60◦ for connectors,
or 180◦ for rods

Bang(θ,ΘT (xf )) = − log(s(θ,ΘT (xf )) + 1) (8)

for some sigmoid s(θ,ΘT (xf )) like

s(θ,ΘT (xf )) =

{
θ −ΘT (xf ) θ ≥ ΘT (xf )
−1 θ < ΘT (xf )

(9)

where θ is the dock angle allowed by the agent type, either 60◦ for connectors
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or 180 ◦ for rods, and Θ(xf ) is the angle required for docking at terminal
position xf . As above, the function s can be replaced to more closely tailor
the sorting to the mission at hand. In 3D configurations, the connector
geometry we have chosen is the same as 2D, but we opt to utilize the all
of the dock orientations allowed by the hermaphroditic docking port. The
barrier function for the planar case can also be used for this configuration
since the out of plane angle does not affect the choice between the rod and
the connector. Adding this barrier function and providing the required dock
angles successfully eliminates this problem, as shown in Figure 6. Without
the angle barrier function, the agents can assign to improper target locations.
The addition of the angle barrier function prevents rods from assigning to
terminal positions which require a connector because of the dock angle.

(a) Without angle barrier function (b) With angle barrier function

Figure 6: 3-Agent example showing the efficacy of the angle barrier function
in preventing improper assignments (not to scale)

To apply SOCA to a swarm with a higher degree of heterogeneity, the
logic in the above barrier functions would need to be altered to properly
sort between the characteristics of the new agent types.

Problem 2 (Updated Assignment with Docking Barrier Functions).

min
xj,f , j=1...N

N∑
j=1

[C(xj,0,xj,f ) + B(nj , NT (xj,f )) + Bang(θj ,ΘT (xj,f ))] (10)

subject to the following constraints:

xj,f ∈ Xf , xj,f 6= xi,f , ∀j = 1 . . . N, ∀i 6= j
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where B(nj , NT (xj,f )) is the docking port barrier function and Bang(θj ,ΘT (xj,f ))
is the docking angle barrier function presented above in Eqs. (7) and (8).

The algorithm to solve the optimal assignment problem is presented in
Algorithm 1. See [23] for an optimality proof of this auction algorithm. The
ε added to the bids in Line 21 prevents any two agents from having exactly
the same bid, preventing gridlock.

Algorithm 1 Distributed Auction Algorithm for Docking (DAA-D)

1: Xf = terminal positions in desired shape
2: ci(s) = cost of agent i choosing target s
3: Bi(s) = docking barrier function for agent i choosing target s
4: Biang(s) = angle barrier function for agent i choosing target s
5: mi = # of targets available for agent i to bid on
6: pi = 01×mi

7: pi
old = −11×mi

8: ji = 1
9: counti = 0

10: for all i (run in parallel) do
11: while counti < 2Dnet do
12: if |pi(ji)| > pi

old(ji) (i is outbid) then
13: mi = max

(
mi, |{s|pi(s) 6= 0}|

)
14: if |{s|pi(s) > 0}| = mi then
15: mi = |{s|pi(s) > 0}|+ 1
16: pi(1 : mi) = −

(
|pi(1 : mi)|+ ε

)
17: end if
18: vi = mins=1...mi

(
ci(s) + Bi(s) + Biang(s) + |pi(s)|

)
19: ji = arg mins=1...mi

(
ci(s) + Bi(s) + Biang(s) + |pi(s)|

)
20: wi = mins=1...mi,s 6=ji

(
ci(s) + Bi(s) + Biang(s) + |pi(s)|

)
21: γi = wi − vi + ε
22: pi(ji) = |pi(ji)|+ γi

23: counti = 0
24: else if pi 6= pi

old (another agent is outbid) then
25: mi = max

(
mi, |{s|pi(s) 6= 0}|

)
26: counti = 0
27: else
28: counti = counti + 1
29: end if
30: pi

old = pi

31: Communicate pi to all agents in N[i]
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32: for s = 1 . . .mi do
33: pi(s) = minq∈argmaxq∈N[i]

(|pq(s)|) (pq(s))

34: end for
35: end while
36: Optional: mi = |{j|pi(j) 6= 0}|
37: Optional: Go back to line 6 and rerun with new mi

38: xi,f = Xf (ji)
39: end for

In this algorithm, each agent calculates its bid, which is the augmented
auction cost in Eq. (10), then communicates it with its neighbors within
the connected communication graph. Then, the agents with the lowest bids
claim their targets, and outbid agents generate a new bid by adding some
increment to avoid gridlock in Line 16. This continues until all bids have
the chance to fully propagate through the neighbors.

2.3. Shape Parameters

The rod agent is a rectangular prism with two docking ports located
on the ends. The connector agent is a regular hexagonal prism with six
docking ports along the sides. In order to execute this algorithm while
incorporating attitude control, assumptions about mass properties and sys-
tems engineering configurations for the agent types must be made. The mass
and volume advantages of the swarm will be most effective if the agents are
kept small, in the nanosatellite class. The rod agent can use a standard
2U CubeSat bus, with a mass of 2.6 kg and principal inertia parameters
(44.5, 111.3, 111.3)kgcm2. Each side of the regular hexagonal prism must be
the same as the face of a CubeSat to allow docking. The connector agent has
a mass of 4 kg and principal inertia parameters (116.7, 116.7, 166.7)kgcm2.
The body frame definitions and the docking port locations for the two agent
types are shown in Figure 7.

The docking ports combine features of existing magnetic docking ports [24,
26]. The docking ports are designed to be hermaphroditic and electromagnet-
based with a rigidizing component so the electromagnets can be turned off.
For more detail see [13].
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(a) Rod Agent

(b) Connector Agent

Figure 7: Definitions of the Rod and Connector agent types, with docking
ports shown in black

3. SOCA Problem Statements and Algorithms

3.1. Optimal SOCA Trajectory Generation

The next modification was to the trajectory generation algorithm. MPC-
SCP is used to create the optimal, collision-free trajectories to the targets
selected by DAA-D. Initially, a nominal trajectory is generated without con-
sidering collision avoidance. Then each agent solves the MPC-SCP problem
with collision avoidance on a limited time horizon, with the knowledge of
the nominal trajectories of the agents within its communication radius. The
collision avoidance constraint is not convex, but by approximating the other
agents’ collision avoidance spheres as hyperplanes orthogonal to the surface,
convexity can be obtained.

Because the agents need to dock for construction, the collision avoidance
constraint must be suspended for agents that are attempting to dock. This
is achieved using a boundary layer around the collision avoidance radius.
The relative sizes of the radii are illustrated in Figure 8a. When an agent
approaches within the boundary layer, the main agent checks to see if the
approaching agent is targeted for a location neighboring the main agent’s
target. If it is, the agent follows the docking cone constraint. Otherwise,
the collision avoidance constraint holds.

In order to allow the agents some flexibility in docking, the docking
constraint requires the agent to maintain a shrinking distance to the agent
to be docked. This means that over time the main agent will stay within
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(a) Relative sizes of docking, col-
lision avoidance and boundary
layer radii

(b) Docking Cone

Figure 8: Description of docking radii and cone. In (a), the relative sizes of
the docking, collision avoidance and boundary layer radii. Once another agent
comes within the boundary layer radius, the main agent decides whether to
dock or avoid it. If the agents are docking, the docking cone constraint shown
in (b) goes into effect. The initial distance is the distance when the docking
constraint is first applied, when the red agent comes within the boundary
layer of the blue agent or vice versa.

a cone defined by the other agent. The cone radius begins as the initial
separation and ends as the agent docking radius, as seen in Figure 8b. This
docking cone forces the agents to come together by the final time. This way,
the agents are allowed to dock before they reach the target if it is beneficial
to their trajectories, or they can wait until the final position to dock.

3.1.1. Avoiding Collision with Docked Agents

This implementation requires that agents avoid docking with an ap-
proaching agent that is not in its docking set, even if that agent is already
docked with an agent in its docking set. This causes agents to avoid docking
until the final time step to avoid collision with the other agent. Imagine an
agent approaching a docked pair, one of which it will need to dock with. Due
to the collision avoidance radius of the other agent in the docked pair, the
dock would be avoided until the final time step. This is fixed by simply ad-
justing the collision avoidance radius of agents in this position. Each agent,
j, knows the set of agents it intends to dock with based on the assigned
terminal positions. As agent j docks with another agent i, agent i is added
to the assembly set of agent j, Aj

set and vice versa. This set is communicated
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to other agents in j’s dock set, which then reduce the collision avoidance ra-
dius for those agents to double the docking radius. This does not affect the
convexity of the collision avoidance constraint because the radius changes
between time steps. To illustrate this problem and the solution, Figure 9
shows the agents smoothly travelling to an equilateral triangle final con-
figuration. The blue circles in the figure represent the collision avoidance
radius of each agent. In this final configuration, the collision avoidance radii
overlap. Without the adjusted collision avoidance for agents in the assembly
set, the yellow, magenta, and cyan agents would avoid each other causing
irregularities in the trajectories. The magenta agent can be seen avoiding
the cyan agent by the adjusted smaller collision avoidance radius as it passes
near the end of the trajectory.

Figure 9: With the use of the assembly set condition, six agents can easily
form a planar equilateral triangle without the collision avoidance issue. This
example is performed using planar position and attitude double integrator
dynamics for clarity.

3.1.2. Second-Order Cone Programming

The collision avoidance constraint introduces a lot of error due to the
estimation of the other agents’ trajectories. One way to make the algorithm
robust to that error is to use second order cone programming to frame
the constraint [5]. This method uses ellipsoidal error profiles around the
estimated trajectory.

Lemma 1 Let the nominal trajectories x̄ of each agent i approaching agent
j be distorted by an ellipsoidal error P , which is the same for all agents
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and defined as the square root of the measurement covariance. Under these
conditions the collision avoidance constraint becomes:

−(r̄j [k]− r̄i[k])T rj [k] ≤−Rij(‖r̃j [k]− r̃i[k]‖2 + 2‖P‖2) + ‖P T r̃i[k]‖2
− ‖r̃j [k]TP‖2 + (r̃i[k]− r̃j [k])T r̃i[k]

(11)

where Rij is Rcol or 2Rdock if agent i is in the assembly set of j.

Proof. The collision avoidance constraint is defined as:

(x̄j [k]− x̄i[k])TGTG(xj [k]− x̄i[k]) ≥ Rij‖G(x̄j [k]− x̄i[k])‖2 (12)

for each agent j with neighbor agents i, where the nominal trajectories are
denoted with bars and G is used to select the position elements of the state.
Since all but xj [k] is constant and we can define r[k] = Gx[k], this can be
expressed as a linear inequality, ajrj ≤ bj , with the constants given as:

aj = (r̄i[k]− r̄j [k])T (13)

bj = −Rij‖r̄j [k]− r̄i[k]‖2 − (r̄j [k]− r̄i[k])T r̄i[k] (14)

We then introduce error ellipsoids into this linear inequality to increase
robustness, with the ellipsoids defined using:

sup{ajxj |aj ∈ εj} ≤ inf bj (15)

This implies the Second Order Cone Constraint [5]:

ājxj + ‖Pjxj‖2 ≤ inf{bj} (16)

Then for any error direction q:

aj = {āj + Pjq|‖q‖2 ≤ 1} (17)

aj − āj = Pjq (18)

(aj − āj)
TP−Tj P−1j (aj − āj) = qTq ≤ 1 (19)

Assume ‖q‖ ≤ 1, r̄j [k] = r̃j [k] + Pjqj , r̄i[k] = r̃i[k] + Piqi, where r̃ denotes
the actual nominal trajectory. Using these assumptions and plugging Eq.
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(13) into the left hand side of Eq. (15), we get:

sup
‖qj,i‖2≤1

(ajrj [k]) = (r̄i[k]− r̄j [k])T rj [k] + sup
‖q1,2‖2≤1

(qT
j P

T
j rj [k]− qT

i P
T
i rj [k])

= (r̄i[k]− r̄j [k])T rj [k] + 2‖P T
j rj [k]‖2

(20)

Substituting the assumed error ellipse constraints and assuming equal error
profiles for both agents

bj = −Rij‖r̃j [k]− r̃i[k] + Pjqj − Piqi‖2
− (r̃j [k] + Pjqj − r̃i[k]− Piqi)

T (r̃i[k] + Piqi)

≤ −Rij(‖r̃j [k]− r̃i[k]‖2 + 2‖P‖2) + ‖P T r̃i[k]‖2 − ‖r̃j [k]TP‖2
+ (r̃i[k]− r̃j [k])T r̃i[k]

(21)

Through manipulation, we arrive at the new collision avoidance constraint:

−(r̄j [k]− r̄i[k])T rj [k] ≤−Rij(‖r̃j [k]− r̃i[k]‖2 + 2‖P‖2) + ‖P T r̃i[k]‖2
− ‖r̃j [k]TP‖2 + (r̃i[k]− r̃j [k])T r̃i[k]

(22)

The ellipsoidal error profile P allows the error in the nominal trajectory
to be fitted to the on-board sensors more realistically. This is particularly
important with the swarm configuration since small satellite sensors are less
capable. Using the same profile for all agents is appropriate since most of
the error would come from sensing, which is the same for all agents.

3.2. MPC-SCP Problem Statement

The updated SOCA trajectory generation problems are:

Problem 3 (Updated Trajectory Generation).

min
uj

T−1∑
k=k0

‖uj [k]‖1∆t (23)

subject to the following constraints:
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(a) the dynamics, state, and control constraints

xj [k+1] = Aj [k]xj [k]+Bj [k]uj [k]+zj [k], k = k0, . . . , T−1, j = 1, . . . , N
(24)

‖uj [k]− ūj [k]‖ ≤ (β)w−1T0, ∀k = k0, . . . , T − 1 (25)

‖Hxj [k]‖2 ≤ Vmax H = [03×3 I3×3], k = k0, . . . , T, j = 1, . . . , N
(26)

(b) the initial and terminal conditions obtained from Problem 2

xj [0] = xj,0, xj [T ] = xj,f , j = 1, . . . , N (27)

(c) the new collision avoidance constraint

−(r̄j [k]− r̄i[k])T rj [k] ≤−Rij(‖r̃j [k]− r̃i[k]‖2 + 2‖P‖2) + ‖P T r̃i[k]‖2
− ‖r̃j [k]TP‖2 + (r̃i[k]− r̃j [k])T r̃i[k]

(28)

G = [I3×3 03×3], k = kbl, . . . ,min{k0 + TH , T}, i ∈ N[j] ∩ Pj \ Dj

where N[j] = {i| ‖xj [k0]− xi[k0]‖2 ≤ Rcomm}, Rcomm is the communication
radius of each agent, Dj is the set of agents that are assigned to dock with
agent j and Pj is the set of agents that have a higher priority than j, P
is the ellipsoidal error profile of the nominal trajectory, and Rij is Rcol or
2Rdock if agent i is in the assembly set of j.

(d) the docking condition
if ‖G(x̄j [k]− x̄i[k]‖2 ≤ Rbl:

‖G(xj [k]− x̄i[k])‖2 ≤ Rcone(k), (29)

kbl = arg mink0≤k≤k0+TH
{‖G(x̄j [k]− x̄i[k]‖2 −Rbl} (30)

Rcone(k) = Rdock +
‖G(xj [kbl]− x̄i[kbl])‖2 −Rdock

T − kbl
(T − k),

k = kbl, . . . ,min{k0 + TH , T}, i ∈ N[j] ∩ Pj ∩ Dj

After the problem above is solved using MPC-SCP, the nonlinear correc-
tion step is applied by numerically integrating the resultant optimal control
trajectories uj[k]∀j,∀k:

xn,j [k + 1] = fj [k](xn,j [k],uj [k]), k = k0, . . . , T − 1, (31)

xn,j [k0] = xj [k0] = x0
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where fj [k] is the Runge-Kutta integration of the state with the given control.

3.3. MPC-SCP with Nonlinear Dynamics Correction

Though MPC-SCP trajectory generation converged on a solution, the
solution did not necessarily follow the actual spacecraft dynamics. This was
due to the linearization done in the optimization loop. The losses due to
linearization accumulated over the trajectory and could become substantial
over long duration simulations. The nonlinear correction step was added to
the MPC-SCP portion of SOCA to reduce these errors.

For a discretized nonconvex problem with nonlinear dynamics and con-
vex or convexified constraints like spacecraft guidance with collision avoid-
ance, the solution can be approximated using sequential convex program-
ming. This is done by linearizing the dynamics and generating a solution
iteratively using the previous solution as a nominal trajectory until the opti-
mization converges on a solution, like in MPC-SCP. For SCP with a nonlin-
ear correction, the nominal trajectory for the next SCP iteration is taken as
the numerically integrated nonlinear dynamics using the initial conditions
and the current (w-th) SCP-generated control trajectory:

xw
n,j [k + 1] = fj [k](xw

n,j [k],uw
j [k]), k = k0, . . . , T − 1,

and xw
n,j [k0] = xw

j [k0] = x0 (32)

where fj [k] is the nonlinear dynamics, w is the SCP iteration, and the sub-
script n indicates a nominal, nonlinear trajectory. This SCP optimization
process along with nonlinear dynamic correction step Eq. (32) is repeated
until the sequence of trajectories converges. To ensure convergence and
optimality, the problem’s inequality constraints must be modified so that
the corrected solution will be provably feasible to the nonconvex problem,
generalized to Problem 4.

Problem 4 (Non-Convex Program (NCP) with Nonlinear Dynamics).

min
u[k0:T−1]

T−1∑
k=k0

Fu(uj [k])vj [k] subject to (33)

xj [k + 1]− f(xj [k],uj [k]) = 0, xj [k0] = x0, k = k0, . . . , T − 1 (34)

gi(xj [k],uj [k]) ≤ 0, i = 1, . . . , p, k = k0, . . . , T (35)

where f represents the discretized nonlinear dynamics, gi are the p convex
inequality constraints on the problem, and vj [k] denotes the quadrature
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weight of numerical integration (e.g., vj [k] = ∆t = tj [k + 1] − tj [k] for the
Euler method).

The nonlinear-corrected version of SCP (Problem 3) will be referred
to as SCPn, with the inequality constraints represented as gi. Proofs of
convergence to the KKT point of the nonconvex problem can be found in
[11, 12]. For now, we show that the optimal solutions of SCPn will result
in a cost that decreases. A more thorough, updated handling of the theory
behind this method can be found in [11].

Problem 5 ((w)-th Sequential Convex Program: SCPn(w)(x̄, ū) ).

Given x̄n [k0 : T ] = x
(w−1)
n [k0 : T ] , ū [k0 : T − 1] = u(w−1) [k0 : T − 1]:

minimize
u[k0:T−1]

T−1∑
k=k0

Fu(u[k])v[k] subject to (36)

x[k + 1]−A(x̄n[k])x[k]−B(ū[k])u[k]− z(x̄n[k], ū[k]) = 0,xk0 = x0 (37)

gi(x[k],u[k]) +
k−1∑
j=k0

Li,j‖uj − ūj‖ ≤ 0, i = 1, . . . , p (38)

‖u[k]− ū[k]‖ ≤ (β)w−1T0, (39)

The Lipschitz and convex functions gi(x[k],u[k]), i = 1, . . . p are from
Eq. (35), and a positive constant Li,j is defined in Eq. (41) in Theorem
2 below.

Theorem 2 (Decreasing Cost over Optimal SCPn Sequence). If there ex-

ists a unique feasible solution (x
(w)
n [k0 : T ] ,u(w) [k0 : T − 1]) to the original

nonconvex problem (Problem 4) for some w, then

J(u(w+1) [k0 : T − 1]) ≤ J(u(w) [k0 : T − 1]) (40)

where J(u) is the cost function Eq. (23) of Problems 3 and 4. under the
following condition for each gi(x[k],u[k]) in Problem 3

Li,j = 2‖B[k]‖(‖A[k]‖)k−j−1 sup
(x[k],u[k])∈D

∥∥∥∥∂gi(x[k],u[k])

∂x[k]

∥∥∥∥ (41)

where D := {(x ∈ Rn, u ∈ Rm) | constraints of Problem 4} is the convex
domain defined by the feasible set of Problem 4.

The nominal trajectory (x
(w+1)
n [k0 : T ] ,u(w+1) [k0 : T − 1]) obtained from

SCPn is also a feasible solution to the nonconvex problem, meaning that
Eq. (40) holds for all subsequent w.
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Proof. See Appendix.

The Li,j term added to the inequality constraints restricts the feasible set
and thus can make finding solutions more difficult. This is particularly true
in a system with highly nonlinear dynamics as the bound on the inequality
constraint is tightened to ensure the corrected solution remains feasible. In
a multi-agent context with collision avoidance as an inequality constraint,
this bound will result in more conservative trajectories. If the agents are
sufficiently dense, this may cause problems in execution. To ameliorate this
issue, we point readers to the Modified SCPn algorithm presented in [11, 12],
which provides the same theoretical guarantees but with less restriction of
the feasible set and faster execution.

3.4. Optimal Trajectory Generation Algorithm

The algorithm to solve Problem 3 for the optimal trajectories allowing
both docking and collision avoidance is shown below in Algorithm 2. Note
that the nonlinear correction step 11 occurs after each iteration of MPC-
SCP.

Algorithm 2 Guidance and Control using Sequential Convex Programming

1: K := {1, . . . , N} Set of all agents
2: w := 1
3: x̄j [k] := 06×1, ∀j, k
4: xj,0[k] := the solution to Problem 3 (Trajectory Generation) with Pj =
∅, ∀j, k

5: x̄j [k] := x0
j [k], ∀j, k

6: Communicate x̄j [k] to all neighboring agents (i ∈ N[j])
7: while K 6= ∅ do
8: for all j ∈ K (run in parallel) do
9: xnom

j,w [k] :=the solution to Problem 3 (Trajectory Generation), ∀k
10: end for
11: xj,w[k] := fj [k](xnom

j,w [k],unom
w [k]) ∀k (Nonlinear Correction)

12: for all j (run in parallel) do
13: x̄j [k] := xj,w[k], ∀k
14: Communicate x̄j [k] to all neighboring agents (i ∈ N[j])
15: if ‖xj,w[k] − xj,w−1[k]‖∞ < εSCP ∀k and ‖G(xj,w[k] − xi,w[k])‖2 >

Rcol ∀k ≥ kbl,∀i ∈ N[j] ∩ Pj \ Dj then
16: Remove j from K
17: end if
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18: end for
19: w := w + 1
20: end while

A model predictive control implementation of SCP (Algorithm 2) can be
used to implement the DAA-D and SCPn methods in real time in order to
simultaneously solve the SOCA problems. MPC uses a receding horizon to
update the optimal target assignments for docking (Algorithm 1) and cur-
rent trajectories obtained via communication with neighbors and on-board
sensors. In this algorithm, each agent finds its optimal trajectory using the
nominal trajectories received from other agents, then corrects the lineariza-
tion error. This corrected trajectory is the new nominal trajectory, which is
then communicated with the neighbors again. If the stopping condition is
met, the agent is done optimizing, otherwise, it continues iterating through
SCP.

SOCA is described in Algorithm 3. In this algorithm, the each agent
determines its cost to each target, then runs Algorithm 1. Then, using
the terminal position from the auction, Algorithm 2 is run to generate the
trajectory. This continues in a loop until the final time is reached. If the
communication graph grows, the cyclical nature of the algorithm allows the
assignments to change to accommodate.

Algorithm 3 Swarm Orbital Construction Algorithm (SOCA)

1: k0 = 0
2: while k0 ≤ T do
3: for all i = 1, . . . , N (parallel) do
4: for all j = 1, . . . ,M do
5: Solve Problem 1 using SCP (Algorithm 2)
6: ci(j) = cost of optimal solution to Problem 1
7: end for
8: end for
9: Solve Problem 2 using DAA-D (Algorithm 1)

10: xj,f = solution to Problem 2, ∀j
11: if # of bids has changed then
12: k0 = 0
13: end if
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14: Solve Problem 3 using SCP (Algorithm 2)
15: uj [k] = control solution to Problem 3, ∀j, k = k0 . . . k0 + TH − 1
16: Apply uj [k] for k = k0 . . . k0 + TH − 1
17: Update k0 and xj,k0 to current time
18: end while

4. Simulation of 3D Spacecraft Dynamics with Attitude

The algorithm with the above modifications was implemented in MAT-
LAB using CVX, a MATLAB-based convex optimization engine running the
SDPT3 solver [16, 17, 37].

Simulations were performed using high-fidelity relative orbit dynam-
ics [21] with J2 perturbations with a virtual chief in a 500 km, 45◦ incli-
nation orbit. All spacecraft are assumed to have a communication radius
of 500 m. The attitude dynamics used are Euler’s rotational equation. The
J2 perturbed orbital dynamics of each agent j are described in the LVLH
frame by the following equations [21]:

ẍj = 2ẏjωz−xj(η2j −w2
z) + yjαz− zjωxωz− (ζj − ζ) sin(i) sin(θ)− r(η2j − η2)

(42)
ÿj =2ẋjωz + 2żjωx − xjαz − yj(η2j − w2

z − ω2
x) + zjαx

− (ζj − ζ) sin(i) cos(θ) + xjωz − zjωx)
(43)

z̈j = 2ẏjωx − xjωxωz − yjαx − zj(η2j − w2
x − (ζj − ζ) cos(i)) (44)

with parameters as defined in [21]. These equations are then linearized with
respect to a nominal orbit found for each agent j for use in MPC-SCP. The
attitude dynamics use Euler’s rotational equation and attitude kinematics:

Jω̇ + ω × (J · ω) = τext (45)

θ̇ = Z(θ)ω (46)

where J is the inertia matrix, ω is the angular velocity, τext is the external
torque vector acting on the body, θ is the vector of 3-2-1 Euler angles, and
Z(θ) is the corresponding kinematic transformation matrix for these Euler
angles [4, 34]. These equations are linearized with respect to a nominal
attitude trajectory.
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4.1. Simulation Results

The first simulation uses 24 connectors and 30 rods targeted to a planar
flower shape, though the trajectories to achieve the arrangement are three
dimensional. In the figures presenting the results, rod agents are represented
by rectangular prisms and connector agents are represented by hexagonal
prisms, rotated to the trajectory orientation. Initial positions are enlarged
to show orientation. The agents begin in J2 invariant relative orbits, which
greatly reduce the energy required to maintain the orbit and would likely
be used for agents awaiting docking. The agents have an initial separation
of up to 1.5 kilometer and final separation of twenty centimeters.

(a) 2D View of Trajectories (b) 3D View of Trajectories

Figure 10: 54 agents (30 rods, 24 connectors) combine from up to 1.5 km
apart to make a planar hexagon with a 20 cm separation. Note the out of
plane motion is all within 0.2 meters.
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Figure 11: Zoomed in view of the final time step of all 54 agents in the final
flower shape

Figure 10a shows the 2D view of the overall trajectories of the agents
over the duration of the simulation. The 3D trajectories are shown in Figure
10b. Though the agents are allowed to move in three dimensions, the out of
plane motion is minimal (<20 cm) due to the expense of out of plane motion
and the planar nature of the target configuration. The scale difference is
too large in these figures to show the agents achieve the target configuration
since the final separation is so small. Figure 11 shows the position and
orientation of all agents at the final time step. The agents reach the desired
terminal configuration.

The second simulation uses 10 connectors and 10 rods targeted to a
three dimensional folded hexagon shape. Figure 12a shows the 2D view of
the overall trajectories of the agents over the duration of the simulation. The
3D trajectories are shown in Figure 12b. The out of plane motion in this
simulation is larger than the previous simulation, about one meter. This is
still very small, just above the 65 centimeters required of the target shape.
Figure 13 shows the position and orientation of all agents at the final time
step. Again, all agents reach the desired terminal configuration.
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(a) 2D View of Trajectories (b) 3D View of Trajectories

Figure 12: 20 agents (10 rods, 10 connectors) combine from up to 1.5 km
apart to make a folded hexagon with a 20 cm separation. Note the out of
plane motion is still small, but up to one meter

Figure 13: Zoomed in view of the final time step of all 20 agents in the 3D
folded hexagon shape
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5. 3DOF Experiment on Wheeled Robots and M-STAR Space-
craft Simulators

Experimental validation of the algorithm was performed first on wheeled
robots in a motion capture environment then on spacecraft simulators in
the flat floor facility at Caltech. The SOCA algorithm can generate opti-
mal collision-free trajectories from any set of initial conditions within the
workspace to create the desired shape at the specified final time, but in these
experiments the algorithm is run offline so the robots are initialized in the
same configuration each run so that the safety of the generated trajectory
can be evaluated prior to running the robots.

5.1. Omni-Wheeled Robot Experimental Validation

Initial experiments were performed using six NEXUS 3-Wheeled Com-
pact Omni-Directional Arduino Compatible Mobile Robots (shown in Figure
14). The robots are controlled using Arduinos with Digi XBee communica-
tion devices. The SOCA is run on a separate computer, which uses ROS to
access the motion capture system, run the algorithm, and send commands
to the robots. This computer then communicates commands to the robots
through the XBee serial wireless modules attached to each of the robots.
SOCA generates trajectories which require motion capture feedback to fol-
low, so each robot is given its current position and orientation, along with
the trajectory waypoint. Onboard the robot, a PD controller is used to gen-
erate the desired wheel rotations per minute (RPM), then map those values
to the actual robot wheel commands, a set of three Pulse Width Modula-
tion (PWM) values. A six-robot system was tested in a 2-meter by 2-meter
motion capture space, where each robot read in its trajectory, given by a
list of waypoints provided by an offline system SOCA algorithm.
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Figure 14: Omni-Directional 3-wheeled robot used to experimentally validate
SOCA

Multiple preliminary tests were performed to characterize the relation-
ship between the input PWM signal and the motor RPM. Inconsistencies
were observed in the RPM at a constant PWM even on smooth surfaces.
This problem was ameliorated by closing the loop onboard the robots using
the motor encoders, which gives better control over the speed and path of
the robot. The encoders are read at each control loop (about 0.1s) and
the PWM is corrected based on the encoder readings. For more details see
[15]. The experimental results show SOCA performing assignment and tra-
jectory generation for 6 agents in planar final configuration with realistic
3DOF trajectories.

Figure 15: Time lapse of 6 omni-directional robots for SOCA experiment

The off-board control computer ran the SOCA algorithm given the start-
ing points of each of the six robots and determined the optimal trajectory
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with collision avoidance. The starting positions of the robots and the time
lapse of the full test is shown in Fig 15. The algorithm worked very well
however the onboard controller on the robots could not track the trajec-
tories sufficiently well to enable docking. The tracking error of the robots
is approximately 10 cm, which is sufficient to eliminate the collision avoid-
ance effects of SOCA. This causes the two rectangular agents to get stuck at
t=5-10sec and the bottom rectangular agent to miss its final orientation. To
within the tracking error, all of the robots follow the trajectories well. Fur-
ther investigation is needed to conclusively determine the source of the error
but the culprit is most likely the low-level motor controller which has very
inconsistent performance due to the noisy wheel encoders. The intended
trajectory is plotted in Figure 16 with the actual trajectories achieved by
the robots. For the most part, each of the robots achieves the correct direc-
tion of travel, but the tracking error prevents the trajectories from lining up
perfectly. The wiggle seen in blue at the bottom of the figure is likely cause
by this error in wheel actuation. The feedback keeps pulling the robot back
towards the desired trajectory but the wheel errors keep causing deviations.
The actuation errors in this ground robot system were a motivating factor
in the development of the spacecraft simulator facility.

Figure 16: Actual vs desired robot trajectories
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5.2. Spacecraft Simulator Facility Overview

Figure 17: Caltech’s Spacecraft Simulator Facility and Four M-STARs with
the Two Docking Systems (left) and M-STAR diagram (right)

The Caltech Aerospace Robotics and Control Lab’s Spacecraft Simulator
Facility is composed of an ultra-precise epoxy flat floor shown in Figure 17,
a clean room, and five M-STAR robots. The flat floor facility is the largest
such facility at any university. It has two 7DOF robot arms mounted on
linear actuators along the back and the side. The space is fully covered by
14 motion capture cameras placed around the exterior to track the position
and orientation of each M-STAR.

The M-STARs, shown in Figure 17, use flat and spherical air bearings
to achieve 5DOF frictionless motion and a linear actuator to achieve kine-
matic motion in the gravity direction. The M-STARs are equipped with
thrusters, reaction wheels, electromagnets, and docking ports as actuators.
Due to the design of the facility and the M-STARs, friction between the
floor and the linear air bearings is negligibly small. The M-STARs are de-
signed to be modular, capable of transforming from a 6DOF platform to
a 3DOF and everything in between. For the purposes of this experiment,
the M-STARs were in two 3DOF configurations with different docking port
locations. Eight of the 16 onboard thrusters were used for 3DOF position
and attitude control. For more details on the facility and the simulators,
see [25].

5.3. In-Orbit Construction Experiment on the M-STARs

For this experiment, the four M-STARS made a T shape in the center of
a 4 meter square. Three of the four agents were identical, with two docking
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ports placed on opposite sides of the square upper stage. The fourth M-
STAR had four ports, one on each side of the upper stage. These specifica-
tions were input into SOCA to generate optimal, collision-free construction
trajectories. Trajectories were computed offline then fed to the M-STARs,
which followed them using the onboard control scheme described in [13].

Figure 18: Time Lapse of 4 M-STARs Following SOCA Optimal Trajectories
in Spacecraft Simulator Facility

Due to the aggressive nature of the optimal trajectories, the simulators
come very close. A sample experimental trajectory is seen in Figure 19, and
the discrepancy between the command and actual trajectory is shown in
Figure 20. Stills from the experiment are shown in Figure 18. The biggest
issue is when spacecraft 4 encounters some friction on the floor at 55 s,
causing the actual trajectory to deviate from the desired. A video of the
experiment can be found at https://youtu.be/62cngDR1k-E.
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Figure 20: Experimental performance of M-STARS as compared to command

In general, the runtime of this algorithm in MATLAB simulations in-
creases with additional agents because all agents are run on a single machine
in these simulations. When these algorithms are run on separate computers
onboard the simulators, the computation is expected to be sufficiently fast
to adapt to changes in the scenario as they arise.
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6. Conclusion

A distributed optimal guidance algorithm has been presented to enable
self-assembly of a heterogeneous swarm of component satellites with lim-
ited communication radii. The agent types chosen can create a diverse set
of final docked configurations which can cover the plane and build out-of-
plane. This enhances prior work in the field because it is both distributed
and heterogeneous, can function in a complex dynamic environment, and
accounts for relative attitude dynamics. The SOCA algorithm handles the
limited-type heterogeneity by adding barrier functions in the target assign-
ment algorithm. The barrier functions make the cost of an improper assign-
ment prohibitive by assessing dock metrics like number and angle of docks
required at that target position and inflating the cost when those qualities
are not matched by the agent type. The algorithm also creates collision-free
trajectories while still allowing agents to dock by adding a boundary layer
outside of the collision avoidance radius wherein the agent must choose to
avoid or dock with an approaching agent. The algorithm was also made ro-
bust to uncertainty in the nominal trajectories of neighbors, and improved
the handling of nonlinear dynamics to make the trajectories commanded by
SOCA realistic and achievable.

The simulation results show SOCA performing assignment and trajec-
tory generation for 20-54 agents in two and three dimensional final configu-
rations with realistic trajectories. Preliminary experimental validation was
performed on-board six wheeled robots, but the precision of the wheeled
robot motion was insufficient. Four spacecraft simulators were used to suc-
cessfully experimentally validate the optimal construction algorithm. The
proposed scheme is useful for missions ranging from sparse aperture interfer-
ometric telescope construction to space colony or station construction. This
algorithm can also be used for a higher degree of heterogeneity without
substantially altering the algorithm, as discussed in the auction algorithm
section.

Appendix

Proof of Theorem 2

Proof. Given that for some w, (x
(w)
n [k0 : T ],u(w)[k0 : T − 1]) is a feasible

solution of the NCP, Problem 4, we know that the constraints of the NCP

are satisfied. Since (x
(w)
n [k0 : T ],u(w)[k0 : T − 1]) is also used to linearize

and discretize the dynamics in SCPn(w+1), it must satisfy Eq. (24) and thus
is feasible to SCPn(w+1).
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Since the cost of an optimal solution must be less than or equal to a
feasible solution we arrive at:

J(u(w+1)[k0 : T − 1]) ≤ J(u(w)[k0 : T − 1]) (47)

Furthermore, this optimal input solution (u(w+1)[k0 : T−1]) of SCPn(w+1)

is used to generate a new nominal trajectory using Eq. (32). This new nomi-

nal, (x
(w+1)
n [k0 : T −1],u(w+1)[k0 : T −1]) must also be feasible to Problem 4

if Eq. (41) holds.
Combining the first-order convexity conditions of Eq. (38) for each gi

with the constraints themselves results in

gi(x
(w+1)
n [k],u(w+1)[k]) ≤ ∂gi

∂x[k]

∣∣∣∣
(x

(w+1)
n [k],u(w+1)[k])

(x(w+1)
n [k]− x(w+1)[k])

−
k−1∑
j=k0

Li,j‖u(w+1)
j − u

(w)
j ‖ (48)

To show (x
(w+1)
n [k0 : T ],u(w+1)[k0 : T − 1]) is feasible to the NCP, we need

to prove gi(x
(w+1)
n [k],u(w+1)[k]) ≤ 0, whose sufficient condition can be given

as∥∥∥∥ ∂gi
∂x[k]

∥∥∥∥ (‖x(w+1)
n [k]−x(w)

n [k]‖+‖x(w+1)[k]−x(w)
n [k]‖) ≤

k−1∑
j=k0

Li,j‖u(w+1)
j −u

(w)
j ‖

(49)
Plugging in the initial condition to Eq. (24) for SCPn(w+1) becomes

x(w+1)[k]− x(w)
n [k] =

k−2∑
j=k0

 k−1∏
i=j+1

A(x(w)
n [k + j − i])

B(u(w)[j])(u(w+1)[j]−

u(w)[j]) +B(u(w)[k − 1])(u(w+1)[k − 1]− u(w)[k − 1])
(50)

Assuming f(x
(w)
n [k],u(w)[k]) is Lipschitz over D:

‖x(w+1)
n [k + 1]− x(w)

n [k + 1]‖ = ‖f(x(w+1)
n [k],u(w+1)[k])− f(x(w)

n [k],u(w)[k])‖
≤ ‖A‖‖x(w+1)

n [k]− x(w)
n [k]‖+ ‖B‖‖u(w+1)[k]− u(w)[k]‖ (51)

where ‖A‖ = sup(x[k],u[k])∈D ‖A(x[k])‖, and ‖B‖ = sup(x[k],u[k])∈D ‖B(u[k])‖.
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This can be expressed as a function of ‖u(w+1)[k]− u(w)[k]‖ using

x
(w+1)
n [k0] = x

(w)
n [k0] as follows

‖x(w+1)
n [k]− x(w)

n [k]‖ ≤
k−1∑
j=k0

(‖A‖)k−j−1‖B‖‖u(w+1)
j − u

(w)
j ‖ (52)

Applying a property of submultiplicativity of norms to Eq. (50) shows

that both ‖x(w+1)
n [k] − x

(w)
n [k]‖ and ‖x(w+1)[k] − x

(w)
n [k]‖ possess the same

upper-bound given in Eq. (52). Hence, substituting Eq. (52) into Eq. (49)
shows that Eq. (49) is satisfied by

k−1∑
j=k0

2

∥∥∥∥ ∂gi
∂x[k]

∥∥∥∥ (‖A‖)k−j−1‖B‖‖u(w+1)
j −u

(w)
j ‖ =

k−1∑
j=k0

Li,j‖u(w+1)[j]−u
(w)
j ‖

(53)
Consequently, the condition of Li,j Eq. (41) is established. Since the

nonlinear dynamics constraint Eq. (34) is already satisfied, we conclude

that if (x
(w)
n [k0 : T ],u(w)[k0 : T − 1]) is a feasible solution to the NCP, when

SCPn is applied, the optimal solution to SCPn is also a feasible solution to
the NCP.
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