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ABSTRACT

The focused laser differential interferometer (FLDI) is a non-imaging optical diag-
nostic that is sensitive to density disturbances. A distinguishing feature is reduced
sensitivity away from the focal plane of its beams. The spatial resolution is sub-mm,
and the temporal resolution is restricted only by photodetector bandwidth, typically
> 10 MHz. These traits make FLDI particularly suited to measurements in hyperve-
locity ground-testing facilities, where the low densities, short time-scales, and harsh
environments preclude the use of intrusive diagnostics. Line of sight integration
issues associated with other optical techniques are therefore minimized, a distinct
advantage for measurements in impulse facilities, where the core flow of interest is
often surrounded by highly-turbulent shear layers.

The systematic design principles for single and double FLDI systems are discussed,
based on ray transfer matrix analysis combined with Gaussian optics. A detailed
guide is presented for the practicalities of aligning, calibrating, and operating an
FLDI.

A modular numerical implementation of Schmidt and Shepherd’s FLDI ray-tracing
model is developed, capable of accepting arbitrary flow-fields defined via analytical
expressions, simulation coupling, or experimental datasets. This numerical imple-
mentation is used to perform the first comprehensive experimental validation of the
model, using known static and dynamic phase objects. Quantitatively-accurate pre-
dictions of the response of real FLDI systems are obtained. Importantly, the spatial
sensitivity of the instrument is found to be dependent on disturbance wavelength,
with scalingmatching that predicted analytically from themodel. Propagating shock
waves are used as another highly-dynamic test phase object, and it is shown that
FLDI maintains its theoretical performance at sub-µs time-scales.

The validated ray-tracing model is used to develop analytical expressions for the
response of FLDI to propagating plane waves, extending on the results of Schmidt
and Shepherd, and Settles and Fulghum. For the first time, the inverse problem is
solved for this class of flow-field, allowing the density fluctuation spectrum to be re-
covered quantitatively from FLDI phase shift data. This approach is validated using
synthetic flow-fields with the numerical ray-tracing scheme, and is also compared
with the approximate approach introduced by Parziale et al.

FLDI is used to make freestream density fluctuation measurements on two facilities:
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a conventional blowdown tunnel, and an expansion tube. On the conventional tunnel,
a comparison is made between pitot-probe and FLDI measurements after converting
both to freestream pressure fluctuation spectra. A modification of Stainback and
Wagner’s theory, incorporating recent numerical results from Chaudhry et al., is
used to interpret the pitot data, while the new inversion algorithm is applied to the
FLDI data. Close agreement is found between the two sets of spectra, showing that
accurate quantitative data can be obtained with FLDI, and used to extend spectra
beyond the pitot bandwidth.

On the expansion tube, the theory of Paull and Stalker for freestream noise originat-
ing in the driver gas is investigated. Their proposed relationship between freestream
density fluctuations and the primary interface sound speed ratio is not observed.
Spectral banding is also absent, however this is expected due to the relatively low
secondary expansion strengths. The envelope of accessible conditions is somewhat
restricted due to the lowmean freestream densities that lead to signal-to-noise issues.

Significant performance improvements can still be made to FLDI, in terms of its
noise and bandwidth limitations, and to the spatial localization of its sensitive region;
suggestions are given for possible approaches. With the ray-tracing model now
validated, it can be used to optimize FLDI, or even to suggest derivative instruments
based on similar principles.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
1.1.1 Fluctuating Flows
In the supersonic and hypersonic flow communities, fluctuating quantities are at the
core of multiple active areas of research with practical implications for vehicle de-
sign. Laminar boundary layers (LBLs) are receptive to fluctuations in the freestream
flow, leading to the growth of instabilities and ultimately to transition to turbulence.
Turbulent boundary layers (TBLs) cause greatly-increased thermal loading to the
vehicle surface, so prediction of the timing and extent of transition during a flight
trajectory is very important. Shock-wave boundary-layer interaction (SWBLI) is
a phenomenon found particularly near corners and protrusions of supersonic vehi-
cle geometries, where a complex and often unsteady interplay leads to boundary
layer separation and reattachment, additional shock waves, shear layers and so on.
SWBLI is often associated with regions of peak heat load, again making prediction
important for vehicle survivability—this prediction in turn relying on knowledge
of the external freestream disturbance levels. The study of fluid-structure interac-
tions (FSI) is concerned with the coupling between fluctuating flows and compliant
surfaces (such as thin metal panels comprising an aircraft skin). Knowledge of the
frequency modes and amplitudes in the flow are required in order to predict which
structural modes are likely to be excited in these panels.

1.1.2 The Need for Ground Testing
Hypersonic flows have arguably themost complex physics of any regime in aerospace:
non-equilibrium real-gas chemistry, radiative heating, turbulent boundary and shear
layers, and complex shock interactions that all must be measured or modeled. In-
cluding even a subset of these phenomena can render numerical simulation infeasible
for practical engineering design, even if they are understood well enough to model
in the first place. However for lower-enthalpy supersonic, and indeed even subsonic
flows, the aforementioned range of scales for fluctuating flows can still make com-
putation very expensive, even if the underlying physics are comparatively simpler
to model. These challenges make experiments necessary.

High-speed free-flight experiments are very expensive, and the possible types of
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on-board instrumentation limited. Such experiments often involve years of planning
from large-scale university and military collaborations, e.g. HIFiRE and BOLT
(Juliano et al., 2015; Wheaton et al., 2021). The precursor to flight testing is ground
testing, where key flow parameters are replicated in the laboratory, allowing a wider
range of diagnostics to be employed. Ground testing can be done either by moving
a solid model through quiescent gas at hypersonic speeds (as in a ballistic range),
or, more commonly, by inducing the gas to flow over a stationary model. There
are many methods by which such flows can be generated, although they tend to
have in common finite (and sometimes very short) test times and low freestream
densities. This is due to these flows typically having specific enthalpies h0 in excess
of 1 MJ kg−1: the power needed to continuously sustain such a flow scales like
ρuAh0 (where ρ is density, u is velocity, and A is cross-sectional area), and can
easily exceed 1 GW. Hence, continuous wind tunnels are usually limited to lower
velocities.

1.1.3 Facility Types
A distinction can be made between hypersonic (Mach number M & 5) and hyper-
velocity (velocity u & 3 km s−1). In the former case, expanding a gas causes a
reduction in temperature and therefore sound speed: high M can be achieved with-
out especially large u. The high-enthalpy effects that distinguish true hypervelocity
flows from low-enthalpy supersonics come from the dominance of the kinetic energy
contribution, 1

2u2.

Non-continuous high-speed ground-testing facilities can be categorized into two
general types: blowdown and impulse. Blowdown facilities have a high-pressure
source reservoir connected via a Laval nozzle to a low-pressure sink, either at-
mosphere or a vacuum tank. Once a valve is opened, the reservoir gas expands
and accelerates to supersonic speeds through the nozzle, “blowing down” to the
sink. With large enough source and sink volumes, steady flow can be maintained
for seconds or even many minutes. These facilities are usually low-enthalpy, even
with heat addition in the reservoir. Impulse facilities use gasdynamic processes to
accelerate the test gas to high-enthalpy “true” hypervelocity states, although usually
at the expense of test times on the order of µs to ms. In this thesis, two particular
ground-testing facilities will be considered: a conventional blowdown tunnel, and a
type of impulse facility known as an expansion tube. More detail on these will be
provided in Chapter 2.
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1.1.4 Diagnostics
Intrusive sensors necessarily alter the flow merely by their presence, and have
finite inertia (e.g. the mass of a diaphragm or the heat capacity of a thermocouple).
Furthermore, some sensors exhibit resonant behavior that limits their high-frequency
response; however, at hypervelocity, the frequencies of interest (such as the second
Mack mode for BL instabilities) can exceed 1 MHz (Bitter, 2015). Generally,
all three of these undesirable traits (intrusiveness, inertia, and resonance) can be
minimized by reducing the size of the sensor, however, this makes them fragile—and
impulsively-started hypersonic flows are a very harsh environment.

In contrast, optical techniques do not suffer from inertia or resonance, only being
limited by the response time of the detector or camera. Most techniques deposit
negligible amounts of energy into the flow, hence being considered non-intrusive.
The main drawbacks of optical techniques are line-of-sight integration and difficul-
ties in quantitative interpretation. When a ray of light traverses the test section, it is
altered (e.g. by refractive index or species concentration changes) all along its path,
making it difficult to determine the spatial distribution of the quantity of interest
without exploiting symmetry or other assumptions about flow geometry. Many op-
tical techniques are also difficult to calibrate, leaving their results qualitative, such
as schlieren.

Focused laser differential interferometry (FLDI) is an instrument that attempts to
address the key drawback of optical techniques, i.e. the line-of-sight integration
that leads to delocalization of the response. In its most fundamental form, FLDI
comprises two coherent, orthogonally-polarized beams of light whose principal rays
run parallel, separated by a small distance ∆x. The two beams are focused down
from initially large diameters to give two small foci. Beyond this focal plane, the
beams expand again, then are overlapped and allowed to interfere with each other.
There are many ways to achieve this beam geometry; the basic optical configuration
used in this work is shown in Fig. 1.1. FLDI is a non-imaging interferometer:
its output is a single voltage–time signal, proportional to the interference intensity
integrated over the recombined beams.

FLDI is the main topic of this thesis; both the behavior of the instrument itself and
its application to hypersonic ground facilities will be addressed in detail. A more
detailed introduction to FLDI and its developmental history will be given next in
Section 1.2. Following this, literature reviews are presented concerning freestream
noise studies in conventional and impulse facilities (Sections 1.3 and 1.4).



4

x

z Δ

L P1 WP1
D

F1 F2

P2WP2

PD

B

x

Figure 1.1: FLDI schematic. Component annotations in boldface: L = laser, B =
beam waist, D = diverging lens, P1 = quarter-wave plate, WPi = Wollaston prisms,
Fi = focusing lenses, P2 = linear polarizer, PD = photodetector.

1.2 Focused Laser Differential Interferometry
1.2.1 Introduction
Like all optical interferometers, FLDI responds to optical path differences (OPD)
between the two beams; for FLDI, the OPD are due to variations in the refractive
index field n. In gases (and liquids), n is linearly related to the density ρ by the
Gladstone-Dale relation (Gladstone and Dale, 1863; Merzkirch, 1987):

n = Kρ + 1 (1.1)

where K is a coefficient that depends on the wavelength of the light. Eq. (1.1)
was derived empirically; a more fundamental approach from first principles led
to the Lorenz-Lorentz relation, after its two independent but confusingly-named
discoverers (Gardiner et al., 1981; Kragh, 1991):

RL =
n2 − 1
n2 + 2

·
1
ρ

(1.2)

Again, the constant RL depends on wavelength; Gardiner et al. contains extensive
tabulations of RL at common laser wavelengths, and is used as the reference for this
thesis. For gases, where ρ is small and n is close to unity, Eq. (1.2) approaches
Eq. (1.1), with K ≈ 3RL/2. For either law, mixtures of gases can be treated by taking
linear combinations of RL or K , weighted by the mole fraction of each component.
These relationships mean that FLDI indirectly measures density fluctuations, and
does so with high spatial resolution due to the small magnitude of ∆x, typically
O(100 µm). The instrument also has high temporal resolution because it is only
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limited by the bandwidth of modern photodetectors, usually O(10 MHz). The
output voltage V(t) corresponds to an overall optical phase shift ∆Φ(t), measured
in radians. Fundamentally, the instrument response is related to a finite-difference
approximation to the local density gradient, i.e. ∆Φ(t) ∼ ∆ρ/∆x. As ∆x → 0,
the response approaches the true derivative, but the magnitude of the signal is also
diminished.

FLDI can be considered a variant of laser differential interferometry (LDI), a simpler
configuration where the beams remain a constant diameter instead of focusing. It is
this focusing that leads to the key distinguishing feature of FLDI: it is less sensitive
to refractive index disturbances further away from the focal plane. This alleviates
the issues caused by line-of-sight integration: contributions to the overall signal
largely come from a “sensitive region” in the vicinity of the foci. In the ideal limit,
this sensitive region would be made so small that the FLDI would give point-like
measurements. This feature is particularly useful in hypersonic ground testing,
where the uniform core flow is often surrounded by highly turbulent free shear
layers, or boundary layers on the test section windows. The intensity of these
turbulent outer flows may overwhelm the signals of interest in the core; if FLDI
can attenuate these sufficiently, then the core can be probed optically. FLDI can be
extended to a “dual” or “double” FLDI (DFLDI) where two foci pairs are generated,
usually aligned in the streamwise direction. This allows cross-correlation of the two
interference signals to compute a time-of-flight and thus a velocity, in addition to
the density information from the individual channels.

1.2.2 History
FLDI was first conceived by Smeets and George (1973) at the French-German Re-
search Institute of Saint-Louis, as one of several optical designs of laser differential
interferometers. However, it appears that the relative infancy of laser technology,
along with limitations in photodetection and acquisition instruments, prevented its
widespread uptake at that time. In the mid-1990s there was interest in novel optical
methods for sensitive disturbancemeasurements in high-speed flows (Collicott et al.,
1996). Multiple reports from Smeets and George were translated into English by
A. G. Goetz in 1995-6 at the behest of Schneider∗, with assistance from both Smeets
and George themselves who visited the USA at different times during this period.
The non-focusing LDI was pursued rather than the FLDI by these groups (Salyer
et al., 2000).
∗Personal communication with S. P. Schneider.
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Parziale et al. (2012) demonstrated a simple, robust implementation of FLDI for
hypersonic flows (also with a basis in the work of Smeets and George), after con-
sidering a variety of other optical techniques with the potential for quantitative
measurements†. Since then, there have been a number of efforts to further develop
and analyze the technique. Parziale et al. (2013b, 2014, 2015) and Parziale (2013)
further used FLDI to make both free-stream turbulence and cone boundary layer
instability measurements in T5.

Fulghum (2014) and Settles and Fulghum (2016) obtained free-stream turbulence
power spectra in the Penn State Supersonic Wind Tunnel and the AEDC Hyperve-
locity Wind Tunnel 9, and made comparisons with hot-wire anemometry. Ceruzzi
and Cadou (2017, 2019) obtained spectra in turbulent jets, then utilized FLDI to
study turbulent wall boundary layers in a Mach 2.6 tunnel (Ceruzzi et al., 2020).
Benitez et al. (2021) and Bathel et al. (2020) also adapted FLDI for instability
measurements along cones in the Mach 6 Quiet Tunnel at Purdue University and
the 20-Inch Mach 6 Air Tunnel at NASA Langley, respectively. Houpt and Leonov
(2018, 2019) used cylindrical lenses to produce a “planar” FLDI variant in order to
make measurements closer to solid surfaces without beam clipping.

Very recently (at the time of writing) Ceruzzi et al. (2021a) presented freestream
density and velocity measurements made in Tunnel 9 at M = 18. In a separate
work (Ceruzzi et al., 2021b), a “sensitivity function” for FLDI was developed and
validated, based on the transfer function approach of Schmidt and Shepherd.

1.2.3 Interpretation of FLDI Response
Many of the above-cited works deal with the raw FLDI data, i.e. the voltage signal
from the photodetector, sometimes converted to optical phase shift. For many
applications this is sufficient: for example, when cross-correlating a pair of signals
from a DFLDI. Parziale et al. introduced a simple method for estimating the average
density difference ∆ρ between the two beams:

∆ρ

ρ
=

λL

2πKζ ρ
sin−1

(
V
V0
− 1

)
(1.3)

where ρ is the local average density, λL is the laser wavelength, K is the Gladstone-
Dale constant, V is the FLDI output voltage, V0 is a reference voltage taken when
the interferometer is set to the middle of a fringe (see Section 3.4), and ζ is some

†Personal communication with N. J. Parziale.
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empirically-determined “sensitive length”. Note some notation has been changed
from the original publication in order to avoid confusion within this thesis. They
also introduced a coefficient that compensates for changes in FLDI response with
disturbancewavelength. The limitations of thismodeling approachwill be addressed
in Section 5.7. Recently, Hameed and Parziale (2021) used a vibrating cylindrical
lens as a phase object to experimentally test this model.

At around the same time as each other, Schmidt and Shepherd (2015) and Settles and
Fulghum (2016) presented more complex analytical models of FLDI. The results of
the latter paper are also given withmore detail in Fulghum (2014). These two groups
took quite different approaches to the optical modeling: Schmidt and Shepherd used
geometrical optics with the paraxial approximation to derive a ray-tracing equation;
Settles and Fulghum instead modeled the propagation of polarized electric fields
using Jones vectors, alongside a simplified finite difference model. Nevertheless,
they both arrived at the same important result: a transfer function for the response
of FLDI to a one-dimensional sinusoidal disturbance. It is given by:

H(k) =
2

k∆x
sin

(
k∆x

2

)
exp

(
−
w2k2

8

)
(1.4)

The meaning of this transfer function will be revisited in greater detail at several
points later in this thesis. For now, the key observation comes from the exponential
term, the argument of which contains the product of the local beam width w and
the disturbance wavenumber k. This can equally be expressed as the ratio of two
lengths: the beam width over the disturbance wavelength, and this is the reason
for the spatial filtering effect that makes FLDI distinct. Far from the beam foci,
where the beams are wide, their sensitivity to wavelengths much smaller than the
local w is greatly diminished. This leads to a small sensitive region centered about
the focal plane—although Eq. (1.4) also demonstrates that the sensitive length is
wavenumber-dependent. Both groups also developed related transfer functions for
other classes of disturbance geometry. Again, these will be reviewed later, and
compared with new results.

Another important result of these analyses is that FLDI response is only dependent
on three optical parameters: the foci separation ∆x, the Gaussian beam radius of
the foci w0, and the laser wavelength λL , where λL << w0 << ∆x. Typically
λL falls in the narrow band of visible wavelengths (400–700 nm), and has only
a scaling effect on the response. ∆x gives the minimum spatial resolution, for
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fluctuation wavelengths shorter than this there is a strong roll-off in FLDI response.
The most important parameter is w0: a smaller w0 means the beam width grows
more rapidly away from the focus. As just discussed, this focusing effect is what
gives FLDI its spatial selectivity: hence reducing w0 shortens the sensitive region.
Note that throughout this work, the radius w0 will be used interchangeably with the
corresponding diameter d0.

1.2.4 Comparison to Pitot Data
A recent study that has parallels with the work performed herein is that of Birch
et al. (2020). FLDI was used along with a pitot probe to make measurements in the
freestream of a M = 6 piston-driven Ludwieg tube. Geometrical limitations due to
their wide test section meant the focusing angle of their FLDI was relatively small;
initial testing showed significant contributions to the signal from the outer turbulent
shear layers. Consequently, aerodynamic beam shrouds were constructed to shield
the outer portions of the FLDI beams.

Conversion of the FLDI signal to density was performed by using elements of theory
from both Schmidt and Shepherd, and Settles and Fulghum. The pitot data were
interpreted using the classical approach of Stainback and Wagner (1972) with the
assumption made of purely acoustic disturbances with the same orientation as per
Laufer (1961) (these theories are addressed in Section 1.3). These various pieces
of theory have some inconsistent assumptions undergirding them: one transfer
function used for the FLDI assumes plane waves propagating parallel to the flow,
while another transfer function as well as their pitot conversion both assume acoustic
waves with some angle of incidence to the flow direction. As will be shown in this
thesis, these inconsistencies will lead to quantitative errors.

The main conclusion of interest to this work comes from their comparison of
fluctuating static pressure p′ as recovered from FLDI vs. pitot. They present RMS
values of p′ evolving over the 200 ms run-time of the facility. Until 75 ms there is
close agreement between the two methods, after which p′ as calculated from the
pitot data sharply increases, while the FLDI data does not. This was interpreted as
being due to entropy-mode disturbances being present in the flow; these influence the
pitot response differently to FLDI. In turn, the arrival of these entropic disturbances
midway through test time was thought to be due to transition processes occurring in
the piston barrel, upstream of the nozzle.
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1.3 Conventional Facility Noise
1.3.1 Overview
Muchwork has been done on characterizing the freestream noise of conventional su-
personic wind tunnels, both through theoretical developments and experiments with
intrusive diagnostics. Broadly speaking, the theoretical foundation was provided in
the 1950s by Kovásznay (1953) and Morkovin (1957, 1959), who also demonstrated
the use and interpretation of hot-wire anemometry (HWA) in supersonic flows. In
the 1960s through to the early 1970s, these techniques were applied in detail to a
variety of facilities; one of the prominent works of this period is by Laufer (1961).
Stainback and Wagner (1972) used a pitot pressure probe in addition to HWA; their
interpretationmethod for the pitot data remains in widespread use. Themain interest
in understanding the tunnel noise environment was in order to study boundary layer
transition. Pate (1980) gives an extensive review of the work done to that point both
on characterizing the freestream disturbance environment, and the effect thereof on
boundary layers.

It appears there was something of a lull in research into tunnel noise characterization
after this time, although work on the receptivity, stability, and transition of boundary
layers certainly continued in earnest (these topics are however outside the scope of
this thesis). The understanding gained in the 1960s about the nature and origin of
tunnel noise inspired the pursuit of quiet supersonic and hypersonic tunnels, the
developmental history of which is given by Schneider (2001, 2008).

More recently, the 2010s saw many new freestream characterization studies. These
included “traditional” HWA-pitot surveys, often supplemented by more advanced
probe diagnostic designs. Renewed attention was given to interpreting the response
of intrusive diagnostics, with consideration given to high-frequency and probe ge-
ometry effects. These modern studies have the benefit of a variety of computational
fluid dynamics (CFD) tools that are used to simulate the probe response to realistic
disturbance field and thereby deduce detailed transfer functions.

1.3.2 Classical Results
The seminal work is Kovásznay (1953), where first-order perturbation theory was
applied to the Navier-Stokes equations, yielding three disturbance fields often re-
ferred to in subsequent literature as “Kovásznay modes”: the entropy, vorticity,
and acoustic modes. To first order, these modes are independent, i.e. nonlinear
interactions between modes are neglected. He also offered a second-order extension
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of the theory to allow for weak interaction; however, it was argued that the low
intensities typical of supersonic wind tunnel fluctuations make the first-order theory
sufficient. Further simplification via consideration of characteristic length and time
scales demonstrated that the vorticity and entropy modes convect as “frozen pat-
terns” (i.e. Taylor’s hypothesis), while the acoustic mode is unattenuated and obeys
the pure wave equation.

HWA does not respond directly to these three modes; instead its response is a
function of fluctuations in mass flow Ûm′ and stagnation temperature T ′0. These in
turn depend on fluctuations of density, velocity, and static temperature (ρ′, u′, and
T ′, respectively), while pressure p′ does not have a direct effect. By operating
the HWA at multiple conditions and repeating experiments, one can recover (in a
mean square sense) Ûm′ and T ′0, as well as the correlation coefficient between these
quantities, RmT . This technique is often implemented graphically as a “fluctuation
diagram” a.k.a. “mode diagram”; via these, Kovásznay showed that the three modes
can be separated from the data for some special cases, although for the general case
of all three modes coexisting with arbitrary correlation, they cannot be separated
without further assumptions or information.

Morkovin (1957, 1959) expanded upon the nature and origin of the Kovásznay
modes, and made arguments based on both theory and experiment as to the expected
relative importance of each mode in conventional supersonic wind tunnels. The
modes each behave as follows:

1. Entropy mode: variation of entropy s, ρ, and T at constant p.

2. Vorticity mode: variation of the solenoidal component of the velocity field ω.

3. Acoustic mode: variation of p, ρ, and T at constant s and constant irrotational
component of the velocity field.

In incompressible flows, the vorticity mode is often simply referred to as “turbu-
lence”. Per Taylor’s hypothesis, the entropy and vorticity modes convect along
streamlines and so must originate from upstream of the nozzle (in the settling cham-
ber or reservoir of the tunnel). Only the acoustic mode can cross streamlines and so
can also originate from the walls of the nozzle and test section. Morkovin further
sub-categorized these wall-sourced acoustic fluctuations:
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a. Radiation from initial turbulent bursts within transitioning boundary layers.

b. Radiation from fully-developed turbulent boundary layers.

c. Diffraction and scattering from solid geometry (e.g. roughness, nozzle contours).

d. Radiation from wall vibrations.

Theoretical considerations suggest that in conventional tunnels, the acoustic mode
should dominate over the other two. For the vorticity mode, all components of the
velocity flucutation field decrease strongly with the speed ratio across the nozzle
u2/u1. Because this ratio is very high especially in supersonic facilities, so long
as the pre-nozzle settling chamber turbulence is kept reasonably low (e.g. via
screens) then the vorticity fluctuations in the test section will be very low. The
entropy mode originates from temperature spottiness upstream of the nozzle, which
can be reduced via the same design considerations that help with settling chamber
turbulence reduction. Measurements made in four different tunnels found reservoir
temperature spottiness to be “inconsequential”.

Regarding the various categories of acoustic noise, Morkovin postulated that Cate-
gory (d) sound is negligible due to high acoustic impedance between the wall and
flow. Categories (a) & (b) are the “aerodynamic generation of sound” as described
in detail by Lighthill (1952, 1954); Morkovin however believed that Category (c)
sound would be dominant in many facilities. This category is also referred to as
“shivering” or unsteady Mach waves, and can be reduced by polishing the walls,
smoothing joints, and carefully designing the nozzle contours.

Laufer (1961) performed HWA studies in the JPL 18 × 20 in. tunnel with flexible
nozzles walls allowing for M = 1.6–5.0 . The mode diagrams showed pure acoustic
noise fields, a conclusion supported both by additional measurements in the supply
section, and by physical arguments similarly to Morkovin. A pure acoustic field
obeys the isentropic relation:

p′

p
= γ

ρ′

ρ
=

γ

γ − 1
T ′

T
(1.5)

Here,2′ and2 represent fluctuating and time-averaged quantities, respectively. The
data further showed that the preferred orientation of the sound was not the Mach
angle, i.e. the majority of the measured p′ was not due to fluctuating Mach waves,
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in opposition to Morkovin’s belief. This meant the acoustic source could not be
stationary in the laboratory reference frame; it was instead a moving eddy within the
boundary layer, i.e. Category (b) noise above. Using an estimate of the wavelength
range of the acoustic field, Laufer stated that the measurements were sufficiently
distant from their source at the wall so that the assumption of plane waves could be
made. The velocity of the sound source us and the inclination of the wave is given
by:

us

u
= 1 +

1
M cos θ

(1.6)

where u and M are the freestream velocity and Mach number, and θ is the angle be-
tween the wave normal and the freestream flow. It was found that 0.4 < us/u < 0.5,
implying 90° < θ < 180°, i.e. a backwards-facing wave. Note that for us = 0 the
Mach angle µ = θ − 90° is recovered. Laufer stated that Eq. (1.6) gives a lower
bound on us, since it assumes a single source but in reality Mach wave [Category
(c)] noise may also be present, albeit to a lesser extent. Besides the aforementioned
acoustic impedance argument, wall vibration [Category (d)] noise was further ruled
out because the observed frequencies were much too high. Several supplementary
experiments were performed that gave additional support to the acoustic field being
dominated by TBL [Category (b)] noise, including: shielding the HWA from acous-
tic radiation from one of the four tunnel walls, which gave a corresponding decrease
in signal, and operating the tunnel at a LBL condition, where the overall fluctuations
greatly decreased, with the small residual signal having a mode diagram indicative
of entropy fluctuations. Similar results were obtained in a smaller 12×12 in. tunnel.

In a follow-up work, Laufer (1964) continued his investigation into the nature of
this radiated acoustic field. Ballistic free-flight schlieren studies suggested the field
comprised backward-facing wavelets of limited spatial extent rather than infinitely-
long plane waves. The variation in the orientation of these wavefronts decreased
as M increases, i.e. the radiated field became more coherent. One important
conclusion for square cross-section tunnels was that each wall radiated equally and
in an uncorrelated fashion; furthermore, reflection of the acoustic waves from the
other walls was found to be negligible. Data were given for the far-field pressure
spectrum and a scaling for the radiated intensity with respect to the wall shear stress
was provided.

Of the studies that followed Laufer, the most important for this thesis is the report
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by Donaldson and Wallace (1971), because it was conducted in VKF Tunnel D, one
of the two facilities studied in this work (see Section 2.6 for more information on
this facility, and Chapter 6 for results). For now, it suffices to say that Tunnel D is
of a fundamentally similar design to the tunnel used by Laufer, with a square cross-
section and flexible nozzle that allows for variation in M . Donaldson and Wallace
performed HWA studies at a range of unit Reynolds numbers Rem and M = 4, with
assumptions and data analysis techniques following those of the earlier works. As
with Laufer, they found that the mode diagrams indicated pure acoustic fields at all
conditions, and that the dominant orientation of the waves was not equal to that of
stationary Mach waves. They found a higher value of us than Laufer, reporting it
in terms of the wave-normal angle: θ = 122–128°, i.e. backwards-facing waves.
Facility-specific calculations were done to show the validity of the assumption of
negligible vorticity and entropy mode fluctuations in the Tunnel D test section.

Wagner (1971) performed a HWA study in the Langley 60-in. High Reynolds Num-
ber Hypersonic Helium Tunnel, which unlike other works cited here used helium
instead of air, and operated at a much higher Mach number of 17.5. Measure-
ments were taken in both the freestream and in the shock layer of a slender cone
(half-angle of 2.87°). The mode diagrams showed that the fluctuations were due
to moving sound sources in the turbulent boundary layers. Furthermore, the shock
layer did not show evidence of redistribution of energy from the acoustic mode
into the vorticity or entropy modes, although this was attributed to the shock being
weak—redistribution would be expected from a stronger shock.

The last work for us to review from the early period is that of Stainback and Wagner
(1972), who compared pitot-probe measurements against HWA data for freestream
fluctuations in a M = 5 air flow from an axisymmetric nozzle. The theory they
developed for interpreting unsteady pitot data remains in widespread use. Again,
the HWAmode diagrams showed a noise field of a purely acoustic nature, generated
by non-stationary sources with reasonably similar us to Laufer. When the facility
was operated at a LBL condition there was almost no signal, as expected.

A pitot probe in supersonic flow measures the total pressure behind the bow shock
that stands off from the probe, denoted pt,2. This data needed to be converted to
freestream static pressure p1 (as obtained from the HWA analysis); an outline of
Stainback and Wagner’s derivation is as follows. For M > 2.5 the following is valid
to within 0.2%:
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pt,2 = Gρu2 (1.7)

for some G = G(γ) where γ is the specific heat ratio. Assuming Eq. (1.7) holds in
an instantaneous sense, it can be used to derive a second-order fluctuation equation
(Harvey et al., 1969), which holds generally:

( p̃t,2

pt,2

)2

= 4
(
ũ
u

)2
+ 4

(
ũ ρ̃
uρ

)
Rρu +

(
ρ̃

ρ

)2
(1.8)

where Rρu ≡ ρ′u′/ρ̃ũ, and 2, 2̃, 2′ denote mean, root mean square (RMS), and
instantaneous values, respectively. The isentropic relations of Eq. (1.5) can be
modified slightly to account for inclined planewaves; substituting these into Eq. (1.8)
gives a relationship specific to purely acoustic fields:

( p̃t,2

pt,2

)2

=

(
p̃
γp

)2 [
1 − 4

nx

M
+ 4

(nx

M

)2
]

(1.9)

where nx ≡ cos θ, with the wave orientation θ defined by Laufer as per Eq. (1.6).
Eq. (1.9) did not produce good agreement with the HWA data, with the pitot data
giving about double the values of p̃t,2/pt,2. Amending Eq. (1.9) by a multiplicative
factor of 2 improved the agreement; the rationale being that Eq. (1.9) was derived
under quasi-steady assumptions, but under unsteady conditions the reflection of the
compression wave from the probe face must be accounted for. The unsteady pitot
equation is then simply:

( p̃t,2

pt,2

)2

= 2
(

p̃
γp

)2 [
1 − 4

nx

M
+ 4

(nx

M

)2
]

(1.10)

The factor of exactly 2 in Eq. (1.10) relies on several simplifying assumptions:
no wave diffraction around the probe geometry, thin boundary layers on the probe
(relative to the acoustic wavelengths), and simple reflection of waves that are parallel
to the probe face. In particular, the last assumption ignores that Eq. (1.10) allows
for arbitrary wave orientation nx . Stainback and Wagner performed additional
comparisons in another facility (helium, M ≈ 20) which produced better agreement
than in the M = 5 air cases, although it was not understood why this was. The
authors warned that Eq. (1.10) cannot be relied upon for useful quantitative data,
and that a more general theory and further calibration experiments are required. In
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particular they noted that the wavefront angles would be important. Despite these
reservations, later works by other authors tend to use Eq. (1.10) as a quantitative
result without critique. Some of these studies will be addressed below.

1.3.3 Modern Developments
Masutti et al. (2012) performed a characterization of the freestream disturbances
in the VKI-H3 tunnel‡ (M = 6, air). They used a dual HWA and a fast-response
pitot probe, although not simultaneously—it was assumed that the statistics did not
change between runs. A small-perturbation approximation was used to develop a
system of equations:

m′

m
=
ρ′

ρ
+

u′

u
(1.11a)

p′

p
=
ρ′

ρ
+

T ′

T
(1.11b)

T ′0
T0
= α

T ′

T
+ β

u′

u
(1.11c)

where α, β = f (M, γ), m is the mass flux, and T and T0 are the static and stagnation
temperatures, respectively. m′/m and T ′0/T0 are obtained from the dual HWA,
while p′/p comes from the pitot. In this way, Eqs. (1.11a) to (1.11c) can be solved
simultaneously to yield all fluctuating flow quantities. In order to compute p′/p from
the raw pitot pressure data, the authors used Stainback and Wagner’s approach, i.e.
Eq. (1.10). To determine the disturbance orientation nx , Laufer’s Eq. (1.6) was
used, and it was assumed that us/u = 0.6 as taken from Stainback and Wagner, i.e.
Masutti et al. assumedwithout evidence that the acoustic waves are at the same angle
as found in a rather different facility, operated at a different value of M . Their results
showed higher fluctuations in total temperature than could be explained purely by
the acoustic mode. This was attributed to VKI-H3 lacking an upstream thermal
equalizer system, therefore leading to entropy spottiness in the supply. Their RMS
pitot data showed an inverse linear relationship with the unit Reynolds number Rem,
attributed to stabilization of the TBL.

‡VKI = von Kármán Institute, in Belgium. Not to be confused with VKF = von Kármán Gas
Dynamics Facility, in Tennessee!
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In addition to trends in the raw data, once all the fluctuations were computed per
Eqs. (1.11a) to (1.11c), the three Kovásznay modes could be recovered:

Θ
′ =

T ′

T0
−
γ − 1
γ

T

T0

p′

p
(1.12a)

ω′ =
u′

u
+

1
γM2

p′

p
(1.12b)

σ′ =

(
1 −

1
M2

)
p′

γp
(1.12c)

where Θ, ω, and σ are the entropy, vorticity, and acoustic modes, respectively. All
threemodeswere found to be present and uncorrelatedwith each other as Rem varies.
They concluded that the acoustic mode is dominant in VKI-H3 over the whole Rem

range, however their own provided data do not appear to back up this conclusion.
σ′RMS ≈ 0.71% while Θ′RMS and ω′RMS are close to this at 0.6%; furthermore for
several values of Rem, Θ′RMS is either equal to or exceeds σ′RMS (within their wide
error bounds of up to ±40%). While σ′RMS is on average the largest contribution,
it certainly cannot be stated to be dominant, as even the largest ratio between any
two modes is no more than a factor of two and usually much less than this. Another
issue with their analysis is the reliance on Stainback and Wagner’s pitot conversion
equation, despite the warnings of the original authors that such a simplified approach
cannot be relied on quantitatively.

Gromyko et al. (2013) used pitot probes, heat-flux gauges, and HWA to study
freestream disturbances in the Transit-M facility. This is an electrically-heated
Ludwieg tube with a fast-acting valve, with test times of 110–200 ms at M = 6,
differentiating this study from those previously discussed, which were more con-
ventional blowdown facilities with much longer test times. Various possible sources
of vortical and entropic disturbances in the pre-chambers were discussed; it was
expected that the high-frequency components of these would be damped out due
to the distance scales involved, and that the high-frequency portion of the overall
spectrum should largely be due to the acoustic mode. Using wall boundary layer
thickness as the characteristic length scale, it was estimated that the lowest-frequency
components of the acoustic mode should be 20–40 kHz. Their measurements had a
bandwidth of 350 kHz based on noise floor considerations.
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To aid with interpretation of the pitot data, the authors performed flow simulations
using commercial software (ANSYS) with single-frequency acoustic waves super-
imposed on the mean flow. These results showed that the pitot response depends on
the frequency and orientation of the wave, due to wave interference effects that lead
to non-uniform pressure distributions across the sensor face.

Their mean p′ data were comparable to a variety of other facilities (both conventional
blowdown and short-duration tunnels) but lower than in T4 (a reflected shock tun-
nel). However, T ′0 was considerably higher than in conventional facilities. This was
attributed to short-duration facilities having less mixing time after heating. Substan-
tial azimuthal asymmetry was also observed in p′. Subsequent tests implied this was
likely due to asymmetry in the laminar-turbulent transition line on the nozzle wall,
which in turn were attributed to fabrication inaccuracies in the transonic portion of
the nozzle, or possibly complex effects within the pre-chamber. An increase in fluc-
tuations was observed far from the centerline, due to getting close to the developed
TBL, as also observed by Rufer and Berridge (2012). Decreasing Rem caused an
increase in low-frequency fluctuations, stated to be due to a thicker nozzle boundary
layer (a larger characteristic dimension means a lower characteristic frequency).

As part of a larger investigation, Mai and Bowersox (2014) conducted freestream
pitot fluctuation studies in the Texas A&M ACE tunnel, a conventional blowdown
facility, here operated at M ≈ 5.9. The authors assumed that the noise was acoustic
in nature. There was a low-noise regime observed at low Rem, with a sharp rise to a
high-noise regime as Rem increased, attributed to transition of the nozzle boundary
layer. Within the high-noise regime, the noise decreased gradually with Rem as seen
in other works; likely due to stabilization effects.

The pitot surveys were performed at two streamwise locations: the nozzle exit plane,
and then 95 mm further downstream. In the laminar regime, the downstream location
was noisier than the nozzle plane for a given Rem. This was thought to be due to a
cumulative effect of Mach waves from imperfections in the nozzle and test section
(i.e. Morkovin Category (c) acoustic noise). Conversely, in the turbulent regime
both locations had the same noise level, which the authors took to imply that the TBL
radiation (Morkovin Category (b) acoustic noise) had “saturated the freestream noise
levels”. The integral time scales of the noise were also plotted against Rem. Around
the inter-regime range (corresponding to turbulent transition) there was a notable
spike in scale. This was due to intermittent large-scale structures in the boundary
layer as it transitioned. At full turbulence, the energy cascade is established and the
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size of structures reduces and stabilizes. Thiswas also investigated via spectrograms.

Schilden et al. (2016) studied the freestream of the Hypersonic Ludwieg Tube
Braunschweig (HLB) using two methods: the “classical” HWA-pitot, and a cone
probe they developed. Similarly to Transit-M in Gromyko et al. above, HLB is a
heated Ludwieg tube employing a fast-acting valve, giving M = 5.9 for about 80 ms.
Their cone probe had a half-angle of 30°, with flush-mounted pressure transducers
along the surface. Direct numerical simulation (DNS) was used to deduce the
transfer functions for this probe. The freestream was modeled using acoustic and
entropy Kovásznay modes, with the vorticity mode neglected. For the analysis of
the HWA-pitot data, they followed the approach of Masutti et al. discussed above.
They elaborated on several of the assumptions inherent in this approach, such as
the use of Stainback and Wagner’s unsteady pitot equation, the choice of the slow
acoustic mode, and the need to assume a value of the sound source velocity. They
also noted that Masutti et al. performed their decomposition in an RMS sense only,
not spectrally as done here.

The HWA-pitot data showed that all three modes all decreased with increasing Rem.
In an RMS sense, the acoustic mode was an order of magnitude larger than the other
two modes, with the entropy mode about double the vorticity mode. Issues were
encountered with the decomposition of the cone probe data being overly sensitive to
small errors either in the data or theDNS-derived transfer functions; this necessitated
the introduction of additional assumptions, wherein good agreement was found with
the HWA-pitot results. The main set of results were taken at a location 100 mm
from the centerline; on the centerline itself there was a significant increase in the
vorticity mode, thought to be from the valve, while close to the walls the acoustic
mode became stronger.

Wagner et al. (2018) presented a study on three facilities: two Ludwieg tubes (one
being HLB from Schilden et al.) and a shock tunnel (HEG). A slender wedge-
shaped probe was used, because HWA is not suitable for high-enthalpy facilities
such as HEG. The probe was instrumented with pressure, temperature, and heat-
flux gauges in a similar manner to the cone probe of Schilden et al. The authors
stressed the need to represent fluctuations spectrally, since RMS values tend to
emphasize low-frequency contributions whereas boundary-layer receptivity can be
at higher frequencies. Again, DNS was used to simulate the wedge probe, with
results supporting the conclusion that slow acoustic waves (rather than fast) are the
dominant disturbance in such facilities.
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Conventional pitot measurements were also taken and compared with the wedge
probe data by expressing the latter as RMS values integrated up to 50 kHz (the full
wedge probe bandwidth was 500 kHz). The approach of Stainback and Wagner was
used to convert the pitot data, including the same assumption of us/u = 0.6. Good
agreement was found at M = 6 (both Ludwieg tubes) and M = 7.4 (HEG), but
at M = 3 (HLB) the wedge probe gave double the RMS of the pitot, for reasons
unknown.

Duan et al. (2019) is an overview paper summarizing a recent collaborative effort
regarding hypersonic freestream disturbances. This includes the aforementioned
work of Schilden et al. Other contributing works from this collaboration include the
DNS studies of acoustic radiation from supersonic and hypersonic boundary layers
(Duan et al., 2014, 2016), and the studies of pitot probe transfer functions (Chaudhry
and Candler, 2017; Chaudhry et al., 2019). These are to be discussed next.

Duan et al. (2014) used DNS to simulate a fully-developed TBL over a flat wall
at freestream M = 2.5. The height of the domain above the wall was much larger
than the TBL thickness, i.e. the freestream far-field was simulated. Non-reflecting
boundary conditions were used on the relevant portions of the domain, i.e. there
was no attempt to include reflections of acoustic noise from opposing walls of the
test section, although the authors mentioned that this is a possible complication in
reality. Kovásznay modal analysis was applied to the freestream from these DNS
results, and it was found that the magnitudes of all fluctuating quantities were small
relative to their mean values, validating the small perturbation approach taken in
previous works. Additionally, the acoustic mode was found to be “overwhelmingly
dominant” over the negligible entropy and vorticity modes, when the only noise
source was a TBL. Detailed spectra were provided for the pressure fluctuation field.
The instantaneous pressure field was described as “plane-wave-like”, albeit with
limited spatial coherence. Within a streamwise–wall-normal plane, a preferred
orientation could be computed; for the conditions of this study the angle between
the wavefront normal and the freestream velocity was found to be θn ≈ 132°, i.e.
a slow acoustic mode corresponding to us/u ≈ 0.4. Visual inspection of pseudo-
schlieren images agreed with this value of θn. The waves were not truly planar in
the spanwise direction, as seen both from images and correlation studies. This finite
spanwise extent was attributed to the acoustic sources within the TBL also being of
finite size. The TBL itself was also investigated, and it was found that these acoustic
sources were largely located in the buffer layer.
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Duan et al. (2016) extended the study to M = 5.86, with results being compared
to the previous M = 2.5 case. Here it was again found that the acoustic mode
was dominant in the freestream. The normalized RMS magnitude of the pressure
fluctuations increased from 0.4% to 2%, and θn decreased to ≈ 120°; however,
qualitatively the wavepackets remained the same. Within the TBL, the frozen-eddy
assumption still held and the sources were again mostly in the buffer layer.

Chaudhry and Candler (2017) pointed out that many studies using Kovásznay modal
decomposition rely on Stainback and Wagner’s unsteady pitot formulation (such as
Masutti et al.; Schilden et al.). DNS was used to compute the transfer function for
pitot probes with the goal of ultimately replacing the Stainback andWagner method;
this paper was a first step in that it only considered flow-parallel disturbances. Three
types of disturbance were considered separately: fast and slow acoustic waves σ±,
and entropy waves Θ. These disturbances were linear combinations of sinusoids:

q′(t) =
N∑

k=1
q′k cos(αk x − ωk t + φk) (1.13)

where q′ is a general fluctuating quantity. For acoustic waves, q′ = p′, and the other
quantities were given by:


ρ′(t)

u′(t)

T ′(t)


=


1
c2

± 1
ρc

T(γ−1)
ρc2


p′(t) (1.14)

and:

αk =
ωk

u ± c
(1.15)

with + and − corresponding to fast and slow modes, respectively. ω is an angular
frequency, while in their notation c represents sound speed.

The entropy disturbances convect along streamlines, and were considered to be
locally planar at the length scale of the pitot probe. For these, q′ = T ′ and the
dependent quantities were:
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T

0

0


T ′(t) (1.16)

with:

αk =
ωk

u
(1.17)

Frequency-wise transfer functions were defined as the ratio of the pitot transducer
response to the freestream disturbance, in terms of the normalized power spectral
density (PSD):

χ( f ) ≡
PSD{pt,k/p̄t}

PSD{q1,k/q̄1}
(1.18)

where subscripts t and 1 denote transducer face average and freestream quantities,
respectively.

The authors derived a linearized Rayleigh pitot equation that held in the low-
frequency limit, to be used for validation of the DNS results. This was:

p′0
p0
=

p′1
p1
+

(
2

u′1
u1
−

T ′1
T1

) (
1 −

1

1 − γ + 2γM
2
1

)
(1.19)

where subscript0 denotes stagnation point conditions—i.e. Eq. (1.19) used stagnation-
point pressure, not transducer surface-average pressure; the difference was small,
especially for low frequencies. The equation is valid for arbitrary fluctuations.
Eq. (1.14) or Eq. (1.16) were substituted to get specific forms for the transfer
functions, χ∗σ± and χ∗

Θ
, where ∗ denotes a low-frequency limit analytical transfer

function. These were found to be functions of M1 and γ only. The simulations
of each disturbance case agreed well with their corresponding χ∗ at low frequency
(defined to be components between 0–20 kHz).

The 1D theory due to Morkovin suggests that resonance should be controlled by the
standoff frequency fs ≡ c0/2∆, where ∆ is the shock standoff distance. This should
occur at half-integer multiples of fs, with the primary resonance at 0.5 fs. It was
found that the simulated transfer function plots collapsed if normalized as f / fs and
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χ/χ∗. The global minimum response was χ/χ∗ = 1, as f / fs → 0, with a global
maximum due to resonance of χ/χ∗ ≈ 4.5 at (0.415 ± 0.006) fs due to various
2D effects. Subsequent minima were near integer multiples of fs, and had values
1 < χ/χ∗ < 2. These results held for all three types of disturbance considered. A
general functional form for this normalized relationship was not given.

Chaudhry et al. (2019) built on the work of Chaudhry and Candler by extending
the simulations to disturbances angled with respect to the pitot probe, and also
with experimental comparisons. Only acoustic disturbances were considered, with
fluctuations defined by a 2D analog of Eq. (1.13):

p′(t) =
N∑

k=1
p′k cos(αk x + βk y − ωk t + φk) (1.20)

with the wavenumbers given by:

αk =
ωk cos θ

u cos θ + c
(1.21a)

βk =
ωk sin θ

u cos θ + c
(1.21b)

Simulations were performed over the range θ = 100–130° as well as at 180° (this
being the flow-parallel slow acoustic mode from the previous study). These were
repeated for various pitot probe geometries. The results of these simulations showed
that the frequency and magnitude of the resonance peak strongly depended on
the disturbance angle θ; the transfer function also depended on the transducer
geometry, more so than in the flow-parallel cases of Chaudhry andCandler. The low-
frequency limit for χ monotonically increased as θ decreased, and was independent
of geometry. This implied the existence of an extended analytical solution for χ∗ as
was done for the flow-parallel case, although a derivation was not attempted.

The experimental results showed that the χ simulated at θ = 120° matched quite
well with selected experimental data for larger pitot probe geometries, but less so for
the smallest size trialed. Additionally, unexplained differences were seen between
the two experimental campaigns that suggested a Reynolds number dependence that
did not manifest in simulations.
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1.4 Impulse Facility Noise
1.4.1 Overview
Notwithstanding the brief reference to the HEG shock tunnel, all the facilities
discussed in Section 1.3 were either conventional long-duration blowdown tunnels,
or Ludwieg tubes§. Much of the development efforts for quiet tunnels have been
targeted towards these types of facilities (Schneider, 2008). Quiet tunnels rely to a
large extent on having a smooth, highly-polished nozzle throat; the high-temperature,
particulate-laden flows of high-enthalpy impulse tunnels are inimical to maintaining
such a surface finish.

Furthermore, the classical view presented above—of a well-conditioned reservoir
smoothly connected via a nozzle to the test section—does not necessarily apply to
impulse facilities: shock tunnels do have an effective reservoir, but thermodynamic
conditions therein are extreme. Expansion tubes may not even have a nozzle, and
therefore no reservoir. The nozzle or tube exit may open abruptly into the test
section, giving strong turbulent shear layers around the core flow, which will radiate
acoustic noise in addition to the nozzle boundary layers. Many impulse facilities
rely on rupturing diaphragms, which involve complex flow interactions. These
phenomena and others show that such facilities are likely to have additional sources
of freestream disturbance when compared to blowdown tunnels, and various types
of impulse facility may also be quite distinct from each other: e.g. the impulsive
mechanism of flow acceleration in a shock tunnel is very different to that of an
expansion tube.

As already discussed, a fundamental difference between conventional and impulse
facilities is the much higher freestream enthalpy attained in the latter. Fujii and
Hornung (2001) showed that some gases, such as air and CO2, have significantly
enhanced acoustic absorption at elevated temperatures typical of impulse facilities,
including at high-frequency bands of relevance to transition studies. This result
implies that acoustic radiation from wall and nozzle boundary layers may be more
attenuated at the facility centerline, compared to equivalent conditions for a conven-
tional tunnel.

Studies of freestream noise in impulse facilities appear to be rare in comparison
with blowdown tunnels. This section will address a selection of work pertaining
§These operate in a blowdown fashion, but do not require control mechanisms to maintain time-
independent reservoir conditions. Instead, the reservoir state remains constant until the expansion
wave returns from its round-trip reflection from the far end of the storage tube; this results in
short-duration test times (Igra and Seiler, 2015).
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to expansion tubes and shock tunnels. The details of how these types of facilities
operate will not be provided here; expansion tubes will be discussed in more depth in
Chapter 2, while shock tunnels will not be described as they are not studied further
in this thesis—the interested reader is instead referred to Part II of Igra and Seiler
(2015).

1.4.2 Expansion Tubes
Historically, the first expansion tube designs found limited use due to unaccept-
ably high freestream disturbance levels during test time. Norfleet et al. (1966)
constructed a standard constant-diameter expansion tube, with a 680 atm helium
driver, and a modified expansion tube which had a nozzle between the driven and
acceleration sections and a driver pressure of 1700 atm. For both facilities, although
the mean flow properties were in line with theoretical expectations, pitot pressure
measurements showed large disturbances, which were strongest on the centerline.
These disturbances were described as being “of sufficient magnitude to preclude
meaningful aerodynamic testing”. A range of tests were performed to eliminate
several possible causes of these disturbances; it was concluded that the secondary
diaphragm was the most likely source.

Spurk (1965) used streak interferometry to obtain time-resolved density measure-
ments during start-up and the steady test time. He determined that the secondary
contact surface was broadened by mixing. The temporal duration of this interface
region was similar to the shock-contact surface interval time. Spurk attributed the
majority of the flow irregularities to secondary diaphragm effects, and suggested that
the acceleration and heating of the small diaphragm fragments extracts momentum
and energy from the test gas slug.

Paull and Stalker (1992) proposed a theory of expansion tube freestream noise, based
on the concept of a lateral acoustic wave originating in the driver section. This theory
will be elaborated upon in Section 2.3, following the prerequisite introduction to
expansion tube operation provided in Sections 2.1 and 2.2. For now, it suffices to
summarize its main claims: that the freestream noise should reduce as the primary
sound speed ratio a3/a2 decreases, and that the unsteady expansions cause a focusing
of the initially-broadband noise toward distinct frequency bands.

Erdos and Bakos (1994) presented an overview of potential sources of noise in
expansion tubes and tunnels. These were: primary and secondary diaphragm
rupture, tube and nozzle wall boundary layers (the latter for tunnels only), wall
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surface roughness, steps and gaps, and lastly, stress waves and vibrations.

The primary diaphragm petals impact and cause vibrations within the tubewalls, and
were also thought to induce turbulence in the driver gas that flows over them—fast-
acting valves have been suggested as a replacement for the diaphragm. The authors
emphasized that the secondary diaphragm rupture process was still uncertain at the
time of writing, although it was thought that the rupture is capable of inducing
additional turbulence beyond that which originates from the driver gas. Indeed, data
from the HYPULSE expansion tunnel showed the presence of lateral acoustic modes
that could not have come from the driver; these were conjectured to originate instead
from the secondary diaphragm. Erdos and Bakos referred to the then-recent theory
of Paull and Stalker for this part of the analysis. Wall-static and freestream-pitot
measurements yielded spectra with distinct peaks, compatible with the frequency-
focusing aspect of the theory, although the quantitative match was not close enough
to be conclusive. As an aside: the secondary diaphragm rupture is particularly
difficult to model accurately; finite burst times and mass effects can lead to complex
wave interactions (Furukawa et al., 2005; Shinn and Miller III, 1978). Various
proposals have been made to either actively rupture the diaphragm ahead of the
shock, or even do away with it entirely (Parziale et al., 2013a).

The boundary layer along the acceleration tube wall was found to have a large
effect on the flow quality in HYPULSE: LBLs gave good flow quality, while fully-
developed TBLs had noisier flows that were nevertheless considered still usable
for some types of study. But if the BL was transitional, unacceptably-large pitot
pressure fluctuations were observed. The authors determined the character of the BL
via heat transfer measurements at the walls, and found the requirement on the unit
Reynolds number was Rem . 7 × 105 m−1. However, even with LBL the measured
values of wall-static and freestream-pitot fluctuations were large enough to require
an additional noise source other than wall boundary layers. This additional noise
was thought likely to be due to surface roughness, and possibly also steps and gaps at
the flanged segments. In expansion tubes, it is very difficult to maintain smoothness
levels typically specified for quiet operation, due to particulates from the primary
diaphragm.

The initial design and commissioning of theHypervelocityExpansionTube (Dufrene
et al., 2007) drew from Paull and Stalker’s theory. Two conditions were presented:
one at a3/a2 = 0.74 showing large relative fluctuations in pitot pressure and the
other at a3/a2 = 0.44 with substantially lower fluctuations. This latter condition
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was taken to be acceptably low-fluctuation, and the design criterion of a3/a2 < 0.55
was instated.

1.4.3 Shock Tunnels
Schneider (2001) briefly addressed freestream noise in shock tunnels, and reported
on the few experimental characterizations available at that time, with inconclusive
results. Hornung (2000) showed that the abrupt area reduction from the end of
the shock tube to the nozzle throat causes the reflected shock wave to converge
axisymmetrically onto the centerline. This process generates a strong vortex ring in
the reservoir (Fig. 1.2), which is thought to ultimately lead to vorticity-mode noise
in the freestream.

Figure 1.2: Vortex ring formation at shock tube–nozzle interface.

Grossir et al. (2013) performed a comprehensive survey with a T-shaped pitot rake
on the VKI Longshot facility, which is a (non-reflected) shock tunnel with a piston in
the driven section with an M = 14 nozzle. Pitot pressure fluctuations were presented
at many locations, although due to resonance the data were lowpass-filtered at only
80 kHz. Away from the boundary layer, the RMS fluctuations in this bandwidth
were in the range 4.5–7.5%. When normalized by a Reynolds number based on the
nozzle exit diameter, these data were slightly higher than, but comparable in trend,
to data at the same M from AEDC Tunnel 9 (a conventional blowdown tunnel).

Parziale et al. (2014) used FLDI to make measurements of the density fluctuations in
the T5 free-piston reflected shock tunnel at Caltech. They reported spectra over the
band 5 kHz–20 MHz, and computed RMS values in various sub-bands of this range.
These data showed that in the range of frequencies corresponding to slender-body
hypervelocity boundary layer instabilities, the freestream noise was ≤ 0.5%. This
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experiment demonstrated both the need to appeal to optical techniques in order to
surpass the frequency limitations of pitot probes, and that facilities like T5 may be
quieter than assumed, particularly in bandwidths of interest to transition studies.

1.5 Project Scope & Outline
This work aims to:

1. Develop mature methodologies for the optical design and calibration of the
instrument that expand on the successful pioneering works.

2. Extend our understanding of the capabilities of FLDI by developing and
validating analytical and computational models for the instrument response.

3. Demonstrate multiple applications of the instrument to hypersonic ground
testing facilities.

The thesis is structured as follows: Chapter 2 introduces the two hypersonic facilities
on which FLDI was used to make measurements, and gives details of the fixtures
and flow conditions used in each experimental campaign. Chapters 3 to 5 concern
FLDI itself: Chapter 3 addresses the practicalities of designing and calibrating
an FLDI system, as well as post-processing the raw signal. Chapter 4 contains
validation studies for the ray-tracing model of the instrument, while Chapter 5 takes
this validated model and uses it to derive analytical solutions for the recovery of
quantitative density field data. In Chapters 6 and 7, FLDI is applied to the facilities
introduced in Chapter 2, with the results being interpreted using the models of
Chapters 4 and 5. Finally, Chapter 8 summarizes the thesis, and suggests directions
for further research into FLDI.
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C h a p t e r 2

HYPERSONIC FACILITIES & EXPERIMENTAL PROCEDURES

This chapter gives details on the operating principles of two hypersonic facilities:
Caltech’s Hypervelocity Expansion Tube (HET), and the von Kármán Gas Dynam-
ics Facility Wind Tunnel D. Experimental campaigns using FLDI were carried out
on these two facilities; the design and goals of each campaign are discussed fol-
lowing the explanation of the respective facility. HET is addressed in Sections 2.1
to 2.5, with the corresponding results found in Chapter 7; Tunnel D is covered in
Sections 2.6 and 2.7, with results in Chapter 6.

2.1 Hypervelocity Expansion Tube
Originally constructed and operated at theUniversity of Illinois atUrbana-Champaign
(Dufrene et al., 2007), the Hypervelocity Expansion Tube was subsequently relo-
cated to Caltech, where it is one of the three main ground-testing facilities of the
Caltech Hypersonics Group (CHG). Due to not having a nozzle, the freestream state
is not restricted to a fixed Mach number. Expansion tubes are a type of impulse
facility, where energy is transferred from the driver gas into the driven gas by a shock
wave, followed by an unsteady expansion wave. This arrangement does not stagnate
the test gas at any stage, unlike a reflected shock tunnel, and thereby avoids dissoci-
ation which could persist in the final test gas. However, test times are 160–500 µs,
much shorter than the T5 facility.

HET comprises three sections of tube (referred to as the driver, driven/test, and accel-
eration/expansion sections), all with a constant internal diameter of 152 mm. A pri-
mary diaphragm of aluminum, with thickness selected from the range 0.8–1.6 mm,
separates the driver and driven sections, while a much thinner (8 µm) secondary
diaphragm of mylar separates the driven and acceleration sections. The flow exits
the acceleration section as a free jet into the test section, which is square in cross-
section with an internal dimension of ∼ 230 mm. Optical access is possible from
all four sides of the test section, although typically the bottom port is obscured by a
mounting baseplate for test articles. The test section terminates with a dump tank,
which together are fixed in place, while the tube is free to move axially along its
mounting beam via linear bearings. The relative position of the tube exit and the
windows can be varied between shots. An illustration of HET is given in Fig. 2.1.
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1.22 m 3.96 m 3.96 m

Figure 2.1: HET, with lengths of the three sections given.

The basic principle of operation of HET is as follows: the driven section is filled
with the test gas of interest to O(1 kPa), and the acceleration section is evacuated
to O(100 mTorr) ≈ O(10 Pa). The driver is then pressurized, usually with helium,
until the primary diaphragm bursts at pressures given by Table 2.1. A knife-blade
device in the primary flange aids with repeatability and causes the diaphragm to
neatly rupture with four attached “petals”, avoiding hazardous free-flying metal
fragments (Sharma, 2010; Yanes, 2020). The rupture of the primary diaphragm due
to passive driver pressurization results in a shock wave that provides the primary
acceleration of the test gas in the driven section. When this primary shock reaches
the secondary diaphragm, a secondary shock is transmitted into the acceleration gas,
while the reflected wave, an unsteady expansion fan, is convected downstream in the
supersonic flow. This unsteady expansion fan provides the secondary acceleration
of the test gas to the final hypervelocity test condition. The steady test time begins
with the arrival of the contact surface between the test and acceleration gases, and
ends when either one of the expansion wave characteristics reaches the test section.
These inviscid wave processes are summarized using an x–t diagram in Fig. 2.2.

2.2 HET Test Condition Simulation
Expansion tube solvers have previously been developed by other groups. The
PITOT code is used with the X2 and X3 expansion tube facilities at The University
of Queensland (James et al., 2018; James et al., 2013), alongside a 1D code, L1d3.
Similarly, MacLean et al. (2010) developed the CHEETAh code for the LENS-XX
expansion tube at CUBRC, which is used with their quasi-1D code, Jaguar. Each of
these codes is tailored for in-house use with a particular facility, e.g. PITOT models
the piston drivers and diverging nozzles of the X tubes, while CHEETAh includes
high-density equation-of-state and rotational non-equilibrium effects that arise from
the use of a heated hydrogen driver.

A inviscid, 1D, gas-dynamic calculator was developed with an accessible GUI
interface. This code, known as LETS, is modular and extensible; for a more
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Figure 2.2: A representative x–t diagram for HET, with the conventional numbering
system for the various gas states. The period of steady test time is indicated in red.
Below the x-axis is a cartoon of HET showing the relative lengths of each section.

Table 2.1: Standard HET primary diaphragm thicknesses with corresponding burst
pressures.

Thickness [mm (in.)] Burst pressure [kPa]
0.8 (0.032) 1250 ± 40
1.0 (0.040) 1740 ± 70
1.3 (0.050) 2480 ± 140
1.6 (0.062) 3300 ± 90
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complete description of its features and operation, see Lawson and Austin (2018).
LETS performs perfect-gas and equilibrium calculations, the latter using Cantera
(Goodwin et al., 2018) and the Shock & Detonation Toolbox (Browne et al., 2008).
It features a full GUI where all input parameters are selected and where results are
displayed immediately; at no point does the user need to interact with a command
line. LETS is also able to run and visualize more complex multi-parameter sweeps
by writing scripts that bypass the GUI and access the underlying functions directly.
These visualizations can show the operating envelope of a given facility in terms
of any combination of two input and two output variables, taking inspiration from
Mollier diagrams. An example of this is shown in Fig. 2.3, where the input variables
are the primary and secondary pressure ratios, with the performance envelope plotted
in an output space of freestream Mach number versus total enthalpy.

LETS was validated via several comparisons with other solutions: a previous ex-
pansion tube code used within the group (Dufrene, 2006) and the example run
conditions listed in MacLean et al. (2010)—which were in turn validated against
CHEETAh. Additionally, a 1D Euler computation was performed∗ with equilibrium
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Figure 2.3: An example of the multi-parameter sweep capabilities of the LETS
code. Plotted is the effect on freestream Mach number M7 and total enthalpy h07 of
changing the two pressure ratios of HET. Driver: He, driven: N2, acceleration: He.
Perfect gas assumed.

∗By Prof. H. G. Hornung.
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chemistry, using the Eilmer code from the University of Queensland (Jacobs and
Gollan, 2016). The comparison between this result and the prediction of LETS is
shown in Fig. 2.4. All wave trajectories are in quantitative agreement, including
the non-linear reflections of the expansion heads. The only disagreement is in the
primary contact surface: Eilmer predicts that it accelerates after its interaction with
the secondary expansion head; LETS does not attempt to model the primary con-
tact surface because it has no influence on the steady freestream state of interest.
Predictions of relevant thermodynamic parameters were also validated, with p, T ,
ρ, and u all agreeing to within 0.5 %.

0

1

2

3

4

5

6

7

t[
m

s]

5 10 15 20
x [m]

0

1

2

3

4

5

6

7

t[
m

s]

Expansion tail
Expansion head
Shock
Contact surface

−4

−3

−2

−1

0

lo
g 1

0
ρ

[k
g

m
−

3 ]

−4

−3

−2

−1

0

lo
g 1

0
ρ

[k
g

m
−

3 ]

Figure 2.4: Comparison of predicted x–t diagrams for Eilmer and LETS. The upper
plot reveals the wave trajectories using isocontours of density from the Eilmer data.
The lower plot has the same contours in greyscale, with the semi-analytical wave
trajectories from LETS overlaid in color.
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For more accurate estimates of the time-averaged freestream state, viscous effects
need to be taken into account. Mirels (1963, 1964) showed that in shock tubes, the
growth of boundary layers along the tubewalls leads to velocity changes for the shock
and contact surface. These features trace out curved trajectories in the x–t plane,
rather than straight lines as in the inviscid case; instead of diverging indefinitely,
the shock–contact surface separation distance tends to a constant maximum value
lm. This in turn alters both the post-shock thermodynamic state and the duration of
test time. Efforts are currently underway in the research group to account for these
viscous effects using simulations in Eilmer.

2.3 Expansion Tube Lateral Acoustic Wave Theory
Expansion tubes have several possible sources of noise, as detailed by Erdos and
Bakos (1994) and summarized in Section 1.4. Here, more detail is provided on
one particular noise source, the theoretical implications of which were extensively
derived by Paull and Stalker (1992).

They postulated that a dominant source of noise in expansion tubes is lateral acoustic
waves in the driver section. These waves are transmitted across the primary contact
surface into the test gas, where they persist during the freestream test time flow. The
details of these waves are given in Chapter 7. This model indicates that freestream
noise can be mitigated by reducing the sound speed ratio a3/a2 across the primary
contact surface. The ratio of expanded driver to shocked driven gas, a3/a2, is a
strong function of the initial driver pressure p4, and high p4 corresponds with both
a reduction in a3/a2 and an increase in freestream total enthalpy h07 (Fig. 2.5).
Hence, expansion tubes operated in a so-called “high-enthalpy” mode also profit
from decreased a3/a2 ratios; an upper bound of a3/a2 < 0.55 was found to produce
acceptably low noise levels during test time (Dufrene et al., 2007). However, a3/a2

is not a function of p4 alone as it also depends on the specific heat ratios of both
gases, γ1 and γ4; nor is it the only determining factor (in the framework of Paull
and Stalker’s theory) concerning the magnitude and spectrum of noise transmitted
to the test gas.

Paull and Stalker further showed that the primary contact surface effectively acts as
a low-frequency filter, i.e. significant reflection of noise back into the driver only
occurs below a threshold frequency. This frequency is proportional to the initial
sound speed in the driver gas, a4, which also suggests heating the driver in order
to raise a4. After the acoustic waves transmit from the driver gas into the test gas,
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Figure 2.5: The relationship between freestream total enthalpy h07 and the primary
contact surface sound speed ratio a3/a2, over an arbitrary operating range defined
by the primary and secondary pressure ratios. Driver: He, driven: N2, acceleration:
He. Perfect gas assumed.

they are further processed as the test gas expands through the unsteady expansion
resulting from the rupture of the secondary diaphragm. They demonstrated that this
expansion causes a “frequency-focusing” effect on the disturbances, where the initial
broadband frequencies of the acousticwave converge towards “discrete narrowbands
of frequencies”. This effect is a function of the strength of the secondary expansion
wave (addressed further in Chapter 7).

Hence according to this theory, the magnitude and spectral content of the freestream
noise depends on the compositions and initial pressure of all three sections of an
expansion tube, and three quantities of relevance were proposed:

1. The primary contact surface sound speed ratio, a3/a2

2. The initial driver gas sound speed, a4

3. The secondary unsteady expansion sound speed ratio, a2/a7

These factors were predicted to influence the following aspects of the freestream
noise spectrum, respectively:
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1. The overall magnitude of disturbances at all frequencies

2. The high-pass frequency threshold

3. The degree to which the spectra are “focused” into discrete frequency bands

In conclusion, Paull and Stalker developed a theory that thoroughly explored the
implications of the propagation of acoustic waves initiated in the driver gas. Seven
conditions were measured experimentally using pitot probes, including both shock-
tube and expansion-tube shots. The rationale for performing shock-tube shots is that
it isolates the first Riemann problem, i.e. it allows investigation of noise transmission
across the primary contact surface only, without complicating effects from the
secondary wave system. These preliminary experiments showed spectral features
consistent with their theory, but conclusive proof from an extensive experimental
campaign is not yet available in the literature. For example, there are no studies that
test for systematic trends in freestream noise metrics when a3/a2 is varied.

2.4 HET Experimental Campaign Design
A study of the HET freestream noise was performed using FLDI. Being impulsive
and high-enthalpy, HET presents a harsh environment for intrusive diagnostics, and
its short test times mean the lowest relevant frequencies are O(10 kHz). This makes
FLDI an attractive alternative for obtaining highly-resolved test time data.

2.4.1 Goals
The campaign firstly aimed to test the theory of Paull and Stalker, by looking for
trends in the freestream noise as a3/a2, a4, and a2/a7 were varied. Arguably, a3/a2

is the most important of these quantities for many applications, since it determines
howmuch driver noise is transmitted into the test gas in the first place. The driver gas
sound speed a4 is still important for this too: Paull and Stalker pointed out that argon
as a driver gas will give better a3/a2 than helium, yet should still yield a noisier test
gas because of a reduction in the bandwidth over which transmission is attenuated,
thus allowing higher-frequency components from the diaphragm rupture process to
be transmitted. In HET, a4 can be varied only by the choice of driver gas—although
in practice, all of the standard characterized conditions employ helium only. a2/a7

is of lesser importance because it modifies the spectral shape of the noise after it
has already been transmitted into the test gas. With the above points in mind, the
main objective was exploring the effect of varying a3/a2.
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Paull and Stalker only considered noise originating in the driver, and then only of a
particular form (lateral acoustic waves). Other possible sources of noise should not
be discounted, e.g. turbulent boundary layer radiation, secondary diaphragm/contact
surface effects. Hence, trends in parameters related to these effects, e.g. the
Reynolds number Re, will also be examined.

2.4.2 Challenges
Some previous supersonic and hypersonic applications of FLDI were in: Caltech’s
T5 reflected shock tunnel (0.034 kg m−3 < ρ∞ < 0.075 kg m−3) (Parziale et al.,
2014), the Penn State Supersonic Wind Tunnel (ρ∞ = 0.6 kg m−3), and the AEDC
Hypervelocity Tunnel 9 (ρ∞ = 0.0385 kg m−3) (Fulghum, 2014). However, two
of the most commonly-used HET conditions have ρ∞ < 0.004 kg m−3, an order of
magnitude lower even than the Tunnel 9 condition, which Fulghum described as
“very low” density for FLDI.

These values only offer an indication of likely signal levels, since FLDI responds
to fluctuations in density, rather than the absolute value of the mean density—a
very quiet tunnel might give no signal, even if the freestream density was high.
Furthermore, the gas composition is important: an identical ρ′ in helium and air
will yield very different n′. Nonetheless, with such low average densities, HET
poses a challenge for recovering adequate signal-to-noise ratios (SNR), even with
high relative fluctuations.

2.4.3 Experimental Campaign
As alreadymentioned, the six independent variables for designing an HET condition
are the initial compositions and pressures of each of the three sections. Although the
facility has the capability for arbitrary gas mixtures in the driven and acceleration
sections, this campaign uses four gases: He, Ar, CO2, and air to examine possible
real-gas effects. He and Ar are monatomic and near-ideal in behavior while having
an order of magnitude difference in atomic mass, air is largely diatomic, and CO2

has more degrees of freedom while being of similar mass to Ar.

The driver pressure p4 takes on discrete values, determined by the primary di-
aphragm thickness (Table 2.1). The exact burst pressure is recorded and used to
adjust the test condition calculation from the nominal values. Because HET was
designed primarily for use with a helium driver, the use of heavier driver gases is
restricted to the thinner diaphragms, otherwise the tube recoil is so large that it risks
the nozzle pulling right out of the test section.
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The driven and acceleration pressures (p1 and p5, respectively) are continuously vari-
able. The pressure differential across the secondary diaphragm (∆p = p1 − p5) is
restricted to . 10 kPa to prevent premature rupture. p1 and p5 are bounded from be-
low by the performance of the vacuum pumps, about 0.5 kPa and 5 mTorr ≈ 0.67 Pa
respectively. The upper bound on p5 is more arbitrary, although generally it should
be kept low (≤ 100 mTorr) for hypervelocity performance; here, 1 Torr ≈ 133 Pa
is used, as a trade-off between increased freestream density ρ7 (and thereby FLDI
sensitivity) and maintaining conditions relatively similar to the standard operating
range. This gives an upper bound on p1 of 10 kPa.

These bounds on composition and pressure can be used to compute performance
envelopes using LETS. A previous example of this was shown in Fig. 2.3. For
clarity, just the bounding contours of this type of plot can be displayed, to give a
performance envelope in various parameter spaces. This is done in Fig. 2.6 to show
a3/a2 vs. n7. The available gases give a total of 64 combinations, however only
cases with air as an acceleration gas are shown, because this is found these give
the highest n7—fortuitously, as air is the simplest acceleration gas to work with,
reducing the turnaround time between shots since less purging is required.

It is not possible to design campaigns where only one parameter varies while the
rest remain constant. For example, with fixed compositions, one can move along a
contour of fixed p5 while varying p1: this will change not only a3/a2, but also M7,
Re7, h07, etc. Instead, we attempt to keep n7 as high as possible (for good SNR)
while covering a wide range of both a3/a2 and other parameters of interest. A large
number of shots were performed so that various subsets of data would be dense
enough to show trends for each parameter. To reduce dependence on outlier shots or
unforeseen correlations between parameters, the same value of a3/a2 was achieved
in multiple shots using very different input conditions.

Because p5 has no effect on a3/a2 (which only relies on the primary Riemann
solution) it was kept higher than in usual HET conditions (1000 mTorr vs. a more
typical 50 mTorr), in order to improve n7. Test conditions were computed using a
range of combinations of driver and driven gases; helium was never used as a driven
gas because as shown by Fig. 2.6, its very low refractivity results in inadequate test
time signal.

A full list of shots performed for this campaign is given in Appendix E; the post-
processing and results are found in Chapter 7.
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Figure 2.6: HET performance envelopes in an a3/a2–n7 space, for fixed P4 cor-
responding to the thickest primary diaphragm. Envelopes bounded by 0.5 kPa <
p1 < 10 kPa and 10 mTorr < p5 < 1000 mTorr. Each subplot is for a given driver
gas composition, colors represent the driver/acceleration gas compositions. Dashed
contours indicate the lower bounds of these ranges, solid contours the upper bounds.
Some standard HET conditions are indicated for reference.

2.5 HET Optical Arms
During the HET flow-starting process, a complex outer flow-field is established due
to an initial reflection of the transmitted shock from thewindow recesses, followed by
further reflections in the cavity between the tube and test-section walls. These shock
reflections occur outside the core flow, however spatial filtering is unable to fully
remove their influence on the signal from the outer parts of the FLDI beams. This
is because shock waves are both very thin, and have a large jump in density, giving
very high local gradients in refractive index. Although the reflected shock signals
are much-attenuated compared with that from the incident shock, they still yield a
noisy signal that is indistinguishable from actual freestream noise. Furthermore,
the length scales of the test section are such that the reflected shock interactions
occur during the same period as test time when operating in expansion-tube mode.
For further details on this shock reflection process and its influence on the FLDI
response, see Section 4.4.



39

In order to mitigate the effects of these shock reflections on the FLDI signal, it
was decided to construct a pair of optical arms that would shield the FLDI beams
from the outer flow. Birch et al. (2020) also employed what they termed “flow
shrouds” to shield the outer portions of FLDI beams, although their goal was to
negate the influence of the nozzle boundary and shear layers. These layers were
a concern because their facility geometry necessitated narrow FLDI beams with
reduced spatial filtering, and their longer quasi-steady test times of 200 ms allowed
measurement of lower-frequency components that are less attenuated in the outer
beams.

Here, a “cookie cutter”-type geometry was used at the ends of hollow cylindrical
optical arms to provide an undisturbed freestream core for the FLDI to measure
(Figs. 2.7 and 2.8). A similar geometry was used by Parker et al. (2006) to shield
beams for tunable laser diode absorption spectroscopy in the LENS I shock tunnel.
In its normal configuration, HET has optical access through three glass windows.
The optical arm assembly has a flange with the same dimensions as this original
window that allows it to be clamped into position in the same way. The cookie
cutters have sharp leading edges designed to keep the oblique shock attached over a
relevant Mach number range. In order to keep the inner flow (between the parallel
faces of the cookie cutters) as undisturbed as possible, the bolt heads are recessed
and back-filled flush with the surface using low-viscosity RTV silicone, and the
optical window face is also flush. For more information on the design rationale and
specifications for these optical arms, see Appendix F.

Figure 2.7: Photograph of optical arm assembly.



40

Tube

Cookie Cutter Optical Arm

Test Section
Window

Optical Path

Cover Flange
Sightglass Weld Pad

Original
Window Cavity

(a) Top-down cross-sectioned view.

Recessed Bolt Heads

Flow Direction

Knife Edge

Window Clamp

Clamped Flange

(b) Oblique view, with one optical arm intact and the other cross-sectioned.

Figure 2.8: CAD model of optical arms installed in HET test section.
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2.6 VKF Tunnel D
The von Kármán Gas Dynamics Facility (VKF) Wind Tunnel D is a blowdown
facility at the Arnold Engineering Development Complex (AEDC) in Tennessee.
Originally in operation from the early 1950s through the late 1970s, it was reactivated
and modernized from 2016–19 (Hofferth and Ogg, 2018, 2019). Tunnel D features
a 12 in. (304.8 mm) square test section with flexible nozzle walls that allow air
flows of Mach 1.5–5.0 with stagnation pressures 34–414 kPa. The high-pressure air
supply is electrically heated at the inlet, although only enough to prevent liquefaction
during expansion through the nozzle. Downstream of the test section is a large (22 m
diameter) vacuumsphere that can be brought to pressures of 5–10 Torr; this allows for
increased performance when compared to venting to atmospheric pressure. Tunnel
D can sustain steady freestream flows for times on the order of minutes.

2.7 VKF Tunnel D Experimental Campaign Design
2.7.1 Goals
The goal of this campaign was to obtain simultaneous pitot and FLDI measurements
of the Tunnel D freestream, over the full range of stagnation pressures (and therefore
Reynolds number). Themain objective of obtaining such data is to test hypotheses on
how to convert each instrument’s output into static pressure or density fluctuations.
If consistent spectra are obtained between the two methods at moderate frequencies,
then the faster response of FLDI will allow for extension of the spectra beyond the
bandwidth of the pitot. Tunnel D is an ideal facility in which to test these concepts,
because it is a conventional wind tunnel with relatively well-understood disturbance
mechanisms. Furthermore, it is one of the few facilities where important aspects of
the freestream noise have already been characterized experimentally via pitot-HWA
(Donaldson and Wallace (1971), see Section 1.3 for further discussion). The long
test times allow for extensive record lengths and correspondingly detailed spectra.

2.7.2 Experimental Design
The campaign comprised a total of six runs (see Table 2.2). In each run, the facility
nozzle was set to a nominal Mach number of either 4.0 or 5.0, then a continuous
blowdown lasting several minutes was executed. The reservoir pressure pres was
varied in a stepwise fashion during this blowdown, while maintaining a nominally
constant reservoir temperature. At each pressure step, a 4 s burst of high-speed data
was acquired, and so each of these datasets are designated as “Run x, Burst y”. The
bursts are numbered in ascending order of pres (and hence Rem, per Table 2.3).
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Figure 2.9: Views of VKF Tunnel D. Source: AFRL/RQHX. Used/modified from
original with permission from J. W. Hofferth.

The pitot probe rig comprised two pressure transducers [Kulite XCQ-062-10A],
mounted at the horizontal midplane of the test section ±2 in. (50.8 mm) from
the vertical midplane. These were oriented with the sensor face directly into the
oncoming flow, i.e. operating as pitot pressure probes. The FLDI was constructed
such that the optical axis also lay in the horizontal midplane, with its foci directly
upstream from and coaxial with one of the pitot probes, i.e. the focal plane of
the FLDI was offset 50.8 mm from the vertical midplane, towards the catch-side
optics. A single isolated optical table spanned the test section, passing underneath
the facility. A pair of rigid frames† were constructed to elevate each rail of the FLDI
to be in line with the test section windows at either end of this optical table.

The high-speed data bursts were acquired at 3 MS/s with 16-bit depth [National
Instruments PXIe-6368]. Both pitot probes were acquired without filtering; the

†Designed by B. Valiferdowsi
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Table 2.2: VKF Tunnel D run summary

Run M∞ Notes
181 5.0 Shakedown run, data not used
182 5.0
183 5.0 Conditioned FLDI channel data lost
184 5.0 Accelerometers added
185 4.0
186 4.0 Original coaxial Kulite failed: swapped with other one

Table 2.3: Unit Reynolds numbers corresponding to the minimum and maximum
Tunnel D reservoir pressures at each Mach number used in the campaign.

M∞ Min. Rem
[×106 m−1]

Max. Rem
[×106 m−1]

4.0 1.4 17.9
5.0 1.0 10.4

FLDI signal was passed through a 50Ω inline terminator then split into two channels:
one raw and DC-coupled, the other AC-coupled, amplified (50× or 100×), and low-
pass filtered at the Nyquist frequency of 1.5 MHz. A range of other quantities
(e.g. reservoir condition) were recorded at a much lower rate of 10 S/s. The
facility operating software uses these to automatically compute additional freestream
quantities via gasdynamics. This acquisition was performed by a separate system to
the high-speed sampling, although the two can be synchronized using an IRIG time
reference. The result is that about 40 instances of freestream state parameters are
available for every burst of high-speed data: sufficient to describe the time-averaged
state, but not resolved enough to correlate any time-dependent features.

The pitot probe rig and data acquisition systems were designed and installed by the
AEDC research engineers, who also operated the facility. The FLDIwas constructed
and operated together with M. C. Neet.
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C h a p t e r 3

FOCUSED LASER DIFFERENTIAL INTERFEROMETRY

This chapter is concerned with the design, operation, and data processing for FLDI
systems. Section 3.1 gives the basic optical principles needed to select the com-
ponents for a standard FLDI, and Section 3.2 extends these to cover double FLDI
systems. Section 3.3 demonstrates how to assemble and align the components to
obtain a working interferometer, and Section 3.4 gives procedures for calibration
and post-processing that yield quantitative phase shift data.

The interpretation of the phase shift data in terms of flow quantities is left to
Chapters 4 and 5; this chapter is chiefly concerned with the practicalities of the
instrument itself.

3.1 Single FLDI Optical Design Procedure
The optical design of an FLDI is an optimization problem, with the objective of
minimizing w0, subject to dimensional constraints from the particular experimental
layout and the available optical components. Here, a design procedure for the single
FLDI configuration shown in Fig. 3.1 is given, although it is easily adapted for
alternative optical arrangements.

x

z Δ

L P1 WP1
D

F1 F2

P2WP2

PD

S1

S3 S3

S2 S2

S4

B

x

Figure 3.1: FLDI schematic repeated from Fig. 1.1, with dimensions Si added for
discussion in this chapter.

3.1.1 Ray Transfer Matrix Analysis
Ray transfer matrix analysis combined with Gaussian optics (Milonni and Eberly,
2010) can be used to model the transmitting side of the system. In this approach,
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a complex beam parameter q(zn) is modified by transfer matrices that represent the
various optical components. zn is the axial distance measured from the natural beam
waist (labeled B in Fig. 3.1), so to use this method the location and Gaussian radius
of this waist are required. These data are often provided by the laser manufacturer,
but should be confirmed experimentally using a beam profiler. The fixed value qn

at the natural waist is related to q f at the test-section focus by:

q f =
Aqn + B
Cqn + D

(3.1)

A, B, C, and D are the components of the overall transfer matrix M, here composed
from five elementary matrices representing three propagations and two thin lenses:

M =M5M4M3M2M1

=
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0 1
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S1, S2, and S4 are dimensions given in Fig. 3.1; f1 and f2 are the focal lengths of the
diverging (D) and focusing (F1) lenses, respectively. The beam parameter is given
by:

q(zn) =

[
1

R(zn)
+

iλL

πw2(zn)

]−1
(3.3)

The wavefront curvature R must be zero at a waist, and the test-section focus is by
definition another beam waist. It can be shown that this leads to the requirement
<(q f ) = 0, where q f ≡ q(zn = S1 + S2 + S4). The radius at the focus w0 can then
be extracted from =(q f )

∗. Although the optimization is over a 5-dimensional space
{S1,S2,S4, f1, f2}, in practice lenses are only available with discrete focal lengths,
giving instead a series of separate 3-dimensional optimizations for the lens positions
only. Typical bounds on this optimization include: S2 must be greater than the half-
width of an enclosed test section, and local beam widths must not exceed some

∗< and = denote the real and imaginary part, respectively.
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percentage of the lens apertures. The natural beam waist can be quite close to the
laser aperture, and if a periscope is used, this puts another bound on how short S4

can be.

Note that the polarizer and Wollaston prism are not included in this analysis. For
the small prism angles typically used for FLDI, the paraxial approximation holds,
and the splitting of the beam by the prism does not significantly alter the size or
axial location of the foci. However, when extending this method to a double FLDI
system, the prisms do need to be included in the above derivation. This is addressed
in the following Section 3.2. In order for the pair of beam centerlines to run parallel
in the test section (i.e. a constant ∆x), the Wollaston prism WP1 must be placed at
the focal point of the lens F1, i.e. S3 = f2. Through simple trigonometry:

∆x = 2S3 tan
(
θ

2

)
≈ S3θ (3.4)

where θ is the full prism splitting angle, and the approximation holds for small θ.
Because both theWollaston prism and focusing lens have finite thicknesses in reality,
it can be difficult to know where exactly to measure S3 from, and some perturbation
of the prism position while observing with a beam profiler may be required to ensure
∆x is sufficiently constant. The true behavior of Wollaston prisms is significantly
more complicated than implied by Eq. (3.4), particularly when the incident ray is
not normal to the prism. Indeed, for a focusing or diverging beam (as encountered
in FLDI), all rays except for the centerline are incident at an angle to the prism;
in a double FLDI even the centerlines of the primary beams are not normal to the
secondary prism (see Fig. 3.2). Nevertheless, for the small angles involved, it is
found that the simplistic approach taken here is adequately accurate; comparisons
of theoretical and actual ∆x are given at the end of Section 3.2. If higher precision
is desired, a useful treatment of the full behavior of Wollaston prisms is given by
Soref and McMahon (1966).

3.1.2 Polarizer Selection
The simplest FLDI configuration is for P1 and P2 to both be linear polarizers (LP),
oriented with their axes 45° to the principal axes of the Wollaston prisms. This
causes a reduction in intensity by a factor of two at each polarizer. Another simple
configuration uses a quarter-wave plate (QWP) for P1, exploiting the fact that most
lasers are already strongly linearly polarized. After passing throughWP1, the beams
are still linearly, orthogonally polarized, albeit antiphase instead of in-phase as when
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P1 is a LP. This makes no material difference, as the initial phase difference ∆Φ0

gets selected during the calibration process anyway (see Section 3.4). Additionally,
using a QWP avoids intensity loss. However, P2 still needs to be a LP in order to
recombine and interfere the beams. Smeets and George (1973) provide many other
viable prism/polarizer configurations.

The reason for the use herein of QWPs over LPs is the troublesome diffractive
effects encountered when using a LP. The original FLDI system the author inherited
from Parziale used two LPs of type Thorlabs LPVISB100, which functioned as
expected. However, when constructing a duplicate system, that model of LP had
been discontinued, with the recommended replacement being LPVISC100. It was
found that this LP model caused the beams to diffract into a 2D pattern instead of
remaining a single beam. Other replacement types of LP trialed also had this issue;
through discussion with the manufacturer it was determined that the fabrication
process had changed. It is suspected that differences in the lamination or nanoparticle
structure of the LP led to this issue. Conversely, QWPs are constructed from simple
birefringent materials and thus avoid the potential diffractive issues stemming from
the LP microstructure. This work uses a Thorlabs WPQ10M-532. Although there
must still be available LPs that behave correctly, this experience should serve to
show why a beam profiler is an invaluable tool when constructing an FLDI, because
beam issues such as this would be difficult to detect if aligning just by the unaided
eye.

3.2 Double FLDI Optical Design Procedure
The ray-tracing matrix methods used in Section 3.1 for the design of the single
FLDI can be extended to the double FLDI. Similarly, the design procedure has two
stages: first, the lenses are positioned in order tominimizew0; second, theWollaston
prisms are located after the lenses have already been fixed in place. The goal of
the second step is still to ensure that all 4 beam centerlines run parallel in the test
section. However, the computations are more involved compared to the single FLDI,
because the primary prism WPA should not simply be placed at the focal point of
the primary lens FA. Instead, it needs to be positioned such that the centerlines of
the two beams resulting from the primary split cross the optical axis exactly at the
secondary prism WPB, as was independently discovered by Bathel et al. (2020).
This is illustrated in Fig. 3.2. As a consequence of this requirement, the primary
lens must be focusing rather than diverging, which in turn leads to needing larger
distances in order to achieve the same w0 because the source focal point now lies
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between the two lenses rather than (virtually) before the diverging lens. There are
also practical limitations on how short the primary focal length can be, due to optical
aberrations and the fact that the lens and prism mounts restrict how close the prism
can be placed relative to the lens.

The pitch-side optics can be modeled as two sub-systems in series, each consisting
of a Wollaston prism followed by a focusing lens as shown in Fig. 3.3. Consider
only the centerline ray of each beam. A point on the ray can be described by a vector
r, composed of its orthogonal distance from the optical axis r and the local angle
the ray makes to this axis, φ:

r ≡

r

φ

 (3.5)

The output rays rout from each sub-system are linearly related to the input rays rin:

rout =Mi
(
rin ± rWP

)
(3.6)

The additive term rWP models the angular deviation of the Wollaston prisms:

rWP ≡


0

θ/2

 (3.7)

Mi models the combined effects of the displacements and the lens within each
sub-system (i ∈ {A,B}):

Mi ≡


1 −

d2i

fi
d1i −

d1id2i

fi
+ d2i

−
1
fi

−
d1i

fi
+ 1


(3.8)

Assuming that the single input ray is co-axial with the optical axis and thus normally-
incident on the first prism, then the four output rays of the full system are given
by:

ra,b
out =MB

(
(−1)aMBrWPA

+ (−1)brWPB

)
∀ a, b ∈ {0,1} (3.9)
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Figure 3.2: DFLDI pitch-side principal rays for incorrect (top) and correct (bottom)
primary Wollaston prism (WPA) positioning. In the correct configuration, all four
rays are parallel in the test section. Note the transverse (x) scale is exaggerated.
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Figure 3.3: Schematic of DFLDI pitch-side optics conceptualized as two optical
subsystems for application of ray-tracing matrix analysis.
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The requirement that all rays must be parallel with each other and the optical axis
in the test section gives φa,b = 0 ∀ a, b ∈ {0,1}. Due to symmetry, we can simply
consider any one of the rays and set φ = 0. Expanding out the relevant terms in
Eq. (3.9) yields:

1
2

{
−

1
fB

(
d1A −

d1Ad2A

fA
+ d2A

)
θA +

(
1 −

d1B

fB

) [(
1 −

d1A

fA

)
θA + θB

]}
= 0 (3.10)

Introduce the following non-dimensionalized variables:

F ≡
fA

fB
, Θ ≡

θA

θB
, X ≡

d1A

fA
, Y ≡

d1B

fB
, K ≡

d1B + d2A

fB
(3.11)

With these, Eq. (3.10) reduces to:

Y = Θ (K − F − 1) X + [1 + Θ (1 − K)] (3.12)

It can be shown that the secondary prism can still be at the focal point of the
secondary lens, which fixes Y = 1. Solutions with Y , 1 are possible, but this
complicates calculations and should be avoided unless experimental constraints
make it necessary. With this, the correct position of the primary prism can be
determined:

d1A = fAX = fA ·
K − 1

K − 1 − F
(3.13)

Note that this is independent of the properties of either prism. Now that all optical
component positions are known, the beam separations∆x1 and∆x2 can be computed:

∆x1 =
���r1,1

out − r2,1
out

��� = ���r1,2
out − r2,2

out

��� (3.14a)

∆x2 =
���r1,1

out − r1,2
out

��� = ���r2,1
out − r2,2

out

��� (3.14b)

Eq. (3.14a) evaluates to:

∆x1 =

[(
d1A −

d1Ad2A

fA
+ d2A

) (
d2B

fB
− 1

)
−

(
d1B −

d1Bd2B

fB
+ d2B

) (
d1A

fA
− 1

)]
θA

(3.15)
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Note that Eq. (3.15) is more general, it holds even if Y , 1 and |φ| , 0. A similar
equation can be derived for ∆x2, but for Y = 1, the simpler trigonometric derivation
as used for the single FLDI (Eq. (3.4)) still holds:

∆x2 = 2 fB tan
(
θB

2

)
≈ fBθB (3.16)

The optimal relative positions d1A, d1B, d2A, and d2B of the pitch-side optical
components are independent of θ1 and θ2. This makes the foci separations ∆x1 and
∆x2 (approximately) linearly dependent only on θ1 and θ2, respectively. This means,
for example, that ∆x1 can be doubled simply by doubling θ1, without re-positioning
any of the components, nor affecting ∆x2, and vice versa.

The above model is still restrained by the same limitations as the single DFLDI
design procedure: the paraxial assumption, and idealizedWollaston prism behavior.
Nevertheless, it performs satisfactorily in regimes where these approximations are
valid. For example, the first DFLDI constructed by the author had θA = 1°, θB = 2′,
fA = 30 mm, and fB = 300 mm. The predicted values using this scheme were
∆x1 = 334 µm and ∆x2 = 175 µm, compared with experimentally-measured values
of 364 ± 2 µm and 184 ± 2 µm, yielding errors of −8% and −5% respectively. A
subsequent modification was made: the primary Wollaston prism was increased to
θA = 5°, with a predicted ∆x1 = 1670 µm and ∆x2 unchanged. The measured values
were 1739±2 µm and 183±2 µm, i.e. the new ∆x1 was within 4% of the prediction,
and ∆x2 remained unchanged to within measurement precision. These results are
considered accurate enough for most design purposes, although it is still important
to get precise values experimentally via beam profiler, especially when ∆x1 is being
used for velocity calculations.

3.3 Optical Alignment
The practicalities of aligning all the optical components, and then performing a
calibration to ensure the FLDI is behaving correctly, are lacking in the literature.
The purpose of this section and the next is to provide details on how this can be done,
once the component specifications have been chosen according to the procedures of
Section 3.1 or 3.2.

It is helpful tomount each optical component on a translation stage to allow the optics
to be traversed perpendicular to the beam, (i.e. in the x-direction). In particular,
WP2 andP2 need to bemounted together on a single translation stage for the infinite-
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fringe configuration and calibration processes (discussed later). Furthermore, all
Wollaston prisms and polarizers require rotational kinematics. In this particular
setup, the system is mounted on two Newport X95-1 rails with associated rail
carriers and precision linear translation stages. These rails were chosen due to
the high stiffness afforded by their cross-sections, allowing the rails to be partially
cantilevered when required by restrictions of the facility test section.

The following is a step-by-step guide to the optical mounting and alignment proce-
dure, for a system where all components use standard optical posts and post-holders.

I Rails
The most desirable arrangement is a single, continuous, stiff optical rail span-
ning the full length of the FLDI system. This is usually not possible, due to
available rails not being long enough, or obstruction by the facility test section.
A normal system will have two rails, one pitch and one catch, whose axes
should be made precisely parallel to one another. It is possible to “bend” the
system using additional mirrors and rails if there is not enough space. It is also
preferable to have both rails mounted to the same isolated optical table, because
independent mounting can lead to relative motion between the rails, eliciting a
spurious FLDI response.

II Laser & Periscope
The laser should be placed at the pitch end of the optical setup, with a periscope
assembly to allow for precise directional control of the beam. First, the desired
final beam height should be chosen. Align the beam parallel to the rails at this
target height, and leave a target marker in place at the far end of the rails for
use in subsequent steps.

III Focusing Lenses
Starting with the transmitting side of the system, place F1 such that the beam
travels through its center. When this is achieved, the beam should strike the
same target point that was set in Step 1 without the lens in place. Next, make
the lens orthogonal to the optical path by aligning its back-reflection with the
incident beam path. The lens should be initially positioned such that when
it is twisted into alignment about its vertical axis, it tightens on the optical
post thread (i.e. clockwise viewed from above). Repeat the process for F2

on the receiving side of the system. If the laser was well-aligned with the
rails, the lenses can be initially located and aligned at arbitrary z-positions then
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subsequently translated to their final positions without disturbing the beam
direction.

IV Diverging Lens
D should be aligned in a similar manner to F1 and F2, ensuring that the beam
is passing through the center of the lens and aligning the back-reflection. It is
helpful to have D on its own stage as it needs to be temporarily removed from
the system in subsequent steps. Construct a position reference on the rail to
quickly re-locate it at the correct z-position.

V Prisms & Polarizers
For this step it is very helpful to have a beam profiler or suitable camera that
can be used to observe the beam focus. Without this, it is very difficult to
accurately measure the foci sizes and separation, or to notice any aberrations
(such as those discussed regarding polarizer selection in Section 3.1). Remove
D in order to have a narrow beam for alignment, then place a prism/polarizer
pair on the transmitting side, such that WP1 is separated from F1 by a distance
f1. The exact offset between the prism and polarizer is not important so long as
apertures are not exceeded. Align each component with the beam in the same
way as the lenses.

Place D back into the system, and position the beam profiler near the system
focal point. It may be necessary to temporarily introduce a neutral density
filter or beam splitter to reduce the beam power to protect the profiler. If
the transmitting-side optics are all in the correct positions, two foci will be
observed. Adjust the beam profiler position to find the plane where the foci size
is minimized; this should be equidistant between F1 and F2. The foci should
have a separation ∆x and Gaussian beam radius w0 close to the nominal design
values. With initial arbitrary rotational positions of WP1 and P1, the foci will
not necessarily be of the same intensity, nor horizontally-oriented. Use the
rotational mounts to control each of these aspects:

a Foci Intensity
This is controlled by polarizer rotation. Rotating through 360°, each foci
will undergo a full cycle of intensity. At the extrema, one focus will not
be visible, and the other will be at maximum intensity. Lock the polarizer
rotation at the midpoint where both foci are of equal intensity. The beam
profiler software used in this setup indicates the point of maximum intensity
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and the intensity centroid. At the desired configuration, the former should
be jumping between the two foci, and the latter should be at the midpoint.

b Foci Orientation
This is controlled by prism rotation. Typically, orientation in the streamwise
direction is desired.

Once this pair is aligned, the process should be repeated for WP2 and P2.
Aligning both pairs in turn on the transmitting side of the system allows the
use of the beam profiler to ensure that both pairs are behaving as expected; this
makes the final recombination easier. As with the diverging lens, an extra rail
carrier should be used for repeatable z-location after removal. Once both pairs
have been aligned, they can be fixed into the system. If P1 and P2 are both linear
polarizers, the pairs are interchangeable and it does not matter which is placed
on the transmitting or receiving sides. If a quarter-wave plate is substituted for
one of the linear polarizers, as in this setup, it must be used for P1 in order to
achieve the infinite-fringe configuration.

VI Infinite-Fringe Configuration
At this point all optical components, excluding the photodetector, should be
aligned and in place with their design separations. Now the FLDI system can
be put into the infinite-fringe configuration. This is done by adjusting the x-
and z-positions of the WP2–P2 pair. As previously noted, this pair must be
mounted on a single translation stage. Place a screen down-beam of the pair
at a location where the projected overlapping beams are large enough for easy
viewing.

Fig. 3.4 shows the fringe patterns obtained by translating WP2–P2 along the
beam path. When the pair are too close to F2, many straight, horizontal fringes
are visible on the screen (Fig. 3.4, top-left). Translation across the beam path
will cause the fringes to “scroll” across the screen, but the number of fringes
will remain constant. As the pair is translated in z away from F2 the number
of visible fringes decreases, (Fig. 3.4, upper row). Close to the infinite-fringe
location the fringes will start to become curved and eventually only a single
fringe will be visible (Fig. 3.5). Translating the pair across the beam path now
will cause the single fringe to translate across the screen, however, regions of
both light and dark will always be visible. At the correct z-location, this single
fringe will expand to fill the entire projected beam, and x-translation will cause
uniform brightening or darkening. If the pair is translated in z beyond the
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infinite-fringe location, the fringes straighten and the number of visible fringes
increases again, (Fig. 3.4, lower row). The infinite-fringe location should be
close to the nominal design position for the prism, i.e. at the focal length of F2.

Purely translatingWP2–P2 along the beam path is not always enough to achieve
the infinite-fringe configuration. Often the WP2 needs to be rotated from its
alignment configuration, in very small increments. Fig. 3.6 shows the effects of
this rotation. These fringe images were obtained by first putting the system into
the infinite-fringe z-position, then rotating the prism up to±45° from alignment.
The effect of this rotation on the fringes is similar to the effect of translation
discussed above: more fringes become visible further from alignment.

VII Photodetector
The final step in aligning the FLDI system is to replace the viewing screen
with the photodetector. It should be placed such that the sensor area is almost
completely filled by the beam. This is usually slightly in front of the beam
focal point to minimize the overall length of the system, but can also be behind
the focal point. Because beam recombination and interference occur at WP2

and P2 respectively, mirrors can be used anywhere down-beam of the pair to
redirect the light to the photodetector if space is limited.

3.4 Calibration & Post-Processing
Once the infinite-fringe configuration has been achieved as described in Section 3.3,
the FLDI is functional. Introduction of a density disturbance, e.g. a jet sprayed
from an air-duster near the foci, will yield a fluctuating voltage signal measured
by the photodetector. For some qualitative work it may be possible to immediately
employ the FLDI at this stage, but in most cases a calibration must be performed.
This refers to establishing the relationship between the raw voltage signalV , and the
FLDI phase response ∆Φ, as defined by Schmidt and Shepherd (2015). It will be
shown in Section 4.2 that the function

V = A sin (∆Φ − ∆Φ0) + D (3.17)

produces quantitative agreement with the theoretical FLDI response. Note it is not
important whether sin or cos is used, so long as a consistent convention is followed.
The following calibration procedures establish the constant values of A, D, and
∆Φ0. Translating the second prism-polarizer pair in the x-direction will trace out a
sinusoid in V .
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Toward Infinite Fringe (From F2)

Past Infinite Fringe (Toward PD)

Infinite Fringe

Figure 3.4: Fringe pattern obtained by translating receiving prism/polarizer pair
along beam path (z-direction). Figs. 3.4 to 3.6 provided by M. C. Neet and used
with permission.

Figure 3.5: Curving of single fringe near the infinite fringe alignment location.

+45° Prism Rotation

−45° Prism Rotation

Infinite Fringe

Figure 3.6: Effect of rotating Wollaston prism on fringes.
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3.4.1 Manual Method
The simplest method is to perturb the system in this way until both the minimum
and maximum values of V are found, and then compute A = (Vmax − Vmin)/2 and
D = (Vmax + Vmin)/2. ∆Φ0 is determined by the final value of V0, i.e. during
calibration there is no flow disturbance so ∆Φ = 0 and V0 = f (∆Φ0). Although this
method does not rely on linearizing the sinusoid as done by other authors (Parziale
et al., 2013b; Schmidt and Shepherd, 2015), V0 is usually chosen to be near the
middle of the range to give sensitivity to phase changes of either sign while avoiding
the phase ambiguity that occurs when an extrema is crossed.

3.4.2 Automated Method
The method of calibration above simply moves the WP2–P2 translation stage man-
ually. This relies on fitting a sinusoid based on only the voltage extreme, which is
prone to error, e.g. due to voltage noise fluctuations. Amore accurate and consistent
method is to use a mechanized translation stage for these optics. If the stage is made
to translate at a constant small velocity, then locally about the infinite fringe position
this is equivalent to a constant rate of change of ∆Φ0. This procedure traces out a
smooth sinusoid on the oscilloscope, then curve-fitting tools can be used to fit a sine
function to the whole calibration dataset, rather than relying on only a few extreme
points. Additionally, the “home” position can be set so that after the calibration
translation, the exact midpoint of the fringe can be returned to with high repeatabil-
ity. This method was employed during the HET campaign using a ThorlabsMT1-Z8
translation stage and a custom driver script that allowed for one-touch calibration
before every experiment.

3.4.3 Coupling
In applications where FLDI is being used tomeasure small-scale density fluctuations
(e.g. a turbulent spectrum) it is often beneficial to acquireV in an AC-coupled mode
in order to maximize bit depth. In this case, calibration should still be performed
in DC-coupled mode, with V0 being added back to VAC in post-processing before
inverting Eq. (3.17) to obtain ∆Φ(t). Alternatively, the signal can be split into AC-
and DC-coupled channels, with care being taken to keep terminating impedances
matched to avoid reducing the signal bandwidth.
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C h a p t e r 4

RESULTS: FLDI MODELING & VALIDATION

This chapter addresses the modeling of the FLDI response as a function of the flow
field being measured, and is largely comprised of material adapted and combined
from two publications: Lawson et al. (2020) and Lawson and Austin (2021). The
underlying analytical framework is introduced, along with a numerical implemen-
tation that allows for modeling of arbitrarily complex flow fields. The model is
validated via three experiments that test both the static and dynamic response of
FLDI. An important aspect of FLDI explored in all three of these experiments is the
spatial extent of the sensitive region, and how this depends on the length scales and
functional forms of the refractive index field.

The FLDI system characterized here is a refinement of the original instrument of
Parziale et al. (2012), and was designed by I. J. Grossman. The light source is a
200 mW, 532 nm laser [Spectra-Physics EXLSR-532-200-CDRH] and the detector
is a switchable-gain detector with 12 MHz bandwidth [Thorlabs PDA36A2]. All
studies in this chapter were performed with a nominally-identical FLDI, although it
was re-built for various experiments (e.g. tabletop work versus application to HET).
The Gaussian diameters and separation of the foci were measured using a beam
profiler [Thorlabs BP209-VIS].

The work in Section 4.2 is from Lawson et al. (2020), which gave d0 = 7±2 µm and
∆x = 180 ± 2 µm, while Sections 4.3 and 4.4 are from Lawson and Austin (2021)
and uses w0 = 4 ± 2 µm and ∆x = 184 ± 2 µm. The interchanging use of d0 vs.
w0 = d0 ÷ 2 is preserved here as per each parent work.

4.1 Modeling & Simulation
4.1.1 Analytical Model
Schmidt and Shepherd (2015) developed a ray-tracing theoretical model of FLDI
response, alongwith a numerical scheme to allow simulations of the instrument. The
two FLDI beams are modeled as parallel, focusing ray bundles, offset by a constant
small distance ∆x. A Cartesian co-ordinate system x = (x, y, z) is established with
the origin in the focal plane, equidistant from the two foci, as shown in Fig. 4.1.
Each ray in one beam is paired with a ray in the other beam, and is governed by the
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Figure 4.1: FLDI schematic repeated from Fig. 1.1 as a reminder of the co-ordinate
system used throughout this chapter.

paraxial approximation. Conceptually, this ray pair originates from a single location
at the source; rays are then separated a distance ∆x by the pitch-side optics. The
catch-side optics then recombine the ray pair at the detector, yielding an intensity
contribution that varies based on the relative phase offset between the rays. ∆Φ is
the phase change integrated across the detector:

∆Φ(t) =
2π
λL

∬
D

I0 sin

2π
λL

©«
D∫

S

n(x1, t)ds1 −

D∫
S

n(x2, t)ds2
ª®¬
 dξdη (4.1)

where n(xi, t) is the 3D refractive index field interrogated by the ith beam, si are the
parameterizations of the ray paths, and the source and detector planes, S and D,
have the co-ordinate system (ξ, η). The assumption is made that ray deflection is
negligible and thus these ray paths are constant and predetermined. The inner term
in parentheses represents the optical path difference (OPD) between the rays in a
pair. The contributions of all ray pairs are then integrated over the detector face. This
model assumes a coherent light source of wavelength λL , with normalized intensity
distribution I0(ξ, η). Invoking the small-angle approximation allows Eq. (4.1) to be
linearized, yielding Eq. (4.2).

∆Φ(t) =
2π
λL

∬
D

I0
©«

D∫
S

n(x1, t)ds1 −

D∫
S

n(x2, t)ds2
ª®¬ dξdη (4.2)

To compute the temporal response ∆Φ(t) for an unsteady flow field, a quasi-steady
approximation must be made, where it is assumed the optical time-of-flight is short
compared to flow timescales. An order-of-magnitude analysis based on the FLDI
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Figure 4.2: Schematic of focused beam discretization using (r, θ, z) co-ordinates.
A given ray si connects all points with the same (r̃i, θi), where r̃ ≡ r/w(z). Upon
passing through the focus at z = 0 all rays undergo image inversion such that
θi 7→ θi + π. In the computational domain, this inversion is accounted for during
the integration step.

spatial resolution and dimensions of typical wind tunnel facilities shows that flow
features would need velocities u ∼ O

(
104–105 m s−1) for this assumption to break

down.

The default optical parameters used in calculations and simulations throughout
this work are λL = 532.6 nm, ∆x = 180 µm, and the Gaussian radius of the foci,
w0 = 5 µm. These are representative of the experimental parameters.

4.1.2 Numerical Discretization
The optics used to separate and re-combine the beams are not modeled. Instead, only
the portion of the optical path between the two focusing lenses is simulated, with a
source plane after the pitch-side lens and a detector plane before the catch-side lens.
Note that Eq. (4.2) does not define a beam geometry, and is in fact descriptive of a
much more general class of interferometers than just FLDI. Rather, the information
about beam geometry is given by the function defining the ray paths si in Cartesian
space xi. Here, the beams obey Gaussian optics, and their geometry can be entirely
described a priori by ∆x, λL , and w0.

The beams are discretized into a series of circular slices along the z-axis (the
direction of optical propagation). Each z-slice is itself discretized using a universal
grid in polar co-ordinates (r̃, θ), where r̃ ≡ r/w(z) is the radius normalized by the
local Gaussian beam radius. A ray is then simply the locus of all points with constant
(r̃, θ), as illustrated in Fig. 4.2a. A refractive index field is sampled at each beam
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grid point, then numerical integrations are performed pairwise along the rays, and
finally over the detector plane. This is equivalent to recasting Eq. (4.2) as:

∆Φ =
2π
λL

2π∫
0

∞∫
0

Ĩ0 (r̃)

( zb∫
za

n1dz −

zb∫
za

n2dz

)
r̃dr̃dθ (4.3)

Note the shorthand ni = n(xi) is employed, and the time-dependence is left implicit.
For a Gaussian beam, the normalized intensity profile is given by:

Ĩ0 (r̃) =
2
π

exp
(
−2r̃2

)
(4.4)

The Gaussian beam radius is:

w(z) =

√√√√
w2

0
©«1 +

[
λL z
πw2

0

]2ª®¬ (4.5)

The beams extend over the range [za, zb], and the co-ordinate transforms are:

x1 = r̃w cos θ + ∆x/2 (4.6a)

x2 = r̃w cos θ − ∆x/2 (4.6b)

y = r̃w sin θ (4.6c)

The numerical integration in r̃ requires finite truncation of the upper limit, which
is done here at r̃ = 2. For further discussion on how this truncation is chosen,
along with other details of the discretization scheme, such as the construction and
validation of the grids, please refer to Schmidt and Shepherd (2015).

4.1.3 Implementation
The above discretization scheme was implemented in Python. The array structures
provided by NumPy (Harris et al., 2020) allow for optimized array operations and
much more readable code than looping over the grid points, at the cost of memory
overhead. The beams are represented by 3D meshgrids R, Θ, and Z , each of shape
(nr,nθ,nz); along each axis, r̃ , θ, and z are held constant, respectively. In order
to interact with flow-field co-ordinate systems, which are most often defined as
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Cartesian, one can either transform the flow-field to normalized polar co-ordinates
and integrate using Eq. (4.3), or transform the beam grids to Cartesian co-ordinates
and use Eq. (4.2). The former approach turns out to be very useful for deriving
analytical expressions for ∆Φ, but this is outside the scope of this work. For the
numerical implementation we use the latter approach. The beam grids R and Θ are
transformed to Cartesian co-ordinate arrays X(R,Θ) and Y (R,Θ).

{X,Y, Z} are used with the Pythagorean theorem to compute the ray trajectory array
Σ, which stores the ray path length at every beam grid point, measured from the
source plane. Because the two FLDI beams are identical in all ways except their
x-offset, only one set of these arrays needs to be computed and stored. To account
for this offset when computing the refractive index n(x) on each grid, the two beams
are passed to the assigning function as {X ± ∆x/2,Y, Z}. This results in different
refractive index arrays for each beam, N+ and N−. To implement the inner line
integrals of Eq. (4.2), Simpson’s method is performed to integrate along the ray
paths si using the integrand N± · Σ. This yields two arrays J± of shape (nr,nθ);
J+− J− represents the OPD at each point in the detector plane. Simpson’s method is
invoked again, employing R and Θ to perform the outer double integral of Eq. (4.2),
where the generic co-ordinate system (ξ, η) is chosen to be (r, θ). This returns the
scalar FLDI response ∆Φ.

The functions that assign refractive index to the beam grids for each time instant
are separate from the core routines, and only interface with the beam object via a
universal wrapper function. This means the beams are constructed and integrated
agnostic to how the flow geometry is defined. Several methods of defining n(x)

are available, including analytical functions (e.g. Section 4.3), HDF files (e.g.
Section 4.4), and experimental datasets (e.g. Section 4.2). Generally, the flow is
first defined or computed as a density field, which is converted to refractive index
using the Lorenz-Lorentz equation (Eq. (1.2)) with constants taken from Gardiner
et al. (1981). If an analytical function n(x) is available, then this can just be
invoked at each beam grid point. For interpolation of numerical or experimental
datasets (which are usually Cartesian) onto the beam grids, n(x) would need to be
computed or measured within the Cartesian bounding box of the beams. The most
conservative z-extent for this box ranges from the pitch-side focusing lens to the
catch-side focusing lens, although this can be truncated to exclude portions of the
beam where it is known that the n(x) field is uniform and steady.

Besides the improvements offered by array operations, the current code includes
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some other changes from the original implementation of Schmidt and Shepherd.
Firstly, the z-grid does not need to be linearly spaced: arbitrary distributions of
grid-points are supported, allowing for mesh refinement close to the focal plane
where w(z) can be an order of magnitude smaller than the constant δz = 100 µm
originally prescribed.

A subtler change is image inversion: the above definition of a ray as being the locus
of constant (r̃, θ) is not physical, as it implies a ray originating in a given quadrant of
the source will terminate in the same quadrant at the detector. In reality, the optical
image must invert through the focus, so a ray terminates in the diagonally-opposite
quadrant. More precisely, in this beam geometry, a ray through all (r̃, θ) before the
focal plane must pass through all (r̃, θ + π) after the focal plane. For many classes of
disturbance geometry, factors such as symmetry, localization of the disturbance to
one side of the focal plane, or the very small beam widths near the focus mean that
this inversion does not noticeably affect the instrument response. However, for one
class of problem, the clipping of beams by solid objects, inversion is a key effect
(see Appendix C). The most efficient way to implement optical inversion without
disrupting the numerical framework is as follows: compute N± = f (X ±∆x/2,Y, Z)
as before, then for all slices of N± for which z < 0 (pitch side of focal plane)
perform an array cycling operation along the θ-axis such that a row originally at
θ = θ0 is switched with the row at θ = θ0 + π. No other arrays need to be altered.
Now when the ray integrations are performed, the correct values of n(xi) along the
physically-accurate ray are used. The Gaussian optics assumption means that the
beams have finite radius even at the focus, so this introduces a local discontinuity in
connectivity in dsi, however with appropriate choice of δz this introduces negligible
error. The only other restriction introduced by optical inversion is the requirement
that nθ needs to be even.

4.1.4 Grid Resolution
The original implementation of Schmidt and Shepherd defined the beam grid res-
olution using two parameters: the number of points in the θ̂-direction, nθ , and the
spacing of the z-slices, δz. The number and distribution of points in the r̂-direction
is a function of nθ . They performed a convergence study using a 2D sinusoidal
disturbance, with an analytically-determined solution as a convergence target, and
found that nθ = 300 and δz = 100 µm were adequate for convergence.

In this work, the following grid resolution was chosen: nθ = 256 and δz = 250 µm,
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and is used for all instrument simulations herein. As mentioned, this new imple-
mentation allows for non-uniform z-resolution. Thus, near the foci (|z | < 20 mm),
the grid is refined by a factor of 5, giving δz = 50 µm. These parameters yield
(nr,nθ,nz) = (311,256,1441), giving 79,616 grid points per z-slice, and almost 115
million total grid points per beam.

A grid resolution study was performed using a propagating shock representative of
those simulated in this work (Fig. 4.3). Unlike the sinusoidal disturbance used by
Schmidt and Shepherd, there is no known analytical response function to compare
with. The chosen parameters are deemed to give sufficiently precise results relative
to the experimental uncertainties, using the root mean square (RMS) of the residual
error as a metric (Fig. 4.4).

4.2 Characterization & Validation
In all previous experimental studies by other authors, the phase object (e.g. a gas
jet) used to probe the FLDI response was either quantitatively uncharacterized, or
indirectly characterized via simulation. The spatial positioning of the foci with
respect to this phase object was generally not known to a precision comparable with
the FLDI characteristic dimensions (typically the foci spacing is on the order of
hundreds of µm, and the foci diameters themselves are tens of µm). Hence, this
study aims tomore fully and directly characterize the phase object by simultaneously
making an independent measurement of the refractive index field using a Mach-
Zehnder interferometer (MZI). The objectives of this characterization study are:

1. Experimentally obtain the response of an FLDI system to a known static
refractive index field, and use these data to validate Schmidt and Shepherd’s
computational model. A steady laminar jet is used for this objective.

2. Experimentally obtain the response of an FLDI system to a dynamic refractive
index field of known frequency, and use these data to validate Schmidt and
Shepherd’s predictions for wavenumber dependence based on their analytical
transfer functions. An ultrasonic acoustic beam is used for this objective.

3. Use the validated model to explore the FLDI response as a function of the
optical system parameters, such as the foci size and spacing. The purpose
of this is to better understand how accurately these parameters need to be
known, as well as informing the design of new FLDI systems for a particular
application.
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Figure 4.3: Grid resolution studies for nθ and δz. In all cases, δz is refined by a
factor of 5 for |z | < 20 mm.
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Figure 4.4: RMS residual error trends for grid resolution, computed for cases in
Fig. 4.3. Highest-resolution case used as reference.

4.2.1 Optical Design
The MZI uses the same type of laser as the FLDI system. The measurement beam
passes through the measurement volume, intersecting orthogonally with the FLDI
foci (Fig. 4.5), with a field of view 7.7 mm wide by 4.8 mm high. The reference
beam is routed around the measurement volume and remains unperturbed. For this
work, the MZI was set up with horizontal fringes with a density of 10.8 fringes/mm,
yielding about 15 px/fringe. This fringe density is a compromise between the spatial
resolution of the refractive index field, and the discretization artifacts that arise from
too few pixels per fringe.

When the measurement beam is perturbed by a phase object the horizontal fringes
are deflected. The response of a MZI has been extensively studied (Merzkirch,
1987), and the refractive index field can be calculated from fringe deflection using
the post-processing tools from Coronel et al. (2018). In the Supplementary Material
of that work, an error estimation is performed, using a synthetic refractive index
field, corrupted with artificial noise. Even with 10% synthetic noise, the error within
their thermal boundary layer (similar in geometry to our laminar jet) remained below
2% except very close to solid surfaces. Our refractive index gradients (and therefore
fringe distortion) are considerably less severe than their simulated case, so we
expect our uncertainties to also be below 2%, except possibly very close to the axis
of rotation where the Abel inversion performs less well.
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Figure 4.5: Schematic diagram of FLDI and MZI simultaneously observing the
measurement volume (MV). FLDI beams shown in green. MZI beams shown in
red for clarity. Annotations: L = laser, BE = beam expander, BS = beam-splitter, M
= flat mirror, F = focusing lens, D = diverging lens, P = polarizer, WP = Wollaston
prism, PD = photodetector, CCD = charge-coupled device (camera).

4.2.2 Laminar Jet
A jet was located in the measurement volume with its vertical axis perpendicular to
the optical table, i.e. in the y-direction of the previously-defined FLDI co-ordinate
system. A round jet was chosen as the phase object because the index of refraction
of the axisymmetric flow field can be calculated via Abel inversion from the Mach-
Zehnder interferograms. Additionally, this axisymmetry allows the MZI to observe
the jet orthogonally to the FLDI beam direction (see Fig. 4.5). Helium was chosen
as the jet gas because its refractive index is sufficiently different enough from air so
that the MZI and FLDI results are of high quality. Other common gases have similar
∆n with respect to air (e.g. CO2), but He is lighter than air so the plume will not
affect the measurement volume by returning via a “geyser” effect. Steady flow was
achieved by controlling the He flow-rate using a two-stage pressure regulator and a
rotameter. The jet was kept laminar via flow-straightening features in the plenum,
followed by a contoured nozzle, designed and constructed∗ for this purpose, of outlet
diameter 0.5 mm. The flow-rate was approximately 36 cm3 s−1, which corresponds

∗By M. C. Neet, who was also involved in the construction of both interferometers, and helped
conduct all experiments that used the laminar jet.
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to a Reynolds number of 390 based on this diameter. As a check, the reference beam
of the MZI was blocked, and a knife-edge placed near the focus located beyond
focusing lens F-2 (Fig. 4.5). This turned the MZI into a schlieren system, which
was used to directly observe the jet and validate that it was steady and laminar.

The laminar jet was mounted on motorized translation stages [Thorlabs MT1-Z8].
One stage was oriented to translate along the x-axis and the other stage orthogonally
along the z-axis. These stages have a minimum bidirectional repeatability of 1.5 µm.
The jet was translated 12 mm across the beams with 0.1 mm resolution and 37 mm
along the beams with 1 mm resolution. Overlapping automated traverse patterns
were executed in this plane, covering the entire domain multiple times so that
several independent measurements were made at every (x, z) co-ordinate, with each
location being visited between 5 to 17 times. FLDI data were acquired at each
position for 1 second [Yokogawa DL850] at between 1–10 kS/s. This was then
used to calculate an average voltage V at each location. V was then converted to the
integrated phase difference, ∆Φ, using Eq. (3.17). The constants in this equation
are determined using the calibration procedures described in Section 3.4.

Referring to Fig. 4.5, both interferometers are stationary with respect to the optical
table. The test phase object (in this case, the laminar jet) moves. This means that
the fringe image of the jet moves in the MZI field-of-view (FoV). The magnification
of this FoV was chosen such that the jet diameter was at least several fringe widths.
The jet traverses beyond the FoV in the z-direction, which means the jet was not
visible to MZI at every test location. However, because the jet flow is nominally
steady, a sufficient number of interferograms were obtained while the jet was visible,
and these were used to build up a single composite image of the jet refractive index
field. The symmetries of the jet and FLDI response were used to determine the
location of the FLDI origin relative to the jet axis. A similar approach was taken by
Schmidt and Shepherd (2015) in their experimental jet validation.

These two datasets, from the FLDI and MZI measurements are used to investigate
the model of Eq. (4.2) for FLDI, using the new implementation of Schmidt and
Shepherd’s algorithm detailed in Section 4.1. The experimentally-measured values
of ∆x and d0 are used to define the beam geometry. The jet origin is then fixed at a
constant negative value of y jet , i.e. below the FLDI foci, as per the experiment. The
axisymmetric rotation of the MZI 2D ∆n field about the vertical axis through the
jet origin generates a cylindrical region in the domain, where jet data is available.
Outside of this region, it is assumed that ∆n = 0, i.e. that the far-field refractive
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index is attained by the edge of the MZI FoV. For every discretization point of the
beams that lies within this cylindrical measurement volume, rectangular bivariate
spline interpolation is used to calculate the refractive index value at that point. The
integrations of Eq. (4.2) are then performed to yield a simulated FLDI ∆Φ value
from the experimental MZI data. ∆Φ is computed in this way at every (x, z) jet
location used in the experimental campaign.

4.2.3 Free Ultrasonic Acoustic Beam
A commercial electrostatic ultrasonic transducer [Senscomp Series 600], resonant
frequency 50 kHz, was used to generate a dynamic phase object in the FLDI mea-
surement volume. This particular transducer was chosen because it is designed for
operation in air, and it is a broadband device which can be operated at frequencies
quite far from its resonance frequency while still emitting significant acoustic power.
The transducer was oriented with its surface orthogonal to the x-axis, such that a
propagating wavefront would reach one FLDI beam before the other, thereby gen-
erating a response. It was driven using a continuous sinusoidal signal with a single
frequency component. The manufacturer’s data show a moderately flat transmission
response above resonance out to 100 kHz, though with more rapid drop-off below
resonance; in this study frequencies between 30–100 kHz are used. Per the manu-
facturer specifications, at 50 kHz the beam pattern is multi-lobed, with the majority
of the acoustic power within ±15° of the axis. It is not known how this pattern
changes with frequency, and unfortunately, the density perturbations induced by the
transducer are much too weak to be visualized by the MZI.

The transducer face was located approximately 60 mm from the FLDI optical axis,
with the acoustic axis close to y = 0. The transducer was mounted on an optical rail
that allowed it to be traversed along the z-direction up to the full distance between
the FLDI focusing lenses, with a precision of 1 mm. At each traverse location and
frequency, the AC-coupled FLDI photodetector signal was recorded at 5 MS/s over
a record length of 50 µs.

4.2.4 Laminar Jet Results
The main experimental campaign was carried out with the FLDI foci 5.37 mm
above the jet orifice. The traversals in this x–z plane were the most thorough, with
each (x, z) location being visited between 5 to 17 times. The averaged ∆Φ surface
obtained is shown in Fig. 4.6, from two different viewpoints. The form of the surface
is as expected: in the far-field, where both beams traverse nominally uniform air,
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there is no phase shift. When one beam begins to interact with the helium jet, ∆Φ
increases because this beam is now integrating a significantly lower refractive index
than air. A maximum is reached, then ∆Φ decreases again, until reaching zero at
the point where both beams are symmetrically arranged about the jet axis—at this
position, the beams integrate the same ∆n field. As the jet continues to move in
the x-direction, the same ∆Φ signal is obtained, except with opposite sign. In the
z-direction, the decrease in signal amplitude is especially apparent in Fig. 4.6b. The
foci centroid is within the traverse range of the experiment, since the zero-crossing
between the positive and negative peaks (the x-coordinate of the centroid) and the
global extrema of ∆Φ (the z-coordinate of the centroid) are both visible. Note the
noise spikes that are visible in Fig. 4.6b: because the signal changes very rapidly
near x = 0, very small alignment errors can cause an individual ∆Φ data point to be
assigned to a neighboring bin during the averaging process, skewing the cumulative
average.

In addition to the expected drop-off in response as the jet is moved away from z = 0,
it is also noted that the extrema diverge with increasing x. This is shown in Fig. 4.7,
where slices at select values of z are taken from the data in Fig. 4.6. Although
the symmetry about x = 0 persists, the peak and trough move further from the
centroid as z increases. The x-location of these extrema depends on the convolution
of the local beam intensity and jet refractive index profiles, which both broaden as
functions of position along the jet or beam axes. It is not simple to deduce from
characteristic dimensions of the system exactly where this will be; note that even at
z = 0 the extrema are not at x = ±∆x/2 (i.e. co-located with the beam centerlines).
However, the qualitative trends can be understood by comparing Fig. 4.12a with
Fig. 4.12b. In the former, d0 = 10 µm is small, so the beam focusing angle is large,
causing the beam widths (and thereby intensity profiles) to rapidly broaden, and the
extrema move outwards in x by a considerable amount; in the latter, d0 is much
larger at 100 µm, the focusing angle is smaller, and the extrema diverge at a slower
rate.

The averaged refractive index field of the jet is shown in Fig. 4.8. Note that it
is presented as ∆n (with respect to the far-field value). This is done because to
calculate n absolutely, a value for the ambient room air n0 is required. However, this
is unnecessary, because Eq. (4.2) integrates a cumulative difference in n between
the two beams; hence adding a constant n0 will not change the calculated ∆Φ.
Hecht (2002) gives n for air and helium at 0 ◦C, 1 atm, and 589.29 nm, which are
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Figure 4.6: Averaged ∆Φ profile obtained from traversing the jet in an x–z plane
5.37 mm below the FLDI foci. ∆x = 0.1 mm, ∆z = 1 mm.
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Figure 4.7: Experimental FLDI demonstration of variation in the x-location of the
extrema of ∆Φ as z increases.

comparable to the conditions in this work. These values yield ∆n = nHe − nair =

−25.7 × 10−5. This is slightly higher than the maximum values obtained of around
−19.0 × 10−5, but this full difference would only be expected in regions of pure
helium, i.e. near the jet centerline. The contour map and the overlaid radial cross-
section show that although the data are still a little noisy even after averaging, both
the spatial extent and magnitude of the ∆n field are in line with expectations, given
the gases used and the size of the jet orifice.

Shown in Fig. 4.9a is a simulation of a single x-traverse in the plane of best focus.
The experimental location of x = 0 was found by choosing the midpoint of the
x-locations of the peak and trough of the data; no further adjustments have been
made. The∆Φ are the averaged raw values converted directly from the photodetector
voltagemeasurements. We observe excellent qualitative and quantitative agreement,
particularly on the left-hand side of the signal. The simulated FLDI peaks are, by
definition, symmetrical about x = 0, but asymmetry is observed in the experimental
peaks, with a difference in amplitude of about 0.1 rad between the positive and
negative peaks. The asymmetry seen between the positive and negative peaks of the
experimental data could be due to either asymmetry in the FLDI system (e.g. foci of
slightly different diameters) or in the jet (e.g. the jet axis being tilted). To mitigate
jet tilt due to drafts, an enclosure was constructed around the jet assembly for the
second set of experiments. An additional set of FLDI and MZI measurements were
made with the jet assembly raised up, such that the jet origin was very close to the
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Figure 4.8: Experimental MZI data showing average ∆n field of the axisymmetric
He jet.

foci, only 0.15 mm below the FLDI plane. This was done in order to probe the core
of the jet before it diverges or significantly mixes with the surrounding air. The
corresponding comparison of experimental and simulated FLDI output is given in
Fig. 4.9b. In this case, the simulation based on MZI measurements and the FLDI
data agree within the uncertainty of the FLDI data. Qualitatively, the experiments
at each of the two positions give the same response, the main difference being that
in the second case, the peaks are narrower and taller. This is due to the jet gradually
diverging with axial distance from the nozzle, so at the location of Fig. 4.9b (closer
to the nozzle), the refractive index profile is narrower, with increased gradients.
Note that in this case, the experimental signal is much more symmetric, i.e. the
peaks are of similar amplitude. No changes were made to the FLDI setup between
these experiments; the only difference was that the jet assembly was raised and
repositioned, which may have subtly changed the orientation of the jet. This result
points toward the asymmetry having originated from the jet rather than from the
FLDI alignment.

The above results show that the computational model can quantitatively predict the
response at beam focus to within experimental error. Next, the spatial sensitivity
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(a) yjet = −5.37 mm (Main experimental campaign).
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Figure 4.9: Comparison of experimental (blue) and simulated (red) FLDI responses
to an x-traverse of the He jet at two positions below the foci, both at z = 0, i.e. in the
plane of best focus. The experimental error bounds are quantified by the standard
deviation σ of the average measurement at each location.
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was examined, as quantified by the drop-off in ∆Φ as z increases. At every z

location, the maximum and minimum value of ∆Φ was extracted. Comparison was
then made with simulation in Fig. 4.10a. Various values of d0 were simulated,
still using the same experimental MZI input data for the jet. The rate of drop-off
increases as d0 decreases, and for this set of data, the experimental drop-off most
closely matches the d0 = 10 µm simulation, which is in reasonable agreement with
the experimentally-measured focal size of 7 ± 2 µm. Note that all the curves meet
at z = 0, i.e. the magnitude of the simulated signal in the beam focal plane (e.g.
Fig. 4.9) is not affected by d0. The experimental decay of the positive peaks plotted
in the upper half of Fig. 4.10a is offset from the simulated data by a constant value,
due to the aforementioned asymmetry in the peaks present only in this dataset.

Following the two experimental campaigns using the translation stage setup de-
scribed above (which had a total z range of 37 mm bounding the focal plane), a third
setup was created, where a single mechanized stage (oriented in the x-direction)
was mounted to a linear rail (oriented in the z-direction). This gave a z range of
more than 200 mm in one direction—the jet assembly could be moved right up to
the focusing lens (F-1 in Fig. 4.5). This was a less precise setup: the linear rail only
offers precision of 1 mm. However, this was satisfactory for the purpose of studying
whether the long-range behavior remained consistent with the simulated predictions.
Also note that due to the different mounting arrangement, y jet = 8.90 mm in this
configuration. A new set of MZI interferograms were acquired for this height, to
be used in the corresponding simulations. The asymmetry in amplitude between
the peaks and troughs was again absent. It was also clear from both the FLDI and
MZI data that the jet was less steady. For these data, we are substantially higher
in the jet, at almost 18 nozzle diameters from the origin, where it is likely that
there is substantial unsteadiness from entrainment. In Fig. 4.10b it is seen that the
experimental drop-off agrees best with the simulation for d0 = 10 µm, which is the
same as in Fig. 4.10a.

The effects of changing d0 and ∆x were explored in the simulations. Fig. 4.11
shows simulations in the focal plane. As before, d0 has no effect on the gross shape
of the signal in this plane, but the zoomed inset in Fig. 4.11a illustrates that the
signal becomes less smooth as d0 decreases. Recall from Fig. 4.8 that the input data
from MZI has small-scale noise. As d0 becomes smaller, there is less integration
over the beam area of this noise. In contrast, ∆x has a large effect on the signal:
as ∆x increases, the signal magnitude increases, and the peaks also broaden. This
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Figure 4.10: Experimental and simulated sensitivity decrease as the jet moves
further from the FLDI focal plane. Simulations repeated with a range of foci sizes
(d0).
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also makes sense, as when the beams are further apart, they traverse regions of the
refractive index field that have larger differences from each other, which is reflected
in ∆Φ, being an integrated measure of these differences. Fig. 4.12 illustrates the
strong effect d0 has on spatial sensitivity: for d0 = 10 µm, the signal has roughly
halved 25 mm from the focus, and has decayed almost to nothing by z = 200 mm,
whereas for d0 = 100 µm, the signal decrease is far more gradual, with significant
response even 500 mm from the focal plane. This behavior is expected: under the
assumption of Gaussian beam propagation in the model, a smaller d0 requires the
beams to converge and diverge more rapidly with z. This is alluded to in Settles
and Fulghum (2016), where they discuss how the “elongation of the region of best
sensitivity in z depends on the lens f /number”, as this number determines how
rapidly the beam converges to its best focus. Note that in the limit of constant
beam diameter, the device is no longer “focused” and is now just a laser differential
interferometer (LDI), with no spatial sensitivity.

4.2.5 Free Ultrasonic Acoustic Beam Results
Data from the ultrasound experiment were obtained over the full traverse range of
approximately 1000 mm between the two field lenses. The distances in x and y

of the acoustic source from the FLDI beam axis were kept constant, as were the
driving voltage amplitude and bias. Because the dependence of acoustic beam power
and shape on frequency is unknown, the FLDI response was normalized using the
maximum response at each frequency. This was done by computing the Welch
power spectrum for each dataset [Hann window, 50% overlap, ∆ f = 305 Hz], then
extracting the power spectral density (PSD) of the peak at the driving frequency.

These normalized data are shown in Fig. 4.13a. All frequencies show aGaussian-like
symmetrical decay away from the focal plane. Note that the lowest-frequency data
are somewhat noisier, this is due to the transducer having a weaker response below
its resonant frequency, and hence lower signal-to-noise ratios. The general trend is
that higher frequencies are more spatially filtered than lower frequencies, with the
100 kHz signal decaying to the noise floor in approximately 25% the distance taken
by the 30 kHz signal. This is the qualitative result predicted by previous works.
In order to more quantitatively compare these data to the theoretical models, the
analytical transfer functions of Schmidt and Shepherd are considered. These were
derived from the same underlying theory as their numerical model, with analytical
solutions obtained for particular disturbance geometries. An analytical treatment of
FLDI that incorporates and extends upon these results of Schmidt and Shepherd is
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presented in Chapter 5.

Schmidt and Shepherd normalized the response of the FLDI using the true derivative
of the phase field, giving transfer functions of the form:

H ≡
∆Φ/∆x
dΦ/dx

(4.7)

Their transfer function for the fundamental case of a sinusoidal plane wave of
infinitesimal thickness is:

H(k) = Hs(k) × Hw(k)

=
2

k∆x
sin

(
k∆x

2

)
× exp

(
−
w2k2

8

) (4.8)

where w is the Gaussian beam radius at the location of the disturbance, and k is
the wavenumber of the single-frequency sinusoidal disturbance. H(k) is the overall
transfer function, which can be decomposed into the effects of the beam separation
Hs(k), and of the beam widths Hw(k). It is this latter term that is responsible for the
spatial filtering of FLDI, due to w increasing with z; this filtering is wavenumber-
dependent.

The acoustic fields generated in this experiment are fundamentally sinusoidal, al-
though with more complicated spatial distributions. However, the infinitesimally-
thin plane wave is the fundamental model used as a starting point for derivations of
the transfer functions of more complex disturbance geometries, and it is assumed
that Eq. (4.8) will still predict the approximate scaling.

We compare the spatial filtering dependence on wave number predicted in Eq. (4.8)
with dynamic experimental data. Over the range of axial positions z, at each ultra-
sound driving frequency f0, a time-series ∆Φ(t, z) was recorded, then transformed
into a PSD |∆Φ(k, z)|2. As mentioned, the intensity of response of the FLDI to
the driving frequency was quantified by isolating the value of the PSD at the k0

corresponding to f0, i.e. |∆Φ(k0, z)|2. The value of the PSD at the focal plane was
used for normalization, such that the quantity H′ plotted in Fig. 4.13a is:

H′(k0, z) =
|∆Φ(k0, z)|2

|∆Φ(k0,0)|2
(4.9)

As the true derivative of the phase field, dΦ/dx, is independent of the z-position of
the ultrasound transducer, Eq. (4.9) can be expressed as:
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Figure 4.13: Results of the ultrasonic beam experiments. (a) shows the drop-off in
FLDI response moving away from the location of the foci at z = 0. (b) shows the
same data, plotting using the variables suggested by the analytical transfer function
model. Frequencies f0 range from 30–100 kHz in 5 kHz increments.
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H′(k0, z) =
|∆Φ(k0, z)|2/∆x2

(dΦ/dx)2
·

(dΦ/dx)2

|∆Φ(k0,0)|2/∆x2 (4.10)

By comparison with Eq. (4.7), this is a ratio of two of Schmidt and Shepherd’s
transfer functions, i.e.

H′(k0, z) =
H2(k0, z)
H2(k0,0)

(4.11)

Substituting Eq. (4.8) and simplifying, it is found that:

H′(k0, z) = exp

(
−

[
w2(z) − w2

0
]

k2
0

4

)
(4.12)

where w0 ≡ w(z = 0). Thus if the FLDI response to the ultrasonic field obeys
Eq. (4.8), then the normalized experimental data should collapse under the appro-
priate transform implied by Eq. (4.12). The following approximations are made:
except for very close to the foci (z → 0), w ∝ z and w >> w0. Additionally, f0 ∝ k0.
Hence, H′ ∝ exp(−z2 f 2

0 ), or equivalently, log H′ ∝ −z2 f 2
0 . This transformation is

applied in Fig. 4.13b where log H′ is plotted against z2 f 2
0 , for log H′ ≥ −2. This

limit is chosen because below this, the signal-to-noise ratio becomes small and the
maximum response peak cannot be clearly distinguished in the spectra. The data for
all frequencies collapse to a straight line with R2 = 0.989, showing that this scaling
fundamentally describes how the spatial sensitivity of FLDI depends on disturbance
wavenumber, at least for sinusoidal disturbances.

Note that the same result is obtained regardless of whether H or Hw is used in
Eq. (4.11), because the Hs component has no z-dependence. Thus the successful
collapse of the data can only demonstrate agreement with the spatial filtering due
to the varying beam width. The Hs transfer function predicts an aliasing effect
when k = 2nπ

∆x for integer n. Here, f0 = 30–100 kHz. Assuming a sound speed
of 330 m s−1, k0 ≈ 570–1900 m−1, much smaller than the first critical wavenumber
of 35 000 m−1. Equivalently, the acoustic wavelengths 3.3–11 mm are too large
compared to ∆x ≈ 180 µm for aliasing to occur, and so Hs ≈ 1 over the experimental
range.



83

4.3 Response to Shock Waves
Subsequently to the static and dynamic validation cases discussed in Section 4.2,
the FLDI code was used to compare against experimental measurements of hyper-
sonic shock propagation in Caltech’s Hypervelocity Expansion Tube (HET; refer to
Section 2.1 for facility details). This represents a significant test of the model’s
predictive capabilities, given the highly dynamic nature of the flow. The previous
dynamic validation case was an ultrasonic acoustic beam. However, due to limited
knowledge of the magnitude of this acoustic field, only the correct frequency scaling
could be validated; the response amplitude and shape were tested separately using
the static case of a steady laminar jet. The use of propagating shocks represents a
significant test of the predictive capabilities of the model, given the highly dynamic
nature of the flow in which propagating shocks extend over much of the FLDI beam
path length and have a highly discontinuous refractive index profile. The simplified
analytical approach of Parziale et al. (2013b)—while a suitable approximation for
the spatially-restricted disturbance fields such as conical boundary layers that they
applied it to—does not work well for a flow geometry like a propagating shock
because significant contributions are made to the signal even in the outer part of
the FLDI beams. Hence, this work demonstrates the need to use the full ray-tracing
model in order to accurately predict the instrument response for such flows.

4.3.1 Propagating Shock Waves
An extensive campaign of freestream FLDI measurements were made in HET, with
∆Φ(t) acquired for a sample period spanning the entire start-up and test time. This
dataset contains shock velocities in the range 1.8 < Us < 3.6 km s−1, in air at
ambient temperature and pressures between 145 < P1 < 275 mTorr. The majority
of experiments are at the upper end of this range, corresponding to 9 < Ms < 10.

The very fast response of FLDI, combined with sampling rates of 100 MS/s, allow
for detailed resolution in the response to the propagating shock, as also observed by
Benitez et al. (2020). The response of FLDI to an ideal planar shock can be simulated
analytically using a moving discontinuity, with the pre-shock density on one side,
and post-shock density on the other (Fig. 4.14). For the ambient density conditions
encountered when HET is operated in expansion tube mode, the refractive index
changes are small in an absolute sense, even for very strong shocks, and it is found
that the linearized and non-linearized forms (Eqs. (4.1) and (4.2) respectively) give
essentially identical responses. Although the shock is treated as infinitely thin, the
FLDI signal will be a peak of finite width because the shock begins to interact with
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the outer portions of the conical beams before reaching x = 0. ∆n across a shock
can be large, so even regions of the beam far from the focal plane can contribute
significantly to ∆Φ.

The experimental signals were asymmetric, unlike the symmetric signal predicted
with the planar shock model. Additionally to this observed asymmetry, the peak
magnitudes of the simulated signals were consistently greater than the corresponding
experimental data by a factor of approximately 2.5. Accordingly, the shock was
simulated with greater fidelity and the asymmetry and reduction in peak height were
investigated.

4.3.2 Peak Asymmetry
First, the asymmetrical shape of the peak was considered. As mentioned in Sec-
tion 2.1, HET has a free-jet configuration in which there is an abrupt increase in
cross-sectional area where the constant-diameter tube opens into the test section.
The shock therefore diffracts at the tube exit. If the diffraction creates a sustained
interaction with the beam after passage of the planar shock, asymmetry of the signal
will result. Inviscid perfect-gas simulations of this flow geometry were performed
using the adaptive-mesh code AMROC (Deiterding, 2011), and coupled to the FLDI
simulation code. It was found that if the FLDI beams were sufficiently downstream
of the tube exit, the shock diffraction would indeed lead to an asymmetrical response
of similar form to the experimental data. However, in the actual experiments, the
FLDI was only 10 mm from the exit plane (7% of tube diameter), and since only
the portions of the shock outside the Mach cone can deviate from planarity, there
was negligible effect on the FLDI response (Fig. 4.15), and shock curvature from
diffraction did not contribute to FLDI signal asymmetry in these experiments.

Viscous effects can cause shock curvature within the tube. Fig. 4.16 illustrates how
a propagating curved shock interacts with the FLDI beam geometry, leading to an
asymmetrical signal. Due to being slightly convex with respect to the propagation
direction, the initial contact by the shock with the beams is delayed relative to a
comparable planar shock. This decreases the characteristic time of the signal rise.
Similarly, as the shock leaves the FLDI interrogation zone, a discontinuity remains
for longer within the outer parts of the beam volume, lengthening the decay time
after the signal peak.

Using the theory for shock curvature on a flat plate developed by Hartunian (1961)
and extended to circular tubes by De Boer (1963), the shock shape (shown in
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Fig. 4.17) is given by:

xsh(r) = χ

(
1 − K

∫ ∞

0

I0(kr) − 1
k s+1I1(kR)

dk
)

(4.13)

where r is the tube radial coordinate, R is the tube radius, In are modified Bessel
functions of the first kind and nth order, s = 1

2 when the wall boundary layer is
laminar in the region close behind the shock, and K is a scaling factor. χ represents
the maximum axial displacement of the curved shock from planarity (i.e. at the
centerline). Note that some symbols have been altered from the referenced work,
and the result has been shifted to the lab-fixed frame rather than the shock-fixed
frame of the original derivation.

Experimental data were used to estimate χ. Schmidt presents measurements in
a 6 in. shock tube (the same radius as HET) that agree with De Boer’s theory
(Schmidt, 1976). These data are over a pre-shock pressure range of 10–110 mTorr
in N2, whereas our data span 145–275 mTorr in air; extrapolation predicts χ ≈

1.5–2.5 mm for these conditions. Propagating shocks with this profile and χ similar
to the literature were simulated (Fig. 4.18). The density behind the curved shock
is assumed to be uniform as per the planar shock base case. Even for curvatures
exceeding the predicted range of the experimental conditions, the uniform post-
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shock density assumption is reasonable; for example at χ = 4 mm, the most
extreme oblique shock angle (at the wall) is 88°, yielding a local normal shock
Mach number Ms,n = 0.978Ms. For Ms > 9, the post-shock density ρ2 only differs
from the centerline value by a maximum of 2%.

It was found that a curved shock with χ = 2 mm consistently matched the experi-
mental data closely on both the steep leading edge and broad trailing edge. This is
in the expected range of χ. However, the central portion of the response around the
peakwas not matched; this discrepancywill be discussed below. Other experimental
studies have found evidence for more complex shock shapes, e.g. “indentations” at
the centerline, or non-axisymmetry (Kiefer and Manson, 1981; Liepmann and Bow-
man, 1964). These effects are outside the scope of this work, but could conceivably
cause changes to the shock response shape.

Post-shock nonequilibriummay also need to be considered. We examine the effect of
dissociation behind a planar shock on FLDI signal by calculating the nonequilibrium
density profiles from a thermally- and chemically-frozen post-shock condition to
equilibrium, using both single- and two-temperature models (Browne et al., 2008).
Both models predict a very long relaxation region of O(1 m) >> ∆x, giving very
gradual refractive index slopes over distances O(∆x). At the low pressure conditions
of our experiments, the reactions are so gradual that on the timescales of the FLDI
measurement, the post-shock state can be assumed to be quasi-steady. We note that
analytical solutions have been developed in the case where gradients due to chemical
reactions need to be considered at a curved shock wave, as reviewed by Hornung
(2010).

4.3.3 Peak Magnitude
It can already be observed fromFig. 4.14 that the foci sizew0 has a strong effect on the
peak magnitude. As w0 decreases, the beam focusing angle increases, so the shock
begins to interact with the beam earlier, and the entire interaction duration increases.
Hence, the response broadens while decreasing in height. Very small absolute
changes in w0 cause large changes in the response magnitude, demonstrating the
difficulties caused by the large relative uncertainty in the experimental measurement
of w0. A sensitivity study was also performed for the beam separation ∆x, and the
shock speed Us. It was expected that increasing ∆x should increase the peak width
due to the longer time-of-flight between the beams. This is indeed the case, along
with an increase in height, but these changes are slight, even for perturbations of
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Figure 4.18: Simulated FLDI response to analytically-modeled propagating curved
shocks with De Boer profile. w0 = 4 µm. χ is maximum extent of curvature; χ = 0
is planar by definition, and identical to result in Fig. 4.14.
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Figure 4.19: FLDI responses using post-shock n(x) computed with two-temperature
model.
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±10 µm which exceeds the experimental uncertainty of ±2 µm. Us also affects the
time-of-flight and alters the post-shock state. Again it is found that even perturbations
of ±300 m s−1 have marginal effect on the signal: since at Ms > 9 the density (and
hence refractive index) ratios change little near the strong shock limit. From this
study it is concluded that ∆x and Us have only secondary influence on the FLDI
shock response; w0 strongly controls the peak size.

All the simulated shock variants thus far have involved a discontinuous jump in
refractive index, which gives a strong response since FLDI responds to gradients
of n. The aforementioned range of P1 for the present data correspond to mean free
paths 190 < Λ < 350 µm. The shock structure has a sigmoid profile, modeled by
Thompson et al. (1983) as:

f (x) = f1 +
f2 − f1

2

[
1 + tanh

(
x
∆m/2

)]
(4.14)

where ∆m is a measure of thickness based on the maximum slope. f can represent
any of T , u, or ρ (and hence n), all of which have the same profile, merely displaced
spatially. Thompson et al. show that an ideal-gas nitrogen model agrees well
with experimental values of ∆m, and presents two curves for ground-state and
fully-vibrationally-excited N2 (γ = 7/5 and 9/7, respectively) as bounds to these
experimental data. Here we assume that these N2 bounds hold for air, thus over
9 < Ms < 10, an approximate thickness range of 0.5 . ∆m . 1.5 mm is predicted.

4.3.4 Combined Asymmetry and Magnitude Effects
A composite shock model was created, with curvature and thickness governed by
Eq. (4.13) and Eq. (4.14), respectively. Thompson et al. show that ∆m increases
gradually and linearly with Ms above Ms ≈ 5. It was previously demonstrated
that curvature causes a maximum variation in Ms,n of ∼ 2%. The scatter in the
∆m = f (Ms) data of Thompson et al. is considerably larger than this, so we make
the assumption that the shock thickness will not vary noticeably along the curved
shock front. Thus the two effects can be treated independently. FLDI simulations
were performed over many combinations in the uncertainty ranges of w0, χ, and
∆m. The latter two parameters show only minor variation over these ranges. Two
of the best matches to experimental data are shown in Fig. 4.20. The height and
leading-edge rise can be closely matched, and the asymmetry also shows good
agreement.
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Figure 4.20: Selected FLDI responses to an analytical model incorporating shock
curvature χ and thickness ∆m within expected bounds. The post-shock refractive
index corresponds to the chemically-frozen state.

4.4 Application To Complex Shock-Dominated Flow-Fields
The results of Section 4.3 demonstrate that a quasi-steady ray-tracing scheme is
capable of accurate reproduction of the FLDI response to highly dynamic propagat-
ing shocks. This extends the library of analytical flow geometries for which FLDI
response has been predicted.

Building on these results, the scheme was applied to a practical experimental case
where FLDI was being used to make measurements in a flow-field dominated by
complex inviscid shock interactions. Upon diffracting from the HET tube exit, the
shock wave subsequently interacts with the complex geometry of the test section
outside the core flow. For these experiments, the HET was operated as a shock tube
with higher initial back pressure than is used in expansion tube mode, and repeatable
features were observed in the FLDI signals following the primary shock that were not
explained by one-dimensional shock-tube theory. A CFD simulation was performed
using AMROC of the shock diffracting from the tube exit, similarly to that described
in Section 4.3, but with the addition of a wall and window cavity matching the HET
test section dimensions. The simulation was limited to 2D, although the true test
section cross-section has 3D symmetry, being rectangular with a window on each
face. The output of this simulation was coupled to the FLDI numerical code.
The Cartesian CFD and polar-conical FLDI grids are independently-defined and
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not aligned with each other, requiring interpolation of the refractive index field
from the CFD output onto the FLDI beams. Because AMROC uses adaptive-
mesh refinement (AMR), the grid is not regular, instead comprising a complex
arrangement of patches with different resolutions that change at each time-step.
This necessitates the use of an unstructured interpolation algorithm, which is much
slower and more expensive than the corresponding regular-grid interpolation. For
this work, the LinearNDInterpolator function from the SciPy package is used
(Virtanen et al., 2020). Additionally, in order to get adequate temporal resolution
in the FLDI simulation, the full-field output of the CFD must be stored at a large
number of time-steps. These computational time and storage requirements of both
the CFD and interpolation process restrict us to 2D flow-fields.

The results were in agreement with experiment (Fig. 4.21). Referring to the num-
bered time instants in Fig. 4.22, the coupled simulation reproduces the initial trans-
mitted shock (frame 1), which is followed by a dip then a gradual increase of the
mean signal caused by the establishment of the steady expansion region (frames 2
and 3). The diffracting shock begins to reflect from the window cavity (frame 4)
and a pair of reflected shocks generates the prominent “W”-shaped signal feature
(frame 5). At later times (frame 6) a complex flow-field is established due to further
reflections in the cavity between the tube and test-section walls.

Although this is a far more complicated flow-field than the simple propagating, near-
planar shocks of the validation study, the FLDI code is able to quantitatively predict
(both in t and ∆Φ) detailed features of the experimental signal. Ultimately the pur-
pose of these instrument simulations was to show the amplitude and shape of FLDI
response to dynamic, nonlinear wave interactions in the experiments were mean-
ingful when interpreted using the ray-tracing approach. Fully 3D, Navier-Stokes
simulations were outside the scope of this study, thus any discrepancies are likely
due to the CFD simulation being performed with 2D geometry and without viscous
effects. The smoother appearance of the simulated signal is due to a combination of
temporal resolution limitations in the simulations, and high-frequency noise in the
experimental signal acquisition.

The main reflected shocks cause oppositely-signed phase shifts with respect to
the initial transmitted shock since they are traveling upstream, thereby interacting
with the two FLDI beams in reverse order to downstream-propagating disturbances.
Note that the reflected shock signals are far weaker (∆Φ ∼ O(0.1 rad)) than that of
the incident shock, which is strong enough to exceed ∆Φ = π/2, causing phase-
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Figure 4.21: Comparison between experimental data and a coupled AMROC/FLDI
simulation of the shock reflection flow-field in HET.

wrapping near its peak (not visible at the scale of Fig. 4.21). Because these data
are from shock-tube mode, densities are much greater than the usual expansion-tube
operation of HET—hence the smaller transmitted shock magnitudes of Section 4.3.
This means the reflected shock field in expansion-tubemodewill be correspondingly
weaker. However, these results show that due to the very steep refractive index
gradients caused by propagating shocks, FLDI is not able to filter out contributions
from shocks in the outer parts of the beams as effectively as for less severe gradients,
such as turbulent fields.

In addition to the shock-related features, the smooth rise in ∆Φ following the initial
transmitted shock can also be attributed to a particular flow feature: the growth
of the expansion region behind the curved diffracting shock. This is important to
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Figure 4.22: Instantaneous flow-field shown at several stages of development. The
time instants for each frame are indicated by red numbers, FLDI beam extents are
shown in green, and solid HET geometry is in black. The greyscale contours of the
flow-field represent pseudo-Schlieren density plots, using a log scale to accentuate
weaker flow features.

note, because once fully-established, the spatially-steady density gradient causes a
constant offset from the baseline of ∆Φ = 0, which is relevant when doing spectral
analysis of the test-time signal.

The success of this practical example gives credence to the concept of coupling the
FLDI simulation code to more detailed CFD simulations, for example a viscous
computation that includes the turbulent shear layers emanating from the nozzle
trailing edge. Such shear layers are thought to be the main contributors of unwanted
noise for line-of-sight-integrated optical techniques, and understanding the extent
to which FLDI can reject these contributions is central to the technique’s utility on
these types of hypersonic facility.

The computational performance limitations discussed heremay need to be addressed
in order to move to larger-scale 3D couplings. If a regular-grid CFD scheme is used,
the interpolation issues should be largely alleviated, althoughwithout AMR the CFD
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computational time itself may drastically increase in order to get sufficient spatial
resolution, especially in shock-dominated flows. Re-implementing and optimizing
the FLDI simulation scheme in a faster compiled language such as C++ may also
yield improvements.

4.5 Conclusions
The goals of Section 4.2were to: obtain precise spatial and temporal characterization
data for an FLDI system, use these data to validate a model of FLDI, then use the
validated model to explore the sensitivity of the instrument’s response to various
input parameters. FLDI spatial measurement of the refractive index field of a
laminar jet phase object was independently characterized using a Mach-Zehnder
interferometer, and found to be in quantitative agreement to within experimental
uncertainty. Temporal characterization was obtained using a free ultrasonic acoustic
beam, generated by an ultrasonic transducer, and traversed along the length of the
beam pair.

Analysis shows that the simple ray-tracing scheme given by Eq. (4.2) along with the
numerical discretization scheme detailed in Schmidt and Shepherd give accurate
quantitative predictions for the static response of an FLDI system. A key result is
that the Gaussian beam diameter d0 strongly affects the rate of signal drop-off as the
phase object moves away from the focal plane. A reduction in d0 corresponds to
a shortened sensitive length, in accordance with the predictions of previous works.
Given this validation, the model can be utilized in the future to inform design
decisions when constructing FLDI systems for a particular application. Further, as
already mentioned, Eq. (4.2) is not specific to FLDI. Here, the beam geometry is
defined to represent the parallel focused beam pair of FLDI. But by modifying this
scheme, other optical arrangements can be explored.

The dynamic response of FLDI was obtained for a time-varying phase object gener-
ated by sinusoidal acoustic waves at pure frequencies in the ultrasound range. Firstly,
it was found that FLDI is easily sensitive enough to detect these acoustic density
fluctuations, which were too weak to be visualized at all by the MZI. Secondly, the
drop-off in FLDI response was found to be strongly dependent on the wavenumber
of these disturbances. This dependence agreed with the Gaussian scaling proposed
by Schmidt and Shepherd, which was derived from the same theory underpinning
the numerical simulation scheme used for the static response portion of this work.

Following this, quantitatively-accurate predictions of experimental FLDI results
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were obtained using simple analytical models of propagating shock waves coupled
with ray-tracing calculations. Experiments were carried out using shock waves up to
Mach 10 at low initial pressure conditions. Amodel that combines viscous shock cur-
vature and shock thicknesswas in good agreementwith the experimentally-measured
phase change profile. Within the uncertainty bounds on the optical parameters, this
chosen shock configuration is unlikely to be a unique solution, however the analysis
illustrates that a physically-realistic shock model can produce accurate predictions
of FLDI response. In order to get even closer agreement, it is likely that either full
simulations of the shock and boundary layer structures, or more complex models
would be required. One possibility for improved model agreement with observed
signal asymmetry is the use of a more accurate shock thickness model, since at high
Ms, the shock profile deviates from a symmetric sigmoid (Liepmann et al., 1962).

This result serves to demonstrate the capabilities of FLDI in resolving highly tran-
sient flow features with sub-microsecond timescales. The previous dynamic valida-
tion study in Section 4.2 showed that the spatial sensitivity is frequency-dependent,
with the scaling predicted by Schmidt and Shepherd. Here, the validation is ex-
tended to demonstrate that the model can predict both the shape and magnitude of
the FLDI response to dynamic flows; this was previously only validated for a static
flow case.

This second validation study was performed using relatively simple analytical de-
scriptions of shock waves. The capabilities of the FLDI simulation code were then
further demonstrated by predicting the experimentally-measured FLDI response to
the multiple reflections of a confined, diffracting shock. This complex flow-field
cannot be described analytically, and so the FLDI code was coupled to a CFD
simulation. The success of this coupling suggests employing CFD more widely
to better understand and interpret the behavior of FLDI to a variety of spatially-
and temporally-complex flows that are difficult to model using analytical transfer
functions.

Overall, the results of this chapter show that if n(x, t) is known exactly, the FLDI
response ∆Φ(t) can be accurately computed using the ray-tracing method. If the
general functional form is known to within a small number of scaling parameters
(as in Section 4.3), these parameters can be adjusted until the simulated response
matches that of the experiment. However in general, n(x, t) is not known a pri-
ori, which poses a problem when trying to interpret a flow-field via FLDI alone.
Chapter 5 addresses this issue further.
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C h a p t e r 5

RESULTS: DENSITY FIELD DISTURBANCES FROM FLDI

Chapter 4 introduced the ray-tracing model of FLDI proposed by Schmidt and Shep-
herd (2015), described mathematically by Eq. (4.2). The validity of this model, and
its associated numerical implementation, was demonstrated through three experi-
ments. The key applicable result of this validation is that we now have the capability
to compute the FLDI temporal response, in terms of phase shift ∆Φ(t), to any ar-
bitrary dynamic refractive index field. Expressed otherwise, the forward problem
∆Φ(t) = f

(
n(x, t)

)
is solvable for all n(x, t).

From a practical standpoint, the inverse problem n(x, t) = f −1 (∆Φ(t)) needs to be
solved, as a reconstruction of n(x, t) leads easily to the density field ρ(x, t). However,
at each instant in time, the 3D scalar field input n(x) yields a single scalar output∆Φ:
not being bijective, a large amount of information is lost in this process. In order to
perform the inversion, some assumptions need to be made about the geometry and
symmetry of the field. An example of this is seen in Section 4.3, where a certain
shock model was assumed, and a limited number of parameters were tuned in order
to match the computed response with experimental data.

The purpose of this chapter is to explore the analytical implications of Eq. (4.2) for
an important class of disturbance field: sinusoidal plane waves. As discussed in
Section 1.3, the freestream noise of conventional hypersonic ground test facilities
is dominated by far-field acoustic radiation from wall boundary layers. This class
of noise can be modeled using superimposed plane waves, resulting in a refractive
index field described by:

n(x, t) =
1
√

N

M∑
i=1

N∑
j=1

A j cos
(
ki,j · x − 2π f j t + ϕi,j

)
(5.1)

This represents the superposition of waves propagating in M different directions,
each composed of N frequency components; the meanings of the other terms will
be introduced subsequently. This chapter will build towards this generalized result
in stages.
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We will derive relationships between the time- and frequency-domain responses of
FLDI, and demonstrate that density fluctuation spectra can be ultimately be recovered
from ∆Φ(t) under some realistic assumptions. As alluded to in Section 1.2, previous
works by Schmidt and Shepherd (2015) and Settles and Fulghum (2016) have derived
results for the response of FLDI to certain classes of disturbance field, including
some special cases of propagating sinusoidal waves. These results will first be
reviewed in Section 5.1, before beginning the current approach from Section 5.2
onwards.

5.1 Results from Previous Works
5.1.1 Schmidt and Shepherd
Schmidt and Shepherd defined an FLDI transfer function H, already introduced as
Eq. (4.7) and given here with more detailed notation:

H ≡
max |∆Φ|/∆x
(dΦ/dx)x=0

(5.2)

This compares the actual response to the ideal response—where the true derivative
is measured at the instrument origin. Although not explicitly stated in their paper,
it can be inferred from their provided intermediate derivation steps that Φ must be
defined as follows:

Φ(x) =
2π
λL

n(x) (5.3)

They considered a sinusoidal refractive index wave propagating in the x-direction.
Because the FLDI response is related to dn/dx, ∆Φ is maximized when n ∼ ± sin(x)
and is zero when n ∼ ± cos(x). Hence to obtain max |∆Φ|, the wave was fixed in
space and chosen to be:

n′ = A sin(k x) (5.4)

where k ≡ 2π/λw is the wavenumber, with λw the disturbance wavelength. The
prime indicates this is the fluctuating component of refractive index about some
mean. Two geometry cases were considered. One variant was limited to an in-
finitesimal z-plane located at z = za:

n′ = A sin(k x)δ(z − za) (5.5)
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where δ is the Dirac delta function. Note that they did not use this notation, instead
just using δ(z), but they do mention the more general case where za , 0. The other
spanned a finite z-extent:

n′ = A sin(k x) [U(z + L) −U(z − L)] (5.6)

where U is the Heaviside step function, and the disturbance field has depth 2L,
symmetrical about the focal plane, i.e. −L < z < +L. For simplicity, from now on
the primes will be dropped from n′, since the differential response is unaffected by
the mean refractive index.

The ideal FLDI comprises two point detectors with separation tending to zero.
Hence, the overall transfer functionwas found by considering in turn each of the non-
ideal effects of the real instrument: finite beam width, and finite beam separation.
These effects were encapsulated by Hw and Hs respectively. To compute the former,
they took∆x → 0, i.e. removing the effects of beam separation and only considering
the finite beam widths. For the latter, the beams were treated as two point detectors,
i.e. removing the effects of beam width and only considering their separation.
Expressed mathematically:

Hw =

lim
∆x→0

∆Φ
∆x(

dΦ
dx

)
x=0

(5.7a)

Hs =

1
∆x

[
Φ

(
x = +∆x

2

)
− Φ

(
x = −∆x

2

)](
dΦ
dx

)
x=0

(5.7b)

To evaluate ∆Φ for each geometry case, Eq. (5.5) or Eq. (5.6) were substituted into
Eq. (4.2). For Φ, Eq. (5.4) was used for both cases, because point detectors have no
y- or z-extent; also the Dirac delta is only well-defined in an integral sense.

Recall that the governing ray-tracing equation, Eq. (4.2), is defined using arbi-
trary in-plane co-ordinates (ξ, η). Schmidt and Shepherd showed that by using the
properties of the Dirac delta function, and differentiation from first principles, an
analytical solution could be obtained using Cartesian co-ordinates (x, y) for (ξ, η) if
the infinitesimal wave Eq. (5.5) was used. The result is:
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Hw(k) = exp
(
−
w2k2

8

)
(5.8)

where w = w(z = za) is evaluated at the plane wave location. For za = 0, w = w0.
In Cartesian co-ordinates, substituting the finite-extent wave Eq. (5.6) directly into
the integrals arranged as shown in Eq. (4.2) does not lead to a tractable solution.
Instead, they integrated the infinitesimal solution Eq. (5.8) in z:

Hw(k) =
1

2L

L∫
−L

exp
(
−
w2(z)k2

8

)
dz

=
πw0
√

2π
kLλL

exp

(
−
w2

0 k2

8

)
erf

(
kLλL

2
√

2πw0

)
(5.9)

Note that they included a normalization factor of 1
2L not indicated by any of the

governing equations. This was required due to some dimensional discrepancies in
their transfer function definition Eq. (5.2). ∆Φ is an overall phase shift, measured
in radians, and hence is dimensionless. However, per Eq. (5.3), Φ has dimensions
of inverse length, and in fact represents a phase shift per unit length. This is due to
modeling the ideal FLDI as a pair of point detectors, rather than line detectors. This
means that without compensation from the 1

2L term, Hw is not dimensionless—which
it should be.

However, inspection of Eq. (5.8) reveals that Hw for the infinitesimally-thin plane
wave is dimensionless without needing a normalization factor. This is due to the
fact that the Dirac delta function has dimensions that are the reciprocal of those of
its argument, thus when using Eq. (5.8) in the ray-tracing equation, the result has
dimensions of phase shift per unit length, i.e. it actually represents d(∆Φ)

dz . This
interpretation will be revisited later. With this, the numerator and denominator of
Hw have equal dimensionality, and so it is dimensionless as required.

The evaluation of Hs using Eq. (5.7b) only involves Φ(x), and so yields the same
result for both geometry cases:

Hs(k) =
2

k∆x
sin

(
k∆x

2

)
(5.10)

For k∆x
2 << 1, Hs ≈ 1 by the small-angle approximation. But when the disturbance

wavelength gets shorter than the beam separation, then aliasing occurs whenever
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k∆x = 2mπ for m = {1,2,3 . . . }. The overall transfer function in wavenumber
space is then simply given by H = HsHw.

5.1.2 Settles and Fulghum
While some final results are given in Settles and Fulghum (2016), the most relevant
transfer functions for this discussion, along with more detailed derivations, can be
found in Fulghum (2014). These derivations will be summarized here using the
notation and terminology from the original work.

Fulghum began by considering a simple 1D model of FLDI responding to a si-
nusoidal disturbance—essentially a pair of point detectors. The response at each
detector was given by:

F± = sin
(
2π f0

[
t ±
∆x

2UC

] )
(5.11)

where Uc and f0 are the propagation velocity and frequency of the disturbance,
respectively. The “difference signal” was then given by:

h f0(t) =
F+ − F−
∆x/Uc

(5.12)

Eq. (5.12) was converted into the frequency domain:

H∆x(k) =
Uc

π∆x
sin

(
π∆x f

Uc

)
=

2
∆x

sin
(

k∆x
2

)
(5.13)

where the wavenumber definition k ≡ 2π f
Uc

was used. It is unclear how the outer
coefficient was derived—as the two alternate forms provided do not have consistent
dimensions. Using the fact that a true derivative (which is what the ideal instrument
measures) has the transfer function H(k) = k, Eq. (5.13) was divided by k to give a
“normalized system transfer function”:

Hsinc,∆x(k) =
2

k∆x
sin

(
k∆x

2

)
= sinc

(
k∆x

2

)
(5.14)
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Despite some issues with the derivation, Eq. (5.14) is identical to Hs fromEq. (5.10).
Fulghum used a geometrical argument to extend Eq. (5.14) to waves propagating at
an angle φ to the x-axis, although still confined to the x–y plane. The result was:

H∆x(k, φ) =
2

k∆x
sin

(
k cos φ · ∆x

2

)
(5.15)

We will show in Section 5.2 that Eq. (5.15) is not quite correct.

To account for the effects of finite beam width, Fulghum arrived at the same expres-
sion as Eq. (5.8) for a disturbance at a single z-location along the beam. This was
then integrated in z to give the transfer function for a disturbance of finite z-extent
(Hz in his notation). However, this integration was performed differently to the
equivalent of Schmidt and Shepherd (Eq. (5.9)):

Hz =

√√√√√ L∫
−L

[
exp

(
−
w2(z)k2

8

)]2
dz

=

√√√
2π3/2 w0

λL k
erf

(
LλL k
2πw0

)
exp

(
−
w2

0 k2

4

)
(5.16)

Although Eq. (5.16) shares most of the same terms with Eq. (5.9), it is problematic
because it is not dimensionless: the

√
w0
λLk factor means that Hz, has dimensions of

[length]1/2. Other transfer functions less relevant to this thesis were also considered,
chiefly the response of FLDI to an axisymmetric turbulent jet (denoted Hσ). The
lengthy expression will not be replicated here, but it shares the same issue of not
being dimensionless.

5.2 Response to Single-Frequency Plane Waves
We extend the results of the previous works detailed in Section 5.1 by considering
a generalized time-varying plane wave propagating in 3D space, of finite z-extent.
Such a wave can be modeled by:

n(x, t) = A cos
(
k · x − ωt + ϕ

)
(5.17)

Again, we combine this with Heaviside step functions as per Eq. (5.6) to bound the
extent between [za, zb]. The amplitude A, wavevector k, angular frequency ω, and
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Figure 5.1: Co-ordinate system for inclined plane wave with wavevector k.

phase ϕ are all constant. The wave has propagation velocity a = aâ, and k ‖ a. k

is related to ω by the dispersion relation:

k =
ω

a
k̂ ⇔ k =

ω

a
(5.18)

We establish the co-ordinate system shown in Fig. 5.1, where the wavevector di-
rection can be described by the two angles (α, β). This is essentially a spherical
co-ordinate system, although a little different to normal convention (e.g. it is a left-
handed system, and the inclination is complementary to its usual definition). This
system is chosen to be consistent with previous FLDI usage, i.e. x in the left-to-right
flow direction, y upwards in the lab frame, and z in the beam propagation direction.

The unit vector projections are given by:

k̂ · x̂ = cosα cos β ⇔ kx ≡ k · x̂ = k cosα cos β (5.19a)

k̂ · ŷ = sinα ⇔ ky ≡ k · ŷ = k sinα (5.19b)

k̂ · ẑ = cosα sin β ⇔ kz ≡ k · ẑ = k cosα sin β (5.19c)

It was mentioned above that using Cartesian co-ordinates did not allow for tractable
integration even for a simple wave geometry. However, we can instead use the polar
co-ordinates first introduced as Eq. (4.3). Exchanging the order of integration and
using the normalized intensity from Eq. (4.4), the governing ray-tracing equation
can be equivalently expressed as:
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∆Φ =
2
π
·
2π
λL

zb∫
za

©«
∞∫

0

r̃ exp
(
−2r̃2

) 
2π∫

0

n1dθ
 dr̃ −

∞∫
0

r̃ exp
(
−2r̃2

) 
2π∫

0

n2dθ
 dr̃ª®¬ dz

(5.20)

where ni = ni(r̃, θ, z) as defined byEq. (4.6). This form leads to a tractable integration
using Eq. (5.17). The final result is:

∆Φ(t) =
2πA
λL
·

4
√

2π3/2w0√
k2

x + k2
yλL

· sin
(

kx∆x
2

)
· sin (ωt − ϕ)

· exp

(
−
w2

0
8

[
k2

x + k2
y +

16π2k2
z(

k2
x + k2

y

)
λ2

L

])

· <

erf
©«
(
k2

x + k2
y

)
Lλ2

L + i · 4π2kzw
2
0

2
√

2π
√

k2
x + k2

yλLw0

ª®®¬
 (5.21)

where < represents the real part, i is the imaginary unit, and erf is the error
function. Please refer to Appendix A for a detailed derivation of Eq. (5.21). Note
that Eq. (5.21) made the assumption that the wave is arranged symmetrically about
the origin, i.e. [za, zb] → [−L,+L]. A similar result is obtained for the asymmetrical
case—but it is even more unwieldy!

It is often found to be useful to abbreviate Eq. (5.21) by condensing all the
wavenumber-dependent terms into a response function h(k), designated as such
due to its close relationship to the transfer functions H(k) previously introduced.
Only the original refractive index amplitude and the time-varying term are left
exposed:

∆Φ(t) = A · h(k) · sin (ωt − ϕ) (5.22)

5.2.1 Special Cases & Comparison with Previous Works
In this thesis we prefer to work directly with ∆Φ rather than H, because both
experimental data and simulated results from the ray-tracing code are in this form.
However, H is really just a normalized version of ∆Φ, and it is simple to interchange
between the two. Recall that per Schmidt and Shepherd, the overall FLDI response
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to a wave propagating in the x-direction only is given by the product of Eqs. (5.9)
and (5.10), yielding:

H =
2

k∆x
sin

(
k∆x

2

)
×
πw0
√

2π
kLλL

exp

(
−
w2

0 k2

8

)
erf

(
kLλL

2
√

2πw0

)
(5.23)

To compare Eqs. (5.21) and (5.23), consider pure x propagation, i.e. (α, β) =
(0°,0°) ⇔ (kx, ky, kz) = (k,0,0). Noting that erf(x) ∈ R ∀ x ∈ R, and maximizing
the response by using max (sin (ωt − ϕ)) = 1, Eq. (5.21) reduces to:

max |∆Φ| =
2πA
λL
·

4
√

2π3/2w0

kλL
· sin

(
k∆x

2

)
· exp

(
−
w2

0 k2

8

)
· erf

(
kLλL

2
√

2πw0

)
(5.24)

For conversion toH, consider the instantaneous spatial position of thewave thatmax-
imizes (dΦ/dx)x=0, which as before is n(x) = A sin(k x) ⇒ Φ(x) = 2πA

λL
sin(k x).

Applying the definition of H, Eq. (5.2), Eq. (5.24) becomes identical to Eq. (5.23) if
their 1

2L normalization is included. This shows that Schmidt and Shepherd’s result is
a special case recovered when the dimensionality of the wave propagation is reduced
from 3D to 1D. Interestingly, the overall H is directly obtained without having to
separately derive Hs and Hw as they did. This is because Eq. (5.20) incorporates
both the Gaussian beam width behavior as the exp

(
−2r̃2) term, and the finite beam

separation included in ni = n(x ± ∆x/2, y, z).

We canmethodically consider the remaining special cases of reduced dimensionality.
The other two 1D cases are pure y- and z-propagation, where (α, β) = (±90°,0°) ⇔
(kx, ky, kz) = (0, k,0), and (α, β) = (0°,±90°) ⇔ (kx, ky, kz) = (0,0, k), respectively.
Both of these cases reduce Eq. (5.21) to ∆Φ(t) = 0. This is expected, because FLDI
is only sensitive to refractive index gradients in the x-direction. Next, consider the
2D cases where k is confined to the xy, xz, or yz planes. Again, yz-propagation is
found to give ∆Φ(t) = 0 because there are no x-gradients.

Disturbances propagating in the xy-plane have α , 0°, β = 0° ⇒ (kx, ky, kz) =

(k cosα, k sinα,0):
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∆Φ(t) =
2πA
λL
·

4
√

2π3/2w0√
k2

x + k2
yλL

· sin
(

kx∆x
2

)
· sin (ωt − ϕ)

· exp

(
−
w2

0
8

[
k2

x + k2
y

] )
· erf

©«
(
k2

x + k2
y

)
LλL

2
√

2π
√

k2
x + k2

yw0

ª®®¬ (5.25)

Note that with kz = 0, k2
x + k2

y = k2, giving further simplification to:

∆Φ(t) =
2πA
λL
·

4
√

2π3/2w0

kλL
· sin

(
k cosα∆x

2

)
· sin (ωt − ϕ)

· exp

(
−

k2w2
0

8

)
· erf

(
kLλL

2
√

2πw0

)
(5.26)

Conversion of Eq. (5.26) to H, using n = A sin(kx x) = A sin(k cosα · x) gives:

H =
2

k cosα∆x
sin

(
k cosα∆x

2

)
×
πw0
√

2π
kLλL

exp

(
−
w2

0 k2

8

)
erf

(
kLλL

2
√

2πw0

)
(5.27)

There are two points to note in Eq. (5.27). First, only the Hs term is altered from
Eq. (5.23). Hw remains the same because the spatial filtering effect is due to the
relative sizes of the disturbance wavelength and local beam width; the beam cross-
sections are circular and lie in the xy plane and so the spatial filtering effect is
unchanged, so long as the disturbances are also confined to this plane. Secondly,
the Hs term differs only in having k replaced by k cosα, i.e. the separation of the
beams in x causes aliasing of the projected wavenumber kx . This was predicted by
Fulghum, although his Hs equivalent, Eq. (5.15), incorrectly only uses kx inside the
sin and misses it in the coefficient.

Lastly, xz-propagation has α = 0°, β , 0°⇒ (kx, ky, kz) = (k cos β,0, k sin β). This
case was not considered in any previous works.

∆Φ(t) =
2πA
λL
·

4
√

2π3/2w0

kxλL
· sin

(
kx∆x

2

)
· sin (ωt − ϕ)

· exp

(
−
w2

0
8

[
k2

x +
16π2k2

z

k2
xλ

2
L

])
· <

[
erf

(
k2

x Lλ2
L + i · 4π2kzw

2
0

2
√

2kxπλLw0

)]
(5.28)
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Making the trigonometric substitutions and noting that kz/kx = k sin β/k cos β =
tan β gives an alternate form in terms of β:

∆Φ(t) =
2πA
λL
·

4
√

2π3/2w0

k cos βλL
· sin

(
k cos β∆x

2

)
· sin (ωt − ϕ)

· exp

(
−
w2

0
8

[
k2 cos2 β +

16π2 tan2 β

λ2
L

])
· <

[
erf

(
kLλL cos β

2
√

2πw0
+ i
√

2πw0 tan β
λL

)]
(5.29)

5.2.2 Validation
To validate the general result Eq. (5.21) and its special cases, these analytical
expressions are compared with the numerical ∆Φ from the ray-tracing code. This
code has itself been validated against experimental data (Chapter 4); furthermore it
performs the numerical integrations using a different co-ordinate system, providing
a useful comparison. As discussed in Section 4.1, the ray-tracing algorithm can
couple with analytical input functions that define the refractive index at every point
on the beam grids. Eq. (5.17) was implemented as such an input function, with the
time-varying propagation performed in a quasi-steady manner. This is similar to
how propagating shock waves were simulated in Section 4.3.

Validations were performed in both temporal and wavenumber spaces. For the
temporal validations, arbitrary wave parameters were selected, and several wave
cycles simulated. This was repeated for many different parameter sets, including all
the special reduced-dimensionality geometries, as well as fully-general 3D propaga-
tion. In all cases there was excellent agreement between the analytical and numerical
predictions; some of these cases are shown in Fig. 5.2.

For the wavenumber validations, max |∆Φ| was compared as a function of k. Recall
that this maximum response is found analytically by setting sin(ωt − ϕ) = 1, so that:

max |∆Φ| = A · h(k) (5.30)

Numerically, we can just set ωt = 90° and ϕ = 0° so that the wave is frozen at
the position of maximum response. For a given propagation direction defined by
{α, β}, this procedure is repeated for many k. The results are shown in Fig. 5.3, for
the three reduced-dimensionality cases. Again, the agreement is very close, except
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at very high k where the disturbances begin to get small compared with the grid
spacing of the numerical scheme, as was also observed by Schmidt and Shepherd.
Note for reference that in Figs. 5.3b and 5.3c the blue curves are identical to the
curve of Fig. 5.3a, as expected.
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(a) [x]: α = 0°, β = 0°, ϕ = 90°,
A = 1 × 10−5, L = 0.045 m, λw = 0.5 m,
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(b) [xy]: α = 30°, β = 0°, ϕ = −25°,
A = 5 × 10−5, L = 0.04 m, λw = 0.3 m,
c = 120 m s−1
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(c) [xz]: α = 0°, β = 15°, ϕ = 60°,
A = 5 × 10−6, L = 0.07 m, λw = 0.1 m,
c = 70 m s−1
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(d) [xyz]: α = 45°, β = 20°, ϕ = 0°,
A = 1 × 10−6, L = 0.1 m, λw = 0.7 m,
c = 250 m s−1

Figure 5.2: Temporal validation of single-frequency plane wave response. Selected
cases shown for various propagation directions and wave parameters. λw and c
are the wavelength and speed of the plane wave, respectively. The standard optical
parameters are used, as given in Section 4.1.
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(c) [xz]: α = 0°, β , 0°.

Figure 5.3: Wavenumber validation of single-frequency plane wave response.
Reduced-dimensionality cases shown, for fixed A = 10−5, L = 0.06 m, and standard
optical parameters. Analytical solutions shown with lines, numerical simulations
with markers.
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With these results, Eq. (5.21) is considered validated. The implications and physical
meaning behind the curves of Fig. 5.3 will be discussed shortly, but first there is
an issue with the evaluation of Eq. (5.21) that needs to be discussed. h(k) can be
separated into four terms:

h(k) = P(k)Q(k)R(k)S(k) (5.31)

where:

P(k) =
2π
λL
·

4
√

2π3/2w0√
k2

x + k2
yλL

(5.32a)

Q(k) = sin
(

kx∆x
2

)
(5.32b)
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(5.32c)
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√

k2
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yλLw0

ª®®¬
 (5.32d)

P(k) ∝ k−1 and −1 ≤ Q(k) ≤ 1. For S(k), the argument of erf is real when β = 0°,
and −1 < erf(x) < 1 ∀ x ∈ R. However, an issue arises when β , 0° (i.e. when
there is a component of propagation along the optical axis). Complex-valued erf(z)
is not bounded by unity as in the real case, and both<[erf(z)] and=[erf(z)] increase
rapidly and without bound, in an oscillatory manner. For typical optical and wave
parameters of interest to us, S(k) grows so rapidly that arithmetic overflow occurs
by about β = 30°, i.e. it exceeds the largest number that can be represented using
standard 64-bit floating-point format (about 10308). However, the corresponding
output of the numerical simulation (which does not rely on evaluating the functions
of Eq. (5.31)), is well-bounded, implying that the huge S(k) term is counterbalanced
by a similarly tiny term. This can only be R(k), and indeed this term experiences
arithmetic underflow as a 64-bit float. For α = 0°, R(k) can be alternatively
expressed (see Eq. (5.29)):

R(k) = exp

(
−
w2

0
8

[
k2 cos2 β +

16π2 tan2 β

λ2
L

])
(5.33)
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Because λL ≈ 10−7 m, the R(k) ∼ exp
(
[tan β/λL]

2
)
scaling is very strong, espe-

cially for β > 45° where tan β > 1. To avoid these evaluation issues, it would
be ideal to find an analytical expression for the product R(k)S(k) that is more
well-behaved. This is difficult in the general case because R and S have different
arguments, although it can be done in some limiting cases. Series and asymptotic
approximations were also attempted but these could not be combined into bounded
forms. A more brute-force method was used instead: the Wolfram language of
Mathematica (Wolfram Research, Inc., 2019) allows for arbitrary-precision arith-
metic, where numbers are not limited to a fixed bit width. This capability was
incorporated into existing Python functions by using the Wolfram Client Library,
which allows direct execution of Wolfram code from Python by connecting to a
local kernel (e.g. if Mathematica is also installed). The analytical solutions shown
in Fig. 5.3c were computed using this technique.

5.2.3 Implications
Comparison of Figs. 5.3a and 5.3b shows that waves inclined in the xy plane behave
fundamentally the same as those restricted to propagation in x alone. Even for
quite large inclinations α, the response curves are merely shifted down slightly
(although they will eventually collapse to zero for all k when α→ 90°). The high-k
oscillatory roll-off is also similar, although the location of the zeroes due to the
aliasing effect are dependent on α. These effects were interpreted physically by
Settles and Fulghum: the instrument is simply responding to the component of the
wave projected in the sensitive x direction.

On the other hand, Fig. 5.3c shows that waves inclined in the xz plane have quite
different behavior. Even for mild inclinations β, the response curves shift drastically.
Most noticeable is that the oscillatory roll-off begins more than two decades earlier
in k. This will have important consequences for the interpretation of∆Φ data later. It
is much more difficult to assign physical explanations to this oscillatory and roll-off
behavior, as the differences in the xz case (as compared to the x or xy cases) come
from the additional kz-dependent terms in the arguments of R(k) and S(k) which do
not have obvious physical interpretations—unlike, for example, the filtering effect
of exp

(
− k2w2

8

)
or the aliasing effect of sin

(
k∆x

2

)
. In fact, although superficially

similar, the oscillatory region in Fig. 5.3c is not due to ∆x aliasing at all: from
Eqs. (5.19a) and (5.32a) aliasing should happen when kx∆x = k cos β · ∆x = 2mπ

for integer m. This implies that the oscillatory region should shift to higher k as β
increases (which is what happens with the analogous α behavior). Instead, these



112

oscillations are not due to Q(k) at all, but rather S(k).

The source of the oscillations, along with other trends, can be seen by plotting
each term in Eqs. (5.32a) to (5.32d) separately in Fig. 5.4. P(k) ∼ k−1 for all k,
while Q(k) ∼ k for low k, with an oscillatory region beginning around k = π/∆x.
R(k) ≈ 1 for low k, then rapidly rolls off. erf(x) ∼ x for x << 1 so when β = 0°,
S(k) ∼ k for low k, then asymptotes to unity. To summarize for the β = 0° case,
the high-k roll-off is governed by R, while the low-k roll-off is governed by S. The
behavior of P and Q is unchanged between Figs. 5.4a and 5.4b, but the effect on S

of making β , 0° is drastic. R actually retains much the same shape (flat then a
roll-off at high k) but shifted far down in magnitude. The overall response function
in Fig. 5.4b shows two distinct oscillatory regions: the first caused by S which also
incorporates a roll-off, the second unchanged and due to Q with roll-off from R.

Both oscillating regions can cause issues in the inversion process (to be introduced
subsequently). Non-oscillating envelopes can be defined:

Qe(k) =


sin
(

kx∆x
2

)
kx∆x ≤ π

1 kx∆x > π
(5.34)

Se(k) =

<[erf(Ξ)] k ≤ kc1

|erf(Ξ)| k > kc1
(5.35)

In Eq. (5.35), Ξ represents the same argument as in Eq. (5.32d). The critical
wavenumber kc1 where the piecewise function changes over has to be found numer-
ically, as it is not easy to find analytically, unlike for Eq. (5.34). Examples of both
these envelopes are illustrated in Fig. 5.5.

Putting aside for the moment the complexities of oscillation, we next address the
low-k roll-off behavior. As mentioned, this is governed by the S term, which has
the following simplified form when β = 0°:

S(k) = erf
(

kLλL

2
√

2πw0

)
(5.36)

For fixed optical parameters λL and w0, the roll-off location depends on L (Fig. 5.6).
Recall that this represents the extent of the disturbance field in the z-direction, and
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Figure 5.4: Contributing components for response function h(k).



114

10−1 100 101 102 103 104 105 106

k [m−1]

102

103

104

105

106

f(
k)

|h(k)|
|he(k)|
k∆x = π

(a) β = 0°, envelope governed by Qe(k).

10−1 100 101 102 103 104

k [m−1]

10−6

10−4

10−2

100

102

104

106

f(
k) |h(k)|

|he(k)|
|erf(Ξ)|
kc1

(b) β , 0°, envelope governed by Se(k).

Figure 5.5: Examples of envelope functions he(k).

that it is assumed that the beams themselves are at least as long as L (they can be any
value > L because there are no contributions to the signal beyond this disturbance
field). In the limiting case L →∞, S → 1 ∀ k, in other words, the erf function only
manifests due to finite integration limits (note it is also absent in the other limit of
an infinitesimally thin wave, e.g. Eq. (5.8)).

The physical explanation for this is as follows: a disturbance gets spatially averaged
out when its wavelength λw becomes small compared to the local beam width w(z).
The sensitive length (denoted here as ζ) of the FLDI is the distance about the focal
plane where a disturbance contributes significantly to the signal (e.g. one might
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Figure 5.6: Influence of L on the low-k roll-off location.

arbitrarily define ζ as the length within which 99% of the total signal is generated—
see more in Section 5.7). It follows, as pointed out by Schmidt and Shepherd, that ζ
increaseswith λw: onemust look further out from the focal plane to find a sufficiently
large w(z) to cause filtering. Hence, while L < ζ there is still “capacity” for ∆Φ to
increase as L increases. Once L exceeds ζ , there is negligible further increase in
∆Φ due to spatial filtering in regions of the beam beyond z = ζ . As L increases, ζ
is exceeded for larger and larger λw (i.e. smaller k) and so the roll-off point shifts to
lower k; hence in the limit L → ∞ the maximum possible ∆Φ is achieved at all k.
The reason for this maximum ∆Φ being constant for all k (i.e. why the pre-roll-off
curve is flat) is that although larger-λw disturbances influencemore of the beam, their
signal contribution per unit length is smaller, because FLDI responds to refractive
index gradients—and longer disturbances have shallower gradients. Referring back
to Fig. 5.4a, this balance is encapsulated in the product PQ, which is independent
of k.

Related to this topic is the discussion of howSchmidt and Shepherd’s infinitesimally-
thin wave solution fits in with the results given so far. Recall from Section 5.1 that
due to dimensional considerations, their result (converted back from H) is really a
phase shift per unit length:

d(∆Φ)
dz

=
2πA
λL
· 2 sin

(
k∆x

2

)
exp

(
−
w2k2

8

)
(5.37)

Again, w = w(za) is evaluated at the z-location of the thin wave. For finite-extent
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waves of small thickness ∆z centered about z = za:

∆Φ ≈
d(∆Φ)

dz
∆z (5.38)

If the wave is symmetrical about the focal plane, then ∆z = 2L and w = w0. We
can then compare the approximate response of Eq. (5.38) with the exact solution.
This is shown in Fig. 5.7, and as expected for small L there is a close match. For
disturbance fields that extend significantly beyond the vicinity of the focal plane
(where the infinitesimal solution is evaluated) there are larger discrepancies.
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Figure 5.7: Comparison of exact response (solid colored lines) and approximate
response using local infinitesimal solution (black patterned lines).

5.3 Response to Multiple-Frequency Plane Waves
Section 5.2 validated an analytical function for the response of FLDI to a propagating
plane wave, of arbitrary orientation and a single frequency. Here this result is
extended to waves with multiple frequency components. This development is done
in two stages: at first all frequency components will still be confined to the same
propagation direction (i.e. all sharing the same unit wavevector k̂), followed by
relaxing this condition and allowing for superimposed waves each propagating
arbitrarily.
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The key to these developments is that Eq. (4.2) is linear, suggesting that composite
signals can be built up through linear combinations of single-frequency results.

5.3.1 Multiple-Frequency, Single-Direction
Consider a refractive index wave built from N discrete frequency components:

n(x, t) =
1
√

N

N∑
j=1

A j cos
(
k j · x − 2π f j t + ϕ j

)
(5.39)

The frequency components f j are selected within some bandwidth [ fa, fb], and these
determine k j via the dispersion relation Eq. (5.18). k̂ is fixed, and determined from
the given {α, β}. The amplitudes are sampled from some continuous function,
A j = A( f j), requiring a 1√

N
scaling to keep a constant RMS as N increases for fixed

bandwidth. Finally, the phases ϕ j are drawn randomly from the uniform distribution
[0,2π).

Linearity yields:

∆Φ(t) =
1
√

N

N∑
j=1

A j · h
(
k j

)
· sin

(
2π f j t − ϕ j

)
(5.40)

Similarly to the single-frequency results in Fig. 5.2, Eq. (5.40) was validated against
the numerical scheme for many sets of parameters. The computational load is
exacerbated for these multiple-frequency wave simulations. The refractive index
function n(x) must be evaluated at every beam grid point, at every timestep. The
number of operations scales with N for Eq. (5.39). Furthermore, the total simulation
period and timestep size have to be chosen in order to adequately resolve the lowest
and highest frequency components, respectively. This leads to a large required num-
ber of timesteps. To speed things up, most validation cases were carried out with
nθ = 64 instead of the usual 256, causing a resolution reduction of approximately
16×. However for all cases trialed there was still very close agreement in the ana-
lytical and numerical ∆Φ(t) responses (for an example, see Fig. 5.9), and Eq. (5.40)
is considered validated.

5.3.2 Multiple-Frequency, Multiple-Direction
Multiple instances of Eq. (5.39) can in turn be superimposed with different k̂:
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n(x, t) =
1
√

N

M∑
i=1

N∑
j=1

A j cos
(
ki,j · x − 2π f j t + ϕi,j

)
(5.41)

where ki,j = k j k̂i. Note that Eq. (5.41) is not the most general form: A j and f j are
shared between each wave. It is done this way because it will be the most relevant for
our later applications, where facility centerline noise is the sum of acoustic radiation
from the four walls of a square test section. There, it is assumed that the noise
from each wall is drawn from the same spectrum, i.e. A( f ) and the bandwidth are
the same. However, the phases should remain uncorrelated. We do not normalize
by M as done with N . This is because the summation over N discrete frequency
components is meant to approximate an integral over a continuous spectrum of
frequencies—and thus should not change RMS for different frequency sampling
densities, whereas the summation over wavevector orientations is used to represent
the superposition of genuinely discrete fields (e.g. the aforementioned radiating
walls where M = 4).

Eq. (5.41)was implemented in the numerical scheme (an example of this is illustrated
in Fig. 5.8), with the simulated result compared to the analytical expression. Again,
very close agreement was observed, validating that the principle of superposition
continues to hold for all combinations of frequency and propagation direction. We
now have the ability to analytically calculate ∆Φ(t) from an arbitrarily complicated
n(x, t) so long as it is composed of planar sinusoidal waves. However (as discussed
in the introduction to this chapter) in real situations ∆Φ(t) is known, and we wish to
recover n(x, t), at least partially. This is the topic of the next section.

5.4 Spectral Inversion
5.4.1 Continuous Spectral Representation
To facilitate a spectral treatment of the FLDI response, the single-component plane
wave equation Eq. (5.17) should be changed to its complex representation:

n(x, t) = A exp
[
i
(
k · x − ωt + ϕ

) ]
(5.42)

where now n(x, t) ∈ C, though it is still assumed that {A,ω, t, ϕ} ∈ R and {k, x} ∈
R3. Applying the linearized ray-tracing procedure to Eq. (5.42) using the same
transformations and integrations as done in Section 5.2, a very similar solution is
obtained:
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Figure 5.8: Superposition of four plane waves with different propagation directions
given by α j = {−20°,20°,0°,0°}, β j = {0°,0°,−45°,45°}. xy and xz cross-sections
of a 3D box, shown at a single time instant. Colors represent refractive index
fluctuations (magnitudes and dimensions arbitrary).

∆Φ(t) = A · h(k) · i exp [i (−ωt + ϕ)] (5.43)

The wavenumber-dependent response function h(k) is the same as before; the only
difference is in the temporal term. This term can be expanded:

i exp [i (−ωt + ϕ)] = i [cos (−ωt + ϕ) + i sin (−ωt + ϕ)]

= sin (ωt − ϕ) + i cos (ωt − ϕ) (5.44)

Note then that the real part of Eq. (5.43) is equal to the real derivation Eq. (5.22),
so the two approaches are consistent.

Now consider a composite plane wave with a continuous frequency spectrum:

n(x, t) =

∞∫
−∞

A(ω) exp
[
i
(
k · x − ωt + ϕ

) ]
dω (5.45)

Note that as before, k = k(ω); now also ϕ = ϕ(ω). This notation is omitted
for clarity. A(ω) is now the amplitude spectral density with dimensions of [ω]−1.
Eq. (5.45) can be substituted into the ray-tracing integrals, yielding by linearity:
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∆Φ(t) =

∞∫
−∞

A(ω) · h(k) · ieiϕ · e−iωtdω (5.46)

The general Fourier transform pair is (Osgood, 2007):

ĝ(s) =
1
a

∞∫
−∞

g(t)e+ibstdt (5.47a)

g(t) =

∞∫
−∞

ĝ(s)e−ibstds (5.47b)

where possible sign and normalizations conventions include:

a =
√

2π b = ±1 (5.48a)

a = 1 b = ±2π (5.48b)

a = 1 b = ±1 (5.48c)

So far we have been using f and ω = 2π f interchangeably for the temporal fre-
quency. Most signal-processing libraries deal with f ; accordingly, we choose
b = ±2π (and thus a = 1) so that the generalized frequency s represents f rather
than ω. To choose the sign convention, inspect Eq. (5.46) to see we want β = +1 to
give the following Fourier pair:

ĝ( f ) =

∞∫
−∞

g(t)e+i2π f tdt (5.49a)

g(t) =

∞∫
−∞

ĝ( f )e−i2π f td f (5.49b)

Comparing Eqs. (5.46) and (5.49b), the Fourier transform of ∆Φ(t) is:

∆̂Φ( f ) = A( f ) · h(k) · ieiϕ (5.50)
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We can simplify the phase:

ieiϕ = eiπ/2eiϕ = ei(ϕ+π/2) = eiϕ′ (5.51)

Note that by definition A( f ), h(k) ∈ R and |eiϕ′ | = 1, so |A( f )·h(k)| is themagnitude
and ϕ′( f ) is the phase of the complex Fourier transform. If the wave orientation is
known a priori, and if ∆Φ(t) and its Fourier transform ∆̂Φ( f )were continuous, then
we could in principle solve for both A( f ) and ϕ( f ), and could in fact reconstruct
the original wave. However, real experimentally-obtained ∆Φ(t) data are discrete,
and the corresponding discrete Fourier transform (DFT) will only be known at
discrete values of f . With sufficient sampling rate, this still allows for estimated
reconstructions of the original temporal signal. Usually we are most interested in
the spectral magnitude if working under the assumption that the phases are random
and uncorrelated.

If we can obtain an estimate of |∆̂Φ( f )|, and if h(k) is known, then:

A( f ) =

����� ∆̂Φ( f )h(k)

����� (5.52)

Knowing h(k)means knowing the relationship k( f ), which requires α, β, and c to be
given, i.e. the direction and speed of the wave propagation. A( f ) is the spectrum of
the refractive index fluctuation amplitudes, which can be used to obtain the desired
density fluctuation spectrum using the Gladstone-Dale constant. To find an estimate
of |∆̂Φ( f )|, we turn to power spectral methods.

5.4.2 Power Spectra
The power spectral density (PSD), is formally defined for a signal g(t) as follows
(Goodman, 2000):

PSD {g(t)} = lim
T→∞

1
T
|ĝT ( f )|

2 (5.53)

where gT (t) is the windowed function:

gT (t) =

g(t) −T

2 ≤ t < T
2

0 otherwise
(5.54)
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The PSD has units of (generalized) power per unit frequency: [PSD {∆Φ(t)}] =

rad2 Hz−1. For finite-length discrete signals, the true power spectral density can only
be estimated. A widely-used algorithm for estimating the PSD is Welch’s method
(Welch, 1967), which has implementations in many programming languages; here
the function scipy.signal.welch from the SciPy package for Python will be
used (Virtanen et al., 2020). The benefit of using Welch’s method over directly
computing the DFT is that it reduces the variance in the estimate by overlapping
and averaging segments of the signal, although this comes at the cost of frequency
resolution. Modern implementations allow for the choice of many different window
functions to mitigate truncation effects, each with its own trade-offs.

Welch’s method takes a time-series evenly spaced by ∆t = 1/ fs, where fs is the
sampling frequency. It returns a spectrum at discrete frequencies on the interval
[0, fNyq] evenly spaced by ∆ f , where fNyq = fs/2 is the Nyquist frequency, and:

∆ f =
fs

nps
(5.55)

where nps is the number of samples per segment. The input parameters are the
number of segments into which the full signal is split ns, the degree of overlap,
and the choice of window function. For a fixed signal length, increasing ns reduces
variance, but also reduces nps and hence ∆ f ; this is the aforementioned trade-off.
The optimal degree of overlap depends on the window; the default is 50% overlap
with a Hann window.

The SciPy implementation can return either the PSD (here with units rad2 Hz−1) or
the power spectrum (PS) which has units rad2, which is related to the PSD by:

PS = PSD × ∆ f × Cw (5.56)

where Cw is a constant that depends on the window choice (e.g. Cw = 1 for a boxcar
window—equivalent to no window—and Cw = 1.5 for a Hann window). The PS in
turn can give the linear spectrum (LS) (Heinzel et al., 2002):

LS =
√

PS (5.57)

The LS is so named because it is a direct estimate of |ĝ( f )|, having the same
dimensions as the input signal, here simply [∆Φ(t)] = rad. The PSD, PS, and LS
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are nothing but three representations of the same spectral data, and will be used
interchangeably in the following depending on which is the most relevant.

5.4.3 Validation
In order to validate the inversion approach suggested by Eq. (5.52), synthetic refrac-
tive index signals n(x, t) are generated per Eq. (5.39). These are first evaluated at
the single fixed point x = 0, i.e. the FLDI origin, to give n(t) as seen by a spatially-
fixed observer. The full wave n(x, t) is then used to compute the FLDI response
∆Φ(t), either by numerical simulation or the previously-validated analytical solution
Eq. (5.40). Welch’s method is applied to both the “input” n(t) and the “output”∆Φ(t)
time-series, using the same parameters, to give input and output spectra, PS {n(t)}

and PS {∆Φ(t)}, respectively.

Referring to Eq. (5.39), each frequency component has magnitude A j/
√

N . Thus
LS {n(t)} should comprise peaks of these magnitudes A j/

√
N at each f = f j , and

be zero elsewhere (i.e. at f , f j). However, due to spectral leakage, these peaks
will broaden in the actual implementation with finite ∆ f . With adequate resolution,
this implies that an approximation to the continuous amplitude spectrum is given
by:

A( f ) ≈ LS {n(t)} ×
√

N =
√

PS {n(t)} × N (5.58)

With a priori knowledge of α, β, and c, the continuous function h(k) is fully-defined
and can be evaluated discretely at k j ⇔ f j . With this, Eq. (5.52) shows how to
convert between input and output spectra:

PS {n(t)} =
PS {∆Φ(t)}
|h(k j)|

2 (5.59)

So the validation comprises two steps: recovering an approximation of the continu-
ous amplitude function A( f ) from the discrete input spectrum, using Eq. (5.58), and
converting the output spectrum (the FLDI response in terms of phase shift) back to
the input spectrum (the wave in terms of refractive index), using Eq. (5.59). For the
synthetic spectra, the following amplitude spectrum will be used, loosely based off
Prasad (2017):
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A( f ) =
B√(

1 + f 2

F2

)r
(5.60)

which gives a flat spectrum at low f with constant magnitude B, that rolls off
beginning at f = F with decay slope controlled by r . It is not claimed that
Eq. (5.60) is an accurate model of actual acoustic noise; however by choosing a
bandwidth containing F, the spectrum will contain a wide range of magnitudes with
rapid decay at higher f , which should be a good test of the inversion processes.

Fig. 5.9 shows the first such validation study. Here, the input wave has N = 10
frequency components, logarithmically spaced between [5 × 103,5 × 105]Hz. The
low- f amplitude B = 10−6, rolling off at F = 105 Hz with r = 3. For now
there is only one propagation direction (M = 1, α = β = 0°). The total period
of the input n(t) is shown at upper left, with a small segment magnified to show
the high-frequency detail at center left. The corresponding plots in the right-
hand column show the output ∆Φ(t), both simulated with the ray-tracing code,
and calculated analytically using Eq. (5.40). In the spectral plot at lower left, the
input A( f ) from Eq. (5.60) is shown in blue. The discrete reconstruction of A( f )

using Eq. (5.58) is in orange. The 10 discrete frequency components are clearly
visible, and as previously discussed show evidence of spectral broadening, with a
non-zero spectral noise floor between each peak. The peaks closely follow A( f ) as
required. At lower right, the output spectra PS {∆Φ(t)} are shown, computed from
both the simulated and calculated time-series, using the same Welch parameters as
each other and as the input spectrum. It is interesting to note that despite very little
discernable difference between the simulated and calculated ∆Φ(t), the spectrum of
the simulated data shows a much higher and messier noise floor, although all the
peaks are correctly replicated. This is due to additional error introduced with the
simulation discretization scheme. This gives another reason to prefer the use of
calculated over simulated ∆Φ(t) where possible. Also plotted here is the response
function h(k), mapped to its corresponding values of f , along with a non-oscillatory
version he(k), the significance of which will be returned to later. Finally, in the lower
left plot, the green curve shows the results of the inversion process performed by
combining Eqs. (5.58) and (5.59). This maps the output spectrum back to a very
close match with the input spectrum, as desired.

The next validation study, in Fig. 5.10, is more complex. It has M = 4 superimposed
propagation directions, each with the same N = 1000 frequency components. For
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Figure 5.9: Spectral inversion validation study with N = 10, α = β = 0°. Left
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now, all directions k̂i are still confined to the xy plane, because of additional
complications that arise when components of k̂ are in the z direction (this is the
topic of Section 5.5). Recalling the assumption that contributing sources from all
four walls share the same A( f ), then Eq. (5.58) is modified to become:

A( f ) ≈ LS {n(t)} ×
√

N/M =
√

PS {n(t)} × N/M (5.61)

The overall response function h(k) in Eq. (5.59) is found using:

h(k) =
M∑

i=1
hi(k) (5.62)

Again, the output spectrum is mapped back very closely to the input spectrum using
these transformations.

One small detail to note is that the inversion demonstrated in Fig. 5.9 uses the non-
oscillatory envelope of the response function, he(k), while that shown in Fig. 5.10
uses the original oscillatory h(k). When the oscillatory region of h(k) begins at high
values of f beyond the bandwidth of the signal, as it does in these two examples,
the differences between using h(k) vs. he(k) are small. h(k) gives more accurate
inversion, but the non-zero spectral noise floor gives rise to spurious spikes beyond
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Figure 5.10: Spectral inversion validation study with N = 1000, α j =

{0°,15°,30°,45°}, β j = 0°.



127

the bandwidth limit. he(k) avoids such spikes, but can artificially damp actual signal
components where he(k) begins to diverge from h(k); this is noticeable in the last
frequency component peak of Fig. 5.9. These issues are not usually a problem for
waves confined to the xy plane, because the oscillatory region governed by Q(k)

tends to be at very high f . However, when β , 0, the other oscillatory region due
to S(k) is at much lower f and cannot be neglected. This is the topic of the next
section.

These oscillatory issues notwithstanding, the outcome of Sections 5.3 and 5.4 is
that for plane wave disturbance fields, so long as the linearized ray-tracing equation
is valid, we can both predict ∆Φ(t) from known n(x, t), and recover the spectral
magnitude of n(x, t) from a given ∆Φ(t).

5.5 Propagation Along Optical Axis
Fig. 5.11 shows a similar inversion procedure to those in the previous section; this
time, the propagating field has a component along the z axis (β = 10°). The
parameters are such that the oscillatory roll-off in h(k) occurs in the middle of the
input bandwidth. Even in the temporal signal ∆Φ(t) it is clear how strongly higher
frequencies have been attenuated, despite the rather modest value of β. The spectral
representation PS {∆Φ} has oscillations and the correct decay profile.

However, the discrete natures of both the signal and Welch’s method mean the zeros
do not always line up perfectly with their analytical locations, so inversion done via
division by h(k) causes spurious spikes due to slight misalignment. Conversely,
inversion via he(k) incorrectly preserves the oscillations when mapping back to the
input spectrum. This misalignment of the function zeros causes the first issue for
inversion when there is a component of propagation along the optical axis. A second
issue is apparent in the output spectrum: even though PS {∆Φ} should continue to
roll-off in magnitude, it eventually bottoms out on the spectral noise floor. This then
leads to a spurious excursion in the inverted spectra, due to division by very small
h(k).

The first issue is mitigated somewhat in realistic applications, where we expect
the incoming acoustic waves from each wall to have a range of angles about some
preferred orientation. For example, the DNS studies of Duan et al. (2019) reported
inclinations in the range 28° ± 2°. With all other parameters held constant, the
locations of the zeros of S(k) are dependent on β. This causes the mean response
function to be smoothed, with less severe oscillations. This phenomenon was
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Figure 5.11: Spectral inversion with propagation along optical axis. N = 1000,
α = 0°, β = 10°. See Fig. 5.9 caption for subplot descriptions.



129

anticipated by Fulghum (2014) for xy propagation (i.e. the smoothing of oscillations
in Q(k)). The effect is actually stronger in S(k) because the zeros are not evenly
spaced, getting closer together with increasing k. An example of this smoothing is
shown in Fig. 5.12, for a disturbance containing a uniform distribution of angles in
the range 35° ± 5°. While the oscillations are not entirely negated, they are damped
substantially, and the non-oscillatory envelope he(k) for the mid-point angle is a
fairly good approximation for the overall behavior. This implies that the use of
he(k) for inversion should be quite accurate for real tunnel data. As mentioned,
this concept doesn’t work as well for oscillations caused by Q(k); however these
are often in a frequency band beyond the bandwidth of the experimental acquisition
systems.

The second issue is ultimately caused by division of a small value by an even smaller
one. Because h(k) rolls off so steeply, any actual instrument response will be below
the noise floor and thus negligible. Instead of inverting by dividing by h(k), we can
multiply by the reciprocal h−1(k), modified to include a cut-off, as well as being
non-oscillating:

h−1
ec (k) =


1

he(k)
k ≤ kc2

0 k > kc2
(5.63)

10−1 100 101 102 103 104

k [m−1]

10−3

10−2

10−1

100

101

102

103

104

105

h(
k)

h(k) for single β
he(k) for β = 35°
Mean h(k) for β = 30°–40°

Figure 5.12: Effect of having a band of propagation directions on response functions.
The shade of grey darkens for increasing β of each contributing component.
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Again, the criticalwavenumber kc2 needs to be determined empirically. For example,
it could be chosen as the value where he(k) falls to 1% of its maximum value.

5.6 Acoustic Waves in Convecting Flows
Thus far, the acoustic wave fields considered have all been plane waves propagating
in a quiescent medium. For our applications in wind tunnels, we need to model a
medium that is convecting at a temporally-steady, spatially-uniform velocity. For-
tunately, this does not change the wave equation Eq. (5.17) and so all the derived
results for ∆Φ still hold. The only modification is in the dispersion relation that
connects ω or f to k. Without convection, this was described by Eq. (5.18). With
convection, it becomes:

k =
ω

|u · k̂ + a|
(5.64)

where u is the convective velocity vector and a is the sound speed. By definition
ω, k > 0, hence the need for the absolute value of the denominator; signs are taken
care of by k̂ as per Eq. (5.19). In most applications of FLDI to wind tunnels, u =

ux̂. Chaudhry et al. (2019) construct very similar acoustic-convective disturbance
fields, albeit with propagation constrained to the xy plane; their dispersion relation
Eq. (1.21) can be obtained as a special case of the fully-3D result given here.

Despite its simplicity, Eq. (5.64) can have strong effects on the interpretation and
inversion of FLDI data. In high-Mach facilities u >> a and so the denominator can
change magnitude substantially. For the standard scenario of convective flow in the
positive x-direction with Mach number M:

k =
ω

|M cosα cos β + 1| a
(5.65)

For every M > 1 there is one wave orientation where Eq. (5.65) breaks down: if
M cosα cos β = −1 then the denominator goes to 0. Physically, this is a stationary
Mach wave, i.e. no propagation occurs (and there would be no time-varying FLDI
response).

h(k) is unaffected by convection, but when the response function is plotted in f it will
be shifted. An example is shown in Fig. 5.13. k̂ is compared for a wave propagating
without any convection (i.e. M = 0) and for the same wave superimposed on a
convective flow of M = 5. The so-called “fast” and “slow” acoustic modes are both
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Figure 5.13: Frequency-shifting of response function due to convective mean flow.
β = 0°, a = 300 m s−1, L = 1 m, standard optical parameters.

shown, where the wave is facing downstream and upstream, respectively. In both
cases, the wavefronts actually move downstream since M > 1, but different levels
of shift are observed, since the effective wave speeds are M ± 1.

For convection in the x direction with acoustic waves in the xy direction, the fast
mode has |α | < 90°, while the slow mode has 90° < |α | ≤ 180°. More generally,
the fast and slow modes are defined by u · k̂ > 0 and u · k̂ < 0, respectively.

5.7 Comparison with Method of Parziale et al.
5.7.1 Overview
The preceding lengthy exposition on the exact response functions invites comparison
with the original method of Parziale et al. (2012). First introduced in this thesis as
Eq. (1.3), it is repeated here for convenience:

∆ρ

ρ
=

λL

2πKζ ρ
sin−1

(
V
V0
− 1

)
(5.66)

with ρ as a local average density, λL the laser wavelength, K the Gladstone-Dale
constant, V the FLDI output voltage, and V0 the voltage at the middle of a fringe.
ζ is a measure of the sensitive length (similar to that discussed qualitatively in
Section 5.2). This method is attractive because it is simple to apply, either in
temporal or frequency space, i.e. using V(t) or V( f ). It was also published early
in the modern development history of FLDI, and so has seen use by subsequent
authors, e.g. Benitez et al. (2020) and Ceruzzi et al. (2020). Note that ρ appears
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on both sides and is only needed if one wishes to express the fluctuations in relative
terms.

Parziale (2013) later introduced a correction coefficient:

c(λ) = sin
(
π∆x
λ

)
(5.67)

This was derived for sinusoidal disturbances of wavelength λ. The post-processing
workflow is as follows:

1. Measure V(t), with known {V0, λL, ρ,K}.

2. Compute V( f ) from V(t) using Welch’s method or similar.

3. Convert V( f ) to uncorrected [∆ρ/ρ]( f ) using Eq. (5.66).

4. Assume some disturbance propagation velocity with which to relate f to λ.

5. Convert [∆ρ/ρ]( f ) to [∆ρ/ρ](λ).

6. Compute c(λ) using Eq. (5.67).

7. Correct the spectrum using [∆ρ/ρ](λ) ÷ c(λ).

This methodology was the one used in Parziale et al. (2014) to obtain density spectra
of the T5 freestream.

5.7.2 Theoretical Relationship with Exact Solution
Although Eq. (5.66) does not appear to bear much resemblance to the ray-tracing
Eq. (4.2), the former can be obtained as a simplified case of the latter. First recall
that the overall post-processing procedure for FLDI consists of three conversions:

V
A
−→ ∆Φ

B
−→ n

C
−→ ρ (5.68)

Conversions A andC are trivial, being given by Eq. (3.17) and Eq. (1.1) respectively.
The complicated part, and the subject of this chapter, is conversion B. Eq. (5.66)
represents the composite conversion ABC. To compare the methods we need to
expose how Parziale et al. treat conversion B alone.
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Assume an ideal interferometer with perfect contrast, such that Vmin = 0, and with
the reference point V0 set to exactly the mid-fringe position. This reduces Eq. (3.17)
to:

V = V0 [1 + sin (∆Φ)] (5.69)

Rearranging:

∆Φ = sin−1
(

V
V0
− 1

)
(5.70)

Using Eq. (5.70), Eq. (5.66) can be rearranged to:

∆Φ =
2π
λL

Kζ∆ρ (5.71)

Consider Eq. (4.3) (the polar form of the ray-tracing equation) and substitute the
Gladstone-Dale relation:

∆Φ =
2π
λL

2π∫
0

∞∫
0

Ĩ0 (r̃)

( zb∫
za

(Kρ1 + 1)dz −

zb∫
za

(Kρ2 + 1)dz

)
r̃dr̃dθ (5.72)

This simplifies to:

∆Φ =
2π
λL

K

2π∫
0

∞∫
0

Ĩ0 (r̃)

( zb∫
za

ρ1dz −

zb∫
za

ρ2dz

)
r̃dr̃dθ (5.73)

Parziale et al. only consider sinusoidal plane waves propagating in the x-direction,
i.e. ρ , ρ(z). However, recall that the co-ordinate transformation to (r̃, θ, z)
involves normalization by w = w(z), so there is z-dependence in the integrations
that originates from the focusing beam geometry. The approximation is made that
the instrument is only sensitive within |z | ≤ ζ/2, even if the disturbance extent
[za, zb] exceeds this. Furthermore, the focusing within the sensitive length ζ is
neglected, so that:

zb∫
za

ρidz = ρi

zb∫
za

dz ≈ ρi

+ζ/2∫
−ζ/2

dz = ρiζ (5.74)
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Then:

∆Φ =
2π
λL

Kζ

2π∫
0

∞∫
0

Ĩ0 (r̃)
[
ρ1 − ρ2

]
r̃dr̃dθ (5.75)

Reverting to Cartesian co-ordinates we have ρ = ρ(x) only, so:

∆Φ ≈
2π
λL

Kζ

∞∫
0

∞∫
0

Ĩ0 (x, y)
[
ρ1

(
x +
∆x
2

)
− ρ2

(
x −
∆x
2

)]
dxdy (5.76)

The final approximation made is that this integral can be replaced with some ∆ρ
representing a weighted average of the density differences between the two beams,
thereby recovering Eq. (5.71). It can be viewed as a weighted average because the
integral of the normalized Gaussian intensity distribution Ĩ0 over all space is unity.

Note that the introduction of the Gladstone-Dale relation only alters Eq. (5.73) by a
factor of K , so Eq. (5.71) can instead be expressed in terms of refractive index:

∆Φ =
2π
λL
ζ∆n (5.77)

This isolates conversion B from Parziale et al.’s method and allows comparison
with the exact result derived from Schmidt and Shepherd. To summarize, the
simplifications made neglect the changing area of the focusing beams along with
their Gaussian intensity profiles, which in the method of Schmidt and Shepherd are
encapsulated in Hw. The only aspect of Hw that is preserved is the roll-off in response
with increasing z, which is approximated by a sharp cut-off at±ζ/2. For their optical
parameters (which are similar to ours) Parziale et al. suggest ζ/2 ≈ 10 mm. This was
originally based on a geometrical argument involving beam overlap and common-
mode rejection, later deemed irrelevant to the operation of FLDI by Schmidt and
Shepherd, although some simple benchtop experiments also gave similar sensitive
lengths.

Although Hw does not enter into Parziale et al.’s method, c(λ) can be seen as a
predecessor to Hs, i.e. the effect of the finite separation ∆x. Parziale et al. only
address the roll-off effect of c(λ) on low frequencies, not the high-frequency aliasing,
likely because this aliasing only occurs at extremely high frequencies beyond the
range of their experiments.
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∆ρ (or equivalently ∆n) obtained by this method are treated by Parziale et al. as
good approximations to the true fluctuations ρ′ or n′, since ∆x is small.

5.7.3 Comparisons
With Eq. (5.77), direct comparison can be made with the exact solution, using the
following procedure:

1. Define a known n′(x, t) and corresponding spectrum n′( f ).

2. Compute ∆Φ(t) using the ray-tracing approach of Eq. (5.21).

3. Use ∆Φ(t) or ∆Φ( f ) with Eq. (5.77) to compute ∆n.

4. Compute c(λ) or c( f ) and correct ∆n.

5. Compare ∆n with n′.

Beginning with a single-frequency wave, close agreement was found between the
two methods, if ζ is chosen appropriately. This choice is very sensitive to the
parameters of the wave and the FLDI. For many trialed frequencies, Parziale et al.’s
suggestion of ζ ≈ 20 mm resulted in ∆n that were off by orders of magnitude.

For waves with x-propagation only, Eq. (5.24) shows that additional contributions
to ∆Φ diminish as:

erf
(

kLλL

2
√

2πw0

)
→ 1 (5.78)

This can be used to determine ζ :

ζτ ≡
2
√

2w0

λL
·

uc

f
· erf−1(τ) (5.79)

where τ is some threshold . 1, e.g. ζ0.99 is the length within which 99% of
the response is generated. For x ∈ R, erf(x) is one-to-one and so erf−1(x) is
defined, and is implemented in SciPy and other software packages. Note uc is the
convective velocity of the flow-field; for example, an acoustic wave superimposed
on an underlying freestream flow would have uc = u∞ + a. This means that the
sensitive length depends on this velocity when expressing ζ in terms of f .
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Figure 5.14: Comparison of exact n′ with approximate ∆n computed using Parziale
et al. uc = 1 km s−1, f = 1 MHz, A = 10−7, ζ0.99 ≈ 48 mm.

An example single-frequency case, using Eq. (5.79) to determine ζ , is shown in
Fig. 5.14. This figure shows the original n′(t) and the corresponding exact ∆Φ(t),
along with the approximate ∆n(t). The agreement in magnitude is quite good using
ζ0.99. Note ∆n(t) is a quarter-cycle out-of-phase with n′(t), because Parziale et
al.’s method does not account for the phase shift that results from FLDI being a
response to the density gradient; of course this is unimportant for the usual spectral
representation of data.

The bottom plot of Fig. 5.14 shows the frequency dependence of c( f ) and ζ .
Tests at other frequencies show that their c( f ) indeed provides the right magnitude
correction if used in conjunction with the appropriate ζ . However, it can also be
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seen that ζ decreases by an order of magnitude for every decade of increase in f .
This immediately implies that interpreting spectral data with a constant ζ will not
be successful if the data span a bandwidth of any significance.

Fig. 5.15 extends the comparison to waves with multiple frequencies. The spectrum
of the exact field n′(t) is comparedwith three candidates: two use a fixed ζ = 20 mm,
with and without the correction factor c( f ), the third uses a variable ζ( f ) from
Eq. (5.79) as well as c( f ). It can be seen that this third method produces excellent
agreement across the whole spectrum. Coincidentally, the value of ζ chosen here
actually causes the original uncorrected method to also match quite closely, but the
corrected method diverges strongly. However, other choices of ζ shift these spectra
vertically.

The reason the uncorrected method (no c( f ), constant ζ) maintains the same shape
as the true spectrum is that c( f ) and ζ( f ) scale like f and f −1, respectively, and so
overall have no f -dependence. This means there is a single constant value ζ for a
given flow-field geometry and velocity that will recover the true spectrum, but this ζ
may not have an obvious relationship with any experimental length scales. In order
to be sure that ζ is correct, Eq. (5.79) needs to be used, thereby drawing from the
full ray-tracing theory. At this point, all the same parameters need to be known and
assumed, such that one might as well just use Eq. (5.24) without much increase in
complexity. There are also additional caveats to using Parziale et al.’s method: if
ζ( f ) exceeds the actual integration length 2L then inaccuracies will occur at those
frequencies: essentially, high-frequency contributions will be over-counted.

The theory is strictly for plane sinusoidal waves propagating in the x-direction only,
and if the disturbances either have some other component of motion or are not
sinusoidal (e.g. a shock wave), the method will not give correct results, whereas
the ray-tracing theory can give analytical results for any plane wave, and numerical
results for arbitrary fields. For example, if the above comparison in Fig. 5.15 is
repeated for a wave inclined in the xy plane at α = 30°, there is no mechanism in
Parziale et al.’s method to account for the inclination. Fig. 5.16 shows that even
with the corrections to the method (variable ζ) the magnitude of the field will be
underpredicted.
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Figure 5.15: Comparison of exact refractive index spectrum with reconstructions
using the method of Parziale et al. with various modifications. The flow-field is a
plane wave propagating in the x-direction.
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Figure 5.16: Comparisons for a plane wave propagating in the xy-direction with
α = 30°.



139

−20 −15 −10 −5 0 5 10 15 20

Length [mm]

60

62

64

66

L
en

gt
h

[m
m

]

Figure 5.17: Cross-section of the geometrical interaction of FLDI beams [green]
with the boundary layer [black dashed line] over a cone [black solid line]. Modified
from Parziale et al. (2015) and used with permission from N. J. Parziale.

Besides its use for making freestream measurements in T5, FLDI was also used
by Parziale et al. (2015) to observe instabilities in hypersonic boundary layers on a
slender cone. The foci of the FLDI were aligned parallel with and very close to the
surface of the cone. Geometrical calculations (Fig. 5.17) showed that a region of the
beams roughly ±10 mm about the focal plane were immersed in the boundary layer.
A plot of ζ0.99( f ) can be used to determine whether observed instabilities of a given
frequency liewithin the boundary layer. For example, in Fig. 5.14, frequencies above
f ≈ 5 MHz have ζ0.99 < 10 mm and so any signals in this bandwidth are guaranteed
to originate within the boundary layer. Note that this is just an illustration of the
method; ζ0.99( f ) in Fig. 5.14 was not computed for the same conditions as Parziale
et al.’s experiment.

5.8 Conclusions
In the introduction to this chapter, the need to be able to perform the FLDI inverse
problem n(x, t) = f −1 (∆Φ(t))was described. It has been demonstrated here that this
is possible in a spectral sense for all refractive index fields comprised of arbitrary su-
perpositions of sinusoidal plane waves and uniform convecting flows. Furthermore,
this inversion can be expressed as an explicit analytical function. The various terms
of this function have been discussed as they give insight into the physical mecha-
nisms behind FLDI operation. This particular class of field was not merely chosen
because it yields an analytical solution. Multi-frequency sinusoidal plane waves,
incident at some angle to a freestream flow, are a good model for acoustic radiation
from wall boundary layers. From a practical standpoint, this theory can be used to
recover density and pressure fluctuations from hypersonic wind tunnels—this will
be demonstrated in Chapter 6.

The theory developed in this chapter was also compared with the previous de-
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velopments of other authors. Specifically, the present results are shown to be a
generalization of Schmidt and Shepherd’s various transfer functions, and they were
also used tomake corrections to the functions of Settles and Fulghum (2016). Lastly,
the original simple theory of Parziale et al., although appearing superficially unre-
lated, was shown to be recoverable by applying suitable approximations to the exact
theory. The limitations of Parziale et al.’s model were discussed, as its use remains
widespread in the community.
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C h a p t e r 6

RESULTS: CONVENTIONAL TUNNEL EXPERIMENTS

To reiterate from Section 2.6, the high-speed data obtained at Tunnel D comprised
two pitot pressure signals from symmetrical locations near the facility centerline,
and two signals (one AC-coupled/filtered, one DC-coupled/unfiltered) from the
same FLDI, positioned upstream from one of the pitot stations, approximately on
the stagnation streamline. The raw voltages can be converted into pitot stagnation
pressures p0 and FLDI phase shifts ∆Φ via known calibration constants. The main
goal for the analysis is to further convert these data into the same units of freestream
pressure or density in order to directly compare them. This requires some prior
knowledge or assumptions about the flow geometry, as well as transfer functions for
each diagnostic.

6.1 Raw Data
An example raw dataset is shown in Fig. 6.1. All runs from Table 2.2 look quali-
tatively similar; additionally, there is very little difference between the filtered and
unfiltered FLDI data, or between the two pitot locations.

In the middle band of frequencies, the spectra magnitudes are ordered by reser-
voir pressure, i.e. the absolute signals measured by either technique get larger in
magnitude as pres increases. This ordering breaks down somewhat for f < 1 kHz,
although this may be due to increasing numerical error in the PSD algorithm as the
record length is approached. The pitot data are also displayed normalized by p̄0;
this is usual in the literature as it allows comparison of different facilities in terms of
Reynolds number. The magnitudes of PSD

{
p′0/p̄0

}
are compared in Fig. 6.3 with

a compilation of results from various similar facilities given by Duan et al. (2019).

Each measurement method shows a characteristic peak, regardless of pres, that is
absent from the corresponding location in the spectra of the other method: for the
FLDI, centered at 1.7 kHz; for the pitot, centered at 55.5 kHz. The FLDI peak is
due to laser intensity noise, as discussed in Appendix D (compare to Fig. D.1). The
raw pitot spectra for all the different run conditions are roughly parallel to each other
over their useful range; the same would be expected from the FLDI data. However,
it is seen that the laser intensity noise causes all the FLDI spectra to “bunch up”: up
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to about 6 kHz all spectra are on top of each other, i.e. completely dominated by the
noise floor, and even considerably above this the lower-pressure conditions (in blue
and violet) are strongly affected by the noise and do not run parallel to the other
spectra. The useful bandwidth for the FLDI therefore differs between conditions,
but for simplicity 30 kHz is chosen as a value where all conditions appear to be
sufficiently above the noise floor.

The pitot feature resembles a resonance peak, and while the natural frequency of
the Kulite is 175 kHz, this can be shifted substantially lower when disturbances
approach at an angle (this phenomenon was described by Chaudhry et al. (2019)
and reviewed in Section 1.3). The presence of these peaks and the RF noise leads
to the definition of useful bandwidths for these data: for the FLDI, this is taken to
be 30 kHz < f < 200 kHz; for the pitot, 100 Hz < f < 40 kHz.

The experimental noise floors were characterized for the FLDI and pitot sensors by
taking measurements in various no-flow configurations, using all the same acquisi-
tion settings. The results are summarized in Fig. 6.4. For the FLDI, it was found
that the vast majority of the background noise is due to the laser. With the laser
off, there is no difference observed when the photodetector is covered or powered
off: background light, dark current noise, or AC power supply interference are
negligible compared with the laser noise. With the laser on, the spectra remain
the same regardless of whether the no-flow test section is at vacuum or ambient
conditions: airborne dust or ambient air currents are also negligible. The noise
floor with the laser on is orders of magnitude higher than the baseline noise, and the
lowest-density flow condition (corresponding to the minimum reservoir pressure) is
barely above this threshold. The FLDI signal is significantly above the noise floor
for higher-density conditions across the full useful bandwidth.

Taken together, Figs. 6.1 and 6.4 show that the data from the lowest-pressure con-
dition (Burst 1, in violet) is unreliable regardless of the diagnostic: for the pitot,
its shape is anomalous, and does not follow the correct trend when plotted in rela-
tive terms; for the FLDI, as mentioned, it sits right on the noise floor. Therefore,
subsequent plots will exclude this condition.

6.2 Conversion of Pitot Data
The state-of-the-art for interpreting supersonic pitot probe data is the work of
Chaudhry and Candler (2017) and Chaudhry et al. (2019). This was discussed
at length in Section 1.3, but to summarize, DNS studies were performed of both
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Figure 6.1: Example raw dataset from Tunnel D experiments. Shown is Run 184,
with FLDI and pitot data (the latter displayed both in absolute and relative terms).
Each color corresponds one of the 16 reservoir pressure setpoints, ranging from
34–414 kPa, see Fig. 6.2 for details.
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Figure 6.2: Color scale used throughout this chapter to represent pres and corre-
sponding Rem.

flow-parallel and inclined acoustic plane waves incident on a pitot probe. It was
found that the transfer functions were strongly dependent on the incident angle,
frequency, and the probe geometry.

As yet, there are no analytical forms for these general transfer functions, but one
was derived for the special case of flow-parallel waves in the low-frequency limit:

χ∗σ± =

[
M2
∞ ± 2M∞ ∓ 1/M∞
γM2
∞ − (γ − 1)/2

]2

(6.1)

where M∞ is the time-averaged freestream Mach number, σ+ and σ− denote the
fast and slow acoustic modes respectively, ∗ the low-frequency limit, and the transfer
function is defined as:

χ( f ) ≡
PSD

{
p′0/p̄0

}
PSD {p′∞/p̄∞}

(6.2)

This result agreed with the DNS data at low frequencies (relative to the first resonant
peak). However, there is no corresponding result for inclined waves—but it is known
that the primary source of noise in Tunnel D are inclined acoustic waves Donaldson
andWallace (1971). The most widely-used approach remains to the present time the
work of Stainback andWagner (1972) (again, see Section 1.3), which despite having
no dependence on frequency or geometry, does account for inclination. Repeated
here with notational changes from Eq. (1.9):
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Figure 6.3: Comparison of Tunnel D pitot pressure spectra with literature data.
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( p̃0
p0

)2
=

(
p̃∞
γp∞

)2
[
1 − 4

nx

M∞
+ 4

(
nx

M∞

)2
]

(6.3)

Recall that the tilde represents RMS values rather than instantaneous fluctuations.
However if Eq. (6.3) is assumed to hold in an instantaneous sense, then it can be
rearranged to yield a transfer function χ in the sense of Chaudhry and Candler:

χ∗swθ =
1
γ2

[
1 − 4

nx

M∞
+ 4

(
nx

M∞

)2
]

(6.4)

Here, the subscript sw refers to “Stainback and Wagner” and the θ indicates that
this holds for inclined waves, where nx ≡ cos θ. Note that the additional factor of 2
that was added to account for unsteady shock reflection effects is not included, since
here we wish to compare the quasi-steady low-frequency limit.
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To directly compare with Eq. (6.2), we take the special case of flow-parallel distur-
bances (denoted with ‖), where θ = 0° or 180°, corresponding to nx = ±1 for fast
and slow mode respectively:

χ∗sw‖ =
1
γ2

[
1 ∓

4
M∞
+

4
M2
∞

]
(6.5)

The comparison between Eqs. (6.2) and (6.5) is made in Fig. 6.5. Despite being
derived by quite different methods, the two sets of transfer functions agree very
closely, except below about M∞ = 2; this is to be expected, since Stainback and
Wagnermake use of an approximation that holds for M∞ & 2.5 (Eq. (1.7)). However,
there is a sign error: Stainback and Wagner’s slow mode matches Chaudhry and
Candler’s fast mode, and vice versa. It is known from the DNS validation that the
latter form is correct, so the sign error must lie with Stainback and Wagner.

Re-examining the derivation, the starting point is a general fluctuation equation,
Eq. (1.8). The assumption is then made of pure acoustic waves, specifically slow-
mode, which makes the correlation coefficient Rρu = −1 (it would be +1 for fast
mode). The wave inclination is introduced via a modification to the isentropic
relations:

ũ∞
u∞
=

nx

γM∞
·

p̃∞
p∞

(6.6)

Consider the signs of each quantity in this equation. By definition theRMSquantities
ũ and p̃ are positive, as are the time-averaged pressure p, γ, and M∞. Although
for a slow-mode wave the instantaneous velocity fluctuations u′ can be negative, the
time-averaged (supersonic) velocity u must remain positive for the problem set-up
to make physical sense. Thus nx > 0 in order for Eq. (6.6) to be resolved. But
this conflicts with the choice of slow-mode waves and Rρu = −1, since this requires
90° < θ ≤ 180° and so nx < 0. Stainback and Wagner themselves use Laufer’s
method for obtaining nx from the sound source velocity, re-expressed in their paper
in the form:

nx =

(
us − u∞

u∞

)−1
M−1
∞ (6.7)

They use us/u∞ = 0.6, which again requires nx < 0. Hence the error may have
arisen in Eq. (6.6) because of the use of RMS rather than instantaneous values, or
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even a “double negative” in choosing Rρu = −1 as well as using θ referenced from
a fast-mode datum. In any case, a simple sign-change correction can be made to
Eq. (6.4):

χ∗swθ =
1
γ2

[
1 + 4

nx

M∞
+ 4

(
nx

M∞

)2
]

(6.8)

This brings the flow-parallel cases χ∗sw‖ into agreement with χ∗σ±. It is now assumed
that the angled cases χ∗swθ will also hold in the low-frequency limit. The deviation
from the validated flow-parallel result as θ changes is shown in Fig. 6.6.

As noted by Chaudhry and Candler, the fast- and slow-mode χ∗ are substantially
different in value even for quite high M∞, as the two curves approach the high-M∞
asymptotic limit slowly (illustrated in Fig. 6.5). Furthermore, at the conditions for
Tunnel D, where M∞ = 4 or 5 and θ ≈ 125°, the deviation in χ from flow-parallel
is substantial.

The question now arises as to the data range over which these χ∗ are valid. Chaudhry
and Candler used bandwidths of 0 < f . 0.1 fpeak for their low-frequency validation
studies, where fpeak is the resonant frequency found from the peak response. For
example, Fig. 6.1 has fpeak ≈ 65 kHz, allowing the use of χ∗ only up to f ≈ 6.5 kHz.
The DNS results for the flow-parallel case show that at first, χ/χ∗ deviates from
unity relatively slowly as f increases: e.g. at f ≈ 0.25 fpeak , χ/χ∗ ≈ 1.2, although
it should be noted that these results were for the flow-parallel case; corresponding
χ/χ∗ normalizations were not provided since an analytical χ∗ was not derived by
Chaudhry et al. Conservatively, f = 0.2 fpeak will be used as the cut-off. This
represents a further restriction on the aforementioned useful bandwidth for the
pitot, now 100 Hz < f < 13 kHz. Note that since we divide by χ∗ to recover
PSD

{
p′∞/p̄∞

}
, use of χ∗ beyond this cut-off could produce a substantial over-

estimation in magnitude, and the strong frequency dependence past this point will
also result in incorrect spectral slopes.

Finally, because the measured pitot pressure p0 consists of (assumed equal) contri-
butions from all 4 walls, the static pressure spectrum of an inclined wave is recovered
by division by 42 = 16 since the spectral representation chosen is the PSD, which
scales with the square of the signal.

This section has presented themethodology thatwill be used to convertPSD
{
p′0/p̄0

}
to PSD

{
p′∞/p̄∞

}
. Some additional details of how to properly handle the different
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spectral representations are discussed in Appendix B. The results of applying this
methodology to the data are in Section 6.4 along with the corresponding FLDI
spectra, converted per Section 6.3.

6.3 Conversion of FLDI Data
Tunnel D has a square cross-section, and it is assumed that each wall radiates
planar acoustic waves, uncorrelated but from the same spectrum and with the same
preferred orientation θ. This assumption will be revisited later. The top and bottom
walls have wavevectors constrained to the xy plane (α = θ, β = 0), while those from
the left and right walls are in the xz plane (α = 0, β = θ).

To recover the spectrum of a single one of these four superimposed plane waves, we
use:

PSD {n′} =
PSD {∆Φ}����� M∑
i=1

hi( f )

�����2
(6.9)

Here, M = 4, h1 = h2 = hxy, and h3 = h4 = hxz:

PSD {n′} =
PSD {∆Φ}

4
��hxy( f ) + hxz( f )

��2 ≈ PSD {∆Φ(t)}

4
[
hxy,e( f ) + hxz,e( f )

]2 (6.10)

In the approximate equality, the oscillatory exact response functions are replaced
with their non-oscillatory, always-positive envelope functions per the arguments
made in Sections 5.4 and 5.5.

To evaluate Eq. (6.10), the following information is required:

1. The FLDI optical parameters ∆x, w0, λL . These are known.

2. The beam integration length L, here equal to the known test section width.

3. The acoustic wave inclination θ. From the measurements of Donaldson and
Wallace, this is θ = 122–128° at M∞ = 4.

4. The freestream Mach number and sound speed, M∞ and a, in order to apply
the convective shift Eq. (5.65). These are known; note that there are only two
values of M∞, but a differs at every pres step during each run.
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5. The frequency range f . This is generated discretely from the application of
Welch’s method to the data.

AlthoughDonaldson andWallace provided data over the full range of pres at M∞ = 4,
corresponding data were not obtained for our other condition of M∞ = 5. The
assumption is made that the sound source velocity ratio us/u∞ remains the same,
allowing the relationship between θ and M∞ to be determined using Eq. (1.6):

us

u∞
= 1 +

1
M∞,1 cos θ1

= 1 +
1

M∞,2 cos θ2
(6.11a)

⇒ θ2 = cos−1
(

M∞,1
M∞,2

cos θ1

)
(6.11b)

This yields θ = 115–120° for M∞ = 5.

Consolidating all these parts, hxy( f ) and hxz( f ) are shown for the bandwidth of a
representative Tunnel D condition in Fig. 6.7. It is important to remember when
expressing h in terms of f (instead of k) that the response function will be shifted
differently for every combination of M∞ and a. Defining an average enveloped
response function hav,e ≡

1
2 (hxy,e + hxz,e), then Eq. (6.10) becomes:

PSD {n′} ≈
PSD {∆Φ}
16h2

av,e( f )
(6.12)

hav,e is also shown in Fig. 6.7. Note that once hxz,e rolls off, the response is
dominated by hxy,e, so the numerical issues caused by hxz,e alone (Section 5.5) are
not a concern. This is equivalent to stating that hxy,e >> hxz,e over most of the k

range, so that hav,e ≈
1
2 hxy,e. Returning to the assumption made earlier, although

the square test section has four-fold rotational symmetry, the nozzle leading to it
is two-dimensional and so the nature of the boundary layers on the vertical and
horizontal walls of the test section may not be the same∗. However, the dominance
of hxy,e means that the FLDI is mainly responding to the waves radiating from the
top and bottom walls only, and the interpretation will remain largely unchanged
even in the extreme case of laminar boundary layers on the left and right walls (i.e.
completely non-radiating). On the other hand, the pitot data would be affected by a
breakdown in this assumption of four equally-radiating walls, as our model assumes
an axisymmetric pitot transfer function.
∗Personal communication from J. W. Hofferth
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Figure 6.7: Example FLDI response functions h( f ) computed for Tunnel D condi-
tions: Run 185, Burst 10 (M∞ = 4, pres = 229 kPa, a = 172 m s−1). Envelopes hxy,e
and hxz,e shown with dashed black lines.

With PSD {n′} obtained via the above process, the Gladstone-Dale and isentropic
relations can be used to convert to density and static pressure (in both absolute and
relative terms):

PSD {n′}
÷K2

−−−⇀↽−−−
×K2

PSD {ρ′}
÷ρ̄2

−−−⇀↽−−−
×ρ̄2

PSD {ρ′/ρ̄}
×γ2

−−−⇀↽−−−
÷γ2

PSD {p′/p̄}
×p̄2

−−−⇀↽−−−
÷p̄2

PSD {p′}

(6.13)

Again, please refer to Appendix B for more discussion on these conversions.

6.4 Comparison of Pitot and FLDI Data
The conversion algorithms from Section 6.2 and Section 6.3 were applied to the
full sets of pitot and FLDI data, respectively. Comparisons of selected individual
conditions are shown in Fig. 6.8. In these plots, the dark shades show the bandwidths
where each conversion is considered reliable, while the rest of the spectrum is
shown in a lighter shade. Fig. 6.8a is an example of a very good match, where
both the magnitude and shape of the spectra agree closely, even beyond the reliable
bandwidths selected for each instrument. Fig. 6.8b shows the discrepancies that
can arise due to the spectral distortion from the laser noise peak (for the FLDI) and
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the shock stand-off resonance (for the pitot). However, Fig. 6.8b also shows that
although the reliable bandwidths do not overlap, it appears they should connect quite
smoothly via extrapolation. This concept is used in the analysis of the full dataset
that follows.

All spectra corresponding to each run are converted and overlapped in Fig. 6.9,
which gives an example for each M∞ (there was little shot-to-shot variation observed
between runs at the same M∞). Power-law fits are used to extrapolate the signal
from each instrument across the gap in useful bandwidths. For most freestream
conditions, these extrapolations match quite closely in terms of both slope and
magnitude. The worst mismatches are found for the two lowest pres conditions at
M∞ = 5 where, at the midpoint of the bandwidth gap, the FLDI extrapolations are
larger in magnitude by about a factor of 3. These two conditions are the lowest-
density of all remaining datasets (recall that the lowest pres condition was discarded
for both M∞ as discussed in Section 6.1). Again it is possible that the mismatch may
be due to simultaneous overestimation of the FLDI signal (being close to the noise
floor) and underestimation of the pitot signal (based on the previously-discarded
signal showing clearly anomalous pitot response due to low absolute density).

For each M∞, sensitivity studies were performed for the chosen wave angle θ within
the ranges given in Section 6.2, with little difference observed.

6.5 Conclusions
This chapter has presented methods for converting both pitot and FLDI raw data into
static pressure fluctuations, by using a consistent model that assumes acoustic plane
waves radiated from the wall boundary layers with a preferred orientation. The
pitot conversion process involved a unification of the widely-used classical theory
of Stainback and Wagner with the modern DNS work of Chaudhry and Candler;
note that the ad hoc factor of 2 of Stainback and Wagner was not used in the low-
frequency limit. Conversion of the FLDI data employed the novel method developed
earlier in this thesis (Chapter 5).

This approach gave good agreement between spectra for most run conditions, al-
though extrapolation was required due to the reliable bandwidths of each instrument
not overlapping. This analysis provides a proof-of-concept for recovering quantita-
tive spectral information from an optical technique. It is to be emphasized that the
main outcome of this campaign is the development of the methodology for inter-
preting FLDI freestream measurements; the results are not yet proven enough to be
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used to quantify the facility performance.

It is clear that the useful bandwidth recoverable from FLDI is restricted at both
the low and high frequency limits of the full sampled range. At the low end, the
strong laser intensity noise overwhelms the signal response, and distorts the spectral
shape even quite far from the noise maximum. At the high end, the true signal
again appears to fall below the laser noise floor, and additional discrete electronic
noise peaks become numerous. As discussed further in Appendix D.2, the laser
used is actually considered “low noise” and advertised as suitable for interferometric
applications. However, the low densities encountered in hypersonic wind tunnels
still lead to poor signal-to-noise ratios.

The fundamental theory used to interpret the FLDI data as quantitative freestream
static pressure fluctuations has proven reliable, using pitot as a reference, with close
matches found in both magnitude and spectral shape. Further studies are recom-
mended, perhaps coupled with simulation work, because as shown by Chaudhry and
Candler even the interpretation of pitot data in hypersonic flows is not yet fully under-
stood. Nevertheless, if the noise floor issues can be overcome with better-designed
optics and acquisition systems, then FLDI has the potential to yield quantitative
spectra well beyond the bandwidths reachable with pitot probes.
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Figure 6.8: Comparison of converted FLDI and pitot spectra for two example cases
with differing flow conditions.
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C h a p t e r 7

RESULTS: HIGH-ENTHALPY EXPERIMENTS

This chapter presents the results of the experimental campaign conducted using
FLDI with optical arms to measure the HET freestream. The campaign comprised
66 shots, tabulated in Table E.1; for information on the design of the test conditions,
please see Section 2.4.

7.1 FLDI Signal Structure
A representative FLDI signal for an HET shot is shown in Fig. 7.1, along with the
corresponding pitot trace. The same features are visible in each signal, albeit with a
time lag since the pitot probe is mounted far enough downstream that its bow shock
does not interact with any part of the optical arms. Specifically, the probe face is
approximately 75 mm downstream of the FLDI beam centerline.

Referring to the generic x–t diagram in Fig. 2.2, the quiescent State 5 is processed
to State 6 by a shock wave. In the pitot this manifests as a sudden increase in the
time-averaged p0; in the FLDI the shock appears as a sharp spike when viewed
at this timescale, although it was shown previously that this shock signal has its
own detailed internal structure (Section 4.3). The shocked State 6 is still relatively
quiet, and is separated from State 7 (the test gas) by a contact surface. However,
both measurements capture an indication of non-ideal interface effects. These
interface effects generate a strong FLDI response which in some cases (such as
here) approaches the magnitude of the shock signal. For Shot 1889, the interface is
between two dissimilar gases, air and CO2, which are also at quite different densities
(ρ6 = 0.011 kg m−3 and ρ7 = 0.061 kg m−3, respectively). Instabilities and mixing
at this interface can therefore lead to strong refractive index gradients.

The beginning of the quasi-steady test time ∆t at State 7 is taken to be the end of this
interface region. In the pitot, the test time appears as a relatively constant plateau.
Test time is terminated by the arrival of the leading characteristic of the reflected
expansion wave. Finally, the test gas is separated from the denser driver gas by the
primary contact surface, the arrival of which is clearly visible in both the pitot and
FLDI signals.



158

0

100

200

300

400

p 0
[k

Pa
]

State 5 State 6 CS State 7 Refl. exp.

Driver gas

Pitot

−200 0 200 400 600 800 1000 1200 1400
t [µs]

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

∆Φ
[r

ad
]

Shock

FLDI

Figure 7.1: Pitot and FLDI signals for Shot 1889. The various flow states are
indicated (CS = secondary contact surface, refl. exp. = secondary expansion wave,
reflected from primary contact surface).

7.2 Post-Processing
The ∆Φ signal from each shot is manually inspected to determine the beginning of
test time. As discussed above, this is usually quite apparent due to the distinct nature
of the signal during the broadened contact region. It is usually simple to determine
the start of test time, but there is no clear indication of its termination, especially in
the FLDI signal. Instead, some fraction of the ideal test time is used to extract the
portion of the signal used for further analysis. In this work, 70% of the test time
calculated with LETS was used, although the results showed little sensitivity to the
exact fraction used. The extracted test time signal is used to compute a spectrum
PSD {∆Φ} using Welch’s method. The lower frequency limit scales like 1/∆t, and
so is roughly 10 kHz. This raw spectrum is subsequently converted and normalized
(see Section 7.3).

Note that this entire campaign was performed using a double FLDI. This means
that every dataset actually contains two nearly-identical ∆Φ(t) signals, offset by
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. 1 µs. For this study, these signal pairs are used to give some quantification of
measurement error, i.e. by applying the same post-processing to each and observing
any differences.

7.3 Data Normalization
7.3.1 Assumptions & Modeling
To compare test-time data at different conditions, the FLDI signal must be normal-
ized. Since the objective of this campaign is to detect trends in freestream noise,
we convert ∆Φ to ρ′/ρ̄. This procedure was also performed to the Tunnel D data
in Chapter 6. In the case of HET, additional assumptions must be made about the
fluctuating field, compared to conventional tunnels where the nature of the noise
sources are well-documented in the literature (see Section 1.3). The freestream noise
in HET may be due to a combination of several sources: acoustic waves originating
both from the driver and radiating from the wall boundary layers, vorticity from
the primary diaphragm petals, knife-blades, and secondary diaphragm wire-cross,
as well as other disturbances of uncertain nature from mixing at the secondary con-
tact surface. The frequency content and relative magnitudes of each of these noise
sources are unknown.

Currently, the only class of flow-field for which quantitative FLDI inversion can
be performed is sinusoidal plane waves. The simplifying assumption is thus made
here that the freestream noise can be modeled as comprising plane acoustic waves,
propagating parallel to the freestream flow direction. The justification for this is
based on several considerations. Firstly, Paull and Stalker considered the main
source of noise in expansion tubes to be acoustic waves from the driver. These were
modeled using a potential function φ:

u = u0 + ∇φ (7.1a)

p = p0 − ρ0
∂φ

∂t
(7.1b)

φ = J0(λr) exp
[
iω

(
t ±

βx
a

)]
(7.1c)

β =

√
1 −

(
λa
ω

)2
(7.1d)

Here, (x,r) are the axial and radial tube directions, a is the sound speed, λ is the radial
wavelength, ω is the frequency, β is the dispersive term, and J0 are zeroth-order
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Bessel functions of the first kind. In their terminology, “longitudinal waves” are
those without radial dependence (J0(0) = 1), while all higher-order solutions with
radial modes are “lateral waves”—although these lateral waves still have an axial
component of vibration, as shown by Eq. (7.1c). It is shown that only lateral waves
are transmitted into the test gas, and although their frequency content is shifted by
the unsteady expansion (i.e. β is modified), at State 7 the fluctuating pressure (and
hence density) field maintains the radial dependence J0(λr). Experimental data
from Paull and Stalker showed that the first-order mode was dominant. This mode
only has a single radial node whose position is only a function of the constant tube
radius. In the current experiments, the flow cutters extract only the central portion
of this wave in the z-direction, and the beam width in the y-direction is small (the
geometry is illustrated in Fig. 7.2). Hence, these waves from the driver, as seen by
the FLDI, are assumed to be approximated by purely plane waves propagating in the
x-direction.

Secondly, the acoustic radiation from the walls is assumed to have a preferred orien-
tation, as seen widely in both experiments and simulations on conventional facilities
(Section 1.3). The cumulative effect of the wall boundary layers is approximated in
the vicinity of the centerline (where the FLDI is sensitive) as planar x-waves, the
same geometry as from the driver. In this analysis, we examine the effect of acoustic
waves, neglecting entropic and vortical disturbances. Because the goal is to simply
compare between experiments performed on the same facility and measured using
the same FLDI, rather than extract quantitative noise levels, this is considered an
acceptable approach.

7.3.2 Inversion Process
Similarly to Eq. (6.12), the conversion is performed in a spectral sense:

PSD {n′} ≈
PSD {∆Φ}

h2
x( f )

(7.2)

PSD {ρ′/ρ̄} is then recoverable from PSD {n′} using Eq. (6.13). This requires the
use of the time-averaged density and Gladstone-Dale constant of State 7, which is
computed using LETS.

Note that hx(k) is the same for all conditions, because it only depends on the
optical parameters and the integration length, which were unchanged throughout the
campaign. However, hx( f ) is not the same, as the conversion from wavenumber to
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frequency depends on M and a via the dispersion relation Eq. (5.65). These two
values are also obtained using LETS.

This inversion process is applied to the extracted ∆t segment, and also to a portion
of the pre-shot quiescent signal. This is done to determine the noise floor in the
same dimensions as the useful signal. Example spectra from both signals are shown
in Fig. 7.3.

Note that the noise floor spectrum is more resolved than the test time. This is
because a longer record length is available for the pre-noise spectrum, while the test
time is limited by ∆t. The spectra for all shots look qualitatively similar to this;
broad peaks in the flow signal are attributable to poorly-resolved versions of the
sharp peaks in the noise floor, believed to originate from the laser intensity noise.
There is no evidence of frequency-focusing at other bands as postulated by Paull
and Stalker.

For comparisons of fluctuation magnitude across many different conditions, it is
useful to have a single-valued metric in addition to the full spectral representation.
An RMS value can be computed for a bandwidth [ f1, f2]:

RMS {ρ′/ρ̄} =

√∫ f2

f1
PSD {ρ′/ρ̄} d f (7.3)

For this work, [ f1, f2] = [10 kHz,1 MHz] is selected since above this the signal falls
below the noise floor.

A signal-to-noise ratio (SNR) is also defined:

SNR ≡
RMSS {ρ

′/ρ̄}

RMSN {ρ′/ρ̄}
(7.4)

where RMSS and RMSN are computed from the test-time and noise floor data,
respectively.

7.4 Results
The different test conditions are categorized by gas combination and primary di-
aphragm thickness. Again, these conditions are listed in Table E.1. For consistency
across different plots, a universal color scheme is used throughout this section and
given in Fig. 7.4.
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Figure 7.4: Universal legend for HET results. Colors represent different gas combi-
nations; symbols represent primary diaphragm thicknesses and thus burst pressure.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

SNR

0

2

4

6

8

10

12

14

16

Fr
eq

ue
nc

y

Figure 7.5: Signal-to-noise ratios for all datasets in HET campaign. Threshold
SNR = 2 indicated with red dashed line.



164

7.4.1 RMS Trends
The signal-to-noise ratios computed using Eq. (7.4) for all shots are summarized
in Fig. 7.5. The majority of shots have 3 < SNR < 9. An arbitrary threshold
of SNR < 2 was chosen to designate RMS data as being of suspect quality; the 6
conditions for which this is the case are omitted from the plots. The RMS fluctuation
trends can be plotted as functions of many different variables, here only the ones
most directly relevant to the assumed noise modes are shown. The transmission of
the acoustic waves from the driver gas is hypothesized to be controlled by a3/a2,
while the acoustic radiation from the wall boundary layer should depend primarily
on Rem,7. The RMS data for all conditions are shown as functions of these two
parameters in Fig. 7.6.

Fig. 7.6a shows an overall decreasing trend in relative noise as a3/a2 increases,
although there is a lot of scatter. Note that this is opposite to the trend predicted
by Paull and Stalker, who state that the transmission should increase smoothly up
to a3/a2 = 1, above which there should be a strong and discontinuous increase in
the transmission of some frequency components. The helium driver data form one
cluster, while below these, the heavy driver data form another cluster that appears to
follow a similar decreasing trend. Again, this is in opposition to Paull and Stalker’s
theory, which states that the heavy driver conditions should be noisier for the same
a3/a2 because the frequency cut-off is higher, i.e. more of the original driver noise
bandwidth is transmitted through to the test gas.

Paull and Stalker’s theory does not discuss the origins of the noise in the processed
driver gas (State 3), rather it merely proposes a functional form. Their expansion
tube used a free-piston driver, whereas HET simply fills the driver section from a
high-pressure source until the diaphragm bursts. Possible noise sources for HET are
thus the diaphragm rupture process itself, and possibly the turbulent jet mixing that
results from the small-diameter inlet used to fill the driver. An obvious correlation to
look for is between noise levels and primary diaphragm thickness. Fig. 7.7 extracts
the He/Air/Air conditions only from Fig. 7.6a, as these are the most numerous set
of conditions sharing the same gas compositions. These data show no grouping by
diaphragm thickness.

Fig. 7.6b shows that the noise has little dependence on Rem,7, with a slight downwards
trend observable for both groupings (helium and heavy drivers). Because the relative
noise ρ′/ρ̄ is being considered, this decrease is in line with acoustic radiation
results from conventional tunnels (see the relative spectra from the Tunnel D results,
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Fig. 6.9, and various results from the literature in Section 1.3). In their discussion
of expansion tube noise, Erdos and Bakos (1994) used Rem . 7 × 105 m−1 as the
critical Reynolds number below which the boundary layer was found to usually
be laminar per heat-flux measurements. According to this metric, the majority of
these conditions are not laminar. Because Re ∼ ρ, making FLDI measurements
at substantially lower Rem,7 would lead to severe SNR issues with the current laser
noise floor.

As both discussed by other authors in Section 1.4, and observed in the present
signal in Section 7.1, the secondary diaphragm rupture leads to complex flow pro-
cesses resulting in a broadened interface region, likely with substantial mixing
and instabilities. One such parameter that could be used to look for the influ-
ence of this on the freestream noise is the Atwood number across the interface,
A ≡ (ρ7 − ρ6)/(ρ7 + ρ6). However, it is expected that instabilities in the contact
surface would generate vorticity- and perhaps also entropy-mode noise (the lat-
ter due to temperature spottiness since T6 , T7). Recall that the FLDI inversion
process of Section 7.3 made the assumption that the freestream noise was domi-
nated by acoustic-mode noise contributions; hence it would not be appropriate to
look for trends in noise from the other modes when the underlying post-processing
assumptions depend on neglecting these.
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7.4.2 Spectral Trends
The spectral data over the useful bandwidth are presented for all shots in Fig. 7.8.
The shots are categorized by gas composition using the same color scheme as
previous plots. There are no clear peaks in the spectra that are not attributable to
underlying spikes from the laser noise floor, particularly with the poor frequency
resolution that is a consequence of the short test-time record length.

The reason we might expect to see prominent peaks was discussed in Section 2.3:
as a radial-mode acoustic wave is processed by an unsteady expansion, its initially
broadband frequency content is “focused” towards a single discrete frequency. This
happens for each radial mode, and so the dominant peak should correspond to the
first radial mode. Paull and Stalker’s theory for this frequency-focusing behavior
is shown in Fig. 7.9. The initial broadband wave contains a continuous spectrum
of normalized frequencies β1 ∈ [0,1]. As the strength of the unsteady expansion
increases (equivalent to a7/a2 decreasing), all frequency components converge to-
wards a single post-expansion value β2. However, full focusing only happens in
the strong expansion limit, a7/a2 → 0. Paull and Stalker provided some evidence
for this frequency focusing, based on pitot data from two shots. For one of these
conditions with a7/a2 = 0.67 they reported no focusing, while for the other at
a7/a2 = 0.46 they claimed to observe focusing consistent with first-order radial-
mode waves. However, this data was not analyzed spectrally, rather the authors
simply measured the approximate period of the most prominent disturbance in the
temporal signal, and compared this with the period corresponding to the computed
β2; this method cannot be considered conclusive. The “unfocused” signal appeared
more stochastic with no obvious dominant period in the temporal representation.
These two values of a7/a2 are indicated on Fig. 7.9a. The range of a7/a2 for all
shots in this campaign is also shown. The conditions are in a region where both the
theory and Paull and Stalker’s experimental results imply frequency focusing should
be slight, so it is not surprising that no strong peaks are observed in these data.

Note that the curves in Fig. 7.9a are specifically for test gases with γ = 7/5, which
is not applicable for all the shots in the campaign. Fig. 7.9b shows the sets of
focusing curves for the three values of γ used in the campaign: monatomic gases
require stronger expansions for the same amount of focusing, while CO2 requires
slightly less, but the experimental a7/a2 range is still high enough that significant
frequency focusing would not be expected. HET is capable of significantly stronger
expansions, but the conditions used here had higher values of p5 than usual, in order
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(d) Heavy drivers

Figure 7.8: Spectra for all conditions, grouped by gas combination. The noise floor
(in black) and bottom-most spectrum are displayed at original magnitude, the other
spectra are successively offset by factors of 10. Colors for each gas combination
follow Fig. 7.4.
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Figure 7.9: Frequency focusing behavior across secondary expansion as hypothe-
sized by Paull and Stalker.
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to keep the test-time freestream density ρ7 high enough to avoid SNR issues. Again,
if the noise floor issues can be improved, FLDI may be able to be used to acquire
useful data for lower a7/a2. The successful observation of frequency focusing at
these conditions would be strong evidence towards Paull and Stalker’s theories.

7.5 Conclusions
Compared to Tunnel D, HET poses a greater challenge to the effective application
of FLDI for several reasons: lower densities, shorter test times, and less well-
understood flow-field. Nevertheless, this chapter demonstrates that the use of FLDI
on expansion tubes is still feasible, although performance improvements will be
needed in order to draw stronger conclusions from the results.

The first result concerns the interpretation of the raw signal itself. As discussed
at length in Section 4.4, the geometry of HET’s test section is such that portions
of the transmitted shock reflect back upstream and yield erroneous FLDI responses
simultaneous with the facility test time. This necessitated the construction of optical
arms to shield the outer portions of the FLDI beams, since the nearly-discontinuous
refractive index change of a shock wave is not properly filtered out by FLDI. Similar
phenomena are likely in other impulse facilities, which tend to share HET’s geo-
metrical features of an abrupt area change at the nozzle exit, and recessed window
cavities. The key factor leading to the discovery of this behavior was the use of
a double FLDI, which gives directional information and enabled us to determine
that the anomalous feature was in fact moving upstream. The main unsteady flow
features of HET are all identifiable in the FLDI signal, and correlate well with the
pitot trace. This allows extraction of the temporal data for the steady test time (state
7), and subsequent calculation of the spectrum.

A methodology was presented for converting the raw spectra into dimensions of
relative freestream density fluctuation, similarly to the procedure for Tunnel D
in Chapter 6. However, the sources of noise in expansion tubes are less well-
understood, whereas conventional blowdown facilities have a fairly comprehensive
pool of experimental evidence as to the nature of their noise. This forces us to
make more assumptions about the flow-field in order to interpret the FLDI signal for
HET, limiting our ability to make conclusive statements about the quantitative noise
magnitudes. The method is deemed sufficient for making comparisons between
shots performed in the same facility and measured using the same instrument, as
done here.
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Due to the short record length and laser noise issues, the useful bandwidth of these
spectra was found to be approximately 10 kHz–1 MHz. To put this bandwidth in
perspective, Parziale et al. (2014) (studying BL instabilities on a 5° half-angle cone
in the T5 shock tunnel) took 2–4 mm as the most-amplified wavelength range. Using
2–4 km s−1 as a representative range of acoustic-convective velocities attainable for
standardHET conditions, and under the flow-parallel acoustic wave assumption used
in this analysis, the most amplified frequencies would lie in the band 0.5–5 MHz.
Parziale et al. computed RMS density fluctuations over several wider bands of
wavelengths.The shots of the present HET campaign have a time-averaged acoustic-
convective velocity (u7 + a7) of 3.0 km s−1, for which the useful bandwidth of these
data corresponds to wavelengths 3–300 mm. The closest range to this presented by
Parziale et al. is 0.7–100 mm, for which they found RMS {ρ′/ρ̄} = 2.3 % ± 0.7 %.
Referring to Fig. 7.6, most of the HET shots lie in the band 1 % . RMS {ρ′/ρ̄} .

3 %. This would make the HET freestream noise magnitude comparable to that
of T5 over a roughly similar bandwidth, although caution should be taken with
quantitative comparisons of this nature, given the assumptions inherent in the FLDI
conversion process for both sets of experiments.

The overall trends observed in the RMS data were that the relative freestream
density fluctuations decreased as the primary sound speed ratio a3/a2 increased,
and also as the unit Reynolds number Rem,7 increased. The primary clustering of
data corresponded with the molecular weight of the driver gas. No clear trends were
observed with respect to the primary diaphragm thickness, which may simply be due
to the relatively small range of burst pressures on HET (1.3–3.3 MPa). In contrast,
early expansion tubes often cited as being noisy had much higher burst pressures, or
different driver mechanisms. Trimpi (1962) used an H2/O2/He combustion driver
(burst pressures not given) while Spurk (1965) used a modified gun barrel for the
driver, with an area reduction at the primary diaphragm and achieving pressures
of 69 MPa in cold He. As discussed in Section 1.4, Norfleet et al. (1966) used
He drivers at 69 and 172 MPa. Shinn and Miller III (1978) used a He driver with
a steel double-diaphragm bursting at 33 MPa, and Paull and Stalker used a free-
piston driver of He or Ar developing burst pressures of 34.5 MPa, also with an area
reduction. These are all at least an order of magnitude higher than HET.

While the Rem,7 trend (althoughweak) is consistentwith literature results for acoustic
radiation in conventional tunnels, the a3/a2 dependence is opposite to that postulated
by Paull and Stalker. The reason for this is currently unknown, although it should
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be noted that the authors simply proposed a form of driver noise, then explored
the logical consequences of such a form; a mechanism for the origin of such noise
was not given. Paull and Stalker propose that most of the noise originates at the
driver throat, a feature absent from HET. One possible factor that might contribute
to the discrepancy with the predicted trend is real-gas acoustic absorption effects,
as discussed by Fujii and Hornung (2001) (see also Section 1.4). Paull and Stalker
did not account for absorption; their analysis was restricted to acoustic transmission
effects across contact surfaces and unsteady expansions. In addition to the higher
frequencies of interest, this high-temperature enhancement of absorption is another
point of difference between conventional and impulse facilities. Spectrally, the
frequency-focusing effect predicted by Paull and Stalker was also not observed;
this is believed to be due to our conditions having insufficiently strong secondary
expansions for disturbance focusing to have a measurable effect.

The noise environment in HET is likely to consist of the superposition of several
sources, which could be any or all of acoustic, entropic, or vortical modes. It
is recommended that further work be done, numerically and experimentally, to
better determine the relative contributions of these. This will allow more accurate
interpretation of the FLDI data. With regard to the FLDI itself, the same issues
encountered with the laser intensity noise in Chapter 6 are exacerbated here. A
significant reduction of this noise floor will be required for future application of
FLDI toHET, especially if onewishes to investigate themore typical higher-enthalpy
conditions that lie at lower densities, as well as extending the bandwidth into the
MHz range most useful for transition studies.
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C h a p t e r 8

CONCLUSIONS & FUTURE WORK

This final chapter summarizes the contributions made by this thesis, which can be
loosely grouped into results pertaining to the understanding of the FLDI instrument
itself, and to its application on hypersonic ground-testing facilities, these being one
of the key use-cases for FLDI. Following these summaries, recommendations are
made for future avenues of research into FLDI.

8.1 Conclusions
8.1.1 Contributions to Understanding of FLDI Instrument
Chapter 3 presents a framework for using paraxial Gaussian optics to design a single
FLDI with optimal optical parameters. This is then extended to allow for a double
FLDI with the addition of another Wollaston prism. The latter half of the chapter
gives a detailed set of practical instructions of the actual assembly, alignment,
calibration, and post-processing of an FLDI. This fills a gap in the literature: while
the standard FLDI is quite a simple instrument in principle, without prior experience
there are some obstacles to getting one operational in practice. If one wishes to make
quantitative measurements with FLDI, the instrument should be close as practical
to the idealized configuration of the theory used to interpret the data. One emphasis
of this chapter is the need to use a beam profiler during set-up, both to ensure that
the beams are of correct polarization and equal intensity, and also to obtain accurate
measurements of the beam separation∆x and the focal radiusw0, as these are crucial
for quantitative applications.

Chapter 4 gives three experimental validations for the quasi-static ray-tracing model
introduced by Schmidt and Shepherd (2015). First, a laminar helium jet was used
as a steady-flow static phase object. This jet was simultaneously measured using
FLDI and aMach-Zehnder interferometer (MZI). TheMZI response is already well-
understood, and can be used to recover full-field refractive index fields in the case of
axisymmetric phase objects such as this jet. The FLDI response predicted with the
ray-tracing model using the known jet flow-field as an input gave a close quantitative
match to the experimental data; this result comprised the static validation. Next,
an ultrasonic transducer was used to validate the frequency dependence of the
FLDI response, which was predicted analytically as a transfer function by Schmidt
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and Shepherd. The transformation implied by this transfer function was found to
collapse all experimental data very well, thereby validating the ray-tracing model
dynamically. A key consequence of this result is confirmation that the sensitive
length of an FLDI depends on the wavelength of the disturbance being measured.
Finally, a more highly-dynamic validation was conducted by measuring propagating
shockwaveswith typical speeds of∼ 3 km s−1. FLDI is capable of producing highly-
resolved shock signals with durations in the sub-µs range. Using a shock model
that incorporated viscous thickness and curvature, as well as chemical relaxation
effects, the ray-tracing theory closely matched both the magnitude and shape of the
experimental signal. This validated the continued use of the quasi-static assumption
even for the short timescales associated with hypersonic flows.

The work of Chapter 4 necessitated a new numerical implementation of the ray-
tracing model. This was made using Python, and features a modular design where
the core optical computations are kept isolated from the definition of the refractive
index field. Various modules allow this refractive index field to be defined via
analytical functions, or by coupling with and interpolating CFD or experimental
data in various formats. Examples of all of these use-cases are presented in this
thesis. The code is also extensible, in that it is not restricted to use on FLDI, but
by modifying the geometry of the rays, other classes of interferometer can also be
simulated.

Chapter 5 addresses the central issue with FLDI: the recovery of quantitative infor-
mation about the interrogated refractive index field n(x, t) from the FLDI phase-shift
data ∆Φ(t). The results of Chapter 4 provided thorough experimental validation that
the analytical form of the forward problem ∆Φ(t) = f

(
n(x, t)

)
is solvable for all

n(x, t). Building on this ground truth, an analytical form was derived for the forward
problem, for a particular class of flow-field: sinusoidal plane waves, of arbitrary
orientation and spectral content. This result is a generalization of some special
cases previously derived by Schmidt and Shepherd, as well as Settles and Fulghum
(2016). Following this, the corresponding inverse problem n(x, t) = f −1 (∆Φ(t))

was solved in a spectral sense via the application of Fourier transforms. Specifically,
if the spectrum of ∆Φ(t) is computed, then the spectrum of n(t) at the FLDI spatial
origin can be recovered.

This inversion process was validated using synthetic flow-fields as inputs to the
numerical ray-tracing code. Modifications to the process were introduced to deal
with numerical issues encountered when the disturbance field has a component of
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propagation along the optical axis, and also to account for the superposition of
an underlying convective flow. This latter point is crucial to bear in mind when
interpreting FLDI results: although response functions may remain unchanged in a
spatial (wavenumber) sense, they are highly dependent on the convective velocity
in a temporal (frequency) sense.

Finally, this new and exact inversion process was compared with the approximate
method introduced by Parziale et al. (2012). It was found that due to not account-
ing for the wavelength-dependence of the FLDI sensitive length, their method will
not produce quantitatively-accurate results in the general case, and that their par-
tial correction introduced later in Parziale et al. (2014) actually causes distortion
of the spectral slope. Parziale et al.’s method can be modified using terms bor-
rowed from the present theory, but it is still only narrowly applicable to disturbances
propagating in the FLDI separation direction only, and does not offer any compu-
tational advantage over using the exact result. However, there are use-cases with
geometrically-restricted flow-fields where a constant sensitive length can produce
accurate results, and a guide to determining appropriate length scales was given.

8.1.2 Contributions to Understanding of FLDI Application
Chapters 6 and 7 discuss the application of FLDI to two different types of hypersonic
ground-testing facility: VKF Tunnel D at AEDC, and HET at Caltech, respectively.

A significant portion of the novel contributions in Chapter 6 come from the synthesis
of various strands of theory and experiment taken from the extensive literature review
of Section 1.3. Firstly, the work of Kovásznay (1953), Laufer (1961), and Morkovin
(1957, 1959) demonstrated that conventional blowdown supersonic wind tunnels
have freestream noise environments dominated by acoustic radiation from turbulent
boundary layers on the facility walls. In the far-field, this radiation can bemodeled as
plane waves with some preferential inclination relative to the freestream direction,
and are slow-mode acoustic waves, i.e. their wavevector has an upstream-facing
component. These results have been verified by modern numerical studies, such
as those of Duan et al. (2014, 2016). Understanding the nature of the freestream
fluctuations is crucial because the quantitative inversion of FLDI results at present
still relies on some amount of prior knowledge of the field geometry. Fortuitously, a
hot-wire anemometry study was performed on Tunnel D by Donaldson and Wallace
(1971), providing accurate facility-specific information about the inclination angles.

Secondly, the present experiment on Tunnel D made simultaneous measurements of
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the freestream using FLDI and a pitot probe. Despite decades of widespread use, the
response of pitot probes to high-frequency disturbances in supersonic flows is not
fully understood, as shown by recent numerical and experimental studies (Chaudhry
and Candler, 2017; Chaudhry et al., 2019; Duan et al., 2019). Use of a simple
pitot transfer function due to (Stainback and Wagner, 1972) remains state-of-the-
art despite it not accounting for the strong frequency dependence observed in the
aforementioned numerical studies. To the author’s knowledge, this thesis presents
the first reconciliation of the two approaches by correcting a sign error in Stainback
and Wagner’s result, while emphasizing that the result is only valid at sufficiently
low frequencies (relative to the resonance frequency caused by the pitot probe shock
standoff distance).

These two developments, along with the results of Chapter 5, allowed for the FLDI
and pitot data from the Tunnel D experiments to each be converted to pressure
fluctuations. The FLDI spectra are affected by laser intensity noise, especially in
the kHz band, and the pitot probe suffers from resonance peaking at 65 kHz. As a
result, the useful bandwidths of the instruments do not overlap. However, a power-
law extrapolation across this gap showed that the spectra match well, both in terms
of magnitude and slope. Despite these limitations, the experiments on Tunnel D
were considered a successful proof-of-concept for obtaining accurate quantitative
data from FLDI on an actual facility, and the results show promise that noise
spectra could potentially be extended far beyond the resonance- and inertia-limited
bandwidth of pitot probes once the noise floor issues are resolved.

Chapter 7 demonstrates a more challenging application of FLDI to an expansion
tube, HET. A pair of optical arms was designed and constructed to mitigate issues
with reflected shock waves interacting with the outer parts of the FLDI beams.
With these installed, a test campaign was conducted to measure the freestream noise
during the quasi-steady test time of the facility. A similar approach to data analysis
was taken as in Chapter 6, but because expansion tubes have more complex and less
well-understood flow-fields and noise sources than conventional blowdown tunnels,
more approximations had to be made. This highlights the current key limitation of
FLDI: its reliance on adequate prior knowledge of the very flow-field it is trying to
measure.

The assumption was made that the HET freestream noise is dominated by acoustic-
mode fluctuations originating in the driver gas (as hypothesized by Paull and Stalker
(1992)), and also radiated from the tube wall boundary layers similarly to conven-
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tional tunnels (as discussed by Erdos and Bakos (1994)). Under these assumptions,
the RMS data showed the opposite trend with the primary sound speed ratio a3/a2

versus that predicted by Paull and Stalker. The dependence on the unit Reynolds
number Rem,7 was weak but in line with conventional tunnel results. The spectral
data did not show any evidence of the frequency-focusing that should result from the
secondary unsteady expansion; however the strength of this expansion as quantified
by a7/a2 is not strong enough to expect focusing per Paull and Stalker, so this aspect
of the theory cannot be confirmed or refuted by the current data.

Aswith the Tunnel D results, the useful bandwidth of the FLDI data remain restricted
far below the photodetector limits due to the laser intensity noise floor. Compared
with Tunnel D, the consequences of this are exacerbated due to the lower densities
and shorter test times—leading to degraded signal-to-noise ratios and less-resolved
spectra more easily contaminated by noise spikes. Nevertheless, it has been shown
that FLDI can produce useful data even at such low densities and on such short time-
scales—note that the high-dynamic validation case of Section 4.3 also originated
from using FLDI on HET. Reduction of this noise floor may allow for significant
improvements and could extend the range of the instrument down to the lower
densities that correspond to some of the more well-characterized conditions of
HET.

8.2 Recommendations for Future Work
8.2.1 FLDI Performance Improvements
Now that the governing equation for FLDI performance is understood and validated,
it can be used to methodically improve the instrument. As already discussed, the
response function only depends on three optical parameters: λL , w0, and ∆x. λL is
generally restricted to the commercially-available visible laser wavelengths, unless
one wishes to deal with the added complexities of working with non-visible lasers
while ∆x only has an effect when it begins to exceed the disturbance wavelengths.
The greatest improvements therefore will come from reducing w0, equivalent to
increasing the focusing angle of the beams. This fact was pointed out by Settles and
Fulghum, who expressed it in terms of increasing the optical f -number to shorten
the sensitive region.

A larger f -number requires a stronger diverging lens and wider-aperture focusing
lenses. It may be more practical to use focusing mirrors instead of lenses above a
certain aperture; a Z-shaped FLDI could be designed similarly to schlieren. When
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using mirrors, care needs to be taken to preserve polarization states. At large f -
numbers, the rays in the outer parts of the beam may be at a substantial angle to
the centerline, leading to a breakdown of the paraxial assumption. Combined with
aberrations from the off-axis layout, the ray-tracing approach as used in this thesis
may become less quantitatively accurate if modifications are not made.

Both facility application campaigns in this thesis showed that for low-density hy-
personic conditions, the signal-to-noise ratio becomes problematic. At relatively
lower bandwidths, the laser intensity noise is the main issue. This noise needs to be
reduced substantially, by at least an order of magnitude. While some possibilities
have been explored for removing this in post-processing, it both more preferable
and feasible to reduce it at the source. This will require the use of some active
noise-control technique based on optical feedback. Intensity and frequency stabi-
lization techniques have already been extensively developed (Nocera, 2004; Rollins
et al., 2004), one application being interferometry for gravitational wave detection
(although the frequencies of interest there are O (1–100 Hz), much lower than in
hypersonic flows).

8.2.2 Further Theoretical Developments
As has been re-iterated several times, a central limitation to extracting quantitative
density information from FLDI is the need to know something about the flow-field
geometry. If the geometry is known, then in theory any signal can be inverted;
however, for arbitrary fields this can only be done numerically, i.e. by simulating
the response to a range of fields to find the best fit to the experimental data. For
large parameter spaces this approach may not be practical, and having an analytical
form for the inversion function is much more efficient. This thesis presented such
a function for only one class of flow-field: sinusoidal plane waves. Although this
was done in quite a generalized manner, with wide-ranging applicability to acoustic
radiation, there is a need to extend the library of analytical functions to other common
geometries.

In particular, propagating wavepackets are of importance in boundary-layer stability
studies, e.g. Parziale et al. (2015). Being able to quantify the magnitudes of these
wavepackets from FLDI data would be a valuable future direction. Related to this
is the need to perform inversions in temporal, rather than frequency, space since
unlike the acoustic radiation, these are spatially-limited.
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8.2.3 Extensions to the Base Instrument
This thesis largely focused on the “standard” single FLDI, although as mentioned
in Section 1.2, various groups have already begun working with double FLDI and
even instruments with higher numbers of focal pairs. The basic optical principles of
DFLDI design were provided in Section 3.2, and the experiments performed onHET
in Chapter 7 used a DFLDI. This dataset therefore still contains potentially useful
information about the shock and contact surface velocity that could be recovered via
cross-correlation.

Recall that the ray-tracing equation and its software implementation are applicable
to two-beam interferometers in general, since its specific application to FLDI is only
contained within a particular designation of the beam geometry. Hence these tools,
that have already been validated quantitatively on FLDI, can also be useful in the
design of variants. One such variant is a natural extension to the double, quad (and
so on) FLDI systems: a dense 2D array of focal pairs, giving measurements in a
sensitive region about a plane rather than just a single point.

The main factor that precludes FLDI from approaching a true point measurement is
∆x, the beam separation, which is integral to the instrument function but also makes
it sensitive to refractive index gradients in only that direction; as shown in Chapter 5
this greatly complicates the response function particularlywhen there is a component
of motion along the optical axis. It may be advantageous to design instruments that
have multiple foci pairs aligned in different directions, rather analogously to what
is done with hot-wire anemometers. Consolidating the data carefully from each
channel could yield a response function uniform in all directions. However, getting
full 3-axis coverage might require sending beams through both orthogonal pairs of
facing windows on a typical test section.
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A p p e n d i x A

FLDI PLANE WAVE RESPONSE DERIVATION

This appendix gives more detail for how Eq. (5.21) was obtained from the evaluation
of the ray-tracing equation Eq. (5.20) when the refractive index field is defined as a
propagating plane wave per Eq. (5.17).

Expanding the dot product in Eq. (5.17):

n(x, t) = A cos
(
kx x + kyy + kzz − ωt

)
(A.1)

Although {kx, ky, kz,ω} are not independent variables, being related to each other
by Eqs. (5.18) and (5.19), they are independent of the integration variables (r̃, θ, z)
and so we can treat them as independent constants during the integrations. Note
also that ωt and ϕ are independent of everything else.

Denoting n1 as n+ and n2 as n−, apply the co-ordinate transforms of Eq. (4.6) to
convert n±(x, y, z) to n± = ni(r̃, θ, z):

n±(x, t) = A cos
[
kx (r̃w cos θ ± ∆x/2) + kyr̃w sin θ + kzz − ωt

]
(A.2)

Perform the integrations in the order indicated by Eq. (5.20), i.e. integrate in θ, then
r̃ , then subtract, and finally integrate in z. Showing the individual steps, first:

Θ±(r̃, z, t) ≡
2πA
λL
·

2π∫
0

n±(r̃, θ, z, t)dθ

=
2πA
λL
· 2πJ0

(√
k2

x + k2
y r̃w

)
cos

(
±

kx∆x
2
+ kzz − ωt

)
(A.3)

where J0 is the Bessel function of the first kind and of order 0. Then:

R±(z, t) ≡
2πA
λL
·

∞∫
0

r̃ exp
(
−2r̃2

)
Θ±(r̃, z, t)dr̃

=
2πA
λL
· exp

(
−

1
8

[
k2

x + k2
y

]
w2(z)

)
cos

(
±

kx∆x
2
+ kzz − ωt

)
(A.4)
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Lastly:

∆Φ(t) =
2πA
λL
·

L∫
−L

[R+(z, t) − R−(z, t)] dz

=
2πA
λL
·

2
√

2π3/2w0√
k2

x + k2
yλL

· exp

(
−
w2

0
8

[
k2

x + k2
y +

16π2k2
z(

k2
x + k2

y

)
λ2

L

])
· i

{
erfi(ξ̄) − erfi(ξ)

}
· sin

(
kx∆x

2

)
· sin (ωt) (A.5)

where the overbar denotes conjugacy, and:

ξ ≡
4π2kzw

2
0 + i

(
k2

x + k2
y

)
Lλ2

L

2
√

2π
√

k2
x + k2

yλLw0

= B + iC (A.6)

erfi(z) ≡ −i erf(iz), and like erf(z), it is an odd function. Using this, along with the
the conjugation property of erf:

erf(z̄) = erf(z)

⇒ erf(z) + erf(z̄) = erf(z) + erf(z)

= <[erf(z)]������
+= [erf(z)] +<[erf(z)]������

−= [erf(z)]

= 2<[erf(z)] (A.7)

(where< and = designate real and imaginary parts, respectively) we find:

i
{
erfi(ξ̄) − erfi(ξ)

}
= 2<[erf(Ξ)] (A.8)

where:
Ξ ≡ C + iB (A.9)

So the final result Eq. (5.21) is recovered:
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∆Φ(t) =
2πA
λL
·

4
√

2π3/2w0√
k2

x + k2
yλL

· sin
(

kx∆x
2

)
· sin (ωt − ϕ)

· exp

(
−
w2

0
8

[
k2

x + k2
y +

16π2k2
z(

k2
x + k2

y

)
λ2

L

])

· <

erf
©«
(
k2

x + k2
y

)
Lλ2

L + i · 4π2kzw
2
0

2
√

2π
√

k2
x + k2

yλLw0

ª®®¬
 (A.10)
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A p p e n d i x B

SPECTRAL CONVERSION CONSIDERATIONS

For thework in Chapter 6, spectra of various quantities (represented using PSD) need
to be interconverted several times. When applying the different transfer functions,
care needs to be taken that the quantities are in the right form and scaled correctly.
This appendix gives more information on theseminor details, which are nevertheless
important for getting quantitatively-correct outputs.

Consider a general time-varying quantity q, decomposed into mean and fluctuating
parts:

q = q̄ + q′ (B.1)

where by definition q′ = 0. The first point to note is that PSD {q} = PSD {q′}, ex-
cept perhaps at f = 0, depending on the particular implementation of the algorithm.
The second point is that PSD {q′} ∝ (q′)2 in a frequency-wise sense. Due to the
latter fact, the relationship between absolute and relative spectra is:

PSD {q′/q̄} =
1
q̄2 × PSD {q′} (B.2)

If q has dimensions Q, then [PSD {q′}] = Q2Hz−1 while [PSD {q′/q̄}] = Hz−1.
The particular quantities that appear in Chapter 6 are the refractive index n, density
ρ, and pressure p. These are related by the Gladstone-Dale and isentropic relations:

n = Kρ + 1 (B.3a)
p′

p
= γ

ρ′

ρ
(B.3b)
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Substituting ρ = ρ̄ + ρ′ into Eq. (B.3a) and grouping gives:

n = K(ρ̄ + ρ′) + 1

= (K ρ̄ + 1) + (Kρ′)

= n̄ + n′ (B.4)

So then:

PSD {n′} =
1

K2 × PSD {ρ′} (B.5)

i.e. the +1 term is not used for the conversion of the fluctuating part; this can easily
be verified by synthesizing a ρ(t) signal, converted it to n(t), then comparing the
spectra using Welch’s method.

Because ρ̄, p̄, and γ are all constants, Eq. (B.3b) simply yields:

PSD {p′} =
(
γ p̄
ρ̄

)2
× PSD {ρ′} (B.6)
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A p p e n d i x C

FLDI BEAM CLIPPING

One important application of FLDI is making measurements of disturbances prop-
agating in supersonic or hypersonic boundary layers. This has been performed
on both conical models (Benitez et al., 2020; Parziale et al., 2015) and flat walls
(Ceruzzi et al., 2020). Probing at varying heights within a boundary layer can ne-
cessitate the FLDI foci approaching closely to the solid surface. Due to the convex
surface, it is possible to get very small stand-off distances on a cone without cut-off,
but flat geometries will often intersect the beam away from the foci, where the beam
diameter is larger. Alternative beam geometries have been proposed to avoid this
issue (Houpt and Leonov, 2018, 2019), but here the effect of clipping portions of
the standard circular FLDI beam configuration is explored.

To implement clipping in the code, consider the integrand of Eq. (4.1), which can
be alternatively expressed as:

I0(ξ, η) sin
[
2π
λL
· OPD(ξ, η)

]
= I0(ξ, η) sin [∆φ(ξ, η)] (C.1)

where ∆φ is the phase difference between the recombining ray pair at (ξ, η). This is
not a well-defined quantity when the rays do not reach the detector, as a non-existent
ray does not have a phase. However, the integrand is weighted by the intensity
distribution. Regardless of phase, if neither ray in a pair reaches the detector, there
can physically be no contribution to the total intensity and thus I0 = 0 at that point.
Rather than modifying I0, it is more efficient in this implementation∗ to set ∆φ = 0
at a point, which has the same numerical outcome. Wherever the beam intersects
a solid object, the values of N± are set to NaN. This causes the ray integrals J± to
also evaluate to NaN even if only a single point along the ray is blocked. A masking
operation then replaces NaN with 0 so that sin [∆φ(ξ, η)] = 0 as desired. The edge
case where only one ray in a pair is clipped is not addressed, because rays are only
separated by ∆x ∼ O(100 µm), so in practice it is highly likely that either both or
neither of the rays in a pair will be clipped.

∗See discussion in Implementation subsection of Section 4.1
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As a test case, a propagating planar wavepacket of the form

n′(x) = A exp
[
(x − x0)

2

l2

]
cos

[
2π
λ
(x − x0)

]
(C.2)

is simulated with various types of beam clipping. n′(x) = n(x) − n∞ where n∞
is the undisturbed freestream value. A is the amplitude of the envelope, l is the
1/e half-width, x0 is the offset of the envelope peak, and λ is the wavelength. For
simplicity, the wavepacket is modeled as non-dispersive, i.e. the waveform and
envelope propagate together at a fixed velocity. The wave has a top-hat distribution
in z, extending to z = ±5 cm about the focal plane. The magnitudes of the constants
in Eq. (C.2) are chosen to be similar to those used in Schmidt and Shepherd (2015),
which itself models a Mack-mode wavepacket in a hypersonic boundary layer. This
gives A = 3 × 10−7, k = 2π/λ = 2 mm−1, l = 20 mm. The wave propagates in x

with velocity u = 3.5 km s−1. This is achieved by updating x0 at each timestep. The
step size ∆t = 4.5 ns is chosen to give a Nyquist frequency ratio of 100.

A flat plate of infinite x-extent is placed at two different heights below the foci:
yp = 1 mm and 2 mm (Fig. C.1). This corresponds to the beam first intersecting
the plate at z ≈ 3 cm and 6 cm, respectively. Three different clipping scenarios are
used: symmetric (−∞ < zp < +∞), pitch-side asymmetric (−∞ < zp < 0), and
catch-side asymmetric (0 < zp < +∞).

y

z

yp

+zp−zp

pitch-side
focusing lens

catch-side
focusing lens

Figure C.1: Schematic of beam clipping by symmetrically-located flat plate. Oc-
cluded portions of beams shown in blue.
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Figure C.2: FLDI response to propagating wavepacket with varying amounts of
beam clipping. Detail of central peak shown in inset.

The results (Fig. C.2) show that clipping causes a reduction in signal magnitude
only. There is no alteration of frequency or phase information. Increased amounts
of clipping give increased reductions in signal; one-sided (asymmetric) clipping
gives an identical response regardless of which side the clipping occurs on, and
two-sided (symmetric) clipping causes precisely twice the signal reduction as the
corresponding one-sided clipping, i.e. the reductions are additive.

This outcome is perhaps obvious given that the test flow is uniform in both y and z.
In most use-cases of FLDI in wind tunnels, the flow is indeed likely to be uniform
in z, at least in a mean sense and in the core flow where the FLDI is most sensitive.
However, boundary layers have varying properties in the y-direction, and some
clipping geometries could skew the contributions to the integrated FLDI response.
The instrument sensitivity varies in the y direction too, due to the I0(ξ, η) term
in Eq. (4.1): as long the clipping is not severe enough to impinge on the central
peak of the Gaussian intensity profile, the overall response should not be altered
substantially. These results indicate that for many applications, beam clipping
should not qualitatively alter the signal, although consideration should be given to
intensity attenuation and possible signal-to-noise ratio issues.
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A p p e n d i x D

FLDI NOISE REDUCTION

One of the leading applications for FLDI is the measurement of complex fluctuating
density fields, such as in turbulence. These signals are stochastic and broad-band,
and are often quite weak in ground testing facilities where densities can be low
as a by-product of reaching hypervelocity conditions. Therefore, it is important to
understand the possible sources of experimental noise, and mitigate their effects if
possible.

Some types of FLDI experiments can simply rely on averaging out noise without
having to address its origin. For example, two of the validation cases that are
discussed in Section 4.2 (the laminar jet and the ultrasound beam) were capable
of steady continuous operation, allowing for long record lengths. Even though the
ultrasound beamwas a dynamic field, it had a dominant single-frequency component
that was known a priori—allowing noise to be discarded by spectral filtering. Some
hypersonic facilities can operate in a quasi-continuous manner (e.g. blowdown
tunnels that might have test times on the order of minutes); these allow for long
record lengths compared to the turbulent timescales of interest, and thereby statistical
noise reduction procedures, as discussed later. More challenging conditions are
encountered in impulse facilities, where test times are very short, and densities
low. Additionally, the impulsive mechanism is often quite violent, leading to strong
structural motion that can influence the FLDI signal.

D.1 Previous Work
The first uses of FLDI on impulse facilities were by Parziale et al. (2012, 2013b,
2014, 2015), all on T5. An upper bound on spectral noise was found in their
frequency band of interest by using the portion of the signal preceding the start
of the flow. Vibrations from the driver piston arrive ahead of the flow, and it
was assumed these do not become significantly stronger during test time. When
searching for acoustic instability wavepackets, a two-tailed hypothesis test was used
to show statistically-significant differences between these intermittent wavepackets
and the “background” test-time flow. Whenmeasuring freestreamflownoise spectra,
no attempt was made to address non-flow noise sources, but this was unimportant
because the primary goal was to look for spectral trends versus reservoir enthalpy.
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It was noted that discrete spikes of radio-frequency noise were observed even when
the tunnel was not in operation.

In their treatment of noise concerns, Settles and Fulghum (2016) appear to assume
that the main potential noise source is electronic, i.e. in the detection and acqui-
sition instruments. To mitigate this, they use an alternative, more complex single
FLDI setup that uses a Berek compensator, a polarizing beamsplitter, and separate
photodetectors for each of the two polarized beams— as opposed to the “canonical”
configuration used in this work, where the beams are recombined and interfered on
a single photodetector. Their arrangement allows for rejection of uncorrelated noise
between the two channels, because actual turbulent signals will be correlated. Other
suggested measures were to use a more powerful laser source in combination with
electronic shielding to improve the SNR.

D.2 Common-Mode Noise Reduction
The 200 mW diode laser [Spectra-Physics EXLSR-532-200-CDRH] used on all
FLDI systems throughout this work is far more powerful than the 0.8 mW HeNe
laser used by Fulghum (2014) and Settles and Fulghum (2016), so electronic noise
was not expected to be a significant issue. However, benchtop testing and preliminary
experiments on HET revealed that the no-flow FLDI signal was significantly noisy,
often with fluctuations of the same order of magnitude as flow features. Initially,
various photodetectors, cables, shielding methods, and oscilloscopes were trialed,
yet the noise spectrum remained similar between tests. This implied that the laser
itself (the only constant component) was the main source of the noise.

Stronger evidence was provided when the single FLDI was modified to a double
FLDI. When similar no-flow measurements were taken with the DFLDI, the noise
signals were very similar between the two detectors, not just in spectral space but
even in the temporal signals. This would not be the case if the noise were due to, for
example, dark current noise in the independent photodetectors. A beamsplitter was
added to the DFLDI immediately after the laser aperture to divert 10% of the light to
a third photodetector, before it passed through the rest of the optical train. The noise
signal here was also similar overall to the pair of photodetectors, although with some
discrepancies. This may be due to complicated interference effects between all the
back-reflected light off each optic in the system, or from airborne dust particles that
affect the main beam path but not the diverted beam.

The nature of this noise was not uniform. Sometimes the fluctuation levels were low,
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Figure D.1: Typical laser noise signal shown in the temporal (top) and frequency
(bottom) domains.

followed by a higher-amplitude wave-train of finite duration and distinct frequency,
before settling back to the baseline again. This was postulated to be attributable to
some form of cyclic laser instability. The spectra of these noise signals consistently
showed a peak around 1700 Hz, and the aforementioned high-amplitude waves
had periods corresponding with this frequency, superimposed with much higher-
frequency components (Fig. D.1).

These noise fluctuations had typical amplitudes of a few mV, whereas the full
range of the FLDI over 0 < ∆Φ < π rad corresponds to a voltage range of about
0 < V < 2.5 V, and the maximum output of the photodetectors is 5 V when termi-
nated at 50Ω. The laser manufacturer specifications claim a noise of < 0.2% RMS
over 20 Hz–20 MHz, and in fact is advertised as having “exceptionally low optical
noise” with interferometry as an application. This RMS value can be computed
by integrating the power spectral density of the relative intensity over the given
bandwidth. 0.13% RMS noise was obtained, within the specification. So in fact the
laser noise is indeed quite low in absolute terms, and furthermore largely contained
to a particular bandwidth. However, at low-density conditions, especially in HET,
this can still be of a similar magnitude to actual flow signals.

The optical configuration of the DFLDI constructed in this work is such that the
polarization directions of the two beam pairs aremirrored. Thus, a given flow feature
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Figure D.2: An example DFLDI signal pair, spanning the starting process and
test time of HET. The laser intensity noise during no-flow conditions shows strong
correlation, with fluctuations having the same sign (see inset detail). Conversely,
flow features give signals of equal magnitude but opposite sign.

actually causes a response of +∆Φ at one detector, and −∆Φ at the other, while laser
intensity noise causes the voltage at each detector to move in the same direction. In
this way, when the two signals are overlaid, fluctuations due to actual flow features
are qualitatively distinguishable from noise fluctuations, as shown in Fig. D.2. This
observation offers a starting point for temporally-based noise reduction algorithms,
via common-mode rejection.

Consider how laser intensity fluctuations affect the apparent FLDI response. Begin-
ning with a noiseless system, the voltage is given by:

V(t) =
(2ε − 1)kI0

2
sin [∆Φ(t) + ∆Φ0] +

kI0

2
= A sin [∆Φ(t) + ∆Φ0] + B (D.1)

I0 is the full intensity of the beam, k is the gain of the detection system, and
0 < ε ≤ 1 is the contrast ratio. ∆Φ0 is the initial phase offset of the interferometer,
and is experimentally determined along with the constants A and B during the
calibration process, i.e. k and ε do not need to be determined directly. Note this is
just a re-expression of Eq. (3.17).

Next, intensity noise is introduced, such that the mean intensity is still I0:
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I(t) = α(t)I0 (D.2)

where:

lim
T→∞

1
T

∫ T

0
α(t)dt = 1 (D.3)

Replacing I0 with I(t) in Eq. (D.1) yields:

V∗(t) = α(t)V(t) (D.4)

From here on, the superscript asterisk will denote noise-corrupted signals, and the
unmodified symbol will represent the “true” signal. Eq. (D.4) implies that the
noise is multiplicative, and that the amplitude of the fluctuations will scale with the
underlying mean voltage. This can be easily tested experimentally. In order to get
sufficient voltage resolution during low-density experiments, the FLDI photodetector
signal is usually recorded in AC-coupledmode; splitting the signal into an additional
DC-coupled channel allows the mean voltage V0 to be recorded alongside the finely-
resolved noise fluctuations. V0 = A sin∆Φ0+B can be controlled by changing ∆Φ0;
this is done by slightly translating the final Wollaston prism/polarizer combination
in the same way as during the regular calibration process detailed in Section 3.4.
Fig. D.3 shows the AC- and DC-coupled voltages for a range of ∆Φ0 (the transient
spikes occur while the optics are being moved). V ′RMS = RMS(VAC) and V0 =

mean(VDC) are then extracted and plotted, giving a linear relationship as predicted.

Ultimately, the goal is to extract a denoised ∆Φ(t) from the noisy V∗(t). As an
intermediate step towards a solution, V(t) is considered as the composite function
g(t):

V(t) = f [∆Φ(t)] ≡ g(t) (D.5)

where the function f is given by Eq. (D.1). If the assumption is made that both
DFLDI stations have the same response function, with the downstream signal lagging
that of the upstream signal by a time delay τ, then the two recorded noisy signals
are given by:
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Figure D.3: Experimental data showing that laser intensity noise has amultiplicative
nature. Grey bands are portions of the data used to compute the values at each point
in the bottom plot.

V∗1 (t) = α(t)g(t) (D.6a)

V∗2 (t) = α(t)g(t − τ) (D.6b)

In the more general case, each station will have a different response function due to
variations between photodetectors, in which case:

V∗1 (t) = α(t) f1 [∆Φ(t)] (D.7a)

V∗2 (t) = α(t) f2 [∆Φ(t − τ)] (D.7b)

Note that in either case, there is the additional assumption that τ is constant, i.e. that
the flow velocity is constant during the sample period of interest. First, a solution
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is sought for the more idealized model given by Eq. (D.6). The problem statement
is: given measured signals V∗1 (t) and V∗2 (t) corrupted by a common multiplicative
noise α(t), can the underlying function g(t) be recovered? This is an interesting
problem because both the noise and signal are common to both measurements, but
the noise propagates through the symmetrical optical system at the speed of light,
giving essentially no time delay, whereas the relatively slower flow signal does have
a delay.

The commonnoise can immediately be eliminated by taking the ratio of themeasured
voltages:

r(t) ≡
V∗1 (t)

V∗2 (t)
=

g(t)
g(t − τ)

(D.8)

To make subsequent analysis simpler, Eq. (D.8) is transformed by taking logs. This
is valid because the raw voltage signals are both always positive.

s(t) = m(t) − m(t − τ) where


s ≡ log r

m ≡ log g
(D.9)

The problem is now: with known function s(t) and constant τ, can a unique function
m(t) that satisfies Eq. (D.9) be determined? The first attempted approach to tackling
this problem was to apply Fourier transforms. Using standard identities:

S(ω) = (1 − e−iωτ)M(ω) where


S(ω) ≡ F {s(t)}

M(ω) ≡ F {m(t)}
(D.10)

−→ m(t) = F −1 {M(ω)} = F −1
{

S(ω)
1 − e−iωτ

}
(D.11)

Problems were encountered actually trying to perform this inversion, however, be-
cause the denominator goes to zero periodically, giving rise to an infinite number
of simple poles evenly spaced along the real axis. There are methods for invert-
ing this class of Fourier transform that involve deforming the integration contour
around each pole (Inverarity, 2003), but these generally require knowing S(ω) as a
continuous analytical function so that the residuals can be computed at each pole.
In this case, s(t) originates from discretely-sampled experimental data, so S(ω) is
only known at discrete values of ω, via some numerical method such as FFT. In
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theory, estimates for the residuals could be obtained by fitting a complex surface
to S(ω) and then numerically computing contour integrals, but this is likely to risk
significant errors.

A different approach was instead taken, by applying the theory of lag operators
(Mikusheva, 2013). These arise in time-series analysis, where given a discrete
time-series x, the lag operator L shifts x by one index:

Lxi = xi−1 (D.12)

Lag operators can be raised to integer powers of either sign, and lag polynomials
can be formed via linear combinations, e.g.:

L2xi = xi−2 (D.13a)

a(L) =
N∑

i=0
ai Li (D.13b)

Much of the machinery for polynomials of complex variables can be applied to
these lag polynomials, including inversion. Since these data are discrete time-series,
Eq. (D.9) can be recast as a lag polynomial:

si = (1 − L j)mi (D.14a)

→ mi = (1 − L j)−1si (D.14b)

where j is the discrete index number corresponding to the continuous time lag τ.

MATLAB can invert and apply lag operators using the lagop class in the Econo-
metrics toolbox (The MathWorks, Inc., 2019). However, there are restrictions on
which lag polynomials can be inverted: the inverse function is an infinite series,
and for a numerically truncated inverse to be stable, the coefficients must decrease
with higher terms. This gives the requirement that the roots of the lag polynomial
must lie outside the unit circle in the complex plane. Here, the lag polynomial
(1 − L j) has all its roots on the unit circle, and hence its inverse does not converge.
This is possibly another manifestation of the problem that prevented the solution of
Eq. (D.11), as the term e−iωτ also describes the unit circle.
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This observation motivates a pertubational approach: if the roots can be moved
slightly off the unit circle, both the Fourier transform and lag polynomial methods
become tractable. Modifying Eq. (D.8) with an exponent κ perturbed from unity:

rκ(t) ≡
V∗1 (t)[
V∗2 (t)

] κ = α(t)g(t)
ακ(t)gκ(t − τ)

≈
h(t)

hκ(t − τ)
(D.15a)

→ sκ(t) ≈ m(t) − κm(t − τ) (D.15b)

For κ , 1, the noise termα(t) no longer perfectly cancels out, introducing some error.
However, |α1−κ | << |α | as κ → 1, leading to strong noise reduction, although not
total noise elimination. This yields the two approximate solution methods (Fourier
transforms and lag polynomials, respectively):

m(t) ≈ F −1
{

S(ω)
1 − κe−iωτ

}
mi ≈ (1 − κL j)−1si


κ = 1 − ε , |ε | << 1 (D.16)

Both methods were applied in MATLAB, trialing various values of κ. A synthetic
Gaussian pulse signal was generated for g(t) and corrupted by α(t) drawn from
a uniform distribution. Fig. D.4 shows the results: both techniques reduce the
amplitude of the noise, but the lag operator method performs much better, with the
denoised signal indistinguishable from the original underlying signal at the scale
shown here, for κ = 0.999. The Fourier transform method appears to introduce
some spurious frequencies into the signal that were not originally present.

The perturbed lag operator method works well for this idealized scenario. Next,
non-common-mode noise βi(t) is introduced such that:

V∗1 (t) = β1(t)α(t)h(t) (D.17a)

V∗2 (t) = β2(t)α(t)h(t − τ) (D.17b)

From observing experimental data, it is known that the majority of the noise is
common-mode, so βi(t) should have smaller fluctuations. Both α and βi are drawn
from distributions with unity mean, so for synthetic signals 1 − a ≤ α ≤ 1 + a and
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1 − b ≤ βi ≤ 1 + b where b < a. The same denoising procedures as above were
repeated, with a/b = 20, with results shown in Fig. D.5; the performance is poor.
Interestingly, there seems to be some denoising for intermediate values of κ, but
as κ → 1, the lag operator signal becomes more noisy than the original corrupted
signal, while the Fourier transform signal blows up. This undesirable behavior is
probably due to the uncorrelated nature of the non-common noise, which does not
(almost) cancel out during the division process.

Even disregarding the issue of non-common-mode noise, there are other impedi-
ments to applying these techniques to real data. The assumptions of Eq. (D.6) were
used in the derivations, but in reality Eq. (D.7) is more applicable. This equation
can be expressed more explicitly as:

V∗1 (t) = α(t) (A1 sin[∆Φ(t) + ∆Φ0] + B1) (D.18a)

V∗2 (t) = α(t) (A2 sin[∆Φ(t − τ) + ∆Φ0] + B2) (D.18b)

with A1 , A2 and B1 , B2. The above mathematical rearrangements only work
when these calibration constants are equal.

The most pressing issue is that τ is not necessarily constant. For a sample of the flow
signal, a constant τ can be computed by cross-correlation. If the true signal is of
significantly larger magnitude than the noise, the correlation will yield an accurate
τ even when applied to the noisy signal (which is all we have). However, if the
velocity is fluctuating during the sample, then this τ only represents an average
time delay between the two stations, and this then leads to errors when trying to
reconstruct the original signal, because information may be taken from the wrong
relative positions in each of the noisy signals.

In summary, although the methods here show potential for the elimination of
common-mode laser intensity noise, they are inhibited by some of the compli-
cating factors of real signals. There may exist more advanced techniques that look
for similar oscillations between each signal of the DFLDI and then perform some
form of demodulation, but we are not currently aware of these if so.

D.3 Statistical Noise Reduction
Instead of performing noise reduction in the temporal domain as discussed above, the
frequency domain can be used. The laser intensity noise appears to be consistently
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Figure D.4: Comparison of FFT (top) and lag operator (bottom) noise reduction
algorithms for various values of κ. Only common-mode multiplicative noise is
present.
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Figure D.5: The same comparison of noise removal algorithms as Fig. D.4, but with
both common- and non-common-mode multiplicative noise present.
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drawn from the same statistical distribution, which can be measured. Spectral
subtraction of additive noise signals is a standard technique (Vaseghi, 2000), e.g.
where the signal x(t) is corrupted by noise n(t):

y(t) = x(t) + n(t) (D.19a)
F
−→ Y (ω) = X(ω) + N(ω) (D.19b)

Estimates of the original signal can be obtained by subtracting an estimate of the
noise spectrum:

| X̃(ω)|b = |Y (ω)|b − |N(ω)|b (D.20)

where the tilde designates an estimated quantity, and b = 1 or = 2 for a magnitude
or power spectrum, respectively. Note that Eq. (D.20) assumes the signal and noise
are uncorrelated, i.e. that the cross-spectral terms drop out. It also holds that:

E
[
| X̃(ω)|2

]
= E

[
|X(ω)|2

]
(D.21)

so power spectral densities (PSDs) can be directly subtracted; PSDs being the form
usually usedwhen processing data in the frequency domain, e.g. viaWelch’smethod.
Note that the above technique applies when the signal of interest is stationary in
time. This is, in theory, the case when we are interested in the spectral properties
of a steady facility test time. Another factor that can affect this process is that the
magnitude of the average noise spectrum may exceed the instantaneous noisy signal
at some frequencies where the signal-to-noise ratio is low. In these cases, some
form of rectification has to be applied in order to avoid nonsensical negative spectral
values.

To apply this to the multiplicative noise of an FLDI signal, logs are taken:

PSD {log[V∗(t)]} = PSD {log[V(t)]} + PSD {log[α(t)]} (D.22)

The quantity of interest is a spectral estimate of ∆Φ, which is related to V(t) as
shown in Eq. (D.1). If there exists a linear time-invariant transfer function between
two signals, then it holds that:
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y(t) = h(t) ∗ x(t) (D.23a)

Y (ω) = H(ω)X(ω) (D.23b)

PSD {y(t)} = |H(ω)|2PSD {x(t)} (D.23c)

However, because Eq. (D.1) is non-linear time-invariant, it is linearized by perform-
ing a Taylor expansion about ∆Φ = ∆Φ0:

log[V(t)] = log [A sin (∆Φ(t) + ∆Φ0) + B]

≈ log[A sin(∆Φ0) + B] +
A cos(∆Φ0)

A sin(∆Φ0) + B
∆Φ(t) + O

(
∆Φ

2(t)
)

≈ a0 + a1∆Φ(t) (D.24)

When |∆Φ(t) − ∆Φ0 | ≤ 0.1 rad the error in this linearization is less than 5%. These
magnitudes of ∆Φ(t) are typical for low-density facilities. Eq. (D.24) then yields:

PSD {V(t)} ≈ |a0 |
2PSD {1} + |a1 |

2PSD {∆Φ(t)} (D.25)

The first term on the right-hand side ideally only contributes a delta function at
ω = 0; in practical numerical implementations there will be some spectral leakage,
but this will only affect comparatively low frequencies—and the typical short test
times of impulse facilities mean that frequencies below 1/∆t ∼ 1 kHz cannot be
resolved.

Combining Eqs. (D.22) and (D.25) gives the final result:

PSD
{
∆̃Φ(t)

}
≈

���� 1
a1

����2 (
PSD

{
log[V∗(t)]

}
− PSD

{
log[α(t)]

})
(D.26)

Recall thatV∗(t) is the rawmeasured voltage, a1 = f (A,B,∆Φ0)where the arguments
are all known calibration constants, and α(t) is obtained from separate no-flow
measurements. ∆̃Φ(t) refers to the estimate of the denoised FLDI response, while
∆Φ∗(t) refers to the response computed without the application of any denoising
process.

Note that the results of this section do not apply only to double FLDI, but equally
to single FLDI because they do not rely on common-mode rejection in the temporal
domain.
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A p p e n d i x E

HET RUN CONDITIONS

Table E.1 lists all HET shots performed with the optical arms installed, as used for
the results of Chapter 7. The tabulated diaphragm thicknesses refer to the primary
aluminum diaphragm; all shots used the same 8.5 µm mylar secondary diaphragms.
Note that p5 is extrapolated using themeasured leak rate from the final value recorded
prior to firing.

The flow parameters are computed using LETS in real-gas mode; Rem,7 relies on
transport properties from Cantera.
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Table E.1: List of HET run conditions used for FLDI freestream noise campaign.

Shot Driver Driven Accel. Dia.
[mm]

p4

[kPa]
p1

[kPa]
p5

[mTorr]
a3/a2 M7 h07

[MJ kg−1]

Rem,7
[×106 m−1]

1844 He Air Air 1.3 2310 1.28 630.8 0.561 3.899 4.729 1.193

1845 He Air Air 1.3 2448 1.86 483.9 0.604 4.450 4.844 1.410

1846 He Air Air 1.3 2332 2.61 380.6 0.662 4.977 4.787 1.624

1847 He Air Air 1.3 2333 3.55 313.9 0.712 5.473 4.739 1.860

1848 He Air Air 1.3 2248 4.72 260.2 0.770 5.972 4.613 2.098

1849 He Air Air 1.3 2304 6.15 219.1 0.817 6.479 4.553 2.349

1850 He Air Air 1.3 2466 7.86 187.5 0.853 6.987 4.543 2.610

1851 He Air Air 1.3 2473 9.90 163.3 0.903 7.471 4.414 2.889

1852 He Air Air 1.3 2447 1.86 480.9 0.604 4.456 4.849 1.407

1853 He Air Air 1.3 2416 3.55 314.2 0.706 5.478 4.789 1.861

1854 He Air Air 1.3 2343 6.15 220.6 0.814 6.473 4.574 2.355

1855 He Air Air 1.3 2658 9.90 164.9 0.887 7.474 4.524 2.898

1856 He CO2 Air 1.6 3687 1.38 521.0 0.769 5.382 4.946 1.838

1857 He CO2 Air 1.6 3803 1.80 459.7 0.811 5.722 4.960 1.987

1858 He CO2 Air 1.6 3436 2.90 377.2 0.929 6.298 4.718 2.294

Continued on next page. . .



212

Table E.1 continued from previous page

1859 He CO2 Air 1.6 3827 4.42 319.4 1.001 6.863 4.713 2.620

1860 He CO2 Air 1.6 3515 6.44 271.1 1.118 7.363 4.424 2.928

1861 He CO2 Air 1.6 3416 9.12 235.5 1.224 7.843 4.185 3.284

1862 He Air Air 0.8 1345 1.70 539.9 0.681 4.186 4.062 1.350

1863 He Air Air 0.8 1279 2.26 439.8 0.739 4.606 3.978 1.526

1864 He Air Air 0.8 1400 3.78 313.7 0.819 5.439 3.980 1.920

1866 He Air Air 1.6 3820 1.00 996.5 0.474 3.391 5.023 1.171

1867 He Air Air 1.6 3734 2.00 998.2 0.556 3.891 4.758 1.874

1868 He Air Air 1.6 3803 4.00 1001.5 0.652 4.438 4.456 2.971

1869 He Air Air 1.6 3748 8.00 999.9 0.773 5.028 4.026 4.672

1870 He Ar Air 1.6 3781 1.00 1004.5 0.339 2.845 5.108 0.616

1871 He Ar Air 1.6 3676 2.00 1000.7 0.412 3.448 4.708 1.153

1872 He Ar Air 1.6 3664 4.00 1002.4 0.499 4.131 4.252 2.115

1873 He Ar Air 1.6 3789 8.00 1004.0 0.603 4.906 3.765 3.819

1874 He CO2 Air 1.6 3607 2.00 999.2 0.842 5.050 4.279 2.984

1875 He CO2 Air 1.6 3916 1.00 998.1 0.707 4.557 4.646 2.076

1876 He CO2 Air 1.6 3899 4.00 999.7 0.973 5.589 4.019 4.273

1877 He CO2 Air 1.6 3814 8.00 1000.4 1.155 6.114 3.575 6.076

Continued on next page. . .
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Table E.1 continued from previous page

1878 He Air Air 1.3 2427 1.00 997.8 0.524 3.342 4.534 1.152

1879 He Air Air 1.3 2615 2.00 999.1 0.605 3.845 4.339 1.852

1880 He Air Air 1.3 2554 4.00 1000.3 0.717 4.377 3.960 2.934

1881 He Air Air 1.3 2600 8.00 999.9 0.846 4.955 3.556 4.624

1882 He Ar Air 1.3 2539 1.00 999.6 0.377 2.836 4.626 0.619

1883 He Ar Air 1.3 2819 2.00 998.3 0.443 3.437 4.365 1.157

1884 He Ar Air 1.3 2520 8.00 999.8 0.679 4.864 3.229 3.837

1885 He CO2 Air 1.3 2642 8.00 1000.0 1.261 6.007 3.140 6.001

1886 He CO2 Air 1.3 2562 1.00 998.5 0.777 4.491 4.198 2.040

1887 He CO2 Air 0.8 1263 1.00 1002.1 0.915 4.365 3.469 1.973

1888 He CO2 Air 0.8 1218 2.00 1000.0 1.089 4.823 3.097 2.834

1889 He CO2 Air 0.8 1261 4.00 998.8 1.276 5.296 2.755 4.056

1890 He CO2 Air 0.8 1234 8.00 998.8 1.511 5.742 2.326 5.798

1891 CO2 CO2 Air 0.8 1287 1.00 997.3 0.382 3.385 0.913 1.327

1892 CO2 CO2 Air 0.8 1287 2.00 997.5 0.428 3.801 0.881 2.014

1893 CO2 CO2 Air 0.8 1245 4.00 998.2 0.483 4.221 0.834 3.031

1894 CO2 CO2 Air 0.8 1296 8.00 1000.6 0.536 4.668 0.795 4.608

1895 CO2 Ar Air 0.8 1265 1.00 999.1 0.230 2.486 0.959 0.580

Continued on next page. . .
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Table E.1 continued from previous page

1896 CO2 Ar Air 0.8 1221 2.00 997.2 0.266 2.991 0.895 1.073

1897 CO2 Ar Air 0.8 1264 4.00 997.2 0.304 3.562 0.842 1.963

1898 CO2 Ar Air 0.8 1215 8.00 997.8 0.353 4.177 0.760 3.566

1899 CO2 Air Air 0.8 1278 1.00 998.5 0.268 2.580 0.977 0.775

1900 CO2 Air Air 0.8 1262 2.00 999.1 0.302 3.006 0.939 1.283

1901 CO2 Air Air 0.8 1117 4.00 1000.8 0.348 3.446 0.871 2.050

1902 CO2 Air Air 0.8 1225 8.00 1001.4 0.386 3.955 0.848 3.274

1903 Ar Air Air 0.8 1228 1.00 999.2 0.230 2.390 0.690 0.669

1904 Ar Air Air 0.8 1260 2.00 997.9 0.265 2.824 0.696 1.133

1905 Ar Air Air 0.8 1223 4.00 999.9 0.308 3.284 0.691 1.859

1906 Ar Air Air 0.8 1253 8.00 998.3 0.353 3.787 0.686 2.988

1907 Ar Ar Air 0.8 1228 1.00 999.2 0.208 2.370 0.686 0.545

1908 Ar Ar Air 0.8 1290 2.00 998.1 0.240 2.873 0.679 1.020

1909 Ar Ar Air 0.8 1262 4.00 997.0 0.283 3.430 0.654 1.877

1910 Ar Ar Air 0.8 1292 8.00 1002.1 0.331 4.045 0.624 3.453

Concluded.
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A p p e n d i x F

HET OPTICAL ARM DESIGN

F.1 Design Rationale
F.1.1 Cutter Geometry
The purpose of the optical arms is to shield the outer parts of the FLDI beams from
the complex flow-field established when the diffracting transmitted shock reflects
off the window cavities. Simulations show that this field is restricted to the region
outside the “test rhombus”, which in the case of HET’s circular tube exit, is the
conical volume bounded by the Mach wave from the tube lip, where the flow is
nominally uniform (neglecting boundary layer effects).

The “cookie cutters” are intended to isolate a portion of this uniform core flow as
cleanly as possible. They have a sharp leading edge with a wedge angle chosen so
that the oblique shock wave will remain attached for all freestream Mach numbers
of interest. The inner faces of the cutters should be as parallel as possible with the
freestream, so that only weakMach waves will be present in the core flow. To ensure
that only the core flow is isolated, the leading edges need to lie within the original
Mach cone. These main geometrical considerations are illustrated in Fig. F.1.

The angle of the wedge is a trade-off: smaller angles allow the shock to stay attached
to lower M , but also necessitate the wedge being longer, thinner, more difficult to
machine, and more susceptible to damage from diaphragm debris. An angle of
θ = 25° guarantees the shock remaining attached down to M = 3, even for the
worst-case γ = 5/3 (monatomic test gases); for diatomics at γ = 7/5, the limit
is M ≈ 2.2. Unfortunately, this precludes the arms from being used with HET
operating in shock-tube mode, as there are no shock-tube conditions exceeding
M = 2.2 for any pressure or gas combination within HET’s operational limits.

The width of the cutters transverse to the flow direction is largely bounded by two
factors: the diameter of the cylindrical arms they attach to, and the diameter of the
tube. The cutters need to be able to penetrate partially into the tube without colliding
with it; the bevels on the outer edges of the cutter give a little more clearance for
this.

The other components of the arm are all made from aluminum to reduce material



216

Flow centerline

Tube Arm

Cutter

Beam
centerline

Mach wave

Mach wave

Shock wave

x

z

Figure F.1: Schematic of main wave processes for HET optical arms.

and manufacturing expense; the cutters themselves are made of A2 tool steel, in
order to better hold a sharp edge, and to resist particulate damage.

The nominal location of the FLDI foci is at the center of the core flow, i.e. the
intersection of the flow and beam centerlines in Fig. F.1, at co-ordinates (x, z)
relative to the leading edge. The intersection of the Mach waves from the leading
edges should lie downstream of the foci as illustrated, so that the flow interrogated
by the FLDI is either undisturbed, or at most processed by a single Mach wave.
Some simple trigonometry yields the following requirement:

x < z ×
√

M2 − 1 (F.1)

Since z is fixed by other geometrical constraints at 32 mm, then for the worst-case
M = 3, x < 101 mm is required; the chosen dimension of 88.9 mm is within this.

The confined space within the HET test section means that the beam profiler cannot
be used once the arms are installed. Hencemeasurements of the foci size and location
are made without the arms; initially the foci are located on the flow centerline as
intended. However, the relatively thick windows of the arm act as weak lenses,
causing the foci to shift down-beam slightly. Although it is difficult to accurately
locate the foci without the profiler, they were approximately measured as being
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18 mm off the pitch-side window. This means the foci still lie in undisturbed flow
for M & 5.0; in any case it should not matter due to being a weak Mach wave.
Bench-top testing using similar windows showed that although the foci position is
displaced, the foci size and separation is not altered to within the precision of the
beam profiler.

F.1.2 Arm Geometry
To reduce costs, the arm tube itself used hollow cylindrical stock, chosen with
a suitable internal diameter that allowed the interior to be left unmachined. A
detachable flange of similar dimensions to the standard HET windows is clamped
in place by the window flange.

To avoid costly welding to vacuum standards, the arm attaches to both the flange and
cutter via bolts. The main downside of this approach is that the cutter bolts must be
inserted from the face that touches the core flow. Tominimize disturbances, the bolts
were countersunk to below the surface datum, then back-filled with a low-viscosity
self-leveling silicone. This gives a smooth surface finish, and while the silicone
proved durable over the course of many HET shots, it is also easy to remove from
the bolt heads if the arms need disassembling.

The wall thickness of the arm tube and the choice of bolts were verified by consid-
ering the worst-case loading during facility operation. The peak dynamic pressure,
max

(
pdyn

)
, during a shot was used as the basis for this. Because the acceleration

section is much lower density, it is reasonable to assume that max
(
pdyn

)
for an

expansion-tube shot never exceeds max
(
pdyn

)
for the equivalent shock-tube con-

dition (i.e. the same driver and driven states, but no secondary diaphgram). The
theoretical pdyn(t) for a shock tube was computed, and found to compare well with
pitot data. It was further determined that max

(
pdyn

)
never exceeds the original

driver pressure p4. To apply static-load analysis to highly dynamic loads, the equiv-
alent static load was taken to be 2pdyn, which leads to the very conservative target
loading of 2p4 ≈ 6.6 MPa for the thickest primary diaphragm.

This pressure was assumed to act on the entire projected area of the arm tube, rather
than just the portion exposed to the flow. A simple finite-element analysis performed
in Solidworks predicted negligible bending and peak stresses well below yield, even
for this contrived worst-case scenario. For the bolts, the projected area of the cutter
was used to compute the shear stress on each bolt, and the exposed rear area was
used to compute the tensile stress of the cutter trying to pull away from the arm (this
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latter scenario will never actually experience a pressure differential anything close
to 2p4, so the safety margin is very high).

Another limitation of the confined space is that the cutters do not fit through the
test section window openings, so the clamped flange is first installed, then the pre-
assembled remainder of the optical arms is brought through the front of the test
section and bolted into place.

One small but useful feature is the pair of orthogonal grooves scribed onto the outer
face of the clamped flange. These are used as alignment targets, in combination with
a self-leveling laser cross-hair projector that has proven a valuable tool for optical
alignment within our research group.

F.1.3 Window & Seal Design
While the design of the metal parts, bolts and O-rings for metal-to-metal contact
all followed standard procedures, the tolerancing and mounting of the glass window
was somewhat more involved. The window is sandwiched between two O-rings to
provide a vacuum seal and to avoid any metal-to-glass contact; it has a shoulder to
allow a flush surface facing the core flow. The designmethodology took into account
the plate bending and compressive stresses on thewindow, following the calculations
and failure curves given for a similar window used in LIGO (Coyne, 2011). The
window clamp is flush with the back surface of the cutter at the design condition,
so it is impossible to exceed the design stress on the window by over-tightening the
screws.

While the O-rings between metal parts (Items 10–12 in the assembly drawing) use
standard grooves for axial seals, the grooves for the window seals (Item 9) are
shallower than standard to prevent metal-to-glass contact. A tolerance stack-up was
performed involving both grooves and their O-rings, the window, and the window
recess in the cutter; even for the worst combinations of tolerances, the glass cannot
touch either metal part. Furthermore, both O-rings remain within their allowable
squeeze ranges, and the compressive forces do not exceed safe limits for the glass.
This applies both for the static assembly, and under vacuum loading (where there
is a pressure differential of approximately 1 atm across the window, causing one
O-ring to further compress while the other relaxes). The nominal condition has
the outer face of the window aligned with the cutter surface; the radial tolerances
are tight to give a minimal annular gap. The off-nominal condition is designed to
favor a slightly recessed window rather than protruding, as it is thought that this
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will disturb the flow less. All seals, including the ones touching glass, use vacuum
grease. The windows are uncoated silica, so it is not harmful to clean any excess
grease off using solvents.

Initial vacuum testing showed that the optical arm assembly actually gave a better
overall leak rate than with the standard HET windows installed. The windows
also endured the rapid decompression experienced during the regular pump-down
procedure, as well as the impulsive loading of the shock waves and processed driver
gases. After more than 70 shots, there was no sign of damage to the windows, nor
were they even dirty. The standard HET windows tend to become dirty and pitted
over time due to impact from secondary diaphragm particulates. It is thought that
the cutters deflected these particulates into the outer flow, because the upstream-
facing portions of the arm tubes (made of soft aluminum) became substantially
pitted after several shots (Fig. F.2). However, the steel cutter arms showed no sign
of degradation at the end of the campaign. As previously mentioned, the silicone
“caps” covering the recessed bolts were not damaged either.

Figure F.2: Photo of the installed optical arms, looking downstream. Pitting on the
arm tubes corresponds to the projection of the HET tube exit.
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F.2 Engineering Drawings
The following pages contain the engineering drawings of all the custom-made com-
ponents of the optical arm assembly (standard fasteners and O-rings are called out
in these drawings). These are:

1. Arm tube

2. Clamped flange

3. Cookie cutter

4. Window clamp

5. Window

The four metal components were manufactured by H&S Enterprises [Monrovia,
CA] while the glass window was made by Esco Optics [Oak Ridge, NJ].

An overview drawing of the full optical arm assembly is also included. For views
of the assembly installed into HET, please see Fig. 2.8.
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