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ABSTRACT

In this thesis several investigations are presented on the topic of the low-energy

properties of models for many-body quantum physics in one dimension (1d).

First we present a novel numerical method based on recent theoretical develop-

ments in the understanding of the success of polynomial-time tensor network

methods for computing ground states of certain local Hamiltonians. The con-

vergence proof relies on “rigorous renormalization group” (RRG) techniques

which differ fundamentally from existing algorithms. Our practical adapta-

tion of the RRG procedure which, while no longer theoretically guaranteed to

converge, efficiently finds MPS approximations to the ground spaces and low-

lying excited spectra of local Hamiltonians in situations of physical interest.

In contrast to other schemes, RRG does not utilize variational methods on

tensor networks. Rather, it operates on subsets of the system Hilbert space

by constructing approximations to the global ground space in a tree-like man-

ner. We evaluate the algorithm numerically, finding similar performance to

DMRG in the case of a gapped nondegenerate Hamiltonian. Even in chal-

lenging situations of criticality, large ground-state degeneracy, or long-range

entanglement, RRG remains able to identify candidate states having large

overlap with ground and low-energy eigenstates, even outperforming DMRG

in some cases.

As an application of RRG, we perform a study of the antiferromagnetic XYZ

spin chain with quenched randomness. Our focus is on the critical line be-

tween localized magnetic phases, which we access by varying the bandwidth

of a coupling distribution. In this way one can tune between a free-fermion

fixed point and S3-symmetric multicritical point with identically distributed

couplings. The RRG method obtains unbiased numerically exact results tar-

geting the ground state and low-energy physics, allowing us to compute critical

indices, which have been proposed to vary continuously based on results of a

strong disorder renormalization group (RG) calculation. Our findings support

these claims as well as an infinite-randomness fixed point (IRFP), and we

furthermore exhibit a perturbative relationship to the critical line connecting

the random XX IRFP with U(1) symmetry and the random XY IRFP. Even

though the RG equations are not tractable due to the correlations in the dis-

tributions, using a formulation in terms of random walks we are able to prove
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rigorous bounds establishing continuously varying critical exponents along this

line.

We then change topics and perform a numerical study of a spin-½ model with

Z2 × Z2 symmetry in 1d which demonstrates an interesting similarity to the

physics of 2d deconfined quantum critical points (DQCP). Specifically, we

investigate the quantum phase transition between Ising ferromagnetic and

valence bond solid (VBS) symmetry-breaking phases. Working directly in

the thermodynamic limit using uniform MPS, we find evidence for a direct

continuous phase transition that lies outside of the Landau–Ginzburg–Wilson

paradigm. In our model, the continuous transition is found everywhere on the

phase boundary. We find that the magnetic and VBS correlations show very

close power law exponents, which is expected from the self-duality of the par-

ton description of this DQCP. Critical exponents vary continuously along the

phase boundary in a manner consistent with the predictions of the field theory

for this transition. We also find a regime where the phase boundary splits,

as suggested by the theory, introducing an intermediate phase of coexisting

ferromagnetic and VBS order parameters. Interestingly, we discover a transi-

tion involving this coexistence phase which is similar to the DQCP, being also

disallowed by Landau–Ginzburg–Wilson symmetry-breaking theory.

Finally we continue the study of examples of deconfined quantum criticality

in 1d models by investigating the transition between a Z3 ferromagnet and a

phase with VBS order in a spin chain now with Z3×Z3 global symmetry. We

study a model with alternating projective representations on the sites of the

two sublattices, allowing the Hamiltonian to connect to an exactly solvable

point having VBS order with the character of SU(3)-invariant singlets. Such

a model does not admit a Lieb–Schultz–Mattis theorem typical of systems

realizing deconfined critical points. Nevertheless, we find evidence for a di-

rect transition from the VBS phase to a Z3 ferromagnet. Finite-entanglement

scaling data are consistent with a second-order or weakly first-order transi-

tion. We find in our parameter space an integrable lattice model apparently

describing the phase transition, with a very long, finite, correlation length of

190878 lattice spacings. Based on exact results for this model, we propose

that the transition is extremely weakly first order, and is part of a family of

DQCP described by walking of renormalization group flows.
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C h a p t e r 1

INTRODUCTION

This dissertation presents several projects of varying degrees of independence,

which I have chosen to unify under the theme of the low-energy properties of

many-body quantum models in one dimension (1d). This particular subject

benefits from a rich literature dating back many decades and enjoys a relative

abundance of tools and techniques. In fact, so much work has already been

done that one may be tempted to think that there are not very many inter-

esting results left here. Indeed, the frontiers of many-body physics include

such fascinating topics as topological states, thermalization and nonequilib-

rium dynamics, and strongly-coupled phenomena in 2d; perhaps in compari-

son the paths of 1d ground states are well trodden. An implicit argument of

this thesis is that its subject is not in fact rendered less interesting but rather

more so, and is a useful component of the environment of exciting new topics.

It is evident that the understanding of new and more advanced ideas in physics

is often incubated in simpler settings. This is only one pathway however, and

in practice insight can of course flow in both directions. That is certainly true

of this work, whose motivation arose in a variety of cross-disciplinary settings.

The projects presented here were inspired by rigorous proofs from quantum

information theory; studies of many-body localization; exotic mechanisms for

phase transitions in 2d; and unusual renormalization group flows from high-

energy theory. All of these studies were essential for developing interest in the

present investigations and, conversely, I hope that this work can contribute

meaningfully to the understanding of the related phenomena beyond the strict

dimensional requirements of many of the tools we have used.

A very brief summary of these projects and the results is as follows. In this In-

troduction I provide an overview of the relevant topics, with the later chapters

devoted to the work itself and containing a minimum of background material.

Ch. 2 introduces and tests a novel numerical method, the rigorous renormal-

ization group, which is based on proofs of efficient algorithms for ground and

low-energy states of local Hamiltonians in 1d. In Ch. 3 the rigorous renor-

malization group is used to study the antiferromagnetic XYZ spin chain with
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quenched randomness, where we obtain results previously inaccessible to un-

biased numerical methods and find evidence for an infinite-randomness fixed

point with continuously varying critical exponents. As an extended subtopic,

we prove using analytic strong-disorder RG methods that random anisotropy

is marginal along the critical line from the random XX to XY fixed points.

Chs. 4 and 5 present studies of deconfined quantum criticality in 1d models.

First we provide strong evidence supporting an instance of such a phase tran-

sition in a concrete spin chain with Z2 × Z2 symmetry. We then investigate a

generalization to a model with Z3 × Z3 symmetry, which surprisingly appears

to be very weakly first-order, with the transition controlled by complex fixed

points through walking behavior of the renormalization group flow. Finally,

Ch. 6 concludes with some discussion of opportunities for future work based

on these projects.

1.1 Rigorous renormalization group method

Whereas the Schrödinger equation, a linear partial differential equation govern-

ing the time evolution of a quantum state, can sometimes be solved analytically

for a single particle, even few-body systems already do not admit a direct so-

lution due to the exponential scaling of the dimension of Hilbert space. This is

the fundamental roadblock which the modern techniques of many-body quan-

tum physics are designed to bypass, via such diverse routes as field theories,

phenomenological models, variational states, and the renormalization group,

all of which exist alongside and in conjunction with numerical methods. Be-

ing linear, the Schrödinger equation permits a very straightforward extension

of the single-particle case by numerical exact diagonalization of the Hamil-

tonian energy operator H, yielding eigenstates of definite energy which fully

determine the thermal and nonequilibrium behavior. Exact diagonalization

cannot surpass few-body physics, however, and developing numerical methods

for larger systems requires much additional structure, some aspects of which

have only recently been understood formally.

In order to be able to make further statements, the problem must be special-

ized; we focus here on algorithms for tensor networks, and have in mind a

system of lattice sites in 1d, with a local Hamiltonian H that decomposes into

spatially local energy terms acting on k ∼ O(1) neighboring sites. A tensor

network is a strategy for making a controlled assumption about the correspond-

ing spatial locality of a quantum state itself, which one might hope is inherited
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from H. In 1d the canonical—though not the only—such representation is the

matrix product state (MPS) [1–4], an ansatz suitable for “finitely-correlated”

states. Tensor network states are not typical in Hilbert space and in fact the

space of MPS evidently has very high codimension; moreover, the locality of

H is not enough to prevent nearly all eigenstates from being typical. Instead,

the utility of the form derives from the area law of entanglement, a result

proved by Hastings [5] in 2007 which establishes that any ground state of a 1d

local Hamiltonian with a finite excitation gap ∆ is in fact an MPS. The area

law is a consequence of a finite correlation length ξ ∼ 1/∆ which limits the

possible degree of correlations between spatially separated observables (this

claim turns out to be correct, data-hiding states notwithstanding [6, 7]), and

consequently applies to equilibrium states [8]. Subsequently, MPS were used

to classify all gapped phases in 1d [9].

Although tensor networks have inspired time-evolution algorithms [10–12], we

focus on the more theoretically well-founded application to eigenstates close to

the band edge of H, which determine the low-temperature equilibrium physics

of the system. The “gold standard” numerical technique for such problems is

the density matrix renormalization group (DMRG) invented by White [13, 14].

Though it was not the case originally, the modern understanding of DMRG

is now based on MPS [15]. Essentially, the algorithm performs an iterated

optimization over the variational parameters of the MPS, which, up to gauge

transformation, are the tensor elements. The iteration manifests as a “sweep-

ing” over the tensors in the 1d chain, where at each step an effective local

eigenvalue problem on one or a few sites is solved by the Lanczos algorithm.

Since its introduction, DMRG has seen enormous practical success in a wide

range of 1d and quasi-1d models, with extensions for translation invariance

[16, 17], finite temperature [18, 19], time dependence [20], and many other ap-

plications. However, for some time the effectiveness of the basic algorithm was

not well understood. That is, although MPS had been established for ground

states, it was not clear that DMRG itself was provably efficient (requiring only

polynomially many resources in the system size), or even that such an efficient

algorithm existed. It was not until the work of Landau et al. [21] in 2015

that a polynomial-time algorithm was developed for ground states of gapped

models, proving that an efficient method is possible in principle.

However, the algorithm exhibited in Ref. [21] bears little resemblance in its
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particulars to DMRG, and devising a proof for the DMRG algorithm appears

to be challenging; in fact, it is known that the multi-site variants can be NP-

hard in the worst case [22]. As a practical matter, in systems with strong

disorder DMRG is susceptible to spurious convergence to excited states, an

occurrence which cannot be readily diagnosed [23]. This is fundamentally a

consequence of performing the iterated local optimization. The rigorous algo-

rithm is distinguished by a reliance on an approximate ground state projector

(AGSP), an operator derived from the Hamiltonian which was introduced by

Arad et al. [24]. The role of the AGSP is to provide global information, en-

suring that intermediate states can be efficiently represented and directing the

algorithm along a computationally tractable route to the ground state.

AGSP-based methods were generalized in Ref. [25] to low-energy excited states

in models with slightly relaxed conditions on the density of states. Based on

this work we introduced the rigorous renormalization group (RRG), a nu-

merical implementation for low-energy states of local Hamiltonians in one di-

mension [26]. While the implemented method differs slightly from the proof

construction and does not strictly satisfy the conditions of the guarantee—

whose parameters are not known a priori regardless—it inherits the intuitive

benefits of the AGSP and has been seen to be effective in practice for non-

trivial low-energy spectra like those of strongly disordered systems, or in the

presence of nearly degenerate manifolds [26, 27], where DMRG may be un-

reliable. In addition, RRG is tuned by two “hyperparameters” (s,D) which

provide controllable improvements in the accuracy of the solution.

At the time of its introduction in Ref. [26], the implementation of RRG was

not particularly technically sophisticated, and lacked basic features such as

the ability to resolve global symmetries. As a result, the comparisons of its

performance to DMRG presented there and in Ch. 2 appear to be fairly bleak.

The reality is the opposite, however: since then many technical improvements

have brought the performance of RRG even with DMRG in its basic setting

of gapped 1d Hamiltonians, when multiple low-energy states are required. In

addition, symmetries can be exactly realized and more complex situations

tackled, with one example of both being the study in Ch. 3.

One way to think about RRG which has emerged from its use in practical

settings is a strategy akin to golf. As described above, the goal of RRG is to

produce a state having constant overlap with low-energy states, but its output
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N RRG+DMRG time (s) DMRG time (s)
32 7 + 3 = 10 26
64 20 + 7 = 27 83
128 55 + 23 = 78 205
256 150 + 114 = 264 662

Table 1.1: We perform an up-to-date comparison similar to Table 2.1 as an
example of the use of RRG, however in a slightly different setting than was con-
sidered there. Solution times are shown for the “golf” strategy RRG+DMRG
along with DMRG alone for the transverse-field Ising model in the para-
magnetic phase close to the critical point (g/J = 1.1 in the notation of
Eq. (2.7)). Each method obtains 6 eigenstates to accuracy 10−10 in units
of energy, without resolving the Ising symmetry. The RRG hyperparameters
used are (s,D) = (6, 8). All computations used single-threading.

still contains some high-energy contributions; this is nevertheless a favorable

initial state for variational optimization. In this way, RRG acts like a driver, a

club used from the tee box which is well suited to locating the ball in the vicin-

ity of the hole, avoiding sand traps and water hazards along the way. Once the

ball is on the green, the appropriate club is a putter, which allows for precisely

following local contours in a gradient descent fashion. This metaphor is not

meant to disparage DMRG, whose success is manifest; it simply illustrates

how these tools can be used together to accelerate convergence, or to navigate

challenging energy landscapes. As an example, in Table 1.1 a comparison is

given (similar to Table 2.1 of Ch. 2) between RRG+DMRG, where RRG per-

forms initial state preparation, and DMRG alone for low-energy states of the

transverse-field Ising model close to the critical point.

1.2 Strongly disordered quantum spin chains

Many foundational ideas in condensed matter physics rely on a notion of trans-

lation invariance, either continuous or discrete. Such useful tools as quasipar-

ticles, effective field theories, and even a standard understanding of quantum

phases make use of a clean continuum, or thermodynamic, limit. Gapped

phases are stable under weak static, or “quenched,” disorder, and in such

cases the disorder average of certain quantities can be calculated in a related

clean system via either the replica trick [28] or supersymmetry arguments for

non-interacting models [29]. These techniques apply to self-averaging observ-

ables whose disorder averages are indicative of their typical values, and rely

on restoring translation invariance in situations where disorder plays a less
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important role than thermal or quantum fluctuations. In cases where disor-

der is strong or accompanied by interactions, such methods are not effective

and a different approach is required. One technique which intuitively seems

particularly suitable for directly accounting for spatial inhomogeneity is the

real-space renormalization group (RG) [30].

The original development of a real-space RG appropriate for strong-disorder

physics in 1d is due to Ma, Dasgupta, and Hu [31, 32]. As is true of all RG

procedures, the idea is to introduce effective degrees of freedom associated

with a varying scale. The feature distinguishing the strong-disorder renormal-

ization group (SDRG) from, e.g., spin blocking, is that the degrees of freedom

are explicitly associated with an energy scale rather than with a grouped spa-

tial structure. In this way the disorder realization determines the pattern of

integrating out fluctuations.

Such an approach is now understood to be well motivated by the idea of an

infinite-randomness fixed point (IRFP), a stable solution of the SDRG equa-

tions discovered by Fisher in Refs. [33–35] at which the strength of disorder

grows with the scale without bound, and where SDRG predictions become

asymptotically exact. In an IRFP, disorder dominates the low-energy physics

and physical observables are not self-averaging, with average behaviors instead

being determined by a small number of “rare regions” within a disorder real-

ization. Interestingly, although such a fixed point has no notion of conformal

symmetry, the phenomenology can be similar to that of CFT fixed points: for

instance, the scaling of average entanglement follows the conformal form with

an effective central charge, which in some cases is related to the central charge

of the clean theory but does not obey the same rules under RG [36–38].

Since its introduction, the SDRG has been specialized to a variety of classical

and quantum systems, and the original scheme has seen many generalizations

[39, 40]. For example, applications in two-dimensional (2d) random models

also yield IRFPs in these settings [41]. In another direction, SDRG methods

were extended to treat all eigenstates of a quantum Hamiltonian [42–44], in or-

der to assess the possibility of many-body localization (MBL) of excited states.

The many-body extended SDRG procedures do not perform an iterative tar-

geting of the low-energy space, but instead tabulate emergent conservation

laws corresponding to the local integrals of motion of an MBL phase; never-

theless, the equations are formally quite similar to the original picture based
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on a traditional understanding of RG.

One of the extended many-body SDRG procedures, the “spectrum bifurcation

renormalization group” (SBRG) developed in Ref. [43] for Hamiltonians com-

prised of general Pauli strings, was applied to the random XYZ spin chain by

Slagle et al. [45]. In this model the RG equations do not simply renormalize

the distribution of bare couplings, but generate exponentially many terms (see

Sec. 3.2.3 for more details), requiring an uncontrolled approximation. Along

a phase boundary between localized Ising antiferromagnets, disorder-averaged

spin correlations at infinite temperature were found to decay as power laws

with continuously varying critical exponents. Similarly-averaged entanglement

entropy scaling exhibits a stable effective central charge that matches the ex-

pectation based on the clean case. This phase transition was conjectured to

be “marginal MBL,” meaning that eigenstates do not thermalize but exhibit

a logarithmic violation of the area law.

Such marginal MBL Hamiltonians have recently been argued to be perturba-

tively unstable to ergodicity at finite energy density due to resonances [46,

47]. As is true of all excited-state SDRG schemes, SBRG relies on MBL for

validity, and these recent arguments call this assumption into question. Never-

theless, we find the possibility of continuously varying power laws in the IRFP

for the ground state very interesting and worth further study. It is difficult

to study even the ground state of the random XYZ spin chain, however. The

SDRG for this case requires making an uncontrolled approximation, and in

general strongly disordered models are very challenging for numerical meth-

ods like DMRG. In fact they are known to be one of the very few cases in

which DMRG can spuriously converge to an excited state without any way to

diagnose the error [23]. This is related to the “ultra-slow” dynamics in such a

phase, which frustrates the local optimization.

There is evidently an opportunity for performing unbiased numerics with RRG

for the low-energy properties of the random XYZ spin chain. The benefit of the

AGSP is precisely to provide information about the global energy landscape to

the local step, presumably escaping spurious convergence. We emphasize that

our focus is entirely on low-energy properties, and we will not have anything

to say about the existence of MBL physics at finite energy density. In Ch. 3

we preform an RRG study and find that the results are in general agreement

with those of Ref. [45] and strongly suggest an IRFP with continuously varying
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critical indices. In addition, we find that a more tractable effective XY model

with locally correlated couplings reproduces much of the phenomenology of the

random XYZ critical line. Although the SDRG equations are difficult to solve

directly due to the arbitrary degree of correlation between the distributions,

we use a formulation of the analytical SDRG on a classical random walk [39]

to prove that local correlations are marginal in the effective model, and find

an exact form for a continuously varying critical exponent.

1.3 Deconfined quantum critical points in 1d

Among the great successes of modern physics is the description of interact-

ing continuous phase transitions by the Landau–Ginzburg–Wilson theory [48].

Briefly, in this paradigm one writes a phenomenological theory of an ordering

transition in terms of a fluctuating local order parameter. The theory con-

tains all symmetry-allowed terms constructed from the order parameter and

its derivatives, and through a perturbative RG analysis properties of the crit-

ical fixed point can be computed [49]. An interesting recent line of inquiry is

so-called “Landau-forbidden” continuous transitions lying outside of this con-

ventional framework. A number of spiritually similar proposals in this subject

have been categorized as a deconfined quantum critical point (DQCP). This

nomenclature was introduced by Senthil et al. [50, 51], who described a mech-

anism for a non-Landau continuous phase transition of rotationally symmetric

spins on the two-dimensional (2d) square lattice. This particular transition

involves conventional phases, one having Néel antiferromagnetic order, and

the other lattice symmetry–breaking valence-bond solid (VBS) order.

The order parameter in the magnetic phase is the Néel vector, which under-

goes a conventional continuous transition from the ordered phase to a para-

magnet through the proliferation of topological defects. Schematically, the

ordered phase can instead transition through a DQCP to a paramagnet with

VBS order by endowing the topological defects with nontrivial transformation

properties under the lattice symmetry. Additionally, this is proposed to lead

to RG irrelevance of symmetry-allowed monopole terms at the critical point.

The low-energy theory of the Néel-VBS transition is the non-compact CP1

model of spinons, complex SU(2) spinors coupled to a U(1) gauge field, which

fractionalize the Néel order parameter. Its “non-compactness” refers to con-

servation of the U(1) flux, a symmetry special to the critical point arising from

the conjectured irrelevance of monopoles. Away from the critical point in the
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paramagnet phase, the spinors are linearly confined as a result of the induced

VBS order.

This description inspired a variety of other proposals, which are united by the

property that the natural variables for the system at the critical point are

confined on either side of the transition. Meanwhile, the original proposal has

been extensively tested in numerical studies, which are consistent with either

a second-order or very weakly first-order transition [52–69]. Recent interest

in this DQCP is a result of new developments in the understanding of the

relationship between its symmetries and duality properties [70–73]. Remark-

ably, quantum Monte Carlo simulations suggested that the IR theory of the

model hosts an emergent symmetry, with the Néel and VBS order parame-

ters transforming together as an SO(5) vector [61]. This emergent symmetry,

which is realized anomalously, proved to be quite useful for understanding the

transition through various dualities to theories appearing on the surface of a

three-dimensional symmetry protected topological (SPT) phase [72].

Subsequent conformal bootstrap bounds on unitary CFTs with this SO(5)

symmetry turn out to exclude the conformal data measured in numerics, most

notably for the SO(5) vector which is too relevant to satisfy consistency con-

ditions [74]. This discovery followed earlier observations of unusual numerical

features such as drifting “universal” quantities and inconsistencies in finite-

size scaling [55, 56, 60, 63]. The resolution may be that the phase transition

is in fact weakly first order (or pseudo-critical), a phenomenon thought to be

generically a result of RG walking [75–82]. In this scenario, the transition

displays approximate conformal symmetry below some long, but finite, length

scale. At intermediate distances the system’s properties are governed by non-

unitary complex fixed points which can be viewed as analytic continuations of

a unitary CFT; however, eventually the theory is trivial. For the DQCP with

SU(2) symmetry such a description requires a fixed point with inherent SO(5)

symmetry and a tunable parameter providing access to the pseudo-critical

regime [72]. Some proposals in this direction have identified as a candidate a

nonlinear sigma model with WZW term continued to d = 2 + ε dimensions,

with SO(4 + ε) symmetry [83, 84].

A complementary perspective on the above story can be found in 1d, where

we again use the language of spin chains. In order to have a symmetry-

breaking phase the model must evade the Mermin–Wagner theorem; one way
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to do so is through anisotropy breaking global spin-rotation symmetry to a

discrete subgroup.1 In Ref. [87] such a transition was considered between a

ferromagnet and a dimerized VBS phase in a 1d system with Ising-like Z2 ×
Z2 symmetry. This choice allows nontrivial projective representations, and

realizing the global symmetry projectively on the unit cell (a single site) leads

to a Lieb–Schultz–Mattis theorem which prohibits a featureless gapped phase

from intervening in the transition [88]. There are close parallels between this

transition and the easy-plane DQCP in 2d with U(1) symmetry, but the 1d

version is more tractable and, in particular, allows a controlled field theory

description. This transition therefore is proposed to constitute an example of

deconfined quantum criticality in 1d. There are also connections to the web of

1+1 dualities considered in Ref. [89]. The low-energy theory turns out to be

a one-component Gaussian theory (a Luttinger liquid) with a single relevant

cosine term and continuously varying critical indices. In these variables an

emergent U(1)×U(1) symmetry is manifest at the transition.

In Ch. 4 we provide strong evidence that this DQCP in 1d is in fact realized in

a concrete spin chain with Z2×Z2 symmetry, establishing that many nontrivial

aspects of the theory appear. In Ch. 5 we begin to generalize to higher-spin

models by considering a case with Z3 × Z3 symmetry. We find that there

is indeed a direct phase transition between magnetic and VBS phases which

appears in numerics to be continuous. While straightforward attempts to write

a field theory description are not successful, we find an integrable classical 2d

vertex model appearing to lie on the phase boundary; surprisingly this model

has a finite, but very long, correlation length. Supposing that the integrable

model does describe the transition, we develop a picture of the family of Zq×Zq
critical points in 1d, described by pseudocritical behavior induced by walking

RG flows in the vicinity of complex fixed points.

1Another method is to use long-ranged interactions; such a model (which can be realized
on the boundary of a SPT state in 2d [85]) exhibits a direct transition between a gapless
phase with AFM order and a VBS phase [86].
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C h a p t e r 2

RIGOROUS RENORMALIZATION GROUP FOR LOCAL
HAMILTONIANS

[1] B. Roberts, T. Vidick, and O. I. Motrunich, “Implementation of rigorous
renormalization group method for ground space and low-energy states
of local Hamiltonians”, Physical Review B 96 (2017), 214203.

2.1 Schematic overview

In this chapter we describe in detail how the rigorous renormalization group

(RRG) operates to solve for the ground and low-energy states of local Hamil-

tonians in one dimension (1D). The structure of the chapter is as follows. In

this section we give a first heuristic overview of RRG and some differences

from related existing methods. We then provide a detailed, self-contained de-

scription of our algorithm in Sec. 2.2. In Sec. 2.3 is a precise discussion of

the differences between the proof and the present work, for the reader famil-

iar with the theoretical RRG paper. An extended presentation of numerical

results is contained in Sec. 2.4; while the results are reliable, this study was

performed with code which is now out-of-date and the runtimes quoted in

Sec. 2.4 should not be considered currently representative. For an

example of more modern timing, we have performed a comparison similar to

Table 2.1 of this chapter using the current code1 as Table 1.1 in the Introduc-

tion. Given its origins as a highly technical theoretical algorithm developed in

order to obtain provable guarantees, the RRG method performs surprisingly

well, often matching the results of standard DMRG implementations and out-

performing them in certain difficult cases exhibiting degenerate ground spaces

or highly entangled ground states. Finally, we give an outlook on further work

in Sec. 2.5.

Broadly, the RRG strategy is this: partition the system into small initial

blocks, and, focusing on the Hilbert space of the blocks individually, identify

sets of states that are “extendable” to the rest of the system to create a good

approximation to the system-wide ground space. This property is termed

1Available at https://www.github.com/brendenroberts/RigorousRG.

https://www.github.com/brendenroberts/RigorousRG
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viability, and formally defined in Eq. (2.1). The identification of viable sets is

accomplished with an approximate ground state projector (AGSP), an operator

approximately filtering out highly excited states on the entire system, whose

support is restricted to perform this filtering within each block individually. In

this way RRG deviates from a traditional real-space blocking scheme, in which

each block does not have access to global information. The next step is to

merge the identified viable sets on adjacent blocks, obtaining states supported

on blocks of larger size. However, this step and the local application of the

AGSP result in an untenable blow-up of the number of states, so a reduction

step is performed, returning the number of states per block (now comprising

two blocks of the smaller size) to a constant value. This procedure is iterated,

merging blocks in a tree-like manner, and at the full system scale, the identified

states are shown to closely approximate the low-energy space [1].

In the present work we adapt these techniques to specify a concrete RRG pro-

cedure allowing for the explicit computation of ground and low-energy states of

local Hamiltonians. This requires making allowance for computational limita-

tions, and generally our modifications operate outside of the regime of rigorous

guarantee. Still, our algorithm presents a conceptually new approach to this

task. We emphasize that the use of the word “rigorous” is in reference to the

title of Arad et al. [1], rather than in order to establish a contrast with other

tensor network algorithms.

The main conceptual departure of this algorithm from existing tensor network

methods is that RRG operates on viable sets of states supported on blocks,

rather than on variational states in the full Hilbert space. Two important

features arise from this distinction. First, no local energy minimization on

a particular ansatz state is performed. Even though in the RRG procedure

described here the basic operations are performed on MPS comprising an ap-

proximate basis of the viable sets, the MPS objects themselves are incidental,

and the concerns arising from the MPS ansatz (e.g., gauge choice, truncation)

are external to the fundamental algorithm.

Second, the physical degrees of freedom are not coarse-grained. The objective

of a coarse-graining strategy is to limit the dimensionality of the Hilbert space

at increasing scale by the introduction of renormalized degrees of freedom,

determined by some local rule, specifying a smaller effective Hilbert space. In-

stead, RRG achieves this goal by maintaining viable sets of constant dimension
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at all levels of the algorithm hierarchy. These processes cannot be considered

equivalent, as the RRG step of applying the AGSP operator changes the rela-

tionship between scales in a complicated way, and does not match the intuition

of an “RG flow” in a small number of parameters. However, this method still

allows for fully controllable systematic improvements in accuracy.

2.2 Operation of implemented algorithm

The input is a local Hamiltonian H acting on N qubits, specified by an MPO.
Let n, s and D be input parameters.

1. Initialize:

a) Construct AGSP K from Hamiltonian H.

b) Partition system into contiguous blocks of length n, denoted Jλ0 for
λ = 0, 1, . . . , N/n− 1. Obtain s-dimensional low-energy eigenspace
V λ

0 of block Hamiltonian Hλ
0 for each λ.

2. For m = 0, 1, . . . , log2(N/n)− 1, denoting an “RG step” or scale factor:

a) Expand: for λ = 0, 1, . . . , N/(2mn)− 1:

i. Extract D2 operators {Aλm,r}r=1,...,D2 from the AGSP K, acting
on subsystem Jλm. Operate on the viable set, taking V λ

m →
W λ
m ≡ {Aλm,rV λ

m}r, where dim(W λ
m) ≤ sD2.

ii. Compute the restriction of the block Hamiltonian Hλ
m to W λ

m ⊂
Hλ
m.

b) Reduce: For λ = 0, 2, . . . , N/(2mn)− 2:

i. (Merge) Obtain the tensor product space W λ
m ⊗W λ+1

m ⊂ Hλ/2
m+1,

supported on qubits in J
λ/2
m+1 = Jλm ∪ Jλ+1

m . Compute the re-

striction of H
λ/2
m+1 to the tensor product set.

ii. Obtain s-dimensional low-energy eigenspace of the restriction
of H

λ/2
m+1 to the tensor product space. Use the eigenstates as a

basis for viable set V
λ/2
m+1 in iteration m+ 1.

3. At m = m∗ = log(N/n), the viable set V 0
m∗ is a candidate for the low-

energy space T supported on the full system.

Figure 2.1: Outline of RRG algorithm.

2.2.1 Overview and notation

The steps of RRG as implemented are listed in Fig. 2.1 for reference and are

discussed in detail in subsequent sections. A visual schematic is shown in
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Fig. 2.2. Our notation is as follows. Let H =
∑N−2

i=0 hi be a 2-local Hamilto-

nian on a chain of N qubits, with term hi acting on sites i and i + 1. (The

generalization to k-local Hamiltonians and qudits is straightforward.) Denote

the Hilbert space of the system by H, and refer to the low-energy eigenspace

of H as T . Let n be a parameter specifying the size of initial regions of the

system, and assume N/n is a power of 2. For each m = 0, 1, . . . , log2(N/n),

partition the N -site system into contiguous blocks of equal length 2mn. Call

these Jλm = {λ2mn, . . . , (λ+ 1)2mn− 1}, for λ = 0, 1, . . . , N/(2mn)− 1. The

Hilbert space associated with Jλm is denoted Hλ
m, and H =

⊗
λHλ

m. Let Hλ
m

be the block Hamiltonian on Jλm, comprising all terms acting only on sites

in Jλm and excluding boundary terms. Explicitly, Hλ
m =

∑
i∈Jλm∗ hi, where

Jλm
∗

= {λ2mn, . . . , (λ+ 1)2mn− 2}.

2.2.2 Initialization

The first step is to construct an approximate ground state projector (AGSP)

K, whose action on states in H increases overlap with T , the low-energy

subspace of H. Many constructions of AGSP are possible. In the interest of

efficiency, we use an AGSP obtained as an approximation to a thermal operator

at temperature t/k, K ≈ e−kH/t, t, k > 0. Let Qt denote a matrix product

operator (MPO) approximating the thermal operator e−H/t at temperature t;

procedures such as a Trotter decomposition [2] or cluster expansion can be

used to efficiently compute this MPO. The AGSP is then obtained as a power

of Qt, contracting the product on the physical indices k times.

Because the AGSP must later be divided into operators acting on individual

blocks, to compute Qt requires contraction of the tensor network having terms

of the form e−hi/t. After each contraction an SVD is performed between site

indices, and the MPO is truncated by eliminating low-weight Schmidt vectors

across each bond. Here truncation is meant in the sense of MPS truncation,

representing the MPO as a state in a higher-dimensional local Hilbert space.

This amounts to using the Frobenius norm to order the terms arising from the

SVD, and may not be an optimal way to approximate operators; we address

this issue in more detail later.

The second step in the initialization is to identify sets of states V λ
0 ⊂ Hλ

0 , for

λ = 0, 1, . . . , N/n− 1, of constant dimension s, where s is a parameter of the

algorithm which bounds the dimension of the sets manipulated throughout.
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Figure 2.2: Schematic illustration of the RRG algorithm over several length
scales m = 0, 1, 2. As shown, (s,D) = (2, 2) and block size n = 5. Gray dots
represent local Hilbert spaces, and the V 0

0 , V 1
0 , etc., are the viable sets over

blocks of sites. The labeled vectors |va〉, etc., are basis states for the viable
sets and have no relationship between blocks at a given scale. The action of
the projector operators Aλm,r on the states is represented by primes and dou-
ble primes (e.g., A0

0,1|va〉 = |va′〉 and A0
0,2|va〉 = |va′′〉). These generate the

expanded viable sets W 0
0 , and so on. The Merge procedure obtains tensor

product states such as |va′〉|vc′〉 supported on two blocks, and the tensor prod-
uct set is reduced in dimension via diagonalizing block Hamiltonians such as
H0

1 , producing a viable set supported on two blocks.

We use the term “viable sets” for the V λ
0 (generally, for V λ

m ⊂ Hλ
m) because

the intent of the algorithm is that each V λ
m be extendable to include a good

approximation to the global low-energy eigenspace T . That is, each set V λ
m is

chosen such that if H = Hλ
m ⊗H

λ

m, then V λ
m ⊗H

λ

m contains a subspace which

is a good approximation to T . We identify a set V λ
m as δ-viable if

PTPV λm⊗H
λ
m
PT ≥ (1− δ)PT , (2.1)

where PT is a projector onto a subspace T . More concretely, consider the case

of a non-degenerate global ground space T = Span{|τ〉}, |τ〉 ∈ H. The viability
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of the set V λ
m is given by

δ = 1− max
|x〉∈V λm⊗H

λ
m

|〈τ |x〉|2 , (2.2)

where |x〉 =
∑

j aj|vj〉|vj〉 for a collection of states {|vj〉} ⊂ V λ
m along with

coefficients aj, and states {|vj〉} arbitrary in the Hilbert space of the sites in

the complement. It will be shown in Sec. 2.2.3 that one need never explicitly

compute the {|vj〉}. For the case that dim(T ) > 1, δ is obtained by taking

the smallest value of the maximum in (2.2), over all |τ〉 ∈ T . The goal of the

algorithm is to construct the viable sets V λ
m in such a way that they are in-

deed δ-viable for some constant δ less than 1 for all scales m. Note that a

small value of δ corresponds to a better approximation, in contrast with mea-

sures like overlap. We emphasize that the viability parameter is not explicitly

computed by the algorithm. Instead, it provides a useful metric to evaluate

performance, both in terms of the theoretical results and in terms of experi-

mental investigations for cases where we wish to compare with other methods

providing estimates for the ground space (such as when exact diagonalization

is possible).

If n is chosen to be small enough, generic operators on Hλ
0 can be exactly

diagonalized. In the initialization step, the initial viable set V λ
0 is specified to

be the span of the s eigenvectors of Hλ
0 of lowest energy, obtained by exact

diagonalization.

2.2.3 Iteration over scale

The algorithm proceeds through a tree-like hierarchy, the levels of which are

specified by a scale parameter m = 0, 1, . . . , log2(N/n). At scale m, block Jλm

consists of 2mn sites and the region index λ runs from 0 to N/(2mn)−1. Note

that although the scale of the algorithm is increasing, we do not eliminate any

of the physical degrees of freedom. At each step we assume that the previous

level has produced a viable set V λ
m with basis {|vq〉}q=1,...,s represented by MPS,

for every λ.

The algorithm performs two steps. The first step is the expansion of the viable

set, which has the effect of improving the viability parameter δ as defined in

Eq. (2.1). This is accomplished using the AGSP constructed in the initializa-

tion step as follows. Let Jλm,L denote the qubits to the left of Jλm, and Jλm,R
those to the right. (Generally Jλm has two boundaries with its complement
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Jλm,L ∪ Jλm,R. The system-edge cases follow immediately.) Consider the MPO

representation of the AGSP K, whose elementary tensors are collections of

operators on the local Hilbert space, as an MPS. The Schmidt decomposition

of K across the left boundary, separating Jλm,L from Jλm ∪ Jλm,R, produces a

virtual index of dimension ζ:

K =
∑
α<ζ

σαLαMα . (2.3)

The Lα are the left Schmidt vectors and the Mα the right—which are operators

on Jλm ∪ Jλm,R—each with a corresponding Schmidt coefficient σα. The Schmidt

decomposition may then be obtained for each of the Mi across the boundary

between Jλm and Jλm,R, producing a virtual index of dimension ξ. That is,

Mα =
∑
β<ξ

ναβAαβRαβ . (2.4)

Each Aαβ is an operator on Hλ
m, with weight γαβ = σαναβ in the expansion of

K. For clarity we make the algorithm variables explicit: Aλm,αβ. Now let D > 0

be another parameter of the algorithm. In order to increase the viability of the

set V λ
m, act on it with the D2 operators Aλm,r, r = (α, β), having highest weight

γr = γαβ. That is, take V λ
m → W λ

m = Span({Aλm,r|vq〉}r,q), which we refer to as

an expanded viable set with dimension bounded by sD2.

One expects this operation to produce a set W λ
m of better viability than V λ

m

because the Aλm,r operators together are meant to increase overlap with the

global low-energy space T : this is the defining property of the AGSP. More

precisely, let {|vj〉} be a collection of states in V λ
m such that there exists {|vj〉} ∈

Hλ

m such that for some coefficients aj, the state |x〉 =
∑

j aj|vj〉|vj〉 has good

overlap with T . By construction, K|x〉 has better overlap with T than |x〉.
Using the decomposition of Eqs. (2.3) and (2.4),

K|x〉 =
∑
α,β,j

γλm,αβajA
λ
m,αβ|vj〉 ⊗ A

λ

m,αβ|vj〉 , (2.5)

where A
λ

m,αβ = Lλm,αR
λ
m,αβ. In this way the viability as defined in Eq. (2.2) of

the set V λ
m can be improved while leaving both the states and the operators

supported on the complement Hλ

m entirely implicit.

If all operators Aλm,αβ were applied to V λ
m, the resulting set would contain

the collection of states {Aλm,αβ|vj〉}, which has improved viability. However,
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instead of applying all Aλm,αβ, which would lead to an unmanageable blow-up

in the size of the viable set, we introduce an approximation by selecting the

D2 operators Aλm,r of highest weight γr in order to obtain W λ
m. There is no

formal guarantee that this is the best choice, as the Schmidt decomposition is

based on the Frobenius rather than the operator norm. In practice we found

the choice to be quite reasonable: to observe the increase in viability in a

nondegenerate gapped model, compare the V and W points in Fig. 2.3, and

in a critical model in Figs. 2.5, 2.6.

The second step performed at each scale m is that of reduction of the dimension

of the expanded viable sets W λ
m and W λ+1

m to generate V
λ/2
m+1. At the cost of

a loss of viability, this step restores s-dimensionality, resulting in a viable set

suitable to use at the next level. One first performs a merge operation on

disjoint pairs of blocks (λ, λ + 1), with λ = 0, 2, . . . , N/(2mn) − 2. Merging

refers to computing the tensor product set W λ
m ⊗W λ+1

m that has support on

sites Jλm ∪ Jλ+1
m . One obtains the viable set V

λ/2
m+1, a subspace of Hλ/2

m+1 =

Hλ
m ⊗ Hλ+1

m , from the s-dimensional low-energy eigenspace of the restriction

of H
λ/2
m+1 to W λ

m ⊗W λ+1
m . We note that this step differs from its counterpart

in the theoretical algorithm, which proceeds via random sampling instead of

deterministically selecting the lowest-energy eigenvectors of H
λ/2
m+1, as we do

here. Our choice is based on efficiency considerations described below; see also

Sec. 2.3 for further discussion. The effect of the operation on the viability of

the reduced subspaces can be seen in Figs. 2.3, 2.5, and 2.6.

The single viable set V 0
m∗ generated at m∗ = log2(N/n) after the reduction step

at scale m∗ − 1, is a constant-dimensional δ-viable subspace with support on

the full system. The algorithm returns the s lowest-energy eigenvectors of the

restriction of H to W 0
m∗−1⊗W 1

m∗−1, which comprise a basis for this candidate

subspace.

2.2.4 Scaling and computational considerations

The accuracy with which RRG approximates low-energy eigenstates of H is

controlled primarily by two parameters, s and D. To recapitulate, s bounds

the dimension of the reduced viable sets at each step, and D controls the level

of approximation in the application of the AGSP via the operators {Aλm,r},
r = 1, . . . , D2. Both parameters are reflected in the bound on the dimension

sD2 of the expanded viable sets W λ
m.



25

We review the steps in the algorithm and discuss their complexity scaling

based on these parameters. In addition to s and D, important parameters are

the system size N and the bond dimensions χ for MPS and η for MPO that are

manipulated throughout. For physical Hamiltonians it is reasonable to expect

χ and η to be constant in the gapped case, and in gapless systems χ, η ∼ N .

See Schollwöck [3] for a discussion of the scaling of basic MPS operations.

Note that the initial block size n only enters this analysis in determining the

number of necessary layers log(N/n).

The initialization requires obtaining viable sets V λ
0 of the Hilbert space Hλ

0

on the qubits Jλ0 . For small enough choices of n the complexity of this step

will be negligible, so we omit it. Similarly, the computation of the full AGSP

K ≈ (e−H/t)k can be done efficiently via Trotter decomposition, and is not an

important bottleneck. In order to extract the operators {Aλm,r}, r = 1, . . . , D2,

the AGSP must be obtained as an MPO in canonical form, analogous to that

used for MPS. To do so requires a sequence of O(N) SVD operations, each

with cost O(η3).

For the steps comprising the iterated procedure we give scaling results appli-

cable at the final computational level m = m∗−1. The first step is to apply K

to each V λ
m by means of the Schmidt decomposition of K across the boundary

separating Jλm from its complement
⋃
λ′ 6=λ J

λ′
m . This yields a set of operators

acting on Hλ
m. Applying the D2 such operators of highest Schmidt weight to a

basis of the subspace takes V λ
m → W λ

m, increasing the dimension to sD2. The

total cost of contracting these MPS and MPO is O(sD2Nχ2η2).

The second step acts on disjoint pairs of neighboring regions, forming the

tensor product of expanded viable sets: W λ
m ⊗W λ+1

m , with dimension (sD2)2.

We compute the matrix elements of the restriction of the block Hamiltonian

to the tensor product set. The scaling of this step is O ([(sD2)2]2Nχ3). For

local Hamiltonians the constant can be improved using the decomposition

H
λ/2
m+1 = Hλ

m +Hλ+1
m +B

λ/2
m+1 = Hλ

m +Hλ+1
m +

∑
p

Bλ
m,p ⊗Bλ+1

m,p . (2.6)

The operator B
λ/2
m+1 contains O(1) terms in H acting across the boundary

between Jλm and Jλ+1
m .

Exact diagonalization of the restricted block Hamiltonian in the subspace has

complexity O([(sD2)2]3) = O(s6D12). After this, the final step is to explicitly
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compute the s lowest-energy eigenstates, which has a total costO(s(sD2)2Nχ3).

These states are used as a basis for the viable set at the next iteration.

From this coarse analysis it is clear that the limiting step with respect to s and

D is the diagonalization of the restricted block Hamiltonian. This step is not

part of the original formulation, which specifies instead that the reduction of

viable set dimension takes place by randomly selecting states from the tensor

product set. The choice of our variant is motivated by its effect on the entan-

glement of the intermediate basis states: low-energy excited states of a block

Hamiltonian may display lower entanglement than states chosen randomly.

In practice this lowers χ in some systems. It also demonstrates a different

possible interpretation of the parameter s, which during the iteration step

implicitly defines an energy scale with respect to the restricted Hamiltonian.

States having block excitation energy higher than this scale are inaccessible to

the algorithm for the purposes of the expansion step.

2.3 Differences from Arad et al. [1]

Before presenting our numerical results on the performance of the RRG algo-

rithm, we give an account of the main points of departure of our numerical

procedure from the theoretically guaranteed algorithm introduced in Arad et

al. [1], giving heuristic justification for our choices.

For concreteness we base our comparison on the algorithm presented in Arad

et al. [1] for the case of a local Hamiltonian with degenerate gapped ground

space (Assumption (DG)). The algorithm is stated as Algorithm 1 in Arad

et al. [1]. It consists of two main steps, Generate and Merge. The two steps

together recursively construct a sequence of viable sets V λ
m for an N -qubit local

Hamiltonian, where as in the main text m denotes a scale parameter and λ

indexes a subregion.

2.3.1 Generate

The goal of the Generate step is to generate an MPO representation for a

suitable AGSP. In Arad et al. [1] a fresh AGSP is computed for each scale m

and region λ. Given a decomposition H = HL ⊗ Hλ
m ⊗ HR, a global AGSP

is defined as Kλ
m = Tk(H̃), where H̃ is a norm-reduced approximation of H

(which depends on the region decomposition) and Tk a suitably scaled Cheby-

shev polynomial of degree k. The operators Aλm,r are then computed from a

specific decomposition of Kλ
m across the left and right boundaries, yielding D2
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terms Aλm,r such that the expansion procedure V λ
m → W λ

m described in the

main text is guaranteed to have a significant improvement on the viability

parameter.

Here we depart from the theoretical algorithm in two important ways. First

we use a simpler construction of AGSP, which we expect to exhibit similar

behavior but is more efficient to compute. Our AGSP takes the form of an

approximation K ≈ e−kH/t obtained by Trotter decomposition. (In Arad et al.

[1] a similar approach is taken to norm-reduce the parts of the Hamiltonian

that lie in the regions L, M , and R but are a distance at least ` > 0 from the

boundaries.) In Arad et al. [1] the properties of the Chebyshev polynomial

are essential to establish that the AGSP has sufficiently low bond dimension

across the boundaries of region M . Considering only the efficiency in terms

of improvement in viability, however, the use of e−kH/t over the whole chain

gives similar guarantees.

Using our simpler construction implies a loss of theoretical control over the

bond dimension D of the AGSP operator across the left and right cuts. This

entails a second main point of departure from the theoretical algorithm, as

a choice has to be made as to which operators Aλm,r to keep. As described

in the main text we proceed in a natural way by considering the MPO as an

MPS and performing SVD operations to create virtual bonds between sites.

We then make the choice of keeping operators associated with the D2 highest

Schmidt weights. This choice is heuristic: the Schmidt weights control the

Frobenius norm of the associated term Aλm,r, rather than the operator norm

of the resulting operator, as would be desirable. The heuristic nevertheless

proved effective: in practice the magnitude of the Schmidt coefficients often

fell off quickly, allowing for a relatively aggressive choice of cutting point.

2.3.2 Merge process

The second step in the algorithm is called Merge. The goal of this step is to

combine two neighboring viable sets into a single viable set over the union of

the two regions, with similar approximation and size guarantees. The proce-

dure is described as Merge’ in Arad et al. [1]. Merge’ is provided as input

viable sets W λ
m and W λ+1

m defined over neighboring regions, and returns a vi-

able set W
λ/2
m+1 defined over the union of the two regions. Merge consists of

three steps: Tensoring, Random Sampling, and Error Reduction.
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1. Tensoring: This step is the same as in Arad et al. [1].

2. Random Sampling: Here as already mentioned in the main text we de-

part from Arad et al. [1] in an important way. In Arad et al. [1] a family

of s vectors lying in W λ
m⊗W λ+1

m is obtained by random sampling within

the subspace. In practice this procedure is very inefficient: (i) it re-

quires performing high-weight (random) linear combinations of MPS, a

step that is computationally expensive due to the MPS renormalization

procedure; (ii) the linear combinations formed tend to be arbitrary, and

in particular their MPS representations may have high MPS bond di-

mension, as each vector may include an “irrelevant” (with respect to the

low-energy eigenspace of the Hamiltonian) component that artificially

inflates its complexity.

Here we replace random sampling by a deterministic choice of the s

lowest-energy eigenvectors of the restriction of H to W λ
m ⊗W λ+1

m . The

idea is that low-energy eigenstates are likely, due to the local structure

of the Hamiltonian, to display less entanglement. Indeed in practice

this procedure is much more efficient, and yields MPS with lower bond

dimension, than the random sampling proposed in Arad et al. [1].

However, there is a priori no reason for the low-energy eigenstates of the

block Hamiltonian to form a viable set for the global low-energy space. A

simple heuristic argument can nevertheless be given to argue correctness

of our procedure. Recall that the viability criterion Eq. (2.1) guarantees

that the initial tensor product space supports a good approximation to

any ground state. Considering the Schmidt decomposition of this ap-

proximation, each of the Schmidt vectors will have a certain energy with

respect to the block Hamiltonian H
λ/2
m+1, which may not be minimal. The

key is thus to argue that vectors with high energy will not have an im-

portant contribution to the Schmidt decomposition of the ground state.

In general approximation error and energy difference can scale with the

norm of the Hamiltonian, making the argument difficult. However, for

the purposes of approximating the ground space of a local Hamiltonian

two elements play in our favor: first, locality of H, and second, the area

law. The former allows to show that the low-energy space of H is well-

approximated by an approximation of H with constant norm, so that

the error blow-up mentioned above can be controlled (see Arad et al. [1,
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Proposition 3], for a precise statement). The latter establishes that the

ground state has low bond dimension, so that few Schmidt vectors need

to be considered (see Arad et al. [1, Lemma 15], for details on how this

can be used). Together these two properties provide a heuristic argument

in favor of our modified procedure.

3. Error Reduction: The goal of this step is to improve the approximation

quality of the viable set. We follow the procedure described in Arad

et al. [1], except that the operators {Aλm,r} are generated differently, as

already described.

The final iteration is performed on two viable sets V 0
m∗−1 and V 1

m∗−1, each

with support on one half of the system. The algorithm returns the low-lying

energies and eigenstates obtained via exact diagonalization of the Hamiltonian

restricted to the final viable subspace.

2.4 Numerical tests and performance

We now present results from RRG for some example models with the following

goals in mind. We first validate the algorithm in a simple gapped nondegen-

erate system in Sec. 2.4.1, demonstrating consistency with DMRG as well as

previous numerical and perturbation theory results. In this case the states

obtained by RRG are of similar accuracy to those of DMRG, with run times

a factor of 5–10 slower depending on s, D, and N . However, we emphasize

that it is not the objective of RRG to obtain a numerically precise ground

state; rather, it is to accurately identify states having constant overlap with

the global low-energy subspace. One expects an optimization algorithm to

obtain a more precise state in the absence of local energy minima or very flat

energy landscapes, and for simple models we take the DMRG ground state to

be exact (in particular, using it to measure viability δ). The RRG candidate

states may later be variationally optimized in order to achieve a particular

accuracy, but we do not modify the states here.

Our next goal is to demonstrate the practical scaling of the algorithm’s per-

formance and computational costs associated with the subspace parameters

(s,D). We use the familiar case of the Ising model in the transverse field in

Sec. 2.4.2, both away from and at criticality. We find that for low values of

these parameters, often surprisingly good results can be obtained, with close
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to unity overlap between DMRG and RRG ground state candidates. However,

neither algorithm scales linearly with system size in the critical regime. Here

the slowdown of RRG is no longer a simple numerical factor but becomes

a significant cost at larger system sizes (beyond a few hundred sites in our

implementation) or for larger values of the algorithm parameters.

Finally, we consider somewhat more challenging models demonstrating ar-

eas in which RRG may hold an advantage. In Sec. 2.4.3 we investigate the

Bravyi-Gosset model [4], which has O(N) ground state degeneracy, by obtain-

ing a complete basis for the ground space. In Sec. 2.4.4 we consider the XY

model with randomly-distributed couplings. The ground state of this model,

the random singlet phase, displays long-range entanglement in that it sup-

ports algebraic decay of correlations. We compare the correlations present

in the candidate states of DMRG and RRG to exact results obtained by the

Jordan-Wigner transformation, finding that RRG more accurately reproduces

observables measured on the state.

All numerical results were obtained using the tensor network library ITensor

[5] for both the DMRG and RRG computations. In all of the following, a

Trotter decomposition with 60 steps was used to obtain the tensor network for

Qt ≈ e−H/t, with t = 10, and degree k = 8 used to compute the AGSP K ≈
(Qt)

k. Thus the effective temperature t/k is of order unity. For reasonable

choices of parameters the accuracy of the approximation Qt is not a limiting

factor of the algorithm. Computations were performed on standard hardware

on a single node of a computing cluster, with only single threading for the

reported run times. A single error parameter τ was used to control MPS

truncation in ITensor for both DMRG and RRG (usually τ ∼ 10−9–10−12); in

most cases a more lenient value would drastically improve run times with little

effect on accuracy. DMRG convergence was handled using a fixed number of

sweeps ≥ 20 and relying on the internal diagonalization routine included in

ITensor without any modifications specific to the individual systems. Excited

states were found iteratively in DMRG by adding projectors into previously-

found states to the Hamitonian and using random trial wavefunctions. Often

the average viability will be used as a metric; this is simply the average over

region label λ of the viability δ of each viable set (V λ
m or W λ

m) at fixed level m.
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2.4.1 Nonintegrable Ising model

This model refers to a spin-1/2 Hamiltonian

H = −J
N−2∑
i=0

σzi σ
z
i+1 − g

N−1∑
i=0

σxi − h
N−1∑
i=0

σzi . (2.7)

For h 6= 0 the model is gapped with a nondegenerate ground state, and admits

no good quantum numbers due to the longitudinal component of the field. A

recent numerical study [6] for the parameters (J, g, h) = (1,−1.05, 0.5) found

the ground state energy density to be ε0/N ≈ −1.722 and the gap γ = 3.6401.
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Figure 2.3: Viability of sets V λ
m, W λ

m averaged over λ, for nonintegrable
Ising model with N = 256 spins, obtained as the RRG algorithm progresses
through the scale hierarchy. Data are shown for parameter values s = 3, 5 and
D = 1, 2, 3.

We run the RRG algorithm for a fixed system size N = 256, initial block

size n = 8, and track the average viability δ of the viable sets Vm and Wm

through the sequence of dimensional expansion and reduction at each scale

m (see Fig. 2.2). Each data point shown in Fig. 2.3 is the average over λ

at a given length scale m. The parameters (s,D) are varied to demonstrate

their influence on the results. For gapped systems of this size both DMRG

and RRG have run times scaling linearly with system size, however RRG runs

more slowly by a factor of 5–10 compared to DMRG. At N = 256, DMRG
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Figure 2.4: Energy eigenvalues of the nonintegrable Ising Hamiltonian for
N = 48 within the subspace obtained by RRG for (s,D) = (52, 3), along
with DMRG results for low-energy states. Inset: the same computation for
N = 320 and (s,D) = (12, 3). DMRG does not consistently identify both edge
states in sequence; see text for details.

took 5 minutes to converge s = 5 states (ground and four excited) and RRG

ran in 30 minutes with (s,D) = (5, 3).

The large improvement in viability from V to W is attributable to the AGSP,

rather than simple increase in dimension. Both dim(V ) = s and dim(W ) =

sD2 are constant in m and very small compared to the dimensions of the block

Hilbert spaces. Choosing n vectors without bias from an M -dimensional space

will produce a subspace whose squared overlap with a specific vector is of order

n/M . Since M here is exponentially large, a constant increase in n would not

much affect measured viability. Thus, the AGSP is an effective projector even

at low values of D, which we expect as the model is gapped.

A consequence is that the accuracy of RRG for the largest (s,D) is comparable

to that of DMRG, but we do not expect this to be a general feature. Recall

from Sec. 2.2.2 that the criterion the algorithm seeks to maintain is that the

measured viability δ of the V λ
m (and thus the average viability) be bounded for

all m by some constant δ∗ < 1, rather than approaching unity exponentially

in m. The viability of the W λ
m is not necessarily specified, but should be

sufficiently good for the Vm+1 viable sets at the next level to satisfy the bound.

For assessing the performance of RRG, as in Fig. 2.3, one requires that δ be
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maintained away from 1 for the Vm averages.

The final s-dimensional viable sets Vm∗ (V5 in Fig. 2.3) here and in the following

examples display much better average viability than that of the previous Vm.

This is generally true: at steps m < m∗ the viable set is found by diagonalizing

a block Hamiltonian Hλ
m, which omits terms present in H. The low-energy

eigenspace of this operator need not be close to T , the global low-energy space.

At m = m∗, however, the low-energy eigenspace of H0
m∗ = H coincides with

T , resulting in minimal loss of viability from the dimensional reduction.

By changing the parameters of RRG, we obtain candidates for low-energy

excited states. The ground state of this model is close to a uniform spin-

up state, and the excited band contains a spin-flip excitation. Under open

boundary conditions two nearly degenerate lower-energy states separate from

the first band, corresponding to quasiparticles localized at either edge. We

obtain the low-energy spectrum for N = 48 with (s,D) = (52, 3), and for

N = 320 with (s,D) = (12, 3). The results are shown in Fig. 2.4, compared

with DMRG states. For small N both methods find the entire first excited

band. In the larger system, the localized edge states are more difficult for

DMRG, and it does not consistently find the edge states in sequence. The

RRG ground state energy density at N = 320 is ε0/N = −1.721 and the gap

to the excited band is γ = 3.6402, in agreement with previous results. We find

the half-chain entanglement entropy of the ground state and edge states to be

S = 0.01 bits, and of the states in the band to be S ≈ 1.01 bits, consistent with

qualitative understanding of these states. For DMRG and RRG, ground states

have bond dimension 4 and excited states in the band have bond dimension

31. (The methods do not yield identical bond dimension in all cases.)

2.4.2 Transverse-field Ising model

Consider the same Hamiltonian in the regime h = 0; that is, the Ising model

in a transverse field. Fig. 2.5 shows the result as we approach the critical

point J = g from the paramagnetic phase for N = 128, measuring average

viability throughout the algorithm. One observes a strong deterioration of the

measured viability as the gap closes. Approaching the critical point, RRG

takes increasingly more time than DMRG to run: runtimes for J/g = 0.6 for

both methods are shown in Table 2.1, where, for example, at criticality DMRG

takes 800 seconds and RRG takes 17000 seconds.
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Figure 2.5: Viability of sets V λ
m, W λ

m, averaged over λ, for the transverse-field
Ising model both away from and at criticality. The number of spins is N = 128.
All data points were generated using parameter values (s,D) = (5, 4).

N RRG runtime (s) DMRG runtime (s)
32 158 94
48 337 132
64 866 208
96 1871 277
128 3912 393

Table 2.1: Runtimes of DMRG and RRG for the transverse-field Ising model
with J/g = 0.6, using (s,D) = (5, 4). Some randomness is inherent in the
DMRG results due to the use of random trial states. s = 5 states are found
by DMRG.
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Figure 2.6: Viability of sets V λ
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m, averaged over λ, for the transverse-field
Ising model at criticality, obtained as the RRG algorithm progresses through
the scale hierarchy. Data are shown for parameter values s = 4, 5 and D =
1, 2, 4.

We demonstrate the scaling with parameters s and D at criticality in Fig. 2.6.

The improvement in viability with increasing D is less dramatic than seen

in Fig. 2.3, corresponding to a flatter spectrum of Schmidt values across the

cuts between subsystems. Note in this case that at the critical point, as the

algorithm progresses, the average viability of the Vm sets visibly approaches

unity, in contrast to the gapped case, which appears to maintain viability

bounded away from 1.

2.4.3 Bravyi-Gosset model

This model was initially introduced as a classification scheme for frustration-

free 2-local Hamiltonians[4]. The Hamiltonian is

H =
N−2∑
i=0

|ψ〉〈ψ|i,i+1, (2.8)

where |ψ〉 is a generic state on two qubits. Up to a global phase, such a

state can be specified in the form |ψ〉 = R(θ)1

(
p|00〉+

√
1− p2|11〉

)
, with

R(θ)1 a rotation performed on the first qubit. As the spectrum is invariant

under global rotation, the Hamiltonian is fully specified by the two parameters

θ ∈ [0, 2π), p ∈ [0, 1/2]. Restricting to θ = 0, we may rewrite Eq. (2.8) in a
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more familiar notation:

H =
N−2∑
i=0

(√
p(1− p)

2

(
σxi σ

x
i+1 − σyi σyi+1

)
+

1

4
σzi σ

z
i+1

)
+

N−1∑
i=0

(
1− 2p

4
σzi +

1

8

)
.

(2.9)

That is, this model is equivalent to a particular XYZ model in a fine-tuned

field. For any value of p the system exhibits (N + 1)-fold ground state degen-

eracy. Basis states for the ground space can roughly be thought of as having

two regions of differing magnetization, with an interface which can be located

at any site with ground state energy ε0 = 0. (Refer to Bravyi et al. [4] for

a full description.) Therefore the algorithm choice s ≥ N + 1 is sufficient to

obtain the full ground space.
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Figure 2.7: Energy eigenvalues of Bravyi–Gosset model with N = 32 sites
within the subspace obtained by RRG for (s,D) = (36, 3). Also shown are
DMRG results for the 36 lowest-energy states.

The low-energy spectrum obtained by RRG for this model at N = 32 is shown

in Fig. 2.7, along with the DMRG results. We use p = 1/2; that is, |ψ〉
is a Bell state. Using (s,D) = (36, 3), RRG identifies the full zero-energy

ground space to within an accuracy determined by τ , the truncation error of

the MPS. In contrast, obtaining the full ground space of this model is chal-

lenging for DMRG, which becomes hampered by candidate states of very high

entanglement, often requiring a bond dimension an order of magnitude larger

than those of RRG candidate states in order to achieve similar truncation

error. These not only are computationally intensive to optimize, but also

present DMRG with difficulty finding further excited states, as the modified
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Hamiltonian includes nonlocal projectors. Thus, the candidate states are not

accurate eigenstates of the original Hamiltonian. This difficulty is evident in

run times as well; to obtain the data shown took 10 hours for RRG and 40

hours for DMRG. Here we use DMRG without taking into account the de-

generate ground state manifold, and we consider these results to be only a

point of reference. Use of a specialized approach like multiple targeting could

improve accuracy, or diagonalization of the original Hamiltonian within the

subspace spanned by the DMRG candidate states could recover much of the

ground space; however, no such specialized approach is needed for RRG.

2.4.4 Random XY model

The random XY model is an inhomogeneous spin-1/2 system with Hamiltonian

H =
N−2∑
i=0

Ji(σ
x
i σ

x
i+1 + σyi σ

y
i+1) , (2.10)

where the position-dependent coupling constants Ji are drawn from a random

distribution. If the logarithm of the distribution is broad, Dasgupta-Ma real-

space renormalization group analysis identifies the ground state as the random

singlet phase, in which pairs of spins form singlet states at all length scales [7–

10]. This model is tractable by the Jordan-Wigner transformation, which maps

onto free spinless fermions. We use this system as a benchmark of algorithmic

ability to encode long-range correlations in the ground state.

We use the following distribution for the Hamiltonian terms: p(Ji) = 1
Γ
Ji
−(1− 1

Γ
),

Ji ∈ (0, 1], with Γ controlling the width of the distribution of log-energies [10].

We fix Γ = 2, which is sufficiently broad that the ground state is composed

predominantly of localized singlet states on neighboring sites, along with spa-

tially separated correlated qubits occurring at all length scales. As a metric

we use the average two-point correlation function 〈σzi σzj 〉 as a function of sep-

aration r = |i− j| in the ground state, which is known to decay algebraically

as r−2. This quantity is compared to exact diagonalization results from the

inhomogeneous free fermion description in Fig. 2.8.

These results are intended to present a fair comparison between DMRG and

RRG. Both methods used unrestricted MPS bond dimension to achieve a trun-

cation error τ ≤ 10−12. Typically the ground state bond dimension is similar

for both methods. The RRG parameters are (s,D) = (4, 5). DMRG used 20

sweeps per state, and convergence of several “hard” examples (see below) was
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Figure 2.8: Disorder-averaged decay of correlations of candidate ground states
of the random XY model for N = 128, as compared to exact results obtained
through the Jordan-Wigner transformation. The predicted power-law behavior
is indicated by the red line.
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Figure 2.9: A typical “hard” instance contained in the disorder average above,
with energy gap γ ≈ 10−7. This is sufficiently large for RRG to track the long-
range correlations with (s,D) = (4, 5). DMRG displays a tendency for lower
correlations until saturating at the noise floor.

confirmed using 50 sweeps. DMRG typically took 1 hour to converge s = 4

states and RRG took 8 hours to complete. The average is over 150 disorder

realizations.

The observed “saturation” of the correlations of Fig. 2.8 to a noise floor arises

from the structure of the low-energy excited states. For a broad initial distri-
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Figure 2.10: Expectation value 〈σzi σzj 〉, where sites i and j are given by the
axes for i, j ∈ [106, 125]. The color scales with log |〈σzi σzj 〉| and runs from
[−2, 0] in all plots, with darker color indicating a higher value. The diagonal is
omitted. Circles mark particular sites where differences between exact results
and candidate states are evident. This disorder realization is the same “hard”
instance shown in Fig. 2.9.
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bution, the energy gap of a specific disorder Hamiltonian may be very small.

For any method using MPS, a lower limit on the gap in order to distinguish

the ground state (at energy ε0) is γ ∼ τε0, below which the MPS truncation

procedure will randomly select a vector from the low-lying subspace. How-

ever, even for realizations with much larger gaps a candidate ground state

may include substantial contributions from low-energy excited states. A sin-

glet of length l has energy scale ε ∼ e−
√
l; thus, the low-lying states involve

excitations localized on the long-range entangled sites. Choosing a random

superposition of these amounts to white noise at long distances. Instances of

such Hamiltonians in the disorder average must necessarily eventually over-

whelm the decay of correlations; here the distribution of energy gaps is very

broad on a log scale [11], so these cases are frequent. However in all cases

the RRG candidate state has O(1) overlap with the true ground state, and

typically this overlap is greater than 99%.

For disorder-averaged correlations at short range up to |i − j| ≈ 20, RRG

reproduces algebraic decay of correlations matching the exact results. In con-

trast, the DMRG candidate states demonstrate stronger decay of correlations.

There is no systematic difference in MPS bond dimension between DMRG

and RRG, indicating that RRG is not simply using additional resources, but

is indeed more sensitive to long-range correlations.

Independent of the saturation due to the energy gap, the disorder average

comprises both “easy” and “hard” instances. In easy cases both DMRG and

RRG match the exact results closely at all length scales. In the hard cases

both algorithms obtain the correlations only approximately, but DMRG ap-

pears to consistently underestimate correlations. RRG does not demonstrate

a tendency towards either enhanced or reduced correlations. We provide an

example of the spatially averaged correlations from a hard disorder realiza-

tion in Fig. 2.9. Fig. 2.10 shows an example of measured correlations 〈σzi σzj 〉
for various sites i, j ∈ [106, 125] in this particular disorder realization. Each

square corresponds to a measurement 〈σzi σzj 〉 where (i, j) are specified by the

axes. Darker squares indicate a larger magnitude of correlation between these

sites. We show the exact results, RRG, and DMRG, and indicate some partic-

ular pairs of sites where either DMRG (red) or RRG (green) differ visibly from

exact results. These variations in certain entangled sites tend toward reduced

correlations in DMRG candidate ground states; it is unclear how much addi-
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tional sweeping is required to compensate. RRG shows similar inaccuracies,

but these are random, due to states missing from certain viable sets. Accurate

correlations emerge in the disorder-averaged value, and the performance on

individual disorder realizations can be controllably improved by tuning the

dimension of the viable sets through the parameters s and D.

2.5 Outlook for RRG method

One of the main findings of our initial numerical investigation is that the RRG

algorithm, developed for theoretical purposes, can in fact be made quite ef-

fective in practice, to the point of providing a potentially viable alternative

to DMRG in certain cases of practical interest. We stress that the choices of

parameters that we employ in our numerics are not known to be located in

the theoretically guaranteed regime, and some of the building blocks required

for the proof have been altered in our implementation. Regardless, we find

that RRG obtains ground state candidates having large overlap with the true

ground state in a variety of physically relevant models, and surpasses existing

techniques in obtaining low-energy excited states and ground states of partic-

ular models demonstrating large degeneracy or long-range entanglement.

Like another numerical scheme, time-evolving block decimation (TEBD), the

RRG procedure is a projector method, relying on operators extracted from

the AGSP to guide the choice of states between scales. As a result, given a

sufficiently accurate AGSP, RRG will not output a part of the spectrum strictly

excited above the ground space. This is advantageous relative to variational

ansatz methods which may without warning converge to an excited state rather

than the ground state [12]. (For example, this can occur if the energy landscape

in Hilbert space has local minima or is very flat in the low-energy space, as is

the case with the random XY model of Sec. 2.4.4.) The downsides to projector

methods are that performance strongly depends on the gap and that a random

initial state, even taken from the manifold of low bond dimension MPS, has

exponentially small overlap with the ground state. RRG circumvents the latter

issue by never choosing a trial wavefunction on the entire system, but rather

building global states from wavefunctions supported on blocks which already

have good viability; thus the projection step never has to overcome starting

with an exponentially small overlap between the initial and the target state.

One advantage of RRG is flexibility to operate independently of a specific rep-
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resentation of states in Hilbert space. Here we have described an MPS RRG.

In order to translate the logic to subspaces whose basis states are described

by MERA—as would be natural for critical phases—one needs only the ability

to perform evaluation of observables and addition. The former is a standard

contraction which is highly efficient in MERA, and the latter can be seen as a

variational process on overlaps, providing a straightforward interpretation as

a MERA operation. Systems with periodic boundary conditions also present

an interesting generalization, as until the final level the steps of the algorithm

are insensitive to the system boundaries, provided an appropriate AGSP is

given. On a more speculative note, other tensor network ansatze may also be

amenable: although it is not known that the RRG algorithm scales efficiently

in higher dimensions, the hierarchical structure does generalize in an evident

way and it may be the case that the algorithm gives acceptable results for

PEPS representations of some two-dimensional systems.

Our numerical results suggest situations in which RRG may perform well rela-

tive to existing algorithms. The first, informed by Sec. 2.4.1, is a case in which

localized and delocalized excitations lie close in energy. An optimization algo-

rithm operating on local degrees of freedom in a sweeping pattern may exhibit

a bias towards delocalized excitations, which allow for effective optimization on

many lattice sites. RRG is largely insensitive to such distinctions. The second

case is that of Sec. 2.4.3, exhibiting highly degenerate ground states. The full

ground space is more accurately found in its entirety by RRG than DMRG.

The iterative DMRG procedure of finding states is susceptible to finding poor

or highly entangled candidates, which reduce the accuracy of subsequent can-

didates. Such a limitation is not fundamental and could likely be eliminated

by modification of the procedure; however no such modification is necessary

for RRG. Finally, in Sec. 2.4.4 we observe in the random XY model in the

random singlet phase that long-range correlations are encoded more precisely

in the ground state candidate of RRG than of DMRG, influencing observables

computed for the state.

The examples we provide illustrate specific properties indicating that a model

may be well suited for RRG. However, very little is known about its more gen-

eral performance: other systems with disorder, periodic boundary conditions,

and higher dimensions all pose interesting challenges and could constitute ex-

citing new directions.
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C h a p t e r 3

CONTINUOUSLY VARYING CRITICAL EXPONENTS IN
RANDOM XYZ MODEL

3.1 Motivation for study

In this chapter we perform a study of the XYZ model of spins in 1d with

quenched randomness. Our motivation is the result of Slagle et al. [1], who

investigated the possibility of MBL along a critical line between gapped phases

with magnetic order. The previous work found evidence for continuously vary-

ing exponents for disorder- and energy-averaged Edwards–Anderson correla-

tors along the critical line.

It is not clear whether their picture is stable to ergodicity at finite energy

density [2, 3], and we do not address that question here. Instead, we are

interested in the low-energy description of the critical line as an IRFP with

continuously varying critical indices. We apply RRG to this problem, as it was

already shown to be effective in a related model, the random XY spin chain,

in Sec. 2.4.4. Our goals for the unbiased tensor network numerics are both

to test the findings of Ref. [1] and to better understand the IRFP associated

with the critical line.

The outline of this chapter is as follows. In Sec. 3.2 we present the XYZ

spin model and summarize the history of the SDRG in this case, along with

explicitly developing the RG rules in the many-body language. In Sec. 3.3 we

preform an unbiased numerical study of the ground state. In Sec. 3.4, based on

our numerical results, we develop both a Hartree–Fock mean-field theory and

a quadratic effective model we describe as “locally correlated.” Both theories

reproduce aspects of the phenomenology of the XYZ model. In Sec. 3.5, we use

a picture of the SDRG acting on random walks to prove continuously varying

critical exponents in the locally correlated effective model. Finally in Sec. 3.6

we discuss the implications of these results taken together.
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3.2 Random XYZ model and review of previous SDRG results

3.2.1 Spin chain Hamiltonian

As our most general model we consider the antiferromagnetic XYZ spin chain

with quenched randomness in all couplings; that is,

H =
N−1∑
j=1

(
Jxj σ

x
j σ

x
j+1 + Jyj σ

y
jσ

y
j+1 + Jzj σ

z
jσ

z
j+1

)
. (3.1)

The couplings Jαj > 0, α = x, y, z, are independent. This model generically has

a Z2 ×Z2 global symmetry, with generators given by the Ising-type operators

gx =
∏N

j=1 σ
x
j and gy =

∏N
j=1 σ

y
j . In particular, local field terms are excluded

by this symmetry. This model also respects time reversal on the spins, which

we implement as gyK, where K is complex conjugation in the z basis.

We impose the same functional form on the disorder distributions for Jxj , Jyj ,

and Jzj (though delay specification until Sec. 3.3), with bandwidths specified by

a set of parameters J̃x, J̃y, J̃z > 0. If the value of any one of these is larger than

the other two, the ground state of the model displays Ising antiferromagnetic

(AFM) order. As we are considering strong disorder, we anticipate that these

phases are localized. If two bandwidths are equal and of the largest magnitude,

the model lies on a boundary between localized phases with distinct types of

magnetic order; we will primarily consider this case. If all three disorder

bandwidths are equal, the model has a statistical S3 permutation symmetry

and sits at a tricritical point in the phase diagram [1, 4].

Many exact results are known for phases of the Hamiltonian Eq. (3.1) in certain

limits, and we provide a brief recap here. The SDRG was in fact originally

introduced in order to study the random Heisenberg antiferromagnet with

SU(2) symmetry [5, 6], achieved in the present notation by fixing Jxj = Jyj = Jzj

for all bonds j. These works argued for the asymptotic development of a

power-law singularity in the distribution of couplings and computed leading

contributions to critical indices, which vary slowly along the flow.

Fisher [4] generalized this analysis to account for anisotropy and performed

a thorough study of the resulting phase diagram. The SDRG rules for the

random XX model (Jxj = Jyj and Jzj = 0 for all j), which breaks the SU(2) spin

rotation symmetry to a U(1) subgroup, are very similar to those of the isotropic

model, and in particular both realize the random-singlet (RS) phase. In the

ground state, the microscopic spins are paired up into singlets at arbitrarily
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long scales. Correlations between the spins in a given singlet are of order unity,

and are strongly suppressed with the rest of the system. Thus typical spin

correlations are short-ranged, whereas the average correlations are dominated

by rare paired spins. This is one hallmark of an IRFP: that a distribution

which is broad on a logarithmic scale leads to exponential separation between

typical and averaged properties of the state. From the density of paired spins

one obtains the power-law decay of average spin correlations scaling as r−2 for

separation r. The characteristic energy scale of the singlets in the RS phase

follows log(1/E) ∼ Lψ, where ψ = 1
2
. As a consequence for the density of

states, the dynamical exponent is formally infinite.

The random XY chain (i.e., independent Jxj and Jyj but with J̃x = J̃y, J̃z = 0),

in contrast, does not realize the RS phase. With the mean anisotropy serving

as the quantum control parameter, Fisher [4] computed the critical exponents

ν = 2 and β = 3−
√

5 for the transition separating Ising x- and y-AFM phases.

This is accomplished through a lattice duality mapping to two decoupled copies

of the random transverse-field Ising model (RTFIM), whose SDRG equations

are also well studied [7–9]. Translating the RTFIM results to the present XY

chain, at the phase transition the critical exponent for the decay of x and y

components of spin correlations is ηx = ηy = 4 − 2φ, where φ = 1+
√

5
2

is the

golden mean.

Starting from the opposite limit of the XX model, with Jxj = Jyj for all j, it

was also found by Fisher [4] that weak random anisotropy, which moves along

the phase transition toward the XY point, is a marginal perturbation. It was

not clear whether this is the case along the entire phase boundary, and we will

in fact be led to take up this question in some detail in Sec. 3.5.

The set of exponents for average decay of spin correlations can be completed

using the mapping of the XX and XY models to free fermions [10]. For the

anisotropic model with S2 permutation symmetry, ηz = 4. In a chain with

open boundaries, consideration of the form of the surface magnetization leads

to the scaling of the end-to-end spin correlations ηe
x = ηe

z = 1 for the XX model

and ηe
x = 1, ηe

z = 2 for the XY model.

Focusing on a different type of spin chain, Damle et al. [11] studied permutation-

symmetric multicritical points arising from effective low-energy theories of par-

tially dimerized spin-S models with SU(2) symmetry. They perform a fixed-

point analysis of the SDRG equations for degrees of freedom localized at the
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boundaries between distinct domains of n = 2S + 1 different types of local

order. Their primary result is a generalization of the n = 2 random-singlet

criticality to a countably infinite set of IRFPs with critical exponents ψ = 1
n

and ν = 2n√
4n+1−1

. The permutation symmetry refers to the interchange of

distributions for the different types of order, which mediate effective couplings

between the domain walls. While the permutation-symmetric tricritical point

at J̃x = J̃y = J̃z in our model shares the symmetry of these theories for n = 3,

its microscopic details are dissimilar and it is not clear whether this category

of universality applies.

3.2.2 Majorana representation

Aspects of this problem become more evident in the language of fermions, for

which we use the Jordan–Wigner transformation. Eq. (3.1) maps to a spinless

p-wave superconductor with density-density interactions:

H =
N−1∑
j=1

(tjc
†
jcj+1 + ∆jc

†
jc
†
j+1 + H.c.) + Jzj (2nj − 1)(2nj+1 − 1) , (3.2)

which has position-dependent hopping tj = Jxj + Jyj and pairing potential

∆j = Jxj −Jyj . Following the idea of Kitaev [12], it is enlightening to introduce

two species of Majorana fermion,

ηj = c†j + cj and ζj =
1

i
(c†j − cj) . (3.3)

The ηj and ζj are Hermitian, and normalized so that (ηj)
2 = (ζj)

2 = 1. In

terms of these operators the Hamiltonian is written

H =
N−1∑
j=1

iJxj ζjηj+1 − iJyj ηjζj+1 − Jzj ηjζjηj+1ζj+1 . (3.4)

The symmetry group of the problem is somewhat more expressive in the Ma-

jorana language. In the following we specialize to even system sizes N ∈ 2Z.

The generators of the global symmetry translate to

gx = iN/2ζ1η2ζ3 · · · ηN , (3.5)

gy = (−i)N/2η1ζ2η3 · · · ζN . (3.6)

The symmetries measure fermion parity on two disjoint sets partitioning the

Majorana orbitals. The Hamiltonian Eq. (3.4) takes the form of separate
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“imaginary random hopping” problems (see Ref. [13]) on these two chains

of Majoranas of length N , which we denote X = {ζ1, η2, ζ3, . . . , ηN} and

Y = {η1, ζ2, η3, . . . , ζN}. On each chain the coefficients of the hopping terms—

which are fermion parity measurements on adjacent orbitals within a chain—

alternate between iJxj and −iJyj . There are also inter-chain coupling terms

with coefficients Jzj . A single “rung” term iηjζj is odd under the parity sym-

metries, and H instead includes the double-rung interactions −ηjζjηj+1ζj+1.

The generator Θ of time-reversal symmetry acts on the Majoranas as {i, ηj, ζj} 7→
{−i, ηj,−ζj}. This symmetry prohibits nonzero expectation values of the form

〈iηjηk〉 or 〈iζjζk〉, even when these orbitals are included in the same Majorana

chain.

Constraining Jzj = 0 for all j, the resulting Hamiltonian Hxy = H[J̃x, J̃y, J̃z =

0] is quadratic in the fermions and can be solved for any particular disorder

realization by diagonalization of the auxiliary Bogoliubov–de Gennes (BdG)

matrix in the particle-hole basis. The mapping to the Majoranas in Eq. (3.3)

transforms the BdG matrix to a purely imaginary and block-off-diagonal form,

corresponding to the decoupling of the two Majorana chains X and Y . This

further simplifies the solution for the single-particle eigenstates to diagonal-

ization of a pair of N ×N tridiagonal matrices.

As we are considering boundaries between Ising ordered phases, the natural

observables are the corresponding magnetic order parameters σα, α = x, y, z.

Written in terms of fermion operators, the spin correlation functions Cα(j, k) =

〈σαj σαk 〉 are

Cx(j, k) = 〈iζj(iηj+1ζj+1) · · · (iηk−1ζk−1)ηk〉 , (3.7)

Cy(j, k) = 〈−iηj(iηj+1ζj+1) · · · (iηk−1ζk−1)ζk〉 , (3.8)

Cz(j, k) = 〈−ηjζjηkζk〉 . (3.9)

From Wick’s theorem, in the ground state for any specific disorder realization

Cx(j, j + r) and Cy(j, j + r)—which we collectively refer to as C⊥(j, j + r)—

can be computed as Pfaffians of antisymmetric 2r× 2r matrices. We focus on

this case and consider the angle brackets 〈·〉 as denoting expectation values

measured in the ground state, although the expressions Eqs. (3.7–3.9) apply

more generally.
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3.2.3 Strong-disorder renormalization group

Decoupled Majorana chains

Examining the Hamiltonian on Majorana chains X and Y also clarifies the

form of the analytic SDRG. In the decoupled model Hxy, the RG proceeds

independently on each of the chains, which are endowed with parity conserva-

tion. The SDRG for a single such chain was developed explicitly in the single-

particle spectrum language by Motrunich et al. [13] and in the many-body

Hamiltonian language by Monthus [14]. We review the result here, special-

ized to our case, in the many-body language, which naturally extends to the

interacting problem [14]. For now we consider only a single Majorana chain,

and relabel the orbitals as γn, n = 1, . . . , N . The Hamiltonian acting on this

chain is HM =
∑N−1

n=1 ihnγnγn+1. Suppose that the largest energy scale is set

by H0 = ihkγkγk+1 for some k ∈ [1, N − 1]. H0 measures fermion parity on

the two orbitals, with eigenvalues ±hk associated with the two parity states;

denote the splitting by Ω = 2hk. Accordingly, this term is diagonalized by the

complex fermion mode f †0 = 1
2
(γk + iγk+1), which has projectors π+ = f0f

†
0

and π− = 1− π+ = f †0f0 into the even and odd parity sectors, respectively. In

terms of the projectors H0 = (Ω/2)(π+ − π−).

The rest of the terms in HM ≡ H0 + V can be treated as a perturbation

if the nearby couplings are much smaller than the local gap |Ω|. Because

the SDRG generates an effective disorder distribution with increasingly broad

logarithm, although this condition may not be satisfied initially the validity

of the assumption improves during the RG flow. The rest of the Hamiltonian

can be divided into diagonal and off-diagonal components with respect to H0;

specifically, V = Vd + Vod, where

Vd = π+V π+ + π−V π− , (3.10)

Vod = π−V π+ + π+V π− = π−HMπ
+ + π+HMπ

− . (3.11)

Note that Vod contains only a constant number of local terms. We denote

the small scale of these terms relative to H0 by the parameter ε. The ef-

fective Hamiltonian with emergent good quantum number 〈f †0f0〉 is found by

a Schrieffer–Wolff transformation eliminating Vod up to order O(ε2) [15–17].

That is, H ′M = eiSHMe−iS, where the Hermitian generator of the rotation can

be expanded in powers of ε as S = S[1] + S[2] + · · · . The conditions on the

rotation are that S[1] is off-diagonal and satisfies Vod = [H0, iS
[1]], and S[2]
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eliminates off-diagonal terms at order O(ε2) (but we will not need to write it

explicitly); that is,

[iS[2], H0] + [iS[1], V ] +
1

2
[iS[1], [iS[1], H0]] = 0 . (3.12)

A suitable generator is iS[1] = 1
Ω

(π+HMπ− − π−HMπ+),

H ′M = eiSHMe
−iS (3.13)

= HM + [iS,HM] +
1

2
[iS, [iS,HM]] + · · · (3.14)

= H0 + Vd +
1

2

∑
ι=±

πι[iS[1], Vod]πι +O(ε3) (3.15)

≈ H0 + Vd +
1

Ω
[π+HMπ

−, π−HMπ
+] , (3.16)

the final line being Eq. (17) of Ref. [14].

The off-diagonal terms are those which share an odd number of Majoranas with

H0 and thus anticommute. Consequently Vod = ihk−1γk−1γk + ihk+1γk+1γk+2

and

π+HMπ
− = (ihk−1γk−1 + hk+1γk+2)f0 , (3.17)

π−HMπ
+ = (ihk−1γk−1 − hk+1γk+2)f †0 . (3.18)

Finally the rotated Hamiltonian is

H ′M = H0 + Vd +
h2
k−1 + h2

k+1

2hk
(iγkγk+1) + i

hk−1hk+1

hk
γk−1γk+2 +O(ε3) .

(3.19)

This result includes a renormalization of the strength of the H0 term which in-

creases the magnitude of the splitting, in addition to a new term ih′k−1γk−1γk+2.

By projecting into the low-energy sector of H0 (which depends on the sign of

hk), the Majoranas γk and γk+1 are “decimated” into one of the definite parity

states of the complex fermion mode, and thereby decoupled from the effective

Hamiltonian. The single effective coupling replaces three hopping terms in

HM. Because the new term maintains the imaginary random-hopping form,

the SDRG is closed in this model space and can be iterated, with the flow

acting on the disorder distribution of the couplings {hn}. During the RG flow,

some of the terms involved in decimations will be themselves renormalized

couplings from a prior step; they can be made to fit the present format by
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re-indexing the chain after every step in order to remove the decimated Ma-

jorana orbitals. In addition, the specific form of the renormalized coupling

h′k−1 permits a framing of the SDRG in terms of a classical random walk; this

approach will be developed in detail in Sec. 3.5.

The many-body Hilbert space is therefore decomposed into a tensor product

of non-interacting complex fermions in definite parity states. From the signs

of the couplings in Eq. (3.4) one sees that the ground state is even under gx

and gy if N mod 4 = 0 and odd under gx and gy if N mod 4 = 2. The spin

correlations in an eigenstate of the Hamiltonian can also be understood from

this picture. See Sec. 3.2.4 for a discussion of the ground state correlations.

Majorana problem with inter-chain terms

In the presence of interactions coupling the two Majorana chains, it is necessary

to consider the full Hamiltonian Eq. (3.4). In the notation of the present

section H = HX +HY +Hint, where

HX =
N−1∑
n=1

ihXn γ
X
n γ
X
n+1 , (3.20)

HY =
N−1∑
n=1

ihYnγ
Y
n γ
Y
n+1 , (3.21)

Hint =
N−1∑
n=1

Kn(iγXn γ
X
n+1)(iγYn γ

Y
n+1) . (3.22)

Because all of the terms in H are measurements of fermion parity, the general

framework from the previous section—in particular Eq. (3.16)—still applies.

Now there are two cases: the largest energy scale can be set by one of either

the hopping terms {hMn } or the interactions {Kn}. Suppose first that H0 =

ihXk γ
X
k γ
X
k+1. Now

Vod = ihXk−1γ
X
k−1γ

X
k + ihXk+1γ

X
k+1γ

X
k+2

+Kk−1(iγXk−1γ
X
k )(iγYk−1γ

Y
k ) +Kk+1(iγXk+1γ

X
k+2)(iγYk+1γ

Y
k+2) . (3.23)
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The components appearing in each off-diagonal block of the Hamiltonian are

π+Hπ− =
(
i
(
hXk−1 +Kk−1(iγYk−1γ

Y
k )
)
γXk−1

+
(
hXk+1 +Kk+1(iγYk+1γ

Y
k+2)

)
γXk+2

)
f0 (3.24)

≡ (ihX ,int
k−1 γ

X
k−1 + hX ,int

k+1 γ
X
k+2)f0 , (3.25)

π−Hπ+ =
(
i
(
hXk−1 +Kk−1(iγYk−1γ

Y
k )
)
γXk−1

−
(
hXk+1 +Kk+1(iγYk+1γ

Y
k+2)

)
γXk+2

)
f †0 (3.26)

≡ (ihX ,int
k−1 γ

X
k−1 − hX ,int

k+1 γ
X
k+2)f †0 . (3.27)

The effect of the interactions in perturbation theory is simply to modify

the couplings into operators which we refer to as “interacting couplings”

hXk±1 → hX ,int
k±1 . This is a reasonable shorthand because the interacting cou-

plings commute with each other and all fermion operators appearing in the

formula. From the result Eq. (3.19) of the previous section, then,

H ′ = H0 + Vd +
(hX ,int

k−1 )2 + (hX ,int
k+1 )2

2hXk
(iγXk γ

X
k+1) + i

hX ,int
k−1 h

X ,int
k+1

hXk
γXk−1γ

X
k+2 +O(ε3)

(3.28)

= H0 + Vd + (iγXk γ
X
k+1)

(
(hXk−1)2 + (hXk+1)2 +K2

k−1 +K2
k+1

2hXk

+ i
hXk−1Kk−1

hXk
γYk−1γ

Y
k + i

hXk+1Kk+1

hXk
γYk+1γ

Y
k+2

)

+ i
hXk−1h

X
k+1

hXk
γXk−1γ

X
k+2 +

Kk−1h
X
k+1

hXk
(iγXk−1γ

X
k+2)(iγYk−1γ

Y
k )

+
hXk−1Kk+1

hXk
(iγXk−1γ

X
k+2)(iγYk+1γ

Y
k+2)

+
Kk−1Kk+1

hXk
(iγYk−1γ

Y
k )(iγXk−1γ

X
k+2)(iγYk+1γ

Y
k+2) +O(ε3) . (3.29)

Projecting into the low-energy sector sets iγXk γ
X
k+1 → ±1 and again decouples

the Majorana operators γXk and γXk+1 from the rest of the system, decimating

them by creating a complex fermion mode with definite parity. As in the non-

interacting case, the magnitude of the splitting is increased by renormalization

of H0, and a new hopping term hX ′k−1 is added to the X chain. However the

leading-order effect at O(ε) arises from Vd, where the “degradation” of inter-

action term Kk(iγ
X
k γ
X
k+1)(iγYk γ

Y
k+1) renormalizes hY ′k = hYk − sgn(hXk )×Kk. As
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a result, correlations develop between the hopping terms on the same bond.

(This aspect of the perturbation will constitute the basis of a mean-field study

of the interacting system, presented in Sec. 3.4.) The effective Hamiltonian

also includes renormalized couplings hY ′k−1 and hY ′k+1, as well as new four-fermion

terms which change the structure of the lattice graph, and a six-fermion term.

The appearance of these terms breaking the form of H, along with the gener-

ation of correlations between terms, is an indication that the RG flow cannot

be tracked exactly in the interacting model. However, if the interaction terms

already tend to be weak compared to the hopping, the higher-order terms gen-

erated by this process will accordingly be weaker still. This is the situation,

at least initially, in the random XYZ model with small J̃z; however there is

no guarantee that the relative strengths of the different types of couplings are

maintained asymptotically.

Now if instead the dominant energy scale is set by an interaction term, the

high- and low-energy eigenspaces of H0 = Kk(iγ
X
k γ
X
k+1)(iγYk γ

Y
k+1), for some k,

again correspond to sectors of definite fermion parity, now measured on four

Majoranas rather than two. Accordingly, with only some modifications the

result Eq. (3.16) applies. We specify two complex fermion modes d†0 = 1
2
(γXk +

iγXk+1) and f †0 = 1
2
(γYk + iγYk+1). As before, associate with the complex fermions

projectors into the single-particle parity sectors π±d and π±f . In contrast with

the previous cases, these fermions are only aids for performing the algebra and

by themselves do not necessarily describe emergent conserved quantities in the

effective Hamiltonian. Now the projectors into the overall H0 sectors are

π+ = π+
d π

+
f + π−d π

−
f , (3.30)

π− = π+
d π
−
f + π−d π

+
f . (3.31)

All interaction terms commute, and are contained in the diagonal part of H.

The terms anticommuting with H0 are

Vod = ihXk−1γ
X
k−1γ

X
k + ihXk+1γ

X
k+1γ

X
k+2 + ihYk−1γ

Y
k−1γ

Y
k + ihYk+1γ

Y
k+1γ

Y
k+2 . (3.32)

The off-diagonal blocks of the Hamiltonian are given by

π±Hπ∓ = (ihXk−1γ
X
k−1 − hXk+1γ

X
k+2)d†0π

∓
f + (ihXk−1γ

X
k−1 + hXk+1γ

X
k+2)d0π

±
f

+ (ihYk−1γ
Y
k−1 − hYk+1γ

Y
k+2)f †0π

∓
d + (ihYk−1γ

Y
k−1 + hYk+1γ

Y
k+2)f0π

±
d .

(3.33)



54

Returning to Eq. (3.16) to compute the rotated Hamiltonian, we find

H ′ = H0 + Vd +
1

Ω
[π+Hπ−, π−Hπ+] +O(ε3) (3.34)

= H0 + Vd +
(hXk−1)2 + (hXk+1)2 + (hYk−1)2 + (hYk+1)2

2Kk

(iγXk γ
X
k+1)(iγYk γ

Y
k+1)

+
hXk−1h

X
k+1

Kk

(iγYk γ
Y
k+1)(iγXk−1γ

X
k+2) +

hYk−1h
Y
k+1

Kk

(iγXk γ
X
k+1)(iγYk−1γ

Y
k+2)

− 1

Kk

(
hXk−1(iγXk−1γ

X
k+1)− hXk+1(iγXk γ

X
k+2)

)
×
(
hYk−1(iγYk−1γ

Y
k+1)− hYk+1(iγYk γ

Y
k+2)

)
+O(ε3) . (3.35)

The Schrieffer–Wolff transformation for an interaction term does not decouple

the Majoranas involved from the rest of the system. Instead, a two-dimensional

degree of freedom, known as a “spin cluster” [7, 8], remains in the low-energy

space. Generally all symmetry-allowed couplings are generated between the

spin cluster and its neighbors. The twofold degeneracy is split at order O(ε)

by the terms commuting with H0:

Vd − (#)I = Kk−1(iγXk−1γ
X
k )(iγYk−1γ

Y
k ) +Kk+1(iγXk+1γ

X
k+2)(iγYk+1γ

Y
k+2)

+ ihXk γ
X
k γ
X
k+1 + ihYk γ

Y
k γ
Y
k+1 , (3.36)

where we have removed an extensive quantity proportional to the identity

arising from terms sharing no Majorana operators with H0. If the magnitude

of the hopping terms dominates—that is, hXk , h
Y
k � Kk−1, Kk+1—then the

Majorana orbitals indeed decimate into the complex fermions f0 and d0, with

each associated with a definite parity state depending on the signs of the

couplings (because all Kn > 0 in our model and hXk and hYk have opposite

sign, in the ground state the d0 and f0 fermions have opposite parity). If

instead the interaction terms dominate, the energy splitting will be associated

with emergent quantities iγXk γ
Y
k and iγXk+1γ

Y
k+1. These onsite measurements

of fermion parity are associated with a magnetic z-ordered phase. In our

model the four-Majorana odd parity state is preferred and the ground state

displays Ising AFM order, as expected for the region of the model Eq. (3.1)

with J̃z > J̃x, J̃y.

3.2.4 XY model spin correlations in SDRG

From the controlled SDRG for the random XY model one can deduce that

average correlations in the ground state follow power laws—even though typ-

ical correlations are short-ranged—and even calculate the exponents. One
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also obtains a more qualitative picture of the behavior of the spin correlation

functions.

Expanding Eq. (3.9) in the ground state at separation r,

Cz(j, j + r) = 〈iηjζj+r〉〈iζjηj+r〉 . (3.37)

Other terms vanish due to symmetry. One sees immediately that Cz(j, j + r) = 0

if r is even. For odd r, Cz(j, j+r) assumes a large value if and only if the sites

j and j + r were decimated together on both Majorana chains, in which case

both expectation values 〈iηjζj+r〉 and 〈iζjηj+r〉 have approximately unit mag-

nitude and opposite sign. Otherwise if this decimation did not occur on either

or both of the Majorana chains the contribution is suppressed, arising only

from higher-order terms in the perturbation theory. Consider the correlations

averaged over sites j as well as over disorder realizations, which we denote

Cz(r). Nearly all terms will be vanishingly small, with rare terms of roughly

unit magnitude occurring with some density; these dominate the average. It

is a result of Ref. [4] for the RS phase that at sufficiently large separation

the likelihood of such a decimation scales as r−2; thus for two independent

Majorana chains ηz = 4.

The transverse correlations Eqs. (3.7) and (3.8), summarized as C⊥(j, j + r),

are the expectation values of strings of 2r Majoranas. Such operators are

evaluated as the sum of r-fold products of expectation values of symmetry-

allowed bilinear contractions, with signs arising from the signature of each

permutation. A term in the sum has a large value if and only if it contracts

all Majoranas with their decimation partners in the SDRG. This will be the

case for exactly one term if all decimations of the Majoranas appearing in the

string expectation value are “internal”; that is, if all decimation partners are

also included. If any Majoranas were decimated with orbitals which do not

appear, the expectation value will be small. We again define C⊥(r) as the

average over sites and disorder realizations.

If on both chains X and Y the sites j and j + r are decimation partners,

then as described above, this pair contributes a large value to Cz(r). The pair

also necessarily contributes a large value to C⊥(r), as pairing of the extremal

Majorana orbitals in a string implies that all decimations are internal to the

string. Thus, the critical exponent η⊥ lower-bounds ηz. For the random XY
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model η⊥ = 3−
√

5 ≈ 0.764, however the bound is saturated in the XX model

where η⊥ = ηz = 2 [4].

Finally, the SDRG picture also tells us about the end-to-end correlations of

transverse spin components in the XX and XY models. The expectation value

C⊥(1, L) ≡ C⊥e (L) includes all Majorana orbitals on one chain, and all but

those at sites 1 and L on the other. This string has a large expectation

value if all of these Majoranas are paired internally, which is to say that the

two excluded Majoranas are decimated together. This is a property of a single

chain only, and so is the same in both the random XX and XY models. Indeed,

ηe
⊥ = 1 in both cases [10].

3.3 Unbiased RRG study

3.3.1 Details of numerical study

In the following sections, we perform a numerical study of the line J̃z ∈ [0, 1],

J̃x = J̃y = 1, in the phase diagram of Eq. (3.1), using RRG. Our objective

is primarily to verify by unbiased numerics the observation of continuously

varying critical exponents in the SDRG method of Slagle et al. [1], and then

to shed additional light on the nature of the low-energy theory. (Here we focus

solely on the ground state properties and low-energy physics, rather than the

question of MBL.) For concreteness, we use the disorder distribution described

in Eqs. (3) and (4) of Ref. [1], namely,

p(Jαi ) =
1

ΓJ̃α
(Jαi )1/Γ−1 , Jαi ∈ [0, (J̃α)Γ] . (3.38)

We use a milder disorder strength Γ = 2, as compared to Γ = 4 for the previous

work [1]. Both choices lead to strong disorder physics and the specific value

should have little effect on the universal low-energy physics for large enough

systems. However, we find that the logarithm of the distribution of the energy

gaps depends significantly on Γ, with smaller values tending to lead to larger

gaps; this eases the challenge to the numerics which in any case are limited

by double-precision floating-point errors on the order of 10−16. In RRG we

are capable of accurately resolving energy scales down to log10(Ω/ε) ∼ −12,

and validate our results against the free-fermion solution at the soluble point

J̃z = 0.

To construct the AGSP for RRG we use a Trotter approximation to a ther-

mal operator K ≈ e−βH . The output of the RRG algorithm is a subspace
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J̃z 0.0 0.2 0.4 0.6 0.8 1.0
(s,D) (8,14) (8,14) (6,10) (6,10) (5,8) (5,8)

Table 3.1: RRG hyperparameters are shown for values of J̃z studied numeri-
cally. As described in the text, we optimize the output of RRG using DMRG,
and for finite J̃z take as a measure of accuracy the number of sweeps required
for convergence. These values of s and D were chosen in order to accurately
converge approximately 99% of disorder realizations on N = 80 spins. For
the small fraction of more difficult realizations which are not solved by the
hyperparameters above we repeat the algorithm with increased values, finding
that convergence is achieved this way.

of constant dimension approximating the low-energy states of the model. We

use an implementation based on ITensor [18], in which we explicitly realize

the Z2 × Z2 symmetry and solve for the lowest two eigenstates in each of the

four symmetry sectors.1 In each case the MPSs generated by RRG are then

further optimized using DMRG in order to minimize the overlap with high-

energy states. The RRG “hyperparameters” s and D (see Ch. 2 or Ref. [19] for

details) are chosen so that for the majority of disorder realizations DMRG can

optimize the RRG output in a small number of sweeps. For approximately the

most challenging 1% of realizations, DMRG requires many sweeps to converge.

In these instances we repeat the calculation, increasing the RRG hyperparam-

eters, and find that the improved RRG states are easily converged by DMRG.

From comparison with exact free-fermion results for J̃z = 0 obtained by nu-

merical matrix diagonalization, we find that if RRG produces states which are

successfully converged by DMRG and the excitation gap is larger than the

target threshold 10−12, the ground state energy and gap are numerically exact

in & 99.5% of realizations. As we will show in the following section, at J̃z > 0

the finite-size gaps tend to be larger than those at J̃z = 0 and should be easier

for RRG; thus we believe our results are even more reliable for these points.

3.3.2 Projective realization of symmetry and site pairing

The Z2 × Z2 symmetry of the general model, while Abelian, is problematic

for exact numerical implementation because it is projectively represented on a

single site. A tensor network algorithm which exactly conserves these quantum

numbers can be easily realized by pairing up neighbors into doubled sites with

1The RRG code used in this work is available online at https://www.github.com/

brendenroberts/RigorousRG.

https://www.github.com/brendenroberts/RigorousRG
https://www.github.com/brendenroberts/RigorousRG
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total spin 0 or 1, so that the local terms in the symmetry generators commute

instead. Upon performing this pairing all of the relevant operators must be

translated into the new language. Instead of using the symmetry generators

gx and gy, we implement the equivalently valid generators gx and gz = −igxgy,
which turn out to be simpler. The basis for a paired site m, m = 0, . . . , L/2,

on the original sites (2m, 2m+ 1) will be{
|0〉 =

1√
2

(|↑↑〉+ |↓↓〉) , |1〉 =
1√
2

(|↑↑〉 − |↓↓〉) ,

|2〉 =
1√
2

(|↑↓〉+ |↓↑〉) , |3〉 =
1√
2

(|↑↓〉 − |↓↑〉)
}
. (3.39)

The states |0〉, |1〉, |2〉 form the vector subspace and |3〉 the singlet. More

importantly, these basis states are eigenstates of the local symmetry terms,

which have the form

σx2mσ
x
2m+1 = |0〉〈0| − |1〉〈1|+ |2〉〈2| − |3〉〈3| (3.40)

σz2mσ
z
2m+1 = |0〉〈0|+ |1〉〈1| − |2〉〈2| − |3〉〈3| . (3.41)

Thus, exact conservation of the two Z2 quantum numbers can be implemented

for operators in this basis.

3.3.3 Translation of Hamiltonian into paired basis

Under the site pairing, some terms in Eq. (3.1) become onsite terms, and some

remain pairing terms. Very explicitly, the symmetry flux of an operator in this

basis (under Z2 addition) is

O =


(0x, 0z) (1x, 0z) (0x, 1z) (1x, 1z)

(1x, 0z) (0x, 0z) (1x, 1z) (0x, 1z)

(0x, 1z) (1x, 1z) (0x, 0z) (1x, 0z)

(1x, 1z) (0x, 1z) (1x, 0z) (0x, 0z)

 . (3.42)

Thus the onsite terms must be diagonal, and both operators in the tensor

comprising each pairing term must occupy the same symmetry sector, in order

to have no net flux.

The unitary rotating the basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉} to {|0〉, |1〉, |2〉, |3〉} is
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easily read off from Eq. (3.39):

U =
1√
2


1 0 0 1

1 0 0 −1

0 1 1 0

0 1 −1 0

 . (3.43)

It is straightforward to rotate important operators like Hamiltonian terms

using U . First we observe that the transformation induced by exchanging the

sites 2m↔ 2m+ 1 is

|0〉 7→ |0〉 , |1〉 7→ |1〉 , |2〉 7→ |2〉 , |3〉 7→ −|3〉 . (3.44)

Now we find that

σx2mσ
x
2m+1 = +|0〉〈0| − |1〉〈1|+ |2〉〈2| − |3〉〈3| , (3.45)

σy2mσ
y
2m+1 = −|0〉〈0|+ |1〉〈1|+ |2〉〈2| − |3〉〈3| , (3.46)

σz2mσ
z
2m+1 = +|0〉〈0|+ |1〉〈1| − |2〉〈2| − |3〉〈3| , (3.47)

I2mσ
x
2m+1 = +|0〉〈2|+ |2〉〈0|+ |1〉〈3|+ |3〉〈1| , (3.48)

σx2mI2m+1 = +|0〉〈2|+ |2〉〈0| − |1〉〈3| − |3〉〈1| , (3.49)

I2mσ
y
2m+1 = −i|0〉〈3| − i|1〉〈2|+ i|2〉〈1|+ i|3〉〈0| , (3.50)

σy2mI2m+1 = +i|0〉〈3| − i|1〉〈2|+ i|2〉〈1| − i|3〉〈0| , (3.51)

I2mσ
z
2m+1 = +|0〉〈1|+ |1〉〈0| − |2〉〈3| − |3〉〈2| , (3.52)

σz2mI2m+1 = +|0〉〈1|+ |1〉〈0|+ |2〉〈3|+ |3〉〈2| . (3.53)

As expected, all onsite terms are diagonal and the individual operators in

the pairing terms live in the following symmetry sectors: σx in (0x, 1z), σ
y in

(1x, 1z), and σz in (1x, 0z).

3.3.4 Results from RRG study

Critical spin correlations

We measure spin correlations in the RRG ground state of H[J̃x = 1, J̃y = 1, J̃z]

with J̃z ranging from 0 to 1 and microscopic disorder strength Γ = 2 through-

out. Bulk correlations in an open chain of length N are measured for r ≤ N
2

in-

cluding only sites j = N
4
, . . . , 3N

4
, in order to distinguish the power law from the

end-to-end correlations closer to the boundaries. We show disorder-averaged

correlations data measured in chains of length N = 80 sites in Fig. 3.1, which
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Figure 3.1: Bulk spin correlations data from RRG are shown for the random
XYZ model with varying bandwidth J̃z, up to separation r = 40 lattice spac-
ings, from systems of length N = 80. Filled circles indicate Cz(r) data, while
open circles mark C⊥(r). The disorder averages for each value of J̃z are taken
over 1200–1500 realizations. In the average we include only the middle half of
the spin chain—that is, excluding sites 1, . . . , N/4− 1 and 3N/4 + 1, . . . , N—
in order to separate the bulk correlations from the ends, which exhibit different
scaling laws. See Fig. 3.3 for the critical power law decay exponents extracted
from this data.

includes slices at values of J̃z moving along the phase boundary from the

free-fermion model to the tricritical point.

End-to-end spin correlations are measured only between the single pair of sites

1 and N for each disorder realization, and exhibit correspondingly larger sta-

tistical fluctuations. In addition, reproducing Cz
e (N) correlations presents a

singular challenge for the RRG algorithm. As discussed in Sec. 3.2.4, in the

SDRG the likelihood of a nonzero value of 〈σz1σzN〉 at the free-fermion point is

the square of the probability of a singlet of length N in the RS phase. That

is, the distribution is broad on a logarithmic scale, with the average being

dominated by a very small tail. More importantly, the disorder realizations

located in the tail—of outsize importance in the average—are those on which

sites 1 and N were decimated together on both Majorana chains, which corre-

late with the smallest excitation gaps in the low-energy spectrum and are the

most difficult realizations for the method to solve accurately. Accordingly, we

do not include data for Cz
e (N) measured in chains of length N = 80 sites in
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Figure 3.2: RRG end-to-end correlations data are shown for the random
XYZ model with varying bandwidth J̃z. System sizes N = 32, 48, 64, 80 are
included for C⊥e (N) (open circles). Due to the special difficulty of measuring
the quantity Cz

e (N) (filled circles) in RRG, as described in the text, chains of
length N = 80 are not included in these fits. See Fig. 3.3 for the critical power
law decay exponents extracted from this data.

Fig. 3.2.

Our unbiased numerical results for the bulk correlations are in broad agreement

with the finding of Slagle et al. [1] of critical exponents governing the decay of

spin correlations that vary continuously with J̃z. In contrast to the previous

approach, we perform direct measurements in optimized MPS for the ground

state. We estimate the critical index for the permutation-symmetric point to

be ηz = η⊥ ≈ 1.5.

Entanglement structure

We also study measures of entanglement in the RRG ground states for varying

J̃z. The average bipartite entanglement entropy of a connected subsystem

of length ` adjacent to the system boundary is known to scale according to

the conformal field theory result Sb(`) = c̃
6

ln `, with a universal constant

c̃. In some cases the “effective central charge” c̃ seems to be related to the

central charge of the clean model [20]; for example, in the critical phase of

a single Majorana chain c̃ = ln 2
2

= c ln 2, where c = 1
2

is the central charge

of a clean Majorana chain. Accordingly, the XY fixed point has c̃ = ln 2,

being equivalent to two decoupled copies of the critical random Majorana
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Figure 3.3: Critical exponents governing spin correlations in the RRG ground
states are shown, extracted from the data in Figs. 3.1 and 3.2. Both end-to-end
and bulk exponents are included, with known results for the bulk correlations
in the free-fermion model at J̃z = 0 indicated by red stars and for the end-to-
end correlations by green diamonds. An increase in statistical noise is evident
in the end-to-end correlations as compared to the bulk. The reason for the
difficulty of these computations, particularly Cz

e (N), is discussed in the text.

chain. From finite-size scaling of the disorder-averaged half-system bipartite

entanglement entropy Sb(N/2) we find with fair precision that c̃ is stable at

this value for any interaction strength J̃z along the critical line, in agreement

with Ref. [1].

We also measure long-range mutual information (LRMI) between disconnected

regions; the formula for this entropic quantity in terms of the entanglement

entropy of a subsystem is I(A : B) = S(A) + S(B) − S(A ∪ B). We will

take A and B to be single spins separated by a distance r; Ref. [1] found

that up to appropriate rescaling, the lengths of the subsystems do not affect

the asymptotic behavior. The disorder-averaged LRMI we denote I(r), and

this quantity will decay no faster than the slowest observable. That is, in a

symmetry-breaking phase I(r) will exhibit long-range order, in a phase without

order one expects exponential decay, and at a critical point the associated

exponent ρ, I(r) ∼ r−ρ, lower-bounds the power-law decay exponent of any

local observable. We show disorder-averaged LRMI data in the upper panel of

Fig. 3.4. The exponent ρ varies continuously with J̃z, as is the case with the

other critical indices measured, and is very close to the exponent η⊥, suggesting
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Figure 3.4: Characterizations of the entanglement structure of the ground
state are shown. We include the power-law exponent ρ for decay of average
long-range mutual information I(r), based on the raw data shown in the upper
panel. The subsystems considered in this case consist of two spins separated
by a distance r, and the average is taken over sites in the middle half of the
chain. Also shown is the effective central charge c̃, found from finite-size scaling
of the half-chain entanglement entropy. While c̃ appears to be insensitive to
the coupling between the two Majorana chains, the LRMI exponent varies
continuously.
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that the correlations of the order parameters for the adjacent phases saturate

the lower bound everywhere along the boundary. Our RRG results for ρ as

well as the effective central charge c̃ are shown in the lower panel of Fig. 3.4.

Scaling of excitation gap

Because RRG produces not only an MPS representation of the ground state

but a constant number of low-energy states, it is possible in principle to study

spectral properties as well. We focus primarily on the simplest of these, the

energy gap to the lowest excitation in a finite system. From the SDRG for

the free-fermion point one observes that this excitation consists of flipping

the parity of the complex fermion associated with the lowest-energy (i.e., the

last decimated) singlet pairing on either Majorana chain. As we consider

chains with lengths that are multiples of 4, the ground state is found in the

(gx, gy) = (+1,+1) sector of the global (Z2)2 symmetry and the first excited

state will be found in either the (+1,−1) or (−1,+1) sector.
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Figure 3.5: Histograms of excitation gaps are shown for the disordered XYZ
model at system size N = 80 sites. Vertical lines indicate the median of
each distribution. The medians include long tails that are not shown, as
they contain excitation gaps too small to be accurately measured by the RRG
algorithm; however the estimate of the median is not sensitive to these uncer-
tainties. The trace for each value of J̃z contains between 1200–1500 disorder
realizations.

The distribution of excitation gaps is known exactly via the mapping to two
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decoupled copies of the RTFIM, where the universal form of the gap distribu-

tion is known [9]. The gap in the random XY model is the minimum of two

independent random variables sampled from the distribution of Fisher et al.

[9]. In Fig. 3.5 we show histograms of the (logarithmic) excitation gaps for the

random XYZ model with varying J̃z for chains of length N = 80. The exact

distribution for the J̃z = 0 point is indicated with a dotted line.

Indicated on Fig. 3.5 by vertical lines are the medians of the histograms; these

are provided as a characterization of the tails, where the energy gaps are

near the limit of what is possible to resolve using MPS due to accumulation

of numerical errors. While the precise tails are not available this way, it is

rare for RRG to make an error which would move a disorder realization out

of the tail into the bulk of the distribution. Thus, the median provides an

accurate characterization of the gap distribution even when the mean cannot

be reliably estimated. In Fig. 3.6 the scaling with chain length of the median

of the gap distribution is shown with varying J̃z. This allows an estimate of

the exponent ψ controlling the length-energy relationship, which has the value

ψ = 1
2

at the free-fermion point. The RRG scaling data suggest that ψ does

not drift systematically as J̃z is varied, even up to the permutation-symmetric

point J̃z = 1. This result would exclude the n = 3 Damle–Huse universality

for this tricritical point.

3.4 Mean field theory of interaction

Turning on J̃z > 0 introduces four-fermion interaction terms to the quadratic

Hamiltonian Hxy. These terms couple the Majorana chains X and Y in such

a way that the ground state is no longer analytically tractable under SDRG,

which generates a quantity of multi-fermion terms in the effective Hamilto-

nian that grows exponentially with the RG scale. However, as mentioned

in Sec. 3.2.3, if at some point in the RG the interaction terms are typically

weaker than the hopping terms, the effective higher-order descendants will be

even weaker. One might hope, then, that by beginning with a bandwidth

J̃z � J̃x, J̃y the strength of these terms may be suppressed at all scales,

leading to only a minimal effect on the criticality. Moreover, this hope is sup-

ported by some numerical evidence: namely, the absence of a systematic drift

of either the effective central charge c̃ or the length-energy scaling exponent ψ

away from their characteristic values in the decoupled RS phase.
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Figure 3.6: The value of the length-energy scaling exponent ψ extracted from
finite-size scaling of the lowest excitation gaps in RRG is shown. While the
exact value displays statistical noise, there does not appear to be a significant
trend along the critical line, and the exponent is stable near ψ = 1

2
, the free-

fermion value, for all values of J̃z including at the tricritical point J̃z = 1. The
systematic deviation from the exact value is likely due to finite-size corrections
to the universal behavior.

Based on this understanding, we consider the mean field theory by “expand-

ing” the interaction into fermion bilinear terms. In the Majorana language,

the mean-field structure is particularly transparent; here the only symmetry-

allowed bilinear terms act internally on the chains. For Jzj � 1,

Jzj (iηjζj)(iηj+1ζj+1) ≈ Jzj (iηjζj+1〈iζjηj+1〉+ iζjηj+1〈iηjζj+1〉) . (3.54)

This can also be seen in terms of the original spins, where the mean field
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theory takes the form

Jzj σ
z
jσ

z
j+1 = −Jzj σxj σxj+1σ

y
jσ

y
j+1

≈ −Jz
(
σxj σ

x
j+1〈σyjσyj+1〉+ 〈σxj σxj+1〉σyjσyj+1

)
. (3.55)

The effect of the allowed terms is to renormalize the existing couplings in the

following way:

(Jxj )mf = Jxj + Jzj 〈iηjζj+1〉 = Jxj − Jzj 〈σyjσyj+1〉 , (3.56)

(Jyj )mf = Jyj − Jzj 〈iζjηj+1〉 = Jyj − Jzj 〈σxj σxj+1〉 . (3.57)

Because the Majorana chains remain decoupled, the mean-field theory can

be solved in the analytic SDRG, at least in principle, by accounting for the

distributions of effective Jxj and Jyj couplings no longer being independent. In

the following subsections we numerically investigate the universal behavior of

this mean-field theory. We continue using the disorder distribution Eq. (3.38).

We present exact results from the analytic SDRG for an effective model based

on the mean-field theory in Sec. 3.5.
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Figure 3.7: Bulk correlations data from the self-consistent Hartree–Fock
mean-field theory are shown with varying bandwidth J̃z, up to separation
r = 48 in chains of length L = 96. Filled circles indicate Cz(r) data, while
open circles mark C⊥(r). The disorder averages for each value of J̃z are taken
over 25000 realizations and include only the middle half of the spin chain, as
described in the caption to Fig. 3.1.

3.4.1 Self-consistent Hartree–Fock treatment of interaction terms

We first perform a self-consistent numerical study of the interaction term in the

Gaussian mean-field theory by directly implementing Eqs. (3.56) and (3.57)
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Figure 3.8: End-to-end correlations data from the self-consistent Hartree–
Fock mean-field theory are shown with varying bandwidth J̃z. Each data
point is the average end-to-end correlations from 25000 disorder realizations.
Because for small J̃z the likelihood of simultaneous end-to-end decimations is
very low, in computing Cz

e (L) we are restricted to shorter systems in order to
have reasonable statistics. For example, 25000× e−7 ≈ 23 important “events”
only.

in the BdG Hamiltonian, iteratively performing exact diagonalization and up-

dating the mean-field couplings until convergence is reached. The bulk cor-

relations data are shown in Fig. 3.7, end-to-end correlations in Fig. 3.8, and

a summary of the critical exponents in Fig. 3.9. In the mean field model the

exponents are indeed perturbed in a manner consistent with our observations

for the interacting model. Here J̃z = 1 is not necessarily special, so there is

no reason to expect the equivalence of exponents seen in the RRG case.
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Figure 3.9: Critical exponents are shown for the self-consistent Hartree–Fock
mean-field theory with varying bandwidth J̃z ∈ [0, 1]. Filled circles indicate
Cz(r) data, while open circles mark C⊥(r). The disorder averages for each
value of J̃z are taken over 25000 realizations and the bulk correlations include
only the middle half of the system, as described in the caption to Fig. 3.1.

3.4.2 Numerical study of random XY chain with locally correlated

couplings

The rules Eqs. (3.56) and (3.57) for the mean-field couplings modify bonds

on one Majorana chain based on expectation values across the same bond on

the other chain. As a result, recalling that Jzj > 0 for all j, the terms on a

given bond (which at the mean-field level are strengthened by the interactions)

develop correlations among themselves; however terms on separate bonds re-

main independent. We refer to such an effective model as having “local cor-

relations,” in order to distinguish from spatial correlations between terms on

separated bonds. One can mimic the behavior of the mean field theory and

explore the entire space of correlations using the following parameterization of

the couplings: for Aj, Bj independent random variables and δ ∈ [0, 1], let

Jxj =

(
1− δ

2

)
Aj +

δ

2
Bj , (3.58)

Jyj =
δ

2
Aj +

(
1− δ

2

)
Bj . (3.59)

Tuning δ from 0 to 1 interpolates between fully independent couplings and the

perfectly correlated case with U(1) symmetry. That is, the parameterization

runs along the line between the random XY and XX spin chains. As men-

tioned in Sec. 3.2.1, Fisher [4] found that weak random anisotropy is marginal
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around the XX point, which is in the RS phase. However it was not clear there

whether this perturbation is truly marginal, marginally relevant, or marginally

irrelevant. The mean-field numerical results in this section provide an investi-

gation into this question, a topic which will be discussed in more detail within

the analytic SDRG in Sec. 3.5.

100 101

r

10−6

10−5

10−4

10−3

10−2

10−1

100

C
⊥
,z

(r
)

δ = 0.0

δ = 0.2

δ = 0.4

δ = 0.6

δ = 0.8

δ = 1.0

Figure 3.10: Bulk spin correlations data from the locally-correlated mean-
field theory are shown for the random XYZ model with varying bandwidth J̃z,
up to separation r = 64. Filled circles indicate Cz(r) data, while open circles
mark C⊥(r). The disorder averages for each value of J̃z are taken over 25000
realizations. In the average we include only the middle half of the spin chain
(excluding sites 1, . . . , N/4− 1 and 3N/4 + 1, . . . , N) in order to separate the
bulk correlations from the surface, which exhibits different scaling laws.

It is not immediately clear to what extent the locally-correlated free fermion

effective model specified by Eqs. (3.58) and (3.59) shares the qualitative fea-

tures of the XYZ model, or indeed the self-consistent mean field theory. We

investigate this by repeating the measurements of bulk and end-to-end spin

correlations in chains of similar length to the previous studies, now varying

the coupling correlation parameter δ. Figs. 3.10, 3.11, and 3.12 demonstrate

that these critical indices do vary continuously in a similar way to the inter-

acting case. Our observation that this mean-field approach indeed exhibits

many of the qualitative features of the original case suggests that at least for

small J̃z, the primary effect of the interactions is to correlate the coefficients

of the hopping terms on the two Majorana chains. However, we emphasize

that although the ηz and η⊥ converge to similar values at the XX point δ = 1

and the tricritical XYZ point J̃z = 1, the reasons for this are not necessarily
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Figure 3.11: End-to-end spin correlations data are shown from exact diagonal-
ization of the locally-correlated mean field with varying coupling correlations
δ. System sizes N = 32, 48, 64, 80, 96, 128 are included. See Fig. 3.12 for the
critical power law decay exponents extracted from this data.

the same. The mean field should not be taken too seriously as a picture of the

interacting phase away from the perturbative regime.

3.5 Locally correlated XY model in the random walk formalism

Some disordered quantum Hamiltonians can be associated uniquely with a

classical random walk (RW), and a picture of the SDRG developed acting on

these objects. This mathematical connection can be useful for understanding

the properties of IRFP phases. The RW formulation has been applied to both

the RTFIM [21, 22] and AFM quantum spin chains [10, 23]. In this section we

first review the RW picture for a single Majorana chain in the RS phase, based

on the SDRG procedure of Sec. 3.2.3. While all results for correlation functions

in this case are known from Fisher’s analytic solutions for flows approaching

the RS fixed point, we demonstrate how to obtain power law exponents from
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Figure 3.12: Critical exponents governing spin correlations are shown, ex-
tracted from data shown in Figs. 3.10 and 3.11. Both end-to-end and bulk
exponents are shown, with known results for the bulk correlations in the free-
fermion model at Jz = 0 indicated by red stars.

different arguments, which will generalize to the locally correlated XY chain

where we do not have analytic flows. We first obtain rigorous bounds in the

continuum limit on the asymptotic scaling of the Majorana pairing probability

(which gives the dominant contribution to the correlations of the z component

of spin in the XX chain) based on the RW survival probability, a connection

which had previously been noted in Ref. [10]. We then consider the problem of

two locally correlated RWs (one for each Majorana chain) following the mean-

field approximation developed in Sec. 3.4.2. It turns out that this model is

represented as an anisotropic RW in a two-dimensional space. We again rigor-

ously bound the spin decay of correlations using the RW survival probability,

where we find that the power law exponent varies continuously with the local

correlations parameter. As a result, we are able to rigorously establish the

continuously varying critical indices in the locally-correlated effective model.

3.5.1 RW formulation of SDRG for the Majorana chain

Returning to the notation of Sec. 3.2.3, define the logarithm of the energy

associated with each bond in the Majorana chain Hamiltonian HM to be

un = ln(J̃/|hn|), n = 1, . . . , N−1. Here J̃ is a bandwidth for the bare coupling

terms, meant to evoke the parameters of the Hamiltonian Eq. (3.1). From

Eq. (3.4) one sees that if J̃x = J̃y, in a single Majorana chain the hopping terms



73

are identically distributed. Note that the signs of hn are not important for the

discussion of probabilities of site pairings below, and are only needed to fix

sign factors for the spin correlation functions, as discussed earlier. We consider

the specific disorder distribution Eq. (3.38) with J̃x = J̃y = J̃ = 1. Then the

distribution of log-energies is exponential, with distribution parameter Γ:

τ(u) =
1

Γ
e−u/Γ , u ∈ (0,∞) , (3.60)

which has mean 〈u〉 = Γ and variance Var(u) = Γ2. The Majorana model HM

on N sites is associated with a 1d RW m, a Markov chain with state variables

(xn, σn), n = 1, . . . , N , where xn ∈ R is a cumulative log-energy defined below

and σn = (−1)n−1 is an internal variable determining the sign of the next step

to be taken. (That is, the RW takes alternating positive and negative steps

depending on the sublattice of site n. This is distinct from the alternating

signs of the couplings in Eq. (3.4), which are not invariant under a unitary

rotation on the spins.) The discrete RW time n is the spatial index of the

quantum chain. A given disorder distribution {hj}1≤j<N corresponds to the

RW step sequence {σnun}1≤j<N . Its value at time n is given by

m[n] =
n−1∑
j=1

σjuj , (3.61)

where we have left the σn state variable implicit. Let ρ(x, σ, n) be the distri-

bution of m[n]; its master equation is

ρ(x, σ, n+ 1) =

∫ ∞
0

du τ(u) ρ(x+ σu,−σ, n) . (3.62)

We now consider the behavior under the SDRG of a RW m associated with

a Majorana chain HM. The largest local energy scale |hk|, for some k, cor-

responds to the smallest log-energy uk. The effect of the Schrieffer–Wolff

transformation up to second order is to eliminate the following hopping terms:

ihk−1γk−1γk + ihkγkγk+1 + ihk+1γk+1γk+2 , (3.63)

and to introduce the renormalized bond term

ih′k−1γk−1γk+2 , h′k−1 =
hk−1hk+1

hk
. (3.64)

(There is also a shift of the leading energy scale, but this will not be important

here.) Suppose that hk > 0; then the SDRG rule replaces three consecutive
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steps with log-energies uk−1, uk, and uk+1 by a single step with log-energy

u′k−1 = uk−1 − uk + uk+1. For the RW the new step is

σk−1u
′
k−1 = σk−1uk−1 + σkuk + σk+1uk+1 . (3.65)

In this way the SDRG transformation simply corresponds to a sequential

“smoothing” of the RW, in which the step of smallest magnitude and its neigh-

bors are removed, and replaced by a treble step directly connecting m[k − 1]

and m[k + 2]. For an illustration, the reader is referred to Fig. 8 in App. B of

the arXiv version of Ref. [23], or Fig. 1 of Ref. [24].

From the above description a precise statement can be made about the deci-

mation of a site k, which we suppose without loss of generality to be a local

minimum. First define right and left “partial RWs:” for m < n,

mR[m,n] =

(n−m)−1∑
j=0

σm+jtm+j , (3.66)

mL[m,n] =
n−m∑
j=1

−σn−jtn−j . (3.67)

Now the necessary and sufficient conditions for a site k to be partnered in the

SDRG with a site k′, k′ − k = r, where mR[k, k′] ≡ ∆ > 0, are the following:

1. The right partial RW mR[k, l], k < l ≤ k′ attains a maximum ∆ at

l = k′ = k + r without reaching 0;

2. The right partial RW mR[k′, l], l > k′, reaches the value −∆ before

crossing 0;

3. The left partial RW mL[l, k] for decreasing l < k reaches ∆ before cross-

ing 0.

These conditions are independent, once ∆ is specified, and relate the likelihood

of a decimation pairing (k, k′) to the survival probability of the partial RWs on

the bounded interval (0,∆). The physical interest of this quantity follows from

the strong correlations shared by sites paired in the SDRG; the asymptotic

scaling of the decimation probability with r determines the decay of average

spin correlations in the RS phase.
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Focusing on the asymptotic scaling (i.e., n, r � 1) allows a description of the

RW in continuous time, passing from n→ t. The central limit theorem speci-

fies that the distribution of a sum of random variables like m[n] for sufficiently

large n approaches a Gaussian, independent of the individual details of the

random variables, provided only that the moments of the constituent distri-

butions are bounded. The variance of the continuum distribution ρ(x, t) is

Var(ρ) = Var(u) t. The effect of the internal state variable σ can be accounted

for by noting that sites which decimate together necessarily inhabit distinct

sublattices. This means that, assuming k to be a minimum, one additional

σ = +1 step is always taken. The mean of the distribution, then, should

be taken to be the expectation value for this step: x0 ≡ 〈u〉 = 〈τ〉. So the

asymptotic density in free space is simply

ρ(x, t) =
1√

2πVar(u) t
exp

[
−(x− x0)2

2Var(u) t

]
. (3.68)

(Sec. 3.A.2 contains an explicit derivation of Eq. (3.68) from the master equa-

tion Eq. (3.62).)

Now the continuum limit of Eq. (3.62) is the diffusion equation [25]

∂

∂t
ρ(x, t) = D

∂2

∂x2
ρ(x, t) , (3.69)

with diffusion constant D = Var(u)/2. The central limit form of ρ(x, t) in

Eq. (3.68) is the Green’s function of Eq. (3.69) on x ∈ R with initial condition

ρ(x, t = 0) = δ(x − x0). This illustrates that the continuous writing of the

RW can be treated as a particle initially localized at x = x0 diffusing over

a domain. Accordingly, in the following sections we use the language of the

diffusion problem, referring to the counterparts of discrete RWs associated with

particular Majorana Hamiltonians as “paths,” “histories,” or “trajectories.”

We also sometimes write the initial condition explicitly, as ρ(x, t;x0).

3.5.2 Rigorous bounds on critical exponents from RW survival

The diffusion equation on the bounded interval (0,∆), i.e., with absorbing

boundary conditions at x = 0 and x = ∆, can be straightforwardly solved by

harmonic expansion. From the full time-dependent solution one can calculate

the scaling of the asymptotic decimation probability and obtain critical expo-

nents for the RS phase this way. However, in Sec. 3.5.4 the geometry for two

locally correlated case Majorana chains will be too complicated to allow a full
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solution. Instead we employ a different approach for the likelihood of end-

to-end decimation, in which we prove upper and lower bounds exhibiting the

same power-law scaling, based on the survival probability in a semi-infinite

domain. This simplification is enough that a similar method will work for

both the single Majorana chain and the locally correlated effective model with

arbitrary degree of correlation.

First consider the survival probability of a RW in the semi-infinite interval

at time t. As in the free case Eq. (3.68), the initial condition on the con-

strained density ρc(x, t) is ρc(x, t = 0) = δ(x − x0), with x0 = 〈u〉, but now

an absorbing boundary is present at x = 0, restricting the solution domain

to x ∈ (0,∞) and terminating trajectories that reach x = 0. The boundary

condition ρc(x = 0, t) = 0 is accounted for by placing an “image charge” at

x = −x0 and superposing the distributions: ρc(x, t) = ρ(x, t;x0)−ρ(x, t;−x0).

In this geometry the survival probability at time t > 0 is

S(t) =

∫ ∞
0

dx ρc(x, t) (3.70)

=
1√

4πDt

∫ ∞
0

dx
(
e−(x−x0)2/4Dt − e−(x+x0)2/4Dt

)
(3.71)

= erf

[
x0√
4Dt

]
≈ x0√

πDt
. (3.72)

In the last line we replace the exact solution with the first-order term in the

series expansion. At late times, when the argument is small, this gives the

leading power-law behavior in 1/t.

Now consider the SDRG problem on a finite RW m[t = L]. The end-to-end

spin correlations in the Majorana model are determined by the likelihood that

sites 1 and L decimate together. From conditions 1 and 2, one sees that the

survival probability S(L) gives the likelihood that in m the left end site 1 is

not decimated until the very last step, i.e., belongs to the lowest-energy singlet

pair. However, in this calculation the partner is allowed to be any site on the

chain, while for the end-to-end correlations we are interested in, we require

that its partner be precisely the right end site L. In order for this to occur,

it must additionally be the case that mR[1, L] = m[L] reaches a maximum at

t = L.

The intuition we rely on is this: a simple calculation shows that the surviv-

ing histories at a given time are likely to be located increasingly far from the
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absorbing boundary [26]. As a result, we will treat the two ends of the chain

separately despite the correlations generated in the RG. Applying an inversion

I : (x, t) 7→ (−x,−t) to m, one sees that the requirement at the right end that

the RW reach a maximum at t = L takes the same form as the absorbing

boundary condition x = 0 at the left end in the RW without inversion. Con-

sequently to establish bounds on the probability of the (1, L) decimation we

consider two chains of length t = L/2, applying I to one, and use a “gluing”

procedure to construct suitable RWs of length L.

To be more concrete, we first give an upper bound on the end-to-end (1, L)

decimation probability pe(L). Note that any RW m[L] can be viewed as two

independent “half-RWs” up to time t = L/2, one starting from site 1 and going

to site L/2, and the other starting from site L and going to site L/2, with the

two RWs properly glued at their respective time t = L/2. It may be the case

that these “half-RWs” never reach the absorbing boundary, and thus each is

considered a surviving RW in the semi-infinite geometry. Any RW instance of

length L producing the (1, L) pairing in the SDRG, i.e., satisfying condition

1, will indeed decomposes into two independent surviving RWs up to time t =

L/2 with only one absorbing boundary in each case. The opposite is not true,

because when such two surviving trajectories are joined, we cannot guarantee

that the full walk satisfies the condition 1. Thus, the desired probability

pe(L) ≤ S(L/2)2 ∼ 1/L.

Now to prove a lower bound on pe we construct a subset of all of the paths

satisfying condition 1 through an explicit gluing procedure of half-chains of

length t = L/2 which when combined satisfy the criterion. Essentially we

will bound the density of surviving trajectories which have drifted sufficiently

far away from the absorbing boundary, but have not deviated so far as to

preempt the end-to-end decimation. Again, in the present case we can solve

this problem using two absorbing boundaries, but we want to demonstrate how

to extract the behavior using the semi-infinite solution, where the geometry is

simpler, as this will be the only option for the locally correlated model.

For two positive constants α and β, α < β ≤ 2α, define the target window

x ∈ [α
√
Dt, β

√
Dt], where t > 0 is a time. In the problem with one absorbing

boundary at x = 0, the fraction of surviving trajectories contained in the
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target window at t is

pw(α, β) =
1

S(t)

∫ β
√
Dt

α
√
Dt

dx ρc(x, t) (3.73)

=
1

S(t)

(∫ β
√
Dt

α
√
Dt

dx ρ(x, t;x0)

−
∫ β

√
Dt

α
√
Dt

dx ρ(x, t;−x0)

)
(3.74)

=
1

S(t)

1

2

(
erf

[
α

2
+

x0√
4Dt

]
− erf

[
α

2
− x0√

4Dt

]

− erf

[
β

2
+

x0√
4Dt

]
+ erf

[
β

2
− x0√

4Dt

])
(3.75)

≈ e−α
2/4 − e−β2/4 . (3.76)

In the final line we again take the leading behavior for large t. Then a constant

fraction pw(α, β) of the surviving density is located within the target window.

However, using the density ρc(x, t) defined in the semi-infinite region for the

fraction Eq. (3.76) leads to an overcounting of the number of valid paths for

the purposes of end-to-end correlations by gluing as described above, because

it includes “dangerous” histories which take an excursion to large values of x

before returning to the target window at time t. When glued to a trajectory

for the other end of the chain these histories may cross the eventual decimation

log-energy scale ∆ prematurely and would spoil the lower bound. To account

for the dangerous cases, we exclude from our counting those histories which

ever cross x = β
√
Dt and then return to the target window.

The way we achieve the exclusion is the following. Suppose that a history m[t′],

t′ ∈ [0, t], performs q crossings of the line x = β
√
Dt at times {t1, t2, . . . , tq}

before returning to the target window at t′ = t. Immediately after tq, the

history must travel downwards and remain below x = β
√
Dt until t′ = t. We

apply a transformation to m[t′] by reflecting the partial RW mR[tq, t] about the

line x = β
√
Dt and fixing the remainder. Because m[t] ∈ [α

√
Dt, β

√
Dt], the

transformed path m̃ necessarily ends in a “shadow window” x ∈ [β
√
Dt, (2β−

α)
√
Dt] at t′ = t. Moreover, the probability of the trajectory is unaffected

by the transformation m 7→ m̃. Now for every dangerous path with q ≥ 1

crossings we can identify a transformed partner terminating in the shadow

window which has the same probability. Thus the density in the shadow
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window at time t is an upper bound on the contribution to the density in

the target window arising from dangerous histories. (The upper bound is not

saturated, because a trajectory included in the shadow window could deviate

above x = 2β
√
Dt for some t′ ∈ (tq, t], and this RW would have no inverse-

transformed counterpart due to the absorbing boundary at x = 0.)

From the previous calculation, the fraction of the surviving density contained

in the shadow window is psw(α, β) = e−β
2/4 − e−(2β−α)2/4. Therefore a lower

bound on the valid density of surviving histories in the target window at time

t is given by

p̃w(α, β) = pw(α, β)− psw(α, β) (3.77)

= e−α
2/4 − 2e−β

2/4 + e−(2β−α)2/4 . (3.78)

There is an extended region of (α, β) for which the coefficient is positive; for

example, p̃w(α = 2, β = 4) ≈ 0.33.

t′

x/
√
Dt

2β − α

β

α

t1 t2 t3 t4 t

Figure 3.13: A dangerous trajectory contributing to the counting pw of the
density in the target window, drawn in blue, is illustrated. The shadow win-
dow used to eliminate these trajectories is also shown, drawn in purple. The
particular history shown has q = 4 crossings of the upper limit of the target
window and the reflected partial path on (tq, t], terminating in the shadow
window, is shown in yellow. Because the diffusion is unbiased, both the black
and black+yellow paths have the same probability, and as any such danger-
ous trajectory has a counterpart under the transformation, the density in the
shadow window upper-bounds the associated contribution to the density in
the target window.

Now take t = L/2. One can combine two such RWs satisfying the criteria above

to create a RW of length L by inverting one instance via I as (x, t) 7→ (−x,−t)
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and gluing the endpoints at t = ±L/2. The result is a trajectory of length L

reaching a maximum at t = L without crossing x = 0. Not all RWs of length

L which generate the (1, L) decimation in SDRG can be constructed this way,

only those with m[L/2] lying in the target window, but every RW coming

from this construction evidently satisfies condition 1. Thus this probability is

a lower bound on pe(L) ≥ [p̃w(α, β)S(L/2)]2 ∼ 1/L.

Together with the upper bound, this lower bound establishes the scaling for

end-to-end decimation probability—and thus the power law for end-to-end

correlations in the RS phase—as 1/L. Interestingly, this result is in agree-

ment (up to constants) with the naive guess assuming the independence of the

decimations of the two end spins.

3.5.3 Locally-correlated Majorana chains as a two-dimensional RW

In order to address the locally correlated Majorana chains it is necessary to

deal simultaneously with two RWs (returning for the moment to the discrete

formulation) x[n] and y[n]. In the general case, the steps taken at time n by

the RWs x and y are not independent, and are drawn from a joint distribution

µ(u, v). If the full state of the system is specified by variables (xn, yn, n), the

master equation for the probability distribution ρ(x, y, n) is

ρ(x, y, n+ 1) =

∫
du

∫
dv µ(u, v) ρ(x− u, y − v, n) . (3.79)

This is however just the master equation for a RW in two dimensions (2d). In

the natural 2d vector notation,

ρ(x, n+ 1) =

∫
d2uµ(u)ρ(x− u, n), x =

[
x

y

]
, u =

[
u

v

]
. (3.80)

The continuum limit of such a master equation is again diffusion, however the

correlation between x and y results in anisotropic diffusion coefficients. As a

remedy we first transform the problem into isotropic diffusion.

The correlation coefficient is corr(u, v) = cov(u,v)
std(u) std(v)

≡ δ ∈ [0, 1], where Var(u) =

Var(v) = 2D. (The value of δ here is related to, but not necessarily the same

as, the bare δ defined in Sec. 3.4.2.) The eigenvalue decomposition of the

covariance matrix Σ is

Σ

2D
=

[
1 δ

δ 1

]
≡ UΛU † =

(
(1− δ)ê−ê>− + (1 + δ)ê+ê

>
+

)
, (3.81)
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with eigenvectors ê− = 1√
2
(1,−1)> and ê+ = 1√

2
(1, 1)>. The transformation

of the plane under which the 2d RW diffuses isotropically with coefficient D

sets Σ′ = 2D I:

W (δ) = [Λ(δ)]−1/2 U † = [Λ(δ)]−1/2R
[π

4

]
. (3.82)

This transformation consists of a rotation about the origin by π/4, followed by

a δ-dependent anisotropic rescaling. It acts asW(δ) : A 7→ A′ = W (δ)AW †(δ).

There is a divergence at δ = 1, where Σ is rank-deficient; this reflects that the

line y = x cannot be mapped onto the plane in this way, and the RW in the

perfectly correlated case is fundamentally one-dimensional. We will refer to

the (x, y) plane of the original problem as the “physical geometry,” and the

image of the mapping W(δ) as the “solution geometry,” where the governing

equation is isotropic diffusion:

∂

∂t
ρ = D

(
∂2

∂x′2
+

∂2

∂y′2

)
ρ . (3.83)

3.5.4 Rigorous bounds on critical exponents in the locally-correlated

model

Investigating the (1, L) decimation likelihood directly in the exact solution for

the fully bounded geometry would necessitate solving the diffusion equation in

a parallelogram. A harmonic decomposition is not directly accessible here, and

as far as we are aware the solution would require a prohibitively complicated

Schwarz–Christoffel conformal transformation [27] and likely only be possible

numerically. Thus, an analytic treatment of the SDRG for the Majorana chains

with arbitrary local correlations requires the connection to the semi-infinite

RW survival probability, and the simpler geometry involved there.

As was the case for the single Majorana chain, we will make use of the solution

in a semi-infinite domain, now bounded by the lines x = 0 and y = 0. The

origin is evidently fixed by W(δ), and for any δ the boundaries map to the

lines y′ = ±
√

1−δ
1+δ

x′, where x′ lies in the ê− direction and y′ along ê+. These

boundaries delimit an absorbing wedge geometry with opening angle cos Θ =

−δ, which runs from Θ = π/2 at δ = 0 to Θ = π at δ = 1.

The Green’s function in the infinite wedge can be found from the free-space

distribution by the method of images for opening angles Θ = π/m, with

m a positive integer. This entails 2m − 1 image charges with alternating

sign arranged symmetrically around the wedge apex. However, writing the
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distribution in this form turns out to be very complicated, and for our case
π
2
≤ Θ < π so this solution is of limited use. Fortunately the Green’s function

is in fact known exactly for arbitrary angles Θ. In polar coordinates with

the wedge apex at r = 0 and solution domain bounded by absorbing walls

ρ(r, θ = 0, t) = ρ(r, θ = Θ, t) = 0, the Green’s function is [28]

ρ(r, θ, t; r0, θ0) =
e−(r2+r2

0)/4Dt

ΘDt

∞∑
l=1

Ilν

( rr0

2Dt

)
sin(lνθ) sin(lνθ0) , (3.84)

where ν = π/Θ and Ilν is a modified Bessel function of the first kind:

Is(x) =
∞∑
z=0

(x/2)s+2z

z! Γ(s+ z + 1)
, (3.85)

which arises from the equation for the radial coordinate. The initial condition

is (x0, y0) = (〈u〉, 〈v〉), where in our case 〈u〉 = 〈v〉. In the solution geometry

this point maps to r0ê+, where r0 = 〈u〉
√

2
1+δ

. In polar coordinates the source

point is (r0, θ0 = Θ
2

). As a result, in Eq. (3.84), the factor sin(lνθ0) vanishes

for even l, and for odd l is equal to a phase (−1)(l−1)/2.

The survival probability is determined from the Green’s function by integration

over the solution region. To determine its asymptotic scaling we take the

contribution at leading order at late times t; even though the integration

domain extends r → ∞, the integral is regulated by the exponential, which

decays fast enough to suppress errors arising at large r. Because ν ∈ (1, 2] the

leading behavior requires only the l = 1, z = 0 term in the double sum, and

sets e−r
2
0/4Dt → 1. Explicitly,

S(t) =

∫
r dr dθ ρ(r, θ, t; r0, θ0) (3.86)

≈
∫ Θ

0
dθ sin(νθ)

ΘΓ(ν + 1)Dt

∫ ∞
0

r dr e−r
2/4Dt

( rr0

4Dt

)ν
(3.87)

=
2

πΓ(ν + 1)Dt

(
r0√
4Dt

)ν ∫ ∞
0

r dr e−r
2/4Dt

( r

4Dt

)ν
(3.88)

=
8

πΓ(ν + 1)
√

4Dt

(
r0√
4Dt

)ν ∫ ∞
0

dr e−r
2/4Dt

(
r√
4Dt

)ν+1

(3.89)

=
8

πΓ(ν + 1)

(
r0√
4Dt

)ν ∫ ∞
0

du e−u
2

uν+1 (3.90)

=
4 Γ(ν

2
+ 1)

πΓ(ν + 1)

(
r0√
4Dt

)ν
. (3.91)
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We find that the survival probability exponent depends on the opening angle

as S(t) ∼ t−π/2Θ. This result for a RW in a 2d wedge is in fact well known

[26, 29, 30]. As Θ is a function of the correlation coefficient δ, continuously

varying behavior of this type is in agreement with the numerical observations

in Sec. 3.4.2. Specifically, again relying on the naive assumption that the two

ends of the chain decimate independently, the likelihood of this pairing scales

as [S(L)]2 ∼ L−π/Θ, which matches the known end-to-end scaling exponents

ηe
z = 2 for the uncorrelated model at δ = 0 and ηe

z = 1 for δ = 1.

Our strategy for bounding the probability of the decimation (1, L) occurring

on both chains is analogous to that of Sec. 3.5.2. From the Green’s function

we establish that at late times a constant fraction of surviving RWs are valid

and found in a target window, using a shadow window to exclude dangerous

trajectories. Then by gluing together the ends of two RWs of length t = L/2

we establish bounds on the power law.

In particular, we can write the upper bound immediately. Any 2d RW corre-

sponding to a locally correlated pair of Majorana chains can be decomposed

into half-chains, one with time coordinate running from t = 1 to t = L/2 and

the other from t = L to t = L/2, which are properly glued at their respective

times t = L/2. Each of these half-chains may be valid surviving trajectories

in their semi-infinite wedge, and of that set some will produce (1, L) deci-

mations on both Majorana chains. Trajectories that do not decompose into

surviving half-chains will not satisfy criterion 1. However because not every

pair of surviving trajectories at t = L/2 will do so either, the probability

pe(L) ≤ S(L/2)2 ∼ L−π/Θ.

Now in order to prove a lower bound, let α and β be positive constants,

α < β ≤ 2α, and define the target window for a 2d RW at time t by x, y ∈
[α
√
Dt, β

√
Dt]. In the physical geometry the window is a square, however

mapped to the solution geometry it becomes a parallelogram. The corners

{a, b, c, d} map to

{a′, b′, c′, d′} =
{ 2α

√
Dt√

2(1 + δ)
ê+ ,

(α− β)
√
Dt√

2(1− δ)
ê− +

(α + β)
√
Dt√

2(1 + δ)
ê+ ,

(β − α)
√
Dt√

2(1− δ)
ê− +

(α + β)
√
Dt√

2(1 + δ)
ê+ ,

2β
√
Dt√

2(1 + δ)
ê+

}
. (3.92)

Treating this exact shape in the polar coordinates of Eq. (3.84) is not simple;

instead we define an integration volume that is a subset of the target window,
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with the same t scaling, but which leads to a simpler result. Consider the

midpoints of the edges of the target window in the physical geometry:

{e, f, g, h} =

{(
α + β

2

√
Dt, α

√
Dt

)
,

(
α + β

2

√
Dt, β

√
Dt

)
,

(
α
√
Dt,

α + β

2

√
Dt

)
,

(
β
√
Dt,

α + β

2

√
Dt

)}
. (3.93)

These map to

{e′, f ′, g′, h′} ={
(β − α)

√
Dt

2
√

2(1− δ)
ê− +

(3α + β)
√
Dt

2
√

2(1 + δ)
ê+ ,

(α− β)
√
Dt

2
√

2(1− δ)
ê− +

(α + 3β)
√
Dt

2
√

2(1 + δ)
ê+ ,

(α− β)
√
Dt

2
√

2(1− δ)
ê− +

(3α + β)
√
Dt

2
√

2(1 + δ)
ê+ ,

(β − α)
√
Dt

2
√

2(1− δ)
ê− +

(α + 3β)
√
Dt

2
√

2(1 + δ)
ê+

}
.

(3.94)

They describe the four corners of a rectangle in the solution geometry, sym-

metric about the line θ = Θ
2

, with edges in the directions ê− and ê+. We

define an integration domain bounded by the two distinct radial values r+ (of

points f ′ and h′) and r− (of e′ and g′), and the angular deviation ψ of points

f ′ and h′ from the midline θ = Θ
2

. The proof that this “sector” geometry is

indeed a subvolume of the target domain for any opening angle Θ ∈ (0, π) can

be seen by drawing a picture. The specific integration bounds can be found

straightforwardly from Eq. (3.94), but the crucial property is their scaling with

t. Denote the radial limits by r± = C±(α, β, δ)
√
Dt; the angular half-width

ψ = ψ(α, β, δ) turns out to be purely geometric, with no t dependence. Again

extracting the leading behavior for late times t, the density of surviving paths
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in the integration window is

pw(α, β, δ) =
1

S(t)

∫ r+

r−

r dr

∫ Θ
2

+ψ

Θ
2
−ψ

dθ ρ(r, θ, t; r0, θ0) (3.95)

≈ 1

S(t)

1

ΘΓ(ν + 1)Dt

∫ r+

r−

r dr e−r
2/4Dt

( rr0

4Dt

)ν ∫ Θ
2

+ψ

Θ
2
−ψ

dθ sin(νθ)

(3.96)

=
1

S(t)

1

ΘΓ(ν + 1)Dt

(
2

ν
sin(νψ)

)∫ r+

r−

r dr e−r
2/4Dt

( rr0

4Dt

)ν
(3.97)

=
1

S(t)

8 sin(νψ)

πΓ(ν + 1)

(
r0√
4Dt

)ν ∫ C+/2

C−/2

du e−u
2

uν+1 (3.98)

=
1

S(t)

8 sin(νψ)

πΓ(ν + 1)
I(α, β, δ)

(
r0√
4Dt

)ν
(3.99)

=
2 sin(νψ)

Γ(ν
2

+ 1)
I(α, β, δ) , (3.100)

where

I(α, β, δ) =

∫ C+/2

C−/2

du e−u
2

uν+1 . (3.101)

So pw is indeed a constant, determined only by the correlation coefficient δ

and the constants α and β.

As was the case for the 1d RW, the density calculation above includes a “dan-

gerous” contribution which should be subtracted in order to lower-bound the

decimation probability by gluing. Again we upper-bound this contribution by

calculating the density in a shadow window. We consider those paths danger-

ous which ever cross the lines x = β
√
Dt or y = β

√
Dt in the physical space

before returning to the target window at time t. In the solution geometry

these lines map to

R :
√

2(1− δ)x′ +
√

2(1 + δ)y′ − 2β
√
Dt = 0 , (3.102)

L : −
√

2(1− δ)x′ +
√

2(1 + δ)y′ − 2β
√
Dt = 0 . (3.103)

On the “right” half-wedge defined by 0 < θ ≤ Θ
2

, the boundary for dangerous

trajectories is R, the image of x = β
√
Dt. On the “left” half wedge Θ

2
< θ < Θ,

the boundary is L, the image of y = β
√
Dt. Suppose a trajectory with time

parameter t′ makes q crossings at times {t1, . . . , tq} of the combined boundary

at various points {(r1, θ1), . . . , (rq, θq)} before returning to the target window
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at time t′ = t. After its last crossing at (rq, θq), it must stay within the allowed

region for times (tq, t]. We transform the trajectory by reflecting the partial

RW for times t′ ∈ (tq, t] about the boundary that was crossed at t′ = tq, either

R if θq ∈ (0, Θ
2

] or L if θq ∈ (Θ
2
,Θ). Because the distribution of steps in the

solution geometry is isotropic, the transformed path has the same probability

as the dangerous original. (The reflection must be performed in the solution

geometry, and does not commute with W(δ).) The shadow window in this

case has two components, which are disconnected for Θ < 2π
3

but overlap for

Θ > 2π
3

.

ê+

ê−

RL

2ψsw

2ψ

Θ

a′

b′ c′

d′
a′L

c′L

a′R

b′R

e′

f ′

g′

h′

Figure 3.14: The solution geometry is illustrated for the 2d RW problem
in the wedge with opening angle Θ, found from the correlation coefficient
by cos Θ = −δ. The exact target window is drawn in blue, and the sector
defining the integration region for the target in green. The two components of
the shadow window are found by reflecting the exact target window across the
lines L and R and are drawn in purple, with the bounding shadow integration
region, which necessarily covers these areas, in yellow.
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The corners c′ and d′ of the target window lie on line R, and b′ and d′ on line

L. Thus we need only reflect a′ and b′ about R, and a′ and c′ about L. The

coordinates of these points reflected about R are

{a′R, b′R} ={
(β − α)

√
Dt
√

2(1− δ)ê− +

(
(β − α)

√
Dt
√

2(1 + δ) +
2α
√
Dt√

2(1 + δ)

)
ê+ ,(

(β − α)
√
Dt
√

2(1− δ) +
(α− β)

√
Dt√

2(1− δ)

)
ê−

+

(
(β − α)

√
Dt
√

2(1 + δ) +
(α + β)

√
Dt√

2(1 + δ)

)
ê+

}
, (3.104)

and about L,

{a′L, c′L} ={
(α− β)

√
Dt
√

2(1− δ)ê− +

(
(β − α)

√
Dt
√

2(1 + δ) +
2α
√
Dt√

2(1 + δ)

)
ê+ ,(

(α− β)
√
Dt
√

2(1− δ) +
(β − α)

√
Dt√

2(1− δ)

)
ê−

+

(
(β − α)

√
Dt
√

2(1 + δ) +
(α + β)

√
Dt√

2(1 + δ)

)
ê+

}
. (3.105)

The four-sided figures described by the exact shadow window are evidently

complicated. As with the target window, we bound the area using a sector

which scales in the same way, however in this case we need an upper bound.

The upper limit rsw
+ is the radial coordinate of points c′L and b′R, and the lower

limit rsw
− that shared by the corners b′ and c′. The angular half-width is the

maximum of the half-width of points c′ and a′R; this depends on the specific

value of Θ. Again we find that the integration limits rsw
± = Csw

± (α, β, δ)
√
Dt,

and ψsw = ψsw(α, β, δ).

Then based on the previous calculation, psw(α, β, δ) = 2 sin(νψsw)
Γ( ν

2
+1)
Isw(α, β, δ)

and the corrected fraction is

p̃w(α, β, δ) = pw(α, β, δ)− psw(α, β, δ) (3.106)

=
2

Γ(ν
2

+ 1)

(
sin(νψ)I − sin(νψsw)Isw

)
. (3.107)

By working explicitly through the algebra, we determine that p̃w is positive

for all values of δ ∈ [0, 1) for α = 1, β = 2.
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Now, taking t = L/2, for any two valid trajectories in the target window we

can apply an inversion (x, y, t) 7→ (−x,−y,−t) to one and glue the endpoints

at t = ±L/2 in order to construct a RW which satisfies condition 1 for end-

to-end decimation in the quantum chain. Therefore a lower bound on the

simultaneous (1, L) decimation probability is given by pe ≥ [p̃wS(L/2)]2 ∼
L−π/Θ. In combination with the upper bound, this shows that the power law

exponent controlling end-to-end decimation probability (and consequently ηe
z)

varies continuously with δ as

ηe
z = π/ arccos(−δ) . (3.108)

3.6 Discussion of results

In the preceding sections, motivated by the observations of Ref. [1], we have

performed a study of the low-energy properties of the random XYZ model

using RRG, developed in Ref. [19] and Ch. 2, for unbiased numerically exact

results at low energies. At all points allowing comparison, our results are in

general agreement with the previous findings measured at infinite tempera-

ture in SBRG, and strongly suggest that—regardless of the behavior of highly

excited states—the critical line is an IRFP with continuously varying critical

exponents. Perhaps surprisingly, a Hartree–Fock mean-field theory treating

the Jz interaction terms as a perturbation around the random XY fixed point

yields results from diagonalization of the Majorana Hamiltonian that are qual-

itatively rather consistent with the full interacting model. This is in contrast

to the clean case, where the mean field model is not qualitatively accurate due

to divergences in the perturbation theory [31].

Continuously varying critical exponents were previously observed in IRFPs

associated with correlated disorder in Ref. [32], however this is in a qualita-

tively different setting than ours. Specifically, the RTFIM disordered fixed

point perturbed by the introduction of long-range correlations ∼ r−a was

argued to exhibit critical indices varying continuously with a. In addition

to being dependent on spatial correlations, the disorder in this model is of

the “random-temperature” type, as opposed to the random anisotropy of the

present case. The distinction can be seen sharply in the Harris criterion for

correlated disorder, which applies to random-temperature disorder and stip-

ulates that long-range correlations are irrelevant in an RG sense if a > 2/ν,

where ν is the correlation length critical exponent [33, 34]. This criterion is

evidently violated by our locally correlated effective model.
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The locally-correlated effective model, introduced with the idea of distilling

the essential feature of the mean field theory, again exhibits continuously vary-

ing critical exponents. Because of the simple form of this quadratic effective

model, we were able to treat it analytically in the SDRG using the random

walk formulation in two dimensions. By making use of a connection between

survival probability and the structure of decimation in the RG, we showed

that a critical exponent for end-to-end spin correlations varies continuously

as the coupling correlation parameter is tuned. This result proves one of the

scenarios of Fisher [4], that random anisotropy is marginal along the critical

line connecting the random XX and random XY fixed points. It should be

the case that the proof can be extended to other critical exponents without

too much difficulty, in particular that governing simultaneous decimation in

the bulk (which is also our ηz); this is because the additional conditions re-

quired to ensure decimation do not involve time-dependent quantities but only

time-averaged “eventual” hitting probabilities.

3.A Random-walk results for the microscopic disorder distribution

3.A.1 Eventual absorption on the bounded interval

In order to treat the parts of the RW to the left of A and to the right of

A′ it suffices to look for a set of steady-state functions aσL(x) ≡ aL(x, σ) and

aσR(x) ≡ aR(x, σ), denoting the eventual probability of absorption by crossing

the boundary at 0 or ∆, respectively, for the system in state (x, σ). We

can treat this question directly using the microscopic disorder distribution.

Based on the transition rule of the RW, we have the following self-consistency

condition for these functions:

a±d (x) =

∫ ∞
0

du τ(u) a∓d (x± u) , d = L,R . (3.109)

By symmetry under x→ ∆−x (this relies on the statistical symmetry between

Jx and Jy),

a±L(x) = a∓R(∆− x) and a±R(x) = a∓L(∆− x) . (3.110)

Finally, we know with certainty that the RW will cross one or the other bound-

ary, so a±L(x) + a±R(x) = 1 for all x ∈ R. Using this fact along with plugging

Eq. (3.110) into Eq. (3.109) obtains the condition for a single distribution,

which is

a±d (x) = 1−
∫ ∞

0

du τ(u) a±d (∆− x∓ u) . (3.111)
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Define the probabilities piecewise:

aσL(x) =


1, x ≤ 0

ãσL(x), 0 < x < ∆

0, x ≥ ∆

and aσR(x) =


0, x ≤ 0

ãσR(x), 0 < x < ∆

1, x ≥ ∆

.

(3.112)

The functions may not be continuous at x = 0 or ∆, but we expect that

lim
ε→0

ã−R(ε) = lim
ε→0

ã+
L(∆− ε) = 0, and lim

ε→0
ã−L(ε) = lim

ε→0
ã+
R(∆− ε) = 1 . (3.113)

Consider the RW to the right of A′. The situation here is a boundary set at

∆ followed by a single downward step of size x ∼ τ(u). The likelihood that

the RW will return to the initial level 0 ∆ is then simply ã−L(x = ∆).

It seems the way to proceed is by trying to guess terms which could satisfy

Eq. (3.111). Specifically, consider the case of ã−R(x), which is convenient be-

cause we expect its limiting value as x → 0 to be 0, and its limiting value as

x→ ∆ to be some number less than 1. Then we have

ã−R(x) = 1−
∫ x

0

du τ(u) ã−R((∆− x) + u)−
∫ ∞
x

du τ(u) (3.114)

= 1− e−x/Γ − 1

Γ

∫ x

0

du e−u/Γ ã−R((∆− x) + u) . (3.115)

This looks pretty challenging, however really all of this should just be some sort

of notationally obscured Poisson equation. For the case of diffusion—which

should also be applicable here—the solution is quite simple, being linear in x.

So, trying a variational form ã−R(x) = c1x,

c1x , 1− e−x/Γ − 1

Γ

∫ x

0

du e−u/Γ κ((∆− x) + u) (3.116)

= 1− e−x/Γ − c1

(
(∆ + Γ)(1− e−x/Γ)− x

)
, (3.117)

which is solved by c1 = 1
∆+Γ

. One can show that the coefficient of a quadratic

term vanishes. The likelihood of eventually exiting via the “far” boundary

(satisfying condition 2 or 3 of Sec. 3.5.1) is

pfar(∆) = 1− ∆

∆ + Γ
=

Γ

∆ + Γ
≈ Γ

∆
for Γ/∆� 1 . (3.118)

3.A.2 Time-dependent free-space density

Steady-state methods do not suffice to determine the probability that the RW

will reach a maximum ∆ at a specific time t. It is natural to apply the contin-

uum diffusion picture on an interval, to which end we work explicitly through
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the derivation of the free-space probability density. This is just reproducing

a result already well known from the central limit theorem, from which we

know that the distribution of the sum of a large number of random variables

is Gaussian, as long as the component distributions have finite moments. In

the present case it essentially constrains our result for the free-space density

to be Gaussian with variance Γ2t. However because the alternation of step

directions, accounted for by an internal state, introduces an interesting mod-

ification we follow the derivation despite knowing the answer in advance. We

use RW-appropriate symbols, maintaining x ∈ R for log-energy density and

t = r ∈ Z for RW time, which we will later also treat as continuous.

The master equation, using the condensed notation ρ±(x, t) = ρ(x,±1, t), is

ρ±(x, t+ 1) =

∫ ∞
0

du τ(u) ρ∓(x± u, t) . (3.119)

Following the standard procedure for solving these types of problems, as in

Ref. [26], we want to change variables using the generating function for t (the

discrete counterpart to the Laplace transform) and Fourier transform in x:

ρ±(k, z) =

∫
R
dx eikx

∞∑
t=0

ztρ±(x, t) (3.120)

Now Eq. (3.119) is equivalently written

∞∑
t=0

zt+1

∫
R
dx eikxρ±(x, t+ 1) = z

∞∑
t=0

zt
∫
R
dx eikx

∫ ∞
0

du τ(u) ρ∓(x± u, t)

(3.121)

ρ±(k, z)− ρ±(k, t = 0) = z

∫ ∞
0

du τ(u) e∓iku
∞∑
t=0

zt
∫
R
dx eik(x±u)ρ∓(x± u, t)

(3.122)

= zρ∓(k, z)

∫ ∞
0

du τ(u) e∓iku (3.123)

=
zρ∓(k, z)

1± iΓk . (3.124)

The initial conditions are ρ+(x, t = 0) = δ(x) and ρ−(x, t = 0) = 0. This

reflects that ρ+(x) is really only defined for even times t and ρ−(x) for odd

times. (Though if we had ρ−(x, t = 0) = δ(x) we’d get the same result,

only by more complicated math.) Now we concatenate the two equations in
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Eq. (3.124) to solve for the distribution in (k, z)-space:

ρ+(k, z)− 1 =
z2ρ+(k, z)

1 + Γ2k2
=⇒ ρ+(k, z) =

1

1− z2

1+Γ2k2

. (3.125)

By expanding the Taylor series of Eq. (3.125) in z we undo the generating

function and restore t dependence:

ρ+(k, t) =

(
1√

1 + Γ2k2

)t
≡
(

1

1 + Γ2k2

)t/2
. (3.126)

Where t/2 ∈ Z, as we evaluate this function only at even times t. Now, to

second order in the Taylor series expansion, 1
1+Γ2k2 = 1− Γ2k2 + · · · ≈ e−Γ2k2

.

The inverse Fourier transform is evaluated by completing the square:

ρ+(x, t) ≈ 1

2π

∫
R
dk e−ikx−Γ2k2(t/2) (3.127)

=
1

2π

∫
R
dk exp

[
−Γ2t

2

(
k +

ix

Γ2t

)2

− x2

2Γ2t

]
(3.128)

=
1

Γ
√

2πt
exp

[
− x2

2Γ2t

]
. (3.129)

So, as anticipated from the central limit theorem, the asymptotic distribution

is a Gaussian having Var[ρ+(x, t)] = Γ2t = Var[τ ]t, and mean 0. The σ = −1

density can be found by applying the master equation:

ρ−(x, t+ 1) =

∫ ∞
0

du τ(u) ρ+(x− u, t) (3.130)

=
1

Γ2
√

2πt

∫ ∞
0

du exp

[
−(x− u)2

2Γ2t
− u

Γ

]
(3.131)

=
1

2Γ
exp

[
Γ2t2 − 2Γtx

2Γ2t

]
erfc

[
Γt− x
Γ
√

2t

]
(3.132)

≈
√

t

2π

1

Γt− x exp

[
Γ2t2 − 2Γtx

2Γ2t
−
(

Γt− x
Γ
√

2t

)2
]

(3.133)

=

√
t

2π

1

Γt− x exp

[
− x2

2Γ2t

]
(3.134)

≈ 1

Γ
√

2πt

(
1 +

x

Γt

)
exp

[
− x2

2Γ2t

]
(3.135)

≈ 1

Γ
√

2πt
exp

[
− x2

2Γ2t
+

x

Γt

]
(3.136)

=
e1/2t

Γ
√

2πt
exp

[
−(x− Γ)2

2Γ2t

]
. (3.137)
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Above we used the first term in the asymptotic expansion of erfc:

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt ≈ e−x
2

x
√
π
. (3.138)

So at late times the σ = −1 distribution is approximately a shifted Gaussian

with mean µ = Γ = 〈τ〉, reflecting that one more positive step than negative

has been taken at odd times t. Collecting the two results, in the long-time

limit (using t versus t+ 1 in the second case has a negligible effect),

ρ+(x, t) =
1

Γ
√

2πt
exp

[
− x2

2Γ2t

]
, (3.139)

ρ−(x, t) =
1

Γ
√

2πt
exp

[
−(x− Γ)2

2Γ2t

]
. (3.140)
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[10] F. Iglói, R. Juhász, and H. Rieger, “Random antiferromagnetic quantum
spin chains: Exact results from scaling of rare regions”, Physical Review
B 61 (2000), 11552.

[11] K. Damle and D. A. Huse, “Permutation-symmetric multicritical points
in random antiferromagnetic spin chains”, Physical Review Letters 89
(2002), 277203.

[12] A. Y. Kitaev, “Unpaired Majorana fermions in quantum wires”, Physics-
Uspekhi 44 (2001), 131.

[13] O. Motrunich, K. Damle, and D. A. Huse, “Griffiths effects and quantum
critical points in dirty superconductors without spin-rotation invariance:
One-dimensional examples”, Physical Review B 63 (2001), 224204.

[14] C. Monthus, “Strong disorder real-space renormalization for the many-
body-localized phase of random Majorana models”, Journal of Physics
A: Mathematical and Theoretical 51 (2018), 115304.



95

[15] J. R. Schrieffer and P. A. Wolff, “Relation between the anderson and
kondo hamiltonians”, Physical Review 149 (1966), 491.

[16] S. Bravyi, D. P. DiVincenzo, and D. Loss, “Schrieffer–Wolff transforma-
tion for quantum many-body systems”, Annals of Physics 326 (2011),
2793.

[17] C.-J. Lin and O. I. Motrunich, “Quasiparticle explanation of the weak-
thermalization regime under quench in a nonintegrable quantum spin
chain”, Physical Review A 95 (2017), 023621.

[18] M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor Software
Library for Tensor Network Calculations, 2020.

[19] B. Roberts, T. Vidick, and O. I. Motrunich, “Implementation of rigorous
renormalization group method for ground space and low-energy states
of local Hamiltonians”, Physical Review B 96 (2017), 214203.

[20] G. Refael and J. E. Moore, “Entanglement entropy of random quantum
critical points in one dimension”, Physical Review Letters 93 (2004),
260602.
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C h a p t e r 4

DECONFINED QUANTUM CRITICAL POINT IN ONE
DIMENSION

[1] B. Roberts, S. Jiang, and O. I. Motrunich, “Deconfined quantum critical
point in one dimension”, Physical Review B 99 (2019), 165143.

4.1 Introduction

In this chapter, we numerically study a version of the deconfined quantum crit-

ical point (DQCP) realized in 1d, following the recent theoretical proposal [1]

of a continuous quantum phase transition in a particular 1d model having

Ising-type Z2 × Z2 symmetry as well as translation symmetry. The transition

is between an Ising ferromagnet and a Valence Bond Solid (VBS); as is the

case for the 2d DQCP, the phases on either side break different symmetries

and a continuous phase transition is disallowed in Landau–Ginzburg–Wilson

theory.

Here, we present strong numerical evidence supporting the 1d proposal in a

concrete model. We use matrix product states (MPS), working directly in the

thermodynamic limit, and develop a specialized “finite-entanglement scaling”

protocol that allows us to study this transition with high precision. A non-

trivial aspect of the infinite-volume MPS study of the DQCP is that the MPS

ground state at fixed bond dimension undergoes a first-order transition, which

turns out to be advantageous for accessing properties of the true continuous

DQCP via scaling in finite bond dimension. Our numerical study confirms

key predictions of the 1d DQCP theory, thus providing a definitive example

of such a phase transition. We note that non-Landau continuous transitions

were found previously in 1d fermionic models, in Refs. [2–7].

The chapter is organized as follows. In Sec. 4.2, we give an overview of the

system and symmetries, summarize field theory predictions for the transition,

and introduce our concrete model and its phase diagram. In Sec. 4.3, we de-

scribe the numerical study of the ferromagnet to VBS transition, including

details of our finite-entanglement scaling protocol which leads to an accurate

determination of the critical indices, and study the variation along the phase
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boundary. In Sec. 4.4, we study the regime where the transition splits into

two, with an intervening phase of coexistence of magnetic and VBS orders.

We conclude in Sec. 4.5 with a summary of our results. We also include three

appendices: Appendix 4.A provides a basic mean-field description of the phase

diagram using pictures of the ground states described by separable wavefunc-

tions. Appendix 4.B resolves some questions arising from the separable-state

mean-field picture by representation of model ground states for the phases as

analytic MPS of bond dimension two. Finally, Sec. 4.C develops a field theory

description of another phase transition encountered in this model beyond the

LGW symmetry-breaking paradigm.

4.2 Description of model

Here we summarize the key results of Ref. [1], which contains a number of

descriptions of the model at hand. Briefly, a second-order phase transition

was proposed at the phase boundary of an Ising ferromagnet and valence bond

solid (VBS). Because these states break different symmetries, a continuous

phase transition between them falls outside of the Landau–Ginzburg–Wilson

paradigm.

4.2.1 General model and symmetries

Our general Hamiltonian is the following spin model, with nearest- and next-

nearest-neighbor terms:

H =
∑
j

(
−Jxσxj σxj+1 − Jzσzjσzj+1 +K2xσ

x
j σ

x
j+2 +K2zσ

z
jσ

z
j+2

)
. (4.1)

We take Jx, Jz, K2x, K2z nonnegative, that is, with ferromagnetic nearest-

neighbor and antiferromagnetic next-nearest-neighbor interactions. H respects

two Ising-like symmetries as well as time reversal:

gx =
∏
j

σxj : σxj 7→ σxj , σ
y,z
j 7→ −σy,zj ; (4.2)

gz =
∏
j

σzj : σzj 7→ σzj , σ
x,y
j 7→ −σx,yj ; (4.3)

T =

(∏
j

iσyj

)
K : σαj 7→ −σαj , i 7→ −i . (4.4)

Here K is complex conjugation in the σz basis. The model also has translation

symmetry, T1 : σαj 7→ σαj+1, as well as inversion symmetry I : σαj 7→ σα−j+1,

which we take to be about a bond center.
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In the regime where Jz is dominant, the spins order as a ferromagnet in the

σz direction; we call this phase “zFM.” For intermediate K2x ∼ K2z, the

spins are disordered (all on-site symmetries are preserved) and instead form

dimers on alternating bonds; we call this phase “VBS-I,” to distinguish from

other specific dimer states which we encounter. A fixed-point picture of this

particular VBS phase is a product state of dimers on, say, all (2m − 1, 2m)

bonds, where each dimer is an entangled state of two spins of the form

|D(I)
12 〉 =

|+ẑ〉1|+ẑ〉2 + |−ẑ〉1|−ẑ〉2√
2

=
|+x̂〉1|+x̂〉2 + |−x̂〉1|−x̂〉2√

2

=
|+ŷ〉1|−ŷ〉2 + |−ŷ〉1|+ŷ〉2√

2
.

(4.5)

Note that the spins in the dimer have ferromagnetic zz and xx correlations

and antiferromagnetic yy correlations. This state is expected from the ferro-

magnetic Jz and Jx couplings. Most of the time, we will focus on the VBS-I

phase and will frequently refer to it as simply VBS where it does not cause

confusion.

The above fixed-point VBS wavefunction is an exact ground state at the

Majumdar–Ghosh point: Jx = Jz = J , K2x = K2z = K2, and K2/J = 0.5 [8–

11]. Our primary focus is on the phase transition between the zFM and VBS-I

phases.

4.2.2 Summary of field theory for the zFM to VBS transition

The field theory description of the zFM to VBS transition in Ref. [1] has a

Luttinger liquid–like form and is written in terms of conjugate fields φ̃ and θ̃,

with velocity ṽ and Luttinger parameter g̃:

S[φ̃, θ̃]=

∫
dτ dx

[
i

π
∂τ φ̃∂xθ̃ +

ṽ

2π

(
1

g̃
(∂xθ̃)

2 + g̃(∂xφ̃)2

)]
+

∫
dτ dx

[
λ cos(2θ̃) + λ′ cos(4θ̃) + κ cos(4φ̃)

]
. (4.6)

The notation here matches that in Ref. [1] (see Sec. VII there); in particu-

lar, tildes over the fields signify that they are not simply related to a naive

bosonization of spins in the xz plane.

As written, the fields have periodicities φ̃ + π ≡ φ̃ and θ̃ + 2π ≡ θ̃, which

follows from their partonic origin (see Sec. VII in Ref. [1] for details and
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also App. E there for another perspective on this theory). The second line

shows the leading symmetry-allowed cosine terms of the fields. Taking the

Luttinger parameter in the range g̃ ∈ (1/2, 2) arranges that the λ′ and κ

terms are irrelevant and the λ term is the only relevant cosine. The zFM to

VBS transition occurs when the relevant coupling λ changes sign, hence the

critical theory is Gaussian. The correlation length exponent follows from the

scaling dimension of the relevant cosine perturbation and is given by

ν =
1

2− g̃ , (4.7)

which can vary in the range ν ∈ (2/3,∞) for g̃ ∈ (1/2, 2).

The most important observables are the zFM and VBS order parameters,

which are given by

MFM
z ∼ sin(θ̃) , ΨVBS ∼ cos(θ̃) . (4.8)

At the critical point, they have the same scaling dimension

dim[MFM
z ] = dim[ΨVBS] =

g̃

4
, (4.9)

which can vary in the range (1/8, 1/2). The scaling dimension of an observable

O determines the power law decay of the critical correlations: if 〈O(x)O(0)〉 ∼
1/xpO , then pO = 2 dim[O]. General scaling arguments also yield the order

parameter onset exponent β = νp/2.

We also mention the next most prominent observables, namely the xFM and

yAFM order parameters

MFM
x ∼ cos(2φ̃) , MAFM

y ∼ sin(2φ̃) , (4.10)

with scaling dimensions

dim[MFM
x ] = dim[MAFM

y ] =
1

g̃
, (4.11)

which can vary between 2 and 1/2. Note that the dominant σx correlations are

ferromagnetic while the dominant σy correlations are antiferromagnetic. This

is tied to the fact that this theory describes the transition from the zFM phase

to the VBS-I phase with the fixed-point elementary dimer given by Eq. (4.5);

see also the discussion following that equation.
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To summarize, the critical exponents vary continuously and depend on a single

parameter g̃. When g̃ drops below 1/2, the λ′ term becomes relevant and

destabilizes the above picture for the direct transition between the zFM and

VBS phases. Analysis in Ref. [1] suggests that for λ′ > 0, an intermediate

phase with coexisting zFM and VBS order parameters appears between the

pure zFM and pure VBS phases. We will also examine this scenario in our

study of the specific model below.

4.2.3 Specific model and expected phase behavior

In order to study the phase transition between the Ising ferromagnet and VBS

phases, we restrict in parameter space to a two-dimensional slice given by

K2 = K2x = K2z and δ = (Jz − Jx)/(Jz + Jx); that is, Jz = J(1 + δ) and

Jx = J(1−δ), where we will take J = 1. The U(1) symmetry of rotations in the

xz plane is broken only by the nearest-neighbor couplings, and is restored for

anisotropy δ = 0. The point δ = K2 = 0 is the XX model, which maps to free

fermions and belongs to the quasi–long-range-ordered (QLRO) phase present

on the δ = 0 axis up to some critical K2,KT. Along this axis at K2,KT, the

model undergoes a Kosterlitz–Thouless transition [12–14] to the VBS phase

described earlier. Additional phases occur at significantly larger K2 and were

studied in Refs. [10, 11] but are not considered in the present work. For any

|δ| > 0, at small values of K2 the ground state is an Ising ferromagnetic state.

At intermediate K2 the VBS phase is stable to introducing spin anisotropy and

extends to non-zero δ. At fixed finite δ, we therefore expect that increasing the

K2 term from small values will drive a transition from the Ising ferromagnet

to the VBS phase.

It is sufficient to consider δ ≥ 0, as the Hamiltonian with parameters {−δ,K2}
is equivalent to that with {δ,K2} up to a local unitary rotation, σxj 7→ σzj , σ

z
j 7→

−σxj , which takes the zFM phase to an Ising x ferromagnet (“xFM”), and vice

versa. This transformation leaves the VBS-I dimer of Eq. (4.5) invariant, thus

the same phase appears for both positive and negative δ.

We may also restrict our focus to models with δ ≤ 1 due to another relationship—

namely, that models having parameters {δ,K2} and {δ′, K ′2} = {1/δ,K2/δ}
are related by local unitary

∏
m σ

z
2m, taking σz2m 7→ σz2m and σx2m 7→ −σx2m.

Indeed, the primed model has parameter values Jz′ = 1 + δ′ = (1 + δ)/δ,

Jx′ = 1− δ′ = −(1− δ)/δ, and the given rotation relates it to the first model
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up to an overall energy scale. Note that under this unitary transformation,

the elementary dimer wavefunction Eq. (4.5) maps to

|D(II)
12 〉 =

|+ẑ〉1|+ẑ〉2 − |−ẑ〉1|−ẑ〉2√
2

=
|+x̂〉1|−x̂〉2 + |−x̂〉1|+x̂〉2√

2

=
|+ŷ〉1|+ŷ〉2 + |−ŷ〉1|−ŷ〉2√

2
.

(4.12)

Hence, at values δ > 1 one finds another dimer state, which we denote

“VBS-II,” as it is a distinct phase from the previously described VBS-I pro-

vided the on-site symmetries are not broken [1]. The precise distinction be-

tween the phases is that on a periodic system with an odd number of dimers,

the ground states in VBS-I have quantum numbers (gx, gy, gz) = (1,−1, 1),

whereas the quantum numbers in VBS-II are (gx, gy, gz) = (−1, 1, 1).

Naively, one may expect a phase transition between VBS-I and VBS-II at δ =

1. As we discuss in Sec. 4.4.2, the actual situation in this model is somewhat

more complicated: in a particular region of the phase diagram close to the zFM

phase, the spin system also develops zFM order on top of VBS-I or VBS-II,

and this coexisting broken on-site symmetry allows a continuous connection

between the two dimer states. Finally, for larger K2, another phase—which

does not appear in the field theory—arises in our model intervening between

the two dimer phases. This is the so-called “up-up-down-down” state in the

σx basis, or “xUUDD.” The ground state of this phase breaks T1 and gz and

has the following fixed-point wavefunction:

|xUUDD〉 = ⊗n|+x̂〉4n−3 |+x̂〉4n−2 |−x̂〉4n−1 |−x̂〉4n . (4.13)

In App. 4.A, we give fixed-point pictures and mean field energetics for all

phases encountered in our window of study, thus providing some intuition for

the observed phase diagram.

4.3 Study of zFM to VBS phase transition

We make use of the recently-developed numerical method “variational uniform

matrix product states” (VUMPS), which is similar to infinite-system DMRG

(IDMRG) but has been demonstrated to achieve superior convergence in some

cases [15]. Like IDMRG, this method optimizes over MPS in the thermody-

namic limit; that is, the ansatz is specified by a finite set of tensors comprising
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the unit cell of the wavefunction, which contain the variational parameters of

the infinite state. The understanding of VUMPS is geometrical: one searches

within the manifold of uniform MPS of fixed bond dimension for the point |ψ∗〉
at which the energy residual (H −E)|ψ∗〉 is orthogonal to the manifold. This

optimization can be formulated in the “post-MPS” tangent space language

[16], but turns out to be similar to IDMRG.

The uniform MPS ansatz actually provides a dressed mean-field description

of the phase transition [17]. Because the mean-field treatment in the present

case exhibits a first-order phase transition, one expects the VUMPS method

to encounter metastability effects near the phase transition arising from com-

peting orders. We describe our protocol to address this challenge below; we

are in fact able to utilize the first-order behavior of the finite bond dimension

MPS to make very accurate determinations of the phase boundary. We first

show in Fig. 4.1 our result for the phase diagram outlined in Sec. 4.2.3, and

in the following sections we provide a methodological description.

4.3.1 Representative study along δ = 0.5 cut

We illustrate our method of studying this phase transition by discussing in

detail a concrete cut through the phase diagram, namely along the line δ = 0.5

generated by varying the parameter K2. Afterward, we will generalize to

obtain a full description of the phase boundary by repeating the same process

for multiple slices at constant δ. The line at δ = 0.5 is generic, having no

symmetries additional to those specified in Sec. 4.2. This slice is indicated in

Fig. 4.1.

Broad description of phase transition

One can attain a basic understanding of the phase transition via simple anal-

ysis of the optimized MPS ground states. Using ansatz trial states originating

within each phase, we tune K2 through the critical point and observe the evo-

lution of certain properties of the trial state wavefunction. The most evident

indication of the phase transition is the order parameter for each phase acquir-

ing a finite expectation value. Because the numerical method preferentially

selects states of low entanglement, it finds everywhere a representative of the

ground state manifold with spontaneously broken symmetry. As both phases

break Z2 symmetries (gx in the zFM phase and T1 in the VBS phase), both
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Figure 4.1: The phase diagram in the K2-δ plane includes the zFM, VBS-I,
VBS-II, and xUUDD phases. Inset shows a centered view of the coexistence
region, denoted “C,” appearing between the zFM and VBS-I or VBS-II phases
for δ close to 1. While the distinction between the VBS-I and VBS-II phases
is protected by the on-site symmetries, the VBS-I+zFM and VBS-II+zFM
coexistence phases are not distinct and there is no transition inside the C
region. The cut indicated at δ = 0.5 will be investigated in detail in Sec. 4.3.1
as an example case.

ground state degeneracies are two and the symmetry breaking manifests as

a sign in the expectation value of the corresponding order parameters. The

order parameter for the zFM phase is

〈MFM
z 〉 = 〈σz0〉 , (4.14)

where the site label 0 indicates the first tensor in the unit cell, which in this

case has only a single site. For the VBS phase, the order parameter is

〈ΨVBS〉 = 〈σ0 · σ1 − σ1 · σ2〉 , (4.15)

where σj denotes the Pauli vector acting at site j. The ground state of this

phase has a two-site unit cell. We ignore the sign in both order parameters,

always implicitly taking the absolute value.
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Figure 4.2: Transition between the zFM and VBS phases, as detected by the
corresponding order parameters. This scan is taken at fixed δ = 0.5 using bond
dimension χ = 192. We observe that at fixed χ, the MPS ground state shows
a first-order transition; the discontinuities in the order parameters decrease
towards zero with increasing χ, as studied in detail in Fig. 4.7.
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Figure 4.3: The divergence of the correlation length in the exact ground state
at the critical point manifests as a χ-dependent cusp in the MPS correlation
length ξ(χ); specifically, the height grows as a power law with χ, as studied in
detail in Fig. 4.6. This feature is indicative of a continuous phase transition.

The order parameters are shown in Fig. 4.2 for a large bond dimension χ = 192.

As suggested by the mean field analysis, we do in fact find a discontinuous

transition, with sizable jumps in both order parameters. However, we argue

that the true transition in the χ→∞ limit is continuous. Moreover, we use the

first-order nature of the finite-χ approximants to our advantage: in particular,

we will understand how the size of the order parameter discontinuity scales to
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zero with increasing χ.
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c = 1 (slope 1/6)

zFM ansatz, c = 0.99

VBS ansatz, c = 1.00

Figure 4.4: The scaling of the critical entanglement entropy S[χ;K2c(χ)]
is nearly linear in log ξ[χ;K2c(χ)], with the slope in good agreement with
predicted central charge c = 1. Data shown is taken at parameter δ = 0.5,
and the dashed line is provided as a guide to the eye. The pseudocritical point
K2c(χ) is defined later in the text and included here only for specificity; it is
important insofar as it is particular to the MPS of bond dimension χ.

Another fundamental characterization of the phase transition is the behavior

of the correlation length ξ(χ) of the minimum-energy state on the manifold

of MPS of bond dimension χ. This quantity is a property of the spectrum

of the MPS transfer matrix T . In the simplest case of a single-site unit cell,

T =
∑

σ A
†σ ⊗ Aσ, where σ runs over a basis of the local Hilbert space. Nor-

malization constrains the largest eigenvalue to be unity; the MPS correlation

length is set by the second-largest eigenvalue, which dictates the slowest de-

cay possible in the state. Specifically, if T spans a unit cell of n sites, then

λ2/λ1 = e−n/ξ(χ), or ξ(χ) = −n/ log λ2.

We use ξ without an argument to refer to the correlation length of the ground

state and use ξ(χ) for the MPS correlation length. At a continuous phase

transition, the true correlation length ξ diverges; however ξ(χ) remains finite,

as λ2 < λ1 by injectivity. Nevertheless, inside a gapped phase ξ(χ) → ξ, and

where ξ diverges ξ(χ) exhibits a cusp with χ-dependent height. We discuss

this relationship further in Sec. 4.3.1. The MPS correlation length at the zFM

to VBS phase transition is shown in Fig. 4.3, and indeed displays a strong

χ-dependent cusp at the critical point. At our largest χ = 192, ξ(χ) already
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exceeds 400 lattice spacings, with consistent growth in χ (see our later study in

Fig. 4.6). This is the first strong evidence of a second-order transition, despite

the order parameter discontinuity observed at this χ.

As further evidence for a second-order transition, Fig. 4.4 shows the entangle-

ment entropy in the optimized MPS versus the logarithm of the MPS corre-

lation length near criticality. For each χ we show two data points, measured

in both the ansatz originating in the zFM and VBS phases, each tuned to a

point still in the phase but very close to the MPS transition at this χ. The

relationship is consistent with the finite-entanglement scaling form [18]

S(χ) =
c

6
log ξ(χ) , (4.16)

where c is the central charge of the critical system. The central charge esti-

mates from fits to the above form are given in the figure and are consistent

with the expected c = 1 from the theory of the zFM to VBS transition.

Precise identification of critical point

In principle, MPS methods are not well suited for describing ground states of

quantum systems tuned to critical points, as the high degree of entanglement

places a strong constraint on the accuracy of MPS (“classical”) approxima-

tions. In contrast, ground states of gapped phases are well represented by

MPS; however, in practice one can hope only to approach sufficiently close

to a continuous phase transition to observe its true critical behavior. Beyond

some crossover point set by the bond dimension, the MPS ground state in-

stead flows to the phase transition described by the mean field theory of the

model [17].

While MPS are unable to directly access critical states, it turns out that in

the present case we can take advantage of the fact that the mean field phase

transition is discontinuous, as described in App. 4.A, to accurately estimate

the location of the critical point. Until the crossover point the system exhibits

the behavior of the true continuous phase transition, but in tuning the sys-

tem through the critical point one instead observes a level crossing of states

connected to the fixed-point descriptions of each phase. In this regime the

near-degeneracy of these dissimilar states leads to increased influence of the

initial trial wavefunction in the VUMPS method, making convergence to the

true ground state difficult when employing random initial states. To circum-
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Figure 4.5: Illustration of the process of locating the critical point from finite-
entanglement scaling at δ = 0.5. (a) The energies of both trial wavefunctions
from the zFM and VBS phases (fully optimized at each K2) follow smooth
curves, which determine the level crossing for a given bond dimension χ to
a finer resolution than the scan in parameter K2 via interpolation. Due to
hysteresis, in many cases we directly observe the crossing using the adiabatic
protocol described in the text. (b) Using the finite-entanglement scaling form
Eq. (4.19), we extrapolate from the extracted pseudocritical K2c(χ) to estimate
the location of the critical point at χ→∞. The scatter in data points is not
noise from the variational algorithm, but rather may be a consequence of the
uneven spacing of the entanglement spectrum.
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vent this, we use an “adiabatic” protocol, first obtaining the MPS ground state

in each phase far from the transition and slowly tuning the system to criticality

in a series of discrete jumps, at each step allowing the state to converge fully.

Due to metastability effects, hysteresis develops very close to the critical point;

however, we are always able to identify the true ground state from compari-

son of the trial state energies. Because for MPS all energy levels are analytic

functions of the Hamiltonian parameters, performing this scan in both phases

allows one to identify the level crossing with a high degree of accuracy, in fact

with a greater resolution than is used to tune the Hamiltonian.

This process is illustrated in Fig. 4.5 for a range of χ, where in panel (a) we

show the trial energies tracked from each side and in panel (b) we show the

extracted locations of the level crossings as a function of 1/χ. Note that the

range of K2 values is already very narrow, and the accuracy in the extrapolated

crossings is better than 10−6. Note also that the differences in the trial energies

are enhanced by subtracting some smooth polynomial background (chosen for

each χ), and that the vertical scale is very small; the slope discontinuity in

the VUMPS trial energy decreases towards zero with increasing χ.

The above protocol applies to a uniform MPS having a fixed bond dimension

χ. In fact, for any such ansatz with finite entanglement, the observed phase

transition will occur not at the true critical point K2c,true but at some pseud-

ocritical point K2c(χ). We expect that in the limit χ→∞ the pseudocritical

points converge to the true value. Pollmann et al. [18] determined that for a

critical system with infinite correlation length ξ, the correlation length of the

minimum-energy MPS at fixed bond dimension scales as

ξ(χ) ∼ χκ (4.17)

with exponent

κ =
6

c
(√

12
c

+ 1
) , (4.18)

which depends on the central charge of the critical system.

In order to describe the dependence of the pseudocritical point on bond dimen-

sion, we adapt an argument from finite-size scaling in statistical mechanics,

which is commonly used in Monte Carlo studies. Denote the control parameter

driving the transition as h, with the true critical point at hc,true. In a system
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of finite length L the transition is smeared, but one can often identify a pseu-

docritical point hc(L) from some feature in the observables, such as peaks in

susceptibilities, Binder ratio crossings, etc. Finite-size scaling predicts that the

pseudocritical points approach the true critical point as hc(L)−hc,true ∼ L−1/ν ,

which follows from comparing the true correlation length at hc(L) with the

length scale L imposed by the system size. We conjecture that similar relation

holds for the infinite-system variational MPS study, by replacing L with the

length scale ξ(χ) imposed by the bond dimension:

K2c(χ)−K2c,true ∼ ξ(χ)−1/ν ∼ χ−κ/ν . (4.19)

One can also imagine using this relation to extract the correlation length ex-

ponent ν.1

Unfortunately, one observes in Fig. 4.5(b) significant scatter in the values of

K2c(χ) on top of some smooth behavior. This is not noise or evidence that the

trial MPS is not energetically optimal, but rather a reproducible feature of the

finite-χ results, which we conjecture arises from the nonuniformity of the gaps

in the entanglement spectrum of the state. The plotted curve and value of

K2c(χ→∞) was fitted by fixing the value of the correlation length exponent

to ν ≈ 0.914 extracted from later analysis, and is presented primarily as a

consistency check. In any case, K2c(χ) varies over a very small range, and as

our scaling analysis below involves only the pseudocritical points K2c(χ), the

uncertainty in K2c(χ → ∞) is irrelevant for our subsequent characterizations

of the critical point.

Correlation length and order parameter onset exponents

Using the precise estimates of the finite-entanglement pseudocritical points

from Sec. 4.3.1, we are able to determine critical scaling exponents of the

transition. Specifically, we consider the correlation length exponent ν and the

order parameter exponents for both phases βzFM and βVBS. The most straight-

forward way to determine ν is through its definition: ξ ∼ |K2 − K2c|−ν . In

Fig. 4.6 we show ξ(χ) as a function of K2 −K2c(χ). Sufficiently far from the

critical point, ξ(χ) rapidly converges to ξ with increasing χ. In this regime

1In the 1d quantum Ising model studied in Ref. [17], the infinite-system MPS at fixed
χ has a continuous mean field transition, and (4.19) provides a fairly accurate description
of the approach of the corresponding pseudocritical points to the true critical point, with
central charge c = 1/2 and correlation length exponent ν = 1 for the Ising transition.
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Figure 4.6: The MPS correlation length ξ(χ) exhibits power-law behavior in
an intermediate region around K2c(χ), here shown in the zFM phase in the top
panel and VBS in the bottom. Close to the pseudocritical point, the correla-
tion length saturates to a maximum value dependent on the bond dimension,
whereas farther away it approaches a constant in the gapped phase. In the
case of the VBS phase, a nearby critical point (the transition to the xUUDD
phase) affects the behavior of ξ(χ). In the insets, we show the dependence of
the maximum correlation length ξ[χ;K2c(χ)] extrapolated to the pseudocrit-
ical point K2c(χ) as a function of χ. A fit to the scaling form Eq. (4.17) is
shown (note that the axes are logarithmic), along with extracted values of κ.
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Figure 4.7: Expectation values of the zFM and VBS order parameters on
the slice δ = 0.5 show a region of power-law dependence in an intermediate
range near the critical point which extends closer to the transition with in-
creasing bond dimension. Far from the critical point, the order parameters
approach their maximal values, whereas very close to K2c(χ) at fixed χ, they
saturate due to the discontinuous mean-field description of the transition. The
top panel shows K2 in the zFM phase, and the bottom panel K2 in the VBS
phase; in both panels, we give K2 relative to the pseudocritical K2c(χ) de-
termined for each bond dimension as in Fig. 4.5. The dashed line in each
panel shows the fitted power-law onset form with exponent βzFM or βVBS in
this intermediate range, using the largest bond dimension data, which is es-
sentially already converged to the infinite-χ values. Insets show the limiting
values of the corresponding order parameters at K2c(χ) as a function of the
limiting ξ[χ,K2c(χ)], and a power law fit to Eq. (4.20). Note that inset axes
use logarithmic scaling.
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the MPS correlation length is independent of χ, and the power-law behavior

of this quantity is indicative of the true critical exponent. By comparing data

for different χ, we can visually determine where ξ(χ) is already sufficiently

converged to the infinite-χ limit, and use only this region. The extracted cor-

relation length exponents on both sides of the transition are given in Fig. 4.6.

Note that the convergence of the correlation length with bond dimension is

relatively gradual, thus we find a somewhat limited dynamical range of con-

verged data ξ(χ → ∞), presumably causing the differing values of ν on the

two sides of the transition. In addition, it is particularly evident on the VBS

side that the correlation length is affected by proximity to the second-order

transition to the xUUDD phase. For this reason we will not use the values of

ν extracted from this method in the following discussion, but rather rely on

another way of determining the exponent, described below and in Fig. 4.7.

At fixed χ, the MPS correlation length ξ(χ) saturates near the pseudocritical

point K2c(χ). The extrapolated values from either side of the transition, de-

noted ξ[χ;K2c(χ)], are plotted vs χ in the insets in the corresponding panels.

Fitting to (4.17) gives similar estimates of κ from both sides which are in rough

agreement with κ ≈ 1.344 expected for c = 1.

Considering now the order parameters, in Fig. 4.7 we show 〈MFM
z 〉 (top panel)

and 〈ΨVBS〉 (bottom panel) as a function of |K2 − K2c(χ)|, each within its

ordered phase. In the main plot in each, we extract the corresponding order

parameter exponent over the range where we see convergence to the χ → ∞
limit. We appear to have wider dynamical ranges for the power law fitting here

compared to the correlation length data in Fig. 4.3. The extracted order pa-

rameter exponents are roughly equal for the two order parameters, supporting

one of the key predictions of the theory of the 1d DQCP.

As the order parameter scaling behavior appears to be relatively more robust

compared to that of the MPS correlation length, we can try to determine the

critical exponent ν via the finite-entanglement scaling of the order parameters.

Specifically, we again appeal to analogy to finite-size scaling in statistical me-

chanics, where in a system of length L an order parameter m remains finite at

a critical (or pseudocritical) point and scales to zero as L−β/ν . We conjecture

that in our infinite-system MPS setup, where the bond dimension sets the cut-

off length ξ(χ), the discontinuity in the order parameters at the pseudocritical
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point scales as

mjump ∼ ξ(χ)−β/ν ∼ χ−κβ/ν . (4.20)

The last expression gives the predicted scaling with bond dimension, but we

will focus on mjump vs ξ(χ) which is independent of exponent κ. For both the

zFM and VBS order parameters, the value in the optimized MPS is strictly

zero on one side and non-zero on the other side of the pseudocritical point

K2c(χ). Hence we obtain mjump by fitting and extrapolation of the corre-

sponding order parameter curves 〈MFM
z 〉[χ;K2] or 〈ΨVBS〉[χ;K2] from their

respective ordered sides to the pseudocritical point determined earlier. Insets

in both panels in Fig. 4.7 show the corresponding mjump versus similarly ob-

tained limiting correlation lengths at the pseudocritical points for the values

of χ used in the main panels, and also show fits to the scaling form Eq. (4.20).

The extracted values of β/ν are fairly close for both order parameters, in

agreement with the DQCP theory prediction that βzFM = βVBS. These are

also roughly consistent with the estimates of β in the main panels in Fig. 4.7

and ν in Fig. 4.6 made from regions where the data is converged nearest

to the χ → ∞ limit, although as discussed earlier, these estimates of ν are

not very accurate. Since the extracted values of β from the order parameter

scaling appear to be more accurate than the extracted values of ν from the

correlation length scaling, we can use the estimates of β and β/ν to provide a

more accurate estimate of ν ≈ 0.914± 0.035.

Power law decay of correlations

We also measure correlation functions in our MPS in order to establish bounds

on the critical decay of the important correlators in the theory introduced

in Sec. 4.2.2. These are pzFM for 〈MFM
z MFM

z 〉 and pVBS for 〈ΨVBSΨVBS〉, in

addition to exponents pxFM and pyAFM for 〈MFM
x MFM

x 〉 and 〈MAFM
y MAFM

y 〉.
Note that the latter two correlators decay exponentially both in the zFM

and VBS phases and only at the critical point show slower power law decay.

Examples of the correlation functions at criticality for our representative cut

at δ = 0.5 and the resulting bounds on the exponents are given in Fig. 4.8.

The top panel shows the correlations at the pseudocritical point K2c(χ), mea-

sured in the zFM ansatz using our largest bond dimension χ = 192. More

precisely, we measure the correlations by using the adiabatic process described

previously, beginning with a state well within each phase and tuning the Hamil-
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Figure 4.8: Top panel shows measurements of important correlation func-
tions (for example, 〈MFM

z MFM
z 〉 ∼ 〈σz0σzr〉) in the zFM ansatz state tuned to

the pseudocritical point K2c(χ = 192). This data is taken at δ = 0.5. All
correlators show a region of critical power-law behavior before reaching a con-
stant or decaying exponentially, as they eventually must in a finitely entangled
state. The correlation length in this state is ∼ 425. The bottom plot shows
the same correlation functions, but measured in the VBS ansatz MPS tuned
to the pseudocritical point.

tonian up to a very small distance . 10−6 away from the estimated K2c(χ). In

this case, the MFM
z correlations eventually saturate to a finite value while the

ΨVBS correlations eventually decay exponentially (the latter is also true of the

MFM
x and MAFM

y correlators). The bottom panel shows similar measurements

coming from the VBS side, where it is now the MFM
z correlations that even-

tually decay exponentially while the ΨVBS correlations eventually saturate.
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However, in both panels, there is a large window r < ξ(χ) where all correla-

tors show power law decay, and we list the extracted power law exponents in

each case.

Notably, we can tell even visually that the critical MFM
z correlations and ΨVBS

correlations have very similar power laws, and the extracted numerical values

of the exponents confirm this. For these correlators, it is natural to take the

values of the exponents extracted from the two sides as bounds on the true

critical exponent; these are already fairly close, and thus provide informative

bounds. We also note that we can tell visually that the critical MFM
x and

MAFM
y correlations have very close power laws; for each quantity, the extracted

exponents from both sides are very close, and are also close between the two

observables.

4.3.2 Continuously varying critical exponents

We repeat the analysis presented above in Sec. 4.3.1 for multiple cuts along

fixed δ which exhibit a direct zFM to VBS phase transition. We conclude

that this transition exists for all δ ≤ 0.7, with a tricritical point lying within

δ = (0.7, 0.8) where the transition branches, allowing an intervening phase.

We discuss this region in Sec. 4.4.

Our findings for all critical exponents are summarized in Table 4.1. We first

observe that they vary continuously with δ, a general trend which is in agree-

ment with the description of the field theory in Sec. 4.2.2. Additionally, we

have several specific predictions of nontrivial relationships between critical ex-

ponents which apply to any point on the phase boundary. We test these on our

cuts of constant δ, finding good agreement in all cases between the predictions

and observations.

Because the critical exponents in the field theory are functions of a single

variable—the Luttinger parameter g̃, which varies along the critical line—

they can be readily manipulated to obtain relationships between measurable

quantities. For example, we have the basic predictions that pzFM = pVBS and

pxFM = pyAFM, as well as the relationship

pzFM pxFM = pzFM pyAFM = 1 . (4.21)

We find that the data are generally in good agreement with these conditions,

as shown in Fig. 4.9, with some deviations for the largest δ. In this regime, the
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correlations feel the influence of the many other nearby critical lines, including

the transitions described below which continue after the zFM to VBS critical

line terminates. From the power law decay exponents, we can also easily

read off the Luttinger parameter: in particular, p = g̃/2 for the (dominant)

correlations of the order parameters. From this, we see that g̃ varies inside the

expected range (1/2, 2).

From general scaling behavior we have the relationship β/ν = p/2 for the zFM

and VBS order parameters. We measure both β/ν and p directly in our MPS

wavefunctions, and referring to Table 4.1 one observes that this relationship

indeed holds fairly accurately. We also have the following nontrivial prediction

from the field theory:

2ν(1− p) = 2ν(1− 2β/ν) = 1 , (4.22)

where β and p apply to the zFM or VBS order parameters. We examine

this prediction in Fig. 4.10, finding good agreement of the measurements with

the predicted value for large δ > 0.3. However, the data at low δ exhibit

some deviations from the expected behavior. This arises from inaccuracy in

our estimates of the critical exponents ν and β, which rely on convergence

to the infinite-χ limit in a region near enough to the critical point to find a

power-law exponent. For low δ, the state is near the quasi–long range ordered

phase at δ = 0 and contains a high degree of entanglement; hence, our finite-

entanglement scaling is comparatively less accurate.

Despite the influence of various other nearby phases and phase transitions on

our results, we have observed several nontrivial predictions from the field the-

ory in our measurements of the continuously varying critical exponents along

the zFM to VBS phase boundary. This constitutes further strong evidence that

this critical line is indeed an example of the DQCP described in Sec. 4.2.2.

4.4 Study of order parameter coexistence

4.4.1 Evidence for coexistence regime

Returning to the action functional in Eq. (4.6), one expects the destabilization

of the zFM to VBS transition due to the emergence of a second relevant

cosine at a critical value of the Luttinger parameter g̃∗ = 1/2. Here the phase

transition is predicted to branch into two distinct critical lines, introducing an

intermediate region where both gx and T1 are broken, leading to coexistence of

both order parameters. It is not easy to relate g̃ to the microscopic parameters,
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Figure 4.9: The measured power law decay exponents are in good agreement
with the predicted behavior pzFM = pVBS and pxFM = pyAFM, as well as with
Eq. (4.21). At the larger values of δ, the state begins to feel the tricritical
point, which affects the more quickly decaying MFM

x and MAFM
y correlation

functions.

but we can read off the values of the critical exponents very close to this

tricritical point, finding ν∗ = 2/3, p∗zFM = p∗VBS = 1/4, β∗zFM = β∗VBS = 1/12,

and p∗xFM = p∗yAFM = 4.

We observe the branching of the phase transition at some value δ ∈ (0.7, 0.8),

which is consistent with the description of the critical exponents given above.

The appearance of the intermediate phase is illustrated in Fig. 4.11 for the

slice δ = 0.9, where the state acquires VBS order on top of the zFM order

at K2c,VBS(χ = 144) = 0.73691 and the zFM order vanishes at K2c,zFM(χ =

144) = 0.73738. These phase transitions are not described by the DQCP

theory; rather, because in each case a single Z2 symmetry is broken, we expect

the critical points to be in the Ising universality. We explore mean field pictures

of the phases in Apps. 4.A.2 and 4.B.1, finding support for this expectation.

The analysis of the boundary of the coexistence region does not follow straight-

forwardly from the protocol used in Sec. 4.3.1. Because the mean field theory

of these transitions is not discontinuous, we cannot exploit the level crossings

of MPS trial states to accurately determine the locations of the critical points.

Similarly, we are unable to use the finite values of the order parameters at the

pseudocritical points to determine critical exponents, as we do for the direct
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Figure 4.10: We find good agreement with Eq. (4.22), particularly for the
larger values of δ on the critical line. The states at small δ are near to the
δ = 0 QLRO phase and thus are relatively highly entangled, which makes it
difficult to reach the limit χ→∞ near enough to the critical point to extract
the ν and β critical exponents.

zFM to VBS phase transition. In addition, as the coexistence region is very

narrow and located fairly close to the xUUDD phase, we do not have access

to a very large dynamical range. Instead, we identify the pseudocritical points

by using a power-law fit to the vanishing of the order parameters. Also, we

are able to obtain only rough estimates of the critical exponents.

We list our estimates of the transition points for δ = 0.8, . . . , 1.0 in Table 4.2.

Note that the δ > 1 regime can be related to δ < 1 by the map described in

Sec. 4.2.3 (which related the VBS-I and VBS-II phases), so numerical studies

are required only for δ ≤ 1. Also, while for δ 6= 1 the zFM-ordering transition

K2c,zFM involves a strictly VBS ordered phase, for δ = 1 the situation is more

complex and the coexistence phase actually transitions to the xUUDD phase.

(See the inset in Fig. 4.1 for an image of the coexistence region.) We first focus

on δ < 1 and consider the δ = 1 case later.

Figure 4.11 shows the correlation length and expectation values of the or-

der parameters in the coexistence region. We observe cusps in the correla-

tion length at both transitions, with height which increases with increasing

χ. However, our data are not of sufficient granularity to perform definitive

finite-entanglement scaling at these critical points, and we do not have suffi-
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Figure 4.11: The slice at δ = 0.9 clearly exhibits a region of coexistence of or-
der parameters (measurements shown use the bond dimension χ = 144 MPS),
and the correlation length displays χ-dependent cusps at both boundaries.
However, we do not have good χ-converged properties inside of this phase, as
the correlation length does not saturate for the bond dimensions shown here.

cient dynamical range between the two critical points to extract the correlation

length exponent at either transition. On the VBS side, we are also close to

the xUUDD phase boundary. We can attempt to find ν looking at the pure

zFM side; however, the width of the crossover region where the correlation

length saturates in χ is significantly wider than the distance between K2c,VBS

and K2c,zFM. In this case, the extracted ν likely does not cleanly correspond to

just one transition but instead combines information about all nearby phase

transitions and even the tricritical point. Thus, in the top panels of Figs. 4.13

and 4.14, we focus only on the data from the coexistence region, with the un-

derstanding that they will hardly be conclusive. The extracted values of κ are

quite far from the expectation for this c = 1/2 critical point. In the bottom

panels of these figures, we have attempted to extract the order parameter on-

set exponents at each critical point. By the same argument, we clearly should

restrict attempts at fitting power-law onset forms to be within the coexistence

region. However, we see that the apparent slopes continue to vary visibly for

our range of bond dimensions χ. In particular, these measurements are likely

to be influenced by some mixture of the actual Ising criticality as well as the

mean-field phase transition in the MPS at the pseudocritical point, and indeed

we find values for the critical exponents that lie between these two.
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Figure 4.12: Illustration of the process of locating the critical point for each
order parameter from finite-entanglement scaling in the coexistence regime
at δ = 0.9. Here the data points are found via fits to the power law onset
behavior shown in Fig. 4.11. Again, using the finite-entanglement scaling form
Eq. (4.19), we extrapolate from pseudocritical K2c,VBS(χ) and K2c,zFM(χ) to
estimate the width of the coexistence region in the limit χ→∞.

Table 4.2 summarizes our estimates of the critical indices for the transitions on

the slices δ = 0.9 and 0.95. These are rather inaccurate, as explained above,

and are shown to emphasize our limitations when studying the transitions

involving the coexistence phase. We also quote estimates of the power law

correlation decay exponents extracted from fits at the corresponding pseudo-

critical points for our largest χ = 144. These estimates also differ somewhat

from the exponent p = 1/4 expected at each Ising transition, but the accuracy

may be a bit better than for the extracted ν and β values.

4.4.2 Higher-symmetry line at δ = 1

The line δ = 1 admits an additional symmetry of the Hamiltonian:

gz,even =
∏
m

σz2m : σz2m 7→ σz2m, σ
x,y
2m 7→ −σx,y2m . (4.23)
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Figure 4.13: Our study of the VBS ordering transition in the coexistence
region is impeded by the narrow width of the phase, here shown at δ = 0.9.
The top panel shows correlation length along with our best fit, though the
MPS results are not reflective of the χ → ∞ limit and the exponent is far
from the Ising ν = 1. The feature seen near 3× 10−4 on the x-axis is the zFM
order transition on the boundary of the coexistence region with the VBS-I
phase (this transition is studied in Fig. 4.14). Further from the critical point,
one sees the effect of the transition to the xUUDD phase. The bottom panel
shows the onset of the VBS order parameter, which is roughly consistent with
a continuous phase transition but does not agree with the Ising β = 1/8. Data
here do not use the adiabatic protocol; every point is independent.
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Figure 4.14: Similarly to Fig. 4.13, we provide only a rough study of the
zFM ordering transition in the coexistence region, here shown at δ = 0.9. The
top panel shows correlation length along with our best fit, though the MPS
results are not reflective of the χ→∞ limit and the exponent is far from the
Ising ν = 1. The feature seen near 3× 10−4 on the x-axis is the VBS order
transition on the boundary of the coexistence region with the zFM phase (this
transition is studied in Fig. 4.13). The bottom panel shows the onset of the
zFM order parameter, which is roughly consistent with a continuous phase
transition but does not agree with the Ising β = 1/8. Data here do not use
the adiabatic protocol; every point is independent.

This is the same symmetry which takes VBS-I to VBS-II, and vice versa. As

we stated previously, one possibility for these two phases along this cut is

a first-order transition, but this turns out not to be the case in our model.

Instead, inside of the coexistence region where gx is broken the VBS-I and

VBS-II orders are in fact the same. This was pointed out in Ref. [1], and

we provide a demonstration in Apps. 4.A.2 and 4.B.1 by writing fixed-point

wavefunctions for the coexistence which smoothly interpolate between VBS-I

and VBS-II in the presence of gx symmetry breaking. The onset of the VBS
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δ K2c,VBS νVBS βVBS pVBS K2c,zFM νzFM βzFM pzFM

0.8 0.691922 · · 0.29 0.691927 · · 0.30
0.85 0.71481 · · 0.30 0.71486 · · 0.28
0.9 0.73693 0.54 0.20 0.33 0.73735 0.65 0.21 0.26
0.95 0.75798 0.63 0.19 0.40 0.75936 0.68 0.20 0.28

Table 4.2: Critical properties at the VBS ordering transition K2c,VBS between
the zFM and coexistence phases, and at the zFM ordering transition K2c,zFM,
between the VBS and coexistence phases. All data is measured within the
coexistence region, in order to reduce the effects of other nearby criticalities.
The transition is too narrow for δ < 0.9 to allow for the determination of the
correlation length and order parameter onset critical exponents.

order—the boundary between the zFM and coexistence phases—is thus no

different from the case for other δ.

On the other hand, at the zFM ordering transition (that is, the transition out

of the coexistence phase at which the zFM order disappears), the gx symmetry

is restored. Here we find a transition not to a state with pure VBS character,

but rather to the xUUDD phase. Because the phases on either side break

different Z2 symmetries yet we observe a direct phase transition, this criticality

in fact bears a resemblance to the zFM to VBS DQCP studied in the preceding

sections. (Here the direct transition between the coexistence and xUUDD

phases is enforced by the additional Z2 symmetry gz,even which apparently

remains unbroken in our model.) In fact, in Sec. 4.C we develop a theory

of this transition which turns out to be similar to the critical line at δ =

0 separating the zFM and xFM phases but placed on top of a translation

symmetry–breaking background.

We are able to study this transition using the methods of Sec. 4.3, where now

instead of the VBS order parameter ΨVBS (which remains ordered throughout

the transition) we measure

〈MUUDD
x 〉 = 〈σx0 〉 , (4.24)

where, as was the case for the previous order parameters, there is a sign am-

biguity which we ignore. In a more precise sense, the order parameter in the

xUUDD phase has two Ising-like components,
(∑

j(−1)j(j−1)/2σxj ,
∑

j(−1)j(j+1)/2σxj

)
,

where in each case j runs over the unit cell. However, because the MPS ground

state always has spontaneously broken symmetry—that is, the “UUDD” pat-

tern or its partners related by translation—it suffices to confirm this pattern
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Figure 4.15: Illustration of determining the critical point between zFM+VBS
coexistence and xUUDD from finite-entanglement scaling at δ = 1, performed
using the same procedure used in Fig. 4.5. (a) The energies of both the co-
existence and xUUDD phases follow smooth curves which determine the level
crossing, but here happen to not display hysteresis. This does not present a
problem, as the smoothness of the evolution of the trial state energies per-
mits extrapolation. (b) Using a fit to the finite-entanglement scaling form
Eq. (4.19), we extrapolate the pseudocritical K2c,zFM(χ) to estimate the lo-
cation of the critical point at χ → ∞. As was the case for the DQCP, the
scatter in data points is again not noise from the variational algorithm, but a
reproducible feature of the ground state at each bond dimension.

and measure just 〈σx0 〉. Because of the relatively slow convergence in ξ exhib-

ited by the correlation length in Sec. 4.3.1 as well as the limited dynamical

range within the coexistence region, we focus only on measurements of the or-

der parameter in the xUUDD phase to characterize this transition. This study

is shown in Fig. 4.16, where we find that βxUUDD = 0.117 and ν = 0.69. We
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Figure 4.16: Analysis of the phase transition from the zFM+VBS coexis-
tence phase to the xUUDD phase along the cut δ = 1, using the discontin-
uous VUMPS (generalized mean field) procedure. Because we cannot make
an accurate determination of βzFM using measurements arising from inside
the coexistence phase, we consider only measurements of MUUDD

x , within the
xUUDD phase. However we can perform finite-entanglement scaling analysis
of MFM

z extrapolated to the pseudocritical points. Doing so, we find a value
βzFM/ν = 0.167 which is quite similar to βxUUDD/ν shown in the inset.

also find from measurement of the power-law decaying correlation functions

that pxFM ≈ 0.39 and pzFM ≈ 0.37. These values provide some point of refer-

ence relative to the other phase transitions studied in this work but are not

significant by themselves, as this critical point lies on a line exhibiting contin-

uously varying exponents. Because this line crosses our phase diagram plane

only at one point, in the present study we cannot observe continuously varying

exponents but we do check that the expected relationships are approximately

satisfied: pxFM ≈ pzFM and 2ν(1 − pxFM) ≈ 0.86 (compared to the expected

value 1).

4.5 Summary of results

We performed a detailed numerical study of the ferromagnet to VBS transition

in a spin-1/2 chain with Z2 × Z2 symmetry and confirmed key predictions of

the 1d DQCP theory of Ref. [1]. Namely, the zFM and VBS order parame-

ters have equal scaling dimensions, and the xFM and yAFM correlations of

secondary importance also have equal power law exponents at the zFM to

VBS-I transition (the fact that the next-most important observables are the



128

ferromagnetic component of σx and the antiferromagnetic component of σy is

related to the crystalline SPT–like property of the VBS-I phase that distin-

guishes it from the VBS-II phase, which is also realized in our model). All

exponents vary continuously along the phase boundary but are controlled by

a single parameter; this implies relationships among the various exponents,

which we confirmed in our numerics. The observed range of the variation of

the critical indices is consistent with the regime of validity of the proposed

field theory, and we also found the predicted splitting of the transition and

appearance of the VBS+zFM coexistence phase at one end of this range. In-

terestingly, we also found an instance of a new Landau-forbidden transition

between the VBS+zFM and xUUDD phases along the line δ = 1 with the

additional Z2 symmetry gz,even.

In our study of the 1d DQCP, we found that VUMPS at fixed bond dimension

shows a discontinuous transition at a χ-dependent pseudocritical point, and

argued that this is related to the non-Landau nature of the transition which

gives first-order behavior in the mean field. We used this discontinuous nature

to our advantage to find the pseudocritical points very accurately and for sub-

sequent “finite-entanglement” scaling. We propose that this protocol can be

very useful at all transitions described by DQCP, and indeed we have already

used it at the new direct continuous VBS+zFM to xUUDD transition enforced

by the additional gz,even symmetry. To accurately locate pseudocritical points

is more difficult at conventional continuous transitions where the mean field

is also continuous [17], but it can be a powerful systematic approach in such

cases as well.

4.A Mean-field study of phase diagram with separable states

In this appendix, we present caricature (“fixed-point”) wavefunctions for the

phases of interest in our model and use these as simple trial states to find a

mean-field phase diagram of the model. Besides developing basic intuition

about the phases and their competing energetics, we demonstrate that in

the mean field treatment the zFM to VBS transition is first-order, while the

VBS to zFM+VBS and also the VBS to xUUDD transitions are second-order.

This provides some understanding of the observed “pseudocritical” behavior

of VUMPS at fixed bond dimension χ, i.e., behavior very close to K2c(χ).



129

4.A.1 Trial states without variational parameters

The zFM fixed-point state is simply

|zFM〉 = ⊗j |↑〉j (4.25)

or its counterpart gx|zFM〉, with average energy per site

εzFM = −Jz +K2z = −(1 + δ) +K2 . (4.26)

In the right-hand side above, as well as in other trial energy expressions below,

we specialize to the slice in the parameter space used in the main text, namely

Jz = 1 + δ, Jx = 1 − δ, K2z = K2x = K2. Note that this wavefunction is an

exact ground state at δ = 1, K2 = 0.

The VBS-I fixed-point state is

|VBS-I〉 = ⊗m|D(I)
2m−1,2m〉 (4.27)

or its counterpart T1|VBS-I〉, where the elementary dimer state of two spins is

given in Eq. (4.5). The average energy per site is

εVBS-I = −(Jz + Jx)/2 = −1 . (4.28)

This wavefunction is an exact ground state at the Majumdar–Ghosh point

δ = 0, K2 = 0.5 [8–11].

The VBS-II fixed point state is

|VBS-II〉 = ⊗m|D(II)
2m−1,2m〉 (4.29)

or its counterpart T1|VBS-II〉, where the corresponding dimer state of two

spins is given in Eq. (4.12). The average energy per site is

εVBS-II = −(Jz − Jx)/2 = −δ . (4.30)

This wavefunction becomes an exact ground state for δ →∞, K2/δ = 0.5.

The xUUDD fixed-point state is

|xUUDD〉 = ⊗n|+x̂〉4n−3 |+x̂〉4n−2 |−x̂〉4n−1 |−x̂〉4n (4.31)

along with its symmetry counterparts T1|xUUDD〉, (T1)2|xUUDD〉 = gz|xUUDD〉,
(T1)3|xUUDD〉. The average energy per site is

εxUUDD = −K2x = −K2 . (4.32)
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Figure 4.17: Comparing the energies of the separable trial wavefunctions of
App. 4.A.1 results in a phase diagram which is broadly similar to the actual
behavior of the model, but renders all phase transitions first order.

This wavefunction is an exact ground state for the general model at Jz = 0,

K2z = 0, K2x > Jx/2, while it does not occur as a ground state on our slice

through the parameter space with K2z = K2x. Note that our definition of this

phase is that it breaks the gz and T1 symmetries but preserves gx and gz(T1)2;

hence, the ground state degeneracy is four. The above wavefunction is the

only product state that satisfies these symmetries. The above ground state

manifold has an additional symmetry T1gz,even, which is not a symmetry of the

Hamiltonian and is hence spurious, except at δ = 1; in App. 4.A.3 below we

write improved variational wavefunctions without this spurious symmetry.

Comparing the trial energies εzFM, εVBS-I, εVBS-II, and εxUUDD, we obtain the

mean field phase diagram in Fig. 4.17. All solid lines in this figure represent

“level crossings” and are first-order phase boundaries. The positioning of

the phases is roughly similar to the actual phase diagram in the main text,

but, of course, this simple mean field is not quantitatively accurate and fails

qualitatively about the nature of the zFM to VBS transition.
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4.A.2 Dimer product states for the zFM and VBS coexistence

We can also allow for coexistence between the zFM and VBS order parameters,

for example by using a trial state of the form

|VBS + zFM〉 = ⊗m
[
cos

α

2
|↑↑〉+ sin

α

2
|↓↓〉

]
2m−1,2m

. (4.33)

Clearly, at α = π/2 and −π/2 the wavefunction reduces to |VBS-I〉 and

|VBS-II〉 respectively, and α = 0 gives |zFM〉; for generic α the state has

both VBS and zFM order. The trial energy per site is

εVBS+zFM =
−Jz(1 + cos2 α)− Jx sinα

2
+K2z cos2 α

= −Jz +K2z −
Jx
2
t+

(
Jz
2
−K2z

)
t2 , (4.34)

where t ≡ sinα, |t| ≤ 1. For K2z > Jz/2−|Jx|/4, the lowest energy is achieved

at t = sign(Jx), which corresponds to pure VBS-I or VBS-II order. Thus, large

K2 prefers the pure dimer states.

Conversely, for K2z < Jz/2− |Jx|/4, this mean field finds it favorable to have

coexistence of the VBS and zFM orders, with the optimal t = Jx/[2(Jz−2K2z)]

and the trial energy εVBS+zFM = −Jz +K2z − J2
x/[8(Jz − 2K2z)] that is always

lower than the product state zFM trial energy Eq. (4.26) except at Jx = 0.

(See Fig. 4.18, which also includes competition with improved xUUDD states.)

We know that this feature is not found in our model beyond mean field, where

in fact it is the pure zFM phase that wins over the coexistence phase for small

K2. This artifact arises from the fact that for the pure zFM phase we used

a trial state with zero entanglement, whereas for the coexistence phase we

allowed entanglement on alternating bonds, which apparently always lowers

the energy. This lowering of the energy while simultaneously breaking the

translation symmetry is undesirable in the true ground state for small K2: For

example, for K2 = 0 and small Jx the second-order perturbation theory on

top of the fixed-point zFM state lowers the energy by −J2
x/(4Jz) per site—

which is better than εVBS+zFM—but to capture this lowering one needs to allow

entanglement on all bonds.

On the large K2 side, the mean field transition between either of the VBS

phases and VBS+zFM is continuous. We thus expect that numerics at fixed

bond dimension χ will show a continuous mean field–like transition at the

pseudocritical point K2c,zFM(χ), which is indeed what we observe and use to
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locate K2c,zFM(χ) and extrapolate to the true K2c,zFM(χ → ∞). Of course,

the true VBS to VBS+zFM transition is characterized by the onset of the

zFM order on top of “inert” background VBS order and is expected to be in

the Ising universality class. We also expect that the true zFM to VBS+zFM

transition is in the Ising universality. While our primitive mean field does

not realize this transition, we expect that VUMPS using fixed χ will have a

continuous mean field–like zFM to VBS+zFM transition at the corresponding

pseudocritical K2c,VBS(χ), which is again borne out in the numerics.

Finally, we note that the trial state Eq. (4.33) can interpolate between the

VBS-I+zFM and VBS-II+zFM coexistence phase regimes occurring near the

corresponding pure dimer phases. However, during this interpolation it passes

through the pure zFM state, which is formally a different phase. Based on

general arguments, we expect that the VBS-I+zFM and VBS-II+zFM should

be in the same phase; that is, there should be a connection between the two

regimes without closing the gap, and in particular with the translation sym-

metry broken throughout. In App. 4.B.1, we will show that this is indeed

possible, but we need to go beyond separable states and consider wavefunc-

tions with entanglement across all cuts, which is achieved using an analytic

MPS.

4.A.3 Improved mean field states for the xUUDD phase

Our study in App. 4.A.1 simply compares trial energies of states with no vari-

ational parameters that cannot connect to each other, and in this setting the

VBS to xUUDD transition is first order. A careful consideration of symme-

tries reveals that the true transition between either of the VBS phases and

the xUUDD phase should be Ising-like: both VBS phases preserve gx, gz, and

T 2
1 (or, equivalently, gzT

2
1 ), while the xUUDD phase preserves gx and gzT

2
1 .

The two phases thus differ only by a broken Z2 symmetry, and we expect an

Ising-like transition.

We can better reflect this in the mean field treatment by replacing the site-

product state in Eq. (4.31) by dimer-product states connected to the VBS

wavefunctions. Specifically, starting from the VBS-I state, we can construct



133

the following period-4 trial state, which is invariant under gx and gzT
2
1 :

|xUUDD′〉 =
⊗
n

[
cos

β

2
|+x̂,+x̂〉+ sin

β

2
|−x̂,−x̂〉

]
4n−3,4n−2

⊗
[
cos

β

2
|−x̂,−x̂〉+ sin

β

2
|+x̂,+x̂〉

]
4n−1,4n

. (4.35)

One observes that β = π/2 gives the pure VBS-I state, while β = 0 gives

the xUUDD product state from Eq. (4.31). The ground state manifold in

the xUUDD phase is four-dimensional and is spanned by the above state with

generic β and its counterparts T1|xUUDD′〉, T 2
1 |xUUDD′〉 = gz|xUUDD′〉, and

T 3
1 |xUUDD′〉. The trial energy per site is

εxUUDD′ = −K2x +

(
K2x −

Jx
2

)
sin2 β − Jz

2
sin β . (4.36)

For K2x < Jx/2 + |Jz|/4, the optimal sin β = sign(Jz), and assuming Jz > 0

the state reduces to the pure VBS-I state. For K2x > Jx/2+ |Jz|/4, the energy

is minimized by sin β = Jz/(2(2K2x − Jx)) and is given by εxUUDD′ = −K2x −
J2
z /(8(2K2x − Jx)); this describes a generic xUUDD phase near the VBS-I

phase. The mean field transition between the two phases is continuous, which

explains our observation of continuous pseudocritical behavior in VUMPS at

the VBS-I to xUUDD transition. However, we do not report any details of

this study since it is outside our main interest.

We can also start from the VBS-II state and construct another period-4 trial

state for the xUUDD phase that is invariant under gx and gzT
2
1 :

|xUUDD′′〉 =
⊗
n

[
cos

γ

2
|+x̂,−x̂〉+ sin

γ

2
|−x̂,+x̂〉

]
4n−3,4n−2

⊗
[
cos

γ

2
|−x̂,+x̂〉+ sin

γ

2
|+x̂,−x̂〉

]
4n−1,4n

.

(4.37)

Clearly, γ = π/2 gives the pure VBS-II state, while γ = 0 gives the primitive

xUUDD state in Eq. (4.31). The trial energy per site is

εxUUDD′′ = −K2x +

(
K2x +

Jx
2

)
sin2 γ − Jz

2
sin γ . (4.38)

Comparing with Eq. (4.36), we see that εxUUDD′′ has the same form as εxUUDD′

except for the sign of the Jx term. Hence, the variational energy minimization
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and mean-field transition between the VBS-II and xUUDD′′ state is similar to

that between the VBS-I and xUUDD′ state discussed above.

We also see that for Jx > 0 we have εxUUDD′ < εxUUDD′′ , and the opposite

for Jx < 0. As we vary Jx across Jx = 0, since the optimal sin β = sin γ =

Jz/(4K2x) 6= 0, the two trial energies cross with opposite non-zero slopes; that

is, we find a first-order transition between the xUUDD′ and xUUDD′′ states,

which are different at the transition. One exception is the limit K2x → ∞
where β = γ = 0 and both states reduce to the site-product xUUDD state in

Eq. (4.31) (up to a translation).

Figure 4.18 shows our final mean field phase diagram combing results in this

section and in Sec. 4.A.2. It includes competition between the VBS+zFM and

xUUDD phases, which have incompatible symmetries and hence are separated

by first-order transitions.

Regarding the first-order transition between the xUUDD′ and xUUDD′′ states

found in this mean field, we believe that these states are representatives of the

same phase coming from different regimes, one near the VBS-I phase and the

other near VBS-II. That is, while the VBS-I and VBS-II phases are distinct

phases protected by the gx and gz symmetries, xUUDD′ and xUUDD′′ break gz

and are not distinct phases. One can still have a first-order transition between

xUUDD′ and xUUDD′′ states originating from the respective different regimes,

as happens in the above mean field and is akin to a liquid-gas first-order

transition. While this may be realized in some Hamiltonians, this does not

happen in the true ground states of the model studied in this paper. Instead

we find a smooth evolution across the δ = 1 line where Jx = 0.

As described in the main text, the δ = 1 line has an additional symmetry

gz,even. The generic xUUDD′ and xUUDD′′ states considered away from this

line of course do not have this symmetry but are in fact related by the action of

gz,even. The above mean field where the two states meet discontinuously at δ =

1 would correspond to spontaneously breaking the additional Z2 symmetry and

hence would imply eight-fold ground state degeneracy. In our Hamiltonian,

instead it appears that the system on the δ = 1 line preserves the additional Z2

symmetry, and the ground state degeneracy is four everywhere in the xUUDD

phase. As we show in App. 4.B.2, this scenario can be also realized at the

level of improved wavefunctions connected to the above xUUDD′ and xUUDD′′

states but requires allowing entanglement between all sites.
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Figure 4.18: The phase diagram of the improved mean-field trial states de-
scribed in Apps. 4.A.2 and 4.A.3 provides a somewhat more realistic picture,
in particular with continuous phase transitions for all boundaries of the VBS-I
and VBS-II phases. There is an extended boundary between the coexistence
and xUUDD phases, which is first order, as well as a first-order transition be-
tween xUUDD′ and xUUDD′′. Along the dotted line at δ = 1 the VBS+zFM
ansatz coincides with the simple product zFM state from App. 4.A.1; how-
ever, the wider zFM phase is not represented, as away from this special line the
simple zFM wavefunction is always energetically unfavorable. In App. 4.B we
show how some of the unphysical features can be fixed using more entangled
wavefunctions.

4.B Simple analytic MPS for phases

In this appendix we add on to our mean-field treatment to address inconsisten-

cies between the study in the main text and the mean field phase diagram ob-

tained using only separable wavefunctions. Specifically, in App. 4.B.1 we write

an MPS of bond dimension 2 describing the coexistence region VBS+zFM and

matching the symmetries observed in the numerical study, which in particu-

lar can connect smoothly across the δ = 1 line with the additional symmetry

gz,even. In App. 4.B.2 we write another MPS of bond dimension 2 which inter-

polates smoothly between the improved states for the xUUDD phase given in

Eqs. (4.35) and (4.37) without a phase transition, maintaining the observed

ground state degeneracy of 4 throughout.
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4.B.1 χ = 2 MPS wavefunction for coexistence phase

In order to write a wavefunction for the VBS and zFM coexistence phase,

we require invariance under gz, (T1)2, and inversion I about a bond center,

and allow breaking of gx and T1. At special values of the internal parameters,

our wavefunction will also be invariant under T1gz,even, which is an additional

symmetry present in our model at δ = 1 as described in Sec. 4.4.2. We use an

MPS of bond dimension 2 with a two-site unit cell, having the following form:

|MPSVBS+zFM〉 =
∑
{σ}

Tr[· · ·Aσ2m−1Bσ2m · · · ]|{σ}〉 . (4.39)

The choice of the unit cell enforces (T1)2 symmetry, and we can impose invari-

ance under gz and I as follows. A symmetry O induces on the MPS matrices

an action MO : (A|σ〉, B|σ〉) 7→ (A
|σ〉
O , B

|σ〉
O ). Choosing a particular representa-

tion of the projective symmetry group on the virtual indices, we can guarantee

invariance of the state under O by specifying invertible matrices XO and YO

such that A
|σ〉
O = XOA

|σ〉Y −1
O , B

|σ〉
O = YOB

|σ〉X−1
O .

Now, gz is expressed as an action on the matrices by

A|σ〉gz = σA|σ〉 , B|σ〉gz = σB|σ〉 , (4.40)

while for bond inversion I,

A
|σ〉
I = (B|σ〉)T , B

|σ〉
I = (A|σ〉)T . (4.41)

As we will show, the specific choice of matrices (Xgz , Ygz) = (σz, σz) and

(XI , YI) = (σz, 1) allows us to connect the MPS state to the product VBS+zFM

state (4.33) considered earlier. Using this choice, we find that the most general

form of the MPS matrices is given by

A|↑〉 =

[
a 0

0 b

]
, A|↓〉 =

[
0 c

d 0

]
,

B|↑〉 =

[
a 0

0 −b

]
, B|↓〉 =

[
0 −d
c 0

]
.

(4.42)

Of the four parameters a, b, c, d, only three are independent, as the overall

scale only affects the wavefunction normalization.

For parameters b = d = 0, we have A|↑〉B|↑〉 = diag(a2, 0), A|↓〉B|↓〉 = diag(c2, 0)

and A|↑〉B|↓〉 = A|↓〉B|↑〉 = 0. Then it is easy to see that the MPS wavefunction
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reduces to a form matching the separable VBS+zFM wavefunction (4.33) with

dimers on the (2m− 1, 2m) bonds. This state is natural near the VBS-I phase

(if c2 6= a2, it clearly breaks the gx symmetry, and approaches the VBS-I phase

as c2 → a2). On the other hand, for b = c = 0 we have B|↑〉A|↑〉 = diag(a2, 0),

B|↓〉A|↓〉 = diag(−d2, 0) and B|↑〉A|↓〉 = B|↓〉A|↑〉 = 0. In this case, the wave-

function reduces to a form matching the separable VBS+zFM wavefunction

with dimers on the (2m, 2m+ 1) bonds. This state is natural near the VBS-II

phase.

Furthermore, we can connect the two regimes while staying within the same

VBS+zFM phase. For example, we can fix a = 1, b = 0, and vary between the

two regimes on a path (c, d) = (γ(1− `), γ`), ` ∈ [0, 1], with fixed γ < 1. One

can check that both gx and T1 remain broken everywhere on this path. By

straightforward diagonalization of the transfer matrix one also sees that the

MPS remains injective throughout the range ` ∈ [0, 1]. We thus conclude that

the VBS-I and VBS-II orders are not distinguished in the presence of zFM

order, where gx is broken; that is, there is only one VBS+zFM phase.

Finally, if c = d with arbitrary a, b, the MPS wavefunction is invariant under

S = T1gz,even, which is the additional symmetry present in our model on the

δ = 1 line. Indeed, the action of S on the above MPS induces the following

action on the matrices

A
|σ〉
S = σB|σ〉 , B

|σ〉
S = A|σ〉 . (4.43)

The new matrices are gauge-equivalent to the originals under (XS, YS) =

(σz, 1). On the path discussed above interpolating between the VBS-I+zFM

and VBS-II+zFM regimes, the midpoint ` = 1/2 gives c = d and has this

symmetry. Thus, we have also constructed candidate wavefunctions for the

VBS+zFM coexistence phase on the δ = 1 line that respect the additional

symmetry present in our Hamiltonian on this line, and that appear to capture

qualitative features of the true ground states of our Hamiltonian.

4.B.2 χ = 2 MPS for the xUUDD phase

We can write down the desired wavefunction interpolating smoothly between

the separable mean field states |xUUDD′〉 of Eq. (4.35) and |xUUDD′′〉 of

Eq. (4.37) as a period-4 MPS with bond dimension 2 as follows:

|MPSxUUDD〉 =
∑
{σ}

Tr[· · ·Aσ4n−3Bσ4n−2Cσ4n−1Dσ4n · · · ]|{σ}〉 . (4.44)
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Here we use the σx eigenbasis, and the MPS matrices are

A|+x̂〉 =

[
r 0

0 s

]
, A|−x̂〉 =

[
0 u

v 0

]
;

B|σ〉 = (A|σ〉)T ; C |σ〉 = A|−σ〉 ; D|σ〉 = B|−σ〉 .

By construction, the state is invariant under inversion in the bond center

between sites 4n− 3 and 4n− 2, and also under gzT
2
1 . Furthermore, the state

is invariant under gx. As an action on the matrices, we have

M |σ〉
gx = σM |σ〉 , (4.45)

and the new matrices are gauge-equivalent to the old matrices by noting that

M
|σ〉
gx = ±σzM |σ〉σz, where the plus sign is for M = A,B and the minus sign

is for M = C,D. Thus, the state has the desired symmetry properties for a

ground state in the generic xUUDD phase.

It is easy to check that when s = 0 and v = 0, the state reduces to the dimer-

product state |xUUDD′〉 in Eq. (4.35). Similarly, when s = 0 and u = 0,

the state reduces to |xUUDD′′〉 in Eq. (4.37) (more precisely, the MPS yields

T1|xUUDD′′〉).

It is also easy to check that T1gz,even acts on this MPS wavefunction by inter-

changing u and v. Hence, when u = v, the state is invariant under T1gz,even

and is a candidate ground state for the xUUDD phase along the δ = 1 slice

that does not break the additional Z2 symmetry present on this line.

4.C Direct phase transition at δ = 1

In this appendix, we propose a field theory description which allows direct

phase transition between the VBS+zFM coexistence phase and the xUUDD

phase on the δ = 1 line.

As we pointed out in the main text, δ = 1 line admits an additional symmetry

gz,even =
∏

m σ
z
2m. This additional symmetry plays an essential role for the

direct phase transition between these two phases at δ = 1. For δ 6= 1 where

we do not have the gz,even symmetry, these two phases are either connected by

a first order phase transition or by an intermediate VBS phase.

To see this, we first analyze the symmetry properties of these two phases at δ =

1. The total symmetry group at δ = 1 is generated by {gz, gx, gz,even, T1, I, T }.
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For our purposes here, it is enough to focus on the symmetry group gener-

ated by {gz, gx, gz,even, T1}. We notice that both phases break gz,even and T1

but preserve the combination T1gz,even.2 The VBS+zFM coexistence phase

additionally breaks gx, and the remaining symmetry group is generated by

{gz, T1gz,even}, whereas the xUUDD phase breaks gz, with the remaining sym-

metry group generated by {gx, T1gz,even}. The ground state degeneracy is four

for either of these two phases.

Since the remaining symmetry groups of these two phases are not subgroups

of each other, if there is a direct phase transition, this transition must be

beyond the Landau–Ginzburg symmetry-breaking paradigm. To develop a

theory for this transition, we start from a background configuration that

breaks gz,even and T1, but preserves T1gz,even. For a concrete example of such

a background-locking term, we can consider adding to the Hamiltonian a

term ∆H = Jx, stagg

∑
j(−1)jSxj S

x
j+1. In this background configuration, the

VBS+zFM coexistence phase breaks gx, and thus can be viewed as a “z-

ordered” phase on the background. Similarly, the xUUDD breaks gz, and

can be viewed as an “x-ordered” phase. Hence, the phase transition can be

viewed as the transition between the z-ordered and x-ordered phases on this

background configuration.

Motivated by the above discussion, we can now present a hydrodynamic de-

scription for this transition. We first define a new set of spin variables as

S
′x/y
4n−3 = S

x/y
4n−3 , S

′x/y
4n−2 = S

x/y
4n−2 ,

S
′x/y
4n−1 = −Sx/y4n−1 , S

′x/y
4n = −Sx/y4n ;

S ′ zj = Szj .

(4.46)

T1gz,even acts as a conventional translation symmetry on the new spin variables.

(For example, the specified concrete background-locking term becomes simply

∆H = −Jx, stagg

∑
j S
′x
j S

′x
j+1.) We then apply standard bosonization techniques

on the new spins:

S ′ zj ∼ cosφ′j , S ′xj ∼ sinφ′j ,

S ′ yj ∼
θ′j+1/2 − θ′j−1/2

π
,

(4.47)

2More precisely, both the VBS+zFM and xUUDD phases have ground state degeneracy
equal to four. In the VBS+zFM phase, all four ground states are invariant under T1gz,even.
On the other hand, in the xUUDD phase, two of the ground states preserve T1gz,even while
the other two preserve T1gz,odd.
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where φ′ ∈ [0, 2π) and θ′ ∈ [0, π) are conjugate phase and phonon variables.

The symmetry transformations of φ′ and θ′ read

gx : φ′ → π − φ′ , θ′ → −θ′ ; (4.48)

gz : φ′ → −φ′ , θ′ → −θ′ ; (4.49)

T1gz,even : φ′ → φ′ , θ′ → θ′ +
π

2
. (4.50)

Thus, the symmetry-allowed scattering (i.e., cosine) terms are cos(2mφ′) and

cos(4nθ′).

The action for the field theory is

S =

∫
dτ dx

[
i

π
∂τφ

′∂xθ
′ +

v′

2π

(
1

g′
(∂xθ

′)2 + g′(∂xφ
′)2

)]
+

∫
dτ dx [λ2 cos(2φ′) + λ4 cos(4φ′) + κ4 cos(4θ′) + · · · ] , (4.51)

where the Luttinger parameter g′ and velocity v′ depend on microscopic details,

and · · · denotes higher order scattering terms. The scaling dimensions for the

scattering terms read

dim [cos(2mφ′)] =
m2

g′
, dim [cos(4nθ′)] = 4n2g′ .

In particular, when 1/2 < g′ < 2, there is only one relevant cosine operator,

which is cos(2φ′).

For λ2 > 0, φ′ gets pinned at π/2 or 3π/2, and thus 〈S ′x〉 ∼ 〈sinφ′〉 6= 0, which

gives the xUUDD phase. On the other hand, for λ2 < 0, φ′ gets pinned at 0

or π, and thus 〈S ′ z〉 ∼ 〈cosφ′〉 6= 0, which gives the VBS+zFM coexistence

phase. (Recall that we are working on top of a background that breaks T1,

which is why the ground state degeneracy is two in each case here.) The

continuous phase transition happens when λ2 = 0, which is described by a free

Luttinger liquid theory with c = 1 and varying critical exponents depending

on g′.

Finally, we mention that in the absence of T1gz,even, cos(2θ′) is allowed by

symmetry, which becomes relevant when g′ < 2. It is easy to check that there

are always multiple relevant or marginal operators for any g′. Thus, the above

field theory loses applicability for the transition between the VBS+zFM and

xUUDD phases.
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C h a p t e r 5

ONE-DIMENSIONAL MODEL FOR DECONFINED
CRITICALITY WITH Z3 × Z3 SYMMETRY

5.1 Introduction

One may wonder to what extent the lessons learned about the Z2 × Z2-

symmetric DQCP in 1d, presented in Ch. 4, are representative of a more

general class as opposed to being somehow special. In the present chapter we

begin to address this question through detailed studies of a concrete lattice

model with Z3 × Z3 symmetry. We will end up arguing that the evidence

suggests that a family of DQCP in Zq × Zq-symmetric models in 1d in fact

exhibits pseudo-critical behavior due to RG walking, a situation reminiscent

of the current status of the canonical DQCP with SU(2) symmetry in 2d. The

putative transition in our Zq × Zq-symmetric DQCP appears to be described

by an integrable model with very long correlation length, and the availability

of analytical results makes it a particularly appealing candidate for controlled

studies of the RG walking scenario for a very weakly first-order DQCP.

This chapter is organized as follows. In Secs. 5.2, 5.3, and 5.4 we introduce

our lattice Hamiltonian and present numerical results from MPS on the phase

diagram and evidence for a DQCP. In Sec. 5.5 we develop some low-energy

continuum theories related to the lattice model and calculate supporting re-

sults in a fine-tuned two-component Gaussian theory that appears to capture

many (but not all) aspects of the numerical results. In Sec. 5.6 we provide

details on exact results for an integrable model suggested by numerics to de-

scribe the DQCP, which leads us to conclude the transition is very weakly first

order. In Sec. 5.7 we use exact diagonalization studies to identify some light

primary fields in the complex CFTs associated with the RG walking conjec-

ture. Finally, in the appendices we expand on background information and

further technical details related to various aspects of this work.

5.2 Review of SU(3) and SU(3)-symmetric Hamiltonians

5.2.1 Basics of SU(3)

The Lie algebra su(3) has 8 generators ta, a = 1, . . . , 8, which in the defining

representation 3 are represented by the Gell-Mann matrices λa. We use the
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alternative convention T a = λa/2, so the Lie algebra structure constants fabc

are determined by [T a, T b] = ifabcT
c. The T a are traceless Hermitian matrices,

normalized according to tr(T aT b) = 1
2
δab. In the conjugate representation 3

the generators are represented by T
a

= −(T a)∗.

For SU(q), q ≥ 2, one can write a quadratic Casimir invariant

C2 =
∑
a

tata . (5.1)

By construction C2 commutes with all of the ta. Thus, by Schur’s lemma, in an

irreducible representation C2 is proportional to the identity. This operator is

familiar from SU(2), where C2 = S2 and the eigenvalue in an irreducible repre-

sentation of spin l is l(l+1). More generally, in a q-dimensional representation

of SU(q), C2 = q2−1
2q

.

5.2.2 SU(3)-invariant Hamiltonians

In the 1d DQCP with Z2×Z2 symmetry studied previously [1, 2], a spin Hamil-

tonian was considered which connects to the solvable Majumdar–Ghosh model.

This ensured the appearance of a phase with VBS order. That construction

generalizes straightforwardly to SU(q). The Majumdar–Ghosh Hamiltonian is

the q = 2 case of

HCas =
∑
j

(C2;j,j+1,j+2 − (C2;j + C2;j+1 + C2;j+2)) , (5.2)

where C2;j,j+1,j+2 is C2 acting on the tensor product space of three neighboring

sites, and C2;j is simply a constant on each site individually, as sites host

irreducible representations of SU(q). For q = 2, the fact that the ground

states are translation symmetry–breaking products of singlets is a consequence

of the irrep decomposition 2⊗ 2 = 1⊕ 3. The appearance of the singlet 1 is

particular to n = 2; in general, enforcing SU(q) invariance requires as many

single-particle orbitals as internal states.

For q = 3, Eq. (5.2) can be used by treating the sites on one sublattice as

hosting the conjugate representation 3. Then one decomposes 3⊗ 3 = 1⊕ 8,

so neighboring sites favor an SU(3) singlet. (A similar statement is true for

any q, and in fact because 2 = 2 as irreps of SU(2), that case is also included.)

The analysis then follows in the same way as for q = 2.

A local term of HCas is

hj,j+1,j+2 = T
a

jT
a
j+1 + T aj+1T

a

j+2 + T aj T
a
j+2 , (5.3)
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independently of the parity of j, as T
a

jT
a
j+1 = T aj T

a

j+1. The action of each of

these terms can be understood through the action of C2 on tensor products of

representations. Consider

C2(3⊗ 3) =
∑
a

(T aj + T
a

j+1)2 = 2T
a

jT
a
j+1 +

8

3
, (5.4)

C2(3⊗ 3) =
∑
a

(T aj + T aj+1)2 = 2T aj T
a
j+1 +

8

3
. (5.5)

In Eq. (5.4) we see that T
a

jT
a
j+1 distinguishes the singlet and the eight-dimensional

adjoint representations on sites j, j+ 1. A rank-one projector onto the singlet

subspace can thus be written using this term. Explicitly,

T
a

jT
a
j+1 −

1

6
= −3

2
(Πs)j,j+1 = −3

2
|ψs〉〈ψs|j,j+1 , (5.6)

where |ψs〉j,j+1 = 1√
3

(
|00〉j,j+1 + |11〉j,j+1 + |22〉j,j+1

)
. Similarly, 3⊗3 = 3⊕6,

where 3 is the antisymmetric subspace and 6 the symmetric subspace. Thus,

Eq. (5.5) tells us that

T aj T
a
j+1 +

2

3
=
(

Π∨2

)
j,j+1

, (5.7)

which is the rank-6 projector onto the symmetric subspace of sites j, j + 1.

(Similar statements apply for general q.) As a result, HCas admits the same ar-

guments that show the ground state manifold of the Majumdar–Ghosh Hamil-

tonian is spanned by tensor products of SU(2) singlet dimers, with instead

twofold degenerate ground states spanned by products of SU(q) singlet dimers.

Conveniently, there is a simpler Hamiltonian than Eq. (5.2) for q = 3 which

exhibits VBS order. The following nearest-neighbor Hamiltonian was known

to Barber et al. [3] and Affleck [4]:

HbQ =
∑
j

T
a

jT
a
j+1 . (5.8)

This Hamiltonian still respects the full SU(3), and turns out to map exactly

to the pure biquadratic SU(2) spin-1 model. It is also integrable. Through

its Temperley–Lieb operator algebra this Hamiltonian is related to the XXZ

spin-1/2 chain for a particular anisotropy ∆ = −3/2 and to the 9-state self-

dual Potts model [3, 5]. The latter equivalence can be seen more directly via a

two-step duality procedure which we present in App. 5.D. Eq. (5.8) turns out

to be gapped, with twofold degenerate ground state and finite dimerization
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order parameter. Although the ground states are finitely correlated and not a

Majumdar–Ghosh-like separable product of dimers, because the ground states

respect the SU(3) symmetry we surmise that this Hamiltonian lies in the same

phase as HCas. Thus, we consider the local term in HbQ to be one favoring a

lattice symmetry–breaking but internally symmetric VBS phase.

5.3 Model with Z3 × Z3 symmetry

A quantum chain respecting an internal Z3 × Z3 symmetry is most naturally

realized using a three-dimensional local Hilbert space, placed on the sites of a

1d lattice.

5.3.1 Lattice Hamiltonian

We choose the following generators of the global internal symmetry group:

gx =
∏
j

gx,j =
∏
j

Xj, gz =
∏
j

gz,j =
∏
k

Z†2kZ2k+1 , (5.9)

which are written using the Z3 clock operators

X =

0 0 1

1 0 0

0 1 0

 , Z =

1 0 0

0 ω 0

0 0 ω−1

 , (5.10)

with ω = ei 2π/3 being the primitive cubic root of unity. Because of the

commutation relation ZX = ωXZ the Zz3 × Zx3 symmetry is realized pro-

jectively on a single lattice site. The projective representations are classified

by H2[Z3 × Z3,U(1)] = Z3 and labeled by {[0], [1], [2]}, where for class [r] we

have gz,jgx,j = ωrgx,jgz,j. The sublattice of odd-numbered (even-numbered)

sites hosts the [1] ([2]) projective representation of Z3 × Z3.

The general lattice Hamiltonian we consider is

H = H[Jx, Jz, K]

= −
∑
j

(
(JxXjXj+1 + JzZ†jZj+1 + H.c.)

+K(1 +XjXj+1 + H.c.)(1 + Z†jZj+1 + H.c.)
)

(5.11)

= −
∑
j

(
JxXjXj+1 + JzZ†jZj+1 + H.c.

)
+ 6K

∑
j

(∑
a

T
a

jT
a
j+1 −

1

6

)
.

(5.12)
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In the final line the K term is written using standard SU(3) spin operators

connecting to an integrable model with VBS ground state, as reviewed in

Sec. 5.2. We generally restrict all coupling constants to be real and non-

negative.

Other internal symmetries of Eq. (5.11) include time reversal Θ, which we im-

plement as complex conjugation in the Z eigenbasis, and charge conjugation

symmetry C : |n〉 → |3− n mod 3〉. Together C and gx generate the S3 per-

mutation symmetry of the local basis state labels. With periodic boundaries

on the lattice, the model is invariant under the generator of translation T1, as

well as spatial inversion I about a site. While T1 is a symmetry of H, it does

exchange the projective symmetry groups on the sublattices. The action of

the symmetries on the clock operators is

gx : (Xj, Zj) 7→ (Xj, ω
−1Zj) , (5.13)

gz : (Xj, Zj) 7→ (ω2pj−1Xj, Zj) , (5.14)

Θ : (Xj, Zj) 7→ (Xj, Z
†
j ), i 7→ −i , (5.15)

C : (Xj, Zj) 7→ (X†j , Z
†
j ) , (5.16)

T1 : (Xj, Zj) 7→ (Xj+1, Zj+1) , (5.17)

I : (Xj, Zj) 7→ (X−j, Z−j) , (5.18)

where we use pj to denote the parity of j:

pj =
1− (−1)j

2
=

0 , j even ,

1 , j odd .
(5.19)

5.3.2 Classical picture of phases

In the limiting case Jx = K = 0, Jz > 0, the ground state is a ferromagnetic

phase in the Z basis which breaks Zx3 , leading to a three-dimensional ground

state manifold spanned by basis

BzFM =

{⊗
j

|0〉j,
⊗
j

|1〉j,
⊗
j

|2〉j

}
. (5.20)

The ground states in the zFM phase are of course subject to quantum fluctu-

ations but remain connected to this simple basis of product states.

Similarly, for Jz = K = 0, Jx > 0 the ground states exhibit ferromagnetic
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order in the X eigenbasis (local basis states denoted |0x〉, |1x〉, |2x〉 = |−1x〉):

BxFM =

{⊗
j

|0x〉j,
⊗
j

|(1−2pj)x〉j,
⊗
j

|(2pj−1)x〉j

}
. (5.21)

Setting Jz = Jx = 0, K > 0 recovers the Hamiltonian HbQ of Eq. (5.8) which

respects the full SU(3) symmetry. As described in Sec. 5.2.2, the ground

state of this model is known to preserve SU(3) but spontaneously breaks the

translation symmetry generator T1 to T2 = (T1)2, thus breaking a Z/2Z = Z2

symmetry and leading to twofold ground state degeneracy [4]. While the

ground states at this point are finitely correlated, including additional terms

discussed in Sec. 5.2.2 connects to a Majumdar–Ghosh-like point in the same

phase. Thus we take the classical picture of the VBS phase to be spanned by

BVBS =

{⊗
k

|ψs〉2k−1,2k,
⊗
k

|ψs〉2k,2k+1

}
, (5.22)

where |ψs〉j,j′ = 1√
3

(
|00〉j,j′ + |11〉j,j′ + |22〉j,j′

)
.

Although every unit cell hosts a nontrivial projective representation, this sys-

tem does not have an LSM anomaly [6–8], and it turns out that one can

construct a gapped symmetric ground state. This symmetric phase is actually

an SPT phase characterized by a fractionalized entanglement spectrum; as

such, there is no simple classical picture of this state. In App. 5.A we develop

an analytic MPS for this phase.

5.4 Results from uniform matrix product states

In order to reduce the three-dimensional parameter space of Eq. (5.11) to

a two-dimensional phase diagram, we perform a change of variables to the

anisotropy δ = Jz−Jx
Jz+Jx

; that is, Jz = J(1 + δ) and Jx = J(1 − δ), and we

set J = 1. We find the phase diagram using the variational uniform matrix

product state (VUMPS) numerical method [9]. We use an adiabatic protocol

for determining the phase boundary, fully optimizing a trial state far away from

the transition, then using this state as the initial condition for the variational

procedure with a slightly perturbed Hamiltonian. In this way the state is

tuned towards the phase transition but biased towards a particular symmetry-

breaking order. Because at the mean-field level the phase transition is first-

order, the energy landscape of the MPS close to the transition will develop two
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local minima, with one being metastable on each side. The two choices of initial

conditions, locating the trial states close to one or the other energy minimum,

allow a comparison of trial energies which determines very precisely the exact

location of the crossing for a given MPS bond dimension [2]. Scaling with bond

dimension provides an estimate of the true location of the phase transition,

based on the understanding of MPS as a dressed mean-field approximation

[10].

For the purposes of data uniformity, we add a very small symmetry-breaking

term to the Hamiltonian when preparing the initial variational states (i.e., at

the very start of the adiabatic protocol scan inside each phase), so that all

data are comparable across values of χ. In particular, in the state coming

from the zFM side, we break gx by biasing toward ⊗j|0〉j, as this ground

state is invariant under the C symmetry generator. The symmetry-breaking

term is removed during the rest of the adiabatic protocol scan. All scans are

performed independently of one another.

5.4.1 Numerical phase diagram

As we will describe in Sec. 5.5.1, the point (δ,K) = (0, 0) maps under duality to

two decoupled three-state clock models tuned to the self-dual point, supported

on the two sublattices of the dual lattice. The critical theory describing each

sublattice is the CFT for the three-state self-dual Potts model, the minimal

model with c = 4/5. Accordingly, this point in the phase diagram is critical

with c = 8/5. The K perturbation in this language has the form of an energy-

energy term coupling the two clock models in a way that preserves self-duality.

The corresponding field theory operator is RG relevant but is in fact integrable,

known to lead to a massive fixed point [11] which presumably describes the

VBS phase in our context. The δ term has support on the energy operator

for each of the two Potts models and is strongly relevant, breaking self-duality

and precluding a perturbative expansion about this point. (It is interesting

that the model with only δ perturbation is also an integrable deformation of

this CFT [12].)

Our numerical data, shown in Fig. 5.1, are consistent with a “wedge” shape;

that is, at δ = 0 the system is in the VBS phase for any finite K > 0. (For

K < 0 we find a direct first-order transition between the zFM and xFM phases

along δ = 0.) The data are consistent with a second-order transition between
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Figure 5.1: The phase diagram of H[δ,K] is determined from extrapolation in
MPS correlation length of optimized variational MPS using an adiabatic pro-
tocol. The dashed line at δ = 1 has an enhanced U(1)×U(1) onsite symmetry.
The inset shows an example of the finite-entanglement process of approximat-
ing Kc. Each data point indicates a crossing of trial energies for states biased
towards each symmetry-breaking order, which we scan along slices of constant
δ. The data shown is for δ = 1, with bond dimensions from 90 to 300 and
correlation lengths between roughly 50 and 175 lattice spacings. The numeri-
cally extrapolated critical point is Kc(ξ →∞) = 2.0002. Evident in this data
is a non-universal correction to the asymptotic scaling form, the magnitude
of which is decreasing with 1/ξ. We examine the (δ,K) = (1, 2) point in the
phase diagram in detail in Secs. 5.6 and 5.7.

the zFM and VBS ordered phases, without continuously varying critical ex-

ponents. However, as we describe later, the situation turns out to be more

complicated but also very interesting.

The slice δ = 1 is indicated on Fig. 5.1, which in the original parameters of

Eq. (5.11) sets Jx = 0 and Jz = 2. For Jx = 0 the Hamiltonian takes a simpler

form:

H[Jx = 0, Jz, K] = −3
∑
j

[
Jz
∑
α

|αα〉〈αα|j,j+1 +K
∑
α,β

|αα〉〈ββ|j,j+1 − (Jz +K)
]
.

(5.23)

Along this line the global symmetry Zz3×Zx3 is enhanced to U(1)2 o Zx3 , where
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generators of the U(1)×U(1) symmetry can be constructed from any linearly

independent combinations of Z and Z†.1

We represent the U(1)×U(1) symmetry generators by

N1 =
∑
j

n1,j =
∑
j

(−1)j|1〉〈1|j , (5.24)

N2 =
∑
j

n2,j =
∑
j

(−1)j|2〉〈2|j . (5.25)

A group element is written as

u(ϕ1, ϕ2) = ei (ϕ1N1+ϕ2N2) =
∏
j

ei (ϕ1n1,j+ϕ2n2,j) , (5.26)

and we have gz = u(−2π/3, 2π/3). The action of the other symmetry genera-

tors on na,j (a = 1, 2) is given by

gx : n1,j 7→ n2,j, n2,j 7→ (−1)j − n1,j − n2,j , (5.27)

Θ : na,j 7→ na,j, i 7→ −i , (5.28)

C : n1,j 7→ n2,j, n2,j 7→ n1,j , (5.29)

T1 : na,j 7→ −na,j+1 , (5.30)

I : na,j 7→ na,−j . (5.31)

Note that the appearance of (−1)j in Eq. (5.27) indicates that each site forms

a projective representation of the onsite symmetry group generated by gx and

N1,2. Furthermore, gx commutes with N1,2 only in the N1 = N2 = 0 sector.

5.4.2 Central charge

Through a somewhat different protocol than was used to find the phase dia-

gram, we are able to estimate the central charge at the phase transition. In this

case we optimize MPS at the phase transition beginning from random initial

states of small bond dimension; we then increase the bond dimension of the

optimized state and re-converge. As a result, individual data points are not

independent of one another, although the data for differing δ are independent.

We do not explicitly break any symmetries in this scheme.

In Fig. 5.2 we show results for the central charge measured at the phase tran-

sition along cuts δ = 0.6, 1.0, 1.4. In this figure we have used the extrapolated

1That is, the U(1)
2

contains rotations about the generators of the Cartan subalgebra of
su(3). In general, in this way a q-state model can be written which is symmetric under a

U(1)
q−1

subgroup of SU(q).
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Figure 5.2: Entanglement scaling is shown at the precise phase transition
for several values of δ. We draw data points in random order to emphasize
consistency. Numerical c are obtained by fits to critical scaling of entangle-
ment entropy S = c

6
ln ξ. States are optimized at the critical point but break

gx slightly. The best estimates for the exact locations of the phase transi-
tion are (δ,Kc) = (0.6, 1.327), (1.0, 2.0), (1.4, 2.664), which were determined
by numerical extrapolations in the thermodynamic limit similar to inset in
Fig. 5.1.

critical values Kc(δ) and generated MPS for these points over a large range of

bond dimensions χ from 30 to 360, corresponding to ξ ranging from approx-

imately 10 to 200. The entanglement entropy measurements are consistent

with the expected critical scaling S = c
6

ln ξ, where ξ is the correlation length

induced in the wavefunction by the finite MPS bond dimension.

We find nearly the same central charge at these fairly widely separated points

on the phase boundary. This provides initial evidence that the phase boundary

is controlled by a single fixed point. For values of δ close to 0 there is a

crossover which interferes with the accurate scaling, but otherwise all results

are consistent with a single fixed point.

5.4.3 Critical exponents

With optimized MPS ground states in hand describing the phase transition,

measuring correlation functions of lattice operators with suitable symmetry

properties allows for probing the universality based on critical indices. At a

critical point various correlations display quasi-long-range order with asymp-

totic scaling given by CO(r) = 〈O†(0)O(r)〉 − 〈O†(0)〉〈O(r)〉 ∼ r−2∆O for a
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local observable O(r).

We focus on the line δ = 1 and measure correlations at the phase transition,

including of observable Zj which carries gx charge. We also consider S+
1,j, which

is charged under N1 but not N2:

S+
1,j =

 0 pj 0

1− pj 0 0

0 0 0

 , (5.32)

where pj is the parity of j from Eq. (5.19).

We also consider the U(1) current with temporal part n1,j and spatial part j1,j

derived from the conservation of N1. Explicitly,

j1,j ∼ (−1)j
(
T 1
j T

2
j+1 + T 2

j T
1
j+1 − T 6

j T
7
j+1 − T 7

j T
6
j+1

)
. (5.33)

In order to extract long-wavelength correlations of the conserved currents, we

measure

Cn1(r = j′ − j) ≡ 〈(n1,j + n1,j+1)(n1,j′ + n1,j′+1)〉 (5.34)

and similarly for Cj1(r).

The counterparts S+
2,j, n2,j, and j2,j are related to these operators by C. These

are all sensible for the transition at δ = 1; away from this line definite charge

under gz is carried by Xj or X†j , depending on pj. However Xj and X†j are

simply linear combinations of the U(1)×U(1) raising and lowering operators

as well as other terms related by permutation symmetry, which we expect is

respected at the critical point. So the critical exponent governing S+
1,j and

S+
2,j will also determine the decay of correlations of Xj. We confirmed the

symmetry numerically but do not show these results, instead summarizing

this family of operators by S+
1,j only, and similarly for n1,j and j1,j.

We also measure the 0-momentum and π-momentum components of the energy

term Ej = T
a

jT
a
j+1 which is invariant under the full internal symmetry group:

ε0j = Ej + Ej+1 , (5.35)

επj = Ej − Ej+1 . (5.36)

The operator επj is the natural lattice operator for VBS correlations, being in

the singlet sector of all internal symmetries [actually the entire SU(3)] but odd

under Z2 translation symmetry.
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Finally, we wish to investigate the conjecture that the critical theory at the

point δ = 1 in fact controls the entire phase boundary. This would imply that

the U(1)×U(1) symmetry of the line δ = 1 is emergent at the transition for

other values of δ; equivalently, terms breaking the symmetry are irrelevant at

the transition for δ = 1. We measure correlations of a term which carries charge

under U(1)2 but preserves all symmetries of H in Eq. (5.11). Specifically,

consider the following operator:

A =
∑
j

Aj , (5.37)

with

Aj =
∑
h∈S3

(
|h(1)〉〈h(0)|j ⊗ |h(0)〉〈h(2)|j+1 + H.c.

)
. (5.38)

The sum is over elements of the permutation group, and the term correspond-

ing to the identity element e = (012) is S+
1,jS

+
2,j+1 + S−1,jS

−
2,j+1. It is easy to

see that A respects gz, gx, C, Θ, and lattice symmetries, while all terms in A
break N1 and N2. We thus interpret A as a field-like term driving U(1)×U(1)

symmetry breaking, hence maintaining criticality to leading order in the field.

Based on the above interpretation, we can predict the slope of the phase

boundary in the phase diagram at δ = 1 in Fig. 5.1. As mentioned there,

the critical point H∗ appears to be (δ,K) = (1, 2), where Jz = K. Now we

suppose that A turns out to be the most relevant symmetry-breaking operator,

and moreover thatH∗+λA remains critical to leading order in λ. Decomposing

this term into the (δ,K) basis, which control terms (XjXj+1−Z†jZj+1 + H.c.)

and 6T
a

jT
a
j+1, respectively, yields the unique solution

Aj =

(
XjXj+1 +

1

3
Z†jZj+1 + H.c.

)
+ 2T

a

jT
a
j+1 (5.39)

= (XjXj+1 − Z†jZj+1 + H.c.) +
5

3

(
6T

a

jT
a
j+1

)
+

4

3

(
(Z†jZj+1 + H.c.)− 6T

a

jT
a
j+1

)
.

(5.40)

The final line in Eq. (5.40) simply changes the overall scale of H∗, allowing it to

be removed from the perturbation term in this picture. So as a consequence of

the conjectured irrelevance of this U(1)2 symmetry-breaking term, we predict

that the critical manifold in these variables has slope dδ/dK = 3
5

at (δ,K) =

(1, 2); this is highly consistent with the numerical data shown in Fig. 5.1.
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Figure 5.3: Direct measurements of correlations are taken from an MPS
of bond dimension χ = 300 optimized for the phase transition at δ = 1, with
translation invariance; that is, biased towards breaking gx. These operators are
described in Sec. 5.4.3, and all correlations measure the connected component.
In the trace of Cε0 we include only odd separations r in the interest of visual
clarity; the power law is unaffected.

Direct approach

The most straightforward approach to determining scaling dimensions is sim-

ply to measure the correlation function in real space and fit to a power law

form. We refer to this as the “direct approach,” following terminology used

in Ref. [13]. This is very similar to the procedure used in Ref. [2] to fit crit-

ical indices for the transition between Ising FM and VBS. As was the case

there, we determine a power law for the decay of correlations for a single bond

dimension (usually the largest studied). However, in contrast to that work

we will always use the connected correlations; accordingly, we will not obtain

bounds on exponents as we did there but rather simple estimates. We suspect

that this measurement will tend to overestimate operator scaling dimensions

as a result of the finite length scale induced by the MPS bond dimension even

at a critical point. In addition, the direct approach suffers from ambiguity

in determining the appropriate intermediate power-law region between non-

universal short-distance behavior and eventual exponential decay. We show
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the results of these measurements in Fig. 5.3.

There is already an interesting observation visible in the raw data; namely, that

the magnetic zFM and VBS observables have very similar power laws. This is

suggestive of some enhanced symmetry unifying the two order parameters at

the putative critical point, a characteristic property of DQCP.

Finite-entanglement scaling approach

As mentioned previously, finite-entanglement approximations necessarily in-

duce a length scale; here the MPS correlation length ξ introduces some scal-

ing function to the critical correlations which eventually decays exponentially.

One technique to counteract this is referred to as “finite-entanglement scaling”

(FES) [13], which is based on the observation that irrespective of the functional

form of the correlations with a length scale, one finds that CO(sξ) ∼ (sξ)−2∆O .

Here s is a dimensionless fraction which is kept fixed as one varies bond di-

mension (and hence ξ). We employ this more sophisticated strategy which

incorporates data from multiple optimized MPS in Fig. 5.4, and provide a

comparison with the direct results.

One sees that the direct approach tends to overestimate scaling dimensions as

compared to FES, with the exception of the S+
1,2 operators, whose raw data

is not amenable to a power-law fit. Other results are qualitatively consis-

tent with the direct approach, with highly relevant operators in the magnetic

and translation symmetry–breaking sectors, along with other less-relevant op-

erators charged under the U(1) symmetries and in the singlet sector. The

expectation that the conserved space-time current components n1 and j1 have

scaling dimension 1 is reasonably well satisfied. Additionally, the similarity

between the zFM and VBS order parameters is maintained in this approach,

albeit with slower power laws. The correlations CA decay below the measure-

ment error threshold too quickly to effectively treat with the FES method and

are not shown.

From the scaling dimensions ∆Z , ∆επ , and ∆ε0 measured in correlation func-

tions we can provide numerical estimates of the critical indices characteriz-

ing the transition. The FES scaling dimensions generally depend on s, and

there is no a priori best value of this parameter to choose. Fortunately our

measurements do not vary widely, and for lack of a better option we will

choose s = 1. These values are given in Fig. 5.4, and the reader is free to
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Figure 5.4: In the FES approach we measure the correlations CO(sξ) for a
range of fixed dimensionless fractions s and varying ξ. The top panel shows
data for the spatial part of the U(1) current j1,j. For s > 1 the raw data is
already in the exponential decay regime of Fig. 5.3, while this approach still
exhibits consistent power law scaling; thus FES is indeed largely insensitive
to the scaling function induced by finite MPS bond dimension. In the bottom
panel we show scaling dimensions as a function of s. ∆j1 and ∆n1 are visually
identical for all values of s. We do not include A, whose correlations decay too
quickly to use this method. Horizontal lines marked ∆d indicate values found
by power-law fits in the direct approach in Fig. 5.3. In the table, we provide
FES results at s = 1.

decide how seriously to take the numbers. The correlation length exponent

we compute is ν = 1/(2−∆ε0) ≈ 1.2 and the order parameter exponents are

βzFM = ν∆Z ≈ βVBS = ν∆επ ≈ 0.35. Due to the strong irrelevance of the

A perturbation breaking U(1)×U(1) symmetry, we predict that these critical

indices describe an extended region of the phase boundary.

We revisit these measurements in Sec. 5.7 and compare with results from exact
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diagonalization, identifying these operators with primary fields in a putative

CFT where possible.

5.5 Theories of phase transition

5.5.1 Domain wall description

We write the standard duality mapping to Z3 domain wall variables on the

dual lattice. Denote these operators by Z̃j+1/2 and X̃j+1/2:

X̃j+1/2 = Z†jZj+1 , (5.41)

Z̃j+1/2 =
∏
i≤j

Xi , (5.42)

Z̃†j−1/2Z̃j+1/2 = Xj . (5.43)

The dual operators satisfy Z̃X̃ = ωX̃Z̃. In these variables H is written (up

to constant terms)

H̃ = −
∑
j

[
(JxZ̃†j−1/2Z̃j+3/2 + JzX̃j+1/2 + H.c.)

+K(1 + Z̃†j−1/2Z̃j+3/2 + H.c.)(1 + X̃j+1/2 + H.c.)
]
, (5.44)

and the generators of the Zx3 × Zz3 symmetry as

gx =
∏
j

Z̃†j−1/2Z̃j+1/2 = 1 , gz =
∏
k

X̃2k+1/2 . (5.45)

That on a periodic chain gx appears trivial is a symptom of this duality failing

to account for the global symmetry aspects of the model on such a chain. In

App. 5.C, we formulate the duality on a periodic chain and account for all

global aspects by using a dual Z3 gauge field. We can view the analysis in this

section as being performed in a fixed gauge.

The action of the symmetries on the dual variables is

gx : (X̃j+1/2, Z̃j+1/2) 7→ (X̃j+1/2, Z̃j+1/2) , (5.46)

gz : (X̃j+1/2, Z̃j+1/2) 7→ (X̃j+1/2, ω
pj−1Z̃j+1/2) , (5.47)

Θ : (X̃j+1/2, Z̃j+1/2) 7→ (X̃†j+1/2, Z̃j+1/2), i 7→ −i , (5.48)

C : (X̃j+1/2, Z̃j+1/2) 7→ (X̃†j+1/2, Z̃
†
j+1/2) , (5.49)

T1 : (X̃j+1/2, Z̃j+1/2) 7→ (X̃j+3/2, Z̃j+3/2) , (5.50)

I : (X̃j+1/2, Z̃j+1/2) 7→ (X̃−(j+1/2), Z̃−(j+1/2)) . (5.51)
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The dual Hamiltonian Eq. (5.44) can be viewed as two individual 3-state clock

models residing on the “even” and “odd” sublattices of the dual lattice (lo-

cations 2k + 1/2 and 2k + 3/2, k ∈ Z, respectively), with energy-energy cou-

pling between them. Physically, when all domain walls are gapped (that is,

〈Z̃odd〉 = 〈Z̃even〉 = 0), the zFM order is preserved. The threefold degeneracy

of this phase is encoded in the gauge sector presented in full in App. 5.C.

Other phases can be obtained by various condensation patterns of the domain

wall variables. For example, condensing 〈Z̃odd〉 = 〈Z̃even〉 6= 0 breaks gz but

preserves gx, C, Θ, and T1. We thus identify this with the particular classical

state
⊗

j |0x〉j in the xFM phase. The other classical states in this phase break

C and T1 but preserve T1C. These correspond to 〈Z̃odd〉 = ω±1〈Z̃even〉 6= 0. It

appears naively that there are a total of nine degenerate minima; however,

when global symmetry aspects are accounted for, there are indeed only three

degenerate ground states.

By instead condensing domain walls as 〈Z̃odd〉 6= 0 and 〈Z̃even〉 = 0, or vice

versa, one finds a phase which breaks translation symmetry and has twofold

ground state degeneracy. We identify this condensate with the VBS phase in

the lattice model. While this order parameter appears to transform nontriv-

ially under gz in the above equation, its value is not gauge-invariant, and this

phase in fact respects the full internal symmetry group. From the perspective

of the zFM in this language, the VBS is a particular Higgs phase, with the

transition accomplished by condensing domain walls on only one sublattice of

the dual lattice.

One can write a schematic theory of coarse-grained domain walls described by

complex fields wA ∼ Z̃odd, wB ∼ Z̃even, transforming as

gx : (wA, wB) 7→ (wA, wB) , (5.52)

gz : (wA, wB) 7→ (wA, ω
−1wB) , (5.53)

Θ : (wA, wB) 7→ (wA, wB), i 7→ −i , (5.54)

C : (wA, wB) 7→ (w†A, w
†
B) , (5.55)

T1 : (wA, wB) 7→ (wB, wA) , (5.56)

I : (wA, wB) 7→ (wA, wB) . (5.57)
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The associated Lagrangian reads

L = LA + LB + LAB , (5.58)

Lα = t|wα|2 + u3(w3
α + c.c.) + u4|wα|4 + · · · , (5.59)

LAB = λ|wA|2|wB|2 + · · · , (5.60)

where Lα is a schematic theory for the Z3 ordering transition on each sub-

lattice. Gradient terms are omitted for simplicity. In addition to the usual

mass term t and quartic term u4, the symmetries allow the Z3 anisotropy term

u3, which energetically distinguishes three particular directions to capture the

qualitative physics of the underlying Z3 clock variables Z̃odd/even.

In the absence of coupling between the two sublattices, the critical point (on

each sublattice) is obtained by tuning the parameter t. Schematically, for

“renormalized” trenorm > 0 the fields wA and wB are both gapped, which for

the original system corresponds to the zFM phase. In contrast, for trenorm < 0

both fields condense; in the original system this corresponds to the xFM phase.

This is not a tractable field theory for describing the Z3 criticality; instead,

the actual critical properties are known from exact solutions of lattice models

or study of the IR theory, which is a conformal minimal model. Nevertheless,

this schematic writing simplifies the discussion of the domain wall theory.

LAB represents coupling between the Z3 systems on the two sublattices. In

our model, this has the form of energy-energy coupling, for which we write the

most relevant term with amplitude λ.2 It is known from the CFT description of

the Z3 criticality that the energy-energy coupling is relevant at the decoupled

point.

Consider now the full theory including LAB. By lowering t, one allows domain

walls to proliferate and destroy the zFM order. Focusing on the quartic terms,

if λ < 2u4 both domain walls want to condense simultaneously, leading to the

2Additional terms in LAB in Eq. (5.60) can be obtained, e.g., by forming symmetric
combinations of products of terms in LA and LB . The listed symmetries allow terms like
κ[(wAwB)3 + H.c.] and κ′[(w†AwB)3 + H.c.] which individually are not energy-energy terms
between the subsystems A and B. However, our specific lattice model in the dual formulation
has an additional symmetry which acts like C on one sublattice only; that is, C̃A : Z̃2k−1/2 7→
Z̃†2k−1/2, Z̃2k+1/2 7→ Z̃2k+1/2, wA 7→ w†A, wB 7→ wB . This requires κ = κ′, and the combined

term is an energy-energy term. This minor difference between general models with the
defined symmetries and our specific model is not used in any essential way. The above
additional symmetry of the lattice model which is manifest in the dual formulation is non-
local in the original formulation.
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xFM phase. (As described previously, the above Lagrangian does not include

the dual Z3 gauge field needed to account for global symmetry aspects, which

reduces the ground state degeneracy in this case to only three ground states.)

If instead λ > 2u4 it is energetically favorable for only one domain wall species

to condense, with two possibilities: either 〈wA〉 6= 0, 〈wB〉 = 0 or 〈wA〉 = 0,

〈wB〉 6= 0, which correspond to the two degenerate ground states of the VBS

phase.

In our lattice model, the above two regimes correspond to K < 0, where we

find a transition from the zFM to the xFM phase, and to K > 0, where we

find the VBS phase. Furthermore, along the δ = 0 line we find a first-order

zFM-xFM phase boundary for K < 0 while the VBS phase immediately opens

up for K > 0. This is consistent with the relevance of the energy-energy cou-

pling at the decoupled point (δ,K) = (0, 0), taken together with the above

schematic energetics picture of the preferred domain wall condensation pat-

terns for K < 0 and K > 0. Moreover, in our model along the line δ = 0, the

domain wall theory is invariant under a simultaneous duality transformation

for each species A and B, treated as their own Z3 chains, which we interpret

as maintaining the “thermal” variable teff = 0 and allowing only the energy-

energy coupling to flow. The runaway flows are then interpreted as leading to

coexistence of zFM and xFM on one side—having wA and wB both gapped or

both condensed being energetically equal by the above self-duality—and the

VBS phase on the other side.

We can now discuss the zFM-VBS phase boundary, which requires perturbing

from the decoupled point in both t and λ directions in the field theory (both δ

and K in our lattice model). In the low-energy theory at the decoupled point

(δ,K) = (0, 0) both couplings t and λ are relevant, with scaling dimensions

4/5 and 8/5, respectively. The leading flow equations are dt/d` = (6/5)t+ · · ·
and dλ/d` = (2/5)λ+ · · · ; in particular, t(`) ∼ λ(`)3 along the flows near the

decoupled point. To be on the phase boundary, the couplings t and λ must

balance one another. Thus we predict that the phase boundary has the shape

δc(K) ∼ K3 near the decoupled point.

Unfortunately, we do not know the ultimate fate of this type of balanced flow

of two relevant couplings. One possibility is that the flow leads to a new fixed

point with only one relevant direction, which would then describe a generic

continuous zFM-VBS transition. The alternative is that there is no such new
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fixed point, and a runaway flow is interpreted as corresponding to a first-order

zFM-VBS transition. The above “theory” does not provide a controlled way

to study this question, but we hope that it will motivate more research in this

problem.

5.5.2 Theory for U(1)×U(1)-symmetric model

Bosonized variables

The apparently emergent U(1)×U(1) symmetry invites treatment via bosoniza-

tion [14–16]. Consider the model along the δ = 1 line where it has microscopic

U(1)×U(1) symmetry. This model can be approximated by two coupled U(1)

rotors with variables (na,j, φa,j), a = 1, 2, defined by

(−1)j|a〉〈a| ∼ na,j , S+
a,j ∼ eiφa,j , (5.61)

where [na,i, φa′,j] = i δaa′ δij.

To begin writing the field theory description, we first determine the average

filling in this system. The filling number is constrained by the action of gx in

Eq. (5.27); for a fully symmetric state we have

〈n1,j〉 = 〈n2,j〉 =
(−1)j

3
. (5.62)

Next, to capture fluctuations δna ≡ na − 〈na〉 we introduce bond variables

θa,j+1/2, where

δna,j =
1

π

(
θa,j+1/2 − θa,j−1/2

)
. (5.63)

We choose θa,j+1/2 as follows:

θa,2k−1/2 =
∑

j′≤2k−1

π na,j′ ,

θa,2k+1/2 =
∑
j′≤2k

π na,j′ +
π

3
. (5.64)

The commutator between θa and φa′ is

[θa,j+1/2, φa′,j′ ] = iπ δaa′ Θ(j + 1/2− j′) , (5.65)

where Θ(x) is the Heaviside step function.

To get to the low-energy theory, we define long-wavelength fields θ1,2(x) and

φ1,2(x) in continuum space, where θ1,2(x) are real-valued with periodicity π
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and φ1,2(x) have periodicity 2π. These fields satisfy[
∂xθa(x)

π
, φa′(x

′)

]
= i δaa′ δ(x− x′) . (5.66)

The action of the symmetries on the fields can be deduced from their lattice

operator counterparts in Eqs. (5.61) and (5.64):

u(ϕ1, ϕ2) : (φ1, θ1, φ2, θ2)→ φ1 + ϕ1, θ1, φ2 + ϕ2, θ2) , (5.67)

gx : (φ1, θ1, φ2, θ2)→ (−φ1 + φ2, θ2,−φ1,−θ1 − θ2) , (5.68)

Θ : (φ1, θ1, φ2, θ2)→ (−φ1, θ1,−φ2, θ2) , i → −i , (5.69)

C : (φ1, θ1, φ2, θ2)→ (φ2, θ2, φ1, θ1) , (5.70)

T1 : (φ1, θ1, φ2, θ2)→
(
−φ1,−θ1 +

π

3
,−φ2,−θ2 +

π

3

)
, (5.71)

I : (φ1(x), θ1(x), φ2(x), θ2(x))→(
φ1(−x),−θ1(−x) +

π

3
, φ2(−x),−θ2(−x) +

π

3

)
. (5.72)

We are now ready to write down the low-energy theory. The symmetry-allowed

Gaussian part reads

L0 =
2∑

a=1

[
i

π
∂τφa∂xθa +

v

2π

(
g(∂xφa)

2 +
1

g
(∂xθa)

2

)]
+

v

2π

(
−g∂xφ1∂xφ2 +

1

g
∂xθ1∂xθ2

)
, (5.73)

with a single tunable “Luttinger parameter” g and one “velocity parameter”

v. There are two types of symmetric scattering terms:

1. Type I (m ∈ Z):

λIm

[
cos

(
2m(θ1 + θ2)− 2mπ

3

)
+ cos

(
2mθ1 +

2mπ

3

)
+ cos

(
2mθ2 +

2mπ

3

)]
,

(5.74)

2. Type II (m ∈ Z):

λIIm [cos (2m(θ1 − θ2)) + cos (2m(θ1 + 2θ2)) + cos (2m(2θ1 + θ2))] .

(5.75)
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The scaling dimensions for generic exponentials of the fields at the Gaussian

fixed point are given by [17]:

dim [exp(i (2m1θ1 + 2m2θ2))] =
2g√

3
(m2

1 −m1m2 +m2
2), (5.76)

dim [exp(i (p1φ1 + p2φ2))] =
1

2
√

3g
(p2

1 + p1p2 + p2
2). (5.77)

We now list some important operators in this bosonized language (identified

either microscopically or by using the symmetry transformations in Eqs. (5.67–

5.72)) along with their scaling dimensions at the Gaussian fixed point.

• As discussed before, operators carrying unit charges under U(1)×U(1)

are S+
1,2 ∼ exp(iφ1,2), which have scaling dimensions dim[S+

1,2] = 1
2
√

3g
.

• The operator A defined in Eq. (5.38), which breaks U(1)×U(1) to Zz3,

reads

A ∼ cos(φ1 + φ2) + cos(2φ1 − φ2) + cos(φ1 − 2φ2) , (5.78)

and dim[A] =
√

3
2g

.

• The zFM order parameter is given by

OzFM ∼ cos

(
2θ1 + 2θ2 −

2π

3

)
+ e2iπ/3 cos

(
2θ1 +

2π

3

)
+ e−2iπ/3 cos

(
2θ2 +

2π

3

)
, (5.79)

and dim[OzFM] = 2g√
3
.

• The VBS order parameter reads

OVBS ∼ cos
(

2θ1 + 2θ2 −
π

6

)
+ cos

(
2θ1 +

π

6

)
+ cos

(
2θ2 +

π

6

)
,

(5.80)

and dim[OVBS] = 2g√
3
.

It is interesting to note that at the Gaussian fixed point, the zFM and VBS or-

der parameters have the same scaling dimension, which also coincides with the

scaling dimension of the leading allowed scattering term, given by Eq. (5.74)

with m = 1. Furthermore, we have the relation

dim[S+
a ]

dim[A]
= dim[S+

a ] dim[OzFM] =
1

3
. (5.81)



165

When g >
√

3, all allowed scattering terms are irrelevant and this system is in

a stable gapless phase described by the Gaussian fixed point, with power law

exponents as described above. This phase is stable as long as the U(1)×U(1)

symmetry is present microscopically. Note, however, that we did not find this

phase in our lattice model along the δ = 1 line, but it would be interesting to

look for it in some model deformations in the future. On the other hand, if

the U(1)×U(1) symmetry is broken down to Zz3 and the A term is allowed,

one cannot simultaneously make this term and all scattering terms irrelevant

and the gapless phase is unstable.

Gapped phases and “classical phase diagram” in the bosonized

variables

We now develop the representation of various gapped phases in this theory.

Different gapped quantum phases correspond to different patterns of 〈φ1,2〉 or

〈θ1,2〉. As a consequence of the Mermin–Wagner theorem, in the U(1)×U(1)-

symmetric model φ1,2 never condense and we always have 〈exp(iφ1)〉 = 〈exp(iφ2)〉 =

0.

For quantum states preserving T1, we require 〈θ1,2〉 = π/6 or −π/3 (mod π).

For quantum states preserving gx, we require 〈θ1〉 = 〈θ2〉 = 0 or ±π/3
(mod π). We are then able to represent the gapped phases appearing in the

previous sections as follows:

• 〈θ1〉 = 〈θ2〉 = −π/3 gives a fully symmetric phase. The detailed study

of this SPT phase is presented in App. 5.A.2.

• 〈θ1〉 = 〈θ2〉 = 0 or π/3 gives the two degenerate ground states of the

VBS phase.

• (〈θ1〉, 〈θ2〉)=(π/6, π/6), (π/6,−π/3), (−π/3, π/6) gives the three degen-

erate zFM ground states.

The classical phase diagram of this two-component Luttinger liquid theory is

obtained by minimizing the energy of the scattering terms. We first consider

the symmetric scattering term Eq. (5.74) with m = 1, which we label V I
1 . Its

scaling dimension is 2g/
√

3, the lowest among symmetric terms; it is relevant

for g <
√

3. When λI1 < 0, V I
1 is minimized at θ1 = θ2 = −π/3, and thus gives

the symmetric phase. When λI1 > 0, it is instead minimized at θ1 = θ2 = 0
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or π/3, and thus gives the VBS phase. If we also have g > 1/
√

3 so that

the next scattering term—Eq. (5.75) with m = 1—is irrelevant, the VBS

to SPT transition is obtained when the single relevant coupling λI1 changes

sign and is described by the Gaussian theory in Eq. (5.73). The correlation

length exponent at this transition is set by the scaling dimension of V I
1 : ν =

1/(2 − 2g/
√

3), while the power law correlations of various observables are

governed by the scaling dimensions we have calculated. It is interesting that

even though zFM order is not present on either side of the transition, its

correlations decay with the same power law as the VBS order present on one

side.

To describe the zFM phase and its transition to the VBS phase, we add the

next scattering term (Eq. (5.75) with m = 1), labelled V II
1 . Thus the combined

scattering term is

V = V I
1 + V II

1 . (5.82)

When g < 1/
√

3, both V I
1 and V II

1 are relevant.

We parametrize λI,II1 by λ and α, where λI1 = λ cosα and λII1 = λ sinα. For

each α, we identify all minima of Eq. (5.82), and associate classical phases with

the minima by analysis of symmetry properties. The resulting phase diagram

is shown in Fig. 5.5.

When arctan(1/8) < α ≤ π/4, then (θ1, θ2)min = (π/6, π/6), (π/6,−π/3) or

(−π/3, π/6), which gives the zFM phase. We can also identify representative

lattice wavefunctions for these three states by studying their transformation

properties under C and gx:(π
6
,
π

6

)
∼
⊗
j

|0〉j ,
(π

6
,−π

3

)
∼
⊗
j

|1〉j ,
(
−π

3
,
π

6

)
∼
⊗
j

|2〉j . (5.83)

When −π/2 < α < arctan(1/8), we find (θ1, θ2)min = (0, 0) or (π/3, π/3),

which gives the VBS phase.

When −π−arctan(1/3) ≤ α < −π/2, (θ1, θ2)min = (−π/3,−π/3), and we find

the symmetric phase.

When π/4 < α < π − arctan(1/3), we get six degenerate minima, which can

be parameterized by a single variable υ:

(θ1, θ2)min =
(π

6
± υ, π

6
∓ υ
)
,
(π

6
∓ υ,−π

3

)
,
(
−π

3
,
π

6
± υ
)
. (5.84)
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SPT VBS

zFM

Bond-centered
Magnetic Order

λI
1

λII
1

Figure 5.5: Four distinct phases appear in the classical phase diagram ob-
tained by analyzing the minima of Eq. (5.82).

The physical picture of this phase can be obtained by analyzing the symme-

tries of these minima and their relation to nearby phases. Denoting the above

minima as A±,B±,C±, they transform in a 3-cycle way under gx : A± →
B± → C± → A±, while they are exchanged pairwise under lattice translation

T1 and inversion about a site I : A+ ↔ A−,B+ ↔ B−,C+ ↔ C−. Further-

more, A±/B±/C± are exchanged pairwise under symmetries C, gxC, or Cgx.
At the point α = π/4, the optimal υ = 0 and these pairs merge to give the

three ground states of the zFM phase in Eq. (5.83). We conclude that the

phase with υ 6= 0 also has magnetic order similar to zFM with additional

translation and site inversion symmetry breaking (but preserves bond inver-

sion symmetry). However, the lattice symmetry breaking is different from the

VBS order: the VBS order parameter is zero in all these states for any υ, and,

more directly, the VBS ground states are invariant under C and gx, which is

not the case here. According to the symmetry properties of this phase, we

name it a “bond-centered magnetic order” phase.

We cannot write simple product states that would have the desired transfor-

mation properties for the bond-centered magnetic order states, including the

expected quantum numbers under the U(1)×U(1). However, it is possible to

write MPS wavefunctions for these ground states, by building upon the MPS
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wavefunction for the neighboring SPT phase from App. 5.A.2, with which the

present phase connects at α = π − arctan (1/3), υ = π/2, where all of the

minima collapse to (−π/3,−π/3) (remembering that the θ fields are defined

modulo π). The MPS construction for this phase is presented in App. 5.A.3.

zFM-VBS transition in U(1)×U(1)-symmetric theory

We can now discuss the phase transition between the zFM and VBS phases

within this theory. In the above “classical” treatment of V I
1 and V II

1 , the phase

transition occurs along the line λII1 = λI1/8 with positive λI,II1 ; this is a “level

crossing” transition and is first order. This treatment is appropriate when

both bare couplings λI1 and λII1 are large. On the other hand, we can consider

starting from the Gaussian theory when these bare couplings are small. In

the regime g < 1/
√

3, both couplings are relevant and start flowing to larger

values. We may speculate that the (almost) continuous zFM to VBS transition

observed in our numerical study occurs when these couplings during their flow

balance each other in just the right way, but unfortunately we do not have a

controlled means to study this.

Nevertheless, it is intriguing that some of the relations among the various

scaling dimensions at the Gaussian fixed point appear to be approximately

satisfied in our numerical study at the (pseudo-)critical point (δ,K) = (1, 2).

Namely, we find numerically that the zFM and VBS order parameters have

very close scaling dimensions, while they are equal in the Gaussian theory.

We also find that Gaussian theory relations in Eq. (5.81) are approximately

satisfied. The scaling dimensions are consistent with a naive estimate geff ≈
0.25. For such geff, both V I

1 and V II
1 would be relevant (in fact, one more

scattering term with coefficient λI2 would also be relevant), consistent with

these couplings flowing away from the Gaussian fixed point. For such a value

of geff, the term A breaking the U(1)×U(1) symmetry down to gz is irrelevant,

which is consistent with the observed emergent U(1)×U(1) symmetry along

the zFM-VBS phase boundary.

We remark that the above relations among various exponents in the Gaussian

theory follow from the fact that there is a single Luttinger parameter in the

theory, which in turn is dictated by the microscopic symmetries. It is possible

that the corresponding approximate relations found in the numerical study

of the (pseudo-)critical point are also primarily due to the symmetries rather
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than proximity to the specific two-component Luttinger liquid theory. How-

ever, we do not know how to guess a better description, while the Luttinger

liquid theory at least provides some framework for discussing observables and

noticing these relations.

5.6 Connection to integrable statistical mechanics models

5.6.1 Classical model of non-intersecting strings

Focusing on the line of enhanced symmetry δ = 1 which has significantly

informed our study so far, one observes in Fig. 5.1 that this slice appears to

intersect the phase boundary exactly at the point (δ,K) = (1, 2), at which

Jx = 0 and Jz = K. Up to constants and an overall scale, this point is

equivalent to

H∗ = −
∑
j

(
(q − 2)

∑
α

|αα〉〈αα|j,j+1 +
∑
α,β

|αα〉〈ββ|j,j+1

)
. (5.85)

for q = 3. The above finding suggests that this Hamiltonian may be special,

and in order to understand it we first return to another special instance of

our Hamiltonian, namely, the point Jx = Jz = 0, which up to normalization

and constants maps exactly to the pure biquadratic spin-1 Hamiltonian HbQ,

Eq. (5.8). This Hamiltonian is associated with the transfer operator of a

particular 2d statistical mechanics model realizing “non-intersecting strings”

(NIS).

α

(a)

α

α α

α

(c)

β

β α

α

(d)

β

α β

Figure 5.6: The three types of vertices shown here, with α 6= β, are allowed in
the vertex models we consider. We consider the model on the two-dimensional
square lattice with vertex weights a, c, and d for the configurations (a), (c),
and (d) respectively; see text for details.

These models are formulated with classical q-state degrees of freedom assigned

to the edges of a graph—we have in mind the 2d square lattice—and weights

assigned to the vertices according to their configurations. The only nonzero
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vertices are those shown in Fig. 5.6; when accounting for the Sq permutation

symmetry of the labels α, β = 1, . . . , q, there are q(2q − 1) allowed vertices.

To simplify the notation, we write the weights as w(a) = a, w(c) = c, and

w(d) = d.3 Solving the Yang–Baxter equation for the transfer matrix with

Sq symmetry yields two integrable models for each value of q, satisfying the

following conditions [19–21]:

separable: a = c+ d , (5.86)

non-separable: a2 = a(c+ d) + (q − 2)cd . (5.87)

We perform this calculation explicitly in App. 5.B.4 for the q = 3 transfer

matrix. The solution Eq. (5.86) is commonly known as the separable NIS

model, and we refer to that of Eq. (5.87) as the integrable non-separable case.

Schematically, under the separability condition Eq. (5.86), vertices of type (a)

can be decomposed into both types (c) and (d) and thereby removed from the

partition sum. Then one can map via a two-step duality to the self-dual point

of the q2-state Potts model [22]. The q2-state Potts degrees of freedom reside on

half of the plaquettes of the original square lattice (one color of a checkerboard

pattern) and have generally anisotropic nearest-neighbor interactions in the

x̂ + ŷ and x̂− ŷ directions of the NIS lattice, with Boltzmann weights set by

c/d and d/c. For any c and d the model is self-dual; the point c = d corresponds

to the isotropic self-dual model. We provide the explicit duality mapping from

the separable q-state NIS model on the square lattice to the q2-state Potts

model, as well as further discussion, in App. 5.D using Hamiltonian language.

Both integrable NIS statistical mechanics models are exactly solvable for gen-

eral q by the analytic Bethe ansatz [21, 23]. The structure is quite simi-

lar to the solution of the XXZ model using magnons, with the reference

states of the method being the highest excited states (a manifold spanned

by |α1, α2, . . . , αN〉 with αi 6= αi+1). Although the solution for the eigenvalues

was performed explicitly by De Vega et al. [24], we are not aware of how to

access the low-energy subspace or ground state wavefunctions exactly.

3In choosing these vertex labels and weights, we follow the convention of Klümper [18].
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5.6.2 Phases of NIS models

The weight of a single vertex can be written (with link variables labeled in the

compass pattern S,W,N,E)

w(α, γ, β, ρ) = a δαγβρ + c (δαρδβγ − δαγβρ) + d (δαγδβρ − δαγβρ)
= (a− c− d) δαγβρ + c δαρδβγ + d δαγδβρ . (5.88)

Since the overall scale of w does not change the probabilities, the vertex model

has two independent parameters, which we are free to choose. We use c/d,

which characterizes lattice anisotropy, as well as another parameter charac-

terizing the relative weight of the (a)-type vertices compared to the (c)- and

(d)-type vertices. One choice for such a parameter would be a2/cd, but we will

instead use a related quantity,

Θ =
a

cd
(a− c− d) =

a2

cd
− a√

cd

(√
c

d
+

√
d

c

)
. (5.89)

The parameter Θ is convenient in that the two integrable models correspond

to Θ = 0 and Θ = q − 2; for an explicit derivation we refer the reader to

App. 5.B.4. At each of these special values of Θ, the NIS transfer matri-

ces commute for any anisotropy parameter c/d; this is simply a restatement of

Yang–Baxter solubility. In particular, the information encoded in the eigenvec-

tors of the transfer matrices is independent of the “spectral variable” c/d. Ac-

cordingly, we can say that the physics is strictly independent of the anisotropy

parameter. This conclusion does not hold at other values of Θ 6= 0, q − 2 and

the quantitative details will depend on the anisotropy; however, we expect

that the qualitative physics will still be independent.

Using the freedom afforded by the spectral variable, one can tune to the ex-

treme anisotropic limit of the Θ = 0, q − 2 transfer matrices and take a loga-

rithmic derivative to determine that these integrable models yield precisely the

HbQ and H∗ quantum Hamiltonians, respectively, for the case q = 3 [18–20,

23, 25]. In this section we will allow Θ to vary and will argue that Θ < q − 2

realizes the same phase as the separable model Θ = 0 which breaks the lattice

translation symmetry, while Θ > q − 2 realizes a magnetically ordered phase.

Hence, the integrable non-separable model Θ = q − 2 appears to be at the

transition between these phases.

As suggested by its name, the NIS model partition sum can be rewritten

in terms of nonlocal strings; these are “completely packed” on the square
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lattice, with each edge containing a string segment. Every vertex can connect

the segments on its adjoining edges in three different ways according to the

pictures of (a)-, (c)-, and (d)-type vertices in Fig. 5.7. Ignoring boundaries,

one sees that allowed string configurations take the form of loops lying along

connected edges, all of which are in the same state within a single loop. These

loops may self-intersect at (a)-type vertices but do not cross one another.

The partition function can be rewritten independently of the q possibilities

for the state of the edges comprising each loop, and the sum over flavors

performed explicitly, obtaining a model in which q appears as a parameter and

weights in the partition sum are determined entirely by loop geometry. The

precise formulation in terms of unflavored strings is akin to a high-temperature

expansion for a q-state Potts model. The utility of this formulation is that

treating q as a parameter specifying a loop fugacity allows it to be varied

continuously.

The weights of these vertices are read off from Eq. (5.88), so by substituting

for Θ using Eq. (5.89) we write the general partition function in terms of the

loops:

Z =
∑
σ

q`(σ)(a− c− d)na(σ)cnc(σ)dnd(σ) (5.90)

= (cd)
N
2

∑
σ

q`(σ)
(√

Θ + γ2 − γ
)na(σ)( c

d

)nc(σ)−nd(σ)

2
,

where γ is determined from the anisotropy by

γ ≡ 1

2

(√
c

d
+

√
d

c

)
≥ 1 . (5.91)

(The isotropic point with γ = c/d = 1 is a one-parameter loop model.) In the

partition sum σ denotes a configuration of completely packed unflavored loops

with connections at the vertices drawn from Fig. 5.7. Here `(σ) is a nonlocal

quantity, namely the number of loops in σ (more precisely, the number of

connected components in the graph formed by the edges and their connections

at the vertices), and na, nc, and nd are the numbers of vertices of each type in

σ.

(We note parenthetically that a different variant of the NIS model also ap-

pears in the literature where it is defined on an oriented lattice with arrows

pointing out of one sublattice and into the other; correspondingly, assignment
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of weights for the two types of vertices becomes staggered compared to our

unoriented-lattice model. The NIS model defined on the oriented lattice co-

incides with the model defined on the unoriented lattice for c = d; thus, the

results about integrability still hold along this line, in agreement with the lit-

erature. However the staggered model with c 6= d does not have commuting

transfer matrices even for Θ = 0, q− 2 and is not integrable (this deformation

corresponds to moving off self-duality and hence off criticality in the related

q2-state Potts model [22]).)

(a) (c) (d)

Figure 5.7: The vertex configurations of the loop model, which are unflavored,
are shown. The weight of a configuration depends only on the geometric
pattern of connections of the string segments assigned to the edges of the two-
dimensional square lattice. The weight of each individual vertex type can be
read off from Eq. (5.88); the partition sum in terms of such loops is specified
in Eq. (5.90).

Consider first a regime in which the (a) vertex is suppressed at low energies.

Setting Θ = 0 enforces na(σ) = 0 identically. As mentioned earlier, this model

is equivalent to the q2-state Potts model, with anisotropic couplings if c 6= d,

but such that self-duality is maintained. For c = d, the model is isotropic and

for q > 2 is known to be at a first-order transition between the Potts ordered

and disordered phases (and we expect this to be true also for c 6= d). In the

NIS language, the ordered and disordered phases of the Potts model are known

to correspond to short-loop states running predominantly around one or the

other set of plaquettes [4, 21, 22].4 This is a “checkerboard” phase of the loop

model which spontaneously breaks the lattice symmetry, but is symmetric

under Sq permutation of the labels. Presumably the short-loop checkerboard

4The most direct way to see that the ordered and disordered phases of the Potts model
correspond to one or the other checkerboard pattern of NIS loops is to consider the isotropic
NIS model and perturb it by staggered weights for the (c) and (d) vertices, oppositely for
the two sublattices. In the NIS language this selects one of the checkerboard states, while
under the duality to the q2-state Potts model this moves the Potts model off self-duality
and hence into one of the phases.
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phase is stable under introducing some finite amount of Θ. (In the language

of the related q2-state Potts model with q2 > 4, a small Θ perturbation moves

along a first-order coexistence line.) This is the VBS phase of our spin model.

Conversely, in a regime with high weight on the (a) vertex, configurations at

low energies include strings that extend across the whole system. In the lan-

guage of the original vertex model degrees of freedom, such proliferation of

strings corresponds to spontaneous breaking of the Sq permutation symmetry

by choosing one of the q colors. Thus, the phase will display long-range cor-

relations of a magnetic-type order parameter which measures whether distant

links are connected by an unbroken string, whereas in the short-loop checker-

board phase correlations of this order parameter decay exponentially. In our

spin model, the proliferated-loop phase is the zFM phase.

Now for an intermediate value of the parameter Θ there will be a transition be-

tween the extended phase and the short-loop checkerboard phase. Our finding

that the VBS to zFM transition in the q = 3 model appears to be exactly at

the integrable point corresponding to Θ = q − 2 suggests that the completely

packed loop model undergoes a transition between checkerboard short loops

and the proliferated loop phase at exactly Θ = q−2. A similar conjecture was

made in Ref. [26] in the context of special completely packed O(n) loop models

(which map precisely onto the above loop model with q = n) and was sup-

ported by transfer matrix studies for n ≥ 10 and n < 2. As we discuss in the

next subsection, the Θ = q − 2 model actually has a finite correlation length,

which however can be enormous for q & 2, of which our spin model with q = 3

is an example. Our DMRG study reaching correlation lengths around 200 and

locating the zFM-VBS transition very close to the point Θ = q − 2 gives very

strong support to this conjecture also in the vicinity of q = 3.

5.6.3 Walking description of phase transition

Summary of exact results for integrable models

There is a way to learn about the spectrum of the transfer matrix of the

integrable NIS models without the need to construct eigenstates, through the

so-called inversion trick introduced by Stroganov [27] and later used to study

the six-vertex model by Baxter [28] and Baxter [29]. In its initial setting

the inversion relation was actually developed specifically to compute the free

energy per site of the two integrable q = 3 NIS models, before more was known
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about their structure. An extended inversion relation was used by Klümper

[18, 25] to compute subleading eigenvalues of the transfer matrix, exposing

some details of the low-energy spectrum. In particular, he found that the

dependence on q of the thermodynamic-limit energy gaps of both quantum

Hamiltonians corresponding to the integrable NIS models (under some overall

normalization) is governed by the function

∆ = g(x) = log x
∞∏
n=1

(
1− x−n/2
1 + x−n/2

)2

, (5.92)

and the correlation length by ξ = f(x) [18, 30],

f(x) = −1/ log k(x) , k(x) =
4√
x

∞∏
n=1

(
1 + x−2n

1 + x−2n+1

)4

. (5.93)

The two integrable models correspond to the following functional forms of the

argument x:

xsep(q) =
q +

√
q2 − 4

q −
√
q2 − 4

, (5.94)

xns(q) = q − 1 . (5.95)

One can draw some conclusions about these models from the equivalence

between the separable q-state NIS model and the q2-state self-dual Potts

model. Because the self-dual Potts model transitions from critical to gapped

at QPotts = 4, then ∆sep = 0 for q ≤ 2 and ∆sep > 0 for q > 2. Thus we can

also determine the value qc at which ∆ns experiences a transition from gapless

to gapped. Because xsep(q = 2) = 1 ≡ qc − 1, in fact the non-separable NIS

model also experiences a transition from gapless to gapped at the value qc = 2.

In particular, using q = 3 and the normalization from Sec. 5.4.1, we exactly

determine the energy gap of the Hamiltonian H∗ to be ∆ = 1.42×10−4 and the

correlation length ξ = 190878 lattice spacings. From the point of view of the

functions g(x) and f(x), this is because the integrable non-separable lattice

model has the gap and correlation length which correspond to the self-dual

Potts model with QPotts = [x−1
sep(xns(q = 3))]2 = 9

2
. The QPotts = 5 model is

known to already have a large correlation length of 3553 lattice spacings, and

QPotts = 9
2

is even closer to the critical value Qc
Potts = 4.

To recapitulate the content of this section, the q-state separable integrable

NIS model maps to the self-dual Potts model with QPotts = q2 states, and this
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mapping is actually an equivalence of models in the bulk (that is, ignoring

boundary effects). On the other hand, in the q-state non-separable integrable

NIS model, the expression for the gap and correlation length are those which

also apply to a Potts model at QPotts = [x−1
sep(xns(q))]

2 = q2/(q − 1), but we

could not find any arguments for a stronger equivalence between these models.

Implications for renormalization group flow

Supposing that the q = 3 non-separable NIS model indeed describes the phase

boundary, one concludes that the transition is extremely weakly first order.

The emergence of such a length scale enormously greater than the lattice

spacing presents a “hierarchy problem.” Fortunately we can again look to

the self-dual Potts model which provides a more familiar example of this phe-

nomenon. In the preceding section we used exact results for the eigenvalues

of the transfer matrix to contextualize the very small gap and long correlation

length of H∗ in terms of the Potts pseudo-criticality. A new understanding

of the Potts case is due to a recent thorough treatment as an instance of

“walking” of renormalization group flows [31, 32].

In brief, walking is the following proposal of an RG equation for a microscopic

coupling λ:
dλ

d logL
= −ε+ λ2 + · · · . (5.96)

For ε > 0 the flow has fixed points λ∗ = ±√ε, one of which is stable and

the other unstable. (In the Potts case these are the critical and tricritical

points existing at QPotts < 4; the system is assumed to be already tuned to the

phase transition, e.g., by enforcing the self-duality, and λ is some remaining

parameter in this manifold.) These fixed points merge upon tuning ε → 0,

and “disappear” for ε < 0. However in this regime solutions λ∗ = ±i
√
|ε|

still exist, and represent a particular type of non-unitary theory. Quantities

like central charge, scaling dimensions, and OPE coefficients at these complex

fixed points generally have nonzero imaginary components, and the conformal

data of the two fixed points are related by complex conjugation.

While the complex fixed points are inaccessible to RG flows in the unitary

theory, they do control the physics at intermediate length scales. This is

because the running of the coupling slows down considerably near λ = 0,5

5One can treat solutions λ∗ with finite real part by simply removing it via a shift to
λ− Re[λ∗].
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where it passes close to these “complex CFTs.” The RG time required for λ

to flow from −1 to +1 is found by integrating Eq. (5.96): the result is t ∼ π√
|ε|

,

corresponding to a length scale [31]

ξ = ξ0 exp
π√
ε
. (5.97)

For small values |ε| � 1 this scale becomes very long; in this case the approxi-

mate conformal symmetry inherited from the complex CFTs looks nearly exact

even for large finite systems. However, because the flow is not approaching a

conformally symmetric fixed point, the conformal data measured in systems

with a characteristic length will drift with the scale, displaying the eventual

limiting behavior at a size comparable to ξ.

In the self-dual Potts model the form of Eq. (5.96) is well motivated by a long

history of study, with parameter εPotts = 1
π2 (4−QPotts) to leading order in the

limit QPotts → 4 [31]. By matching the characteristic walking behavior at ε = 0

with the divergent parts of the exact results in the previous section we can write

down ε also for the non-separable model. The function k defined in Eq. (5.93),

an elliptic modulus, can equivalently be written k(x) = (ϑ2(q̃)/ϑ3(q̃))2, where

ϑn(q̃) is the Jacobi theta function ϑn(z = 0, q̃ = 1/x). We emphasize that the

usage of the letter q̃ = 1/x in this way is an unfortunate coincidence arising

from the conventions of elliptic functions.

To leading order as q̃ ↗ 1 (that is, from the weakly first-order side), we expand

ϑ2(q̃)

ϑ3(q̃)
≈ 1− 4

2 + exp
[
π2

1−q̃

] , (5.98)

so log f(x) ∼ π2

1−q̃ , and consequently

log f(xsep(q)) ∼ π2

2
√
q − 2

, (5.99)

log f(xns(q)) ∼
π2

q − 2
, (5.100)

to leading order in the limit q → 2. We therefore propose that in the RG

equation for the integrable NIS models ε has the form

εsep = − 4

π2
(q − 2) , (5.101)

εns = − 1

π2
(q − 2)2 , q ≥ 2 . (5.102)



178

These statements are strictly applicable only as q → 2.6 In this limit, Eq. (5.101)

reproduces the known result for the self-dual Potts model with QPotts = q2 ≈
4+4(q−2); in particular, the complex fixed points separate as the square root

of the deviation from the critical value of q: λ∗ns = 2
π

√
2− q. On the other

hand, Eq. (5.102) indicates that the functional dependence on q is different in

the non-separable case: the next correction to log f(q − 1) is a constant, so
dε
dq

= 0 at q = 2 and λ∗ = ± i
π
(q − 2) grows linearly with q. By taking these

results seriously at q = 3—which is dubious based on the expansion but works

well for the Potts model nonetheless; see Sec. 3.5 of Ref. [31]—from Eq. (5.97)

one arrives at a value ξ0 ≈ 9.9 for H∗, which can be compared with the UV

length scale ξ0,Potts ∼ 0.19 obtained for the weakly first-order Potts transition.

In order to follow the standard story of walking εns should change sign at q = 2;

it may indeed be the case that, for instance, an additional factor of sign(q−2)

is required in Eq. (5.102). However, we observe that close to the marginal

value q = 2 the two—separable and non-separable—stories of walking we have

been telling independently actually merge. In our spin model the former case

lies inside the VBS phase with fairly large correlation length ξ ≈ 21 for q = 3,

diverging for q → 2, while the latter resides on the VBS-zFM boundary and

has a much larger correlation length with stronger divergence as q → 2. It

is interesting that both of these points occur in the same NIS model as Θ is

varied, and it is intriguing to speculate that the walking parameter λ posited

separately for each case may in fact be the same. If this is true, the complex

CFTs discussed for the two models occur in the same larger parameter space

which also contains the parameter Θ, and in principle a richer flow structure

involving these fixed points is possible. It would be interesting to address

this speculation with more concrete calculations and also to examine possible

implications for crossovers in the physical spin problem.

5.7 Exact diagonalization study of CFT data for integrable model

In the walking picture the physics of our model in the approximately conformal

regime is controlled by complex CFTs; accordingly, numerics are well suited

to illuminate some of the properties of these theories. In order to do so we will

study the lattice model using exact diagonalization (ED), where the details of

the low-energy spectrum under periodic boundary conditions provide a reliable

6Specifically, the correspondences between the integrable q = 3 NIS models and the
Potts models at QPotts = 9 and 9

2 are not evident here due to the approximation.
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way to identify CFT operators up to finite-size corrections [33]. Specifically,

the energy E and lattice momentum P of an appropriate low-energy eigenstate

are related to the scaling dimension ∆ and conformal spin S of a CFT operator

as

Eα =
2π

Na

(
∆α −

c

12

)
+O(N−x) , Pα =

2π

Na
Sα , (5.103)

under suitable normalization of the lattice Hamiltonian. The lattice spacing is

denoted a and the number of sites N . Here x > 1 is a non-universal exponent

controlling the finite-size scaling. In this way we can also compare ED data

with some of the results of Sec. 5.4 by identifying the low-energy excitations

associated with primary operators in the CFT. The application of this idea

to lattice models was first worked out by Koo et al. [34] for Bethe-ansatz

integrable models and later developed into a more general numerical technique

[33].
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Figure 5.8: We show the low-energy spectrum of the integrable model (δ,K) =
(1, 2) that resides on the zFM-VBS phase boundary with system size N = 20 in
the N1 = N2 = 0 sector. Eigenvalues are organized based on conformal spin S
and gx quantum number, with gx = 1 shown in blue and gx = ω, ω2 (which are
related by C) in orange. States are offset slightly from their quantized momenta
for visual clarity. Scaling dimensions ∆ are determined by normalization of the
energy eigenvalue of the |T 〉 state associated with the stress-energy tensor, as
∆T = 2. Highest-weight states identified using Fourier modes Hn are indicated
by name. Quantum numbers of these states under symmetries C and I (where
applicable) are not shown here but are listed in Table 5.1.
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The fundamental idea is based on the observation that the Fourier modes of

the Hamiltonian density in a CFT on a circle are linear combinations of the

Virasoro generators:

HCFT
n =

Na

2π

∫ Na

0

dx einx
2π
NahCFT(x) = Ln + L−n, n 6= 0. (5.104)

The action of a Virasoro (anti)chiral operator Ln (Ln) is to decrease (increase)

conformal spin by n and decrease conformal dimension by n. That is, HCFT
n

imparts conformal spin −n, connecting lattice momentum sectors 2π
Na
S and

2π
Na

(S − n). In a CFT, all states are grouped into conformal towers related by

the Virasoso generators. Each tower descends from a unique highest-weight

state, which is associated with a primary field by the state-operator corre-

spondence. Because the energy of a state in the theory on a circle depends

on the operator scaling dimension, the highest-weight states can be identified

with those whose overlap with lower-energy states upon application of Hn van-

ishes or goes to 0 with increasing size. The numerical method is obtained by

applying these statements about continuum fields to the lattice operators, in

particular assuming that the relationship Eq. (5.104) also applies to Fourier

modes of the lattice Hamiltonian and lattice counterparts of the Virasoro gen-

erators, up to finite-size corrections.

Based on the above, one does not need to construct lattice equivalents of the

Virasoro generators; simply acting repeatedly with Hn, n ∈ {−2,−1, 1, 2}, on

an eigenstate generates other states in the same conformal tower. By project-

ing the lattice Fourier modes Hn into the space of low-energy eigenstates, the

structure of the conformal towers can be read off from the matrix elements,

and those having zero matrix elements for all Hn with all eigenstates of lower

energy will be the highest-weight states associated with primary fields in the

CFT. We find in our data that for some eigenstates this sum of matrix ele-

ments on lower-energy states vanishes identically. In other cases an eigenstate

may have a small matrix element which decreases with system size; if the spec-

trum does not contain another state from which this state could reasonably

descend, we also label this state a primary and attribute the nonzero values

of Hn to finite-size corrections. However, we are generally conservative and

are not trying to exhaustively label all highest-weight states in the spectrum,

but rather identify those that correspond to measurements made in previous

sections, in addition to other obvious candidates.
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Figure 5.9: In the upper panel we show scaling dimensions of primary fields in
the putative conformal fixed point obtained using finite-size scaling of the ex-
citation energies of highest-weight states. We determine the exponent y = 3/4
numerically, by observation of finite-size corrections to the vanishing matrix
elements of Hn with the state |T 〉 used for normalization. We do not show the
relatively heavy operators u, v, but these behave similarly. Scaling dimensions
∆s1,2 of S+

1,2 operators are extracted from ED data in the appropriate charged
sectors different from that in Fig. 5.8 (not shown). For the fits we use only
system sizes N ≥ 12, though also show data for N = 8, 10. In the lower panel
we repeat the plot containing data for the critical exponents obtained from
the FES method, also shown in Fig. 5.4. Now the horizontal lines marked on
the figure indicate the scaling dimension of the most relevant primary field in
each associated symmetry sector as measured in ED.
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Figure 5.10: Finite-size scaling for the central charge is based on the matrix
element 〈T |H−2|I〉, where |I〉 is the ground state and |T 〉 the state with con-
formal spin S = 2 associated with the stress-energy tensor in the field theory.
This state has the lowest energy in its sector for all system sizes studied. The
scaling with N−2 is used for other models [33], and visually appears to be
appropriate. The fit excludes the first two data points N = 8, 10.

By finite-size scaling of the energy eigenvalues of highest-weight states we are

straightforwardly able to estimate the scaling dimensions of primary operators

in the CFT. Correct normalization of H is very important; to achieve this we

follow Milsted et al. [33] and utilize the state related to the stress-energy

tensor T , which is conserved and has known scaling dimension ∆T = 2. T

is quasiprimary, related to the vacuum I by
√

c
2
|T 〉 = L−2|I〉 and can thus

be readily identified in the S = 2 sector by calculating H−2|I〉. This strategy

allows us to avoid incorrectly identifying |T 〉 for small sizes N , as described

in Ref. [33]. So H is normalized by setting ∆I = 0 and ∆T = 2. The low-

energy spectrum of the model for system size N = 20 is shown in Fig. 5.8 and

the finite-size scaling results are shown in Fig. 5.9, where they are additionally

compared with the finite-entanglement scaling results obtained previously from

MPS.

Due to the appearance of the central charge c in the matrix element 〈T |H−2|I〉 =√
c
2
, we can also compare the finite-size scaling ED results for the central

charge with those obtained from MPS. The finite-size scaling result c ≈ 1.4

is shown in Fig. 5.10. While this number is not in agreement with the value

obtained previously from scaling with MPS bond dimension, this is not unex-

pected, as the value of c will drift with system size at a pseudo-critical point,
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Primary field Re[∆] S U(1)2 gx C I
I 0 0 0 0 + +
σ, σ̃ 0.225 0 0 ±1 +
π 0.275 N/2 0 0 + −

s1, s2 0.865 N/2 11, 12 +
j1, j2 1.000 N/2− 1 0
ε 1.061 0 0 0 + +

σ′, σ̃′ 1.622 0 0 ±1 +

φ, φ 1.973 ±1 0 0 −
u 5.025 0 0 0 + +
v, ṽ 5.025 0 0 ±1 +

Table 5.1: We identify and measure (the real parts of) several primary fields
in the putative CFT for the integrable point at (δ,K) = (1, 2). Just as chiral
primaries with S 6= 0, N/2 have an anti-chiral counterpart obtained by reflec-
tion (only φ arises here), also primaries that do not commute with gx have a
counterpart with quantum number −1 related by time-reversal symmetry Θ;
these are σ̃, σ̃′, and ṽ. We also resolve charge conjugation C for states with
gx = 0 (these symmetries do not commute), as well as spatial inversion I in
the 0- and π-momentum sectors. The operators above the line are those which
we compare with finite-entanglement scaling results for correlations of lattice
operators in the MPS study.

decreasing with increasing system size and eventually reaching c = 0 at very

large sizes.

5.8 Summary of results

Motivated by the description of a DQCP in a spin-1/2 chain with rotation

symmetry broken to Z2×Z2 in Refs. [1, 2], discussed in Ch. 4, we have probed

the nature of a similar transition in a 1d model of local three-level systems

forming projective representations of Z3×Z3. On one side of the transition is

a ferromagnet phase with threefold ground state degeneracy, and on the other

a twofold degenerate VBS phase which preserves onsite symmetries but breaks

translation invariance. This is similar to the Z2×Z2-symmetric situation, how-

ever there an LSM theorem was important in prohibiting an intervening fully

symmetric gapped phase; in the present case a featureless phase is allowed.

The above notwithstanding, our studies using an adiabatic protocol for opti-

mized uniform MPS indicate that the phase diagram of the concrete Hamil-

tonian in Eq. (5.11) does indeed include a direct transition between zFM and

VBS phases. Our numerical results are furthermore consistent with a continu-
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ous phase transition with symmetry group enhanced to at least U(1)×U(1)o Z3.

In addition, the scaling dimensions of the two order parameters involved have

nearly the same numerical value, possibly indicating a larger emergent sym-

metry or self-duality at the transition.

While we did not obtain a controlled low-energy theory of the transition using

either Z3 domain wall fields or bosonization of the U(1)2-symmetric theory

(which applies exactly on the lattice along a particular cut through the phase

diagram), our numerical results suggest another strategy, by seemingly locat-

ing the special point H∗, Eq. (5.85), on the phase boundary. This quantum

Hamiltonian is the counterpart to a two-dimensional solvable classical vertex

model we term the non-separable integrable NIS model (see Sec. 5.6), and

through a trick known as transfer matrix inversion one can use the analyticity

properties of the eigenvalues to compute exact results about the spectrum.

The surprising result of this method is that H∗ is gapped, with very long

but finite correlation length ξ = 190878 lattice spacings. Such a result is not

incompatible with the numerics, which would not distinguish between such

approximate conformal symmetry and a truly continuous transition.

The most natural conclusion would seem to be that this DQCP is extremely

weakly first order, an intriguing result in light of the status of the SU(2)-

symmetric DQCP in 2d, as discussed in the Introduction. As is true there, the

most generic mechanism for generating a hierarchy is through RG walking,

and exact results for H∗ allow us to write an explicit form for the walking

parameter, similar to the case for the self-dual Potts model but with different

functional dependence on the continuous tunable parameter; see Eqs. (5.101)

and (5.102). Based on this understanding, we interpret our numerical results

as characterizing (the real parts of) the conformal data of the complex CFTs

in the walking picture, and we use an ED method to identify some of the light

primary fields of these theories.

5.A MPS for fully symmetric phase and proximate magnetic phase

5.A.1 SPT phase with Zz3 × Zx3 symmetry

A gapped fully symmetric ground state is allowed for Eq. (5.11), and one

generically expects to encounter this phase as well. In fact, this phase has

SPT order, since the entanglement spectrum and boundary states exhibit de-

generacy due to the projective representation. A simple picture of the phase
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can be written using an MPS wavefunction of bond dimension three:

|ψsymm〉 =
∑
{α}

Tr [ · · ·A|αj〉A|αj+1〉 · · · ] |{α}〉 . (5.105)

We choose local tensors to be translationally invariant, so T1|ψsymm〉 = |ψsymm〉
automatically. We also require A|α〉 = (A|α〉)>, so that the state is symmetric

under inversion.

In order to write a state that is invariant under the action of an onsite symme-

try generator g, we require that local tensors satisfy the following symmetry

condition:

A|αj〉 = Wg,jA
|αj〉
g W−1

g,j+1 , (5.106)

where A
|αj〉
g = g ◦A|αj〉 and Wg,j is an invertible matrix implementing a gauge

transformation acting on the left virtual leg of the local tensor at site j. The set

of {Wg,j}g form a projective representation of the symmetry group generated

by {g}. We choose the virtual legs to index a three-dimensional Hilbert space

with basis {|0〉, |1〉, |2〉}. The gauge transformations are represented by

Wg,j = gj for g = gz, gx, C ; WΘ,j = 1 . (5.107)

The virtual leg (2k − 1, 2k) hosts the projective representation [1], while the

virtual leg (2k, 2k + 1) carries [2]. Thus, for each tensor one has [l] + [p] =

[r] mod 3, where [l] ([r]) labels the projective representation on the left (right)

virtual leg, and [p] labels that of the physical leg.

The most general matrices consistent with invariance are

A|0〉 =

γ 0 0

0 0 δ

0 δ 0

 , A|1〉 =

0 0 δ

0 γ 0

δ 0 0

 , A|2〉 =

0 δ 0

δ 0 0

0 0 γ

 , (5.108)

where γ, δ ∈ R. At the special point γ 6= 0, δ = 0 the wavefunction reduces

to the ground state of the zFM phase. Similarly, at another special point

γ = δ 6= 0 the wavefunction becomes the ground state of the xFM phase. For

other parameter values this MPS represents an SPT state.

5.A.2 SPT phase with U(1)×U(1) symmetry

We now consider the case where Zz3 is enlarged to U(1)×U(1). A basis for the

legs (physical or virtual) can be labeled by particle numbers |n1, n2〉, which
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are defined in Eqs. (5.24) and (5.25). For the D = 3 MPS we considered, the

physical leg at site j and virtual leg (j − 1, j) share the same basis, defined to

be {
|0, 0〉 ≡ |0〉, |(−1)j, 0〉 ≡ |1〉, |0, (−1)j〉 ≡ |2〉

}
. (5.109)

The generic form for a local tensor at site j can be represented by a quantum

state:

Âj =
∑

(Aj)
n1n2
l1l2;r1r2

|n1, n2〉j⊗ |l1, l2〉(j−1,j)

⊗ 〈r1, r2|(j,j+1). (5.110)

Translation T1 acts as particle-hole symmetry on U(1)×U(1), which relates

tensors at even sites Âe and those at odd sites Âo via

(Ao)n1n2
l1l2;r1r2

= (Ae)
−n1,−n2

−l1,−l2;−r1,−r2 . (5.111)

For a U(1)×U(1) symmetric MPS, Âj in Eq. (5.110) should satisfy the particle

number conservation condition

na + la = qa + ra , where a = 1, 2 . (5.112)

Here, qa is a site-dependent constant. On a periodic chain, this state has

definite total particle numbers Na ≡
∑

j na,j =
∑

j qa,j, a = 1, 2.

By construction, a generic MPS in Eq. (5.108) breaks U(1)×U(1) symmetry

to Zz3. However, U(1)×U(1) symmetry can be restored by setting γ = 0.

Indeed, in this case the local tensors can be written

Âe = |0, 0〉 ⊗
(
|1, 0〉〈0,−1|+ |0, 1〉〈−1, 0|

)
+ |1, 0〉 ⊗

(
|0, 1〉〈0, 0|+ |0, 0〉〈0,−1|

)
+ |0, 1〉 ⊗

(
|0, 0〉〈−1, 0|+ |1, 0〉〈0, 0|

)
, (5.113)

Âo = |0, 0〉 ⊗
(
|−1, 0〉〈0, 1|+ |0,−1〉〈1, 0|

)
+ |−1, 0〉 ⊗

(
|0,−1〉〈0, 0|+ |0, 0〉〈0, 1|

)
+ |0,−1〉 ⊗

(
|0, 0〉〈1, 0|+ |−1, 0〉〈0, 0|

)
, (5.114)

where we have dropped the overall amplitude δ. One can check that these

tensors indeed satisfy Eq. (5.112) with qa = 1 (−1) for even (odd) sites. The

other symmetries of the model, I, Θ, gx and C, are also preserved by this

MPS.

However, for the purpose of obtaining an MPS beyond the D = 3 case we

can work out the symmetry constraints on Aj. Constraints from T1 and
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U(1)×U(1) are already listed in Eqs. (5.111) and (5.112). Time reversal Θ

simply requires all tensor entries to be real numbers.

To be consistent with U(1)×U(1) symmetry in Eq. (5.112), inversion I acts

with an additional particle-hole symmetry on the virtual legs, imposing the

following constraint:

(Aj)
n1n2
l1l2;r1r2

= (Aj)
n1n2
−r1,−r2;−l1,−l2 . (5.115)

C interchanges particles between the two species, thus

(Aj)
n1n2
l1l2;r1r2

= (Aj)
n2n1
l2l1;r2r1

. (5.116)

On the physical leg at site j, gx maps |n1, n2〉j to |(−1)j − n1 − n2, n1〉j. On

the left virtual leg (j − 1, j), the action of gx is the same:

gx : |l1, l2〉(j−1,j) → |(−1)j − l1 − l2, l1〉(j−1,j) , (5.117)

while on the right legs the fact that these are contracted with the left legs on

the next tensor fixes the transformation to be

gx : 〈r1, r2|(j,j+1) → 〈(−1)j+1 − r1 − r2, r1|(j,j+1) .

Thus, gx imposes the constraint

(Aj)
n1n2
l1l2;r1,r2

= (Aj)
(−1)j−n1−n2,n1

(−1)j−l1−l2,l1;(−1)j+1−r1−r2,r1 . (5.118)

In summary, to construct a fully symmetric MPS with site tensor Âj defined

in Eq. (5.110), tensor entries (Aj)
n1n2
l1l2;r1r2

should be real numbers satisfying the

symmetry conditions in Eqs. (5.111, 5.112, 5.115, 5.116, 5.118).

5.A.3 Bond-centered magnetic order phase

In this part, we present an MPS construction for the bond-centered magnetic

order phase, which is the intermediate phase smoothly connecting the zFM and

SPT phases in the classical phase diagram, as shown in Fig. 5.5 in Sec. 5.5.2.

Although it is a spontaneously symmetry-breaking phase with six-fold ground

state degeneracy, its ground states cannot be represented by direct product

states.

We start from the MPS representation of the SPT phase with U(1)×U(1)

symmetry. This MPS is constructed from a site tensor A in Eq. (5.108) with

γ = 0. We can represent A as a quantum state as

Â =
2∑

a=0

|a〉 ⊗ (|a− 1〉〈a+ 1|+ |a+ 1〉〈a− 1|) . (5.119)
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Let us insert additional bond tensors Bj,j+1 sitting between sites j and j +

1. For the SPT phase, Bj,j+1 is the identity matrix, whose quantum state

representation is

B̂j,j+1 =
2∑

a=0

|a〉〈a| . (5.120)

We now break some symmetry by introducing a parameter κ into the bond

tensors:

B̂2k−1,2k = (1− κ)|0〉〈0|+ (1− κ)|1〉〈1|+ (1 + κ)|2〉〈2| ,
B̂2k,2k+1 = (1− κ)|0〉〈0|+ (1 + κ)|1〉〈1|+ (1− κ)|2〉〈2| . (5.121)

where 0 ≤ κ ≤ 1. We leave the site tensors unchanged. When κ = 0,

we recover the SPT state. When κ = 1, B̂2k−1,2k = 2|2〉〈2| and B̂2k,2k+1 =

2|1〉〈1|, and by contracting all virtual legs, we get a zFM state
⊗

j |0〉j (up to

a constant). Thus, the above state can indeed interpolate between the SPT

and zFM phases.

We now analyze symmetry properties for the state with 0 < κ < 1, based

on the symmetry actions discussed in App. 5.A.2. It is straightforward to see

that this state preserves U(1)×U(1) symmetry and breaks gx, C, T1, and I
symmetries. In fact, T1, I, and C act in the same way on this MPS, producing

a state with even and odd bond tensors in Eq. (5.121) interchanged:

B̂2k−1,2k = (1− κ)|0〉〈0|+ (1 + κ)|1〉〈1|+ (1− κ)|2〉〈2| ,
B̂2k,2k+1 = (1− κ)|0〉〈0|+ (1− κ)|1〉〈1|+ (1 + κ)|2〉〈2| , (5.122)

We note that this pair of MPS share the same symmetry properties as states

labeled by (π/6±υ, π/6∓υ) in Eq. (5.84). The MPS representation of the other

two pairs of states in Eq. (5.84) can be generated by the action of gx. Note that

site tensors are invariant under gx symmetry, and are given by Eq. (5.119).

Bond tensors for the MPS states corresponding to (π/6∓ υ,−π/3) are

B̂2k−1,2k = (1± κ)|0〉〈0|+ (1− κ)|1〉〈1|+ (1∓ κ)|2〉〈2| ,
B̂2k,2k+1 = (1∓ κ)|0〉〈0|+ (1− κ)|1〉〈1|+ (1± κ)|2〉〈2| , (5.123)

and the bond tensors for states corresponding to (−π/3, π/6± υ) are

B̂2k−1,2k = (1∓ κ)|0〉〈0|+ (1± κ)|1〉〈1|+ (1− κ)|2〉〈2| ,
B̂2k,2k+1 = (1± κ)|0〉〈0|+ (1∓ κ)|1〉〈1|+ (1− κ)|2〉〈2| . (5.124)



189

5.B Integrability of 2d stat mech models

In this Appendix we provide the explicit solutions of the Yang-Baxter equation

for the q = 3 case of the NIS models discussed in the text, in addition to the

generators and relations defining the operator algebras for these models.

5.B.1 Separable NIS model

The q = 3 separable NIS model is realized in HNIS at the point Jz = 0: (with

equality up to constants)

Hsep = 6KHbQ = 6K
∑
j

T
a

jT
a
j+1 = −3K

∑
j

∑
α,β

|αα〉〈ββ|j,j+1 ≡ −3K
∑
j

uj.

(5.125)

The internal symmetry group of Hsep is expanded to the full SU(3), and its

ground state is inside the VBS phase we encounter in the original model H.

HbQ refers to the pure biquadratic spin-1 Hamiltonian, which exactly maps to

Hsep. The local terms in the Hamiltonian satisfy

u2
j = 3uj (5.126)

ujuj±1uj = uj (5.127)

ujuk = ukuj , |k − j| > 1 . (5.128)

This is the Temperley–Lieb operator algebra of the nine-state self-dual Potts

model [29]. This operator algebra correspondence has led to extensive study

of the separable case through its connection to the Potts model as well as to

the XXZ model of spins at a particular anisotropy, with much work focused

on application of the inversion relation [19–23, 25, 28]. Through the many

connections to other models the correlation length can be calculated, as well as

the value of the dimerization order parameter, confirming that Hsep describes

a gapped phase breaking Z2 translation symmetry [3, 5].

5.B.2 Non-separable NIS model

The non-separable NIS model is attained by HNIS at the point Jz = K: (equal-

ity up to constants)

Hns = −3K
∑
j

∑
α,β

(δαβ + 1) |αα〉〈ββ|j,j+1 (5.129)

= −3K
∑
j

(uj + vj) , where vj =
1

3
(Z†jZj+1 + ZjZ

†
j+1 + 1) . (5.130)
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Here uj is the Temperley–Lieb operator from the previous section. The non-

separable NIS model does not appear to admit such useful equivalences as

Hsep, and consequently is not as well understood. Hns does exactly map onto

one of the (rare) known solvable spin-1 Hamiltonians [35] and has in fact been

exactly solved [24]. However, the Bethe ansatz solution is not immediately

informative about properties of the eigenstates. The model of course satisfies

the criteria for application of the inversion relation—which was the context in

which it was first written down—and from this method the thermodynamic en-

ergy gap and correlation length are known [18], but nothing about the ground

state degeneracy or symmetry-breaking order follows. It is distinguished from

most of the q+ 1 different integrable q-state NIS models originally introduced

by Schultz [19] in that it, along with the separable case, respects the Sq per-

mutation symmetry of the edge labels.

Up to normalization the vj operators are actually some of the 2L− 1 genera-

tors appearing in the three-state Potts representation of the Temperley–Lieb

algebra. They satisfy

v2
j = vj (5.131)

vjvk = vkvj for any j, k (5.132)

as well as the following mixed relations

ujvj = vjuj = uj (5.133)

ujvj±1uj = uj (5.134)

vjuj±1vj = vjvj±1 (5.135)

vjuj±1uj = vjvj±1uj = vj±1uj (5.136)

ujuj±1vj = ujvj±1vj = ujvj±1 (5.137)

ujvk = vkuj , |k − j| > 1 . (5.138)

Through application of these relations for the terms in the Hamiltonian, we find

h2
j = (uj+vj)

2 = 5uj+vj, as well as hjhj±1hj = 2(uj+vjvj±1+ujvj±1+vjuj±1),

but this doesn’t seem to shed light on the integrability.

5.B.3 Parameterization by Klümper

We can take a further look at the results of Klümper [18], who applied the

inversion relation [27, 28] to both separable and non-separable NIS models,
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finding results for q ≥ 3 (Stroganov [27] found the partition function per site

for q = 3). The specific vertex model used there for the separable case is

wsep
(d) = 1 , wsep

(l) =
ωz + 1− ω
z + 1

, wsep
(r) = 1− wsep

(l) =
z(1− ω) + ω

z + 1
, (5.139)

where ω = 1
2

(
1 +

√
q+2
q−2

)
, and z = αv, where α = ( ω

ω−1
)2 and v is the spectral

variable. The vertex model for non-separable NIS is

wns
(d) = 1 , wns

(l) =
z
√
q − 1− 1

q − 2
, wns

(r) =
z−1
√
q − 1− 1

q − 2
, (5.140)

where here z = (q − 1)v and again v is the spectral parameter. In both cases

w(l) and w(r) are exchanged by v 7→ −v, which is important for the inversion

relation.

For the non-separable case, Klümper’s Hamiltonian convention is

H = − d

dv
log T

∣∣
v=v0

= −
∑
j

hj , (5.141)

where

hj =
log(q − 1)

q − 2
[(q − 2) δ(αjαj+1, βj, βj+1) + δ(αj, αj+1)δ(βj, βj+1)

− (q − 1) δ(αj, βj)δ(αj+1, βj+1)] . (5.142)

Because log(q−1)
q−2

∣∣
q=2

= 1, at this point we have hj = δ(αj, αj+1)δ(βj, βj+1)− 1.

Up to a shift this is the local Temperley–Lieb operator that characterizes the

separable NIS model. One sees also in the transfer matrices that at q = 2 the

separable and non-separable models exactly coincide:

w(d) = 1 , w(l) → v +
1

2
, w(r) → −v +

1

2
= 1− w(l) . (5.143)

As a result, by extending q → 2 we make contact between the non-separable

NIS model, which is no longer distinct, and the critical four-state self-dual

Potts model. By “deforming” with finite ε = q − 2 the two models diverge,

having different symmetry properties, but apparently the emergence of a finite

gap is similar between the separable and non-separable cases. From this we

conclude that the complex CFTs governing the DQCP are derived from the

4-state self-dual Potts conformal fixed point.
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5.B.4 Yang–Baxter solution for the q = 3 transfer matrix

Following Baxter [29], designate the weights of the three vertex types (d), (l),

and (r), as a, b, and c, respectively. Specializing the Yang–Baxter equation

R′j,j+1R
′′
j+1,j+2Rj,j+1 = Rj+1,j+2R

′′
j,j+1R

′
j+1,j+2 to q = 3 yields four independent

relations between the vertex weights:

aa′′b′ + a′bc′′ + bb′c′′ = a′b′′c , (5.144)

a′a′′b+ ab′c′′ + bb′c′′ = ab′′c′ , (5.145)

a′′bb′ + aa′c′′ + bb′c′′ = a′′cc′ , (5.146)

a′′bb′ + a′bc′′ + ab′c′′ = b′′cc′ . (5.147)

Treating a′′, b′′ and c′′ as variables, the determinant of the coefficient matrix

of Eqs. (5.144), (5.145), and (5.147) must vanish in order to have a solution

for a′′, b′′, c′′ 6= 0. This determinant is(
a′b+ (a+ b)b′

)(
ab′c′(a− b− c)− a′bc(a′ − b′ − c′)

)
= 0 . (5.148)

It is sufficient for either factor to vanish, but in order to satisfy the Yang–

Baxter equation when a′ = a, b′ = b, and c′ = c, we choose the second, which

is symmetric in the primed and unprimed variables. Then

a

bc
(a− b− c) =

a′

b′c′
(a− b′ − c′) ≡ Θ . (5.149)

Here Θ characterizes a family of commuting transfer matrices. Because the

weights are unique up to ratios, this means that there is one free parameter

for a given value of Θ. We eliminate c and c′ by substitution in favor of Θ, and

solve (5.144), (5.145), and (5.147) for a′′, b′′, and c′′ up to an overall factor:

a′′ = aa′ + bb′ + a′bΘ + ab′Θ , (5.150)

b′′ =
(a′b+ ab′ + bb′)(a+ bΘ)(a′ + b′Θ)

aa′
, (5.151)

c′′ = aa′ − a′b− ab′ − bb′Θ . (5.152)

By substituting the preceding equations into (5.146) one finds that the only

nontrivial solutions are Θ = 0, 1. Indeed, clearly Θ = 0 for the separable

model, and the condition Θ = 1 is a special case of the relationship already

known for the non-separable model for general q [19, 22]:

a2 = a(b+ c) + (q − 2)bc . (5.153)
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That is, Θ = q − 2 = 1 for the q = 3 non-separable NIS model, which also

reproduces Stroganov’s c = 1−b
1+b

for a = 1. So we find isolated integrable points

rather than a continuous family, as was the case for the six-vertex model.

The unitarity condition can be written Rj,j+1R
′
j,j+1 = κ Ij,j+1 for some κ. This

simplifies to

aa′ + 2bb′ = κ , (5.154)

a′b+ (a+ b)b′ = 0 , (5.155)

cc′ = κ . (5.156)

We make use of the Yang–Baxter solution to reduce to a condition on one free

vertex weight, parametrized by the spectral variable u. Setting a = a′ = 1 and

eliminating c, c′ in favor of Θ one finds that the condition is

bb′Θ(Θ− 1) = 0 . (5.157)

That is, the nontrivial solutions for Θ arising from unitarity are the same

as those that solve the Yang–Baxter equation. Typically we are able to

parametrize the vertex weight by setting the spectral variable equal to the

difference of “line variables” or rapidities associated with paths through a so-

called Baxter (even-valent) lattice, subject to some sign convention. Then we

will find that b = b(v − w) ≡ b(u) and b′ = b(w − v) ≡ b(−u), where v and w

are the appropriate line variables. Either value of Θ gives the same solution

b(−u) =
−b(u)

1 + b(u)
. (5.158)

Finally, we also want to enforce the property that the vertex decouples lines

with identical rapidities, or R(u = 0) = I. This means b(0) = 0 and c(0) = 1.

Recall Klümper’s parametrization: in our notation,

a(u) = 1 , (5.159)

b(u) =
(q − 1)

1
2
−u − 1

q − 2

q=3−−→
√

2
−u − 1 , (5.160)

c(u) =
(q − 1)

1
2

+u − 1

q − 2

q=3−−→
√

2
u − 1 . (5.161)

So while this parametrization can be seen to solve Yang–Baxter, it does not

match the prescribed unitary form. Thus the variable u here cannot be inter-

preted as a difference of line variables.
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5.C Domain wall duality mapping with Z3 gauge field

In this section we present the more precisely defined version of the duality

mapping to domain walls on a periodic chain, which appear as matter fields

on the dual lattice coupled to a Z3 gauge field. The purpose of the gauge

field is essentially for bookkeeping, as it does not have its own dynamics.

Instead, it will account for the differing global properties of the phases, the

most important example in our case being ground state degeneracy [1].

In addition to the domain wall variables X̃j+1/2, Z̃j+1/2 which live on the sites

of the dual lattice, we place gauge degrees of freedom ρxj , ρ
z
j which form a [1]

projective representation of Z3×Z3 on the links of the dual lattice (equivalently,

on the sites of the primal lattice). The duality mapping is then given by

X̃j+1/2 = Z†jZj+1 , (5.162)

Z̃†j−1/2 ρ
z†
j Z̃j+1/2 = Xj , (5.163)

ρxj = Zj . (5.164)

The physical Hilbert space satisfies the gauge constraint

X̃j+1/2 = ρx†j ρ
x
j+1 . (5.165)

The proof of the exact equivalence is similar to the Ising case in Ref. [1].

The Hamiltonian Eq. (5.11) translates to

H̃ = −
∑
j

[
(JxZ̃†j−1/2ρ

z†
j ρ

z†
j+1Z̃j+3/2 + JzX̃j+1/2 + H.c.)

+K(1 + Z̃†j−1/2ρ
z†
j ρ

z†
j+1Z̃j+3/2 + H.c.)(1 + X̃j+1/2 + H.c.)

]
.

(5.166)

Using the dictionary above, and requiring equality to hold only in the physical

sector, we can also rewrite the symmetry generators as

gx =
∏
j

ρz†j , gz =
∏
k

X̃2k+1/2 =
∏
k

ρx†2kρ
x
2k+1 , (5.167)

which are exact on a periodic system. One obtains the duality mapping pre-

sented in Sec. 5.5.1 by fixing the gauge ρzj = 1.
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The action of the symmetries on the gauge variables is

gx : (ρxj , ρ
z
j) 7→ (ω−1ρxj , ρ

z
j) , (5.168)

gz : (ρxj , ρ
z
j) 7→ (ρxj , ω

1−2pjρzj) , (5.169)

Θ : (ρxj , ρ
z
j) 7→ (ρx†j , ρ

z
j) , (5.170)

C : (ρxj , ρ
z
j) 7→ (ρx†j , ρ

z†
j ) , (5.171)

T1 : (ρxj , ρ
z
j) 7→ (ρxj+1, ρ

z
j+1) , (5.172)

I : (ρxj , ρ
z
j) 7→ (ρx−j, ρ

z
−j) . (5.173)

Importantly, gx acts non-trivially in this formulation. As in the main text,

we designate the “even” and “odd” sublattices of the dual lattice as locations

2k + 1/2 and 2k + 3/2, k ∈ Z, respectively.

We refer to this theory as having a Zρ3 gauge symmetry. Briefly, the pure

gauge theory with physical constraint ρx†j ρ
x
j+1 = 1 comprises three sectors,

specified by ρxj = ωr for r = 0, 1, 2. These sectors are related by the sym-

metry generator
∏

j ρ
z†
j = gx, which is a symmetry of the Hamiltonian. Thus

the appropriate sectors of the gauge symmetry are the linear combinations

respecting gx, namely with definite flux
∏

j ρ
z
j taking values 1, ω, or ω2. The

instanton operator adding Zρ3 flux is ρxj , which indeed transforms non-trivially

under gx.

5.C.1 Symmetry-breaking phases from the dual perspective

We can now revisit the phases described in Sec. 5.5.1. Consider first the case in

which domain walls are gapped, so the low-energy properties are determined

only by the gauge sector. In this case we have schematically 〈Z̃j+1/2〉 = 0;

this pattern is energetically favored in our model for Jz dominant. Because

the instanton operator is not allowed in the Hamiltonian the three gauge flux

sectors do not mix. From a formal perspective where we integrate out the

gapped matter field Z̃, the three states with different flux
∏

j ρ
z
j can obtain

slightly different energies but the energy splitting is exponentially small in the

chain length. This corresponds to spontaneously breaking gx and accounts for

the threefold degeneracy of the ground state in the zFM phase.

The domain wall condensate having schematically 〈Z̃odd〉 6= 0, 〈Z̃even〉 6= 0

leads to a Higgs phase of the gauge field. Minimizing the energy of the

Jx terms, it must be that
∏

j ρ
z
j = 1; i.e., a unique gauge flux is selected

and hence the gx symmetry is respected. Solving for classical ground states,
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there are three gauge-inequivalent solutions with this flux, with represen-

tative states ρzj = 1, Z̃odd = 1, Z̃even = ωp everywhere on the chain, with

p = 0,±1. These solutions are distinguished by gauge-invariant observables

Z̃†j−1/2ρ
z†
j Z̃j+1/2, which are the same as the original Xj variables, and the re-

sulting three different patterns in these correspond to the three xFM ground

states in Eq. (5.21). We can thus see from the matter fields that gz is broken

but spatial symmetries are respected. All of these cases, which are favored at

large values of Jx, make up the xFM phase with threefold degeneracy. That is

to say, in the absence of the gauge field we would have separate Z3 symmetries

associated with the “even” and “odd” sublattices of the dual lattice. Simulta-

neous condensation 〈Z̃odd〉 6= 0, 〈Z̃even〉 6= 0 would then produce nine ground

states. However, the dual gauge field reduces the true number of ground states

down to three via the Higgs mechanism.

We can also consider a condensate 〈Z̃odd〉 6= 0 and 〈Z̃even〉 = 0, or vice versa.

As was the case in the xFM phase, the Higgs mechanism here restores the

gx symmetry by selecting a unique flux sector
∏

j ρ
z
j = 1, but in contrast

to the previous case, gz and other internal symmetries are respected as well.

(Schematically, the naive three-fold degeneracy from condensing Z̃ on one

sublattice is reduced down to one by the Higgs mechanism.) The state does

break a Z2 translation symmetry however, and therefore is identified as the

VBS phase. It is not evident from this analysis that this phase is energetically

favored at large K in our model, but ample evidence of this fact is obtained

from other sources.

5.C.2 SPT phase from the dual perspective

To obtain a fully symmetric phase, we condense a bound state of a domain

wall on the odd sublattice and a domain wall on the even sublattice: schemati-

cally, 〈Z̃oddZ̃even〉 6= 0 while 〈Z̃odd〉 = 〈Z̃even〉 = 0. The gx symmetry is restored

because this bound state carries unit dual gauge charge: Indeed, keeping track

of only the dual gauge charge, we have schematically Z̃2 ∼ Z̃−1 (note that it is

crucial that we have ZN gauge field with odd N). Hence, the Z̃oddZ̃even conden-

sate completely Higgses out the dual gauge field ρ, which corresponds to the

presence of the gx symmetry. Since translation interchanges Z̃odd and Z̃even,

this condensate clearly preserves this symmetry. Under gz action, Z̃oddZ̃even ob-

tains a phase factor ω2; however, this is related to the fact that this schematic

object is not gauge-invariant and the phase factor can be removed by a gauge
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transformation. Any gauge-invariant local operator with non-zero expectation

value will respect the gz symmetry. Thus, we obtain a fully symmetric phase.

Another perspective on this condensate is that we condense bound states of

a domain wall field in the gx-symmetry-breaking order (i.e., Z̃ field) and a

gz charge field (i.e., X field). Indeed, Z̃j−1/2Z̃j+1/2 = Z̃2
j−1/2ρ

z
jXj ∼ Z̃†j−1/2Xj

(fixing the gauge ρzj = 1). We expect that condensation of bound states of

domain walls and charges leads to a non-trivial SPT phase.

5.D Duality of q-state separable model and q2-state Potts model

and generalization to non-separable model

In this Appendix, we perform a two-step duality that connects the q-state sep-

arable integrable model and QPotts = q2-state Potts model. We will also follow

the non-separable integrable model under the same mapping. The treatment

here is in the Hamiltonian language and can be carried out for any integer q.

We begin with a q-state generalization of the U(1)2-symmetric q = 3 model

from the main text. Consider the Hamiltonian

H = −
∑
j

[
Jz

q−1∑
`=0

(
Z†jZj+1

)`
+K

q−1∑
`=0

(XjXj+1)`
q−1∑
`=0

(
Z†jZj+1

)`]
. (5.174)

For q = 3 this reduces to the model in the main text, up to an additive

constant. For general q the terms in the Hamiltonian have a simple form in

bra-ket notation (see also Eq. (5.23)):

q−1∑
`=0

(
Z†jZj+1

)`
= q

∑
α

|α, α〉〈α, α|j,j+1 ,

q−1∑
`=0

(XjXj+1)`
q−1∑
`=0

(
Z†jZj+1

)`
= q

∑
α,β

|β, β〉〈α, α|j,j+1 ,

from which it is easy to see that the model has continuous U(1)q−1 symmetry as

well as Sq permutation symmetry. It has a trivial solvable point Jz > 0, K = 0

inside the zFM phase as well as two nontrivial integrable points: Jz = 0, K > 0

which is inside the VBS phase, and Jz = K(q− 2) > 0 which we propose is at

the transition between the zFM and VBS phases.

We first perform a formal duality transformation which is a straightforward
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q-state generalization of the one in the main text:

Xj = Z̃†j−1/2Z̃j+1/2 , (5.175)

Z†jZj+1 = X̃j+1/2 . (5.176)

(For simplicity here and below, we do not exhibit dual gauge fields which

would be necessary to account for global aspects in a periodic chain.) The

dual Hamiltonian reads

H̃ = −
∑
j

[
Jz

q−1∑
`=0

(
X̃j+1/2

)`
+K

q−1∑
`=0

(
Z̃†j−1/2Z̃j+3/2

)` q−1∑
`=0

(
X̃j+1/2

)`]
.

(5.177)

Similarly to the main text, this can be viewed as two individually Potts-

symmetric q-state systems residing on the “even” and “odd” sublattices of

the dual lattice (locations 2k + 1/2 and 2k + 3/2, k ∈ Z, respectively). The

two systems have energy-energy coupling between them. In these variables,

the zFM phase occurs when both Z̃2k+1/2 and Z̃2k+3/2 are gapped. On the

other hand, the VBS phase occurs when only one species orders but not the

other, which breaks the translation symmetry.

Let us now maintain the even sublattice variables (Z̃2k+1/2, X̃2k+1/2) and per-

form the above duality transformation on the odd sublattice variables (Z̃2k+3/2, X̃2k+3/2),

treating this system as a 1d chain:

X̃2k+3/2 = ˜̃Z†2k+1/2
˜̃Z2k+5/2 , (5.178)

Z̃†2k−1/2Z̃2k+3/2 = ˜̃X2k+1/2 . (5.179)

Note that the variables dual to (Z̃2k+3/2, X̃2k+3/2) reside at the same locations

as the even sublattice variables (Z̃2k+1/2, X̃2k+1/2), as indicated by the location

indices of ( ˜̃Z2k+1/2,
˜̃X2k+1/2). After this transformation, the Hamiltonian reads:

˜̃H = −
∑
k∈Z

[
Jz

q−1∑
`=0

(
X̃2k+1/2

)`
+ Jz

q−1∑
`=0

(˜̃Z†2k+1/2
˜̃Z2k+5/2

)`
+K

q−1∑
`=0

( ˜̃X2k+1/2

)` q−1∑
`=0

(
X̃2k+1/2

)`
+K

q−1∑
`=0

(
Z̃†2k+1/2Z̃2k+5/2

)` q−1∑
`=0

(˜̃Z†2k+1/2
˜̃Z2k+5/2

)` ]
. (5.180)
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In these variables, the zFM phase corresponds to gapped Z̃2k+1/2 variables and

condensed ˜̃Z2k+1/2 variables. On the other hand, the VBS phase corresponds

to either both Z̃2k+1/2 and ˜̃Z2k+1/2 being gapped or both condensed.

We can combine the tilded and double-tilded variables on each site 2k + 1/2

to form a q2-state variable, |A〉2k+1/2 ≡ |α̃〉2k+1/2 ⊗ |˜̃α〉2k+1/2, α̃, ˜̃α = 1, . . . , q.

The K terms become precisely the on-site and inter-site quantum Potts terms

for these QPotts = q2-state variables:

q−1∑
`=0

(
X̃2k+1/2

)` q−1∑
`=0

( ˜̃X2k+1/2

)`
=
∑
α̃,β̃

|β̃〉〈α̃|2k+1/2 ⊗
∑
˜̃α, ˜̃β
|˜̃β〉〈˜̃α|2k+1/2 (5.181)

=
∑
A,B

|B〉〈A|2k+1/2 ≡
q2−1∑
`=0

(
X2k+1/2

)`
,

(5.182)

q−1∑
`=0

(
Z̃†2k+1/2Z̃2k+5/2

)` q−1∑
`=0

(˜̃Z†2k+1/2
˜̃Z2k+5/2

)`
= q

∑
α̃

|α̃, α̃〉〈α̃, α̃|2k+1/2,2k+5/2 ⊗ q
∑
˜̃α
|˜̃α, ˜̃α〉〈˜̃α, ˜̃α|2k+1/2,2k+5/2 (5.183)

= q2
∑
A

|A,A〉〈A,A|2k+1/2,2k+5/2 ≡
q2−1∑
`=0

(
Z†2k+1/2Z2k+5/2

)`
, (5.184)

where we have introduced standard operators Z2k+1/2,X2k+1/2 in the QPotts =

q2-state Hilbert space on each site 2k + 1/2. Thus, in the absence of the

Jz term we indeed obtain the self-dual q2-state Potts model on the “even”

sublattice of the dual lattice. This type of equivalence of the integrable model

H[Jx = 0, Jz = 0, K] to the self-dual q2-state Potts model has been well known

at least since Refs. [3, 4] where it was argued by comparing the Temperley–

Lieb operator algebras in the two models. This is the quantum version of the

equivalence between the classical separable integrable NIS and classical q2-

state Potts models mentioned in Sec. 5.6. By examining the origins of the two

K terms in Eq. (5.180), it is also easy to see that staggering bond couplings in

the original model corresponds to moving off self-duality in the Potts model.

The derivation here is of some interest in that it clearly demonstrates a non-

local relation between the two models and also allows one to formulate the

precise relation on periodic chains by carefully including the gauge fields ap-

pearing in the dualities to keep track of the global aspects, which for the sake
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of simplicity we did not include. Of particular interest to us is that we can

also write the Jz terms, which from Eq. (5.180) are

q−1∑
`=0

(
X̃2k+1/2

)`
=

q−1∑
`=0

(
X2k+1/2

)`·q
, (5.185)

q−1∑
`=0

(˜̃Z†2k+1/2
˜̃Z2k+5/2

)`
=

q−1∑
`=0

(
Z†2k+1/2Z2k+5/2

)`·q
. (5.186)

Note that the powers of operators summed on the right hand side are ` · q,
which appear in the convention of the following ordering of the q2 states |A〉 =

|α̃〉 ⊗ |˜̃α〉:
A = (α̃− 1) · q + ˜̃α , (5.187)

α̃, ˜̃α = 1, . . . , q;A = 1, . . . , q2. We can now see that the q2-state model remains

self-dual also in the presence of the Jz term, which however breaks the formal

symmetry in these variables from Sq2 down to Sq × Sq. Unfortunately, this

formulation does not appear to inform us why Jz = K(q−2) places the model

precisely at the transition between the zFM and VBS phases. In the q2-state

Potts variables Z2k+1/2, the VBS phase corresponds to the first-order coex-

istence of the standard disordered and ordered Potts phases, while the zFM

phase corresponds to a specific partial order. In this language, Jz = K(q − 2)

appears to correspond to a special multi-critical point, and we are hopeful that

this information may be useful for future elucidation of this transition.
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C h a p t e r 6

CONCLUSION

Based on the contents of the preceding chapters, a variety of future directions

can be envisioned. I describe only a few here, in summary. From the numerical

study in Ch. 3 it appears that RRG, whose performance is now competitive

with DMRG, can indeed be a powerful tool for navigating challenging low-

energy landscapes in 1d. As suggested by our usage (and also the experience

of Ref. [1]), it could be seen as an algorithm for initial states which, already

being located close to the global energy minimum, are quickly and accurately

optimized to extreme precision by another method.

One potential generalization would be an “infinite RRG” for translation-invariant

(TI) systems; in this case one would presumably specify some real-space coarse-

graining protocol and track only a single viable set, looking for some indication

of either scale invariance or trivial physics. Subsequent theoretical work on

AGSP-based methods for the TI case has not yet surpassed the polynomial

scaling in the system size of the full global AGSP, and moreover it has been

demonstrated that computing local observables to arbitrary precision implies

precise estimates of the ground state energy [2]. Consequently it is not easy

to see how one would formally define a local AGSP construction applicable to

TI Hamiltonians which allows sufficient control over the bond dimension.

In a different direction, it has been shown theoretically that in certain cases an

AGSP method can be effective in 2d [3]. While this type of work is a highly

nontrivial extension of the 1d result (for example, a naive attempt requires

exponential scaling of the hyperparameter D with the RG scale), it is easy to

see how the numerical RRG algorithm might be generalized to finite systems in

higher dimensions, for example by using the 2d projected entangled-pair states,

or PEPS, representation. There are many technical hurdles associated with

this ansatz—for example, the challenges of contraction and defining canonical

forms—but the relative lack of numerical methods in 2d may make this a

worthwhile direction for future work. Perhaps, being an algorithm for finite

systems, RRG could be useful in the study of boundary physics in this setting.

The picture of the critical line in the random XYZ spin chain which was
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found using SBRG in Ref. [4] and expanded using RRG in Ch. 3 is very in-

teresting: in many ways the full interacting theory is quite similar to our

Hartree–Fock mean field and locally-correlated effective model. Though these

non-interacting descriptions are only perturbatively correct and will not be

descriptive of the tricritical point, it would seem to be the case that the model

does not ultimately travel “too far” from the free-fermion fixed point. In the

locally-correlated effective model we are able to use the analytic SDRG in its

random-walk form to prove that critical exponents vary continuously along the

line from the random XX model to the random XY model, a possibility origi-

nally raised by Fisher [5]. It may be the case that other properties or SDRG

flows can be studied by similar methods using the random-walk formalism.

In our studies of DQCP in 1d in Chs. 4 and 5, we focused on static (i.e.,

equal-time) properties at the transition. It would be interesting to also study

dynamical properties at the transition, both numerically and analytically, to

see if they reveal more signatures of fractionalized excitations, in the spirit of

the 2d study in Ref. [6]. In at least the Z2×Z2 case, we can calculate dynamical

structure factors analytically at low frequencies using the effective field theory

description, but we can also try to capture properties at high frequencies and

high momenta using one of the microscopic parton descriptions in Ref. [7], for

example using the fermionic parton mean field.

The results of Ch. 5 suggest that the picture of walking of RG flows is the

appropriate way to think about the family of DQCP with Zq × Zq symmetry,

where we find an extremely weakly first-order phase transition for q = 3, with

correlation length χ = 190878 lattice spacings. In Refs. [8, 9] the algebraic

equivalence of the Potts model to the six-vertex model plays a crucial role,

by allowing through the Coulomb gas formalism many explicit calculations

which are then analytically continued into the weakly first-order regime. The

operator algebra of the Zq×Zq DQCP model, written explicitly in Sec. 5.B for

q = 3 and in Sec. 5.D for general q, is a generalization of the Temperley–Lieb

algebra which to our knowledge has not yet demonstrated such equivalences.

A representation theory study of this generalized algebra would be useful in

determining whether there are other equivalent models which can illuminate

the physics, possibly including a setting for analytic calculations in the ground

state.

There is also the interesting possibility of qualitatively different walking behav-
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iors arising from the coincidence of the separable and non-separable integrable

NIS models at the marginal q = 2 point. If these multiple sets of complex

CFT fixed points indeed exist in the same parameter space, then for small

values of (q − 2) one can imagine a rich structure for walking RG flows based

on their interactions. Such a scenario would manifest in crossovers observable

in the associated spin chains, and despite the very long length scales involved

it is actually possible that quantum Monte Carlo simulations of the explicitly

sign-problem-free Hamiltonian in Eq. (5.23) could probe this behavior, along

the lines of Refs. [10, 11]. In addition, quantum Monte Carlo studies could

be used to test the conjecture about the precise location of the DQCP for

q > 3, and they could also be used to further examine emergence of the U(1)2

symmetry at intermediate scales in the original model Eq. (5.11) with only

Z3 × Z3 symmetry.

Finally, it is not clear what role duality plays in the story of the Zq × Zq
DQCP in 1d, away from q = 2. It seems likely that the successes of duality

approaches in developing descriptions of the DQCP transition in the Z2×Z2-

symmetric model [12] are special to that model. However there are some

hints in the Z3 ×Z3 model: chiefly, the close numerical correspondence of the

zFM and VBS order parameters is not generally expected and may indicate

that the DQCP supports an emergent symmetry or self-dual description. In

addition, the lack of an intervening featureless phase without the help of an

anomalous realization of the symmetry on the lattice could be attributable

to an emergent anomaly resulting from enhanced symmetry at the transition,

which would presumably achieve a “unification” of the two order parameters.

It is our hope that further work on the type of 1d model we have studied here

will lead to a more complete story of the behaviors of such fixed points in

RG space, as well as to a better understanding of how each of these various

components contributes to the DQCP phenomenology.
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