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ABSTRACT

Three different computational physics problems are discussed. The first project
is solving the semi-classical Boltzmann transport equation (BTE) to compute the
thermal conductivity of 1-D superlattices. We consider various spectral scattering
models at each interface. This computation requires the inversion of a matrix whose
size scales with the number of points used in the discretization of the Brillouin zone.
We use spatial symmetries to reduce the size of data points andmake the computation
manageable. The other two projects involve quantum systems. Simulating quantum
systems can potentially require exponential resources because of the exponential
scaling of Hilbert space with system size. However, it has been observed that
many physical systems, which typically exhibit locality in space or time, require
much fewer resources to accurately simulate within some small error tolerance. The
second project in the thesis is a two-step factorization of the electronic structure
Hamiltonian that allows for efficient implementation on a quantum computer and
also systematic truncation of small contributions. By using truncations that only
incur errors below chemical accuracy, one is able to reduce the number of terms
in the Hamiltonian from O(#4) to O(#3), where # is the number of molecular
orbitals in the system. The third project is a tensor network algorithm based on the
concept of influence functionals (IFs) to compute long-time dynamics of single-site
observables. IFs are high-dimensional objects that describe the influence of the bath
on the dynamics of the subsystem of interest over all times, and we are interested
in their low-rank approximations. We study two numerical models, the spin-boson
model and a model of interacting hard-core bosons in a 1D harmonic trap, and
find that the IFs can be efficiently computed and represented using tensor network
methods. Consistent with physical intuition, the correlations in the IFs appear to
decrease with increased bath sizes, suggesting that the low-rank nature of the IF is
due to nontrivial cancellations in the bath.
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C h a p t e r 1

INTRODUCTION

Computers have provided scientistswith incredible insight into a variety of problems.
However, while computers are becoming ever more powerful, their resources are not
infinite (and neither is the amount of time we are willing to wait for), so physicists
cannot blindly task them with arbitrarily large or complex problems. Rather, one
must find ways to effectively reduce the problem to be more manageable. In this
thesis, we consider three different computational physics problems introduced below.
Due to the disparate nature of the topics in this thesis, the bulk of the necessary
background will be included within each topical chapter.

1.1 Cross-plane Thermal Conductivity of 1-D Superlattices
The first topical chapter will discuss solving the colored Boltzmann transport equa-
tion (BTE) for 1-D superlattices to verify that recent experimental observations
of a thermal conductivity minimum with respect to superlattice period at room
temperature [1] cannot be explained using the particle description of phonons.

1-D superlattices are heterostructures consisting ofmany layers of differentmaterials
stacked upon each other in a periodic fashion. The simplest example is one with
alternating layers of two different materials. To compute its thermal conductivity,
one needs to consider the different phonon band structures of the materials (and the
resulting different phonon transport properties), as well as interfaces in between the
layers whose transmission properties depend not only on the adjacent materials but
also on the quality of the interface.

One goal for computing the thermal conductivity of such structures is to find ultra-
low thermal conductivity materials for thermoelectric devices. Prior experimental
works have observed that the thermal conductivity can be reduced significantly
by using nanostructures and and nanocomposities, due to the increased boundary
scattering. Thus, studying a simple system to understand the physics and developing
a predictive model to compute its thermal conductivity can aid in the search for even
lower thermal conductivity materials.

However, it is unclear how to best approach the problem while obtaining accurate
results. For example, nanoscale features would suggest that wave-like properties of
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phonons are important. On the other hand, heat transfer is typically associated with
higher frequency phonons that scatter quickly and are often described as particles.

In this work, we consider a semi-classical approach, and compute the thermal con-
ductivity using the Boltzmann transport equation (which treats phonons classically
as particles) but use phonon properties obtained from ab initio methods without any
averaging.

The Boltzmann transport equation describes the time evolution of local populations
of a particular phonon mode, which are subject to diffusion and decays with some
lifetime due to scattering off other phonons. However, because of energy conser-
vation, the populations of all phonon modes are related to each other, and the BTE
for phonon transport can be interpreted as a series of coupled differential equations.
Computing the local phonon populations requires knowing the local temperature,
which requires solving an integral equation involving all phonon modes. Previously,
solving the BTE to compute cross-plane thermal conductivities of 1-D superlattices
has typically required using various simplifying assumptions such as the gray ap-
proximation, in which one assumes that all phonons have the same lifetime or mean
free path (MFP) [2, 3]. The problem can be simplified further by assuming the
layer thickness is much smaller than the chosen MFP, resulting in ballistic cross-
plane heat transport. However, recently, Hua et al. described how to compute the
cross-plane thermal conductivity across a thin slab of arbitrary thickness, while also
using ab-initio phonon properties [4]. We expand on this work to compute thermal
conductivities of 1-D superlattices with spectral interface scattering models.

We find that the BTE can predict a minimum thermal conductivity plateau with re-
spect to varied superlattice period, but it cannot predict the non-monotonic behavior
observed in recent experiments. This is consistent with the classical interpretation
that interfaces act as thermal resistors, but we highlight that some phonons may
experience no resistance when passing through the interfaces, resulting in a reduced
but finite thermal conductivity. In contrast, lattice dynamical models predict that
there can be increase in thermal conductivity at even smaller superlattice periods
after reaching a minimum [5]. This suggests that the observed minimum in thermal
conductivity with respect to superlattice period is indicative of the crossover in the
phonon’s wave and particle behavior.
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1.2 Low-rank Representation of the Electronic Structure Hamiltonian
The second chapter will present work done with others on approximating the elec-
tronic structure Hamiltonian to reduce costs of quantum chemistry algorithms on
quantum computers. Quantum computation relies on performing operations on #
qubits (quantum bits) that can be entangled with each other and thus can represent
any state in the 2# -dimensional Hilbert space. (In contrast, # classical bits can
only represent states along the axes of the space.) Thus, it is believed that there
exist problems for which quantum computers can provide exponential speed-ups
over their classical counterparts.

However, quantum computers are fundamentally sensitive to noise and limited by
decoherence times (they lose their information through coupling to the environment).
To counter the issue of noise, error-correction and fault-tolerant schemes have been
developed. However, such schemes require orders of magnitude more qubits, larger
connectivities, and even lower noise rates than are available on current devices
(though the hardware is continuing to improve). Despite that, there has been a
push to look for near-term applications of these noisy, intermediate scale quantum
(NISQ) computers.

Quantum chemistry is one potential application for NISQ devices. Here, we are
interested in finding an efficient implementation of a single Trotter step of the
electronic structure Hamiltonian, as well as the unitary coupled cluster operator
(with single and doubles excitations). Both of these operators only include up
to 2-electron interactions. The Trotter step operation appears when evolving the
system in time, and as a potential ansatz for the variational quantum eigensolver
method. While these Trotter steps can be broken down into a polynomial (O(#4))
number of gates, where # is the number of orbitals in the chemical system, the
actual implementation of the gate is difficult because the active operators are not
necessarily acting on neighboring qubits (which is a problem for most NISQ devices
which only exhibit nearest neighbor connectivities), and requires operating on many
qubits at once (potentially exacerbated if the fermionic anticommutation relations
are not encoded in the prepared quantum state and instead must be included via
Jordan-Wigner strings).

We present a decomposition that writes the 2-electron quantum chemistry operators
in second quantization as a series of basis rotations, one-body operators, and diagonal
two-body operators, thus allowing it to be efficiently implemented on a quantum
computer with only linear connectivity. Additionally, the decomposition allows one
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to systematically truncate less important terms. For the chemical systems, which
exhibit spatial locality, the number of terms in the sum is reduced from O(#4) to
O(#3). The utility of this low-rank decomposition can be realized in a variety
of quantum algorithms, ranging from the intended near-terms algorithms to fault-
tolerant schemes (qubitization [6, 7]) to state measurement [8, 9], and even classical
algorithms such as quantum Monte Carlo [10].

1.3 Long-time Dynamics Using Tensor Networks
The third and last chapter will present a tensor network algorithm to compute long-
time dynamics of single-site observables (or dynamical correlation functions, if
desired) for general (1-D) quantum systems. Our proposed algorithm is inspired by
influence functionals.

The tensor network formalism uses a network of high-dimensional tensors to effi-
ciently represent quantummany-body systems by exploiting the low-rank properties
that arise if correlations are predominantly local. 1-D tensor networks (Matrix Prod-
uct States) have seen widespread use in a variety of quantum physics and chemistry
problems. However, it is known that tensor networks can only efficiently represent
states with relatively low entanglement. Thus, while tensor networks are suitable
for finding and representing ground states and even low-lying excited states, they
tend to face difficulties when representing time-evolved states, particularly those far-
from-equilibrium. An introduction to tensor networks is provided in the Appendix.

Influence functionals are high-dimensional objects that describe the influence of the
bath on the dynamics of the subsystem of interest as a function of time. Prior work
on the influence functional is largely limited to harmonic baths with linear coupling,
for which the exact analytical solution is known [11, 12]. However, the influence
functional is expected to generally be relatively low-rank (ie. compressible) if the
system exhibits time locality, the property that the dynamics ismore strongly affected
by the state at recent times than the state at much earlier times, as is the case in
thermalizing dynamics. As such, 1-D tensor networks may be able to efficiently
represent the influence functional, as several recent works have pointed out [13–19].
However, all existing methods either assume that the system has some particular
structure (such as linear coupling to a harmonic bath, a star geometry, or a 1-D
geometry with translational invariance), or they depend on learning the influence
functional from the observed subsystem dynamics.

We present an algorithm to efficiently compute and represent influence functionals
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for arbitrary 1-D quantum systems. We benchmark our algorithm using the spin-
boson model and also investigate a hardcore-boson model with nearest neighbor
interactions and a harmonic trap. We find that our proposed algorithm can com-
pete with or outperform traditional time evolution methods for large systems. We
also measure time-like entanglement in the influence functionals and find that it is
more compressible with increased bath size, consistent with physical intuition, sug-
gesting that the compressibility of the influence functional arises from non-trivial
cancellations in the bath that correspond to information dissipation.
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C h a p t e r 2

THERMAL TRANSPORT IN 1-D SUPERLATTICES VIA THE
BOLTZMANN TRANSPORT EQUATION

In this work, we investigate the thermal conductivity of 1-D superlattices in the
incoherent scattering limit using the Boltzmann transport equation (BTE) under
the relaxation time approximation (RTA). The ab-initio phonon dispersions and
lifetimes of each superlattice layer provided to us is obtained from density functional
perturbation theory (DFPT) calculations on the bulk material [1, 2]. Reflection and
transmission coefficients at the interfaces are modeled based on angle of incidence,
phonon frequency, and specularity one might expect given an interface roughness.
We find that the BTE, and thus incoherent phonon scattering, is unable to recreate
experimentally observed trends of non-monotonic behavior of thermal conductivity
with respect to superlattice period.

The expensive step of the calculation is the inversion of a matrix that scales in size
with respect to the number of phonon modes needed to accurately represent the
material’s phonon band structure. We utilize symmetries to reduce the size of this
matrix to make our calculations manageable.

The work presented in this chapter is adapted from

E. Ye and A. J. Minnich “Ab-initio based investigation of thermal transport in
superlattices using the Boltzmann equation: Assessing the role of phonon
coherence,” J. Appl. Phys. 125, 055107 (2019). doi: 10.1063/1.5075481.

We thank Dr. Lucas Lindsay for providing the ab initio phonon dispersions and
scattering lifetime data for crystalline silicon, which can be found in the appendix
of Ref. [2].

2.1 Introduction
The thermal properties of crystalline solids are determined by atomistic matter
waves, dubbed phonons, that can propagate through the material. The phonon
dispersion of the material describes how the phonon frequency is related to its
direction of propagation in the crystal, and is determined by the crystal structure and
the harmonic force constants between the atoms. These relations provide most of the
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information required to describe the thermal properties of the materials, except for
the scattering rates of the different phonons. In a defect-less crystal, the scattering
is dominated by phonon-phonon scattering, which can be computed approximately
from third-order anharmonic interatomic force constants. These force constants
can be determined using ab initio methods such as density functional perturbation
theory, assuming some interaction potential between the atoms [1, 3].

In reality, extrinsic scattering mechanisms, such as scattering at crystal grain bound-
aries and atomic defects, also play a role in a material’s thermal conducting. This
provides a means for one to engineer a material’s thermal transport properties. For
example, several reviews discuss the potential of using nanostructures or nanocom-
posites for thermoelectric devices, since they exhibit low thermal conductivity due
to the increased boundary scattering [4–7].

Alternatively, since phonons are lattice waves, one can potentially alter a material’s
phonon dispersion by introducing an artificial periodicity. (This idea is analogous
to the theory behind photonic crystals, in which an artificial periodicity is used
to alter a material’s optical dispersion.) The simplest example of such a structure
is a 1-D binary superlattice (SL), which is constructed from two distinct layers
placed one after another in an alternating fashion. There exist several works on
acoustic metamaterials [8–10] and phononic crystals for phonons with frequencies
of a few hundred gigahertz [11–14]. However, it was unclear if such techniques
would still remain relevant at room temperature, where higher frequency phonons
(within the terahertz range) start to exist with increased probability. It is expected
that these phonons are more prone to extrinsic scattering effects due to their shorter
wavelengths and they tend to exhibit shorter mean free paths (the expected distance
a phonon travels before scattering). Thus, these phonons may decohere too quickly
for wave behavior to affect macroscopic thermal transport behaviors.

Within the past decade, due to improved fabrication and growth techniques, many
experimental works investigated the thermal conductivity of 1-D binary superlattices
(SLs) with layers only a few nanometers thick, in an attempt to observe the crossover
between regimes where either wave-like or particle-like properties of phonons are
dominant [15–21]. One indicator, proposed by Simkin and Mahan, is the existence
of a minimum with respect to superlattice period [22]. Clear proof of the existence
of the minimum was elusive until recently clearly observed in metal/semiconductor
nitride superlattices [16] and perovskite superlattices [17].

There also have been a host of computational investigations to understand phonon
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transport in superlattices, performed using a variety of computational methods
such as density functional perturbation theory (DFPT) [23, 24], atomistic Green’s
functions (AGF) [21, 25, 26], or molecular dynamics (MD) [27–33], However, the
conclusions of what systems exhibit a thermal conductivity minimum are varied and
sometimes appear to be contradictory. For example, Garg et al. found that DFPT
predicts a decrease in thermal conductivity for increasing SL period for Si/Ge
structures. This is contradictory to classical intuition as well as MD calculations.
In order to capture the expected trend of increasing thermal conductivity with
increasing SL period, additional scattering from imperfect interfaces (eg. interfaces
with surface roughness) must be included [23]. In contrast, Frieling et al. and
Chen et al. used molecular dynamics and find that smooth interfaces are required
to observe a minimum [27, 29].

However, it has never been verified that the Boltzmann transport equation (BTE),
which by construction describes phonons as particles, cannot realize a thermal
conductivity minimum in 1-D superlattices with respect to superlattice period. This
is largely because the BTE is an integro-differential equation that couples together
all phonon modes, and the cross-plane conductivity of SLs is expensive to compute
exactly. In previous works, the BTE is solved using a gray approximation, in
which one fixes some parameter (usually the mean free path or relaxation time)
over all phonon frequencies [34–38]. However, phonons of different frequencies
can have significantly different mean free paths and can also exhibit very different
scattering behaviors at each interface. It has been shown that the gray model
yields inaccurate results compared to calculations incorporating spectral phonon
properties [39, 40]. This is exacerbated when the cross-plane thickness of the
system of interest is on the order of the mean free paths, and some modes exhibit
ballistic transport while others exhibit diffusive transport. Hua et al. proposed a
solution to the BTE based on a cosine expansion integration scheme, which allows
one to efficiently compute the cross-plane thermal conductivity of slabs of arbitrary
thickness without using the gray approximation [41]. In this work, we expand
on their work and solve the BTE to compute the thermal conductivities of 1-D
superlattices with minimal approximations, and verify that the thermal conductivity
minimum cannot be obtained in the incoherent particle picture.

This chapter is organized as follows. First will be a review of the Boltzmann trans-
port equation for cross-plane phonon transport and its solution. Then will be a
short discussion of existing literature for computing the thermal conductivity of
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1-D superlattices. Afterwards, we introduce our algorithm for solving the thermal
conductivity for 1-D superlattices while incorporating spectral phonon properties
and considering more general interfaces. We present our results for thermal conduc-
tivities with respect to superlattice period and temperature for various toy models.

2.2 Review of Phonon Band Structure in Crystals
In the following section, we will review the derivation of a crystal’s phonon band
structure from lattice harmonics. More in depth discussions can be found in many
textbooks such as Chapter 4 (Phonons 1. Crystal Vibrations) of Kittel [42].

Consider a 1-D chain of atoms with lattice spacing 0. We assume a harmonic energy
potential + between two neighboring atoms, meaning that the energy is quadratic
in the relative displacement of an atoms with its neighbors. Neglecting higher
order terms in the energy potential is valid for small relative displacements. This
statement is equivalent to assuming that the forces acting on the atoms is linear in
the deviations of the spacing from their neighbors from 0, and that the total force
on atom B can be obtained from Hooke’s law as

�B = � (DB+1 − DB) + � (DB−1 − DB)

where � is the force constant and D8 is the displacement of the 8th atom from its
equilibrium position.

The equation of motion for atom B is thus

<
32DB

3C2
= � (DB+1 + DB−1 − 2DB)

where < is the mass of the atom.

Assuming time-harmonic solutions such that the solution for D has a time dependence
exp(−8lC), then

−<l2DB = � (DB+1 + DB−1 − 2DB) .

Then, assuming that D has the form DB = D exp(8B:0), where : is the wavevector,
we arrive at the dispersion relation l(:) for a 1-D monatomic chain

l2 = −�
<
(exp(8:0) + exp(−8:0) − 2) = 2�

<
(1 − cos(:0)) .

Phonons are these matter waves propagating through the lattice with wavevector :
at a frequency l.
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To consider crystals built from more complex unit cells that are also typically of
higher dimensions, one needs to consider the equation of motions for all atoms in
the unit cell, eventually arriving at the dispersion relation

−<l2 =
∑
9

(
m2+

mD8 mD 9

)
exp(8®: · (®A8 − ®A 9 )) ,

where + is the potential energy of the system, which we previously assumed to be
the harmonic potential energy between nearest neighbor atoms connected by springs
with some force constant. The second derivative terms are often referred to as the
harmonic matrix.

In general, for a 3-dimensional unit cell with ? atoms, there are a total of 3? phonon
modes. The factor of 3 arises from the different polarizations possible for each
propagating wave. In 3-D, there are two transversely polarized modes (for which
the atomic displacements are perpendicular to the direction of propagation) and one
longitudinally polarized mode (for which the atomic displacements are parallel to
the direction of propagation). For a given polarization, the ? phonon branches are
separated by energy gaps that arise from differences inmass or force constants within
the unit cell. The 3 modes for whichl→ 0 when : → 0 are called acoustic modes,
and typically also show a linear dispersion relation at small : . The remaining modes
are referred to as optical modes.

Definition of phonon properties
The phonon energy is given by ℏl, and the phonon momentum is defined as ℏ®: ,
where ℏ is the reduced Planck’s constant. However, note that even though one can
define a momentum from the wavevector, the matter waves don’t actually carry any
momentum.

The group velocity is defined as

®E6 (:) = ∇:l( ®:) (2.1)

and describes the velocity at which a wave packet centered about wavevector ®:
propagates through the crystal.

The phonon density of states is the density of phonon modes at a given frequency
within 3l, and is given by 3#/3l, where # is the total number of phonon modes.
For example, in 1-D, the density of states is

�1(l) =
3#

3l
=
3#

3:

3:

3l
=
!

c

3:

3l
(2.2)
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where 3#/3: is found by noting that allowed values of wavevector k of a chain of
" atoms with periodic boundary conditions is : = 0,±2c/!,±4c/!, . . . ,±"c/!.
Thus, we have 2" modes within Δ: = 2"c/!.

Similarly, in three dimensions, assuming an isotropic crystal, we find that

�3(l) =
+ |: |2
2c2

3 |: |
3l

where + is the volume of the crystal, because the number of modes # contained in
a sphere of radius |: | (in reciprocal space) is # = (!/2c)3(4c |: |3/3).

The thermal energy is given by

*lattice =
∑
3

∑
:

5:,3ℏl:,3 =
∑
3

∫
�3 (l) 5 (l)3l

where the sum goes over all wavevectors : in the Brillouin zone and phonon polar-
izations 3. The terms 5:,3 and 5 (l) are the occupancies of the phonons specified by
either : and 3, or by frequency l. At thermal equilibrium, the phonon occupancy
is given by the Planck (or Bose-Einstein) distribution

50(l) =
1

exp(ℏl/:�)) − 1
.

The phonon heat capacity, which assumes constant volume because we are con-
sidering crystalline materials, is given by

�E =
m*

m)
= :�

∑
3

∫
�3 (l)

G2 exp(G)
(exp(G) − 1)2

3l

where G = ℏl/:�) , ) is the temperature, and :� is the Boltzmann constant.

Thermal conductivity ^ relates the steady-state heat flux @ through a material given
a temperature gradient

@ =
∑
3

∑
:

E6G,:,3 5:,3ℏl:,3 ≡ −^
3)

3G
. (2.3)

From kinetic gas theory, the thermal conductivity is

^ =
1
3
�EE6Λ

whereΛ is the mean free path of the phonon (treated as a particle) between Umklapp
scattering events. Umklapp scattering occurs when the crystal momentum, given
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by reciprocal lattice vector ®�, contributes to the phonon scattering event. In other
words, the scattering of two phonons into a third phonon satisfies

®:1 + ®:2 = ®:3 + ®� .

In other words, if the scattering of the first two phonons yields a third phonon with
momentum ®:3 outside of the first Brillouin zone (defined by the unit cell size in
reciprocal space), it can be mapped back to a point within the first Brillouin zone.
Thus the scattering event does not appear to conserve momentum (though energy
must still be conserved). This phenomenon explains why perfect crystals still have
finite thermal resistivity. Normal scattering events ( ®� = 0) can also occur, but they
do not contribute to the thermal resistivity.

Given this expression, at extremely low temperatures, the thermal conductivity scales
like )3 due to the heat capacity, while at high temperatures thermal conductivity
drops like 1/) due to the mean-free path reflecting the increased probability of
collision.

However, note that in order for these scattering events to occur in the bulk of a
defect-less crystal, anharmonic lattice interactions need to be included.

Debye model
In the Debye model, we assume a linear dispersion relation l = E6: . This model
thus is only valid for low energy acoustic modes.

Using this dispersion relation, the density of states (in 3-D) is then

� (l) = +l2/2c2E3
6

and one defines a maximum frequency cut-off because the total number of acoustic
modes must be # ,

l3
� = 6c2E3

6#/+ .

The thermal energy is

* =

∫ l�

0

+l2

2c2E3
6

ℏ

4ℏl/) − 1
3l = 9#:�)

(
)

\�

)3 ∫ G�

0

G3

4G − 1
3G

where in the second equation we changed the variable of integration to G = ℏl/:�)
and defined the Debye temperature,

\� =
ℏE6

:�

(
6c2#

+

)1/3
.
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The heat capacity is

�E = 9#:�
(
)

\�

)3 ∫ G�

0

G44G

(4G − 1)2
3G → 12c4

5
#:�

(
)

\�

)3

where in the second line we take the limit G� → ∞, which is equivalent to taking
) → 0.

Einstein model
In the Einstein model of phonons, all phonons are assumed to be of the same energy,
and the density of states is

� (l) = #X(l − l� )

where # is the number of atoms and thus modes in a 1-D system. (In three
dimensions, # is replaced by 3# .) This model is based on the fact that most optical
phonon bands are relatively flat across all : .

The thermal energy is

* =
#ℏl�

4ℏl� − 1

and the heat capacity is

�E = #:�

(
ℏl�

:�)

)2
4ℏl�/:�)

(4ℏl�/:�) − 1)2
.

In the high temperature limit, �+ ∝ #:�, and in the low temperature limit, �+ ∝
exp(−ℎl�/:�)). As expected, the heat capacity in the low temperature limit is
incorrect, as it has been observed to scale like )3 in experiments and as predicted
by the Debye model.

Anharmonic scattering
The discussion here can be found in various references on using anharmonic force
constants to derive scattering rates [1, 43, 44].

Three-phonon scattering events are constrained by energy and momentum conser-
vation

l 9 ( ®:) ± l 9 ′ ( ®:′) = l 9 ′′ ( ®:′′)
®: + ®:′ = ®:′′ + ®�
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where 9 and ®: are the phononmode and wavevector of each phonon (denote by apos-
trophes) in scattering event, and l is the corresponding frequency of the phonons.
The vector ®� is the crystal reciprocal lattice vector, which is zero for normal scat-
tering processes and nonzero for umklapp scattering processes.

Defining _ = ( 9 , ®:), the three-phonon scattering rates ,±
_,_′,_′′ are determined by

Fermi’s golden rule,

,±_,_′,_′′ =
ℏc

4#
(=0,_ + 1) (=0,_′ + 1/2 ± 1/2)=0,_′′

l_l_′l_′′
|+±(_, _′, _′′) |2

× X(l_ ± l′_ − l′′_)

where # is the number of unit cells, the delta function ensures energy conservation,
=0 is the equilibrium phonon distribution, and

+±(( 9 , ®:); ( 9 ′, ®:′); ( 9 ′′, ®:′′)) =∑
81,82,83

∑
ℓ2,ℓ3

∑
U,V,W

ΦU,V,W ((0, 81); (ℓ2, 82); (ℓ3, 83))48
®: ′ ®'ℓ2 48

®: ′′ ®'ℓ3

k
9

U,81
( ®:)k 9

′

V,82
( ®:′)k 9

W,83
( ®:′′)

√
<81<82<83

where numbers 1, 2, and 3 label the atoms coupled together by the anharmonic term,
{(8, ℓ)} indexes the 8th atom in the ℓth unit cell, and {U, V, W} specify the spatial
axis (assuming 3-D space). ®'ℓ is the lattice vector pointing to the ℓth unit cell, <8
is the mass of the 8th atom in the unit cell, and k 9

U,8
( ®:) is element in the phonon

eigenvector (specified by ( 9 , ®:)) corresponding to direction U and atom 8.

The collision integral then

�coll =
∑
_′,_′′

[
,+_,_′,_′′ (Ψ_′′ −Ψ; ′ −Ψ_) +

1
2
,−_,_′,_′′ (Ψ_′′ +Ψ; ′ −Ψ_)

]
≡ =1,_

g_

(2.4)

where Ψ = =1,_/[=0,_ (=0,_ + 1)] and =1,_ is the unknown deviation from the equilib-
rium phonon distribution. The sum over _′, _′′ is over the three-phonon scattering
phase space that satisfies energy and momentum conservation. This sum can be
used to determine the scattering lifetime g of phonon mode _. The mean free path
of the phonon is then Λ = E6g.

2.3 Introduction to the Boltzmann Transport Equation (BTE)
The discussion below can be found in more detail in Chapter 3 (Kinetic theory of
gases) in the textbook by Kardar [45].
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Consider an #-body system, fully described by the generalized position (®A8) and
momentum ( ®?8) of each particle indexed by 8 in 3-dimensional space. The space
defined by these coordinates is called the phase space. Let r and p, containing
information on the positions and momenta for each of the # particles, denote
specific points in phase space. Let the particle density be described by 5 (r;p).

Due to the incompressibility of phase space, we know that the change in density at
some r, p with respect to time is given by

35

3C
=
m 5

mC
+

∑
8

(
m 5

m®A8
m®A8
mC
+ m 5
m ®?8

m ®?8
mC

)
= 0 . (2.5)

In the case that 35
3C
= 0, we arrive at Liouville’s equation.

However, it is proposed that one can simplify the above equation, which involves the
full phase space, by reducing it to a 1-particle density that returns the expectation
value of finding any of the # particles at location ®A with momentum ®?. This can be
done following the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy.
Details can be found in Kardar [45]. In the end, in the dilute particle limit, we only
need to consider the first equation of the hierarchy,

351
3C

=
m 51
mC
+ m 51
m®A8

m®A8
mC
+ m 51
m ®?8

m ®?8
mC

=

(
351
3C

)
2

(2.6)

where the last term is the collision term obtained by considering the interactions of
the single particle captured by the first hierarchical equationwith the other remaining
particles.

Thus, additionally defining velocity ®E = m®A/mC and force � = m ®?/mC for the 1-
particle density, and dropping the 1 index, we arrive at the BTE

m 5

mC
+ ®E · ∇®A 5 + ®� · ∇ ®? 5 =

(
35

3C

)
2

. (2.7)

The collision integral can be determined by kinematic collision and scattering theory.
However, one can also use a quantum mechanical description, ie. Fermi’s Golden
Rule, which dictates conservation of energy and conservation of momentum in the
collision and the transition probability determined by the Hamiltonian describing
the interaction between the particles.
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Relaxation time approximation
It is common to simplify the collision term using the relaxation time approximation,
using the relation (

35

3C

)
2

= − 5 − 50())
g

where 50()) is the equilibrium distribution at some temperature ) and g is called
the particle lifetime.

For phonons, the collision integral can be determined using three-phonon scattering
events, as given in Eq. (2.4).

BTE for heat transfer
Phonons are determined by atomistic material properties, and are described by a
dispersion relationl( ®:), wherel is the frequency of the phonons. Each wavevector
can specify multiple phonons of different polarizations.

We use the BTE to separately describe the density of each phonon mode, indexed
by _ which specifies both wavevector ®: and polarization. The velocity is the group
velocity of the phonon, given by ®E6 = ∇®:l( ®:). It is not possible to exert forces on
phonons, so the force term is dropped. The collision term is approximated using
the three-phonon scattering rates that can be obtained using ab initio methods like
density functional perturbation theory [1]. Volumetric heat generation can also be
included here with the collision term. Thus, we arrive at

m 5_

mC
+ ®E6,_ · ∇®A 5_ = −

5_ − 50,_ ())
g_

+&_ . (2.8)

Note that the equilibrium distribution 50()) depends on the current temperature of
the system, which depends on the phonon distribution. If we are only considering
heat transfer along one direction, we can write

m 5_

mC
+ E6G,_

m 5_

mG
= − 5_ − 50,_ ())

g_
+&_ . (2.9)

Because the equilibrium distribution should yield time derivations that equal zero,
one canwrite theBTE in terms of energy deviations from the equilibriumdistribution
at the equilbrium temperature )0, which we denote as 6()) = ℏl( 5 ()) − 50()0)),

m6_

mC
+ E6G,_

m6_

mG
= −

6_ −
(
60,_ ()) − 60,_ ()0)

)
g_

+&_ . (2.10)

Assuming a small deviation in temperature Δ) = ) − )0,

60,_ ()) − 60,_ ()0) = ℏl_ ( 5��,_ ()) − 5��,_ ()0)) ≈ �_Δ)
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where 5��,_ ()) = (4ℏl_/:�) − 1)−1 is the Bose-Einstein distribution at temperature
) , and �_ = ℏl_

m 5��,_
m)

is the modal heat capacity. Thus, the BTE for heat transfer
is

m6_

mC
+ E6G,_

m6_

mG
= −6_ − �_Δ)

g_
+&_ . (2.11)

Finally, 6_ and Δ) are related by energy conservation,∑
_

(6_ − �_Δ)) = 0 . (2.12)

Note that all phonons contribute to Δ) , thus requiring the BTE for all phonons to
be considered simultaneously.

1-D BTE: General solution
For simplicity, we assume a stationary solution and no internal heat generation, so
that Eq. (2.11) becomes

E6G,_
m6_

mG
= −6_ − �_Δ)

g_
. (2.13)

This a 1-D ordinary differential equation, and the forward propagating and backward
propagating solutions for 6_ are, respectively,

6+_ (Ĝ) = %_ e−W_Ĝ +
∫ Ĝ

0

�_Δ) (Ĝ′)
Kn_

e−W_ (Ĝ−Ĝ
′) 3Ĝ′ for E6G,_ > 0 (2.14a)

6−_ (Ĝ) = �_ eW_ (1−Ĝ) −
∫ 1

Ĝ

�_Δ) (Ĝ′)
Kn_

eW_ (Ĝ
′−Ĝ) 3Ĝ′ for E6G,_ ≤ 0 (2.14b)

where Ĝ = G/! is the normalized distance,Δ) (Ĝ) is the local deviation in temperature
from )0, Kn_ = E6G,_g_/! is the modal Knudsen number, and W_ = 1/Kn_. The
coefficients %_ and �_ are defined by boundary conditions at the edges of the slab,

6+_ (Ĝ = 0) = %_ = n1�_Δ)! + (1 − n1)
∑
_

6−_ (Ĝ = 0) (2.15a)

6−_ (Ĝ = 1) = �_ = n2�_Δ)' + (1 − n2)
∑
_

6+_ (Ĝ = 1) (2.15b)

where Δ)! and Δ)' are the temperature offsets defined at the left and right edges of
the slab, and n denotes the emissivity of the two boundaries. For Dirichlet boundary
conditions, the walls are black and n = 1.

The modal deviational heat flux is

@_ = @
+
_ − @−_ = E6G,_ (6+_ − 6−_ ) , (2.16)
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and the thermal conductivity is

^ =
∑
_

@_

(Δ)' − Δ)!)/!
. (2.17)

Combining Eq. (2.12) and Eq. (2.14), we obtain an integral equation for Δ) (Ĝ),(∑
_

�_

g_

)
Δ) (Ĝ)

=
∑
_

1
g_

[
%_4

−W_Ĝ + �_ e−W_ (1−Ĝ) +
∫ 1

0

�_Δ) (Ĝ′)
Kn_

4−W_ |Ĝ
′−Ĝ | 3Ĝ′

] (2.18)

which is a Fredholm integral of the second kind, as it is of the form

Δ) (Ĝ) = 5 (Ĝ) +
∫ 1

0
 (Ĝ, Ĝ′)Δ) (Ĝ′) 3Ĝ′ . (2.19)

One way to numerically solve for Δ) (Ĝ) is to write the variable as a vector with
each element corresponding to a different point along Ĝ. One could use an even
discretization or a quadrature (eg. Gaussian quadrature) discretization. However,
this spatial discretization requires on the order of 1000 points for convergence [41].
Alternatively, Δ) (Ĝ) can be solved for by expanding 5 and  as a cosine expansion
with # terms. After some mathematical manipulation as detailed by Hua et al. [41],
one can write Δ) (Ĝ) as a matrix equation

Δ) (Ĝ; ®%, ®�) = �(Ĝ)
(
I − 1

2
K

)−1 (
F1 ®% + F2 ®�

)
. (2.20)

Here, �(Ĝ) is a matrix of the cosines used in the expansion. Values of the cosines
with spatial frequencies<c, where< is an integer from 0 to # , evaluated at various Ĝ
are along each column. The vectors ®% and ®� are defined by the boundary conditions
and contain #ph values, where #ph is the total number of phonon modes. The
(# + 1) × (# + 1) matrix K contains the cosine expansion coefficients of the kernel
 (Ĝ, Ĝ′). The � matrices correspond to the cosine expansion coefficients for the
inhomogeneous term 5 (Ĝ), and are of dimension (# +1) ×#ph. Explicit expressions
for the matrix elements are given in the following section.

Cosine expansion matrix elements

In all of the following equations, the normalization factor is" = 2
∑
_ �_/g_. These

coefficients are generalized versions of those given in the Appendix of Ref. [41].
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The kernel  (G, G′) is

 (Ĝ, Ĝ′) = 1
"

∑
_

�_

Kn_g_
4−W_ |Ĝ−Ĝ

′ | . (2.21)

The elements in K are the coefficients for the cosine expansion,

[K]<,= =
2

"

∫ 1

0

∫ 1

0
 (Ĝ, Ĝ′) cos(<cĜ) cos(=cĜ′) 3Ĝ 3Ĝ′ (2.22)

=



2

"

∑
_

�_

Kn_g_

[
(((−1)< + (−1)=)4−W_ + (−1 − (−1)<+=))W2

:

(W2
_
+ <2c2) (W2

_
+ =2c2)

]
if < ≠ =

2

"

∑
_

�_

Kn_g_

[
4−W_ (2(−1)<W2

_
) + W_ ((W_ − 2)W_ + <2c2)
(W2
_
+ <2c2)2

]
if < = = ≠ 0

2

"

∑
_

�_

Kn_g_

[
2(−1 + 4−W_ + W_)

W2
_

]
if < = = = 0

where 2 = 1 if < = = = 0, 2 = 2 if either < = 0 or = = 0, or 2 = 4 if both <, = ≠ 0.

The inhomogeneous term is 5 (Ĝ) = ∑
_ 51,_ (Ĝ)%_ + 52,_ (Ĝ)�_, where

51,_ (Ĝ) =
1
"

1
g_
4−W_Ĝ (2.23a)

52,_ (Ĝ) =
1
"

1
g_
4−W_ (1−Ĝ) . (2.23b)

The elements inF1 are the cosine expansion coefficients [F1]<,_ = 2
∫ 1

0 51,_ (Ĝ) cos(<cĜ) 3Ĝ
(where 1 = 1, 2), which yield

[F1]<,_ =
2

"

1
g_

[
(1 − (−1)<4−W_)
W_ (1 + <2c2/W2

_
)

]
(2.24a)

[F2]<,_ =
2

"

1
g_

[
((−1)< − 4−W_)
W_ (1 + <2c2/W2

_
)

]
(2.24b)

where 2 = 1 if < = 0, and 2 = 2 otherwise.

1-D BTE: Diffusive limit
Fourier’s law describes heat transfer in the diffusive limit and is valid for bulk sys-
tems. Unfortunately, taking the equations for heat flux (Eq. (2.14)) in the limit Kn
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goes to 0+ yields a deviational heat flux of 0, which is a not informative zeroth
order solution. Instead, we start back at Eq. (2.9). Under the assumption that the
deviational phonon energy 6_ and its gradient is much smaller than the equilib-
rium phonon distribution, and assuming a stationary solution and no internal heat
generation, we have

E6G,_
m60,_

mG
= −6_ − 60,_ ())

g_
.

We can then solve for 6_,

6_ = 60 − g_ E6G,_
m60,_

mG
= 60 − g E6G,_

m60,_

m)

3)

3G
.

Thus, after multiplying the deviational phonon population by the group velocity and
summing over all phonon modes, we arrive at Fourier’s law for the deviational heat
flux,

@ =
∑
_

E6G,_ (6_ − 60,_) = −
∑
_

E2
6G,_g

m60,_

m)

3)

3G
= −

∑
_

−�_E6G,_Λ_
3)

3G
≡ −^ 3)

3G

from which we define the thermal conductivity ^.

More generally, one can follow the Chapman-Enskog solution to the BTE and
assume a ’Hilbert-type’ expansion of the phonon distribution [34],

6 =

∞∑
==0
〈Kn〉=6=

where the gray approximation is used and 〈Kn〉 is averaged over all phonons.
Taking the expansion only up to the first order term is valid for small Kn, and
returns Fourier’s law when inserted into the expression for heat flux (Eq. (2.3)) [34].
Consistent with what we discussed above, the first order expansion in Kn is required
because the zeroth order expansion yields no heat flux (ie. is the equilbirium phonon
distribution).

1-D BTE: Ballistic Limit
Suppose we are interested in heat flow across a thin layer or at an interface. In
the ballistic limit, the mean free path is much longer than the length of the system
of interest, and the phonon scattering is dominated by scattering at the boundary.
Equivalently, in the BTE, we can take the limit g_ →∞, and as a result, the phonon
distribution is constant through the thin system.



22

However, complications arise when the two ends of the slab are pinned to different
temperatures. It turns out that because phonons can’t dissipate heat in the bulk
material, a discontinuity in the temperature appears at the boundaries.

One can see this by taking Eqs. (2.14) in the infinite scattering lifetime limit (so that
Kn→∞ and W → 0), yielding

@_ (Ĝ) = E6G,_ (6+_ (Ĝ) − 6−_ (Ĝ)) = E6G,_ (%_ − �_)
= E6G,_�_ (Δ)1 − Δ)2)

where we assumed Dirichlet boundary conditions (Eqs. (2.15)).

This result is not obviously obtainable using Fourier’s law. However, one can
incorporate temperature slippage manually [35], which was shown to be equivalent
to including a first order correction of phonons emitted from the boundary [34].

In this limit, the deviational heat flux should be consistent with the Landauer for-
malism,

@ =
∑
_

E6G,_ 6_ T
(1,2)
_

in which we simply sum over the energies of the phonons passing through the
system, scaled by their transmissivities T (1,2) through the system. In the case we are
considering here, T (1,2) = 1. The transmissivities can be less than 1 if considering
heat flux across an interface that reflects some of the incoming phonons.

2.4 Prior Work on Superlattice Thermal Conductivity
1-D superlattices are structures built from various layers stacked sequentially in
some periodic fashion. For example, a binary superlattice would consist of two
types of layers placed in an alternating fashion.

Classical heat transfer in superlattices
At an interface, the bulk material’s periodicity is broken, and incident phonons
scatter into other phonon modes. One can use reflection or transmission matrices
to describe the coupling of the incident phonon to phonon modes travelling back
through the original layer or phonons travelling forward through the next layer,
respectively. The scattering at the interface must satisfy boundary conditions such
as energy conservation, detailed balance of heat flux, conservation of transverse
momentum, and time reversal symmetry. Unlike the scattering of light, which is
accurately described by Snell’s law, the scattering of phonons is often not so simple,
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since the phonon band structure is more complicated and the boundary conditions
can potentially be satisfied by multiple phonon modes. Furthermore, the scattering
is sensitive to the quality of the interface, and the thermal conductivity across the
interface is known to vary significantly depending on the interface.

Several models describing the scattering at an interface have been developed. For
simplicity, one often assumes an isotropic material, meaning that the phonon of
some frequency propagates in all directions at the same group velocity, and can be
specified by the group velocity magnitude E6, wavevector magnitude : , and angle
of propagation \ (with respect to normal). Thus, the interface transmission models
discussed below are often written as functions of phonon frequency and angle of
incidence.

If one assumes that phonons undergo elastic scattering based on Snell’s law, the
transmission is determined by the constraint

sin \1

|E (1)6 |
=

sin \2

|E (2)6 |

where 8 denotes the superlattice layer. When this constraint cannot be met (ie. the
angle of incidence is greater than some critical value), the phonon is completely
reflected and nothing is transmitted through the interface. However, this model only
holds for transversely polarized low frequency acoustic modes where the phonon
dispersion relation is approximately linear and there is no mode conversion.

In the elastic acoustic mismatch model (AMM) [46], one instead uses impedance
matching to determine reflection and transmission across the interface, arriving at

R(1,2) (cos \ (1)) =
����/ (1) cos \ (1) − / (2) cos \ (2)

/ (1) cos \ (1) + / (2) cos \ (2)

����2
T (1,2) (cos \ (1)) = 4/ (1)/ (2) cos \ (1) cos \ (2)

(/ (1) cos \ (1) + / (2) cos \ (2))2

(2.25)

where / (8) = d(8) |E (8)6 | is the acoustic impedance of the 8th layer, with d being the
material density.

At rough interfaces, one might expect incident phonons to undergo multiple scat-
tering events. It is argued that in the diffuse scattering limit [47], phonons at the
interface would forget which side they were on. Then, in the diffuse mismatch
model (DMM), transmission of a phonon from layer 9 into 8 looks the same as
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reflection of a phonon in layer 8 off of the interface back into 8. Mathematically, this
can be written as

T (8, 9) = R(8. 9) = 1 − T ( 9 ,8) .

Thus, assuming elastic scattering events, energy balance requires that∑
<

2c
∫ c/2

0
E
(1)
6,< cos(\)6� (1)< (l)T (1,2) (l) 3\ =∑

<

2c
∫ c/2

0
E
(2)
6G,< cos(\)6� (2)< (l)T (2,1) (l) 3\

for all phonon frequencies l, where < indexes all phonons of that frequency. In
the low temperature limit where the Debye model is valid, � ∝ E−3

6 , and the DMM
model can be reduced to

T
(8, 9)
3
(l) =

∑
< ( |E

( 9)
6,< |)−2∑

< ( |E
(8)
6,< |)−2 +∑

< ( |E
( 9)
6,< |)−2

(2.26)

where again < indexes all phonons of frequency l.

Note that by definition, DMM does not actually preserve time reversal symmetry.

Prior works computing the superlattice thermal conductivity using the BTE assume
frequency-independent transmission and reflection models. This is because the
works assume constant mean-free path and write the BTE as a function of the total
deviational phonon intensity [38]

� =
1
2

∑
<

∫ lmax

0
|E6,< (l) |6(l)�< (l) 3l

where 6(l) is the the deviational phonon energy distribution, � (l) is the phonon
density of states, and < indexes over the different phonon polarizations. Scattering
at the interfaces now are described by boundary conditions enforcing energy con-
servation with respect to the total phonon density � for a differential solid angle,
requiring

T (1,2) (\1) � (1)> ()) 3 cos \1 = T (2,1) (\2) � (2)> ()) 3 cos \2

where �> = E6� () − )0)/4c is the equilibrium total deviational phonon intensity.

Given some model describing phonon transmission through an interface, one can
compute its thermal boundary resistance (TBR, or Kapitza resistance), 'int =
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Δ)int/@ where Δ)int is the non-equilibrium temperature difference of the phonons
emitted on either side of the interface, and @ is the heat flux flowing through the
interface. Thus, the interface’s TBR also varies with the thicknesses of the materials
on either side of it. For example, in the limit that of thick superlattice layers, one
should expect to see diffusive phonon transport in accordance with Fourier’s law, in
addition to the temperature drops at the interfaces. In contrast, in the limit of thin
superlattice layers, one should expect most of the temperature drop to occur across
the interfaces. Thus, the TBR would appear to be larger in superlattices with thin
layers.

To compute the heat flux through a 1-D superlattice, one requires a scattering
model for each distinct interface. Then, one solves a system of integral equations
that enforce heat flux conservation and energy conservation as described by the
transmission and reflection matrices, which are expressed depend on the unknown
phonon intensity and the local non-equilibrium temperature. To solve the BTE for
total phonon intensity, Chen numerically solves the system of equations using the
Gauss-Legendre integration scheme to compute the integrals in the equations [38].
An =th order Gauss quadrature would yield = equations for each original integral
equation. The unknowns are obtained by matrix inversion.

Simkin and Mahan model
Simkin and Mahan used lattice dynamics and the concept of band-folding to predict
the cross-plane thermal conductivity of 1-D superlattices [22, 48]. They discuss
a simple model where the atoms in the superlattice layers only vary by mass, and
obtain the phonon dispersion relation by solving for the characteristic equations of
motion describing their simple system. However, to compute thermal conductivity,
they utilize a graymodel and assume constant mean free path (MFP). For finiteMFP,
they observe a dip in the thermal conductivity with respect to superlattice period
(the width of the layers). It is proposed that this dip is indicative of the wave-particle
crossover point, at which phonons behave in the coherent wave-like limit for smaller
superlattice periods and in the particle-like limit for larger superlattice periods.

Other atomistic thermal transport methods
In molecular dynamics (MD) calculations, one specifies the positions and force
constants of all of the atoms in the system of interest and propagates the motion
of each particle (classically) according to Newton’s equations of motions in time,
given some initial conditions [49]. The force constants are approximated from
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non-harmonic interatomic potentials, such as the Stillinger-Weber or Tersoff po-
tential. Several methods to compute the sample’s thermal conductivity from these
calculations have been reported. For example, one can consider a sample that is in
contact with hot and cold baths and compute the heat flow between them [50], or
one can measure the average energy of the atoms to determine the local temperature
[51]. Alternatively, one can measure correlation functions of thermal fluctuations
and then use the Green-Kubo formalism to determine the contributions to thermal
conductivity from each phonon [52, 53] or other normal modes [54]. Extending the
MD algorithm to consider periodic superlattices is straightforward as one simply
modifies the set of atoms to simulate.

Alternatively, one can compute the thermal conductivity of the superlattice using ab
initio harmonic and anharmonic force constants computed using density functional
perturbation theory (DFPT) [1, 43, 44]. The procedure is analogous to that of com-
puting the thermal conductivity of a crystalline bulk material, except one computes
the harmonic and anharmonic forces of the entire superlattice supercell, and thus is
much more expensive [24]. One can also account for interfacial scattering by adding
an additional contribution to the anharmonic scattering using Matthiessen’s rule for
computing the total lifetime [23]. However, computing the force constants, band
structure, and scattering rates for large unit cells is expensive, so one is generally
limited to atomistically thin superlattice periods.

The atomistic Green’s functions (AGF) method is a quantum mechanical scheme to
compute the scattering properties across interfaces. It relies on using harmonic force
constants to compute the Green’s functions and self-energies of the left boundary,
the right boundary, and the central region containing the interface [26]. Using these
elements, one can determine the transmission between the left and right boundaries,
and then compute the thermal conductivity using Landauer’s formula if desired. To
compute the thermal conductivity for superlattices, one would need to incorporate
multiple layers in the central region, which complicates computing the system’s
Green’s functions and self energies [25].

2.5 Solving the Spectral BTE for 1-D Superlattices
For simplicity, we consider a binary superlattice as shown in Fig. 2.1, though one
can easily consider arbitrary superlattices using the framework provided here. For
generality, we will denote the thicknesses of the two layers as ! (1) and ! (2) (though
in our calculations the two are the same). We will use the following notation: all
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Figure 2.1: Schematic of the binary 1-D superlattice system consisting of a unit
cell of two layers. Δ) (Ĝ) is the deviation of the local temperature with respect to
the equilibrium temperature, and Δ)! and Δ)' are the temperatures specified at
the left and right boundaries, respectively. Ĝ (U) is the spatial coordinate for layer U
normalized by layer thickness ! (U) . The variables %(U)

_
and �(U)

_
are the coefficients

of the inhomogeneous solution of the Boltzmann equation, which determine the
heat flux propagating in the forward and backward direction. In the case of periodic
boundary conditions, �(0)

_
= �

(2)
_

and %(3)
_
= %

(1)
_

.

material parameters will be written as vectors of size #ph (the number of phonon
modes used to describe the thermal properties of the material) where each element
is the value for a specific phonon mode. Material parameters for a specific mode
will be referred to using subscripts 8, 9 , or _. Superscripts in parentheses will denote
the layer, if needed. If superscripts are omitted, then the expression is valid for all
layers generally. When the subscripts are omitted, we are referring to all phonon
modes. Matrices will be bolded and vectors will have an arrow. For example, ®� (1)

refers to the heat capacities for all phonon modes in layer 1, and � (1)
_

refers to the
heat capacity of the phonon indexed by _ in layer 1. Multiplication of two vectors,
such as ®E6G ®�, corresponds to elemental multiplication. Multiplication of a matrix
and a vector follows ordinary matrix algebra.

Interface boundary conditions
At each interface, phonons are transmitted or reflected with some probability. The
phonons that the original is scattered to depends on the phonon wavevector and
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frequency, as well as the specularity of the interface. We assume elastic scattering
such that phonons only reflect or transmit to phonons of the same frequency l. The
phonon scatterings are further constrained by basic symmetries and conservation
laws.

Relations that enforce heat flux conservation are given by

®@ (2),+ = T (1,2) ®@ (1),+ +R(2,1) ®@ (2),− (2.27a)

®@ (1),− = R(1,2) ®@ (1),+ + T (2,1) ®@ (2),− . (2.27b)

Here, '(U,V) is a (# (U)ph × #
(U)
ph ) matrix specifying the reflection coefficients of

phonons in layer U at the interface between layers U and V. T (",#) is a (# (U)ph ×#
(V)
ph )

matrix describing the transmission of phonons from layer U into layer V.

The reflection and transmissionmatrices of each phonon are subject to the constraints
of power conservation, ∑

9

'
(1,2)
8 9
+ ) (1,2)

8 9
= 1 (2.28a)∑

9

'
(2,1)
8 9
+ ) (2,1)

8 9
= 1 , (2.28b)

time reversal symmetry,

R(1,2) =
(
R(1,2)

))
(2.29a)

R(2,1) =
(
R(2,1)

))
(2.29b)

T (1,2) =
(
T (2,1)

))
, (2.29c)

and detailed balance, ∑
9∈l

T (1,2)
8 9
®@ (1),+
9 ,0 =

∑
9∈l

T (2,1)
8 9
®@ (2),−
9 ,0 (2.30)

where @ 9 ,0 = � 9E6G, 9)0 is the equilibrium heat flux for each phonon mode. These
sums occur over all modes of the same frequency l, as indicated by the notation
9 ∈ l.

Heat transfer across an interface
Todetermine heat transfer at the interface, we plug our expressions for ®@(Ĝ) (obtained
by combining Eq. (2.14), Eq. (2.16), and Eq. (2.20) from the section describing the
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solution to the BTE of the cross-plane thermal conductivity for a single slab) into
the equations expressing conservation of heat flux (Eq. (2.27)) and get

%
(2)
8
E
(2)
6G,8

D
(2)
8
=

)
(1,2)
8 9

[
%
(1)
9
4
−W (1)

9 E
(1)
6G, 9

D
(1)
9
+

[
ΦΦΦ
(1)
5

((
I − 1

2
K(1)

)−1
(F(1)1

®%(1) + F(1)2
®�(1)

)]
9

]
+ '(2,1)

8 9

[
�
(2)
9
4
−W (2)

9 E
(2)
6G, 9

D
(2)
9
+

[
ΦΦΦ
(2)
1

((
I − 1

2
K(2)

)−1
(F(2)1

®%(2) + F(2)2
®�(2)

)]
9

]
(2.31a)

�
(1)
8
E
(1)
6G,8

D
(1)
8
=

'
(1,2)
8 9

[
%
(1)
9
4
−W (1)

9 E
(1)
6G, 9

D
(1)
9
+

[
ΦΦΦ
(1)
5

((
I − 1

2
K(1)

)−1
(F(1)1

®%(1) + F(1)2
®�(1)

)]
9

]
+) (2,1)

8 9

[
�
(2)
9
4
−W (2)

9 E
(2)
6G, 9

D
(2)
9
+

[
ΦΦΦ
(2)
1

((
I − 1

2
K(2)

)−1
(F(2)1

®%(2) + F(2)2
®�(2)

)]
9

]
(2.31b)

where the 8, 9 subscripts indicate the phononmode, andD_ is theweighting associated
with phonon mode _ denoted explicitly.

The matricesΦΦΦ 5 andΦΦΦ1 are defined as

[ΦΦΦ 5 ]<,_ =
∫ 1

0

�_ cos(<cĜ′)
Kn_

4−W_ (1−Ĝ
′)3Ĝ′ =

"

2
�_! [�2]<,_ (2.32)

[ΦΦΦ1]<,_ =
∫ 1

0

�_ cos(<cĜ′)
Kn_

4−W_Ĝ
′
3Ĝ′ =

"

2
�_! [�1]<,_ (2.33)

with " = 2
∑
_ �_/g_ and 2 = 1 if < = 0, or 2 = 2 if < ≠ 0.

Matrix formulation
To explicitly show the role of the coefficients ®%, ®� at the interface between layers U
and U + 1, we write the boundary conditions as a matrix equation (in block matrix
form),[

a(U) b(U+1)

c(U) d(U+1)

] [
�(U)

%(U+1)

]
=

[
e(U+1) 0
f(U+1) 0

] [
�(U+1)

%(U+2)

]
+

[
0 g(U)

0 h(U)

] [
�(U−1)

%(U)

]
. (2.34)

The two rows of the matrix correspond to the boundary conditions given by Eq.
(2.27). A schematic showing the organization of the equations are shown in Fig. 2.2,
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and explicit expressions for blocks a through h can be obtained from equations in
the previous sections.

Incorporation of symmetries
Determining the unknown coefficients ( ®�(U) , ®%(U+1)) requires inversion of the matrix
(abcd). The computational cost scales like O(#3

ph), and #ph is proportional to
the number of points in reciprocal space needed to accurately represent the bulk
material’s band structure. The data provided to us by Lindsay already discretizes the
Brillouin zone using a Gaussian quadrature grid [2, 55, 56] for computing phonon-
phonon scattering rates, so it is not likely that coarser discretization can be used.
Thus, to further reduce the cost of the calculation, we use symmetry to consolidate
the phonon modes. First, we only consider the irreducible wedge of the Brillouin
zone. Then, we account for rotational symmetry about the G-axis by grouping terms
with wavevectors (:G , :H, :I) = (:G , :I, :H). We also do not distinguish between
otherwise equivalent modes by polarization. Modes are considered to be degenerate
if the modal energies are within E6GΔ: of each other, where Δ: is the difference in
:G for adjacent k-points in the Brillouin zone mesh. This consolidation is accounted
for in the weighting used when taking the sum over all the phonon modes.

Figure 2.2: Schematic indicating howEq. (2.31) can bewritten as amatrix equation.
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Partially specular boundary conditions
Our modal approach allows us to account for reflection and transmission between
an arbitrary set of phonons of the same frequency; therefore, we can also consider
diffuse, specular, and partially specular interfaces. We neglect any anharmonic
couplings across the interface. For diffuse transmission, phonon scattering only
needs to satisfy energy conservation (all involvedlmust be the same). For specular
transmission, phononsmust satisfy transversemomentum conservation (matching in
:H, :I) in addition to energy conservation. However, if the reflection or transmission
is completely diffuse, the blockmatrix (abcd) becomes singular and one cannot solve
for Δ) (Ĝ). So, to prevent this problem, we define separate sets of coefficients for
the specular problem ( ®%B, ®�B) and the diffuse problem ( ®%3 , ®�3). Diffuse coefficients
®%3 and ®�3 each only contain #freq unknown variables, where #freq < #ph is the
number of frequency bins used.

We define the partial specularity for frequency bin l as ?l with respect to the
deviational distribution of the phonon mode as

?l =

∑
_∈l %B,_∑

_∈l %B,_ + %3,l8
. (2.35)

A similar expression can be defined for backwards propagating modes. The sum-
mations over _ ∈ l mean that the sum includes phonons within the frequency bin
corresponding to l.

Figure 2.3: Schematic indicating how matrices are modified to incorporate par-
tial specularity. Constraints from boundary conditions of the interface are given
by Eq. (2.36), and the constraints from the definition of specularity are given by
Eq. (2.35) from which define block matrices ' and (.
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Using these specularity constraints, in addition to the conservation of heat flux at
the interface as described in the previous section, we can solve for the specular and
diffuse coefficients. Details of the extended block matrix system of equations to
account for specularity are described below and summarized in Fig. 2.3.

To account for both specular and diffuse reflection and transmission, the interface
heat flux boundary conditions can be written as
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where the subscripts B and 3 correspond to specular and diffuse scattering, re-
spectively. The summations over _ ∈ l8 mean that the sum includes phonons of
frequency binl8. The elements in �1,B for specular scattering are the same as defined
in Eq. (2.24). The elements in the corresponding matrices for diffuse scattering,
�1,3 , are defined as [�1,3]<,8 =

∑
_∈l8 [�1]<,_.

Recall that ®%B and ®�B contain #ph elements; ®%3 and ®�3 contain #freq elements,
where #freq is the number of frequency bins. Then, T (1,2)B is a #ph,2 × #ph,1 matrix
and T (1,2)

3
is a #ph,2 × #freq,1 matrix. Similarly,R(1,2)B is a #ph,1 × #ph,1 matrix and

R(1,2)
3

is a #ph,1 × #freq,1 matrix. The diffuse reflection and transmission matrices
describe how the collective set of phonons with some energy scatter into each other.
In essence, they perform an averaging operation on the incident phonons.
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A similar expression can be found for the ®�(1) coefficients that corresponds to the
phonons propagating away from the interface.

Periodic boundary conditions
To consider binary superlattices of infinite thickness, we must apply periodic bound-
ary conditions at the two ends of a single unit cell. With periodic boundary condi-
tions, the deviational phonon energy distribution at the boundaries is defined to be
periodic [57, 58], meaning that the coefficients ®% and ®� are also periodic. However,
the temperature profile in each unit cell is not periodic. As a result, the black-body
phonon radiation contribution �_E6G,_)0 is also different for each unit cell, and the
difference must be included at the boundaries.

More specifically, let Δ)0 = Δ)! − Δ)' denote the temperature difference between
two adjacent unit cells, or equivalently, the temperature difference imposed at the
ends of the unit cell. Then, the deviational heat fluxes at the interface between layers
2 and 3 are related to the deviational heat fluxes at the interface between layers 0
and 1 by

®@ (3),+(Ĝ (3) = 0) = ®@ (1),+(Ĝ (1) = 0) +
(
®� (1)®E (1)6G

)
Δ)0 (2.37a)

®@ (2),−(Ĝ (2) = 1) = ®@ (0),−(Ĝ (0) = 1) +
(
®� (2)®E (2)6G

)
Δ)0 . (2.37b)

Combining the above with Eq. (2.27) for heat flux conservation at the interface and
rewriting all the components in terms of values in layers 1 and 2, we obtain the
boundary conditions

®@ (1),+(G (1) = 0) +
(
®� (1)®E (1)6G

)
Δ)0 = (2.38a)

T (2,1) ®@ (2),+(G (2) = ! (2))

+R(1,2)
[
®@ (1),−(G (1) = 0) +

(
®� (1)®E (1)6G

)
Δ)0

]
®@ (2),−(G (2) = 0) = (2.38b)

R(2,1) ®@ (2),+(G (2) = ! (2))

+T (1,2)
[
®@ (1),−(G (1) = 0) +

(
®� (1)®E (1)6G

)
Δ)0

]
.

For a binary superlattice, there are two interfaces: one in the middle (between layers
(1) and (2)) with boundary conditions described by Eq. (2.27), and one at which
the periodic boundary condition is applied (between layers (0) and (1)), as given by
Eq. (2.38). These two boundary conditions provide a system of twomatrix equations
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with two unknown vectors,[
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e(1) g(2)

f(1) h(2)

] [
�(1)
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]
. (2.39b)

After solving for the coefficients ®�(1) , ®%(1) , ®�(2) , and ®%(2) , the thermal conductivity
can be calculated by inserting them into Eq. (2.14a) and Eq. (2.14b), and then using
Eq. (2.16) and Eq. (2.17). To find the temperature profile across one unit cell of the
superlattice, the coefficients are inserted into Eq. (2.20).

Summary of the calculation
In summary, the steps for solving the thermal conductivity and temperature profile
for a binary superlattice with periodic boundary conditions are as follows. First, one
uses Eq. (2.23a) and Eq. (2.24) to obtain the matrices in Eq. (2.20). Then, one builds
the blockmatrix system of equations (Eq. (2.34)) describing the boundary conditions
at the interface within the unit cell (Eq. (2.27)) and the interface between two unit
cells (Eq. (2.38)). With these two matrix equations, we then solve for the unknown
coefficients %(1)

_
, �
(1)
_
, %
(2)
_
, and �(2)

_
. Using these coefficients, we can obtain 6_ (G)

and then use Eq. (2.16) and Eq. (2.17) to obtain the thermal conductivity.

2.6 Calculations for Toy Models
Here, we present our calculations of the thermal conductivity of binary 1D superlat-
tices with periodic boundary conditions. We define the superlattice to have layers of
equal thickness !. We also assume that both constituent materials are silicon, giving
a Si/Si superlattice; this is a reasonable approximation when the lattice spacing and
dispersion of the two materials in the SL are similar. Making this approximation
simplifies the definition of the transmission and specularity at the interface, allow-
ing us to investigate how these interface parameters affect the superlattice thermal
conductivity. Since we are working in the particle limit, these interface parameters
are independent of superlattice period.

The full ab-initio phonon dispersions and lifetimes for crystalline Si are obtained
using density functional perturbation theory courtesy of Dr. Lucas Lindsay. The
data contains 2048 data points per phonon branch in the irreducible Brillouin zone.
The dispersion relation can be found in the appendix of Ref. [2]. In our thermal
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conductivity calculations, we assume that the superlattices are oriented in the [100]
direction.

Uniform Transmission Coefficients
We first consider the cases where (1) specular transmission is unity for all modes (in
accordance with the acoustic mismatch model, AMM), and (2) diffuse transmission
is 0.5 for all modes (in accordance with the diffuse mismatch model, DMM). The
test cases of purely specular transmission (?l = 1) and purely diffuse transmission
(?l = 0) provide evidence that the calculation is working properly. If the interfaces
transmit phonons perfectly specularly, the interfaces pose no resistance to heat flow
and the thermal conductivity should be independent of SL period. On the other
hand, if the interfaces are perfectly diffuse, the thermal conductivity decreases
with decreasing period due to interface scattering, consistent with the well-known
classical size effects [59]. These two results are indeed observed in Fig. 2.4a. Clearly,
neither of these cases exhibit a non-monotonic trend of thermal conductivity with
superlattice layer thickness !.

We next investigate the behavior with partial specularity. For the first partially
specular case, we use Ziman’s definition of specularity [60],

?l =
∑
_∈l

exp(−4[2:2
G,_) (2.40)

where [ is the interface roughness chosen to be 0.8 Å so that the thermally occupied
modes exhibit a broad range of specularities. In this case, we find that ^ decreases
with !, similar to the purely diffuse case, but has a higher overall thermal conduc-
tivity and decreases more slowly. The higher thermal conductivity is due to the fact
that some phonons still transmit specularly, and the slower decrease arises from a
lower effective interface resistance.

Recently, it was suggested that by defining the specularity in relation to an inter-
face density of states, one can more accurately predict the phonon transmission
profile through the interface [61]. This choice of specularity would still exhibit
the same thermal conductivity trend as one decreases superlattice layer thickness.
As ! is decreased, phonons with non-unity transmission contribute less to thermal
conductivity while phonons with near-unity transmission dominate the thermal con-
ductivity. Since the interface density of states is independent of ! in the present
formalism, there is no mechanism by which the thermal conductivity could increase
at smaller !.
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Figure 2.4: Thermal conductivity versus layer thickness !, (a) assuming (dot-
ted black) specular transmission with unity transmission, (dot-dash red) diffuse
transmission with 50% transmission, in accordance with DMM, (solid blue) and
partially specular transmission with Ziman specularity assuming a roughness 0.8
Å. For partially specular scattering, considering transmission with and without
mode conversion yielded no discernible differences. (b) Results assuming unity
specularity, for the non-uniform transmission profiles: [[1]] (solid blue) a low
pass frequency filter )LP(l; 0.3), [[2]] (dot-dash blue) a high pass frequency filter
)HP(l; 0.6), [[3]] (solid light gray) a filter that preferentially transmits normally
incident modes )⊥(:; 1), [[4]] (dot-dash light gray) a filter that preferentially trans-
mits angled-incidence modes ) ‖ (:; 1), and [[5]] (dashed yellow) a combination of
profiles 2 and 3. Phonons with l > 0.6lmax have unity transmission and phonons
with l < 0.6l<0G are filtered by incident angle according to )⊥(:; 1). For refer-
ence, the bulk conductivity (equivalent to an interface with unity transmission and
specularity) is shown in the dotted black line.

Non-uniform Transmission Coefficients
In this section, we assume specular but non-unity transmission coefficients that vary
with angle of incidence and phonon frequency. In particular, we consider frequency
filters that would emulate a mismatch between phonon density of states and angle-
dependent filters that would emulate an impedance mismatch, as described by the
equations

)LP(l; 0) = Θ(l − 0 lmax) (2.41a)

)⊥(:; 1) = 1 − 1 (1 − |:G |/|: |) (2.41b)

)HP(l; 0) = 1 − Θ(l − 0 lmax) (2.42a)

) ‖ (:; 1) = 1 (1 − |:G |/|: |) (2.42b)
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whereΘ is the Heaviside step function and 0 and 1 are constant parameters between
0 and 1 (specified in the caption of Fig. 2.4). The reflection and transmission
profiles given by Eq. (2.41) are physically motivated, as the low-pass (LP) frequency
filter (Eq. (2.41a)) corresponds to materials with overlapping density of states for
low frequency acoustic modes near the Γ point, while preferential transmission
of phonons at normal incidence (Eq. (2.41b)) is the intuitive expectations of wave
reflection and transmission as in Snell’s law. The second set of equations (Eq. (2.42))
are less physically motivated as the frequency filter is a high-pass (HP) and the wave-
vector filter preferentially transmits phonons at shallow incident angles.

The thermal conductivity versus layer thickness is shown in Fig. 2.4b. In the case of
the frequencyfilters, as ! decreases, the thermal conductivity first decreases, but then
reaches a plateau. This plateau occurs because of the phonons that propagatewithout
reflection. The LP filter results in a plateau at a higher thermal conductivity than
the HP filter since low frequency phonons contribute more to thermal conductivity
than the high frequency optical modes. In the case of the incident angle filters,
as ! decreases, the thermal conductivity continues to decrease, as only normally
incident phonon modes (if )⊥) or phonons parallel to the interface (if ) ‖) are able to
propagate without reflection. In all cases, the thermal conductivity does not exhibit
a minimum as a function of !.

Thoughwe only showed a few sample transmission and reflection coefficient choices,
more general transmission coefficients can be obtained using superpositions of
the filters. For example, Profile 5 (yellow curve) in Fig. 2.4b corresponds to the
thermal conductivity for a transmission profile that follows )⊥(:; 1) for phonon
frequencies below 0.3 lmax and otherwise has unity transmission. The resulting
thermal conductivity also does not exhibit a minimum. One can build a variety
of other transmission profiles of various shapes using the proposed phonon filters
given in Eq. (2.41) and Eq. (2.42). However, since the thermal conductivity always
is non-increasing with decreasing !, regardless of the phonon filter, we will not be
able to identify a transmission profile that will generate a non-monotonic thermal
conductivity trend.

One can also include the possibility of partially specular transmission using a simi-
lar analysis. As ! decreases, the thermal conductivity will initially decrease as the
phonons reflect from the interface more frequently. At some value of !, phonons
with specular and near-unity transmission coefficients dominate the thermal con-
ductivity and the thermal conductivity becomes independent of !. Therefore, in the
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particle picture, there is no obvious physical mechanism for the thermal conductivity
to increase at smaller !.

Temperature dependence of thermal conductivity
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Figure 2.5: Thermal conductivity versus temperature for several different superlat-
tices. We consider the following interfaces: [[1]] (dotted black) unity specularity
with unity transmission, [[2]] (dot-dash red) diffuse transmission coefficients with a
value of 0.5, [[3]] (dashed green) Ziman specularity with roughness of 0.8 Å, [[4]]
(solid blue) angle-dependent reflectivity (1 = 0.05) with unity specularity. The
layer thickness ! is 10 nm.

Some experimental works have also looked at the temperature dependence of the
thermal conductivity to assess the role of phonon coherence on thermal conductivity
[20]. We too calculate the temperature dependence for several of the transmission
profiles shown above, and present the results in Fig. 2.5.

We find that the thermal conductivity trend with respect to temperature qualita-
tively varies significantly depending on the properties of the interface. As expected,
systems with unity transmission exhibit higher thermal conductivities at lower tem-
peratures due to the longer phonon lifetimes. In contrast, systems with non-unity
transmission may exhibit lower thermal conductivities at lower temperatures, de-
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pending on the transmission profile. In particular, reduction of thermal conductivity
can occur when low-energy phonons have low probabilities of transmission at the
interface (e.g. all phonons in the case of Interface 2, and the angled phonons in the
case of Interface 4, as defined in the caption of Fig. 2.5). Therefore, while measuring
thermal conductivity with respect to ambient temperature can provide some insight
on the transmissivity of the phonons at each interface, making definitive conclusions
on the role of phonon coherence in thermal transport is challenging.

2.7 Discussion
In summary, we have reported a numerical method to solve the Boltzmann transport
equation with ab-initio phonon properties for a 1-D superlattices with modal trans-
mission coefficients. Applying this method to thermal transport in superlattices, we
find that the BTE is still unable to predict the existence of a thermal conductivity
minimum with respect to SL period. Our results are consistent with the descrip-
tion of interfaces as thermal resistors in the particle limit, though by including
modal dependencies, the thermal conductivity can plateau at some minimum value
determined by the phonons that are transmitted through the SL without scattering.

However, observing an increase in thermal conductivity at even smaller layer thick-
ness is not possible, and our study thus supports the interpretation that phonon
coherence plays a role in recent experimental studies of thermal transport in binary
superlattices that exhibit such behavior.
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C h a p t e r 3

LOW-RANK APPROXIMATION OF ELECTRONIC STRUCTURE
HAMILTONIAN

In this chapter, we rewrite the electronic structure Hamiltonian and unitary coupled
cluster operator as a sum of 1- or 2-body terms that can be truncated in a systematic
fashion. This decomposition is particularly interesting in the context of near-term
quantum computing algorithms, as the Trotter step of a single term in the operator
can be implemented efficiently on hardware with only 1-D connectivity [1, 2].
Furthermore, the systematic truncation allows one to easily reduce the number
of terms needed to accurately represent the original operator within some error
threshold, thereby reducing the computational cost even further. We find that for
physically relevant systems, ie. systems that exhibit locality, if # is the number
of orbitals in the quantum chemical system of interest, then we are able to reduce
the number of terms in the sum from O(#4) to O(#3) while maintaining chemical
accuracy.

The work in this chapter is presented in the paper

M. Motta, E. Ye, et al. “Low rank representations for quantum simulation of
electronic structure,” arXiv preprint quant-ph/1808.02625 (2018).

3.1 Introduction
Quantum computers (QC) were initially proposed by Feynman [3, 4] as a means
to perform calculations on the high-dimensional problem of interacting quantum
particles. Since that time, several fundamental quantum computing algorithms,
such as phase estimation [5–7] and the quantum Fourier transform [8, 9], have been
developed. These concepts form the basis of Shor’s algorithm for factorization
of primes, Grover’s search algorithm and amplitude amplification, the Harrow-
Hassidim-Lloyd alogrithm for solving linear systems of equations, and more [10].
These algorithms promise some degree of computational speed-up (ie. reduction
in the scaling of the algorithm with respect to some parameter, usually problem
size) compared to their classical counterparts. However, these algorithms require
complex controlled operations and assume perfect, noiseless quantum computers
with infinite coherence times, which is impractical. Schemes for error correction
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and fault-tolerant quantum computing have been developed, but often require an
expensive step (such as implementing T-gates). As such, efficiently implementing
quantum algorithms, such as the time evolution step in phase estimation [11–13],
using some specific fault-tolerant quantum architecture is an active area of research.

Furthermore, though quantum computing hardware and controls are quickly improv-
ing for all potential hardware types (e.g. superconducting, ion-trapped, photonic),
much more progress is needed for the above quantum algorithms to be of any practi-
cal use. In light of these hardware limitations, there has been a push to find problems
that these “noisy, intermediate scale” quantum (NISQ) devices might be able solve,
and quantum chemistry is believed to be one potential field of study. Quantum
chemistry can roughly be split into two areas. One is to understand the electronic
structure of molecules, which involves finding the eigenstates of the electronic struc-
ture Hamiltonian. The other is to understand the dynamics of a chemical system.
Due to the exponential scaling of Hilbert space with respect to system size, solving
these problems exactly for large molecules is intractable on classical computers.
Common to many of these near-term algorithms are Trotter-Suzuki based methods
for time-evolution (which break the evolution of a complex sum of operators into a
sequence of Trotter steps each evolving only a single term in the sum).

In the context of quantum chemistry, the operators of interest are typically the
Hamiltonian or unitary coupled cluster (uCC) operator, which are first represented
in a single-particle basis of dimension # . However, depending on the basis chosen,
such as the molecular orbital and active space bases common in electronic structure
calculations, the operators are typicallywritten as sums of 1, 2, and 4-body terms, the
last of which cannot be easily implemented on near-term devices. Furthermore, in
these bases, the Hamiltonian and cluster operator contain O(#4) second-quantized
terms. This leads to at least O(#4) gate complexity for a single Trotter step [14, 15],
a formidable barrier to practical progress in near-term devices. While complexity
can be reduced using alternative bases [1, 16], such representations are not usually
as compact as the molecular orbital one (ie. a longer basis expansion is required to
represent typical physical states of interest). Thus, reducing the cost of the Trotter
step for general bases is still an important goal.

We present a scheme that allows one to rewrite these 4-body terms as 2-body terms
in rotated bases. Now that the operators are written as sums of smaller operators
acting on at most 2 qubits at a time, each term in the Trotter step can be implemented
efficiently on devices with at least linear connectivity with O(#2/2) entangling



47

gates and O(#) gate depth, using the algorithms presented in Refs. [1, 2]. A similar
decomposition was presented by Poulin et al. [17], but our decomposition allows
us to take advantage of the low-rank nature of the electronic structure Hamiltonian
that arises from spatial locality in most physically relevant chemical systems. By
performing systematic truncations of less important terms in the decomposition, one
can reduce the number of 4-body terms from O(#4) to O(#3) (or even lower to
O(#2) in the asymptotic limit of #), while maintaining chemical accuracy. Though
this is not an exponential speed up, small reductions in computational cost are always
welcome for near-term devices.

Though initially discussed for the implementation of Trotter steps, the low-rank
decomposition of these operators can be utilized in many quantum algorithms. For
example, most obviously, the exponentials of these operators can be used as initial
guesses for the state in the variational quantum eigensolver (VQE) algorithm [18–
21] and in the body of the quantum algorithm itself, such as in simulating system
dynamics or in the phase estimation algorithm [7]. Furthermore, since the initial
posting of this work on arXiv, there have been additional works evaluating the
cost reduction of the decomposition in the context of other quantum computation
algorithms such as qubitization, yielding different cost models [22, 23]. Others
have used the double-nested factorized form to reduce the cost of measurements as
well [24, 25].

3.2 Background of Related Technical Concepts
Electronic structure Hamiltonian
The Hamiltonian of a molecular system (in atomic units) is
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� −
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A8�
+

∑
8> 9

1
A8 9
+

∑
�>�

/�/�

'��
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where 8, 9 index the electrons, �, � index the nuclei, /� is the charge of the nucleus
�, <� is the mass of the nucleus �, and A or ' is the distance between two electrons
or nuclei. The first two terms correspond to the kinetic energies (of the electrons and
nuclei, respectively). The last three terms correspond to the Coulomb interactions
between an electron and nucleus, two electrons, and two nuclei, respectively.

In the Born-Oppenheimer limit, motivated by the fact that the nuclei are much more
massive than the electrons and move much more slowly, we can approximately treat
the electronic wavefunction and nuclear wavefunction as separable. For electronic
structure calculations, we are interested in solutions of the electronic part of the
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Hamiltonian given some nuclear configuration. (This approximation breaks down
when the energies of two nuclear configurations are close, which occurs at crossings
of the potential energy surface.)

The Hamiltonian of interest is now

�elec = −
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∑
8> 9

1
A8 9

, (3.2)

and we are interested in writing this in second quantized form. To do this, we
choose a complete single particle basis set of # orbitals {q8} (typically obtained
using Hartree-Fock) that can each either be occupied or unoccupied, and calculate
the 1- and 2- particle interactions from the Hamiltonian

ℎ?@ ≡ 〈q? | �elec |q@〉 (3.3)

ℎ?@AB ≡ 〈q?q@ |
1
A12
|qAqB〉 . (3.4)

Note the because of the symmetry of the Coulomb interaction, ℎ?@AB is symmetric
and therefore positive with respect to the exchanging of electron 1 and 2. The
Hamiltonian in second quantized form is

�elec =
∑
?@

ℎ?@0
†
?0@ +

∑
?@AB

ℎ?@BA0
†
?0
†
@0A0B (3.5)

where the 0†?, 0? are the fermionic creation/annihilation operators for orbital ?.

Unitary coupled cluster
Suppose that {|q8〉} is a complete basis set for single particle basis. Then, the
complete basis of an = particle state is {|q81 , q82 , ...q8=〉}. One can represent the
quantum state using Slater determinants containing the single particle orbitals along
column, for each of the < electrons. One can then use Hartree-Fock to find the
optimal {q8} such that the Slater determinant |Φ0〉 minimizes the Hamiltonian.

However, the true ground state may be a superposition of multiple Slater determi-
nants. The coupled cluster ansatz is chosen to include determinants with single and
double excitations while maintaining extensivity, and is defined as

|k〉 = exp ©«
∑
80

C80 0
†
008 +

∑
8> 9 ,0>1

C8 901 0
†
00
†
1
080 9

ª®¬ |Φ0〉 ≡ 4) |Φ0〉 (3.6)

where the 0†?, 0? are the fermionic creation/annihilation operators for orbital ?, and
the coefficients C08 and C018 9 are found such that the energy of the quantum state is
minimized.
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The unitary coupled cluster is a similar ansatz, but is defined like

|k〉 = 4−8()−)†) |Φ0〉 (3.7)

so that it is suitable for implemention on a quantum computer and can be used
as an ansatz for the variational quantum eigensolver (VQE) algorithm, where the
coefficients in ) are variationally optimized to return the ground state.

However, at second-order perturbation theory in the electron-electron interaction,
uCC amplitudes are C018 9 ∝ 〈 98 | |01〉

n0−n 9+n1−n8 , where n? are the Hartree-Fock eigenvalues
and 〈 98 | |01〉 = ℎ018 9 − ℎ01 98 is the antisymmetrized electron repulsion integral.
Antisymmetrization of the electron repulsion integral prevents from casting C onto
a supermatrix indexed by orbitals pertaining to electrons 1 and 2 separately.

Trotter step with fermionic swap network
The fermionic swap network introduced in Ref. [1] was originally designed to
implement Trotter steps of Hamiltonians of the form

� =
∑
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)?@0
†
?0@ +

∑
?

*?=? +
∑
?≠@

+?@=?=@ (3.8)

which have at most 2-body interactions. Here ?, @ index one of the # orbitals, 0†, 0
are fermionic creation and annihilation operators, and = are number operators. ) ,
*, and + are coefficients that are given.

Suppose we are interested in applying a Trotter step of the proposed Hamiltonian.
Then the 1-qubit terms are simple phase gates that need to be applied to each qubit.
The 2-qubit terms acting on qubits ? and @ can be written as

� (?, @) = 4−8+?@=?=@C4−8)?@ (0
†
?0@+0†@+0?)C . (3.9)

However, in general, ? and @ are not necessarily adjacent qubits, and most devices
are limited to nearest neighbor connectivity. But if the positions of the qubits are
swapped during the operation (using a fermionic swap gate 5 (?,@)swap ), then one can
ensure that qubits ? and @ are nearest neighbors at some point with

(#
2
)
swap oper-

ations. Thus, we modify the proposed 2-qubit gates to simultaneously implement
the two body gate and swap the qubits using

F (?, @) = � (?, @) 5 (?,@)swap =

©«
1 0 0 0
0 −8 sin()?@C) cos()?@C) 0
0 cos()?@C) −8 sin()?@C) 0
0 0 0 −4−8+?@C

ª®®®®®¬
(3.10)
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and the Trotter step of the Hamiltonian can be implemented using a quantum circuit
containing

(#
2
)
two-qubit gates parallelized into # layers, plus a single layer of #

single-qubit gates that can be applied simultaneously, as shown in Fig. 1 of Ref. [1].

By using our decomposition scheme andwriting the electronic structureHamiltonian
in a similar 2-body interaction form, one can utilize this algorithm to efficiently
implement Trotter steps of the Hamiltonian on a quantum computer.

Variational quantum eigensolver
The variational quantum eigensolver (VQE) is a hybrid classical-quantum algorithm
in which one classically optimizes a parameterized ansatz such that the expectation
value of some Hamiltonian is minimized [19]. Then, the optimal parameters define
the ground state solution of the Hamiltonian of interest. Note that there are various
extensions toVQE that allow one to search for excited states as well [26, 27]. Though
it is believed that any circuit with a polynomial number of parameters is suitable,
most works apply VQE to the unitary coupled cluster (uCC) ansatz [18, 20], which
can be written as a product of exponentiated weighted operators. The weights in
front of these operators act as the variational parameters.

These many-qubit gates are difficult to implement on a quantum computer, with an
added layer of complexity if the quantum computer is limited to nearest neighbor
connectivity. Thus, using the proposed decomposition to write the uCC ansatz
as a series of two nearest neighbor qubit operations would simplify the costs of
implementing the ansatz on a quantum computer. Furthermore, truncations in the
decomposition suggest that one should be able to reduce the number of parameters
that need to be optimized over.

Qubitization
Qubitization (or block encoding) [12], a generalization of the linear combination
of unitaries (LCU) [11, 28], is an approach which determines the evolution of the
Hamiltonian, written as a linear combination of unitaries * =

∑
9 F 9* 9 , using

quantum signal processing [29].

As shown in [22], one canwrite the electronic structureHamiltonian (in the proposed
doubly-nested factorized form) as a linear combination of ! ∼ O(#) unitaries,
where again # is the number of orbitals in the system. Naive state preparation for
the algorithm requires O(#2!) Toffoli gates, though Ref. [22] obtains a scaling of
O(

√
#2! log(#2/Y)) Toffoli gates, where Y is the target precision by incorporating
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reductions via symmetries and use of ancillas.

Quantum state measurement
Once the quantum state is prepared, one needs to make measurements in order
to extract information from the state. In general, the Hamiltonian can be written
as a sum of operators each acting on a subset of the particles in the system, and
measuring its expectation value would require measuring the expectation values of
each of the terms in the sum. However, the quantum state needs to be re-prepared
for each set of non-commuting measurements, and measuring expectation values
requires performing measurements of the same observable on the order of O(1/Y2)
times, where Y is the target precision [24, 30, 31].

One obvious way to reduce costs is to separate terms into groups of commuting
observables, so that all observables in each group can be measured simultaneously.
The number of groups has been found to scale like O(#3) for a system with #
qubits (see Ref. [24] for a thorough overview). However, the number of groupings
themselves do not accurately reflect the number of circuit repetitions required for
convergence of the expected values.

An additional complication with fermionic systems is that if the wavefunction an-
tisymmetry is not already encoded in the qubits, then the fermionic algebra needs
to be incorporated in the operators being measured, typically in the form of Jordan-
Wigner strings that may require support over all # qubits. While there is no added
complexity for measuring observables with support on a large number of qubits, the
measurements themselves are more prone to qubit measurement errors.

In Ref. [24], our low-rank decomposition method (Ref. [1]) is used to write the
Hamiltonian in the form

� = *0
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where 6?, 6?@ are coefficients determined by the model, = is the number operator,
and*ℓ are unitary operators that implement a single particle basis rotation. Without
approximation, ! = #2, but as we show in this chapter, ! ∼ O(#) is sufficient for
most chemical systems. The expectation value of the Hamiltonian is given by

〈�〉 =
∑
?

6? 〈=?〉0 +
!∑
ℓ=1

∑
?@

6
(ℓ)
?@ 〈=?=@〉ℓ . (3.12)

Thus, under this decomposition, only ! ∼ O(#) groups are needed, though an extra
linear depth circuit implementing the basis rotation is required [1]. Additionally,
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the operators have support on only one or two qubits, which helps mitigate read-out
errors. Huggins et al. also discuss how postselection can be easily incorporate for
additional error mitigation. Yen et al. extend this work by introducing a full-rank
optimization to further reduce the number of terms in the decomposition, though
determining this optimal form requires non-linear optimization [25].

3.3 Low-Rank Decomposition
The electronic structure Hamiltonian in second quantization is defined as
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#∑
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†
?0@ +

1
2
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where # is the number of spin orbitals, 0†? and 0? are fermionic creation and
annihilation operators for spin orbital q?, and the scalar coefficients ℎ?@ and ℎ?@AB
are the 1- and 2-electron integrals over the basis functions q?, which we assume to
be real.

The uCC cluster operator is defined as g = ) − )†, where ) is the standard (non-
unitary) coupled cluster (CC) operator. If one only accounts for single and double
excitations applied to a single determinant reference (which is typical for CC), the
uCCSD operator is of the form

g =
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where 8, 9 and 0, 1 index the #> occupied and #E virtual spin orbitals, respectively,
and #> + #E = # . Note that the operator is anti-Hermitian by construction, so we
work with 8g for ease of presentation.

We refer to the terms with the two creation and two annihilation operators are
considered 4-body terms, since the term acts on up to four distinct orbitals and
thus require simultaneously operating on four qubits (even though they describe the
interaction of two electrons). Both � and g contain O(#4) of these terms. As stated
earlier, our goal is to find an alternate decomposition of the sum such that it consists
only of 2-body terms, which can be done using a nested matrix factorization, a type
of tensor factorization introduced in Ref. [32]. (The coefficients of the 4-body terms
ℎ?@AB and C′?@AB can be interpreted as the elements of a 4-dimensional tensor with
each dimension of size # .)



53

We illustrate the factorization procedure using the Hamiltonian operator. First, the
creation and annihilation operators are reordered,

+ =
1
2

#∑
?@AB=1

ℎ?B,@A (0†?0B0†@0A − 0†?0AX@B) = + ′ + ( , (3.15)

and+ ′ is recast into a supermatrix indexed by orbitals (?B), (@A) involving electrons
1 and 2, respectively. Due to the commutation relations of the creation and annihi-
lation operators, + ′ obeys an eight-fold symmetry: ℎ?@AB = ℎBA@? = ℎ?@BA = ℎ@?AB =
ℎ@?BA = ℎAB@? = ℎAB?@ = ℎBA ?@. Thus, this matrix is real symmetric, and we can
write a matrix decomposition in terms of a rank-three auxiliary tensor L such that
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To perform the decomposition, we use a modified Cholesky decomposition scheme
that recursively increases !, the number of Cholesky vectors L (ℓ) included in the
sum, until the maximum error of the decomposition is within some error threshold
Y�� [33–37]. We choose to measure the error with respect to the !∞ norm. This
means that the iterativemodifiedCholesky decomposition scheme is terminated once
max?B@A |ℎ?B,@A −

∑!
ℓ=1 L

(ℓ)
?B L (ℓ)@A | < Y�� . For Y�� on the order of 10−4 to 10−6, !

scales like O(#). The computational cost of the modified Cholesky decomposition
scheme is known to scale asymptotically like O(#3) within the AO basis for a fixed
error threshold [36–38].

In contrast, for an exact decomposition, which can equivalently be obtained via
diagonalization, the sum would contain #2 terms, and the computational cost would
scale like O(#6). (Note that the positive nature of the Coulomb kernel means that
+ ′ is positive, as is needed for the Cholesky decomposition).

The next step is to decompose each auxiliary matrix L (ℓ) . Again, due to the
eight-fold symmetry of the Hamiltonian, this is also real symmetric and can be
diagonalized,

#∑
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L (ℓ)?B 0†?0B =
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_
(ℓ)
8
*
(ℓ)
B8
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where _(ℓ) , * (ℓ) are the eigenvalues and eigenvectors of L (ℓ) . At this step, we can
again make an approximation by truncating terms in the sum with corresponding
to eigenvalues less than Y�) , so that the summation only contains dℓ instead of #
terms. We choose to perform the truncation based on the !1 norm, meaning that we
use the smallest dℓ such that

∑#
9=dℓ+1 |_

(ℓ)
9
| < Y�) .



54

Combining the two eigenvalue decompositions yields the double-factorized result,
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where, defining k (ℓ)
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are number operators in a rotated basis.

The double-nested decomposition of the unitary coupled cluster (uCC) operator is
slightly more complicated due to its antisymmetry (C018 9 = C 9810 = −C108 9 = −C01 98),
and is elaborated on in the Supplementary Information of Ref. [39]. In essence, one
performs singular value decomposition (SVD) on the CC operator ) in lieu of the
Cholesky decomposition, obtaining 8g =

∑
ℓ` .

2
ℓ,`

, where .ℓ,` are normal and can
be diagonalized giving the same double-factorized form. Since the time this work
was first posted, an alternate decomposition with the same scaling, inspired by the
cluster Jastrow operator, has been investigated [40]. Other decompositions could be
considered as well [41].

3.4 Accuracy of Low-Rank Approximation
In summary, the above decomposition of the operators � and g yields a sum
consisting of ! terms, and each of those terms can be written as a sum of d! terms.
For an exact decomposition, ! = #2 and dℓ = # . In this section, we will empirically
investigate the induced error in ground state energy as a result of truncating lower
weight terms and the corresponding reductions in ! and dℓ.

Details of calculations
We investigate trends using the following sets of molecules:

• Set 1 – small molecules (CH4, H2O, CO2, NH3, H2CO, H2S, F2, BeH2,
HCl) at experimental equilibrium geometries [42], using the STO-6G, 6-
31G*, cc-pVDZ, cc-pVTZ bases. Molecules were studied with restricted
Hartree Fock (RHF) and restricted classical coupled cluster with single and
double excitations (RCCSD) on top of the RHF state. Matrix elements of the
Hamiltonian and classical RCCSD amplitudes have been computed with the
PySCF software [43].
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• Set 2 – alkane chains C=H2=+2 (for = ≤ 8) studied at experimental equilibrium
geometries [42], using the STO-6G basis. Molecules were studied with RHF,
RCCSD methods. Matrix elements of the Hamiltonian and classical RCCSD
amplitudes have been computed with the PySCF software [43].

• Set 3 – iron-sulfur clusters of nitrogenase ([2Fe-2S] (2Fe(II)), [4Fe-4S]
(2Fe(III),2Fe(II)), and the PN-cluster [8Fe-7S] (8Fe(II))). The active orbitals
of [2Fe-2S] and [4Fe-4S] complexes were prepared by a split localization of
the converged molecular orbitals at the level of BP86/TZP-DKH, while those
of the [8Fe-7S] were prepared at the level of BP86/def2-SVP. The active space
for each complex was composed of Fe 33 and S 3? of the core part and f-
bonds with ligands, which is the minimal chemically meaningful active space.
The structure of the iron-sulfur core and the numbers of active orbitals and
electrons for each complex are summarized in the diagram below. Note that
the active space employed in the present work for the PN-cluster is larger than
the active space previously used to treat the FeMoco cluster of nitrogenase,
and has the same number of transition metal atoms [44].

(a) [2Fe-2S] (30e,20o) (b) [4Fe-4S] (54e,36o) (c) [8Fe-7S] (114e,73o)

These molecules were treated with density-matrix renormalization group
(DMRG) [45, 46], using the software BLOCK that is available as a part
of PySCF. The DMRG calculations were performed for the ( = 0 states,
which are the experimentally identified ground states, with bond dimensions
8000, 4000, and 2000 for [2Fe-2S], [4Fe-4S], and the PN-cluster, respectively.
Broken-symmetry unrestricted Hartree-Fock (UHF) ("( = 0) calculations
were carried out for [2Fe-2S] and [4Fe-4S], while high-spin UHF calcula-
tions were carried out for [8Fe-7S] due to convergence issues.

Studying the first set will show the performance with respect to basis set size, while
studying the second and third sets will show performance with respect to molecule
size.
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Figure 3.1: Results of low rank decomposition for various molecular systems.
(Left) linear scaling of the number ! of vectors with basis size # , in the low-rank
approximation of �. (Middle) sublinear scaling of the average eigenvalue number
〈dℓ〉. (Right) error |�′2 − �2 | in the ground-state correlation energy from the low-
rank approximation of �, compared with chemical accuracy (horizontal black line).
Data points in the main figures comprise set 1 (small molecules with fixed size and
increasingly large basis); insets show set 2 (alkane chains with up to 8 C atoms)
and set 3 (iron-sulfur clusters of nitrogenase). Lines indicate # (left, middle) and
the chemical accuracy (right). Results are shown for different truncation thresholds
Y = Y�� = Y)� = {10−2, 10−3, 10−4} in red, green, and blue, respectively.

Electronic structure Hamiltonian truncation
We obtain the atomic orbitals and the electronic structure Hamiltonian coefficients
ℎ?@ and ℎ?@AB for various molecular systems using Hartree Fock (detailed in the
previous section). We then use coupled cluster to compute the ground state energy.

For simplicity, we chose to perform truncations on ℎ?@AB with error thresholds
Y�� = Y�) ≡ Y in atomic units. Note that for �, Y�� and Y�) have dimension
energy and square root of energy, respectively. Performing the CD truncation in the
atomic orbital basis or localized molecular orbital basis yields comparable results.

Results for different truncation thresholds are shown in Fig. 3.1. The CD rank
scales like ! ∼ O(#) when increasing the simulation basis (set 1) or molecular size
(sets 2, 3). The average ET rank, defined as 〈dℓ〉 = 1

!

∑!
ℓ=1 dℓ, is known to scale

like 〈dℓ〉 ∼ O(1) for increasing molecular size in the asymptotic limit [32, 47].
However, from our empirical results, it appears that the molecules studied here are
not large enough to reach that limit, though the scaling is sublinear. There also does
not appear to be a reduced scaling with respect to increased basis size. As expected,
the error in the ground-state correlation energy is set by Y and is largely independent
of system size.
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Figure 3.2: Same as Fig. 3.1, but for the uCC operator g, with 〈dℓ〉 averaged over `.

Unitary coupled cluster operator truncation
We use the (classically computable) traditional ground state CC amplitudes to build
the uCC operator. It is expected that the CC amplitudes will equal the actual uCC
amplitudes in the weak-coupling limit.

For the uCC operator, truncations at both decomposition steps are performed by
discarding the vectors associated with singular values smaller than Y. Again, we
refer readers to the Appendix of [39] for a detailed description of the decomposition.
Note that here, for the uCC operator, Y is dimensionless.

The decomposition of uCCoperator g showsworse scalings than for theHamiltonian.
Specifically, we find that ! ∼ O(#) scaling for increasing basis size and fixed
molecule (see set 1) but ! ∼ O(#2) for increasing molecular size, albeit with a
small coefficient (set 2). The scaling properties of dℓ,` have not previously been
studied, but from our empirical results it appears to scale like O(1) for increasing
basis size (set 1) andO(#) for increasingmolecular size (set 2). These less favorable
results can be attributed to the antisymmetry of uCC operator, which prevents the
separation of the two electrons in the 4-body term, so the vectors from the first
decomposition step will not be as sparse as those for the Hamiltonian. Again, other
decompositions that account for the antisymmetry could be considered and may
potentially yield better reductions in the scaling [40, 41].

First order correction
One can obtain a better estimate of the energy of the targeted eigenstate by using a
first order correction. In the traditional presentation of perturbation theory, we have
the Hamiltonian

� (_) = � (0) + _+ (3.20)
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Figure 3.3: Error |�′2 − �2 | for H2O (cc-pVDZ) as a function of Y = Y)� = Y�� ,
with and without perturbative correction (blue and orange points, respectively) for
CD and CD+ET truncation schemes (crosses, diamonds), measured using HF and
CC wavefunctions. The error increases with Y, and is visibly smaller with the
perturbative correction.

for some small parameter _, and we wish to find the solutions to the Schrodinger
equation

� (_)Ψ(_) = � (_)Ψ(_) (3.21)

where

Ψ(_) = Ψ(0) + _Ψ(1) + _2Ψ(2) + . . . (3.22)

� (_) = � (0) + _� (1) + _2� (2) + . . . (3.23)

We proceed by matching up powers of _. From the _0 terms, we simply arrive at
the zeroth order problem,

� (0)Ψ(0)= = �
(0)
= Ψ

(0)
= (3.24)

where the subscript = denotes the =th eigenstate.

From the _1 terms, we have an expression for a first-order correction to the energy,

�
(1)
= = 〈Ψ(0)= |+ |Ψ(0)= 〉 . (3.25)

Here, we are interested in obtaining a correction to the energy of the truncated
Hamiltonian �′, which is within Y of the original Hamiltonian �. First, using
CCSD, one can determine the ground state energy �′ and the corresponding ground
state k′0 of the approximate Hamiltonian �′. The first order correction to the energy
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is given by Eq. (3.25), where + = � − �′ and Ψ(0)= = k′0. If k
′
0 is accurate enough,

then the correlation energy (defined as �′2 = �′ − �′�� , where �′�� is the ground
state energy obtained using Hartree-Fock) with the first order correction is accurate
to O(Y2).

3.5 Quantum Resource Estimates
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Figure 3.4: Gate counts per Trotter step of the Hamiltonian (top) and uCC operator
(bottom), for Y�� = Y�) = Y(+� = 10−2, 10−3, and 10−4 (red, green, blue).
Black lines indicate power-law fits, with optimal exponents 3.06(3) and 3.2(1) (top,
bottom). Both gate counts scale as the third power of the basis size # across a wide
range of truncation thresholds, an improvement over the $ (#4) scaling assuming
no truncation.

The first-order Trotter decomposition of the exponential of the double-factorized
decomposed operator Eq. ((3.18)) can be implemented efficiently on a quantum
computer with only linear connectivity. For example, the Hamiltonian Trotter step
is

48ΔC� = 48ΔC (ℎ+()* (1)
!∏
ℓ=1

48ΔC+
(ℓ)
*̃ (ℓ) + O(ΔC)2 , (3.26)

where *̃ (ℓ) = *†(ℓ)* (ℓ+1) . Time evolution then corresponds to a series of (single-
particle) basis rotations and evolution under two-body single-particle operators
(ℎ + () and pairwise operators (+ (ℓ)).

First, let us reexamine the ℎ + ( term. The operator ℎ + ( is currently written as
a sum of two-body single-particle terms. Thus, if we define * (0) to be the single-
particle basis rotation that diagonalizes ℎ + (, then this component of the Trotter
step can be implemented by applying * (0) followed by a simultaneous application
of # single-qubit phase gates.
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Next, let us consider the implementation of the basis rotations. As written, the
single-particle basis changes * (ℓ) can be implemented using

(#
2
)
−

(#−dℓ
2

)
Givens

rotations [48]. (Details are given later at the end of this section.) These rotations can
be implemented efficiently using two-qubit gates on a linearly connected architec-
ture [1, 2]. If one takes (/ spin symmetry into account, then one can perform basis
rotations separately for spin-up and spin-down orbitals, requiring 2

(#/2
2

)
- 2

((#−dℓ )/2
2

)
Givens rotations and a circuit depth (on a linear architecture) of (# + dℓ)/2.

Lastly, using a fermionic swap network, the component corresponding to evolution
of the pairwise operator + (ℓ) can be implemented in

(dℓ
2
)
linear nearest-neighbor

two-qubit gates, with a two-qubit gate depth of exactly dℓ [1].

Altogether, the gate count for implementing the full Trotterized exponentiated op-
erator is

(#
2
)
+∑

ℓ`

[ (#
2
)
−

(#−dℓ,`
2

) ]
+

(dℓ,`
2

)
for both the Hamiltonian � and the uCC

cluster operator g. Note that the sum over ℓ starts from 1 and the initial basis rotation
is written explicitly. For �, the indices ` are dummy indices and can be ignored.

To realize this algorithm on a near-term device, where the critical cost model is the
number of two-qubit gates, one can implement the gates directly in hardware [49],
which requires

∑!
ℓ=1

[ #dℓ
4 +

d2
ℓ

4 − dℓ
]
gates on a linear nearest neighbor architecture,

with circuit depth
∑!
ℓ=1

#
2 +

3dℓ
2 . If decomposing into a standard two-qubit gate set

(e.g. CZ or CNOT), the gate count would be three times the above count.

From our analysis of the decomposition steps, we expect the TrotterizedHamiltonian
exponential to have a gate count of #60C4B ∼ O(#3) for fixed molecular size and
increasing basis size. (We expect to see O(#2) scaling for asymptotically large
molecular sizes, but none of the systems studied here reach that limit.) Furthermore,
the divergence from linear scaling we saw earlier with increasing alkane chain length
in 〈ℓ〉 is no longer as visible due to tails in the distribution in dℓ). We expect the
Trotterized uCC exponential to have a gate count of #60C4B ∼ O(#4) for increasing
molecular size and O(#3) with increasing basis size. These scalings are verified in
Fig. 3.4, which plots the two-body gate counts for Trotterized�′ and g′ expontentials
with different truncation thresholds.

For a system size of about 50 qubits (believed to roughly be the quantum computer
size at which quantum supremacy can be demonstrated [50]), a single Trotter step
can be implemented in roughly 4,000 layers of parallel gates, assuming a linear
architecture.
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Partial basis rotation
Here we will walk through implementing a partial basis rotation, which can be
implemented using

(#
2
)
−

(#−dℓ
2

)
Givens rotations.

Recall that the single particle basis rotation* (ℓ) is defined such that

0̃†? =
#∑
@=1

*
(ℓ)
?@ 0

†
@ 0̃? =

#∑
@=1

(
*
(ℓ)
?@

)∗
0@ . (3.27)

According to theThouless theorem [51], one can performbasis rotations of fermionic
operators on quantum computers by applying a series of rotations that act on two
rows (?,@) of * (ℓ) at a time. These rotations are determined by the angles of the
Givens rotations A?@ (\?@) used to perform a QR decomposition of * (ℓ) . Because
* (ℓ) is unitary, the rotations will yield a diagonal ' where the diagonal elements
are of magnitude 1, and the QR decomposition only requires performing rotations
on the

(#
2
)
elements below the diagonal. The number of two-body gates used to

build the unitary operator is the same as the number of Givens rotations, and can be
performed in linear depth on a device with linear connectivity when performed in a
particular order [1]. (It is straightforward to extend this to basis rotations of bosonic
systems. In fact, the necessary rotations to build the unitary operator would more
closely reflect the Given’s rotations.)

Here, we are interested in performing an approximation basis transformation us-
ing O(dℓ#) Givens rotations, where dℓ ≤ # and is the number of eigenvalues
retained after making the eigenvalue truncation low-rank approximation. Consider
the eigenvalue decomposition of the auxiliary matrix used to obtain Eq. (3.17),

#∑
@=1
L (ℓ)?@* (ℓ)@8 = _

(ℓ)
8
*
(ℓ)
?8

, (3.28)

where L (ℓ) is the ℓ-th auxiliary vector reshaped into an # × # square matrix, and
_(ℓ) is the diagonal matrix of the corresponding eigenvalues ordered by decreasing
magnitude.

In the eigenvalue truncation of L (ℓ) , we only use the dℓ largest eigenvalues or,
equivalently, the eigenvectors associated with the first dℓ columns of * (ℓ) . This
means the sizes of the rotation matrices are reduced, and the eigenvalue equation
becomes (

*̄ (ℓ)
)†
L (ℓ)*̄ (ℓ) = _̄(ℓ)

8
, (3.29)
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where *̄ and _̄ are matrices comprising the first dℓ columns of * and diagonal
elements of _, respectively. If we perform a QR decomposition of *̄ (ℓ) , the top left
dℓ × dℓ block is diagonal and the lower (# − dℓ) rows are zero. Since *̄ (ℓ) is only
an # × dℓ matrix, fewer Givens rotations are needed to perform the decomposition
than in the full case. Specifically, it at worst requires

(#
2
)
−

(#−dℓ
2

)
rotations. Thus,

as stated in the earlier discussion, the quantum circuit needed to implement rotation
also contains that same number of gates in d(ℓ) layers.

In the quantum algorithm proposed in the main text, one rotates from the basis of
one Cholesky vector to another. This rotation, explicitly given by *†(ℓ)* (ℓ+1) , can
be reduced into a single operation, corresponding to a d(ℓ) × d(ℓ+1) matrix. Using
the same Givens rotation decomposition as above, we find that the costs are found
by making the substitutions d(ℓ) → d(ℓ+1) and # → dℓ.

3.6 Discussion
In summary, we introduced a nested decomposition scheme that allows one to repre-
sent two-electron operators written as sums of 1-, 2-, and 4-body terms, such as the
electronic structure Hamiltonian and uCC operator, instead as sums of 2-body terms
with unitary basis rotations. This alternate form is optimized for implementation
on a quantum computer. Furthermore, the decomposition scheme allows one to
systematically truncate unimportant terms in the Hamiltonian. Due to the innate
sparsity in the operators for physical systems that exhibit spatial locality, the number
of terms in the sum can be reduced from O(#4) to O(#3). This in turn reduces the
total gate count required to implement the Trotterized operator exponential, as well
as the number of measurements required when measuring the expected value of the
operator.

The proposed decomposition scheme performs slightly worse for the uCC operator
due to its antisymmetry. One could potentially investigate alternate decomposition
schemes that account for antisymmetry more efficiently [41]. For example, one
recent work implements the cluster-Jastrow ansatz, which is constructed differently
but has the same double-factorized form [40].

Furthermore, while the work was originally formulated in the context of implement-
ing quantum chemistry algorithms on NISQ devices, the advantages of performing
the low-rank approximation of the operators will provide benefits for fault-tolerant
devices [22–25], and also classical methods such as in quantum Monte Carlo [47].
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C h a p t e r 4

TIME EVOLUTION USING LOW-RANK INFLUENCE
FUNCTIONAL FOR GENERAL QUANTUM SYSTEMS

Obtaining long-time dynamics of a quantum system is computationally intractable
due to the exponential scaling of Hilbert space with respect to system size. For
example, while tensor networks (TNs) are a powerful tool for physics simulations,
traditional time evolution algorithms, which involve directly computing the state
at each time, often encounter issues because the entanglement of the state grows
exponentially and the state can no longer be efficiently represented using a TN.
Fortunately, in many cases, one is most interested in the dynamics of a small subset
of the full system, and can reframe the original Hamiltonian as a system and bath
problem. In this chapter, we introduce an alternative tensor network contraction
scheme to compute long-time dynamics for such systems, and present results for
single-site dynamics of general 1-D systems.

Specifically, we choose to contract and compress the time evolution TN in the direc-
tion of the spatial axis, such that the dynamics of the bath sites are contracted and
compressed together. We show that this iterative contraction scheme is equivalent
to computing a generalized influence functional, and can be used to determine the
general quantum dynamics of a subsystem. We investigate its approximability in
terms of the bond dimensions and time-like entanglement in the tensor network
description. We study two numerical models, the spin-boson model and a model
of interacting hard-core bosons in a 1D harmonic trap. We find that the influence
functional and the intermediates involved in its construction can be efficiently ap-
proximated by low bond dimension tensor networks in certain dynamical regimes,
which allows the quantum dynamics to be accurately computed for longer times than
with direct time evolution methods. However, as one iteratively integrates out the
bath, the correlations in the influence functional can first increase before decreasing,
indicating that the final compressibility of the influence functional is achieved via
non-trivial cancellation.

The content of this chapter is published as

E. Ye and G. K.-L. Chan. “Constructing tensor network influence functionals for
general quantum dynamics,” arXiv preprint quant-ph/2101.05466 (2021).
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An introduction to tensor networks is included in Appendix A.

4.1 Introduction
While computing the time evolution of a quantum state can be computationally
intractable, particularly in the case of a quench where the initial state is far from
an eigenstate of the Hamiltonian of interest, one typically is interested in a small
fraction of the information contained in the state. For example, one might only be
interested in the dynamics of a small subset of sites, such as in the case of a small
quantum system coupled to a large bath. The small systems are typically referred
to as open quantum systems, and the system and bath together can often described
using impurity models. We argue that any observable with support on a small subset
of qubits can be interpreted as such, though there might be no distinction between
system and bath in the definition of the Hamiltonian. In this chapter, we present
tensor network methods to compute long-time dynamics of single-site observables
of general 1-D quantum systems, though the methodology can easily be extended to
more general systems and observables.

Perspective from open quantum system dynamics
Many chemical and physical systems, such as a two-level system coupled to vibra-
tional modes of a molecule or a radiation field, can be described as open quantum
systems coupled to large baths. So understanding and modeling the dynamics of
such systems has always been an active area of research, and there exist a wide
variety of time evolution methods for open quantum systems. The key idea behind
all such methods is that if one is able to determine the dynamics of the bath and its
influence on the subsystem, then the original dynamics problem is now reduced to
obtaining the dynamics of the subsystem.

Open quantum system time evolution methods can largely be classified into three
groups: those based on direct time evolution of the the full system, those based on
the quantum master equation, and those based on the influence functional.

Numerically exact direct time evolution methods include exact diagonalization;
tensor network methods such as time evolution block decimation (TEBD) [1–3],
time-dependent density matrix renormalization group (TD-DMRG) [4, 5] and time-
dependent variational principle (TDVP) time evolution [6, 7]; and (multi-layer)
multi-configuration time-dependent Hartree (ML-MCTDH) theory (though it can
also be viewed as a tensor network method). However, these methods may fail at
long simulation times if the entanglement of the state becomes too large. Quantum
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Monte Carlo (qMC) can also be used to perform direct time evolution, though it
suffers from the dynamical sign problem [8–12]. However, a qMC-based inchworm
method, in which information from exact Keldysh-contour propagators for short
times are reused iteratively to extend the propagator to longer times [13–15], was
shown to be less susceptible to the sign problem. There also exist approximate direct
time evolution methods such as self-consistent hybrid quantum-classical methods,
which treat the subsystem exactly and the bath classically [16–18].

The Nakajima-Zwanzig-Mori (NZM) master equation [19, 20] provides the exact
solution to the dynamics of the subsystem, and the information of the bath dynamics
and its influence of the dynamics are contained in a memory kernel. However, the
cost of computing the memory kernel without approximation is comparable to deter-
mining the dynamics of the full system. Two types of approximations can be made.
First is to compute the kernel using approximate methods. Second is to assume that
the memory kernel has some particular structure, such as a finite lifetime. In the
most extreme approximation, one would assume Markovian dynamics, in which the
memory kernel has no lifetime and the dynamics are completely determined by the
current state. This type of dynamics are given by the Lindblad equation [21, 22]
and the Bloch-Redfield master equation, which is the second-order expansion of the
NZM equation with respect to the interaction Hamiltonian. However, it is known
that Markovian dynamics are only sufficient for simulating a limited number of sys-
tems, such as those with weak system-bath coupling. The spin-boson model, which
models a dissipative two-level system and aptly describes many chemical systems, is
a widely cited example of a physically relevant system that exhibits non-Markovian
dynamics [23–25]. Non-Markovian approximations of the NZM equation are still
an active area of research. For example, some early methods bridged the NZM and
Lindblad equations by incorporating an exponentially decaying memory kernel or
by expanding the kernel perturbatively [26–28]. In contrast, the Generalized Quan-
tum Master Equation method modifies the NZM equation by rewriting the original
kernel as a series of integrals without any projectors, so that it can be computed
from a variety of time evolution (even semiclassical) methods [29–33]. However, the
kernels are prone to numerical instabilities, and they must be truncated after some
finite time. Another idea is to write the NZM equation in a time-convolutionless
form that contains no convolution integral, but instead relies on time-dependent op-
erators to capture non-Markovian dynamics [34–40]. This method requires taking
an inverse of a superoperator, which is done perturbatively. A similar concept is the
non-Markovian transfer tensor method, where the transfer tensors are learned from
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short-time trajectories [41, 42]. These works will not be discussed in detail.

Influence functionals [43] (IFs) represent the dynamics of an arbitrary bath and its
interactions with the subsystem [43], and can be viewed as a reweighting of the sub-
system path integral. However, the cost of computing the IF without approximation
is also comparable to determining the dynamics of the full system and the size of the
IF scales exponentially with the number of time steps. Thus it is not usually possible
to use the IF method without additional approximations. Furthermore, most work
involving IFs has been limited to harmonic baths with linear coupling, for which an
analytical form has been derived [44]. This analytical expression takes the form of
the Boltzmann weight of a complex valued Hamiltonian defined in the time direction
with pairwise interactions between time points [44, 45]. For many physical bath
spectral densities, it is natural to assume that the pairwise time interaction is short-
ranged in time, corresponding to a finite “memory” in the influence of the bath. For
example, in the quasi-adiabatic propagator path integral (QUAPI) method [46], one
approximates the analytical IF by only including terms acting on time steps within
a finite time window. The hierarchical equation of motion (HEOM) method also
utilizes the analytical solution of the harmonic bath IF, though the approximation
appears in the number of hierarchies used [47–50].

In summary, there exist a variety of time evolution methods for open quantum
systems that rely on simplifying the computation of the dynamics of the bath (using
classical, semiclassical, or perturbative methods) to reduce computational costs.

Perspective from tensor network time evolution
The time-evolved state can be explicitly represented as a TNwith an extra dimension
representing the time axis. Similarly, one canwrite aTNdescribing themeasurement
of an observable for a time-evolved state in a similar fashion by also including the
complex conjugate of the state. This network has no dangling (uncontracted) bonds,
and thus returns a scalar value when all of the tensors are contracted together.
Suppose the TN is written such that the time axis is vertically oriented. Then,
traditional time evolution corresponds to contracting the network in an up-down
fashion. However, there is no particular reason as to why the contraction must be
done in that order.

This idea is first touched upon by Bañuls et al, though they limited themselves to 1-D
infinite translationally invariant systems with nearest neighbor interactions [51–53].
The time evolution TN now looks like a 1+1 TN, and because of the translational
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invariance, all of the columns are identical. By contracting the columns iteratively,
assuming some random initial boundary condition, one will obtain the left or right
dominant eigenvector of the column, and one can use it to represent the contributions
of all of the other sites to the left or right of the sites of interest.

Later in the chapter, we will show that contraction and compression of the columns
of the time evolution TN (ie. contraction in the direction of the spatial axis) is
directly related to the influence functional.

Time locality
Time locality is the idea that a quantum system’s behavior in time is more dependent
on its recent history rather than its state from a long time ago. One easy example of
this is thermalization–regardless of the initial state, given enough time, the system
thermalizes to the same thermal state. Thus, it feels natural to assume that the
dynamics for large baths that dissipate information quickly are time-local. If the
system does not thermalize and instead exhibits localization, at this point it is not
clear if time locality is still obeyed and is an interesting question worthy of future
investigation.

Time locality appears to be correlated to the complexity of computing the dynamics
of an open quantum system. For example, a completely time local system would
obey Markovian dynamics, which we know is easy to compute via the Lindblad
equation. In the context of the NZM equation, more time-local dynamics would
correspond to memory kernels with a shorter lifetime. In the context of the IFs, one
might guess that the time-time correlations of the IF would be larger for shorter time
ranges, and that lower weight longer-time correlations can be dropped.

Thus, the assumption of limited memory allows one to remove the exponential
growth of cost of the quantum dynamics with simulation time, making long time-
scale quantum dynamical simulations possible. For example, consider the analytical
expression of the IF for harmonic baths with linear coupling, which takes the form of
the Boltzmann weight of a complex valued Hamiltonian defined in the time direction
with pairwise interactions between time points [44, 45]. A finite “memory” in the
influence of the bath would mean that pairwise time interaction is short-ranged in
time, and motivates approximating the analytical IF by only including terms acting
on time steps within a finite time window, as done in QUAPI [46]. Similarly, the
approximations made in the methods discussed above (and their extensions) can be
motivated by time-locality [13, 14, 29, 30, 33, 41, 42, 46, 54–61].
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One idea that has recently been gaining traction is to represent the IF as a matrix
product state (MPS), a 1-D tensor network, along the time axis (although the idea
is not necessarily presented in the language of IFs). Matrix product states are
known to efficiently encode short-range correlations [62], and thus are a natural
finite-memory ansatz for the IF. For example, recent works include the construction
of the IF (or IF-like objects, such as the auxiliary density operator as defined in
QUAPI, the process tensor, or the timeline reservoir network) for translationally
invariant systems [63], harmonic baths with linear coupling utilizing the analytical
solution [57, 64], and other systems with star geometries [65, 66]. Some works
also discuss determining the IF using tomography or machine learning [67, 68].
However, none consider computing IFs for arbitrary 1-D quantum systems, which
is discussed in this chapter.

Proposed tensor network influence functional algorithm
We are interested in using tensor networks and influence functionals to compute
the dynamics of a general quantum subsystem. Such a subsystem may arise as
part of a larger interacting problem (in which case, the subsystem may not be
different from other parts of the system) or it may arise from a system-bath model.
In either case, the couplings cannot be assumed to be linear and the bath cannot
be assumed to be harmonic, and thus the analytical form of the IF is not known.
However, the IF is simply a particular integral of the space-time dynamics that can
be obtained numerically. To do this, we can use a tensor network description of the
space-time dynamics. For a 1-dimensional representation of the system and bath,
the tensor network is thus defined in 1+1 dimensions, and the IF corresponds to
a contraction of the network to yield a final matrix product state IF defined along
the time direction. Unlike the matrices appearing in a matrix decomposition of
the path integral only along the spatial direction (for example, as occurring in the
modular path integral procedure [69–73]) or along the time direction, the tensors in
the space-time tensor network do not have an exponential dependence on system size
or time. However, to avoid exponential computational cost, the contraction must be
performed approximately. The proposed approximate tensor network contraction
procedure is similar to that presented by Banuls et al. [51, 53] and Lerose et al. [63],
assuming a translationally invariant infinite problem. However, we will describe
a general procedure to construct the IF without such assumptions and explore the
numerical feasibility of doing so to compute quantum dynamics in different regimes
beyond linear coupling to quadratic baths.
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The chapter is organized as follows. We first translate the IF into a space-time tensor
network language and describe an iterative algorithm to compute it. We then inves-
tigate the compressibility of the IF and its ability to produce long-time dynamics,
first for the canonical spin-boson model where the analytical IF is known, and then
an interacting hard-core boson model where there is no analytical expression, which
corresponds to the case of general quantum dynamics. We analyze the time-like
entanglement both in the IF itself as well as the intermediates that arise as the bath
is numerically integrated out. We end with a brief discussion of the implications of
this work for future studies.

4.2 Theory
Definition of the influence functional
To introduce notation, we first recall the definition of the influence functional (IF)
[43]. The influence functional describes how the path integral of a subsystem is
reweighted, under the influence of dynamical coupling to a bath. To obtain an
explicit form, we define a full system as composed of the subsystem of interest and
the coupled bath. At time ) , we denote the subsystem density matrix by dB (B) ),
where B) is a basis for the density matrix, and the bath density matrix is analogously
written as d1 (1) ). The basis of the full system is spanned by the product space
{B} ⊗ {1}. The evolution of the density matrix is given by a linear operator, the
Liouville operator !, which we partition as ! = !B + !1B where !B contains the
component operating only on the subsystem and !1B contains the component on
the bath and interactions between the subsystem and bath. If we further assume
the system dynamics obeys Hamiltonian evolution, then the Liouville action can be
written as ! · = [�, ·].

Formally, dB (B) ) is obtained by time evolving the entire system and tracing out the
bath degrees of freedom. The path integral expression, assuming a second-order
Trotter decomposition of the time evolution operator into # timesteps of length n ,
is

dB (B) ) Tr1)

[ ∑
BC#−1

∑
1C#−1

· · ·
∑
BC0

∑
1C0

〈〈B) | 4−
8
2 !Bn4−8!1Bn4−8!Bn |BC#−1 , 1C#−1〉〉 ×

〈〈BC#−1 , 1C#−1 | 4−8!1Bn4−8!Bn |BC#−2 , 1C#−2〉〉 × . . .

× 〈〈BC1 , 1C1 | 4−8!1Bn4−
8
2 !Bn |BC0 , 1C0〉〉 × 〈〈BC0 , 1C0 |d(BC0 , 1C0))〉〉

]
(4.1)
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where d(BC0 , 1C0) is the initial state of the system, and the double bra/ket notation
indicates we are working in Liouville space, with the density matrix being a vec-
tor in this space. For simplicity, we assume there are no correlations between the
subsystem and bath initially such that |d(BC0 , 1C0)〉〉 = |dB (BC0)〉〉 |d1 (1C0)〉〉. Further-
more, !1B is typically assumed to be diagonal in the basis {B} (we lift both these
restrictions below). Then Eq. (4.1) becomes

dB (B) ) =
∑
BC#−1

· · ·
∑
BC0

〈〈B) | 4−
8
2 !Bn |BC# 〉〉 × 〈〈BC# | 4−8!Bn |BC#−1〉〉 × . . .

× 〈〈BC1 | 4−
8
2 !Bn |BC0〉〉 〈〈BC0 |dB (BC0)〉〉 × � (BC1 , BC2 , ..., BC# ) (4.2)

where � (BC1 , BC2 , ..., BC# ) is the influence functional

� (. . .) = Tr1)
[
4−8!1B (BC# )n . . . 4−8!1B (BC1 )n |d1 (1C0)〉〉

]
(4.3)

with !1B (B) = 〈〈B |!1B |B〉〉. The IF assigns a complex weight to each configuration
of the system path integral. Consequently, the storage of the IF grows exponentially
with number of time steps # .

Generalized influence functional in tensor network language
Influence functional structure

Translating Eq. (4.1) and Eq. (4.2) into the tensor network language is straightfor-
ward, and is shown in diagrams Fig. 4.1(a) and (b), respectively. The time evolution
operators of the system and system-bath dynamics respectively appear as boxes with
two and four legs in Fig. 4.1(a), with the legs labelled by the bra and ket basis
states. The elements in the tensors are 〈〈BC |4−8!Bn |BC ′〉〉 and 〈〈BC , 1C |4−8!1Bn |BC ′, 1C ′〉〉,
respectively. In the case that !1B is diagonal with respect to the subsystem ba-
sis states {B}, then the elements of the system-bath time evolution operator are
〈〈BC , 1C |4−8!1Bn |BC , 1C ′〉〉 and can be depicted as a box with three legs labelled by
BC , 1C , and 1C ′, as in Fig. 4.1(b). The final trace operation over the bath degrees of
freedom at the last time step can be written as a vector that is contracted with the
corresponding leg of the time evolution operator tensor.

The influence functional element � (BC1 , BC2 , . . . , BC# ) is the object within the blue
rectangle of Fig. 4.1(b), obtained after performing tensor contractions over all bath
tensors as denoted by the connected lines. Within this diagrammatic picture it is easy
to depict the generalization of the influence functional to a correlated initial state.
In this case, the dotted line indicates a correlated initial state with entanglement
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Figure 4.1: Subsystem dynamics and the influence functional. (a) Time evolution
of d(BC0) =

∑
U dB,U (BC0) ⊗ d1,U (BC0) in Liouville space with second order Trotter

decomposition between system and interaction dynamics. (b) The same as (a) but
assuming !1B is diagonal with respect to subsystem basis. The boxed regions are
the generalized and traditional definitions of the influence functional, respectively.
(c) Measurement of the time-correlation 〈$̂2(C1) $̂1(C0)〉d. (d) Matrix product state
representation of influence functional. The labels {BC<} and {1C<} index the system
and bath states at time step <, respectively. The labels {8<} index the virtual bonds.
Lines that connect two tensors (blocks) represent tensor contraction over the labeled
indices.

between the subsystem and bath,

d(BC0 , 1C0) =
∑
U

dBU (BC0)d1U (1C0) (4.4)

and the influence functional is definedwith an additional index, � (BC1 , BC2 , . . . , BC# ;U).
Similarly, if !1B cannot be diagonalized in the subsystembasis {B} thenwe can gener-
alize the influence functional to contain two subsystem indices at each intermediate
time, � (BC1BC ′1 , BC2BC ′2 , . . . , BC# BC ′# ), and it is the object within the blue rectangle of
Fig. 4.1(a). Given the influence functional, arbitrary time-correlation functions can
be computed as shown in Fig. 4.1(c).

Because the influence functional has a one-dimensional structure along the time
axis, it is natural to rewrite it as a matrix product state of # tensors (see Fig. 4.1(c)),
i.e.

� (BC1 , BC2 , . . . , BC# ) =
∑
{8}
�
(1)
81
(BC1)�

(2)
81,82
(BC2) . . . �

(#)
8#−1
(BC# ) (4.5)
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where �(BC) denotes a matrix of dimension � × � for each element of the basis BC ,
except for �(1) (BC1) and �(#) (BC# ) which are � dimensional row and column vectors
respectively. In MPS language, � is referred to as the virtual bond dimension.
Although any IF can be represented as a MPS for sufficiently large �, the MPS
of small bond dimension naturally capture sums of exponentially decaying time-
correlations along the time axis. The key system-specific questions to understand are
thus (i) is the IF itself representable by anMPS of low bond dimension, in physically
relevant dynamical and interaction regimes, and (ii) can the IF be constructed with
manageable cost in those regimes. It is important to note that an affirmative answer
to (i) does not imply an affirmative answer to (ii).

Space-time tensor network representation

To define an approximate procedure to construct the influence functional for complex
bath dynamics, we first write down a space-time representation of the full system
dynamics. We first assume that the bath Hilbert space is a product space over  
modes,

{1} = {11} ⊗ {11} ⊗ . . . ⊗ {1 } . (4.6)

We can then formally express the system density matrix at any time as a matrix
product state

d(BC , 1C) =
∑
{8}
�
(0)
80
(BC)� (1)80,81 (1

1) . . . � ( )
8 −1
(1 ) (4.7)

with a bond dimension denoted �d.

Similarly, theLiouville evolution operator can bewritten as amatrix product operator

〈〈BC , 1C |4−8!1Bn |BC ′, 1C ′〉〉 =∑
{8}
"
(0)
80
(BC , BC ′)" (1)80,81 (1

1
C , 1

1
C ′) . . . "

( )
8 −1
(1 C , 1 C ′ ) (4.8)

and has a bond dimension of �! . Note that since the Liouville operator is assumed
time-independent, �! is fixed. At last the time step, the bath degrees of freedom
are traced out so the bath sites are now in MPS form,

〈〈BC# | Tr1)
[
4−8!1Bn

]
| BC ′

#
, 1C#−1〉〉 =∑

{8}
"
(0)
80
(BC# , B′C# )"̃

(1)
80,81
(11
C#−1) . . . "̃

( )
8 −1
(1 C#−1) (4.9)
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(a) time evolution TN
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(b) influence functional TN
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BC′2
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BC′

#

Figure 4.2: Space-time tensor network representation of (a) time evolution and (b)
the influence functional. The system coupled to five bath sites is represented as a 1D
MPS (row of circles), and time evolution is performed using second order Trotter
decomposition between the system and interaction dynamics. The diagrams contain
only two time steps. The semicircles represent the trace operation, and the trace
over all bath sites can be written as a MPS of bond dimension 1.

where "̃ = Tr1) (") with " as defined in Eq. (4.8).

If the Hamiltonian consists of only nearest neighbor interactions, one can obtain
the operator using a Trotter-Suzuki decomposition of nearest neighbour gates and
then directly map them onto a matrix product operator. Otherwise, for more general
interactions one can use a 4th-order Runge-Kutta expansion [74]. In this case, the
matrix product operator can have large bond dimension, but can be compressed by
allowing for truncation errors of O(n5). In the cases studied here, the subsystem is
small enough such that 4−8!Bn can be obtained exactly.

The full time evolution of the system with  bath modes and # time steps thus
corresponds to the two-dimensional tensor network diagram shown in Fig. 4.2(a).
Correspondingly, the space-time representation of the influence functional is shown
in Fig. 4.2(b).

Transverse contraction scheme

The most common way to contract a 2D space-time tensor network is from bottom
to top, i.e. in the direction of increasing time. [1–6, 75, 76]. We refer to this
as direct time evolution. For example, contracting the network in Fig. 4.2(a) row
by row yields the system density matrix at each time step as an MPS. The cost of
contracting two rows is O( �2

!
�2
d3

2
d) where 3d is the dimension of the density

matrices represented at each MPS site, and �d is the bond dimension of the density
matrix MPS. For exact time evolution �d grows by a factor of �! at each time step.
This means that in the worst case, �d grows exponentially with time.
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However, if the time-correlations in the influence functional decay with long time,
then this implies that the influence functional ultimately can be represented by a
matrix product with low bond dimension along the time axis. This suggests that
a more efficient contraction strategy is to contract column wise (in the transverse
direction to time). The cost of contracting columns together in the process of
construct the final influence functional is O(#�2

!
�2
�
32
d) where � � is the bond

dimension of the column bath MPS (defined along the time direction). For exact
contraction, � � will grow by 3d at each contraction step and thus in the worst
case scales exponentially with  . But, it need not have a dependence on the total
simulation time.

In practice, due to the exponential growth of the bond dimension, exact contraction
of the 2D tensor network (in either direction) is often too expensive. In Banuls et
al [51, 53], the explicit transverse contraction of the 2D tensor network was avoided
by assuming that the system is infinite and translationally invariant, in which case
the result of the infinite contraction of columns is proportional to the maximal
eigenvector of the column transfer operator.

Alternatively, one may use standard matrix product state techniques to compress
the intermediates that arise during the contraction to restrict bond dimensions �d

or � � to some constant value [1, 3, 75]. In this case, the cost of the algorithm is
dominated by the cost of the MPS compression (which requires performing a series
of singular value decompositions), and scales like O( �3

d�
3
!
3d) for the direct time

evolution case (upward contraction by row), and O(#�3
�
33
d�!) for the IF time evo-

lution procedure (sideways contraction by column). In this paper, we use such an
approximate transverse contraction scheme (compressing to a fixed bond dimension
of the contraction intermediates) to compute the IF (Fig. 4.2(b)) for systems with
arbitrary baths. The algorithm is to iteratively contract and compress the columns
from the edges of the bath inwards to the sites connected to the subsystem (Fig. 4.3).
Assuming the subsystem is defined as the leftmost site, we start from the rightmost
boundary column, and then the column is absorbed leftward tomake a new boundary
column, which is compressed using standard MPS compression to a pre-specified
maximum bond dimension � � . This is the standard "boundary contraction" algo-
rithm of 2D tensor networks [77]. Key to the success of the algorithm and the
quality of the compression is the choice in gauge (a redundant degree of freedom in
all tensor networks). We choose the gauge as shown in Fig. 4.3.. In the case where
the bath extends both to the left and right of the site of interest, we compute the IFs
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initialize

→

contract + canonicalize

→

compress

83

8D8;

=

I

Figure 4.3: Iteration of transverse contraction scheme to compute IF tensor network.
The time evolution operators 4−8!1Bn at each time step are the rows of the grid and
are each represented as an MPO, and the subsystem of interest is at the left-most
site. Before contraction, we first canonicalize each row into left canonical form
as indicated by the right pointing triangles along the rows. The rightmost two
columns are then contracted and compressed to fixed bond dimension � � using the
standard MPS compression algorithm, where the column is first converted into a
canonical form (here, top canonical form) and then compressed by singular value
decomposition in the reverse direction (leaving it in bottom canonical form). The
canonical form implies that the tensors satisfy an isometric condition (see diagram
on the right); e.g. the right pointing arrow implies contraction of a tensor with its
complex conjugate over the left, up, and down indices yields the identity matrix.
The procedure is repeated until all columns have been contracted.

corresponding to the left and right bath sites separately. This contraction scheme
was implemented within the Quimb tensor network library [78].

For purposes of comparison, we will also present reference dynamics generated by
standard MPS time evolution (ie. contracting the space-time tensor network in the
usual time direction) [1, 74, 75, 79]. Because the underlying full system dynamics
is governed by Hamiltonian evolution in the problems that we study, we have the
option to apply 4−8�n as a commutator to the square root of the density matrix
([4−8�n d1/2] [d1/2†48�n ]) or via 4−8!n directly. We refer to the former as Hilbert
time evolution (HTE) and the latter as Liouville time evolution (LTE). In HTE,
the compressed tensor network dynamics is carried out for the pseudowavefunction
k = 4−8�n d1/2 [80–82]. HTE has the advantage that the compressed density matrix
is always positive definite, although correlations between the bra and ket sides of
the density matrix are less compressible. In existing literature, this is sometimes
referred to as purification-based time evolution. In the case that d is a pure state,
this method is equivalent to traditional MPS Hilbert space time evolution.
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Figure 4.4: Tensor network diagrams depicting the contraction and compression of
an MPO-MPS product. (a) The MPO and MPS columns to be contracted together.
(b) The resulting MPS after exactly contracting the network along the horizontal
bonds indexed by {8}. We use a double line to represent the merging of the two
original vertical lines, as in Eq. (4.15). (c) The new MPS put into right canonical
form. (d) The MPS is compressed to a smaller bond dimension starting from the
left-most tensor and moving to the right, and the final MPS is now in left canonical
form. The double line is reduced to a single line to signify the size reduction of the
large vertical bonds down to the desired bond dimension.

Explicit description of transverse MPO-MPS contraction algorithm

We describe a single step of the transverse contraction procedure, which in essence
is performing an MPO-MPS contraction and then compressing the resulting MPS
to the desired bond dimension �, described in detail in Ref. [75]. We assume that
all tensors have been prepared in the appropriate gauge (discussed later) as shown
in Fig. 4.3. This algorithm is also the standard boundary contraction algorithm for
2D tensor networks, as described in Ref. [77].

For simplicity, consider the influence functional tensor network for  bath sites, as
discussed in the main text. We start with the farthest boundary column MPS (the
column for the  th bath site) which is given by

% (80, ..., 8# ) =
∑
{0}

�
(0)
00 (80)�

(1)
00,01 (81) . . . �

(#)
0#−1 (8# ) (4.10)

with

�
(0)
0 (8) = � ( )8

(0) (4.11a)

�
(=)
0,0′ (8) = "

( )
8
(0′, 0) for = = 1, ..., # − 1 (4.11b)

�
(#)
0 (8) = "̃ ( )8

(0) (4.11c)
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where� ( ) and" ( ) are the right-most tensors of the densitymatrixMPS (Eq. (4.7))
and Liouville evolution operator (Eq. (4.8)), respectively, and "̃ ( ) denotes the
Liouville evolution operator with traced out bath degrees of freedom.

The next column can be interpreted as an MPO, given by

% −1( 90, ..., 9# ; 80, ..., 8# )

=
∑
{1}

�
(0)
10
( 90, 80) �(1)10,11

( 91, 81) . . . �(#)1#−1
( 9# , 8# ) . (4.12)

with

�
(0)
1
( 9 , 8) = � ( −1)

9 ,8
(1) (4.13a)

�
(=)
1,1′ ( 9 , 8) = "

( −1)
9 ,8

(1′, 1) for = = 1, ..., # − 1 (4.13b)

�
(#)
1
( 9 , 8) = "̃ ( −1)

9 ,8
(1) (4.13c)

Contracting the two columns yields a new MPS,∑
{8 −1}

% −1( 90, ..., 9# ; 80, ..., 8# ) × % (80, ..., 8# )

=
∑
{2}

�
(0)
20 (80)�

(1)
20,21 (81) . . . �

(#)
2#−1 (8# ) (4.14)

where the sum over 2 indicates sums over all (0, 1), and

�
(=)
2,2′ (8) =

∑
8

�
(=)
1,1′ ( 9 , 8) �

(=)
0,0′ (8) (4.15)

for all = indexing the tensors in the MPO and MPS. Thus, if the MPS was of bond
dimension � and the MPO was of bond dimension � −1, the new MPS has a
bond dimension of � � −1. We then must compress this new MPS back to one of
a lower bond dimension � (again, see Ref. [75] for a more in depth discussion). To
do so, we first put the MPS in right or left canonical form.

In left canonical form, all tensors in the MPS (except for the rightmost one) satisfies∑
;,D

!;,A (D) !∗;,A ′ (D) = XA,A ′ (4.16)

where X is the Kronecker delta. The tensor network diagram depicting Eq. (4.16) is

D; = I
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In our tensor network diagrams, we denote tensors in canonical form using triangles,
pointing in the direction of the uncontracted leg.

Similarly, in right canonical form, all tensors (except for the leftmost one) satisfies∑
A,D

';,A (D) '∗; ′,A (D) = X;,; ′ (4.17)

D A = I

We are able to define canonical forms because tensor networks have a gauge degree
of freedom. This means that the choice of tensors in the network is not unique. One
can see this by introducing a set of matrices - , -−1, which clearly satisfy --−1 = I,
along any line connecting two tensors.

Canonicalization can be performed using singular value decomposition (SVD).
Suppose that we are interested in written the MPS in left canonical form, and that
all tensors left of the =th tensor are already in left canonical form. We then take the
SVD of the =th tensor,

�
(=)
2,2′ (8) =

∑
f

*2,f (8) Σf+†f,2′ (4.18)

where Σ are the singular values from the decomposition of the tensor. Note that by
definition,* is left canonical, as desired, and thus will be used as the new =th tensor.
The remaining matrices are then pushed into the (= + 1)th tensor,

�
(=)
2,f (8) ← *2,f (8) (4.19)

�
(=+1)
f,2′′ (8) ←

∑
2′
Σf+

†
f,2′�

(=+1)
2′,2′′ (8) . (4.20)

By iteratively performing this operation starting from the left-most tensor all the
way to the right end of the MPS, the MPS is put into left canonical form. The
procedure for expressing the MPS in right canonical form is analogous.

MPS compression is performed in the same way, except only the largest � singu-
lar values are retained, generating some error. For minimal compression errors,
the MPS must be in left (right) canonical form prior to performing the iterative
compression procedure starting from the right (left) end.

In Fig. 4.3 we depict the contraction of the columns of the (1+1)D influence func-
tional tensor network. The rows are initialized in left canonical form. After the two



83

right-most columns are contracted, the product is canonicalized and the compressed
using the procedure discussed above. Because of the vertical orientation, the left and
right canonical forms are depicted by triangles pointing upwards and downwards
along the column.

Influence functional transverse contraction around an arbitrary site

Sometimes the site whose dynamics we are interested in may be at the middle of
the MPS representation of the system (e.g. in the hardcore boson model). Thus,
we need to generalize the tensor network diagrams presented in the main text to
consider IFs for subsystems at arbitrary lattice site 8.

influence functional expectation value

Figure 4.5: Influence functional methods for dynamics of arbitrary site in 1-D chain.
(left) Tensor network showing generalized IF isolating dynamics at the 8 = 3 lattice
site. Triangles denote gauging of tensors along the row, as defined in Fig. 4.3 in
the main text. (right) Tensor network computing expectation value using [blue] left
and right environment columns obtained separately using the iterative contraction
scheme described above, [white] original tensors at site 8 dictating interactions of
both environment columns with the site itself and the environments with each other,
and [gray] on-site terms including [circle] the initial state and [square] time evolution
operators and the observable of interest (see Fig. 4.1). It is cheapest to contract this
network vertically from the row at one end and continuing to the other end. Note
that in using this method, one does not explicitly compute the IF itself.

If the Hamiltonian only consists of nearest-neighbor interactions, the IFs from the
two sides of site 8 are separable and can be computed independently. Otherwise, the
tensor network can be initialized as shown in Fig. 4.5, and one contracts inwards from
the outer columns separately. Once only the column corresponding to the isolated
site is left, one can now include on-site terms (initial state, on-site time evolution
operators, observable) such that the network now corresponds to the expectation
value of the observable at the desired time step (a scalar). The cost of contracting
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this network scales like O(�3
�
), which is much cheaper than explicitly computing

the full IF first and using it to compute the observable expectation values.

4.3 Results
Spin-boson model
First, we consider the well-studied spin-boson model, in which a single spin is
linearly coupled to a bath of non-interacting harmonic oscillators,

�(� = Δ(- +
∫
3l

[
(/ (6(l)0l + 6(l)∗0†l) + l0†l0l

]
(4.21)

where Δ is the tunneling strength between the two subsystem states, and the system-
bath coupling strength 6(l) is determined from the bath spectral density function
� (l) by

|6(l) |2 = 1
c
� (l) . (4.22)

In the case of an Ohmic bath with exponential cut-off,

� (l) = c
2
Ul4−l/l2 , (4.23)

where U is the Kondo parameter and l2 is the cut-off frequency. Typically one
computes the dynamics from a factorized initial state |dB (BC0)〉〉 |d1 (1C0; V)〉〉, where
|d1 (1C0; V)〉〉 is the Gibbs thermal state of the isolated bath at finite temperature V.
In this paper, we set Δ = 1.0, l2 = 7.5, and V = 5.0.

The spin-boson model exhibits a dynamical phase transition from thermalizing to
localizing behavior at U = 1.0 + O(Δ/l2) [83], and is often cited as an example
of physically relevant non-Markovian dynamics [23, 25]. Because of the linear
coupling and harmonic bath, the IF may be computed via an analytical expression.
There already exist several methods of obtaining accurate dynamics for various bath
coupling strengths and spectral densities [46, 55, 56, 83, 84]. We thus use this
model as a benchmark to understand the properties of the influence functional, its
compressibility, and the accuracy of the tensor network contraction approximation.

MPS of analytical IF

We first write the analytical expression of the influence functional for the spin-boson
model as matrix product state (MPS). Denoting the system basis |B〉〉 ≡ |B+〉 〈B− |
where |B±〉 ∈ {|1〉 , |−1〉} and |1〉 , |−1〉 are the eigenstates of the (/ operator, the
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influence functional can be written as

�(� = exp

{
−

#∑
:=1

:∑
: ′=1
(B+C: − B

−
C:
) ([:: ′B+C: ′ − [

∗
:: ′B

−
C: ′
)
}
.

(4.24)

This explicitly shows the form of the influence functional as the Boltzmann weight
of a complex spin Hamiltonian with the spins interacting along the time axis via the
long-range pairwise “interaction” [:: ′. We can further factorize the weights into
contributions for times (C1), (C1, C2), . . . , (C1, C# ), giving

�(� =

#∏
:=1

�0(B±C: )
#−1∏
:=1

�1(B±C: , B
±
C:+1) . . .

#−<∏
:=1

�< (B±C: , B
±
C:+<) · · ·

1∏
:=1

�# (B±C: , B
±
C:+#−1) (4.25)

where
�< = exp

{
−(B+C:+< − B

−
C:+<) ([:+<,: B

+
C:
− [:+<,: B−C: )

}
. (4.26)

The [:: ′ interaction terms can be derived from the spectral density of the bosonic
bath. Expressions for [:: ′ are given in Eq. (12) of Ref. [46], where they use ΔC
instead of n to denote the timestep. For many smooth spectral densities, [:,:+<
decays quickly with respect to <.

In QuAPI, one considers interactions [:: ′ for times : , :′ within <max of each other,
where <max is treated as a convergence parameter [46]. Then, one can evaluate the
influence functional (or its effect on the dynamics [56, 85]) with a computational
cost exponential in <max. Since QuAPI often converges rapidly with <max , one
also expects the matrix product state representation of the IF (Eq. (4.5)) to be
compressible to small bond dimension. One way to verify this would be to construct
the large influence functional object as an exact tensor, and then compress it into a
matrix product state. Because of the exponential storage of the tensor with time, this
is possible only for a small number of time points # . Alternatively, one could build
the influence functional iteratively (i.e. piece by piece in Eq. (4.25)) and compress
it at each step. This is the idea behind TEMPO and related methods [64, 83] which
exploit the compressibility of the augmented density matrix, the influence functional
applied to the subsystem density matrix, i.e.

�(BC1 , . . . , BC<max ) =
∑
BC0

� (BC0 , . . . , BC<max )dB (BC0) , (4.27)
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Note that because � is composed of commuting pieces, there are many possible
decompositions and thus sequences of iterative constructions.

In this work, we construct the analytical IF MPS in a naive fashion and include
terms in the order � = �0�1 . . . �#−1. More specifically, we start with the �0 terms
in the form of a product state (MPS with bond dimension 1), multiply it by each
of the subsequent �<, and then compress it into an MPS after each one is applied.
Multiplying by �< can be viewed as multiplication by an MPO where the tensors are
very sparse. The two-body terms �< for < > 1 are long-range operators, and must
be padded with identities to skip over the times in the middle. More explicitly, the
MPOs are

�< (BC: , BC:+<) =
∑
E

[
�
(0)
< (BC: )

]
E

[
�
(1)
< (BC:+<)

]
E

(4.28)

→ . . .

BC: BC:+1 . . . BC:+<−1 BC:+<

B′C: B′C:+1 . . . B′C:+<−1
B′C:+<

� (0) � (1) � (<−1) � (<)

where we first decompose �< into two tensors (eg. via SVD or QR decomposition)
and then define the tensors in the MPO as

�
(0)
E (B′, B) =

∑
9

(
XB,B′XB,E

) [
�
(0)
< (B)

]
E

(4.29)

�
(<)
E (B′, B) =

∑
9

(
XB,B′XB,E

) [
�
(1)
< (B′)

]
E

(4.30)

�
(8)
E,E′ (B

′, B) = XE,E′XB,B′ ∀ 8 ∈ [1, ..., < − 1] . (4.31)

In diagrammatic form, the MPS for an IF with 6 time steps is

�0

�1

�2

�3

�4

�5

In our contraction scheme, we start from the bottom row and contract upwards.
However, because each �< factor commutes with the rest, other choices of ordering
are possible and are the basis of algorithms such as TEMPO [64, 83].
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Compressibility of analytical IF
To verify the compressibility of the IF itself, we approximate �(� as an MPS of bond
dimension � � using an iterative scheme (see Appendix) and determine the error in
the resulting on-site dynamics, using the � � = 128 result as reference. Here and
throughout the paper, the error is computed as the r.m.s. deviation of the dynamics
of an observable with respect to some reference over the time interval of the plot.
The results are shown in Fig. 4.6, and compares convergence with respect to � � for
infinite <max, as well as convergence with respect to <max for fixed � � = 128. We
find that the analytical influence functional is relatively compressible, regardless
of coupling strength. Even at a small bond dimension of � � = 16, the correct
behavior of the dynamics in both the thermalization and localization regimes is
captured. Compared to results for small <max, the MPS algorithm yields slightly
more accurate dynamics near the localization transition. The key advantage of
using a compressed matrix representation, as opposed to truncating [:,:+< at some
<max as in QUAPI, is that this does not eliminate the effects of long-range memory
[83]. Overall, this result confirms that for certain spectral densities, the influence
functional can be efficiently written as a low-rank MPS, consistent with the findings
from TEMPO [64, 83].

Finite size harmonic bath

We now use the spin-boson model to examine if the IF can be constructed efficiently
from our tensor network contraction scheme. To do so, we consider a finite size
harmonic bath with  sites, where the bosons are capped to some finite number
of states. For small baths and small boson cap, the transverse contraction can
be performed without compression, allowing a numerical test of the compression
procedure. The analytical IF, assuming bosons with infinite boson cap, can also be
computed. The bath is characterized by the discretized spectral density,

�� (l) =
∑
9

� (l)
d(l) X(l − l 9 ) .

We use a linear discretization of the bath sites, such that the bath density is d(l) =
 /l<, where l< is the maximum boson frequency used. Here, we set l< = 10.

The discretized Hamiltonian (in the star geometry) is given by

�(� = Δ(- +
 ∑
9=1

[
(/ (6 90 9 + 6∗90

†
9
) + l 90

†
9
0 9

]
(4.32)
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Figure 4.6: Spin dynamics of spin-boson model using the analytical IF and errors
from IF compression. (top) Dynamics obtained using the analytical IF capped to
<max and compressed to bond dimension � where (thick dotted)� = 16,<max = ∞,
(thin dotted) � = 128, <max = 8, and (solid) � = 128, <max = ∞, for various
coupling strengths U. (bottom, left) R.m.s. error for the analytical IF with respect
to �. (bottom, right) R.m.s error for capped IFs with respect to <max computed
using � = 128. The errors are obtained using dynamics from the IF with no cap
(<max = ∞) and � = 128 as reference. The error of the complete IF with respect to
� is independent of coupling strength. In contrast, the error for finite <max is larger
near the localization transition. These calculations are for # = 50 time steps of size
n = 0.1. The system parameters are Δ = 1.0, bath inverse temperature V = 5.0, and
an Ohmic bath spectral density with exponential cut-off l2 = 7.5.

where 6 9 is the coupling strength, l 9 is the frequency, and 0 9 , 0†9 are the creation
and annihilation operators of the 9 th phonon in the discretized bath, and can be
represented using the matrix product operator of bond dimension �, = 3

[
Δ(- (/ I

] 
I 0 0

6101 + 6∗10
†
1 I 0

l10
†
101 0 I

 . . .


I

6 0 + 6∗ 0
†
 

l 0
†
 
0 

 (4.33)

First, we consider a system with only 2 bath modes (in the number basis) each with
a maximum boson number of 2, for # = 100 time steps of size n = 0.05. For this
small system, we use the exact time evolution operator of !1B and compute the IF
by exact transverse contraction, applying compression only to the final IF object.
Fig. 4.7(a) shows the error of the exact IF compressed to bond dimension � � . As
expected, the IF is much less compressible than with the continuous bath density in
the last section, due to the small bath size. The error decreases only slightly until it
drops suddenly once the bond dimension is large enough to capture the IF exactly,
and further, the compression error increases with U. We then perform the same
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Figure 4.7: Comparisons of average error in 〈(/ (C)〉 with respect to reference direct
time evolution results for the IF where the IF is (left) constructed using exact time
evolution, contracted exactly, and finally compressed to bond dimension � � at the
end, and where the IF is constructed with (middle) exact time evolution and (right)
RK4 time evolution, but iteratively contracted and compressed using the transverse
compression scheme. In these calculations, we useΔ = 1.0, bath inverse temperature
V = 5.0, cut-off frequencyl2 = 7.5, and assume a discrete Ohmic bath with 2modes
at l = [5.0, 10.]. The bosonic bath sites are approximated to have only a maximum
boson number of 2. Time evolution is performed using # = 100 time steps with
a time step of n = 0.05. The plots show that for small bath sizes, the error in the
iterative compression scheme is dominated by the lack of compressibility of the final
IF.

comparison but for IFs computed by transverse contraction with compression, for
both exact and RK4 time evolution. As seen in Fig. 4.7, the errors are comparable
to those obtained when compressing the final exact IF. This indicates that for this
small problem, there is little additional error added by the iterative contraction, and
that the time-step error is negligible: the error is dominated by the compressibility
of the final IF itself (which is low when the bath size is small).

Next, we investigate systems with larger bath sizes in Fig. 4.8(a). We first examine
the time-dynamics of the analytical IF (i.e. without any boson cap, and without
transverse contraction) for a discretized spectral density with 11 bath sites, as well
as the IF computed by transverse contraction, using a boson cap of 2. Because the
system size is so small, the exact reference dynamics for a boson cap of 2 can be
generated by direct MPS time evolution (here, we use �d = 64 and Hamiltonian
time evolution). From this comparison, we observe two things. First, compared
to using the continuous bath density, the error of the analytical IF dynamics is
increased, although it is still somewhat compressible. For the same � � , the errors
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Figure 4.8: Spin dynamics of spin-boson model using IF obtained using tensor
network methods. (top) Expectation values 〈(/ (C)〉 obtained from the analytical IF
(thinner colored lines) and IF from transverse contraction (thicker colored lines) for
bath size  = 11 with U = 0.5, 1.0, and 1.5. The thick dashed line corresponds to
reference dynamics from direct time evolution of the density matrix. The transverse
contraction scheme introduces an additional error with respect to the analytical
result, which increases with U. (bottom) Time-averaged error in IF dynamics with
respect to � � = 128 results, obtained using (left) the transverse contraction scheme
and (right) the analytical IF for the finite bath of size  , respectively. The  = ∞
bath size corresponds to the continuous bath.

using transverse contraction are larger, suggesting that at intermediate points in the
transverse contraction, there is more time-like entanglement than in the final IF
itself. In Fig. 4.8(b), we show the time-averaged error of the IF dynamics as a
function of the number of bath sites. We see that this error decreases as the number
of bath sites increases, both for the analytical IF and the transverse contraction. This
is consistent with the idea that smoother bath densities are more “compressible”.

1-D hard-core boson model
We next study dynamics of a 1D hard-core boson (HCB) lattice model, in which
each lattice site is either unoccupied (|0〉) or occupied (|1〉) by a single bosonic
particle. We consider the Hamiltonian

���� =
∑
9

[
−� (0†

9
0 9+1 + ℎ.2.) +*= 9= 9+1 +

 

2
= 9 9

2
]

(4.34)

where 0†
9
= |1〉 〈0|, 0 9 = |0〉 〈1| are hard-core boson creation and annihilation opera-

tors at the 9 th lattice site, and = 9 = 0†90 9 is the number operator. This Hamiltonian is
intended to mimic the Bose-Hubbard model dynamics often simulated by cold-atom
experiments, which was shown to be difficult to compute using direct time evolution
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Figure 4.9: Expectation values 〈#8 (C)〉 for the hard-core bosonmodel with* = 0 for
system sizes (top) ! = 9 and (bottom) ! = 43 for sites 8 = {0, !/2, !/4} obtained
using the iterative contraction scheme with bond dimension � � as labeled. The
thick dashed line is the dynamics obtained by direct Hilbert-space time evolution,
compressed to bond dimension �d = 256, only shown for times where the results
are converged. The thin dashed line, shown only in the left-most plots but with
similar behavior for all, is the dynamics obtained by direct time evolution of the
full density matrix. Unphysical behavior suggests loss of positivity of the density
matrix. For these calculations, the initial state is a pure product state with alternating
spins, |0, 1, 0, 1, ...〉. Time evolution is performed using Trotter steps with a # = 100
time steps of ΔC = 0.1. Consistent with earlier observations, larger � � is needed
to accurately capture the IF for smaller bath sizes. However, as shown in the
! = 43, 8 = 21 simulation, the IF of comparable bond dimension can simulate
dynamics for longer times than direct HTE.

methods [86], where the on-site interaction term is replaced by a nearest-neighbor
interaction term. We also include a harmonic potential term to emulate a cold atom
trap.

The corresponding matrix product operator of bond dimension �, = 4 is
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We assume a pure initial state |0, 1, 0, ...〉 such that there is one particle at every
other lattice site, and set the parameters � = 1 and  = 10−2 while varying *. For
non-zero interaction term*, there is no analytical form for the IF.

Figure 4.10: Results for hard-core boson model for nonzero *. (a,b,c) Expectation
values of the site-occupancy 〈#8 (C)〉 for the hard-core boson model of length ! = 43
at lattice site 8 = 21 for different coupling strengths * = 0.5, 1.0, and 2.0. Lines
become dotted after divergence of >0.03 with respect to the � � = 256 IF results.
(d) The r.m.s. errors with respect to the � � = 256 IF results as a function of *.
Simulation parameters are otherwise the same as in Fig. 4.9. Compared to the* = 0
case, a larger bond dimension is needed, particularly at around * = 3.0 where the
r.m.s. error peaks. In contrast, the HTE dynamics converge more quickly with
increasing*.

We compute the dynamics of 〈#8 (C)〉 at lattice sites 8 = {0, !/4, !/2}, where ! is the
length of the 1-D chain. For longer chains, the rapid growth of entanglement means
that direct MPS time evolution (either using Hamiltonian evolution, denoted HTE
or Liouvillian evolution, denoted LTE) with a finite �d can only obtain converged
dynamics up to a finite time. We consider two chain lengths: ! = 9 where the
converged HTE MPS dynamics can be used as a reference, and ! = 43, where the
HTE MPS dynamics appear to be not fully converged (no longer within 0.03 of
�d = 512 results) for the full simulated time. To obtain the dynamics using the
influence functional method, we partition the lattice such that site 8 is the subsystem
of interest and the remaining sites are the bath.

The * = 0 dynamics for ! = 9 and ! = 43 is shown in Fig. 4.9. Direct MPS LTE
shows unphysical behavior for large system sizes, presumably because of the loss of
positivity at some point in the dynamics. In contrast, the dynamics obtained using
the iteratively contracted IF are more stable, highlighting the innate compressibility
of the time evolution tensor network along the time axis as opposed to the spatial
axis. For ! = 9, the IF dynamics only appears to begin to converge by� � = 128with
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respect to the (exact) HTE dynamics, having less than 0.03 r.m.s error in 〈#8 (C)〉
over the simulated time interval and deviations within 0.08. Thus, there appears to
be no significant advantage to using the IF method over direct HTE for small system
sizes. Conversely, for the ! = 43 system, the IF dynamics are convergedwith respect
to � � = 256 results by � � = 64, with less than 0.02 r.m.s error and a maximum
deviation of 0.04 for 8 = 10 and less than 0.001 r.m.s error and a maximum deviation
of 0.004 for 8 = 21. Note that the 8 = 10 dynamics converge more slowly because
effectively the site is coupled to two separate baths, one of which is small. However,
the IF method still outperforms direct HTE.

For * > 0, as shown in Fig. 4.10, the � � = 64 results appear less converged than
the non-interacting case, but the � � = 128 results are converged (r.m.s. errors of the
� � = 128 observable dynamics with respect to the � � = 256 results, for times longer
than that accessible by direct time evolution, are less than 0.03). This shows that the
IF-based dynamics can produce the correct oscillatory behavior of the density as a
function of time, which is not captured by the direct MPS time evolution despite
using a larger bond dimension (this difficulty with the long time oscillatory tail has
previously been noted in other cold atom simulations [86]). However, while the
IF method notably outperforms direct HTE at small *, the two methods become
comparable at larger* ≈ 1.5 once the oscillatory tail is sufficiently dampened.

Entanglement spectrum
The accuracy of the transverse contraction scheme depends on the entanglement in
the time-like direction. Recall that our contraction algorithm starts with the farthest
column (an MPS), and at each iteration another column is contracted into this
boundary. Thus, as the iteration number increases, the boundary column represents
more of the bath. For both the spin-boson model and HCB model, we measure the
singular values at the middle of the boundary “bath” MPS during each step of the
iterative contraction scheme. The entanglement entropy (EE) and spectrum of the
singular values (normalized so that

∑
8 |B8 |2 = 1) are plotted in Fig. 4.11. For the

spin-boson model, only results for U = 1.0 are shown; the only notable difference
for other U is that the EE increases with U. Consistent with the observations in our
simulations above, the EE decreases as one increases bath size. For the SB model,
the EE decreases with increased number of bath sites in the discretization until
convergence. For the HCB model, only if sufficiently large enough bond dimension
is used does the EE decrease with increasing iteration number. Otherwise, the EE
stays at a large value throughout the contraction scheme and the gap between the
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Figure 4.11: Measurements of entanglement at the middle of the “bath” boundary
column MPS at each step of the iterative IF contraction scheme. (Top left) Normal-
ized entanglement entropy for the SB model (U = 1.0) for various bath sizes. As
bath size increases, the EE of the IF decreases, converging to some finite value. (Top
right) Normalized singular values for bath size  = 11 for various bond dimensions
� � used in the contraction scheme. (Bottom left) Normalized entanglement entropy
for the hard-core boson model with ! = 43, with the IF contractions starting from
the right edge, plotted for different values of*. The decrease in EE with respect to
iteration shows that EE decreases with system size. (Bottom right) Normalized sin-
gular values for the hardcore-boson model with ! = 43 and * = 0.5. Surprisingly,
for insufficient � � , the singular values take on large and incorrect values, yielding
an artificially large EE.

dominant and non-dominant singular values decreases; this makes the EE of the
smaller � � approximation larger than that of the larger � � approximation. Overall,
this suggests that the final compressibility of the IF emerges from the cancellation
of many different correlations as one iteratively contracts out the bath.
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4.4 Conclusions
In this work, similar to some other recent contributions [63, 66], we have used
the representation of the influence functional within the tensor network language,
motivated by the limitations of modeling spatial entanglement growth in quantum
dynamics. We have discussed a transverse tensor network contraction algorithm that
allows us to compute the influence functional in cases where the analytical form is
not known. We have applied this algorithm to study both the canonical spin-boson
model as well as an interacting hard-core boson chain where the bath is not quadratic
(i.e. interacting). We find that the compressibility of the influence functional is
controlled by several factors, principally the size of the bath, as well as the nature of
the interactions. In addition, although the time-like correlations may ultimately be
short-ranged in the final influence functional, during the transverse tensor network
contraction to construct it, it is possible to proceed through intermediate quantities
with larger time-like entanglement. This suggests a complicated picture where
time-like correlations first accumulate as the bath is integrated out before finally
cancelling out in the influence functional itself. In the regimes where the influence
functional and all intermediate quantities are compressible, as in some interaction
regimes in the interacting hardcore boson model we have studied, it is possible to
outperform conventional tensor network time evolution methods at longer times.

There are many possible directions for further investigation. For example, there
are natural extensions to higher-dimensional interacting problems and fermionic
systems, aswell asmore complicated correlation functions. Also, a better theoretical
understanding of how correlations grow and cancel out in the transverse contraction
schememay lead to a deeper understanding of the generation of memory in quantum
dynamics, the master equation formalism [29], improved contraction schemes, and
ultimately new algorithms to carry out longer time dynamical simulations.
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A p p e n d i x A

INTRODUCTION TO TENSOR NETWORKS

Motivation for Using Tensor Networks
The phrase “quantum supremacy” is often thrown around to describe the ambiguous
point at which quantum computers outperform classical computers. Depending on
the algorithm and its potential quantum speed up, “quantum supremacy” can provide
targets for decoherence and dephasing lifetimes, as well as quantum computer
size. However, there are always some caveats when making this comparison. As
evidenced in the Google-IBM spat, depending on the classical algorithm used, there
can be significant reduction in computational cost, making a problem that seemed
to take tens of thousands of years can instead take a matter of a few days or even
minutes [1–3]. Note that this does not mean the hardware developments presented
by the Google team are not important or not interesting–in the end, if the quantum
algorithm truly provides exponential speed-up, eventually the quantum computer
will exhibit quantum supremacy.

In addition to intelligently identifying the correct classical algorithm, if the problem
tolerates some degree of error, one should also consider potential speed-ups ob-
tained from allowing for approximations. It should not be unreasonable to allow the
classical algorithm to only be accurate within some small error. After all, quantum
computers are inherently probabilistic—obtaining expectation values of observables
requires measuring the quantum system many times. (Also, since taking the mea-
surement collapses the quantum state, the quantum state must be prepared again
that many times.) This in and of itself produces a statistical error on the final value,
though the variance can be reduced by taking more samples.

Some examples of such approximate classical algorithms include ‘quantum-inspired
classical algorithms’ for common linear algebra problems [4, 5]. Another notable
example (used in Chapter 4 of this work) are Matrix Product States (and tensor
networks), which are an extremely popular framework in the physics community for
performing simulations of 1-D (and arbitrary geometry) quantum systems. These
algorithms capitalize on the low-rank nature of the problem, and revolve around
compressing the information contained in high dimensional tensors. In this section,
we will introduce basic concepts of tensor networks.
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A.1 High-dimensional Tensors
Review of linear algebra
A 3-dimensional vector space is one that is spanned by 3 orthonormal basis vectors.
The standard basis vectors {41, 42, ...43} are vectors where only the (8−1)th element
is 1 and the rest are 0’s. Therefore, any real/complex vector of length 3 exists in this
3-dimensional real/complex vector space.

A Hilbert space is a vector space with an appropriate definition of an inner product
that allows for the measurement of distance and angles of vectors. (In technical
speak, this means the space is a complete metric space in which every Cauchy
sequence is convergent.) For example, Euclidean space is a 3-dimensional Hilbert
space. A 3-dimensional generalization of Euclidean space is the ℓ2-space for which
the inner product is defined as the dot product

〈x, y〉 =
3∑
8=1

G∗8 H8 .

In this field, a tensor is simply defined as a multi-dimensional array. For example, a
scalar, vector, and matrix are 0, 1, and 2-dimensional tensors, respectively. If each
axis of the tensor is of size 3, then an =-dimensional tensor occupies 3=-dimensional
space. The inner product between tensors � and � can be generalized from the vector
inner product definition,

〈�, �〉 =
31∑
81=1

. . .

3=∑
8=

0∗81,...,8=181,...,8=

where each 8U indexes elements along the U-th axis of the tensor, and 3U is the
dimension of that axis. This definition is equivalent to first vectorizing the tensors
(ie. reshaping them into a 1-D array) and then taking the vector inner product.

Given this definition of the inner product, the norm of an arbitrary =-dimensional
tensor � is given by the Frobenius norm,

| |�| |2 =
31∑
81=1

. . .

3=∑
8=

|081,...,8= |2 .

Diagrammatic notation
We represent =-dimensional tensors using shapes with = ‘legs’ sticking out of it,
with each leg representing one axis of the tensor. The size of each leg, also called
the bond dimension, is the size of the tensor along the corresponding axis. For
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clarity, we will refer to the dimension of the tensor by the number of its legs. Also,
sometimes, for shorthand, the shapes are omitted.

(a) scalar (b) vector (c) matrix (d) 3-D tensor

Connecting two legs together denotes contractions of the tensors. For example,
shown below are diagrams representing traditional matrix-vector and matrix-matrix
multiplications, which return vectors and matrices, respectively. We can also show
the trace operation, which is a single tensor operation that returns a scalar.

18 =
∑
9

�8 9G 9 18: =
∑
9

�8 9� 9 : 2 =
∑
8

�8 9X8 9

= = =

(a) matrix-vector mult. (b) matrix-matrix mult. (c) trace operation

It is easy to generalize to contraction between higher dimensional tensors. For
example, contraction between two 3-legged tensors along the first and third legs
looks like

)01 9 : =
∑
8

�018�8 9 : =

The inner product between two tensors is simply the contraction of all of their legs.

x y

(a) vector inner product

x y

(b) tensor inner product

x y

(c) vectorized tensor
inner product

In the diagram (c), we group together the three legs of the tensor together into a
single leg. This represents vectorizing the tensors into a vector whose size is the
product of all of the dimensions of the original legs.

Tensor decomposition
First, let us consider the decomposition of a vector that lives in a (3132)-dimensional
Hilbert space �, with the corresponding standard basis vectors � = {41, ..., 43132}.
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Then, let H1 be a Hilbert space of dimension 31 with standard basis vectors
{e(1)1 , ..., e(1)

31
}. Similarly define a 32-dimensional Hilbert space H2. We claim

that H is isomorphic to the outer product of H1 and H2, which has standard basis
vectors

�′ = {e(1)
8
⊗ e(2)

9
} where 8 ∈ [1, 31], 9 ∈ [1, 32] .

Because this set contains 3132 orthonormal vectors, we can perform a one-to-one
mapping from � to �′. Thus, H � H1 ⊗ H2.

Using the decomposed standard basis vectors, we can express the original array as
a 2-D object,

) =

3132∑
8=1

18 e8 �
31∑
8=1

32∑
9=1
28 9 e(1)8 ⊗ e(2)

9
(A.1)

where 18, 28 9 are scalars corresponding to the elements in the tensor. Reshaping
a vector into any number of legs follows the same idea, but it is required that the
original dimension of the leg be equal to the product of the dimensions of the new
legs. This is because the reshaping operation does not change the dimension of
Hilbert space that the tensor resides in.

Now, suppose we wish to decompose ) into two tensors contracted with each other.
We can do so by reshaping ) into a 2-D tensor (ie. matrix), and then performing
singular value decomposition (SVD).

T = UfV) =
∑
8 9

∑
B

fB (*8B |48〉) ⊗
(
+ 9 B |4 9 〉

)
) = * Σ +)

For higher dimensional tensors, depending on the desired connectivity of the de-
composed tensors, there is no generally optimal decomposition algorithm.

The work in our thesis will utilize two tensor decompositions. The first is the
decomposition of a 4-legged tensor, which will be explained more carefully in
Chapter 3. In short, a nested decomposition is performed, such that the original
4-legged tensor is first split into two tensors with 2 dangling legs each, which are
then decomposed further.

The second is the decomposition of an =-legged tensor into a 1D chain of = tensors.
This is called a tensor train (TT) in computer science, or a Matrix Product State
(MPS) in physics if the tensor represents a quantum state. The TT/MPS can be
obtained from the original tensor using the Schmidt decomposition algorithm, which
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calls for performing SVD iteratively. This is shown below diagrammatically for a
3-legged tensor.

) = )

SVD

= *1 Σ1+
)
1

SVD

= *1 *2 Σ2+
)
2

In the first step, the last two legs are grouped together to look like a single index. In
the second step, SVD is performed at the blue line to separate ) into two tensors by
introducing a leg that will be contracted over. In the third step, SVD is performed
on the new 3-legged block at the blue line, introducing another contracted leg. With
that, we have decomposed the original 3-legged tensor into a chain of 3 tensors.

Other decomposition methods include CP and Tucker decomposition, which rely
on alternating least squares (ALS) to minimize the error of the decomposition with
respect to the original tensor. However we will not be talking about or using these
methods.

A.2 Many-body Quantum States
In quantum physics, the state of a single 3-dimensional particle, such as a particle
with 3 energy levels, can be represented as a vector in a 3-dimensional Hilbert space
H. One choice of basis vectors is {|4 9 〉 : 9 ∈ [1, 3]} where each vector represents
the occupation of the 9 th energy level. Then, in physics bra-ket notation, an arbitrary
state can be written as

|k〉 =
3∑
9=1
2 9 |4 9 〉

where 2 9 are scalar coefficients.

If we consider a system that contains two of these particles, the system now resides
in the 32-dimensional Hilbert space H⊗2. An arbitrary state is some superposition
of all possible combinations of two particle states, and can be written as

|k〉 =
3∑

8, 9=1
28 9 |48〉 ⊗ |4 9 〉

where 28 9 again are scalar coefficients. Comparing it to Eq. A.1, it is clear that one
can represent many-body quantum states using high-dimensional tensors.

Entangled states
Quantum entanglement is a property of many-body quantum states in which the
state of one particle depends on the state of the others. The classic examples are
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Bell states, which are maximally entangled states of two qubits (� and �). One of
the four states is

Φ+ =
1
√

2
( |0〉� ⊗ |0〉� + |1〉� ⊗ |1〉�) .

If one measures qubit �, then depending on the outcome (0 or 1), the state of � is
also known–the states of the qubits are perfectly correlated with each other.

Entanglement entropy is a measure of quantum entanglement between two parts
� and � of a quantum state. Consider a pure state d�� = |Φ〉�� 〈Φ|��, where

|Φ〉�� =
∑
8

f8 |08〉 ⊗ |18〉 = A � B .

In the mathematical expression, {|08〉} and {|18〉} are orthonormal vectors spanning
the Hilbert spaces of particles � and �, respectively. In the diagram, tensors A and
B contain the vectors {|08〉} and {|18〉} along its columns and rows, respectively,
and matrix � contains the {f8} along its diagonal. (We use the diamond to denote
that it is a diagonal matrix.) If the state is normalized, then Tr(d) = ∑

8 |f8 |2 = 1.

The reduced density matrices of particles � and � are

d� = Tr� (d��)
�∗ Σ∗ �∗

� Σ �

�∗ Σ∗

� Σ

d� = Tr� (d��)
�∗ Σ∗ �∗

� Σ �

Σ∗ �∗

Σ �

The von Neumann entanglement entropy is given by

((d�/�) = −Tr(d�/� log d�/�) = −
∑
8

|f8 |2 log( |f8 |2) . (A.2)

In the case of the Bell state Φ+, the entanglement entropy ( = 2( 12 log 2) = 0.693,
which is the maximum for the 2-qubit system.

In contrast, let us consider the state |ΨG〉, which can be represented using matrix "

|0〉� |1〉�

|ΨG〉 =
1
2
( |00〉 + |01〉 + |10〉 + |11〉) ⇒ " =

1
2

[
1 1
1 1

]
|0〉�
|1〉�
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where the indices of the rows/columns of " correspond to the states of qubit �/�.
Decomposing this tensor via SVD, we get

" =

�︷︸︸︷[ 1√
2

1√
2

] [
1
] �︷     ︸︸     ︷[

1√
2

1√
2

]
where the first and last matrices correspond to the states of particle � and �,
respectively. The matrix is only of rank one, which means that |ΨG〉 actually is just
a product of one-qubit states of � and �,

|ΨG〉 =
1
2
(

�︷   ︸︸   ︷
|0〉 + |1〉) ⊗ (

�︷   ︸︸   ︷
|0〉 + |1〉) .

The entanglement entropy for product states is 0, which means that it actually is a
classical state.

A brief side note: entangled states are different from mixed states. Mixed states
are summations of pure states, d�� =

∑
8 U8 |k8〉�� 〈k8 |��, assuming proper normal-

ization. Unrelated to that is the correlations between parts � and � of the system,
which is what entanglement refers to. The pure states |k8〉�� that build up the mixed
state may exhibit entanglement themselves. From a linear algebra perspective, one
can understand the difference between the two as performing decompositions along
different axes of the tensor.

d

|�〉 |�〉

〈�| 〈�|

(a) state purity

d

|�〉 |�〉

〈�| 〈� |

(b) entanglement

A.3 Tensor Networks
Tensor networks (TNs) are simply networks of multiple tensors that are contracted
with each other in some fashion. Common TN geometries used for representing
quantum states include a 1-D chain (Matrix Product States (MPS)), a 2-D lattice
(Projected Entangled Pair States (PEPS)), and a renormalizing network (Multiscale
Entanglement Renormalization Ansatz (MERA)). Most of the work in this thesis is
focused on 1D systems which we represent with MPS.

TNs can be used to represent quantum states, as well as the operations acting on
the states, such as time evolution or measuring the expected value of an operator.
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Below is a non-traditional introduction to TNs (specifically MPS). For beginners,
looking at Ref. [6] is recommended.

Matrix product states (MPSs)
At this point, we have presented amathematical framework for representing quantum
states. However, on its own, it does not provide any computational advantages for
working with many-body systems.

Consider a system consisting of = 3-dimensional particles. This system spans a
Hilbert space of dimension 3=, and the state can be represented using an =-legged
tensor where each leg has a dimension of 3. It is clear that the memory associated
with representing the state of the system scales exponentially with system size =.
Operators acting on the full system, such as the Hamiltonian, would look like a
3= × 3= operator. The Hamiltonian defines the system properties–its eigenvectors
form the set of orthonormal basis vectors corresponding to a particular energy (the
eigenvalues). Computing the dynamics of a state requires exponentiation of the
Hamiltonian, which is equivalent to performing an eigenvalue decomposition. The
computational cost of performing eigenvalue decomposition of an < × < matrix is
naively O(<3) (though there are speed ups using recursive algorithms, resulting in
computational costs of O(<2.67) [7]) Therefore, the computational cost of perform-
ing an eigenvalue decomposition on the Hamiltonian is of O(33=). In other words,
the cost of the algorithm scales exponentially with respect to system size (a result
that holds true regardless if the more advanced algorithm is used.)

Previously, we discussed decomposing these larger tensors into a network of smaller
tensors. Here we will specifically consider representing the quantum state as a 1D
chain of = 3-legged tensors, a Matrix Product State (MPS). At first glance, it might
not be obvious what the dimension of the legs connecting the tensors (virtual bonds)
are. However, if we explicitly perform Schmidt decomposition on the original =-
legged tensor to obtain the MPS, we find that the maximum virtual bond dimension
is 3=/2.

... ...1

3 3 3 3 3 3

1
3 32 3=/2 32 3

Thus, as one might have expected, representing the multi-legged tensor as an MPS
does not remove the exponential scaling in memory and computational cost. It only
hides it in the dimensions of the virtual legs.
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However, the key advantage of the MPS ansatz is that one can artificially limit the
virtual bond dimension to some finite value �, thus making it tractable to work
with. The result is a low-rank approximation of the original tensor. This ansatz is
systematically improvable—by increasing �, one will obtain a better approximation
of the true network. In the next section, we discuss how to obtain the optimal low
rank approximation for 1D systems.

Compression of MPS
Given matrix � = U�V) , we would like to find a rank � approximation such that
| |� − �(�) | |2 is minimal. According to the Eckart-Young-Mirski theorem [8], the
optimal solution is

�(�) =
�∑
8=1

f8 |D8〉 〈E8 | = U �(�) V) (A.3)

where the singular values f8 are ordered in decreasing magnitude such that only the
largest � values are included in the sum. These singular values are contained in the
diagonal matrix �(�) . The vectors |D8〉 and 〈E8 | are the columns/rows of * and +)

corresponding to the 8th singular value.

However, when finding a low-rank approximation for a single tensor in a network,
one has to account for the other tensors (the environment). Otherwise, itmay lead to a
non-optimal approximation of the full TN. How to best account for the environment
for arbitrary geometries is unclear. However, for MPS, it is straightforward to
‘canonicalize’ the MPS such that the environment tensors look like the identity,
allowing one to approximate the tensor in question in isolation.

In TNs, because the tensors are connected to each other, the definition of each
tensor can vary while the state as a whole stays the same. This is referred to as the
gauge degree of freedom. A simple example is simply multiplying and dividing two
tensors in the TN with the same scalar.

For MPS, we define the left and right canonical forms as the choice in gauge such
that ∑

;3

!∗;3A!;3A ′ = �AA ′
∑
3A

'∗;3A'; ′3A = �;; ′

!

!†

= I

'

'†

= I
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Note that we use triangles instead of circles to explicitly denote the canonicalization.

Now consider an MPS of the form

� �

Wewish to replace �with a low-rank approximation �′. To do so, wemust minimize

� � − � �′

2
=

�

�†

�

�†

−
�

�†

�′

�†

−
�

�†

�

�
′†

+
�

�†

�′

�
′†

When computing the overlaps, we can insert a gauge --−1 such that �- is left
canonical. Then

�

�† - -
−1

- -
−1

�

�
′†

=

�-

�†-

-−1�′

-−1�
′†

=

-−1�

-−1�
′†

and likewise for all other terms in the sum. With this choice in gauge, optimizing the
MPS becomes equivalent to finding the �-rank approximation to �̃ = -−1�, which
is simply �̃(�) , as defined above in Eq. A.3. The computational cost is the cost of
performing SVD on just �̃ instead of the full MPS. Note that if no compression of
rank is performed (ie. �′ = �), then the MPS gauge does not actually matter.

Instead of trying to find the gauge - explicitly, typically one uses SVD or QR
decomposition to put the MPS in canonical form, since the reshaped unitaries obey
the conditions for left or right canonicalization.

=

SVD
= * f+)

where
*

*†

=

*

*†

= I

By definition, the full unitary * obeys *†* = **† = I. However, the reduced uni-
tary*′ obtained after removing the columns associated with the discarded singular
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values only satisfies * ′†*′ = I, while *′* ′† ≠ I (which makes it an isometry). In
any case, both* and*′ are left canonical. Similar logic can be applied to find that
+) and its reduced form are both right canonical.

The algorithm for compressing an MPS is as follows. First one must ensure that
the MPS is in the proper canonical form. To left/right canonicalize a finite length
MPS, one starts at the left/right end and then performs QR or SVD to put each
tensor in left/right canonical form. If the MPS is normalized, then it is possible
to gauge the MPS such that all tensors are left/right canonical. Once the MPS is
fully left/right canonical, then one can compress the MPS using SVD starting from
the right/left end and sweeping left/right. After compression, the MPS is now in
right/left canonical form. Typically, canonicalization and compression are the most
expensive operations in MPS algorithms, since the computational cost of the SVD
operation scales like O(�3).

Matrix product operators (MPOs)
In order to use MPS for quantum systems, we also need to be able to represent the
Hamiltonian � in matrix product form. Constructing the matrix product operator
(MPO) for � is typically done by hand, and varies depending on the Hamiltonian’s
structure. In general, the MPO can be written out as a chain of 4-legged tensors,

... ...1

3 3 3 3 3 3

3 3 3 3 3 3

1
�F �F �F �F �F

where the lower legs correspond to the ‘input’ and the upper legs correspond to the
’output’ of the full operator �. The virtual bond dimension �F is determined by
the structure of the Hamiltonian, and is a constant for Hamiltonians whose structure
is translationally invariant. Typically square shapes are used to denote MPOs.

For example, the MPO for the nearest neighbor Hamiltonian � =
∑
8 �8 +$8$8+1 is

� =

[
�1 $1 I

] 
I 0 0
$2 0 0
�2 $2 I



I 0 0
$3 0 0
�3 $3 I

 . . .


I

$!

�!

 .

Note that the elements in the matrices are operators instead of scalars, thus making
each one actually a 4-legged tensor. This MPO has virtual bond dimension �F = 3.
Ref. [6] has some examples of MPOs for other Hamiltonians, such as one with
exponential long range interactions.
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Time evolution
In physics, oftentimes one is interested in knowing how a system state |k〉 evolves
in time under some Hamiltonian � as dictated by the time-dependent Schrodinger
equation

8
m

mC
|k〉 = � |k〉 . (A.4)

The state at time C is thus

|k(C)〉 = 4−8�C |k(0)〉 . (A.5)

To perform time evolution, one needs to exponentiate the Hamiltonian. For the
above nearest neighbor Hamiltonian, one can separate it into terms acting on even
or odd bonds, � = �4 + �>, where

�4 =
∑
8 ∈ even

1
2
(�8 + �8+1) +$8$8+1

�> =
∑
8 ∈ odd

1
2
(�8 + �8+1) +$8$8+1

Because all the terms in �4 and �> commute,

exp(−8�4C) =
∏
8 ∈ even

exp
(
−8C

(
1
2
(�8 + �8+1) +$8$8+1

))
exp(−8�>C) =

∏
8 ∈ odd

exp
(
−8C

(
1
2
(�8 + �8+1) +$8$8+1

))
.

Note that one has to be careful in the definition of �4 and �> at the boundaries of
the chain, which we did not explicitly shown in the above equations. Then one can
approximate the exponential using the first-order Suzuki-Trotter decomposition,

4−8�C =
(
4−8�C/=

)=
=

(
4−8(�4+�>)C/=

)=
≈

(
4−8�4C/=4−8�>C/=

)=
+ O(C/=) .

The tensor network diagram for a single time step, with ΔC = C/=, is

|k(0)〉

exp(8�>ΔC)

exp(8�4ΔC)



114

Note that applying an operator to the MPS increases its bond dimension.

�
=

�

� ′

=
�� ′

Thus, at each time evolution step, the MPS must be compressed back to the desired
bond dimension �.

In the Time Evolution Block Decimation algorithm (TEBD) [9], the tensors of each
row are applied to the MPS from one edge to another. After applying one block, the
updated part of the MPS is compressed to bond dimension � and is put in the proper
left/right canonical form as one sweeps to the right/left. The next row is applied in
the same fashion, but in the opposite sweep direction.

If one is unable to decompose the exponential into nearest neighbor blocks as above,
then one can expand the exponential using the Taylor series. We use the 4th order
expansion,

exp(−8�ΔC) = I + (−8ΔC)� + (−8ΔC)
2

2
�2 + (−8ΔC)

3

6
�3 + (−8ΔC)

4

24
�4 + O(ΔC5)

≈ 1
24

4∏
8=1
(−8�ΔC − U8) where

U1, U2 = −1.72944 ± 0.888978

U3, U3 = −0.270556 ± 2.504788

which is equivalent to using 4th order Runge-Kutta (RK4). For convergence, the
norm of the approximate exponential must be less than or equal to one. This means
that the time step ΔC must satisfy _<0G · ΔC < 2.828 for real time propagation or
_<0G · ΔC < 2.785 for imaginary time propagation, where _<0G is the maximal
eigenvalue of � [10].

The tensor network for a single time step is then

|k(0)〉

−8�ΔC − U1

−8�ΔC − U2

−8�ΔC − U3

−8�ΔC − U4
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One can use a straightforward method to contract this network to obtain the state
at the next time step: first, the bottoms rows are contracted together into a single
MPS, which is then canonicalized and compressed. This is repeated for each of the
four MPOs. The canonicalization step is the most computationally expensive step,
scaling like O(3 (�F�)3).

It is possible to develop a scheme similar to TEBD in which the contraction and
compression are performed within the same sweep. However, the accuracy of this
method has not been studied extensively, so it is not used in this thesis.

In the time-dependent DMRG (TD-DMRG) algorithm, one also performs time
evolution using RK4. However, the update algorithm is notably different. We do
not cover it here, and instead refer readers to [11–14]. A related algorithm is the
time-dependent variational principle (TDVP) algorithm, but a notable difference is
that the MPS is confined to the tangent space defined by the Dirac-Frenkel equation
to enforce conservation of energy [15, 16].

Another time evolution algorithm is themulti-layermulti-configuration time-dependent
Hartree theory (ML-MCTDH) method [17–19]. Though originally developed not
in the tensor network framework, it seems to be equivalent to a tree tensor network
geometry. It also utilizes the Dirac-Frenkel equation. This method has seen great
success for obtaining long-time dynamics for a wide range of problem types. Again,
we do not discuss the details here.

Representability of MPS
If we limit the MPS to have finite bond dimension �, the MPS can only accurately
capture low rank tensors. Assuming normalization of the state, the maximum
entanglement entropy (Eq. A.2) the MPS can have is (<0G = log(�). Thus, higher
� allows the MPS to represent more highly entangled states.

For local and gapped 1-D Hamiltonians, it has been proven that the entanglement
entropy of the ground state obeys area law scaling [20]. This means that it scales
with the boundary area (which is a constant in 1D systems). It was later shown that if
the energy gap is n , then the entanglement entropy scales like ( ∼ O(1/n) [21, 22].
Separately, it has also been proven that the ground states of these Hamiltonians have
correlation lengths b that scale like b ∼ O(1/n) [23–25]. Combining the two results
suggests (but does not prove) that ( ∼ O(b), which is consistent with the intuition
that the entanglement across some boundary should only depend on O(b) sites in
the neighborhood of the boundary. However, rigorous proofs have only obtained
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loose bounds ( ∼ exp(O(b)) [20, 26]. Investigations from anMPS perspective have
also had limited success in defining tight bounds on the approximability of the state
due to the area law [27].

However, it was also found that the bond dimensions only needs to scale polyno-
mially with number of spins to represent ground states, even for critical systems
[28]. This is consistent with the great success of using MPS to find and represent
ground states of local Hamiltonians in practice. To find the ground state, one can
perform imaginary time evolution from a random initial state, or one can use a
local optimization technique equivalent to Density Matrix Renormalization Group
(DMRG), modulo differences in implementation [6, 29–34]. In essence, one finds
the MPS wavefunction that minimizes the energy of the Hamiltonian by locally
optimizing each tensor in a sweeping fashion. Typically MPS had been used to
investigate 1-D spin chains, such as the transverse Ising model and the Heisenberg
model. However, it has been successfully applied to quantum chemistry electronic
structure calculations, performing similarly if not better than other computational
chemistry methods [35, 36]. Furthermore, though there are no known bounds on
the entanglement entropy of excited states, MPS have also been used successfully
to represent low-lying excited states [37–39].

On the other hand, if the state exhibits volume law entanglement, which means that
the entanglement entropy scales with the volume of the system (increases linearly for
1D systems), then it cannot be efficiently represented using MPS. It is believed that
such states include most excited states, which might be accessed when performing
real-time time evolution. As such, real-time dynamics is often cited as the prime
example for which quantum computers will show a quantum advantage [27].

With regards to real-time dynamics, systems are typically classified as integrable,
thermalizing, or localizing [40]. Integrable systems are very particular in that the
trajectory of a state is closed, resulting in periodic dynamics. However, slight
perturbations to such systems will yield non-integrable dynamics. The majority of
physically relevant systems are non-integrable, which are then coarsely classified as
either thermalizing or localizing.

Thermalizing systems are those for which all initial states, even those far from
equilibrium, will eventually evolve to a state that appears to be in thermal equilibrium
[40–42]. It is believed that thermalization dynamics obeys the volume law. Intuition
suggests that thermalization requires the information of one particle to be spread
across the entire system, resulting in entanglement that scales with system volume.
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Alternatively, one can argue that due to ergodicity, real-time evolution allows one to
access the entirety of Hilbert space, including those with volume law entanglement.
Recently, it was analytically derived that these thermalized pure quantum states
themselves obey the volume law [43]. Furthermore, the authors found that other pure
states with enough scrambling, such as excited eigenstates or states after quenches,
exhibited similar entanglement behaviors.

There do seem to be a few cases in which computing the dynamics is feasible.
For example, in Ref. [44], the space-time correlation functions for a 1-D spin-1
Heisenberg chain were computed using TD-DMRG. The computed dynamics was
essentially evolving a single particle excitation in time, and the system was large
enough that finite-size effects could be neglected. In Fig. 3 of that paper, the authors
plotted the bond dimension required to represent the state (after ignoring singular
values less than some small threshold value) as a function of time. The curve quickly
increased, became flat once themaximum allowed bond dimension was reached, and
then, interestingly, decreased at long times. Additionally, in Ref. [45], the long-time
thermalizing dynamics of the transverse-field Ising model at higher temperatures
was computed using TDVP. As mentioned earlier, TDVP utilizes the Dirac-Frenkel
constraint (conservation of energy), which projects the dynamics onto a manifold
within the original Hilbert space. This guarantees the hydrodynamic behavior at
long-times. The bond dimension required to ensure the correctness of the transport
coefficients is determined by the quantum processes generating the chaos. Both
these works suggest that perhaps the dynamical behavior of thermalizing systems at
long times can be obtained, if the error at intermediate times is small enough. This
observation is also satisfying in that one expects thermalization to yield relatively
straightforward dynamics as one approaches the thermal equilibrium.

Localization dynamics is an active area of research [46, 47]. Intuition might lead
us to believe that localized states will exhibit area law entanglement due to the
finite range of interactions. It appears that there can be localized states that exhibit
volume law entanglement, though the entanglement saturation only occurs at times
exponentially long in ! [48]. The distinction appears to be the type of localization—
either non-interacting Anderson-localized particles or many-body localized states.

In summary, MPS of finite bond dimension � cannot generally capture all time-
evolved states. However, there are certain systems (that exhibit localization) for
which it may be feasible, or systems in which the error is small enough to be
ignored.



118

Further Developments
Over the years, extensions to these algorithms have been made to allow one to
consider other systems like infinite chains [49], chains with periodic boundary
conditions [50], mixed states [51, 52], continuous states [53], and higher dimensional
systems [54, 55].

However, these further developments for higher dimensions and mixed states are
fundamentally limited by the virtual bond dimension.
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