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ABSTRACT

In this thesis, we mainly discuss three topics in theoretical physics: a proof of
the weak gravity conjecture, a basic statement in the string theory landscape using
the black hole entropy, solving the critical $ (3) model using the conformal boot-
strap method involving semidefinite programming, and numerical simulation of the
false vacuum decay using tensor network methods. Those topics cover different
approaches to deep understanding of quantum field theories using concepts and
methods of information theory, and computer science with classical and quantum
computations.
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C h a p t e r 1

INTRODUCTION: ASPECTS OF "CYBERPUNKIAN"
QUANTUM FIELD THEORY

1.1 Space opera and Cyberpunk
Maybe a good way to start this thesis is through science fiction. Generically,
there are many ways to classify science fiction stories1. One example is through
the contents. If a science fiction story is mainly talking about interstellar wars,
outer-space civilizations, and spacetime traveling, it is usually called "space opera".
If a science fiction story is mainly talking about the relationships among digital
technologies, robots, and humans, it is called "cyberpunk"2,3.

As one of the most important subgenres, space opera has a longer history. Currently,
some people believe that it originally appeared in some American magazines in the
1920s. After people understand much better about our universe during and after the
wars, space operas have been significantly developed, especially around the Cold
War. On the other hand, cyberpunkian stories are relatively new. They have been
widely created and discussed after people realize the potential of digital technologies,
computer science, and the Internet. If I am allowed to choose two representatives
for those two subgenres, I wish to choose the film series Star Wars by George Lucas
for space opera, and the novel Do Androids Dream of Electric Sheep? by Philip
Dick for cyberpunk4.

Science, a systematic and fundamental understanding of the nature, and science
fiction, a fantastic imagination of how science and technology could change human
society in the future, might be closely related to the development of human society
itself. I firstly start to understand this when I read the lecture notes, Nature and
the Greeks and Science and Humanism by Erwin Schrödinger [14], who partially
expresses similar feelings from my understanding. During the Cold War, with the

1The classification is in the non-academic sense. For a long time, science fiction novels are not
recognized in the mainstream of literature.

2There are some other topics, for instance, Steampunk. Another more common way to classify
science fiction is through hard or soft science fiction, referring to roughly speaking if the story is
more scientific or more literary.

3Sometimes, cyberpunk describes an icy future world ruled by technology with a flavor of
dystopia. However, we hope to use a broader definition of cyberpunk, that in the possible future,
humanity will coexist in harmony with high technology.

4The film version of it, directed by Ridley Scott in 1982, is the celebrated Blade Runner.
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fierce competition between the United States and the Soviet Union, mankind made
tremendous progress in the field of science and technology. The possible nuclear
war promoted great development of nuclear physics. Related basic sciences, such
as particle physics and collider physics, made great strides. We have established
the Standard Model of particle physics. At the same time, humans are trying to
develop space science in response to possible space races. During this time, the
understanding of general relativity and black hole physics are also significantly
improved. People discovered the laws of black hole thermodynamics and the ex-
istence of Hawking radiation. Later, the thirst for unified theory prompted people
to construct string theory. In the field of science fiction, people create a variety
of space operas, acclaiming their own fantasy about the future. In those fantasy
stories, people conquered the stars, battles broke out on the back of the moon, and
restaurants were opened at the end of the universe. The dolphins left the earth and
told humans, bye, thank you for your fish5. I don’t know if all those stories are really
logically connected, but in practice, they happened at a similar time.

However, after the end of the ColdWar, human history has undergone some changes.
If you ask college students today what kind of STEMmajors earn the most income, I
believe a considerable number of people will answer, computer science or electronic
engineering (see [15]). With the development of Internet technology, the world is
increasingly developing towards the predictions of cyberpunk novels. In 2021
today, the extensive application of statistical learning theory, optimization theory,
and machine learning technology can make computer face recognition possible.
People indulge in the new capital world built by Facebook, Youtube, Amazon, and
Tiktok. Some people are beginning to worry about whether widely used information
technology will affect people’s privacy and freedom within certain limits (see [16]).

At a similar time, physics associated with computers has been fully developed.
Technically, computer programs have revolutionized the research methods of a large
number of physicists. If the Mathematica program has a particularly serious prob-
lem at some point, I believe that a considerable number of high-energy theoretical
physics papers will go wrong. With regard to the direction of computational physics,
some physicists still use lattice gauge theory to accurately calculate the phenomena
of strongly coupled physics, as suggested by Wilson, Feynman, and many other
people. Physics related to strong correlation and complexity, such as condensed
matter physics, cold atom physics, etc., has made great progress. At present, quite

5This is from Hitchhiker’s Guide to the Galaxy by Douglas Adams.
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a lot of this type of research is motivated by so-called quantum computing. This
is a possible next-generation computing technology that utilizes the fundamental
principles of quantum mechanics. Conceptually, computing technology is as insep-
arable as physics, because the principles of physics stipulate the limits of computing
technology occurring in this world. In recent years, people have also tried to dis-
cuss the application of information theory towards physics itself, such as quantum
simulation and black hole information, to be discussed later. In the world of science
fiction stories, from the ancient Blade Runner to the recent Ready Player One, cy-
berpunkian masterpieces are constantly emerging, and gradually constitute one of
the most important subgenres in the field of science fiction.

As a graduate student in physics rather than a sociologist, I can only state some
of the facts I have observed, and I cannot assert the logical connection between
social development, science fiction genre, and physics research. At the same time,
as a theoretical physicist, my job is to try to understand the laws of nature and the
universe. A natural question is, what can the emerging information technology
bring to the development of current theoretical physics? How to use the huge power
of computer science, statistical science, and complexity science based on academic,
industrial and capital interaction, to promote the development of basic physics, and
create a new science belonging to our cyberpunkian era?

Here, I wish to propose a research direction I am currently working on. I call it
Cyberpunkian Quantum Field Theory6.

I am a big fan of quantum field theory itself, which for me, and for many other
people, is synonymous with fundamental physics. Quantum field theory, as a basic
paradigm, could describe almost everything that appears in physics books: particle
scattering, gravity, black hole (at long distance), string theory, condensed-matter,
and the early universe. If physicists finally get to know the Theory of Everything, I
believe a significant portion of it is based on quantum field theory. For me, quantum
field theory is like a space opera. It describes a large number of unsolved secrets
of the universe we live in. In quantum field theory, or in basic physics, you can see
planets collide, particles scatter, and see the formation of black holes and the origin
of the universe. In the world of theoretical physics, there are a lot of unknown parts
waiting for us to explore.

6I am following one of my school sisters, Nicole Yunger Halpern, who used to be one of the core
members in John Preskill’s quantum information group. She created a word, Quantum Steampunk,
for the field called quantum thermodynamics she contributed [17].
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When I use the term cyberpunk, I want to distinguish it from common vocabulary,
the so-called computational physics. Beyond traditional terminology, I hope to
emphasize that cyberpunk quantum field theory can be based on the following
two aspects. First, cyberpunkian science prefers to use information theory and
technology that are cutting-edge and even under development, for instance, machine
learning, optimization problems, applied mathematics and statistics, and quantum
computing. Secondly, I hope that cyberpunkian physics is not only practical, but
also theoretically helpful to physics itself, or even vice versa. Just as superstring
theory expert Edward Witten does for the mathematical community, we could also
using physics theory to guide possible computer science discoveries.

In the following discussion, I hope to describe the possible prospects of this science.
Of course, technically, these stories are already happening. The Large Hadron
Collider (LHC) operating in Europe is constantly usingmachine learning algorithms
to process data on particle collisions. Dark matter detection satellites operating in
the sky will also cooperate with companies in industry to deal with scientific issues
of interest (see for instance [18]). However, as a theoretical physicist, I hope that in
the future, people will be able to do more in-depth research on theoretical physics
issues related to cutting-edge information technology. At least, I think this forms
part of physical science in our generation.

In the following discussion, I will use the following three simple examples to
demonstrate that cyberpunkian quantum field theory may become an important and
effective science. It includes quantum simulation of quantumfield theory, large-scale
optimization of conformal field theory, and discussion of the relationship between
quantum field theory landscape and big data science. I will also do a simple non-
technical discussion of quantum field theory, and a simple outlook on this related
issue, including black hole thought experiment and quantum information science,
It from qubit and the non-perturbative bootstrap, Church-Turing Thesis, Computer
Science(CS)-inspired physics and physics-inspired CS, possible future of classical
and quantum technology, and finally, companies and colliders.

As a science fiction lover, I often think about such problems. What will the science
I do look like in two hundred or one thousand years? Will it still be meaningful?
From scholasticism to modern science, we take nearly three hundred years. The
popularity of the internet is what happened in the past three decades. What will the
world look like in two thousand years? Will the banking industry be completely
changed by quantum computing? Will humans make a collider as big as the Milky
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Way? Will the military use Higgs particles as weapons?

Wring this thesis, in a sense, is to expressmy sincere respect for some great scientists.
Lev Landau, Enrico Fermi, Richard Feynman, StevenWeinberg, KenWilson, Chen-
Ning Yang, Steven Hawking, Edward Witten, Alexander Zamolodchikov, etc., and
nowadays in our quantum era, Alexei Kitaev and John Preskill. They established
the deepest human understanding of the universe during those prosperous years, and
defines the science of our time. I think that the current status of physics has given
me some opportunities for fledgling young people. To me, traditional physicists
are like hackers. They discovered the secrets of this world through various means.
Cyberpunkian physicists seem to try to build a completely new, Turing-complete
world. For me, they are all important sciences. Maybe one day, when people can
find a variety of new particles on the collider, reach the boundary of the black hole
horizon, or freely edit topological quantum qubits, some of them will think that,
what we are doing currently, are treasures.

1.2 Quantum field theory
In order to discuss cyberpunkian quantum field theory, I will first introduce what
quantum field theory is. Here I will provide a non-technical introduction to quantum
field theory.

So what is quantum field theory? A possible generic description is that it is a
quantum formulation of continuum physics in the spacetime. Consider that we have
complicated interactions among some atoms and molecules placed discretely in the
spacetime. There are physical laws governing the forces, for instance, the Van der
Waals force. However, if we feel it is too complicated to keep track of interactions of
all particles, we could zoomout and askwhat the emergent description iswhenwe are
looking at a length scale that is much larger than the lattice spacing. Sometimes we
are able to arrive at a beautiful emergent description, for instance, if those molecules
form a liquid, which is called hydrodynamics. In this case, hydrodynamics is a
field theory. When the full procedure is treated quantumly, for instance, if we are
considering some interacting quantum harmonic oscillators, the description is called
quantum field theory, where we are assuming that there are an infinite number of
quantum harmonic oscillators located in a continuum spacetime.

A deep interpretation between the lattice model and the quantum field theory de-
scription is given by Ken Wilson, and the above process is called renormalization.
People find that the renormalization process occurs in almost all phenomena in
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our nature: statistical physics, string theory, gravity, particle scattering, etc.. In a
sense, all physical theories should look like quantum field theory in a certain limit.
Quantum field theory is, in fact, one of the deepest understandings human beings
have obtained about our nature.

There are many possible quantum field theories that describe different phenomena
in our world. One basic method of classifying quantum field theories is based on
the strength of couplings: weakly-coupled quantum field theory, strongly-coupled
quantum field theory, and somewhere in the middle. Non-technically speaking,
strongly-coupled theory means that interactions among different local degrees of
freedom in the spacetime are strong. Imagine that we are starting from a free theory,
which means no interaction. The theory could be described easily by quantum
harmonic oscillators located on each site. Then we start to turn on the interaction
in some way, where those small harmonic oscillators start to couple with each other
or with itself in some non-trivial ways. When the extra coupling we have added
is small enough, we could use perturbation theory to solve the system, given the
fact that we already know the free theory data pretty well. When the coupling is
strong, the usual perturbation theory breaks down, and it is not very easy to describe
such physics in the continuum spacetime description. Now let us imagine that we
turn on the coupling towards some extremely strong regime, then something funny
will happen. For instance, the perturbation on one side of the system could quickly
propagate towards the other side. This is somewhat similar to the critical point of
a phase transition, where the system is changing from one phase, for instance, the
solid state, towards the other phase, for instance, the liquid state. For a second-order
phase transition, where non-technically speaking, some physical variables transform
continuously around the critical point, one could use strongly-coupled quantum field
theory to describe it. Generically, it is called conformal field theory.

The above procedure during increasing interactions, could be described by the
theory of renormalization group. For a weakly-coupled theory, we have some
generic frameworks to describe it based on perturbative expansions. We have some
physical interpretations for terms appearing in the expansion, which is called the
Feynman diagram. For a generic theory where the coupling is strong enough, it
is usually very hard to describe if the theory is very general. Some physicists
invent smart ways to solve the theory in some special cases. For instance, when
the theory has conformal symmetry, which is roughly speaking, scale invariance
besides the usual spacetime Lorentz symmetry, we could use the symmetry, and
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some other internal constraints to partially, or even completely, solve the theory
[19]. One could try some other similar strategies when the theory is integrable,
namely, when it contains infinite number of conserved charges [20]. When the
theory is supersymmetric, sometimes one could do perturbative expansions easier
because in this case the Feynman diagramsmight have some cancellations andmaybe
one could use it to solve part of non-perturbative physics. Some other methods, for
instance, the duality between weakly-coupled gravitational theories and strongly-
coupled quantum field theories without gravity, which is called holography or the
AdS/CFT (Anti-de Sitter Space/Conformal Field Theory) correspondence (we will
mention it later) [21], might shed light on solving strongly-coupled quantum field
theories. All of them are still active research directions in theoretical physics.

However, people still don’t have a very good understanding of strongly-coupled
quantum field theory in general. For instance, the strongly coupled regime of
quantum chromodynamics(QCD) is still not clearly understood, even if we have the
above theoreticalmethods at hand. One couldmeasure several properties of strongly-
coupled QCD in some low energy colliders, and it is extremely hard to predict some
bound states using theoretical calculations from quantum field theories. The Yang-
Mills existence and mass gap problem defined as one of the Millennium Prize
Problems is also about field theories beyond the weakly-coupled regime, and it is
still an open problem even without a very precise mathematical definition. The high-
temperature superconductivity phenomenon might also admit a low energy effective
field theory description around the critical point of their phase diagrams, but it is
still far from a very concise formulation and a reasonable prediction. I probably
could list many problems of this type, involving theoretical understandings and
phenomenological predictions of quantum field theories. All of them are closely
related to the universe we live in, and all of them seem challenging. Maybe for
some people, it is fair to say that we still don’t understand quantum field theories,
although it is already at least half a century after its birth.

Another particularly important example is string theory, which is a candidate for
a consistent theory that could describe everything appearing in this world, from
quantum black holes, big bang physics, to subatomic, atomic, andmolecular physics.
String theory itself could be formulated in a quantum field theory manner. In
particular, quantum black holes could also be understood as a specific strongly-
coupled quantum field theory phenomenon. If we address the weakly-coupled limit,
one could compute graviton exchange in a semiclassical fashion of quantum field
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Figure 1.1: A remarkable prediction from the lattice gauge theory community.
Some light hadrons have been predicted using lattice QCD. This is from Figure 3 of
[1].

theory in the curved spacetime, which is called gravitational waves.

Okay, so some people may say that if pure theoretical methods fail, why we don’t try
numerics? This is a very fair statement, and yes, we have already tried. Ken Wilson
and other people suggest that maybe we could solve strongly-coupled quantum field
theories by making a lattice regularization. That is, trying to discretize your space
in a lattice. One could try to solve the theory in the lattice, and take some reasonable
limits towards the continuum. For gauge theories used in particle physics, this
subject is usually called the lattice gauge theory.

Nowadays, the idea about regularizing field theories in a lattice has made significant
progress. In Figure 1.1, where I am quoting Figure 3 of [1], people could match
some experimental observations about the light hadron spectrum with QCD by a
first-principle calculation. It agrees very well! This type of agreement could not
only show powerful predictability of quantum field theories but also show the fact
that nature is a good computer!

However, despite its glorious success, there are several fundamental limitations to
the current algorithms. The main problem is that, in principle, quantum field theory
contains an infinite large Hilbert space on each site located in the spacetime. This
demands a huge amount of computational resources! Here, I am claiming that,
in order to solve more important problems, we have to be smarter: the numerical
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challenge we face on simulating and predicting quantum field theories forces us
to use the most cutting-edge methods from information technology, while some
novel, fundamental understanding of quantumfield theories and fundamental physics
themselves will come from computer science, classical or quantum. This is the place
where cyberpunkian physicists should go.

In the following discussions, I will mainly describe three cyberpunkian research
directions I have worked on: simulating quantum field theories using quantum
devices, conformal field theory and large-scale optimization, and string theory
versus data science. Later, I will discuss some general comments about fundamental
physics and information technology.

1.3 Simulating quantum field theory using quantum devices
Going back to the story of lattice gauge theory, here I am pointing out some dif-
ficulties in solving quantum field theories by putting them in a lattice only with a
classical computer and brute force methods.

The first problem is the computational power. Lattice quantumfield theory has a very
large Hilbert space. In principle, we have a continuum number of sites located in the
spacetime, while each site has an infinite Hilbert space dimension. By truncating
the local Hilbert space and choosing a cutoff for lattice spacing, we are able to solve
the theory in a finite, but large, Hilbert space dimension, with proper treatment of
an extrapolation of numerical results towards the continuum. This is a very high
computational cost. Firstly, it is extremely hard to do it naively using the way of
exact diagonalization, namely, diagonalize a large Hamiltonian directly. Secondly,
one could try to measure some correlation functions using random algorithms, for
instance, some versions of Monte Carlo methods. This is usually cheaper than
exact diagonalization, but it is still hard to operate due to a large number of sites
and a large number of configurations to sample. The second problem is the sign
problem. For fermionic theories, when we compute some predictions using Monte
Carlo method by doing some samplings of path integrals, we will often encounter
oscillating amplitudes, making the result hard to converge. Those problems have
challenged the current lattice gauge theory community for a long time, and people
find that it is extremely hard to make predictions, for instance, for real-time physics.

Thus, in order to solve quantum field theory in general, especially for strongly-
coupled theory in a lattice, one might consider some potential future computational
devices. One could imagine that the computation could be done in a quantum
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computer, which could simulate physical process of quantum field theory itself. I
find that many quantum computing people like to quote what Richard Feynman said
in his paper [22], and I am happy to quote it again:

. . . trying to find a computer simulation of physics, seem to me to be an
excellent program to follow out.. . . and if you want to make a simulation of
nature, you’d better make it quantummechanical, and by golly it’s a wonderful
problem, because it doesn’t look so easy.

Richard Feynman is, at least partially, a particle theorist. In fact, as indicated from
his paper [22], it seems that one of the earliest motivations for quantum computing
is to simulate quantum field theories. (See a review article given by John Preskill
[23].)

Nowadays, in 2021, quantum computing becomes one of the most exciting scientific
areas, receiving significant attention from academia, industry, government, and the
whole society. John Preskill [24] announced that nowadays we are living in a
quantum era which is called NISQ (Noisy Intermediate-Scale Quantum), where a
quantum computer with 50-100 qubits may be able to perform tasks that exceed
the capabilities of today’s classical digital computers, but the noise of quantum
gates will limit the size of quantum circuits that can be reliably executed. In
fact, Google already claims that they have achieved quantum supremacy, that is,
quantum computers can accomplish tasks that classical computers cannot [25].
For simulating quantum field theories themselves, quantum computing methods
could provide certain advantages against two main problems I have mentioned
before for simulating quantum field theory in a classical computer. Firstly, quantum
computing is proceeded by quantum states made by qubits, and unitary evolution
made by unitary operators acting on the Hilbert space. Roughly speaking, the space
it contains, is naturally, exponentially large than classical computation. Secondly,
quantum computing is able to solve the sign problem naturally [26], which might
potentially remove the sign problem difficulty appearing in the fermionic quantum
Monte Carlo simulation.

One early remarkable quantum algorithm to simulate quantum field theories is called
the Jordan-Lee-Preskill algorithm (see the original papers [27, 28], and a series of
related papers [29, 30]). This type of algorithm contains state preparation, time
evolution, and measurement of some specific quantum field theory tasks happening
at strong coupling. One could also associate the above algorithm into some certain
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complexity classes [30]. This algorithm, especially the time evolution of the quan-
tum field theory Hamiltonian, is shown to be polynomial in system size, sharpening
the potential quantum advantage for simulating quantum field theories in quantum
computers.

In the above framework, simulating quantum field theories could be generally re-
garded as simulating some specific Hamiltonians. Thus, it is natural to utilize
methods from general Hamiltonian simulations developed by the quantum algo-
rithm community. When simulating a quantum Hamiltonian, one could roughly
classify quantum simulation algorithms in the following three types: digital, ana-
log, and variational quantum simulation. The above Jordan-Lee-Preskill algorithm
is a typical algorithm for digital simulation, where we assume a possible universal
quantum computer when we are constructing the algorithm. For analog simulation,
the algorithm is developed by constructing an actual Hamiltonian in the cold-atomic
lab, for instance, the Hamiltonian made by Rydberg atoms. Variational algorithms
are somehow in the middle: it will make use of variational methods, only covering
a subset of the whole Hilbert space. Variational algorithms might be constructed
in a hybrid quantum-classical way, which is made suitable for near-term quantum
devices. All of them are potentially useful for simulating quantum field theories.

When constructing quantum simulation algorithms or actually doing simulations
in a quantum computer or in the lab, classical simulation might play an important
and specific role. Firstly, quantum-classical hybrid algorithms are widely used.
Especially in the near-term, quantum algorithms are only helpful to speed up cal-
culations in certain steps in a whole classical algorithm. Those classical pieces
may not be replaceable. Secondly, classical algorithms might be helpful to find
limitations of classical computations, and understand conceptually and technically
where quantum algorithms might play a role. Here I wish to mention specifically
two types of algorithms: matrix product state (MPS) algorithms and semidefinite
programming (SDP) algorithms. Of course, both of those algorithms have very
wide applications that are even beyond the scope of physics. MPS algorithms are
helpful for identifying some low energy states of quantummany-body systems in the
1+1 dimension, which could have emergent field theory behaviors around critical
points. SDP algorithms are basics of convex programming that are widely used in
operations research and optimization, which are also basic algorithms for solving
higher-dimensional conformal field theories numerically (we will describe this in
more detail in the next section). Both of them are important classical algorithms. It
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is important to understand their advantages and limitations comparing to quantum
computation, where quantum field theories are perfect playgrounds to test them.

I also wish to mention here part of my own contributions. With one of my ad-
visors, John Preskill, I have been exploring quantum simulation of domain wall
scattering in 1+1 dimensional quantum field theories. Domain walls, or kinks, in
the 1+1 dimensional scalar field theories, are the simplest examples of topological
defects. They are like walls splitting two different field configurations in the theory.
The existence of domain walls is closely related to vacuum decay in cosmology,
sharpening its relevance to the real world. Historically, there are many authors who
studied kinks in quantum field theories at weak or strong coupling (for instance,
[31, 32]), but strongly-coupled kinks are extremely hard to solve at strong-coupling
for non-integrable, 1+1 dimensional quantum field theories. In the work with John
Preskill and Burak Şahinoğlu, we are trying to construct theoretical algorithms to
simulate scattering process of kinks, while in the work with Ashley Milsted, John
Preskill and Guifre Vidal, we are trying to study analog models in spin chains and
simulate the kink scattering process in the MPS approximation [2, 3]. (see Figure
1.2 for an artistic illustration. The work [3] is presented in Chapter 4 of the thesis)

Simulating quantum field theories are generically helpful for studying quantum field
theories appearing in the formal high energy theory community, for instance, theories
with supersymmetry, in higher dimensions or containing gravitational sectors. One
possible ambitious goalmight be studying large-# supersymmetric gauge theory and
trying to verify Maldacena’s conjecture about the AdS/CFT correspondence [21].
It might also be helpful for studying high energy phenomenology, experiments
or observations, for instance, solving QCD in the strongly-coupled regime. Those
studies might also benefit the community of quantum algorithms, which will provide
novel, clear tasks, cool applications, and good targets for benchmarks. Finally, it
might be helpful for conceptual understanding of quantum simulation in our physical
world, namely, the Church-Turing Thesis. We will discuss those issues later.

1.4 Conformal field theory and large-scale optimization
In this section, we will move to another topic that is more related to classical
computation instead of quantum. That is, conformal bootstrap and its relation to
large-scale optimization.

We discuss before the concept conformal field theory, which appears in some sta-
tistical models as a low energy effective description around the second-order phase
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Figure 1.2: An artist’s creation of the quantum simulation projects of kink scattering
[2, 3]. The depiction of characters is based entirely on their images in reality. From
left to right: Burak Şahinoğlu, Ashley Mislted, Junyu Liu, John Preskill, and Guifre
Vidal. Other ingredients include cosmic bubbles (physical objects that are similar
to kinks), a spacecraft, a cat (Schrödinger’s cat), and the Bell state. The figure is
credited to Jinglin Nicole Gao. Figures shown in the screen utilize the figures in our
scientific paper [3].

transition. Around the critical point of some statistical models, partially because of
the scale invariance, the spacetime symmetry of the theory has been extended from
the usual rotational or Lorentzian symmetry towards a larger symmetry: conformal
symmetry7. Such a theory might be a little counter-intuitive: one could make a
transformation from the far infinity to the origin of the coordinate system, and the
action of the theory is still invariant. Thus, conformal field theories are used to
describe violent behaviors around the critical point, which experiences a drastic
change between different two phases. The behavior is universal, which means that
multiple microscopic models might correspond to the same conformal field theory.
The low energy spectra of conformal field theories will provide some universal num-
bers that are measurable in the statistical system, which are called critical exponents.
Thus, multiple microscopic models might share the same critical exponents. One
standard example is that the phase transition of the boiling water shares the same

7Although there are still some technical differences between scale invariance and conformal
invariance.
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universality class with the 3d Ising model, a model made by physicists to describe
the dynamics of magnets. Because of universality, conformal field theory is a very
generic concept that could be applied in many places that admit second-order phase
transitions. Moreover, conformal field theory technologies are directly applicable
to string theories, since the worldsheet theory of string theories is conformally
invariant.

Non-trivial conformal field theories are typical strongly-coupled quantum field the-
ories, making them very hard to solve. However, conformal invariance strongly
constraints the behaviors of the theory. For instance, some correlation functions
are directly constrained as some specific forms. Some people believe that confor-
mal field theories, and some other strongly-coupled field theories, are fragile in the
following sense. These theories are like precise gears: as long as few conditions
are input, the strong limitation of conformal symmetry will isolate or even uniquely
determine these theories. This philosophy of understanding quantum field theory
is called bootstrap, a possible way of understanding strong coupling without really
quantize those theories from classical actions.

The bootstrap philosophy in particle physics is studied widely in some certain time
scales around the last century (for instance, [33, 34]), but quickly decays with many
open problems unsolved, replaced by related studies about QCD. However, recently,
the idea of bootstrap in field theories has returned to be a hot topic in the high
energy physics community, since we become more cyberpunkian. People notice
that one could solve bootstrap equations, the consistency equations appearing in
strongly-coupled quantum field theories, by optimization technics. For instance,
bootstrap equations in conformal field theories are identities where a sum over
contributions from different sectors of the theory is equal to zero, which looks like
a hyperplane in some higher dimensional Euclidean spaces. Roughly speaking, the
hyperplane could be located by finding some other optimal hyperplanes cutting the
space towards small pieces, while themethods for finding optimal planes are standard
in optimization and operations research: the semidefinite programming (SDP). The
modern technologies of computer science allow people to work on optimization
problems numerically at large scale, making numerical bootstrap possible (see a
summary by [19, 35]). In fact, conformal bootstrap holds theworld record for solving
the most digests of the Holy Grail problem in statistical physics: determining the
critical exponents for the 3d Ising model [36]. Considering the fact that the 3d Ising
model shares the same critical exponents with the boiling water, and that water is
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the basic substance of life, we can even use those bootstrap results about the critical
exponents to communicate with outer space: If an extraterrestrial life responds to
the critical exponents we sent about boiling water, we might think that the alien has a
high level of civilization because they can use conformal field theory and large-scale
optimization to accurately calculate the critical exponents. Furthermore, numerical
bootstrap using large-scale optimization inspires a flow of theoretical research about
conformal field theory (see, for instance, [37]), which are helpful for other parts of
theoretical physics like string theory.

The study of the conformal bootstrap is also helpful for experiments since quantities
like critical exponents are universal and measurable in principle. Historically, there
is an interesting experiment happening at the Space Shuttle Columbia measuring the
critical exponents of superfluid helium phase transition. The experiment is claimed
to be the most accurate measurement of critical exponents in human history up to
now8. However, the experimental results from the measurement are inconsistent
with the theoretical Monte Carlo simulation by 8f. Recently, a collaboration in
the conformal bootstrap community, including me, successfully verifies the theo-
retical result and significantly improves the accuracy of Monte Carlo simulation.
Although the explanation of the inconsistency between theory and experiment is
still unknown, this work shows that the conformal bootstrap method is useful for
predicting important real-world physics. (See the papers [4] and [5], and an artistic
description of the collaboration 1.3.) In fact, further investigations by us in [38]
show that the three-dimensional Heisenberg magnets are unstable against cubic
anisotropy by investigating the conformal O(3) model, and we expect that there is
an ocean of real-world problems where the conformal bootstrap method is able to
solve (the work [38] is presented in Chapter 3 of the thesis).

Of course, solving conformal field theories using the bootstrap philosophy is closely
related to cyberpunkian physics, where large-scale optimization method associ-
ated with hardcore cluster computation plays a crucial role. Nowadays, conformal
bootstrap becomes one of the most important mainstream in the area of theoreti-
cal physics, which has wide potential applications among string theory, condensed
matter physics, and particle physics. In the algorithm level, Simons Foundation
launches a collaboration, the non-perturbative bootstrap, to support our research,
and we have a professional soft engineer, Walter Landry, helping us make the best
software for solving SDPs for our physical purpose. Although we believe that we

8The measurement is happening in a space shuttle because the measurement involves the heat
capacity at constant pressure, which requires a zero-gravity environment to mitigate the error.
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Figure 1.3: An artist’s creation about the superfluid helium conformal bootstrap
project [4] and [5]. The depiction of characters is based entirely on their images
in reality. From left to right: Shai Chester, David Meltzer, Junyu Liu, Walter
Landry, Alessandro Vichi, David Poland, David Simmons-Duffin, and Ning Su.
Other ingredients include islands (a theoretical physics terminology referring to the
isolated region in the theoretical space using the bootstrap method), a spacecraft
(referring to the Space Shuttle Columbia experiment), a diagram as stars in the sky
(referring to the conformal block expansion, the basics of the bootstrap equation in
the conformal field theory). The figure is credited to Jinglin Nicole Gao.

are currently using the most cutting-edge optimization results from the operations
research community [39], the current algorithms still have an opportunity for po-
tential significant improvement. We also wish to mention that SDP is an extremely
useful algorithm that admits a large quantum speedup. Thus, conformal bootstrap
might potentially provide clear physical applications for the quantum SDP solver,
and will be helpful for benchmarking quantum algorithms and devices [40].

1.5 The theoretical landscape and data science
In this section, I wish to comment on the landscape of quantum field theories and
its relation to data science.

Quantum field theory (or the whole fundamental theoretical physics), at least for
many people, including me, is an extremely difficult subject. Theorists have con-
structed a large number of quantum field theories, which describe some general
phenomena in this world or a certain universe. Some theories live in high dimen-
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sions or some highly-curved spacetime that humans cannot easily understand. The
various counter-intuitive phenomena appearing in the strongly-coupled theory make
it more difficult for physicists to control. Some quantum field theories cannot even
be precisely definedmathematically. Moreover, quantum field theory can havemany
parameters and many possible descriptions, which may lead to the same or different
predictions. I think, at least for me, many problems cannot be thoroughly studied
in my whole life. If I am supposed to give a name for the space of quantum field
theories, I will call it the landscape, a common term used by high energy physicists.

Another difficulty of quantumfield theory lies in its experimental difficulty. Probably
the best way to verify quantum field theory in the subatomic world is various high-
energy physics experiments, especially collider experiments. Experimental results
from colliders could verify or expand predictions from some quantum field theories
by colliding subatomic particles at some certain energies. This is an extremely
complicated process. From the various nuclear resonance states of the low energy
collider to the hadron jet on the hadron collider, physics involved in those processes
is very difficult to calculate and measure. This often requires a huge amount of
engineering and the efforts of countless researchers to achieve.

Perhaps physicists should thank themselves for being in this cyberpunk era. The
famous hadron collider, LHC, generates a lot of data every day. A considerable
part of the data will be processed by professional data scientists or particle physi-
cists. Therefore, big data science is an important means of contemporary particle
physics research. For example, machine learning is becoming an important means
of processing experimental data of particle physics. In terms of phenomenological
theories that are closer to experimental observations, data science has also gradually
become an important way to explore the predictions brought by different effective
field theories and Wilson parameters, or to simulate experimental data to recon-
struct particle resonance states. I here cite two related works on experiment and
phenomenology [41, 42]. Interested readers can easily find more works on the
Internet.

Here, I prefer to discuss a story that is mainly about formal high energy theory.
Perhaps themost sophisticated networks of quantumfield theories are constructed by
string theorists. String theory itself could also be understood as a paradigm adapting
numerous quantum field theory descriptions. One way to quantify the complexity of
string theory is to count its vacua. In some simplest quantummechanical models, we
are familiarwith, for instance, hydrogen atomswithCoulomb’s force, the degeneracy
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of the vacuum states is usually very few. However, there is potentially a very large
amount of vacuum degeneracy in string theory. There are so many choices of
microscopic theory, compactification manifold, bundle or brane configuration, flux,
etc. Some people believe that the total number of string theory vacua might be
finite, and the estimate is usually huge numbers, for instance, 10500 (see some early
papers, [43–45]).

The gigantic possible choices of string theory vacua seem leading to many different
possibilities of physical predictions, for instance, different realizations of effective
field theories at low energies, and different possibilities of constants appearing in
our universe, for instance, the mass of the electron. The physical interpretation of
the string theory landscape and its possible relationship with some illegal theories
which could not correspond to any realizations of quantum gravity, are still open
problems. People call those the collection of illegal theories the swampland.

The study of string theory landscape and the swampland is a very difficult subject,
partially due to the complexity of string theory itself. If we assume that string theory
is the Theory of Everything, can it lead to a consistent description of our world and
our energy scales, for instance, the standard model? If so, how is it located in the
string theory landscape?

Currently, many people are very interested in the so-called swampland program.
This is a research direction that is aiming to possible interpretations of the boundary
between the landscape and the swampland (which is called the swampland criterion).
In fact, the space of the swampland is also very large and nontrivial. There are many
low energy effective actions that may not be allowed by any formulations of string
theories, and it is very important to understand why. Currently, people formulate a
large web of conjectures and statements about the landscape and swampland and try
to test them by explicit examples, physical or mathematical proofs. (see Figure 1.4).
One of the most important statements among so many swampland conjectures is
called theweak gravity conjecture. The statement is that for theories in the landscape
allowing gauge symmetry, they have to allow quantum states that are sufficiently
charged. Roughly speaking, that is to say, gravity is always weak compared to the
electromagnetic force. This could serve as a swampland criterion. In the work
[46], with Clifford Cheung and Grant Remmen, we prove this statement for a very
generic setup of gravitational theories containing charges. We show that the weak
gravity conjecture naturally follows from the saddle point analysis of black hole
solutions in the gravitational path integral, which could be partially understood as
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Figure 1.4: An illustration of the string theory landscape and the swampland. This
is from Figure 1 of [6].

an infrared consistency requirement of the low energy effective description of string
theory (The work [46] is presented in Chapter 2 of the thesis).

Despite some partial theoretical success, the landscape is still extremely hard to
study. Even if we could formulate conjectures, it is very hard to test them among
10500 different vacua. In fact, this huge number is larger than the number of atoms
in the whole visible universe. So can we finally study them towards the bottom, and
finally find a successful explanation of our universe?

My personal view is that maybe currently some of us could also stick on pure theo-
retical research, but eventually, maybe we have to rely on cyberpunkian technologies
to find the final answer. The data space is too large, but in an optimistic point of view,
I think using data science like technics about machine learning, it is not hopeless to
find the answer accurately. Let me give an example of Go. We could roughly count
its complexity as the following: notice that the standard Go board has 361 points, so
we could have an estimate of possible methods for placing black and white stones
as 361! ∼ 10678, which is also a very large number. However, machine learning
algorithms could still handle Go right now, and we all remember the famous event
in 2016, where the computer program AlphaGo beats the best human player Lee
Sedol. Maybe one day, we could use machines to resolve all puzzles in quantum
field theory and string theory. One could regard all theoretical efforts we have made
now as training data, and currently, we are still mostly trying to produce valuable
training data. Eventually, we might need a machine to resolve the puzzle of our
universe. I think maybe machines are good at questions of the following type: Can
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we predict the probability of obtaining a Standard Model gauge group at low energy
inside the string landscape?

In fact, there are already someworks aboutmachine learning and string theory. Some
of the early comments about string theory landscape and computational complexity
are made by Michael Douglas, one of the founders of the concept string theory
landscape (see [47–49]). I used to think about a related problem if one could use
neural networks to predict random inflationary potentials induced by string landscape
in the early universe cosmology when I was an undergrad student in 2014, and write
a paper in 2017 [50]. Nowadays, some string theorists and data scientists are now
actively initialization collaborations and obtain good results to explore the string
theory landscape using cyberpunkian tools (see for instance [51–53]). I feel that it
will be great where people might potentially gain great insight inside the landscape
from those fancy machines.

1.6 Some comments
Finally, we will arrive at some comments about physics and computer science.

Some physics
Black hole thought experiment and quantum information science

There is a particularly interesting direction appearing recently addressing the con-
nection between quantum black holes, spacetime and quantum information science
in the high energy physics community. Here, we will review some recent develop-
ments in this direction, and address its connection with cyberpunkian quantum field
theory.

After Hawking discovered the area law formula and information paradox of black
holes [54, 55], understanding quantum information content in the quantumblack hole
and its radiation process becomes a Holy Grail of theoretical physicists. Partially
based on the observation of Hawking, the work of Juan Maldacena in 1997 [21] and
other related works formulate a greater picture that connects a higher-dimensional
quantum gravitational theory and a lower-dimensional quantum field theory living
in the boundary of the spacetime. This proposal, which we call holography or
AdS/CFT, has some explicit realizations in string theory and becomes a compelling
paradigm for a theory of quantum gravity. In 2006, Ryu and Takayanagi proposed
a formula that connects quantum entanglement in the boundary theory towards
the extremal surface in the quantum gravitational system [56]. Further connections
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include the following: the nature of theRyu-Takayanagi formula could be understood
in the language of quantum error correction [57]; quantum black holes could quickly
scramble the information and recovery of black hole information from the Hawking
radiation could be interpreted from the quantum Shannon theory [58]; the quantum
complexity of quantum states could be understood from the gravitational action or
spacetime volume in some circumstances [59]; andmany other amazing discoveries.

Recent activities in the theoretical physics community about the connection between
quantum information theory and quantum spacetime has a slogan, It from qubit
[60]. There is a productive collaboration named by this slogan, funded by Simons
Foundation, focusing on leading research along this direction. The philosophy
behind this seems to imply that all realities in this world, including spacetime,
matter, and energy, are inextricably linked to quantum information. In my opinion,
this can also be regarded as part of cyberpunkian quantum field theory. After all,
a considerable part of this picture needs to be explained by some weakly-coupled
or strongly-coupled quantum field theories. In this process, first of all, quantum
information theory, or computer science in general, play a heuristic role in the study
of quantum gravity. Second, information loss is not only a quantum information
process but also a physics process, so describing this process requires the organic
cooperation of computer scientists and physicists. Finally, physics, in turn, inspires
some results of quantum information, such as guiding the establishment of some
new properties of quantum error correction codes.

There are many works currently in this field are completely about black holes.
However, if we are tired a little bit about black holes, we could consider quantum
cosmology, another interesting and possibly observable resource of quantum gravity.
Recently, there is a new version of holography beyond the usual asymptotic AdS
boundary condition, which is called )) holography (see [61, 62]) where I help
established, that is potentially useful for the theoretical study of de Sitter space and
quantum simulation of quantum cosmology (see [63–65]).

It from qubit and the non-perturbative bootstrap

At the same time, I would like to mention again another Simons Collaboration
project that is going on almost simultaneously, the non-perturbative bootstrap [66].
The research I mentioned earlier about the relationship between conformal field
theory and large-scale optimization is one of the most important components of this
cooperative program. Up to now, this plan also includes some other parts, such as
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S-matrix bootstrap, Hamiltonian truncation, and some other supersymmetric and
string theory research. Some of them also use large-scale optimization methods.
Their common purpose is probably to use the bootstrap method to solve a large
number of non-perturbative quantum field theory related problems.

In my Ph.D. research career, I am very lucky to join these two great research projects
at the same time. One of my Ph.D. advisors, John Preskill, is the leader of it from
qubit collaboration. My other doctoral advisor, David Simmons-Duffin, is one of
the main forces of the non-perturbative bootstrap. Their profound wisdom and
research style deeply influenced me. I realize that I am in a lucky middle position
and had the opportunity to learn the core content of these two sciences.

Obviously, these two plans are complementary. For example, conformal field theory
is actually the boundary theory of quantum gravity, so conformal bootstrap is likely
to be a concrete realization of some black hole information problems. In a sense, the
cyberpunk quantum field theory I studied can be regarded as a cross between these
two sciences. It is somewhat different from the two, but it can also complement each
other and form part of a larger picture of theoretical physics and computer science.

For example, a considerable part of the research on it from qubit is based on toy
models of quantum circuits, but I hope to generalize them as hard-core field theory
stories. Unlike the problem of formal theory that it from qubit mainly focuses on, I
also hope that we can discuss some problems that are closer to real experiments or
observations, such as particle phenomenology, cosmology, and statistical physics.
Furthermore, I do not want to use only quantum information tools, but more general
computer science, such as data mining andmachine learning. These can be regarded
as the differences between it from qubit and cyberpunkian quantum field theory.

On the other hand, my main research direction and the non-perturbative bootstrap
have the following differences. First of all, researchers of the non-perturbative
bootstrap tend to use the field theory method, but I also hope to combine the field
theory method with the lattice-based method and make them complementary. On
the other hand, the non-perturbative bootstrap tends to use more theoretical research
methods, but I also hope to extend these issues to experimental simulations, such
as experiments on quantum devices based on cold atom physics, or demonstrations
of some thought experiments in conformal field theories, like conformal collider
physics, in the lab. Finally, at present, the non-perturbative bootstrap technology
mainly adopts classical computing, but I also tend to extend them to the field of
quantum computing, and moreover, push the algorithms used in the cutting-edge
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quantum field theory research towards the industry level.

Church-Turing Thesis in 2021

In addition, I hope to discuss a more metaphysical issue that has emerged in recent
years in the physics community, namely, the research on the Church-Turing Thesis.

A thesis is not a theorem, it is just a proposal or a conjecture. In other words, it
may be right or wrong. The Church-Turing thesis is an argument about the Turing
machine’s ability to interpret the world. We will use the original words by Susskind
in his recent paper [67]

Thesis 1. Any computation that can be done by a physical system can be done by a
Turing machine.

The Church-Turing thesis is believed to be correct. However, the thesis itself does
not really address anything about the efficiency of the computation. When we are
addressing the efficiency of the Turing machine, we sometimes say that the thesis is
extended. In fact, we have the following quantum-Extended Church Turing thesis.

Thesis 2. Any calculation that cannot be done efficiently by a quantum Turing
machine (or quantum circuit), cannot be done efficiently by any physical system
consistent with the laws of physics.

When we are addressing the complexity or efficiency of our computation in a quan-
tum circuit, the above thesis is highly informal and needs to be formalized. For
instance, the efficiency, which means the number of basic operations in the quan-
tum circuits, seems to be dependent on the choice of the time coordinate, and thus
inconsistent naively with special or general relativity. In fact, there are construc-
tions in the general relativity, where we call the Malament-Hogarth spacetime, such
that the halting problem could even be solved [68] (See a related discussion by
[69] about computability and summation over topologies in the gravitational path
integral). Secondly, there are confusions about holographic duality and quantum
Church-Turing Thesis: It seems that measuring entanglement entropies is hard, but
measuring area of the extremal surface is easy; It seems that measuring computa-
tional complexity for quantum states is hard, but measuring volume or action in the
gravitational theory is easy. But based on holographic correspondence, entropies
and areas are connected, as complexities and volumes are also connected. So what
is the magic? Is it because the holographic mapping itself is computationally hard,
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or it is a violation of the quantum-extended Church-Turing Thesis? The situation
becomes more intriguing when the gravitational system involves a black hole, and
the answers towards this question are still not completely known [67, 70–72].

Here, I wish to add two comments about the current status of research along the line
of Church-Turing Thesis.

• Some aspects of the study of the quantum-extended Church-Turing thesis
could be addressed concretely using quantum field theories, at least in some
latticed versions. This type of researchwill involve concretely about designing
algorithms for a given setup of quantum field theory and prove the statement
about computational complexity. We regard this as part of our cyberpunkian
quantum field theory program.

• The above discussion about AdS/CFT shows that understanding the com-
plexity of duality maps themselves might be important. Duality is usually
understood as a reformulation of one theory to the other theory, one La-
grangian to the other Lagrangian, one state to the other state. It might be
interesting to discuss the complexity of AdS/CFT, and also, other dualities
established among several quantum field theories and string theories [73],
which are actually, hot topics in the frontier of theoretical physics that have
profound applications in particle physics and condensed-matter systems [74].
For instance, one could ask, what is the complexity of S or T duality in some
specific setups? The complexity web of duality webs among the landscape of
field theories might play an important role in understanding Church-Turing
Thesis.

CS-inspired physics and physics-inspired CS
Theoretical considerations

As we discussed before, many examples in this article show that concepts and
results from computer science are helpful for the development of physics in recent
years. This could happen in a purely theoretical or conceptual level. Here we wish
to discuss another possibility, where physics goes backward to inspire interesting
progress in computer science. We call it physics-inspired computer science.

There are several typical examples recently happening, based on the development
of the connection between quantum information theory and quantum gravity. For
instance, the original proof of the strong subadditivity of von Neumann entropy is
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very technical [75, 76], but the holographic version of the proof based on AdS/CFT
is highly intuitive and simplified [77]. Moreover, the linear growth of complexity in
some setups of local random circuits proved recently in [78, 79] is partially inspired
by Susskind based on the wormhole growth in AdS/CFT [80]. There is also a work
about relationships between black hole microstates and large violations of additivity
conjecture, one of the most important problems in quantum information theory [81].

Of course, other aspects of theoretical computer science are also possible to be
inspired by physics. A particularly interesting discussion recently is about a possible
connection between renormalization group theory and machine learning [82]. In
some formulations, some people believe that the optimization and learning process in
the parameters of the neural network could be understood as renormalization. Maybe
one could derive some renormalization group flow equation for those parameters.
One might even consider discussing phase transitions in the neural networks. If
it is a second-order phase transition, conformal field theory might be helpful in
predicting phenomena happening in the network. There are some impressive works
done by Google recently, about generically using quantum field theory and tensor
network technics for machine learning problems (see for instance [83]).

Benchmarking quantum devices using fundamental physics

Currently, we are still in a very early stage towards the great plan where quantum
devices are able to provide impressive computational powers against classical com-
putation or find some other remarkable applications in our ordinary life. Currently,
quantum devices are still in the lab where people have to deal with the mitigation
of noise and errors. It is important to find some clear targets where people have
some universal, useful standards to show their computational capability of quantum
devices. Here I am providing a possibility where fundamental physics should be
helpful for benchmarking quantum devices.

Fundamental physics in general, or quantum field theory in a more specific sense,
have many unsolved and important problems. For instance, as introduced before,
strongly-coupled quantum field theories are very hard to solve. If one could simulate
some non-perturbative physics using quantum devices, which is far beyond the
limitation of classical computation, it could clearly show the capacity of the devices.
This is not only following the original intuition of Richard Feynman about quantum
computation, but also practical for the current development of quantum hardware.

Let me give a more precise example, e.g., evaluation of critical exponents in some
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critical systems admitting a second-order phase transition and an emergent con-
formal field theory. For some complicated systems where the critical exponents
are not analytically solved, the critical exponents are only known to some digits.
Those numbers are universal, namely, independent of, for instance, metrology, or
the unit we use. The error bars of those critical exponents could be clear targets for
benchmarking quantum devices. This could clearly be a win-win situation for both
fundamental physics and quantum industry since it will not only be helpful for de-
vices themselves, but also for exploring something unknown about our nature. This
potentially requires fruitful collaborations between physicists, computer scientists,
and engineers.

High energy physics in the low energy lab

There is another aspect of the above story, where some quantum simulation tasks
might be more motivated to explore physics itself. This could be understood partly
as a mostly non-commercial application of quantum computing in the NISQ era.
Since a large part of me is a high energy physicist, I will be mostly appreciated if
we could explore high energy physics problems using quantum devices. I wish to
call this as high energy physics in the low energy lab.

Simulating high energy physics in the cold-atomic or condensed-matter labs might
already have a long history. For instance, topological condensed-matter physicists
could nowadays measure topological invariants directly in their labs. It has its own
interests, of course, to measure topological phenomena in the statistical-mechanical
systems. On the other hand, it will be no hurt to understand those experiments
alternatively as simulators of emergent topological quantumfield theories, originally
designed for applications in string theory.

Aside from simulating quantum field theories, which we have discussed before,
people have rising interests recently for simulating quantum gravity toy models.
For example, people discuss recently quantum gravity in the lab to simulate some
thought experiments using their quantum devices [84]. I am not sure if those simula-
tions will be able to simulate physics that is beyond the current capability of classical
computations nowadays, but I believe that future simulation will tell us much more
fruitful knowledge that is far beyond what we currently know. Moreover, at least,
simulating high energy physics in the low energy lab, is helpful for demonstration of
principles, that we are able to simulate some exotic physical phenomena and bring
those experiments from high energy physics itself to more general physicists. For
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instance, a particularly interesting example I have in mind is the so-called conformal
collider physics largely due to the work of Hofman andMaldacena [85]. This exper-
iment considers particle colliders established on the celestial sphere of conformal
field theories, which is closely related to the black hole information paradox [86],
and the electron-electron collider in particle physics [87, 88]. One could actually
consider simulating this experiment in the critical cold-atomic or condensed-matter
systems in the lab and compare it with theory, to show that quantum devices are
able to simulate novel strongly-coupled emergent field theory dynamics. Another
side of the story is to detect some experimental or phenomenological problems in
high energy physics that might be answered using cold-atomic, condensed-matter,
or quantum information technology, where I believe are, in rapid development (see
a list of this type of projects announced by Fermilab [89]).

Towards the future
Waiting for quantum technology

Although many theoretical, numerical, simulation and experimental works have
been done about our quantum devices, a fault-tolerant, universal quantum computer
until May, 2021, has not appeared on the earth. Although many people believe that
finally human will have such a computer at some point in the future, it is not super
clear when precisely the day will come.

For some people, it is a little confusing why people need to do so much theoretical
research by assuming a currently imaginary machine with quantum computational
power. However, my personal view about this question is that science is always
looking at the future. For instance, for detecting gravitational waves, we have waited
nearly one hundred years, from pure theoretical constructions towards practical
detections. For particle colliders, people propose some possibility of new particles,
and particle physicists are still trying to detect them at least for half a century. The
future attributes of science and technology could probably also be described by
cyberpunk.

The modern development of science and technology is always associated with risk.
If there is no risk and everything is definite, it may not be good science. If we are
allowed to have a bet for detecting gravitational waves or detecting new particles, it
is natural that some people will bet a useful quantum computer will appear at some
point or even in the near future, and I am sure that for some people it is a pretty safe
bet compared to other physics and technology challenges. During the development,
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there are many byproducts that we have mentioned above, which could be regarded
as rewards towards the final achievement of quantum computing.

Fundamental science using oracles

Here we wish to discuss a word, oracle, to emphasize a possible future where more
cyberpunkian technologies have been used for scientific research.

The word "oracle" usually means that there is an existence which could provide
some wise suggestions or reasonable predictions of the future, inspired by the
gods. Related concepts are widely existing from ancient history, for instance, the
Oracle of Delphi in ancient Greece. Nowadays, some computer scientists use the
word "oracle" in the complexity theory, usually means a black box function in an
algorithm. However, here we wish to use this word for something more general:
in modern research, many aspects of our work have to rely on oracles made by
information technologies.

In a very general sense, our personal computers and mobile phones could be under-
stood as oracles: most of us don’t understand how those machines are running, and
we are still using them without that much verifications. For physicists, mathemati-
cians, their books, and well-established results published in, for instance, Annals
of mathematics, could be regarded as oracles, since usually, physicists don’t want
to prove them, but instead directly use them when needed. For some theoretical
physicists, if they don’t want to study in detail about some aspects of string theory,
but they are willing to use the results, they could cite EdwardWitten’s paper and use
the result by the trust without checking. In this sense, Edward Witten’s word is an
oracle (just like what I am doing now [73]). For high energy theoretical physicists,
the software Mathematica is one of the most common oracles. Because of this
oracle, theoretical physicists don’t need to check how to play with Taylor expansions
of some special functions or computing the Riemann tensor for a given metric by
hand [90]. This hugely speeds up our modern development of theoretical physics9.

Here, I am claiming that future information technology might significantly change
the way we are doing research even further, towards somewhere beyond our imagi-
nation. Maybe at some point, we don’t need to actually write any papers, and all op-
erations are somehow collaboratively appearing in some universal, well-established
framework on the internet, speeded-up by artificial intelligence and quantum com-

9However, there are still some theoretical physicists who claim that they are Luddites [91] and
don’t wish to use Mathematica. Some of them are also doing great jobs on hardcore computations.



29

puting. Maybe we don’t need to provide any technical details of any works while
machines will help us figure it out, and humans are just able to provide some generic
views. Anyway, I think some aspects of those stories might happen someday, even
during my life. These imaginings mean that we need more and more oracles.

Aside from the way we are practically doing science, oracles also often appear in
the scientific contents itself. For instance, the existence of the 3d Ising bootstrap
island for mixed operators is still mysterious. People don’t have enough theoretical
understanding of it. The way we obtain it is from complicated crossing equations
and large-scale optimization, which could be regarded as oracles. What is the final
answer to the critical exponents of the 3d Isingmodel? If we think about this problem
in terms of crossing equations, the answer is obtained by the consistency of four-point
correlation functions with mixing operators. If we transform it into semidefinite
programming, it will be obtained from some super complicated crossing equations.
If it turns out that the answer could be represented by some numbers where human
beings are familiar with, it might be a very deep fact about the transcendental nature
of hypergeometric functions, or representation theories about the conformal group.
Maybe there is a Ramanujan-type formula hidden there, which might be indicated
by oracles of large-scale optimization, or maybe machine learning [92].

Taking about Ramanujan, I think there are some better examples in mathematics
instead of physics. In fact, the story of Srinivasa Ramanujan himself is highly
related to the original meaning of oracles. During the time Ramanujan lived in
the last century, he did not have a complete education in mathematics, but he
could still discover a large set of amazing formulas about special functions and
prime numbers. Many of them were highly intriguing but not proved, inspiring
many potential discoveries from algebraic geometry to number theory10. So how
was he able to find those magic formulas? He said, "An equation for me has no
meaning unless it expresses a thought of God". It seems that he was crediting
his formulas to his family goddess Namagiri Thayar, although some people believe
that it was from intuitions behind thinking about math for a long time. Of course,
Ramanujan is pretty unique in history, and I am not sure if it is wise enough to
choose some beliefs in order to make some scientific discoveries, but I am saying
that some future information technology will bring people solid, incomprehensible
predictions, serving as oracles. In fact, people already start to do this. There
is a machine learning project made by Google called the Ramanujan Machine,

10If you don’t know his story, you could look at the movie The Man Who Knew Infinity [93].



30

which is trying to discover some conjectural identities about special constants and
continued fractions [94]. Based on their website [95], they are already able to
generate conjectures by neural networks, and some of them seem not yet proved by
professional mathematicians.

Besides discovering new conjectures, one of the first steps is probably to try to
verify the known proof. About this, I wish to quote some recent activities by a well-
established number theorist, Kevin Buzzard (see, for instance, this article [96]).
According to him, there is no person on earth who could completely understand all
details of Fermat’s Last Theorem: the proof is so complicated, and people have to
use many known results by trusting the original author, and all those details lead to
a huge amount of literature. Nowadays, many aspects of mathematics, for instance,
arithmetic algebraic geometry, Langlands program, or closer to physics, symplectic
geometry, become extremely technical, and there is usually a very limited number
of persons who could understand details of the proof. Thus, maybe it is necessary to
try to verify some proofs based onmachine, just in the aspects of logical consistency,
since unlike modern physics allowing some degrees of fuzzy logic, mathematical
proofs only allow two consequences: correct or wrong.

Kevin Buzzard is working on gathering fundings and establish codes to verify
known mathematical proofs, and some concepts of new mathematics, for instance,
perfectoids introduced by Peter Scholze, could be realized by codes. Maybe this
is a promising direction that is helpful for future mathematics, although young
people in this field have to prove themselves by proving theorems. In physics,
parts of theoretical physics directions are more rigorous in the mathematical sense,
especially some aspects of quantum field theory or quantum information science,
since the basic rule is more or less well-established. In other parts, for instance,
quantum gravity, people have to make conjectural guess since the building blocks
are not completely developed. Maybe for the former, it makes sense to do some
verifications also. And in the long-term future, when people really discover a theory
of everything, people could put all physics and mathematics axioms and theorems
in a computer, to make solid predictions in our cyberpunkian future.

The current progress of number theory often tells us how limited people know about
some simple concepts like prime numbers or rational numbers. For instance, about
the Diophantine equation, the celebrated Birch-Swinnerton-Dyer (BSD) conjecture,
one of the Millennium Prize Problems, could tell us something about the structures
of solutions for the cubic equations (not proven). Problems in more general cases,
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higher degrees, more variables, are extremely hard to answer, while some of them
are approaching some deepest sides of modern mathematics, where it is relatively
easy to formulate a question that no one on the earth could solve. I would feel that
maybe many of those problems are too hard for human brains, and in the future, we
have to rely on oracles made by cyberpunkian technologies.

Companies, colliders

Here, we wish to comment on the relations between cyberpunkian quantum field
theory and phenomenology. In many parts of this article, I am talking about
some formal research, which seems to be not that related to real observations and
experiments. However, it is not true. As we mentioned before, strongly-coupled
quantum field theories are everywhere: people need to use strongly-coupled QCD to
predict meson spectra and real-time dynamics happening in some colliders. In the
condensed-matter system and statistical physics, predictions from strongly-coupled
field theory are helpful to study strong-correlated systems, and they are directly
measurable as quantum materials. In the sky, models with dark matter and dark
energy might need strongly-coupled field theories to understand, cosmic phase
transitions happening in the early universe might also be an exotic strongly-coupled
field theory phenomena. Black hole physics is directly related to observations
from event horizon telescope and LIGO (Laser Interferometer Gravitational-Wave
Observatory) experiments about gravitational waves. I feel that all of them might
need potential computational speedup or formal understanding from information
theory. In a sense, they are all cyberpunkian physics!

It might be interesting to comment on some modern aspects of relations between
academia and industry. Traditionally, some people studying fundamental physics
might feel that pure potential physical breakthroughs may not be related to any
commercial companies. However, I feel that in our quantum era, it might be
common that academia and industry will have more communications.

Many companies, for instance, Google, Amazon, Microsoft, IBM, etc., have the
ambition nowadays to make useful quantum computers for potential commercial
purposes. Scientific academia, as part of public service sometimes funded by the
government and donation, is aiming at providing high-quality research about our
nature. In our quantum era, people start to communicate with each side frequently.
We often see examples where quantum information scientists switch back and forth
between two sides, and make great progress for both. There are several quantum
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Figure 1.5: An imaginary plot might be made by future cyberpunkian physi-
cists, especially high energy phenomenologists. This kind of plot includes the
required computational resource needed for observations and existing computa-
tional resources provided by companies. As far as I know, no such plot existed until
June 2021, which put together experimental organizations and quantum companies.
I am conjecturing here that this type of plot will appear in the future.

centers from commercial companies established around the university campus, for
instance, Microsoft Station Q at Santa Barbara, and the new Amazon quantum
center at Pasadena. One remarkable work done recently about simulating quantum
gravity in the lab is also such a great collaboration between company and university
[84]. For me, it is exciting to imagine that Google is starting to probe properties of
traversable wormholes.

It is exciting to see that both government and private industrial communities are
willing to help establish some exciting new areas relating to fundamental physics and
information technology. Previously, I am impressed by some high energy physics
research collecting data from completely different experimental organizations and
comparing them with each other. For instance, the electroweak phase transition
happening in the early universe, might need observational and experimental data
both from the ground (colliders) and the sky (gravitational wave detectors), and the
data analysis might be made in the same plot (see, for instance, Figure 2 of [97]). I
am imagining that one day, people will make plots which mention companies like
Google and IBM, experimental organizations like LHC and LIGO in the same place
(See Figure 1.5). I hope that the day may not be too far off.
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C h a p t e r 2

PROOF OF THE WEAK GRAVITY CONJECTURE FROM
BLACK HOLE ENTROPY

This chapter is based on C. Cheung, J. Liu, and G. N. Remmen (alphabetical order),
Proof of the Weak Gravity Conjecture from Black Hole Entropy, JHEP 10, 004,
(2018), arXiv:1801.08546 [hep-th].

Abstract: We prove that higher-dimension operators contribute positively to the
entropy of a thermodynamically stable black hole at fixed mass and charge. Our
results apply whenever the dominant corrections originate at tree level from quan-
tum field theoretic dynamics. More generally, positivity of the entropy shift is
equivalent to a certain inequality relating the free energies of black holes. These
entropy inequalities mandate new positivity bounds on the coefficients of higher-
dimension operators. One of these conditions implies that the charge- to-mass
ratio of an extremal black hole asymptotes to unity from above for increasing mass.
Consequently, large extremal black holes are unstable to decay to smaller extremal
black holes and the weak gravity conjecture is automatically satisfied. Our findings
generalize to arbitrary spacetime dimension and to the case of multiple gauge fields.
The assumptions of this proof are valid across a range of scenarios, including string
theory constructions with a dilaton stabilized below the string scale.

2.1 Introduction
In this paper we argue that black hole thermodynamics implies new constraints on
the coefficients of higher-dimension operators. Our results are based on a certain
universal property of entropy. In particular, consider a system T prepared in a
macrostate whose microstate degeneracy is quantified by entropy (. Now let us
define the system T̃ to be a restriction of T in which a handful of degrees of
freedom have been frozen to a fixed configuration. If T̃ is prepared in the same
macrostate as T , then the corresponding entropy (̃ will be less than ( because the
microstate degeneracy is diminished. Thus, we find that

( = (̃ + Δ(, (2.1)

where the entropy shift Δ( is strictly positive.
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A similar logic applies to black hole entropy. Consider the low-energy effective
field theory of photons and gravitons in general spacetime dimension �, defined at
a scale far below the mass gap. The effective Lagrangian is

L = L̃ + ΔL, (2.2)

where the first term describes pure Einstein-Maxwell theory,1

L̃ = 1
2^2 ' −

1
4
�`a�

`a, (2.3)

and the second term encodes corrections from higher-dimension operators,

ΔL = 21'
2 + 22'`a'

`a + 23'`adf'
`adf

+ 24'�`a�
`a + 25'`a�

`d�ad + 26'`adf�
`a�df

+ 27�`a�
`a�df�

df + 28�`a�
ad�df�

f` .

(2.4)

Without loss of generality, we have dropped all terms involving ∇d�`a, which
are equivalent via the Bianchi identities to terms already accounted for or terms
involving ∇`�`a [98], which vanish in the absence of charged matter sources,
which we assume throughout.

For our analysis, we study a large black hole of fixed mass < and charge @ as
measured in natural units at spatial infinity. In the presence of higher-dimension
operators, the metric is

6`a = 6̃`a + Δ6`a . (2.5)

Unless otherwise stated, all variables with tildes like 6̃`a will denote quantities
corresponding to a Reissner-Nordström black hole of the same mass and charge
in pure Einstein-Maxwell theory, while variables with deltas like Δ6`a will denote
the leading corrections from higher-dimension operators, which are linear in the
coefficients 28.

It is straightforward to compute the black hole entropy using theWald formula [99],2

( = −2c
∫
Σ

XL
X'`adf

n`andf, (2.6)

where the integration region Σ is the horizon and n`a is the binormal to the horizon,
normalized so that n`an `a = −2. A large portion of our technical analysis will be

1Throughout, we work in units where ^2 = 8c�, metric signature (−, +, · · · , +), and sign
conventions '`a = 'd`da and '

`
adf = mdΓ

`
af − mfΓ`ad + Γ`dUΓUaf − Γ

`
fUΓ

U
ad.

2A general formula for entanglement entropy has also been proposed [100], but this reduces to
the Wald formula for the static Killing horizons relevant to our analysis.
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the explicit evaluation of Eq. (2.6) at fixed @ and <. The entropy shift Δ( is then
defined according to Eq. (2.1), where

(̃ =
�̃

4�
=

2c�̃
^2

(2.7)

is the Bekenstein-Hawking entropy [101, 102]. Deviations from Eq. (2.7) arise from
higher-dimension operator corrections to the Lagrangian, L = L̃ +ΔL, and the area
of horizon, � = �̃ + Δ�.

Using standard thermodynamic identitieswe show that corrections to theBekenstein-
Hawking entropy of a black hole at fixed mass and charge satisfy

Δ( > 0 (2.8)

whenever the free energy of the black hole is less than that of a Reissner-Nordström
black hole at the same temperature,

� (V) < �̃ (V). (2.9)

Using Euclidean path integral methods we then prove Eq. (2.9) for i) a thermody-
namically stable black hole in ii) a theory in which the dominant contributions to
higher-dimension operators are generated at tree level by massive quantum fields.
The underlying logic of our proof mirrors the parable of T and T̃ discussed pre-
viously. In particular, L̃ is obtained directly from the ultraviolet completion of L
by placing a restriction on massive field fluctuations in the Euclidean path integral.
The difference between ( and (̃ then quantifies the entropy contributions from these
modes.

Condition i) holds for positive specific heat [103], excluding from consideration
the Schwarzschild black hole but permitting Reissner-Nordström black holes over
a range of charge-to-mass ratios, @/< >

√
2� − 5/(� − 2). Condition ii) arises

naturally in a number of physically-motivated contexts such as string theory, which
typically predicts the existence of gravitationally-coupled scalars like the dilaton.
If supersymmetry breaking occurs below the string scale, then these states are well
described by quantum field theory and can be integrated out at tree level to generate
the higher-dimension operators in Eq. (2.4). Note that condition ii) is perfectly
consistent with additional corrections entering at loop level or from intrinsically
stringy dynamics, provided these contributions are parametrically smaller than the
tree-level component.
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Figure 2.1: Black holes ofmaximal charge shown as a function ofmass< and charge-
to-mass ratio @/<. Higher-dimension operators induce corrections to the extremality
condition. If these corrections are positive, then the WGC is automatically satisfied
(upper solid curve) since large black holes are unstable to decay to smaller ones. If
these corrections are negative (lower solid curve), then theWGCmandates additional
light, superextremal particles to avoid an infinite number of stable extremal black
hole remnants.

While we have only proven the free energy condition in Eq. (2.9) under certain
assumptions, its connection to positivity of the entropy shift in Eq. (2.8) is robust
and completely general. Furthermore, a trivial corollary to Eq. (2.8) is a positivity
condition on the differential entropy generated at each mass threshold encountered
while flowing to the infrared.

Remarkably, classical entropy corrections dominate over quantum contributions
over a broad range of black hole masses still within the regime of validity of the
effective field theory. Within this window, our proof of Eq. (2.8) applies. Since
the shift in entropy depends on the coefficients of higher-dimension operators,
we derive a new class of positivity bounds on the effective field theory. This
produces a one-parameter family of constraints on the corresponding coefficients
28 labeled by the charge-to-mass ratio of the black hole from which the bound was
derived. Although these conditions are derived from a very particular black hole
construction, the resulting positivity bounds constrain the coefficients 28 in general
and are independent of the background.
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For the case of highly charged black holes, we obtain a positivity condition on a
very specific combination of higher-dimension operator coefficients. Remarkably,
it is this exact combination of parameters that also enters into the higher-dimension
operator correction to the extremality condition for black holes. In particular, we
find that the charge-to-mass ratio for an exactly extremal black hole satisfies

@

<
− 1 ∝ Δ(, (2.10)

where the right-hand side is positive by Eq. (2.8). Since higher-dimension operators
decouple at long distances, the charge-to-mass ratio asymptotes to unity from above
as we consider larger and larger extremal black holes. Thus, from charge and
energy conservation, it is always possible for an extremal black hole to decay to
smaller extremal black holes of marginally higher charge-to-mass ratio, as shown
in Fig. 2.1. Notably, the existence of such states is precisely mandated by the weak
gravity conjecture (WGC), which asserts that an Abelian gauge theory consistently
coupled to gravity must contain a state whose charge exceeds its mass in Planck
units [104], so

@

<
> 1. (2.11)

The motivation for the WGC is to forbid the existence of an infinite number of
stable states not protected by symmetry. The main result of this paper is that
this bound is automatically satisfied by small black holes. Though mysterious at
first glance, the connection between entropy and extremality in Eq. (2.10) actually
follows immediately from the near-horizon properties of the metric for a charged
black hole. As we will show, this connection enables us to straightforwardly extend
all of our arguments to the multi-charge generalization of theWGC [105] in arbitrary
dimension �.

The WGC is satisfied in numerous concrete examples and is strongly motivated by
folk theorems forbidding exact global symmetries that arise in the vanishing-charge
limit. Moreover, theWGC is a celebrated avatar of the so-called swampland program
[104, 106–108], whose ultimate aim is to systematically delineate regions in effective
field theory space consistent with quantum gravitational ultraviolet completion.

Strictly speaking, a bona fide swampland condition distinguishes between low-
energy effective field theories that from an infrared standpoint are otherwise entirely
consistent. From this perspective it is unclear whether a theory that fails the WGC
is in the swampland or merely pathological in a sense that can be diagnosed purely
from low-energy considerations. For this reason, a related effort has sought to



38

exclude regions of the low-energy parameter space using infrared consistency, e.g.,
constraints from causality, unitarity, and analyticity of scattering amplitudes [108–
112]. While theWGChas previously eluded a formal general proof, the present work
demonstrates that it is mathematically equivalent to a certain well-motivated—and
in many circumstances provable—property of black hole entropy.

The remainder of this paper is organized as follows. In Sec. 2.2 we prove, given
certain assumptions, that corrections to the Bekenstein-Hawking entropy are posi-
tive. Afterwards, in Sec. 2.3 we discuss how various contributions to the black hole
entropy arise and estimate their relative size. In order to constrain the coefficients of
higher-dimension operators, we restrict to black holes within a certain mass range.
Next, in Sec. 2.4 we present the perturbative solution for a charged black hole in the
presence of higher-dimension operators. We then compute the black hole entropy
in Sec. 2.5 and translate the positivity condition on entropy into a new class of
bounds on higher-dimension operator coefficients in Sec. 2.6. After discussing the
implications of these results for the WGC, we conclude in Sec. 2.7.

2.2 Proof of Δ( > 0
In this section, we study corrections to the Bekenstein-Hawking entropy of a ther-
modynamically stable black hole at fixed mass and charge. We prove that these
contributions are positive whenever they come from higher-dimension operators
generated at tree level by quantum fields.

Assumptions
Let us state our assumptions explicitly. First, we assume the existence of quantum
fields q at a characteristic mass scale <q � Λ, where Λ is the energy scale at which
quantum field theory breaks down. This parametric separation is required so that
quantum field theory has some regime of validity. By the usual rules of effective
field theory, the higher-dimension operators in Eq. (2.4) receive small contributions
suppressed by the cutoff Λ. In general, Λ can be parametrically smaller than the
Planck scale.

Second, we assume that the q degrees of freedom couple to photons and gravitons
such that integrating them out generates the higher-dimension operators in Eq. (2.4)
classically, i.e., at tree level. Since <q � Λ, these states induce the dominant
contributions to the higher-dimension operators in Eq. (2.4). Specifically, the cor-
responding operator coefficients scale as 28 ∝ 1/<2

q
� 1/Λ2 since tree-level q

exchange is always accompanied by a single factor of 1/<2
q
coming from the propa-
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gator denominator. Thus, effects arising from the cutoff Λ will be negligible in any
context in which quantum field theory is applicable.

As noted previously, states like q are a common feature in string theory, whose low
energy spectrum includes particles like the dilaton and moduli, which are massless
in the supersymmetric limit. In the presence of supersymmetry breaking, these flat
directions are lifted, thus inducing masses <q � Λ, where Λ is the string scale.

While our arguments are perfectly consistent with a scale Λ far below the Planck
scale, wewill frequently refer to pureEinstein-Maxwell theory and the pureReissner-
Nordström solution as a baseline of comparison. We do so entirely out of conve-
nience and not because any component of our argument requires that quantum field
theory be applicable up to the Planck scale. Hence, in an abuse of nomenclature,
we hereafter refer to the higher-dimension operator contributions of order 1/<2

q

as corrections to pure Einstein-Maxwell theory, bearing in mind that we actually
mean pure Einstein-Maxwell theory plus contributions of order 1/Λ2, which are
parametrically smaller than all the contributions of interest.

Third, we focus on black holes that are thermodynamically stable, i.e., have positive
specific heat. As we will see, this is necessary for technical reasons so that we can
exploit certain properties of the Euclidean path integral.

Positivity Argument
Consider a positively charged black hole of mass " and charge & perturbed by
higher-dimension operator corrections in general spacetime dimension �. As we
will show in detail in Sec. 2.4, the perturbed metric 6`a = 6̃`a + Δ6`a can be
computed from the perturbed Lagrangian L = L̃ + ΔL, where unless otherwise
stated all quantities are expressed as perturbations on a Reissner-Nordström black
hole of the same mass " and charge & in pure Einstein-Maxwell theory.

From the perturbed entropy we can define the corresponding inverse temperature
V = m"(, which we write as

V = Ṽ + ΔV, (2.12)

where Ṽ = m" (̃ is the inverse temperature of the Reissner-Nordström black hole
and ΔV = m"Δ( is the shift of the inverse temperature. The latter appears because
higher-dimension operators will in general change the temperature of a black hole
at a fixed mass and charge.

Next, we compute the free energy � (V) of the perturbed black hole in a canonical
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ensemble at inverse temperature V. The free energy is calculated from the Euclidean
path integral,

4−V� (V) = / (V) =
∫

3 [6̂]3 [ �̂] 4−� [6̂, �̂] , (2.13)

where 6̂ and �̂ are integration variables running over metric and gauge field configu-
rations. The Euclidean action � = �̃+Δ� is the spacetime integral of theWick-rotated
Lagrangian plus boundary terms appropriate to our choice of the canonical ensemble
[113]. Here, the boundary conditions at asymptotic infinity are defined by period-
icity V in Euclidean time, with a total electric flux & at the boundary [114], though
we suppress all dependence on the latter throughout.

By assumption, the higher-dimension operators in the low-energy effective theory
are dominated by tree-level contributions from heavy fields. The Euclidean path
integral including these ultraviolet modes is∫

3 [6̂]3 [ �̂]3 [q̂] 4−�UV [6̂, �̂,q̂] =

∫
3 [6̂]3 [ �̂] 4−� [6̂, �̂] , (2.14)

where q̂ is a collective integration variable running over all configurations of the
heavy fields. As a convention, we choose q̂ = 0 as the boundary condition at
asymptotic infinity, thus defining zero as the vacuum expectation value of the field
in flat space. In the classical limit, the right-hand side of Eq. (2.14) is obtained by
solving the equations of motion for the heavy fields and plugging these solutions
back into the action.

Now consider an alternative field configuration that instead sets all the heavy fields
to zero, thus rendering themnon-dynamical. This field configuration does not satisfy
the equations of motion, but this will have no bearing on the following argument.
For this configuration the massive fields are decoupled and their contributions to
higher-dimension operators are set strictly to zero. It is then a simple mathematical
fact that

�UV [6̂, �̂, 0] = �̃ [6̂, �̂], (2.15)

where the right-hand side is the Euclidean action for pure Einstein-Maxwell theory
for any choice of metric and gauge field. The statement of Eq. (2.15) encodes our
assumption that the dominant contributions to the higher-dimension operators in the
effective field theory come from heavy fields.

Putting this all together, we obtain a simple inequality relating the free energy of the
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perturbed black hole and a Reissner-Nordström black hole at the same temperature,3

− log / (V) = �UV [6V, �V, qV] < �UV [6̃V, �̃V, 0] = �̃ [6̃V, �̃V] = − log /̃ (V). (2.16)

To obtain the first equality we compute log / (V) via the saddle-point approximation.
Here 6V, �V, and qV are the solutions to the classical equations of motion with sub-
scripts to emphasize their consistency with boundary conditions enforcing inverse
temperature V. By definition, �UV [6V, �V, qV] extremizes the Euclidean action. The
subsequent inequality then holds if this extremum is also a local minimum, in which
case off-shell field configurations slightly displaced from the classical solutions will
increase the Euclidean action. For this off-shell field configuration we choose the
pure Reissner-Nordströmmetric 6̃V subject to the same boundary condition dictating
inverse temperature V, while pinning all heavy fields to zero. Since this configura-
tion differs only marginally from the true solution of the equations of motion, the
displacement from the local minimum will be tiny as required. From Eq. (2.15)
we see that the resulting expression is formally equal to the Euclidean path integral
for pure Einstein-Maxwell theory evaluated on the Reissner-Nordström background.
Using the saddle-point approximation once more, we obtain the final equality with
− log /̃ (V), which is V times the free energy �̃ (V) for a Reissner-Nordström black
hole at inverse temperature V.

Crucially, log /̃ (V) does not correspond to the free energy of a Reissner-Nordström
black hole of mass " , which has an inverse temperature Ṽ. To relate Eq. (2.16) to
the latter, we plug Eq. (2.12) into the right-hand side of Eq. (2.16), yielding

log /̃ (V) = log /̃ ( Ṽ) − "m"Δ(, (2.17)

where log /̃ ( Ṽ) is the free energy of a Reissner-Nordström black hole of mass "
and inverse temperature Ṽ. To obtain Eq. (2.17), we inserted the thermodynamic
relation, " = −mṼ log /̃ ( Ṽ), together with the formula for the inverse temperature
shift, ΔV = m"Δ(. From the definition of the free energy of the canonical ensemble,
we then obtain

log / (V) = ( − V" = (1 − "m")(
log /̃ ( Ṽ) = (̃ − Ṽ" = (1 − "m")(̃,

(2.18)

wherewe have used the fact that the perturbed black hole at inverse temperature V has
the same mass as the unperturbed black hole at inverse temperature Ṽ. Combining

3Strictly speaking, the free energy of a black hole is obtained only after subtracting the free energy
contribution from hot flat space or some other reference spacetime [115]. However, since log / (V)
and log /̃ (V) have the same asymptotic boundary conditions, any such reference dependence will
cancel from either side of Eq. (2.16).
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Eqs. (2.16), (2.17), and (2.18), we cancel terms to obtain

Δ( > 0, (2.19)

establishing our claim. The above argument accords with the natural intuition that
constrainingmicroscopic states, i.e., heavy fields, to be non-dynamical will decrease
the entropy.

Let us comment briefly on a subtle but important caveat to the above arguments.
The inequality in Eq. (2.16) crucially assumes that on the black hole solution the
Euclidean action is not just an extremum but specifically a local minimum. The
latter condition guarantees the stability of the Euclidean action under small off-
shell perturbations. As is well known, however, the Euclidean path integral suffers
from saddle-point instabilities mediated by conformal perturbations of the metric
that are unbounded from below. Fortunately, it was shown in Refs. [116, 117]
that these particular modes are actually a gauge artifact. For a certain orthogonal
decomposition of the metric, the offending conformal mode can be completely
decoupled from the physical degrees of freedom. With an appropriate contour of
integration it is then possible to path integrate over this mode to yield a convergent
final expression.

Later on, an analysis of the Euclidean Schwarzschild solution [118] revealed a bona
fide instability coming from a certain non-conformal perturbation about the back-
ground solution. This result has been interpreted as evidence that this solution
actually describes a tunneling event from a hot background spacetime into a large
black hole [119, 120]. Later analyses [121–123] support these claims and moreover
show a direct correlation between the existence of negative modes and the thermo-
dynamic instability that arises from negative specific heat. To our knowledge, in all
cases considered these saddle-point instabilities disappear when the specific heat is
positive, which for example in � = 4 requires a black hole with @/< >

√
3/2 in

natural units.

For the remainder of this paper we restrict to black holes within this thermodynami-
cally stable window of charge-to-mass ratios so that the extremum of the Euclidean
action is a local minimum rather than a saddle point and our proof of Eq. (2.19)
applies. Crucially, this range of parameters includes highly charged black holes, so
the results of this section can be used in our discussion of the WGC later on.4

4The stability results of Refs. [116–123] were obtained in the context of pure gravity and
Einstein-Maxwell theory. However, they should also apply in the presence of additional heavy fields,
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We believe that Eq. (2.19) is likely true even after relaxing some of the assumptions
outlined in Sec. 2.2, specifically those requiring a tree-level quantum field theoretic
ultraviolet completion. In particular, from Eqs. (2.17) and (2.18) it is obvious that
the positivity condition in Eq. (2.19) is mathematically equivalent to an inequality
of free energies,

� (V) < �̃ (V), (2.20)

which says that the free energy of the perturbed black hole is less than that of a
Reissner-Nordström black hole at the same temperature. Here we emphasize that
the former is computed in the theory defined by L and the latter corresponds to L̃.
It is quite possible that the free energy condition in Eq. (2.20) holds in complete
generality, e.g., including quantum corrections.

Explicit Example
It is instructive to examine the above arguments for the explicit example of a mas-
sive, gravitationally-coupled scalar field. The Euclidean action for the ultraviolet
completion is5

�UV [6, �, q] =
∫

3�G
√
6

[
− 1

2^2 ' +
1
4
�`a�

`a

+
(0q
^
' + 1q^�`a�`a

)
q + 1

2
∇`q∇`q +

1
2
<2
qq

2
]
,

(2.21)
where out of notational convenience the hatted convention employed previously is
dropped. . The coupling constants 0q and 1q are dimensionless and have indefinite
sign. The classical solution for q is

q =
1

∇2 − <2
q

(0q
^
' + 1q^�`a�`a

)
. (2.22)

Plugging back into the Euclidean action, we obtain

� [6, �] =
∫

3�G
√
6

[
− 1

2^2 ' +
1
4
�`a�

`a − 1
2<2

q

(0q
^
' + 1q^�`a�`a

)2
]
, (2.23)

which at low energies only produce small corrections to the leading-order black hole solutions. The
precise crossover from positive to negative specific heat may be slightly shifted by the effects of the
corresponding higher-dimension operators but this has no impact on the thermodynamic stability of
highly charged black holes, which are safely within this window.

5Here we ignore boundary terms since we will be interested only in the low-energy corrections
generated from integrating out heavy fields. These states produce higher-derivative effective opera-
tors whose effects fall off quickly with distance and are thus subdominant to bulk action contributions.
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where all gradient terms from the q solution are negligible in the low-energy limit.
Next, consider the Euclidean action for the full theory, given a field configuration
where q is set strictly to zero. The resulting expression is the Euclidean action for
pure Einstein-Maxwell theory,

�UV [6, �, 0] =
∫

3�G
√
6

[
− 1

2^2 ' +
1
4
�`a�

`a

]
= �̃ [6, �] . (2.24)

Putting this all together, we learn that

� [6, �] < � [6̃, �̃] < �̃ [6̃, �̃] . (2.25)

The first inequality follows because the action is minimized on the solutions to the
classical equations of motion for thermodynamically stable black holes. The second
inequality follows because Eq. (2.23) differs from Eq. (2.24) by a negative-definite
contribution. This relation between Euclidean actions then implies Eq. (2.20) in the
saddle-point approximation.

Unitarity and Monotonicity
From Sec. 2.2 it is clear that the entropy inequality Δ( > 0 is very closely related
to unitarity. In particular, the relative signs derived in the previous example hinged
critically on the absence of tachyons or ghosts in the ultraviolet completion. This
is not so surprising, since the presence of such pathologies introduce saddle-point
instabilities on a general background, be it flat space or a black hole. It would be
interesting to draw a direct connection between our results and previous discussions
of unitarity and analyticity [108, 124].

There is also an interesting connection between our results and monotonicity theo-
rems along renormalization group flows [125]. Our proof of Δ( > 0 was framed
in terms of integrating out all heavy fields at once. However, if the spectrum of
particles is hierarchical, then this logic can be applied at each mass threshold in
sequence. The total entropy shift is then

Δ( =

∫ IR

UV
3(, (2.26)

where the differential entropy 3( > 0 contributed by each state is positive. Extrap-
olating from this classical result, it is reasonable to conjecture that such a positivity
condition persists at the quantum level. Indeed, as we will see in Sec. 2.6, the
renormalization of pure Einstein-Maxwell theory accords with this expectation.
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It is known that the quantum entropy corrections computed from the Euclidean path
integral are in close relation with the entanglement entropies of the corresponding
modes, where the horizon is the entangling surface (see Refs. [126, 127] and refer-
ences therein). Since entanglement entropy is intrinsically positive, so too are the
quantum entropy corrections, to the extent to which they are equivalent. We will
comment on this connection in more detail in Sec. 2.3.

2.3 Classical vs. Quantum
Up until now we have focused on classical corrections to the entropy, ignoring all
loop effects. As we will see, there exists a regime of black hole masses in which the
classical contributions dominate over the quantum. In this case, Δ( > 0 according
to the proof presented in the previous section. In what follows, we estimate and
compare the characteristic size of the leading tree-level and loop-level corrections
to the black hole entropy.

Leading Contributions
For concreteness, consider a scalar q of mass <q. As per the assumptions of
the previous section, we assume that this field has the usual minimal coupling
to gravitons but also direct couplings to the curvature and electromagnetic field
strength. Conservatively, we assume that these couplings are at least of gravitational
strength, so the interactions go as ∼ q'/^ and ∼ ^q�2. Here it will be convenient
to define a set of rescaled higher-dimension operator coefficients,

31,2,3 = ^
221,2,3, 34,5,6 = 24,5,6, 37,8 = ^

−227,8, (2.27)

which are the dimensionally natural basis in which to express quantities. All of
these rescaled coefficients have mass dimension [38] = −2.

Tree Level. The dominant contributions coming from tree-level q particle exchange
enter as corrections to the '2, '�2, and �4 operators of size

X(38) ∼
1
<2
q

(tree). (2.28)

Here each contribution scales with a factor of 1/<2
q
coming from the q propagator

denominator.

Loop Level. First, let us consider loop corrections involving purely gravitational in-
teractions. At one loop, the leading contributions enter through the renormalization
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of the gravitational constant,

X(^−2) ∼ <�−2
q (loop), (2.29)

which follows straightforwardly from dimensional analysis. At loop level, gravita-
tional interactions also yield contributions to higher-dimension operators,

X(38) ∼ ^2<�−4
q (loop), (2.30)

which are always subdominant to Eq. (2.28).

Loops involving gauge interactions will similarly renormalize the gauge coupling as
well as the higher-dimension operator coefficients, yielding contributions that scale
as Eq. (2.29) and Eq. (2.30) but with enhancement factors proportional to the charge-
to-mass ratios of fundamental charged particles. In principle, these contributions can
dominate. For example, in the standardmodel, the leading contributions to the Euler-
Heisenberg Lagrangian come from loops of electrons. However, as shown in ??, this
only happens when there are fundamental charged particles with large charge-to-
mass ratios. In this case there is no claim to prove, since WGC is already satisfied.
For this reason, we restrict our consideration to theories where all fundamental
charged particles fail or are near the WGC bound without satisfying it. In this
limit gauge interactions are of the same strength as gravitational interactions so the
leading tree-level and loop-level corrections from both scale as in Eq. (2.28) and
Eq. (2.29).

Region of Interest
From Eqs. (2.28), (2.29), and (2.30), we can estimate the corresponding corrections
to the black hole entropy, which takes the schematic form

( ∼ d
�−2

^2 + d
�−2<�−2

q + d�−4<�−4
q + d

�−4

^2<2
q

+ · · · , (2.31)

where d is the radius of the black hole. The first term is the Bekenstein-Hawking
entropy, the second term is the quantum correction to the gravitational constant, and
the third and fourth terms are the quantum and classical corrections to the higher
dimension operators, respectively. Demanding that classical entropy corrections
dominate over all quantum corrections requires that

d � 1
^<

�/2
q

. (2.32)



47

Crucially, since<q ismuch smaller than the Planck scale, this constraint is consistent
with d � 1/<q, which is necessary to remain within the regime of validity of the
effective field theory. For the remainder of this paper we focus on this regime of
black hole masses.

Before moving on, let us comment briefly on the expectation of positivity for the
quantumentropy corrections. While our results only rely on positivity of the classical
contribution, it is reasonable to conjecture that the same might apply to quantum
corrections. It is known, however, that the quantum contributions in Eq. (2.30) have
indefinite sign and in� = 4 these correspond towell-studied logarithmic corrections
to black hole entropy [128–131]. Nevertheless, these signs do not matter because
we have already shown that these corrections are parametrically subdominant to
the contributions from Eq. (2.29) related to the renormalization of the gravitational
constant.

Meanwhile, corrections of the latter type have also been computed via heat kernel
methods and found to be positive for minimally-coupled spin 0 and 1/2 particles
but negative for spin 0 particles with non-minimal couplings [132] as well as spin 1
and spin 2 particles [133, 134]. There is, however, a longstanding debate over the
physical meaning of these negative corrections. They indicate a naivemismatchwith
calculations of quantum field theoretic entanglement entropy, which is manifestly
positive. While these contributions have been understood as the entanglement of
certain edge modes [135, 136], the sign of the leading power-law divergence was
also shown to be regulator-dependent. In general, these negative corrections are
formally power-law divergent and scheme-dependent and such quantities should be
at least partly absorbed into the renormalized gravitational constant [128, 134, 137,
138]. For a consistent ultraviolet completion, all divergences will disappear and
the residual corrections will be finite. On physical grounds, it is expected that, if
properly regulated, these quantum entropy corrections will be manifestly positive as
expected from the manifest positivity of entanglement entropy.

2.4 Black Hole Spacetime
We now turn to the study of a spherically symmetric, positively charged black hole
of mass " and charge& in the presence of low-energy corrections to pure Einstein-
Maxwell theory. For simplicity, we restrict to � = 4 dimensions for the remainder
of the body of this paper, but all of our results generalize to arbitrary spacetime
dimension � ≥ 4, as shown in App. A.1.
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Our aim is to derive new bounds on the higher-dimension operator coefficients 28.
As noted previously, this restricts our consideration to black holes large enough that
the effective field theory is valid but small enough to satisfy Eq. (2.32), so 1/<q �
d � 1/^<2

q
, where <q is the mass scale of the new states. This range always

exists provided there is a parametric separation between <q and the Planck scale.
Furthermore, we consider the thermodynamically stable regime where @/< >

√
3/2

so the specific heat is positive.

Note that the mass and charge are defined at spatial infinity. Since we will only
consider static spacetimes, the ADM and Komar formulations of these quantities
are equivalent. Explicitly, the Komar mass and charge are6

" ∼ 1
^2

∫
80
=`fa∇` a and & ∼

∫
80
=`∇a�`a, (2.33)

where the integral region 80 is spatial infinity, = is the unit timelike normal vector,
f is the unit spatial outward-pointing normal vector, and  is the timelike Killing
vector. Since the integral is evaluated at spatial infinity, only the leading behavior
at large A contributes to these expressions. Because higher-dimension operators
correct the metric and gauge field at subleading order in A, they do not affect the
definition of the asymptotic mass and charge.

Unperturbed Solution
The unperturbed theory is described by the Lagrangian for Einstein-Maxwell theory
in Eq. (2.3). For notational convenience we will sometimes describe the mass and
charge in natural units of the gravitational constant,7

< =
^2"

8c
and @ =

^&

4
√

2c
. (2.34)

We also define the extremality parameter

b =

√
1 − @

2

<2 ,
(2.35)

6Here we take all black holes to be of definite mass even though in practice they have a small
width given by their inverse lifetime. For instance, as classically stable objects, black holes can
only decay quantum mechanically via Hawking emission and Schwinger pair production processes,
which are suppressed by additional factors of the gravitational constant. Moreover, decays into
smaller black holes will proceed via non-perturbative gravitational effects, which are exponentially
suppressed.

7In � dimensions, the mass dimensions of various quantities are [^2] = 2 − �, ['] = 2,
[�] = �/2, ["] = 1, [&] = 2 − �/2, [<] = [@] = 3 − �, [21,2,3] = � − 4, [24,5,6] = −2,
[27,8] = −�, and [38] = −2.



49

where a neutral black hole corresponds to b = 1 and an extremal black hole corre-
sponds to b = 0. As noted previously, we will consider black holes with positive
specific heat, corresponding to @/< >

√
3/2, or equivalently, b < 1/2.

The solution is the Reissner-Nordström black hole, whose metric takes the static
and spherically symmetric form

dB2 = 6̃`adG`dGa = − 5̃ (A)dC2 +
1
6̃(A)dA

2 + A2dΩ2, (2.36)

where the unperturbed metric components are

5̃ (A) = 6̃(A) = 1 − 2<
A
+ @

2

A2
(2.37)

and the unperturbed electromagnetic field strength is

�̃`adG` ∧ dGa =
&

4cA2 dC ∧ dA. (2.38)

The unperturbed event horizon is the outer horizon of the Reissner-Nordström black
hole and is located at the radius A = d̃, where

d̃ = < +
√
<2 − @2 = <(1 + b). (2.39)

The absence of a naked singularity implies that the charge is bounded by the in-
equality

@

<
≤ 1, (2.40)

which is saturated in the case of an extremal black hole.

Perturbed Solution
In the presence of the higher-dimension operators in Eq. (2.4), the perturbed metric
takes the form

dB2 = 6`adG`dGa = − 5 (A)dC2 +
1
6(A)dA

2 + A2dΩ2, (2.41)

where the metric components are complicated functions of the coefficients 28. How-
ever, as shown in Refs. [139, 140], it is straightforward to compute corrections to
the Reissner-Nordström solution order-by-order in 28. Following the prescription in
?? applied to the higher-dimension operators in Eq. (2.4), we find that at first order
in 28 the radial component of the metric is

6(A) = 1 − 2<
A
+ @

2

A2 −
@2

A6


4
5
(32 + 433) (6@2 − 15<A + 10A2)

+834(3@2 − 7<A + 4A2) + 4
5
35(11@2 − 25<A + 15A2)

+4
5
36(16@2 − 35<A + 20A2) + 8

5
(237 + 38)@2


,

(2.42)
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where the coefficients 38 are defined in terms of 28 in Eq. (2.27).

2.5 Calculation of Entropy
Wald Entropy Formula
We now compute the entropy corrections to black holes of size much greater than
the Compton wavelengths of the heavy modes. A major advantage of this approach
is that the effects of all short-distance degrees of freedom are encoded purely by
higher-dimension operators. Moreover, even though these states are absent from the
low-energy theory, their contributions to the entropy are fully accounted for by the
Wald formula in Eq. (2.6).

For a spherically symmetric spacetime, the integral in Eq. (2.6) is trivial, yielding

( = −2c�
XL

X'`adf
n`andf

����
6`a , d

, (2.43)

where all quantities are evaluated for the perturbed metric and perturbed horizon
radius, d = d̃ + Δd. The perturbed horizon area is � = 4cd2 and the binormal is

n`a (A) =

√
5 (A)
6(A) (X

C
`X
A
a − XA`XCa). (2.44)

Expanding the area � = �̃ + Δ� and the Lagrangian L = L̃ + ΔL in perturbations,
we obtain

( = −2c

(
�̃

XL̃
X'`adf

+ �̃ XΔL
X'`adf

+ Δ� XL̃
X'`adf

+ · · ·
)
n`andf

����
6`a , d

, (2.45)

where �̃ = 4cd̃2 and the ellipses denote terms that are higher order in perturbations.
The first term is straightforwardly obtained by differentiating Eq. (2.3) with respect
to the Riemann tensor,

XL̃
X'`adf

=
1

2^26
`d6af, (2.46)

where the proper (anti)symmetrization of indices on the right-hand side is implicit.
Since the binormal is normalized as n`an `a = −2, the first term in Eq. (2.45) is
simply the unperturbed black hole entropy (̃ defined in Eq. (2.7). Moving this term
to the left-hand side of Eq. (2.45), we obtain an expression for the difference in
entropies,

Δ( = Δ(I + Δ(H, (2.47)
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split into an "interaction” and "horizon” contribution. Becausewe areworking at first
order in perturbations, both of these terms should be evaluated on the unperturbed
metric and horizon radius. The interaction contribution,

Δ(I = −2c�̃
XΔL
X'`adf

n`andf

����
6̃`a , d̃

, (2.48)

appears because the interactions of photons and gravitons are modified at low
energies. Meanwhile, the horizon contribution,

Δ(H = −2cΔ�
XL̃

X'`adf
n`andf

����
6̃`a , d̃

=
2c
^2 Δ�, (2.49)

is present because higher-dimension operators modify the black hole background,
thus shifting the location of the horizon. Here we have substituted in Eq. (2.46) to
write the right-hand side of this expression as simply the shift of the horizon area.

Interaction Contribution
To obtain the interaction contribution to the entropy shift we compute

XΔL
X'`adf

= 221'6
`d6af + 222'

`d6af + 223'
`adf

+ 24�UV�
UV6`d6af + 25�

`
U�

dU6af + 26�
`a�df,

(2.50)

where proper (anti)symmetrization on indices is left implicit as before. Substituting
the unperturbed black hole background into Eq. (2.50) and evaluating Eq. (2.48),
we obtain

Δ(I = (̃ ×
2

<2(1 + b)3
[833 − 2(1 − b) (32 + 633 + 234 + 35 + 236)] , (2.51)

written in terms of the coefficients defined in Eq. (2.27). Setting b = 1 in our
expression for Δ(I in Eq. (2.51) agrees with the expressions in ?? as well as their
generalization to arbitrary dimension in ??.

Horizon Contribution
The horizon contribution to the entropy shift depends on the location of the perturbed
horizon. Since the spacetime is static, the horizon is determined by zeros of the
metric components 5 (A) and 6(A) defined in Eq. (2.41). On general grounds, 5 (A)
and 6(A) have coincident zeros since otherwise the spacetime would contain a region
with non-Lorentzian signature. Moreover, we have verified by explicit calculation
that 5 (A) and 6(A) share the same zeros at first order in perturbations.
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The perturbed horizon is located at radius d = d̃ + Δd. To compute d, we expand
6(A) = 6̃(A) + Δ6(A) at first order in perturbations, as defined in Eq. (2.42). The
perturbed horizon radius then satisfies the equation

0 = 6(d) = 6̃( d̃) + Δ6( d̃) + Δd md̃6̃( d̃). (2.52)

The first term on the right-hand side vanishes by the definition of the unperturbed
horizon radius. Solving for the horizon shift, we find

Δd = − Δ6( d̃)
md̃6̃( d̃)

. (2.53)

At first order, the perturbed horizon area is then given by

Δ� = � − �̃ = 8cd̃Δd = −8cd̃Δ6( d̃)
md̃6̃( d̃)

. (2.54)

Inputting the perturbed metric in Eq. (2.42) and evaluating Eq. (2.49), we obtain

Δ(H = (̃ ×
4(1 − b)

5<2b (1 + b)3
[(1 + 4b) (32 + 433 + 35 + 36) + 10b34 + 2(1 − b) (237 + 38)] .

(2.55)
Note that the horizon contribution to the entropy shift is divergent in the b → 0 limit
corresponding to an extremal black hole. Physically, this occurs because the inner
and outer horizons become degenerate, so md̃6̃( d̃) → 0. In this case, Eq. (2.52)
implies that for some fixed contribution Δ6( d̃) from higher-dimension operators,
the horizon must shift by a parametrically large amount Δd in order to maintain the
horizon condition.

Of course, the strict b → 0 limit is pathological since this produces an infinite entropy
shift, signaling a breakdown of perturbation theory. Demanding that the shift in
entropy be much smaller than the unperturbed entropy, we obtain the constraint

b � |38 |
<2 .

(2.56)

As shown in Eq. (2.32), the classical effects of higher-dimension operators are
only dominant over the quantum for black hole radii smaller than a certain value,
d � 1/^<2

q
. Using that 38 ∼ 1/<2

q
for a tree-level ultraviolet completion, Eq. (2.56)

becomes b � ^2<2
q
.

Perturbativity also requires that the shift in the inverse temperature ΔV be subdomi-
nant to the background inverse temperature Ṽ of the unperturbedReissner-Nordström
black hole. As a consistency check, we have verified that V = m"( agrees with the
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surface gravity of the perturbed black hole metric. For highly charged black holes,
the unperturbed inverse temperature goes as Ṽ ∼ </b while ΔV ∼ 38/<b3. De-
manding that the correction be smaller than the leading contribution, ΔV � Ṽ, we
obtain the stronger condition

b � |38 |
1/2

<
. (2.57)

Combining this with the upper bound on d from Eq. (2.32) and the scaling of 38, we
obtain

b � ^<q. (2.58)

Thus, it is always possible to take the limit of a highly charged black hole, b � 1,
provided the mass scale <q of the heavy fields is far below the Planck scale as we
have assumed throughout.

2.6 New Positivity Bounds
General Bounds
The total entropy shift Δ( = Δ(I + Δ(H is obtained by adding Eq. (2.51) and
Eq. (2.55), yielding

Δ( = (̃ × 4
5<2b (1 + b)3

×[
(1 − b)2(32 + 35) + 2(2 + b + 7b2)33 + (1 − b) (1 − 6b)36 + 2(1 − b)2(237 + 38)

]
.

(2.59)
As proven in Sec. 2.2, the entropy shift is positive under the assumptions we have
stated. Combining Eq. (2.8) and Eq. (2.59), we obtain a family of positivity bounds,

(1 − b)230 + 20b33 − 5b (1 − b) (233 + 36) > 0, (2.60)

where we have defined the parameter

30 = 32 + 433 + 35 + 36 + 437 + 238. (2.61)

The bound in Eq. (2.60) is the main result of this work: a consistency condition
on the coefficients of higher-dimension operator corrections to Einstein-Maxwell
theory following from the positivity of corrections to the black hole entropy. The
generalizations of Eqs. (2.59), (2.60), and (2.61) to arbitrary dimension � are
derived and presented in Eqs. (A.18), (A.19), and (A.20) in App. A.1.

As discussed in Sec. 2.2, our proof of Δ( > 0 applies to thermodynamically stable
black holes, restricting consideration to the window b ∈ (0, 1/2). The full space of
bounds over this range defines a convex region in the space of coefficients 38. Thus
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Figure 2.2: Constraints on higher-dimension operator coefficients derived from
black hole entropy. The shaded regions are excluded, with the gradations corre-
sponding to incremental values of b ∈ (0, 1/2). The left and right panels correspond
to 33 > 0 and 33 < 0, respectively. In either case, 30 < 0 is forbidden so 30 > 0
and the WGC is automatically satisfied.

the full space of positivity constraints, depicted in Fig. 2.2 for � = 4, is stronger
than those implied by any finite set of choices for b.

We have derived these positivity conditions from a particular physical setup: a
black hole of a given charge-to-mass ratio corresponding to b ∈ (0, 1/2) and mass
consistent with Eq. (2.32) so that our proof of Δ( > 0 applies. Despite this
specificity, we emphasize that the resulting bounds in Eq. (2.60) are consistency
conditions on the effective action and thus hold independently of the background.

Examples and Consistency Checks
Our bound in Eq. (2.60) and its higher-dimensional generalization in Eq. (A.19)
pass a number of explicit checks. To begin, we emphasize that these inequalities
are invariant under a change of the field basis, which by reparameterization the-
orems should leave physical observables unchanged. As discussed in App. A.2,
metric field redefinitions shift the higher-dimension operator coefficients 38 in a way
that renders individual coefficients operationally meaningless. By studying these
transformations, one can build a basis of field redefinition invariant combinations of
coefficients, of which 30, 33, 36 are a subset. Remarkably, while the separate contri-
butions to the entropy from Δ(I and Δ(H are not invariant under field redefinitions,
their sum Δ( is invariant for all b in arbitrary dimension �, as shown in App. A.2.
Field redefinition invariance of the inequality Δ( > 0 is a prerequisite for this bound
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to have physical meaning.

On physical grounds, it is natural to expect that any positivity condition is preserved
under renormalization group flow into the infrared. This is true because a consistent
theory should continue to be consistent at arbitrarily long distances. Interestingly,
this expectation agrees with known results on the one-loop divergences of pure
Einstein-Maxwell theory in � = 4, which enter solely through the '`a'`a operator
[98]. The sign of this divergence is consistent with a negative beta function, indicat-
ing that the coefficient of this operator indeed increases in the infrared, consistent
with Eq. (2.60).

We can also study Eq. (A.19) in simple concrete examples. First, consider any theory
in general dimension� in which the strength of gravity is negligible relative to gauge
interactions. In this limit all higher-dimension operators are vanishing except for
37 and 38, which control the leading contributions to photon self-interactions in the
Euler-Heisenberg effective action. Applying the logic of ??, we have computed the
four-photon scattering amplitude at low energies and found that dispersion relations
imply the positivity conditions 237 + 38 > 0 and 38 > 0, corresponding to different
choices of external polarizations. In this case, the former inequality exactly implies
that 30 > 0 in general dimension�, thus providing a consistency check of Eqs. (2.60)
and (A.19).

Second, we examine the scalar model described in Sec. 2.2. Translating from
Euclidean to Lorentzian signature, we obtain the higher-dimension operator coeffi-
cients

38 =
1

2<2
q

×
{
02
q, 0, 0, 20q1q, 0, 0, 1

2
q, 0

}
, (2.62)

which, written in terms of 30 using Eq. (A.20), give

30 =
� − 3
8<2

q

[
(� − 4)0q + 2(� − 2)1q

]2
, (2.63)

which is a perfect square, so the bound in Eq. (A.19) is again satisfied.

Third, we study the low-energy description of the heterotic string, for which the
higher-dimension operators have coefficients as given in Refs. [139, 141],

38 =
U′

64
× {4,−16, 4, 0, 0, 0,−3, 12} , (2.64)

where we have absorbed the dependence on the dilaton expectation value into U′.
Plugging these parameters into Eq. (A.19) yields (6�2 − 30� + 37)b2 + 2(� −
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2)b + 2� − 5 > 0, which holds for all b ∈ (0, 1) and � > 3. Thus, we find that
Eq. (A.19) is actually satisfied even beyond the range of thermodynamic stability
and the critical dimension of the string.

The Weak Gravity Conjecture
In the limit of a highly charged black hole we take b � 1 and our general bound in
Eq. (2.60) becomes

30 > 0, (2.65)

with 30 defined in terms of the other 38 in Eq. (2.61).

As it turns out, this inequality is intimately connected with the extremality condition
for a black hole. To see why, consider the unperturbed Reissner-Nordström solution,
for which the extremal charge-to-mass ratio is Ĩ = @/< = 1. In general, quantum
corrections to the gravitational constant and electric charge will renormalize the
right-hand side of this condition. Since these contributions affect black holes of
all masses universally, their effects can simply be absorbed into the definitions of
mass and charge. Meanwhile, higher-dimension operators also shift the maximum
charge-to-mass ratio permitted for a physical black hole, i.e., a black hole free
from naked singularities. In contrast, these corrections are mass-dependent, so they
induce a physical shift of the extremality condition to I = Ĩ + ΔI [139].

To compute this shift, we analyze the metric component 6(A, I), interpreted as a
function of both the radius and the charge-to-mass ratio. The shifted horizon is
defined by the condition 6(d, I) = 0. At linear order in perturbations, this condition
becomes

0 = 6(d, I) = 6̃( d̃, Ĩ) + Δ6( d̃, Ĩ) + Δd md̃6̃( d̃, Ĩ) + ΔI mĨ6̃( d̃, Ĩ). (2.66)

Since the unperturbed black hole is extremal, the first and third terms on the right-
hand side are zero. Solving for the shift in the charge-to-mass ratio yields

ΔI = − Δ6( d̃, Ĩ)
mĨ6̃( d̃, Ĩ)

. (2.67)

By explicit calculation, the charge-to-mass ratio shift is

ΔI =
230

5<2 > 0, (2.68)

which is positive according to Eq. (2.65).

As shown in ??, if ΔI is positive then small black holes automatically satisfy
the WGC [104], which posits that an Abelian gauge theory consistently coupled
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to quantum gravity must contain a state with charge-to-mass ratio greater than
unity. In its original formulation [104], the WGC was presented with several
compelling justifications. This included overwhelming circumstantial evidence
from a long list of explicit examples in quantum field theory and string theory.
A more direct argument was also presented in the form of an elegant thought
experiment involving stable black hole remnants [142–146]. In particular, due to
mass and charge conservation, a charged black hole is stable unless there exist
lighter states with a higher charge-to-mass ratio, into which the black hole can
decay. In the infinite-mass limit, the charge-to-mass ratio of an extremal black hole
is dictated by the Reissner-Nordström solution and approaches unity. Violation of
the WGC would then imply the existence of an infinite tower of stable remnants
labeled by the extremal black hole mass, asserted as pathological in ??. While
this thought experiment offers some crucial physical intuition for the WGC, it falls
short since there do not exist formal proofs that stable black hole remnants are
actually inconsistent with more established principles like the covariant entropy
bound. In many cases the number of black hole remnants is very large but still
finite; furthermore, the states are labeled by distinct charges and are thus in principle
distinguishable [147].

On the other hand, if the WGC is satisfied then extremal black holes are unstable
to decay. We have shown here that considerations of black hole entropy imply that
the charge-to-mass ratio of an extremal black hole increases with decreasing size.
In particular, higher-dimension operators induce a positive shift of the extremality
bound, but these corrections decouple for large black hole masses. The upshot is
then that an extremal black hole of a given mass can always decay into smaller
extremal black holes of a greater charge-to-mass ratio, following the upper curve in
Fig. 2.1. Our bound in Eq. (2.65)—and thus our proof of the WGC—generalizes to
� spacetime dimensions, as shown in App. A.1.

Let us comment on the relation between our results and previous work connecting
black holes and the WGC. First, while the argument in this paper makes critical
use of extremal black holes, our reasoning is completely different from the original
proposal of ??, hinging instead on the thermodynamic entropy of black holes rather
than their stability. More recently, the WGC has also been linked to the cosmic
censorship conjecture [148]. We leave an analysis of this and its relationship to
black hole entropy for future work.

In other recent studies [147, 149], theWGC has also been evaluated in the context of
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black hole entropy using methodologies that differ substantially from our own. Both
?? and ?? examine the leading logarithmic corrections to black hole entropy due
to the quantum effects of light matter particles. Such effects are relevant for black
holes of size parametrically smaller than the Compton wavelength of the matter.
We, in contrast, consider the opposite regime, which effectively corresponds to a
gapped spectrum.

Furthermore, Refs. [147, 149] argue for the inconsistency ofWGC violation through
quite different means: ?? makes the argument through the appearance of a low
cutoff, while ?? employs the second law of thermodynamics. It is crucial to note
that our assertion of a positive entropy shift is logically distinct from the second
law of thermodynamics, which applies to the difference in entropy before and after
a physical process but within the same physical system. Our construction is instead
based on the positivity of classical entropy corrections proven in Sec. 2.2.

Finally, Refs. [147, 149] and also another interesting approach [150] all consider
concrete models with explicit spectra of charged and neutral scalars and fermions.
For this reason, these works at best show that certain WGC-violating theories are
inconsistent. This leaves the logical possibility that more complicated theories that
violate the WGC might still be judged valid by their analyses. In comparison, our
work applies to large black holes in a general low-energy effective theory, which
is insensitive to the precise details of the spectrum and hence constitutes a model-
independent argument for the WGC.

Entropy, Area, and Extremality
A priori, it is somewhat miraculous that the entropy constraint in Eq. (2.65) is
literally equivalent to the extremality condition in Eq. (2.68). To briefly summarize,
we have shown that

Δ( ∼ Δd ∼ ΔI > 0, (2.69)

so the low-energy corrections to the near-extremal black hole entropy, area, and
extremality condition are all proportional to each other and all positive.

Why does the same combination of coefficients 30 appear in all of these inequalities?
As it turns out, this connection is not so mysterious once one considers the perturbed
metric component 6(d, I) in Eq. (2.66) as a function of the shift in horizon radius
Δd and the shift in the charge-to-mass ratio ΔI. For a near-extremal black hole of
fixed charge and mass, we set ΔI = 0 and thus Δd = −Δ6/md̃6̃. On the other hand,
if the charge and mass are free but the unperturbed system is exactly extremal, then
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the Δd term drops out and the charge-to-mass ratio shift is ΔI = −Δ6/mĨ6̃. At the
same time, the radial component of the metric 6̃ is by definition spacelike outside
the horizon, so md̃6̃ > 0. Moreover, since 6̃ dictates the gravitational potential at
long distances, it decreases with < and thus increases with the charge-to-mass ratio,
so mĨ6̃ > 0. This logic implies that Δd and ΔI have the same sign. Since the
entropy shift for a near-extremal black hole is dominated by the shift in the horizon,
Δ( ∼ Δd, we discover that Δ( > 0, Δd > 0, and ΔI > 0 are equivalent bounds.

Conveniently, the above logic immediately extends to themulti-charge generalization
of the WGC proposed in ??. For a theory with multiple Abelian factors, the charge-
to-mass ratio defines a vector z in charge space. The WGC then mandates that the
unit ball representing all possible large black holes be contained within the convex
hull spanned by the set of all z for the lighter states in the theory. Crucially, for
a multi-charged black hole, the perturbed metric only depends on the magnitude
of its charge and not the direction. Hence, Eq. (2.66) still applies, provided we
define Ĩ = |̃z| as the magnitude of the charge-to-mass ratio vector of the black hole
and ΔI = Δz · z̃/|̃z| as its shift. Repeating exactly the argument of the previous
paragraph, we learn that Δ( > 0, Δd > 0, and Δz · z̃ > 0 are all equivalent. The last
inequality implies that the extremality condition for a multi-charged extremal black
hole is perturbed so that the corresponding unit ball is expanded outward in every
direction, thus proving the multi-charge version of the WGC given by the convex
hull condition in ??.

2.7 Discussion and Conclusions
In this paper, we derived a positivity condition on classical corrections to the
Bekenstein-Hawking entropy. For near-extremal black holes this enforces positivity
of a certain linear combination of coefficients of higher-dimension operators. This
very same combination of couplings corrects the extremality condition for black
holes so that their charge-to-mass ratios approach unity from above for increasing
size. Large extremal black holes are thus unstable to decay to smaller extremal
black holes. Since the latter have charge-to-mass ratios greater than unity, they
automatically fulfill the requirement of the WGC.

Our findings leave a number of avenues for future work. First, it would be interest-
ing to determine if entropy considerations have any additional implications for the
swampland program, for example by introducing new operators in extended theories
like Einstein-dilaton gravity or by considering black holes embedded in asymptot-
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ically AdS or dS space, rotating black holes, or black holes of different topologies.
Second, one would ideally like to understand the relationship, if any, between these
entropy bounds and other contraints on low-energy dynamics coming from causality,
analyticity, and unitarity. Indeed, the positivity of entropy shifts discussed in this
paper stems from state counting in the ultraviolet, which is highly reminiscent of
dispersion relation bounds utilizing the positivity of forward cross-sections [108–
111, 124, 151–153] and amplitudes approaches based on the positivity of spectral
representations [112, 154, 155].
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C h a p t e r 3

BOOTSTRAPPING HEISENBERG MAGNETS AND THEIR
CUBIC INSTABILITY

This chapter is based on S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-
Duffin, N. Su, and A. Vichi (alphabetical order), Bootstrapping HeisenbergMagnets
and their Cubic Instability, Phys. Rev. D 104, 105013, Editors’ Suggestion, (2021),
arxiv:2011.14647 [hep-th].

Abstract: We study the critical $ (3) model using the numerical conformal boot-
strap. In particular, we use a recently developed cutting-surface algorithm to effi-
ciently map out the allowed space of CFT data from correlators involving the leading
$ (3) singlet B, vector q, and rank-2 symmetric tensor C. We determine their scaling
dimensions to be (ΔB,Δq,ΔC) = (0.518942(51), 1.59489(59), 1.20954(23)), and
also bound various OPE coefficients. We additionally introduce a new "tip-finding"
algorithm to compute an upper bound on the leading rank-4 symmetric tensor C4,
which we find to be relevant with ΔC4 < 2.99056. The conformal bootstrap thus
provides a numerical proof that systems described by the critical $ (3) model, such
as classical Heisenberg ferromagnets at the Curie transition, are unstable to cubic
anisotropy.

3.1 Introduction
Numerical bootstrap methods [156, 157] (see [158, 159] for recent reviews) have
led to powerful new results in the study of conformal field theories (CFTs). In
[4, 5] we developed an approach to large-scale bootstrap problems which allowed
for precise determinations of the CFT data of the 3d critical $ (2) model. In this
work, we continue the exploration of large-scale bootstrap problems by applying the
technology introduced in [4] to the study of the 3d critical $ (3) model.

Concretely, we apply these methods to study correlation functions of the lowest-
dimension singlet, vector, and rank-2 scalars in the three-dimensional critical $ (3)
model. Using the "cutting surface" algorithm introduced in [4], we compute the
allowed region for the CFT data of these leading scalar operators. Our results,
together with comparisons to results fromMonte Carlo simulations, are summarized
in table 3.1. We also introduce a new algorithm and software implementation called
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tiptop, which allows us to efficiently test allowed gaps for other operators across
this region. We use it to determine an upper bound on the dimension of the lowest-
dimension rank-4 scalar.

The 3d $ (3) model is a well-studied renormalization group (RG) fixed point, and
its critical exponents have been computed using many methods, both theoretical and
experimental. This model describes the critical behavior of isotropic magnets, such
as the Curie transition in isotropic ferromagnets, and antiferromagnets at the Néel
transition point. Moreover, since disorder corresponds to an irrelevant perturbation,1
the model also describes isotropic magnets with quenched disorder.

One of the main open questions about the $ (3) model is its stability under cubic
deformations. The majority of magnets present in nature are indeed not isotropic:
this means that the microscopic Hamiltonian describing the system in the ultraviolet
(UV) is not invariant under the full $ (3) symmetry group but only under a discrete
subgroup, such as the cubic symmetry group. This implies that additional terms
will be generated at the microscopic level that are invariant under cubic symmetry
but transform in a non-trivial representation of $ (3). If any of those deformations
turn out to be relevant, the $ (3) fixed point would be unstable and could not be
reached without further tuning in the UV theory. The attractive, stable, fixed point
would instead be the 3d cubic model. Field theory computations and Monte Carlo
simulations have shown that these two models have very similar critical exponents:
hence, if the cubic perturbation is relevant, it should be very close to marginality
and the RG flow connecting the two theories is very short. We will come back to
this point in section 3.1.

We give a definite answer to the above question: the $ (3) model is unstable under
cubic deformations. This information is encoded in the dimension of the lowest
rank-4 scalar C4, which in the $ (3) model satisfies ΔC4 < 3. As we will discuss, this
implies that the $ (3) model is also unstable with respect to the biconal fixed point
with Z2 ×$ (2) symmetry. Relevance of C4 has been previously suggested by Monte
Carlo [8] and perturbative expansions [162], but the proximity to marginality and
near degeneracy of the critical exponents between the cubic, biconal, and$ (3) fixed
points makes this a subtle question ideal for the precision and rigor of the conformal
bootstrap.

1This is the case in any $ (#) model with # ≥ 2.



63

CFT data method value ref

ΔB MC 1.5948(2) [7]
CB 1.5957(55) [160]
CB 1.59488(81) this work

Δq MC 0.518920(25) [7]
CB 0.51928(62) [160]
CB 0.518936(67) this work

ΔC MC 1.2094(3) [8]
CB 1.2095(55∗) [161]
CB 1.20954(32) this work

ΔC4 MC 2.987(4) [8]
CB < 2.99056 this work

_qqB CB 0.5244(11∗) [160]
CB 0.524261(59∗) this work

_BBB CB 0.499(12∗) [160]
CB 0.5055(11∗) this work

_CCB CB 0.98348(39∗) this work

_qqC CB 0.87451(22∗) this work

_CCC CB 1.49957(49∗) this work

Table 3.1: Comparison of conformal bootstrap (CB) results with previous determi-
nations from Monte Carlo (MC) simulations. We denote the leading rank-0, rank-1,
rank-2, and rank-4 scalars by B, q, C, C4, respectively. Bold uncertainties correspond
to rigorous intervals from bootstrap bounds. Uncertainties marked with a ∗ indicate
that the value is estimated non-rigorously by sampling points.

Theoretical approaches to the 3d $ (3) model
We start by briefly reviewing past approaches to the 3d $ (3) model, including
field theory studies, Monte Carlo, and past results obtained by conformal bootstrap
techniques. We also describe related models and motivate the calculations in this
work.

The simplest continuum field theory in the $ (3) universality class is the theory
of a scalar field ®q transforming in the fundamental representation of $ (3) with
Lagrangian

L = 1
2
|m ®q |2 + 1

2
<2 | ®q |2 + 6

4!
| ®q |4 . (3.1)

A large negative mass-squared for the scalar induces spontaneous symmetry break-
ing and leads to the ordered phase, while a large positive mass-squared leads to
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the disordered phase. The critical point is achieved by tuning the UV mass so that
the infrared (IR) correlation length diverges. The V function of the coupling 6
has been computed in the Y−expansion and in a fixed-dimension scheme. After a
Borel-resummation, both methods predict the existence of an IR stable fixed point.
We will review these results in the next sections.

The IR limit of the above field theory captures the same physics as the Heisen-
berg model. This model consists of a lattice of classical spins ®(8, which can take
values on a three-dimensional sphere. The Hamiltonian has only nearest-neighbor
interactions:

H = −�
∑
〈8, 9〉

®(8 · ®( 9 + �
∑
8

(8 , (3.2)

where we also introduced an external magnetic field �. When the parameter �
is positive, the ground state corresponds to all spins aligned, corresponding to
ferromagnets. When � < 0, the energy is minimized when neighboring spins are
anti-aligned, corresponding to antiferromagnets.

For small �, the line � = 0 separates a ferromagnetic phase from the paramagnetic
one. This line represents a first-order transition and terminates at a value � = �2,
where the correlation length of the system diverges, and the transition becomes
second order. For � > �2, there is only a disordered phase. At � = �2, the theory
in the IR is in the same universality class of the field theory defined in (3.1). The
critical exponents are related to operator dimensions at the fixed point as

Δq =
1 + [

2
, ΔB = 3 − 1

a
, ΔC = 3 − .2 . (3.3)

Here, B ∼ | ®q|2 denotes the lowest-dimension singlet scalar, while C8 9 ∼ (q8q 9−trace)
denotes the lowest rank-2 scalar. More generically the exponents .A are associated
to the dimensions of the lowest rank-A scalar operator.2 In the $ (#) model, the
dimension of the lowest traceless symmetric operator C describes the instability of
the theory against anisotropic perturbations. Because of this, it plays an important
role in the description of multicritical phenomena. For instance, the critical behavior
near a bicritical point where two critical lines with$ (=1) and$ (=2) symmetry meet
givies rise to a critical theory with enlarged $ (=1 + =2) symmetry.

The Hamiltonian (3.2) is a simplified model of magnetic interactions, since in a
real crystalline solid other interactions are present. For instance, the crystal lattice
structure could give rise to magnetic anisotropy. In cubic-symmetric lattices this

2Sometimes in the literature they are replaced by the crossover exponents qA = a.A .
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effect produces an interaction localized at each lattice point 8 of the form
∑3
:=1((:8 )4.

This perturbation breaks the$ (3) global symmetry of the Heisenberg Hamiltonian,
and therefore it cannot be generated by an RG transformation. As such, the IR fixed
point of (3.2) will be described by an $ (3) invariant CFT.

$ (#) vs. multi-critical models

The $ (3) model described above can be generalized to $ (#) by promoting ®q to an
# component field. We can also consider the closely related cubic model, which
describes the continuum limit of the Hamiltonian (3.2) with the addition of the
$ (#) breaking term

∑#
:=1((:8 )4. This interaction is indeed invariant under the

symmetries of a hyper-cubic lattice, namely permutations and reflection of the three
axes. The field q8, 8 = 1, . . . , # , transforms in the fundamental representation of
the permutation group S# . Moreover, each component is odd under a reflection of
the corresponding axis. The composition of these transformations gives rise to the
hypercubic symmetry group �# = Z# o S# .

Compared to (3.1), the Lagrangian of the hypercubic model has an additional term
in the potential:

L = 1
2

#∑
8=1

(
(m`q8)2 + <2q2

8

)
+ 6

4!

(
#∑
8=1

q2
8

)2

+ ℎ
4!

#∑
8=1

q4
8 . (3.4)

The computation of the two V-functions V6 and Vℎ reveals the existence of four fixed
points: the trivial fixed point (6 = ℎ = 0), the # decoupled copies of the Ising model
(ℎ ≠ 0, 6 = 0), the $ (#) fixed point (6 ≠ 0, ℎ = 0) and the cubic model (6 ≠ 0,
ℎ ≠ 0). It is straightforward to see that the first two are unstable since the quartic
operator parametrized by 6 is relevant in both theories.3 Determining which one of
the other two fixed points is stable is a more complicated issue, and it turns out to
be # dependent.

One way to rephrase the above question is to notice that the additional term in (3.4)
can be rewritten as

#∑
8=1

q4
8 =

#∑
8=1

C88884 +
3

# + 2

(
#∑
8=1

q2
8

)2

, (3.5)

where C8 9 :;4 is the traceless symmetric combination of four fields. The added term
in the potential, in $ (#) notation, can be written as a combination of a rank-4 field

3The case of # decoupled Ising model corresponds to products of operators n8 ∼ q2
8
belonging

to different copies where 2Δn < 3 in the Ising model.
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and a singlet. We know that the singlet is irrelevant at the $ (#) fixed point, by
definition. Thus the stability of the $ (#) fixed point or the cubic point is linked to
the value of the dimension of the operator C4.

In the$ (2) model the operator C4 is irrelevant. A simple proof of this is to notice that
for # = 2, as long as ℎ ≠ 0, the cubic Lagrangian can be mapped in the Lagrangian
of two decoupled Ising models. This cubic fixed point coincides with the decoupled
Ising fixed point, which is unstable. Field theory and Monte Carlo determinations
of the dimension of C4 agree with this argument. This is also consistent with the
assumptions made in [4].
On the contrary, at large # , the operator C4 is relevant, and the cubic fixed point is
stable. Thus, it is important to know at which value # = #2 > 2 the operator C4
becomes relevant.

A second closely related model is the multi-critical point with $ (=1) × $ (=2)
symmetry. A field theory description is given in terms of two sets of scalar fields ®q1

and ®q2, transforming respectively in the fundamental representation of $ (=1) and
$ (=2), with Lagrangian:

L = 1
2

2∑
8=1
|m` ®q8 |2 +

61
4!

(
| ®q1 |2

)2
+ 62

4!

(
| ®q2 |2

)2
+ ℎ

4
| ®q1 |2 | ®q2 |2 , (3.6)

where we have already set to zero all the mass terms. The analysis of the perturbative
V functions shows the existence of six fixed points. Some we already know: the
free one (68 = 0, ℎ = 0), the two Wilson Fisher fixed points (61 ≠ 0, 62 = ℎ = 0 and
same with 1 ↔ 2), the decoupled fixed point (DFP, 68 ≠ 0, ℎ = 0), the symmetry
enhanced $ (=1 + =2) Wilson Fisher fixed point, and lastly the biconal fixed point
(BFP). The latter one also has all couplings nonvanishing, but the global symmetry
is not enhanced.

The problem of understanding the stable fixed point can be again reduced to studying
the (ir)relevance of given deformations in the various CFTs. For instance, by
inspecting the dimension of the composite operator built out of the lowest dimension
scalar singlets in$ (=1) and$ (=2) theories, one can conclude that the DFP is stable
for any # = =1 + =2 ≥ 4. It is unstable for # ≤ 3, although the perturbation is close
to being marginal.4

The issue of stability of $ (#) vs. the BFP is again related to the dimension of a
certain operator. In the Lagrangian formulation, this is a combination of quartic

4The most precise bootstrap determination [4, 160] gives Δ[BZ2 B$ (2) ] = ΔBZ2
+ ΔB$ (2) =

2.92398(23) < 3.
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interactions. At the $ (#) fixed point this term is mapped in a combination of
the second-lowest rank-0 ((′), second-lowest rank-2 (C′2) and leading rank-4 scalar
operator C4. If any of these operators is relevant, then the $ (#) fixed point is
unstable. While the former two are known to be always irrelevant for any # , the
latter is the object of investigations. In particular, if ΔC4 < 3 for # = 3, then among
the fixed points, the BFP will be the stable one.

Field theory results

CFT data method value ref

ΔB 3 = 3 exp 1.5840(14) [163]
Y-exp 1.580(11) [164]
HT 1.603(4) [165]

Δq 3 = 3 exp 0.5175(4) [163]
Y-exp 0.5188(23) [164]
HT 0.5180(35) [165]

ΔC 3 = 3 exp 1.20(3) [166]
Y-exp 1.210(3) [166]
HT 1.24(2) [167]

ΔC4 3 = 3 exp 2.987(6) [162]
Y-exp 2.997(4) [162]

Table 3.2: Comparison of field theory results using various techniques: fixed-
dimensional expansion in three dimensions (3 = 3 exp), epsilon expansion (Y-exp)
and high temperature expansion (HT). We denote the leading rank-0, rank-1, rank-2,
and rank-4 scalars by B, q, C, C4, respectively. Another estimate of ΔC in the fixed-
dimensional expansion can be found in [13] in terms of the crossover exponents
q) = .2a, with .2 = 3 − ΔC . We do not report it here because the errors depend on
the value of a used.

Both the $ (3) model and the cubic model have been extensively studied using
different expansion techniques. V-functions for these models are known up to
high order in both the n-expansion and fixed-dimension expansion, and critical
exponents have been computed by Borel resumming the respective series.5 We

5Both approaches are based on a perturbative expansion in the quartic interaction 6 up to a
certain loop order. In the fixed dimension approach one works directly in 3 = 3 dimension and looks
for solutions of the Borel resummed V-function VBR (6∗) = 0. Critical exponents are then computed
as aBR (6∗). In order to remove the divergences one imposes suitable renormalization conditions.
Historically the term "fixed dimension" refers to renormalization conditions at zero momentum;
the use of a minimal subtraction scheme is instead called a "minimal subtraction scheme without
Y-expansion". In the proper Y-expansion approach one works in 3 = 4 − Y dimensions and solves



68

report in table 3.2 the latest results obtained with field theory techniques.

The question of stability of fixed points has also been discussed in the literature. As
we discussed in the previous section, this question can be addressed in two ways: by
computing the dimension of the lowest dimension rank-4 scalar in the $ (3) model,
or by computing the value #2 at which the dimension of the second-lowest rank-0
scalar in the cubic model becomes exactly marginal.6 Results from both methods
support the conclusion that $ (3) is unstable while the cubic model is stable. The
formula for #2 in the Y-expansion is [168, 169]:

#2 = 4 − 2Y + 2.58847559Y2 − 5.87431189Y3 + 16.82703902Y4 +$ [Y5] , (3.7)

and after resummation gives #2 = 2.89(2).

Analysis of the Y-expansion or fixed-dimension perturbative series in the cubic
model [166, 170, 171] shows that the critical exponents of the two models are very
close:

a$ (3) − acubic = 0.0003(3) , [$ (3) − [cubic = 0.0001(1) . (3.8)

These differences are much smaller than the typical experimental error (e.g., [172]).
This makes distinguishing the two models experimentally very challenging. Curi-
ously, the first few terms in the of the Y-expansion of the critical exponents in (3.8)
are quite different, and it is only after the Borel resummation that the two values
appear quite close.

Similarly, also the biconal Z2 × $ (2) model and the $ (3) critical exponents are
very close, as the flow connecting the two is driven by the same almost marginal
operator as in the cubic case:

|a$ (3) − aBFP | . 0.001 , |[$ (3) −[BFP | = 0.0005 , |[$ (3) −[′BFP | = 0.0001 ,
(3.9)

where [BFP and [′BFP correspond to the two relevant order parameters charged
respectively under Z2 or $ (2).
the condition V(6∗) = 0 order by order in Y. Plugging the solution 6∗ (Y) into the expression for the
critical exponent one gets a series in Y that can be Borel resummed. The final critical exponents are
then computed as aY-BR (Y = 1).

6The lowest dimension one corresponds to the mass deformation and is always relevant; the
second-lowest corresponds to a combination of the two quartic interactions. The orthogonal combi-
nation is related to the Lagrangian operator via the equation of motion and is irrelevant.
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Monte Carlo results

Using Monte Carlo (MC) techniques, it is possible to obtain precise estimates
of the critical exponents for both the $ (3) model and the cubic model, as well
as information about their stability. Such determinations can also be improved
when combined with finite-size scaling (FSS) or high-temperature expansion (HT)
methods. A precise determination of the a and [ critical exponents was made using
MC and FSS methods in [173]. A more precise analysis combining MC with HT
techniques was carried out in [174], while a more precise MC and FSS study was
performed in [8]. A very precise MC and FSS analysis of an icosahedral model,
as well as improved MC and HT analyses were recently presented in [7]. Several
other less precise determinations can be found in [172]. The dimensions relevant
to anisotropic perturbations of rank-2,3,4 were computed in [8, 175] using MC and
FSS methods, and support the conjecture that the $ (3) model is unstable under
cubic deformations. These results are summarized in table 3.1.

The conformal bootstrap

Three dimensional$ (3)models have been studiedwith bootstrapmethods in a series
of papers [160, 161, 176], first by considering the correlation function 〈q8q 9q:q;〉,
where q8 is the lowest-dimension scalar transforming in the vector representation
of $ (#) , and then by also including correlation functions involving the lowest-
dimension singlet scalar B. The most precise determination of the critical exponents
was obtained in [160], which isolated a three dimensional region in the space
{Δq,ΔB, _BBB/_qqB} = {0.51928(62), 1.5957(55), 1.205(9)}, under the assumption
that q8 and B are the unique relevant scalar operators in their representations. In
addition, by scanning over this island, [160] determined themagnitude of the leading
OPE coefficient to be _qqB = 0.5244(11).

Theories invariant under the cubic symmetry groupwere also studied using bootstrap
methods using single correlators [177, 178], and mixed correlators [179, 180]. In
particular [178] analyzed the bootstrap equations assuming the hypercubic symmetry
group�# = Z#oS# and observed a series of kinks for various values of# . However,
the locations of the kinks in the singlet sector were degenerate with the $ (#) kinks
(and hence compatible with (3.8)), likely reflecting a symmetry enhancement in the
extremal bootstrap solutions [181–185], while the bounds in other sectors did not
seem to be saturated by the cubicmodel. Themixed-correlator analysis of [179, 180]
also did not manage to isolate the cubic model but rather found evidence of a new
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theory, called the "Platonic CFT," with cubic symmetry and operator dimensions
not matching any known CFT.

In this work, we study the $ (3) model with numerical bootstrap techniques using
a larger system of correlation functions than before: in addition to q8 and B, we
incorporate the lowest-dimension rank-2 scalar C8 9 ∼ q(8q 9) . This setup is similar
to the one leading to the successful results obtained in [4] for the $ (2) model.
Following the strategy detailed in [4], we first scan over the three operator dimen-
sions {Δq,ΔB,ΔC} and the OPE coefficients {BBB, qqB, CCB, qqC , CCC} (or more precisely
their ratios) and we determine a three dimensional island in the space of operator
dimensions, along with an associated allowed set of OPE coefficient ratios. Next,
we compute upper and lower bounds on the magnitude _qqB, as well as on the cur-
rent and stress-tensor central charges �� and �) . Finally, we enlarge the parameter
space to include one more parameter: the dimension of the lowest rank-4 scalar
ΔC4 . Using the new tiptop algorithm, which we describe in section 3.3, we carve
out the allowed region in the enlarged four-dimensional space and obtain an upper
bound on ΔC4 .

Structure of this work
The remainder of this work is structured as follows. In section 3.2 we describe
the crossing equations and relevant $ (3) representation theory. In section 3.3 we
describe the new tiptop algorithm that we use in order to bound ΔC4 . In section 3.4
we describe the results of our numerical bootstrap calculations and in section 3.5
we describe directions for future research. Various appendices describe the code
availability, software setup, details about our tensor structures, and give a list of
allowed and disallowed points that we have computed.

3.2 The $ (3) model
Crossing equations
We begin by describing the representation theory of $ (3) = Z2 × ($ (3). We label
the irreducible representations q± of $ (3) by the usual ($ (3) rank q tensor of
dimension 2@ + 1 for @ ∈ 1

2Z≥0, as well as the Z2 parity ±. Tensor products of these
irreps are given by

q1
± ⊗ q2

± =
@1+@2⊕

@0=|@1−@2 |
qa
+ , q1

± ⊗ q2
∓ =

@1+@2⊕
@0=|@1−@2 |

qa
− , (3.10)
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where if q1
± = q2

±, then the even/odd qa are in the symmetric/antisymmetric part
of the tensor product.

Operators Oq± (G) in the irrep q± can be written in terms of ($ (3) fundamental
indices 8 = 1, 2, 3 as rank-@ symmetric traceless tensors O81...8@± (G) with the extra Z2

labels ±. Four-point functions of scalar operators i81...8@± (G) can be expanded in the
B-channel in terms of conformal blocks as7〈
i
81...8@1
±1 (G1)i

91... 9@2
±2 (G2)i

:1...:@3
±3 (G3)i

;1...;@4
±4 (G4)

〉
=

(
G24
G14

)Δ12 (
G14
G13

)Δ34

G
Δ1+Δ2
12 G

Δ3+Δ4
34

∑
O
(−1)ℓ_i1i2O_i3i4O)

R,81...8@1 , 91... 9@2 ,:1...:@3 ,;1...;@4
R1R2R3R4

6
Δ12,Δ34
Δ,ℓ

(D, E) ,

(3.11)

where Δ8 9 ≡ Δ8 − Δ 9 , the conformal cross ratios D, E are

D ≡
G2

12G
2
34

G2
13G

2
24
, E ≡

G2
14G

2
23

G2
13G

2
24
, (3.12)

and the operatorsO that appear bothOPEs i1×i2 and i3×i4 have scaling dimension
Δ, spin ℓ, and transform in an irrepR that appears in both the tensor productsR1⊗R2

and R3 ⊗ R4. For each R, the ($ (3) structure )R can be constructed using the
($ (3) Casimir and normalized to give consistent OPE coefficients under crossing
using the free theory as described in appendix B.3. The Z2 irrep of O follows from
trivial multiplication of ±1 and ±2, and so does not require a structure. If i1 = i2

(or i3 = i4), then Bose symmetry requires that O have only even/odd ℓ for R in the
symmetric/antisymmetric product of R1 ⊗ R2 (or R3 ⊗ R4).

We are interested in four-point functions of the lowest dimension scalar operators
transforming in the 0+, 1−, and 2+ representations, which we will denote following
[160, 161, 176] as B, q, and C, respectively.8 These operators are normalized via
their two point functions as

〈B(G1)B(G2)〉 =
1
G

2ΔB
12

, 〈q8 (G1)q 9 (G2)〉 =
X8 9

G
2Δq
12

, 〈C8182 (G1)C 91 92 (G2)〉 =
X81 91X82 92

G
2ΔC
12

,

(3.13)
7Our conformal blocks are normalized as in the second line of table 1 in [158].
8The singlet (, traceless symmetric ) , vector + , and antisymmetric � irreps considered in

previous$ (#) bootstrap papers [160, 161, 176] correspond for$ (3) to the 0+, 2+, 1−, and 1− irreps,
respectively, where now � � + .
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Correlator B-channel C-channel Eqs

〈qqqq〉 (ℓ+, 0+), (ℓ−, 1+), (ℓ+, 2+) same 3

〈CCCC〉 (ℓ+, 0+), (ℓ−, 1+), (ℓ+, 2+), (ℓ−, 3+), (ℓ+, 4+) same 5

〈CqCq〉 (ℓ±, 1−),(ℓ±, 2−), (ℓ±, 3−) same 3

〈CCqq〉 (ℓ+, 0+), (ℓ−, 1+) (ℓ±, 1−),(ℓ±, 2−), (ℓ±, 3−) 6

〈BBBB〉 (ℓ+, 0+) same 1

〈qBqB〉 (ℓ±, 1−) same 1

〈CBCB〉 (ℓ±, 2+) same 1

〈CCBB〉 (ℓ+, 0+) (ℓ±, 2+) 2

〈qqBB〉 (ℓ+, 0+) (ℓ±, 1−) 2

〈qBqC〉 (ℓ±, 1−) same 1

〈qqBC〉 (ℓ+, 2+) (ℓ±, 1−) 2

〈BCCC〉 (ℓ±, 2+) same 1

Table 3.3: Four-point function configurations that give independent crossing equa-
tions under equating their B- and C-channels, along with whether even or odd spins
ℓ± appear for each irrep in each channel, and the number of crossing equations that
each configuration yields.

where G12 ≡ |G1 − G2 | and all indices of the same letter should be symmetrized with
their trace removed. In table 3.3 we list the 4-point functions of B, q, and C that
are allowed by $ (3) symmetry9 and whose B and C-channel configurations lead to
independent crossing equations, along with the irreps and spins of the operators that
appear in the OPE, and the number of crossing equations that they yield. These
4-point functions can be written explicitly as in (3.11), where the explicit ($ (3)
structures )R are computed in appendix B.3. Equating each of these B-channel

9If we had just ($ (3) symmetry, then in addition to these 4-point functions we would also
have 〈Bqqq〉, 〈BCCq〉, 〈Cqqq〉, and 〈qCCC〉, which can be constructed using the ($ (3) invariant tensor
n8 9: . These correlators give an additional 9 crossing equations for 37 total. As discussed in [161],
to distinguish between ($ (3) and $ (3), one needs to set some of the OPE coefficients in these
additional correlators to be nonzero. Otherwise, the extra crossing equations have no effect.
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4-point functions with their respective C-channels yields the crossing equations

0 =
∑
O0+ ,ℓ+

(
_BBO0+ _qqO0+ _CCO0+

)
®+0+,Δ,ℓ+

©«
_BBO0+

_qqO0+
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ª®®®¬
+

∑
O1+ ,ℓ−

(
_qqO1+ _CCO1+

)
®+1+,Δ,ℓ−

(
_qqO1+
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)
+
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O1− ,ℓ±

(
_CqO1− _qBO1−

)
®+1−,Δ,ℓ±

(
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)

+
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©«
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CBO2+
®+2+,Δ,ℓ−

+
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O2− ,ℓ±
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CqO2−

®+2−,Δ,ℓ± +
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CCO3+
®+3+,Δ,ℓ− +
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O3− ,ℓ±
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CqO3−

®+3−,Δ,ℓ± +
∑
O4+ ,ℓ+

_2
CCO4+
®+4+,Δ,ℓ+ ,

(3.14)

where ℓ± denotes which spins appear, and the +’s are 28-dimensional vectors of
matrix or scalar crossing equations that are ordered as table 3.3 and written in terms
of

�
8 9 ,:;

∓,Δ,ℓ (D, E) = E
Δ:+Δ 9

2 6
Δ8 9 ,Δ:;

Δ,ℓ
(D, E) ∓ D

Δ:+Δ 9
2 6

Δ8 9 ,Δ:;

Δ,ℓ
(E, D) . (3.15)

The explicit form of the +’s is given in the Mathematica notebook associated with
the arxiv link [186].10

Ward identities
The OPE coefficients of �` and ) `a are constrained by Ward identities in terms of
the two-point coefficients �� and �) . In our conventions, we have

_2
OO) =

Δ2
O

3�)/�free
)

, _2
OO� =

@2
O

2��/�free
�

, (3.16)

where�free
�,)

are the two-point coefficients of � and) in the free$ (3)model described
in appendix B.3. Thus, the contribution of these operators to the crossing equation
can be parametrized purely in terms of�) and�� , together with the dimensions and
charges of the external scalars q, B, C.

3.3 The tiptop algorithm
While our primary search for the$ (3) bootstrap island will follow the samemethods
and software tools used for the $ (2) model described in [4], we will also need to

10These crossing equations can also be derived using the software package autoboot [187].
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compute the maximum value of the scaling dimension ΔC4 over this island. This
employs a new search strategy and software implementation that we describe in this
section.

Software and algorithm
To automate finding the maximally allowed value of some gap across the allowed
region, we have written tiptop, software for generating successive points for
searching for the maximum value of a coordinate achieved by a region in (# + 1)-
dimensional space (see Appendix B.1). It has many optimizations specifically for
finding the maximum gap. It is meant to be invoked by a driver that takes these
points, computes whether they are feasible, and then asks for more points to check.

The number of dimensions is arbitrary but fixed at compile time. For concreteness
and ease of visualization, we assume that # + 1 = 3 for the rest of this discussion,
where the dimensions are Δq,ΔB, and Δgap. The algorithm operates unchanged for
higher dimensions.

We start with at least one feasible point, a cloud of infeasible points, a cloud of
points that are in-progress, and a maximum gap (Δmax_gap). In-progress points are
points that the driver already knows about and is working on, but does not yet know
if they are feasible. For example, those calculations may have been submitted as
calculations to an HPC cluster but not yet completed.

We assume that there are no feasible points with Δgap ≥ Δmax_gap. We also assume
that islands only shrink at larger gaps. So if a point is infeasible at one gap, it
will continue to be infeasible at larger gaps. The last assumption is that each #-
dimensional island at a fixed value of Δgap is convex and simply connected, so each
island never become a horseshoe or splits into two pieces. While there are many
examples of islands splitting at low Λ, islands at high Λ have been well behaved for
a wide variety of theories.

The basic outline of the algorithm for generating points is:

• Set Δfeasible to the largest Δgap with a feasible point.

• Explore parameters at Δfeasible to find the size of the island there. If there are
any corners of parameter space left to map out, return one point from there.
(Section 3.3)



75

Feasible

* Infeasible
In-progress

*
*

*
**

*
**

*
* * *

* ***
***
***

**
*

**
*

***
* *

**
*

*
**

*

*
* * * *

* **

*
*

*
*

**
*****

*
* ****** *

*

* * *

***

** **
*
*

*

Δφ

Δs

maxΔ

Figure 3.1: The max coordinates Δmax
for a collection of feasible, infeasible, and
in-progress points.
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Feasible at Δ    = Δgap
Feasible at lower gaps

max_gap

previous

Figure 3.2: Different types of feasible
points. Only the points feasible at Δgap =
Δprevious are used for rescaling.

• If the island at Δfeasible is thoroughly mapped out, generate one point at a
higher gap. (Section 3.3)

The non-gap dimensions (Δq,ΔB) are represented as regular floating-point numbers,
while the gap dimension (Δgap) is represented as a 64 bit integer. This reduces
numerical errors where two points at very similar gaps are mistakenly considered to
be at the same gap.

tiptop will not return a point in two cases:

• The current gap Δfeasible might be fully explored, but it needs to know the
outcome of some in-progress points to be sure.

• There are no valid larger gaps left. For example, consider the case where
Δfeasible = 10000 and tiptop has ruled out any jumps to Δgap = 10001. There
are no integers between 10000 and 10001, so the algorithm terminates.

Exploring the current gap
Rescaling

The islands often have extreme aspect ratios in the ’natural’ coordinates. This causes
difficulties when exploring an island, so tiptop rescales the coordinates. The first
step in rescaling is to get an overall scale for all of the points (feasible, infeasible, and
in-progress) from all gaps. We define Δmax as a scalar equal to the largest absolute
coordinate value in all dimensions, as shown in Figure 3.1.
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For a given Δmax_gap, we define Δprevious as the largest gap with feasible points but
less than Δmax_gap. This is usually a previous value for Δmax_gap. Figure 3.2 shows
an example of feasible points at Δmax_gap, Δprevious, and lower gaps.

Using the < feasible points at Δprevious, we scale the points using a principle com-
ponent analysis. Specifically, we construct the matrix

" =

©«

Δq0 ΔB0

Δq1 ΔB1

Δq2 ΔB2

Δq3 ΔB3
...

...

ª®®®®®®®®¬
.

We then compute the singular value decomposition (SVD) of this matrix

" = *Σ+∗ , (3.17)

where Σ is a rectangular < × # diagonal matrix with non-negative real numbers
f8 = Σ88 on the diagonal ranging from the smallest (fmin) to the largest (fmax). * is
an < × < unitary matrix, and + is an # × # (here 2 × 2) unitary matrix.

We define the # × # matrix Ω as the first # rows of Σ. This is a diagonal matrix
with the entries f8, so the inverse is trivial. Putting this all together, we define the
rescaling matrix

' ≡ fminΩ
−1+)/(1.75 × Δmax) . (3.18)

It may be that there are so few points atΔprevious that they are not linearly independent.
For example, in the beginning, there may not be any points at Δprevious. If the ratio
between the smallest (fmin) and largest (fmax) of these singular values is less than
a tolerance (we use 10−8), then we only scale by Δmax

' ≡ �/(1.75 × Δmax) , (3.19)

where � is the identity.

Everything is scaled by the largest coordinate value Δmax to guarantee that all points
are mapped into a box with extents (-1,1) in every dimension. The factor of 1.75
(about

√
3) is to ensure that all points will fit into the unit box even after rotation.

The transformation has the effect of a rotation and then rescaling of the rotated
coordinates, so the feasible region remains convex. However, the feasible points
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Figure 3.3: Points from Figure
3.1 after rescaling.
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Figure 3.4: Points from Figure 3.3 with an
adapted mesh. Points that are feasible at Δgap <
Δfeasible have been removed. The blue spiral indi-
cates an empty candidate cell. The other empty
cells are not diagonal from a feasible cell, so they
are not considered.

should outline a more circular shape than the extended ellipse we started with, as
shown in Figure 3.3.

One concern with this rescaling algorithm is that it weighs dense regions with more
points more than equivalently sized regions with fewer points. So it may not produce
an optimal transform. In practice, the later steps spread out the points very evenly,
so this concern turns out not to be a problem in practice.

Adaptively meshing the box

While the distribution of points in Figure 3.3 no longer has extreme aspect ratios,
the points are still clustered in a small region of the unit box.

Based on the assumption that the feasible island only shrinks as the gap increases,
we now only consider three sets of points: feasible at the current Δmax_gap, and
infeasible or in-progress at Δgap ≤ Δmax_gap. For the rest of this step, we will be
treating in-progress and infeasible points identically.

The strategy is to place points in regions that are empty. To quantify this emptiness,
we create a regular mesh covering the points. Empty regions are then cells that have
no points. We start with a very coarse mesh consisting of a single cell covering the
entire unit box. Then we loop over all cells, splitting each cell a point into 2# cells
(4 for our example). We recursively loop over these new cells, continuing until we
have reached the minimum cell size.
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The minimum cell size is set by multiplying the minimum coordinate extents of
the rescaled feasible points by a fixed fraction 5cutoff. In Figure 3.3, this minimum
extent is about 0.5 in both dimensions. We use 5cutoff = 2, which is deliberately
very coarse. If 5cutoff < 1, then the algorithm will feel the need to completely fill in
internal regions, even though, by assumption, the internal spaces do not need to be
checked.

Just after a jump to a higher gap, there is only one feasible point at Δfeasible. In
this case, the extents are zero, so we use a default minimum cell width of 2−47.
This is quite small, but a little bigger than the minimum resolution of an IEEE-754
double-precision number (2−53). This helps reduce errors from round-tripping the
number through different systems.

Most of these cells will be empty. We select the largest empty cell that is adjacent
to a cell containing only feasible points. If there are multiple empty cells next to a
feasible cell, then we select a new cell in the order (+, +), (−,−), (+,−), (−, +) as
in Figure 3.4. We only check diagonals, so points get laid out in a checkerboard
pattern.

If there are two candidate empty cells, we choose the cell adjacent to the first feasible
point given to tiptop. So when driving tiptop, we always list the feasible points
in the same order.

The new point is not placed at the center of the new cell, but rather simply offset
from the existing feasible point. So if the feasible point is in a corner of a cell, the
new point will be in the same corner of the empty cell.

The observed behavior of this algorithm is that it quickly finds a rough estimate for
the boundary between feasible and unfeasible, but can spend a lot of effort finding
the exact boundaries. In-progress points are treated as infeasible, so too many
in-progress points will lead to extra work. In practice, we have up to 16 points
in-progress at any one time.

Jumping to a larger gap
If the previous section does not yield a new point, and there are no in-progress
points, then we try to jump to a larger gap.

We start by rescaling the points as in section 3.3. We draw a coordinate box around
all of the points feasible at Δfeasible and shrink it by a factor of 2. Then we find the
largest gap Δceiling that can accommodate this box without containing any infeasible
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or in-progress points with Δgap ≤ Δceiling. At the beginning, there are no infeasible
points at large gaps, so Δceiling = Δmax_gap.

We return the center of the box at Δgap =
(
Δfeasible + Δceiling

)
/2, thus bisecting the

range of feasible gaps. This underscores the need for a good estimate of Δmax_gap.

If the estimate is too high, then the algorithm will recommend too many points that
are far too large.

Overall, we have found this approach to work reasonably well. More importantly, it
is very robust. It is very easy to be too clever, resulting in odd failures.

3.4 Results
Dimension bounds with OPE scans
Next we present our conformal bootstrap island computed using sdpb, along with its
comparison with various Monte Carlo results. Computing the conformal bootstrap
island requires scanning over the three operator dimensions {Δq,ΔB,ΔC} using the
Delaunay search algorithm described in [4], and for each point using the "cutting
surface" algorithm presented in [4] to decide if there exists an allowed point in the
space of OPE coefficient ratios { BBB

qqB
, CCB

qqB
,
qqC

qqB
, CCC

qqB
}.

When computing the island we make the following assumptions about the spectrum
unless stated otherwise. We assume that q, B, and C are the only relevant operators
in their respective symmetry representations, so that Δq′,B′,C ′ ≥ 3. In addition, we
assume that the leading rank-4 scalar has a dimension satisfying ΔC4 ≥ 2. We
assume an$ (3) current with Δ� = 2 and stress tensor with Δ) = 3, with coefficients
satisfying the Ward identity constraints. We also impose a twist gap above them, as
well as in all other sectors not mentioned above, of size 10−6.

In Figure 3.5 we show the conformal bootstrap island we have computed at Λ = 43
using these assumptions, compared to theMonte Carlo results of [7, 8]. In Figure 3.6
we show various 2d projections of the bootstrap island. In appendix B.4 we give
the full set of allowed and disallowed points we computed at Λ = 43, along with
Figure B.1 which shows the convergence of the allowed points as a function of
Λ after performing an affine transformation to make the allowed regions roughly
spherical.

In these plots we show our best determination of the allowed region at a given Λ,
constructed by computing a Delaunay triangulation of the tested points, choosing
triangles that contain both allowed and disallowed points, and plotting the convex
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Figure 3.5: The Λ = 43 conformal bootstrap dimension island (black) compared
with the Monte Carlo results [7, 8] (green).

hull of the points that are midway between the allowed and disallowed vertices in
these triangles. At Λ = 43, this "best-fit" region gives

Δq = 0.518942(51∗) ,
ΔB = 1.59489(59∗) ,
ΔC = 1.20954(23∗) . (3.20)

A more rigorous determination can be made by taking the convex hull of the
disallowed points in these boundary Delaunay triangles. This region gives the
rigorous error bars

Δq = 0.518936(67) , (3.21)

ΔB = 1.59488(81) , (3.22)

ΔC = 1.20954(32) , (3.23)

which we have quoted in table 3.1.

The allowed points at Λ = 43 are associated with OPE coefficient ratios which live
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Figure 3.6: Comparison between the conformal bootstrap islands at Λ =

19, 27, 35, 43 projected to the {Δq,ΔB}, {Δq,ΔC}, and {ΔB,ΔC} planes and theMonte
Carlo results of [7, 8].
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in the ranges11

_BBB

_qqB
= 0.9643(20∗) ,

_CCB

_qqB
= 1.87593(53∗) ,

_qqC

_qqB
= 1.66808(23∗) ,

_CCC

_qqB
= 2.86034(61∗) . (3.24)

These should be viewed as an approximation to the full allowed region of OPE
coefficients, which may be slightly larger.

Central charges and _qqB
Next, we compute upper and lower bounds on the magnitude of the OPE coefficient
_qqB, the central charge �) , and the current central charge �� . We compute these
bounds over a small sample of points in our allowed region so the results will be
inherently non-rigorous. However, we believe that this treatment gives reasonable
estimates for these quantities that are more precise than previous results.

The strategy is similar to the method we employed in [4]. We take seven primal
points in the Λ = 43 island, consisting of the scaling dimensions and allowed OPE
coefficients. The points are chosen to be sufficiently symmetrized and sparse across
the Λ = 43 island we have computed. For each of these points, we extremize �) ,
�� , and the external OPE norm parameterized by _qqB, to obtain upper and lower
bounds. This calculation was limited to Λ = 35 due to our available computational
resources. The data points and SDPB parameters we used are summarized in tables
B.5 and B.2, respectively.

There is an important comment wewant to make about the upper bound computation
on �) and �� (a similar comment was made in [4]). For computing upper bounds
on �) and �� , we have to assume a gap Δ) ′/� ′ above the unitarity bound for the next
operators in the ) or � sectors. Note that this gap was not assumed in our OPE scan,
so this extra constraint might turn an allowed point into a disallowed point. If we do
not have such a gap, the upper bound is loose and may not give reasonable results.
On the other hand, large gaps can make SDPB unable to find a solution.

11Note that there is an ambiguity in the signs of these coefficients, related to performing the
operator redefinitions B → −B and C → −C. This freedom can be used to fix _qqB and _qqC to be
positive, after which all other signs in (3.24) are determined to be positive by the conformal bootstrap.
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In table B.5, we summarize the gaps Δ) ′/� ′ we assume in the upper bound calcu-
lations. From spectrum determinations using the extremal functional method (see
[188, 189]), we have noticed that a gap Δ) ′/� ′ = Δ)/� + 1 above ) and � is generally
favored. We were able to compute bounds with this gap for three of the points, but
for the other four we could not find solutions. For those points, we adopted the
weaker assumption Δext,) (�) = Δ)/� + 0.1.

Following this procedure, we obtain our estimates of �) , �� , and _qqB in the critical
$ (3) model,

��/�free
� = 0.90632(16∗) ,

�)/�free
) = 0.944524(28∗) ,

_qqB = 0.524261(59∗) . (3.25)

These results agree with and are more precise than previous determinations of these
quantitites (see [160, 161, 176]).

Upper bound on ΔC4
Our last result is the maximum value of the rank-4 scalar dimension ΔC4 . In con-
junction with the tiptop algorithm described in section 3.3, we computed points
at Λ = 19, 27, and 35. Allowed points at lower values of Λ were used to initiate the
search at larger values of Λ. Figure 3.7 shows a projection of a subset of the 1311
disallowed points and 172 allowed points at Λ = 35, and Figure 3.8 shows how the
island shrinks as we approach the maximum ΔC4 .

The largest allowed value of ΔC4 was 2.99052, with the tip centered around the
scaling dimensions {Δq,ΔB,ΔC} = {0.518962, 1.59527, 1.20969}. We can also
consider the nearest disallowed point. To compute the nearest, we first use the
affine transformation (B.8) which makes the dimension island roughly spherical
with $ (1) size, and we additionally rescale ΔC4 − 3 by a factor of ∼ 100 so that the
tip’s curvature also ranges over an $ (1) distance. Then we compute the Euclidean
norm. The algorithm is very well converged, so the result is robust against the
precise form of these transformations. This gives us a conservative bound of

ΔC4 < 2.99056 . (3.26)

This implies that the leading rank-4 tensor in the critical $ (3) model is relevant, in
agreement with other studies.
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Figure 3.7: Two-dimensional projection of the results of the tiptop search at Λ =
35. The G coordinate is related to the three scalar dimensions via (B.8). Projections
in H and I look similar. We have superimposed a convex hull encompassing the
allowed points on top, obscuring some of the disallowed points. We can see the
behaviour of the tiptop algorithm, exploring the island at one ΔC4 before jumping
to a larger ΔC4 . The jumps become progressively smaller, indicating convergence.
We computed 16 points simultaneously, and this calculation took several months
during which the tiptop algorithm was being developed. So the points reflect
occasional crashes and small inefficiencies in the set of computed points.

3.5 Future directions
In this workwe have applied themethods developed in [4, 5] for large-scale bootstrap
problems to the critical $ (3) model in three dimensions. This has led to results
for scaling dimensions which are competitive with the most precise Monte Carlo
simulations, and results for OPE coefficients which are significantly more precise
than previous determinations. In addition, we have computed a rigorous bound
on the scaling dimension of the leading rank-4 tensor, showing that it is relevant.
Thus, any $ (3) system with cubic anisotropy should flow to the cubic fixed point
(discussed in section 3.1) instead of the Heisenberg fixed point.

An interesting direction for future research will be the application of conformal
perturbation theory to this flow. The cubic model can be reached by perturbing
the $ (3) CFT with the operator - ≡ ∑3

8=1 C
8888
4 , which breaks $ (3) symmetry to the

discrete symmetry Z3 o S3. From the $ (3) point of view, this term is a certain
component of the $ (3) rank-4 tensor with dimension ΔC4 ' 2.99. On the other
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Figure 3.8: Three-dimensional islands of allowed points at different ΔC4 at Λ = 35,
demonstrating how the islands shrink as we approach the maximum ΔC4 . The G, H,
and I coordinates are related to the three scalar dimensions via (B.8). The values
for ΔC4 , from the largest region to smallest, are 2.989, 2.99025, and 2.9905, with
smaller values including all allowed points at larger values.

hand, in the cubic fixed point conformal perturbation theory predicts Δ- ' 3.01.
Because this term is marginally irrelevant with X = Δ- − 3 ' 0.01, if we want to
reach the cubic fixed point by a Monte Carlo simulation, the size of the lattice has
to be around the order of 21/X, which is impractical to implement.

An alternative way to estimate the cubic CFT data is using conformal perturbation
theory. We start with the perturbed action ( = ($ (3) + 6

∫
33G- . Using the

formalism in [190], one finds the beta function to be

V6 = −X6 −
vol (3−1

2
_---6

2. (3.27)

The dimension of an operator O at the cubic fixed point is then given at linear order
in X by ΔO = Δ0 + 2X_OO-/_--- , where Δ0 is the dimension of corresponding
operator in the$ (3) CFT. Specifically one obtains Δ- = Δ0 +2X, which justifies the
estimate Δ- ' 3.01.
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The OPE coefficient _--- is proportional to _C4C4C4 . Unfortunately, using the setup
of the present paper, we don’t have access to _C4C4C4 . To access _C4C4C4 , one needs
to bootstrap all four-point functions involving {q, B, C, C4}, which is a concrete task
for future research. Here we can estimate that the correction to ΔC in the cubic
fixed-point is of order X = 0.01. On the other hand, the corrections to Δq,ΔB start at
order X2 ' 0.0001 since _qqC4 = _BBC4 = 0. Note that in this work the error bar for ΔC
is much smaller than X. Therefore a careful study of the {q, B, C, C4} system should
yield a solid prediction for the correction to ΔC in the cubic model.

Of course, it will also be interesting to understand how to isolate the cubic fixed
point more directly using the conformal bootstrap, perhaps using a larger system of
correlators than was considered in [177, 179, 180]. One can also straightforwardly
apply the large-scale bootstrap techniques we have developed to other$ (#) models,
as well as to 3d CFTs with fermions (using the newly developed software [191]) or
to study conserved currents [192–194]. Using these methods one can also continue
exploring larger systems of correlators that may help us to isolate CFTs containing
gauge fields, such as 3d QED [195, 196] and 4d QCD.

Now that we have precisely isolated the $ (3) model, we are also in position to
do a more detailed study of its low-twist trajectories of operators as a function
of spin, which can be compared to analytical calculations using the Lorentzian
Inversion formula [37, 197], following the approach of [5, 198, 199]. Such analytical
techniques can also be used to estimate the leading Regge intercepts and related
Lorentzian data of the $ (3) model. In future work it will also be important to
understand how to better incorporate insights from the analytical bootstrap, such
as our precise understanding of the large spin asymptotics, into making large-scale
numerical methods even more powerful.
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C h a p t e r 4

COLLISIONS OF FALSE-VACUUM BUBBLE WALLS IN A
QUANTUM SPIN CHAIN

This chapter is based on A. Milsted, J. Liu, J. Preskill, and G. Vidal, Collisions
of false-vacuum bubble walls in a quantum spin chain, PRX Quantum 3, 020316,
(2022), arXiv:2012.07243 [quant-ph].

Abstract: We study the real-time dynamics of a small bubble of "false vacuum” in
a quantum spin chain near criticality, where the low-energy physics is described by
a relativistic (1+1)-dimensional quantum field theory. Such a bubble can be thought
of as a confined kink-antikink pair (a meson). We carefully construct bubbles so
that particle production does not occur until the walls collide. To achieve this in
the presence of strong correlations, we extend a Matrix Product State (MPS) ansatz
for quasiparticle wavepackets [Van Damme et al., arXiv:1907.02474 (2019)] to the
case of confined, topological quasiparticles. By choosing the wavepacket width and
the bubble size appropriately, we avoid strong lattice effects and observe relativistic
kink-antikink collisions. We use the MPS quasiparticle ansatz to detect scattering
outcomes: In the Ising model, with transverse and longitudinal fields, we do not
observe particle production despite nonintegrability (supporting recent observations
of nonthermalizing mesonic states). With additional interactions, we see production
of confined and unconfined particle pairs. Although we simulated these low-energy,
few-particle events withmoderate resources, we observe significant growth of entan-
glement with energy and with the number of collisions, suggesting that increasing
either will ultimately exhaust our methods. Quantum devices, in contrast, are not
limited by entanglement production, and promise to allow us to go far beyond clas-
sical methods. We anticipate that kink-antikink scattering in 1+1 dimensions will
be an instructive benchmark problem for relatively near-term quantum devices.

It is possible that the known universe is built on top of a metastable, or "false”
vacuum state. In this scenario, there is a small but nonzero probability of a small
bubble of "true” vacuum forming via tunneling, whose interior has a lower energy
density. Thus the bubble expands, its walls accelerating, bulldozing everything
in their path. If multiple bubbles of true vacuum form far apart, their walls will
rush toward each other and eventually collide, producing showers of particles. It

https://arxiv.org/abs/1907.02474v3
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is possible that such events have already occurred, and are thus relevant for the
evolution of the early universe [200–204]. Simulations could provide an important
window into these high-energy, strongly-coupled dynamical processes.

However, one does not easily simulate the dynamics of a strongly interacting quan-
tum field theory (QFT), at least using classical computers. Quantum Monte Carlo
– the workhorse for simulations of equilibrium phenomena in lattice systems (such
as lattice QCD [1]) – suffers from the sign problem that blocks its application to
real-time dynamics. Tensor-network methods show promise, and have been used
to simulate nontrivial dynamical phenomena in (1+1)D systems, such as string
breaking in lattice gauge theory [205–210]. Nevertheless, the computational cost
increases exponentially with time in the general case (due to linear scaling of entan-
glement entropy) and also dramatically with the number of spatial dimensions.

In principle, quantum computers (both analog and digital) can simulate dynam-
ics of quantum field theories at long timescales with polynomial costs [27, 28], a
topic which has recently attracted great interest [23, 211–218, 218–231]. How-
ever, existing or near-term digital quantum devices are noisy, such that only shallow
quantum circuits can avoid being overwhelmed by errors. Analog quantum simu-
lators can support longer coherence times but are typically limited to a small set
of Hamiltonians and initial states. As such, for the time being, we expect classical
simulations of physical systems to perform better, with quantum devices catching
up as the hardware improves, ultimately beating classical computers by an exponen-
tial margin. Thus dynamical simulations of phenomena like false-vacuum collapse
are physically-motivated applications for quantum computers and analog quantum
simulators, and can be used as benchmark problems as quantum devices improve.

In this paper, we develop a framework for simulating the full quantum dynamics
of false-vacuum bubble-wall collisions in (1+1) dimensions using Matrix Product
States [232, 233], demonstrating the production of new particles (see Fig. 4.1). Note
that, in (1+1) dimensions, a false-vacuum bubble can be viewed as an excitedmeson
state consisting of a kink-antikink pair, where the kink and antikink are localized,
spatially separated topological particles. The false vacuum plays the role of a
low-energy string that binds the kink to the antikink (confinement). Furthermore,
metastability of the false vacuum corresponds to suppression of string breaking
[234]. We simulate the relaxation of such mesonic states, which we simply call
"bubbles”, in which both the kink and antikink are of low mass. During relaxation,
the kink and antikink will collide. This can be thought of as a scattering event, hence
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Figure 4.1: Cartoon showing the collapse of a false-vacuum bubble in a spin
chain. The magnetization 〈/〉 is positive in the true vacuum, but negative in the
false vacuum. A bubble-wall collision is a scattering process, which may be (a)
free (no interaction), (b) elastic (no particle production), or (c) inelastic (particle
production). Note that in free and elastic scattering of topological particles the left
(right) particle always remains a kink (antikink).

falling into one of three categories: free (no interaction), elastic (interaction, but no
particle production), and inelastic (particle production). We successfully simulate
inelastic kink-antikink collisions over∼ 1000 lattice sites at energies of up to∼ 5<`,
where <` is the mass of the lightest meson. We characterize scattering outcomes
in our simulations by tracking the energy density and entanglement entropy, as well
as by projecting the quantum state into different particle "sectors”.

Previous work on related phenomena includes MPS simulations of meson decay in
the Schwinger model [206–210, 235], where the initial state is typically prepared
by applying a bare string operator to the vacuum. This generally creates multiple
highly-localized particles of varying energy at the string edges, leading to relatively
complex dynamics. The rapid resulting entanglement growth can make it difficult
to reach long times and to treat large systems. Such strings can be smeared out into
wavepackets (as considered, for example in some recent work onmesonic excitations
in spin chains [229, 236]), which focuses the wavepacket momenta, significantly
reducing the energy and entanglement growth. Nevertheless, the smeared string will
still generally create multiple species of topological excitation. Recently, however,
techniques have been developed [237] to construct wavepacket states with selective
particle content in generic (1+1)-dimensional systems using MPS 1. A main result
of our paper is that we can extend those techniques to build quasistable initial bubble
states which, aside from the acceleration of the walls under the confining force, do

1Also see [238] for a Bethe-ansatz approach.
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not change significantly until the walls collide. We achieve this by selecting a single
species of kink and antikink quasiparticle for the bubble-wall wavepackets, together
with the metastable false vacuum for the interior. Apart from further reducing
the energy and the rate of entanglement growth, which enables us to treat larger
systems and simulate for longer times, this greatly improves the interpretability of
our simulations, since the only scattering events that occur come from bubble-wall
collisions. We contrast this with the smeared bare string construction, in which
meson pairs are generally observed immediately, at the initial bubble walls, as
shown in Fig. 4.2.

One approach to simulating the dynamics of QFT phenomena on the lattice is to
spatially discretize a chosen QFT Hamiltonian [2, 28, 205–210, 239]. In many cases
involving bosonic fields, however, this results in an infinite-dimensional Hilbert
space for each lattice site that must then be truncated. In this study, we consider
a quantum spin chain, chosen and tuned so that its low-energy physics is governed
by an emergent relativistic QFT. This is known to occur in the vicinity of many
continuous phase transitions, where the emergent QFT is often a (by definition
relativistic) conformal field theory (CFT) (see e.g. [240]).

To summarize, partially motivated by a potential connection with early universe
cosmology, we have studied inelastic particle production arising from collisions
of confined kink-antikink pairs in a relativistic scalar field theory. We probe the
quantum field theory by tuning close to a critical point of the spin chain described
in Sec. 4.1, ensuring that the kink and antikink lattice velocities remain below their
maximum values, thus avoiding strong lattice artifacts. Our classical simulations
use MPS approximations to the evolving quantum state, which are computationally
feasible as long as the state does not become too highly entangled. By highlight-
ing the limitations of such classical methods, our work clarifies where quantum
advantage might potentially arise in relatively near-term quantum simulators.

The initial state preparation for our dynamical simulations is subtle, because the
kink-antikink pair is not an energy eigenstate. As discussed in Sec. 4.2, we take
care to prepare initial kink and antikink wavepackets which are broad compared
to the lattice spacing, and not contaminated by additional unwanted excitations.
We also develop tools for analysis of the outgoing particles produced in inelastic
kink-antikink collisions. We show in Sec. 4.3 that particle production is strongly
suppressed in the Ising model with intrinsic Z2 symmetry breaking, even though the
model is nonintegrable in that case, and we show that copious particle production
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Figure 4.2: Evolution of the excess energy density 4 (relative to vacuum), as a
fraction of total excess energy � , in a spin chain for two initial states: (a) created
by applying a spatially smeared string operator to the vacuum and (b) constructed
from MPS tensors to contain kink and antikink quasiparticle wavepackets. In (a)
meson pairs are produced immediately at the string edges, whereas in (b) there is
no particle production until the initial kink and antikink collide. The dynamics are
restricted to a window of ∼ 1000 sites, leading to boundary effects in (a). For more
details, see App. C.6.

occurs once a Z2-symmetric three-site local interaction turns on. We also quan-
titatively track the growth of entanglement entropy during repeated kink-antikink
collisions, thus inferring how large a bond dimension is needed to provide an accurate
approximation to the evolving quantum state. Sec. 4.4 contains concluding remarks,
and further details of our methods and results are provided in the appendices.

4.1 Selecting a spin chain
We seek a spin chain whose IR physics is described by a relativistic emergent field
theory supporting confined kinks. In principle, there are many suitable models: An
emergent field theory of confined kink-antikink pairs can be engineered by starting
with a spontaneously-broken discrete symmetry, which provides multiple vacua and
topological excitations. We then tune close to a symmetry-breaking phase transition,
typically described by a CFT, and finally add a weak symmetry-breaking field to lift
the vacuum degeneracy and confine the kinks. We must take care, however, since
emergent field theories of such spin chains are sometimes integrable [241–244], in
which case scattering, including kink collision, is elastic. If we want to observe
particle production in the emergent field theory, we must avoid integrability.
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We choose an extension [9, 10] of the transverse-field Ising chain

� =

#∑
9=1

[
− / 9/ 9+1 − 6- 9 − ℎ/ 9 + _

(
- 9/ 9+1/ 9+2 + / 9/ 9+1- 9+2

) ]
, (4.1)

which at ℎ = 0 has Z2 symmetry (/ 9 → −/ 9 , - 9 → - 9 ) that is spontaneously-
broken when 6 < 1 for a large range of _: see Fig. 4.3 for a phase diagram. For
_ = 0, we have the transverse-field Ising chain, which already supports confined
kinks for 6 < 1 and 0 < |ℎ | � 1 [11, 245]. However, for small |ℎ | it is very close to
being integrable [11, 242] (both the emergent field theory and the spin chain itself
are noninteracting for ℎ = 0). Previous work has shown that mesonic states in this
model can have extremely long lifetimes [246–250], with recent numerical studies
suggesting that these long-lived states can have energies well above the threshold for
inelastic scattering [234, 251, 252]. This is despite the lack of any exact conservation
law protecting these excited meson states from decay.

Turning on _ allows us to go beyond this "almost-integrable” regime, since both the
spin chain itself and the emergent field theory are nonintegrable for _ > 0, 6 < 1,
even at ℎ = 0 [12, 244, 253, 254]. We present simulations at a point along the Ising
line _ = 0, labelled (i) in Fig. 4.3, as well as at two points, labelled (ii) and (iii),
closer to the Tri-Critical Ising (TCI) point at _→ 0.428, 6 = 1, ℎ = 0.

4.2 Methods
Constructing bubble states
Herewe describe how to construct the bubble states used to initialize our simulations.
For simplicity, we begin with the construction of bubble states in the bare setting
_ = 0, 6 = 0, where quantum fluctuations vanish, before moving onto the dressed
setting, where we use MPS to capture the fluctuations that appear. In both cases
we first describe the true and false vacua, then the kink and antikink states, before
explaining how to combine them into a bubble. We work in the /-basis throughout:
/ |↑〉 = |↑〉, / |↓〉 = −|↓〉.

Let us first consider _ = 0, 6 = 0, for which the terms in � commute and there are
no quantum fluctuations (all eigenstates of � have definite spin orientations in the /
basis). In this bare case, the true and false vacua are simply |Ωbare〉 := | . . . ↑↑↑ . . . 〉
and |Ωbare〉 := | . . . ↓↓↓ . . . 〉, respectively. A kink is a domain wall |^bare

9
〉 :=

| . . . ↑↓ 9 . . . 〉, here located at position 9 , and an antikink is |^bare
:
〉 := | . . . ↓:↑

. . . 〉. These highly-localized excitations have maximal momentum uncertainty. By
smearing them out into wavepackets, e.g.

∑
9 5 9 |^bare9

〉, we can make them quasilocal
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Figure 4.3: Partial phase diagrams of the extended Ising chain [9, 10], both without
and with a small longitudinal field ℎ that breaks the Z2 symmetry. At ℎ = 0, 6 = 1
there is a continuous (symmetry-breaking) phase transition described by the Ising
CFT for _ . 0.428, and by the Tri-Critical Ising (TCI) CFT at _ ≈ 0.428. By
studying the spin chain near to these transitions (6 → 1, ℎ → 0), we can access
emergent, relativistic quantum field theories with confined kinks [11, 12]. Points
(i), (ii), and (iii) correspond to the data shown in the figures below.

in both position and momentum space. We consider Gaussian packets

5 9 (G, ?) := 4i? 94
−( 9−G)2
f2 , (4.2)

centered at position G and momentum ?, with spatial width f. In the maximally
delocalized limit f →∞ we obtain a momentum eigenstate with momentum ?. By
combining kink and antikink wavepackets we can construct a false-vacuum bubble
with quasilocalized walls at positions G! and G'

|Ψbare〉 =
∑
9<:

5 9 (G! , ?!) 5: (G', ?') |^^bare9 : 〉, (4.3)

where G' − G! determines the size of the bubble, ?! and ?' specify the expected
momenta of the bubble walls, and we define the localized kink-antikink pair states

|^^bare9 : 〉 := | . . . ↑↓ 9 . . . ↓:↑ . . . 〉. (4.4)
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Note that the restriction 9 < : (the kink must be to the left of the antikink) means
that the Gaussian packets (4.2) are truncated. In practice, one can ensure that this
truncation is negligible by choosing G! , G', and f so that the coefficients are very
small when 9 ∼ : .

While these bare states illustrate many relevant properties of the states we wish
to construct for � (6 > 0, _ ≥ 0), they are all eigenstates of the bare Hamiltonian
� (6 = 0, _ = 0), implying that kinks and antikinks do not propagate2. They are
also product states, devoid of entanglement. To obtain interesting dynamics, we
need 6 > 0, for which all the bare states have counterparts dressed by fluctuations,
possessing exponentially decaying correlations and entanglement between lattice
sites. This entanglement can be efficiently captured by Matrix Product States
(MPS)[232, 233, 255], a variational class of states with the form

|k〉 =
∑
{B}

�
(B1)
1 �

(B2)
2 . . . �

(B# )
#
|B1B2 . . . B#〉, (4.5)

where # is the number of lattice sites, B 9 = 0, 1 for our model and each �(B)
9

is a
� 9−1 × � 9 matrix, making � 9 a rank-3 tensor. The dimensions � 9 , called bond
dimensions, limit the amount of entanglement that can be represented: the entropy of
the subsystem consisting of all sites> 9 , whichwe call the cut entropy at location 9 , is
upper-bounded by log2 � 9 . In a finite chain with open boundaries, �0 = �# = 1. In
our constructions, we consider infinite MPS in which the boundaries are decoupled
from the bulk due to exponential decay of correlations (see App. C.1).

MPS can also be specified using tensor network diagrams. For example, we can
rewrite (4.5) as

|k〉 = |            ⟩𝐴1 𝐴2 𝐴𝑁 , (4.6)

where represents a rank-3 tensor. In Fig. 4.4, we illustrate the localized bare states
and their dressed MPS counterparts, using tensor-network diagrams to indicate how
the MPS are constructed. The MPS |Ω〉 and |Ω〉 are approximations to the dressed
true and false vacua. They are uniform, infinite MPS built from tensors and

, respectively. We optimize using variational methods [205, 256–259] to
minimize the energy of |Ω〉. To find the metastable false vacuum |Ω〉, we first apply
a global spin-flip to |Ω〉, resulting in another uniform MPS, whose energy we then
minimize. For sufficiently small 6 � 1, we observe that the energy-minimization

2� (6 = 0, _ = 0) is an RG fixed-point and one can think of the kinks and antikinks as having
infinite mass.
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Figure 4.4: Diagram illustrating the various types of states, and their spin profiles,
relevant for simulations. For example, our initial states are wavepackets constructed
from kink-antikink pairs (a type of excited meson). The product states listed are
eigenstates of � when 6 = 0, _ = 0. Away from this regime, we use MPS to
accurately capture fluctuations in the vacua and excited states.

procedure does not find a path to the true ground state, resulting in a metastable
false vacuum state |Ω〉, with MPS tensor , that behaves as an energy eigenstate
for all practical purposes (up to numerical precision – see App. C.2).

The MPS |^ 9 〉 approximates a dressed, localized kink state. It is constructed by
introducing a new tensor that sits at position 9 , between two semi-infinite
chains, one consisting of on the left and one of on the right. The tensor

parameterizes the spatial transition between the true and false vacuum regions.
Unlike in the bare case, the transition region may encompass many lattice sites, as
illustrated by the 〈/〉 plots in Fig. 4.4. The antikink |^:〉 is similarly constructed
by introducing a tensor between a chain of on the left and on the right.
We select and using an MPS Bloch-state approach [233, 257, 258, 260]
so that |^ 9 〉 and |^:〉 states can be thought of as "position bases” for the kink
and antikink quasiparticles of lowest energy. We use these states to construct
topological quasiparticle wavepackets

∑
9 5 9 |^ 9 〉 and

∑
: 5: |^:〉 [237]. If � is the

bond dimension of the vacuum MPS, such wavepackets have MPS representations
with bond dimension 2� (see App. C.3 for details).

The Bloch-state approach for finding and is conceptually simpler when ℎ = 0,
so that there is no confining force acting on the kinks and antikinks. We consider the
ℎ ≠ 0 case further below. For ℎ = 0, we solve an effectiveHamiltonian for and
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such that the momentum eigenstates,
∑
9 4

i? 9 |^ 9 〉 and
∑
: 4

i?: |^:〉, approximate the
lowest-energy topological eigenstates of � with momentum ? [258]. The resulting
tensors , (and hence |^ 9 〉, |^:〉) generally depend on the momentum ?, but
we ignore this dependence when building wavepackets, aside from choosing the ?
used to solve for and to match the expectation value of momentum in the
wavepacket state. This is justified for Gaussian wavepackets with large f, and hence
small momentum variance, if the tensors vary sufficiently slowly with ?.

There is also an important physical reason for choosingf to be large: In the presence
of fluctuations, localized packets can no longer be truly static, since they are not
eigenstates of �. Instead, they will spread out as time passes, at a rate dependent
on f. Wavepackets can be made to spread slowly relative to other processes,
such as the collapse of a false-vacuum bubble, by choosing f � b, where b is
the correlation length in lattice units. It is desirable for the kink and antikink
wavepackets comprising a bubble to spread only minimally prior to collision, since
then the wavepackets of outgoing quasiparticles also tend to be well localized, which
makes them easier to characterize.

We now explain how to find and in case |ℎ | > 0, where the confining force
on kinks and antikinks means that

∑
9 4

i? 9 |^ 9 〉 and
∑
: 4

i?: |^:〉 can no longer be
eigenstates of �. In this case, we optimize and by optimizing modified
energy functions that subtract away the false-vacuum contributions, which in |^ 9 〉
and |^:〉 depend on the positions 9 and : (thus providing an accelerating force).
We explain this for the case of |^ 9 〉 and , since the procedure is completely
analogous for |^:〉 and . We first note that it is possible to choose , by
exploiting a redundancy in the representation of momentum eigenstates, to achieve
〈^ 9 |^:〉 = X 9 : (see App. C.3). After making this choice, we minimizing

�̃ =
∑
9 :

4i?(:− 9) 〈^ 9 | (� − Δ� 9 1) |^:〉, (4.7)

where Δ� 9 :=
∑ 9
−∞ 4true +

∑∞
9+1 4false captures the infinite bulk contributions to the

energy present in |^ 9 〉, coming from the true and false vacua (4true and 4false are
the energy densities of the true and false vacua). Subtracting them in this position-
dependent way makes the contribution of each |^ 9 〉 term to �̃ finite and independent
of 9 . Note that the Δ� 9 correction does not affect off-diagonal terms 〈^ 9 |^:≠ 9 〉.
The energy minimization procedure is easily carried out by slightly adapting the
methods of [257] (see App. C.3 for details).
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To build dressed bubble states |Ψ〉 as MPS, we proceed analogously to the bare case
by combining a kink and an antikink wavepacket

|Ψ〉 =
∑
9<:

5 9 (G! , ?!) 5: (G', ?') |^^ 9 :〉 , (4.8)

where, in our simulations, we choose themomenta ?! = ?' = 0 and set G'−G! � f

so that 5 9 (G!) 5: (G') is small for small : − 9 . The kink-antikink pair states |^^ 9 :〉
are constructed by combining the tensors , , and (already optimized to
represent the vacua, kinks, and antikinks) without further modification, as illustrated
in Fig. 4.4, using the aforementioned reflection-symmetry condition to fix and

completely (see App. C.3). With this scheme, |^^ 9 :〉 accurately describes a
kink-antikink pair at asymptotically large separations : − 9 . However, at small
separations, corrections would generally be needed due to interaction effects3. We
again rely on G' − G! � f here, which ensures that terms with small separation are
strongly suppressed, so that the error incurred by ignoring interactions is small.

Time evolution
To evolve an initial MPS |Ψ(C = 0)〉 in time, we apply the time-dependent variational
principle (TDVP) [256] within a finite window of the infinite chain surrounding the
initial bubble [259]. The TDVP provides effective equations of motion for the MPS
tensors so that the evolution of the MPS approximates evolution by �. We primarily
use the Runge-Kutta 4/5 algorithm to numerically integrate these equations, which
we find provides a good balance of speed and accuracy except at very early times,
where we use the better-conditioned, but more computationally intensive, "split-
step” integrator of [261]. These methods are implemented in the evoMPS python
package [262]. To capture growing entanglement, the bond dimensions of the MPS
are allowed to increase during the evolution up to some chosenmaximum [261, 263].

As the state evolves, we monitor its spin and energy expectation values as well as its
entanglement properties. This allows us to draw conclusions about collision (scatter-
ing) outcomes. For instance, elastic and inelastic scattering are easily distinguished
from the trivial case, as interaction generically results in entanglement between any
outgoing kinks or particles4, whereas trivial scattering never does. We can also
easily distinguish elastic and inelastic scattering in many cases. For example, if a

3A priori, the MPS tensors may also need modifying at short distances even in the absence of
interactions.

4This is true for wavepackets of finite width. In the limit of infinitely-broad spatial wavepackets
(momentum eigenstates), elastic scattering does not produce entanglement in (1+1)D. see App. C.9.
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collision produces a pair of mesons, their wavepackets will spread ballistically since
two mesons are not subject to a confining force. Indeed, any sustained ballistic
spread of energy implies particle production. Importantly, the converse does not
always hold, since confined topological particles different from those of the initial
state may also be produced.

Particle detection
Aside from constructing the initial state |Ψ〉, we can also use the MPS |^^ 9 :〉,
representing kink-antikink pairs, as a kind of particle detector, the inner prod-
uct 〈^^ 9 : |Ψ(C)〉 corresponding approximately to the amplitude of a kink-antikink
pair with position 9 , : at time C. Conveniently, these states can be made to fulfill
〈^^ 9 : |^^;<〉 = X 9 ;X:; (see App. C.3). We can treat the subspace spanned by these
basis states as an approximate kink-antikink pair "sector”, which we denote ^^.
One reason for its approximate nature should be familiar from the discussion above:
The basis captures a kink-antikink pair most accurately if the kink and antikink are
smeared out into wavepackets that are sufficiently broad, so that the wavepacket
momenta are focused around the momentum ? used to compute and . Ad-
ditionally, the kink and antikink must be sufficiently separated so that interaction
effects are insignificant. Fortunately, these two properties can be checked after
projecting the wavefunction into the |^^ 9 :〉 subspace. The simplest way to deal with
terms in which the kink and antikink are too close together is to simply exclude them
from the projection subspace. Inaccuracies due to the momentum-dependence of

and can be mitigated in a few ways: Assuming the momentum dependence
is not too strong, the simplest strategy is to tune and to match the expected
momentum of the projected wavefunction. A more precise result can be had via
a Fourier analysis, in which the detection subspace is further restricted to a range
of momenta that match and . See App. C.4 for a more detailed, technical
discussion.

The ^^ subspace is already sufficient to detect inelastic scattering: if the portion
of the wavefunction within the subspace drops significantly during evolution, par-
ticle production has likely occurred. Going further, we can construct quasiparticle
position bases for other quasiparticle types, both topological and nontopological.
To this end, we define the MPS |^ (0)

9
〉, |^ (0)

9
〉, and |`(0)

9
〉, with corresponding ten-

sors
(0)
,

(0)
, and

(0)
, to be approximate position bases for the 0Cℎ kink,

antikink, and meson quasiparticles, with 0 = 0, 1, . . . in ascending order of en-
ergy. We sometimes suppress the superscript 0 when considering the lowest-energy
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quasiparticles of each type 0 = 0. The meson states |` 9 〉 are constructed from
the vacuum tensor and the meson tensor , as illustrated in Fig. 4.4. We
compute

(0)
,

(0)
, and

(0)
by simply solving for multiple energies in the

Bloch-state approach used above to generate the lowest-energy kink and antikink
tensors , [257, 260]5. This procedure can deliver accurate quasiparticle states
for quasiparticles with energy �0 below the two-particle threshold [258]. Above
that threshold, these tensors may correspond to unstable excitations. The procedure
also guarantees that 〈^ (0)

9
|^ (1)
:
〉 = 〈^ (0)

9
|^ (1)
:
〉 = 〈`(0)

9
|`(1)
:
〉 = X 9 :X01. The kink,

antikink and meson single-particle bases are mutually orthogonal by construction,
due to the orthogonality of the true and false vacua in the thermodynamic limit.

We can construct pair states |^^ (0,1)
9 :
〉 and |``(0,1)

9 :
〉 from this extended set of single-

quasiparticle states following Fig. 4.4. These extended bases are not orthonormal
at small separations : − 9 due to interaction effects. Nevertheless, we can compute
a minimum separation 3 for each set of Hamiltonian parameters 6,Δ, ℎ so that
the bases are approximately orthonormal when : − 9 ≥ 3 (see App. C.3). These
restricted bases give us access to extended kink-antikink ^^ (0,1) and meson-pair
``(0,1) "sectors”, allowing a much finer analysis of particle content.

4.3 Results
Kink dynamics
In the following we consider kinks, but the discussion applies equally to antikinks.
The evolution of a kink-quasiparticle wavepacket will generically involve propa-
gation and spreading (delocalization). We wish to construct wavepackets that are
sufficiently broad so that they spread slowly, relative to propagation. Broader spatial
wavepackets lead to slower spread because they have narrower momentum sup-
port; furthermore, spreading is reduced for wavepackets with higher momentum,
because the relevant part of the kink-quasiparticle dispersion relation �^ (?) looks
increasingly linear.

For ℎ = 0, we observe that our kink wavepackets indeed spread slowly as they
propagate at their initial set momentum (see App. C.8). In the presence of a
confining force from a symmetry-breaking field ℎ > 0, kinks undergo acceleration,
as expected. A stationary kink is initially accelerated in the direction of the false
vacuum, as the energy of the false vacuum is converted into kinetic energy of the
kink, as would also be expected in a relativistic QFT, but the long term behavior

5These methods also deliver approximate quasiparticle dispersion relations.
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is strongly influenced by the lattice (see App. C.7 for single-kink simulation data).
The lattice momentum ? is bounded −c < ? ≤ c, and the momentum expectation
value of the kink wavepacket precesses around the unit circle with ¤? = constant. To
understand how the position of the kink evolves as this happens, we must consider
the wavepacket group velocity E(?) := m�^ (?)/m?. With an emergent relativistic
QFT governing the IR physics, the dispersion relation is approximately relativistic
(�^ (?) ∼

√
?2 + <2

^ for a kink of mass <^) for small |? |, becoming almost linear
as ? increases. However, due to the bounded nature of ? on the lattice, �^ (?) must
deviate from relativistic behavior as |? | continues to increase. Indeed, assuming
�^ (?) is smooth, including at the boundary value �^ (c) = �^ (−c), it is also
bounded from above and below. As such, a wavepacket will typically reach a
maximum group velocity for some ?(Emax), after which it will begin to slow down.
Assuming �^ (?) = �^ (−?) it will ultimately reverse and retrace its path back to its
original position and momentum (with some wavepacket spread), performing Bloch
oscillations.

Bubble dynamics
Instead of Bloch oscillations of individual kinks, we wish to study the emergent
relativistic dynamics of false-vacuum bubbles comprised of a kink wavepacket and
an antikink wavepacket. In particular, we want to simulate kink-antikink collisions
at large kinetic energies (to increase particle-production amplitudes). Since the kink
and antikink accelerate toward each other under the confining force, we can increase
the kinetic energy at the time of collision by increasing the initial bubble size G'−G!
(and hence the amount of energy stored in the false vacuum). However, if we allow
the kink and antikink to evolve for too long prior to collision, their momenta will
exceed |?(Emax) | and they will begin to undergo Bloch oscillations, deviating from
their relativistic behavior. We can ensure that this does not occur by limiting the
initial bubble size, with themaximum size depending on theHamiltonian parameters
6, _, ℎ. In general, a smaller mass gap (since ℎ ≠ 0, this is the meson mass <`),
measured in lattice units, increases the maximum bubble size, measured in physical
units (multiples of the lattice correlation length b). Moving closer to criticality thus
allows us to reach higher collision energies relative to the mass gap while staying
below ?(Emax).

We simulated bubble dynamics for the Ising model (_ = 0) as well as near to the
Tri-Critical Ising point of the extended model (_ > 0) for a range of parameters. We
first focus on the two points marked (i) and (ii) in Fig. 4.3.
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Figure 4.5: Spin expectation values and relative energy density 4/� for (i) the Ising
model (_ = 0, 6 = 0.8, ℎ = 0.007) and (ii) the generalized Ising model nearer to the
Tricritical Ising CFT fixed point (TCI) (_ = 0.41, 6 = 0.98, ℎ = 0.001). For (i),
the initial wavepackets have f = 25 and are 248.5 sites apart (�/<` = 3.72). For
(ii), f = 40 with separation 287.4 (�/<` = 2.62). The MPS bond dimensions are
� = 10 and � = 18 for the vacua of (i) and (ii), respectively. During the simulation
the dimensions are restricted to � ≤ 128 and the integration step size is XC = 0.05.

The Ising model
In the Ising case (_ = 0) with ℎ = 0, known to be a theory of free kinks, our
simulations reproduce the expected trivial scattering: kinks given an initial nonzero
momentum collide without generating any additional entanglement. With explicit
symmetry-breaking (0 < ℎ � 1) we find nontrivial scattering, as evidenced by
entanglement between the post-collision kink wavepackets. However, even when
the energy is significantly above the meson pair-production threshold � > 2<`

there is no obvious ballistic spread to indicate production of unconfined particles
(see Fig. 4.5). Furthermore, the system is found to be within the bubble "sector”
^^ (0,0) after the first collision to high numerical precision, as shown for 6 = 0.8 in
Fig. 4.6, consistent with purely elastic scattering of kinks. The probability 1 − %^^
of being in a different sector is estimated to be around O(10−5) both before and
after the first collision, with the difference closing as the maximum bond dimension
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Figure 4.6: Portion of state (by probability) outside of the MPS bubble subspace
^^ (0,0) for simulations (i) and (ii) of Fig. 4.5. Here we fully account for momentum
dependence of the basis states |^^ 9 ,:〉 via a Fourier analysis and count only contri-
butions with : − 9 ≥ 60 (see App. C.4). For Ising (i), the small probability after
the first collision of C ≈ 90 indicates elastic scattering of kinks, in stark contrast
with the TCI case (ii), where the probability remains high after the first collision
at C ≈ 150. In (i), the growth of the post-collision probability with subsequent
collisions is consistent with increasingly inaccurate representation of accumulating
entanglement (due to the limit imposed on the MPS bond dimension �), as well
with delocalization of the wavepackets, since contributions from kink-antikink pairs
with small separation : − 9 are not counted.

increases. This probability is consistent with a numerical estimate of the accuracy
of the kink-antikink quasiparticle basis states, as detailed in App. C.3. That %^^ < 1
during collisions, as well as later in the evolution as the wavepackets delocalize,
is due to components of the state leaving the space of well-separated localized
quasiparticles as the kink and antikink interact. While we cannot entirely rule out
inelastic scattering using this data, any inelastic process would have to be extremely
unlikely to be consistent with our results.

This observation is surprising given that the spin chain and its emergent field theory
are not integrable, but consistent with recent observations of nonthermalizing states
in the Ising model [234, 251, 252]. We further find that elastic scattering persists
even if we allow the kink velocity to exceed Emax, as it does in simulation (i) of
Figs. 4.5 and 4.6 (see App. C.7), so that the emergent relativistic field theory is
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Figure 4.7: Dispersion relations (numerical, using MPS) of kinks ^ and mesons `
for _ = 0.41, 6 = 0.98. For mesons, energies are shown with and without a weak
longitudinal field. Individual kinks do not have a finite energy for ℎ > 0. Threshold
energies for pair production are shown (computed assuming ℎ = 0 for kinks and
ℎ = 0.001 for mesons), as is the energy (labelled Ψ) of the simulation shown in
Fig. 4.5 for parameter-set (ii).

no longer a good description of the physics. This is strong evidence that, in the
Ising chain with a weak longitudinal field, bubbles are stable up to arbitrarily high
energies: When a bubble is large enough, its walls will not meet due to Bloch
oscillations, so no scattering can occur while it remains localized. When bubbles
are small enough for the kinks to collide, our evidence suggests they always do so
elastically.

Near the Tri-Critical Ising point
Turning on _ > 0, we choose the initial bubble size so that the energy, shown in
Fig. 4.7, is well above the pair-production threshold (but still low enough to keep the
kink velocity� Emax). Herewe find clear evidence that unconfined particles are pro-
duced. Most apparently, Fig. 4.5 (ii) clearly shows ballistic spread of wavepackets
emanating from the first collision event. To further resolve the scattering outcomes,
we project onto meson-pair and kink-antikink-pair quasiparticle bases, finding four
dominant "sectors”, illustrated in Fig. 4.8, wherewe tune the quasiparticle basisMPS
to match the momentum expectation value of the outgoing quasiparticle wavepack-
ets (as estimated from the Fourier transform of the projected wavefunctions) and
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Figure 4.8: Spin expectation values for simulation (ii) of Fig. 4.5 at time C = 270
(bond dimension � ≤ 128) after projection into selected quasiparticle subspaces
and normalization. The amount of wavefunction captured by each (approximately
orthogonal) subspace is given as a probability % (see App. C.4). Included subspaces
are ``, a pair of mesons of lowest energy, and ^^ (0,1) , a bubble made of a kink of
type 0 and an antikink of type 1 (where 0 is the lowest-energy kink quasiparticle,
and 1 is the next highest – see Fig. 4.7).

compute the spin expectation values of the projected wavefunction for each sector.
We also compute the scattering outcome probabilities (the norms of the projected
wavefunctions)6. We find the most likely outgoing configurations to be: a bubble
made of type-0 kinks ^^ (0,0) (elastic channel) with probability % = 62%, then a
type-0 meson pair ``(0,0) with % = 19%, and finally a bubble made either of a
type-0 kink paired with a type-1 antikink (higher energy) ^^ (0,1) , or a type-1 kink
paired with a type-0 antikink ^^ (1,0) , each with % ≈ 7% (reflection symmetry).
These outcomes are all kinematically allowed, according to the energetic thresholds
shown in Fig. 4.7.

We note that the (rounded) projection probabilities in Fig. 4.8 only add to 95%.
6For this we use amore sophisticated Fourier analysis that more fully accounts for themomentum

dependence of the quasiparticle basis MPS. see App. C.4.
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This may indicate the presence of other sectors we have not accounted for, such as
a `(0) paired with a small ^^ (0,0) bubble, or a ^^ (0,0) bubble containing one or more
quasiparticle-excitations of the false vacuum. Unfortunately, since these "sectors”
each involve at least three quasiparticles, the corresponding position bases have
many more terms (O(#3) versus O(#2) for pairs), making them difficult to work
with7.

It is also possible that various sources of error have affected results: (i) when
excitation tensors in a 2-quasiparticle MPS are close together, so that interactions
are relevant, the state may not accurately represent quasiparticles, (ii) the MPS
representations of the quasiparticle position states are variational approximations
subject to some error (which also affects the initial state of the simulation), and
(iii) although we allow the MPS bond dimension to increase up to some maximum
during simulations (� ≤ 128 in this case), errors can still accumulate if that
maximum is insufficient to capture all entanglement, as well as due to errors in the
numerical integration steps. We did not explicitly characterize the effects of (ii),
but expect them to be small, because the true and false vacuum MPS, upon which
the excitations are built, are already accurate to ∼ 10−6 in norm. By varying the
minimum quasiparticle separation used in the projection, as well as the maximum
bond dimension of the simulation, we were able to characterize effects (i) and (iii),
finding them to amount to changes in the outcome probabilities of� 0.01, except in
the case of ^^ (0,1) and ^^ (1,0) , in which one of the quasiparticles is heavier than the
other, leading to a smaller separation between the kink and antikink. In this case,
our analysis suggests the error here amounts to a change of around ±0.01 in the
outcome probability, possibly more (see App. C.4). This outcome might be better
resolved at higher energies, at which the kink-antikink separations would increase.

In case of the `` outcome, we cross-check the computed outcome probability by
comparing it with the excess energy (relative to the vacuum) �pkts of the regions
containing the ballistic wavepackets, visible in Fig. 4.5 (ii). If these wavepackets
belong to a two-meson "branch” of the wavefunction, that branch (the portion of
the wavefunction in the `` subspace) must contribute �% to the energy, where �
is the total energy and % is the probability of the `` scattering outcome. We can
therefore estimate % as �pkts/� . This gives us a % within the range 19% to 20%
at C = 480 (after separation), depending on the precise extent of the region we sum
over (e.g. from site 0 to site 250 for the left packet), compatible with the projected

7Not only computationally, but also because basis orthogonality is harder to achieve.
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Figure 4.9: Entanglement entropy (base 2) for cuts (left-right bipartitions) of the spin
chain as a function of time for the simulations (i) and (ii) of Fig. 4.5. Convergence
with the bond dimension � slows as time goes on. For example, in (i) the max. cut
entropy at � ≤ 128 is very likely not converged after C ≈ 400.

`` wavefunction.

Entropy and computational cost
As evidenced by Fig. 4.6, the bond dimension of the MPS representing the evolving
state must continue to grow as time goes on, in order to maintain accuracy. The
cut entropy at location 9 is a proxy for the required bond dimension � 9 . Fig. 4.9
shows the evolution of the maximum cut entropy for the simulations of Fig. 4.5. At
early times, we observe that the maximum cut entropy jumps dramatically during
scattering events, whether elastic or inelastic, remaining almost constant in between.
This is consistent with a model of interacting quasiparticle wavepackets: Separated
wavepackets undergo stable propagation until they collide, at which point inter-
actions generate entanglement corresponding to the different possible scattering
outcomes. At late times, we observe a temporal broadening of the jumps, con-
sistent with spatial broadening of the wavepackets involved. Fig. 4.9 also shows
that, although there is cut entropy associated with the wavepackets themselves, this
is quickly surpassed by the cut entropy in the center of the chain, associated with
entanglement between the left and right outgoing packets. It is this entanglement
between outgoing quasiparticles that is responsible for the post-collision plateaus
visible in the maximum cut entropy.
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Figure 4.10: Peak maximum cut entropy during the first collision as a function of
energy (ii) close to (_ = 0.41 6 = 0.98, ℎ = 0.001) and (iii) further from the TCI
point (_ = 0.3, 6 = 0.9, ℎ = 0.0069), with the energy controlled by the initial kink
separation. The meson mass <` in lattice units is 0.43 for (ii) vs. 0.97 for (iii),
while the vacuum correlation length b is 3.6 sites for (ii) and 1.8 sites for (iii), both
indicating that (ii) is closer to criticality. The initial wavepacket width is f = 40
for (ii) and f = 19 for (iii). The kink velocity (lattice units) at the start of the first
entropy jump (see Fig. 4.9) is also shown. Decreasing velocity with energy indicates
the onset of Bloch oscillations.

The entropy jumps clearly make MPS simulations of long-time dynamics demand-
ing. However, for the purposes of studying the quasiparticle content of scattering
outcomes, with the incoming quasiparticles chosen via the initial state, it is enough
to accurately simulate a single collision and thenwait until the outgoing wavepackets
have separated sufficiently so that interactions between outgoing quasiparticles may
be neglected (we assume the simulation parameters are chosen such that wavepackets
remain localized for sufficiently long times)8.

We expect the entropy generated in a collision of localized quasiparticle wavepackets
to depend on the collision energy relative to the masses of quasiparticles: the more
scattering outcomes there are, and the greater the probability of those outcomes, the
larger the post-collision entanglement entropy can be. In Fig. 4.10, we explore the

8Simulating for only relatively short times also increases the likelihood that these tasks can be
carried out on NISQ-era quantum devices.
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maximum cut entropy as a function of energy, controlled via the initial kink separa-
tion, for two sets of Hamiltonian parameters, one (ii) closer and one (iii) further from
criticality. We find that the entropy indeed grows with energy, smoothly increasing
even as thresholds are crossed, e.g. the 2<` (1) , 3<` (0) , and 4<` (0) thresholds in case
of (ii) (see also Fig. 4.7).

The entropy continues to increase at least until the energy is sufficient for the kinks
to approach the maximum possible kink velocity prior to collision, at which point
we expect deviations from the emergent relativistic dynamics to become apparent
as Bloch oscillations emerge. In the case of (iii), Fig. 4.10 shows that the post-
collision entropy eventually decreases as lattice effects kick in, coincident with
deceleration of the kinks prior to collision. Note that we are able to reach much
higher relative energies with parameters (ii) before encountering obvious lattice
effects. This illustrates the general principle that more of the emergent relativistic
QFT is revealed as one approaches criticality: the relative energies accessible by
quasiparticles, while avoiding Bloch oscillations (momenta < ?(Emax)), grows as
the lattice meson mass drops.

We also observe that much more entropy is generated in the first collision for
parameters (ii) than for parameters (iii), even when the relative energy is similar9.
A significant part of this difference likely comes from a much higher probability of
meson pair production, as well as the availability of the ^^ (0,1) outcomes, in case (ii):
the probability of particle production is < 10% in case (iii) at energy �/<` ≈ 2.52,
in contrast with ∼ 38% at energy �/<` ≈ 2.62 in case (ii), according to ^^ (0,0)

basis overlaps. This is possible, since these two parameter sets were not chosen to
be part of an RG trajectory, so that their emergent QFTs need not be the same.

4.4 Discussion
Building on recent innovations in the classical simulation of quasiparticle dynamics
using Matrix Product States [237], we proposed a framework for simulating and
characterizing the full (nonperturbative) quantumdynamics of false-vacuumbubbles
in relativistic QFTs that govern the IR physics of one-dimensional lattice systems.
While we chose to simulate a quantum spin chain, the methods we use are general
and could also be applied directly to, for instance, a spatially-discretized QFT such
as the Schwinger model or _q4 theory [2, 28, 205–210, 239]. We also demonstrated
that the MPS quasiparticle ansatz, with which we initialized our simulations, can

9The difference in post-collision entropy is not attributable to different vacuum entropies, since
these are < 0.1 in both cases.
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be used to detect quasiparticles that are produced as time evolves. This allowed
us to verify quasiparticle pair-production in the modified Ising model we studied,
including production of different species of confined kink that were not obvious from
examining energy density and spin expectation values alone. We used the same kind
of analysis to confirm a lack of particle-production in the unmodified Ising model
(with transverse field and small longitudinal field), supporting other recent studies
that suggest particle production is very strongly suppressed [234, 251, 252].

We were able to significantly improve the efficiency and interpretability of our
simulations by carefully choosing our initial states in two different ways: Firstly,
constructing spatially broad wavepackets allowed us to access the dynamics of the
emergent IR QFT without the spoiling effects of UV, high-momentum components
that are strongly influenced by the lattice. Broad wavepackets also lead to local-
ization of quasiparticles over long times, making it easier to characterize scattering
outcomes, and improve the numerical conditioning of the dynamical simulation
(see App. C.6). Secondly, by precisely tuning the quasiparticle content of the initial
wavepackets [237], we were able to study individual scattering events in isolation,
while further reducing the computational demands of the simulation by lowering
entanglement.

Entanglement growth is the most significant barrier to dynamical simulations with
MPS, as the computational cost of each time step scales exponentially with the cut
entropy. By choosing broad quasiparticle wavepackets, we reduce entanglement
growth at the expense of growing the number of lattice sites involved in the simula-
tion. This is a good tradeoff for MPS simulations, as the computational cost scales
only linearly in the number of lattice sites. Even with this tradeoff, we found that
the large jumps in cut entanglement with each collision (of confined quasiparticles
in the system) preclude simulating more than a handful of successive collisions.
Furthermore, we found clear evidence of entanglement growth with the collision
energy, although the onset of Bloch oscillations prevented us from drawing strong
conclusions about how this growth continues in the emergent IR QFT. Nevertheless,
in the absence of lattice effects that obscure the IR QFT, it seems reasonable to ex-
pect the entropy to continue to grow with energy, which would eventually preclude
accurate simulation using MPS.

A natural next stepwould be to identify RG trajectories in the Hamiltonian parameter
space so that results can be extrapolated to the continuum. This is equivalent to
finding paths toward criticality of the lattice model, along which the low-energy
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spectrum remains consistent with a particular emergent (IR) QFT. Moving closer to
the continuumwould also allow us to reach higher (relative) collision energies while
avoiding lattice effects, such as Bloch oscillations. In turn, this would permit a more
thorough exploration of the energy-dependence of the entanglement generated in
collisions.

As we approach criticality, the bond dimension of the MPS vacua must grow to
maintain accuracy, as must the size of the simulation window, since the wavepacket
width in lattice units would have to increase with the lattice correlation length in
order to maintain localization. Getting closer to criticality seems feasible: The
simulations featured in the main text, with maximumMPS bond dimension 128 and
time-step size 0.05, took between one and two weeks to complete on 8 cores each
and this time could likely be reduced significantly with further work to optimize the
code10 and the use of a numerical integrator with an adaptive time-step size.

Increasing the number of spatial dimensions presents a significantly greater chal-
lenge for classical algorithms: while the computational cost of MPS simulations
scales with the bond dimension � as O(�3), the scaling for tensor-networks capable
of handling large (2+1)-dimensional systems, such as PEPS [265], is much worse
(albeit still polynomial)11. As an intermediate step, one could consider systems with
a small, compactified second dimension of space, which are often within reach of
MPS methods. By performing a Fourier transform of the Hamiltonian in the com-
pactified direction only [267], one could study scattering of quasiparticles that are
spatially localized in one direction, while being momentum eigenstates of the other.
Compared to the purely (1+1)-dimensional case, the additional "Kaluza-Klein” ex-
citations associated with the Fourier modes of the compactified dimension would
already open up a much greater range of scattering outcomes.

Compared to the simulations we performed, increasing the variety of scattering
outcomes, whether by raising the relative energy in a given model, choosing a
lattice model with a richer set of low-energy excitations (e.g. near a phase transition
described by a CFT with larger central charge), or adding spatial dimensions, seems
necessary in order to find problems that exhaust tensor-network methods due to
the additional entanglement generated. Such problems appear more amenable to

10GPU acceleration may also be useful [264].
11Some methodological changes would also be needed: false-vacuum bubbles in > 1 spatial di-

mensions, having extensive boundaries, no longer look like mesons. As such, localized quasiparticle
techniques (such as those developed for PEPS [266]) are not directly applicable. Instead, suitable
initial states could likely be prepared via energy minimization in the presence of a nonuniform
symmetry-breaking field.
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simulation on quantum hardware, which is not a priori limited in the amount of
entanglement it can deal with. However, raising the energy may be problematic for
near-term quantum devices, which are limited both in their size and coherence times,
since avoiding lattice effects (such as Bloch oscillations) at higher relative energies
requires moving closer to criticality while increasing system sizes and evolution
times. Instead, increasing the richness of low-energy excitations by changing the
model or adding (compactified) dimensions, while avoiding coming too close to
criticality, may be a more promising route toward quantum advantage using near-
term devices.
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A p p e n d i x A

APPENDICES OF CHAPTER 2

A.1 Generalization to Arbitrary Dimension
Black Hole Spacetime
In this appendix we generalize all of our results to arbitrary spacetime dimension
� ≥ 4. See footnote 7 for the mass dimensions of various quantities. To begin, we
consider the Reissner-Nordström metric in � dimensions,

dB2 = − 5̃ (A)dC2 + 1
6̃(A) dA

2 + A2dΩ2
�−2, (A.1)

where dΩ2
�−2 is line element on the unit (� − 2)-sphere and

5̃ (A) = 6̃(A) = 1 − 2^2"

(� − 2)Ω�−2A�−3 +
&2^2

(� − 2) (� − 3)Ω2
�−2A

2(�−3) , (A.2)

as before denoting ^2 = 8c�. The electromagnetic field strength is

�̃`adG` ∧ dGa =
&

Ω�−2A�−2 dC ∧ dA, (A.3)

where the (� − 2)-dimensional area of the unit codimension-two sphere is

Ω�−2 =
2c �−1

2

Γ

(
�−1

2

) . (A.4)

Next, let us define new variables for mass and charge in units of the Planck scale,

< =
^2"

(� − 2)Ω�−2
, @ =

^&√
(� − 2) (� − 3)Ω�−2

, (A.5)

along with a rescaled radial coordinate,

G = A�−3, (A.6)

in terms of which the metric component can be written simply as

6̃(A) = 1 − 2<
G
+ @

2

G2 . (A.7)

The outer horizon is located at G = j̃ = d̃�−3, where

j̃ = < +
√
<2 − @2 = <(1 + b) (A.8)
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and b is defined as in Eq. (2.35). The extremality condition for the background
Reissner-Nordström spacetime as before requires @/< ≤ 1. The requirement of
thermodynamic stability restricts our consideration to black holes with b < �−3

�−2 , for
which the specific heat is positive.

Following the perturbative methods of Refs. [139, 140], we can compute the metric
components at first order in perturbations, finding

6(A) = 1 − 2<
G
+ @

2

G2 −
@2

G
2(2�−5)
�−3

8∑
8=1

U828, (A.9)

where the coefficients are

U1 =
(� − 3) (� − 4)

� − 2

[
2

13�2 − 47� + 40
3� − 7

@2 − 8(3� − 5)<G + 16(� − 2)G2
]

U2 = 2
� − 3
� − 2

[
8�3 − 55�2 + 117� − 76

3� − 7
@2 − 4(2�2 − 10� + 11)<G

+ 2(3� − 10) (� − 2)G2
]

U3 = 4
� − 3
� − 2

[
8�3 − 48�2 + 87� − 44

3� − 7
@2 − 2(4�2 − 17� + 16)<G

+ 8(� − 2) (� − 3)G2 − 2(� − 2) (� − 4)<
2G2

@2

]
U4 = 4(� − 3)

[
(7� − 13) (� − 2)

3� − 7
@2 − 2(3� − 5)<G + 4(� − 2)G2

]
U5 = 2(� − 3)

[
(5� − 9) (� − 2)

3� − 7
@2 − 2(2� − 3)<G + 3(� − 2)G2

]
U6 = 4(� − 3)

[
4
(� − 2)2
3� − 7

@2 − (3� − 5)<G + 2(� − 2)G2
]

U7 = 8
(� − 2) (� − 3)2

3� − 7
@2

U8 = 4
(� − 2) (� − 3)2

3� − 7
@2.

(A.10)

Calculation of Entropy
As before, the total entropy shift isΔ( = Δ(I+Δ(H, whereΔ(I, defined in Eq. (2.48),
arises from modifications of the low-energy graviton interactions and Δ(H, defined
in Eq. (2.49), is induced by the shift of the black hole horizon.

To compute the entropy contribution from interactions, we substitute the unperturbed
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black hole background from Sec. A.1 into Eq. (2.50), yielding

Δ(I = (̃ ×
2(� − 3)

<
2
�−3 (1 + b) �−1

�−3

{
4(� − 2)33

− 2(1 − b)
[
(� − 4)31 + (� − 3)32 + 2(2� − 5)33 + (� − 2)

(
34 +

1
2
35 + 36

)] }
.

(A.11)
To obtain the entropy contribution from the shift in the horizon, we apply Eq. (2.53).
The shift in the horizon area is then

Δ� = � − �̃ = (� − 2)Ω�−2 d̃
�−3Δd = − (� − 2)Ω�−2 j̃Δ6( d̃)

md̃6̃( d̃)
, (A.12)

where the unperturbed area is �̃ = Ω�−2 d̃
�−2. Inserting the perturbed metric in

Eqs. (A.9) and (A.10), we then obtain

Δ(H = (̃ ×
1

(3� − 7)< 2
�−3 b (1 + b) �−1

�−3
×

×
{
31(1 − b) (� − 3) (� − 4) [(11� − 24)b + � − 4]
+ 32(1 − b) (� − 3) [(10�2 − 53� + 68)b + 2�2 − 11� + 16]
+ 233 [−(16�3 − 128�2 + 337� − 292) (1 − b)2

+ 2(3� − 7) (4�2 − 23� + 32) (1 − b)
− 2(� − 2) (� − 4) (3� − 7)]

+ 234(1 − b) (� − 2) (� − 3) [5(� − 2)b + � − 4]
+ 2(35 + 36) (� − 2) (� − 3) (1 − b) [2(� − 2)b + � − 3]
+ 2(237 + 38) (� − 2)2(� − 3) (1 − b)2

}
.

(A.13)
As before, we can consider a near-extremal limit in which b � 1 but Δ( � (̃ so
that perturbation theory still applies. This requires that

b � |38 |
<

2
�−3

, (A.14)

which permits arbitrarily small b for a sufficiently large black hole. However, for the
classical higher-dimension operators to dominate, we again require d � 1/^<�/2

q

according to Eq. (2.32). Hence, for a tree-level ultraviolet completion with 38 ∼
1/<2

q
, Eq. (A.14) becomes b � ^2<�−2

q
. Additionally, our argument in Sec. 2.2

imposes a further perturbativity criterion on the inverse temperature shift, ΔV � Ṽ.
The background inverse temperature is

Ṽ =
2c< 1

�−3 (1 + b) �−2
�−3

(� − 3)b , (A.15)
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while in the near-extremal limit the inverse temperature shift goes asΔV ∼ 38/b3<1/(�−3) .
Hence, requiring ΔV � Ṽ, we have

b � |38 |
1/2

<
1
�−3

. (A.16)

Along with the scaling of the 38 and the bound on d imposed by Eq. (2.32), this
becomes just the requirement that

b � ^<
(�−2)/2
q

, (A.17)

so b can still be made parametrically small provided the heavy states are sub-
Planckian.

New Positivity Bounds
Combining Eqs. (A.11) and (A.13), we obtain the total shift in entropy in � dimen-
sions,

Δ( = (̃ × 1
(3� − 7)< 2

�−3 b (1 + b) �−1
�−3
×

×
{
31(� − 3) (� − 4)2(1 − b)2

+ 32(� − 3) (2�2 − 11� + 16) (1 − b)2

+ 233 [(8�3 − 60�2 + 151� − 128) (1 − b)2

− 2(� − 2) (2� − 5) (3� − 7) (1 − b)
+ 2(� − 2)2(3� − 7)]

+ 234(� − 2) (� − 3) (� − 4) (1 − b)2

+ 235(� − 2) (� − 3)2(1 − b)2

+ 236(� − 2) (� − 3) (1 − b) [−2(2� − 5)b + � − 3]
+ 437(� − 2)2(� − 3) (1 − b)2

+ 238(� − 2)2(� − 3) (1 − b)2
}
.

(A.18)

Positivity of this entropy shift for all b ∈
(
0, �−3

�−2

)
then implies a family of new con-

straints on the higher-dimension operator coefficients, which generalizes Eq. (2.60),

(1−b)230+ (�−2)2(3�−7)b33−
1
2
(�−2) (�−3) (3�−7)b (1−b) (233+36) > 0,

(A.19)



138

where in analogy with Eq. (2.61) we have defined

30 =
1
4
(� − 3) (� − 4)231 +

1
4
(� − 3) (2�2 − 11� + 16)32

+ 1
2
(2�3 − 16�2 + 45� − 44)33 +

1
2
(� − 2) (� − 3) (� − 4)34

+ 1
2
(� − 2) (� − 3)2(35 + 36) + (� − 2)2(� − 3)

(
37 +

1
2
38

)
.

(A.20)

As before, the bound in Eq. (A.19) is stronger than any finite set of bounds obtained
for fixed values of b, i.e., each b yields a linearly independent bound. As shown in
App. A.2, the bound in Eq. (A.19) is field redefinition invariant for all values of b.

In the near-extremal limit, b � 1, the bound in Eq. (A.19) becomes

30 > 0. (A.21)

The above inequality is closely related to the perturbation of the extremality condi-
tion discussed in Sec. 2.6. Applying the same reasoning to general dimension �,
we find that the extremality condition for the perturbed black hole is shifted by

ΔI =
4(� − 3)

(3� − 7) (� − 2)< 2
�−3

30, (A.22)

where 30 is exactly the same combination of coefficients defined in Eq. (A.20). Thus,
the requirement of Eq. (2.8) mandating positive entropy shift implies a constraint
on the coefficients of higher-dimension operators that increases the charge-to-mass
ratio of extremal black holes in the theory. In turn, large black holes can decay to
smaller black holes of a higher charge-to-mass-ratio, thus establishing the WGC in
general dimension �.

A.2 Field Redefinition Invariance
Any physical observable should be invariant under a reparameterization of the field
variables. Let us consider an arbitrary field redefinition,

6`a → 6`a + X6`a, (A.23)

where the perturbation is second order in derivatives, so

X6`a = A1'`a + A26`a' + A3^
2�`d�

d
a + A4^

26`a�df�
df (A.24)

for a set of four arbitrary constants A8. Inserting this field redefinition into the action
for Einstein-Maxwell theory induces new terms in the action proportional to the
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equations of motion,1

XL = 1
2^2 X6

`a

(
'`a −

1
2
'6`a − ^2)`a

)
. (A.25)

This has the net effect of shifting the higher-dimension operator coefficients in the
action by

31 → 31 −
1
4
A1 −

� − 2
4

A2

32 → 32 +
1
2
A1

33 → 33

34 → 34 +
1
8
A1 +

� − 4
8

A2 −
1
4
A3 −

� − 2
4

A4

35 → 35 −
1
2
A1 +

1
2
A3

36 → 36

37 → 37 +
1
8
A3 +

� − 4
8

A4

38 → 38 −
1
2
A3.

(A.26)

Because the field redefinition depends on four arbitrary constants, this reduces the
naive basis of eight higher-dimension operator coefficients down to a set of four
combinations that are automatically field redefinition invariant:

30, 33, 36, 39, (A.27)

where 30 is defined in Eq. (A.20) and 39 = 32 + 35 + 38. All physical quantities,
like the bounds in Eqs. (2.60) and (A.19), depend only on these combinations of
coefficients.

1The particular field redefinition in which the pure Einstein-Maxwell equations of motion are
substituted into the higher-dimension operators is a special case of the transformation in Eq. (A.24).
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A p p e n d i x B

APPENDICES OF CHAPTER 3

B.1 Code availability
All code used in this work is available online. This includes the various codes
described in appendix A of [4], as well as tiptop, available at https://gitlab.
com/bootstrapcollaboration/tiptop. tiptop is implemented in C++17 and
uses the Boost [268], Eigen [269], and VTK [270] libraries. The version used in
this paper has the Git commit hash

23774017b8726699bd838cf138a65e29405f0907

B.2 Software setup and parameters
The computations of the $ (3) model islands described in section 3.4 with Λ =

19, 27 were performed on the Caltech HPC Cluster, the Yale Grace Cluster, and
the EPFL SCITAS cluster. For the computations with Λ = 35, 43, we tested
possible primal points using the Caltech and Yale clusters. After finding a few
initial primal points, the main Delaunay triangulation search was performed on the
XSEDE Comet Cluster [271] at the San Diego Supercomputing Center through
allocation PHY190023. Together, the computations of the Λ = 35 island, the
Λ = 43 island, and the Λ = 35 tiptop search took 2.94M CPU hours on the Comet
Cluster. The optimization computations of section 3.4 were performed at Λ = 35
and completed on the Caltech and Yale clusters.

We used the following choices for the set of spins at each value of Λ:

(19 = {0, . . . , 26} ∪ {49, 50} ,
(27 = {0, . . . , 31} ∪ {49, 50} ,
(35 = {0, . . . , 44} ∪ {47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 67, 68} ,
(43 = {0, . . . , 64} ∪ {67, 68, 71, 72, 75, 76, 79, 80, 83, 84, 87, 88} . (B.1)

The sdpb parameters used in our computations are given in tables B.1 and B.2.

B.3 Tensor structures
In this appendix we compute the ($ (3) tensor structures )R that appear in the
conformal block expansions (3.11) for the 4-point functions listed in table 3.3. We

https://gitlab.com/bootstrapcollaboration/tiptop
https://gitlab.com/bootstrapcollaboration/tiptop
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Λ 19 27 35 43
keptPoleOrder 14 14 32 40

order 60 60 80 90
spins (19 (27 (35 (43

precision 768 768 960 1024
dualityGapThreshold 10−30 10−30 10−30 10−75

primalErrorThreshold 10−200 10−200 10−200 10−200

dualErrorThreshold 10−200 10−200 10−200 10−200

initialMatrixScalePrimal 1040 1050 1050 1060

initialMatrixScaleDual 1040 1050 1050 1060

feasibleCenteringParameter 0.1 0.1 0.1 0.1
infeasibleCenteringParameter 0.3 0.3 0.3 0.3

stepLengthReduction 0.7 0.7 0.7 0.7
maxComplementarity 10100 10130 10160 10200

Table B.1: Parameters used for the computations of the conformal bootstrap islands
in section 3.4. The sets (Λ are defined in (B.1).

Λ 35
keptPoleOrder 30

order 60
spins (35

precision 768
dualityGapThreshold 10−20

primalErrorThreshold 10−50

dualErrorThreshold 10−60

initialMatrixScalePrimal 1050

initialMatrixScaleDual 1050

feasibleCenteringParameter 0.1
infeasibleCenteringParameter 0.3

stepLengthReduction 0.7
maxComplementarity 10160

Table B.2: Parameters used for the optimization computations in section 3.4. The
set (35 is defined in (B.1).
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start by defining a basis of tensors for each configuration in table 3.3:

��qqqq =
©«
X8 9X:;

X8:X 9 ;

X8;X 9 :

ª®®®¬ ,

��CCCC =

©«

X81 91X82 92X:1;1X:2;2

X81:1X82:2X 91;1X 92;2

X81;1X82;2X:1 91X:2 92

X81 91X82:2X:1;1X 92;2

X81 91X82;1X 92:1X:2;2

ª®®®®®®®®¬
,

��CqCq =
©«
X81:1X82:2X 91;1

X81 91X82:2X:1;1

X81;1X82:2X 91:1

ª®®®¬ ,
��CCqq =

©«
X81 91X82 92X:1;1

X81:1X82 92X 91;1

X81;1X82 92X:1 91

ª®®®¬ ,
�BBBB = 1 ,

�qBqB = X8: ,

�CBCB = X81:1X82:2 ,

�CCBB = X81 91X82 92 ,

�qqBB = X8 9 ,

�qBqC = X8;1X:;2 ,

�qqBC = X8;1X 9 ;2 ,

�BCCC = X 91:1X 92;1X:2;2 ,

(B.2)

where the indices for each of the four operators are labeled as 8, 9 , :, ; respectively,
all indices with the same letter should be symmetrized with the trace removed,
and for simplicity we suppress the indices on the left-hand side. For the first four
configurations with non-trivial bases, we can find the tensor structure using the rank-
2 ($ (3) Casimir� acting on a basis �with =, < number of 8, 9 indices, respectively,
as:

��� =
∑
�

" ���� , � ≡ (�81
8′1
⊕ · · · ⊕ �8=

8′=
⊕ � 91

9 ′1
⊕ · · · ⊕ � 9<

9 ′<
)2 , (B.3)
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where � are the usual ($ (3) generators. The  eigenvectors () )� of " �� are
eigenvectors of �:

(�) ) � =
∑
�

" �� () )� = 2 () ) � , (B.4)

where the eigenvalue 2 for a rank @ ($ (3) irrep is @(@ + 1), which allows us
to identify each ) with an irrep. Up to an overall normalization, these ) are
then the desired tensor structures. For the last 8 configurations there is only one
basis element, so the tensor structure is simply that element also up to an overall
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normalization. The final list of tensor structures is then

〈qqqq〉 : )0+
1−1−1−1− = �

1
qqqq ,

)1+
1−1−1−1− = �

2
qqqq − �3

qqqq ,

)2+
1−1−1−1− = �

2
qqqq + �3

qqqq −
2
3
�1
qqqq ,

〈CCCC〉 : )0+
2+2+2+2+ = �

1
CCCC ,

)1+
2+2+2+2+ = �

4
CCCC − �5

CCCC ,

)2+
2+2+2+2+ = �

4
CCCC + �5

CCCC −
2
3
�1
CCCC ,

)3+
2+2+2+2+ = �

5
CCCC − �4

CCCC −
5
4
�3
CCCC +

5
4
�2
CCCC ,

)4+
2+2+2+2+ = −�

5
CCCC − �4

CCCC +
7
12
�3
CCCC +

7
12
�2
CCCC +

13
30
�1
CCCC ,

〈CqCq〉, 〈qCCq〉 : )1−
2+1−2+1− = 2�2

CqCq ,

)2−
2+1−2+1− = −4�1

CqCq + 2�2
CqCq + 4�3

CqCq ,

)3−
2+1−2+1− = 10�1

CqCq − 8�2
CqCq + 20�3

CqCq ,

〈CCqq〉 : )0+
2+2+1−1− = �

1
CCqq ,

)1+
2+2+1−1− = �

2
CCqq − �3

CCqq ,

)2+
2+2+1−1− = �

2
CCqq + �3

CCqq −
2
3
�1
CCqq ,

〈BBBB〉 : )0+
0+0+0+0+ = �BBBB ,

〈qBqB〉, 〈BqqB〉 : )1−
1−0+1−2+ = �qBqB ,

〈CBCB〉, 〈BCCB〉 : )2+
2+0+2+0+ = �CBCB ,

〈CCBB〉 : )0+
2+2+0+0+ = �CCBB ,

〈qqBB〉 : )0+
1−1−0+0+ = �qqBB ,

〈qBqC〉, 〈BqqC〉 : )1−
1−0+1−2+ =

√
2�qBqC ,

〈qqBC〉 : )2+
1−1−0+2+ =

√
2�qqBC ,

〈BCCC〉, 〈CCBC〉 : )2+
0+2+2+2+ =

√
2�BCCC .

(B.5)

The overall normalization of these tensor structures has been chosen so that the OPE
coefficients _i1i2O and _i3i4O in (3.11) are consistent under permutation of their
subscripts. This can be checked using the free theory, where we have the operators

B(G) ≡ 1
√

6
q8 (G)q8 (G) , C8 9 (G) ≡ 1

√
2
q8 (G)q 9 (G) − trace , (B.6)
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which have been normalized consistent with the 2-point function normalization in
(3.13). We can then compute all the 4-point functions in table 3.3 using Wick
contractions and expand in blocks as in (3.11) using the tensor structures in (B.5) to
verify this consistency.1

B.4 Computed points
In table B.3 we list the 38 primal points we have computed in the Λ = 43 island and
in table B.4 we list the 270 dual points we computed at Λ = 43. In table B.5 we list
the 7 primal points we use for the optimization computations described in section
3.4.

In Figure B.1 we show a plot of the allowed regions at Λ = 19, 27, 35, 43 after per-
forming an affine transformation which makes the Λ = 19 region roughly spherical.
The precise affine transformation is given by

G = 228.67 − 107.177ΔB − 43.8661ΔC − 8.77302Δq ,

H = −1061.39 − 694.406ΔB + 1612.44ΔC + 420.885Δq , (B.8)

I = 2590.87 − 221.685ΔB + 2629.52ΔC − 10439.6Δq .

1Note that there is another convention generated by the package autoboot [187]. Our results
for scanned external OPEs are different from the autoboot (ab) convention by(

_us
BBB , _

us
CCB , _

us
qqC , _

us
qqB , _

us
CCC

)
=

(
_ab
BBB ,

1
√

3
_ab
CCB ,

1
√

5
_ab
qqC ,

1
√

10
_ab
qqB ,

√
6
35
_ab
CCC

)
. (B.7)
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Figure B.1: The convex hulls of the allowed points in the affine space (B.8) at
derivative orders Λ = 19, 27, 35, 43. The red and black data points are the allowed
points at derivative orders Λ = 35, 43.
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Δq ΔB ΔC
_BBB
_qqB

_CCB
_qqB

_qqC
_qqB

_CCC
_qqB

0.5189783882 1.5953612741 1.2097311776 0.9658557781 1.8764272526 1.6683150562 2.8608280295
0.5189583670 1.5949959168 1.2096121876 0.9637866930 1.8759071995 1.6681321958 2.8604010933
0.5189461401 1.5949711389 1.2095536502 0.9650503920 1.8758868056 1.6680723076 2.8601976693
0.5189272852 1.5948074081 1.2094888929 0.9652812111 1.8758487781 1.6680235398 2.8603061675
0.5189613339 1.5952564268 1.2096662222 0.9662461846 1.8763712143 1.6682528867 2.8607475247
0.5189198114 1.5946719225 1.2094285955 0.9639220579 1.8755694851 1.6679344313 2.8599409571
0.5189172850 1.5946165394 1.2094312995 0.9634877179 1.8756194443 1.6679524398 2.8599835329
0.5189500473 1.5951798121 1.2096307308 0.9661780974 1.8763286685 1.6682360908 2.8607267382
0.5189649901 1.5951958587 1.2096821376 0.9647455098 1.8763265571 1.6682560921 2.8608385887
0.5189431822 1.5950799657 1.2095793546 0.9658559545 1.8761787760 1.6681550694 2.8604066434
0.5189526027 1.5949370220 1.2096034154 0.9633651701 1.8758925982 1.6681462865 2.8605568949
0.5189301757 1.5949315300 1.2095370407 0.9653175705 1.8761152596 1.6681181238 2.8605816730
0.5189168372 1.5946844827 1.2094296026 0.9642949506 1.8756631385 1.6679573604 2.8599418324
0.5189483062 1.5950509260 1.2095711164 0.9654214538 1.8760347497 1.6681115766 2.8602582414
0.5189153515 1.5946825124 1.2094352034 0.9643765341 1.8757126829 1.6679642216 2.8601068005
0.5189440155 1.5949715807 1.2095885922 0.9644538043 1.8760784038 1.6681817119 2.8607365030
0.5189150284 1.5945099455 1.2094139921 0.9622684128 1.8754680443 1.6679176085 2.8599290431
0.5189347282 1.5947841912 1.2094914029 0.9639498317 1.8756547299 1.6679896459 2.8599829650
0.5189802791 1.5952998277 1.2097251950 0.9649312284 1.8762516023 1.6682831892 2.8609105511
0.5189248611 1.5948368279 1.2094835818 0.9649249785 1.8759055628 1.6680304724 2.8600899846
0.5189306747 1.5946954535 1.2094799696 0.9630209667 1.8756016368 1.6679818979 2.8600556364
0.5189217812 1.5947698290 1.2094894198 0.9646493947 1.8759369337 1.6680732162 2.8603682382
0.5189121284 1.5945494559 1.2093932170 0.9632128469 1.8754599512 1.6678971836 2.8597295069
0.5189738261 1.5953116389 1.2096932265 0.9658322350 1.8762663003 1.6682491526 2.8606277206
0.5189145348 1.5947341024 1.2094532479 0.9650247104 1.8759430722 1.6680183536 2.8602402387
0.5189014384 1.5944048949 1.2093555400 0.9627737264 1.8753951336 1.6678520403 2.8597952050
0.5189305457 1.5947604700 1.2094652572 0.9640748832 1.8756103384 1.6679623986 2.8598809964
0.5189623990 1.5950949062 1.2096629593 0.9640070854 1.8761554772 1.6682313428 2.8608189553
0.5189460789 1.5950582403 1.2095808918 0.9654253734 1.8761261589 1.6681362224 2.8605045135
0.5189301505 1.5949452685 1.2095278745 0.9657542568 1.8760854806 1.6681017321 2.8604962327
0.5189685635 1.5953320391 1.2097096529 0.9660028358 1.8764583565 1.6683135549 2.8609575117
0.5189497511 1.5949209137 1.2095606097 0.9638109344 1.8758202300 1.6680711351 2.8601899822
0.5189337664 1.5947155621 1.2095107201 0.9623655424 1.8757184969 1.6680386790 2.8602450223
0.5189453714 1.5951023898 1.2096147301 0.9659065454 1.8763651079 1.6682206940 2.8607919521
0.5189862601 1.5954028918 1.2097515683 0.9654844905 1.8763339257 1.6683105873 2.8607881451
0.5189476979 1.5949533896 1.2096010827 0.9637175659 1.8760304271 1.6681861098 2.8606729585
0.5189346015 1.5950348003 1.2095678602 0.9659534043 1.8763062992 1.6681684361 2.8606248190
0.5189598320 1.5951484795 1.2096664021 0.9647455098 1.8763265571 1.6682560921 2.8608385887

Table B.3: Allowed points in the Λ = 43 island.
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Δq ΔB ΔC

0.5187966798 1.5921850401 1.2086228804
0.5189025751 1.5940361780 1.2092959408
0.5189114364 1.5946504985 1.2093872462
0.5189189599 1.5941920882 1.2093299741
0.5189288736 1.5938535802 1.2091078506
0.5186945881 1.5924442671 1.2084245865
0.5187373587 1.5921586352 1.2084312743
0.5187762022 1.5918820333 1.2086546805
0.5187826937 1.5914255278 1.2085310641
0.5188353864 1.5934222782 1.2090020249
0.5188362222 1.5935429810 1.2089818386
0.5188416799 1.5933781659 1.2089481869
0.5188478354 1.5938857812 1.2091362879
0.5188535569 1.5932852248 1.2088214042
0.5188541349 1.5932916366 1.2089652272
0.5188547707 1.5939362783 1.2090312421
0.5188571369 1.5930390946 1.2090569647
0.5188574085 1.5927203987 1.2089917699
0.5188612075 1.5939110280 1.2091455740
0.5188615055 1.5937167137 1.2090909898
0.5188768144 1.5938159784 1.2090216235
0.5188830465 1.5941282784 1.2092443533
0.5188846453 1.5942465723 1.2092589387
0.5188859294 1.5941864473 1.2092761662
0.5188862012 1.5941115729 1.2092255065
0.5188873828 1.5941812791 1.2092506161
0.5188874108 1.5939452740 1.2091859961
0.5188875107 1.5943066473 1.2093007022
0.5188888052 1.5938613363 1.2092121233
0.5188955343 1.5940894591 1.2092127567
0.5188965815 1.5941441764 1.2092975081
0.5189023610 1.5945285422 1.2093834019
0.5189038211 1.5934538031 1.2090700892
0.5189054986 1.5948072619 1.2094576026
0.5189068088 1.5944337603 1.2092909633
0.5189083086 1.5946728229 1.2094131489
0.5189105727 1.5946476632 1.2094486445
0.5189114164 1.5934097919 1.2091414652
0.5189153608 1.5942042741 1.2092982492
0.5189179786 1.5948735383 1.2094980056
0.5189191601 1.5945565549 1.2094640368
0.5189241090 1.5941509824 1.2094002783
0.5189333103 1.5939599259 1.2094523297
0.5189333930 1.5943501521 1.2094232463
0.5189346097 1.5944851028 1.2095740716
0.5189237305 1.5944279251 1.2093905391
0.5188043639 1.5926034786 1.2087905625
0.5188819788 1.5940503654 1.2091664050
0.5189348544 1.5939659673 1.2093605905
0.5189331311 1.5945586909 1.2094861373
0.5188609431 1.5938359757 1.2091138392
0.5189041783 1.5931200581 1.2091359461
0.5189211553 1.5940068208 1.2093711976
0.5188230608 1.5930667503 1.2087833097
0.5187918880 1.5920291631 1.2086556637
0.5187954081 1.5933857238 1.2088722712
0.5188120708 1.5921939042 1.2085475622
0.5188685720 1.5940780889 1.2092200213
0.5188737587 1.5938867482 1.2091282102
0.5188791085 1.5939475441 1.2092269843
0.5188860122 1.5944086593 1.2093118142
0.5188881256 1.5943425103 1.2092606077
0.5188962192 1.5944000610 1.2093036926
0.5188995836 1.5944714851 1.2093479909
0.5189042967 1.5942997732 1.2093450874
0.5189061160 1.5944245329 1.2093054811
0.5189130711 1.5943416289 1.2092938887
0.5189282439 1.5948696505 1.2094354495
0.5189381636 1.5945869176 1.2095373290
0.5189209582 1.5946145623 1.2093971026
0.5188528255 1.5932931016 1.2088647649
0.5188758367 1.5937600844 1.2090694206
0.5189034036 1.5943173907 1.2092753786
0.5187933545 1.5923524886 1.2085851052
0.5188028340 1.5925358527 1.2086181925
0.5188672706 1.5938859690 1.2090784902
0.5188721453 1.5939744974 1.2092114019
0.5188815521 1.5940429270 1.2090230925
0.5188876803 1.5938597752 1.2092439737
0.5188893843 1.5942285412 1.2092430003
0.5188959297 1.5932555635 1.2092613868
0.5189185378 1.5944533142 1.2093899362
0.5189206686 1.5947871150 1.2094529310
0.5189513139 1.5946586522 1.2094523424
0.5189385685 1.5946849443 1.2094603545
0.5189444575 1.5946106034 1.2094426944
0.5189597959 1.5951033035 1.2095684829
0.5190271291 1.5953552765 1.2099320047
0.5191718508 1.5977020194 1.2105467890
0.5189415400 1.5950976756 1.2095440010

Δq ΔB ΔC

0.5189424979 1.5947703013 1.2093601723
0.5189461102 1.5944802637 1.2095417129
0.5189461142 1.5952505758 1.2096113811
0.5189509729 1.5951396676 1.2096608087
0.5189524992 1.5951035671 1.2095733650
0.5189561892 1.5950657026 1.2096530941
0.5189575751 1.5955030599 1.2096401327
0.5189576562 1.5952623581 1.2096851550
0.5189595475 1.5954833608 1.2097148970
0.5189682325 1.5951956784 1.2096321472
0.5189696503 1.5942534718 1.2093617878
0.5189733687 1.5949010519 1.2095786060
0.5189772029 1.5950953535 1.2096440413
0.5189800482 1.5949290496 1.2097035540
0.5189804744 1.5953372481 1.2097875328
0.5189818184 1.5960483373 1.2098711894
0.5189830613 1.5952764767 1.2098175729
0.5189871624 1.5963425034 1.2098915261
0.5189966010 1.5956243058 1.2098589501
0.5190066292 1.5959897652 1.2099481084
0.5190086343 1.5954797940 1.2098872690
0.5190093925 1.5948495201 1.2095311073
0.5190140405 1.5954232716 1.2098887955
0.5190158019 1.5958546312 1.2098800029
0.5190176624 1.5957396035 1.2099524800
0.5190182636 1.5952950369 1.2097197630
0.5190222887 1.5962382824 1.2100406599
0.5190294335 1.5944921267 1.2097386508
0.5190368914 1.5960448579 1.2099540543
0.5190379431 1.5958717009 1.2099655030
0.5190482917 1.5959534075 1.2099669869
0.5190587928 1.5959983074 1.2100169645
0.5190598740 1.5957892478 1.2100080216
0.5190647361 1.5962663027 1.2101521345
0.5190695509 1.5960823090 1.2101350323
0.5190725277 1.5960088046 1.2100991203
0.5190732657 1.5962258325 1.2100744510
0.5190787856 1.5961544869 1.2101199950
0.5190839387 1.5962931060 1.2101834489
0.5190846538 1.5964564464 1.2101823824
0.5190882951 1.5952923328 1.2099488238
0.5191014483 1.5962764902 1.2102433612
0.5191200121 1.5963878404 1.2104254692
0.5191238375 1.5961605267 1.2100960457
0.5191427139 1.5977670021 1.2106878967
0.5191456549 1.5971361619 1.2105308642
0.5191695884 1.5970766016 1.2106595054
0.5191747564 1.5961581015 1.2104165938
0.5191752118 1.5973305922 1.2104827329
0.5191772163 1.5979425702 1.2107834542
0.5191998406 1.5976763974 1.2108343370
0.5192110760 1.5974046747 1.2105784428
0.5192313582 1.5976397828 1.2109134929
0.5192577054 1.5985007420 1.2110602270
0.5192609179 1.5973050662 1.2108724994
0.5192751871 1.5986516951 1.2111693213
0.5193182009 1.5988546582 1.2112832624
0.5193313395 1.5984303509 1.2111533312
0.5193414850 1.5980461969 1.2111569121
0.5193551983 1.5998541317 1.2115697595
0.5193848130 1.5991038253 1.2114973135
0.5193945892 1.5989679837 1.2114217221
0.5190798632 1.5964346557 1.2102061791
0.5189741917 1.5955685395 1.2097697715
0.5189927891 1.5951952177 1.2097372791
0.5189996154 1.5950788378 1.2097054113
0.5190167890 1.5955602397 1.2098873787
0.5190308122 1.5949198011 1.2096389844
0.5190339170 1.5955996031 1.2098749137
0.5190412371 1.5962115376 1.2100681124
0.5191177942 1.5966893312 1.2103147962
0.5192445379 1.5985977149 1.2110282728
0.5192695593 1.5991098729 1.2112586408
0.5193036599 1.5986614215 1.2113279731
0.5192414561 1.5971357017 1.2106354701
0.5189651659 1.5950121240 1.2096667988
0.5191751265 1.5980350400 1.2107387866
0.5189584563 1.5953669776 1.2096954753
0.5189653470 1.5950297999 1.2096904832
0.5189699612 1.5955018495 1.2097342211
0.5189780238 1.5954734077 1.2097071812
0.5189801701 1.5956399491 1.2098195524
0.5189846429 1.5956222286 1.2098043739
0.5189848116 1.5942072297 1.2094316101
0.5189955714 1.5956904175 1.2098601902
0.5189970055 1.5958004005 1.2098315960
0.5190050996 1.5957883004 1.2098865696
0.5190163339 1.5957550559 1.2099183538
0.5190199557 1.5956651380 1.2099295296
0.5190607004 1.5962908080 1.2100873837

Δq ΔB ΔC

0.5190663597 1.5958743309 1.2100957055
0.5190718073 1.5963854342 1.2101543103
0.5191015148 1.5964779979 1.2103173913
0.5191201873 1.5971879432 1.2103557329
0.5191327281 1.5966479322 1.2102157357
0.5192390608 1.5990575125 1.2111165018
0.5189384637 1.5945786868 1.2092964612
0.5189388374 1.5949295375 1.2094886518
0.5189406470 1.5951736959 1.2096025578
0.5189435236 1.5946628177 1.2095079568
0.5189591857 1.5937291370 1.2094479043
0.5189690300 1.5947953102 1.2095700139
0.5189782490 1.5955014573 1.2097394518
0.5189785861 1.5948000056 1.2096217602
0.5189943897 1.5951836165 1.2096726879
0.5190020000 1.5955721180 1.2098614948
0.5190031045 1.5956425756 1.2098293707
0.5190089551 1.5959677551 1.2099413822
0.5190264203 1.5960422185 1.2100190836
0.5190349642 1.5958180205 1.2099706558
0.5190621203 1.5957337543 1.2098389282
0.5191180161 1.5968444953 1.2103456280
0.5191470052 1.5962315204 1.2104571613
0.5191921249 1.5963777247 1.2105975545
0.5192666256 1.5975999519 1.2109769054
0.5192834446 1.5981834807 1.2109478678
0.5192153931 1.5971409678 1.2108619123
0.5190126129 1.5960328832 1.2098411820
0.5189956968 1.5952697384 1.2097891345
0.5190907117 1.5964405597 1.2102564468
0.5189972378 1.5954623091 1.2097288249
0.5192342602 1.5977739085 1.2106788412
0.5192967458 1.5978374167 1.2109654958
0.5190531962 1.5957547434 1.2100253487
0.5190597017 1.5959435763 1.2100960808
0.5189393710 1.5943081218 1.2094518082
0.5189538314 1.5947940605 1.2094896280
0.5189547388 1.5948394180 1.2095585036
0.5189639253 1.5945186785 1.2094725381
0.5189836057 1.5957551038 1.2098219526
0.5189905121 1.5953498417 1.2098007194
0.5189919017 1.5941900169 1.2095288310
0.5189979105 1.5956955072 1.2097796040
0.5189995667 1.5957402879 1.2099058216
0.5190123754 1.5941042932 1.2095390773
0.5190157406 1.5958569876 1.2099200545
0.5190278431 1.5965081852 1.2100281015
0.5190325131 1.5959081051 1.2099696538
0.5190520384 1.5963152404 1.2100841277
0.5190588609 1.5960509826 1.2099090548
0.5190715439 1.5955912797 1.2101497526
0.5190926525 1.5965090465 1.2102403519
0.5191170800 1.5974916154 1.2105064335
0.5191778676 1.5977308111 1.2107843923
0.5192544590 1.5971285489 1.2107746440
0.5192666631 1.5983714488 1.2109356823
0.5192812420 1.5987160882 1.2111101581
0.5193040795 1.5983604351 1.2112010479
0.5189685870 1.5947440353 1.2095546973
0.5189469362 1.5948003211 1.2094569896
0.5190500327 1.5959140301 1.2100673844
0.5190853457 1.5968203648 1.2103356646
0.5189402432 1.5947339426 1.2095132572
0.5189866072 1.5952602047 1.2097386461
0.5189466850 1.5949712041 1.2095439276
0.5189977538 1.5955819151 1.2098187686
0.5189417109 1.5948151822 1.2095116242
0.5189887395 1.5955311410 1.2097998738
0.5189805152 1.5954860043 1.2097574571
0.5189068037 1.5944354150 1.2093631340
0.5189664963 1.5953900793 1.2097088870
0.5189046136 1.5944739467 1.2093498390
0.5189477115 1.5951943364 1.2096143706
0.5189476015 1.5951048660 1.2095857135
0.5189392465 1.5947339121 1.2095257880
0.5189758138 1.5951810417 1.2097131902
0.5189281878 1.5946813688 1.2094996850
0.5189741332 1.5953607762 1.2097417847
0.5189225607 1.5945597787 1.2094380766
0.5189250556 1.5947901155 1.2094599723
0.5189931813 1.5954181855 1.2097690833
0.5189417323 1.5950007532 1.2095363269
0.5189436065 1.5950358588 1.2096059939
0.5189964571 1.5954554607 1.2098005401
0.5189717084 1.5953355582 1.2096832796
0.5189194848 1.5945704303 1.2094129825
0.5189261393 1.5947676104 1.2095065854
0.5189163665 1.5945874291 1.2093899278
0.5188888691 1.5942500939 1.2092859143
0.5189931888 1.5954995182 1.2097983737

Table B.4: Disallowed points computed at Λ = 43.

Δq ΔB ΔC
_BBB
_qqB

_CCB
_qqB

_qqC
_qqB

_CCC
_qqB

Δ) ′ − Δ) Δ�′ − Δ�

0.5189121284 1.594549456 1.209393217 0.9632128469 1.875459951 1.667897184 2.859729507 1.0 0.1
0.5189145348 1.594734102 1.209453248 0.9650247103 1.875943072 1.668018354 2.860240239 1.0 1.0
0.5189337664 1.594715562 1.209510720 0.9623655424 1.875718497 1.668038679 2.860245022 1.0 1.0
0.5189415373 1.594941048 1.209557043 0.9646177852 1.875978443 1.668107872 2.860397307 1.0 1.0
0.5189431822 1.595079966 1.209579355 0.9658559545 1.876178776 1.668155069 2.860406643 1.0 0.1
0.5189685635 1.595332039 1.209709653 0.9660028358 1.876458357 1.668313555 2.860957512 1.0 0.1
0.5189862601 1.595402892 1.209751568 0.9654844905 1.876333926 1.668310587 2.860788145 1.0 0.1

Table B.5: Allowed points in the Λ = 43 island used to obtain bounds on _qqB, �) ,
and �� , along with the gaps above Δ) and Δ� that were assumed.
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A p p e n d i x C

APPENDICES OF CHAPTER 4

C.1 Infinite MPS
In the main text, we define a Matrix Product State on a finite number of sites with
open boundary conditions. To represent the true and false vacua of a spin chain, we
use infinite MPS (iMPS), in which the number of sites→∞

|k〉 =
∑
{B}
E
†
!
. . . �

(B−1)
−1 �

(B0)
0 �

(B1)
1 . . . E' | . . . B−1B0B1 . . . 〉, (C.1)

where �(B)
9

is a � 9−1 × � 9 matrix assigned to site 9 in basis-state B and E! and E'
are appropriately-sized boundary vectors. In a uniform (translation invariant) iMPS,
we use the same tensor � everywhere: �(B)

9
= �(B) ∀ 9 ∈ Z. Such a state has a well

defined norm for generic choices of E! and E' if the �2 × �2 "transfer matrix”

𝐴*

𝐴
=

∑
B

�(B) ⊗ �(B)∗, (C.2)

where ∗ indicates the complex conjugate has a nondegenerate eigenvalue of largest
magnitude, with � normalized so that this eigenvalue is equal to 1 [232]. This
condition implies exponential decay of correlations with distance. By additionally
normalizing E! and E' appropriately, we can achieve 〈k |k〉 = 1. The precise
choice of boundary vectors does not affect bulk expectation values due to the
aforementioned exponential decay of correlators.

Nonuniform windows
To build the bubble states of the main text, and to simulate their evolution in time,
we allow the tensors of an otherwise uniform iMPS to vary within a "window”,
consisting of # contiguous sites. These states have the form

|k〉 =
∑
{B}
| . . . B1 . . . B# . . . 〉 × E†!

( 0∏
8=−∞

�
(B8)
!

)
�
(B1)
1 . . . �

(B# )
#

©«
∞∏

9=#+1
�
(B 9 )
'

ª®¬ E',
(C.3)

where �! and �' parameterize the semi-infinite left and right bulk parts of the
chain and �1 . . . �# parameterize the nonuniform window. The above transfer-
matrix conditions for a well-defined uniform iMPS must be satisfied for both the
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�! and �' tensors. The norm of the state is then determined by the content of the
window tensors �1 . . . �# . For the bubble states, we let �! = �' = , where
is the tensor optimized for the uniform ground state (true vacuum) of the spin chain.
We then choose �1 . . . �# to represent a false-vacuum bubble, as described below
in App. C.3. For example, a fully localized bubble state (the kink-antikink state of
Fig. 4.4) has �1 = (representing a kink), �2 . . . �#−1 = (representing the
false vacuum), and �# = (representing the antikink).

C.2 Finding the true and false vacua
Finding the true vacuum
The tensor � defining a uniform iMPS (C.1) can be optimized to represent low-
energy, translation-invariant states of gapped quantum spin chains using various
algorithms. We use the nonlinear conjugate-gradient method described in [205] and
implemented in the evoMPS package [262] to find a uniform iMPS that approxi-
mately describe the ground states of gapped quantum spin chains. We denote the
optimized iMPS tensor .

Finding the false vacuum
We explain how we obtain an iMPS representation of the false vacuum in practice
in App. C.2 below. In this section, we consider the nature of the false vacuum more
generally.

For the broken Z2 symmetry of the Ising-like chain in the main text, the false vacuum
|Ω〉 is a state that has opposite spin orientation to the true vacuum |Ω〉. It should also
be like a vacuum, in that it should be a spatially uniform, approximately static state
near a local energetic minimum with respect to some constraint, such as locality.

A candidate state is the "flipped” vacuum(∏
9

- 9

)
|Ω〉. (C.4)

It is spatially uniform and typically close to an energetic minimum in the following
sense: If we apply a finite string

∏!
9=1 - 9 of length !, the change in energy will be

positive for small values of !, becoming negative only after the O(2ℎ!) energy lost
by replacing false vacuumwith true vacuum on ! sites is larger than the O(1) energy
penalty of spin anti-alignment at the boundaries. However, the flipped vacuum is
generally not close to being an eigenstate in case of a nonzero symmetry-breaking
field parameter ℎ and therefore is not suitably static. Nevertheless, one might begin
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with the flipped vacuum and attempt to bring it closer to a false-vacuum eigenstate
by lowering the energy, for example via imaginary time evolution:

|Ω〉 = 4−g�
(∏

9

- 9

)
|Ω〉. (C.5)

A problem with this approach is that, since we are not in a true energetic minimum,
imaginary time evolution will ultimately take us back to the true vacuum |Ω〉. At
finite system sizes, this corresponds to a nonzero inner product between the flipped
vacuum and the vacuum. Let us consider the Z2-broken Ising Hamiltonian (_ = 0,
ℎ > 0) at finite system size # . Although in our simulations we work directly in
the thermodynamic limit # → ∞ using iMPS, finite # is more convenient for the
following calculation. We will see that the key result is independent of # . If we
perturb around the bare theory of 6 = 0, we find

〈Ω|
(∏

9

- 9

)
|Ω〉 = 0 + O(6# ), (C.6)

where 6 � 1. Overlaps 〈�8 |
(∏

9 - 9

)
|Ω〉 with energy eigenstates |�8〉 that are close

to the true vacuum (e.g. low-energy excitations) are also exponentially suppressed.

A simplifiedmodel allows us to estimate the timescale for "decay” to the true vacuum
under imaginary time evolution. Take |k〉 := kΩ |Ω〉 +

∑
8 k8 |� 8〉, where 〈k |k〉 = 1

and |� 8〉 represents an eigenstate in the false-vacuum "sector”, i.e. with a flipped spin
orientation versus |Ω〉. This will be our model for the flipped vacuum

(∏
9 - 9

)
|Ω〉.

From our perturbative calculation, we take |kΩ | ≈ 6# , so that
∑
8 |k8 |2 ≈ 1 − 62# .

Imaginary-time evolution give us

4−g� |k〉 = 4−g�ΩkΩ |Ω〉 +
∑
8

4−g� 8k8 |� 8〉. (C.7)

Now we take � 8 − �Ω ∼ 2#ℎ, since |� 8〉 are flipped states which suffer an extensive
energy penalty compared to |Ω〉. The relative contribution of the vacuum after a
time g is then

6#4g2#ℎ, (C.8)

which goes to 1 at gΩ, independently of #:

gΩ = −
1
2ℎ

log 6. (C.9)
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Hence, for small ℎ, one must evolve for a "long” time to see a significant vacuum
contribution. For sufficiently large g still satisfying g � gΩ, assuming initial
occupancy and energetic separation of the |�0〉 state, we end up with:

4−g� |k〉 ≈ 4−g�ΩkΩ |Ω〉 + 4−g�0k0 |�0〉, (C.10)

where |�0〉 is a hypothetical lowest-energy contribution from the false-vacuum
"sector”. This picture is supported by numerical observations in which performing
some imaginary-time evolution on

(∏
9 - 9

)
|Ω〉 quickly results in something that is

(numerically) approximately an eigenstate.

Finding an iMPS for the false vacuum
To find an iMPS for the false vacuum, we begin with an iMPS approximation
of the flipped vacuum (C.4), obtained from the iMPS approximation of the true
vacuum. Instead of using imaginary time evolution to reduce the energy of this
state, as considered in the previous section, we use the same conjugate-gradient
optimization method used to find the true vacuum [262]. Like imaginary time
evolution, such variational methods should eventually take the flipped state to the
true vacuum state. In practice, however, we observe that for small symmetry-
breaking fields |ℎ| � 1 this does not happen. Instead, the state converges to a
false-vacuum iMPS (parameterized by a tensor we denote ) that is numerically
indistinguishable from an energy eigenstate. This may be because of the limited
available numerical precision1, which could preclude accurate representation of the
gradient components that would lead to the true vacuum.

C.3 MPS quasiparticle states
We use a Bloch-state approach to represent low-energy excitations [233, 257, 258].
A localized quasiparticle state is constructed from vacuum tensors �! and �',
which remain constant, together with an "excitation tensor” � that can be chosen to
represent different excitations:

|q 9 (�! , �, �')〉 :=
∑
®B
E
†
!

(
9−1∏
8=−∞

�
B8
!

)
�B 9

©«
∞∏

:= 9+1
�
B:
'

ª®¬ E' |®B〉. (C.11)

This ansatz can represent topological excitations, in case �! and �' refer to different
vacua, as well as nontopological excitations, in case �! and �' represent the same

1We use a double-precision floating-point representation, although the effective precision may
be lower due to inversion of small Schmidt coefficients [261].



153

vacuum state. We use the symbol q to denote a generic excitation, and ^, ^, or ` to
refer to kinks, antikinks, or mesons specifically. For example, the kink states |^ 9 〉
of the main text have �! = , � = and �' = , while the meson states |` 9 〉
have �! = , � = and �' = . For tensor-network diagrams showing the
parts of the tensor networks surrounding � (for |^ 9 〉 and |` 9 〉) see Fig. 4.4. Due to
exponential decay of correlations in the vacua represented by �! and �', the tensor
� represents a quasilocal excitation and may affect expectation values across many
lattice sites. In the following, we assume for simplicity that the MPS |q 9 〉 have
uniform bond dimension �.

Momentum eigenstates can be constructed as Fouriermodes of the spatially localized
excitations:

|q(�! , �, �', ?)〉 :=
∑
9

4i? 9 |q 9 (�! , �, �')〉. (C.12)

These momentum eigenstates enjoy a "gauge” freedom (parameter redundancy): the
� tensor may be transformed as

�B → �B + �B!G − 4
−i?G�B', (C.13)

where G is a � × � matrix, without affecting the Fourier mode |q(�! , �, �', ?)〉.
This freedom can be fixed in many ways. For example, the "left orthogonality”2
conditions [257, 272] are

𝐴𝐿

𝐵
𝑙𝐿 *

= 〈;! |
(∑
B

�(B) ⊗ �(B)
!
∗
)
= 0, (C.14)

where 〈;! | is the dominant left eigenvector of the MPS transfer matrix of the left
uniform bulk:

〈;! |
(∑
B

�
(B)
!
⊗ �(B)

!
∗
)
= 〈;! |. (C.15)

Similarly, the "right orthogonality” conditions are

𝐴𝑅

𝐵
𝑟𝑅

*
=

(∑
B

�(B) ⊗ �(B)
'
∗
)
|A'〉 = 0, (C.16)

where |A'〉 is the dominant right eigenvector of the MPS transfer matrix of the right
uniform bulk: (∑

B

�
(B)
'
⊗ �(B)

'
∗
)
|A'〉 = |A'〉. (C.17)

2Called "left gauge-fixing” in [257].
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These conditions can be achieved for any initial tensor � by transforming it with an
appropriate choice of G in (C.13). Imposing either the left or right conditions, (C.14)
or (C.16), implies orthogonality of the position states: 〈q 9 (�! , �, �') |q: (�! , �, �')〉 =
X 9 : . This is particularly convenient for working with the momentum eigenstates, as
it greatly simplifies the computation of their inner products and expectation values
[257].

Optimizing the excitation tensor �
To find a tensor � that accurately represents a particular quasiparticle excitation,
we use the methods of [257] with some modifications for dealing with the case in
which one of �! and �' represents a false vacuum (with a different energy density
compared to the true vacuum). The basic idea is to project the Hamiltonian onto the
ansatz space of momentum eigenstates |q(�! , �, �', ?)〉, resulting in an effective
Hamiltonian for the tensor � that can be solved using a standard sparse eigenvalue
solver.

Note that, since 〈q(�! , �, �', ?) |q(�! , �, �', ?′)〉 = X(? − ?′), it is natural to
do this for a particular, chosen value of ?. By solving for multiple eigenvalue-
eigenvector pairs, a set of orthogonal tensors �(0) (the eigenvectors) can be found
that accurately approximate several different low-energy excitations (labeled by
the index 0), as long as they are all below the two-particle threshold [258]. The
eigenvalues are the energies of these excitations. By computing them for a range of
?, one can obtain an approximate dispersion relation � (?) for the quasiparticles in
the system.

Importantly, not only the energies, but also the optimized tensors �(0) (?), and hence
the position states |q 9 (�)〉, generally depend nontrivially on the value of ?. This
is illustrated in Fig. C.3, which shows the error made in using a tensor �(0) (? = 0)
optimized for ? = 0, to represent the lowest-lying excitations at other momenta.

Broken symmetry and kinks

In the presence of explicit symmetry breaking (ℎ ≠ 0), topological excitations such
as kinks and antikinks involve the false vacuum. The energy of a localized kink (or
antikink) depends on its position, since different positions lead to different extensive
contributions from the false vacuum3. As such, there are no energy-momentum

3In an infinite system, as considered here, all kinks have infinite energy with respect to the
vacuum. However, the energy difference between two kinks is finite when their positions differ by a
finite amount.
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(i) Ising: 6 = 0.8, ℎ = 0.007
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(ii) near TCI: _ = 0.41, 6 = 0.98, ℎ = 0.001
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Figure C.1: Error made (1 − 〈q 9 (�) |q 9 (�(?))〉) in ignoring the momentum de-
pendence of the tensor � used to construct MPS quasiparticle states, for both kink
and meson excitations, for the Hamiltonian parameters used in simulations (i) and
(ii) of the main text. The momentum-eigenstate freedom on �(?) is fixed so that
〈q 9 (�) |q: (�′)〉 = X 9 : .
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eigenstates (of the Hamiltonian and momentum operators) corresponding to these
excitations and we cannot find them by solving the effective Hamiltonian for the
� tensors considered above. Nevertheless, we expect there to be excitations that
behave as quasiparticles subject to a confining force (which makes them accelerate).
If one could somehow negate the confining force, as if by accelerating at the same
rate as the quasiparticle, the latter would appear to propagate freely.

With this picture in mind, we define a modified energy function

�̃ =
∑
9 :

4i?(:− 9) 〈q 9 | (� − Δ� 9 1) |q:〉, (C.18)

where Δ� 9 :=
∑ 9
−∞ 4! +

∑∞
9+1 4' and 4! , 4' are the energy densities of the vacua

parameterized by �! and �', respectively. Here, it is assumed that the momentum-
eigenstate gauge-freedom on �, (C.13), has been fixed so that 〈q 9 |q:〉 = X 9 : .
With orthogonality of the position states, the identity term simply shifts the energy
of the excitation in a position-dependent way, cancelling the position-dependent
contribution due to the differing bulk energy densities. One can also write down a
modified Hamiltonian

�̃ = � −
∑
9

% 9Δ� 9 , (C.19)

where % 9 is a projector onto the space of states spanned by |q 9 (�)〉 for all � satis-
fying the chosen orthogonality conditions: for such �, we thus have % 9 |q: (�)〉 =
X 9 : |q: (�)〉. We can then rewrite �̃ as

�̃ = 〈q(�! , �, �', ?) |�̃ |q(�! , �, �', ?)〉. (C.20)

We can thus optimize � by computing eigenvalue-eigenvector pairs of �̃, after
pushing it into the ansatz space, analogously to the symmetric case above.

In this formulation it is manifest that the optimization procedure depends on the
conditions used to achieve position-state orthogonality, since different conditions
will lead to different % 9 in (C.19). In practice, we find that the difference this
makes to the resulting optimized states |q(�! , �, �', ?)〉 is small: We consider the
infidelity per site

1 − |Z|−1 |〈q(�!� , ?) |q(�'� , ?)〉| =
1 − |

��〈q 9 (�!�) |q(�'� , ?)〉�� , (C.21)

where �!� and �'� are optimized for the same quasiparticle (and momentum ?)
using the left and right orthogonality conditions, (C.14) and (C.16), respectively,
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and |Z| is the cardinality of the integers (accounting for the infinite norm of the
momentum eigenstates). We find empirically the infidelity scales as ℎ2, where
ℎ � 1 is the symmetry-breaking parameter of the Hamiltonian, for the lowest-
energy kink states and the Hamiltonian parameters considered in this paper. This
dependence is shown in Fig. C.2.

It may be possible to design improved optimization techniques that avoid this ambi-
guity. A prerequisite would be a cost function other than 〈�̃〉, presumably related
to the stability of the quasiparticle wavepackets, that distinguishes usefully between
the different choices that can be made in parameterizing �.

Another important observation is that, in (C.19), we assume that the location 9 of
the � tensor reliably indicates the position of the kink (or antikink). In fact, since
the excitation described by � is quasilocal, the location of the kink (defined as the
point in space at which the spin expectation value crosses zero) may differ from 9 .
Indeed, as shown below in Fig. C.3, there may be a relative shift of several lattice
sites, depending on the choice of left or right orthogonality conditions on �. The
shift will generally also depend on the momentum ?, such that a dispersion relation
� (?) computed from the eigenvalues of �̃ should really be interpreted as a function
of the �-tensor momentum, derived from the position 9 of �, considered distinct
from the kink momentum, derived from the kink position.

Themomentum-dependent energy-shift due to these position shifts can be calculated
by first computing the actual kink positions, relative to 9 , for each |q 9 (?)〉, as
a function of ?. These shifts can then be multiplied by the false-vacuum excess
energy density to compute the energy shift, which can in turn be used to "correct” the
dispersion relation. This provides a more intuitive definition of the kink dispersion
in the symmetry-broken setting. Note also, however, that since kink quasiparticles
do not have a well-defined energy gap with respect to the vacuum state, these
dispersion relations still cannot be used to compute particle-production thresholds.
They could, however, be used to estimate the kink velocity 3� (?)/3?, this being
independent of energy shifts � (?) → � (?) + 2.

Wavepackets
Analogously to the momentum eigenstates of (C.12), we can construct wavepackets
from the localized quasiparticle states as

|q(�! , �, �', 5 )〉 :=
∑
8

58 |q8 (�! , �, �')〉, (C.22)
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Figure C.2: Estimated error (1 - infidelity per site) on momentum eigenstates
|q(�, ?)〉 for kink quasiparticles, due to the choice of orthogonality conditions
on � used to achieve 〈q 9 (�) |q: (�)〉 = X 9 : . Here we compare the left and right
orthogonality conditions, (C.14) and (C.16).

where in our simulations we choose 58 to be a Gaussian centered at position G
with width f. Importantly for our purposes, it is straightforward to turn such a
wavepacket state into a single MPS:

|q(�! , �, �', 5 )〉 =
∑
®B
F
†
!

( ∞∏
8=−∞

�
B8
8

)
F' |®B〉, (C.23)

where

�B8 :=

(
�B
!

58�
B

0 �B
'

)
(C.24)

is a 2� × 2� matrix, given that �B
!
, �B

'
, and �B are all � × � matrices. We set the

boundary conditions to be

F
†
!

:=
(
E
†
!
, 0

)
F' :=

(
0
E'

)
(C.25)

for some generic choice of E! and E'. If | 58 | falls below some numerical threshold for
all 8 less than some 8! and for all 8 greater than some 8' > 8! , we can truncate it to zero
and reduce the bond dimension to � in those regions without introducing significant
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errors. This allows us to represent a truncated wavepacket in the thermodynamic
limit using the nonuniform window ansatz (C.3).

As discussed in the main text, this wavepacket construction ignores any momentum
dependence of the tensor �. While this introduces errors in the form of contributions
from other excitations, as shown in Fig. C.3, these become small for large f, as
indicated in Fig. C.5 below.

Localized states and Bloch-state parameter redundancy
The parameter redundancy, or "gauge freedom”, on the �-tensors of the momentum
eigenstates (C.12) does not leave the localized states |q 9 (�)〉 of (C.11) unchanged.
These states, as well as the wavepacket states (C.22) built from them, depend on how
these degrees of freedom are fixed. However, the procedure we use for choosing
optimal � tensors is based on momentum eigenstates and does not tell us how to
optimally fix the remaining freedom.

That said, the impact of this choice on Gaussian wavepacket states must vanish in
the limit f → ∞, where packets become momentum eigenstates. Hence we can
reasonably expect the impact on wavepackets with finite width to become small as
f increases. Since we already have a physical reason to choose broad wavepackets
in our simulations (for slow wavepacket spread), this issue is not as severe as it may
at first appear.

Nevertheless, we choose to use the reflection-symmetric conditions of [237], slightly
adapted for the topologically nontrivial setting, to fix the remaining freedom on the
� tensors used to construct our initial bubble states. To be precise, we fix � by
choosing G in (C.13) as

G = arg min
G ′

©«
�����∑
B

�(G′) (B) ⊗ �(B)
!
∗

�����2 +�����∑
B

�(G′) (B) ⊗ �(B)
'
∗

�����2ª®¬ . (C.26)

In terms of tensor networks, we can rewrite this as

G = arg min
G ′

©«
����� 𝐴𝐿

𝐵(𝑥′)

*

�����2 +
����� 𝐵(𝑥′)

𝐴𝑅
*

�����2ª®¬ . (C.27)

Unlike the left and right orthogonality conditions, (C.14) and (C.16), these condi-
tions are manifestly symmetric under spatial reflections. The reflection-symmetric
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conditions can be formulated as an overdetermined linear-least-squares optimization
problem and then solved using standard techniques.

See Fig. C.3 for a comparison of the reflection-symmetric conditions to the left and
right orthogonality conditions, in terms of the spin expectation values of localized
topological states. We plot these results for �! and �' representing the two vacua
of the Ising chain (_ = 0, 6 = 0.8) for both zero and nonzero longitudinal field
strength ℎ. The tensor � is variationally optimized, as described above, so that the
momentum eigenstate |q(�! , �, �', ? = 0)〉 approximates the lowest-lying topo-
logical excitation. We note that, although the symmetrized states exhibit "smoother”
spin expectation values in both cases, they are not perfectly symmetric in the case
ℎ > 0. The spatial asymmetry in the spin likely reflects the energetic asymme-
try of topological states in this case. In both cases, there is certainly an aesthetic
improvement to be had by imposing the symmetrization conditions, but it remains
to be seen whether the symmetrized states are better representations of localized
quasiparticles. To see that they are, we consider how well wavepackets built from
them fit into the corresponding quasiparticle subspace.

In Fig. C.5, we plot the portion of a kink wavepacket state (by probability) outside
of the targeted kink-quasiparticle subspace for both the orthogonal and reflection-
symmetric conditions. We explain how to carry out this kind of projection in
App. C.4. We observe that the symmetrized states result in a much more accurate
wavepacket than the orthonormal states, by almost two orders of magnitude, con-
firming that the symmetrized choices are more than just aesthetically pleasing. In
the symmetric Ising model (ℎ = 0), we can also compare the energy of wavepackets.
In Fig. C.4, we see that the kink wavepackets created with the symmetrized states
have consistently lower energy, which indicates improved accuracy, since we are
targeting the lowest-lying kink quasiparticle.

Two-particle states
To create false-vacuum bubbles, we need to combine two quasiparticles, namely a
kink and an antikink. Two-particle states have the form

|qq 9 : (�! , �! , �� , �', �')〉 :=
∑
®B
|®B〉×

E
†
!

(
9−1∏
8=−∞

�
B8
!

)
�
B 9

!

(
:−1∏
;=8+1

�
B;
�

)
�
B:
'

( ∞∏
<=;+1

�
B<
'

)
E', (C.28)
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(i) Ising: 6 = 0.8, ℎ = 0.007
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(ii)
near TCI: _ = 0.41, 6 = 0.98, ℎ = 0.001
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Figure C.3: Spin expectation values of a kink position MPS |^ 9 〉 for (i) the Ising
model and (ii) close to the Tri-Critical-Ising (TCI) point. The bond dimension
is � = 8 for the Ising data, and � = 18 for the TCI data. We plot the spins
for various ways of fixing the momentum-eigenstate freedom: the left and right
orthogonal conditions, (C.14) or (C.16), and the reflection-symmetric conditions
(C.26), beginning from a � tensor optimized using either the left or right conditions
(since this makes a small physical difference to the result – see App. C.3).
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Figure C.4: Single-kink wavepacket energy as a function of the width f, for the
Z2-symmetric Ising model 6 = 0.8, _ = 0, ℎ = 0 (in the SSB phase). We plot the
energy (relative to the energy of the kink-quasiparticle momentum eigenstate) for
two different ways of fixing the momentum-eigenstate freedom on the � tensors
used to construct the wavepacket state: an orthogonal choice 〈^ 9 |^:〉 = X 9 : (left and
right conditions are equivalent when ℎ = 0) and the reflection-symmetrized choice
(C.26). In both cases the MPS tensors used to construct the state are tuned to the
wavepacket momentum ? = 0.

where, compared to (C.11), we now have a central (false) vacuum tensor �� , as
well as two excitation tensors, �! and �', instead of one. Analogously to the
one-particle states, we use qq to denote a generic pair of quasiparticles, specifying
^^ or `` when we are discussing a kink-antikink pair or a meson pair specifically.
Such states are illustrated in Fig. 4.4. We will assume that the quasiparticles are
sufficiently well separated, so that interactions may be neglected and �! and �' can
be held constant irrespective of the separation 3 := : − 9 . A sufficient condition for
this to be justified, is that the reduced state for sites 8 in between the two excitations
9 < 8 < : reverts to that of the central vacuum MPS parameterized by �� for some
range of 8. If this happens for the reduced state on at least A contiguous sites, where
A is the range of interactions in the Hamiltonian (for our model, A = 2 when _ = 0
and A = 3 otherwise), this implies that the energy of the two-particle state, as a
function of the separation 3, is not affected by interaction between the particles at
that location (only by differences in the "vacuum” energies). This means there can
be no interaction energy.
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Figure C.5: Portion of a single-kink wavepacket state outside of the single-kink
subspace ^ (0) as a function of the wavepacket widthf, for theZ2-broken Isingmodel
6 = 0.8, _ = 0, ℎ = 0.007. We plot the error for two different ways of fixing the
momentum-eigenstate freedom on the � tensors used to construct the wavepacket:
the left orthogonal choice 〈^ 9 |^:〉 = X 9 : and the reflection-symmetrized choice
(with � optimized using the left orthogonal conditions). In both cases the MPS
tensors used to construct the state are tuned to the wavepacket momentum, which is
? = 0. The projection into the ^ (0) subspace uses � tensors optimized using the left
orthogonal conditions and fully accounts for momentum dependence via a Fourier
analysis.

This condition can be made more precise: we define the strength of interaction
effects at location 8 (with 9 < 8 < :) as the deviation of the left and right environment
tensors of the 2-particle state from the corresponding environment tensors of the
central (false) vacuum MPS parameterized by �� . Here, the environment at site 8
is the tensor network for the reduced state on site 8, excluding the tensors assigned
to site 8 itself. It naturally splits into left and right components, consisting of the
tensors to the left and to the right of 8, respectively. We compute the deviation
for the left and right parts separately, as the norm of the difference between the
central (false) vacuum environment and the 2-particle-state environments. For the
left environment, we define

n! (8) :=

����� 𝐴𝐶

𝐴𝐶

*𝐴𝐶

𝐴𝐶

*𝐵𝐿

𝑙𝐿 *

𝐵𝐿
. . . − 𝑙𝐶

����� , (C.29)

where the ellipsis indicates that the center transfer matrix should be repeated as
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many times as is necessary to reach site 8 from the position of �! . Similarly, for the
right environment we define

n' (8) :=

����� . . . 𝐵𝑅

𝐵𝑅
𝑟𝑅

*𝐴𝐶

𝐴𝐶

*𝐴𝐶

𝐴𝐶

*
− 𝑟𝐶

����� . (C.30)

We define the magnitude of interaction effects at separation 3 to be

n (3) := min
9<8<:

(n! (8) + n' (8)) . (C.31)

This value is plotted, for the Hamiltonian parameters (ii) of the main text, in Fig. C.7
for a selection of low-energy quasiparticles.

Wavepackets can be constructed from the two-particle position states (C.28) analo-
gously to the single-particle case (C.22):

|qq(�! , �! , �� , �', �', 5 , 6)〉 :=∑
9<:

5 96: |qq 9 : (�! , �! , �� , �', �')〉, (C.32)

where, for our simulations, we choose the packet functions 5 9 and 6: to be Gaussians
centered at G! and G', with momenta ? and −?, respectively. As in the single-
particle case (C.23), these wavepackets can be rewritten as a single MPS with bond
dimension 2�, where � is the bond dimension of the vacua �! , �� , �'. Note that,
because position states are not defined for : ≥ 9 , the wavepacket functions 5 and 6
are effectively truncated, leaving only the terms 9 < : , in this ansatz. Of course, if
the wavepacket functions have negligible overlap, the effects of this truncation can
themselves be neglected.

C.4 Particle detection via quasiparticle basis states
As discussed in the main text, it is possible to use the optimized quasiparticle states
and their two-particle combinations to estimate the particle content of awavefunction
|k(C)〉 as it evolves during simulation. For example, the inner product 〈^^ (0,1)

9 :
|k(C)〉

is sensitive to the presence of a pair consisting of a type-0 kink quasiparticle at
position 9 and a type-1 antikink quasiparticle at position : .

The single-particle quasiparticle position states |q 9 〉 of (C.11) can be made orthog-
onal by imposing either the left or right orthogonality conditions, (C.14) or (C.16).
For the two-particle states |qq(0,1)

9 :
〉 of (C.28) (where qq is generic notation for

either a kink-antikink pair or a meson pair), we can achieve orthogonality by enforc-
ing the left orthogonality conditions on the left excitation tensor, �! , and the right
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orthogonality conditions on right excitation tensor, �'. With these conditions, the
two-particle states are orthogonal for one pair of species 0, 1

〈qq(0,1)
9 :
|qq(0,1)

;<
〉 = X 9 ;X:< . (C.33)

Furthermore, by limiting the subspace to states with separation 3 := : − 9 large
enough so that interaction effects are negligible (see App. C.3), we can achieve an
approximately orthonormal basis across species as well as positions:

〈qq(0,1)
9 :
|qq(2,3)

;<
〉 ≈ X 9 ;X:<X02X13 ∀ : � 9 , < � ;. (C.34)

If the left and right bulk vacuum tensors, �! and �' of the evolved state |k(C)〉,
which in our simulations have the form (C.3), match the left and right bulk tensors �!
and �' in the two-particle states (C.28), it is then straightforward to (approximately)
project |k(C)〉 into the subspace spanned by these states.

However, we must take care when interpreting the overlaps of a wavefunction |k(C)〉
with quasiparticle position states such as |q 9 (�)〉, as should be clear from the discus-
sion of excitation tensors and quasiparticle position states above. In particular, the
momentum-dependence of the � tensors optimized to represent each quasiparticle,
as well as the ambiguity in fixing the degrees of freedom (C.13) in � that are not
fixed by the optimization procedure (see App. C.3), make the interpretation of the
overlap unclear unless the quasiparticle content of |k(C)〉 consists of broad spatial
wavepackets, whose momentum support is focused around the momentum ? used
to optimize the � tensor. We next discuss two methods for avoiding these issues.

Checking consistency in the projected wavefunction
As described in the main text, one way to avoid issues with momentum-dependence
and wavepacket breadth is to choose some momentum ?, optimize a tensor �(?)
at that momentum for the quasiparticle being targeted, then examine the overlaps
k 9 := 〈q 9 (�(?)) |k(C)〉 (or k 9 : := 〈qq 9 : (�(?), �′(?′)) |k(C)〉 for a two-particle
basis). If the wavepacket width of the projected wavefunctionk 9 is sufficiently large,
and the momentum support (computed via Fourier transformation) sufficiently close
to the chosen value of ?, we know that the error made is small and can trust that the
projection is accurately telling us about the quasiparticle content. We can quantify
how broad the wavepacket must be, and how close the wavepacket momenta should
be to ?, via analyses such as those of Fig. C.3 and Fig. C.5.

If the distribution of momenta in the wavepacket indicates a large error due to the
choice of ? made while constructing the basis, it may be possible to iteratively tune
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? to achieve a better match. This procedure fails, of course, if the wavepackets in
|k(C)〉 are too narrow in position space (and hence too broad in momentum space)
for the error to be kept small.

We use this procedure to compute the spin expectations values within each particle
"sector” in Fig. 4.8, tuning the basis momenta ?! and ?' for two-particle bases
|qq 9 : (�! (?!), �' (?')〉 to match the observed momenta.

Fourier analysis
To fully account for the momentum-dependence of the quasiparticle states, and to
eliminate any issues due to the momentum-eigenstate "gauge-freedom” (C.13) on �
tensors, we can simply take overlaps with momentum eigenstates instead of with the
position states. These states are exactly invariant under (C.13), and the � tensors
used to construct them can be optimized for the momentum of the eigenstate to avoid
momentum mismatch.

For example, to project onto a single-particle subspace at momentum ?, one can
compute 〈q(?) |k(C)〉, with |q(?)〉 from (C.12). We can expand this overlap in
terms of position states:

〈q(�(?), ?) |k(C)〉 =
∑
9

4−i? 9 〈q 9 (�(?)) |k(C)〉, (C.35)

where �(?) is an excitation tensor optimized to represent the quasiparticle q at
momentum ?. This overlap can be computed in practice, despite the infinite sum
over 9 , because the position of excitations in |k(C)〉 is limited to the nonuniform
window of (C.3) in which the initial quasiparticles (comprising the bubble) were
placed, so that there are only ∼ # nonzero position terms in this overlap.

To compute the projection onto the entire quasiparticle subspace, we must evaluate
the integral ∫ c

−c
3? 〈q(?) |k(C)〉. (C.36)

This can be done approximately by sampling, for example using a numerical inte-
gration scheme. In practice, we use the Fast Fourier-Transform (FFT) algorithm to
transform the spatial components 〈q 9 (�(?)) |k(C)〉 into a fixed sampling of momen-
tum components at a resolution determined by the number of lattice sites # summed
over in (C.35).

We use this method to compute the projected single-kink wavefunction described in
Fig. C.5, to compute the kink-antikink scattering outcome probability in Fig. 4.6 of
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the main text, and to compute the various scattering outcome probabilities reported
in Fig. 4.8.

Efficient computation of the quasiparticle Fourier analysis

The projection of a wavefunction |k(C)〉 onto many momentum modes is relatively
computationally intensive, since for each momentum mode we must first com-
pute a tuned excitation tensor �(?), followed by a full set of position overlaps
〈q 9 (�(?)) |k(C)〉. In the case of single-particle states, the cost is O(#"), where
" is the number of momentum samples and # is the nonuniform window size
of |k(C)〉. For two-particle states, since we must consider cases in which the two
particles have different momenta/positions, making the cost O("2#2). If " ∼ # ,
and # ≈ 1000, this may be prohibitive!

To reduce the cost, we can use the observation that the optimized excitation tensor
�(?), for a given quasiparticle, usually varies only slowly with the quasiparticle
momentum ? by introducing a small momentum mismatch in a controlled way:
We project the excitation tensors �(?), optimized for each mode of momentum ?

that we wish to sum over, onto a small basis of excitation tensors that capture the
momentum dependence accurately across a wide range of ?:

�(?) ≈
∑
U

1U (?)�U, (C.37)

for appropriately chosen coefficients 1U (?) and suitably chosen basis tensors �U.
A suitable basis can be built by orthonormalizing (via a Gram-Schmidt procedure)
a set of �(?U) obtained at a selection of momenta (say, ? = −2,−1, 0, 1, 2). We
find that < 10 basis tensors is sufficient, for our chosen Hamiltonian parameters,
to achieve an accuracy of ∼ 10−8 in (C.37). Given such a basis, we then compute
position-state overlaps only for the basis tensors, from which we can compute the
projection of the wavefunction onto an arbitrary momentum mode while making
only a small error.

For example, in the case of a two-particle basis, we first compute k 9 :;UV :=
〈qq 9 : (�!,U, �',V) |k(C)〉. Then, using the coefficients of (C.37), we approximate
the overlap with the momentum-tuned position states as

〈qq 9 : (�! (?), �' (?′)) |k(C)〉 ≈ 1∗!,U (?)1∗',V (?′)k 9 :;UV. (C.38)

From here, the momentum-mode overlaps are but an FFT away.
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Other sources of error
Even for the Fourier analysis, there are at least two sources of inaccuracy beyond
the choice of iMPS bond dimensions in the vacua and the quality of the optimiza-
tion procedures used to find the vacua and the excitations tensors �. First, there
is the further ambiguity (see App. C.3) in the case of topological excitations in the
symmetry-broken setting (ℎ > 0) owing to the dependence of the �-tensor optimiza-
tion on an arbitrary choice of orthogonality conditions made during optimization.
We do not currently know of a way to avoid this source of error. Fortunately, as
illustrated in Fig C.2, we have good evidence that it is small.

The other source of error comes from interaction effects, which are not captured
properly by the two-particle states. As discussed above, one can choose the mini-
mum separation of the two particles to avoid interaction, by throwing out position
states where the "interaction strength” n , defined in (C.31), rises above some thresh-
old. In choosing the threshold, there is a tradeoff between capturing (potentially
large) components of the wavefunction that have smaller separation, but likely incur
some (possibly small) error due to interaction, and the magnitude of n , which is
a conservative estimate of that error and is exponential in the separation. How to
make this tradeoff optimally depends on the target wavefunction and the required
precision of the projected wavefunction.

For our computations, we examined the dependence of the norm of the projected
wavefunctions on the minimum separation 3min allowed in the two-particle basis
states. Exemplary results are shown in Figs. C.6 and C.7, which also show the
dependence of the norms on the simulation bond-dimension limit. In Fig. C.6, we
observe that, for the largest bond-dimension, the norm of the projected wavefunction
is essentially constant for 3 < 70, despite the rising magnitude of interaction effects.
This suggests that the wavefunction has negligible support at small separations
(which we confirm via a Fourier analysis). We also observe that a minimum
separation of 3min = 60 is sufficient to keep n < 10−6. Noting that the interaction
strength is a property of the quasiparticle basis, and hence independent of time, we
make the choice 3min = 60 to avoid interaction effects when computing the data
shown in Fig. 4.6 of the main text.

Fig. C.7 shows similar data for three quasiparticle-pair "sectors” for the Hamiltonian
parameters (ii) of the main text. This data was used to estimate the scattering
outcome probabilities shown in Fig. 4.8 of the main text. We see that, for this target
wavefunction |k(C)〉, interaction effects are not important for the ^^ (0,0) and ``(0,0)
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Figure C.6: Portion of the evolved bubble wavefunction outside of the kink-antikink
"sector” for simulation (i) of Fig. 4.5 (_ = 0, 6 = 0.8, ℎ = 0.007) at time C = 150,
as a function of the minimum separation 3min := min(: − 9) permitted in the
two-quasiparticles basis states |^^ (0,0)

9 ,:
〉. Probabilities are computed via a Fourier

analysis, taking into account the momentum-dependence of the basis states. The
basis error due to interaction effects is estimated using (C.31).

"sectors”. However, they may influence the result at the level of ∼ 0.01, possibly
more, for ^^ (0,1) (and, by reflection symmetry of the initial bubble state, ^^ (1,0)).
The ^^ (0,1) and ^^ (1,0) results are likely to be more sensitive to interaction than the
^^ (0,0) result because the former two "sectors” describe bubble states in which one
of the walls (the kink or the antikink) is heavier than in the ^^ (0,0) case. These
"lopsided” bubbles will be smaller than a ^^ (0,0) bubble at the same energy, leading
to larger components of the wavefunction at small separations, where interaction
effects are stronger.

C.5 Evolving through time
To evolve an initial bubble iMPS in time, we define a window of # lattice sites
surrounding the bubble and allow the MPS tensors belonging to those sites to vary
during the evolution, while keeping the rest of the MPS tensors fixed. In other
words, we use the nonuniform window ansatz (C.3) with fixed bulk tensors �! ,
�'. To compute the evolved state, we use methods based on the Time-Dependent
Variational Principle (TDVP), which is set out for this class of states in [259] and
implemented in the evoMPS package [262].
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(b) ^^ (0,1)
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Figure C.7: Quasiparticle "sector” projection probabilities for simulation (ii) of
Fig. 4.5 (_ = 0.41, 6 = 0.98, ℎ = 0.001) at time C = 270, as a function of the
minimum separation 3min := min(: − 9) permitted in the two-quasiparticles basis
states | · · 9 ,:〉. Probabilities are computed via a Fourier analysis, taking into account
the momentum-dependence of the basis states. The basis error due to interaction
effects is estimated using (C.31).
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The TDVP provides flow equations that describe the evolution of the MPS tensors
needed to optimally approximate the evolution of the state by the Hamiltonian, given
the constraint that the MPS bond dimension must remain fixed. Various schemes
can be used to integrate the flow equations: we use the popular Runge-Kutta 4/5
(RK4) numerical integrator (to directly integrate the global flow equations) as well
as the "projector-splitting” (PS) integrator of [261]. Since we want the MPS bond
dimension to grow as needed (up to some maximum) as the entanglement of the
state increases, we combine TDVP flow with techniques for increasing the bond
dimension. In particular, we use the "dynamical expansion” scheme described in
[256] together with the RK4 integrator, as well as the two-site projector-splitting
method of [261].

The PS method and the RK4 integrator (with dynamical expansion), despite hav-
ing similar theoretical error rates for a given time-step size, behave differently in
important ways. For a given step size, the PS method has a larger computational
overhead per step, but has better numerical stability and precision since, unlike the
"traditional” TDVP scheme of [256], it does not require the inversion of matrices
with small eigenvalues.

We find that the RK4 scheme with dynamical expansion is too unstable to use
reliably during the initial timesteps of our simulations, which begin with an MPS
of relatively small bond dimension (at most twice the vacuum bond dimension).
However, we find RK4 can be used successfully after performing a small number of
initial steps using the two-site PS scheme. During these initial PS steps, the bond
dimension increases significantly. Later in the evolution, once the bond dimension
has stabilized, we find the much faster RK4 scheme is able to take over without
significant impact on the results. During the evolution, we do allow the MPS bond
dimension to grow beyond a predefined maximum value.

To better understand the effects of the integration scheme on our simulations, as well
as the impact of the bond-dimension limit, we compute two quantities indicative
of numerical error: the energy drift and the truncation error. Although the exact
evolution of the quantum state conserves the energy, the imperfect integration of the
TDVP flow equations, combined with the limited bond dimension, leads to a small
energy drift. This drift is an indicator of error incurred more generally during the
evolution. We estimate the truncation error – the portion of the state by norm that is
lost due to the bond dimension limit – as the maximum value, taken over position,
of the minimum Schmidt coefficient (the �th-largest) for the left-right bipartition at
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that position. Since there are rarely large jumps in the Schmidt spectrum, this value
provides a good estimate of the magnitude of the terms that cannot be represented
due to the bond-dimension limit.

As shown for simulation (ii) of the main text in Fig. C.8, the energy drift is par-
ticularly sensitive to the integration scheme and step size, whereas the truncation
error is, unsurprisingly, most sensitive to the bond-dimension limit. We note that
the truncation error jumps at the time of the first kink-antikink collision (C ≈ 175),
consistent with the entanglement jump observed in Fig. 4.9 of the main text. Fig. C.9
provides a more detailed picture of the entanglement structure, showing the full en-
tanglement (Schmidt) spectrum (up to truncation) before and after the first collision
at the cut with the largest entanglement entropy.

The computational cost of simulating up to some fixed time C scales as O
(
�3

XC

)
.

We are therefore eventually forced to trade accuracy for computational cost. For
this particular simulation, we judge � ≤ 128 and XC = 0.05 to provide sufficient
accuracy, while keeping the computational requirements manageable, to enable us
to study the outcomes of at least the first kink-antikink collision event in detail.

C.6 Comparison with quench approaches
We construct our initial false-vacuum bubble from individual kink and antikink
quasiparticles, separated by a region of metastable false vacuum. Similar states can
be constructed via a simpler approach: act on the uniform true vacuum |Ω〉 with a
suitable string operator that, in the case of the Ising-type model we study, flips all
the spins over a range of sites:

|( 9 :〉 := - 9- 9+1 . . . -:−1-: |Ω〉 (C.39)

For small longitudinal field ℎ, we know that flipping all the spins gets us from the
vacuum to a state close to the false vacuum (see App. C.2), so if 3 := : − 9 is
sufficiently large, the reduced state will be close to that of the false vacuum in the
middle of the flipped region and topological excitations will be created at the edges
of the string. In general, these excitations will be a combination of many topological
quasiparticles of varying energy, hence the walls of a bubble created in this way will
be unstable to interactions between these quasiparticles. The walls are also highly
localized in position and hence have large momentum uncertainty.

By smearing the edges of the string in space, their momenta can be focused. This
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Figure C.8: Evolution of the energy expectation value and MPS truncation error for
simulation (ii) of the main text. We compare different maximum bond dimensions
� as well as different RK4 time-step sizes XC (for � ≤ 64), observing that the effects
of the time step are most noticeable in the energy drift, whereas the bond-dimension
most obviously affects the truncation error at around the time of the first collision
(C ≈ 150). The � ≤ 128 simulation is initialized from � ≤ 64, XC = 0.05 at C = 90.
The uptick in the energy drift at C ≈ 480 is due to unconfined wavepackets hitting
the boundaries of the simulation window.
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Figure C.9: Schmidt spectra for the maximum-entropy cut before and after the first
collision in simulation (ii) of the main text. The bond dimension is 128.

results in states of the form

|Ψ〉 =
∑
9<:

5 9 (G! , ?!) 5: (G', ?') |( 9 :〉, (C.40)

where 5 9 and 5: are wavepacket functions for the left and right edge, respectively.
If we choose these to be Gaussian, as for the wavepackets in the main text, we get
a bubble state similar to those used in the main text, except that the walls have
undetermined quasiparticle content.

In Fig. C.10, we compare the dynamics of three different initial states for the
Hamiltonian parameters (ii) of the main text: (a) the fully localized string of (C.39),
(b) the smeared string of (C.40), and (c) the tuned quasiparticle kink-antikink
wavepackets used in the main text. We choose the same kink-antikink separation in
all cases, and the same wavepacket widths in the latter two. The TDVP step size and
the maximum bond dimension were also the same in all three cases. Simulations
(a) and (b) both exhibit clear ballistic spread of energy from the initial bubble
edges, indicating their instability, whereas simulation (c) only shows ballistic spread
after the initial bubble walls have collided, consistent with the walls consisting of
individual quasiparticles.

It is noteworthy that the evolution of state (a) encounters catastrophic numerical
errors at around C = 150, unlike simulations (b) and (c), suggesting that scenario
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(a) is much harder to simulate accurately4. In Fig. C.11 we show the energy drift
and estimated truncation error (smallest retained Schmidt coefficient for the most
entangled cut) for the same three simulations. This data clearly indicates that
simulation (c) is easiest to simulate, since both the energy drift and the truncation
error remain smaller with the same evolution parameters. The large truncation error
at early times in cases (a) and (b) is consistent with a large amount of entanglement
being generated early on, coming from the multiple excitations created at the ends
of the string operator.

C.7 Velocity and Bloch oscillations
Single-kink evolution
In case of explicit symmetry breaking (ℎ > 0), an isolated kink wavepacket, with
true vacuum on one side and false vacuum on the other, will accelerate toward the
false vacuum, absorbing the excess energy density of the latter. On the lattice,
however, the kinetic energy cannot increase indefinitely. Instead, as discussed in the
main text, the kink begins to undergo Bloch oscillations, eventually decelerating and
reversing its direction of travel, as shown in Fig C.12 for Ising model parameters.
By projecting into the ^ basis of single kinks (see App. C.4), we can easily compute
the kink position and momentum for such a simulation. As shown in Fig. C.13, the
momentum increases linearly with time, making it easy to understand the evolution
of the wavepacket position via the group velocity, which is given by 3� (?)/3?,
where � (?) is the quasiparticle dispersion relation. In Fig. C.14 we show the
velocity derived from the position of Fig. C.13, compared to the velocity derived
from the momentum of Fig. C.13, via the dispersion relation.

Bubble evolution
In the case of a bubble state, the initial kink and antikink behave as their isolated
counterparts, accelerating into the false vacuum until they near each other and
interact. Their momenta increase linearly until the collision, as shown in lattice
units (−c < ? ≤ c) for the Ising model (parameter set (i) of the main text) in
Fig. C.15. It is interesting to note that the momentum variance is significantly larger
after the collision than it is before, indicative of an (in this case elastic) interaction.

The velocity of the kink and antikink, defined here as the velocity of the point in
space atwhich the (interpolated) spin expectation value crosses zero, evolve as shown

4These errors also occur if the PS integrator is used throughout the evolution, rather than
switching to RK4 after some entanglement has built up.
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Figure C.10: Evolution of spin and energy density expectation values and the cut
entropy for parameter set (ii) of the main text (_ = 0.41, 6 = 0.98, ℎ = 0.001), with
three different initial states. State (a) is prepared by acting on the vacuum with a
string operator

∏G'−1
9=G!

- 9 , whichflips the spins to formabubble-like statewith energy
�/<` = 8.69. State (b) is similar to (a), but with the ends of the string smeared
out using Gaussian packets of width f = 40, reducing the energy to �/<` = 4.02.
State (c) is the initial state discussed in the main text with �/<` = 2.62, using
quasiparticle wavepackets for the kinks and the false vacuum for the middle region.
The evolution parameters are the same in all cases: The maximum bond dimension
is 64 and the RK4 step size is 0.05. In (a), dramatic errors in the simulation
occur at C ≈ 150, indicating the difficulty of simulating these dynamics versus (b)
and (c). In both (a) and (b), ballistic energy-spread emanating from the initial
kinks indicates that they have complex quasiparticle content, resulting in immediate
inelastic scattering. In contrast, the tuned quasiparticle kinks of (c) do not produce
appreciable ballistic spread until the bubble walls have collided.
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Figure C.11: Evolution of the energy expectation value andMPS truncation error for
the simulations of Fig. C.10. Energy drift (|1−� (C)/� (0) |) indicates deviation from
unitary evolution and results from restriction to a maximum bond dimension of 64
as well as from numerical integration errors (RK4 step size 0.05). Truncation error
(estimated as the maximum over cuts of the smallest Schmidt coefficient) results
from the limited bond dimension and increases as entanglement is produced.

in Fig. C.16, in accordance with the dispersion relation of the kink quasiparticle
excitation. In this simulation, the kink achieves its maximumvelocity well before the
collision, and begins to decelerate as part of a Bloch oscillation. The pre-collision
velocity can be kept from reaching its maximum by reducing the kink-antikink
separation in the initial bubble state, as we have confirmed with other simulations.

In Fig. C.17, we show the kink and antikink velocity evolution for simulation (ii)
of the main text. In this case, we have set the initial kink-antikink separation so
that the velocity does not reach a maximum prior to collision (indicating that Bloch
oscillations have not yet begun).
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Figure C.13: Evolution of the position and momentum expectation values of the
wavefunction of Fig. C.12 after projection onto the single-kink position basis states
|^ 9 〉. For the Hamiltonian parameters in question (see Fig. C.12), the momentum
dependence of the basis states is negligible, and could be ignored for the projection.
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Figure C.14: Evolution of the kink velocity for the single-kink simulation of
Fig. C.12. Here, the velocity is computed from the projection of the wavefunc-
tion into the |^ 9 〉 position basis in two different ways: from finite-differences of
the position expectation value and from the momentum expectation value, via the
numerical dispersion relation � (?). That there is a good match shows that the
kink-quasiparticle ansatz successfully captures the confined quasiparticles present
in the Z2-broken Ising model.

C.8 Zero longitudinal field
Here we examine the behavior of "bubbles” (kink-antikink pairs) when we set the
longitudinal field ℎ = 0. Our model with _ ≠ 0 is not integrable, even if we turn
off the longitudinal magnetic field ℎ. Generically, we should therefore expect to
observe inelastic kink-antikink collisions.

We prepare bubble states, for the Hamiltonian parameters 6 = 0.9, _ = 0.3, ℎ = 0,
in which the kink and antikink have initial momentum ? and −?, respectively. By
varying ?, we can choose the total energy to be either above or below the threshold
for quasiparticle pair production, which we numerically estimate to be 2<` = 1.88
(relative to the vacuum energy).

In Fig. C.18, we show the cut entropy as a function of space and time and, separately
for clarity, the time-dependence of the cut entropy at the midpoint between the
quasiparticle wavepackets. We choose three different initial momenta: ? = 4c

32 ,
? = 5c

32 , and ? =
6c
32 , corresponding to bubble energies of � = 1.65, � = 1.92, and

� = 2.20, respectively. We observe that the post-collision mid-chain entropy returns
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Figure C.15: Momentum of the kink in simulation (i) of the main text (Ising),
computed from the projected wavefunction in the ^^ (0,0) basis. The bond dimension
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Figure C.16: Kink and antikink wavepacket velocity for the Ising model, simulation
(i) of the main text, computed as the finite difference of the interpolated position of
the 0-intercept of 〈/ 9 〉. The bond dimension is 128. Note that the data is only likely
to be accurate up to C ≈ 500, as suggested by Fig. 4.9. The onset of the first collision
is indicated by the dotted line, which is the time at which the maximum cut entropy
begins to grow rapidly.



181

0 100 200 300 400 500
time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

ve
lo

cit
y

kink
antikink
entropy ramp-up

Figure C.17: Kink and antikink wavepacket velocity for simulation (ii), computed
as the finite difference of the interpolated position of the 0-intercept of 〈/ 9 〉. The
bond dimension is 128. The interpretation of the 0-intercept as the position breaks
down both during and, to some extent, after the collision: During the collision,
the zero intercept disappears altogether as the kink and antikink merge and all spin
expectation values are > 0. After the collision, there are in this case (see Fig. 4.8) at
least two different bubble "branches” of the wavefunction, both contributing to the
spin expectation values. The onset of the first collision is indicated by the dotted
line, which is the time at which the maximum cut entropy begins to grow rapidly.

to its vacuum value for ? = 4c
32 , suggesting a trivial scattering event (see App. C.9).

For ? = 5c
32 and ? = 6c

32 , we observe a residual entropy surplus after the collision,
suggesting nontrivial scattering. Since the onset of this extra entropy contribution
coincides with the energy crossing the two-meson threshold 2<`, it is likely due to
an increasing probability of meson pair production.

It is interesting to note that, if we set ℎ > 0 while keeping the other Hamiltonian
parameters the same, we observe nontrivial, albeit elastic, scattering of kink-antikink
pairswhen the energy is below the two-meson threshold. Turning off the longitudinal
field appears to turn off this nontrivial elastic contribution, so that kinks and antikinks
scatter trivially.

C.9 Entanglement generated by an elastic collision
Here we consider how two single-particle wavepackets become entangled when
they scatter elastically in one spatial dimension. The entanglement arises from the
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Figure C.18: Cut entropy for kink-antikink collisions, in the absence of a longi-
tudinal field, with initial kink momentum ? and antikink momentum −?, for three
different values of ?. The Hamiltonian parameters are 6 = 0.9, _ = 0.3, ℎ = 0,
and the wavepacket width is f = 19.0. The vacuum bond dimension is � = 14,
with a limit � ≤ 64 imposed during evolution. The integration time-step size was
XC = 0.05.

momentum dependence of the scattering phase shift.

For this analysis we ignore lattice effects and consider two distinguishable particles
� and � propagating in the continuum. A pure state expanded in the momentum
basis has the form

|k〉 =
∫

3?3@ k(?, @) |?〉� |@〉� , (C.41)

with the normalization ∫
3?3@ |k(?, @) |2 = 1 . (C.42)

We assume the initial state factorizes as the product k(?, @) = k� (?)k� (@) of two
widely separated wavepackets, but after elastic scattering, the wave packets becomes
correlated due to the momentum dependent phase shift q(?, @):

k(?, @) = k� (?)k� (@)48q(?,@) . (C.43)
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Tracing out particle �, we obtain the reduced density matrix for particle �

d� =

∫
3?13?2 |?1〉 d� (?1, ?2) 〈?2 | ,

d� (?1, ?2) =
∫

3@ k (?1, @) k∗ (?2, @) , (C.44)

where ∗ denotes complex conjugation.

To quantify the entanglement of particles � and �, we compute the Rényi entropies
of d�,

(= =
1

1 − = log2 d
=
� , (C.45)

where

trd=� =
∫

3?13?2 . . . 3?= 3@13@2 . . . 3@=

|k� (?1) |2 |k� (?2) |2 . . . |k� (?=) |2 |k� (@1) |2 |k� (@2) |2 . . . |k� (@=) |2

exp [8 (q(?1, @1) − q(?2, @1) + q(?2, @2) − q(?3, @2) · · · + q(?=, @=) − q(?1, @=))] .
(C.46)

Now suppose that the wave packets for particles � and � are Gaussian:

|k� (?) |2 =
1

√
2cΔ�

4−(?−?)
2/2Δ2

� ,

|k� (@) |2 =
1

√
2cΔ�

4−(@−@)
2/2Δ2

� . (C.47)

If the phase shift were slowly varying over the range in ? and @ where the wave
packets have significant support, we could approximate trd=

�
by expanding q(?, @)

to quadratic order about (?, @). But in that case the scattered wave packets are only
slightly entangled. In order to do an analytic computation, we will assume that
q(?, @) is exactly quadratic even if the phase shift varies rapidly. Then the only term
that matters is the cross term

q(?, @) = q2?@ + . . . , (C.48)

because the exponential of the other terms factorizes into a function of ? times a
function of @, which does not contribute to the entanglement of particles � and �.

By evaluating a Gaussian integral, we find

trd=� =

[
=−1∏
:=1

(
1 + 4U2sin2

(
:c

=

))]−1/2

,

(= =
1

2(= − 1)

=−1∑
:=1

log2

(
1 + 4U2sin2

(
:c

=

))
, (C.49)
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where

U = q2Δ�Δ� . (C.50)

Aswe anticipated, for |U | � 1 the phase shift is rapidly varying and the entanglement
is substantial. Using the formula

=−1∏
:=1

4 sin2
(
:c

=

)
= =2 (C.51)

we find

tAd=� =
1

=|U |=−1

(
1 +$ (U−2)

)
. (C.52)

We can extract the large-U behavior of the von Neumann entropy by taking the limit

(1 = tr d� log2 d� = lim
=→1

1
1 − = log2 trd

=
�

≈ lim
=→1

(= − 1) log2 |U | + log2 =

= − 1
= log2(4 |U |). (C.53)

The entanglement entropy of particles � and �, after the elastic scattering event,
scales like log |U |; therefore we expect to need a bond dimension scaling like |U | to
simulate the scattering process accurately using an MPS approximation.

In fact, by invoking properties of Chebyshev polynomials, the product over : in
(C.49) can be evaluated explicitly, yielding [273]

(= =
1

2(= − 1)
[
1 + 2=log2 |U | + log2(cosh(1=) − 1)

]
, (C.54)

where

1 ≡ arccosh
(
1 + 1

2|U |2

)
. (C.55)

In the limit =→ 1 we find

(1 = log2 |U | +
1

2

(
1 + 4|U |2

)1/2
log2 4 ; (C.56)

taking the large-U limit using arccosh(1 + G) =
√

2G (1 +$ (G)), we recover (C.53).
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